
Brenda Jin,
Saurabh Sahni &

Amir Shevat

Designing
 Web APIs
BUILDING APIS THAT DEVELOPERS LOVE

Brenda Jin, Saurabh Sahni,
and Amir Shevat

Designing Web APIs
Building APIs That Developers Love

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-02692-1

[LSI]

Designing Web APIs
by Brenda Jin, Saurabh Sahni, and Amir Shevat

Copyright © 2018 Brenda Jin, Saurabh Sahni, and Amir Shevat. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Mary Treseler
Development Editor: Angela Rufino
Production Editor: Justin Billing
Copyeditor: Octal Publishing, Inc.
Proofreader: Rachel Head

Indexer: Ellen Troutman
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2018: First Edition

Revision History for the First Edition
2018-08-28: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492026921 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Designing Web
APIs, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

http://oreilly.com/safari
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492026921

Table of Contents

Preface. vii

1. What’s an API?. 1
Why Do We Need APIs? 2
Who Are Our Users? 2
The Business Case for APIs 3
What Makes an API Great? 7
Closing Thoughts 8

2. API Paradigms. 9
Request–Response APIs 9
Event-Driven APIs 19
Closing Thoughts 25

3. API Security. 27
Authentication and Authorization 27
OAuth 28
WebHooks Security 42
Closing Thoughts 46

4. Design Best Practices. 47
Designing for Real-Life Use Cases 47
Designing for a Great Developer Experience 48
Closing Thoughts 59

5. Design in Practice. 61
Scenario 1 62

iii

Scenario 2 72
Closing Thoughts 79

6. Scaling APIs. 81
Scaling Throughput 82
Evolving Your API Design 90
Paginating APIs 97
Rate-Limiting APIs 102
Developer SDKs 114
Closing Thoughts 116

7. Managing Change. 117
Toward Consistency 117
Backward Compatibility 127
Planning for and Communicating Change 128
Closing Thoughts 142

8. Building a Developer Ecosystem Strategy. 143
Developers, Developers, Developers 144
Building a Developer Strategy 147
Deriving Measurements 160
Closing Thoughts 161

9. Developer Resources. 163
API Documentation 163
Samples and Snippets 172
Software Development Kits and Frameworks 175
Development Tools 179
Rich Media 180
Community Contribution 182
Closing Thoughts 183

10. Developer Programs. 185
Defining Your Developer Programs 185
Deep Developer Programs 187
Broad Developer Programs 192
Measuring Developer Programs 197
Closing Thoughts 198

11. Conclusion. 199

iv | Table of Contents

A. API Design Worksheets. 201

Index. 207

Table of Contents | v

Preface

Building a popular developer platform with an API that is used by
millions of developers is one of the most challenging and exciting
endeavors you can undertake in your software career. In this book,
you’ll learn how to do that.

APIs are at the core of modern software development. They tackle a
basic developer challenge: how can I, as a software engineer, expose
the code I’ve written to other developers to use and innovate with?
Building software in the modern world is very much like building
with LEGO bricks. As a developer you have access to a vast set of
APIs that expose services such as payments, communication,
authorization and authentication, and so forth. When building new
software, your job as a software engineer is to use these APIs to
compose your new product, reusing code that others built in order
to save time and avoid reinventing the wheel.

Many software engineers who enjoyed playing with LEGOs as kids
still love to play with them today. And who wouldn’t? It’s fun, and
you get to build useful stuff with awesome colorful pieces that con‐
nect to one another seamlessly. But what if you could build the
LEGO itself? Wouldn’t it be great if you could invent not only new
LEGO kits, but also the LEGO parts themselves, and let others inno‐
vate with them? When building your own API, you are in effect cre‐
ating your own LEGO parts for other developers to use.

APIs are not a new concept in computer science—in the ’60s, devel‐
opers began to build standard libraries for the first procedural lan‐
guages and share these with other developers. These developers
could use the standard functionality of these libraries without know‐
ing their internal code.

vii

Then, in the ’70s and ’80s, with the emergence of network-
connected computers, came the first network APIs that exposed
services developers could consume through Remote Procedure Calls
(RPCs). With RPCs, developers could expose their functionality
over the network and call remote libraries as if they were local. Pro‐
gramming languages like Java provided further abstraction and
complexity, with messaging middleware servers that listed and orch‐
estrated these remote services.

During the ’90s, with the emergence of the internet, many compa‐
nies wanted to standardize the way we build and expose APIs.
Standards such as the Common Object Request Broker Architecture
(CORBA), the Component Object Model (COM) and Distributed
Component Object Model (DCOM) by Microsoft, and many others
sought to become the de facto way to expose services over the web.
The problem was that most of these standards were complex to
manage, mandated similar programming languages on both sides of
the network, and sometimes required the local installation of part of
the remote service (commonly called a _stub_) in order to access it.
It was a mess; the dream of interoperability soon became a night‐
mare of configurations and constraints.

In the late ’90s and early ’00s came more open and standard ways of
accessing remote services over the web (web APIs). First with the
Simple Object Access Protocol (SOAP) and Extensible Markup Lan‐
guage (XML), and then with Representative State Transfer (REST)
and JavaScript Object Notation (JSON), accessing services became
easier and more standardized without dependencies on client-side
code or programming language. We cover the more popular and
useful of these methods in this book.

One by one, every tech company began exposing useful services
through APIs—from the early days of the Amazon Affiliate API
(2002), to the Flickr API (2004), the Google Maps API (2005), and
the Yahoo! Pipes API (2007), there are now thousands of APIs
exposing every service imaginable, from image manipulation to arti‐
ficial intelligence. Developers can call these and create new products
that are a composition of multiple APIs, just like building with
LEGO bricks.

Although APIs have become a commodity and using them an easy
task, building an API is still an art form. Do not take this challenge
lightly; building a solid API is not easy. APIs should be brilliantly

viii | Preface

simple and highly interoperable—like with LEGO, each part from
any kit should work well with every other piece in any other kit.
APIs should also be accompanied by developer programs and
resources to help developers adopt them. Building a solid API is just
the first step; you also need to create and support a thriving ecosys‐
tem of developers. We cover these challenges in the last part of this
book.

We wrote this book because we realized that over the course of our
careers we had followed similar processes and made similar deci‐
sions, processes, and optimizations for many APIs, but these guide‐
lines had not been compiled into a single authoritative resource. We
could each point to blog posts or articles here and there about sepa‐
rate topics, but there wasn’t one place that described how to design
for the evolution and growth of web APIs and their ecosystems.
With this book, we hope to put at your fingertips all the tools that
we’ve created and discovered over the course of our careers building
APIs. Having access to this skill set is very valuable. It can be the dif‐
ference between the success and failure of your business or technol‐
ogy, and it can be the unique advantage that will drive your career.

How This Book Is Organized
This book comprises three major parts:

Theory (Chapters 1–4)
Here we cover the basic concepts of building an API, review dif‐
ferent API patterns, and discuss different aspects of a good API.

Practice (Chapters 5–7)
In these chapters, we talk about how to actually design an API
and manage its operation in production.

Developer Love (Chapters 8–11)
In this section, we go beyond designing an API and show you
how to build a thriving developer ecosystem around your API.

Also included in this book are case studies (lessons from Stripe,
Slack, Twitch, Microsoft, Uber, GitHub, Facebook, Cloudinary, Ora‐
cle, and more!), advice and pro tips from experts in the field, and
stories about real-life experiences. In Appendix A, you’ll find some
handy worksheets, templates, and checklists.

Preface | ix

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, data types, environment variables, statements, and key‐
words.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

This element signifies a “Pro Tip.”

This element signifies a general note.

This element indicates a warning or caution.

x | Preface

O’Reilly Safari
Safari (formerly Safari Books Online) is a
membership-based training and reference
platform for enterprise, government, educa‐
tors, and individuals.

Members have access to thousands of books, training videos, Learn‐
ing Paths, interactive tutorials, and curated playlists from over 250
publishers, including O’Reilly Media, Harvard Business Review,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,
Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, and Course Technology, among oth‐
ers.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at https://
bit.ly/designing-web-apis.

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Preface | xi

http://oreilly.com/safari
http://www.oreilly.com/safari
https://bit.ly/designing-web-apis
https://bit.ly/designing-web-apis
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thanks to our families, whose love and support have made this
book possible.

Special thanks to our technical reviewers Bilal Aijazi, James Higgen‐
botham, Jenny Donnelly, Margaret Le, and Melissa Khuat.

Thank you as well to Eric Conlon, Or Weis, Taylor Singletary, and
Zoe Madden-Wood, who provided additional comments and feed‐
back.

Finally, thank you to all the folks who participated in interviews and
case studies and otherwise helped shape this book:

• Bilal Aijazi, CTO at Polly
• Chris Messina, developer experience lead at Uber
• Desiree Motamedi Ward, head of developer product marketing

at Facebook
• Ido Green, developer advocate at Google
• Kyle Daigle, director of ecosystem engineering at GitHub
• Ran Rubinstein, VP of solutions at Cloudinary
• Romain Huet, head of developer relations at Stripe
• Ron Reiter, senior director of engineering at Oracle
• Taylor Singletary, lead content writer at Slack
• Yochay Kiriaty, Azure principal program manager at Microsoft

xii | Preface

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

What’s an API?

“What’s an API?” When a new programmer asks this question, they
typically get the answer, “an application programming interface.”

But APIs are so much more than their name suggests—and to
understand and unleash their value, we must focus on the keyword
interface.

An API is the interface that a software program presents to other
programs, to humans, and, in the case of web APIs, to the world via
the internet. An API’s design belies much about the program behind
it—business model, product features, the occasional bug. Although
APIs are designed to work with other programs, they’re mostly
intended to be understood and used by humans writing those other
programs.

APIs are the building blocks that allow interoperability for major
business platforms on the web. APIs are how identity is created and
maintained across cloud software accounts, from your corporate
email address to your collaborative design software to the web appli‐
cations that help you order pizza delivery. APIs are how weather
forecast data is shared from a reputable source like the National
Weather Service to hundreds of software apps that specialize in its
presentation. APIs process your credit cards and enable companies
to seamlessly collect your money without worrying about the minu‐
tiae of financial technology and its corresponding laws and regula‐
tions.

1

More and more, APIs are a key component of scalable and success‐
ful internet companies like Amazon, Stripe, Google, and Facebook.
For companies looking to create a business platform that expands
the market for everyone, APIs are an important piece of the puzzle.

Designing your first API is just the beginning. This book goes
beyond design principles for your first API and dives into how to
develop and grow an API alongside your business. With the right
choices, your API will stand the test of time.

Why Do We Need APIs?
APIs have emerged out of a need to exchange information with pro‐
viders of data who are equipped to solve specific problems, so folks
at other companies don’t have to spend time solving those problems
themselves. For example, you might want to embed an interactive
map on a web page without reinventing Google Maps. You might
want to have a user sign in without having to reinvent Facebook
Login. Or, you might want to create a chatbot that occasionally
interacts with users without having to build a real-time messaging
system.

In all of these cases, supplementary features and products are cre‐
ated using data or interactions from a specialized platform. APIs
enable businesses to develop unique products quickly. Rather than
reinventing the wheel, startups are able to differentiate their product
offerings while taking advantage of existing technologies and tap‐
ping into other ecosystems.

Who Are Our Users?
None of the theory matters if you’re not focused on building the right
thing for the right customer.

—Bilal Aijazi, CTO at Polly

When building any product, it is a good idea to focus on the cus‐
tomer first. This is also very important when designing an API. In
Chapter 8, we talk about different types of developers and use cases
as well as strategies to engage with them and give them value. It is
important that you understand who your developers are, what their
needs are, and why they are using your API. Focusing on developers
prevents you from building APIs that no one wants to use or that do
not fit the usage requirements of your developers.

2 | Chapter 1: What’s an API?

Because changing an API’s design is very difficult after the fact, it is
important that you specify your API and validate it long before you
start to implement it. The cost of switching from one API design to
another is extremely high for most developers.

Here are some examples of developer use cases for an image upload
and storage API:

• Lisa is a web developer in a startup that sells art, and she needs
an easy way for the artists to upload and show photos of their
work.

• Ben is a backend enterprise developer who needs to store
receipts coming from the expense system into his audit and pol‐
icy solution.

• Jane is a frontend developer who wants to integrate real-time
customer support chat onto her company’s website.

These are just a few examples, each with unique hidden require‐
ments and needs. If you do not address your developers’ needs, your
API will not be successful.

In the next section, we talk about high-level use cases that can have
an impact on the design of your API, but the more granular you can
be with your use cases and the better you understand your develop‐
ers, the better you can serve them.

The Business Case for APIs
It’s no secret that the web powers a large portion of new product
innovation and the technology market today. As a result, APIs are
more important than ever in creating a business, and there are many
models for incorporating them into a product. In some cases, an
API will lead to direct profit and monetization (via profit share
models, subscription fees, or usage fees). But there are also many
other reasons you might want to create an API. APIs might support
your company’s overall product strategy. They might be a critical
piece of the puzzle for integrating third-party services with your
company’s product. APIs might be part of a strategy to incentivize
others to build supplemental products in which the developer of the
main product is unwilling or unable to invest. APIs might also be a
way to generate leads, create new distribution channels for a prod‐

The Business Case for APIs | 3

uct, or upsell products. For more information on these strategies,
see John Musser’s presentation on API business models.

An API must be aligned with the core business, as is the case with
many software as a service (SaaS) companies. Notable examples are
GitHub, Salesforce, and Stripe. Sometimes, the products built on
these APIs are referred to as “service integrations.” Consumer APIs
work well if there is a critical mass of user-generated content, such
as with Facebook and Flickr’s photo-sharing capabilities. Although
there are many reasons to create an API and launch a developer
platform, there is also a clear reason not to create a developer plat‐
form—when the API strategy is not aligned with the core business.
For example, if the product’s main revenue stream is advertisements,
APIs that enable alternative “clients” for the product will drive traffic
away from the experience where the ads are hosted. That will take
away from revenue share, as was the case with the Twitter API.

Monetization and business incentives aside, let’s take a more
detailed look at the following ways that some companies have struc‐
tured their API development:

• APIs for internal developers first, external developers second
• APIs for external developers first, internal developers second
• APIs as the product

APIs for Internal Developers First, External Developers
Second
Some companies build their APIs for internal developers first and
then release them to external developers. There could be a number
of motivations for this. One reason might be that the company sees
potential value in adding an external API. This could create a devel‐
oper ecosystem, drive new demand for the company’s product, or
enable other companies to build products that the company itself
does not want to build.

To take a look at a specific instance, let’s explore how Slack’s API
started—as an API for Slack’s web, native desktop, and mobile cli‐
ents to display a messaging interface. Although Slack originally cre‐
ated its APIs for its internal developers, something else happened as
the company grew: a handful of “integrations” with important busi‐
ness software became a key piece of the puzzle for Slack’s growth

4 | Chapter 1: What’s an API?

https://www.slideshare.net/jmusser/j-musser-apibizmodels2013

and development as communication software. Instead of building
bespoke apps to integrate its offering with other companies, Slack
launched its Developer Platform and a suite of products for third-
party developers to build their own apps, both at established compa‐
nies and at new startups.

This move on Slack’s part helped to grow the ecosystem for apps
that integrate with Slack’s messaging platform. It also meant that
users of Slack who also used other business software could seam‐
lessly collaborate where communication was already happening in
the Slack messaging client.

The advantage to Slack’s APIs at the time of its Developer Platform
launch was that the APIs were already tested and well used by inter‐
nal developers. The disadvantages to this approach showed up over
time as the needs of external developers drifted apart from the needs
of internal developers. Internal developers needed flexibility to cre‐
ate new experiences for end users of the messaging client, from new
types of shared channels, files, and messages, to other increasingly
complex communication experiences. Meanwhile, third-party devel‐
opers were no longer creating replacement client user interfaces
(UIs) for Slack—they started to create powerful business applica‐
tions and tools that were designed for workflows rather than mes‐
sage display. External developers also required stability, and the
tension between API backward compatibility and the need to
change the API for new product features had a cost on project
velocity within Slack.

APIs for External Developers First, Internal Developers
Second
Some companies create APIs for external stakeholders first and then
release them to internal stakeholders. That’s how GitHub has oper‐
ated since the beginning. Let’s take a look at how and why GitHub
developed its API and how its developer audience has affected the
evolution of the API.

In the beginning, GitHub’s API audience was primarily external
developers who wanted to gain programmatic access to their own
data. Shortly after the initial release of their API, small businesses
began to form around GitHub’s API. These businesses were creating
developer tools and selling them to GitHub’s users.

The Business Case for APIs | 5

Since then, GitHub has expanded its API offering significantly. It
has built an API that serves both individuals who want to create
their own personal projects or workflows and teams that want to
collaborate to build bot scripts or workflow tools that integrate with
GitHub. These teams, called integrators, build developer tools, con‐
nect users with GitHub’s platform, and sell these tools to mutual cus‐
tomers.

When it came time for GitHub to build its GraphQL API, third-
party developers were the first consumers. GraphQL is a query
interface for web APIs. Although it isn’t the first such interface, it
gained a bit of buzz prior to the writing of this book due to its
implementation by Facebook, a well-known API provider, and its
adoption by GitHub, another well-known API provider. After third-
party developers began to use GitHub’s new GraphQL API, internal
GitHub developers also adopted it to power the GitHub web UI and
client applications.

In GitHub’s case, the API had a clear intention to serve external
stakeholders first and then eventually evolved to serve internal
developers as well. One advantage to this approach is that the API
can be customized to serve external developers, rather than strad‐
dling two audiences. As GitHub’s API evolved, it was able to anno‐
tate its JSON responses with more and more data that developers
needed. Eventually, the payloads were so large that GitHub imple‐
mented GraphQL so that developers could specify the fields they
wanted with the queries. One disadvantage to this approach in the
case of GraphQL is that due to the flexibility that GraphQL gives
developers, performance bottlenecks that emerge are spread across a
variety of access patterns. This can make troubleshooting tricker
than when working with a single endpoint at a time, for example in
the case of REST.

For more details on GraphQL, see Chapter 2.

APIs as the Product
For some companies, the API is the product. Such is the case with
Stripe and Twilio. Stripe provides APIs for payment processing on

6 | Chapter 1: What’s an API?

the internet. Twilio provides APIs for communication via SMS,
voice, and messaging. In the case of these two companies, building
an API is 100% aligned with a single-product audience. The API is
the product, and the entire business aligns behind building a seam‐
less interface for customers. As far as managing APIs and meeting
user needs, the API as the product is the most straightforward com‐
pany arrangement possible.

What Makes an API Great?
We asked industry experts this question, and the answers we
received boiled down to whether the API achieves what it is sup‐
posed to do. To delve into the aspects that contribute to an API’s
usability, we will not only explore aspects of designing and scaling
APIs, but also the support and ecosystems that enable developers to
use APIs.

Expert Advice
A good API may come down to the problem you’re trying to
solve and how valuable solving it is. You may be willing to use a
confusing, inconsistent, poorly documented API if it means
you’re getting access to a unique dataset or complex functionality.
Otherwise, good APIs tend to offer clarity (of purpose, design,
and context), flexibility (ability to be adapted to different use
cases), power (completeness of the solution offered), hackability
(ability to pick up quickly through iteration and experimenta‐
tion), and documentation.

—Chris Messina, developer experience lead at Uber

Usability, scalability, and performance are some of the aspects that
make a good API. We cover many of these topics in Chapters 2
through 4 of this book. Documentation and developer resources are
also important to setting users up for success. We cover those in
Chapters 7 through 9. Because it is impossible to optimize an API
for all factors, the implementation team must make tough decisions
about what is most important for the end user. We teach you how to
build a strategy to address this in Chapter 7.

One more thing to consider is how a great API will stand the test of
time. Change is difficult and inevitable. APIs are flexible platforms
that connect businesses, and the rate of change is variable. In large-

What Makes an API Great? | 7

enterprise contexts, the rate of change is slower than in small start‐
ups that have not yet found product–market fit. But sometimes, these
small startups provide invaluable services via APIs that enterprises
must use. In Chapter 5, you also learn about how to design APIs to
stand the test of time and change.

Closing Thoughts
In summary, APIs are an important component of modern tech
products, and there are many ways to structure a business using
them. In Chapter 2, we give you an overview of API design para‐
digms.

8 | Chapter 1: What’s an API?

CHAPTER 2

API Paradigms

Picking the right API paradigm is important. An API paradigm
defines the interface exposing backend data of a service to other
applications. When starting out with APIs, organizations do not
always consider all the factors that will make an API successful. As a
result, there isn’t enough room built in to add the features they want
later on. This can also happen when the organization or product
changes over time. Unfortunately, after there are developers using it,
changing an API is difficult (if not impossible). To save time, effort,
and headaches—and to leave room for new and exciting features—
it’s worthwhile to give some thought to protocols, patterns, and a
few best practices before you get started. This will help you design
an API that allows you to make the changes you want in the future.

Over the years, multiple API paradigms have emerged. REST, RPC,
GraphQL, WebHooks, and WebSockets are some of the most popu‐
lar standards today. In this chapter, we dive into these different para‐
digms.

Request–Response APIs
Request–response APIs typically expose an interface through an
HTTP-based web server. APIs define a set of endpoints. Clients
make HTTP requests for data to those endpoints and the server
returns responses. The response is typically sent back as JSON or
XML. There are three common paradigms used by services to
expose request–response APIs: REST, RPC, and GraphQL. We look
into each of them in the subsections that follow.

9

Representational State Transfer
Representational State Transfer (REST) is the most popular choice
for API development lately. The REST paradigm is used by provid‐
ers like Google, Stripe, Twitter, and GitHub. REST is all about
resources. A resource is an entity that can be identified, named,
addressed, or handled on the web. REST APIs expose data as resour‐
ces and use standard HTTP methods to represent Create, Read,
Update, and Delete (CRUD) transactions against these resources.
For instance, Stripe’s API represents customers, charges, balance,
refunds, events, files, and payouts as resources.

Here are some general rules REST APIs follow:

• Resources are part of URLs, like /users.
• For each resource, two URLs are generally implemented: one

for the collection, like /users, and one for a specific element,
like /users/U123.

• Nouns are used instead of verbs for resources. For example,
instead of /getUserInfo/U123, use /users/U123.

• HTTP methods like GET, POST, UPDATE, and DELETE inform the
server about the action to be performed. Different HTTP meth‐
ods invoked on the same URL provide different functionality:

Create
Use POST for creating new resources.

Read
Use GET for reading resources. GET requests never, ever
change the state of the resource. They have no side effects;
the GET method has a read-only semantic. GET is idempo‐
tent. Consequently, you can cache the calls perfectly.

Update
Use PUT for replacing a resource and PATCH for partial
updates for existing resources.

Delete
Use DELETE for deleting existing resources.

• Standard HTTP response status codes are returned by the
server indicating success or failure. Generally, codes in the 2XX
range indicate success, 3XX codes indicate a resource has

10 | Chapter 2: API Paradigms

moved, and codes in the 4XX range indicate a client-side error
(like a missing required parameter or too many requests).
Codes in the 5XX range indicate server-side errors.

• REST APIs might return JSON or XML responses. That said,
due to its simplicity and ease of use with JavaScript, JSON has
become the standard for modern APIs. (XML and other formats
might still be supported to make adoption easy for clients that
are already working with those formats using similar APIs.)

Table 2-1 shows how HTTP methods are typically used in REST
APIs, and Examples 2-1 and 2-2 show some example HTTP
requests.

Table 2-1. CRUD operations, HTTP verbs, and REST conventions

Operation HTTP verb URL: /users URL: /users/U123
Create POST Create a new user Not applicable
Read GET List all users Retrieve user U123
Update PUT or PATCH Batch update users Update user U123
Delete DELETE Delete all users Delete user U123

Example 2-1. HTTP request to retrieve a charge from the Stripe API

GET /v1/charges/ch_CWyutlXs9pZyfD
HOST api.stripe.com
Authorization: Bearer YNoJ1Yq64iCBhzfL9HNO00fzVrsEjtVl

Example 2-2. HTTP request to create a charge from the Stripe API

POST /v1/charges/ch_CWyutlXs9pZyfD
HOST api.stripe.com
Content-Type: application/x-www-form-urlencoded
Authorization: Bearer YNoJ1Yq64iCBhzfL9HNO00fzVrsEjtVl

amount=2000¤cy=usd

Showing relationships
A resource that exists only within another resource can be better
represented as a subresource instead of a top-level resource in the
URL. This makes the relationship clear for the developers using the
API.

For instance, the GitHub API uses subresources to represent rela‐
tionships in various APIs:

Request–Response APIs | 11

POST /repos/:owner/:repo/issues

Create an issue.

GET /repos/:owner/:repo/issues/:number

Retrieve an issue.

GET /repos/:owner/:repo/issues

List all issues.

PATCH /repos/:owner/:repo/issues/:number

Edit an issue.

Non-CRUD operations
Beyond the typical CRUD operations that we just looked at, REST
APIs might sometimes need to represent non-CRUD operations.
The following approaches are commonly used in that case:

• Render an action as part of a field of a resource. For example, as
shown in Example 2-3, GitHub’s API uses "archived" as an
input parameter to the repo edit API to represent archiving a
repository action.

• Treat an action like a subresource. The GitHub API uses this
pattern for locking and unlocking an issue.
PUT /repos/:owner/:repo/issues/:number/lock locks an
issue.

• Some operations, such as search, are even more difficult to fit in
the REST paradigm. A typical practice in that case is to use just
the action verb in the API URL. GET /search/code?q=:query:
finds files in GitHub matching the given query.

Example 2-3. HTTP request to archive a GitHub repository

PATCH /repos/saurabhsahni/Hacks
HOST api.github.com
Content-Type: application/json
Authorization: token OAUTH-TOKEN

{
 "archived": true
}

12 | Chapter 2: API Paradigms

Remote Procedure Call
Remote Procedure Call (RPC) is one of the simplest API paradigms,
in which a client executes a block of code on another server.
Whereas REST is about resources, RPC is about actions. Clients typ‐
ically pass a method name and arguments to a server and receive
back JSON or XML.

RPC APIs generally follow two simple rules:

• The endpoints contain the name of the operation to be exe‐
cuted.

• API calls are made with the HTTP verb that is most appropri‐
ate: GET for read-only requests and POST for others.

RPC style works great for APIs that expose a variety of actions that
might have more nuances and complications than can be encapsula‐
ted with CRUD or for which there are side effects unrelated to the
“resource” at hand. RPC-style APIs also accommodate complicated
resource models or actions upon multiple types of resources.

One notable example of an RPC-style web API is Slack’s API.
Example 2-4 demonstrates an example of a POST request to Slack’s
conversations.archive RPC API.

Example 2-4. HTTP request to Slack’s API

POST /api/conversations.archive
HOST slack.com
Content-Type: application/x-www-form-urlencoded
Authorization: Bearer xoxp-1650112-jgc2asDae

channel=C01234

Slack’s Conversations API (Figure 2-1) allows several actions, like
archive, join, kick, leave, and rename. Although in this case there is
a clear “resource,” not all of these actions would fit into the REST
pattern nicely. Additionally, there are other actions, such as posting
a message with chat.postMessage, which have complex relation‐
ships with message resources, attachment resources, and visibility
settings within the web client.

Request–Response APIs | 13

Figure 2-1. RPC-style Slack API methods

RPC-style APIs are not exclusive to HTTP. There are other high-
performance protocols that are available for RPC-style APIs, includ‐
ing Apache Thrift and gRPC. Although there are JSON options for
gRPC, both Thrift and gRPC requests are serialized. Structured data
and clearly defined interfaces enable this serialization. Thrift and
gRPC also have built-in mechanisms for editing the data structures.
We don’t explore many examples of either gRPC or Thrift in this
book, but we thought they were worth mentioning here.

GraphQL
GraphQL is a query language for APIs that has gained significant
traction recently. It was developed internally by Facebook in 2012
before being publicly released in 2015 and has been adopted by API
providers like GitHub, Yelp, and Pinterest. GraphQL allows clients
to define the structure of the data required, and the server returns

14 | Chapter 2: API Paradigms

https://thrift.apache.org/
https://grpc.io/docs/guides/index.html
http://graphql.org/

exactly that structure. Examples 2-5 and 2-6 show a GraphQL query
to the GitHub API and the response.

Example 2-5. GraphQL query

{
 user(login: "saurabhsahni") {
 id
 name
 company
 createdAt
 }
}

Example 2-6. Response from GitHub GraphQL API

{
 "data": {
 "user": {
 "id": "MDQ6VXNlcjY1MDI5",
 "name": "Saurabh Sahni",
 "company": "Slack",
 "createdAt": "2009-03-19T21:00:06Z"
 }
 }
}

Unlike REST and RPC APIs, GraphQL APIs need only a single URL
endpoint. Similarly, you do not need different HTTP verbs to
describe the operation. Instead, you indicate in the JSON body
whether you’re performing a query or a mutation, as illustrated in
Example 2-7. GraphQL APIs support GET and POST verbs.

Example 2-7. GraphQL API call to GitHub

POST /graphql
HOST api.github.com
Content-Type: application/json
Authorization: bearer 2332dg1acf9f502737d5e
 xoxp-16501860787-17163410960-113570727396-7051650

{
 "query": "query { viewer { login }}"
}

Request–Response APIs | 15

GraphQL has a few key advantages over REST and RPC:

Saves multiple round trips
GraphQL enables clients to nest queries and fetch data across
resources in a single request. Without GraphQL, this might
require multiple HTTP calls to the server. This means mobile
applications using GraphQL can be quick, even on slow net‐
work connections.

Avoids versioning
You can add new fields and types to a GraphQL API without
affecting existing queries. Similarly, deprecating existing fields is
easier. By doing log analysis, an API provider can figure out
which clients are using a field. You can hide deprecated fields
from tools and remove them when no clients are using them.
With REST and RPC APIs, it’s harder to figure out which clients
are using a deprecated field, making removal more difficult.

Smaller payload size
REST and RPC APIs often end up responding with data that cli‐
ents might not ever use. With GraphQL, because clients can
exactly specify what they need, the payload sizes can be smaller.
GraphQL queries return predictable results while giving clients
control over the data that is returned.

Strongly typed
GraphQL is strongly typed. At development time, GraphQL
type checking helps in ensuring that a query is syntactically cor‐
rect and valid. This makes building high-quality, less error-
prone clients easy.

Introspection
Although there are external solutions like Swagger that help
make exploring REST APIs easy, GraphQL is natively discovera‐
ble. It comes with GraphiQL, an in-browser IDE for exploring
GraphQL. It lets users write, validate, and test GraphQL queries
in a browser. Figure 2-2 shows using GraphiQL to explore the
GitHub API.

16 | Chapter 2: API Paradigms

https://github.com/graphql/graphiql

Figure 2-2. GraphiQL: GitHub’s GraphQL explorer showing a complex
query

Expert Advice
One of the biggest issues GitHub saw was REST payload creep.
Over time, you add additional information to a serializer for, say,
a repository. It starts small but as you add additional data (maybe
you’ve added a new feature) that primitive ends up producing
more and more data until your API responses are enormous.
We’ve tackled that over the years by creating more endpoints,
allowing you to specify you’d like the more verbose response, and
by adding more and more caching. But, over time, we realized we
were returning a ton of data that our integrators didn’t even
want. That’s one of several reasons we’ve been investing in our
GraphQL API. With GraphQL, you specify a query for just the
data you want and we return just that data.

—Kyle Daigle, director of ecosystem engineering at GitHub

Although GraphQL has many advantages, one of its drawbacks is
the complexity it adds for the API provider. The server needs to do
additional processing to parse complex queries and verify parame‐
ters. Optimizing performance of GraphQL queries can be difficult,
too. Internally, within a company, it’s easy to predict the use cases
and debug performance bottlenecks. When working with external
developers, those use cases become difficult to understand and opti‐
mize for. When opening up GraphQL to third parties, you move the
expense of managing multiple incoming requests to composing
complicated queries on the backend—depending on the request, the
performance and impact to infrastructure can be highly variable.

Request–Response APIs | 17

Table 2-2 summarizes the differences between the various request–
response API options.

Table 2-2. Comparison of request–response API paradigms

 REST RPC GraphQL
What? Exposes data as

resources and uses
standard HTTP
methods to represent
CRUD operations

Exposes action-based API
methods—clients pass method
name and arguments

A query language for APIs
—clients define the
structure of the response

Example
services

Stripe, GitHub, Twitter,
Google

Slack, Flickr Facebook, GitHub, Yelp

Example
usage

GET /users/<id> GET /users.get?id=<id> query ($id:
String!) {
 user(login: $id)
{
 name
 company
 createdAt
 }
}

HTTP
verbs
used

GET, POST, PUT,
PATCH, DELETE

GET, POST GET, POST

Pros • Standard method
name, arguments
format, and status
codes

• Utilizes HTTP
features

• Easy to maintain

• Easy to understand

• Lightweight payloads

• High performance

• Saves multiple round
trips

• Avoids versioning

• Smaller payload size

• Strongly typed

• Built-in introspection

Cons • Big payloads

• Multiple HTTP
round trips

• Discovery is difficult

• Limited standardization

• Can lead to function
explosion

• Requires additional
query parsing

• Backend performance
optimization is difficult

• Too complicated for a
simple API

When to
use?

For APIs doing CRUD-
like operations

For APIs exposing several
actions

When you need querying
flexibility; great for
providing querying
flexibility and maintaining
consistency

18 | Chapter 2: API Paradigms

Event-Driven APIs
With request–response APIs, for services with constantly changing
data, the response can quickly become stale. Developers who want
to stay up to date with the changes in data often end up polling the
API. With polling, developers constantly query API endpoints at a
predetermined frequency and look for new data.

If developers poll at a low frequency, their apps will not have data
about all the events (like a resource being created, updated, or
deleted) that occurred since the last poll. However, polling at a high
frequency would lead to a huge waste of resources, as most API calls
will not return any new data. In one case, Zapier did a study and
found that only about 1.5% of their polling API calls returned new
data.

To share data about events in real time, there are three common
mechanisms: WebHooks, WebSockets, and HTTP Streaming. We dive
deeper into each of them in the subsections that follow.

WebHooks
A WebHook is just a URL that accepts an HTTP POST (or GET, PUT,
or DELETE). An API provider implementing WebHooks will simply
POST a message to the configured URL when something happens.
Unlike with request–response APIs, with WebHooks, you can
receive updates in real time. Several API providers, like Slack, Stripe,
GitHub, and Zapier, support WebHooks. For instance, if you want to
keep track of “channels” in a Slack team with Slack’s Web API, you
might need to continuously poll the API for new channels. However,
as illustrated in Figure 2-3, by configuring a WebHook, you can sim‐
ply receive a notification whenever a new channel is created.

Event-Driven APIs | 19

https://zapier.com/engineering/introducing-resthooksorg/

Figure 2-3. Polling versus WebHooks

WebHooks are great for easily sharing real-time data from one
server to another server. From an app developer’s point of view, it’s
typically easy to implement WebHooks because it simply requires
creating a new HTTP endpoint to receive events (see Figure 2-4).
This means that they can generally reuse existing infrastructure. At
the same time, supporting WebHooks adds new complexities,
including the following:

Failures and retries
To ensure WebHooks are delivered successfully, it’s important to
build a system that will retry WebHook delivery on errors. Slack
built a system that retries failed deliveries up to three times:
once immediately, and then one minute later, and finally five
minutes later. Further, if the endpoint continues to return errors
for 95% of requests, Slack stops sending events to that Web‐
Hook endpoint and notifies the developer.

Security
Although there are standard ways of making REST API calls
secure, security for WebHooks is still evolving. With Web‐
Hooks, the onus is on app developers to ensure that they’ve

20 | Chapter 2: API Paradigms

received a legitimate WebHook. That often leads to developers
using unverified WebHooks. There are some common patterns
that most API providers follow to secure WebHooks, which we
discuss in Chapter 3.

Firewalls
Applications running behind firewalls can access APIs over
HTTP, but they are unable to receive inbound traffic. For such
applications, utilizing WebHooks is difficult and often not pos‐
sible.

Noise
Typically, each WebHook call represents one single event. When
there are thousands of events happening in a short time that
need to be sent via a single WebHook, it can be noisy.

Figure 2-4. Configuring a GitHub WebHook

Event-Driven APIs | 21

WebSockets
WebSocket is a protocol used to establish a two-way streaming com‐
munication channel over a single Transport Control Protocol (TCP)
connection. Although the protocol is generally used between a web
client (e.g., a browser) and a server, it’s sometimes used for server-
to-server communication, as well.

The WebSocket protocol is supported by major browsers and often
used by real-time applications. Slack uses WebSockets to send all
kinds of events happening in a workspace to Slack’s clients, includ‐
ing new messages, emoji reactions added to items, and channel crea‐
tions. Slack also provides a WebSocket-based Real Time Messaging
API to developers so that they can receive events from Slack in real
time and send messages as users. Similarly, Trello uses WebSockets
to push changes made by other people down from servers to brows‐
ers listening on the appropriate channels, and Blockchain uses its
WebSocket API to send real-time notifications about new transac‐
tions and blocks.

WebSockets can enable full-duplex communication (server and cli‐
ent can communicate with each other simultaneously) at a low over‐
head. Additionally, they are designed to work over port 80 or 443,
enabling them to work well with firewalls that might block other
ports. This is an especially important consideration when it comes
to enterprise developers. For example, some enterprise developers
using Slack APIs prefer to use the WebSocket API over WebHooks
because they are able to receive events from the Slack API securely
without having to open up an HTTP WebHook endpoint to the
internet where Slack can post messages.

WebSockets are great for fast, live streaming data and long-lived
connections. However, be wary if you plan to make these available
on mobile devices or in regions where connectivity can be spotty.
Clients are supposed to keep the connection alive. If the connection
dies, the client needs to reinitiate it. There are also issues related to
scalability. Developers using Slack’s WebSocket API must establish a
connection for each team that uses their app (Figure 2-5). This
means that if an app is installed on 10,000 Slack workspaces, the
developer would be responsible for maintaining 10,000 connections
between Slack servers and the app’s server.

22 | Chapter 2: API Paradigms

https://en.wikipedia.org/wiki/WebSocket
https://api.slack.com/rtm
https://api.slack.com/rtm
https://blog.fogcreek.com/the-trello-tech-stack/
https://blockchain.info/api/api_websocket

Figure 2-5. Frames sent over a full-duplex WebSocket connection
between Slack and a browser

HTTP Streaming
With the HTTP request–response APIs, clients send an HTTP
request and the server returns an HTTP response of a finite length
(Figure 2-6). Now, it’s possible to make the length of this response
indefinite. With HTTP Streaming, the server can continue to push
new data in a single long-lived connection opened by a client.

Figure 2-6. Client–server interaction with an HTTP Streaming API

To transmit data over a persistent connection from server to client,
there are two options. The first option is for the server to set the

Event-Driven APIs | 23

Transfer-Encoding header to chunked. This indicates to clients that
data will be arriving in chunks of newline-delimited strings. For typ‐
ical application developers, this is easy to parse.

Another option is to stream data via server-sent events (SSE). This
option is great for clients consuming these events in a browser
because they can use the standardized EventSource API.

Twitter utilizes the HTTP Streaming protocol to deliver data
through a single connection opened between an app and Twitter’s
streaming API. The big benefit for developers is that they don’t need
to poll the Twitter API continuously for new tweets. Twitter’s
Streaming API can push new tweets over a single HTTP connection
instead of a custom protocol. This saves resources for both Twitter
and the developer.

HTTP Streaming is easy to consume. However, one of the issues
with it is related to buffering. Clients and proxies often have buffer
limits. They might not start rendering data to the application until a
threshold is met. Also, if clients want to frequently change what kind
of events they listen to, HTTP Streaming might not be ideal because
it requires reconnections.

Table 2-3 summarizes the differences between the various event-
driven API options.

Table 2-3. Comparison of event-driven APIs

 WebHooks WebSockets HTTP Streaming
What? Event notification via HTTP

callback
Two-way streaming
connection over TCP

Long-lived connection over
HTTP

Example
services

Slack, Stripe, GitHub, Zapier,
Google

Slack, Trello, Blockchain Twitter, Facebook

Pros • Easy server-to-server
communication

• Uses HTTP protocol

• Two-way streaming
communication

• Native browser support

• Can bypass firewalls

• Can stream over simple
HTTP

• Native browser support

• Can bypass firewalls

24 | Chapter 2: API Paradigms

https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data

 WebHooks WebSockets HTTP Streaming
Cons • Do not work across

firewalls or in browsers

• Handling failures, retries,
security is hard

• Need to maintain a
persistent connection

• Not HTTP

• Bidirectional
communication is
difficult

• Reconnections required
to receive different
events

When to
use?

To trigger the server to
serve real-time events

For two-way, real-time
communication between
browsers and servers

For one-way
communication over
simple HTTP

Closing Thoughts
There is no one-size-fits-all solution when it comes to selecting an
API paradigm. Each of the API paradigms that we discussed in this
chapter works well for certain kinds of use cases. You might need to
support multiple paradigms, too. For example, the Slack API sup‐
ports RPC-style APIs, WebSockets, and WebHooks. It’s important
for you to understand which solution will work best for your cus‐
tomers, which will help you meet your business goals, and what is
possible with the constraints within which you are working.

In Chapter 3, we look into how you can secure your APIs. We cover
how API providers are building authentication and authorization
schemes. We also look extensively at OAuth, an open protocol used
to secure authorization in a simple and standard way.

Closing Thoughts | 25

CHAPTER 3

API Security

Security is a critical element of any web application, particularly so
for APIs. New security issues and vulnerabilities are always being
discovered, and it’s important to protect your APIs from attacks. A
security breach can be disastrous—poor security implementations
can lead to loss of critical data as well as revenue.

To ensure an application is secure, there are many things engineers
tend to do. This includes input validation, using the Secure Sockets
Layer (SSL) protocol everywhere, validating content types, main‐
taining audit logs, and protecting against cross-site request forgery
(CSRF) and cross-site scripting (XSS). All of these are important for
any web application, and you should be doing them. Beyond these
typical web application security practices, there are additional tech‐
niques that apply specifically to web APIs that you expose to devel‐
opers outside your company. In this chapter, we look closely at those
best practices and how companies are securing APIs in practice.

Authentication and Authorization
Authentication and authorization are two foundation elements of
security:

Authentication
The process of verifying who you are. Web applications usually
accomplish this by asking you to log in with a username and
password. This combination is checked against an existing valid
username/password record to ensure the request is authentic.

27

Authorization
The process of verifying that you are permitted to do what you
are trying to do. For instance, a web application might allow you
to view a page; however, it might not allow you to edit that page
unless you are an administrator. That’s authorization.

As you design an API, you need to think about how app developers
will perform both authentication and authorization with your API.
Early on, API providers started supporting Basic Authentication. It’s
the simplest technique used to enforce access control on the web.
The clients send HTTP requests with an Authorization header
which consists of the word “Basic” followed by a space and a string
generated by combining username and password with a colon (user
name:password) and encoding it with base64; for example:

Authorization: Basic dXNlcjpwYXNzd29yZA==

Although Basic Authentication is simple, it offers the least amount
of security. If you use Basic Authentication for your API, to use a
third-party developer’s application, your users might need to share
their username and password credentials with them. That has sev‐
eral disadvantages, including the following:

• Applications are required to store these credentials in clear text
or in a way that they can decrypt them. If an application
exposed the credentials via a bug or other means, that might
leak private user data to a malicious hacker. Considering many
people use the same password across multiple services, the data-
loss impact on users could be pretty serious.

• Users cannot revoke access to a single application without
revoking access to all the applications by changing the pass‐
word.

• Applications get full access to user accounts. Users cannot limit
access to selected resources.

For such reasons, Twitter decided to discontinue support for Basic
Authentication for its core API in 2010.

OAuth
To address issues faced by Basic Authentication and other prevalent
authentication and authorization mechanisms, OAuth was intro‐
duced in 2007. OAuth is an open standard that allows users to grant

28 | Chapter 3: API Security

https://en.wikipedia.org/wiki/Basic_access_authentication
https://oauth.net/

access to applications without sharing passwords with them. The
latest version of the standard, OAuth 2.0, is the industry-standard
protocol for authorization. It has been adopted by several compa‐
nies, including Amazon, Google, Facebook, GitHub, Stripe, and
Slack.

The biggest benefit of OAuth is that users do not need to share pass‐
words with applications. For example, say TripAdvisor wants to
build an application that will use a user’s Facebook identity, profile,
friend list, and other Facebook data. With OAuth, TripAdvisor can
redirect that user to Facebook, where they can authorize TripAdvi‐
sor to access their information, as demonstrated in Figure 3-1. After
the user authorizes the sharing of data, TripAdvisor can then call the
Facebook API to fetch this information.

Figure 3-1. The OAuth flow between TripAdvisor and Facebook

The second benefit of OAuth is that it allows API providers’ users to
grant selective permission. Each application has different require‐
ments of what data it needs from an API provider. The OAuth
framework allows API providers to grant access to one or more
resources. For example, in the case of TripAdvisor in Figure 3-1,
TripAdvisor would receive permission to read a user’s profile,
friends list, and more, but it cannot post on the user’s behalf on
Facebook.

Finally, if at some point a user would like to revoke TripAdvisor’s
access to their Facebook data, they can simply go to their Facebook
settings and revoke it without changing their password.

OAuth | 29

Token Generation
With OAuth, applications use an access token to call APIs on behalf
of a user. The generation of this token happens in a multistep flow.
Before an application can start the OAuth flow, it needs to be regis‐
tered with the API provider. During registration, developers provide
a redirect URL—an application URL to which the API provider can
redirect the authorizing user. The API provider issues a client ID
and client secret that are unique to the application. The client ID can
be public, whereas the client secret should be kept confidential.

After an application is registered, the application can generate an
access token by following these steps:

1. The application directs the user to the API provider for authori‐
zation.
Applications typically first show authorizing users a button
labeled something like “Continue with Facebook.” When users
click the button, they are redirected to the API provider’s
authorization URL. While redirecting, the application sends the
client ID, the permissions requested (i.e., access to the user’s
public profile or list of friends) in a parameter called scope, an
optional unique string state parameter, and (optionally) a redi‐
rect URL.

2. The API provider seeks the user’s authorization.
As shown in Figure 3-2, the API provider should clearly indi‐
cate what permissions the application is requesting. If the user
denies the authorization, they are redirected back to the applica‐
tion’s redirect URL with an access_denied error. If the user
approves the request, they are redirected back to the application
with an authorization code.

30 | Chapter 3: API Security

Figure 3-2. Authorization screen presented by Slack to users

3. The application exchanges an authorization code for an access
token.
Upon successful authorization, applications can exchange the
authorization code via an access token. The application will
need to send the client ID, client secret, authorization code, and
redirect URL to the API provider to receive an access token.
The authorization code provided can be used only once; this
helps in preventing replay attacks. Applications can then use
this access token for accessing protected resources on behalf of
the user.

Figure 3-3 depicts the OAuth 2.0 authorization flow used to issue
access tokens to applications on behalf of users.

OAuth | 31

Figure 3-3. OAuth 2.0 access token grant flow

Scopes
OAuth scopes are used to limit an application’s access to user data.
For instance, an application might only need to identify a user.
Rather than requesting access to all of the user’s data, the application
can request access to only the user’s profile information by means of
a granular OAuth scope. During authorization, the API provider will
display all the requested scopes to the user. This way, users will
know what permissions they are granting to an application.

Defining scopes for an API is an interesting problem. Many APIs
offer simple read, write, and combo read/write scopes. For instance,
the Twitter API offers three levels of permissions via scopes:

• Read only
• Read and write
• Read, write, and access direct messages

Often, API providers open up their APIs without thinking too much
about scopes. Only when the API begins to be widely adopted or is
being abused do they start realizing the need for additional scopes.
At that time, introducing new scopes becomes complicated. It’s
important to think about your goals and use cases before you decide

32 | Chapter 3: API Security

which scopes you might want to support. Granular scopes help in
ensuring that applications have only the permissions they need. At
the same time, too many scopes can create confusion for users and
developers.

Beyond typical read/write scopes, here are some additional consid‐
erations for defining your scopes:

A minimal scope
You may want to offer a scope that that provides only basic user
information, like a name and profile picture (and nothing else).
Applications building sign-in flows can use this to identify a
user. Most API providers, like Slack, Facebook, and Heroku,
offer such a scope.

Isolate scopes for protecting sensitive information
It’s important to protect sensitive information on your service
with a separate scope. When an application requests this sensi‐
tive scope, users should be shown a clear warning indicating
what is being shared with the application. Heroku introduced
“read-protected” and “write-protected” scopes to manage access
to resources, like an app’s configuration variables, which contain
secrets like database connection strings.

Similarly, GitHub introduced a different scope to read informa‐
tion about private repositories. Twitter also added a scope that
would grant access to direct messages when it realized many
apps were abusing the read scope by accessing them even when
they didn’t need to.

Differentiate scopes for different kinds of resources
Many large API providers that have multiple types of services
and features choose to split scopes by functionality. For exam‐
ple, the Slack API has different scopes for reading and writing
messages, pins, stars, reactions, channels, users, and other
resources. Similarly, GitHub has different scopes for accessing
different resources, like the repositories, managing organiza‐
tion, public keys, notifications, and gists. This means that an
application requesting access to only a user’s repositories will
not be granted access to that user’s gists.

OAuth | 33

Lessons Learned from Slack’s Move to Granular OAuth
Scopes

When Slack launched its OAuth system support, the scopes avail‐
able to developers were broad. For instance, authorizing an applica‐
tion for the read scope meant that the app would gain read access to
all of the user’s messages, channels, reactions, stars, files, and other
resources. This went far beyond what was generally needed by most
apps in practice.

In late 2015, Slack introduced 27 granular OAuth scopes. For each
type of resource in Slack, like channels, groups, files, reactions, and
stars, read and write scopes were added. This way, applications
could specifically request the scopes that they needed. The big ben‐
efit of the new granular scopes was that the apps received only the
permissions essential to perform their intended function. Moreover,
users felt more comfortable with giving applications access to limi‐
ted resources, which improved the conversion rate for application
installations.

Token and Scope Validation
After developers have received an access token, they can begin
making API requests using this access by setting the HTTP
Authorization header, as shown in Example 3-1.

Example 3-1. Request to Slack API with access token

POST /api/chat.postMessage
HOST slack.com
Content-Type: application/json
Authorization: Bearer xoxp-16501860-a24afg234
{
 "channel":"C0GEV71UG",
 "text":"This a message text",
 "attachments":[{"text":"attachment text"}]
 }

When receiving these requests, there are two things that API pro‐
viders’ servers need to verify. The first is that the access token is
valid. You need to match the given access token with the granted
access tokens in your database. The second is that the access token

34 | Chapter 3: API Security

https://medium.com/slack-developer-blog/new-and-improved-oauth-scopes-4894b2cc159d

has the required scope for the action that the request is supposed to
perform. If either check fails, the server should return an error.

Apart from errors, it’s also useful to return more metadata about
which scopes were needed and which scopes were provided. Many
APIs, like those for GitHub and Slack, return these two headers:

• X-OAuth-Scopes lists the scopes for which a token has been
authorized.

• X-Accepted-OAuth-Scopes lists the scopes that the action
requires.

Example 3-2 presents sample OAuth headers returned by the Git‐
Hub API.

Example 3-2. OAuth scope headers in the GitHub API response

curl -H "Authorization: token OAUTH-TOKEN"\
 https://api.github.com/users/saurabhsahni -I
HTTP/1.1 200 OK
X-OAuth-Scopes: repo, user
X-Accepted-OAuth-Scopes: user

In case a token is missing the required scope, to make troubleshoot‐
ing easier for developers, it’s useful to return more verbose errors
indicating the provided scope along with the scope that the action
requires. For example, as shown in Example 3-3, the Slack API
returns such verbose errors.

Example 3-3. Response from the Slack API when a valid token is
missing the required scope

{
 "ok": false,
 "error": "missing_scope",
 "needed": "chat:write:user",
 "provided": "identify,bot,users:read",
}

Token Expiry and Refresh Tokens
The OAuth protocol allows limiting the validity of the access token
issued in the OAuth flow. Many APIs choose to issue tokens that
expire in a few hours or days. This way, if a token is compromised,
the impact can be contained. If you issue access tokens with limited

OAuth | 35

validity, you need to provide a way for applications to obtain a new
token, typically without intervention from the end user. One way to
do this is by issuing refresh tokens.

A refresh token is a special type of token used to obtain a new access
token when the current access token expires. Applications need to
provide the client ID, client secret, and refresh token to generate a
new access token. Refresh tokens are a standard way of renewing
expired access tokens. API providers, like Google, Salesforce, Asana,
Stripe, and Amazon, support refresh tokens.

Even if your access tokens do not expire, it can be a good idea to
share refresh tokens. This way, in case of a compromise, an app
developer can rotate an existing access token and generate a new
one. This is why the Stripe API supports refresh tokens, even though
the access tokens it grants do not expire.

Short-lived access tokens are more secure for
the following reasons:

• If an access token is compromised, it will
work only until it expires.

• If a refresh token is compromised, it will be
useless without the client secret, which is
typically not stored along with access
tokens and refresh tokens.

• If both the refresh token and the client
secret are compromised and the attacker
generates a new access token, the compro‐
mise can potentially be detected because
typically refresh tokens are one-time use
only and only one party can use the API
(per refresh token) at a time.

36 | Chapter 3: API Security

Storytime: Slack’s Long-Lived Tokens
Slack’s main product is communication software for teams. Part of
its product offering is an API that enables third-party developers to
create apps and bots within Slack.

The appetite for third-party developers building on Slack’s API was
demonstrated long before Slack released its OAuth support. As a
result, many developers found ways to “hack” their apps by creating
API tokens through various mechanisms and embedding them
directly in their application code. Some developers weren’t careful
and published these tokens on their GitHub pages. This was a prob‐
lem because Slack’s tokens were long-lived and would effectively
never expire.

In an effort to ensure that Slack users were able to maintain their
privacy and to prevent unintended usage of these tokens, Slack cre‐
ated a scraper that would search GitHub’s open source code reposi‐
tories for instances of Slack tokens. Any tokens that were found
were automatically revoked and the developer was notified.

Short-lived tokens mitigate the risk of abuse due to such leaks. In
May 2018, Slack announced that it is working on introducing short-
lived access tokens.

Listing and Revoking Authorizations
For various reasons, a user might want to know which applications
can access their data and might want to revoke access to one or
more of them. To support this use case, most API providers typically
offer a page that lists the applications that a user has authorized
along with the ability to revoke access, as illustrated in Figure 3-4.

OAuth | 37

Figure 3-4. Twitter’s page that lists authorized applications, along with
a “Revoke access” button for each

As well as providing the ability to revoke authorizations in the UI,
it’s a good idea to provide APIs that give users the ability to revoke
access tokens and refresh tokens. This way, a developer who wants
to revoke a token, due to a compromise or for other reasons, can do
so programmatically.

OAuth Best Practices
Here’s a list of best practices that you might like to consider when
building your own authorization server using OAuth:

state parameter support
The state parameter is an optional authentication parameter
that you can use to help mitigate CSRF attacks. API providers
implementing OAuth should support this parameter. The state
parameter is a string generated by the developer for authenticat‐
ing the user and is passed to the authorization endpoint. The

38 | Chapter 3: API Security

API provider then passes this string back to the redirect URL
along with the authorization code in exchange for the access
token.

Short-lived authorization codes
Generated authorization codes should expire within a few
minutes and should be one-time use only. This way, an attacker
cannot use them to generate tokens along with the authorized
application.

One-time-use refresh tokens
If you are building an application that stores very sensitive data,
consider restricting your refresh tokens to one-time use only.
You can issue a new one when an access token is renewed.
Although single-use refresh tokens add complexity for develop‐
ers, they do help in detecting compromises of refresh tokens
and client secrets. That said, it is a good idea to allow applica‐
tions to use refresh tokens for a small window of time so that
they can retry if there was a network failure or another issue.
The Fitbit API allows a refresh token to be reused for up to two
minutes.

Ability to reset the client secret
You should provide developers with the ability to reset the client
secret. This way, if client secrets and refresh tokens are compro‐
mised, applications can stop an attacker with a leaked client
secret from renewing access tokens.

OAuth scopes for sensitive information
Protect sensitive information on your service by using dedicated
OAuth scopes. This way, your users will not grant access to sen‐
sitive information to every application that might not need it.

HTTPS endpoints
Because access tokens are sent as part of every HTTP request,
it’s important that your API endpoints require HTTPS. This
prevents man-in-the-middle attacks.

Verify redirect URL
When the optional redirect URL is provided, during an authori‐
zation request, ensure that it matches to one of the registered
URLs for the application. If not, the API server must show an
error without showing the authorization prompt. This ensures
that any returned secrets are not exposed to an attacker.

OAuth | 39

Disallow rendering the authorization screen in iframes
Use the X-Frame-Options header to deny rendering an authori‐
zation page in an iframe. This prevents clickjacking attacks,
where a malicious site tricks a user into clicking an element that
seems harmless but actually leads to clicking a button like
“Authorize” on another site.

Keep users informed
You should notify users over a medium like email when a new
authorization is granted. This way, users can be alerted if the
authorization was unintended.

Prohibit misleading application names
Do not allow apps to use names that might mislead users into
thinking that an outside application was created by your com‐
pany. One way to enforce this is by denying apps permission to
use your company name in OAuth application names. In 2017,
an attacker created a Google OAuth application with the name
“Google Docs” along with the Google Docs logo, as depicted in
Figure 3-5. A million Google accounts were successfully
phished by this application.

40 | Chapter 3: API Security

http://www.bbc.com/news/technology-39845545
http://www.bbc.com/news/technology-39845545

Figure 3-5. A malicious non-Google app named “Google Docs” phished
one million Google accounts in 2017

Lessons Learned from Facebook: A Balancing Act
From 2016 to 2018, Facebook’s policies came under intense scrutiny
for creating addictive usage patterns while enabling targeted adver‐
tising. This is exactly what the platform was intended to do. At the
same time, developers were able to intensively mine customer data,
in accordance with the API’s permissions and customer access
grants, but in violation of Facebook’s terms of service (ToS). Here
are some takeaways from the incident:

• Ensure that your customers know what they’re agreeing to. In
the OAuth flow, make sure it’s clear exactly what permission
the customer is granting. As a bonus, enable customers to
grant fewer and more granular scopes, potentially adding some
as their usage patterns change. However, this is a balancing act,
because if the scopes are too granular, customers might not
read them. Make the strings readable and understandable.

• Ensure that you monitor third-party developers’ applications
and actively search for potential ToS violations. You might

OAuth | 41

want to turn these apps off or rate-limit them so that they’re
not able to continue the behavior.

Yes, the customer has authorized the data access. But the trust is
between you and the customer, not between the customer and the
third-party application. At the end of the day, you have a higher
stake in how your platform is perceived by your customers.

As of this writing, consumers don’t always understand the differ‐
ence between privacy and security. This is better for enterprise cus‐
tomers. If you’re building a consumer product, you need to think
hard about how you’re communicating the capabilities of your plat‐
form to your end users.

WebHooks Security
As discussed in Chapter 2, a WebHook is simply a URL where API
providers send a POST request when something happens. For
instance, Stripe sends notifications about new payments to Web‐
Hook URLs. Similarly, whenever you open a Pull Request in Git‐
Hub, GitHub sends a POST request to the developer’s configured
WebHook URL(s).

Securing WebHooks is slightly different from securing web APIs.
Because the WebHook URLs are generally publicly accessible on the
internet, it’s important for the developers to be able to ensure the
POST request actually came from the stated sender. In the absence of
such a verification, an attacker can forge a request to the WebHook
URL. Although there are no standards like OAuth that are used to
secure WebHooks, there are some common patterns that API pro‐
viders follow.

Verification Tokens
A verification token is a secret shared between applications and API
providers. As shown in Figure 3-6, API providers like Slack issue a
unique verification token to every application. With each dispatched
WebHook request, Slack sends a verification token. Applications
match the token received as part of the request with the recorded
value. If they do not match, the application ignores the request. This
way, applications can verify that a request actually came from Slack.

42 | Chapter 3: API Security

Figure 3-6. Credentials of a Slack app, including verification token

Verification tokens are simple to implement, from both the API pro‐
vider’s and the developer’s perspective. A simple comparison check
can ensure the request came from the desired sender. However, veri‐
fication tokens also offer limited security because they are sent in
plain text with every request. If a verification token is leaked or
compromised, an attacker can forge WebHook requests.

Request Signing and WebHook Signatures
Signatures are among the most common ways API providers choose
to secure WebHooks. WebHook payloads are typically signed by
computing a hash-based message authentication code (HMAC) of a
shared secret plus the request body, and the signature is sent as part
of a request header. Applications then verify the authenticity of the
request by computing the same HMAC and comparing it to the
value set in the header. API providers, like Stripe and GitHub, use
this mechanism to secure WebHooks.

Preventing replay attacks
A replay attack is a form of attack in which an attacker retransmits a
WebHook with a valid signature. To mitigate such attacks (as shown
in the t=1492774577 part of Example 3-4), API providers like Stripe
include a request timestamp in the message payload. If the time‐
stamp is too old, applications can reject the request.

WebHooks Security | 43

Example 3-4. A signature header from a Stripe WebHook request

Stripe-Signature: t=1492774577,
 v1=5257a869e7ecebeda32affa62cdca3fa51cad7e77a0e56ff536d0c,
 v0=6ffbb59b2300aae63f272406069a9788598b792a944a07aba816ed

Mutual Transport Layer Security
When you connect to an https:// URL with the Transport Layer
Security (TLS) Handshake Protocol, the server sends its certificate
to the client. The client then verifies the server’s certificate before
trusting the response.

With mutual TLS, the server and client both authenticate each other.
The server sends the client a certificate request. The client (Web‐
Hook provider, in this case) then responds with a certificate. The
server verifies the client’s certificate before trusting the request.

Although request signing is implemented within application logic,
you can implement Mutual TLS at a lower level. This way, develop‐
ers can enforce high security while opening a firewall for an API
without requiring anything of the application developers. This is
especially useful for enterprise developers.

Mutual TLS is typically used in business-to-business applications.
API providers like DocuSign support Mutual TLS.

Thin Payloads and API Retrieval
One of the fundamental problems with WebHook signatures and
verification tokens is that both of these methods rely on developers
to do the right thing. They do not enforce authentication. Different
application developers can follow different security standards, and
it’s difficult to determine whether they are verifying WebHook
requests.

A more secure option is to send limited information in the payload
indicating to the application that something has changed. To
retrieve the full event, the application would need to make a subse‐
quent request to the web API. The key benefit of this approach is
that even if applications do not verify the WebHook, they will
receive the full event only after making regular authenticated
requests to a web API.

44 | Chapter 3: API Security

Google uses this method for securing WebHooks. Gmail’s API
allows applications to subscribe to watch for changes in an inbox
using WebHooks. When something changes, Gmail sends a Web‐
Hook request, including the email address and an ID for the change
(base64-encoded in the data field, as shown in Example 3-5). Appli‐
cations can call Gmail’s history.list web API to retrieve the full
change details.

Example 3-5. Gmail’s thin WebHook message payload

{
 message:
 {
 data: "eyJlbWFpbEFkZHJlc3MiOiAidXNlckBleGFtcGxlLmNvbSIsICJoaXN0bz",
 message_id: "1234567890",
 }
 subscription: "mysubscription"
}

WebHook Security Best Practices
Enforcing security standards on WebHooks is complicated. Here are
some security best practices that you should keep in mind when
building support for WebHooks:

• Avoid sending sensitive information as part of WebHooks.
Never send passwords or secrets as part of the WebHook pay‐
loads. Use authenticated API requests to send any sensitive
information.

• If you are signing WebHooks, include a timestamp in the pay‐
load. This way, applications can implement checks for replay
attacks.

• Support regeneration of shared secrets (used as a verification
token or one for signing the WebHook). In case of a compro‐
mised secret, an application developer can rotate this secret and
ensure authenticity of future requests.

• Provide developers with SDKs and sample code that verify the
authenticity of WebHook requests and reject invalid requests.

WebHooks Security | 45

Closing Thoughts
Security is difficult. Securing APIs is even more difficult. Once you
have applications using a security mechanism, it is hard to change it,
and a vulnerability may require many developers to patch applica‐
tions that are using the API. So it’s important to think deeply about
security implications before you release your API. Although inno‐
vating new security mechanisms and inventing your own can be
enticing, it could be a big mistake. Unless you have security experts
designing and vetting your new security mechanism, it’s hard to
ensure that it’s free from vulnerabilities. If you rely on a well-
designed, tested, and open security standard that has been examined
and tested by hackers and experts over the years, your chances of
running into a major security vulnerability will be far lower.

In Chapter 4, we cover various tactical best practices for designing
your API that can help you to deliver a great developer experience.

46 | Chapter 3: API Security

CHAPTER 4

Design Best Practices

In the previous chapters, we gave an overview of various approaches
for transmitting data via your web API. Now that you’re familiar
with the landscape of transport and have an understanding of how
to choose between various patterns and frameworks, we want to
provide some tactical best practices to help your developers get the
most out of your API.

Designing for Real-Life Use Cases
When designing an API, it’s best to make decisions that are groun‐
ded in specific, real-life use cases. Let’s dig into this idea a bit more.
Think about the developers who are using your API. What tasks
should they be able to complete with your API? What types of apps
should developers be able to build? For some companies, this is as
targeted as “developers should be able to charge customer credit
cards.” For other companies, the answer can be more open-ended:
“developers should be able to create a full suite of interactive
consumer-quality applications.”

After you have your use cases defined, make sure that developers
can actually do the things you want them to do using your API.

Quite often APIs are designed based on the internal architecture of
the application, leaking details of the implementation. This leads to
confusion for third-party developers and a bad developer experi‐
ence. That’s why it’s so important to focus not on exposing on your
company’s internal infrastructure but on the experience that an out‐

47

side developer should have when interacting with your API. For a
concrete example of how to define key use cases, see the section
“Outline Key Use Cases” in Chapter 5.

When you get started with a design, it’s easy to imagine many “what-
ifs” before implementation and testing. Although these questions are
useful during the brainstorming phase, they can lead a design astray
by tempting you to try and solve too many problems at once. By
picking a specific workflow or use case, you will be able to focus on
one design and then test whether it works for your users.

Expert Advice
When we asked Ido Green, developer advocate at Google, what
makes an API good, his top answer was focus:

“The API should enable developers to do one thing really well.
It’s not as easy as it sounds, and you want to be clear on what the
API is not going to do as well.”

If you need help narrowing down the developer
audience to a specific one, see Chapter 8.

Designing for a Great Developer Experience
Like we spend time thinking about the user experience delivered via
a user interface, it’s important to think about the developer experi‐
ence delivered via an API. Developers have a low bar for abandon‐
ing APIs, so bad experiences result in attrition. By the same token,
usability is the bare minimum for keeping a developer using your
API. Good experiences get love from developers: they will in turn,
become the most creative innovators using your API as well as evan‐
gelists for your API.

Make It Fast and Easy to Get Started
It’s important for developers to be able to understand your API and
to get up and running quickly. Developers may be using your API to
avoid having to build out a secondary product suite to support their

48 | Chapter 4: Design Best Practices

main product. Don’t make them regret that decision with an API
that’s opaque and difficult to use.

Expert Advice
No matter how carefully we design and build our core API,
developers continue to create products we’d never expect. We
give them the freedom to build what they like.
Designing an API is much like designing a transportation net‐
work. Rather than prescribing an end state or destination, a good
API expands the very notion of what’s possible for developers.

—Romain Huet, head of developer relations at Stripe

Documentation can go a long way toward helping developers get
started. In addition to documents that outline the specifications of
an API, it can be helpful to have tutorials or Getting Started guides.
A tutorial is an interactive interface to teach developers about your
API. You might have developers answer questions or fill in “code” in
an input area. A guide is a more contextual document than a specifi‐
cation. It provides information for developers at a certain point in
time—typically when getting started, but sometimes when updating
or converting from one version or feature to another.

In some cases, you can supplement the ease of use by providing
interactive documentation online, where developers have a sandbox
to test out your API. For more on sandboxes, see Chapter 9. Often‐
times, developers can use these interfaces to test code and preview
results without having to implement authentication. Figure 4-1
presents an example of Stripe’s UI for this.

Designing for a Great Developer Experience | 49

Figure 4-1. Developers can try the Stripe API without signing up

In addition to interactive documentation, tools such as software
development kits (SDKs) can go a long way toward helping develop‐
ers use your API. These code packages are designed to help develop‐
ers get up and running quickly with their projects by simplifying
some of the transactional layers and setup of an application.

For an ideal experience, developers should be able to try out your
APIs without logging in or signing up. If you cannot avoid that, you
should provide a simple signup or application creation flow that
captures the minimum required information. If your API is pro‐
tected by OAuth, you should provide a way for developers to gener‐
ate access tokens in the UI. Implementing OAuth is cumbersome for
developers, and in the absence of easy ways to generate these tokens,
you will see a significant drop-off rate at this point.

Work Toward Consistency
You want your API to be intuitively consistent. That should be
reflected in your endpoint names, input parameters, and output
responses. Developers should be able to guess parts of your API
even without reading the documentation. Unless you are making a
significant version bump or large release, it’s best to work toward
consistency when designing new aspects of an existing API.

For example, you might have previously named a group of resources
“users” and named your API endpoints accordingly, but you now

50 | Chapter 4: Design Best Practices

realize that it makes more sense to call them “members.” It can be
very tempting to work toward the “correctness” of the new world
rather than focus on consistency with the old. But if the objects are
the same, it could be very confusing to developers to sometimes
refer to them as “users” and other times as “members” in URI com‐
ponents, request parameters, and elsewhere. For the majority of
incremental changes, consistency with the existing design patterns
will work best for your users.

As another example, if in some places you have a response field
called user and sometimes its type is an integer ID but sometimes
its type is an object, each and every developer receiving those two
response payloads needs to check whether user is an int ID or an
object. This logic leads to code bloat in developers’ code bases,
which is a suboptimal experience.

This can show up in your own code as well. If you have SDKs that
you’re maintaining, you will need to add more and more logic to
handle these inconsistencies and to make a seamless interface for
developers. You might as well do this at the API level by maintaining
consistency instead of introducing new names for the same things.

Consistency generally means that there are a number of patterns
and conventions repeated throughout your API, in such a way that
developers can begin to predict how to use your API without seeing
the documentation. That could include anything from data access
patterns to error handling to naming. The reason consistency is
important is that it reduces the cognitive load on developers who are
trying to figure out your API. Consistency helps your existing devel‐
opers in adapting new features by reducing forks in their code, and
it helps new developers hit the ground running with everything
you’ve built on your API. In contrast, with less consistency, different
developers will need to reimplement the same logic over and over
again.

For more on this topic, skip ahead to Chapter 5.

Designing for a Great Developer Experience | 51

Make Troubleshooting Easy
Another best practice for designing APIs is making troubleshooting
easy for developers. This can be done through returning meaningful
errors as well as by building tooling.

Meaningful errors
What’s in an error? An error can occur in many places along your
code path, from an authorization error during an API request, to a
business logic error when a particular entity doesn’t exist, to a lower-
level database connection error. When designing an API, it is help‐
ful to make troubleshooting as easy as possible by systematically
organizing and categorizing errors and how they are returned.
Incorrect or unclear errors are frustrating and can negatively affect
adoption of your APIs. Developers can get stuck and just give up.

Meaningful errors are easy to understand, unambiguous, and
actionable. They help developers to understand the problem and to
address it. Providing these errors with details leads to a better devel‐
oper experience. Error codes that are machine-readable strings allow
developers to programmatically handle errors in their code bases.

In addition to these strings, it is useful to add longer-form errors,
either in the documentation or somewhere else in the payload.
These are sometimes referred to as human-readable errors. Even
better, personalize these errors per developer. For instance, with the
Stripe API, when you use a test key in your live mode, it returns an
error such as:

No such token tok_test_60neARX2. A similar object exists in
test mode, but a live mode key was used to make this request.

Table 4-1 shows example errors (both recommended and not) for
certain situations.

Table 4-1. Example error codes for different situations

Situation Recommended Not recommended
Authentication failed because token is
revoked

token_revoked invalid_auth

Value passed for name exceeded max
length

name_too_long invalid_name

Credit card has expired expired_card invalid_card

Cannot refund because a charge has
already been refunded

charge_already_refunded cannot_refund

52 | Chapter 4: Design Best Practices

To begin designing your system of errors, you might map out your
backend architecture along the code path of an API request. The
goal of this is not to expose your backend architecture but to catego‐
rize the errors that happen and to identify which ones to expose to
developers. From the moment an API request is made, what are the
critical actions that are taken to fulfill the request? Map out the vari‐
ous high-level categories of errors that occur during the course of an
API request, from the beginning of the request to any service
boundaries within your architecture. Table 4-2 provides a brief
example to get you started.

Table 4-2. Group errors into high-level categories

Error category Examples
System-level error Database connection issue

Backend service connection issue
Fatal error

Business logic error Rate-limited
Request fulfilled, but no results were found
Business-related reason to deny access to information

API request formatting error Required request parameters are missing
Combined request parameters are invalid together

Authorization error OAuth credentials are invalid for request
Token has expired

After grouping your error categories throughout your code path,
think about what level of communication is meaningful for these
errors. Some options include HTTP status codes and headers, as
well as machine-readable “codes” or more verbose human-readable
error messages returned in the response payload. Keep in mind that
you’ll want to return an error response in a format consistent with
your non-error responses. For example, if you return a JSON
response on a successful request, you should ensure that the error is
returned in the same format.

You might also want a mechanism to bubble up errors from a ser‐
vice boundary to a consistent format from your API output. For
example, a service you depend on might have a variety of connec‐
tion errors. You would let the developer know that something went
wrong and that they should try again.

In most cases, you want to be as specific as possible to help your
developers take the correct next course of action. Other times, how‐

Designing for a Great Developer Experience | 53

ever, you might want to occlude the original issue by returning
something more generic. This might be for security reasons. For
example, you probably don’t want to bubble up your database errors
to the outside world and reveal too much information about your
database connections.

Table 4-3 offers examples of how you might begin to organize your
errors as you design your API.

Table 4-3. Organize your errors into status codes, headers, machine-
readable codes, and human-readable strings

Error
category

HTTP
status

HTTP
headers

Error code (machine-readable) Error message
(human-
readable)

System-level
error

500 -- -- --

Business logic
error

429 Retry-

After

rate_limit_exceeded “You have been
rate-limited. See
Retry-After and try
again.”

API request
formatting
error

400 -- missing_required_parameter “Your request was
missing a {user}
parameter.”

Auth error 401 -- invalid_request “Your ClientId is
invalid.”

As you begin to organize your errors, you might recognize patterns
around which you can create some automatic messaging. For exam‐
ple, you might define the schema for your API to require specific
parameters and to have a library that automatically checks for these
at the beginning of the request. This same library could format the
verbose error in the response payload.

You’ll want to create a way to document these errors publicly on the
web. You can build this into your API description language (see
Chapter 7) or documentation mechanism. Think about the various
layers of errors before writing the documents, because it can become
complicated to describe multiple factors if there are many different
types of errors. You might also want to consider using verbose
response payloads to link to your public documentation. This is
where you’ll give developers more information on the error they
received as well as how to recover from it.

54 | Chapter 4: Design Best Practices

For even more structured and detailed recommendations on mean‐
ingful errors and problem details for HTTP APIs, see RFC 7807.

Build tooling
In addition to making troubleshooting easy for developers, you
should make it easy for yourself by building internal and external
tools.

Logging on HTTP statuses, errors and their frequencies, and other
request metadata is valuable to have, for both internal and external
use, when it comes to troubleshooting developer issues. Figure 4-2
shows Stripe’s dashboard with detailed logs that make it convenient
for developers to troubleshoot. There are many off-the-shelf logging
solutions available. However, when implementing one, before you
troubleshoot real-time traffic, be sure to respect customer privacy by
redacting any personally identifiable information (PII). For more on
developer tools that help developers debug and troubleshoot, see
Chapter 9.

Figure 4-2. The Stripe API dashboard with request logs

Besides logging, when building an API, it’s helpful to create dash‐
boards to help developers analyze aggregate metadata on API

Designing for a Great Developer Experience | 55

https://tools.ietf.org/html/rfc7807

requests. For example, you could use an analytics platform to rank
the most-used API endpoints, identify unused API parameters, tri‐
age common errors, and define success metrics.

Like for logging, many analytics platforms are available off the shelf.
You can present the information in high-level dashboards that pro‐
vide a visual display in a time-based manner. For example, you
might want to show the number of errors per hour over the past
week. Additionally, you might want to provide developers complete
request logs with details about the original request, whether it suc‐
ceeded or failed, and the response returned.

Make Your API Extensible
No matter how well you’ve designed your API, there will always be a
need for change and growth as your product evolves and developer
adoption increases. This means that you need to make your API
extensible by creating a strategy for evolving it. This enables you as
the API provider and your developer ecosystem to innovate. Addi‐
tionally, it can provide a mechanism to deal with breaking changes.
Let’s dive into the idea of extensibility and explore how to incorpo‐
rate early feedback, versioning an API, and maintaining backward
compatibility. For more details on scaling APIs by developing your
API design, see Chapter 6.

Expert Advice
APIs should provide primitives that can enable new workflows
and not simply mirror the workflows of your application. The
creation of an API acts as a gate for what the API’s users can do.
If you provide too low-level access, you could end up with a con‐
fusing integration experience and you push too much work on
the integrators. If you provide too high-level access, you could
end up with most integrations simply mirroring what your own
application does. You need to find the right balance to enable
workflows you hadn’t considered either as part of your applica‐
tion or within the API itself in order to enable innovation. Con‐
sider what your own engineers would want in an API to build the
next interesting feature for your application and then make that a
part of your public API.

—Kyle Daigle, director of ecosystem engineering at GitHub

56 | Chapter 4: Design Best Practices

One aspect of extensibility is ensuring that you have created an
opportunity for feedback with your top partners (for more on top
partners, read Chapter 10). You need a way to release certain fea‐
tures or fields and to give certain privileged developers the option to
test these changes without releasing the changes to the public. Some
would call this a “beta” or “early adopter” program. For more on
these programs, see Chapter 10. This feedback is extremely valuable
in helping you decide whether your API has been designed in a way
that achieves its goals. It gives you a chance to make changes before
adoption has become prevalent and before significant changes
require a lot of communication or operational overhead.

In some cases, you might want to version your API. Building a ver‐
sioning system is easier if it’s baked into the design at an early stage.
The longer you wait to implement versioning, the more complicated
it becomes to execute. That’s because it becomes more and more dif‐
ficult as time goes on to update your code base’s dependency pat‐
terns so that old versions maintain backward compatibility. The
benefit of versioning is that it allows you to make breaking changes
with new versions while maintaining backward compatibility for old
versions. A breaking change is a change that, when made, would
stop an existing app from continuing to function as it was function‐
ing before using your APIs.

For more on API versioning, see “Outline Key
User Stories” on page 64.

Storytime: Slack’s Translation Layer
In 2017 Slack launched its Enterprise Grid product, which was a
federated model of its previous offering. As a result of this federa‐
tion, Slack had to fundamentally change its user data model so that
users could belong to multiple “workspaces.”

In the API, users previously had only a single ID. However, in the
new federated model, each user had a main (global) user ID for the
Enterprise Grid and a local user ID for each workspace. When
existing teams migrated to the Enterprise Grid product, their user
IDs were slated to change. This would have broken any third-party
apps relying on a fixed user ID in the API.

Designing for a Great Developer Experience | 57

When Slack’s engineering team realized this problem, it went back
to the drawing board to figure out what could be done to maintain
backward compatibility for third-party developers. That’s when the
team decided to create a translation layer. This additional infra‐
structure would silently translate user IDs to be consistent with the
ones that developers had previously received.

Although the decision to build this translation layer delayed the
Enterprise Grid product launch by several months, it was mission-
critical for Slack to ensure that its API remained backward compat‐
ible.

For companies and products that businesses rely on, maintaining
backward-compatible versions is a difficult requirement. That’s
especially true for apps that don’t experience a high rate of change.
For a lot of enterprise software, there isn’t somebody dedicated to
updating versions, and there’s no incentive for a company to invest
in updating versions just because you’ve released a new one. Many
internet-connected hardware products also use APIs, but hardware
does not always have a mechanism to update its software. Plus,
hardware can be around for a long time—think about how long you
owned your last TV or router. For those reasons, it is sometimes
imperative that you maintain backward compatibility with previous
API versions.

That said, maintaining versions does have a cost. If you don’t have
the capacity to support old versions for years, or if you anticipate
very few changes to your API, by all means skip the versions and
adopt an additive change strategy that also maintains backward
compatibility in a single, stable version.

If you anticipate major breaking changes and updates at any time in
your future, we strongly recommend setting up a versioning system.
Even if it takes years to get to your first major version change, at
least you’ve got the system ready to go. The overhead of creating a
system of version management at the beginning is much lower than
that of adding it in later, when it’s urgently needed.

58 | Chapter 4: Design Best Practices

For more on API versioning, see Chapter 7.

Storytime: Deprecating an API at Twitch
In 2018, online video streaming platform Twitch decided to depre‐
cate an API and provide a new API. After it announced the old
API’s deprecation and end of life (shutdown), Twitch received a lot
of feedback from developers who said that they needed more time
to handle the breaking change or their integrations would be bro‐
ken. Because of that feedback, Twitch decided to extend the end of
life of the old API to give developers ample time to move their code
to the new one.

Closing Thoughts
Meeting the needs of your users is at the core of solid API design. In
this chapter, we covered a number of best practices to help you ach‐
ieve a great developer experience.

As you build your API and developer ecosystem, you might discover
more best practices specific to your company, your product, and
your users.

In Chapter 5, we put these ideas into practice and walk you through
the practical steps for using everything you’ve learned in this book
thus far to design an API.

Closing Thoughts | 59

CHAPTER 5

Design in Practice

Now that we’ve provided guidance on API paradigms, security, and
best practices, it’s time for a hands-on, practical exercise in design‐
ing APIs. In this chapter, we take everything we covered in the first
part of the book and use a fictitious example to explore different
considerations.

In addition, we provide insights into how to create an effective
design process so that you’ll be able to design APIs on your own for
whatever your use case may be.

Throughout this section, we focus heavily on the user experience to
anchor our design decisions. Today’s consumers are accustomed to
excellent product experiences that suit their needs and lifestyle, not
just products that get the job done. This high expectation for quality
of experience goes beyond the products that people purchase. It
extends to the apps that they use and the developer experience they
expect when using APIs.

We might be building businesses and companies, but we don’t
design APIs for ourselves. We design APIs for the systems receiving
the data and, more importantly, for the people who build those sys‐
tems. If those developers cannot use the data we’ve provided, we
have ultimately failed to create a useful design.

In the following sections, we use two different scenarios to explore
how to begin with a user-centric design process and how to get feed‐
back along the way. There are many methodologies to design, and
the following process is simply a framework from which to start.

61

The most important aspect of this particular methodology is that it
is designed to solicit feedback in a way that will result in decisions
that ultimately benefit the API user.

If you’d like to follow along with your own example, you might want
to use the Appendix A.

Scenario 1
To get us started with a practical example, here’s a simple, fictitious
scenario that we will use for the first part of this chapter:

You are the lead engineer in a fast-growing image archive startup
called MyFiles. The company’s main product allows individual
users and companies to privately archive data. Now that there is a
steady stream of new users and lots of archival metadata, you and
the team think there is a big potential in creating and publishing an
API. As the lead engineer, you’ve been tasked with launching the
new API within the next quarter.

Define Business Objectives
Before you begin coding or writing your API specification, take a
moment to ask yourself two questions: what problem are you trying
to solve, and what is the impact you want to have by building this
API? The answers to both of these questions must focus on the
needs of the user as well as the business you have created.

The answer to the first question should be succinct enough to state
at the top of any product or technical specification. It should include
information on how the problem affects or involves the customers
and the business.

The answer to the second question should define what success looks
like for your API. It should illustrate the desired behaviors you’d like
to see from developers who are using your API.

The earlier you ask these questions, the more you will be able to
make informed design decisions to achieve your goals.

62 | Chapter 5: Design in Practice

The following sidebar demonstrates how the problem and impact
statements might look for the new MyFiles API.

Problem and Impact Statements for the MyFiles API
Problem

Our archive repositories provide valuable file metadata to our
direct customers. Customers use this data to integrate with
business-critical services, but they are currently doing this by
downloading CSVs and uploading CSVs to other business
products. We are currently not providing a way to program‐
matically grant access to the archive metadata to customers
who use third-party integrations.

Impact
As a result of building an API, developers creating business
integrations for archival metadata will be able to create plug-
ins that enhance our product. In addition, existing customers
will now be able to use our product in ways that they were not
able to before, and therefore they will be more engaged on a
daily basis.

In these statements, three key parties are mentioned:

• The MyFiles business
• The customers
• The developers building third-party integrations

Although a three-way relationship is applicable to the MyFiles API,
for other businesses, the only parties involved in the problem and
impact statements could be the company and the developers, who
are also the customers. Use the problem and impact statements to
clearly define who the API user is.

After you’ve done this, make sure there is alignment from other
stakeholders at your company. It’s important for all parties who will
build or use this API to understand the problems that it is trying to
solve. Mismatched expectations lead to conflict later on, which can
turn into an inconsistent or contradictory API design.

One important reason to define the problem and impact clearly is
that when you’re starting out with a design proposal, before you’ve

Scenario 1 | 63

implemented anything, there might be ideological conversations.
For example, stakeholders might have a strong opinion about imple‐
mentation details, such as whether to use RPC or REST and other
similar topics. Without being able to focus on the problem state‐
ment, your entire company could end up in ideological limbo. A
clear statement of the problem and desired impact will help to guide
pragmatic choices and designs that are grounded in your users’
needs.

As you answer these questions, keep in mind that your API will
change if your product does. In the best-case scenario, your API will
become a living system that grows as it interacts with other entities
across the internet. The “truths” you take for granted today might
not be the same as those tomorrow. But don’t let this fact stop your
design—design for today, and leave a small door to step through for
tomorrow.

Even if this isn’t your first time designing an API for your product,
defining your problem and impact statement is still important. In
fact, we believe that it’s even more important. With an established
API and product, developing it is more complicated because of
backward compatibility and dependencies on other teams. Do the
difficult work up front and make sure you have researched:

• What APIs are available, and what are their patterns and con‐
ventions?

• What are the most popular features of the comparable APIs that
you have already released? Can you use existing instrumenting
or logging to pull supporting metrics?

• What would you most like to change about the APIs that you
already have, and what is your strategy for doing so?

• Which other teams will be affected by your new API, and how
can you get their feedback early?

Outline Key User Stories
After you outline the problem and desired impact, write down some
of the use cases that you expect your API to fulfill. (If you’re familiar
with Agile methodologies, these will be similar to “user stories,” in
which the user is your developer.) In any case, you’ll want to note

64 | Chapter 5: Design in Practice

the user type and the action that the user will be able to complete.
Example 5-1 shows the template.

Example 5-1. Template for Defining Key User Stories

As a [user type], I want [action] so that [outcome].

Example 5-2 presents some examples for our MyFiles API.

Example 5-2. Example User Stories for the MyFiles API, Scenario 1

As a developer, I want to request a list of files so that I can see
what a user has uploaded.

As a developer, I want to request details for a single file so that I
can get details on a file that a user has uploaded.

As a developer, I want to upload files on behalf of a user so that
users don’t need to leave my app to add a file to MyFiles.

As a developer, I want to edit files on behalf of a user so that users
don’t need to leave my app to add a file to MyFiles.

In the next section, we look at how these user stories translate
directly into the technology architecture decisions.

Select Technology Architecture
As we mentioned before, modern consumers aren’t just looking for
products that get the job done. Product design extends beyond the
user-friendliness of the actual product to the experience of selecting
and receiving it. IKEA has famously created products with simple
packaging that are easy to assemble without instructions. Amazon
has “hassle-free” shipping. The same developers who expect seam‐
less consumer experiences are also developing against your API.
That’s why picking the right paradigm and authentication system is
so important.

Let’s begin by choosing the paradigm for the API you’d like to create.
Use what you learned in Chapter 2 to fill out the chart in Table 5-1

Scenario 1 | 65

with pros and cons of each pattern. Here, we’ve filled it out for the
MyFiles API.

Table 5-1. Pros and cons of different API paradigms for the MyFiles API

Paradigm Pros Cons Selected?
REST MyFiles is essentially

resource-oriented—the
resources are the archived
content and metadata.
The operations to support
are simple Create, Read,
Update and Delete (CRUD)
operations.

REST would be a long-term commitment to
a resources model for files. If we need to
support several actions, REST might not be
a great fit.

✓

RPC Expandable to other actions
beyond CRUD.

At this time, there are no operations
outside of CRUD that this API will execute,
so there doesn’t appear to be a need to
support other actions.

χ

GraphQL Flexible for developers.
Easy to keep payloads small.

Overly complicated to implement. No client
presentation needed at this time.

χ

For the MyFiles API, the best option based on the pros and cons is
REST. The REST pattern closely matches the MyFiles product,
which is resource-oriented. We need to give developers access to the
MyFiles account from the very beginning so they get a full picture.
Let’s focus on the build phase of the REST API here in Scenario 1.

In Scenario 2, we’ll take a look at how WebHooks offer a mechanism
for MyFiles to push data to developers so that they aren’t constantly
polling the REST API or maintaining open connections with the
MyFiles servers.

Now that we’ve picked our transport, let’s pick our authentication
mechanism using the MyFiles example and what we learned from
Chapter 3. Because some customers have sensitive files, we want
something more robust than Basic Authentication and have selected
OAuth with short-lived tokens and refresh tokens. This ensures a
higher level of security for private files that users might archive.
Now that we’ve selected OAuth, we want to pick some OAuth
scopes.

To do this, we need to list the types of resources that we want to pro‐
vide, along with the operations that will be allowed via the API.
After that, we’ll fill in a scope scheme that makes sense. For
Table 5-2, we will be filling out resources in the left-hand column

66 | Chapter 5: Design in Practice

because the MyFiles API will be REST-based. Your API may be dif‐
ferent, and you might want to think about the objects that you’ll
provide via your API instead of resources. These objects might be
data affected by user actions, data affected by developer actions, or
any data that you will be transporting to the developer. Notice the
close correlation between the operations and CRUD for MyFiles in
Table 5-2. Your operations might differ, especially if you have elected
a different paradigm, such as RPC.

Table 5-2. Operations and resources for the MyFiles API

Resource or object Operation
Files and their metadata Create
Files and their metadata Read
Files and their metadata Update
Files and their metadata Delete

Now that we have resources and operations, it’s time to pick our
OAuth scopes. We have several options:

• We could create a general scope, files, that would cover all
operations related to files.

• We could split the files into two buckets of actions: reading and
writing.

• We could get even more granular and split the scope into the
specific CRUD operations.

After thinking about the scopes and the supported operations more
carefully, we decide to eliminate the ability to delete files. That’s not
an action that users take very often, and it’s been identified as the
riskiest operation. As a result, for MyFiles, we will have simple read
and write scopes that will cover our three operations. In the
MyFiles product, reading is a less risky scope than writing, so we
want to be able to distinguish the two for users authorizing applica‐
tions. At the same time, the two scopes offer the option of being
expanded to other operations when we’re ready to release them.
Table 5-3 shows how that breaks down for our resources.

Scenario 1 | 67

Table 5-3. Scopes, operations, and resources for the MyFiles API

Resource or object Operation Scope
Files and their metadata Create write

Files and their metadata Read read

Files and their metadata Update write

In the MyFiles example, the relationship between decisions and doc‐
umentation was fairly dynamic. Listing the desired operations and
thinking about the OAuth scopes resulted in a hard decision to
reduce the initial functionality offering for the API. Decisions about
implementation and scope inevitably need to be made during the
design process. These decisions should be embraced insomuch as
they help better solve the problem that you initially defined.

Write an API Specification
Now that you’ve made some key high-level decisions, it’s time to
write a specification (also called a spec). The spec gives you an
opportunity to think through your design thoroughly. It also serves
as an artifact that you can use to communicate with other people,
especially when you are soliciting feedback from stakeholders.
Finally, after you have reached agreement on the spec, it serves as a
contract, enabling you to build the various parts of the API imple‐
mentation in parallel.

We recommend using collaborative document-editing software with
version control and commenting support. This is a great way to
boost participation, track feedback, and keep everyone up to date
with the latest changes.

The Introduction for the MyFiles API Technical
Specification

A strong spec starts off with a high-level summary, detailing major
decisions you’ve made, and a brief explanation of why you made
those decisions. The following offers an example of how that might
look for MyFiles.

Title
Proposal: MyFiles API Spec

68 | Chapter 5: Design in Practice

Authors
Brenda Jin

Saurabh Sahni

Amir Shevat

Problem
Our archive repositories provide valuable file metadata to our
direct customers. Customers use this data to integrate with
business-critical services, but they are currently doing so by
downloading CSVs and uploading CSVs to other business
products. We are currently not providing a way to program‐
matically grant access to the repository metadata to customers
who use third-party integrations.

Solution
Build an API that allows developers to programmatically access
MyFiles files.

Implementation
For this API, we’ve decided to use REST for the following rea‐
sons:

• REST resource paradigm matches how MyFiles treats files
in our tech stack.

• Desired file operations for the API match closely to CRUD
operations.

• No need for event transport at this time.

Authentication
This API will use OAuth 2.0 with refresh tokens and token
expiry.

Other things we considered
WebHooks are a great way for developers to get information
about user events, such as files uploaded and files changed
without continuously polling for data. We’ve decided to incor‐
porate an outline of how these would work. We anticipate
building those as a phase 2 for the API.

We have decided not to implement a DELETE operation for
third-party developers at this time, because we consider it high
risk and unnecessary for the initial API launch.

Scenario 1 | 69

From there, the spec should dive into increasingly detailed informa‐
tion, such as an outline of the developer’s workflow, authentication
information (if new authorization mechanisms are being built), and
any relevant details about data transmission protocols. Visual dia‐
grams can go a long way toward communicating information that is
complex to describe with words.

Tables are also useful tools for detailing multidimensional aspects of
APIs. For REST or RPC APIs, it can be helpful to outline the URIs
or method names, inputs, outputs, errors, and scope.

Table 5-4 demonstrates what this looks like for our simple MyFiles
example.

Table 5-4. Detail section describing each API URI in the MyFiles API
technical specification

URI Inputs Outputs Scope
GET

/files

Required: N/A
Optional:
include_deleted (bool)
default false

limit (int)
default 100, Max 1000

cursor (string)
default null

last_updated_after
(timestamp):
default null

200 OK

Array of $file resources:
[
 {
 "id": $id,
 "name": string,
 "date_added":
 $timestamp,
 "last_updated":
 $timestamp,
 "size": int,
 "permalink": $uri,
 "is_deleted": bool
 }
]

read

GET

files/:id

 200 OK

$file

read

PATCH

files/:id

Updatable fields:
name (string)

notes (string)

202 Accepted

$file

write

POST

files/:id

Required:
name (string)

Optional:
notes (string)

200 Created

$file

write

In your table, the URI (or Endpoint) column should include the
HTTP method for REST endpoints. The Inputs column should

70 | Chapter 5: Design in Practice

include all input parameters, their acceptable types, their default val‐
ues, and whether the parameters are required. The Outputs column
should outline a success response and its types. For the types, you
may want to use shorthand values or whatever notations that your
use to denote the types throughout your code base. You may also
want to specify custom types that you have or will define with an
API description language. (For more information on this, see Chap‐
ter 7.) Alternatively, you might want to simply include a literal
example. The Errors column should include any important user
errors that you will be exposing for the individual API. You should
not document general errors and system errors here. If you’re using
OAuth, the Scope column specifies the scope that grants access to
the API method. (See also “API Specification Template” on page
203.)

In the specification of the MyFiles API URIs, we’ve also added error
codes that are specific to each resource. In addition to these
resource-specific errors, it’s important to think globally about how
we will respond with errors that could happen in any API. Table 5-5
includes a list of general and specific errors, along with the HTTP
status codes that we’ve chosen for the MyFiles example in this sce‐
nario.

Table 5-5. Section describing HTTP status codes for errors in the MyFiles
API technical specification

Status code Description Error response body
200 OK The request succeeded. See Outputs in Table 5-4.
201 Created The request succeeded and a new

file was created.
See Outputs in Table 5-4.

202 Accepted The file was updated successfully. See Outputs in Table 5-4.
400 Bad Request The request cannot be accepted,

often because of a missing
parameter or due to an error, like
too large a file being given.

{ "error":
"missing_parameter",
"message": "The following
parameters are missing from
your request: <parameter1>,
<parameter2>."
}

{ "error":
"file_size_too_large",
"message": "The file provided
is too large. The limit is
<file_size_limit>."
}

Scenario 1 | 71

Status code Description Error response body
401 Unauthorized No valid access token was

provided.
{ "error": "unauthorized",
"message": "The provided
token is not valid."
}

403 Forbidden The user may not have permission
to view the file.

{ "error": "forbidden",
"message": "You do not have
permission to access the
requested file <id>."
}

404 Not Found The requested file was not found. { "error": "file_not_found",
"message": "The requested file
<id> was not found."
}

429 Too Many
Requests

Too many requests were sent in a
given amount of time.

{ "error":
"too_many_requests",
"message": "You have made too
many requests in a short
period of time. Try again
in <time> minutes."
}

500 Server Error Something went wrong on the
server side.

You might notice that there are decisions to make regarding how to
note types and resources. Sometimes, you need room to describe
which types are nullable and which types are optional. Additionally,
you need a place for more information, such as how you would like
to handle file uploads via your API. You might want to add a Notes
column and put that information there. If you run out of horizontal
space, you can always turn the page to landscape mode or use a
document editor with horizontally scrollable tables.

Beyond what we’ve already mentioned listing in your API spec, you
might also want to include additional information about scaling,
performance, logging, and security. Finally, at the end of the spec, it
can be useful to include an Open Questions section, where you can
list unanswered questions.

Scenario 2
Let’s take the API design for MyFiles further. Here’s the scenario for
the next part of the chapter:

72 | Chapter 5: Design in Practice

You’ve built and released the MyFiles REST API, and it’s been a
huge success over the past few months. You’ve been staying in
touch with developers to get their feedback, and you’ve heard that
they want the ability to receive updates when files have changed.
With the original REST design, this means that they must make
multiple requests on every notable file and check for any kind of
difference. This polling behavior is taking a toll on your infrastruc‐
ture, and it’s not user-friendly for developers. As a result, your team
has decided to build something to address this problem.

Define the Problem
Here is how how the problem and impact statements might look for
Scenario 2:

Problem and Impact Statements for Scenario 2 of the
MyFiles API

Problem
Our REST API has enabled developers to programmatically
access third-party integrations. However, the only way devel‐
opers currently have to keep track of changes to files is by con‐
stantly polling our API, up to once per minute per file.

Impact
After adding some additional features to our API, developers
will be able to receive updates whenever changes are made to
files they care about.

Outline Key User Stories
“The User Story for the MyFiles API, Scenario 2” on page 73 shows
the key user story for Scenario 2.

The User Story for the MyFiles API, Scenario 2
As a developer, I want to receive an update when a file has been
added, changed, or removed so that I don’t have to continuously
poll the REST API.

Scenario 2 | 73

Select Technology Architecture
In Scenario 1, we selected a REST API for our technical architecture.
In this scenario, we are considering a variety of event-driven APIs.
Table 5-6 lays out the pros and cons of three common patterns for
the MyFiles API: WebHooks, WebSockets, and HTTP Streaming.

If you need a refresher on the various types of
event-driven APIs, head back to Chapter 2.

Table 5-6. Pros and cons of event-driven API paradigms for the MyFiles
API

Paradigm Pros Cons Selected?
WebHooks MyFiles developers

might want to receive
an event every time
files are added,
removed, or changed.

If files are changing too frequently, we might
need sophisticated infrastructure to
deduplicate events so that we don’t
inadvertently initiate distributed denial-of-
service (DDoS) events on our developers’
applications.

✓

WebSockets Can be used by
internal clients for UI
display.

We don’t want developers creating UI clients
for MyFiles via the API.
We don’t believe there is a use case to
support long-lived connections for the types
of events that developers would want to
know about.

χ

HTTP
Streaming

Good for pushing data
frequently.

With the low frequency of changes per file,
we don’t see a need for HTTP Streaming.

χ

Based on the pros and cons of the various styles of event-driven
APIs, we’ve decided to select WebHooks. One additional aspect of
this design that you should consider is how developers are going to
configure their settings to select exactly which events and files
they’re interested in. Keep that in mind, but we won’t get into the
configuration design in this chapter.

Write an API Specification
Now, taking the key user story and the selected technology architec‐
ture into account, refer to the following example spec for the
MyFiles WebHooks design. If you’re following along with your own

74 | Chapter 5: Design in Practice

example, you might want to use the API Specification Template pro‐
vided (“API Specification Template” on page 203).

Sample Spec for the MyFiles WebHooks Design for
Scenario 2

Title
Proposal: MyFiles API WebHooks Spec

Authors
Brenda Jin

Saurabh Sahni

Amir Shevat

Problem
Our REST API has enabled developers to programmatically
access third-party integrations. However, the only way devel‐
opers currently have to keep track of changes to files is by con‐
stantly polling our API, up to once per minute per file.

Solution
Build an event-driven WebHooks API that allows developers to
receive selected add, update, and change events relating to
MyFiles files.

Implementation
Developers will specify an endpoint that they control for our
WebHooks to send POST requests with JSON bodies for each
spec. See Table 5-7 for payload specification.

Authentication
This API will use the OAuth 2.0 authentication from the
MyFiles REST API. Any developer who has installed the read
OAuth scope will be able to receive WebHook requests.

Other things we considered
There are a number of ways to design event-driven APIs, and
we elected WebHooks. WebSockets and long-lived HTTP
streaming connections were also considered.

In addition to the high-level overview, let’s also write details about
the events and their payloads. Table 5-7 shows how that could look.

Scenario 2 | 75

Table 5-7. Section describing event objects for the MyFiles API technical
specification

Event Payload OAuth scope
file_added {

 "id": $id,
 "resource_type":
 "file",
 "event_type": "added",
 "name": string,
 "date_added": $timestamp,
 "last_updated": $timestamp,
 "size": int,
 "permalink": $uri,
 "notes": array <file_notes>,
 "uri": $uri
}

read

file_changed {
 "id": $id,
 "resource_type": "file",
 "event_type": "changed",
 "name": string,
 "date_added": $timestamp,
 "last_updated": $timestamp,
 "size": int,
 "permalink": $uri,
 "notes": array <file_notes>,
 "uri": $uri
}

read

file_removed {
 "id": $id,
 "resource_type": "file",
 "event_type": "removed",
 "name": string,
 "date_added": $timestamp,
 "last_updated": $timestamp,
 "size": null,
 "permalink": null,
 "notes": null,
 "uri": null
}

read

Notice that in this example there are interesting decisions to be
made about how to note the type of change for this particular
resource. Should there be more data in the payload? Or should the
event names be granular, with references to where developers can
make a subsequent request, and get more information, as described
by the payload.uri field in Table 5-7?

76 | Chapter 5: Design in Practice

Validate Your Decisions
Now that we’ve explored how to write an API specification, it’s time
to get feedback. After each specification is written, you should find a
way to test your ideas with stakeholders. In this chapter, we have
provided two different specs to give a range of examples, but in the
real world there would be time between each of these scenarios, and
feedback would be solicited after each specification was written.
Don’t wait to finish building your API masterpiece before getting
input—the right feedback early on can save you a lot of time and
prevent costly rewrites.

Reviewing the specification with stakeholders
One of the guiding principles of the design methodology described
in this chapter is enabling feedback early and often. The spec you
have just written is a starting point for much of this, where you can
get feedback on the problem, the high-level solution, and the nitty-
gritty details. Review your spec with others and solicit feedback on
the design. Find a developer who might build a business integration
and ask them what they think. If your stakeholders are internal,
make sure that you get their input. It is important to go through
these cycles of feedback before you write any code because the
mindsets for creating and consuming an API are different, and the
input you receive will help you fix usability issues before you start
building.

The point of gathering feedback is not to simply “get sign-off.” As
you are gathering feedback, you should be inviting constructive dis‐
agreement and criticism. This isn’t so that others can tear down your
design but so that you can collect valuable information to improve it
before you begin building. (Hopefully you have relationships with
key stakeholders that are built on trust and mutual understanding to
help move this conversation along.)

Gathering feedback is not an effort to prove (or disprove) your
design prowess. In fact, it isn’t even about your ideas. It should be an
authentic exploration of the possible solutions to the problem you
defined at the beginning of this chapter. Genuine curiosity through‐
out the feedback cycle enables the exchange of ideas. When gather‐
ing feedback, you should be deepening your understanding of other
stakeholders’ concerns and hesitations, even if they’re difficult to
hear and even if you disagree. When phrasing questions, it’s better

Scenario 2 | 77

to be specific about the information you’d like. For example, “Did
you like it?” isn’t as helpful as “What problems did you run into as
you implemented the WebHooks API?” You might even ultimately
decide not to incorporate some of your stakeholders’ suggestions
because your solution addresses their concerns another way. With
this deeper understanding, your solutions will be more thorough
and more multifaceted, and you will make more intentional trade-
offs.

It certainly takes effort to synthesize complex ideas and merge seem‐
ingly disparate interests—it’s more work than simply running with
your first solution. However, it’s better to build the right API than to
build the wrong one.

Mocking data for interactive user testing
We recommend using whatever tools are available to you in order to
test your design and gather the feedback you need. One of the tools
you might want to use is mock data. For example, you could create
an interface for developers in which they can get mock data in the
format of your proposed spec. The mock data is a set of fixed
responses that can be served through an application or some other
lightweight interface that you can route through your existing web
application. The mock data application will be a more interactive
testing environment for stakeholders, which will help you get even
more specific feedback before you fully implement the API. Addi‐
tionally, a mocking tool can help your developers implement their
apps and integrations in parallel with your API development.

Storytime: Macys.com Responsive Checkout
In 2015, Macys.com built a brand-new responsive checkout system
that used a series of JSON APIs. The previous system was built as
individual pages on a Java backend using the Spring Framework.
Because it was going to take several weeks for the backend develop‐
ers to create the JSON API, the team first agreed upon the API spec.
Then, the frontend developers created a lightweight Node.js mock
application that served fake fixed responses while the API was
being developed. This allowed the interactive responsive frontend
experience to be built and tested, in parallel with the development
of the APIs. When it came time to release the checkout experience

78 | Chapter 5: Design in Practice

to customers, the team simply swapped out the Node.js mock appli‐
cation with the new API endpoints.

Beta testers
Often your stakeholders aren’t just internal. If you have a public-
facing API, there are also external stakeholders to consider when
soliciting feedback. After you make some decisions based on the
spec and begin building the API, you’ll want to consider getting
feedback from developer partners in a beta testing program. This
would allow developer partners early access to the new API, with the
intent that they would provide feedback before an official public
release. This gives you as the API builder additional opportunities to
improve the API design for real users and real use cases. For more
on building developer partner programs, see Chapter 10.

Closing Thoughts
We think the MyFiles API is off to a good start—don’t you? This
process provided a generic template for you to use to design APIs.
As you think about how to customize the design process for your
API, consider keeping the process as lightweight and fast as possible,
while maximizing the feedback.

Throughout this book, we continue to encourage you to think about
the human factor in computing. Time and time again, we’ve seen
that poor design decisions are made when API providers ignore the
needs of the user or developer communites.

Adapt the template provided here as needed for your organization,
but don’t forget the user!

Closing Thoughts | 79

CHAPTER 6

Scaling APIs

Making sure your API scales both in terms of use cases and load is
critical for its success. In this section, we cover the following scaling
best practices and tips to help ensure that your API is future-proof:

• Scaling throughput
• Evolving API design
• Paginating APIs
• Rate-limiting APIs
• Developer SDKs

When you are building an API that other people depend on, availa‐
bility and reliability are important. You want to ensure that it never
goes down and that it continues to load fast for its users. However,
your API can suddenly experience a surge in usage. That can affect
the quality of your service or even bring your own application
down, if the application relies on your APIs.

To scale your API by supporting an increased number of API calls,
there are many things you can do at the application level. Database
query optimization, sharding databases, adding missing indexes,
utilizing caching, doing expensive operations asynchronously, writ‐
ing efficient code, and tuning web servers help in increasing the
throughput and decreasing the latency. All of these things are very
important and you should do them. We cover these topics only
briefly in the first section of this chapter, given that they are covered

81

more extensively in other books about web application perfor‐
mance.

Beyond these optimizations, there is another set of changes that are
frequently overlooked and can significantly help in scaling APIs.
There are ways in which you can develop your API design, change
API usage policies, or help third-party developers to write efficient
code when working with your API. In “Evolving Your API Design”
on page 90, we cover these often-forgotten best practices and tips
that can be useful for scaling your API.

Your API might also need to handle increasingly large datasets. Pag‐
ination is an effective strategy for delivering large datasets to devel‐
opers. We go over some tips and techniques for this in “Paginating
APIs” on page 97.

Even after you have taken care of all the aforementioned concerns
by scaling your throughput, developing your API design, and pagi‐
nating your APIs, it’s still possible for developers to make requests at
an overwhelmingly high rate. In “Rate-Limiting APIs” on page 102,
we discuss strategies for effectively limiting developer requests to a
reasonable frequency to maintain the health of your overall applica‐
tion.

Finally, scaling APIs isn’t just about the mechanisms within your
application and API that enable growth. In “Developer SDKs” on
page 114, we discuss how to create tools for developers to encourage
best practices.

Scaling Throughput
As the number of users of an API grows, the throughput—measured
as the number of API calls per second—increases. In this section, we
talk about various ways in which you can optimize your API to sup‐
port this growth.

Finding the Bottlenecks
Scaling your API might require fundamental changes to your appli‐
cation architecture and code. First, you need to determine what your
scaling bottlenecks are; otherwise, you’re just making guesses. One
of the best ways to gain insights into bottlenecks is through instru‐
mentation. By collecting data on usage and monitoring for capacity

82 | Chapter 6: Scaling APIs

bottlenecks, you can take advantage of data-driven insights into
optimizations that will help you scale.

Generally, these bottlenecks fall into four categories:

Disk I/O
Expensive database queries and local disk access often lead to
disk-related bottlenecks.

Network I/O
Network bottlenecks in modern applications are frequently
caused by dependencies on external services requiring API calls
across data centers.

CPU
Inefficient code performing expensive computations is one of
the common causes of CPU bottlenecks.

Memory
Memory bottlenecks typically occur when systems do not have
sufficient RAM.

Most of the cloud hosting providers offer solutions to measure these
bottlenecks. If you’re on Amazon Web Services (AWS), you can use
Amazon CloudWatch. Heroku has New Relic. And on Google, you
can use Stackdriver to access metrics and get insights into health,
performance, and availability.

To pinpoint specific bottlenecks, you can monitor the categories we
just listed, homing in on your most frequently called API methods.
One of the most obvious symptoms of a bottleneck is high latency
for response times. By measuring the response times of your API
methods and how frequently they are called, you can narrow down
the methods you want to optimize.

After you determine which API methods to optimize, performance
profiling is one of the best ways to identify your bottlenecks.
Although performance and scaling are different, they are related.
Poorly performing APIs are difficult to scale.

By profiling your code, you can find out which are your CPU- or
memory-intensive functions. Profiling in a development environ‐
ment often helps you to find the application bottlenecks; however,
sometimes the issues in production are different. This is especially
true if activities and events that happen in production are difficult to
simulate or reproduce in your development environment. If you

Scaling Throughput | 83

enable profiling in production for a small subset of your traffic, you
can gain further insights into the performance issues. Figure 6-1
shows Stackdrivers that help engineers understand which paths con‐
sume the most resources and the different ways in which their code
is actually called.

Figure 6-1. Performance flame graph generated by Stackdriver Profiler
in Google Cloud Platform

In addition to code profiling, which identifies CPU- or memory-
intensive functions, database profiling helps you to pinpoint the
slow queries related to disk I/O. MySQL offers a slow query log that
can log queries that take a long time to execute. Other databases
offer similar solutions to analyze and isolate potentially problematic
queries.

As for network I/O bottlenecks, load testing, along with the afore‐
mentioned methods, is another commonly used technique to deter‐
mine how your API will behave under anticipated peak load
conditions. Load testing is helpful in identifying the maximum
operating capacity of a system as well as bottlenecks that can lead to
service degradation at high load. Some companies use load testing to
perform internal drills in advance of known upcoming spikes. Nota‐
bly, ecommerce companies do this to prepare and plan in advance
for spikes—of up to five times the traffic and transactions—that can
occur during major shopping events, such as Black Friday in the
United States.

84 | Chapter 6: Scaling APIs

Adding Computing Resources
Simply adding more computing resources can help in scaling an
application. There are two ways to add more resources:

Vertical scaling
Vertical scaling can be achieved by adding more power, like
CPUs, RAM, and disk storage, to existing servers.

Horizontal scaling
Horizontal scaling is achieved by adding more server instances
to your pool of resources so that the load can be distributed
among them.

Figure 6-2 shows the architecture of a typical large web application.
Web servers are fronted by a load balancer distributing requests
across servers. To horizontally scale databases, data is often parti‐
tioned such that rows of a database table are stored on different
servers. Each server contains only part of the data. This is also
referred to as database sharding. Along with sharding, database repli‐
cation is used to distribute the load on the database. This is helpful
in improving performance, reliability, and scalability. There are
many nuances to scaling cloud application architecture which we
won’t cover in this book.

Scaling Throughput | 85

Figure 6-2. Architecture of a typical large-scale web application

Database Indexes
Indexing is a way to optimize the performance of data retrieval oper‐
ations on a database table. Indexes help databases to locate rows to
return for a query without having to compare every row in a data‐
base table. They do this by additionally storing the index data struc‐
ture.

For example, if you frequently find users by email address in a users
table, creating an index on the email column will help you to speed
up these queries. Without an index, the database would need to
examine every row.

However, adding too many indexes is not ideal, either. Each index
on a table requires additional storage space, and there is a perfor‐
mance hit every time you add, update, or delete rows because the
corresponding indexes need to be updated as well. Typically, you
need indexes on columns that are common in your WHERE, ORDER
BY, and GROUP BY clauses.

86 | Chapter 6: Scaling APIs

For more information on implementing database indexes, consult
the documentation and resources for your specific database.

Caching
Caching is one of the most popular and simplest techniques that
web applications use to scale to very large throughput. Caching sol‐
utions like Memcached store data in memory instead of on the disk
because it is much faster to read from memory.

Caching is often used to store the responses to database queries. By
analyzing your database logs, you can figure out the database quer‐
ies that take a long time to execute and are most frequent. With
caching, when you need to look up data, you first check whether it’s
available in the cache. If you find the data, you return it. Otherwise,
you can do a database query to find results and store them in the
cache for future lookups before returning the response to the user.
By caching these results in memory, you can significantly improve
the scalability and performance of your application.

When you implement caching, one important thing to remember is
to invalidate the cache. Often you want to delete the cache whenever
the corresponding data is updated. At other times, when you can
tolerate data update delays, you might let the cache expire on its
own.

Although application-level caching for APIs is typically imple‐
mented along with your web servers, caching API results closer to
end users can help to achieve even higher throughput and perfor‐
mance. This is referred to as edge caching.

Storytime: Slack’s Flannel—an Application-Level Edge
Cache

In the early days of Slack, the Slack clients used a very different API
design than they eventually would (see Figure 6-3). In this context,
a client is any application used to display the messages and other
features of Slack, including web browsers and native desktop and
mobile applications. When Slack was used primarily on small
teams, each client would make an API request to load everything
on startup. This was useful for getting all the channels, users, and
bots to display at once.

Scaling Throughput | 87

Figure 6-3. Slack’s pre-Flannel architecture

However, as teams grew larger and larger, requesting the entire state
of the application became slow. What had worked for small teams
didn’t work for large teams. Connection time to start took too long,
the client memory footprint became too big, reconnecting to Slack
were expensive, and reconnection storms became resource-
intensive.

As a result, Slack spent months redesigning the API for clients to
request and manage state. This API became known as Flannel. As
Figure 6-4 illustrates, Flannel was a lazy-loading cache service that
provided query APIs for clients to fetch data on demand. Whereas
previously, clients received the entire application state on startup,
they now used Flannel to request only what they needed to create a
reasonable user interface (UI) for human users and then made sub‐
sequent requests to update their local state.

Figure 6-4. Slack’s architecture with Flannel

It took a whole team and months of work to get this new cache in
place to scale the API, but the results were phenomenal. Client
startup data size was reduced by 7 times on a medium-sized team

88 | Chapter 6: Scaling APIs

and 44 times on a large team. For more information on this story,
see the Slack engineering blog.

Doing Expensive Operations Asynchronously
If some of your API requests take a long time to execute, you might
want to consider performing expensive operations outside of the
request (asynchronously). This way you can serve the responses to
such requests faster.

For example, if you have a system that allows users to store and
search files, when a file is uploaded, you do not need to make it
available in the search index as part of the same request. Files can be
added to the index as part of an offline job that’s executed asynchro‐
nously in near real time.

To do operations asynchronously, you can use task queue services
provided by various cloud service providers, like Amazon and Goo‐
gle. You can also use an open source task queue like Celery.

Scaling Throughput Best Practices
Here are some best practices that will help your applications to scale
to high load:

• Measure and find your bottlenecks first before starting to make
changes for scaling. The database is the most common bottle‐
neck in modern applications.

• Avoid premature optimizations. Scaling optimizations often
come at a cost, and some of them can increase the development
time of your application. Unless you have scaling problems, you
probably don’t want to add that complexity.

• Prefer horizontal scalability over vertical scalability.
• Understand that database indexes are among the best ways to

address slow database queries.
• Determine which data you use frequently, and cache it.
• If you add caching, do not forget to add cache invalidation.
• Consider performing expensive operations asynchronously.

Scaling Throughput | 89

http://bit.ly/2w160iU

• Avoid writing inefficient code that might do expensive opera‐
tions, like database queries in a for loop for a single API
request.

Evolving Your API Design
In the real world, your initial API design might not scale with the
growth of your user base or with the increased adoption and usage
of your API. For insights into bottlenecks that may occur and to
reduce the number of API calls, it’s important to determine the main
reasons that developers are using the API and where the issues are.
Are developers using the API for reasons you didn’t predict? Is poll‐
ing a problem? Is the API returning too much data? Although there
is no magic bullet to resolve all scaling issues, you may want to con‐
sider the following solutions.

Expert Advice
Grow and work with your users. Keep a good and open channel
with your developers/users. Gain feedback and tune the API to
solve their main pain points.

—Ido Green, developer advocate at Google

Introducing New Data Access Patterns
As your API becomes popular, your developers might begin using it
in ways that you didn’t anticipate. To address scaling challenges, you
might want to consider alternative ways of sharing data. Let’s take a
look at four companies that took on significant API design changes
in order to scale: Zapier, Twitter, GitHub, and Slack.

If polling is one of your API scaling problems and you have only
REST APIs, you should explore options like WebSockets and Web‐
Hooks. Your developers will not need to poll for changes but can
wait for new data to be delivered in real time. A 2013 Zapier study
found that only about 1.5% of their polling API calls returned new
data. By supporting WebHooks, they estimated that server load
could be reduced by 66 times.

In the past, Twitter applications could only receive new tweets in
near real time by frequently polling the Twitter API. This led to

90 | Chapter 6: Scaling APIs

https://zapier.com/engineering/introducing-resthooksorg/

increased traffic to the REST APIs, and as a result, added to existing
scaling challenges. To resolve the issue, Twitter introduced a stream‐
ing API that delivers new data and cuts down on polling. Now, using
this streaming API, developers can subscribe to selected keywords
or users and can receive new tweets over a long-lived connection.

In the past, GitHub found that its responses were bloated and were
sending too much data—but even with the large payloads, they still
weren’t including all of the data that developers needed. Developers
would make separate calls to assemble a complete view of a
resource. To address these scalability challenges, GitHub launched
the GraphQL API. Using GraphQL, developers can batch multiple
API calls into a single API call and fetch only the items that they
needed. This helps to reduce the number of API calls GitHub
receives, and it reduces the cost of computation on fields that devel‐
opers don’t need.

Slack started out with a Real-Time Messaging (RTM) API, which
allowed developers to build apps and bots that could respond in real
time to activities in Slack. The API delivered events from Slack over
a WebSocket. As time went on, Slack discovered that even though
the RTM API was great for its own clients, it provided too much
data for developers to handle well. Plus, it was difficult for Slack and
for developers to scale. Developers with several users had to deal
with many concurrent open HTTP connections—at least one per
user. Slack also needed to manage as many connections as the API
provider. In 2016, to address all of these problems, Slack introduced
the Events API (Figure 6-5), which is WebHook-based and enables
developers to create bots over HTTP. Instead of receiving an endless
stream of data that includes all events, and rather than constantly
polling Slack’s RPC API, developers can use the Events API to sub‐
scribe to only the events that they care about—delivered via HTTP.
This helps both Slack and app developers to scale better.

Evolving Your API Design | 91

https://githubengineering.com/the-github-graphql-api/

Figure 6-5. Slack’s WebHook-based event subscription interface

Adding New API Methods
Another way to address scalability and performance problems is by
adding new API methods. If you have some expensive APIs, you
might want to dive deeper into the use cases they are serving. Some‐
times developers might need only a small subset of the data from
your API responses, or, as in the GitHub case that we just looked at,
developers might be working hard to assemble data that isn’t easily
accessible with the existing APIs. If developers can only either
request everything or nothing, they may end up receiving full
responses and ignoring most of the payloads. It’s possible that the
data they don’t need is expensive for you to compute. It’s difficult to
remove or change APIs after they are in use, but adding new meth‐
ods is easy. New methods can deliver the data that your developers
need, while addressing the performance and scale issues of your
existing APIs.

Slack introduced several new APIs over time to address scaling chal‐
lenges. One of Slack’s popular API methods, rtm.start, became
extremely expensive. This method would start an RTM session and
return a wide variety of data about the team, its channels, and its
members. Originally designed for small teams, this API method
would return the full application state, in addition to a session URL
for a WebSocket connection. As team sizes grew, this payload
became unwieldy and large—up to several megabytes, which was
expensive for developers to handle. Even though a handful of devel‐
opers used the data returned from this method, most developers
wanted only to connect to the WebSocket. As a result, Slack intro‐
duced a new API method, rtm.connect, that simply returns an

92 | Chapter 6: Scaling APIs

RTM WebSocket API session URL without returning any other data
in the payload. This new method has helped application developers
and Slack to overcome some of the scaling problems with
rtm.start.

Slack also launched a new Conversations API that addresses perfor‐
mance and scalability issues along with various developer pain
points. Previously, developers needed to use different methods from
multiple “family trees” to achieve the same thing, depending on the
type of the channel with which they were working. For example, to
list private channels, developers would use groups.list, and for
public channels, they used channels.list. This resulted in many
different objects for developers to reconcile—objects that, at their
core, all represented the same type of timeline message container.
The Conversations API (Figure 6-6) bring consistency to these pay‐
loads and addresses various performance improvements so that
developers can scale their applications. API endpoints returning lists
of large objects are all paginated. Slack also stopped returning large
nested lists of lists in payloads and created separate endpoints to
fetch additional information. For instance, a new API endpoint,
conversations.members, returns a paginated list of members in a
conversation. Apart from making Slack’s application infrastructure
more scalable, these new APIs also make third-party developers’
lives much easier. Slack’s developers report removing many lines of
code with this new change.

Evolving Your API Design | 93

https://blog.frame.ai/migrating-to-the-slack-conversations-api-89692b016eea
https://blog.frame.ai/migrating-to-the-slack-conversations-api-89692b016eea

Figure 6-6. Slack’s Conversations API consolidated multiple endpoints
into one

Another use case that the Conversations API helped developers to
complete was that of finding conversations of which a user was a
member. To do that, developers would make multiple requests to
query the members of each conversation and then filter conversa‐
tions for a given user. By releasing an API method called users.con
versations, Slack reduced the number of calls that developers
needed to make. In a single request to the new users.conversa

94 | Chapter 6: Scaling APIs

tions API method, developers could fetch up to 1,000 conversations
of which a user was a member. Previously, this could have taken
1,001 API calls.

Supporting Bulk Endpoints
Sometimes developers need to do the same operation on several
items, like looking up or updating multiple users. This often
requires doing several individual API calls. Supporting bulk end‐
points so that developers can do those operations in fewer API calls
can be helpful for scaling. Bulk endpoints are more efficient because
they require fewer HTTP round trips and can even help in reducing
load on a database.

Let’s look at another example from Slack. To invite multiples users to
a single Slack channel, developers had to call the channels.invite
API method once per user. Slack added support for inviting multiple
users in a single API call (Example 6-1), thereby saving costs for
both Slack and developers. Several API providers, like Zendesk and
Salesforce, support bulk operation endpoints as well as batching of
requests.

Example 6-1. Slack’s Conversations API supporting bulk operations

POST /api/conversations.invite
HOST slack.com
Content-Type: application/json
Authorization: Bearer xoxp-165018607-jqf4sbdaq2a
{
 "channel":"C0GEV71UG",
 "users":["W1234567890","U2345678901", "U3456789012"]
}

Adding New Options to Filter Results
When your API begins returning a number of objects, it’s important
to consider providing options to filter the results. This way, develop‐
ers can limit the number of objects returned to those that they
actually need. This makes your API more scalable. Different APIs
need different filters depending on how they are used. Here are
some common filters that are widely applicable:

Evolving Your API Design | 95

Search filter
With search filters, developers can specifically request the
results they are looking for using similar words, regex, or
matching strings. In the absence of such a filter, developers
could end up requesting and parsing a lot more results than
they need.

Date filter
Often developers need only new results since the last time they
requested results from the API. By supporting a date filter, you
can return only the results from after or before the given time‐
stamp. The Twitter timeline, the Facebook News Feed, and the
Slack message history APIs support such filters.

Order filter
An order filter enables developers to order a set of results by a
given property. This can reduce the number of results that
developers need to request and process. The Amazon Product
Advertising API supports sorting by popularity, price, and con‐
dition.

Options to indicate which fields to return or not return
Some fields in your API responses might be far more expensive
to compute than others. Unnecessary fields can also signifi‐
cantly increase the response payload size. API providers fre‐
quently offer developers an option to exclude or include certain
fields. For example, the Twitter timeline API provides filters to
trim included user objects and not return tweets.

Expert Advice
Evolving the API design has helped Facebook and app developers
with scaling. Previously, app developers had to include a full
Facebook SDK in their mobile apps. Recently, we released an
update to our mobile SDKs that allows developers to install cer‐
tain pieces of it. If a developer does not need the functionality of
the full Android SDK, they can save space by using only the
SDK(s) needed to support the Facebook products.

—Desiree Motamedi Ward, head of developer product mar‐
keting at Facebook

96 | Chapter 6: Scaling APIs

Evolving API Design Best Practices
Here are four best practices for evolving API design that will help
you with scaling:

• As you continue to evolve your APIs, it’s important to ensure
that you do not introduce surprising breaking changes to your
developers.

• Analyze your API usage and patterns to figure out what to opti‐
mize.

• Talk to your developers and partners. This will give you good
insights into problems and potential solutions.

• Before launching new API patterns for everyone, try them out
with a handful of developers and partners. This way, you can
iterate on the design based on their feedback before making the
patterns generally available.

Paginating APIs
In addition to scaling throughput and evolving your API design,
paginating APIs can help with scaling. Quite often, APIs need to
handle large datasets. An API call might end up returning thousands
of items. Returning too many items can overload the web applica‐
tion backend and even slow down clients that can’t handle large
datasets. For that reason, it’s important to paginate large result sets.
This splits long lists of data into smaller chunks, minimizes response
times for requests, and makes responses easier to handle.

In this section, we explore some techniques that you can use to pagi‐
nate an API.

Offset-Based Pagination
Using limits and offsets is generally the easiest way to implement
pagination. It’s also the most widely used pagination technique.

To paginate this way, clients provide a page size that defines the
maximum number of items to return and a page number that indi‐
cates the starting position in the list of items. Based on these values,
servers storing data in a SQL database can easily construct a query
to fetch results. For instance, to fetch the fifth page of items with

Paginating APIs | 97

each page’s size being 10, we should load 10 items, starting after 40
items (skipping the first 4 pages of size 10). The corresponding SQL
query would look like the following:

SELECT * FROM `items`
ORDER BY `id` asc
LIMIT 10 OFFSET 40;

APIs, such as GitHub’s, support this kind of pagination. Clients can
simply make a request with page and per_page parameters specified
in the URL, such as the one shown here:

https://api.github.com/user/repos?page=5&per_page=10

Advantages and disadvantages
Offset-based pagination is extremely simple to implement, both for
clients and the server. It also has user experience advantages. It
allows users to jump into any arbitrary page instead of forcing them
to scroll through the entire content (Figure 6-7).

Figure 6-7. Pagination links in a UI

However, this technique has a few disadvantages:

• It’s inefficient for large datasets. SQL queries with large offsets
are pretty expensive. The database has to count and skip rows
up to the offset value before it gets to returning the desired set
of items.

• It can be unreliable when the list of items changes frequently.
The addition of an item while a client is paginating through
results could cause the client to display the same item twice.
Similarly, on the removal of an item, a client might end up skip‐
ping it at the boundary.

• Offset-based pagination can be tricky in a distributed system.
For large offsets, you might need to scan a number of shards
before you get to the desired set of items.

98 | Chapter 6: Scaling APIs

That said, offset paginations can be great when pagination depth is
limited and clients can tolerate duplicates or missed items.

Cursor-Based Pagination
To address the problems of offset-based pagination, various APIs
have adopted a technique called cursor-based pagination. To use this
technique, clients first send a request while passing only the desired
number of items. The server then responds with the requested num‐
ber of items (or the maximum number of items supported and avail‐
able), in addition to a next cursor. In the subsequent request, along
with the number of items, clients pass this cursor indicating the
starting position for the next set of items.

Implementing cursor-based pagination is not very different from
offset-based pagination. However, it’s much more efficient. Systems
that store data in a SQL database can create queries based on the
cursor values and retrieve results.

Suppose that a server returns a Unix timestamp of the last record as
the cursor. To fetch a page of results that are older than that given
cursor, the server can construct a SQL query like the following:

SELECT * FROM items
WHERE created_at < 1507876861
ORDER BY created_at
LIMIT 10;

Having an index on the column created_at in the preceding exam‐
ple makes the query fast.

Several modern APIs, including those of Slack, Stripe, Twitter, and
Facebook, offer cursor-based pagination. Let’s take a look at how
cursor-based pagination works in the Twitter API.

Consider this scenario: a developer wants to obtain the list of a user’s
followers’ IDs. To fetch the first page of results, the developer makes
an API request, as shown here:

GET https://api.twitter.com/1.1/followers/ids.json?screen_name=
 saurabhsahni&count=50

The Twitter API returns the following response:

{
 "ids": [
 385752029,
 602890434,

Paginating APIs | 99

 ...
 333181469,
 333165023
],
 ...

 "next_cursor": 1374004777531007833,
}

Using the value from next_cursor, the developer can then request
the next page of results with the following request:

GET https://api.twitter.com/1.1/followers/ids.json?user_id=12345
 &count=50&cursor=1374004777531007833

As the developer makes subsequent requests to advance through the
next pages, they will eventually receive a response with
"next_cursor" as 0, and that will indicate the end of the entire
paginated result set.

Advantages and disadvantages
Cursor-based pagination addresses both the issues seen with offset-
based pagination:

Performance
One of the key benefits of cursor-based pagination is perfor‐
mance. With an index on the column used in the cursor for
pagination, even queries requiring scanning large tables are fast.

Consistency
The addition or removal of items does not affect the result set of
a page. While paginating across results, the server returns every
item exactly once.

Cursor-based pagination is great for large and dynamic datasets.
However, it has a few drawbacks:

• Clients cannot jump to a given page. They need to traverse
through the entire result set page by page.

• The results must be sorted on a unique and sequential database
column, used for the cursor value. It should not be possible to
add records at a random position in the list.

• Implementing cursor-based pagination is a bit more compli‐
cated than offset-based pagination, particularly for clients. Cli‐

100 | Chapter 6: Scaling APIs

ents often need to store the cursor value to use it in subsequent
requests.

Choosing what goes in the cursor
Common options to use for cursors include:

ID as the cursor
API providers often choose a unique ID as the cursor value. For
instance, the Twitter timeline APIs support tweet IDs as cursors.
To fetch older tweets in a timeline, developers can pass the low‐
est ID received in the first set of results as the max_id parameter.
The server then returns only tweets with IDs lower than or
equal to the value of the max_id parameter.

Timestamp
Another common approach adopted by APIs returning time-
based data, such as news feeds, is to use the timestamp as the
cursor. Facebook APIs support until and since parameters,
which accept Unix timestamps. When a timestamp is passed in
the since request parameter, the Facebook API returns only
items newer than the given timestamp.

Opaque strings
Using opaque strings as the cursor is increasingly becoming the
preferred choice for API providers. Although they appear as
random sets of characters, they are generally encoded values. A
key advantage of using opaque strings is the ability to encode
additional information within a single cursor. Large-scale appli‐
cations can encode multiple IDs or an ID-plus-pointer combi‐
nation to a database shard in these cursor values. Modern
versions of various APIs, including those of Slack, Facebook,
GitHub, and Twitter, use opaque strings as cursors.

Pro Tip

Cursor-based pagination is best suited for high-
traffic applications for which clients need to
scan through large datasets.

Paginating APIs | 101

Pagination Best Practices
Here are some best practices that you should keep in mind when
designing pagination for an API:

• When implementing pagination, do not forget to set reasonable
default and maximum values for the page size.

• Avoid using offset-based pagination if clients will run queries
with large offsets.

• With pagination, sorting data such that newer items are
returned first and older items later is sometimes better. This
way clients don’t need to paginate through to the end if they are
interested only in newer items.

• If your API does not support pagination today, introduce it later
in a way that maintains backward compatibility. More on back‐
ward compatibility in Chapter 7.

• When implementing pagination, return the next page URL
pointing to the subsequent page of results. An empty or null
next page value can indicate the end of the list. By encouraging
clients to follow the next page URL, over time you can change
your pagination strategy without breaking clients.

• Do not encode any sensitive information inside cursors. Clients
can generally decode them.

Rate-Limiting APIs
Often API providers discover the need to rate-limit APIs the hard
way. When an API becomes popular and suddenly sees a surge of
traffic that potentially affects the availability of the application, API
developers begin exploring rate-limiting options. There are two key
reasons why APIs should do rate-limiting:

To protect the infrastructure while increasing reliability and availabil‐
ity of the application

You do not want a single misbehaving developer or user to
bring your application down through a denial-of-service (DoS)
attack.

102 | Chapter 6: Scaling APIs

To protect your product
You want to prevent abuses of your product, like mass registra‐
tion of users or creation of a lot of spam content.

Rate limits help to handle surges in traffic or spam by making your
application more reliable. By safeguarding your infrastructure and
product, rate limits are also protecting developers. There is no API
or data for anyone if it’s possible to bring down the entire system via
the API. So, let’s dive into what rate-limiting is and how you can
implement it for your API.

What Is Rate-Limiting?
A rate-limiting system controls the rate of traffic sent or received on
a network interface. For web APIs, rate-limiting systems are used to
control how many times an application or a client is allowed to call
an API during a given time interval. Traffic is allowed up to the
specified rate, whereas traffic that exceeds that rate might be denied.
For example, GitHub’s API allows developers to make up to 5,000
requests per hour.

When you’re thinking about rate-limiting an API, one of the first
things you need to do is to come up with a policy. Apart from pro‐
tecting your infrastructure and product, a good rate-limiting policy
has the following characteristics:

• Easy to understand, explain, and work with
• Ensures that developers are not rate-limited while working with

desired use cases

Here are a few things to consider when developing your rate-
limiting policy:

Granular rate limits versus a global rate limit
Many APIs choose a single global API rate limit across all API
endpoints. This is easy to implement for you as well as for
developers. However, if some of your API endpoints consume
significantly more resources than others, you might want to
define rate limits per endpoint. Such granular rate limits will
protect your infrastructure from any unreasonable spikes for an
expensive API endpoint. The Twitter API defines a rate limit
per API endpoint, whereas GitHub and Facebook define a single
global API rate limit.

Rate-Limiting APIs | 103

Measuring traffic per user, application, or client IP
Often the entity which you want to rate-limit depends on the
authentication method required by your API. APIs requiring
user authentication generally apply rate-limiting on a per-user
basis, whereas APIs requiring an application authentication typ‐
ically rate-limit on a per-app basis. For unauthenticated API
calls, API providers often choose to rate-limit by IP address.
APIs from GitHub, Facebook, Twitter, and Slack apply rate lim‐
its per user for authenticated API calls.

Supporting occasional traffic bursts or not
Some APIs, particularly the ones used by enterprise developers,
support traffic bursts beyond a sustained rate limit. This way,
developers’ applications experiencing a surge in traffic can con‐
tinue to work well with the API. If you choose to support occa‐
sional traffic bursts, you probably want to use the token bucket
algorithm to implement rate-limiting. In the next section, we
discuss this and other algorithms.

Allowing exceptions
You need not have a single rate-limiting policy or a single set of
rate limits (or quota) that are applicable to all your developers.
It’s possible that some of your trusted developers or partners
will need higher rate limits. You can always have exceptions for
them, if they request additional quota. That said, before you
grant exceptions, you might want to:

• Ensure that the developer’s use case is valid and beneficial
to customers.

• Verify that there is no better way to achieve the same result
with your existing APIs and constraints.

• Validate whether your infrastructure can support the rate
limit ask.

Expert Advice
Any API used by external developers requires careful attention to
availability, reliability, and security. This is especially true in
Stripe’s case; payments infrastructure is the lifeblood of our cus‐
tomers’ business. One bad actor shouldn’t accidentally or deliber‐
ately affect its availability.

104 | Chapter 6: Scaling APIs

We implement a few rate-limiting strategies to prioritize criti‐
cal requests over noncritical traffic and keep our API available to
everyone.

—Romain Huet, head of developer relations at Stripe

Another way to ensure reasonable use of your API is with terms of
service (ToS) agreement documentation. These documents detail
permitted uses of your API to developers, including rate limits.
Developers hitting your API at higher rates than specified in your
ToS might be subject to API token invalidation or other actions you
deem necessary.

We address ToS in detail in Chapter 9.

Implementation Strategies
As you build a rate-limiting system, ensure that the system does not
slow your API response time. To ensure high performance and the
ability to scale horizontally, most API services use in-memory data
stores, like Redis and Memcached, to implement the rate-limiter.
Both Redis and Memcached offer fast reads and writes and are often
used by API providers to keep track of the number of API requests
received for rate-limiting.

There are a few common algorithms that are used to implement rate
limits:

• Token bucket
• Fixed-window counter
• Sliding-window counter

Token bucket
The token bucket algorithm allows for maintaining a steady upper
limit on the rate of traffic while permitting occasional bursts. The
algorithm is explained with the analogy of a bucket (Figure 6-8)
with finite capacity, into which tokens are added at a fixed rate. But

Rate-Limiting APIs | 105

https://stripe.com/blog/rate-limiters

it can’t fill up infinitely. If a token arrives when the bucket is full, it’s
discarded. On every request, n number of tokens are removed from
the bucket. If there are fewer than n number of tokens in the bucket,
the request is rejected.

Figure 6-8. Token bucket algorithm

Implementing this algorithm using an in-memory key–value data
store is easy. Suppose that you want to rate-limit API requests per
user to 20 requests/minute while allowing occasional bursts of up to
50 requests. Here’s how a key–value data store implementation could
work:

• On the first request for a user, initialize a bucket with the
capacity of 50 tokens. Store the request timestamp and this
token count in the data store, with the user’s identifier as the
key.

• On subsequent requests, refill the bucket with new tokens per
the defined fixed rate and time elapsed since the last request.

• Then, remove one token from the bucket and update the time‐
stamp to the current timestamp.

106 | Chapter 6: Scaling APIs

• Finally, if the available token count drops to zero, reject the
request.

The token bucket algorithm is easy to implement and is used by sev‐
eral API providers, including Slack, Stripe, and Heroku. If you want
to be lenient on “bursty” traffic, this is a great choice. Figure 6-9
illustrates how the token bucket algorithm would rate-limit traffic in
practice.

Figure 6-9. Token bucket rate-limiting in practice

Fixed-window counter
The fixed-window counter algorithm allows a fixed number of
requests to go through the system over a specified time interval. You
can easily implement the fixed window by using an in-memory key–
value data store. Implementing a per-user rate limit of 20 requests/
minute could work, as described here:

• On the first request, store the request count as 1 for a key repre‐
senting the user and timestamp rounded to the current minute
value. This key can expire after the current minute is over.

• Increment the aforementioned request count key by one on
every subsequent request.

• If the request count exceeds the rate limit, reject the request.

Although this is easy to implement, this algorithm can allow up to
twice the specified number of requests within the one-minute win‐
dow. For instance, if there were 20 requests for a user at 11:01:40
a.m., the client can do another 20 requests at 11:02:05. Figure 6-10

Rate-Limiting APIs | 107

illustrates how the fixed-window counter algorithm can allow six
requests to succeed between the 1.5-minute and 2.5-minute window
marks, when the defined rate limit is four requests per minute.

Figure 6-10. Fixed-window counter rate-limiting in practice

If your API can tolerate these kinds of bursts, the fixed-window
counter algorithm could be suitable for you. API providers like
Twitter use this algorithm.

Sliding-window counter
As the name suggests, the sliding-window counter algorithm allows
you to keep track of traffic in a sliding window of time, ensuring
that the API can reject the “bursty” traffic that’s possible with the
token bucket and fixed-window counter algorithm.

To implement the sliding-window algorithm, just incrementing a
single counter is not enough. Instead, we divide the rate-limit win‐
dow into individual buckets of time. For example, to implement a 20
requests/minute rate limit, we might divide a 1-minute window into
60 buckets and maintain a counter for each second. These buckets
can simply expire after one minute. On each request, we sum up the
counters recorded in the last minute. If the total exceeds the rate
limit, we reject the request. If you want to implement a lenient slid‐
ing window, you can sum the last 59 buckets before deciding
whether the current request should be accepted. Figure 6-11 shows
how the sliding-window counter algorithm can reject bursty traffic
in practice.

108 | Chapter 6: Scaling APIs

Figure 6-11. Sliding-window counter rate-limiting in practice

Instagram uses the sliding-window counter algorithm to rate-limit
its API. If you want to ensure that traffic to your API remains steady
from each developer, the sliding-window counter could be suitable
for you.

Pro Tip

Before launching a new rate-limiting policy or
algorithm, dark launch it to understand how
much and which traffic it will block. To do that,
use logging to analyze how many requests would
be rejected, without actually rejecting any
requests. You might want to adjust your thresh‐
olds as you learn about the impact they will
have.

Expert Advice
All Uber developers must create an account and register with us.
Developers can automatically create production calls against
their own accounts (i.e., request a real Uber to come pick them
up) and other registered developer accounts, but they must
request extended permissions to make calls on behalf of other
users. Each developer is automatically rate-limited, and we rec‐
ommend that developers reach out to explain clearly and trans‐
parently why they might need additional API quota. In some
cases, we would see a spike in traffic in one of our developer’s
API keys, and we’d reach out to find out what was going on.
Depending on the nature and volume of the traffic, we might not
throttle them right away, pending more information.

Rate-Limiting APIs | 109

We also presented our developer terms of service in plain lan‐
guage and enforced them through legal means when we found
developers violated them. Oftentimes, we simply reached out to
the developer and let them know that their use of the API wasn’t
cool—and we’d work with them to bring them into compliance.
In other cases, the developer didn’t care about the terms and kept
abusing their access even after warnings made in consultation
with Uber Legal; in those rare and unfortunate cases, we revoked
their API access.

—Chris Messina, developer experience lead at Uber

Rate Limits and Developers
Rate limits are among the things that developers hate. Often, rate
limits force developers to write additional code or just confuse them
about why their requests are being rejected. If you implement a rate-
limiting system, you might like to do a few additional things to
make developers’ lives easier. Let’s take a look at these.

Return appropriate HTTP status codes
When developers hit your rate limit, deny the request by returning
an HTTP 429 status code, as shown in Example 6-2, which indicates
that the user has sent too many requests in a given amount of time.
It’s also standard to set the retry-after header to let developers
programmatically retry the request.

Example 6-2. Slack API returning 429 and retry-after header when the
rate limit is reached

$ curl -I https://slack.com/api/rtm.connect
HTTP/2 429
Date: Sun, 17 Jun 2018 14:43:38 GMT
retry-after: 36

Rate-limit custom response headers
Along with the status code, you should include custom response
headers explaining the rate limit. These headers will help developers
decide programmatically when they should retry the API call. Here
are a few commonly used custom headers:

110 | Chapter 6: Scaling APIs

X-RateLimit-Limit

The maximum rate at which a developer can call this endpoint
in a given amount of time.

X-RateLimit-Remaining

The number of requests that are available to the developer in the
current interval. If you’re using the token bucket algorithm, this
can indicate the number of tokens remaining in the applicable
bucket.

X-RateLimit-Reset

The time at which the current rate-limit window resets in UTC
epoch seconds.

Example 6-3 depicts example rate-limit headers as seen from a Git‐
Hub API call.

Example 6-3. GitHub API returning rate-limit headers when the rate
limit is reached

$ curl -I https://api.github.com/users/saurabhsahni

HTTP/1.1 200 OK
Date: Sat, 11 Nov 2017 04:37:22 GMT
Status: 200 OK
X-RateLimit-Limit: 60
X-RateLimit-Remaining: 59
X-RateLimit-Reset: 1510378642

Rate-limit status API
If you have different rate limits for different API endpoints, your
developers might like to have an API that they can call to query the
rate-limit status across various API endpoints. This way, they can
programmatically keep track of available requests per endpoint.

Documenting rate limits
Developers need to mind their rate-limit constraints when using an
API. By documenting your rate-limit values, you will help your
developers in making the right architectural choices. Most of the
popular APIs clearly document rate limits. This way, developers can
learn about them before actually running into rate-limit errors.
Apart from rate-limit values, you should also consider documenting

Rate-Limiting APIs | 111

best practices that developers can follow to avoid hitting the rate
limit.

Expert Advice
The GitHub REST API has a flat 5,000 authenticated calls per
hour rate limit, but those calls could come all at once. We saw
this happen a variety of times when a Chrome extension or an
integrator’s script went a little haywire. At a certain scale, rate
limits based on authenticated users can only be one small part of
an overall system meant to protect your application. We now
have per-service rate limits to avoid saturation, content creation
back-offs to avoid creating too many issues in a short period of
time, and other abuse protections to avoid answering exponen‐
tially more API requests within a window of a few seconds.
If we were to redo the rate-limiting, we’d likely choose a smaller
rate-limit window similar to folks like Twitter: you get 250 calls
every 10 minutes.

—Kyle Daigle, director of ecosystem engineering at GitHub

Rate-Limiting Best Practices
Here are a few best practices to like to consider when adding rate-
limiting to an API:

• Pick the rate-limiting algorithm based on the traffic pattern that
you want to support. Generally, paid services are lenient with
traffic bursts and choose the token bucket algorithm. Others
choose a fixed window or sliding window.

• Choose rate-limit thresholds such that common API use cases
are not rate-limited.

• Provide clear guidance to external developers on what your
rate-limit thresholds are and how can they request additional
quota.

• Before granting additional quota to a developer, you might want
to understand why they need to exceed the rate limits, what
their use case is, and what the current usage pattern is. If your
infrastructure can support additional quota and there is no bet‐
ter way to achieve the same result, you might want to consider
giving them an exception.

112 | Chapter 6: Scaling APIs

• Starting with lower rate-limit thresholds is helpful. Increasing
rate-limit thresholds is easier than reducing them because
reducing them can negatively affect active developer apps.

• Implement exponential back-off in your client SDKs and pro‐
vide sample code to developers on how to do that. This way,
developers are less likely to continue hitting your API when
they are rate-limited. For more information, see “Error Han‐
dling and Exponential Back-Off ” on page 115.

• Use rate limits to reduce the impact of incidents by heavily rate-
limiting noncritical traffic during an outage.

Lessons Learned from Slack’s Rate-Limiting
In March 2018, Slack rolled out an evolved rate-limiting system.
Until then, the rate limits for Slack API methods were quite
vague and often unenforced. In the absence of documented rate
limits, developers building applications using the Slack API often
assumed that they would not be rate-limited. However, some‐
times that assumption backfired when their applications were
installed by large enterprise customers.
To introduce new rate-limit thresholds, Slack analyzed use cases
for each API and defined thresholds ensuring that most common
use cases could be accomplished by applications without getting
rate-limited. Before launching new rate-limit thresholds, the
team launched dark tests to figure out which applications would
get rate-limited in the new system. While in some cases Slack
adjusted its rate-limit thresholds, in other cases it was clear that
the developer’s implementation was not efficient.
The Slack team could have launched the new rate-limit thresh‐
olds without any warning. However, the team members figured
that it would be a breaking change for those developers that
might now get rate-limited due to the new thresholds. To ensure
the best experience for these developers and for customers, they
granted a brief grace period to those apps to adjust their imple‐
mentations. The new documented rate limits helped developers
in making better architectural decisions while building their app
and mitigated rate-limit surprises in production.

—Saurabh Sahni, staff engineer at Slack

Rate-Limiting APIs | 113

Developer SDKs
A developer software development kit (SDK) is a set of tools that
allow developers to create applications on a specific platform. By
providing SDKs, you are not just simplifying the integration effort
required, you are also helping developers follow the best practices
for working with your API. When developers are able to follow best
practices, that will in turn create more optimal usage patterns for
your API, which will help you scale.

For more general information on SDKs, see
Chapter 9.

The following sections describe a few things that you should con‐
sider when creating an SDK to help with scaling of your API.

Rate-Limiting Support
Developers do not want to write additional code to work with your
rate limits. So, if you provide SDKs, you should ensure that they
work well with your rate limits. Your SDK code should parse the
rate-limit headers returned in API responses and slow down the
request rate, if necessary. Your SDK should also gracefully handle
429 errors and retry only after the time indicated by the rate-limit
headers.

Pagination Support
Retrieving results that spread across pages is often difficult. It’s espe‐
cially easy to hit rate limits when requesting multiple pages in a
loop. By adding support for working with your paginated APIs, you
can ensure that rate limits and errors are gracefully handled. At the
same time, you probably want to support some upper limit on how
many pages to fetch.

Using gzip
Using gzip compression in your SDKs is a simple and effective way
to reduce the bandwidth needed for each API call. Although com‐

114 | Chapter 6: Scaling APIs

pressing and decompressing content consumes additional CPU
resources, this is often a great trade-off for reducing network costs.

Caching Frequently Used Data
You can add support for storing API responses or frequently used
data locally in a cache. This can help in reducing the number of API
calls you will receive. If you have concerns or policies around what
data clients can store, ensuring that the cache automatically expires
in a few hours can help.

Error Handling and Exponential Back-Off
Errors are often handled poorly by developers. It’s difficult for devel‐
opers to reproduce all possible errors during development, and
that’s why they might not write code to handle those errors grace‐
fully.

As you build your SDK, first, you could implement local checks to
return errors on invalid requests. For example, your SDK can reject
an API call locally if it’s missing a required parameter for an API
method. This way, you can often prevent invalid API requests from
hitting your servers.

You should also build support for the actions the client application
should take when a request fails. Some failures, like authorization
errors, cannot be addressed by a retry. Your SDK should surface
appropriate errors for these failures to the developer. For other
errors, it’s simply better for the SDK to automatically retry the API
call.

To help developers avoid making too many API calls to your server,
your SDK should implement exponential back-off. This is a standard
error-handling strategy in which client applications periodically
retry a failed request over an increasing amount of time. Exponen‐
tial back-off can help in reducing the number of requests your
server receives. When your SDKs implement this, it helps your web
application recover gracefully from outages.

SDK Best Practices
Here are some best practices for building SDKs that will help you
with scaling your API:

Developer SDKs | 115

• Stability, security, and reliability for SDKs are critical. Any bug
in an SDK might require updates from several developers.
Depending on how many developers are using your SDK, even
a simple upgrade can be quite difficult. Thoroughly testing your
SDK before releasing is highly recommended.

• If you’re building a mobile SDK, you need to further optimize
size, memory usage, CPU usage, network interactions, and bat‐
tery performance.

• Implementing complex API operations like OAuth in your
SDKs helps to speed up the onboarding experience for your
developers.

• Handle rate limits and errors gracefully. Build protections into
your SDK to avoid too many concurrent calls to your API
servers.

• Make troubleshooting easy by surfacing errors to developers
and allowing them to turn on logging.

• The way you package your SDK affects adoption. Use appropri‐
ate platforms, like npm, CocoaPods, RubyGems, or pip, to dis‐
tribute your SDKs.

Closing Thoughts
Scaling an API is not just about supporting more requests per sec‐
ond. There are other creative ways to support growing numbers of
customers. It’s important to understand what scalability issues you’re
running into and why. Do your developers actually need to make the
number of API calls they are making? Would changes to your API
design help in reducing that volume? Can developers use your API
more efficiently? Answering these questions, along with feedback
from your developers, will help you be more successful in scaling
your API.

As you refine your API design, policies, and tools, these changes can
sometimes affect your developers. In Chapter 7, you learn how to
release these changes while keeping your developers informed.

116 | Chapter 6: Scaling APIs

CHAPTER 7

Managing Change

Good design is never frozen in time. Just because you made a great
design today does not mean that it will continue to be good when
change is afoot. Good APIs need to be able to adapt and change
along with the evolution of your product or business.

Breaking changes are one of the common pitfalls of many APIs. In
this chapter, we discuss how to approach change with an eye for
consistency as well as how to ensure backward compatibility as your
API evolves.

Expert Advice
An API should be consistent, clear, and well documented. Small
inconsistencies around things like naming and URLs add up to a
lot of confusion as your API ages. Because you want to keep from
making breaking changes, you want to do your best to remain
consistent but more importantly ensure that new additions are
clear and obvious for integrators.

—Kyle Daigle, director of ecosystem engineering at GitHub

Toward Consistency
Consistency is the hallmark of excellent experiences of any kind—
APIs are no exception. Consistency builds trust. Trust is the founda‐
tion to creating a thriving developer ecosystem.

117

Here are some of the hallmarks of consistency:

• Developers are able to build a mental model of how to access
data in your system.

• Response objects are formulated with strict types and meaning‐
ful names; that is, each model is the same regardless of the end‐
point.

• Developers can use the same request patterns across a number
of endpoints, which reduces the need for middleware and helps
applications perform and scale.

• Requests fail predictably with meaningful errors.

Sometimes, despite our best intentions, APIs can become inconsis‐
tent. Take Slack’s API, for example. API endpoints had been added
incrementally over time without any central design oversight. Each
product group within the company designed and released API
methods independently. As a result, inconsistencies emerged.
Table 7-1 shows simplified request patterns for two similar API
methods, channels.join and channels.invite.

Table 7-1. Simplified requests for two Slack API methods in 2017:
channels.join and channels.invite

Takes a channel name Takes a channel ID
// Join a channel
channels.join({
 channel: "channel-name"
})

// Invite a user to a channel
channels.invite({
 channel: "C12345",
 user: "U23456"
})

In Table 7-1, you can see how one endpoint takes a channel as a
string name, whereas the other takes a channel as an ID. This type of
inconsistency hurts developers, because for a developer to be able to
use both of these endpoints, they now need to store both the chan‐
nel ID and channel name and to create a layer of logic to determine
which one to use to assemble a request. What if the channel name
changes? The developer is additionally responsible for keeping the
channel name up to date.

Consistency might sound simple enough, and it’s easy to create a
consistent experience if you have the opportunity to design every‐
thing at once with no historical constraints. But after you have active
developers using your API, things become complicated. As compa‐

118 | Chapter 7: Managing Change

nies and products evolve, new changes to the API can seem like a
constant negotiation between consistency with the past and correct‐
ness for the future.

Let’s look at a fictitious example to illustrate what might happen.
Suppose Company A has released new API with one method that
lets a developer fetch all of a user’s repositories at once. Initially, the
product allowed for only 10 repositories per user. Example 7-1
presents a response payload for an original API method from the
initial API offering, repositories.fetch.

Example 7-1. Response payload for repositories.fetch

{
 "repositories": [
 {
 "id": 12345
 },
 {
 "id": 23456
 }
]
}

After a few months, the company has grown. It adds a new price tier
to the product that enables unlimited repositories per user. A year
later, a number of power users have accumulated millions of
repositories. Company B has built a popular application that uses
repositories.fetch. Although the number of repositories has
expanded, the repositories.fetch endpoint has continued to lack
a pagination mechanism. (For more information on pagination, see
Chapter 4.) Now, API requests to repositories.fetch are timing
out because the repositories must be aggregated across multiple
database shards.

As a result of a weekend service outage that was caused by too many
calls to repositories.fetch, Company A has agreed with Com‐
pany B to release a new endpoint that returns a single repository,
repositories.fetchSingle, which you can see in Example 7-2.

Example 7-2. Response payload for repositories.fetchSingle

[
 {
 "12345": {...}

Toward Consistency | 119

 }
]

Now Company A has two endpoints, shown side by side in Table 7-2
for easy comparison.

Table 7-2. Side-by-side comparison of repositories.fetch and
repositories.fetchSingle payloads

Endpoint 1 Endpoint 2
repositories.fetch() repositories.fetchSingle(12345)

{
 "repositories": [
 {
 "id": 12345
 },
 {
 "id": 23456
 }
]
}

[
 {
 "12345": {...}
 }
]

Notice the inconsistencies when comparing the payloads for these
two very similar endpoints. For repositories.fetch the response
includes a key ("repositories") whose value is an array of objects
containing IDs keyed by "id".

In contrast, repositories.fetchSingle returns an array without
the "repositories" key. Inside of that array is an array of objects
keyed by the actual ID value, instead of by the string "id".

Although this is a fictitious story, it’s not an uncommon pattern at
growing companies. After the initial version of an API is released,
additional changes might be made that are inconsistent. Developers
adopt these new features, along with their inconsistencies. That is
how inconsistency develops—and sticks—as an API evolves. Luck‐
ily, to help prevent these types of inconsistencies, there are techno‐
logical tools and organizational processes, and we cover some of
them in the following sections.

Automated Testing
It’s important that everyone who impacts the API understands and
supports consistency, but it’s difficult to enforce as an organizational
value. And you cannot expect people to always make the right deci‐
sions for the system, especially when they need to reconsider the

120 | Chapter 7: Managing Change

minutiae of a complex system for every decision. That’s where auto‐
mated testing comes into play.

Continuous integration (CI) is the practice of merging all developers’
working copies to a single shared repository, often multiple times a
day. The workflow in which a code change goes from being written
to approved and merged is called a CI pipeline (Figure 7-1). Adding
an automated testing step (see Step 3 in Figure 7-1) before develop‐
ers are allowed to merge their code is a great choice for preventing
unwanted changes from sneaking into the API—especially the back‐
ward incompatible ones. These test suites are useful for catching
regressions as you develop your API.

Figure 7-1. A CI pipeline

When you’re implementing an automated test suite, it must give
internal developers timely feedback, minimize false positives, and
empower internal developers to make the right choices in their API
design. The tests themselves should validate input, expected behav‐
ior, and the correct data types in the response payload. The more
individuals there are who are empowered to write high-quality auto‐
mation tests, the more useful your CI pipeline will be in ensuring
data reliability for your APIs.

You might also choose to include additional approval requirements
in the CI pipeline prior to code merge for any changes that affect the
output of the API. After changes that affect the API are detected, the

Toward Consistency | 121

code change can be automatically submitted for specific people to
review before it can be merged. Those reviewers could have a pro‐
cess for making sure that requests and responses are consistent with
the APIs that are already released.

Automated testing should be a part of your internal development
life cycle; it brings high visibility and responsiveness to code
changes. The more you can catch unwanted changes before they
occur, the better off you are.

If you don’t have CI, run automated tests continuously off the code
mainline to measure the health of your API. Run the tests as fre‐
quently as possible to begin with. Then, as you build your CI pipe‐
line, make them nonblocking and monitor the results. When you
have 0% false negatives, turn them on as blocking tests, so that fail‐
ures will prevent merges.

In summary, you need to craft a process to ensure that internal
developers get timely feedback on design decisions and proposed
changes before they merge code.

In addition to having your CI pipeline ensure backward compatibil‐
ity, there are additional mechanisms that can help ensure consis‐
tency for APIs, which we discuss in more detail in the subsections
that follow.

API description languages
In service-oriented architecture, you would be able to use an inter‐
face description language (IDL) to define requests and a type system
to validate responses. However, there is no advantage to using these
tools for external-facing APIs, because you have no control over the
requesters’ behavior. Because of that, you need to take a different
approach to defining the interfaces of your API.

JavaScript Object Notation (JSON) is a widely used format that is
both flexible and expressive, and it’s the format for all the API exam‐
ples in this book. As JSON becomes more rich and expressive, it
cannot be constrained to the same type systems that most program‐
ming languages have. As a result, if you are providing a JSON web
API, you need to think carefully about the tools you use to manage
changes for both responses and requests.

First, let’s talk about describing and validating responses.

122 | Chapter 7: Managing Change

Describing and validating responses
The first thing you want to validate with automated tests is response
payloads. Luckily, you don’t need to write this validation from
scratch.

There are tools that help you to describe the interface of an API in a
structured way that can be used to generate documentation and run
your tests. Additionally, a subset of these tools also allows you to
specify data types and custom data types. Some examples are
json:api, JSON Schema, and Apache Avro.

The code examples that follow include samples of a simple JSON
Schema system and a corresponding test using the RSpec library for
Ruby. These examples illustrate validation for a simple and flat
JSON response—yours might end up being much more compli‐
cated. These are intended to give a high-level understanding of how
JSON validation can happen in your CI pipeline.

Example 7-3 shows the definition of the payload response for repo
sitories.fetch. There are many more features to the JSON
Schema than are shown here. As a basic example, this schema illus‐
trates that all fields are required and that there are no additional
optional fields with "additionalProperties": false. It also lists a
single required field in the response, keyed as "repositories". In
the "properties" object, each required field is described with
"type": "array" and points to a single definition of what each item
in the array should look like.

Example 7-3. JSON Schema definition

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "repositories.fetch",
 "description": "Schema for repositories.fetch response payload",
 "type": "object",
 "additionalProperties": false,
 "required": [
 "repositories"
],
 "properties": {
 "repositories": {
 "type": "array",
 "items": {
 "$ref": "../common_objects_schema.json#/repository"
 }

Toward Consistency | 123

https://en.wikipedia.org/wiki/Overview_of_RESTful_API_Description_Languages

 }
 }
}

Example 7-4 is a definition of the repository that was referenced in
Example 7-3 as "../common_objects_schema.json#/repository".
This particular object will have required fields, each with its own
corresponding unique properties. This object definition is a power‐
ful building block in maintaining consistency in your API. These are
reusable objects that can be consumed in a variety of JSON Schemas
for other endpoints. The stricter these reusable object definitions are
and the more they’re used throughout the other JSON Schema defi‐
nitions, the more you can guarantee that your responses have simi‐
lar payloads when describing the same object type.

Example 7-4. A JSON Schema definition for a single “repository” that
can be reused in a number of other JSON Schema specifications

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "repository": {
 "type": "object",
 "additionalProperties": false,
 "required": [
 "id",
 "name",
 "description",
 "created"
],
 "properties": {
 "id": {
 "type": "integer"
 },
 "name": {
 "type": "string"
 },
 "description": {
 "type": "string"
 },
 "created": {
 "type": "integer"
 }
 }
 }
}

124 | Chapter 7: Managing Change

In Example 7-5, you can see an example RSpec test that calls the API
endpoint and then uses a helper to validate the response against the
JSON Schema. You can run the RSpec tests (or whatever you choose
for your automated tests) on demand or as part of a CI system. You
should update the JSON Schema—or however you choose to define
your response payloads—every time the response payload changes.

Example 7-5. RSpec test using JSON Schema definition

describe 'repositories.fetch' do
 # fetch all repositories
 ...
 it "can fetch all repositories successfully", acceptance: true do
 create_repository_factory (product: 'std')

 step "call repositories.fetch endpoint"
 response = @client.repositories.fetch().response_body

 step 'Validate API response and its schema for "ok: true"'
 expect (response).to_match_json_schema(repositories.fetch)
 end
 end
 end
end

Describing and validating requests
Now that you’ve seen how to validate API response payloads, what
about requests? Because you can’t control how developers use the
API, your best bet is to define a clear interface that creates flexibility
while guiding developers toward the best choices and patterns.
Additionally, a good request definition interface also allows for you
to define reusable types, just like the reusable object definitions in
the JSON Schema in Example 7-4.

Thankfully, there are tools to help you define your request structure
so that you don’t need to build it from scratch. Just like for API
responses, you can use JSON Schema to describe and validate API
requests, as long as the request is in JSON or you can reliably trans‐
form it to JSON. Additionally, tools like Swagger use a different
specification called OpenAPI, formerly known as the Swagger Speci‐
fication, to describe REST APIs. Your API does not necessarily need
to be RESTful to get a huge benefit out of this system—the only
requirement is that you use the web. Swagger also has a mechanism

Toward Consistency | 125

to automatically generate documentation. Similarly, OpenAPI ena‐
bles code generation for libraries and SDKs.

Regardless of whether you use JSON Schema or OpenAPI, imple‐
menting a request specification system can have many uses. In addi‐
tion to documentation, this system can also do some error checking
and validation of inbound API requests. When your request fields
have strict types, you can send an error if the request is poorly for‐
matted. This saves you the effort of assembling a bad response pay‐
load, and it provides better feedback to the developer.

The lack of ability to control third-party API requests means that
mistakes will be born out of an assumption that you and your users
are like-minded. Don’t forget that human creativity is limitless, and
users will use your API in ways you never imagined.

That’s why documentation is key. When you create a request specifi‐
cation and integrate it closely with your documentation, you help
developers make the right choices. In your documentation, you need
to communicate the state of the world today, along with a history of
significant changes you might have made in the past. You might also
need to carve out a space to describe forthcoming changes.

Storytime: API Metadata at Slack
When Dan Bornstein started working as a software engineer on the
Developer Platform team at Slack, there was no standard definition
of API requests, despite the API rapidly developing a large follow‐
ing. So Dan created the API metadata system to describe requests
for every API method. Initially, the system catalogued request
parameters that were being used based on historic traffic. As soon
as the initial system was put in place using historic traffic, the API
metadata became a proactive way for Slack’s software engineers to
describe API interfaces. API metadata was used to generate docu‐
mentation, even going so far as to turn request fields into an inter‐
active API tester. API metadata was also plugged into the data
warehouse so that analytics reports could be pulled on API traffic.
Eventually, it grew to be a layer in between the web request and
response fulfillment. This layer handled argument validation,
generic errors and warnings, token type validation, and more. It
became an extensible way to catch early exceptions in requests
before going through the effort of assembling a response.

126 | Chapter 7: Managing Change

Backward Compatibility
If you’re using a query system like GraphQL, where requests must
specify the desired fields, you might have a good idea of which fields
are actively being used. But if your API is anything like the vast
majority of third-party APIs in the wild, you most likely return all
the relevant fields in your JSON payloads. And even if you were
using a *QL framework, there’s always the possibility that developers
will select all fields. In both of these cases, you have no visibility into
which fields are being used—you know only that they’re all being
requested.

For certain companies and products, backward compatibility is non-
negotiable. At Cloudinary, the API maintains total backward com‐
patibility because image URLs based on the API are everywhere.
Luckily, they designed the interfaces to be extensible and future-
proof, making the main challenge that of educating customers about
new features and additions.

Backward compatibility is a huge consideration for anybody devel‐
oping an API, especially for API providers who have external users.
It’s somewhat easier to negotiate and change an API response when
the dependencies are within a company than when the dependencies
are external.

Storytime: Slack’s Missing Field
In March 2016, Slack did not yet have an API metadata system. It
did not have JSON Schema or RSpec tests. The Slack platform had
only just officially launched three months prior.

An inconsistent API request had been out in the wild, to the cha‐
grin of Slack native mobile clients. Third-party bots could call
chat.postMessage with the as_user parameter. When false, the
message posted would have a flag, is_bot=true. With
as_user=true, the is_bot flag was missing, and bot-
impersonated messages were indistinguishable from actual user
messages.

Slack wanted impersonation to be allowed, but in a way that was
clear to human users that the messages had come from a bot. The
solution was to always set the is_bot field on all message payloads.
The decision was toward consistency—the field would always be
set, regardless of whether the value was true or false. Slack devel‐

Backward Compatibility | 127

opers decided to fix the problem once and for all and quietly update
that undocumented field to always be there.

Ordinarily, setting a field consistently is a virtue.

But one of the most popular apps in the ecosystem had taken
advantage of this idiosyncratic field setting. Instead of checking the
value, the app checked for the presence of the key for its business
logic. It relied on this inconsistency for its app. When the change
was made to set the is_bot field no matter what, the app broke.
One of Slack’s most widely used apps suddenly became unavailable
due to a functionality change in Slack’s API:

WARNING:
Developer reporting an outage due to change in
chat.postMessage parameter as_user.

What was supposed to be a fix became an error. Slack ended up
rolling back the change, giving developers three months to find a
way around it. On April 13, Slack published a blog post announcing
the change. The change to make the field consistent went live again
on April 30.

The lesson here is that even if you get things wrong in your API,
you need to think carefully about how you will roll out a fix to min‐
imize impact to developers. Think beyond your expectations of
how developers will use your API. You can’t always predict what
others will build with your API—and you cannot control how they
decide to implement their apps.

Planning for and Communicating Change
Many technical design resources can help you craft your design for a
greenfield project. But if your API is successful, you’ll be working
for years in a nongreenfield area. This means that you and your
developers will be interfacing with your past decisions for a long
time, and all new design decisions will carry context from before.

You need to decide how tolerant your system should be of different
types of changes. In addition to that, you should develop a robust
communication system with your API users. Think about the types
of changes you will make, the impact of those changes on develop‐
ers, and what the appropriate communication should be. This can
take some time and practice to refine, but having a communication
plan is key.

128 | Chapter 7: Managing Change

https://medium.com/slack-developer-blog/api-update-new-field-in-api-responses-d23076ea2ef3

Communication Plan
When it comes to creating a communication plan, ensure that devel‐
opers have a mechanism to receive updates. A rich site summary
(RSS) feed is a good start, but eventually you’ll also want a way to
communicate with specific developers about changes that affect
them.

Using our previous example of using repositories.fetch and
repositories.fetchSingle, you might want to contact all of the
developers who used the repositories.fetch endpoint in the past
12 months in order to provide them with updates about the brand-
new repositories.fetchSingle endpoint. You might even want to
contact all developers who used the repositories.fetch endpoint
and received a 500-level response after you released the product that
caused timeouts.

Table 7-3 shows possible communication channels and timelines for
backward-compatible and backward-incompatible changes. In this
particular example, backward-compatible changes can be released at
any time, and developers will be given 18 months’ notice before
backward-incompatible changes are released.

Table 7-3. Example categories of types of changes

 Backward compatible Backward incompatible
Examples Request parameter added,

response field added, new
API method added

Response field removed, functionality
changes, response type changes,
endpoint removed

Communication channel RSS feed
API docs

RSS feed
API docs
Email to affected developers
Blog post explaining change

Time to release after
notification

Anytime 18 months

In addition to communication mechanisms, in which you broadcast
information to specific audiences, there are other built-in ways to
communicate. You might consider annotating response payloads or
headers with information about changes. Example 7-6 shows how
that might look in the payload of the repositories.fetch end‐
point.

Planning for and Communicating Change | 129

Example 7-6. Adding response metadata to communicate with
developers

// GET repositories.fetch()

{
 "repositories": [
 {
 "id": 12345
 },
 {
 "id": 23456
 }
],
 "response_metadata":{
 "response_change": {
 "date": "January 1, 2021",
 "severity": 1,
 "affected_object": "repository",
 "details": "Starting January 1, 2021, a new field `date`
 will be added to each repository object"
 }
 }
}

Your communication plan needs to strike a balance between giving
developers appropriate notice for changes and allowing your API to
evolve. If you’re making a lot of changes, the overhead of communi‐
cation grows proportionally to the amount of process you add.
Think about where you can automate your communication along‐
side your code releases to reduce the overhead of customizing each
communication channel.

Expert Advice
We definitely keep the lines of communication open when man‐
aging change. We’re very proactive in ensuring our developers
know what to expect. We do a lot through our channels—blog
posts, emails, and other outreach. We understand how important
this is.

—Desiree Motamedi Ward, head of developer product mar‐
keting at Facebook

130 | Chapter 7: Managing Change

Adding
Of all the changes you can make to your API, additions are the easi‐
est. Whether you’re adding a new endpoint or a new field, these
changes are often simple to execute, if done correctly.

In the case of adding response fields, adding a new JSON key–value
pair is almost always backward compatible and won’t affect develop‐
ers. This is especially true if your fields are always consistently set,
regardless of their value. (Consistently typed fields will be useful for
generating code, which some API providers do to create their
SDKs.) The same applies for query-based interfaces: adding a “col‐
umn” is easier than removing one.

Even though adding response fields is more straightforward than
removing them, there are still a few things to consider for backward
compatibility:

Was the field set before?
If the field wasn’t set before but you’ve decided to set it consis‐
tently, ask yourself whether a developer could be relying on the
fact that the field is unset.

Will everyone want the new field?
Sometimes, you need to provide a mechanism for developers to
opt in to the new field(s). In this case, you might consider a new
endpoint or a new request parameter.

Adding new request parameters to control output may seem
like an easy choice. However, use this option with caution.
When you add too many request parameters, your API end‐
point becomes significantly harder to describe with tools like
JSON Schema. Therefore, it becomes more and more difficult to
test with automated tools.

Adding new endpoints can also seem like an attractive choice to
enable new features. However, you want to make sure that your
new endpoints are consistent with your previous ones, that
developers have a seamless upgrade path (do their existing
authorizations work with the new endpoint?), and that you
aren’t overcrowding your namespace with a limited feature.

Planning for and Communicating Change | 131

Removing
Given that you need to continue to evolve your API, there will be
endpoints and fields that you may want to deprecate completely. So,
let’s look at how you can ease the transition for developers. These
types of changes require significant communication and infrastruc‐
ture overhead.

Expert Advice
Don’t overcomplicate your API and don’t future-proof it too
much. Often by future-proofing your API, you make it too
generic and/or too complex. Developers building applications on
(or using) your platform are building stuff for the “now.” They
like to move quickly and are not always thinking 10 steps ahead.
Your API should cater to this mindset.

—Yochay Kiriaty, Azure principal program manager at
Microsoft

When taking something away from developers, you need to ease the
transition with a carrot, an incentive to get them to switch to some‐
thing new. What features are you enabling? Is there a problem that
you couldn’t fix with the deprecated endpoint that you’re fixing in
some other way? These are things you should be clear about before
you make your deprecation announcement. Sometimes, you may
need to make the new feature especially enticing to developers by
also packaging it with an end-user feature.

Storytime: Slack’s Conversations API
As Slack rapidly launched features from 2015 to 2016, API methods
to retrieve channels became increasingly complicated and difficult
to maintain. The engineering teams reached a critical inflection
point in 2017, with the launch of Shared Channels. As a result, they
released Shared Channels through a new suite of API methods: the
Conversations API. They made it easy to switch to the new system,
and they incentivized developers by offering data exclusively
through the new API methods.

As part of easing the transition, you definitely want to communicate
with developers about the fields that are being deprecated. After

132 | Chapter 7: Managing Change

you’ve started your communication, give developers adequate time
to stop using the deprecated fields or endpoints.

A deprecation timeline that’s too short can erode trust with your
developers and stymie the adoption of your API. Companies often
implement policies establishing the minimum length of time that
they will support API releases. For example, as of this writing, Sales‐
force commits to supporting each API version for a minimum of
three years from the date of first release. Before deprecating an API
version, Salesforce gives at least one year’s notice directly to custom‐
ers.

Some API specifications have standards for how to handle depreca‐
tion. GraphQL offers the ability to mark certain fields as deprecated.
The specification states:

3.1.2.2 Object Field deprecation
Fields in an object may be marked as deprecated as deemed neces‐
sary by the application. It is still legal to query for these fields (to
ensure existing clients are not broken by the change), but the fields
should be appropriately treated in documentation and tooling.

—From the GraphQL spec, working draft, October 2016

Versioning
As we mentioned in Chapter 4, to bundle changes into understanda‐
ble chunks and to give developers a way to understand your API,
you might want to consider versioning. The following sections
describe a few possible strategies for handling versioning.

Additive-change strategy
In an additive-change strategy, all updates are compatible with pre‐
vious versions. The following changes are considered backward
incompatible and should be avoided when using the additive-
change strategy:

• Removing or renaming APIs or API parameters
• Changing a type for a response field
• Changes in behavior for an existing API
• Changes in error codes and fault contracts

Planning for and Communicating Change | 133

In this strategy, you make changes, such as adding an output field or
adding a new API endpoint. However, you never want to change a
response field’s type or remove a response field without letting users
opt in via request parameters. This means that in order to do this,
you’ll add more and more parameters that will alter the response of
an API request. Table 7-4 illustrates how that would look for a ficti‐
tious REST API to retrieve a user resource.

Table 7-4. Requests and responses for a REST API

Example request opting out of friends list Example request default payload
GET /users/1234?exclude_friends=1

{
 "id": 1234,
 "name":"Chen Hong",
 "username:" "chenhong",
 "date_joined": 1514773798
}

GET /users/1234

{
 "id": 1234,
 "name":"Chen Hong",
 "username:""chenhong",
 "date_joined": 1514773798,
 "friends": [
 2341,
 3449,
 2352,
 2353,
 2358
]
}

In the example in Table 7-4, exclude_friends is an added request
parameter that changes the response payload.

With clear rules, there isn’t too much process that needs to be
hashed out within the organization.

Explicit-version strategy
The first thing you need to decide when you create an explicitly
numbered versioning system is how users will interact with ver‐
sions. This is often called a versioning scheme. There are a few
choices available, which we look at here. Each one has distinct
advantages. Ultimately, the version access pattern should be as stable
as promised in accompanying documentation, and developers
should have the option to opt into new versions while maintaining
stability on previous versions.

134 | Chapter 7: Managing Change

Expert Advice
From the outset, we knew that there would be iterations in our
API—Uber just moves too fast for there not to be. Therefore,
each endpoint is versioned and makes it easy to access historical
docs.

—Chris Messina, developer experience lead at Uber

Updating URI components is one strategy that many API providers
use to define version schemes. These are often inserted as a base for
the URI, before the specification of a resource-like entity. For exam‐
ple, take Uber’s ride requests API endpoint, https://

api.uber.c om/v1.2/requests. In this example, v1.2 is inserted
before the requests resource. This is similar to the scheme for Twit‐
ter’s Ads API, in which 2 is the version: https:/ /ads-

api.twitter.c om/2/accounts. An alternative to including the
version before the resource is placing the version after the resource,
which would imply that the version is specific to the resource or API
method rather than the entire suite of API methods.

The benefit of specifying versions in URI components is that many
programming languages, libraries, and SDKs have support for easily
binding a request to a version using a base URI. Additionally, if the
bulk of requests are GET requests, depending on your authorization
system, it’s easy for developers to debug and inspect endpoints with
the browser. This scheme should not be used, however, if you’re not
ready to support these endpoints as permalinks, because the pattern
implies a certain level of resource permanence in the REST para‐
digm. Finally, if you elect to use URI components to version your
API, be prepared to support 300-level HTTP status codes to indicate
redirection for moved or moving resources.

Using HTTP headers is another way to specify versions. You can do
this through custom headers, such as Stripe’s Stripe-Version
header, or through the Accept/Content-Type header (Accept:
application/json; version=1) or through the Accept header with
a custom media type (Accept: application/custom_media

+type.api.v1 + json). This scheme is less visible than a URI com‐
ponent, which can make it less desirable for experimentation in the
browser, and it can have implications regarding client caching if the

Planning for and Communicating Change | 135

client interprets two requests to different versions as the same
request. It can, however, reduce URI bloat.

The final option is using request parameters. In this scheme, you
allow users to request versions alongside any other request parame‐
ters. Here’s an example request from the Google Maps API: https://
maps.googleapis.com/maps/api/js?v=3. The v=3 inserted in the query
string is used to select the version number. This has similar benefits
as versioning with URI components, but depending on your appli‐
cation stack, it can be more difficult to route these requests because
of the high variability of query parameters and their types, as well as
the fact that query parameters are resolved after the URI.

Of course, there’s more to versioning than the mechanics of how
your users will specify version numbers. Behind the scenes, there are
many more decisions for you to make for your code base. For
instance, how will you ensure backward compatibility for old ver‐
sions? Developers might be building businesses that rely on the sta‐
bility of your API, and, as we mentioned before, they might not
retire old versions for years. In many cases, maintaining these many
versions results in forked code bases or code paths, where new func‐
tions will be created that call into old functions, as demonstrated in
Figure 7-2.

Figure 7-2. Diagram of versioned function names

Alternatively, you might be forking your code path such that
requests route to a new controller responsible for executing them, as
shown in Figure 7-3.

136 | Chapter 7: Managing Change

Figure 7-3. Diagram of versioned controller

Finally, another way to maintain versions in your code base is to cre‐
ate transformations between each version (Figure 7-4). In this case,
there is a main function that is updated, and that function has vari‐
ous transformation functions corresponding to the schemas of pre‐
vious versions. The transformation functions convert the data to the
appropriate schema before returning the data.

Figure 7-4. Pseudocode sample of a transformation layer between ver‐
sion 2 and version 1

In addition to implementing the versioning system, you and your
team need to think about how to organize and label your versions.
For this, the semantic versioning specification (SemVer) can be
helpful in using a standard to describe your changes. In SemVer,
there are MAJOR, MINOR, and PATCH versions (in the format
MAJOR.MINOR.PATCH). MAJOR versions are for backward-
incompatible API changes. MINOR versions are for adding func‐
tionality in a backward-compatible manner. PATCH versions are for
backward-compatible bug fixes.

The convention for documenting major changes is a whole number
jump, such as v1 to v2. The convention for minor and patch changes

Planning for and Communicating Change | 137

is incrementing decimal places after the number, such as v1.1 to v1.2
or v1.1.0 to v1.1.1. Even when using SemVer, you need to decide
how granularly to version requests and what types of changes are
acceptable in each version. For example, you might decide to auto‐
matically roll all developers forward into new MINOR version
bumps, because those are backward-compatible changes. Another
strategy could be to apply all minor changes to previous versions
without any named version bump. A new response field might
appear in both v2 and v1.

Table 7-5 presents an example chart that a company might use to
provide a framework for major and minor change versioning.

Table 7-5. Examples of major and minor changes

Major change Minor change
Change in business logic affecting output for requests formatted
the same way

Added a new endpoint

Removed endpoint Added a new request parameter
Discontinued support for a request parameter Added a new response field
Product deprecated

In addition to deciding what types of changes should be rolled into
each version bump, you need to determine how to build API ver‐
sions into your documentation and how to communicate versions at
each level of documentation. Figure 7-5 depicts a banner from
Uber’s API docs that serves this purpose.

Figure 7-5. Banner from Uber’s API documentation that notifies users
about documentation for previous versions of an endpoint

Finally, you might want to incentivize users to adopt new versions
by releasing anticipated features with version bumps.

138 | Chapter 7: Managing Change

https://developer.uber.com/docs/riders/guides/versioning

Versioning case study: Stripe
Now that you’ve explored some of the decisions that you need to
make when versioning your API, let’s take a look at how Stripe
implements versioning. Stripe is an online payments company.
Because Stripe as a company relies on third-party developers imple‐
menting its API to generate revenue, it is a notable example of a
company invested in maintaining backward compatibility. As of
2017, the Stripe API continued to maintain compatibility with every
version of its API released since its inception in 2011.

Expert Advice
Shipping frequent improvements to an API is great; breaking
something a developer has built is not. Finding an elegant bal‐
ance is critical—and one way to do it is to entirely avoid breaking
changes.
This has been Stripe’s approach: we provide backward compati‐
bility to ensure that code written today will still work years from
now. We lock the API version that a developer is using once they
get started. Unless they actively choose to upgrade (because they
want to take advantage of new functionality), we won’t require
them to do so. Behind the scenes, we introduce discrete pro‐
gramming gates for every new API version. These gates condi‐
tionally provide access to new features or changes, isolate layers
of logic for requests and responses, and essentially hide any con‐
cept of backward compatibility from our main code base.

—Romain Huet, head of developer relations at Stripe

Stripe implements rolling versions, named by the release date. The
first time a developer makes an API request, their account is pinned
to the most recent API version available. After that, there’s no need
for requests to specify that pinned version. To upgrade versions,
Stripe provides a dashboard where developers have a self-service
option to change their default version. Additionally, Stripe allows
developers to override the version in individual requests by setting a
Stripe-Version header, such as Stripe-Version: 2018-02-28.
This combination of overrides and pinned upgrades allows develop‐
ers to opt in to changes seamlessly. Interestingly, Stripe has built
a /v1 into its API base URIs, even though it has yet to make a major
version release with breaking changes. The company has created the

Planning for and Communicating Change | 139

https://stripe.com/blog/api-versioning

opportunity for such a release, but as of this writing, it has not yet
had to implement one.

Behind the scenes, the Stripe API has codified every possible
response with a class called an API resource. It has its own domain-
specific language, similar to that which defines the possible fields for
the resource. When a version change is made, the change is encap‐
sulated in a version change module, which defines documentation
about the change, a transformation, and the set of API resource
types that are eligible to be modified. The benefit here is that Stripe
is able to generate a changelog programmatically as soon as services
are deployed with a new version.

Versioning case study: Google+ Hangouts
Next, let’s take a look at the Google+ Hangouts API. In this API,
incremental versions were used to communicate groups of changes,
not for developers to manage the desired logic or responses of end‐
points. Instead, when endpoints needed to be renamed or changed,
Google would add a release note indicating that the old endpoint
was deprecated (Figure 7-6).

Figure 7-6. Google+ Hangouts API release notes indicating that a
function was renamed

Google announced on January 10, 2017, that it would no longer be
supporting the API. Apps would run only until April 25, 2017, with
a handful of exceptions (Slack, Dialpad, RingCentral, Toolbox, Con‐
trol Room, and Cameraman). Not only did the company add ban‐
ners about the announcement throughout its documentation, but it
also added a note in the responses stating that the endpoints would
no longer work after April 25. Figure 7-7 shows a screenshot of the
deprecation banner in the Google+ Hangouts API documentation.

140 | Chapter 7: Managing Change

https://stripe.com/blog/api-versioning
https://developers.google.com/+/hangouts/release-notes/hangouts-1.2

Figure 7-7. Banner for the Google+ Hangouts API indicating that sup‐
port would be terminated

Process management
Whichever mechanism you choose, versioning adds process over‐
head to your API. You need to make sure that you have robust docu‐
mentation to adequately describe the changelog and differences
between APIs. Under the hood, you might need to figure out how to
deploy versioned code or how to arrange your access control layer
to preserve the functionality of older versions. It becomes a nontriv‐
ial process to maintain more than one deprecated version, especially
if upstream core libraries can affect your API output.

You also want to think about how many versions your staff can sup‐
port simultaneously. For code maintenance, how will you prioritize
security fixes that need to be applied to multiple versions? Will you
upgrade all previous versions for certain changes? How will your
developer support staff be able to effectively assist developers when
they experience issues? These are all considerations that become
more complicated and time-consuming with a versioned system.

In some cases, the cost of maintaining versions outweighs the bene‐
fits. One of the benefits of not versioning is that you avoid cascading
dependencies and complicated maintenance. With only a single
layer to your API, the code is transparent and easily readable to your
internal developers, and the benefit of maintainability should not be
undervalued. You might want to consider delaying versioning until
you have adequate infrastructure to support your developers.

Whether you decide to version or not, managing change means
finding a balance between maintaining backward compatibility and
releasing changes with enough velocity for your developers to suc‐
ceed on your platform. Don’t forget to get feedback, optimize for
your developers, and make all changes in moderation.

Planning for and Communicating Change | 141

Closing Thoughts
In this chapter, we discussed many aspects of the continuous process
of developing and refining APIs by managing change. Having a
strong process and system for managing ongoing changes will be
the key to unlocking the full potential of your API. With the ability
to manage change, you won’t be stuck in the past, and you’ll be able
to continue improving your API for the future.

In Chapter 8, we tell you all about building a developer ecosystem so
that when the time comes to take your API to the next level, you’ll
have lots of developers waiting to get those new additions.

142 | Chapter 7: Managing Change

CHAPTER 8

Building a Developer
Ecosystem Strategy

Building a scalable, well-designed API is a great start, but if you
want developers to use the API, you need to do much more than just
release it. “If you build it, they will come” is a common misconcep‐
tion, as evidenced by the many companies that release APIs but do
not understand why developers are not rushing to use them.

The profession of building a developer and partner ecosystem is
called developer relations. Let’s define what an ecosystem is in the
context of a developer platform or an API.

Very much like an ecosystem in nature, a developer ecosystem is a
virtual system of members that are collaborating, depending, and
sometimes competing on the same platform, technology, or API.

There are many examples of developer ecosystems, and some of the
best ones are self-organizing—Google and Android have an amaz‐
ing developer ecosystem and community; iOS developers flock to
meetups and collaborate together; and Microsoft has a strong, mul‐
tifaceted developer and partner ecosystem.

Expert Advice
Developer platforms and APIs have become ubiquitous. They
enable developers to be more efficient, leverage existing infra‐
structure, and future-proof their products and services. As the
API economy continues to mature, providing an API is no longer

143

enough: companies must offer a truly great developer experience
and keep pace with developers’ needs.

—Romain Huet, head of developer relations at Stripe

In this chapter, we discuss what composes a great ecosystem and
how companies building these ecosystems around their APIs do so
successfully.

Developers, Developers, Developers
Developers can do great things with an API. They can extend and
improve your company’s product (Slack apps make Slack better);
they can use it and be your clients (Google Cloud Platform is a great
example); and they can help with the adoption of your platform/OS
(iOS became popular due to the millions of apps on it).

Many companies come to the conclusion that they need an ecosys‐
tem after realizing that they cannot build everything themselves.
Microsoft cannot build all of the extensions for SharePoint; Google
and Apple can’t build all the mobile apps themselves; and Slack can‐
not build all the bots and integrations to its product. These compa‐
nies open their APIs to developers in order to extend the value of
their products.

Other companies use the API as a main way to generate revenue.
Companies like Stripe and Cloudinary have the API as the core pil‐
lar of their business; they either sell the use of it or charge a fee for
certain transactions. In this case, it is really easy to articulate the
value of the developer ecosystem.

In this book, developers is a general term for people with the techni‐
cal chops to use your API. They might not identify themselves as
developers—they might call themselves an IT person, designer, tech-
savvy businessperson, or any variation of engineer. We’ll take a look
at a few common examples of developers in the subsections that fol‐
low.

The Hobbyist
This type of API user is an early adopter who does not necessarily
want to use your API professionally. They find joy in playing with

144 | Chapter 8: Building a Developer Ecosystem Strategy

the API, creating examples, and trying to find the edge cases and
limitations, and they are usually quick to vocalize their opinions.

Hobbyists are usually eager to adopt new features of your API and
to give you feedback on its usefulness and quality. The challenge
with hobbyists is that sometimes their use cases are not what you are
building your API for. If you build an API for facial recognition, the
hobbyist will try to use it on cats and dogs. Although this is delight‐
ful, it is not your main use case, and you might end up wasting time
and resources trying to support low-impact edge uses of your API.

The Hacker
Also called the early-adopter professional developer or entrepreneur,
this is a developer who is trying to put your API to professional use
and to potentially make money out of it. The hacker is different
from the professional developer who is interested in solving a spe‐
cific use case and evaluates the API based on product fit adn matur‐
ity. In many cases, hackers are the most important audience for your
API at its early stage—professional developers, like hobbyists, are
eager for new features and willing to deal with changes, but they are
also highly focused on solving a concrete use case that is usually
aligned with what you thought your API would be used for.

Hackers are motivated by innovation; they follow Twitter and scout
Medium and Product Hunt to look for new technologies. They
might play with a technology because it’s cool, but they will always
put it to practical use. They are also highly proficient—they can usu‐
ally deal with a high learning curve and do not need the comfort of
SDKs, debugging, or WYSIWYG tools to make use of your API.

The Business-Focused, Tech-Savvy User
This is an audience that is worth mentioning because of its unique
characteristics. This developer is interested in only one thing: solv‐
ing their use case. They might not even consider themselves a devel‐
oper. They might be a financial person who wants to use your stock
price API for their Excel calculations, an IT person who wants to
write a script to automate simple workflows, or a businessperson
trying to build a website for their company. This audience is
extremely sensitive to breaking changes—although using the API is
not their day job, they nevertheless need tools and services that will

Developers, Developers, Developers | 145

make using your APIs easier, and they will not be following your
API news feed on a daily basis.

This audience is important to many companies because it is much
larger than the developer audience; there are a lot more business
people than developers. If you are targeting this audience, you need
to take a very different approach for education and enablement.

The Professional Developer
This type of developer is interested in solving their use case and sees
your technology as a means to that end. The professional developer
will evaluate your API based on product fit and maturity. They will
compare your API to others to see which one meets their needs bet‐
ter. In many use cases this will be the core audience of your API as it
matures.

Professional developers are more willing to pay for an API because
it solves a problem that would otherwise be a pain to solve. They are
eager to see new features but are not keen on changes to the API,
especially if these are breaking changes. Professional developers are
more sensitive to stability because they recognize the cost associated
with getting back and rewriting their code to accommodate your
changes. These developers might also have limitations to the time
that they can spend building on your API, so they really appreciate
tools and services that make doing so easier and faster.

And Many More
There are numerous variations of these audiences—the enterprise
developer trying to build internal solutions for their organization,
the independent software vendor trying to build software using your
API, the contractor whose job is to implement a specification, and
many more. They all have different proficiency levels, needs, and
wants. As your API matures, you will need to dive in and under‐
stand your developer audience and its various segments in more
depth.

These are just a few examples of the types of developers you might
be targeting as the audience for your API. Some APIs target hard‐
ware developers; others are geared for domain-specific developers,
such as mobile game developers. It is important to know your audi‐
ence, the use cases they want to implement using your API, and

146 | Chapter 8: Building a Developer Ecosystem Strategy

their preferred means of communication. We cover this type of seg‐
mentation work in greater depth later on in this chapter.

Next, let’s explore how to build a developer relations strategy. We
outline the high-level steps and offer tips and tricks for specific out‐
reach tactics.

Building a Developer Strategy
There are a few basic stages in building a productive developer strat‐
egy, beginning with segmenting your developers, determining who
your audience is, and defining its attributes. It’s also important to
distill the value proposition and articulate why developers should
use your API/platform. Additionally, you need to outline your
developer funnel and itemize the steps that developers should take
to be successful with your API.

Next steps include mapping the current and future state of the eco‐
system, from where it stands right now to where you’d like to take it.
Then you should outline your tactics, such as steps, resources, and
actions to move developers through the funnel. Be sure to gather
measurements so you can verify that your tactics are working.

Let’s dive into each one of these important stages and get the details.

Developer Segmentation
It’s time to move on from the anecdotal examples of the different
types of developers to a more concrete definition. Ask yourself: who
is your audience? In the following subsections, we look at the key
attributes you might want to consider.

Identity
How do these developers identify themselves? Frontend? Backend?
Full stack? Mobile? Enterprise?

Granular identity can also be very important. In some cases, iOS
developers will often connect with other iOS developers at meetups
and events, but not as often with Android developers. Some devel‐
opers, like the members of Google’s GDGs, develop a strong sense of
identity, whereas others might not be so strongly affiliated.

Building a Developer Strategy | 147

Developer proficiency
How proficient should a developer be to use your API? Some APIs,
such as those for augmented reality and artificial intelligence, might
require a steeper learning curve. Sometimes the API is rather simple
but requires a complex OAuth and security setup.

Some APIs target developers who are highly proficient, like game
developers, whereas others, such as the Google Apps Script API, tar‐
get a broader audience.

Platform of choice
Mobile developers are very different from web developers, and Xbox
and PlayStation game developers are very different from cloud back‐
end developers. Even within the mobile sphere, iOS developers are
quite different from Android developers in the way they build their
apps. It is important to understand the platform your developers are
on, what the constraints and capabilities of that platform are, and
what needs these developers have in common.

Developers tend to identify themselves around platforms—it is very
common for Android developers to go to Android Developer Meet‐
ups where they encounter like-minded peers. Understanding this
will help you engage with your developers where they are—go and
give a presentation at their meetup, for example.

Preferred development language, framework, and development tools
Which tools and services does your developer audience use every
day to achieve key tasks? If you know their preferred set of pro‐
gramming languages, you may also discover which SDKs you
should invest in, for example. The fact that your developers are
using Eclipse might be worth knowing when considering building a
plug-in to that integrated development environment (IDE). If your
developers are avid users of an open source framework, this might
lead you to the strategy of becoming a contributor for that frame‐
work.

Common use cases and tasks
Even if you are building a very general-purpose API, it is important
to know the common use cases are that your developers are trying
to accomplish. This can help with building the messaging to these
developers and can give you good ideas about how to extend your

148 | Chapter 8: Building a Developer Ecosystem Strategy

API or how to build additional tools or services that can help your
developers to achieve their goals. If you do not know which tasks or
workloads your developers are trying to accomplish, go out and ask
them! You might also use this time to explore key challenges in
building these use cases.

Preferred means of communication
This is a critical piece of information if you want to reach your
developers. Do they follow your API news on Twitter? Do they pre‐
fer email notification? Do they hear about new technologies at
events? Do they read an industry news outlet? You need to map
ways to communicate day-to-day news and updates and to establish
communication channels in case you need to urgently reach your
developers.

Market size and geographical distribution
You need to determine how many developers you have right now,
and what is the addressable market. You also need to map important
centers of developers around the world. This information contrib‐
utes to the understanding of whether you need to localize your con‐
tent or run global events, and where to do so.

This is a tricky exercise. It might be difficult or expensive to acquire
this information. In many cases a semi-educated guess will work in
the beginning, with a more informative analysis conducted as time
passes.

Real-life example
Now that we have described the different aspects of audience seg‐
mentation, let’s examine a concrete example of segmentation analy‐
sis.

Table 8-1 shows how the developer segmentation looks for Slack.

Table 8-1. Developer audience segmentation

Attribute Description
Identity Enterprise developer (aka IT developer, corporate engineer, internal

developer).
Developer proficiency Proficient at implementing business processes, but not necessarily on the

Slack platform. Enterprise developers are used to SDKs and frameworks
rather than using the raw APIs.

Building a Developer Strategy | 149

Attribute Description
Platform of choice Windows and Linux scripting, web developers, SharePoint or Confluence.
Preferred
development
language and
frameworks

Java, .NET. Many work with Amazon Web Services (AWS; e.g., AWS Step
Functions), some integrate with Slack for reporting. Some developers are
exploring Node.js.

Common use cases Internal use cases—approval processes (time off, expenses, general),
reports, and looking up clients in the customer relationship management
(CRM) and ticketing systems seem like the most requested set of use cases.
Key challenges are that enterprise developers are under a lot of pressure
from the business to implement a lot of processes. The current solutions,
such as SharePoint, are cumbersome and not developer-friendly, according
to them.

Preferred means of
communication

Enterprise developers prefer to be notified by email about important
changes in our API. They follow Slack’s API blog but not the Twitter feed.
Major events they are attending are by enterprise software vendors, such as
Amazon and IBM.

Market size and
geographical
distribution

As of May 2018, Slack has more than 200,000 weekly active developers
building on the platform (including internal integrations). Major
geographical distribution: San Francisco, New York, Tokyo, Berlin, London,
Seattle, Bangalore.

Slack actually has two types of developers: app developers (building
Slack apps that other teams can use) and enterprise developers
(building internal integrations for their own Slack teams).

As with the Slack example, you need to segment each of your audi‐
ence groups because they might be very different and require differ‐
ent strategies.

This analysis can be much more detailed (and in reality, it usually is)
but we hope this demonstrates the different aspects to analyze and
the types of answers you are looking for.

Pro Tip

Many startups think that “everyone” is a good
segment. It’s not! Even the most widely used
APIs segment their users; defining your devel‐
oper audience as “all developers” is not produc‐
tive.

150 | Chapter 8: Building a Developer Ecosystem Strategy

Distilling the Value Proposition
This could either be very easy or quite difficult, depending on the
business you are in. You need to write down the key value proposi‐
tion of your API. Why should developers use your API, and for
what purpose? What is your competitive advantage, and why should
developers care about it?

In some cases, platforms put emphasis on different advantages.
Google highlights the vast distribution Android has and the number
of users with which Android developers can engage, whereas Apple
emphasizes the strong ability to monetize iOS and that Apple users
are more inclined to pay.

Some APIs provide an easier or more cost-effective way to do some‐
thing. Cloudinary helps developers create thumbnails and resize
images on the fly, and the Google Vision API provides easy access to
complex image-recognition functionality.

Here are a few examples of value propositions:

Stripe API
Provides an easier and more standard way to receive online pay‐
ments

YouTube API
Allows you to embed video players in your site or to offer You‐
Tube search capabilities

SoundCloud API
Lets you develop apps that allow users to upload and share
songs online

Some companies have distinct value propositions for different
developer segments, and that’s fine. For example, AWS can be a
place for rapid prototyping for startups, as well as a way to drive
technical transformation in big enterprises.

Your value proposition is closely related to the use case your devel‐
opers are trying to implement. If you do not know what your major
use cases are going to look like, try to find out; it will help you home
in on a value proposition.

After you define your value proposition, you can validate whether it
is compelling. One company, for example, said that it could run an
operation in less than 10 milliseconds, whereas all its competitors

Building a Developer Strategy | 151

took 30 milliseconds. Although this sounds impressive, it requires
validation because it might not be important to developers imple‐
menting common web use cases—30 milliseconds might be suffi‐
cient, and the performance improvement might not merit the
migration cost. Alternatively, this might be a key enabling feature for
some use cases that might be worth a lot of money.

A value proposition is not the same as marketing “positioning.”
Whereas market position refers to the consumer’s perception of a
brand or product, value proposition should be concrete and, pref‐
erably, something the developers care deeply about. The words you
pick are not that important at this stage; the actual value is.

A common mistake that many companies initially make is creating a
lot of low-value statements—the product is “a little cheaper in some
cases” or “a little easier to use on X.” Although these are useful bene‐
fits, you should strive for a big and compelling value for your devel‐
opers, when possible.

Expert Advice
There should be a significant amount of value offered to those
building on your API. That value doesn’t have to be directly
monetizable, but the API has to do something better, faster, or
more cheaply than if the third-party developer or partner were to
build the same thing in house.

—Chris Messina, developer experience lead at Uber

Defining Your Developer Funnel
The developer funnel is a simple but effective concept that outlines
the journey that a developer goes through, from not knowing about
your API to becoming an avid and successful user.

Figure 8-1 depicts an example of a developer funnel.

152 | Chapter 8: Building a Developer Ecosystem Strategy

Figure 8-1. The developer funnel

As you can see in Figure 8-1, in each step of the funnel, there are
fewer and fewer developers. Your job is to get more developers into
the funnel and to then move them down through it. Let’s explore the
different stages:

Aware
Creating developer awareness is an ongoing and important first
step in the developer funnel. After you build your API, making
developers aware of it and its unique and compelling value
proposition is the beginning of the developer funnel. Many
organizations with mature and successful APIs still work to
ensure their visibility to the developer community. The creators
of Twilio, a popular API providing a cloud communications
platform for building SMS, voice, and messaging applications,
still pay for advertisements across Silicon Valley.

Proficient
Next, developers need to know how to use the API. They could
reference your guide on how to build a simple “Hello World”
app or take a comprehensive training and certification program.
(We explore these in Chapter 9.) The end game in this step is
that the developer can easily use your API according to your
documented best practices.

Building
At this stage, the developer is actively building apps using your
API. For example, the code might not yet be in production, but
the API keys are actively used. This is an important step in the

Building a Developer Strategy | 153

funnel because it signals that the value proposition that you
have outlined is the right one.

Successful
For each developer, this could mean something different. The
definition of success could also vary for each API usage. The
successful usage of your API could mean making money out of
it or passing a certain threshold of usage. Or it might be defined
as passing transactions in production or even the API’s integra‐
tion with other systems. You need to determine what success
means for your API and your developer audience. We talk about
measurements in “Deriving Measurements” on page 160.

Funnel indicators
Not all developer funnels have the same milestones. Some funnels
might have a “Developer Registered” stage, while others might have
“Developer Signed the Terms” or “Developer Paid for the API” as
significant events that separately mark the various phases of the fun‐
nel. You need to build your own developer funnel and define its
steps for your specific API.

No matter which milestone steps you choose in your funnel, it is
important that you outline the funnel and understand the key indi‐
cators that reflect these steps. Table 8-2 presents some example indi‐
cators.

Table 8-2. Funnel indicators

Aspect Indicator examples
Awareness Getting into your API website, registering for a newsletter, attending a meetup
Proficiency Completing a hands-on lab, building a fun hackathon project, creating an open source

example, executing a “Hello World” sample
Usage Creating an API key and using it, deploying a sample app and modifying it, creating

and running a preproduction environment
Success Generating revenue, moving code to production, getting users, building a business,

actively using the API 150 times per day

We use these examples to build the strategy measurements later in
this chapter, but you can already see that these indicators are mov‐
ing the needle in your developer strategy dashboard.

154 | Chapter 8: Building a Developer Ecosystem Strategy

Mapping the Current and Future State
Now that you have a good understanding of the developer funnel
and the indicators that tie to it, you need to know the current actual
numbers for each indicator.

Table 8-3 offers an example of a report that you might be able to
generate for an API that adds a filter to images as a service.

Table 8-3. Key indicators status report

Aspect Monthly ongoing status Totals
Awareness 500 unique users a month on api.imagefilters.com 10,000 unique developers to

date
Proficiency 200 developers have gone through the getting

started stage
5,000 unique developers to
date

Usage 50 developers have moved to the Pro edition 1,500 paying developers to
date

Success 500,000 images processed by new developers 250 million images processed
to date

As you can see, some of the measurements might be directly con‐
nected to a number of developers, whereas others might be derived
from developer usage. In this example, the number of images pro‐
cessed is derived from the success of the developers using the API.

Sometimes, the funnel indicator is derived rather than direct—you
can see in Table 8-3 that you might be able to affect the last number
(250 million images processed to date) without getting new develop‐
ers. You might be able to work with current developers to get them
to use your API more. That is true with a lot of APIs, and some of
the tactics that we outline in the next section should target current
developers, not necessarily new ones.

Next, we need to add two additional columns:

Market potential
What are the long-term goals for each indicator?

Short-term targets
What are we trying to achieve in the short term?

Mapping the market potential is somewhat of a guess. It is some‐
times really difficult to determine what the addressable market is.
You can buy market research, go to developer communities that
might be potential users and assess their size, or ask colleagues who

Building a Developer Strategy | 155

have similar addressable markets. Big companies like Google, Ama‐
zon, and Facebook release developer size and usage metrics that
might be good benchmarks for you if you are addressing the same
developers. You can also use the sizing determinations you made
when segmenting your developer audiences. See “Market size and
geographical distribution” on page 149.

Now that you know what the market potential is, you can set short-
term targets. These targets will influence the tactics you use in the
next section of this chapter.

Let’s add the short-term targets and market potential columns to
Table 8-3. Table 8-4 presents the results.

Table 8-4. Key indicators with short-term targets and market potential

Aspect Monthly ongoing status Q2 targets Market
potential

Awareness 500 unique users a month on
api.imagefilters.com

Grow to 700 500,000
developers

Proficiency 200 developers have gone through the getting
started stage

Grow to 400 250,000
developers

Usage 50 developers have moved to the Pro edition Grow to 70 150,000
developers

Success 500,000 images processed by new developers Grow to 700,000 50,000
developers

Outlining Your Tactics
Now that you know what the current status is and where you want
to be in the short and long term, it is time to map the tactical steps
you are planning to take to move developers through the funnel.
Here are a set of examples of tactics to use in each step in the funnel
that we previously outlined.

Awareness tactics examples
Awareness tactics need to move developers from not knowing about
an API to knowing about it and hopefully being excited about using
it. Here are some examples of activities that can drive awareness:

• Build an API documentation site.
• Run a Facebook ad campaign to drive developers to the site.

156 | Chapter 8: Building a Developer Ecosystem Strategy

• Create swag that developers love, adorned with the logo of your
API/platform.

• Have a booth at a big developer event.
• Contribute to a popular open source project with content rele‐

vant to your API.
• Write an article in an industry news outlet.
• Run a Product Hunt campaign.
• Speak at events.

Proficiency tactics examples
Proficiency tactics aim to educate developers about how to use the
API, from the basics to the best practices. Here are some examples
of activities that can drive proficiency:

• Write tutorials about getting started and different aspects of
your API.

• Create hands-on code labs.
• Build code samples, templates, and SDKs.
• Run hackathons.
• Build a certification program for developers.
• Write whitepapers.
• Run webinars.

Usage tactics examples
Usage tactics drive developers to use the API in production, expand‐
ing the current use cases and promoting new types of API use. Here
are some examples of activities that can drive usage:

• Build a registration system with which developers can manage
their API usage.

• Build a coupon or free-tier system to incentivize production
usage.

• Run a design sprint with a partner to build product-level API
usage.

• Run a beta program for new API features.

Building a Developer Strategy | 157

• Run a feedback program to capture ways to improve usage.

Success tactics examples
Success tactics drive the developer’s own goals, whether those are
making money, improving their business, or technical goals such as
high availability. One useful strategy is to let successful developers
teach other developers how your API helped them to reach their
own goals. Here are some examples of activities that can drive devel‐
oper success:

• Run a comarketing campaign with selected developers.
• Write content with successful developers to share tips and tricks

for using your API.
• Add a best practices section to your developer site.
• Run API optimization workshops.
• Create a top developer program that identifies successful devel‐

opers and highlights their achievements.

These are just a few examples of developer relations tactics; in Chap‐
ter 9, we discuss building and running such developer programs at
greater length. You might have a totally different set of steps to get
your ecosystem going and flourishing. The important part is that
you are strategic and thoughtful in outlining your tactics.

Pro Tip

It is easy to confuse tactics and the steps associ‐
ated with them. Some people might think that
they can achieve developer success through
hackathons, while hackathons actually contrib‐
ute to developer proficiency, for example. This
leads to frustration and loss of productivity.
Make sure you do the proper actions to move
the right metrics.

You probably don’t want to immediately execute all the tactics we
just outlined. Some things, like providing documentation and a way
to register for API keys, are usually table stakes, but a lot of these
activities are optional. Next, you need to pick and choose the right
set of activities to help you achieve your short-term goals.

158 | Chapter 8: Building a Developer Ecosystem Strategy

Here is an example of a developer relations high-level quarterly plan
that maps targets to tactics:

• Increase developer awareness to 5,000 new developers.
— Tactic: Run a developer marketing campaign.
— Tactic: Release two articles in major news outlet(s).

• Increase developer proficiency to 1,000 new developers.
— Tactic: Run two workshops in developer events, with 300

developers in each.
— Tactic: Build a new front page to the developer site, with a

better call to action to get started.
— Tactic: Create five tutorials that outline common use cases.

• Drive 40 new developers to use their API keys in production.
— Tactic: Work with sales to identify 20 candidates and run

design sprints with these developers.
— Tactic: Run a beta program for our new Thumbnail feature

with 20 launch partners.
• Grow the number of image process API calls to 150,000.

— Tactic: Work with the top five developers to increase their
API usage.

— Tactic: Write an article with two developers that are success‐
fully using our API.

Many companies go through prioritization exercises and pick the
top goals and activities every quarter. Many organizations, including
Google, highly recommend and find it effective to structure these
plans in a format called objective key results (OKRs).

When you first build your API, the plan should be very straightfor‐
ward. You need to ask yourself, “What are the things developers
must have before using our API?” These will probably include docu‐
mentation, basic samples, and a developer landing page. As time
passes and you get these initial table-stakes tasks done, you can start
asking yourself, “What are the things developers should have in
order to be proficient and successful at using our API?”

Building a Developer Strategy | 159

https://rework.withgoogle.com/guides/set-goals-with-okrs/steps/introduction/

Deriving Measurements
You have a plan and you can now begin executing it, right? Well…
yes, but we recommend one additional step before you get started.
One of the most difficult challenges is connecting developer activi‐
ties to measurements. We talked about the current state and future
state, but how do you know that you are going in the right direction
and that what you are doing is impactful?

The key here is to think hard about what the metric is that you want
to affect when running each activity and then to measure whether
you actually hit your targets at the end of each activity. For example,
when hosting an event, you can measure the number of developers
who actually run a hands-on lab and follow up on that cohort to see
if they turn into active developers. After a design sprint (a structured
activity in which the team brainstorms and prototypes solutions),
you can measure whether the partner has actually implemented the
sprint’s recommendation, thus improving or extending their API
usage. Some activities are more difficult to track, but it is critical to
try to measure each of the activities and to evaluate whether they’ve
moved the needle.

Table 8-5 lists a few examples of key performance indicators (KPIs)
and how you can connect them to activities.

Table 8-5. Developer activities measurement report

Measurement KPI Current Goal Activity Expected
impact

Actual

Developer
awareness

Website
entry

10,000 100,000 Speak at SXSW 5,000 new
developers

7,000

Proficiency Token
created

5,000 10,000 Run a technical
webcast

5,000 new
tokens

3,000

You can be creative with your activities and explore many ways to
affect your KPIs, but we recommend keeping them consistent so
that you can track your impact over time.

160 | Chapter 8: Building a Developer Ecosystem Strategy

Pro Tip

Building a thriving ecosystem is like gardening.
You cannot be sure which activity will be suc‐
cessful with a particular set of circumstances. By
measuring, iterating, and improving, you can
learn what is impactful and what is not.

Closing Thoughts
Building a developer strategy is all about knowing what to measure
and which actions affect your measurements and goals. Following
the process that we have outlined in this chapter will help you to
clearly define your developer strategy, and all the rest will be build‐
ing and executing it.

Expert Advice
You need to know your users, their needs and use cases, and tune
the API accordingly.
It’s important to keep the communication channels with your
users open and transparent. This is critical to get feedback and
improve the API. You need to nurture your ecosystem and put in
a lot of effort in order to make it grow and be successful.

—Ido Green, developer advocate at Google

In Chapter 9, we discuss how to build and execute developer rela‐
tions programs. We cover community programs and documenta‐
tion, and we learn from the experience of companies such as
Facebook, Google, and others about what works and what doesn’t.

Closing Thoughts | 161

CHAPTER 9

Developer Resources

Building a great API is not enough if no one knows how to use it. As
you design your API, make sure that you guide and enable develop‐
ers by providing the learning materials they need to succeed.

Developer resources are a set of assets that you should provide your
developers so that they can improve how they use your API. There
are many types of developer resources out there, each affecting dif‐
ferent aspects of the development life cycle. In this chapter, we cover
the major resources that most companies provide. We also provide
some tips and tricks to make them work for you.

API Documentation
Let’s begin with the most basic resource that is required for every
API or platform—documentation.

Documentation is where developers come to learn about your API.
Whether you’re providing a simple README file or developing a
full website for your developers, it is critical to clearly document
how they can most effectively use your API. There are several differ‐
ent aspects to good documentation, covering all stages of the devel‐
opment life cycle.

Getting Started
Getting Started guides are a common type of tutorial that walk the
developer from unfamiliarity with an API to initial success. In many
cases, this comes in the form of completing a “Hello World” exercise

163

—a reference to the common practice within the engineering pro‐
fession of getting a program or API to churn out “Hello World” as a
proof of success. The API doesn’t literally have to return “Hello,
world”, but you might have users get to a place where they’ve suc‐
cessfully made one API request, opened a WebSocket connection
and received the first event, or received an example POST request
from a WebHook. The Getting Started tutorial’s job is to outline the
easiest and fastest set of steps that developers need to take to get
there, also known as the Time to Hello World (TTHW).

Having a Getting Started guide that you position front and center on
your API site is important for onboarding new developers. Simplify‐
ing and shortening the TTHW significantly contributes to developer
adoption of your API.

A single Getting Started guide works for simple use cases, but if you
have a complex API that covers multiple use cases, you should aug‐
ment your initial guide with additional primers that expand on it.
You could have several Getting Started tutorials, each focusing on
different aspect—for example, “Building Your First Web App,” “Get‐
ting Started Storing Your Data,” and “Introducing User Authentica‐
tion.”

Here are some key aspects of a good Getting Started guide:

Do not assume prior knowledge
As much as you can, try to explain each technical term in your
document. (You can do that using links to other pages or pop-
up windows, to refer the user to more in-depth literature on
specific topics.) If there are prerequisites, provide links to their
corresponding Getting Started documents.

Do not diverge from the happy path
Assume that everything will go well, but link to troubleshooting
documentation for cases in which something goes wrong. Don’t
leave developers high and dry, without the answers and off the
happy path.

Show examples of inputs and outputs
If the developer needs to run a command line, show an example
of that command line; if there is an expected result, show a
screenshot of that result.

Your API might have several function calls, different types of
requests (POST/GET), and different responses and parameters.

164 | Chapter 9: Developer Resources

Show every permutation of each method and the corresponding
outputs.

Try to show sample code demonstrating the simplest use of your API
If it is not too long or cumbersome, provide samples that
demonstrate basic use of the code.

End with a call to action and links to other references
Don’t let your developers become stuck; be sure to give them a
direction and resources to help them expand their knowledge.

Expert Advice
The right API design creates engaging and delightful developer
experiences, and a well-thought-out onboarding process is criti‐
cal for developers to instantly understand how the API operates
and rapidly build on it. For example, Stripe’s dynamic and per‐
sonalized developer documentation provides customized code
samples that can be quickly added to an existing application, and
we offer first-class libraries in popular programming languages.
API endpoints, parameters, data models, and error messages are
all carefully defined and consistent across the platform. Devel‐
oper support is also part of the core product experience, and we
work hard to provide a response within hours (or minutes). We
believe that these touch points produce an elegant API design
that ensures developers are successful, exponentially improving
their productivity.
If you look back 10 years, starting a business and accepting pay‐
ments online was incredibly hard. There was no other choice
than to build in-house solutions, establish merchant accounts,
and read through hundreds of pages of documentation just to
accept a simple payment. At Stripe, we see payments as a prob‐
lem rooted in code, not finance. Our API design allows develop‐
ers to accept payments from anywhere in the world, using any
payment methods, in a matter of minutes.

—Romain Huet, head of developer relations at Stripe

API Reference Documentation
This is a very technical part of the documentation and might be
automated using tools like Swagger. Reference documents like the
one shown in Figure 9-1 are detailed descriptions of all the API
methods, their input and output parameters, and the errors that
they might return.

API Documentation | 165

Figure 9-1. Twitch’s API reference page

Reference documentation should be comprehensive and complete.
Do not worry about repeating common sections, because these types
of documents are not intended to be read in sequence. For example,
if you have an error that appears in two methods, it is important to
repeat the error description and causes in both sections because
developers are not necessarily going to read through documentation
for every API endpoint. Reference documents are also a great place
to put examples of the API usage and even to add a built-in API
tester so that developers can begin experimenting with the API. We
go over API testers in more depth in “Sandboxes and API Testers”
on page 179.

Because users will usually access these pages from Google search or
from your own internal search, it is better to list each API method
on its own page. This improves discoverability and usability. Addi‐
tionally, it gives you greater flexibility to provide more detail when
necessary.

Good reference documents provide developers with everything they
need to know about a certain API call or functionality within a sin‐
gle page, with links to useful additional resources.

166 | Chapter 9: Developer Resources

Tutorials
In this section of your documentation, you provide step-by-step
instructions for different aspects of your API, as illustrated in
Figure 9-2. You can write an article about security or rate limits, for
example. Begin by covering the complex parts of your API and then
move to more simple things, if you have the bandwidth.

Figure 9-2. Shopify’s API tutorials

Pro Tip

A good best practice here is to work with your
support team and ask them which topics gener‐
ate the greatest number of tickets. You can use
that information to create tutorials on the topics
that are the most difficult for your audience.
Doing this periodically will ensure that you are
always documenting high-frequency issuess.

It is important to remember that you need to update tutorials when
you update your API, or you risk them becoming misleading rather
than a source of guidance for developers. You can also sort them
based on metainformation, such as the programming language used
in the tutorial. This makes it easier for your developers to find what
they need.

API Documentation | 167

Expert Advice
One of the ways I find most useful to differentiate is a tutorial
that tells you “How to X with Y”: “How to secure your app with
Apache and mod_security” or “How to write a bot in
QuickBasic.”

—Taylor Singletary, lead content writer at Slack

Frequently Asked Questions
In a similar vein, collect frequently asked questions (FAQ) and
answer them to the best of your ability. Remember to generalize
and anonymize the questions and answers. The format of the FAQ
document is simple: put the question in the bold and the answer
below it, as demonstrated in Figure 9-3. If you like, you can prefix
these with “Q:” and “A:,” respectively.

Figure 9-3. Facebook API FAQ page

There are many ways to collect a list of frequently asked questions.
Here are a few examples:

• Have a monthly meeting with the support team and ask what
the most common tickets are.

168 | Chapter 9: Developer Resources

• Explore Stack Overflow and look for the most voted for ques‐
tion around your API.

• Talk to the partnership and sales team and ask what questions
they hear the most.

• Ask developers to add to your FAQ section by inviting them to
submit questions in a form that you should make available on
that page.

Landing Page
This is the first page developers should see when they view your
documentation site. It should generally have the following sections:

• A short explanation of what your API is for (see “Distilling the
Value Proposition” on page 151). Walk through the use cases the
developer can implement or the key value they can get from the
API.

• A call to action that directs the developer to next steps. “Get
Started” is a great call to action, with a link to the Getting
Started document.

• Links to key resources, samples, and tools, all of which we
describe later on in this chapter.

Your developer landing page serves two purposes: it welcomes and
onboards new developers, and it provides resources and ongoing
support to returning developers. You might want to collaborate with
your marketing or design team to make sure that the page is appeal‐
ing and designed for both audiences.

This page is extremely important because it provides the first
impression of the API. Developers will skim through this page to see
whether it is the right fit for their needs and will quickly bounce out
if they do not find what they want. Slack has gone through several
iterations, each time improving a different aspect of the landing
page. Google has spent week at a time doing user research to opti‐
mize its developer portal. Stripe has done a good job with its docu‐
mentation landing page, as you can see in Figure 9-4.

API Documentation | 169

Figure 9-4. Stripe’s API landing page

Pro Tip

Make sure your landing page and other key
pages are highly discoverable in search engines
such as Google. This will be the most common
way developers find your site.

Changelog
As your API evolves and matures, we recommend that you keep a
changelog on your developer site. On this page, you provide devel‐
opers with news about updates to the API, details on breaking
changes that might be coming, security and service change notifica‐
tions, and so forth.

Pro Tip

GitHub Releases make it easy to create change‐
logs. Check out the Releases API for more
details.

Adding an RSS feed to the page enables developers to subscribe to
the changelog and to be notified when you update it, as depicted in
Figure 9-5. This is a simple way to create a channel for developers to
keep up to date with your API.

170 | Chapter 9: Developer Resources

https://help.github.com/articles/creating-releases/

Figure 9-5. Slack API changelog

Changes to your code can also be announced in an email or over
Twitter, if you can reach your developers that way. However, a dedi‐
cated page that lets developers see all the changes that your API has
gone through since they last touched it can also be very useful.
Remember that different audiences prefer different means of com‐
munication, as discussed in Chapter 8.

Terms of Service
The terms of service (ToS) is a document that describes the reason‐
able use of your API—what is permitted and, more importantly,
what is not permitted. This document is very useful for developers
who want to understand whether their use case is supported, but it
is also critical for you as the API developer in order to set the
boundaries of usage of your API. The ToS is the baseline for
enforcement—taking action against misuse of your API. Without
knowing what is permitted and what is not, developers may find it
difficult to know how to act like good citizens on your platform.

The ToS should be written, or at least reviewed, by your legal coun‐
sel. The document should define things like the following:

API Documentation | 171

Rate limits
See Chapter 6 for more details on rate-limiting.

Data retention policy
How long and for what can a developer use the data they get
from your API?

Privacy policy
What can developers do with personally identifiable informa‐
tion (PII)? With whom can they share it?

Non-allowed use cases
Can your API be used for commercial use cases? Can it be used
for adult or gambling use cases?

API license
Can developers resell your API? Can they use it as part of their
API? Is it free to use?

Additional requirements
Should the developers post privacy acknowledgments in their
apps?

There may be many more aspects for you to cover in your ToS. It is
also important to state in the ToS that you can change the terms as
time passes. As your ecosystem grows and your API evolves, you
will find that you need to update your ToS to adjust to the new cir‐
cumstances.

When communicating with developers who have misused your API,
you should refer to the section in your ToS that they violated and
work with them to reach compliance.

Pro Tip

Remember that to be effective, your ToS should
be simple and short. It’s a legal document that
you actually want developers to read and under‐
stand, not a ritualized checkbox.

Samples and Snippets
Providing developers with code samples and snippets is a great way
to improve their use of and productivity with your API. When done
right, you can incorporate best practices (such as for performance

172 | Chapter 9: Developer Resources

and security), into your examples, making the developers less prone
to make errors with or misuse the API.

Code Samples
Code samples can take a wide range of forms, but they all follow the
basic intent of providing developers with reference examples of how
to use the API. You should provide code samples in the program‐
ming languages most common to your developers. The code should
be highly readable and include a lot of comments that walk the
developer through the code and explain each section of the API’s
use.

Even if you can only provide a single code sample, that can be valua‐
ble to developers of all backgrounds, assuming that it’s consistent
and based on core development principles. PHP and Node.js are
great for these kinds of examples for web APIs because they’re easy
to focus on request and response cycles without the need to refer‐
ence any additional frameworks.

Pro Tip

Just like tutorials and documents, code samples
need to be maintained. When the API changes,
you need to update all of your examples too.

Most code samples try to tackle a single use case of the API, like
sending a message, getting an event, or making a payment. Other
code samples provide examples of integrations between different
aspects of your API, such as illustrating an authenticated request to
an API or combining the responses from two requests to accomplish
a task, for example.

Another type of code sample is the reference app. This code sample
tackles a business use case rather than demonstrating specific API
functionality. Good examples of these are the open source Google
I/O app, which Google releases every year, or the chat app that
Twitch built into its sample.

The major challenge with reference apps is making them readable,
usable, and not too tightly connected to the use case. If an app is
super-optimized for the use case, it is difficult for a developer to
learn from it and to extrapolate what they need to implement their
own use case.

Samples and Snippets | 173

Snippets
Snippets, on the other hand, are short and contextual code samples
that accompany a tutorial, a reference doc, or an FAQ answer. Snip‐
pets should be in the single digits of lines of code, and they need to
be briefly documented but still very readable.

Unlike code samples, snippets are a part of complete code; you do
not need to declare variables or add imports to a snippet. The snip‐
pet should look like it has been cut out of a code sample and pasted
into the document, as depicted in Figure 9-6.

Figure 9-6. A snippet

Because snippets are shorter and easier to implement, we recom‐
mend that you implement them in several programming languages
to make it easy for developers to cut and paste directly into their
own code.

A good method here is to use an interactive language switcher in
your documentation that lets the developer choose their preferred
programming language, as shown in Figure 9-7.

174 | Chapter 9: Developer Resources

Figure 9-7. Firebase samples with language switcher

Software Development Kits and Frameworks
Developers have different proficiency levels, and not all of them will
be comfortable accessing your web API directly. As discussed in
“Developer SDKs” on page 114, building software development kits
(SDKs) and frameworks is a good way to make it easier to access
your API. Another benefit of a good SDK or framework is that you
can bake best practices and security measurements straight into
them. Creating these boilerplate code blocks removes the need for
developers to implement these best practices themselves.

Expert Advice
A good API has SDK bindings in all languages, platforms, and
coding styles. One of the lessons I learned is that you have to be
prepared in advance for extreme use cases and make sure that
your API can meet the needs of customers.

—Ron Reiter, senior director of engineering at Oracle

Software Development Kits and Frameworks | 175

SDKs
SDKs are thin abstraction layers over your API. They provide devel‐
opers with the ability to work with a code library rather than mak‐
ing raw API calls. Developers download or refer to an SDK library
and build their business logic by calling the functionality of the
SDK.

Many companies wrap their APIs with SDKs, and many developers
prefer to use an SDK rather than calling the API methods directly.
This is due to the inherent complexity that comes with handling and
making web requests.

The interfaces of the SDK need to be readable and well documented,
but the internals of the SDK do not need to meet these require‐
ments. The internals of the SDK library can be optimized or even
obfuscated and minified.

It is important that you provide SDKs in the programming lan‐
guage(s) your developers use. SDKs are not like sample code; they
are less portable and basically useless if they are not in the program‐
ming language of your audience.

Remember that, after you launch an SDK, you need to continue to
update it. The key here is to update your SDK at the same time you
make your API updates. Assuming that your developers are relying
heavily on your SDK, if you do not update it, they will not have
access to the new platform or API features that you just launched.

Pro Tip

It is important to instrument and measure the
use of your SDK separately from measuring
direct API calls. Building and maintaining mul‐
tiple SDKs is expensive and demanding. Look‐
ing at the data gives you a good indication of
whether you need to continue to invest in your
SDKs.

You can generate SDKs automatically by using tools such as Swag‐
ger. There is some infrastructure work involved in enabling such
tools (such as adding metadata to your API), but this can be an easy

176 | Chapter 9: Developer Resources

and productive way to generate SDKs in multiple programming lan‐
guages.

Expert Advice
Cloudinary’s APIs are the main way our customers use us besides
the administration web console. Developers building websites
and apps that involve any type of imagery and video use us to
upload, manipulate, manage, and deliver the media. The API is
RESTful and is wrapped by numerous SDKs, available in almost
any programming language.

—Ran Rubinstein, VP of solutions at Cloudinary

For more information on the technical aspects of an SDK, see Chap‐
ter 6.

Frameworks
Frameworks are additional layers of abstraction that you sometimes
need to add over an API. They make it easier to use API methods by
providing functionality that is closer to the use case the developer
needs to implement and can further hide the complexity of the API.

A good example is the Botkit framework. When Slack initially
released its API, it provided basic functionality to read and write
messages. Although this was all the functionality that experienced
developers needed to build Slack apps, it did not provide an easy
way to build conversational interfaces and bots. Developers had to
handle complex use cases, such as asking for user inputs in Slack
and waiting for the answers to come back through the API.

The Botkit team developed an open source framework that encapsu‐
lated that functionality and wrapped the complexity of these use
cases in a simple and easy-to-use library, as illustrated in
Example 9-1. Developers using the Botkit framework more easily
coded their way through these challenging use cases by letting Bot‐
kit handle these processes.

Software Development Kits and Frameworks | 177

Example 9-1. Botkit framework snippet

controller.hears(
 ['hello', 'hi', 'greetings'],
 ['direct_mention', 'mention', 'direct_message'],
 function(bot,message) {
 bot.reply(message.'Hello!');
 }
);

As you can see in Example 9-1, the developer states that they are
looking to hear hello, hi, or greetings by way of a mention,
direct mention, or direct message, and what they reply with, in
turn, is Hello! This would have been an order of magnitude more
complex to code if it weren’t for the Botkit framework. With Botkit,
the developer just defines the business process, and the framework
takes care of all the rest.

Sometimes, you don’t need an opinionated framework. If your API
is simple and intuitive, you might want to reduce maintenance cost
by just providing code samples or SDKs, and leave the additional
complexity to your developers. You might also take into account the
proficiency of your developers. Advanced developers might not
need a framework in order to handle complex use cases.

When maintained correctly, frameworks and SDKs provide an eas‐
ier path to API upgrades and migrations. You as the API provider
can abstract the API changes and let the developers keep their old
code working. Breaking changes have a smaller negative impact if
the only thing the developer needs to do is to replace the SDK or
framework with a new version. The same goes for new functionality:
developers can easily access new API calls using the same known
paradigm just by replacing the old SDK or framework with a new
version that supports the new functionality.

When building SDKs and frameworks, it is important to make them
accessible and discoverable on your API site. We also recommend
that you host your SDKs and frameworks in code repositories such
as GitHub so that developers can be inspired by the code, report
bugs, and contribute if needed. See “Community Contribution” on
page 182 for more on this topic.

178 | Chapter 9: Developer Resources

Development Tools
Your API can easily look like a taunting black box to your develop‐
ers. Providing the right tools can go a long way toward helping
developers solve their own problems. It is not easy to generalize the
types of tools your API might need. Each API comes with a different
set of challenges. There are some common pain points, which we
cover here, but you need to analyze and understand your develop‐
ers’ needs and pains and to define tools specifically for your service.

Debugging and Troubleshooting
In Chapter 4, we discussed how to make errors meaningful so that
developers can better understand whether a request fails due to
something they did wrong or due to an issue with the system. How‐
ever, even with meaningful errors, it can still be difficult for develop‐
ers to know exactly how and why their request failed.

That’s why providing developers with tools to analyze, debug, and
troubleshoot their API calls can therefore be very helpful.

Debugging tools can be as simple as a web page that lets the devel‐
oper see the logs that are associated with their API calls or as com‐
plicated as a step-by-step debugger that integrates into the
development environment. In many cases, the former is good
enough to troubleshoot most issues.

Sandboxes and API Testers
Sandboxes and API testers give developers the ability to quickly test
and verify that they are using the API in the right way. Sandboxes
provide developers with a safe and isolated environment—for exam‐
ple, a mocked-up list of images that they can delete and modify as
they want, using the API, without the worry of changing product
data. API testers usually come as part of the API documentation and
let developers test the API calls—sometimes on live data. Google
provides a very comprehensive API testing service called APIs
Explorer. Figure 9-8 presents an example of an API test page.

Development Tools | 179

Figure 9-8. Google’s APIs Explorer

Note that developers do not need to code in order to make an API
request using APIs Explorer; they just need to provide valid input
parameters.

Rich Media
There are many ways to learn technical content—some people like
to read, some like to listen, and some like to watch. Although a lot of
developers prefer written tutorials and documents, there is a grow‐
ing trend of engaging and educating developers via short videos,
webinars, live Q&A sessions, and so forth.

Videos
Videos are a great way to introduce new tech, provide general best
practices, or deep dive into a topic.

These days, creating videos is not that difficult—most phones and
digital cameras can create high-definition videos. Many developer
relations people even create video tutorials from the comfort of their
own homes.

That said, although creating and editing videos is getting easier,
making high-quality videos can still be expensive and difficult: you
need professional gear, a lot of practice, and several rehearsals. At
Google there is a full team dedicated to editing and producing vid‐
eos. Presenting in these videos is not something that every developer
relations person is fit to do. It requires a certain skill to be in front of
a camera and to present content that is complex and involves

180 | Chapter 9: Developer Resources

screens that you don’t actually see while standing in front of a green
screen.

Pro Tip

The best-performing videos are short. Videos
longer than two minutes tend to have a drastic
drop in viewership.

If you are happy with medium-quality videos, recording live ses‐
sions is a great way to get started. Whenever you do a live presenta‐
tion at an event, you can record the session and use that on your
website for other developers to see.

Storytime: Doubling Down on Video
When I worked at Google, we decided to double down on videos
after a very long global tour during which we presented the same
content again and again in more than 12 countries. We recorded
some of the sessions and found that the recordings reached a
greater number of people (measured in number of views) than
our total accumulated live audience throughout the tour. After
that, we created an entire team dedicated to generating high-
quality videos at scale.

—Amir Shevat

Office Hours
Office hours are a great resource for developers to get their ques‐
tions answered. This is a block of time that you set aside to answer
questions and help developers build on your API.

When the Slack Developer Platform team launched, it was very
small. Team members could not meet all the developers who wanted
them to provide training on the platform in person and decided to
launch a weekly office hours online. Developers and partners could
join the office hours using a public video call link, provided by
Slack, and ask their questions. Because these sessions had multiple
participants, they had the added value of having everyone learn
from one another’s questions.

Rich Media | 181

Webinars and Online Training
Webinars are a good way to educate developers online. In fact, some
developers prefer this way of learning because it is somewhat more
collaborative. In webinars, the speaker presents a topic through an
online tool, such as Zoho, and invites developers to join the training.
The presentation is broadcast to the audience, sometimes accompa‐
nied by screen sharing or videos. At the end of the webinar, and
sometimes even during the webinar, developers can ask questions
on the content, and the presenter answers them.

Expert Advice
As of this writing, I run a monthly web training session about my
previous book, Designing Bots (O’Reilly). The webinar takes two
hours, and participants go through training and hands-on exerci‐
ses. I get to engage with about 50 developers without leaving the
comfort of my office.

—Amir Shevat

Community Contribution
Although all of the resources we outlined in this chapter are great
ways to educate, train, and engage developers to use your API,
building out all these resources is a difficult task that requires time
and money. But fear not! Some of these resources can be created and
maintained by the community of developers that use your API.

One of the positive side effects of a thriving developer community is
that its members contribute content and generate resources. Devel‐
opers write tutorials, create videos, share code samples, and answer
questions. Here are a few real-world examples of these types of con‐
tribution:

• Google works with key members of the community called Goo‐
gle Developers Experts to create everything from videos and
presentations to code samples.

• Slack manages open source SDKs and receives bug fixes and
code patches on an ongoing basis. It also lists community arti‐
cles on its own developer site.

182 | Chapter 9: Developer Resources

http://shop.oreilly.com/product/0636920057741.do

• Mobile developers meet around the world, share insights, and
train one another. In Tel Aviv, Israel, for example, a group of
community members who have created a volunteer-run course
called Android Academy that educates new developers on how
to build great Android apps.

• Twitch uses public forums in which developers can talk about
work they have done, support one another, and provide feed‐
back to the Twitch Developer Experience product team.

Almost every API out there has some community contribution.
Remember that you will need to provide the basic documentation
yourself, because in the beginning, community contribution will be
minimal. Consider the community contribution as an addition to
your work, not a replacement of it.

Pro Tip

Whenever you are using community-
contributed content, give credit to the contribu‐
tor. They have done a selfless act for you, and
giving them props for that is both the right thing
to do and an inspiration to others who want to
contribute.

Building a section for community contribution in your developer
site is a great way to empower your developers, once you have
enough articles and code samples there. Remember that mainte‐
nance is a bigger issue with community contribution; if you change
your API, work with your contributors to amend their content or to
clearly state the version for which each contribution is good.

Closing Thoughts
Developer resources add a delicate and crucial layer of value over
your API. Without developer resources, your audience needs to
guess how to use your API and will probably misuse it—or, more
commonly, just not use it at all.

In this chapter, we outlined common developer resources and gave
tips on how to build them. Remember that each API is different, and
your developers might need an additional set of resources that we
haven’t explicitly covered here. Keep in touch with your developers,

Closing Thoughts | 183

empathize with them, and foster your community to build a self-
sustaining ecosystem.

In Chapter 10, we discuss exactly that: how to build developer pro‐
grams that foster a thriving ecosystem. Let’s dive into that now.

184 | Chapter 9: Developer Resources

CHAPTER 10

Developer Programs

So, you’ve built the basic resources developers will need to use your
API or platform—are you done yet? Probably not. As we discussed
in Chapter 8, driving developers through the funnel and helping
them to become aware, proficient, engaged, and successful using
your API is an ongoing process. Even well-adopted APIs, such as the
most commonly used ones provided by Amazon and Google,
require ongoing activity by their developer relations teams. Devel‐
oper programs are the heart and soul of everyday developer rela‐
tions and ecosystem building for an API.

Defining Your Developer Programs
Developer programs are activities that help and drive developers of
all sizes to build solutions and integrate with your API. Most com‐
panies offer multiple developer programs through their developer
relations and marketing teams. To define the developer programs
that you need to run, you need to perform a breadth and depth
analysis.

Breadth and Depth Analysis
Most developer ecosystems are composed of a few big players and a
lot of midsize and small players, as illustrated in Figure 10-1. Con‐
sider the following about the mobile ecosystem: you have a few big
mobile app developers—Uber, Lyft, Facebook, Supercell, and so
forth—as well as many, many other app developers working in
smaller companies building mobile apps.

185

Figure 10-1. Developer tiers

Developers (and hence developer programs) can be categorized
along two axes, as shown in Figure 10-2:

Depth axis
The deep developer audience refers to the top partners or top
clients that will use your API. You will need to spend more time
with these top partners and clients to get them to use it. The
programs across this axis deal with few developers, each with a
big impact on your ecosystem but high demands on your API.

Breadth axis
The broad developer audience is made up of the midsize and
small companies that build on top of your API. It can also
include hobbyists and students who are building on your API
for nonprofessional reasons. The individual developers across
this axis have a small impact on your ecosystem, but together
they have a potentially massive impact on your business.

Figure 10-2. Deep and broad developer audiences

The following sections describe developer programs for both audi‐
ences in more detail.

186 | Chapter 10: Developer Programs

Deep Developer Programs
Deep developer programs try to motivate a small group of big cli‐
ents or partners to use your API. These partners sometimes require
a lot of work to engage. Many API and platform providers have a
separate team of developer relations experts, called partner engi‐
neers, that deal with these top partners. Their mission is to work
with this key audience to create exemplary large uses of your API.

Let’s take a look at some of the kinds of programs that these teams
run.

Top Partner Program
The goal of a top partner program is to identify the top users, or
potential top users, of your API and to engage with them to build
and use your platform. This usually begins with a use case analysis.
In this analysis, you list the top use cases of your API and map the
top partners for each of them.

For example, suppose that you are building an API to resize, filter,
and run other manipulations of images. The API receives an origi‐
nal image, along with transformation parameters, and returns the
newly modified image. What are the top use cases that this API
might serve? Let’s list a few:

Thumbnailing and resizing
Developers of websites should provide their users with thumb‐
nails of their merchandise and let them click the thumbnails to
see the larger images.

Watermarks
Developers might like to overlay watermarks on images, either
to prevent misuse or to enforce branding.

Mobile optimizations
Mobile developers should compress images for mobile app
usage.

There could be many, many more use cases, but let’s work with these
three for now. For each of these use cases, we list the top developers
by market capitalization (market cap) or any other criteria that are
important to the business. Table 10-1 shows what this list might look
like.

Deep Developer Programs | 187

Table 10-1. Top developer partners per target use case

Thumbnailing and resizing Watermarks Mobile optimizations
eBay Getty Images Snapchat
Amazon Shutterstock Instagram
CNN iStock Lightroom

The list of partners is usually much larger than this and has more
details regarding whether the developer is already using the API,
where they are in the funnel, and the impact on the business.

If there are too many use cases that your API can support, you can
run a similar analysis but focus on industries rather than use cases.
Mapping the top companies per industry can be easier than map‐
ping partners per use case in some instances. Table 10-2 shows how
this might look.

Table 10-2. Top developer partners per target industry

Automobile images Advertising Social networks
Ford WPP Group Facebook
Honda Omnicom Group Twitter
Tesla Dentsu Snapchat

After mapping your partners by target use case or industries, you
need to engage with each of the partners (working together with
sales or business development), build a relationship with them, and
support these partners in their use of the API. Sometimes these
types of activities are called white-glove activities, because they are
unique for each partner—some partners require a lot of on-site sup‐
port, some require design or architecture assistance, and others
might need to ask a question only once in a while. Because these are
one-to-few activities, in which one partner engineer works with a
few selected developers, it is easier to fit the activity to the develo‐
per’s needs.

Beta Program
As you develop your API, you need your top developers to adopt
your new functionality, give you feedback on it, and launch with you
when you release your new API functionality to the general devel‐
oper audience, as mentioned in Chapters 4 and 5.

188 | Chapter 10: Developer Programs

Pro Tip

Launching new features with top developers
who are already using them is a common best
practice. It shows the entire developer popula‐
tion that these top developers trust and find
your new API useful.

If you ever see a keynote address at Google I/O, Facebook F8, or any
other big tech event, you will notice that every developer launch is
accompanied by a slide or a clip that shows developers already
implementing great innovations using the API. This is the result of
an early access and partner program.

Here’s the way Slack has run this program in the past:

1. Ideation. About two months before releasing new API func‐
tionality, engineering, product management, marketing, devel‐
oper relations, and business development gather and think
about who their top developers could be. At the end of this
stage, they have a list of top developers and the desired use cases
they want to implement with those developers.

2. Recruitment. Their partner engineering team in developer rela‐
tions, together with business development, reaches out to part‐
ners and asks them to join the beta program for a new feature.
The partners are given some mock-ups of the new feature, a
pitch about how they might use it, and timelines to launch. At
the end of this stage, Slack’s team has a list of partners who have
committed to the program.

3. Onboarding. Each top developer then receives the specification
of the new API and a draft of the documentation. This is a raw
document created by the content team. At the end of this stage,
Slack usually collects feedback from the partners on the specifi‐
cation and feature.

4. Joint building. For the next month or so, Slack personnel meet
with the top developers on a weekly basis and make sure they
are able to solve their problems, fix bugs, and provide feedback
on design and implementation. At the end of this stage, they
have a set of two to five good integrations and uses of the new
API.

Deep Developer Programs | 189

5. Launch prep. Working with marketing on both sides, Slack
coordinates the materials needed for the mutual launch. Slack
also publishes a blog post, collects logos and quotes for a press
release, and so forth. At the end of this stage, the Slack team
ready to launch.

6. Launch day. On launch day, Slack’s team gathers in a “war
room” (or, at Slack, a “peace room”) and coordinates (over email
and Slack) with partners on when to launch their press releases
and their product integrations with Slack’s platform.

Running a good beta program not only guarantees a successful set of
partners to launch with you but also a better API at launch time.
Beta partners are a great way to test, validate the value of, and get
feedback on your new API.

Pro Tip

For some developers who sign on, your project
may be low priority. This can lead to delays or
even cancellations of their participation in the
program. To make sure your beta program is
successful, it can be helpful to be very hands-on
with your beta developers and to have well-
defined expectations and well-aligned goals. Be
sure to have several partners so as not to have all
your eggs in one basket.

Expert Advice
The best APIs are treated like any other product that’s important
to a business: they’re supported, maintained, improved, and
altered to fit changing customer needs and expectations. It’s
important that API teams stay ahead of the demands of their cus‐
tomers and anticipate where new needs are cropping up and
where competitive threats are appearing throughout the market‐
place. The moment you tell yourself that you’ve achieved “lock-
in” because your customers can’t afford to switch away from you
is the moment that you’ve already started to lose.

—Chris Messina, developer experience lead at Uber

190 | Chapter 10: Developer Programs

Design Sprints
The design sprint is a process for answering critical product ques‐
tions through design, prototyping, and testing ideas with develop‐
ers. Although there are a lot of different things you can do with
developers, the design sprint is probably one of our favorites and
one of the most effective activities you can do with a top developer
trying to figure out “what to build” over your platform or API.
We’ve run many design sprints with top developers at Google and
Slack. A design sprint can take a few hours or even a few days. There
are books and courses out there that teach about design sprints in
detail, but here are the steps at a high level:

Understand
Work with the developer to explain your API’s capabilities, and
let them teach you about their technologies. Invite business
stakeholders who can talk about your mutual business goals,
and invite shared users to figure out their key pain points and
needs. Bring design, product, and engineering representatives
into the room.

Define
Clearly define the problem that you want to tackle. What is the
developer’s need or pain that you want to address? Do not focus
on a solution, just define what the problem is that you want to
solve.

Diverge
At this stage, have each member of the design sprint come up
with six to eight design solutions for the problem. The idea here
is to quietly brainstorm ideas and designs. Participants should
encapsulate each idea on a small sticky note that captures the
essence.

Decide
Analyze the ideas and decide on the one you want to imple‐
ment. You can do this by having the group vote for the best idea
or through a risk–benefit analysis that compares how difficult
each solution is with how valuable is it to the end customer.

Prototype
Spend time prototyping your solution—this can be just mock-
ups, or as high-fidelity as a working prototype. The key here is

Deep Developer Programs | 191

https://www.gv.com/sprint/

to build enough for the end customer to be able to try it out and
give feedback.

Validate
Bring in end customers to try out the prototype and provide
feedback; bring in internal stakeholders to do this, as well. Cap‐
ture the feedback, learn, and iterate as needed.

The key benefit of a design sprint is the ability to quickly work
together toward a mutual goal. Although design sprints require a lot
of time and resources, the outcomes are usually useful because they
stem from an actual problem or need and they result in a validated
solution.

Pro Tip

Design sprints are also useful because they con‐
dense many partner meetings into one.

Broad Developer Programs
Broad developer programs are all about scale (a magical word in Sil‐
icon Valley). These programs try to reach as many developers as
possible and move them through the funnel discussed in Chapter 8.
In contrast to deep programs, the engagement with the developers is
not high-touch—no company has the ability to personally support
every developer. Broad programs use scalable, low-touch (one-to-
many) tools, like videos, docs, events, and code labs, to achieve their
targets.

Let’s examine a few examples of these types of programs.

Meetups and Community Events
These are probably the most well-known developer relations pro‐
grams. The goal is to build a community of self-sustaining develop‐
ers, teaching and supporting one another. Google has one of the
biggest developer communities, called Google Developer Groups
(GDG), with more than 250 independent groups of developers
around the world. Every GDG community meets on a regular basis
(usually monthly) and runs evening events where speakers talk
about Google technologies. These meetups are the core essence of
the community, and community leaders are measured on the

192 | Chapter 10: Developer Programs

meetup cadence. Many communities run hackathons, training days,
and big events.

Expert Advice
It’s all about building community. You need a community to fuel
large-scale API adoption. A lot of APIs, like ours, are self-serve.
If it’s self-serve, it needs to be super easy to grasp and use. The
Facebook SDK got wide adoption because it was a feature that
people needed, but the community helped to make it what it is
today. You want to respect the power of community—they talk
about benefits, they help each other. One of our groups, Face‐
book for Developers, has six million members and is moderated
by the community. It’s a strong thing to have this in our ecosys‐
tem. While solid developer support and documentation are cor‐
nerstones to API adoption, the power of community should
never be underestimated.

—Desiree Motamedi Ward, head of product developer mar‐
keting at Facebook

One of the key values of a good community is that it does not
require you as the API provider to run each of the meetups. You
might need to provide some technical content or food, or give prizes
and swag, but you can run hundreds of meetups around the world
with as few as one to three full-time community managers. Your
community managers scout for new local volunteer community
leaders, outline the community’s principles (community rules), cre‐
ate community assets (such as a website and training materials for
meetups), communicate with each local community to monitor
their health, and provide support when needed.

Pro Tip

Not every API requires a separate community of
its own. You can offer your content to an exist‐
ing community, especially if its members would
benefit from that content. For example, Unity is
a game development platform that might pro‐
vide tutorials or guides hosted by an Android
developer for a community game hackathon.

Broad Developer Programs | 193

Hackathons
Hackathons are another very popular and well-known type of devel‐
oper program. A hackathon is a gathering of developers to brain‐
storm and develop solutions around a specific topic (e.g., software
for healthcare) or technology (e.g., Amazon Alexa skills).

The word hackathon is derived from the word marathon, but it
requires more mental than physical effort. Hackathons usually last
24 to 48 hours, during which developers form into groups, decide
what to build, prototype, and then present their results to one
another at the end of the event.

It is important to be very clear about the structure, time frame,
topic, and desired outcome of the hackathon, and to provide the
tools for the groups to connect (a spreadsheet of ideas, for example).
Many unstructured hackathons fail because people come to the
event not knowing what to do, or they spend a lot of time coordinat‐
ing instead of coding. Hackathons are also expensive in terms of
time and resources, so if you do not invite the right people, track
signups, and gather product insights, your management might see
this effort as a waste of time and money.

Hackathons can be very big, with a lot of API companies working
together to help developers innovate. Slack has sponsored a hacka‐
thon with 2,000 developers, together with companies such as Lyft,
Stripe, Google, Amazon, and Microsoft. Each company provided
training materials, engineers to support the hackers, and prizes for
the best projects.

Hackathons contribute to developer awareness and proficiency, they
connect the API product team and developers at large, and they help
collect product feedback and build empathy for developer problems.

Speaking at Events and Event Sponsorships
A lot of companies hire full-time advocates to speak at events
around the world. Big companies, like Oracle, Facebook, and Goo‐
gle, run multiday developer events with hundreds of sessions and
training seminars. These types of activities are usually effective ways
to reach developers at scale because a lot of these sessions are recor‐
ded and viewed thousands of times after the event takes place.

Developer events can be very expensive and time-consuming to cre‐
ate if you are a small startup or an independent developer. But if you

194 | Chapter 10: Developer Programs

like to present at third-party events, it is not difficult to find a speak‐
ing opportunity at an event that somebody else is hosting.

Pro Tip

Many speaking opportunities come contingent
with an event sponsorship agreement, which can
be very costly. Make sure you are getting in front
of an audience of the right type (developers
rather than businesspeople, for example) and
size to ensure that you are getting your money’s
worth. Remember that there are a lot of commu‐
nity events that will be happy to let you speak
for free.

Train-the-Trainer and Ambassador Programs
This type of program is called by a different name by each company.
For example, Microsoft has its it Microsoft Most Valuable Professio‐
nal (Microsoft MVP) program, and Google calls it Google Develop‐
ers Experts. Regardless of the name, the essence of the program is
the same: API providers reach out to a set of very proficient mem‐
bers of the developer community and build a special relationship
with them so that these developers can become ambassadors within
the developer community at large.

Storytime: Google Developers Experts
I started the Google Developers Experts program at Google in a
very frugal way—I mapped the top five developers in my region,
reached out to them, and told them I wanted to meet. I gathered
them all together for dinner, gave them all Google shirts, and told
them I would really like to work with them to teach developers
how to build on Google technologies. All of them agreed. I then
asked my product teams to share presentations, code labs, and
training content with my newly formed experts, and asked my
experts to use this content to go to events, present, and train
developers. We met on a monthly basis for dinner and talk about
our progress. I was the only person who actually worked at Goo‐
gle at those dinners, but by far not the most proficient person in
Google technologies at the table. We all worked together for a
shared goal: to make our developer community awesome.
Today, the Google Developers Experts program is a global pro‐
gram with more than 300 experts around the world. From time

Broad Developer Programs | 195

to time, I see a person in San Francisco walking proudly in an
Expert T-shirt, and I smile to myself.

—Amir Shevat

Online Videos and Streaming
We talked about videos in Chapter 9, but we need to explain the
programmatic approach to videos and streaming. Creating a set of
videos that explain how to use your API or platform can be a useful
practice. Building a program around online content is all about pro‐
viding developers with an ongoing cadence of content. Google has a
show called (TL;DR) The Developer Show that resembles a weekly
TV show for developers who want to keep up with Google technolo‐
gies.

Building a high-end video program can be expensive, but you might
want to consider using platforms like YouTube or Twitch to do a
monthly casual streaming show. In this show, you simply stream
yourself building over your API and answer viewers’ questions as
they come in. For example, Stripe’s developer relations team runs a
Twitch stream about its payments API and engages with its develop‐
ers via live chat.

Support, Forums, and Stack Overflow
An important program that is sometimes overlooked is a solid sup‐
port program, which answers the question, “How do developers get
support when they become stuck using your API?”

Slack takes the approach of company-operated support for develop‐
ers—developers can email questions to developers@slack.com, and
this opens a Zendesk ticket for Slack’s support organization. Slack
has a large support team with different product specializations, so
these tickets get routed to the developer support team.

Other companies provide online support via forums. Twitch has a
very active support forum that enables Twitch employees and com‐
munity members to answer questions that are raised in the forum.

Another approach is supporting developers on Stack Overflow, an
online platform where anyone can ask programming-related ques‐
tions and find answers. Developers submit questions and other
developers answer them. The community moderates the questions

196 | Chapter 10: Developer Programs

mailto:developers@slack.com

and upvotes the answers, creating a high-quality, highly searchable
database of questions and answers. The Android developer support
program was run on Stack Overflow. They used Stack Overflow’s
API to retrieve new questions that were relevant to Android devel‐
opment and answered every question.

Credit Program
If your API costs money to use, you might want to consider provid‐
ing free credits for selected developers. Microsoft, Amazon, and
Google all have credit programs for their APIs. Credit programs are
usually easy to maintain and track, but they are not useful if your
API is free.

Selecting the right developers to give credits to is not easy, and your
credits can be abused by the wrong developers. You want to give
credits to developers who will convert into paying customers with
time. Some companies allocate them to developers based on their
company size, while others use startup incubators as a way to dis‐
tribute the credits to companies that are likely to grow. The key here
is that credits are like money: think carefully about who to give
them to and what value you are getting back.

Measuring Developer Programs
Determining which programs move which needles in your measure‐
ments and how they affect your ecosystem is probably one of the
most important activities you can do. Programs might be impactful
but can also be useless, and without measurements you will not be
able to tell the difference. For each program, you need to under‐
stand the following:

• What does this program do?
• What are the expected inputs?
• How is it performing for the expected outcomes?

Table 10-3 presents an example of such measurements for some of
the outlined programs.

Measuring Developer Programs | 197

Table 10-3. Developer programs measurement report

Name Description Inputs Outcomes
Top partner
program

Map and drive top
partners to build with our
API.

Map 15 partners and
work with 10 of them
this quarter.

Five top partners actively use
our API this quarter.

Beta program Provide feedback on beta
features and launch
features with partners
using our new API
capabilities from day one.

Work with seven beta
partners to launch
feature X.

Capture 10 feature requests
and 10 bugs reported by
partners. Launch feature X
with five partners who use
the feature from day one.

Hackathons Make developers aware of
and proficient with our
API.

Run five hackathons
this quarter.

1,000 developers create an
API token during the
hackathon.

Speaking at
events

Make developers aware of
our platform.

Speak at seven big
developer events this
quarter.

15,000 developers are
reached via events or
subsequent videos; 5,000 new
visitors to our developer site.

As you can see, each program has its own inputs and desired out‐
comes, and it is easy to mix them up. Some people complain that
hackathons are useless because they do not lead to paying custom‐
ers, but increasing the number of paying customers is not actually
the expected outcome of a hackathon. Know what impact you want
to have on your ecosystem of developers, and then choose the right
program to help you drive that.

Closing Thoughts
There are many other types of programs and subprograms out
there, each with different measurements and outcomes. There are
also countless new experimental programs that you can run. At
Slack and Twitch, we ran a set of developer tours in Europe and Asia
in which our entire team would go and meet developers and part‐
ners and speak at local events. When building your developer pro‐
grams, it is important to map the current state and the desired state
of your developer ecosystem and then to launch a few experimental
programs and see what works for both your developers and your
business.

Remember that a developer community is a delicate ecosystem that
requires attention and support. Listen to your developers and keep
improving your API, resources, and developer programs to fit their
needs.

198 | Chapter 10: Developer Programs

CHAPTER 11

Conclusion

Building a successful API is an art, comprising business analysis,
technology architecture, software development, partnership, content
writing, developer relations, support, and marketing. It takes a vil‐
lage to build a good, popular API. In this book, we reviewed the best
practices and theory for solid API design; we demonstrated a step-
by-step practical use case, and we showed you how to build and
maintain a developer ecosystem around an API.

One of the important takeaways from this book is to be thoughtful
about how you design your API itself and to be considerate of your
developer ecosystem.

Among other attributes, a good API:

• Solves an actual developer need or pain point (Chapter 1 and
Chapter 8)

• Is consistent (Chapter 7)
• Is stable (Chapter 6)
• Is thoroughly documented (Chapter 9)
• Does not have breaking changes (Chapter 7)
• Has reasonable rate limits (Chapter 6)
• Follows standards (Chapter 2)
• Is reliable and secure (Chapter 3)
• Has a great community and support (Chapter 10)
• Has sample code (Chapter 9)

199

• Is easy to understand and use (Chapter 4)
• Has a good SDK, in multiple languages (Chapter 6)
• Is easy to test (Chapter 9)

These are not things that just happen, and they are usually difficult
and expensive to fix if you get them wrong the first time around.
Validate your API with real users; ask your developers for constant
feedback; be transparent with your changes, policies, rate limits, and
updates; and be a member of your own developer community.

After you unlock the product-market fit for your API and foster a
developer ecosystem around it, you will experience magic—develop‐
ers will use your API to innovate, empower amazing new solutions,
and build things you didn’t think were possible.

There is no better feeling than building something that millions of
people use every day to make their lives better. Trust us, we have
done that, and you can, too.

200 | Chapter 11: Conclusion

APPENDIX A

API Design Worksheets

We’ve added these worksheets to accompany our hands-on design
advice. The worksheets can be used to accompany the fictitious
example from Chapter 5, or used repeatedly as templates for your
own API designs.

201

Define Business Objectives
The Problem
Briefly define the problem and how it affects customers and the
business.

The Impact
Define what success looks like for your API. What will the world be
like after you’ve released your new API?

Key User Stories
List several key user stories for your API with the following tem‐
plate:

As a [user type], I want [action] so that [outcome].

1.
2.
3.
4.
5.

Technology Architecture
Describe the technology architecture you’ve selected, along with the
reasons behind your decision. You may wish to include charts or
graphs showing the pros and cons of paradigms you’ve considered.
Here’s an optional example table:

Table A-1. Technology architecture

Pattern, paradigm, or protocol considered Pros Cons Selected?

202 | Appendix A: API Design Worksheets

API Specification Template
Title

Authors

Problem

Solution

Implementation
Give a high-level description of the implementation plan. You may
wish to use additional tables or diagrams to describe your plan.

Authentication
Describe how developers will gain access to the API.

Other Things We Considered
If you considered any other API paradigms, architectures, authenti‐
cation strategies, protocols, etc., briefly mention what you consid‐
ered.

API Design Worksheets | 203

Inputs, Outputs (REST, RPC)
If you’re designing a REST or RPC API, describe the endpoints,
inputs, and outputs. You may wish to add columns or use a different
table format to describe the requests and responses.

Table A-2. Table_name

URI Inputs Outputs

Events, Payloads (Event-Driven APIs)
If you’re designing an event-driven API, describe the events and
their payloads. You may wish to add columns for additional infor‐
mation, such as OAuth scope.

Table A-3. Table_name

Events Payload

Errors

Table A-4. Technology architecture

HTTP status code Error code Verbose error Description

204 | Appendix A: API Design Worksheets

Feedback Plan
Describe how you plan to gather feedback on your API design,
including whether you plan to release to beta testers.

API Implementation Checklist:
❏ Define specific developer problem to solve

❏ Write internal API specification

❏ Get internal feedback on API specification

❏ Build API

 ❏ Authentication

 ❏ Authorization

 ❏ Error handling

 ❏ Rate-limiting

 ❏ Pagination

 ❏ Monitoring and logging

❏ Write documentation

❏ Run beta test with partners on new API

❏ Gather feedback from beta partners and make changes

❏ Create communication plan to notify developers of changes

❏ Release API changes

API Design Worksheets | 205

Index

A
additions to APIs, 131
additive-change strategy, 133
Amazon Web Services (AWS), 83
ambassador programs, 195
analytics dashboards, 56
Apache Thrift, 14
API testers, 179
APIs

about, 1
attributes and traits of good APIs,

199
business case for, 3-7

APIs as a product, 6
APIs for external developers

first, internal developers
second, 5

APIs for internal developers
first, external developers
second, 4

characteristics of great APIs, 7
description language, 122-126
design paradigms, 9
designing (see designing APIs,

best practices; designing APIs,
practical exercise in)

event-driven, 19-25
comparison of different types,

24
HTTP Streaming, 23-24
WebHooks, 19-22
WebSockets, 22-23

request–response

comparison of types, 18
GraphQL, 14-18
REST, 10-13
RPC, 13-14

security (see security)
uses of, 2

application names, misleading, pro‐
hibiting in OAuth, 40

application-level caching for APIs, 87
archiving a GitHub repository, HTTP

request for, 12
asynchronous operations, 89
authentication, 27

choosing mechanism for MyFiles
API (example), 66

authorization, 28
OAuth 2.0 as standard for, 29

Authorization header (HTTP)
for Basic Authentication, 28
with OAuth tokens and scope, 34

automated testing (see testing)
awareness tactics examples, 156
AWS (see Amazon Web Services)

B
backward compatibility, maintaining,

58, 127-128
Basic Authentication, 28
beta programs, 188-190
beta testers, 79
Botkit framework, 177
bottlenecks, finding, 82

207

breadth and depth analysis for devel‐
oper programs, 185

breadth developer programs, 192-197
bulk operation endpoints, support‐

ing, 95
business case for APIs, 3-7
business objectives, defining, 62-64
business-focused tech savvy audience,

145

C
cache invalidation, 87
caching

in developer SDKs, 115
using to scale thoughput, 87

change, managing, 117-142
aiming for consistency, 117-126

using automated testing,
120-126

backward compatibility, 127-128
planning for and communicating

change, 128-141
additions to the API, 131
communication plan, 129
removing fields or endpoints,

132
versioning, 133-141

changelogs, 170
CI pipeline, 121
clickjacking, 40
client secret, ability to reset in OAuth,

39
cloud hosting providers, solutions for

measuring bottlenecks, 83
code samples, 173
code snippets, 174
communication means, preferred, of

developers, 149
communication plan for changes, 129
community contributions, 182-183
community, building, 192
computing resources, adding to scale

applications, 85
consistency in an API, 50, 117-126

hallmarks of consistency, 118
using automated testing, 120-126

continuous integration (CI), 121
Conversations APIs (Slack), 13, 93

CPU bottlenecks, 83
Create, Read, Update, and Delete

operations (see CRUD operations)
credit programs, 197
cross-site request forgery (CSRF), 27,

38
cross-site scripting (XSS), 27
CRUD operations, 10

HTTP verbs and REST conven‐
tions, 11

in MyFiles API (example), 67
in request–response API para‐

digms, 18
pros and cons of API paradigms

for MyFiles API (example), 65
current actual numbers for developer

funnel indicators, 155
cursor-based pagination, 99-101

advantages and disadvantages,
100

ID as cursor, 101
opaque strings as cursor, 101
timestamp as cursor, 101

custom HTTP headers
rate-limit response headers, 110
with OAuth token and scope, 34

D
dark launching rate-limiting, 109
data access patterns (new), introduc‐

ing in your API, 90
database indexes, 86
database profiling, 84
database replication, 85
database sharding, 85
date filters, 96
debugging tools, 179
DELETE method (HTTP), 10

(see also CRUD operations)
depth developer programs, 187-192
design sprints, 160, 191
designing APIs, best practices, 47-59

design for great developer experi‐
ence, 48-59
making it fast and easy to get

started, 48
making troubleshooting easy,

52-56

208 | Index

making your API extensible,
56

working toward consistency,
50

design for real-life use cases,
47-48

focusing on users, 2
designing APIs, practical exercise in,

61-79
scenario 1, 62-72

defining business objectives,
62-64

outlining key user stories, 64
selecting technology architec‐

ture, 65
writing an API specification,

68-72
scenario 2, 72-79

defining problem and impact
statement, 73

getting feedback on the API
spec, 77-79

selecting technology architec‐
ture, 74

writing an API specification,
74-77

developer ecosystem strategy, build‐
ing, 143-161
building a developer strategy, 147
defining your developer funnel,

152-154
funnel indicators, 154

deriving measurements, 160
developer segmentation, 147-150

common use cases and tasks,
148

examples of segmentation
analysis, 149

identity, 147
market size and geographical

distribution, 149
platform of choice, 148
preferred development lan‐

guage, framework, and
tools, 148

preferred means of communi‐
cation, 149

proficiency, 148

developers, 144-147
business-focused tech savvy

audience, 145
hackers, 145
hobbyist, 144
professional developers, 146
variations on categories men‐

tioned, 146
distilling the value proposition,

151
mapping current and future state,

155-156
outlining your tactics, 156-160

awareness tactics examples,
156

developer relations high-level
quarterly plan, 159

proficiency tactics examples,
157

success tactics examples, 158
usage tactics examples, 157

developer programs, 185-198
breadth and depth analysis for,

185
breadth programs, 192-197

credit programs, 197
hackathons, 194
meetups and community, 192
online videos and streaming,

196
speaking at events and event

sponsorships, 194
support, forums, and StackO‐

verflow, 196
train-the-trainer and ambassa‐

dor programs, 195
depth programs, 187-192

design sprints, 191
early access/beta program, 188
top partner program, 187

measuring, 197
developer relations, 143
Developer Relations

core activities, 185
developer resources, 163-184

API documentation, 163-172
code samples and snippets,

172-175

Index | 209

community contribution, 182-183
development tools, 179
frameworks, 177
office hours, 181
rich media, 180

videos, 180
software development kits

(SDKs), 175-177
webinars and online training, 182

developer SDKs (see software devel‐
opment kits)

developers
APIs for external developers first,

internal developers second, 5
APIs for internal developers first,

external developers second, 4
communicating with about API

changes, 129
removal of fields or endpoints,

132
rate limits and, 110-112
trying APIs without signing up,

49
disk I/O, 83
documentation for APIs, 49, 163-172

changelog, 170
frequently asked questions, 168
Getting Started guides, 163
landing page, 169
reference documentation, 165
terms of service (ToS), 171
tutorials, 167

E
early access/beta program, 188
edge caching, 87
error handling and exponential back‐

off in SDKs, 115
errors

HTTP status codes in MyFiles
API specification (example),
71

meaningful, 52-55
actionable errors and recom‐

mended error codes, 52
grouping errors into high-level

categories, 53

organizing into status codes,
headers, and machine-
readable and human-
readable codes, 54

event objects for MyFiles API techni‐
cal spec (example), 75

event-driven APIs, 19-25
comparison of different types, 24
HTTP Streaming, 23-24
pros and cons for MyFiles API

(example), 74
WebHooks, 19-22
WebSockets, 22-23

events (developer), 194
Events API (Slack), 91
evolving API design, 90-97

adding new API methods, 92
best practices, 97
introducing new data access pat‐

terns, 90
new options to filter results, 95
supporting bulk endpoints, 95

explicit-version strategy, 134-138
exponential back-off, 115
extensibility of APIs, 56

F
Facebook, ToS violations, 41
failures and retries (WebHooks), 20
feedback, getting on API specifica‐

tion, 77-79
fields in API responses, filtering, 96
filtering results, providing options

for, 95
firewalls, WebHooks and, 21
fixed-window counter (rate-limiting),

107
Flannel (Slack), 88
forums, 196
frameworks, 177
frequently asked questions (FAQ),

168
function names, versioned, 136

G
geographical distribution (develop‐

ers), 149

210 | Index

GET method (HTTP), 10
(see also CRUD operations)

Getting Started guides, 163
GitHub, 5

addressing scalability challenges,
91

archiving a repository, HTTP
request for, 12

OAuth scope headers in API
response, 35

rate-limit response header, 111
rate-limiting at, 112

Gmail
phishing attack on, 40
thin WebHook message payload,

45
Google Cloud Platform (GCP), 83
Google Developer Groups (GDG),

192
Google Hangouts, versioning case

study, 140
GraphQL, 6, 14-18, 91

advantages over REST and RPC,
16

comparison to REST and RPC
APIs, 18

Object Field deprecation, 133
pros and cons for MyFiles API

(example), 66
gRPC, 14
gzip compression, using in SDKs, 114

H
hackathons, 194
hackers, 145
hash-based message authentication

code (HMAC), 43
Hello World exercise, 163
hobbyist developers, 144
horizontal scaling, 85
HTTP, 9

(see also request–response APIs)
in RPC-style APIs, 13

HTTP headers
custom OAuth headers

X-Accepted-OAuth-Scopes, 35
X-OAuth-Scopes, 35

custom rate-limit response head‐
ers
X-RateLimit-Limit, 111
X-RateLimit-Remaining, 111
X-RateLimit-Reset, 111

organizing errors into, 54
specifying API versions in, 135
X-Frame-Options, 40

HTTP methods
CRUD operations and REST con‐

ventions, 11
in REST APIs, 10
in REST, RPC, and GraphQL

APIs, 18
in RPC-style APIs, 13

HTTP status codes
description for errors in MyFiles

API specification (example),
71

in REST APIs, 10
indicating redirection for moved/

moving resources, 135
organizing errors into, 54
returning for rate limits, 110

HTTP Streaming, 23-24
comparison with WebHooks and

WebSockets, 24
pros and cons for MyFiles event-

driven API (example), 74
HTTPs endpoints (OAuth), 39
human-readable errors, 52

I
ID as cursor, 101
identity (developers), 147
iframes, rendering of authorization

screen, disallowing, 40
impact statement for MyFiles API

(example), 63
scenario 2, 73

indexes (database), 86
integrated development environ‐

ments (IDEs), 148
interface definition language, 122-126
interface description language (IDL),

122
interfaces, 1

Index | 211

J
JavaScript object notation (JSON),

122
JSON responses in REST APIs, 11
JSON web APIs, 122-126

describing and validating
requests, 125

describing and validating respon‐
ses, 123

K
key indicators status report (devel‐

oper funnel), 155
key performance indicators (KPIs),

connecting to developer activities,
160

L
landing page for API documentation,

169
load testing, 84
logging

changelog, 170
use in troubleshooting developer

issues, 55

M
machine-readable error codes, 52
Macys.com responsive checkout, 78
MAJOR, MINOR, and PATCH ver‐

sions, 137
managing change (see change, man‐

aging)
market potential (developer funnel

indicators), 155
market size, 149
measurements of developer activities,

160
measuring developer programs, 197
meetups and community, 192
memory bottlenecks, 83
methods, adding to APIs, 92
MINOR versions, 137
mocking data for interactive user

testing, 78
Mutual TLS (Transport Layer Secu‐

rity), 44

N
network I/O, 83
noise (in WebHooks), 21
non-CRUD operations in REST APIs,

12

O
OAuth, 28-42, 50

benefits of, 29
best practices, 38
listing and revoking authoriza‐

tions, 37
scopes, 32

Slack's move to granular
OAuth scopes, 34

selection for use in MyFiles API
(example), 66

token and scope validation, 34
token expiry and refresh tokens,

35
token generation, 30

objective key results (OKRs), 159
office hours, 181
offset-based pagination, 97

advantages and disadvantages, 98
opaque strings as cursor, 101
OpenAPI, 125
order filters, 96

P
paginating APIs, 97-102

best practices, 102
cursor-based pagination, 99-101

advantages and disadvantages,
100

choosing cursor contents, 101
offset-based pagination, 97

advantages and disadvantages,
98

pagination support in developer
SDKs, 114

partner engineers, 187
PATCH method (HTTP), 10

(see also CRUD operations)
PATCH versions, 137
personally identifiable information

(PII), 55

212 | Index

phishing attacks using misleading
application names, 40

platform of choice (developers), 148
polling, 19

solving as API scaling problem in
REST APIs, 90

WebHooks vs., 19
POST method (HTTP), 10

(see also CRUD operations)
problem and impact statement for

MyFiles API (example), 63
scenario 2, 73

professional developers, 146
proficiency (developer), 148
proficiency tactics examples, 157
profiling code, 83
programming languages, 148

implementing code snippets in,
174

PUT method (HTTP), 10
(see also CRUD operations)

Q
quarterly plan for developer relations,

159

R
rate-limit response headers, 110
rate-limiting APIs, 102-114

best practices, 112
implementation strategies,

105-110
fixed-window counter, 107
sliding-window counter, 108
token bucket algorithm, 105

rate limits and developers,
110-112
documenting rate limits, 111
rate-limit status API, 111

rate-limiting policy, 103
Slack's rate-limiting, lessons

learned from, 113
Stripe's rate-limiting strategies,

104
Read method, 10

(see also CRUD operations)
read/write scopes, 32

Real-Time Messaging API, 91
reference apps, 173
reference documentation, 165
refresh tokens, 36

one-time-use, 39
remote procedure calls (RPCs), 13

(see also RPC APIs)
removing endpoints or fields from

APIs, 132
replay attacks, 43
request logs, providing for develop‐

ers, 55
requests

adding request parameters to con‐
trol output, 131

describing and validating, 125
request parameters in version

schemes, 136
request–response APIs, 9-19

comparison of different types, 18
GraphQL, 14-17
REST, 10-13
RPC, 13-14

resources (in REST APIs), 10
showing relationships between, 11

responses
adding response fields, 131
describing and validating, 123-125

REST APIs, 10-13
comparison to RPC and

GraphQL, 18
CRUD operations, HTTP verbs,

and REST conventions, 11
general rules for, 10
non-CRUD operations, 12
payload creep, 17
polling as scaling problem, solv‐

ing, 90
pros and cons for MyFiles API

(example), 66
showing relationships among

resources, 11
retries (WebHooks), 20
rich media, 180-181
rich site summary (RSS) feed, adding

to changelog, 170
RPC APIs, 13-14

Index | 213

comparison to REST and
GraphQL, 18

general rules for, 13
HTTP request to Slack API, 13
pros and cons for MyFiles API

(example), 66
Slack, Conversations APIs, 13
using protocols other than HTTP,

14
RSpec test using JSON Schema speci‐

fication, 125

S
sandboxes and API testers, 179
scaling APIs, 81-116

evolving your API design, 90-97
adding new API methods, 92
best practices, 97
introducing new data access

patterns, 90
providing new options to filter

results, 95
supporting bulk endpoints, 95

providing developer SDKs,
114-116
caching frequently used data,

115
error handling and exponen‐

tial back-off, 115
pagination support, 114
rate-limiting support, 114
SDK best practices, 115
using gzip compression in

SDKs, 114
scaling throughput, 82-90

adding computing resources,
85

best practices, 89
caching, 87
database indexes, 86
doing expensive operations

asynchronously, 89
finding bottlenecks, 82

using pagination, 97-102
best practices, 102
cursor-based pagination,

99-101
offset-based pagination, 97

using rate-limiting, 102-114
best practices, 112
implementation strategies,

105-110
rate limits and developers,

110-112
scopes (OAuth), 32

for sensitive information, 39
for use in MyFiles API (example),

66
in MyFiles API (example)

scopes, operations, and resour‐
ces, 67

Slack's move to granular OAuth
scopes, lessons learned from,
34

SDKs (see software development kits)
search filters, 96
search operations in REST APIs, 12
security, 27-46

authentication and authorization,
27

for WebHooks, 20
OAuth, 28-42

best practices, 38
listing and revoking authoriza‐

tions, 37
scopes, 32
token and scope validation, 34
token expiry and refresh

tokens, 35
token generation, 30

WebHooks, 42-45
semantic versioning specification

(SemVer), 137
server-sent events (SSE), streaming

data via, 24
short-lived authorization codes

(OAuth), 39
short-term targets and market poten‐

tial (developer funnel indicators),
155

signatures (WebHook), 43
Slack APIs, 4

adding new API methods, 92
addressing scalability challenges

with Events API, 91
API Metadata, 126

214 | Index

app credentials of Slack app with
verification token, 42

changelog, 170
Conversations API, 132

supporting bulk operations, 95
developer segmentation for Slack,

149
early access/beta program, 189
Flannel, application-level edge

cache, 87
inconsistency in, 118
long-lived tokens, 37
missing field on message pay‐

loads, 127
move to granular OAuth scopes,

lessons learned from, 34
rate-limiting, lessons learned

from, 113
RPC-style web API, 13
translation layer to maintain

backward compatibility, 57
WebSocket-based real-time mes‐

saging API, 22
sliding-window counter (rate-

limiting), 108
snippets (code), 174
software as a service (SaaS) compa‐

nies, 4
software development kits (SDKs),

50, 148, 175-177
developer SDKs, 114-116

best practices, 115
caching frequently used data,

115
error handling and exponen‐

tial back-off, 115
pagination support, 114
rate-limiting support, 114
using gzip compression, 114

maintaining, 178
SoundCloud API, value proposition,

151
speaking at developer events, 194
specification (spec), writing for an

API, 68-72
MyFiles API WebHooks (exam‐

ple), 74-77

SQL databases, queries based on cur‐
sor values, 99

Stack Overflow, 196
Stackdrivers, 83
stakeholders, reviewing API specifi‐

cation with, 77
state parameter support (OAuth), 38
streaming, 196
Stripe

online testing of API by develop‐
ers without signing up, 49

rate-limiting, 104
value proposition, 151
versioning case study, 139

subresources in APIs, 11
success tactics examples, 158
support for developers, 196

T
task queues, 89
TCP (Transport Control Protocol),

22
technology architecture, selecting

scenario 1 for MyFiles API (exam‐
ple), 65

scenario 2 for MyFiles API (exam‐
ple), 74

terms of service (ToS)
violations of Facebook ToS, 41
writing, 171

testing
automated, 120-126

describing and validating
requests, 125

describing and validating
responses, 123-125

sandboxes and API testers, 179
Thrift, 14
throughput, scaling, 82-90

adding computing resources, 85
best practices, 89
caching, 87
database indexes, 86
doing expensive operations asyn‐

chronously, 89
finding bottlenecks, 82

the Time to Hello World (TTHW),
164

Index | 215

timestamps, using as cursors, 101
TLS (Transport Layer Security), 44
token bucket algorithm (rate-

limiting), 105
tokens (OAuth)

and scope, validation of, 34
expiry and refresh tokens, 35
generation of, 30
Slack's long-lived tokens, 37

top partner program, 187
train-the-trainer and ambassador

programs, 195
transformations between versions,

137
Transport Control Protocol (see

TCP)
transport patterns for MyFiles API

(example), 65
troubleshooting, making easy for

developers, 52-56
building tooling, 55
meaningful errors, 52-55
providing troubleshooting tools,

179
tutorials for APIs, 49, 167
Twitch, deprecation of an API, 59
Twitter, 90

cursor-based pagination, 99

U
Uber developers and rate-limiting,

109
Unix timestamp as cursor, 99
Update method, 10

(see also CRUD operations)
URI components, specifying versions

in, 135
URIs, specification for MyFiles API

(example), 70
usage tactics examples, 157
user interfaces (UIs), 88
user stories (key), outlining

scenario 1 for MyFiles API (exam‐
ple), 64

scenario 2 for MyFiles API (exam‐
ple), 73

users, focusing on in API design, 2

users.conversations API method
(Slack), 94

V
value proposition, distilling for your

API, 151
verification tokens, 42
versioning APIs, 57, 133-141

additive-change strategy, 133
case study, Google Hangouts, 140
case study, Stripe, 139
explicit-version strategy, 134-138

policies for MAJOR and
MINOR changes, 138

process management, 141
vertical scaling, 85
videos

creating, 180
online videos and streaming, 196

W
WebHooks, 19-22, 90

comparison with WebSockets and
HTTP Streaming, 24

considerations for use in MyFiles
API (example), 66

MyFiles API Webhooks Spec
(example), 74-77

polling vs., 19
pros and cons for MyFiles event-

driven API (example), 74
security, 42-45

best practices, 45
Mutual Transport Layer Secu‐

rity, 44
request signing and WebHook

signatures, 43
thin payloads and API

retrieval, 44
verification tokens, 42

supporting, additional complexi‐
ties added by, 20

webinars and online training, 182
WebSockets, 22-23, 90

comparison with WebHooks and
HTTP Streaming, 24

216 | Index

pros and cons for MyFiles event-
driven API (example), 74

X
XML responses, REST APIs, 11

Y
YouTube API, value proposition, 151

Index | 217

About the Authors
Brenda Jin is an entrepreneur and software engineer. As a staff engi‐
neer on the Slack developer platform team, she designed, built, and
scaled APIs for third-party developers. As a board member and
chapter leader for Girl Develop It, Brenda has contributed to
numerous open source teaching materials and empowered thou‐
sands of women to learn web and software development.

Saurabh Sahni is a staff engineer on the developer platform team at
Slack. For the last eight years, he has been building and designing
developer platforms and APIs. Prior to working at Slack, Saurabh
led a team of engineers responsible for Yahoo Developer Network
infrastructure and developer tools, where he helped launch Yahoo
Mobile Developer Suite and several APIs.

Amir Shevat is a VP of developer experience at Twitch. He has
spent the past 15 years building developer products, APIs, and eco‐
systems around APIs at Slack, Microsoft, and Google. He is also the
author of Designing Bots (O’Reilly).

Colophon
The animal on the cover of Designing Web APIs is the Cozumel fox,
an undescribed species of the genus Urocyon. About a third of the
size of the gray fox, these canids are native to Cozumel Island, Mex‐
ico, where they have lived exclusively since at least the times of the
Mayan civilization. The last confirmed sighting of a Cozumel fox
was in 2001; it may already be extinct, but formal investigations have
not been conducted.

Many of the animals on O’Reilly covers are endangered; all of them
are important to the world. To learn more about how you can help,
go to animals.oreilly.com.

The cover image is from Beverley Tucker’s General Report upon The
Zoology of the Several Pacific Railroad Routes. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion
Pro; the heading font is Adobe Myriad Condensed; and the code
font is Dalton Maag’s Ubuntu Mono.

http://shop.oreilly.com/product/0636920057741.do
http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	How This Book Is Organized
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. What’s an API?
	Why Do We Need APIs?
	Who Are Our Users?
	The Business Case for APIs
	APIs for Internal Developers First, External Developers Second
	APIs for External Developers First, Internal Developers Second
	APIs as the Product

	What Makes an API Great?
	Closing Thoughts

	Chapter 2. API Paradigms
	Request–Response APIs
	Representational State Transfer
	Remote Procedure Call
	GraphQL

	Event-Driven APIs
	WebHooks
	WebSockets
	HTTP Streaming

	Closing Thoughts

	Chapter 3. API Security
	Authentication and Authorization
	OAuth
	Token Generation
	Scopes
	Token and Scope Validation
	Token Expiry and Refresh Tokens
	Listing and Revoking Authorizations
	OAuth Best Practices

	WebHooks Security
	Verification Tokens
	Request Signing and WebHook Signatures
	Mutual Transport Layer Security
	Thin Payloads and API Retrieval
	WebHook Security Best Practices

	Closing Thoughts

	Chapter 4. Design Best Practices
	Designing for Real-Life Use Cases
	Designing for a Great Developer Experience
	Make It Fast and Easy to Get Started
	Work Toward Consistency
	Make Troubleshooting Easy
	Make Your API Extensible

	Closing Thoughts

	Chapter 5. Design in Practice
	Scenario 1
	Define Business Objectives
	Outline Key User Stories
	Select Technology Architecture
	Write an API Specification

	Scenario 2
	Define the Problem
	Outline Key User Stories
	Select Technology Architecture
	Write an API Specification
	Validate Your Decisions

	Closing Thoughts

	Chapter 6. Scaling APIs
	Scaling Throughput
	Finding the Bottlenecks
	Adding Computing Resources
	Database Indexes
	Caching
	Doing Expensive Operations Asynchronously
	Scaling Throughput Best Practices

	Evolving Your API Design
	Introducing New Data Access Patterns
	Adding New API Methods
	Supporting Bulk Endpoints
	Adding New Options to Filter Results
	Evolving API Design Best Practices

	Paginating APIs
	Offset-Based Pagination
	Cursor-Based Pagination
	Pagination Best Practices

	Rate-Limiting APIs
	What Is Rate-Limiting?
	Implementation Strategies
	Rate Limits and Developers
	Rate-Limiting Best Practices

	Developer SDKs
	Rate-Limiting Support
	Pagination Support
	Using gzip
	Caching Frequently Used Data
	Error Handling and Exponential Back-Off
	SDK Best Practices

	Closing Thoughts

	Chapter 7. Managing Change
	Toward Consistency
	Automated Testing
	API description languages

	Backward Compatibility
	Planning for and Communicating Change
	Communication Plan
	Adding
	Removing
	Versioning

	Closing Thoughts

	Chapter 8. Building a Developer Ecosystem Strategy
	Developers, Developers, Developers
	The Hobbyist
	The Hacker
	The Business-Focused, Tech-Savvy User
	The Professional Developer
	And Many More

	Building a Developer Strategy
	Developer Segmentation
	Distilling the Value Proposition
	Defining Your Developer Funnel
	Mapping the Current and Future State
	Outlining Your Tactics

	Deriving Measurements
	Closing Thoughts

	Chapter 9. Developer Resources
	API Documentation
	Getting Started
	API Reference Documentation
	Tutorials
	Frequently Asked Questions
	Landing Page
	Changelog
	Terms of Service

	Samples and Snippets
	Code Samples
	Snippets

	Software Development Kits and Frameworks
	SDKs
	Frameworks

	Development Tools
	Debugging and Troubleshooting
	Sandboxes and API Testers

	Rich Media
	Videos
	Office Hours
	Webinars and Online Training

	Community Contribution
	Closing Thoughts

	Chapter 10. Developer Programs
	Defining Your Developer Programs
	Breadth and Depth Analysis

	Deep Developer Programs
	Top Partner Program
	Beta Program
	Design Sprints

	Broad Developer Programs
	Meetups and Community Events
	Hackathons
	Speaking at Events and Event Sponsorships
	Train-the-Trainer and Ambassador Programs
	Online Videos and Streaming
	Support, Forums, and Stack Overflow
	Credit Program

	Measuring Developer Programs
	Closing Thoughts

	Chapter 11. Conclusion
	Appendix A. API Design Worksheets
	Define Business Objectives
	The Problem
	The Impact
	Key User Stories
	Technology Architecture

	API Specification Template
	Title
	Authors
	Problem
	Solution
	Implementation
	Authentication
	Other Things We Considered
	Inputs, Outputs (REST, RPC)
	Events, Payloads (Event-Driven APIs)
	Errors

	Feedback Plan
	API Implementation Checklist:

	Index
	About the Authors
	Colophon

