

99 Bottles of OOP
Metz, Sandi;Owen, Katrina;Stankus, TJ

Table of Contents

Colophon

Your Rights As A Reader

Dedication

Preface

What This Book Is About

Who Should Read This Book

Before You Read This Book

How To Read This Book

Code Examples

Errata

About the Authors

About the Translators

Introduction

1. Rediscovering Simplicity

1.1. Simplifying Code

1.1.1. Incomprehensibly Concise

Consistency

Duplication

Names

1.1.2. Speculatively General

1.1.3. Concretely Abstract

1.1.4. Shameless Green

1.2. Judging Code

1.2.1. Evaluating Code Based on Opinion

1.2.2. Evaluating Code Based on Facts

Source Lines of Code

Cyclomatic Complexity

Assignments, Branches and Conditions (ABC) Metric

1.2.3. Comparing Solutions

1.3. Summary

2. Test Driving Shameless Green

2.1. Understanding Testing

2.2. Writing the First Test

2.3. Removing Duplication

2.4. Tolerating Duplication

2.5. Hewing to the Plan

2.6. Exposing Responsibilities

2.7. Choosing Names

2.8. Revealing Intentions

2.9. Writing Cost-E�ective Tests

2.10. Avoiding the Echo-Chamber

2.11. Considering Options

2.12. Summary

3. Unearthing Concepts

3.1. Listening to Change

3.2. Starting With the Open/Closed Principle

3.3. Recognizing Code Smells

3.4. Identifying the Best Point of Attack

3.5. Refactoring Systematically

3.6. Following the Flocking Rules

3.7. Converging on Abstractions

3.7.1. Focusing on Di�erence

3.7.2. Simplifying Hard Problems

3.7.3. Naming Concepts

3.7.4. Making Methodical Transformations

3.7.5. Refactoring Gradually

3.8. Summary

4. Practicing Horizontal Refactoring

4.1. Replacing Di�erence With Sameness

4.2. Equivocating About Names

4.3. Deriving Names From Responsibilities

4.4. Choosing Meaningful Defaults

4.5. Seeking Stable Landing Points

4.6. Obeying the Liskov Substitution Principle

4.7. Taking Bigger Steps

4.8. Discovering Deeper Abstractions

4.9. Depending on Abstractions

4.10. Summary

5. Separating Responsibilities

5.1. Selecting the Target Code Smell

5.1.1. Identifying Patterns in Code

5.1.2. Spotting Common Qualities

5.1.3. Enumerating Flocked Method Commonalities

5.1.4. Insisting Upon Messages

5.2. Extracting Classes

5.2.1. Modeling Abstractions

5.2.2. Naming Classes

5.2.3. Extracting BottleNumber

5.2.4. Removing Arguments

5.2.5. Trusting the Process

5.3. Appreciating Immutability

5.4. Assuming Fast Enough

5.5. Creating BottleNumbers

5.6. Recognizing Liskov Violations

5.7. Summary

6. Achieving Openness

6.1. Consolidating Data Clumps

6.2. Making Sense of Conditionals

6.3. Replacing Conditionals with Polymorphism

6.3.1. Dismembering Conditionals

6.3.2. Manufacturing Objects

6.3.3. Prevailing with Polymorphism

6.4. Transitioning Between Types

6.5. Making the Easy Change

6.6. Defending the Domain

6.7. Summary

7. Manufacturing Intelligence

7.1. Contrasting the Concrete Factory with Shameless Green

7.2. Fathoming Factories

7.3. Opening the Factory

7.4. Supporting Arbitrary Class Names

7.5. Dispersing The Choosing Logic

7.6. Self-registering Candidates

7.7. Summary

8. Developing a Programming Aesthetic

8.1. Appreciating the Mechanical Process

8.2. Clarifying Responsibilities with Pseudocode

8.3. Extracting the Verse

8.4. Coding by Wishful Thinking

8.5. Inverting Dependencies

8.5.1. Injecting Dependencies

8.5.2. Isolating Variants

8.5.3. Grappling with Inversion

8.6. Obeying the Law of Demeter

8.6.1. Understanding the Law

8.6.2. Curing Demeter Violations

8.7. Identifying What The Verse Method Wants

8.8. Pushing Object Creation to the Edge

8.9. Summary

9. Reaping the Bene�ts of Design

9.1. Choosing Which Units to Test

9.1.1. Contrasting Unit and Integration Tests

9.1.2. Foregoing Tests

9.2. Reorganizing Tests

9.2.1. Gathering BottleVerse Tests

9.2.2. Revealing Intent

9.3. Seeking Context Independence

9.3.1. Examining Bottles' Responsibilities

9.3.2. Purifying Tests With Fakes

9.3.3. Purging Redundant Tests

9.3.4. Pro�ting from Loose Coupling

9.4. Communicating With the Future

9.4.1. Enriching Code with Signals

9.4.2. Verifying Roles

9.4.3. Obliterating Obsolete Context

9.5. Summary

Afterword

Appendix A: Initial Exercise

Getting the exercise

Doing the exercise

Test Suite

References

Acknowledgements

Colophon

Colophon
Version: 2.1.1

Version Date: 21-01-20

Published By: Potato Canyon Software, LLC

2nd Edition

Copyright: 2021

Cover Design and Art by Lindsey Morris.

Edited by Julia Trimmer.

Created using Asciidoctor.

PHP Logo: Vincent Pontier GPL

http://asciidoctor.org/
https://commons.wikimedia.org/wiki/File:Webysther_20160423_-_Elephpant.svg
http://www.gnu.org/licenses/gpl.html

Your Rights As A Reader

Your Rights As A Reader
Thank you for buying 99 Bottles of OOP. As the authors of a self-published book, we very much
appreciate your purchase.

This book is chock-full of lessons, and readers often write asking if they can share them with
others. We commend your desire to pass on what you’ve learned, and ask only that while doing
so you respect our rights as authors. This means that while we encourage you to spread the
underlying ideas of the book, we restrict your use of its actual content (the specific examples,
explanations, and descriptions).

Our bargain with you is as follows:

1. Your purchase entitles you to a single, non-transferable license for your personal use of
the ebook related files. You may read and download the ebook you purchased to your
personal devices only.

You may not:

Sell the book

Give it away

Distribute it in any way

Print it (except for your personal use)

2. You may use 99 Bottles of OOP as curriculum in a public education setting (university,
code school, secondary school) as long as every student buys or is provided with a legal
copy of the book.

Volume discounts are available, and there’s a free-book-for-a-postcard program. Contact
human@99bottlesbook.com for information about bulk purchases.

3. You may share one small section (a chapter or less) at a free, public meet-up as long as the
material is properly attributed.

4. You may not teach a course based on the entire book, even if this course is free and open
to the public.

5. You may not use any part of 99 Bottles of OOP in any endeavor in which you charge for
your services.

https://www.sandimetz.com/99bottles-postcard/
mailto:human@99bottlesbook.com

Dedication

Dedication
Sandi

To Amy, for everything she is and does, and to Jasper, who taught me that nothing trumps a good
walk.

Katrina

To Sander, whose persistence is out of this world.

TJ

To those who have encouraged me, especially my parents and teachers. And to Graylyn, who I try to
encourage most.

What This Book Is About

Preface
It turns out that everything you need to know about Object-Oriented Design (OOD) can be
learned from the "99 Bottles of Beer" (or in this case, milk) song.

Well, perhaps not everything, but quite certainly a great many things.

The song is simultaneously easy to understand and full of hidden complexity, which makes it the
perfect skeleton upon which to hang lessons in OOD. The lessons embedded within the song are
so useful, and so broad, that over the last three years it has become a core part of the curriculum
of Sandi Metz’s Practical Object-Oriented Design course.

The thoughts in this book reflect countless hours of discussion and collaboration between Sandi,
Katrina Owen, and TJ Stankus. These ideas have been battle-tested by hundreds of students, and
refined by a series of deeply thoughtful co-instructors, beginning with Katrina. While none of the
authors have the hubris to claim perfect understanding, all have learned a great deal about
Object-Oriented Design from teaching this song, and feel compelled to write it all down.

Therefore, this book, now in its second edition. We hope that you find it both useful and
enjoyable.

What This Book Is About
This book is about writing cost-effective, maintainable, and pleasing code.

Chapter 1 explores how to decide if code is "good enough." This chapter uses metrics to compare
several possible solutions to the 99 Bottles problem. It introduces a type of solution known as
Shameless Green, and argues that although Shameless Green is neither clever nor changeable, it
is the best initial solution to many problems.

Chapter 2 is a primer for Test-Driven Development (TDD), which is used to find Shameless Green.
This chapter is concerned with deciding what to test, and with creating tests that happily tolerate
changes to the underlying code.

Chapter 3 introduces a new requirement (six-pack), which leads to a discussion of how to decide
where to start when changing code. This chapter examines the Open/Closed Principle, and then
explores code smells. The chapter then defines a simple set of Flocking Rules, which guide a step-
by-step refactoring of code.

Chapter 4 continues the step-by-step refactoring begun in Chapter 3. It iteratively applies the
Flocking Rules, eventually stumbles across the need for the Liskov Substitution Principle, and
ultimately unearths a deeply hidden abstraction.

Chapter 5 inventories the existing code for smells, chooses the most prominent one, and uses it to
trigger the creation of a new class. Along the way, it takes a hard look at immutability,
performance, and caching.

https://en.wikipedia.org/wiki/99_Bottles_of_Beer
http://www.sandimetz.com/courses/

Who Should Read This Book

Chapter 6 performs a miracle that not only removes the conditionals, but also allows you to
finally implement the new six-pack requirement without altering existing code.

Chapter 7 examines the tradeoffs along a continuum of six different styles of Factories. It begins
by exploring a simple, hard-coded conditional, and ends with a factory whose candidate objects
both self-register, and also supply the logic needed to choose them.

Chapter 8 introduces another new requirement—to vary the lyrics. It uses this requirement to
introduce the idea of a programming aesthetic, or set of rules to guide you in times of
uncertainty. The chapter ends with a list of specific suggestions for deciding when it’s
worthwhile to voluntarily improve code.

Chapter 9 comes full circle and returns to testing. It takes advantage of the improved design to
write better tests, and then uses the new tests as a spur to improve the final design.

Who Should Read This Book
The lessons in the book have been found useful by programmers with a broad range of
experience, from rank novice through grizzled veteran. Despite what one might predict, novices
often have an easier time with this material. As they are unencumbered by prior knowledge,
their minds are open, and easily absorb these ideas.

It’s the veterans who struggle. Their habits are deeply ingrained. They know themselves to be
good at programming. They feel quick, and efficient, and so resist new techniques, especially
when those techniques temporarily slow them down.

This book will be useful if you are a veteran, but it cannot be denied that it teaches programming
techniques that likely contradict your current practice. Changing entrenched ideas can be
painful. However, you cannot make informed decisions about the value of new ideas unless you
thoroughly understand them, and to understand them you must commit, wholeheartedly, to
learning them.

Therefore, if you are a veteran, it’s best to adopt the novice mindset before reading on. Set aside
prior beliefs, and dedicate yourself to what follows. While reading, resist the urge to resist. Read
the entire book, work the problems, and only then decide whether to integrate these ideas into
your daily practice.

Before You Read This Book
You’ll learn more from this book if you spend 30 minutes working on the "99 Bottles of Milk"
problem before starting to read. See the appendix for instructions.

If you just want to read on but you don’t know PHP, have no fear. Your purchase of this book
entitles you to all variants (Ruby, Javascript, and PHP), and each language variant comes in beer
and milk flavors. Every combination of variant and flavor was available for download during
your purchase, and one of them should suit.

How To Read This Book

Regardless of which version you read, be assured that this book is not about any specific
language or beverage; it’s about object-oriented programming and design. The technical content
of every version is essentially the same.

How To Read This Book
The chapters build upon one another, and so should be read in order. While isolated sections
may be useful, the whole is more than the sum of its parts. The ideas gain power in relation to
one another.

To get the most from the book, work the code samples as you read along. With active
participation, you’ll learn more, understand better, and retain longer. While reading has value,
doing has more.

Code Examples
The code examples in this version of the book are written in PHP. The source code shown in the
book is on GitHub. The majority of code listings are extracted from this repository; and for those,
the listing numbers link to the associated code in the repo.

The exercises rely on PHPUnit.

Errata
A current list of errata is located at sandimetz.com/99bottles-errata. If you find additional errors,
please email them to errata@99bottlesbook.com.

About the Authors
Sandi Metz

Sandi is the author of Practical Object-Oriented Design in Ruby. She has thirty years of
experience working on large object-oriented applications. She’s spoken about programming,
object-oriented design and refactoring at numerous conferences including Agile Alliance
Technical Conference, Craft Conf, Øredev, RailsConf, and RubyConf. She believes in simple code
and straightforward explanations, and is the proud recipient of a Ruby Hero award for her
contribution to the Ruby community. She prefers working software, practical solutions and
lengthy bicycle trips (not necessarily in that order). Find out more about Sandi at sandimetz.com.

Katrina Owen

Katrina works for GitHub as an Advocate on the Open Source team. Katrina has ten years of
experience and works primarily in Go and Ruby. She is the creator of exercism.io, a platform for
programming skill development in more than 30 languages. She’s spoken about refactoring and
open source at international conferences such as NordicRuby, Mix-IT, Software Craftsmanship
North America, OSCON, Bath Ruby and RailsConf. She received a Ruby Hero award for her
contribution to the Ruby community. When programming, her focus is on automation, workflow
optimization, and refactoring. Find out more about Katrina at kytrinyx.com.

https://github.com/sandimetz/99bottles_php_milk
http://www.sandimetz.com/99bottles-errata
mailto:errata@99bottlesbook.com
http://www.poodr.com/
http://sandimetz.com/
http://exercism.io/
http://kytrinyx.com/

About the Translators

TJ Stankus

TJ works as a software developer for boldfacet LLC and co-instructs software design courses with
Sandi. He began his programming career over 20 years ago by accident. By hacking together
WordPerfect macros to streamline his job as a proofreader, he discovered he loved programming
as much as any creative activity he’d ever pursued. He has worked in mobile applications and
back-end web development. He even wrote an SMTP server back when that seemed like a good
idea. Today, he works primarily with Elixir and Ruby. His main interests lie not in specific
programming languages, but in the essential design ideas that span programming languages and
paradigms. Find out more about TJ at tj.stank.us.

About the Translators
Tom Stuart

The JavaScript translation was done by Tom Stuart. Tom is a computer scientist, programmer
and technical leader. He’s the former CTO of FutureLearn and Econsultancy. He has lectured on
optimising compilers at the University of Cambridge and written about technology for the
Guardian.

Tom is the proud author of Understanding Computation, which was published by O’Reilly in
2013.

Matthew Fonda

Matthew Fonda provided deeply thoughtful and extremely helpful guidance about how to think
about PHP and OO. Matthew is CTO at eNotes.com, where he has spent the past 15 years building
a platform to help students learn. During his time at eNotes, he has learned firsthand the
importance of building codebases that are easy to change over time, and is more certain than
ever that the answer to every question in software development is "it depends". Matthew is a
longtime member of the PHP community and occasional contributor to PHP’s documentation.
When not at the computer, you can find Matthew snowboarding in the mountains of the Pacific
Northwest.

The Stocktons

Brothers Dave and Dann Stockton spent countless hours pondering the initial PHP translation of
the 1st edition. Theirs was the first attempt at transforming the book to use another
programming language, and as such they suffered all the pain one might imagine. We are
eternally grateful for their efforts and contributions.

The PHP shown in the book was written by Katrina, with the generous input of Matthew, Dave
and Dann.

https://tj.stank.us/
https://www.futurelearn.com/
https://econsultancy.com/
http://www.cl.cam.ac.uk/teaching/2006/OptComp/slides/
http://computationbook.com/
http://www.oreilly.com/

Introduction

Introduction
This book creates a simple solution to the "99 Bottles of Beer" (or in this case, milk) song problem,
and then applies a series of refactorings to improve the design of the code.

Put that way, the topic sounds so painfully obvious that one might reasonably wonder if this
entire tome could be replaced by a few samples of code. These refactoring "end points" would be
a fraction of the size of this book, and a vastly quicker read. Unfortunately, they would teach you
almost nothing about programming. Writing code is the process of working your way to the next
stable end point, not the end point itself. You don’t know the answer in advance, but instead, you
are seeking it.

This book documents every step down every path of code, and so provides a guided-tour of the
decisions made along the way. It not only shows how good code looks when it’s done, it reveals
the thoughts that produced it. It aims to leave nothing out. It flings back the veil behind which
sausage is being made.

A few final notes before diving into the book proper.

The chapters that follow apply a general, broad solution to a specific, narrow problem. The
authors cheerfully stipulate to the fact that you are unlikely to encounter the "99 Bottles of Milk"
song in your daily work, and that problems of similar size are best solved very simply. For the
purposes of this book, "99 Bottles" is convenient because it’s simultaneously easily
understandable and surprisingly complex, and so provides an expedient stand-in for larger
problems. Once you understand the solutions here, you’ll be able to apply them to the much
larger real world.

Also, the book’s code examples generally adhere to accepted style guidelines, but they
occasionally indulge in extra line breaks. This means that a bit of code that you might expect to
see on one line is instead spread over two. These preemptive breaks allow smaller devices to
display code listings without arbitrarily wrapping lines. They are for reading expediency, and not
an endorsement of this style.

With that, on to the book.

https://en.wikipedia.org/wiki/99_Bottles_of_Beer
https://en.wikipedia.org/wiki/Stipulation

1. Rediscovering Simplicity

Page 1

1. Rediscovering Simplicity
When you were new to programming you wrote simple code. Although you may not have
appreciated it at the time, this was a great strength. Since then, you’ve learned new skills, tackled
harder problems, and produced increasingly complex solutions. Experience has taught you that
most code will someday change, and you’ve begun to craft it in anticipation of that day.
Complexity seems both natural and inevitable.

Where you once optimized code for understandability, you now focus on its changeability. Your
code is less concrete but more abstract—you’ve made it initially harder to understand in hopes
that it will ultimately be easier to maintain.

This is the basic promise of Object-Oriented Design (OOD): that if you’re willing to accept
increases in the complexity of your code along some dimensions, you’ll be rewarded with
decreases in complexity along others. OOD doesn’t claim to be free; it merely asserts that its
benefits outweigh its costs.

Design decisions inevitably involve trade-offs. There’s always a cost. For example, if you’ve
duplicated a bit of code in many places, the Don’t Repeat Yourself (DRY) principle tells you to
extract the duplication into a single common method and then invoke this new method in place
of the old code. DRY is a great idea, but that doesn’t mean it’s free. The price you pay for DRYing
out code is that the invoker of the new method no longer knows the result, only the message it
should send. If you’re willing to pay this price, that is, you are willing to be ignorant of the actual
behavior, the reward you reap is that when the behavior changes, you need alter your code in
only one place. The argument that OOD makes is that this bargain will save you money.

Did you divide one large class into many small ones? You can now reuse the new classes
independently of one another, but it’s no longer obvious how they fit together for the original
case. Have you injected a dependency instead of hard-coding the class name of a collaborator?
The receiver can now freely depend on new and previously unforeseen objects, but it must
remain ignorant of their actual class.

The examples above change code by increasing its level of abstraction. DRYing out code inserts a
level of indirection between the place that uses behavior and the place that defines it. Breaking
one large class into many forces the creation of something new to embody the relationship
between the pieces. Injecting a dependency transforms the receiver into something that depends
on an abstract role rather than a concrete class.

Each of these design choices has costs, and it only makes sense to pay these costs if you also
accrue some offsetting benefits. Design is thus about picking the right abstractions. If you choose
well, your code will be expressive, understandable and flexible, and everyone will love both it
and you. However, if you get the abstractions wrong, your code will be convoluted, confusing,
and costly, and your programming peers will hate you.

Unfortunately, abstractions are hard, and even with the best of intentions, it’s easy to get them
wrong. Well-meaning programmers tend to over-anticipate abstractions, inferring them

1.1.1. Incomprehensibly Concise

Page 2

prematurely from incomplete information. Early abstractions are often not quite right, and
therefore they create a catch-22.[1] You can’t create the right abstraction until you fully
understand the code, but the existence of the wrong abstraction may prevent you from ever
doing so. This suggests that you should not reach for abstractions, but instead, you should resist
them until they absolutely insist upon being created.

This book is about finding the right abstraction. This first chapter starts by peeling away the fog of
complexity and defining what it means to write simple code.

1.1. Simplifying Code
The code you write should meet two often-contradictory goals. It must remain concrete enough to
be understood while simultaneously being abstract enough to allow for change.

Imagine a continuum with "most concrete" at one end and "most abstract" at
the other. Code at the concrete end might be expressed as a single long
procedure full of if statements. Code at the abstract end might consist of many
classes, each with one method containing a single line of code.

The best solution for most problems lies not at the extremes of this continuum,
but somewhere in the middle. There’s a sweet spot that represents the perfect
compromise between comprehension and changeability, and it’s your job as a
programmer to find it.

This section discusses four different solutions to the "99 Bottles of Milk" problem. These solutions
vary in complexity and thus illustrate different points along this continuum.

You must now make a decision. As you were forewarned in the preface, the best way to learn
from this book is to work the exercises yourself. If you continue reading before solving the
problem in your own way, your ideas will be contaminated by the code that follows. Therefore, if
you plan to work along, go do the 99 Bottles exercise now. When you’re finished, you’ll be ready
to examine the following four solutions.

1.1.1. Incomprehensibly Concise
Here’s the first of four different solutions to the "99 Bottles" song.

Listing 1.1: Incomprehensibly Concise
 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }
 5
 6 public function verses(int $hi, int $lo): string {
 7 return implode("\n", array_map([$this, 'verse'], range($hi, $lo)));
 8 }
 9
10 public function verse(int $n): string {
11 return
12 ($n === 0 ? 'No more' : $n) . ' bottle' . ($n === 1 ? '' : 's') .
13 ' of milk on the wall, ' .
14 ($n === 0 ? 'no more' : $n) . ' bottle' . ($n === 1 ? '' : 's') .

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-initial-variations-10/lib/Bottles.php#L3-L23

1.1.1. Incomprehensibly Concise

Page 3

15 " of milk.\n" .
16 ($n > 0 ? 'Take ' . ($n > 1 ? 'one' : 'it') . ' down and pass it around, '
17 : 'Go to the store and buy some more, ') .
18 ($n-1 < 0 ? 99 : ($n-1 === 0 ? 'no more' : $n-1)) .
19 ' bottle' . ($n-1 === 1 ? '' : 's') . " of milk on the wall.\n";
20 }
21 }

This first solution embeds a great deal of logic into the verse string. The code above performs a
neat trick. It manages to be concise to the point of incomprehensibility while simultaneously
retaining loads of duplication. This code is hard to understand because it is inconsistent and
duplicative, and because it contains hidden concepts that it does not name.

Consistency
The conditionals are confusing. Most use the simple ternary form, as on line 12:

$n === 0 ? 'No more' : $n

But some nest a ternary within a ternary, as on line 18, which is best left without comment:

($n-1 < 0 ? 99 : ($n-1 === 0 ? 'no more' : $n-1))

Nested conditionals make code harder for humans to parse; this style of coding raises costs
without providing benefits.

Duplication
The code duplicates both data and logic. Having multiple copies of the strings "of milk" and "on
the wall" isn’t great, but at least string duplication is easy to see and understand. Logic, however,
is harder to comprehend than data, and duplicated logic is doubly so. Of course, if you want to
achieve maximum confusion, you can interpolate duplicated logic inside strings, as does the
verse method above.

For example, "bottle" pluralization is done in three places. The code to do this is identical in two of
the places, on lines 12 and 14:

($n === 1 ? '' : 's')

But later, on line 19, the pluralization logic is subtly different. Suddenly it’s not $n that matters,
but $n-1:

($n-1 === 1 ? '' : 's')

Duplication of logic suggests that there are concepts hidden in the code that are not yet visible
because they haven’t been isolated and named. The need to sometimes say "bottle" and other
times say "bottles" means something, and the need to sometimes use $n and other times use $n-1
means something else. The code gives no clue about what these meanings might be; you’re left to
figure this out for yourself.

Names

1.1.1. Incomprehensibly Concise

Page 4

The most obvious point to be made about the names in the verse method of Listing 1.1:
Incomprehensibly Concise is that there aren’t any. The verse string contains embedded logic.
Each bit of logic serves some purpose, and it is up to you to construct a mental map of what these
purposes might be.

This code would be easier to understand if it did not place that burden upon you, the intrepid
reader. The logic that’s hidden inside the verse string should be dispersed into methods, and
verse should fill itself with values by sending messages.

Terminology: Method and Sending Messages
In generic OO terminology, a "method" is defined on an object, and contains behavior. In the
previous example, the Bottles class defines a method named song.

You "send a message" to an object to invoke behavior. In the aforementioned example, the
song method sends the verses message to the receiver $this.

Therefore, methods are defined, and messages are sent.

You may find yourself programming in languages where folks routinely employ other terms
for these ideas. For example, it might be more common to hear "function" rather than
method, or "call" instead of send.

While the terms method and function are generally interchangeable (at least when referring
to instance methods on objects), the words send and call imply slightly different things.
Understanding this difference is important for your OO mindset.

Referring to the act of invoking behavior as "calling" a method or function suggests (albeit
mildly) that you know what that called code does. Alternately, describing this act as
"sending a message" leaves a bit more mental space between the sender’s intention and the
receiver’s implementation. This virtual gap encourages you to create message senders that
are willfully ignorant of implementation details, and fosters independence between senders
and receivers. This independence is a core feature of maintainable object-oriented code.

Thus, while all of this terminology is suitable in some situations, this book generally prefers
"send a message" to "call a method/function", and you’ll see this idea phrased that way
throughout.

Creating a method requires identifying the code you’d like to extract and deciding on a method
name. This, in turn, requires naming the concept, and naming things is just plain hard. In the case
above, it’s especially hard. This code not only contains many hidden concepts, but those concepts
are mixed together, conflated, such that their individual natures are obscured. Combining many
ideas into a small section of code makes it difficult to isolate and name any single concept.

When you first write a piece of code, you obviously know what it does. Therefore, during initial
development, the price you pay for poor names is relatively low. However, code is read many

1.1.1. Incomprehensibly Concise

Page 5

more times than it is written, and its ultimate cost is often very high and paid by someone else.
Writing code is like writing a book; your efforts are for other readers. Although the struggle for
good names is painful, it is worth the effort if you wish your work to survive to be read. Code
clarity is built upon names.

Problems with consistency, duplication, and naming conspire to make the code in Listing 1.1:
Incomprehensibly Concise likely to be costly.

Note that the above assertion is, at this point, an unsupported opinion. The best way to judge code
would be to compare its value to its cost, but unfortunately it’s hard to get good data. Judgments
about code are therefore commonly reduced to individual opinion, and humans are not always in
accord. There’s no perfect solution to this problem, but the Judging Code section, later in this
chapter, suggests ways to acquire empirical data about the goodness of code.

Independent of all judgment about how well a bit of code is arranged, code is also charged with
doing what it’s supposed to do now as well as being easy to alter so that it can do more later.
While it’s difficult to get exact figures for value and cost, asking the following questions will give
you insight into the potential expense of a bit of code:

1. How difficult was it to write?

2. How hard is it to understand?

3. How expensive will it be to change?

The past ("was it") is a memory, the future ("will it be") is imaginary, but the present ("is it") is true
right now. The very act of looking at a piece of code declares that you wish to understand it at this
moment. Questions 1 and 3 above may or may not concern you, but question 2 always applies.

Code is easy to understand when it clearly reflects the problem it’s solving, and thus openly
exposes that problem’s domain. If Listing 1.1: Incomprehensibly Concise openly exposed the "99
Bottles" domain, a brief glance at the code would answer these questions:

1. How many verse variants are there?

2. Which verses are most alike? In what way?

3. Which verses are most different, and in what way?

4. What is the rule to determine which verse comes next?

These questions reflect core concepts of the problem, yet none of their answers are apparent in
this solution. The number of variants, the difference between the variants, and the algorithm for
looping are distressingly obscure. This code does not reflect its domain, and therefore you can
infer that it was difficult to write and will be a challenge to change. If you had to characterize the
goal of the writer of Listing 1.1: Incomprehensibly Concise, you might suggest that their highest
priority was brevity. Brevity may be the soul of wit, but it quickly becomes tedious in code.

Incomprehensible conciseness is clearly not the best solution for the "99 Bottles" problem. It’s
time to examine one that’s more verbose.

1.1.2. Speculatively General

Page 6

1.1.2. Speculatively General
This next solution errs in a different direction. It does many things well but can’t resist indulging
in unnecessary complexity. Have a look at the code below:

Listing 1.2: Speculatively General
 1 class Bottles {
 2 private $noMore;
 3 private $lastOne;
 4 private $penultimate;
 5 private $default;
 6
 7 public function __construct() {
 8 $this->noMore = function (object $verse): string {
 9 return
10 "No more bottles of milk on the wall, " .
11 "no more bottles of milk.\n" .
12 "Go to the store and buy some more, " .
13 "99 bottles of milk on the wall.\n";
14 };
15 $this->lastOne = function (object $verse): string {
16 return
17 "1 bottle of milk on the wall, " .
18 "1 bottle of milk.\n" .
19 "Take it down and pass it around, " .
20 "no more bottles of milk on the wall.\n";
21 };
22 $this->penultimate = function (object $verse): string {
23 return
24 "2 bottles of milk on the wall, " .
25 "2 bottles of milk.\n" .
26 "Take one down and pass it around, " .
27 "1 bottle of milk on the wall.\n";
28 };
29 $this->default = function (object $verse): string {
30 return
31 $verse->number() . " bottles of milk on the wall, " .
32 $verse->number() . " bottles of milk.\n" .
33 "Take one down and pass it around, " .
34 ($verse->number() - 1) . " bottles of milk on the wall.\n";
35 };
36 }
37
38 public function song(): string {
39 return $this->verses(99, 0);
40 }
41
42 public function verses(int $finish, int $start): string {
43 return implode("\n", array_map([$this, 'verse'], range($finish, $start)));
44 }
45
46 public function verse(int $number): string {
47 return $this->verseFor($number)->text();
48 }
49
50 private function verseFor(int $number): object {
51 switch ($number) {
52 case 0: return new Verse($number, $this->noMore);
53 case 1: return new Verse($number, $this->lastOne);
54 case 2: return new Verse($number, $this->penultimate);
55 default: return new Verse($number, $this->default);
56 }
57 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-initial-variations-20/lib/Bottles.php#L3-L78

1.1.2. Speculatively General

Page 7

58 }
59
60 class Verse {
61 protected $number;
62 private $lyrics;
63
64 public function __construct(int $number, object $lyrics) {
65 $this->number = $number;
66 $this->lyrics = $lyrics;
67 }
68
69 public function text(): string {
70 return ($this->lyrics)($this);
71 }
72
73 public function number(): string {
74 return $this->number;
75 }
76 }

If you find this code less than clear, you’re not alone. It’s confusing enough to warrant an
explanation, but because the explanation naturally reflects the code, it’s confusing in its own
right. Don’t worry if the following paragraphs muddle things further. Their purpose is to help you
appreciate the complexity rather than understand the details.

The code above first defines four closures (lines 8, 15, 22, and 29) and saves them as object
properties (noMore, lastOne, penultimate, and default). Notice that each closure takes
argument verse but only default actually refers to it. The code then defines the song and
verses methods. Next comes the verse method, which passes the current verse number to
verseFor and sends text to the result (line 47). This is the line of code that returns the correct
string for a verse of the song.

Things get more interesting in verseFor, but before pondering that method, look ahead to the
Verse class on line 60. Verse instances are initialized with two arguments, $number and
$lyrics, and they respond to two messages, number and text. The number method simply
returns the verse number that was passed to __construct. The text method is more
complicated; it calls lyrics, passing $this as an argument.

If you now return to verseFor and examine lines 52-55, you can see that when instances of
Verse are created, the $number argument is a verse number and the $lyrics argument is one of
the closures. The verseFor method gets invoked for every verse of the song, and therefore, one
hundred instances of Verse will be created, each containing a verse number and the closure that
corresponds to that number.

To summarize, sending verse($number) to an instance of Bottles invokes
verseFor($number), which uses the value of $number to select the correct closure on which to
create and return an instance of Verse. The verse method then sends text to the returned
Verse, which in turn calls the closure, passing $this as an argument. This invokes the closure,
which may or may not actually use the argument that was passed. Regardless, executing the
closure returns a string that contains the lyrics for one verse of the song.

1.1.2. Speculatively General

Page 8

You can be forgiven if you suspect that this is unduly complicated. It is. However, it’s curious that
despite this complexity, Listing 1.2: Speculatively General does a much better job than Listing 1.1:
Incomprehensibly Concise of answering the domain questions:

1. How many verse variants are there?
There are four verse variants (they start on lines 8, 15, 22, and 29 above).

2. Which verses are most alike? In what way?
Verses 3-99 are most alike (as evidenced by the fact that all are produced by the default
variant).

3. Which verses are most different? In what way?
Verses 0, 1 and 2 are clearly different from 3-99, although it’s not obvious in what way.

4. What is the rule to determine which verse should be sung next?
Buried deep within the noMore closure is a hard-coded "99," which might cause one to
infer that verse 99 follows verse 0.

This solution’s answers to the first three questions above are quite an improvement over those of
Listing 1.1: Incomprehensibly Concise. However, all is not perfect; it still does poorly on the
value/cost questions:

1. How difficult was it to write?
There’s far more code here than is needed to pass the tests. This unnecessary code took
time to write.

2. How hard is it to understand?
The many levels of indirection are confusing. Their existence implies necessity, but you
could study this code for a long time without discerning why they are needed.

3. How expensive will it be to change?
The mere fact that indirection exists suggests that it’s important. You may feel compelled to
understand its purpose before making changes.

As you can see from these answers, this solution does a good job of exposing core concepts, but
does a bad job of being worth its cost. This good job/bad job divide reflects a fundamental fissure
in the code.

Aside from the song and verses methods, the code does two basic things. First, it defines
templates for each kind of verse (lines 7-36), and second, it chooses the appropriate template for a
specific verse number and renders that verse’s lyrics (lines 46-76).

Notice that the verse templates contain all of the information needed to answer the domain
questions. There are four templates, and therefore, there must be four verse variants. The
default template handles verses 3 through 99, so these verses are clearly most alike. Verses 0, 1,
and 2 have their own special templates, so each must be unique. The four templates (if you ignore
the fact that they’re stored in closures) are very straightforward, which makes answering the
domain questions easy.

1.1.3. Concretely Abstract

Page 9

But it’s not the templates that are costly; it’s the code that chooses a template and renders the
lyrics for a verse. This choosing/rendering code is overly complicated, and while complexity is not
forbidden, it is required to pay its own way. In this case, complexity does not.

Instead of 1) defining a closure to hold a template, 2) creating a new object to hold the closure,
and 3) invoking the closure with $this as an argument, the code could merely have put each of
the four templates into a method and then used the switch statement on lines 52-55 to invoke the
correct one. Neither the closures nor the Verse class are needed, and the route between them is a
series of pointless jumps through needless hoops.

Given the obvious superiority of this alternative implementation, how on earth did the "calling a
closure" variant come about? At this remove,[2] it’s difficult to be certain of the motivation, but the
code gives the impression that its author feared that the logic for selecting or invoking a template
would someday need to change, and so added levels of indirection in a misguided attempt to
protect against that day.

They did not succeed. Relative to the alternative, Listing 1.2: Speculatively General is harder to
understand without being easier to change. The additional complexity does not pay off. The
author may have acted with the best of intentions, but somewhere along the way, their
commitment to the plan overcame good sense.

Programmers love clever code. It’s like a neat card trick that uses sleight of hand and misdirection
to make magic. Writing it, or suddenly understanding it, supplies a little burst of appreciative
pleasure. However, this very pleasure distracts the eye and seduces the mind, and allows
cleverness to worm its way into inappropriate places.

You must resist being clever for its own sake. If you are capable of conceiving and implementing
a solution as complex as Listing 1.2: Speculatively General, it is incumbent upon you to accept the
harder task and write simpler code.

Neither Listing 1.2: Speculatively General nor Listing 1.1: Incomprehensibly Concise is the best
solution for "99 Bottles". Perhaps, as was true for porridge, the third solution will be just right.[3]

1.1.3. Concretely Abstract
This solution valiantly attempts to name the concepts in the domain. Here’s the code:

Listing 1.3: Concretely Abstract
 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }
 5
 6 public function verses(int $bottlesAtStart, int $bottlesAtEnd): string {
 7 return implode("\n", array_map([$this, 'verse'], range($bottlesAtStart, $bottlesAtEnd)));
 8 }
 9
10 public function verse(int $bottles): string {
11 return (string)new Round($bottles);
12 }
13 }
14

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-initial-variations-30/lib/Bottles.php#L38-L87

1.1.3. Concretely Abstract

Page 10

15 class Round {
16 public $bottles;
17
18 public function __construct(int $bottles) {
19 $this->bottles = $bottles;
20 }
21
22 public function __toString(): string {
23 return $this->challenge() . $this->response();
24 }
25
26 public function challenge(): string {
27 return ucfirst($this->bottlesOfMilk()) . ' ' .
28 $this->onWall() . ', ' . $this->bottlesOfMilk() . ".\n";
29 }
30
31 public function response(): string {
32 return $this->goToTheStoreOrTakeOneDown() . ', ' .
33 $this->bottlesOfMilk() . ' ' . $this->onWall() . ".\n";
34 }
35
36 public function bottlesOfMilk(): string {
37 return $this->anglicizedBottleCount() . ' ' .
38 $this->pluralizedBottleForm() . ' of ' . $this->milk();
39 }
40
41 public function milk(): string {
42 return 'milk';
43 }
44
45 public function onWall(): string {
46 return 'on the wall';
47 }
48
49 public function pluralizedBottleForm(): string {
50 return $this->lastMilk() ? 'bottle' : 'bottles';
51 }
52
53 public function anglicizedBottleCount(): string {
54 return $this->allOut() ?
55 'no more' : (string)$this->bottles;
56 }
57
58 public function goToTheStoreOrTakeOneDown(): string {
59 if ($this->allOut()) {
60 $this->bottles = 99;
61 return $this->buyNewMilk();
62 } else {
63 $lyrics = $this->drinkMilk();
64 $this->bottles--;
65 return $lyrics;
66 }
67 }
68
69 public function buyNewMilk(): string {
70 return 'Go to the store and buy some more';
71 }
72
73 public function drinkMilk(): string {
74 return 'Take ' . $this->itOrOne() . ' down and pass it around';
75 }
76
77 public function itOrOne(): string {
78 return $this->lastMilk() ? 'it' : 'one';
79 }

1.1.3. Concretely Abstract

Page 11

80
81 public function allOut(): bool {
82 return $this->bottles === 0;
83 }
84
85 public function lastMilk(): bool {
86 return $this->bottles === 1;
87 }
88 }

This solution is characterized by having many small methods. This is normally a good thing, but
somehow in this case it’s gone badly wrong. Have a look at how this solution does on the domain
questions:

1. How many verse variants are there?
It’s almost impossible to tell.

2. Which verses are most alike? In what way?
Ditto.

3. Which verses are most different? In what way?
Ditto.

4. What is the rule to determine which verse should be sung next?
Ditto.

It fares no better on the value/cost questions.

1. How difficult was it to write?
Difficult. This clearly took a fair amount of thought and time.

2. How hard is it to understand?
The individual methods are easy to understand, but despite this, it’s tough to get a sense of
the entire song. The parts don’t seem to add up to the whole.

3. How expensive will it be to change?
While changing the code inside any individual method is cheap, in many cases, one simple
change will cascade and force many other changes.

It’s obvious that the author of this code was committed to doing the right thing, and that they
carefully followed the Red, Green, Refactor style of writing code. The various strings that make up
the song are never repeated—it looks as though these strings were refactored into separate
methods at the first sign of duplication.

The code is DRY, and DRYing out code should reduce costs. DRY promises that if you put a chunk
of code into a method and then invoke that method instead of duplicating the code, you will save
money later if the behavior of that chunk changes. Recognize, though, that DRYing out code is not
free. It adds a level of indirection, and layers of indirection make the details of what’s happening
harder to understand. DRY makes sense when it reduces the cost of change more than it increases
the cost of understanding the code.

The Don’t Repeat Yourself principle, like all principles of object-oriented design, is completely
true. However, despite that fact that the code above is DRY, there are many ways in which it’s

1.1.3. Concretely Abstract

Page 12

expensive to change.

One of many possible examples is the milk method on line 41. This method returns the string
"milk," which occurs nowhere else in the code. To change the drink to "Kool-Aid," you need only
change line 42 to return "Kool-Aid" instead of "milk." As this one small change is all that’s needed
to meet the "Kool-Aid" requirement, on the surface, DRY has fulfilled its promise. However, step
back a minute and consider the resulting method:

public function milk(): string {
 return 'Kool-Aid';
}

Or ponder some of the other method names:

public function bottlesOfMilk(): string {
public function buyNewMilk(): string {
public function drinkMilk(): string {
public function lastMilk(): bool {

In light of the "Kool-Aid" change, these names are terribly confusing. These method names no
longer make sense where they are defined, and they are totally misleading in places where they
are used. To mitigate this confusion, you not only have to change "milk" to "Kool-Aid" inside this
method, but you also have to make the same change to every method name that includes the
word "milk" and then again to every sender of one of those messages.

This small change in requirements forces a change in many places, which is exactly the problem
DRY promises to avoid. The fault here, however, lies not with the DRY principle, but with the
names of the methods.

When you choose milk as the name of a method that returns the string "milk," you’ve named the
method after what it does right now. Unfortunately, when you name a method after its current
implementation, you can never change that internal implementation without ruining the method
name.

You should name methods not after what they do, but after what they mean, what they represent
in the context of your domain. If you were to ask your customer what "milk" is in the context of
the "99 Bottles" song, they would not answer "Milk is the milk," they would say something like
"Milk is the thing you drink" or "Milk is the beverage."

"Milk" and "Kool-Aid" are kinds of beverages; the word "beverage" is one level of abstraction
higher than "milk." Naming the method at this slightly higher level of abstraction isolates the code
from changes in the implementation details. If you choose beverage for the method name, going
from:

public function beverage(): string {
 return "milk";
}

to:

1.1.4. Shameless Green

Page 13

public function beverage(): string {
 return "Kool-Aid";
}

makes perfect sense and requires no other change.

Listing 1.3: Concretely Abstract contains many small methods, and the strings that make up the
song are completely DRY. These two things exert a force for good that should result in code that’s
easy to change. However, in Concretely Abstract, this force is overcome by the high cost of dealing
with methods that are named at the wrong level of abstraction. These method names raise the
cost of change.

Therefore, one lesson to be gleaned from this solution is that you should name methods after the
concept they represent rather than how they currently behave. However, notice that even if you
edited the code to improve every method name, this code still isn’t quite right.

Changing the name of the milk method to beverage makes it easy to replace the string "milk"
with the string "Kool-Aid" but does nothing to improve this code’s score on the domain questions.
The problem goes far deeper than having methods with inadequate names. It’s not just the names
that are wrong, but the methods themselves. Many methods in this code represent the wrong
abstractions.

The challenge of identifying the right abstractions is explored in future chapters, but meanwhile,
it’s time to consider one more solution.

1.1.4. Shameless Green
None of the solutions shown thus far do very well on the value/cost questions. Incomprehensibly
Concise cares only for terseness. Speculatively General tries for extensibility but achieves
unwarranted complexity. The heart of Concretely Abstract is in the right place, but it can’t get its
feet out of the mud.

Solving the "99 Bottles" problem in any of these ways requires more effort than is necessary and
results in more complexity than is needed. These solutions cost too much; they do too many of the
wrong things and too few of the right.

Speculatively General and Concretely Abstract were both written with an eye toward reducing
future costs, and it is distressing to see good intentions fail so spectacularly. It’s a particular shame
that the abstractions are wrong because given the opportunity to do so, the code is completely
willing to reveal abstractions that are right. The failure here is not bad intention—it’s insufficient
patience.

This next example is patient and so provides an antidote for all that has come before. The
following solution is known as Shameless Green:

Listing 1.4: Shameless Green
 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-initial-variations-40/lib/Bottles.php#L3-L43

1.1.4. Shameless Green

Page 14

 5
 6 public function verses(int $upper, int $lower): string {
 7 return implode(
 8 "\n",
 9 array_map([$this, 'verse'], range($upper, $lower))
10);
11 }
12
13 public function verse(int $number): string {
14 switch ($number) {
15 case 0:
16 return
17 "No more bottles of milk on the wall, " .
18 "no more bottles of milk.\n" .
19 "Go to the store and buy some more, " .
20 "99 bottles of milk on the wall.\n";
21 case 1:
22 return
23 "1 bottle of milk on the wall, " .
24 "1 bottle of milk.\n" .
25 "Take it down and pass it around, " .
26 "no more bottles of milk on the wall.\n";
27 case 2:
28 return
29 "2 bottles of milk on the wall, " .
30 "2 bottles of milk.\n" .
31 "Take one down and pass it around, " .
32 "1 bottle of milk on the wall.\n";
33 default:
34 return
35 $number . " bottles of milk on the wall, " .
36 $number . " bottles of milk.\n" .
37 "Take one down and pass it around, " .
38 ($number - 1) . " bottles of milk on the wall.\n";
39 }
40 }
41 }

The most immediately apparent quality of this code is how very simple it is. There’s nothing
tricky here. The code is gratifyingly easy to comprehend. Not only that, despite its lack of
complexity, this solution does extremely well on the domain questions.

1. How many verse variants are there?
Clearly, four.

2. Which verses are most alike? In what way?
3-99, where only the verse number varies.

3. Which verses are most different? In what way?
0, 1 and 2 are different from 3-99, though figuring out how requires parsing strings with
your eyes.

4. What is the rule to determine which verse should be sung next?
This is still not explicit. The 0 verse contains a deeply buried, hard-coded 99.

These answers are identical to those achieved by Listing 1.2: Speculatively General. Shameless
Green and Speculatively General differ, though, in how they compare on the value/cost questions.
Shameless Green is a substantial improvement.

1.2. Judging Code

Page 15

1. How difficult was this to write?
It was easy to write.

2. How hard is it to understand?
It is easy to understand.

3. How expensive will it be to change?
It will be cheap to change. Even though the verse strings are duplicated, if one verse
changes it’s easy to keep the others in sync.

By the criteria that have been established, Shameless Green is clearly the best solution, yet almost
no one writes it. It feels embarrassingly easy, and is missing many qualities that you expect in
good code. It duplicates strings and contains few named abstractions.

Most programmers have a powerful urge to do more, but sometimes it’s best to stop right here. If
you were charged with writing the code to produce the lyrics to the 99 Bottles song, it is difficult
to imagine fulfilling that requirement in a more cost-effective way.

The Shameless Green solution is disturbing because, although the code is easy to understand, it
makes no provision for change. In this particular case, the song is so unlikely to change that
betting that the code is "good enough" should pay off. However, if you pretend that this problem is
a proxy for a real, production application, the proper course of action is not so clear.

When you DRY out duplication or create a method to name a bit of code, you add levels of
indirection that make it more abstract. In theory these abstractions make code easier to
understand and change, but in practice they often achieve the opposite. One of the biggest
challenges of design is knowing when to stop, and deciding well requires making judgments
about code.

1.2. Judging Code
You now have access to five different solutions to the "99 Bottles of Milk" problem; the four listed
in the preceding section and the one you wrote yourself.

Which is best?

You likely have an opinion on this question—one which, granted, may have been swayed by the
commentary above. However, independent of that gentle influence, the sum of your experiences
and expectations predispose you to assess the goodness of code in your own unique way.

You judge code constantly. Writing code requires making choices; the choices you make reflect
personal, internalized criteria. You intend to write "good" code and if, in your estimation, you’ve
written "bad" code, you are clearly aware that you’ve done so. Regardless of how implicit,
unachievable, or unhelpful they may be, you already have rules about code.

While having standards of any sort is a virtue, the chance of achieving your standards is
improved if they are explicit and quantifiable. Answering the question "What makes code good?"
thus requires defining goodness in concrete and actionable ways.

1.2.1. Evaluating Code Based on Opinion

Page 16

““
““
““

This is harder than one might think.

1.2.1. Evaluating Code Based on Opinion

You’d think that by now, there would exist a universally agreed-upon definition of good code that
could unambiguously guide our programming behavior. The unfortunate truth is that not only
are there a multitude of definitions, but these definitions generally describe how code looks when
it’s done without providing any concrete guidance about how to get there.

Just as "Everybody complains about the weather but nobody does anything about it,"[4] everyone
has an opinion about what good code looks like, but those opinions usually don’t tell us what
action to take to create it. Here are a few definitions of clean code. Notice that they could describe
art or wine as easily as software.

I like my code to be elegant and efficient.
— Bjarne Stroustrup

inventor of C++

Clean code is … full of crisp abstractions …
— Grady Booch

author of Object Oriented Analysis and Design with Applications

Clean code was written by someone who cares.
— Michael Feathers

author of Working Effectively with Legacy Code

Your own definition probably follows along these same lines. Any pile of code can be made to
work; good code not only works, but is also simple, understandable, expressive and changeable.

The problem with these definitions is that although they accurately describe how good code looks
once it’s written, they give no help with achieving this state, and provide little guidance for
choosing between competing solutions. The attributes they use to describe good code are
qualitative, not quantitative.

What does it mean to be "elegant?" What makes an abstraction "crisp?" Despite the fact that these
definitions are undeniably correct, none are precise in a measurable way. This lack of precision
means that well-meaning programmers can hold identically high standards and still have
significant disagreements about relative goodness. Thus, we argue fruitlessly about code.

Since form follows function, good code can also be defined simply, and somewhat circularly, as
that which provides the highest value for the lowest cost. Our sense of elegance, expressiveness
and simplicity is an outgrowth of our experiences when reading and modifying code. Code that is
easy to understand and a pleasure to extend naturally feels simple and elegant.

If you could identify and measure these qualities, you could seek after them diligently and
deliberately. Therefore, although your opinions about code matter, you would be well served by
facts.

1.2.2. Evaluating Code Based on Facts

http://www.amazon.com/Object-Oriented-Analysis-Design-Applications-3rd/dp/020189551X
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052

1.2.1. Evaluating Code Based on Opinion

Page 17

A "metric" is a measure of some quality of code. Metrics are, obviously, created by people, so one
could argue that they merely express one individual’s opinion. That assertion, however, vastly
understates their worth. Measures that rise to become metrics are backed by research that has
stood the test of time. They’ve been scrutinized by many people over many years. You can think of
metrics as crowd-sourced opinions about the quality of code.

If you apply the same metric to two different pieces of source code, you can then compare that
code (at least in terms of what the metric measures) by comparing the resulting numbers. While
it’s possible to disagree with the premise of a specific metric, and to insist that the thing it
measures isn’t useful, the rules of mathematics require all to concede that the numbers produced
by metrics are facts.

It would be extremely handy to have agreed-upon facts with which to compare code. In search of
these facts, this section examines three different metrics: Source Lines of Code, Cyclomatic
Complexity, and ABC.

Source Lines of Code
In the days of yore, the desire for reproducible, reliable information about the cost of developing
applications led to the creation of a metric known simply as Source Lines of Code (SLOC,
sometimes shortened to just LOC). This one number has been used to predict the total effort
needed to develop software, to measure the productivity of those who write it, and to predict the
cost of maintaining it.

The metric has the advantage of being easily garnered and reproduced, but suffers from many
flaws.

Using SLOC to predict the development effort needed for a new project is done by counting the
SLOC of existing projects for which total effort is known, deciding which of those existing projects
the new project most resembles, and then running a cost estimation model to make the
prediction. If the person doing the estimating is correct about which existing project(s) the new
project most closely resembles, this prediction may be accurate.

Measuring programmer productivity by counting lines of code assumes that all programmers
write equally efficient code. However, novice programmers are often far more verbose than
those with more experience. Despite the fact that novices write more code to produce less
function, by this metric, they can seem more productive.

While the cost of maintenance is related to the size of an application, the way in which code is
organized also matters. It is cheaper to maintain a well-designed application than it is to maintain
a pile of spaghetti-code.

SLOC numbers reflect code volume, and while it’s useful for some purposes, knowing SLOC alone
is not enough to predict code quality.

Cyclomatic Complexity
In 1976, Thomas J. McCabe, Sr. published "A Complexity Measure", in which he asserted:

http://en.wikipedia.org/wiki/Source_lines_of_code
http://www.literateprogramming.com/mccabe.pdf

1.2.1. Evaluating Code Based on Opinion

Page 18

““What is needed is a mathematical technique that will provide a quantitative
basis for modularization and allow us to identify software modules that will be
difficult to test or maintain.

A "mathematical technique" to identify code that is "difficult to test or maintain"—this could be
the perfect tool for assessing code. In his paper, McCabe describes his Cyclomatic Complexity
metric, an algorithm that counts the number of unique execution paths through a body of source
code. Think of this algorithm as a little machine that ponders your code and then maps out all the
possible routes through every combination of every branch of every conditional. A method with
many deeply nested conditionals would score very high, while a method with no conditionals at
all would score 0.

Cyclomatic complexity neither predicts application development time nor measures programmer
productivity. Its desire to identify code that is difficult to test or maintain aims directly at code
quality.

Cyclomatic complexity can be used in several ways. First, you can use it to compare code. If you
have two variants of the same method, you can choose between them based on their cyclomatic
complexity. Lower scores are better and so by extension the code with the lowest score is the best.

Next, you can use it to limit overall complexity. You can set standards for how high a score you’re
willing to accept, and require explicit dispensation before allowing code to exceed this maximum.

Finally, you can use it to determine if you’ve written enough tests. Cyclomatic complexity tells you
the minimum number of tests needed to cover all of the logic in the code. If you have fewer tests
than cyclomatic complexity recommends, you don’t have complete test coverage.

Cyclomatic complexity sounds great, and it’s easy to see that it could be useful, but it views the
world of code through a narrow lens.

Assignments, Branches and Conditions (ABC) Metric
The problem with cyclomatic complexity is that it doesn’t take everything into account. Code does
more than just evaluate conditions; it also assigns values to variables and sends messages. These
things add up, and as you do more and more of each, your code becomes increasingly difficult to
understand.

In 1997, twenty-one years after the unveiling of cyclomatic complexity, Jerry Fitzpatrick
published "Applying the ABC Metric to C, C++, and Java", in which he describes a metric that does
consider more than conditionals. His ABC stands for assignments, branches and conditions,
where:

Assignments is a count of variable assignments.

Branches counts not branches of an if statement (as one could forgivably infer) but
branches of control, meaning function calls or message sends.

Conditions counts conditional logic.

http://www.literateprogramming.com/mccabe.pdf
http://www.softwarerenovation.com/ABCMetric.pdf

1.2.3. Comparing Solutions

Page 19

Fitzpatrick describes the ABC metric as a measure of size, as if ABC is a more sophisticated
version of SLOC. This is his metric so he certainly gets to say what it represents, but you will not
go wrong if you think of ABC scores as reflecting cognitive as opposed to physical size. High ABC
numbers indicate code that takes up a lot of mental space. In this sense, ABC is a measure of
complexity. Highly complex code is difficult to understand and change, therefore ABC scores are a
proxy for code quality.

There are a wide variety of static analysis tools available for PHP (phploc, for example), though
none of the popular tools calculate ABC scores. This landscape continually evolves, so when it’s
worth checking for new features and tools as you read this book.

ABC scores provide an independent perspective that may challenge your ideas about complexity
and design. High scores suggest that code will be hard to test and expensive to maintain. If you
believe your code to be simple but the ABC score says otherwise, you should think again.

Metrics are fallible but human opinion is no more precise. Checking metrics regularly will keep
you humble and improve your code.

1.2.3. Comparing Solutions
Now that you have some insight into code metrics, it’s time to ponder how the code examples
shown in this chapter compare.

Since all of the solutions have virtually identical implementations for song and verses, these can
be ignored, focusing the counts on the code that is necessary for the definition of verse.

The following table shows each solution’s total lines of code (SLOC) along with back-of-the-napkin
counts of assignments, branches[5], and conditionals, and the resulting ABC[6] score.

Table 1.1: Metrics

Solution SLOC Assignments Branches Conditionals ABC

Listing 1.1:
Incomprehensibly
Concise

26 0 0 18 18

Listing 1.2:
Speculatively
General

94 6 10 4 12

Listing 1.3:
Concretely Abstract

93 4 20 10 23

Listing 1.4:
Shameless Green

43 0 0 4 4

Here’s a chart of the above SLOC and ABC scores.

https://github.com/sebastianbergmann/phploc

1.2.3. Comparing Solutions

Page 20

Figure 1.1: Metrics Chart

Although SLOC is not related to ABC score, both are considered a measure of size, and they
appear to be roughly correlated. A larger solution in terms of SLOC is for the most part also larger
in terms of its ABC score. Shameless Green is the notable exception—it’s only second lowest in
SLOC, but has the lowest ABC score by a considerable margin.

Incomprehensibly Concise and Concretely Abstract are interesting in that they both have
characteristically complex code, but along different axes. Incomprehensibly Concise has the fewest
lines of code, but the most conditionals. It has managed to condense a lot of complexity into very
few lines. In Concretely Abstract, on the other hand, the complexity lies in the branching (message
sends), not so much in the conditionals. The complexity in this solution is spread across the
largest number of lines of code; no single method has any significant amount of complexity.

Speculatively General is shorter Concretely Abstract, and its complexity is spread out more evenly
among assignments, branches, and conditionals.

Shameless Green scores best on all counts except SLOC. Incomprehensibly Concise is the shortest
solution, but when you look at the ratio of lines of code to conditionals, Shameless Green comes
out more favorably.

Incomprehensibly Concise and Shameless Green are similar in that most of their complexity is
contained in a single method. Neither has assignments or branching. Despite this similarity, if you
compare their SLOC scores to their conditional counts, you’ll see that they are also very different.
While Incomprehensibly Concise has many conditionals relative to SLOC, Shameless Green has the
opposite. Incomprehensibly Concise packs a lot of complexity into a few lines of code. Shameless
Green is biased in the other direction; it has more code but is much simpler.

1.3. Summary

Page 21

If your goal is to write straightforward code, these metrics point you toward Shameless Green.

1.3. Summary
As programmers grow, they get better at solving challenging problems, and become comfortable
with complexity. This higher level of comfort sometimes leads to the belief that complexity is
inevitable, as if it’s the natural, inescapable state of all finished code. However, there’s something
beyond complexity—a higher level of simplicity. Infinitely experienced programmers do not
write infinitely complex code; they write code that’s blindingly simple.

This chapter examined four possible solutions to the "99 Bottles" problem as a prelude to defining
what it means to write simple code. It used metrics as a starting point, injected a bit of common
sense, and landed on Shameless Green.

Shameless Green is defined as the solution that quickly reaches green while prioritizing
understandability over changeability. It uses tests to drive comprehension, and patiently
accumulates concrete examples while awaiting insight into underlying abstractions. It doesn’t
dispute that DRY is good, rather, it believes that it is cheaper to manage temporary duplication
than to recover from incorrect abstractions.

Writing Shameless Green is fast, and the resulting code might be "good enough." Most
programmers find it embarrassingly duplicative, and the code is certainly not very object-
oriented. However, if nothing ever changes, the most cost-effective strategy is to deploy this code
and walk away.

The challenge comes when a change request arrives. Code that’s good enough when nothing ever
changes may not be good enough when things do. Chapter 3 introduces just such a change, and in
that chapter you’ll begin improving the code. Before moving on, however, it’s time to take a step
back, and learn how to test-drive Shameless Green.

2.1. Understanding Testing

Page 22

2. Test Driving Shameless Green
The previous chapter examined four solutions to the "99 Bottles" problem, and asserted that the
one known as Shameless Green is best. The Shameless Green solution consists of intention-
revealing, working software, and is the result of writing simple code to pass a series of pre-
supplied tests.

The provenance of the code that was written in Chapter 1 is obvious, but the tests appeared
without explanation. It is now time to take a step back, and investigate how to create tests that
lead to Shameless Green.

2.1. Understanding Testing
A generation ago, a handful of extreme programming (XP) practitioners began writing
automated tests using a technique they called "test first development." Their ideas were so
influential that automated tests are now the norm, and these tests are often written first, in
prelude to writing code.

The practice of writing tests before writing code became known as test-driven development
(TDD). In its simplest form, TDD works like this:

1. Write a test.
Because the code does not yet exist, this test fails. Test runners usually display failing tests
in red.

2. Make it run.
Write the code to make the test pass. Test runners commonly display passing tests in
green.

3. Make it right.
Each time you return to green, you can refactor any code into a better shape, confident
that it remains correct if the tests continue to pass.

In Test-Driven Development by Example, Kent Beck describes this as the Red/Green/Refactor cycle
and calls it "the TDD mantra."

The ideas of testing, and of testing first, have won the hearts and minds of programmers.
However, a commitment to writing tests doesn’t make this easy. TDD presents a never-ending
challenge. You must repeatedly decide which test to write next, how to arrange code so that the
test passes, and how much refactoring to do once it does. Each decision requires judgment and
has consequences.

If your TDD judgment is not yet fully developed, it’s reasonable to temporarily adopt that of a
master. Here’s an excellent guiding principle:

Quick green excuses all sins.
— Kent Beck

http://www.amazon.com/Test-Driven-Development-By-Example/dp/0321146530/

2.2. Writing the First Test

Page 23

““ Test-Driven Development by Example

Green means safety. Green indicates that, at least as evidenced by the tests at hand, you
understand the problem. Green is the wall at your back that lets you move forward with
confidence. Getting to green quickly simplifies all that follows.

This chapter illustrates how to incrementally create tests and then use these tests to drive the
development of code. The examples obediently follow the Red/Green/Refactor cycle, but are
fairly conservative. Because the initial goal is more about reaching green than writing perfect
code, the refactoring step sometimes removes duplication and other times retains it.

The plan is to create tests that thoroughly describe the "99 Bottles" problem, and then to solve the
problem with the implementation known as Shameless Green. The Shameless Green solution
strives for maximum understandability but is generally unconcerned with changeability.
Shameless Green does not assert that changeability isn’t important; it merely recognizes that
getting to green quickly is often at odds with writing perfectly changeable code. This chapter
concentrates on creating the tests and writing simple code to pass them. Future chapters refactor
the resulting code to improve the design.

2.2. Writing the First Test
The first test is often the most difficult to write. At this point, you know the least about whatever
it is you intend to do. Your problem is a big, fuzzy, amorphous blob, and it’s challenging to reach
in and carve off a single piece. It feels important to choose well, because where you start informs
how you’ll proceed, and ultimately determines where you’ll end. The first test can therefore
seem fraught with peril.

Despite its apparent import, the choice you make here hardly matters. In the beginning, you
have ideas about the problem but actually know very little. Your ideas may turn out to be
correct, but it’s just as possible that time will prove them wrong. You can’t figure out what’s right
until you write some tests, at which time you may realize that the best course of action is to
throw everything away and start over. Therefore, the purpose of some of your tests might very
well be to prove that they represent bad ideas. Learning which ideas won’t work is forward
progress, however disappointing it may be in the moment.

So, while it is important to consider the problem and to sketch out an overall plan before writing
the first test, don’t overthink it. Find a starting place and get going, in faith that as you proceed,
the fog will clear.

If you were to sketch out a public Application Programming Interface (API) for "99 Bottles," it
might look like this:

verse($n) Return the lyrics for the verse number $n

verses($a, $b) Return the lyrics for verses numbered $a through $b

song() Return the lyrics for the entire song

2.2. Writing the First Test

Page 24

This API allows others to request a single verse, a range of verses, or the entire song.

Now that you have a plan for the API, there are a number of possibilities for the first test. You
could write a test for the entire song, for a series of contiguous verses, or for any single verse.
Because the easiest way to get started is to tackle something that you thoroughly understand, it
makes sense to begin by testing a single verse, and the most logical first verse to test is the first
verse to be sung. Here’s that test, written in PHPUnit:

Listing 2.1: Verse 99 Test
 1 class BottlesTest extends \PHPUnit\Framework\TestCase {
 2 public function test_the_first_verse() {
 3 $expected =
 4 "99 bottles of milk on the wall, " .
 5 "99 bottles of milk.\n" .
 6 "Take one down and pass it around, " .
 7 "98 bottles of milk on the wall.\n";
 8 $this->assertEquals($expected, (new Bottles())->verse(99));
 9 }
10 }

The test above is as simple as can be, but notice that writing it required making many decisions.
It contains both a class name (Bottles) and a method name (verse($n)). This test assumes that
the Bottles class defines a verse method that takes a number as an argument, and it asserts
that invoking that method with an argument of 99 returns the lyrics for the 99th verse.

This test, like all tests, contains three parts:

Setup Create the specific environment required for the test.

Do Perform the action to be tested.

Verify Confirm the result is as expected.

Lines 3-7 above define the expected result and are thus part of the setup. Setup continues on line
8, where a new bottle is created via new Bottles(). Line 8 also sends verse(99), which is the
action, and then verifies the result with assertEquals.

Running that test produces this error:

1) BottlesTest::test_the_first_verse
Error: Class 'Bottles' not found

test/BottlesTest.php:12

TDD tells you to write the simplest code that will pass this test. In this case, your goal is to write
only enough code to change the error message. The above error states that the Bottles class
does not yet exist, so the first step is to define it, as follows:

Listing 2.2: Empty Class
1 class Bottles {
2 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-20/test/BottlesTest.php#L5-L16
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-30/lib/Bottles.php#L3-L4

2.2. Writing the First Test

Page 25

If you’re new to TDD, this may seem like a ridiculously small step. Because you wrote the test,
you can confidently predict that running it a second time will now produce the following error:

1) BottlesTest::test_the_first_verse
Error: Call to undefined method Bottles::verse()

test/BottlesTest.php:12

You can change this error message by adding a verse method.

Listing 2.3: Empty Method
1 class Bottles {
2 public function verse() {
3 }
4 }

Running the test again produces the following error:

1) BottlesTest::test_the_first_verse
Failed asserting that null matches expected '99 bottles of milk on the wall, 99 bottles of milk.\n
Take one down and pass it around, 98 bottles of milk on the wall.\n
'.

test/BottlesTest.php:12

There’s finally sufficient code so that the test fails because the output is not as expected instead
of dying because of an exception.

PHPUnit explictly lists what it expected and what it saw. Therefore, you can interpret the above
failure as indicating that PHPUnit expected…

"99 bottles of milk on the wall, 99 bottles of milk." followed by a newline, followed by

"Take one down and pass it around, 98 bottles of milk on the wall." followed by another
newline

but instead got null.

Pay particular attention to how newlines are represented above. The expected output string
contains two newlines, specified as \n in the test and shown as \n followed by an actual line
break above. The last expected line (which contains only '.) represents the empty line that
follows the final newline.

Once you reach this point, it’s easy to make the test pass; just copy the expected output into the
verse method:

Listing 2.4: Verse 99 Code
1 class Bottles {
2 public function verse(): string {
3 return
4 "99 bottles of milk on the wall, " .
5 "99 bottles of milk.\n" .
6 "Take one down and pass it around, " .

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-40/lib/Bottles.php#L3-L6
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-60/lib/Bottles.php#L3-L12

2.3. Removing Duplication

Page 26

7 "98 bottles of milk on the wall.\n";
8 }
9 }

Although this code passes the test, it clearly doesn’t solve the entire problem. As a matter of fact,
writing a second test will break it. While it may seem pointless to write an obviously temporary
and transitional bit of code, this is the essence of TDD.

You as the writer of tests know that the verse method must eventually take the value of its
argument into account, but you as the writer of code must act in ignorance of this fact. When
doing TDD, you toggle between wearing two hats. While in the "writing tests" hat, you keep your
eye on the big picture and work your way forward with the overall plan in mind. When in the
"writing code" hat, you pretend to know nothing other than the requirements specified by the
tests at hand. Thus, although each individual test is correct, until all are written, the code is
incomplete.

2.3. Removing Duplication
Now that the first test passes, you must decide what to test next. This next test should do the
simplest, most useful thing that proves your existing code to be incorrect. While it may have
been difficult to conceive of the first test because the possibilities seem infinite, this next test is
often easier because it checks something relative to the first.

Verses 99 through 3 are nearly identical—they differ only in that the number changes within
each verse. The test above already checks the high end of this range, and therefore it now makes
sense to test the low.

The following test for verse 3 exposes the current verse method to be insufficient:

Listing 2.5: Verse 3 Test
1 public function test_another_verse() {
2 $expected =
3 "3 bottles of milk on the wall, " .
4 "3 bottles of milk.\n" .
5 "Take one down and pass it around, " .
6 "2 bottles of milk on the wall.\n";
7 $this->assertEquals($expected, (new Bottles())->verse(3));
8 }

TDD requires that you pass tests by writing simple code. However, most programming problems
have many solutions, and it’s not always clear which one is simplest. For example, the following
code passes the current tests by naming the incoming argument and adding a conditional that
checks the value of $number and returns the correct string:

Listing 2.6: Conditional
 1 public function verse(int $number): string {
 2 if ($number === 99) {
 3 return
 4 "99 bottles of milk on the wall, " .
 5 "99 bottles of milk.\n" .
 6 "Take one down and pass it around, " .
 7 "98 bottles of milk on the wall.\n";

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-70/test/BottlesTest.php#L15-L22
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-80/lib/Bottles.php#L4-L18

2.3. Removing Duplication

Page 27

 8 } else {
 9 return
10 "3 bottles of milk on the wall, " .
11 "3 bottles of milk.\n" .
12 "Take one down and pass it around, " .
13 "2 bottles of milk on the wall.\n";
14 }
15 }

At first glance, this code appears to have achieved the ultimate in simplicity. It can produce only
the lyrics for verses 99 and 3, and so does the absolute minimum needed to pass the tests.

But consider that it now contains a conditional where none existed before. This may cause you to
recall the discussion on Cyclomatic Complexity in Chapter 1. This conditional adds a new
execution path through the code, and additional execution paths increase complexity. This code
is simple in the sense that it can’t do much, but it does that one small thing in an overly complex
way.

Part of the problem is that although the if statement switches on $number, the true and false
branches contain many things that don’t vary based on $number. The branches do differ in that
one says 99/98, and the other 3/2, but they are the same for all of the other lyrics. This code
conflates things that change with things that remain the same, and so forces you to parse strings
with your eyes to figure out how $number matters.

If you were to alter the if statement to return only the things that change, the code would look
like this:

Listing 2.7: Sparse Conditional
 1 public function verse(int $number): string {
 2 if ($number === 99) {
 3 $n = 99;
 4 } else {
 5 $n = 3;
 6 }
 7
 8 return
 9 $n . " bottles of milk on the wall, " .
10 $n . " bottles of milk.\n" .
11 "Take one down and pass it around, " .
12 ($n-1) . " bottles of milk on the wall.\n";
13 }

This code is still very specific to the two existing tests—it can produce the lyrics for verses 99 and
3, and no other. Notice, however, that it now has two parts. The first part (lines 2-6) contains the
conditional, and the second (lines 8-12) contains a template that could correctly generate many
verses. Lines 2-6 are still specific to the existing tests, but now that you’ve separated the things
that change from the things that remain the same, lines 8-12 are generalizable to every verse
between 99 and 3.

If you were to continue down the "specific" path, you would progressively add tests for the
verses between 97 and 4, each time altering the if statement to add a condition to check for that
number. Following this strategy would ultimately result in 97 nearly identical tests and 97 nearly
identical verses; each would differ only in the values of the numbers.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-90/lib/Bottles.php#L4-L16

2.3. Removing Duplication

Page 28

The obvious alternative is to instead make the code more general. Because the existing template
already works for every verse between 99 and 3, you could change this code to produce those
verses by deleting the if statement and altering the template to refer to number, as shown here:

Listing 2.8: Generalized Verse
1 public function verse(int $number): string {
2 return
3 $number . " bottles of milk on the wall, " .
4 $number . " bottles of milk.\n" .
5 "Take one down and pass it around, " .
6 ($number-1) . " bottles of milk on the wall.\n";
7 }

Left to your own devices, your instinct would likely have been to write the code above without
bothering with the intermediate steps shown in Listing 2.6: Conditional and Listing 2.7: Sparse
Conditional. However, even if you would naturally have started with this more general version,
it’s important to understand and be able to articulate the implications of the other
implementation.

The difference between the solution that adds a conditional and the solution that adds a variable
into a string is that in the first, as the tests get more specific, the code stays equally specific. Every
verse has its own personal test and its own individual code; there will never be a time when the
code can do anything which is not explicitly tested.

However, in Listing 2.8: Generalized Verse, as the tests get more specific, the code gets more
generic. Once the test of verse 3 is written, the code is then generalized to produce lyrics for all
verses within the 3-99 range.

Remember that the purpose of this chapter is to quickly get to Shameless Green. With that goal in
mind, consider the above solutions and answer this question: Which is simplest?

As previously noted, metrics aren’t everything, but they can certainly be a useful something. In
hopes that data will help answer this question, the following chart shows Source Lines Of Code,
Cyclomatic Complexity and ABC metrics for the variants, calculated roughly with pencil and
paper.

Table 2.1: Metrics for Code Variants After Tests of Verse 97 and 3

Solution SLOC Cyclomatic
Complexity

ABC

Listing 2.6: Conditional 15 2 2.0

Listing 2.7: Sparse
Conditional

13 2 2.8

Listing 2.8: Generalized
Verse

7 1 0

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-100/lib/Bottles.php#L4-L10

2.4. Tolerating Duplication

Page 29

As you can see, as the examples progress, they get shorter, and the Cyclomatic Complexity score
improves. The ABC score, on the other hand, gets worse before it gets better. You must, of course,
take metrics with a grain of salt, but here they cast a clear vote for replacing duplication with an
abstraction as done in Listing 2.8: Generalized Verse.

The next section examines a nearly identical situation where the choice of what to do about
duplication is not nearly so clear-cut.

2.4. Tolerating Duplication
Verses 2, 1 and 0 must still be tested, and each is unique. Having established a pattern of testing
verses in the order that they appear, it makes sense to next test verse 2.

Verse 2 differs in one small way from the previous 97. The final phrase in all previous verses
refers to "n bottles" on the wall, and thus the word "bottles" is plural. Here in verse 2, however,
the final phrase reads "1 bottle." Therefore, in line 6 of the following test of verse 2, the word
"bottle" is singular instead of plural.

Listing 2.9: Verse 2 Test
1 public function test_verse_2() {
2 $expected =
3 "2 bottles of milk on the wall, " .
4 "2 bottles of milk.\n" .
5 "Take one down and pass it around, " .
6 "1 bottle of milk on the wall.\n";
7 $this->assertEquals($expected, (new Bottles())->verse(2));
8 }

Running that test produces the following failure:

-Take one down and pass it around, 1 bottle of milk on the wall.
+Take one down and pass it around, 1 bottles of milk on the wall.

This failure is perfect; the test expected 1 bottle, but got 1 bottles.

As was true with the test for verse 3, there are two fundamentally different ways to pass this test.
You can add a new conditional around the existing code, or use the value of $number in some
way within it.

This next example illustrates the first possibility by wrapping the code in a new conditional:

Listing 2.10: Stark Conditional
 1 public function verse(int $number): string {
 2 if ($number === 2) {
 3 return
 4 "2 bottles of milk on the wall, " .
 5 "2 bottles of milk.\n" .
 6 "Take one down and pass it around, " .
 7 "1 bottle of milk on the wall.\n";
 8 } else {
 9 return
10 $number . " bottles of milk on the wall, " .
11 $number . " bottles of milk.\n" .

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-110/test/BottlesTest.php#L24-L31
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-120/lib/Bottles.php#L4-L18

2.4. Tolerating Duplication

Page 30

12 "Take one down and pass it around, " .
13 ($number-1) . " bottles of milk on the wall.\n";
14 }
15 }

In contrast, the following alternative embeds logic into the existing verse string:

Listing 2.11: Conditional With Embedded Logic
1 public function verse(int $number): string {
2 return
3 $number . " bottles of milk on the wall, " .
4 $number . " bottles of milk.\n" .
5 "Take one down and pass it around, " .
6 ($number-1) . " bottle" . ($number-1 === 1 ? '' : 's') .
7 " of milk on the wall.\n";
8 }

At first glance, these two solutions look a lot like the alternatives previously explored for verse 3.
Listing 2.10: Stark Conditional wraps the existing code in a new conditional (as did Listing 2.6:
Conditional). Moreover, Listing 2.11: Conditional With Embedded Logic amends the verse string
(similar to Listing 2.8: Generalized Verse).

The choice of the best alternative for verse 3 was guided by metrics, and this might again be
useful here. The following table shows metrics for the new examples:

Table 2.2: Metrics for Code Variants After Test of Verse 2

Solution SLOC Cyclomatic
Complexity

ABC

Listing 2.10: Stark
Conditional

15 2 2

Listing 2.11: Conditional
With Embedded Logic

8 2 2

While Listing 2.11: Conditional With Embedded Logic is about half as long as Listing 2.10: Stark
Conditional, both examples contain a conditional, and neither contains any assignments. As a
result, their Cyclomatic Complexity scores are identical, as are their ABC scores. The only
difference between the examples, at least as far as the metrics are concerned, is that Listing 2.11:
Conditional With Embedded Logic is shorter. Shorter is often better, but, unfortunately, not in
this case.

As was stated in the previous section, as tests get more specific, code should become more
generic. Code becomes more generic by becoming more abstract. One way to make code more
abstract is to DRY it out, that is, to extract duplicate bits of code into a single method, to give that
method a name, and then to refer to the code by this new name. DRYing out code removes the
duplication and thus reduces its overall size.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-130/lib/Bottles.php#L4-L11

2.4. Tolerating Duplication

Page 31

In Listing 2.11: Conditional With Embedded Logic, the code has definitely gotten shorter. One
would hope this happened because the code got more abstract, but sadly, this is not the case.
Examine the new conditional (repeated below for convenience):

1 ($number-1) . " bottle" . ($number-1 === 1 ? '' : 's') .

Notice that, even if an abstraction lurks here, it certainly has not been named. If forced to
suggest a name, you might call the underlying concept "pluralization," asserting that the new
conditional handles pluralization by adding an "s" to the string "bottle" when $number-1 is other
than 1.

If pluralization is a meaningful abstraction for "99 Bottles," perhaps you should create a
pluralize method, as follows:

 public function verse($number) {
 // ...
 ($number-1) . $this->pluralize($number) . " of milk on the wall.\n";
 // ...
 }

 public function pluralize($number) {
 return ($number-1) === 1 ? 'bottles' : 'bottle';
 }

Unfortunately, the code above just confuses the issue. The concept of pluralization is a red
herring.[7] The need for it appeared suddenly and so it feels like an important, meaningful, test-
driven idea, but only because you’re working with incomplete information.

Examine Listing 2.11: Conditional With Embedded Logic and count the number of times the
word "bottle" occurs, regardless of whether it’s in singular or plural form. The fact that "bottle" is
duplicated many times signals that there’s an underlying concept that has not yet been
unearthed. Within the domain of the song, "bottle/bottles" represents something important, and
that thing is not pluralization. These words all have something in common, and hiding a single
occurrence behind pluralization logic obscures this commonality. Making one look different will
ultimately make it harder to see how all are the same.

Code like this pluralize method gets written when programmers take the DRY principle to
extremes, as if they’re allergic to duplication. DRY is important but if applied too early, and with
too much vigor, it can do more harm than good. When faced with a situation like this, ask these
questions:

Does the change I’m contemplating make the code harder to understand?
When abstractions are correct, code is easy to understand. Be suspicious of any change
that muddies the waters; this suggests an insufficient understanding of the problem.

What is the future cost of doing nothing now?
Some changes cost the same regardless of whether you make them now or delay them
until later. If it doesn’t increase your costs, delay making changes. The day may never
come when you’re forced to make the change, or time may provide better information
about what the change should be. Either way, waiting saves you money.

2.5. Hewing to the Plan

Page 32

When will the future arrive, or how soon will I get more information?
If you’re in the middle of writing a test suite, better information is as close as the next test.
Squeezing all duplication out at the end of every test is not necessary. It’s perfectly
reasonable to tolerate a bit of duplication across several tests, hoping that coding up a
number of slightly duplicative examples will reveal the correct abstraction. It’s better to
tolerate duplication than to anticipate the wrong abstraction.

Both Listing 2.10: Stark Conditional and Listing 2.11: Conditional With Embedded Logic have
identical ABC and Cyclomatic Complexity scores. From the metrics point of view, the only
measurable difference between the examples is that Listing 2.11: Conditional With Embedded
Logic is shorter. Unfortunately, it isn’t shorter because it contains an abstraction; it’s shorter
because it crams lack of understanding into a very small space. This brevity makes the code
harder to understand, and obscures the concept that underlies "bottles."

Writing Shameless Green means optimizing for understandability, not changeability, and
patiently tolerating duplication if doing so will help reveal the underlying abstraction.
Subsequent tests, or future requirements, will provide the exact information necessary to
improve the code.

Although Listing 2.10: Stark Conditional retains some duplication, it resists creating an
abstraction in advance of all available information, and so is the better of these two solutions.

2.5. Hewing to the Plan
As you’ve seen, when working towards Shameless Green, it makes sense sometimes to eliminate
duplication and other times to retain it. The Shameless Green solution is optimized to be
straightforward and intention-revealing, and it doesn’t much concern itself with changeability or
future maintenance. The goal is to use green to maximize your understanding of the problem
and to unearth all available information before committing to abstractions.

At some point (actually, by the end of this chapter) you will have written a full test suite for "99
Bottles," and a complete Shameless Green solution. Once that’s done, you’ll have two choices. You
could deploy the shameless code to production and walk away, or you could refactor it into a
more changeable arrangement by DRYing out duplication and extracting abstractions.

Within Shameless Green, it is perfectly acceptable to create abstractions of ideas for which you
have many unambiguous examples. For example, Listing 2.8: Generalized Verse reduced 97
verses to a single abstraction. Having 97 examples gives you confidence that you are seeing the
correct abstraction, and creating that abstraction early makes the code easier to understand.

When writing Shameless Green, you should express the unambiguous abstractions but avoid
grasping for the not-quite visible ones. Listing 2.11: Conditional With Embedded Logic jammed a
conditional inside the verse string to avoid having to write a separate, mostly duplicate, copy of
verse 2. In this case the new code was confusing and there were only two examples, so here it’s
better to take a deep breath and write down all of verse 2 while awaiting more information.

2.5. Hewing to the Plan

Page 33

Think of the path to Shameless Green as running on a horizontal axis. Some changes propel you
forward along this path and help you quickly reach green, while others are speculative and
possibly distracting tangents in a vertical direction. You should complete the entire horizontal
path before indulging in any vertical digressions.

Now that you have code for verses 99-2, it makes sense to continue along the horizontal path and
write a test for verse 1, as follows:

Listing 2.12: Verse 1 Test
1 public function test_verse_1() {
2 $expected =
3 "1 bottle of milk on the wall, " .
4 "1 bottle of milk.\n" .
5 "Take it down and pass it around, " .
6 "no more bottles of milk on the wall.\n";
7 $this->assertEquals($expected, (new Bottles())->verse(1));
8 }

Verse 1 is different from the others in a number of ways:

It begins with "1 bottle" instead of "1 bottles"

It says "Take it down" instead of "Take one down"

It ends with "no more bottles" instead of "0 bottles"

While it’s possible to pass this test by adding logic to the verse string, your experience with the
prior example should dissuade you from choosing to do so. Verse 1 is even more special than
was verse 2, and having decided that verse 2 was different enough to justify adding a condition,
the patient path to Shameless Green requires that you make the same decision in the case of
verse 1.

The following example adds the code for verse 1. While doing so, it converts the existing if
statement to a switch statement:

Listing 2.13: Verse 1 Code
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 case 1:
 4 return
 5 "1 bottle of milk on the wall, " .
 6 "1 bottle of milk.\n" .
 7 "Take it down and pass it around, " .
 8 "no more bottles of milk on the wall.\n";
 9 case 2:
10 return
11 "2 bottles of milk on the wall, " .
12 "2 bottles of milk.\n" .
13 "Take one down and pass it around, " .
14 "1 bottle of milk on the wall.\n";
15 default:
16 return
17 $number . " bottles of milk on the wall, " .
18 $number . " bottles of milk.\n" .
19 "Take one down and pass it around, " .

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-150/test/BottlesTest.php#L33-L40
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-160/lib/Bottles.php#L4-L25

2.5. Hewing to the Plan

Page 34

20 ($number-1) . " bottles of milk on the wall.\n";
21 }
22 }

Given the prior discussion, it makes sense to add a new branch to the conditional for verse 1, but
this example also switched from if to switch. These keywords tell a different story.

Look at the following pseudocode and ponder the inferences a future reader might draw. Put
yourself in their place; imagine that you didn’t write the code and that you don’t completely
understand it. What does it mean to write if rather than switch?

if ($number === 1) {
 // something
} else if ($number === 2) {
 // something else
} else {
 // default
}

switch ($number) {
case 1:
 // something
case 2:
 // something else
default:
 // default
}

Use of if / else if implies that each subsequent condition varies in a meaningful way. Because
else if is often used to test wildly different conditions, future readers will feel obliged to
closely examine each one.

In contrast, use of switch implies that every condition checks for equality against an explicit
value. While it’s true that the when clause supports more complicated operations, the form above
is most common and is the one your readers will expect. Readers of switch statements expect
conditions to be fundamentally the same.

In the 99 Bottles case above, the conditions are fundamentally the same. Switching from if to
switch when you add the code for verse 1 implies this sameness, and so is an act of kindness
towards your reader. Intention-revealing code is built from the accumulation of such thoughtful
acts.

The verse method is accumulating lots of duplication, and this may feel troubling. However, you
are very close to having code to produce every verse. While it may be tempting to veer onto the
vertical path and begin DRYing out duplication, it’s best to push forward horizontally.

With the end in sight, the cost of finishing the horizontal path is low. Once it’s complete, you’ll
have an example of every different kind of verse, and therefore maximal information about the
problem. When the current code is easy to understand, and more information is imminent, be
shameless and scramble towards green.

Proceeding horizontally, then, here’s the test for verse 0:

2.5. Hewing to the Plan

Page 35

Listing 2.14: Verse 0 Test
1 public function test_verse_0() {
2 $expected =
3 "No more bottles of milk on the wall, " .
4 "no more bottles of milk.\n" .
5 "Go to the store and buy some more, " .
6 "99 bottles of milk on the wall.\n";
7 $this->assertEquals($expected, (new Bottles())->verse(0));
8 }

Verse 0 is unique in the following ways:

It says "No/no more bottles" instead of "0 bottles"

It says "Go to the store and buy some more" instead of "Take it/one down and pass it
around"

It ends with "99 bottles"

At this point you will likely be unsurprised to find that verse 0 gets its own branch in the
conditional, as shown here:

Listing 2.15: Verse 0 Code
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 case 0:
 4 return
 5 "No more bottles of milk on the wall, " .
 6 "no more bottles of milk.\n" .
 7 "Go to the store and buy some more, " .
 8 "99 bottles of milk on the wall.\n";
 9 case 1:
10 return
11 "1 bottle of milk on the wall, " .
12 "1 bottle of milk.\n" .
13 "Take it down and pass it around, " .
14 "no more bottles of milk on the wall.\n";
15 case 2:
16 return
17 "2 bottles of milk on the wall, " .
18 "2 bottles of milk.\n" .
19 "Take one down and pass it around, " .
20 "1 bottle of milk on the wall.\n";
21 default:
22 return
23 $number . " bottles of milk on the wall, " .
24 $number . " bottles of milk.\n" .
25 "Take one down and pass it around, " .
26 ($number-1) . " bottles of milk on the wall.\n";
27 }
28 }

This code completes the verse method. You now have tests for all the verse variants, and code to
make each test pass.

This implementation reveals some important concepts in the domain. It’s easy, for example, to
see that there are 4 basic verse variants: verse 0, verse 1, verse 2 and verses 3-99. Also, verses 3-
99 are so much alike that it made sense to produce them with the same bit of code.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-170/test/BottlesTest.php#L42-L49
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-180/lib/Bottles.php#L4-L31

2.6. Exposing Responsibilities

Page 36

The other verses differ, not only from the 3-99 case, but also from each other. The switch
statement above makes it obvious that 0, 1 and 2 are special, although granted, it’s difficult to see
in what way. You have to read the code carefully to see how the verses are unique.

The code is easy to understand because there aren’t many levels of indirection. This lack of
indirection is a direct result of the dearth of abstractions. Following the horizontal path means
writing code to produce every kind of verse before diverging onto tangents to DRY out small bits
of code that the verses have in common. The goal is to quickly maximize the number of whole
examples before extracting abstractions from their parts.

Now that you can produce any single verse, it’s time to turn your attention to producing groups
of verses.

2.6. Exposing Responsibilities
The plan is for the verses($a, $b) method to take two arguments. These arguments are
numbers that specify the range of verses for which the method should generate lyrics. The high-
level API has been defined, but before writing the next test, you must make several more precise
decisions:

In what order do these arguments appear? Does the first argument represent the first
verse to sing, such that it is always greater than the second, or vice versa? In essence, what
exactly do $a and $b represent, and how should they be named?

Do the arguments denote an inclusive list, that is, should you produce lyrics for the entire
range specified?

What actual argument values does it make most sense to test?

Groups of verses get sung from a higher to a lower number, so it makes sense to have the initial
argument represent the first verse to sing, and thus the higher number. It also seems natural to
specify an inclusive list of verse numbers. Once you make these decisions, you’ve finalized this
part of the API and can begin considering the tests.

The first verses test, like the first verse test, should be the simplest thing imaginable. At the
beginning of this chapter, when writing the initial verse test, it made sense to start with the first
verse of the song. Following that pattern, here it makes sense to start in the same place, with
verse 99. However, since the verses method produces a sequence of verses, it needs two
arguments. The shortest possible sequence is two, so it’s reasonable for this first test to be for the
sequence from 99 to 98.

Here’s the test:

Listing 2.16: Verses 99 98 Test
 1 public function test_a_couple_verses() {
 2 $expected =
 3 "99 bottles of milk on the wall, " .
 4 "99 bottles of milk.\n" .
 5 "Take one down and pass it around, " .
 6 "98 bottles of milk on the wall.\n" .

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-190/test/BottlesTest.php#L51-L63

2.6. Exposing Responsibilities

Page 37

 7 "\n" .
 8 "98 bottles of milk on the wall, " .
 9 "98 bottles of milk.\n" .
10 "Take one down and pass it around, " .
11 "97 bottles of milk on the wall.\n";
12 $this->assertEquals($expected, (new Bottles())->verses(99, 98));
13 }

Here’s one possible way to pass that test:

Listing 2.17: Verses 99 98 Literal
 1 public function verses(): string {
 2 return
 3 "99 bottles of milk on the wall, " .
 4 "99 bottles of milk.\n" .
 5 "Take one down and pass it around, " .
 6 "98 bottles of milk on the wall.\n" .
 7 "\n" .
 8 "98 bottles of milk on the wall, " .
 9 "98 bottles of milk.\n" .
10 "Take one down and pass it around, " .
11 "97 bottles of milk on the wall.\n";
12 }

Although the code above clearly passes the test, many programmers will find it objectionable. If
asked to articulate the flaw, you might complain that it duplicates code from the verse method.
This is certainly true. The verse method already contains a fair amount of duplication, and this
new verses method repeats some of that existing code.

Some duplication is tolerable during the search for Shameless Green. However, not all
duplication is helpful, and there’s something about the duplication introduced above that means
it should not be tolerated. This new code muddies rather than clarifies the waters, and it’s
important to understand why.

Duplication is useful when it supplies independent, specific examples of a general concept that
you don’t yet understand. For example, in the prior section, the switch statement within verse
evolved to contain four different templates. Those templates are concrete examples of a more
generic verse. Each supplies unique information, but together they point you towards the
underlying abstraction.

The problem with the verses implementation above is that it does not isolate a new,
independent example, but instead, it duplicates one that you’ve already identified. The code to
produce verses 99 and 98 already exists in the default clause of the switch statement of verse
(repeated below).

Listing 2.18: Verse Owns the Default
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 // ...
 4 default:
 5 return
 6 $number . " bottles of milk on the wall, " .
 7 $number . " bottles of milk.\n" .
 8 "Take one down and pass it around, " .

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-200/lib/Bottles.php#L4-L15
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-210/lib/Bottles.php#L11-L38

2.6. Exposing Responsibilities

Page 38

 9 ($number-1) . " bottles of milk on the wall.\n";
10 }
11 }

Note that Listing 2.17: Verses 99 98 Literal is just the non-generalized version of the above
pattern. Thus, this new code duplicates an example that already exists and so supplies no new
information about the problem. In addition, duplicating this already-existing code masks the
true responsibility of verses. This method would be more intention-revealing if this hidden
responsibility were exposed instead of obscured.

The verses method is responsible for understanding its input arguments, and for knowing how
to use these arguments to produce the correct output. Its job is not to know the exact lyrics for
any verse. Its job is, rather, to repeatedly refer this question on to the verse method, and to
accumulate the answers into a multi-verse string.

Code longs to be as ignorant as possible. While it makes perfect sense for the verse method to be
responsible for knowing the verse templates, once verse assumes this responsibility, other parts
of your application should not usurp it.

Here’s an alternative implementation of verses that knows less but reveals more:

Listing 2.19: Verses 99 98 Message
1 public function verses(): string {
2 return
3 $this->verse(99) .
4 "\n" .
5 $this->verse(98);
6 }

The story this code tells is that verses are made up of verses (sorry), and that there’s a
relationship between a sequence of verses and an individual verse. Listing 2.17: Verses 99 98
Literal hid that relationship, while this example begins to expose it.

The code above is the simplest thing that passes this test, but you’re probably chomping at the bit
to do more. You are surely aware that the verses method must ultimately produce lyrics for all
100 verses. You recognize that the code above is incomplete and therefore temporary. You know
that the real verses implementation will ultimately loop from upper to lower, invoking verse
for each number and accumulating the response. Following the "simplest-thing" rule here may
feel tedious and time-consuming when the real solution is so obvious.

In Chapter 28 of Test-Driven Development by Example, Kent Beck describes different ways to
make tests pass. Three of his "Green Bar Patterns" are:

Fake It ("Til You Make It")

Obvious Implementation

Triangulate

The previous two attempts at verses (Listing 2.17: Verses 99 98 Literal and Listing 2.19: Verses
99 98 Message) are examples of Fake It because although each implementation passes the

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-210/lib/Bottles.php#L4-L9

2.6. Exposing Responsibilities

Page 39

current test, the tests are not yet complete. The first example was abandoned in favor of the
second, but both are Fakes because neither does everything the final spec will require.

An Obvious Implementation solution is, well, obvious, and what’s obvious here is that the verses
should loop from 99 down to 0, invoking verse for each number and concatenating the results.
When the obvious implementation is evident, it makes sense to jump straight to it. If you are
absolutely certain of the correct implementation, there’s no need to wear a hair shirt[8] and
repetitively inch through a series of tiny steps.

Notice, however, that attractive though this idea is, it is fraught with peril. The small steps of TDD
act to incrementally reveal the correct implementation. If your absolute certainty turns out to be
wrong, skipping these incremental steps means you miss the opportunity of being set right. An
apparently "obvious" implementation that is actually an incorrect guess will cause a world of
downstream pain.

Fake It style TDD may initially seem awkward and tedious, but with practice it becomes both
natural and speedy. Developing the habit of writing just enough code to pass the tests forces you
to write better tests. It also provides an antidote for the hubris of thinking you know what’s right
when you’re actually wrong. Although it sometimes makes sense to skip the small steps and
jump immediately to the final solution, exercise caution. It’s best to save Obvious Implementation
for very small leaps.

The next Green Bar Pattern is Triangulate, which Beck describes as a way to "conservatively
drive abstraction with tests." Triangulation requires writing several tests at once, which means
you’ll have multiple simultaneous broken tests. The idea is to write one bit of code which makes
all of the tests pass. Triangulation is meant to force you to converge upon the correct abstraction
in your code.

Triangulation is such a useful idea that Shameless Green expands it from tests to code. You can
expose a common, underlying abstraction through the accumulation of multiple concrete
examples. These concrete code examples often contain some duplication, but this duplication is
fine as long as each overall example is independent and unique.

Now that the verses method works for 99 and 98, the next step is to write a test that asserts it
can generate other sequences. At this point, it makes sense to test the other end of the range.
Here’s a test for the verses from 2 down to 0:

Listing 2.20: Verses 2, 1, 0 Test
 1 public function test_a_few_verses() {
 2 $expected =
 3 "2 bottles of milk on the wall, " .
 4 "2 bottles of milk.\n" .
 5 "Take one down and pass it around, " .
 6 "1 bottle of milk on the wall.\n" .
 7 "\n" .
 8 "1 bottle of milk on the wall, " .
 9 "1 bottle of milk.\n" .
10 "Take it down and pass it around, " .
11 "no more bottles of milk on the wall.\n" .
12 "\n" .

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-220/test/BottlesTest.php#L65-L82

2.7. Choosing Names

Page 40

13 "No more bottles of milk on the wall, " .
14 "no more bottles of milk.\n" .
15 "Go to the store and buy some more, " .
16 "99 bottles of milk on the wall.\n";
17 $this->assertEquals($expected, (new Bottles())->verses(2, 0));
18 }

Once again you must choose between hard-coding a new special case or generalizing the code.
For example, you could make the test pass by explicitly adding a new conditional to the verses
method, like so:

Listing 2.21: Verses Specific Ranges
 1 public function verses(int $upper, int $lower): string {
 2 if ($upper === 99) {
 3 return
 4 $this->verse(99) . "\n" .
 5 $this->verse(98);
 6 } else {
 7 return
 8 $this->verse(2) . "\n" .
 9 $this->verse(1) . "\n" .
10 $this->verse(0);
11 }
12 }

Alternatively, you could alter the code to make it more abstract, as follows:

Listing 2.22: Verses Within a Range
1 public function verses(int $upper, int $lower): string {
2 return implode(
3 "\n",
4 array_map([$this, 'verse'], range($upper, $lower))
5);
6 }

This choice between a) adding a conditional or b) making the code more abstract should remind
you of an earlier discussion. Back in the Removing Duplication section, you faced the identical
situation when altering verse to pass the test for verse 3.

In both cases, there are many existing examples of the problem and the underlying abstraction is
well understood. Therefore, the arguments made in Removing Duplication apply here just as
they did previously.

Relative to its alternative, Listing 2.22: Verses Within a Range is easier to understand and just as
cheap to implement, and you have all the information you need to feel confident that it’s correct.
It is the best solution not only because it passes the test, but also because it clearly exposes the
responsibility of verses to produce any range of verses. It generalizes the code, which is the best
choice when you are confident that you understand the abstraction.

Now that you can generate any sequence of verses, the final task is to produce lyrics for the
entire song.

2.7. Choosing Names

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-230/lib/Bottles.php#L4-L15
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-240/lib/Bottles.php#L4-L9

2.7. Choosing Names

Page 41

At the start of this chapter, the plan was to create a Bottles class that implemented the
following API:

verse($n)

verses($upper, $lower) // initially verses($a, $b)

song()

Thus far, this plan has worked swimmingly. The verse and verses methods are complete; it’s
time to move on to song.

The code to produce the entire song is quite straightforward, as shown here:

Listing 2.23: Song Code
1 public function song(): string {
2 return $this->verses(99, 0);
3 }

This is a good time to reflect upon the API as a whole, and to reconsider the song method. The
body of song is scarcely longer than its name. As the verses method is already in the public API,
users of Bottles don’t need the song method at all—they could send verses(99,0) and get
back the same output.

Extraneous code adds costs without providing benefits, and at this point, it’s quite reasonable to
challenge the need for song. Does song serve a purpose independent of verses, or is it
redundant and thus a candidate for deletion?

Answering this question requires thinking about the problem from the message sender’s point of
view. While it’s true that verses(99, 0) and song return the same output, they differ widely in
the amount of knowledge they require from the sender. From the sender’s point of view, it is one
thing to know that you want all of the lyrics to the "99 Bottles" song, but it is quite another to
know how Bottles produces those lyrics.

Knowledge that one object has about another creates a dependency. Dependencies tie objects
together, exacerbating the cost of change. Your goal as a message sender is to incur a limited
number of dependencies, and your obligation as a method provider is to inflict few.

The song method imposes a single dependency; to use it, you need only know its name.

Using the verses method to request the entire song, however, requires significantly more
knowledge. The sender must know:

the name of the verses method

that the method requires two arguments

that the first argument is the verse on which to start

that the second argument is the verse on which to end

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-260/lib/Bottles.php#L4-L6

2.8. Revealing Intentions

Page 42

““

that the song starts on verse 99

that the song ends on verse 0

This is a lot of knowledge. There are many ways in which the verses method could change that
would break senders of this message.

2.8. Revealing Intentions
Kent Beck explains the difference between intention and implementation.

The distinction between intention and implementation […] allows you to
understand a computation first in essence and later, if necessary, in detail.

— Kent Beck
Implementation Patterns (p. 69)

Here song is the intention, and verses(99, 0) is the implementation. There’s a big difference
between wanting the lyrics for a range of verses, and wanting the lyrics for the entire song. The
verses method is in the public API, so it must continue to exist, but its existence doesn’t obviate
the need for song. Senders of the song message want all of the verses, and they oughtn’t be
forced to trouble themselves with details about how this happens.

The song method having defended its worth, here’s the full Shameless Green for 99 Bottles.

Listing 2.24: Shameless Green Initial
 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }
 5
 6 public function verses(int $upper, int $lower): string {
 7 return implode(
 8 "\n",
 9 array_map([$this, 'verse'], range($upper, $lower))
10);
11 }
12
13 public function verse(int $number): string {
14 switch ($number) {
15 case 0:
16 return
17 "No more bottles of milk on the wall, " .
18 "no more bottles of milk.\n" .
19 "Go to the store and buy some more, " .
20 "99 bottles of milk on the wall.\n";
21 case 1:
22 return
23 "1 bottle of milk on the wall, " .
24 "1 bottle of milk.\n" .
25 "Take it down and pass it around, " .
26 "no more bottles of milk on the wall.\n";
27 case 2:
28 return
29 "2 bottles of milk on the wall, " .
30 "2 bottles of milk.\n" .
31 "Take one down and pass it around, " .

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-260/lib/Bottles.php#L3-L48

2.9. Writing Cost-Effective Tests

Page 43

32 "1 bottle of milk on the wall.\n";
33 default:
34 return
35 $number . " bottles of milk on the wall, " .
36 $number . " bottles of milk.\n" .
37 "Take one down and pass it around, " .
38 ($number-1) . " bottles of milk on the wall.\n";
39 }
40 }
41 }

Pleasing as this code may be, the alert reader will have noticed that the song method was
introduced without first writing a test. This is a clear violation of TDD.

Indeed, there are a number of gaps in the tests. For example, there is no coverage for individual
verses 4 through 97, and there’s no guarantee that these verses appear in the correct order.

Bottles now produces that correct output, and it’s tempting to walk away at this point.
However, doing so transfers the burden of keeping this code running to some poor downstream
programmer, one who has far less understanding of the problem than you do right now.

The next section, therefore, is concerned with tightening up the tests.

2.9. Writing Cost-E�ective Tests
TDD promises straightforward, bug-free software that can be confidently and easily changed.
TDD does not claim to be free, merely that its benefits outweigh its costs.

Belief in the value of TDD has become mainstream, and the pressure to follow this practice
approaches an unspoken mandate. Acceptance of this mandate is illustrated by the fact that it’s
common for folks who don’t test to tender sheepish apologies. Even those who don’t test seem to
believe they ought to do so.

Despite this general agreement, the sad truth is that the promise of TDD has not been universally
fulfilled. Many applications have tests that are difficult to understand, challenging to change, and
prohibitively time-consuming to run. Instead of enabling change, these tests actively impede it.
The world is littered with test suites that are roundly hated by their maintainers, sometimes to
the point of abandonment.

A great deal of this pain originates with tests that are tied too closely to code. When this is true,
every improvement to the code breaks the tests, forcing them to change in turn. Therefore, the
first step in learning the art of testing is to understand how to write tests that confirm what your
code does without any knowledge of how your code does it.

This section explores the problem of test-to-code coupling. As a reminder of the current state of
affairs, here are the current tests:

Listing 2.25: No Song Test
 1 class BottlesTest extends \PHPUnit\Framework\TestCase {
 2 public function test_the_first_verse() {
 3 $expected =

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-260/test/BottlesTest.php#L5-L91

2.9. Writing Cost-Effective Tests

Page 44

 4 "99 bottles of milk on the wall, " .
 5 "99 bottles of milk.\n" .
 6 "Take one down and pass it around, " .
 7 "98 bottles of milk on the wall.\n";
 8 $this->assertEquals($expected, (new Bottles())->verse(99));
 9 }
10
11 public function test_another_verse() {
12 $expected =
13 "3 bottles of milk on the wall, " .
14 "3 bottles of milk.\n" .
15 "Take one down and pass it around, " .
16 "2 bottles of milk on the wall.\n";
17 $this->assertEquals($expected, (new Bottles())->verse(3));
18 }
19
20 public function test_verse_2() {
21 $expected =
22 "2 bottles of milk on the wall, " .
23 "2 bottles of milk.\n" .
24 "Take one down and pass it around, " .
25 "1 bottle of milk on the wall.\n";
26 $this->assertEquals($expected, (new Bottles())->verse(2));
27 }
28
29 public function test_verse_1() {
30 $expected =
31 "1 bottle of milk on the wall, " .
32 "1 bottle of milk.\n" .
33 "Take it down and pass it around, " .
34 "no more bottles of milk on the wall.\n";
35 $this->assertEquals($expected, (new Bottles())->verse(1));
36 }
37
38 public function test_verse_0() {
39 $expected =
40 "No more bottles of milk on the wall, " .
41 "no more bottles of milk.\n" .
42 "Go to the store and buy some more, " .
43 "99 bottles of milk on the wall.\n";
44 $this->assertEquals($expected, (new Bottles())->verse(0));
45 }
46
47 public function test_a_couple_verses() {
48 $expected =
49 "99 bottles of milk on the wall, " .
50 "99 bottles of milk.\n" .
51 "Take one down and pass it around, " .
52 "98 bottles of milk on the wall.\n" .
53 "\n" .
54 "98 bottles of milk on the wall, " .
55 "98 bottles of milk.\n" .
56 "Take one down and pass it around, " .
57 "97 bottles of milk on the wall.\n";
58 $this->assertEquals($expected, (new Bottles())->verses(99, 98));
59 }
60
61 public function test_a_few_verses() {
62 $expected =
63 "2 bottles of milk on the wall, " .
64 "2 bottles of milk.\n" .
65 "Take one down and pass it around, " .
66 "1 bottle of milk on the wall.\n" .
67 "\n" .

2.10. Avoiding the Echo-Chamber

Page 45

68 "1 bottle of milk on the wall, " .
69 "1 bottle of milk.\n" .
70 "Take it down and pass it around, " .
71 "no more bottles of milk on the wall.\n" .
72 "\n" .
73 "No more bottles of milk on the wall, " .
74 "no more bottles of milk.\n" .
75 "Go to the store and buy some more, " .
76 "99 bottles of milk on the wall.\n";
77 $this->assertEquals($expected, (new Bottles())->verses(2, 0));
78 }
79 }

2.10. Avoiding the Echo-Chamber
The output of song is a string of one hundred very similar verses. The method does not yet have
a test. Programmers who want to remedy this omission, but who are hyper-alert to duplication,
may be tempted to test song like this:

Listing 2.26: Whole Song Test Logic
1 public function test_the_whole_song() {
2 $bottles = new Bottles();
3 $this->assertEquals($bottles->verses(99, 0), $bottles->song());
4 }

The test above asserts that song returns the same output as does verses(99, 0). On its face,
this seems like a great idea. The test is short, it passes, it was easy to write, and (at least for the
moment, while you’re immersed in the problem) it’s easy to understand. However, this test has a
major flaw that can cause it to toggle from "short and sweet" to "painful and costly" in the blink
of an eye. This flaw lies dormant until something changes, so the benefits of writing tests like this
accrue to the writer today, while the costs are paid by an unfortunate maintainer in the future.

Understanding this flaw requires being clear about song's responsibilities. From the message
sender’s point of view, song is responsible for returning the lyrics for all 100 verses. Imagine that
you were tasked to test this method but knew nothing about how Bottles was implemented.
You would be unaware of the existence of the verses method, and would have no choice other
than to test song by asserting that its output matched those lyrics.

Asserting that song returns the expected lyrics is very different from asserting that song returns
the same thing as verses. In the first case, the song test is independent of implementation
details and so tolerates changes to other parts of the class without breaking. In the second case,
the song test is coupled to the current Bottles implementation such that it will break if the
signature or behavior of verses changes, even if song continues to return the correct lyrics.

There’s nothing more frustrating than making a change that preserves the behavior of an
application but breaks apparently unrelated tests. If you change an implementation detail while
retaining existing behavior and are then confronted with a sea of red, you are right to be
exasperated. This is completely avoidable, and a sign that tests are too tightly coupled to code.
Such tests impede change and increase costs.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-270/test/BottlesTest.php#L84-L87

2.10. Avoiding the Echo-Chamber

Page 46

Not only is the above song test too tightly-coupled to the current Bottles implementation, it
doesn’t even force you to write the right code. The following badly-broken Bottles class passes
the test suite without actually producing the correct song. Notice that the verses method below
can only return verses 99-98, verses 2-0, or the string "ok."

Listing 2.27: Badly Broken Bottles Song
 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }
 5
 6 public function verses(int $upper, int $lower): string {
 7 if ($upper === 99 && $lower === 98) {
 8 return
 9 $this->verse(99) . "\n" .
10 $this->verse(98);
11 } else if ($upper === 2) {
12 return
13 $this->verse(2) . "\n" .
14 $this->verse(1) . "\n" .
15 $this->verse(0);
16 } else {
17 return 'ok';
18 }
19 }
20
21 public function verse(int $number): string {
22 switch ($number) {
23 case 0:
24 return
25 "No more bottles of milk on the wall, " .
26 "no more bottles of milk.\n" .
27 "Go to the store and buy some more, " .
28 "99 bottles of milk on the wall.\n";
29 case 1:
30 return
31 "1 bottle of milk on the wall, " .
32 "1 bottle of milk.\n" .
33 "Take it down and pass it around, " .
34 "no more bottles of milk on the wall.\n";
35 case 2:
36 return
37 "2 bottles of milk on the wall, " .
38 "2 bottles of milk.\n" .
39 "Take one down and pass it around, " .
40 "1 bottle of milk on the wall.\n";
41 default:
42 return
43 $number . " bottles of milk on the wall, " .
44 $number . " bottles of milk.\n" .
45 "Take one down and pass it around, " .
46 ($number-1) . " bottles of milk on the wall.\n";
47 }
48 }
49 }

The above code exploits weaknesses in the test to get to green without actually producing all of
the verses. To correct this, you might be tempted to change the song test as follows:

Listing 2.28: Whole Song Test Logic Again

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-280/lib/Bottles.php#L3-L58
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-300/test/BottlesTest.php#L84-L91

2.10. Avoiding the Echo-Chamber

Page 47

1 public function test_the_whole_song() {
2 $bottles = new Bottles();
3 $expected = implode(
4 "\n",
5 array_map([$bottles, 'verse'], range(99, 0))
6);
7 $this->assertEquals($expected, $bottles->song());
8 }

This new test succeeds in forcing song to produce every verse, but altering the test in this way
just digs a deeper hole. Consider what just happened. The original test asserts that sending song
produces the same result as running the code currently contained in song. In other words, it
asserts that

song()

and

verses(99, 0)

return the same output.

This new test asserts that song produces the same result as running the code currently
contained in verses. So

song()

and

implode(
 "\n",
 array_map([$bottles, 'verse'], range(99, 0))
);

return the same output.

Notice that although this second variant forces the production of every verse, the test continues
to echo code from Bottles. Now, instead of asserting that the output from song is like the
current implementation of song, it asserts that the output of song is like the current
implementation of verses. This doesn’t improve the test, but just tightly couples the test to code
that’s one step farther back in the stack. If that more-distant code changes, this test might break.

There’s an obvious solution to this testing problem, one alluded to above. The song test should
know nothing about how the Bottles class produces the song. The clear and unambiguous
expectation here is that song return the complete set of lyrics, and the best and easiest way to
test song is to explicitly assert that it does.

Here’s that test:

Listing 2.29: Song Test
 1 public function test_the_whole_song() {
 2 $expected = <<< SONG

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-310/test/BottlesTest.php#L84-L390

2.11. Considering Options

Page 48

 3 99 bottles of milk on the wall, 99 bottles of milk.
 4 Take one down and pass it around, 98 bottles of milk on the wall.
 5
 6 98 bottles of milk on the wall, 98 bottles of milk.
 7 Take one down and pass it around, 97 bottles of milk on the wall.
 8
 9 97 bottles of milk on the wall, 97 bottles of milk.
10 Take one down and pass it around, 96 bottles of milk on the wall.
11
12 // ...
13
14 4 bottles of milk on the wall, 4 bottles of milk.
15 Take one down and pass it around, 3 bottles of milk on the wall.
16
17 3 bottles of milk on the wall, 3 bottles of milk.
18 Take one down and pass it around, 2 bottles of milk on the wall.
19
20 2 bottles of milk on the wall, 2 bottles of milk.
21 Take one down and pass it around, 1 bottle of milk on the wall.
22
23 1 bottle of milk on the wall, 1 bottle of milk.
24 Take it down and pass it around, no more bottles of milk on the wall.
25
26 No more bottles of milk on the wall, no more bottles of milk.
27 Go to the store and buy some more, 99 bottles of milk on the wall.
28
29 SONG;
30 $this->assertEquals($expected, (new Bottles())->song());
31 }
32 }

In the listing above, the $expected string is so long that verses 96 through 5 are elided on line
12. In real life, of course, the lyrics to all 100 verses would be explicitly detailed in this test.

The text needed for 100 verses is fairly lengthy, and you may resist writing out the full string
because of concerns about duplication.

2.11. Considering Options
If you find the duplication distressing, consider the alternatives. Your choices are:

1. Assert that the expected output matches that of some other method.

The first two song test variants do this. Those tests are coupled to the current Bottles
implementation, and so depend upon characteristics of that code.

These dependencies mean that changes to the Bottles code might break the song test,
even if there is nothing otherwise wrong with the application.

2. Assert that the expected output matches a dynamically generated string.

Once you accept that the song test should verify specific output rather than couple to the
current implementation, you must decide how to create that output. Because song returns
a long, duplicative string, many programmers feel tempted, perhaps even obligated, to
reduce this duplication by dynamically creating the verses within the tests.

However, reducing string duplication inside the song test would of necessity require logic.
This logic already exists in the Bottles class, so the test would be forced to invoke, copy,

2.11. Considering Options

Page 49

or re-implement it. Regardless of how you do it, using any logic here means that a change
to Bottles might break the song test in an unexpected and confusing way.

3. Assert that the expected output matches a hard-coded string.

In this case (as in Listing 2.29: Song Test) not only is the expected output clearly and
unambiguously stated, but the test has no dependencies. These qualities combine to make
it easy to understand and to tolerate changes in code.

Of these three choices, only the third is independent of the current implementation and so
guaranteed to survive changes to Bottles. It may be difficult to reconcile yourself to writing
down the entire lyrics string, but remember, DRYing out the lyrics in the test would force you to
introduce an abstraction. Tests are not the place for abstractions—they are the place for
concretions. Abstractions belong in code. If you insist on reducing duplication by adding logic to
your tests, this logic by necessity must mirror the logic in your code. This binds the tests to
implementation details and makes them vulnerable to breaking every time you change the code.

DRY is a very good idea in code, but much less useful in tests. When testing, the best choice is
very often just to write it down.

Here again is the complete Bottles listing :

Listing 2.30: Shameless Green
 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }
 5
 6 public function verses(int $upper, int $lower): string {
 7 return implode(
 8 "\n",
 9 array_map([$this, 'verse'], range($upper, $lower))
10);
11 }
12
13 public function verse(int $number): string {
14 switch ($number) {
15 case 0:
16 return
17 "No more bottles of milk on the wall, " .
18 "no more bottles of milk.\n" .
19 "Go to the store and buy some more, " .
20 "99 bottles of milk on the wall.\n";
21 case 1:
22 return
23 "1 bottle of milk on the wall, " .
24 "1 bottle of milk.\n" .
25 "Take it down and pass it around, " .
26 "no more bottles of milk on the wall.\n";
27 case 2:
28 return
29 "2 bottles of milk on the wall, " .
30 "2 bottles of milk.\n" .
31 "Take one down and pass it around, " .
32 "1 bottle of milk on the wall.\n";
33 default:
34 return

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-310/lib/Bottles.php#L3-L48

2.12. Summary

Page 50

35 $number . " bottles of milk on the wall, " .
36 $number . " bottles of milk.\n" .
37 "Take one down and pass it around, " .
38 ($number-1) . " bottles of milk on the wall.\n";
39 }
40 }
41 }

The Bottles tests and code are now complete. The tests are straightforward, and the code is
easy to understand.

2.12. Summary
Testing, done well, speeds development and lowers costs. Unfortunately it’s also true that flawed
tests slow you down and cost you money.

It is worth the effort, therefore, to get good at testing. TDD can prevent costly guesses, but only if
you commit to writing code in small steps. Tests can make it safe and easy to refactor, but only if
they are carefully de-coupled from the current code.

Good tests not only tell a story, but they lead, step by step, to a well-organized solution. The tests
written in this chapter give rise (assuming proper restraint on the part of the programmer) to
Shameless Green.

The Shameless Green solution is neither clever nor extensible. Its value lies in the fact that the
code is easy to understand, and cheap to write. If nothing ever changes, this solution is quite
certainly good enough.

Things get more interesting only if something needs to change. So, on to Chapter 3, which
introduces a new requirement, and forces you to make some hard decisions about the code.

3.1. Listening to Change

Page 51

3. Unearthing Concepts
The Shameless Green solution values understandability, straight-forwardness and efficiency,
with little regard for changeability. It contains duplication, and is unapologetic about leaning in
the procedural direction. It’s fast, and cheap, and may be good enough, at least until something
changes.

However, in the real world, requirements do change, and when that happens, the standards for
code rise.

This chapter defines a new requirement, which triggers a deeper look at the structure of the
code. It then introduces a few straightforward rules to allow you to systematically and
incrementally improve code, without fear of getting lost or introducing bugs. The rules are
simple, but they allow complex behavior to emerge. By the end of this chapter, you’ll have begun
to unearth concepts that are currently hidden in the code.

3.1. Listening to Change
Code is expensive. Writing it costs time or money. It therefore behooves you to be as efficient as
possible. The most cost-effective code is as good as necessary, but no better.

However, programming is an art, and programmers love elegant code. The conundrum is that
once an initial, more prosaic, solution exists, the problem is solved, and the choice of whether to
deliver it as is, or to improve upon it at this moment, must be weighed carefully.

If the problem is solved, and you choose to refactor now rather than later, you pay the
opportunity cost[9] of not being able to work on other problems. Spending time "improving" code
based purely on aesthetics may not be the best use of your precious time.

A good way to know that you’re using limited time wisely is to be driven by changes in
requirements. The arrival of a new requirement tells you two things, one very specific, the other
more general.

Specifically, a new requirement tells you exactly how the code should change. Waiting for this
requirement avoids the need to speculate about the future. The requirement reveals exactly how
you should have initially arranged the code.

More generally, the need for change imposes higher standards on the affected code. Code that
never changes obviously doesn’t need to be very changeable, but once a new requirement
arrives, the bar is raised. Code that needs to be changed must be changeable. Thus, a new
requirement for the 99 Bottles problem will drive you to improve the code.

Here’s that new requirement: users have requested that you alter the 99 Bottles code to output "1
six-pack" in each place where it currently says "6 bottles."

Here’s a reminder of the current state of the code.

3.1. Listening to Change

Page 52

Listing 3.1: Shameless Green
 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }
 5
 6 public function verses(int $upper, int $lower): string {
 7 return implode(
 8 "\n",
 9 array_map([$this, 'verse'], range($upper, $lower))
10);
11 }
12
13 public function verse(int $number): string {
14 switch ($number) {
15 case 0:
16 return
17 "No more bottles of milk on the wall, " .
18 "no more bottles of milk.\n" .
19 "Go to the store and buy some more, " .
20 "99 bottles of milk on the wall.\n";
21 case 1:
22 return
23 "1 bottle of milk on the wall, " .
24 "1 bottle of milk.\n" .
25 "Take it down and pass it around, " .
26 "no more bottles of milk on the wall.\n";
27 case 2:
28 return
29 "2 bottles of milk on the wall, " .
30 "2 bottles of milk.\n" .
31 "Take one down and pass it around, " .
32 "1 bottle of milk on the wall.\n";
33 default:
34 return
35 $number . " bottles of milk on the wall, " .
36 $number . " bottles of milk.\n" .
37 "Take one down and pass it around, " .
38 ($number-1) . " bottles of milk on the wall.\n";
39 }
40 }
41 }

In the same way that Shameless Green makes no guesses about the future, you should refrain
from making up requirements. Notice the request is not to "replace every multiple of 6 with n
six-pack(s)" nor does it mention special handling for "cases" of milk. The requirement is simply
to output "1 six-pack" where it currently says "6 bottles." Knowledge of the domain may prompt
you to query your customer about these other possibilities, and past experience may
occasionally lead you to infer a requirement other than the one specified. But generally it’s best
to clarify requirements, and then write the minimum necessary code.

Despite the fact that you should rarely infer new requirements, it’s true that things that change,
do. Now that someone has asked for a change, you have license to improve this code. The code
arrangement that was acceptable for Shameless Green is not necessarily best for enabling
change.

Conditionals are the bane of OO. Shameless Green contains a switch statement, and within its
branches, much duplication. While this was acceptable in the initial solution, consider the result

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c2-tests-310/lib/Bottles.php#L3-L48

3.2. Starting With the Open/Closed Principle

Page 53

if you continue down the conditional path. The following example illustrates the problem by
amending the existing code to meet the "six-pack" requirement.

Listing 3.2: Compounding Conditional Sins
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 case 0:
 4 return
 5 "No more bottles of milk on the wall, " .
 6 // ...
 7 case 1:
 8 return
 9 "1 bottle of milk on the wall, " .
10 // ...
11 case 2:
12 return
13 "2 bottles of milk on the wall, " .
14 // ...
15 case 6:
16 return
17 "1 six-pack of milk on the wall, " .
18 "1 six-pack of milk.\n" .
19 "Take one down and pass it around, " .
20 "5 bottles of milk on the wall.\n";
21 case 7:
22 return
23 "7 bottles of milk on the wall, " .
24 "7 bottles of milk.\n" .
25 "Take one down and pass it around, " .
26 "1 six-pack of milk on the wall.\n";
27 default:
28 return
29 $number . " bottles of milk on the wall, " .
30 // ...
31 }
32 }

The verse switch statement initially contained four branches, and in the code above the
number of branches has ballooned to six. This is unacceptable. Conditionals breed, and now that
this one has started reproducing, you must do something to stop it.

3.2. Starting With the Open/Closed Principle
The decision about whether to refactor in the first place should be determined by whether your
code is already "open" to the new requirement.

"Open" is short for "Open/Closed," which in turn is short for "open for extension and closed for
modification." The "O" in open supplies the "O" in the acronym "SOLID" (see sidebar). Code is
open to a new requirement when you can meet that new requirement without changing existing
code.

SOLID Design Principles
The SOLID acronym was coined by Michael Feathers and popularized by Robert Martin.
Each letter stands for a well-known principle in object-oriented design. Here’s a formal

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-10/lib/Bottles.php#L15-L54

3.2. Starting With the Open/Closed Principle

Page 54

definition of each one:

S - Single Responsibility

The methods in a class should be cohesive around a single purpose.

O - Open-Closed

Objects should be open for extension, but closed for modification.

L - Liskov Substitution

Subclasses should be substitutable for their superclasses.

I - Interface Segregation

Objects should not be forced to depend on methods they don’t use.

D - Dependency Inversion

Depend on abstractions, not on concretions.

If you find the above definitions less than enlightening, don’t despair. As principles are
referenced in this book, plain language explanations (like the one below) will follow.

The "open" principle says that you should not conflate the process of moving code around, of
refactoring, with the act of adding new features. You should instead separate these two
operations. When faced with a new requirement, first rearrange the existing code such that it’s
open to the new feature, and once that’s complete, then add the new code.

The current Bottles class is not open to the "six-packs" requirement because adding new verse
variants requires editing the conditional. Therefore, when faced with this new requirement,
your first task is to refactor the existing code into a shape such that you can then implement the
new requirement by merely adding code. Unfortunately, it is quite likely that you do not know
how to do this, and so are at a loss about how to approach the problem.

Fortunately, you do not have to know everything in order to choose the right place to start. When
faced with this situation, be guided by the following flowchart.

3.3. Recognizing Code Smells

Page 55

Figure 3.1: Open Closed Flowchart

As per the above flowchart, first ask yourself if the existing code is already open to the new
requirement. If so, your job is simply to write the new code.

If not, next ask if you know how to alter the existing code to make it open to the new
requirement. This case is also straightforward. If so, make the alteration, and then write the new
code.

However, the sad truth is that the answer to both of those questions is often "no." The existing
code isn’t open to the new requirement, and you have no idea how to make it so. At this point
"code smells" come to the rescue. If you can identify smells in code, you isolate flaws and correct
them one by one.

3.3. Recognizing Code Smells

3.4. Identifying the Best Point of Attack

Page 56

Most code is imperfect. Its flaws are many, and so thoroughly entangled that it is impossible to
correct all of them at once. If you’ve ever tackled a bit of code, making change after change
without managing to complete the task, and eventually rolling everything back, you know this
problem.

The trick to successfully improving code that contains many flaws is to isolate and correct them
one at a time. In his Refactoring book, Martin Fowler identifies and names many common flaws,
and provides refactoring recipes to fix them. Chapter 3 (which was co-written by Kent Beck, who
coined the term) calls the flaws "code smells." Thanks to Fowler’s book, if you can identify a smell
within code, you can look up the curative refactoring, and apply that refactoring to remove the
flaw.

If you’re wondering if you need to go read Fowler’s book right now, the answer is, “not
necessarily.” Fowler’s principles are introduced and demonstrated here. However, this book
explores only a few of the many refactoring recipes with which you would be well-served to be
familiar. Fowler’s book is an excellent investment.

If asked to list a few code smells, you might suggest "duplication," or "classes that are too big,"
and it is indeed true that Duplicated Code and Large Class are two of the smells listed in Martin
Fowler’s Refactoring book. It’s fairly obvious how to remove these common smells (abstract
away the duplication, or divide one class into several), and so it may appear that smells are a
general, hand-wavy kind of thing.

However, there are many other code smells with which you may not be as familiar. You can
probably guess the definition of Divergent Change, but can you define Feature Envy? Can you
recognize and specify the curative refactorings for Primitive Obsession, Inappropriate Intimacy,
or Shotgun Surgery?

A complete exploration of every code smell is beyond the scope of this book, especially since Mr.
Fowler has covered the topic so thoroughly. However, the refactorings undertaken here will be
driven and guided by smells, so the task at hand is to identify the smells in the current Bottles
class. The easiest way to unearth these smells is to make a list of the things you dislike about the
code.

3.4. Identifying the Best Point of Attack
The current 99 Bottles code is not "open" to the six-pack requirement. If you are unclear about
how to make it open (which is often the case), the way forward is to start removing code smells.
If the smells aren’t immediately obvious, start by making a list of the things you find
objectionable.

Consider the verse method (repeated below).

Listing 3.3: Shameless Verse
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 case 0:
 4 return

http://martinfowler.com/books/refactoring.html
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-20/lib/Bottles.php#L15-L42

3.5. Refactoring Systematically

Page 57

““

 5 "No more bottles of milk on the wall, " .
 6 "no more bottles of milk.\n" .
 7 "Go to the store and buy some more, " .
 8 "99 bottles of milk on the wall.\n";
 9 case 1:
10 return
11 "1 bottle of milk on the wall, " .
12 "1 bottle of milk.\n" .
13 "Take it down and pass it around, " .
14 "no more bottles of milk on the wall.\n";
15 case 2:
16 return
17 "2 bottles of milk on the wall, " .
18 "2 bottles of milk.\n" .
19 "Take one down and pass it around, " .
20 "1 bottle of milk on the wall.\n";
21 default:
22 return
23 $number . " bottles of milk on the wall, " .
24 $number . " bottles of milk.\n" .
25 "Take one down and pass it around, " .
26 ($number-1) . " bottles of milk on the wall.\n";
27 }
28 }

This method contains a switch statement (the Switch Statements smell) whose branches contain
many duplicated strings (Duplicated Code). Of these two smells, Duplicated Code is the most
straightforward and so will be tackled first.

Therefore, the current task is to refactor the verse method to remove the duplication, in hope
and expectation that the resulting code will be more open to the six-pack requirement.

Before undertaking this refactoring, it must be admitted that there is no direct connection
between removing the duplication, and succeeding in making the code open to the six-pack
requirement. That, however, is the beauty of this technique. You don’t have to know how to solve
the whole problem in advance. The plan is to nibble away, one code smell at a time, in faith that
the path to openness will be revealed.

3.5. Refactoring Systematically
Having bandied the word around repeatedly, it’s high time for a formal definition of
"refactoring." According to Fowler:

Refactoring is the process of changing a software system in such a way that it
does not alter the external behavior of the code yet improves its internal
structure.

— Martin Fowler
Refactoring

In short, refactoring alters the arrangement of code without changing its behavior. Recall that
new requirements should be implemented in two steps. First, you rearrange existing code so that
it becomes open to the new requirement. Next, you write new code to meet that requirement.
The first of these steps is refactoring.

3.6. Following the Flocking Rules

Page 58

Note that safe refactoring relies upon tests. If you truly are rearranging code without changing
behavior, at every step along the way the existing tests should continue to pass. Tests are a safety
blanket that justifies confidence in the new arrangement of code. If they begin to fail, one of two
things must be true. Either a) you’ve inadvertently broken the code, or b) the existing tests are
flawed.

If tests fail because you’ve broken the code, the cure is simple. Undo the last change, make a
better one and proceed merrily along your way.

However, if you rearrange code without changing behavior and tests begin to fail, then the tests
themselves are flawed. Tests that make assertions about how things are done, rather than what
actually happens, are the prime contributors to this predicament. For example, a test that makes
assertions about how a method is implemented will obviously break if you change that method’s
implementation, even if its output is unchanged. When in this situation, there’s no alternative
other than to improve the tests before embarking upon a refactoring.

Tests are the wall at your back. Successful refactorings lean on green. Therefore, you should
never change tests during a refactoring. If your tests are flawed such that they interfere with
refactoring, improve them first, and then refactor.

3.6. Following the Flocking Rules
Recall that the current task is to remove duplication from the switch statement of the verse
method.

The switch statement has four branches, each of which contains a verse template. The templates
represent distinct verse variants. These variants obviously differ, but in some not-yet-identified,
more-abstract way, they are also alike.

Considered from a higher viewpoint, each variant is merely a verse in the song; in that sense
they are all the same. Underlying each concrete variant is a generalized verse abstraction. If you
could find this abstraction, you could use it to reduce the four-branch switch statement to a single
line of code.

The good news is that you don’t have to be able to see the abstraction in advance. You can find it
by iteratively applying a small set of simple rules. These rules are known as "Flocking Rules", and
are as follows:

Flocking Rules

1. Select the things that are most alike.

2. Find the smallest difference between them.

3. Make the simplest change that will remove that difference.

Changes to code can be subdivided into four distinct steps:

1. parse the new code

3.6. Following the Flocking Rules

Page 59

2. parse and execute it

3. parse, execute and use its result

4. delete unused code

These steps will be explained in greater detail later, but for now think of the parse step as
confirming that the syntax is valid, the parse/execute step as proving that the code runs without
blowing up, and the parse/execute/use step as ensuring that it returns the correct result.

Making small changes means you get very precise error messages when something goes wrong,
so it’s useful to know how to work at this level of granularity. As you gain experience, you’ll
begin to take larger steps, but if you take a big step and encounter an error, you should revert
the change and make a smaller one.

As you’re following the flocking rules:

For now, change only one line at a time.

Run the tests after every change.

If the tests fail, undo and make a better change.

Why "Flocking"?
Birds flock, fish school, and insects swarm. A flock’s behavior can appear so synchronized
and complex that it gives the impression of being centrally coordinated. Nothing could be
further from the truth. The group’s behavior is the result of a continuous series of small
decisions being made by each participating individual. These decisions are guided by three
simple rules.

1. Alignment - Steer towards the average heading of neighbors

2. Separation - Don’t get too close to a neighbor

3. Cohesion - Steer towards the average position of the flock

Thus, complex behavior emerges from the repeated application of simple rules. In the
same way that the rules in this sidebar allow birds to flock, the "Flocking Rules" for code
allow abstractions to appear.

3.7.1. Focusing on Difference

Page 60

Flock of Starlings Acting As A Swarm, John Holmes, CC BY-SA 2.0

To see a beautiful example of flocking in action, watch Steven Strogatz’s The Science of
Sync TED talk.

3.7. Converging on Abstractions
The Flocking Rules are so atomic, and so general, that they may not yet inspire confidence. The
remainder of this chapter will use them to unearth abstractions in the verse method, after
which you may find the process more convincing.

3.7.1. Focusing on Di�erence
While it’s true that there are problems for which the solution is obvious, those of any interesting
size aren’t tractable to instant understanding. They’re too big or have too many parts.

When examining complicated problems, the eye is first drawn towards sameness. However,
despite the fact that sameness is easier to identify, difference is more useful because it has more
meaning. DRYing out sameness has some value, but DRYing out difference has more.

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides are commonly referred to as the
"Gang of Four," in reference to their joint authorship of Design Patterns: Elements of Reusable
Object-Oriented Software. This influential book describes twenty-three patterns or solutions to
common OO programming problems and it explains this process thusly:

The focus here is encapsulating the concept that varies, a theme of many design

https://youtu.be/IiXaZGZqpVI?t=196
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

3.7.1. Focusing on Difference

Page 61

““ patterns.

Difference holds the key to understanding. If two concrete examples represent the same
abstraction and they contain a difference, that difference must represent a smaller abstraction
within the larger one. If you can name the difference, you’ve identified that smaller abstraction.

The good news is that a systematic application of the rules of refactoring converts difference to
sameness, decomposing a problem into its constituent parts. The even better news is that this
happens automatically. You don’t have to identify the underlying abstractions in advance of
refactoring. If you merely write the code dictated by the rules, the abstractions will follow.

The habit of believing that you understand the abstraction, and of jumping to an invented
solution, is deeply ingrained. Programmers study a problem, decide on a solution, and then
implement it. Solutions are crafted by intention.

If this describes your entire past experience, you may find the following code surprising. It takes
many small, iterative steps, and results in a solution that is discovered by refactoring.

To reduce the verse switch statement to a single line of code, the rules say to first identify the
things that are most alike. This means that you should select the two branches that are most
alike, and focus on making them identical.

Here again is a reminder of the switch statement:

Listing 3.4: Verse Method Conditional
 1 switch ($number) {
 2 case 0:
 3 return
 4 "No more bottles of milk on the wall, " .
 5 "no more bottles of milk.\n" .
 6 "Go to the store and buy some more, " .
 7 "99 bottles of milk on the wall.\n";
 8 case 1:
 9 return
10 "1 bottle of milk on the wall, " .
11 "1 bottle of milk.\n" .
12 "Take it down and pass it around, " .
13 "no more bottles of milk on the wall.\n";
14 case 2:
15 return
16 "2 bottles of milk on the wall, " .
17 "2 bottles of milk.\n" .
18 "Take one down and pass it around, " .
19 "1 bottle of milk on the wall.\n";
20 default:
21 return
22 $number . " bottles of milk on the wall, " .
23 $number . " bottles of milk.\n" .
24 "Take one down and pass it around, " .
25 ($number-1) . " bottles of milk on the wall.\n";
26 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-20/lib/Bottles.php#L16-L41

3.7.2. Simplifying Hard Problems

Page 62

Notice that although verse 2 contains hardcoded numbers for 2 and 1, it could just as correctly
say $number and $number-1, as in the default branch. This part looks different, but is logically
the same. It may help to recall that verse 2 has but one test, which asserts that the final line says
“1 bottle” instead of “1 bottles.” The only real difference between the 2 and default cases is the
word “bottle” versus the word “bottles.” Therefore, these are the lines that are most alike.

3.7.2. Simplifying Hard Problems

Having found the strings that are most alike, the next task is to make them identical. It’s
important to focus on this specific goal without succumbing to the temptations of tangents.

Think of the process of turning these two lines into one as being on a horizontal path.[10] While
walking this path, if something catches your eye in another part of the code (perhaps in the 0 or
1 cases), you may be tempted to veer off in a vertical direction. However, if you begin making
changes to other parts of the code before you completely combine the 2 and default cases, you
step off a well-trod path into a woods so dark and sinister that you might never return. While it
can be useful to interleave horizontal and vertical work, it’s best to finish the current journey
when the terminus of the horizontal path is in sight.

Have a look at the code below, and decide what to do next.

Listing 3.5: 2 and Default Case
 1 case 2:
 2 return
 3 "2 bottles of milk on the wall, " .
 4 "2 bottles of milk.\n" .
 5 "Take one down and pass it around, " .
 6 "1 bottle of milk on the wall.\n";
 7 default:
 8 return
 9 $number . " bottles of milk on the wall, " .
10 $number . " bottles of milk.\n" .
11 "Take one down and pass it around, " .
12 ($number-1) . " bottles of milk on the wall.\n";

Recall that these lines were chosen because the only real difference between them is using
"bottle" versus "bottles" in the final phrase. The other apparent differences are actually
similarities. The 2 and 1 in the 2 case can be replaced by $number and $number-1 respectively,
which means that these parts are logically identical.

The change needed to resolve the differences between the numbers is obvious. That part of the
problem feels solved. It’s boring. The "bottle/bottles" difference, however, is much more
interesting. It requires more thought.

Programmers love hard problems. Many times the riskiest and most difficult bit of a larger
problem feels the most interesting. It’s no wonder that many programmers gravitate towards
starting a problem at its most confusing part.

However, it just so happens that solving easy problems, through a magical alchemy of code,
sometimes transmutes hard problems into easy ones. It is common to find that hard problems
are hard only because the easy ones have not yet been solved.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-20/lib/Bottles.php#L29-L40

3.7.3. Naming Concepts

Page 63

Therefore, don’t discount the value of solving easy problems. With that in mind, the first step
towards making these lines identical is to resolve the very first difference. Scanning left to right,
the very first character of the 2 case could be replaced by $number. Proceeding on, the next 2
can similarly be replaced. Scanning further still, the 1 can become $number-1. The result is
shown below:

Listing 3.6: Replace Hard Coded Number
 1 case 2:
 2 return
 3 $number . " bottles of milk on the wall, " .
 4 $number . " bottles of milk.\n" .
 5 "Take one down and pass it around, " .
 6 ($number-1) . " bottle of milk on the wall.\n";
 7 default:
 8 return
 9 $number . " bottles of milk on the wall, " .
10 $number . " bottles of milk.\n" .
11 "Take one down and pass it around, " .
12 ($number-1) . " bottles of milk on the wall.\n";

After making the above change (and running the tests between each, of course), the remaining
difference is "bottle/bottles" on the last line:

Listing 3.7: One Difference Remains
1 case 2:
2 // ...
3 ($number-1) . " bottle of milk on the wall.\n";
4 default:
5 // ...
6 ($number-1) . " bottles of milk on the wall.\n";

This is the first interesting difference. Now you must decide what this difference means.

3.7.3. Naming Concepts
Previous sections state that if all verses are the same in some fundamental way, then an
underlying verse abstraction must exist. The goal of the current refactoring is to find a way to
express that more abstract verse.

If an underlying verse abstraction exists, then this small difference between verse 2 and verses
3-99 must represent a smaller abstraction within that larger one. To make these two lines the
same, you must name this concept, create a method named after the concept, and replace the
two differences with a common message send. Therefore, it’s time to decide what the words
"bottle" and "bottles" represent in the context of the song.

You may recall from the Concretely Abstract section of Chapter 1 that "bottle" is not underlying
the concept. If you call the method "bottle" you are naming it after its current implementation,
and you’ve already seen how that can go badly wrong.

Also, despite that fact that these two words differ in that one is singular and one is plural, the
underlying concept is not "pluralization." Within the context of the song, "bottle/bottles" does not
represent pluralization.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-30/lib/Bottles.php#L29-L40
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-30/lib/Bottles.php#L29-L40

3.7.3. Naming Concepts

Page 64

There are two pieces of information that can help in the struggle for a name. One is a general
rule and the other is the new requirement.

First, the new requirement. Recall that the impetus for this refactoring was the need to say "six-
pack" instead of "bottle/bottles" when there are 6 bottles. The string "six-pack" is one more
concrete example of the underlying abstraction. This suggests that if you name the method
"bottle," you will regret this decision in short order.

The general rule is that the name of a thing should be one level of abstraction higher than the
thing itself. The strings "bottle/bottles/six-pack" are instances of some category, and the task is to
name that category using language of the domain.

One way to identify the category is to imagine the concrete examples as rows and columns in a
spreadsheet.[11] The following table illustrates this idea. This table contains three rows, one for
each concrete example. Each row has two columns. The first column contains a number of
bottles, and the next, the word used with that number in the song.

Table 3.1: Bottles Column Header

Number xxx?

1 bottle

6 six-pack

n bottles

Column 1 above contains numbers, so "Number" makes sense as a column header. The header
"Number" is a level of abstraction higher than the concrete examples. "1," "6," and "n" are
numbers.

The second column has entries for bottle, six-pack, and bottles. Bottle is an entity in this as-yet
unnamed category, rather than the category itself.

It might seem as if "Unit" would be a good header. Although it’s true that every example is some
kind of unit, there are two problems with this name. First, it’s too abstract. Unit is not one level of
abstraction higher than the examples—it’s many. There are plenty of good naming alternatives
on the continuum between "bottle" and "unit." Next, unit is not in the language of the domain.
The name you choose will be the name you use in conversations with your customers. Naming
things after domain concepts improves communication between you and the folks who pay the
bills. Only good can come of this.

When you’re struggling to find a good name but have only a few concrete instances to guide you,
it can be illuminating to imagine other things that would also be in the same category.[12] For
example, if the song were about wine, the wine might come in a carafe. Juice sometimes comes
in small boxes. Soft drinks often come in cans.

3.7.4. Making Methodical Transformations

Page 65

If you were to ask your users, "What kind of thing is a bottle?," they wouldn’t reply "It’s a unit."
Instead they might call it the container. In the context of "99 Bottles," container is a good name
for this concept. Container is meaningful, understandable, and unambiguous.

Having named the concept, it’s time to write code to remove the difference.

3.7.4. Making Methodical Transformations
Now that you’ve decided to create a container method, it’s time to alter the code. It’s tempting
to make all of the necessary changes in one fell swoop. Doing so requires adding a new method
and invoking it in two places. Here’s the new method:

Listing 3.8: Guess Entire Container
1 public function container(int $number): string {
2 if ($number === 1) {
3 return "bottle";
4 } else {
5 return "bottles";
6 }
7 }

This method must be invoked from both branches of the verse switch statement. Here is the
code:

Listing 3.9: Code to Invoke Container
($number-1) . " " . $this->container($number-1) .
 " of milk on the wall.\n";

But wait. Notice that the above change adds seven new lines of code, changes two existing ones,
and alters code in three separate places. Any of these changes could introduce errors, which you
would then be obliged to understand and correct. This small example stands in for the much
bigger real-life problem where, in the process of implementing a new feature, you add many
lines of code, change many others, and then run the tests, only to be confronted by an ocean of
red.

Real world problems are big. Real code has bugs. Real tests are often tightly coupled to current
implementations. If you simultaneously change many things and something breaks, you’re
forced to understand everything in order to fix anything. You could end up chasing after red,
with increasing desperation, before eventually discarding all of the changes and beginning
anew.

Making a slew of simultaneous changes is not refactoring—it’s rehacktoring. It would be much
better to make a series of tiny changes and run the tests after each. If the tests fail, you know the
exact change that caused the failure, and can undo back to green and make a better change. If
the tests pass, you know that the current code works, even if the refactoring is only partially
complete.

Formal refactoring confers two additional benefits. First, because no change breaks the tests, the
code can be deployed to production at any intermediate point. This allows you to avoid
accumulating a large set of changes and suffering through a painful merge. Next, code that runs

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-40/lib/Bottles.php#L46-L52
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-40/lib/Bottles.php#L34-L35

3.7.4. Making Methodical Transformations

Page 66

properly even in the midst of a long refactoring increases the bus factor. This contributes to a
higher likelihood of project success even if you, personally, were to meet an untimely end.

Adding the container method by refactoring means taking a series of small steps. As a
reminder, here again are the Flocking Rules and corollaries:

Flocking Rules
1. Select the things that are most alike.

2. Find the smallest difference between them.

3. Make the simplest change to remove that difference:

a. parse the new code

b. parse and execute it

c. parse, execute and use its result

d. delete unused code

As you’re following the rules:

In general, change only one line at a time.

Run the tests after every change.

If you go red, undo and make a better change.

You’ve already followed rule 1 (you chose the 2 and default cases) and rule 2 (you’ve worked
your way across to the "bottle/bottles" difference). Now you’re on rule 3, ready to remove this
difference. As you intend to change only one line at a time, you’ll of necessity have to make small
changes iteratively.

The first step is to create an empty container method.

Listing 3.10: Empty Container Method
1 public function container() {
2 }

Now run the tests.

If this admonition comes as a surprise, consider that having green tests at this point provides a
very useful piece of feedback. Even though the container method is not yet being invoked,
green tests at this point prove that the code you just wrote is syntactically correct. This means
you are following rule 3a, which calls for separating parse from execute.

Now that you have written this admittedly not very exciting container method, the next step is
to make the smallest change that will advance the code in the intended direction. Here’s a
reminder of the target line:

Listing 3.11: One Difference Remains Redux

https://en.wikipedia.org/wiki/Bus_factor
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-60/lib/Bottles.php#L44-L45
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-60/lib/Bottles.php#L29-L40

3.7.4. Making Methodical Transformations

Page 67

1 case 2:
2 // ...
3 ($number-1) . " bottle of milk on the wall.\n";
4 default:
5 // ...
6 ($number-1) . " bottles of milk on the wall.\n";

The current container method returns null. It will eventually be called from two places. The 2
case wants the return to be "bottle," and the default case, "bottles." The next incremental
change is to alter the method to make it usable for just one of those callers. Therefore, you must
now choose which value to return first.

The default case is often a good place to start, and there’s no reason not to do so here. In that
spirit, change container to return bottles, like so:

Listing 3.12: Sparse Container Method
1 public function container() {
2 return "bottles";
3 }

From now on, it goes without saying that you should run the tests after every change.

Now that container returns a usable value, alter the default branch to send the message in
place of the word "bottles," as on line 11 below:

Listing 3.13: Sparse Container Used in Default Branch
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 // ...
 4 case 2:
 5 return
 6 // ...
 7 ($number-1) . " bottle of milk on the wall.\n";
 8 default:
 9 return
10 // ...
11 ($number-1) . " " . $this->container() .
12 " of milk on the wall.\n";
13 }
14 }
15
16 public function container() {
17 return "bottles";
18 }

So far, so good, but consider the next step. To be usable in both the 2 and default cases,
container must eventually return the correct choice between bottle or bottles. The decision
between them is based on the value of $number, which container does not yet know.
Therefore, container must be changed to take an argument.

Just as container doesn’t currently take an argument (line 16 above), its invoker doesn’t
currently send one (line 11). Now you face a conundrum. The goal is to make changes on one line
at a time, so you have to choose the next change carefully.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-70/lib/Bottles.php#L44-L46
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-80/lib/Bottles.php#L15-L47

3.7.5. Refactoring Gradually

Page 68

It’s perfectly legal to pass an argument that isn’t used, so changing line 11 to:

($number-1) . " " . $this->container($number-1) .

doesn’t break the tests.

However, if you change line 16 to expect an argument that’s not yet passed:

public function container($number) {

the tests begin to fail.

This problem, needing to add a required argument, arises regularly in the real world. But instead
of one sender and one receiver, as in this case, real applications might have 10 or 100 or 1000
senders. It might be impossible to fix everything at once, so it’s handy to know the technique for
working around this problem in an incremental manner.

3.7.5. Refactoring Gradually
In his book Refactoring to Patterns, Joshua Kerievsky talks about "Gradual Cutover Refactoring,"
a strategy for keeping the code in a releasable state by gradually switching over a small number
of pieces at a time. This type of refactoring can be done alongside other development work
without affecting the release schedule. If you adopt this strategy, your colleagues and your
customers will appreciate your commitment to keeping the code deployable.

This strategy means you ought not to change everything at once. Therefore, to do a gradual
cutover refactoring, you have to figure out how to allow some senders to pass the new argument
while others remain unchanged. Since PHP functions ignore incoming arguments that they don’t
know about, you could start by locating senders of container and, one by one, changing them to
pass $number. However, because you’re currently concentrating on the behavior of the
container function, it makes more sense to start here. The trick to keeping the tests running
green is to add a $number argument while simultaneously supplying a default, as shown below:

Listing 3.14: Container With Defaulted Argument
1 public function container($number="FIXME") {
2 return "bottles";
3 }

The above code takes an argument that gets named $number, which it defaults to the string
'FIXME'. You may have expected the default to be null, or at the very least, a numeric value,
but in this case it makes sense to set it to something that’s usefully wrong. 'FIXME' serves as a
reminder both that the default is temporary, and also that the argument needs a type
declaration. Once the refactor is complete, the default should be removed and the type specified.
Using a value like 'FIXME' will help you remember to do both things.

Now that the container method accepts an argument, consider the next step. You could either:

alter container to check the value of $number and return "bottle" or "bottles," meaning
change the receiver, or

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-90/lib/Bottles.php#L45-L47

3.7.5. Refactoring Gradually

Page 69

alter the default branch to add the $number argument to container message, meaning
change the sender.

The refactoring rules prohibit you from making both of these changes at once, so you must
choose one or the other.

Because the container method does not yet reference $number, changing the default branch
to pass this argument changes almost nothing about the code. Instead of passing the argument,
the better choice is to expand the code in container to use $number to decide which of "bottle"
or "bottles" to return, as follows:

Listing 3.15: Container With Conditional
1 public function container($number="FIXME") {
2 if ($number === 1) {
3 return "bottle";
4 } else {
5 return "bottles";
6 }
7 }

There are several things to note about the above strategy.

First, notice that adding the conditional was very clearly a multi-line change. This may appear to
break the "make changes on only one line" rule, but in this case, the change is obeying the spirit
of the law while slightly ignoring its letter. This conditional could have been expressed in ternary
form, as:

return $number === 1 ? "bottle" : "bottles";

which would certainly have been a one-line change. The multiline if form above is preferred in
this refactoring for reasons that will become clear in later chapters. For now, just think of these
two forms as both obeying the "one line" rule.

Next, remember that this method is being invoked from only one place (the default branch of
the switch statement in verse), and that as yet no argument is being passed. This means that the
$number argument in container gets set to 'FIXME', which routes execution to the false
branch. The new code in the true branch is not yet being executed, although it gets parsed when
the tests run.

The act of adding a new branch to the conditional while executing only the previously existing
code is a mini-example of the Open/Closed Principle. You can think of this change as making the
container method open to a new requirement—enabling it to occasionally return the word
"bottle." This splits the change into several small steps, which makes it easier to debug any
errors.

The next tiny step is to change the sender to actually pass the new argument. Because
container is being invoked from the fourth phrase of the song, the value of the argument is
$number-1, as shown on line 11 below:

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-100/lib/Bottles.php#L45-L51

3.7.5. Refactoring Gradually

Page 70

Listing 3.16: Passing an Argument to Container
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 // ...
 4 case 2:
 5 return
 6 // ...
 7 ($number-1) . " bottle of milk on the wall.\n";
 8 default:
 9 return
10 // ...
11 ($number-1) . " " . $this->container($number-1) .
12 " of milk on the wall.\n";
13 }
14 }
15
16 public function container($number="FIXME") {
17 if ($number === 1) {
18 return "bottle";
19 } else {
20 return "bottles";
21 }
22 }

The above step might seem so tiny as to seem pointless to isolate, but there’s a real difference
between executing the false branch because of the 'FIXME' default, and being routed there
because of the value of the $number argument. In the first case, you know that if you go to the
false branch the tests pass, and in the second, you know that the argument being passed takes
you to the false branch. Both of these things must work or the tests will break. Changing code at
this level of granularity makes it easier to handle unexpected failures.

The next step is to change the 2 branch so that it also invokes the container method, as shown on
line 8 and 9 below:

Listing 3.17: 2 and Default Cases Identical
 1 public function verse(int $number): string {
 2 // ...
 3 case 2:
 4 return
 5 $number . " bottles of milk on the wall, " .
 6 $number . " bottles of milk.\n" .
 7 "Take one down and pass it around, " .
 8 ($number-1) . " " . $this->container($number-1) .
 9 " of milk on the wall.\n";
10 default:
11 return
12 $number . " bottles of milk on the wall, " .
13 $number . " bottles of milk.\n" .
14 "Take one down and pass it around, " .
15 ($number-1) . " " . $this->container($number-1) .
16 " of milk on the wall.\n";
17 }
18 }
19
20 public function container($number="FIXME") {
21 if ($number === 1) {
22 return "bottle";
23 } else {
24 return "bottles";

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-110/lib/Bottles.php#L15-L51
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-120/lib/Bottles.php#L15-L52

3.7.5. Refactoring Gradually

Page 71

25 }
26 }

The above change has two consequences. First, all of the code in container is now being
executed. Next, the code in the 2 and default branches of the verse switch statement are now
identical.

Two tasks remain to complete this entire horizontal refactoring. First, as all senders of
container now pass $number, the 'FIXME' default has served its purpose. It can be removed,
and the method signature updated to include type declarations. Next, the 2 case is now obsolete,
and so it also can be deleted. The following example shows the resulting code:

Listing 3.18: 2 Subsumed Into Default Case
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 case 0:
 4 return
 5 "No more bottles of milk on the wall, " .
 6 "no more bottles of milk.\n" .
 7 "Go to the store and buy some more, " .
 8 "99 bottles of milk on the wall.\n";
 9 case 1:
10 return
11 "1 bottle of milk on the wall, " .
12 "1 bottle of milk.\n" .
13 "Take it down and pass it around, " .
14 "no more bottles of milk on the wall.\n";
15 default:
16 return
17 $number . " bottles of milk on the wall, " .
18 $number . " bottles of milk.\n" .
19 "Take one down and pass it around, " .
20 ($number-1) . " " . $this->container($number-1) .
21 " of milk on the wall.\n";
22 }
23 }
24
25 public function container(int $number): string {
26 if ($number === 1) {
27 return "bottle";
28 } else {
29 return "bottles";
30 }
31 }

That horizontal refactoring required a fair amount of explanation. Here’s a reminder of the key
actions:

1. identified verse 2 and default as the most similar cases

2. worked from left to right

3. changed verse 2 case to replace hard coded 2 with $number (twice)

4. changed verse 2 case to replace hard coded 1 with $number-1

5. identified "bottle" and "bottles" as the next difference

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-140/lib/Bottles.php#L15-L45

3.8. Summary

Page 72

6. chose container for the name of the concept represented by this difference

7. created empty container method

8. changed container to return "bottles"

9. changed verse default case to send container in place of "bottles"

10. changed container to take $number argument with default 'FIXME'

11. added conditional logic to container to return "bottle" or "bottles" based on $number

12. changed verse default case to pass $number-1 to $this->container()

13. changed verse 2 case to send $this->container($number-1) in place of "bottle"

14. deleted verse 2 case

15. deleted container 'FIXME' $number argument default

Of these 15 steps, 12 involve changes to code. The tests run after every change, so it is trivial to
fix newly-introduced flaws.

The lengthy description above may have led you to fear that working in this fashion would be
unbearably slow. Take another look. As you can see, there’s not much code, and with practice,
writing it becomes very fast. The small amount of time lost to making incremental changes is
more than recouped by avoiding lengthy and frustrating debugging sessions. This style of coding
is not only fast, it’s also stress-free.

This first refactoring was deliberately performed using the smallest possible steps. Once you
learn to work at this level of granularity, you can later combine steps if circumstances allow. Let
red be your guide. If you take a giant step and the tests begin to fail, undo and fall back to
making smaller changes.

There are plenty of hard problems in programming, but this isn’t one of them. Real refactoring is
comfortingly predictable, and saves brainpower for more thought-provoking challenges.

3.8. Summary
When faced with the need to change code, very often the hardest decision is where to start. This
chapter suggested that you be guided by the Open-Closed Principle, and so separate most
changes into two broad steps. First, refactor the existing code to be open to the new requirement,
next, add the new code.

Sometimes the first step, refactoring to openness, requires such a large leap that it is not obvious
how to achieve it. In that case, be guided by code smells. Improve code by identifying and
removing smells, and have faith that as the code improves, a path to openness will appear.

Making existing code open to a new requirement often requires identifying and naming
abstractions. The Flocking Rules concentrate on turning difference into sameness, and thus are
useful tools for unearthing abstractions.

3.8. Summary

Page 73

This chapter introduced the six-pack requirement, and in the search for openness, identified the
duplication of code in the verse method as the first point of attack. It then dedicated a good
portion of the chapter to the task of making the default and 2 cases identical. However, now
that you’ve learned how to use the flocking rules to identify abstractions, resolving the
differences in the 1 and 0 cases will go much faster. So, on to Chapter 4, and more extracting of
abstractions.

4.1. Replacing Difference With Sameness

Page 74

4. Practicing Horizontal Refactoring
The previous chapter introduced the Flocking Rules, which it used to remove the special case for
verse 2. The chapter contained plenty of explanation about how to apply the rules, but not much
new code. Fortunately, the refactorings dictated by the Flocking Rules are easier done than said,
and having read the prior chapter, you are now equipped to move briskly through the other
special cases.

This chapter iteratively applies the Flocking Rules to the remaining special verses, and results in
a single, more abstract, template that produces every possible verse.

4.1. Replacing Di�erence With Sameness
The refactoring rules say to start by choosing the cases that are most alike. Now that verse 2 is
being produced by the default branch, only three different verse templates remain. Have a
look at the code below, and select the two cases on which to concentrate next.

Listing 4.1: 3 Branch Conditional
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 case 0:
 4 return
 5 "No more bottles of milk on the wall, " .
 6 "no more bottles of milk.\n" .
 7 "Go to the store and buy some more, " .
 8 "99 bottles of milk on the wall.\n";
 9 case 1:
10 return
11 "1 bottle of milk on the wall, " .
12 "1 bottle of milk.\n" .
13 "Take it down and pass it around, " .
14 "no more bottles of milk on the wall.\n";
15 default:
16 return
17 $number . " bottles of milk on the wall, " .
18 $number . " bottles of milk.\n" .
19 "Take one down and pass it around, " .
20 ($number-1) . " " . $this->container($number-1) .
21 " of milk on the wall.\n";
22 }
23 }

The 1 case differs from the default case in several ways. It uses a hard coded 1 as the starting
number, it takes "it" instead of "one" down, and it ends with "no more" instead of $number-1
bottles.

The 0 case is even more different from the default case . It starts with "No more", it says "Go
to the store and buy some more", and it ends with "99".

Finally, the 1 and 0 cases differ from one another in lots of ways. They both have more in
common with the default case than each other.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-140/lib/Bottles.php#L15-L37

4.1. Replacing Difference With Sameness

Page 75

Of these three verse templates, the 1 and default cases are most alike, so they’re the next to
address. Start by looking at the first lines of each:

Listing 4.2: 1 and Default 1st Phrases Differ
1 case 1:
2 return
3 "1 bottle of milk on the wall, " .
4 // ...
5 default:
6 return
7 $number . " bottles of milk on the wall, " .
8 // ...

Just as with the 2 and default cases, the very first character is different. Remove this difference
by using $number in place of the hard-coded 1 in the 1 case, as below:

Listing 4.3: 1 and Default 1st Phrases in Progress
1 case 1:
2 return
3 $number . " bottle of milk on the wall, " .
4 // ...
5 default:
6 return
7 $number . " bottles of milk on the wall, " .
8 // ...

A similar change was made in the previous chapter, where the hard-coded "2" was replaced by
$number when combining the 2 and default cases. The act of substituting a variable for an
explicit number is so minor that it doesn’t adequately reflect the enormity of the underlying
idea, but step back and consider what just happened. Replacing differing concrete values with a
reference to a common variable changes difference into sameness.

The fact that the argument is known to equal 1 does not matter. This substitution is important,
not because it changes the resulting value, but because it increases the level of abstraction. It is
this increase in abstraction that makes things the same. Without it, you are doomed to the
conditional.

The next difference is "bottle" versus "bottles." This, conveniently, is the previously identified
"container" concept. Each line is changed to send the container message, which results in the
following code:

1 case 1:
2 return
3 $number . " " . $this->container($number) .
4 " of milk on the wall, " .
5 // ...
6 return
7 $number . " " . $this->container($number) .
8 " of milk on the wall, " .
9 // ...

The first phrases are now identical.

The second phrase of each case is very similar to the first, as you can see here:

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c3-flocking-140/lib/Bottles.php#L23-L31
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-10/lib/Bottles.php#L23-L31

4.2. Equivocating About Names

Page 76

Listing 4.5: 1 and Default 2nd Phrases Differ
 1 case 1:
 2 return
 3 $number . " " . $this->container($number) .
 4 " of milk on the wall, " .
 5 "1 bottle of milk.\n" .
 6 // ...
 7 default:
 8 return
 9 $number . " " . $this->container($number) .
10 " of milk on the wall, " .
11 $number . " bottles of milk.\n" .
12 // ...

The second phrase is so similar to the first that repeating the same changes will make them
identical. Here’s the result:

Listing 4.6: 1 and Default 2nd Phrases Identical
 1 case 1:
 2 return
 3 $number . " " . $this->container($number) .
 4 " of milk on the wall, " .
 5 $number . " " . $this->container($number) . " of milk.\n" .
 6 // ...
 7 default:
 8 return
 9 $number . " " . $this->container($number) .
10 " of milk on the wall, " .
11 $number . " " . $this->container($number) . " of milk.\n" .
12 // ...

After the above changes, the first two phrases of the 1 and default cases are identical.

4.2. Equivocating About Names
The name container feels right. It was fairly easy to find, in part because the underlying
concept is so obvious. Once you realize that you’re trying to name a category that contains
bottles, juice boxes, and carafes, container naturally follows.

However, when concepts are fuzzier, finding a good name can be much harder. This section
deals with just such a concept, and offers several suggestions for what to do when you can’t find
a good name.

Now that phrases one and two are the same, it’s time to consider phrase three. Here’s a reminder
of that code:

Listing 4.7: 1 and Default 3rd Phrases Differ
 1 case 1:
 2 return
 3 // ...
 4 "Take it down and pass it around, " .
 5 // ...
 6 default:
 7 return
 8 // ...

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-20/lib/Bottles.php#L23-L34
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-30/lib/Bottles.php#L23-L34
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-30/lib/Bottles.php#L23-L35

4.2. Equivocating About Names

Page 77

 9 "Take one down and pass it around, " .
10 // ...

The difference above is that "it" matches up with "one".

If all verse variants are alike in an underlying, more abstract, way, then "it" and "one" must
represent a smaller abstraction within that larger one. Once you name this concept, you can
create a method with that name, and then make these lines alike by sending a message in place
of the different strings.

If the previous paragraph gave you a sense of deja-vu, that’s understandable. This is exactly how
"bottle" and "bottles" became container, and how every future difference will be resolved. The
process may seem too straightforward to believe, but the mechanism truly is this humble. The
rules of refactoring are simple, but when followed, precise and complex behavior emerges.

The challenge, as always, is identifying the current concept and coming up with a good name.
The words "it" and "one" are so innately generic that naming the underlying concept is
particularly tough. Names should neither be too general nor too specific. For example, thing is
too broad, and itOrOne too narrow.

If you were to ask your customer to name this category, they would likely shrug and call it
pronoun. If you object to pronoun on the grounds that it’s overly general, and insist that they
give the category a more specific name, they might come up with something like thingDrunk.

Although pronoun does feel a bit too general, thingDrunk is just about unbearable. Neither feels
perfect. This situation, unfortunately, is all too common. When the perfect name for a concept is
elusive, there are three strategies for moving forward.

Some folks allot themselves five to ten minutes to ponder (usually with thesaurus in hand), and
then use the best name they can come up with during that interval. Their rationale is that the
name they choose might be good enough, and if they later discover it’s not, they can always
improve it. These folks have the advantage of working with code that contains names that are at
least somewhat useful, even if not entirely correct, but must live with the possibility that a good-
enough name will persist, even after a better name becomes obvious to the humans involved.

Other folks find it more cost effective to instantly choose a meaningless name like foo or
namethis. This strategy allows them to move forward quickly, and (one hopes) insures that the
name will get improved later. These folks believe strongly in the "You’ll never know less than you
know right now" dictum,[13] and fully expect that a better name will occur as they work on the
code. They believe there’s no point in wasting time thinking about it now, when the name will be
obvious later.

Finally, instead of following one of two previous strategies by yourself, you can simply ask
someone else for help. Within any group of programmers, there’s often someone who’s good at
naming things. If your group has such a person, you know who they are. Appoint them the
"name guru," and leverage their strengths when you need a name.

4.2. Equivocating About Names

Page 78

In the case of "it" or "one" here in "99 Bottles," pronoun is good enough for now. If something
better occurs later, you can always improve the name.

The procedure to turn "it" and "one" into pronoun is identical to the one that transformed
"bottle" and "bottles" into container. Having previously practiced, this next refactoring will go
quickly. The following examples step through the transitions. Remember to run the tests after
each change.

First, define an empty pronoun method.

Listing 4.8: Empty Pronoun Method
1 public function pronoun() {
2 }

Alter pronoun to return "one," which is the value from the default branch.

Listing 4.9: Sparse Pronoun Method
1 public function pronoun() {
2 return "one";
3 }

Alter the default branch to call pronoun in place of "one":

Listing 4.10: Send Pronoun in Default Branch
 1 case 1:
 2 return
 3 // ...
 4 "Take it down and pass it around, " .
 5 // ...
 6 default:
 7 return
 8 // ...
 9 "Take " . $this->pronoun() . " down and pass it around, " .
10 // ...

Add a defaulted argument to pronoun.

Listing 4.11: Pronoun With Defaulted Argument
1 public function pronoun($number="FIXME") {
2 return "one";
3 }

Alter pronoun to be open to the 1 case.

Listing 4.12: Pronoun With Conditional
1 public function pronoun($number="FIXME") {
2 if ($number === 1) {
3 return "it";
4 } else {
5 return "one";
6 }
7 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-40/lib/Bottles.php#L49-L50
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-50/lib/Bottles.php#L49-L51
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-60/lib/Bottles.php#L23-L35
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-70/lib/Bottles.php#L49-L51
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-80/lib/Bottles.php#L49-L55

4.3. Deriving Names From Responsibilities

Page 79

Alter the default case to pass the $number argument to pronoun (line 9).

Listing 4.13: Passing an Argument to Pronoun
 1 case 1:
 2 return
 3 // ...
 4 "Take it down and pass it around, " .
 5 // ...
 6 default:
 7 return
 8 // ...
 9 "Take " . $this->pronoun($number) . " down and pass it around, " .
10 // ...

Alter the 1 case to send $this->pronoun($number) in place of "it" (line 4).

Listing 4.14: 1 and Default Cases Send Pronoun
 1 case 1:
 2 return
 3 // ...
 4 "Take " . $this->pronoun($number) . " down and pass it around, " .
 5 // ...
 6 default:
 7 return
 8 // ...
 9 "Take " . $this->pronoun($number) . " down and pass it around, " .
10 // ...

Alter the pronoun method to remove the 'FIXME' default, and add the type declarations:

1 public function pronoun(int $number): string {
2 if ($number === 1) {
3 return "it";
4 } else {
5 return "one";
6 }
7 }

The refactoring steps that added pronoun were exactly like those used to add container. In
each case, differing strings were replaced by a common message send. Just as the container
abstraction replaced the "bottle" and "bottles" strings, the pronoun abstraction replaced "it" and
"one."

This completes the addition of the pronoun method, and makes phrase three of the 1 and
default cases identical. It’s time to move on to the fourth and final phrase.

4.3. Deriving Names From Responsibilities
Although pronoun may feel too general, the concept it represents is clear. If you had to describe
the underlying idea, you might say something like "The pronoun message returns the word that
is used in place of the noun 'bottles,' following the word 'Take,' in phrase 3 of each verse."
Pedantic as that explanation is, it’s entirely correct. That is pronoun's responsibility.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-90/lib/Bottles.php#L23-L35
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-100/lib/Bottles.php#L23-L35

4.3. Deriving Names From Responsibilities

Page 80

The difficulty naming pronoun illustrates how hard it can be to choose a name, even when you
understand the concept. Imagine, then, how impossible it is to choose a name when you don’t.
This next section addresses the fourth and final phrase, and takes on the challenge of naming a
concept that is much less clear-cut.

The first difference in phrase four looks a bit, well, different, but regardless, it can be resolved
using the technique you’ve been using. The trick to getting this next refactoring right is to trust
the rules, and to write only the code that they require.

Here’s a look at phrase four of the 1 and default cases:

Listing 4.15: 1 and Default 4th Phrases Differ
1 case 1:
2 return
3 // ...
4 "no more bottles of milk on the wall.\n";
5 default:
6 return
7 // ...
8 ($number-1) . " " . $this->container($number-1) .
9 " of milk on the wall.\n";

Look at the code above and identify the differences. It might help to first decide what is not a
difference. Both phases end with "of milk on the wall," so that part is clearly the same. If you
disregard that sameness, you’re left with:

"no more bottles"

which matches up against:

($number-1) . " " . $this->container($number-1)

If it’s not clear how to proceed, look for a way to make the lines more alike (even if not yet
identical), using code you’ve already written. Remember that the goal is to locate the next small
difference, not the next clump of differences.

Notice the word "bottles" in the 1 case. The abstraction that underlies "bottles" has long since
been identified. It’s encapsulated in the container method, which is already being used by the
default case.

If "bottles" is actually the same as $this->container($number-1), then "bottles" is not part
of the next difference. This means that the current difference is that:

"no more"

goes with:

$number-1

Until now, the differences between phrases have both been strings. Here, for the first time, one is
a string and the other is code. However, it doesn’t matter what form the difference takes. If each

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-120/lib/Bottles.php#L23-L37

4.3. Deriving Names From Responsibilities

Page 81

verse variant reflects a more general verse abstraction, then the differences between the
variants must represent smaller concepts within that larger abstraction. Again, you can resolve
this difference by following the pattern you learned from container and pronoun. Name the
concept, create the method, and replace the difference with a common message send.

To help you name the new concept, remember the "what would the column header be?"
technique. The following table shows a sampling of numbers and associated values:

Table 4.1: Number to XXX Column
Header

Number XXX?

99 '99'

50 '50'

1 '1'

0 'no more'

In the table above, the left column contains a number between 99 and 0, and the right holds the
string to be sung in its place. Most times the value on the right is the direct string representation
of the number on the left, so 99 becomes "99", and 50 becomes "50", etc. The exception is 0,
which becomes, not "0" as you might expect, but "no more".

Phrase four is the final phrase of the song where the number gets decremented, and so the
argument is always $number-1. It’s tempting, therefore, to think of "no more" and $number-1 as
representing the number of bottles that remain once a verse is complete.

You could indeed name this concept "remainder," and proceed with the refactoring. However, in
the interest of saving a bit of pain, take a brief peek forward. You’ll soon be considering the 0
case, which says:

No more bottles of milk on the wall, no more bottles of milk.
Go to the store and buy some more, 99 bottles of milk on the wall.

Notice that the 0 case starts with "No more", just as the 1 case ends with "no more". The way
the song works is that whenever there are 0 bottles, you sing "no more," capitalized
appropriately.

When "No more" comes at the beginning of the song, it’s clearly not the remainder. This means
that if "no more" and "No more" represent the same idea, then remainder isn’t a good name
for the underlying concept.

If you reconsider the above table, the right side is actually the name, or description, or perhaps
quantity of bottles being sung about. It is the string to be sung in the place of any number. While

4.4. Choosing Meaningful Defaults

Page 82

not perfect, quantity at least attempts to indicate the responsibility on the method you plan to
create, and so is a reasonable first attempt at a name.

Before implementing quantity, consider what would have happened had you named this
concept remainder. After finishing the 1 case, you’d have advanced to the 0 case and discovered
that it started with "No more". This would have caused you to reconsider remainder. You’d
likely have reverted the refactoring to this point, and re-started your search for a name.

Real life is like this, where you make the best decision you can in the moment, and reassess when
you know more. Had you been doing this refactoring alone, you might well have gone down the
remainder path, and suffered the eventual reversal. As there’s enough pain in real life, here
you’ve been left to imagine it.

Do not take this as a general license to think far ahead. While you are allowed to use common
sense, it’s usually best to stay horizontal and concentrate on the current goal. When creating an
abstraction, first describe its responsibility as you understand it at this moment, then choose a
name which reflects that responsibility. The effort you put into selecting good names right now
pays off by making it easier to recognize perfect names later.

4.4. Choosing Meaningful Defaults
The previous few refactorings used the technique of temporarily setting an argument to a
default. In each case, the string 'FIXME' was used as that default. 'FIXME' is handy because the
name itself reminds you of its temporary nature, and acts as a reminder to remove it at the end
of the refactoring. Helpful as 'FIXME' is, unfortunately it won’t work in every case. Sometimes
circumstances conspire to force you to use a real value as a default during these refactorings.
This next section delves into such a case.

Remember that the difference currently being addressed is:

"no more"

which goes with:

$number-1

The underlying concept is quantity. To remove this difference, first add the quantity method:

Listing 4.16: Initial Quantity Method
1 public function quantity() {
2 }

The next step is to change this method to return one of the two differences. Until now, you’ve
chosen to return the value from the default branch first. But in this case, the default branch
contains code that references $number. Therefore, you can’t copy the default branch difference
into quantity unless you first alter quantity to take $number as an argument.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-120/lib/Bottles.php#L41-L42

4.4. Choosing Meaningful Defaults

Page 83

The 1 branch contains the string "no more," which is a simpler difference. That simplicity makes
this a good place to explore what happens if you switch up and return the non-else value first.

Because of this change in tactics, proceeding exactly as you’ve done previously will eventually
lead to an error. It’s instructive to watch this happen, as shown in the following code.

Begin by returning the value from the 1 case:

Listing 4.17: Quantity Method First Return
1 public function quantity() {
2 return "no more";
3 }

Send quantity in place of "no more" in the 1 case:

Listing 4.18: Quantity Message First Send
1 case 1:
2 return
3 // ...
4 $this->quantity() . " bottles of milk on the wall.\n";
5 default:

Add the normal 'FIXME' default to the $number argument in quantity:

Listing 4.19: Number Argument Defaulted to FIXME
1 public function quantity($number="FIXME") {
2 return "no more";
3 }

If you’re concerned about the 'FIXME' default above, your Spidey-sense[14] is working. Yes,
everything will go terribly wrong in a minute, but until then, cast your worries aside and charge
forward.

The next step is to alter quantity to be open to the default case. Remember that you’re
working on the final phrase of verse 1, and that the value of the passed argument will be
$number-1, or 0. If $number is 0, the condition should return "no more"; otherwise, it should
return the number.

Here’s the quantity method, altered to contain that new conditional:

Listing 4.20: Quantity With Conditional
1 public function quantity($number="FIXME") {
2 if ($number === 0) {
3 return "no more";
4 } else {
5 return $number;
6 }
7 }

If you now have additional concerns about this code, hang in there. A number of errors will
arise, but they will soon get resolved.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-130/lib/Bottles.php#L41-L43
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-140/lib/Bottles.php#L23-L30
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-150/lib/Bottles.php#L41-L43
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-160/lib/Bottles.php#L41-L47

4.4. Choosing Meaningful Defaults

Page 84

At this point in each of the previous refactorings the tests passed, but in this case, not so. The
tests are now failing with:

-Take it down and pass it around, no more bottles of milk on the wall.
+Take it down and pass it around, FIXME bottles of milk on the wall.

Have a look at the switch statement below. Examine line 4 and try to explain what went wrong.

Listing 4.21: Using the Number Default From the 1 Case
1 case 1:
2 return
3 // ...
4 $this->quantity() . " bottles of milk on the wall.\n";
5 default:
6 return
7 // ...
8 ($number-1) . " " . $this->container($number-1) .
9 " of milk on the wall.\n";

This failure occurs because line 4 above calls quantity without passing an argument. Upon
invocation, the quantity method sets $number to 'FIXME', which sends execution to the false
branch of its conditional. The false branch obediently returns $number, which unfortunately still
contains 'FIXME'. This result then gets used in the verse. Thus, "FIXME bottles of milk".

The reason the 'FIXME' default worked in previous situations was because in those cases you
wanted to execute the false branch. However, now you need the true branch, and therefore
require a much more specific default.

The tests are failing, and the rules dictate that you must undo and return to green. Fortunately,
this takes just one undo, which reverts quantity to the following:

Listing 4.22: Number Argument Defaulted to FIXME Reprise
1 public function quantity($number="FIXME") {
2 return "no more";
3 }

An obviously wrong and temporary value like 'FIXME' can be a handy default, but you can use
this technique only if you begin these refactorings by returning the difference from the default
branch. While it’s perfectly acceptable to begin by returning "no more" (the non-default
difference), doing so means that you have to think more carefully about the default. So use a
default like 'FIXME' thoughtfully.

In this case, the default that will drive execution to the correct branch is 0, as shown below:

Listing 4.23: Number Argument Defaults to 0
1 public function quantity($number=0) {
2 return "no more";
3 }

Now that the default is correct, the conditional can be re-added to quantity as follows:

Listing 4.24: Default Takes the True Branch

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-160/lib/Bottles.php#L23-L37
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-170/lib/Bottles.php#L41-L43
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-180/lib/Bottles.php#L41-L43
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-190/lib/Bottles.php#L41-L47

4.4. Choosing Meaningful Defaults

Page 85

1 public function quantity($number=0) {
2 if ($number === 0) {
3 return "no more";
4 } else {
5 return $number;
6 }
7 }

Although nothing about the conditional has changed since the last attempt, the default is now
correct, so the tests pass.

Taking the default caused the true branch to execute. Now it’s time to ensure that passing an
argument does the same. Line 4 below has been changed to pass $number-1 to quantity:

Listing 4.25: 1 Case Passes an Argument
 1 case 1:
 2 return
 3 // ...
 4 $this->quantity($number-1) . " bottles of milk on the wall.\n";
 5 default:
 6 return
 7 $number . " " . $this->container($number) .
 8 // ...
 9 " of milk on the wall.\n";
10 }

The tests still pass. The next step is to use quantity in the default case, as shown on line 9
below:

Listing 4.26: Default Case Sends Quantity
 1 case 1:
 2 return
 3 // ...
 4 $this->quantity($number-1) . " bottles of milk on the wall.\n";
 5 default:
 6 return
 7 // ...
 8 $this->quantity($number-1) . " " . $this->container($number-1) .
 9 " of milk on the wall.\n";
10 }

At this point quantity is fully implemented. The default is no longer needed, and can be
removed. The final method is shown below:

Listing 4.27: Quantity Method
1 public function quantity(int $number): string {
2 if ($number === 0) {
3 return "no more";
4 } else {
5 return $number;
6 }
7 }

After resolving quantity, one minor difference remains between the 1 and default cases. The
final phrase of the 1 case says "bottles" (line 4 below) whereas in that place the default case
sends $this->container($number-1).

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-200/lib/Bottles.php#L23-L38
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-210/lib/Bottles.php#L23-L38
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-220/lib/Bottles.php#L41-L47

4.4. Choosing Meaningful Defaults

Page 86

Listing 4.28: 1 and Default Cases More Alike
 1 case 1:
 2 return
 3 // ...
 4 $this->quantity($number-1) . " bottles of milk on the wall.\n";
 5 default:
 6 return
 7 // ...
 8 $this->quantity($number-1) . " " . $this->container($number-1) .
 9 " of milk on the wall.\n";
10 }

This difference can be resolved by sending the well-known container message in place of the
word "bottles". After this change, the 1 and default cases are identical, as shown in their full
glory below:

Listing 4.29: 1 and Default Cases Identical
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 // ...
 4 case 1:
 5 return
 6 $number . " " . $this->container($number) .
 7 " of milk on the wall, " .
 8 $number . " " . $this->container($number) . " of milk.\n" .
 9 "Take " . $this->pronoun($number) . " down and pass it around, " .
10 $this->quantity($number-1) . " " . $this->container($number-1) .
11 " of milk on the wall.\n";
12 default:
13 return
14 $number . " " . $this->container($number) .
15 " of milk on the wall, " .
16 $number . " " . $this->container($number) . " of milk.\n" .
17 "Take " . $this->pronoun($number) . " down and pass it around, " .
18 $this->quantity($number-1) . " " . $this->container($number-1) .
19 " of milk on the wall.\n";
20 }

This completely resolves the 1 case, which can now be deleted.

Two new concepts have been identified, pronoun and quantity. Although the refactoring that
created quantity obediently follows the Flocking Rules, the order in which code is written
differs slightly from that of previous method extractions. The earlier examples began by
returning the value from the default branch of the switch statement, but the quantity
method differs in that it initially returns the value from the 1, or non-default case.

All of these refactorings extract a method. Because this is done in very small steps, the extracted
methods start out simple and then gradually become more complicated. One of the
complications is that each method changes to take a parameter. In order to keep the tests
running green during the transition to taking a parameter, the parameter has to be assigned a
default. The default is temporary, and it is meant to be deleted when the transition is complete.

When the default branch is implemented first, 'FIXME' can always be used for the default.
This not only saves you from having to figure out the right value, it also serves as a reminder to
remove this temporary default and add the type declarations later. If the non-default branch is

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-220/lib/Bottles.php#L23-L38
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-230/lib/Bottles.php#L15-L40

4.5. Seeking Stable Landing Points

Page 87

implemented first, the default has to be set to something that actually meets the condition and so
makes the true branch execute. Therefore, implementing the non-default branch first places a
slightly greater burden on you. You have to use a specific, real value for the default, and then
remember to clean up once the transition is complete.

4.5. Seeking Stable Landing Points
At this point, the 2 and 1 cases have been removed, and three new concepts, quantity, pronoun
and container, have been identified. To save you from having to remember, the listing below
repeats the code for these concepts:

Listing 4.30: Three Abstracted Concepts
 1 public function quantity(int $number): string {
 2 if ($number === 0) {
 3 return "no more";
 4 } else {
 5 return $number;
 6 }
 7 }
 8
 9 public function container(int $number): string {
10 if ($number === 1) {
11 return "bottle";
12 } else {
13 return "bottles";
14 }
15 }
16
17 public function pronoun(int $number): string {
18 if ($number === 1) {
19 return "it";
20 } else {
21 return "one";
22 }
23 }

Notice the similarities in the above methods. Each has a single responsibility. They are identical
in shape. All take the same argument. Each contains a conditional and that conditional tests the
argument against a specific value; it checks to see if the argument is equal to something, as
opposed to greater or less than something. These methods are incredibly consistent, and this did
not happen by accident—it’s a direct result of the refactoring rules. The rules lead to consistent
code, and consistency matters deeply.

First, it makes code easy to understand. Code is read many more times than it is written, so
anything that increases understandability lowers costs. Next, and just as important, consistent
code enables future refactorings.

Imagine yourself a child, traipsing down a stream, hopping from rock to rock. Some rocks are
broad and flat and dry, others are mossy and wobbly and slick. Imagine also that you are not
allowed to return home wet.

The dry rocks are stable landing points on which you can safely rest, planning your next move.
The wet rocks are risky interludes that good sense suggests you traverse as quickly as possible.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-240/lib/Bottles.php#L34-L56

4.6. Obeying the Liskov Substitution Principle

Page 88

Rearranging code is like rock hopping down a stream. If you follow the rules of refactoring,
you’ll quickly pass over the slippery places, and arrive at stable, consistent resting points.
Changing code willy-nilly, however, can lead to surprising and unexpected baths.

The consistency in the code above enables the next refactoring. For now you must take this
assertion on faith, but that faith will be rewarded in future chapters.

4.6. Obeying the Liskov Substitution Principle
Now, back to the horizontal refactoring. This chapter started with a three-branch switch
statement. One case (the 1 case) has been removed, leaving the 0 and default cases still to be
resolved. Here’s a reminder of the current state of the code:

Listing 4.31: 0 and Default Cases Differ
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 case 0:
 4 return
 5 "No more bottles of milk on the wall, " .
 6 "no more bottles of milk.\n" .
 7 "Go to the store and buy some more, " .
 8 "99 bottles of milk on the wall.\n";
 9 default:
10 return
11 $number . " " . $this->container($number) .
12 " of milk on the wall, " .
13 $number . " " . $this->container($number) . " of milk.\n" .
14 "Take " . $this->pronoun($number) . " down and pass it around, " .
15 $this->quantity($number-1) . " " . $this->container($number-1) .
16 " of milk on the wall.\n";
17 }
18 }

Begin this next refactoring by focusing on lines 5 and 11-12 above, the first phrases of the two
remaining cases. Looking for the smallest difference, both lines end with "of milk on the
wall, ", so this is a similarity that can be ignored. The container method is used on line 11 in
the default case. The word "bottles" on line 5 is a container, so "bottles" is not part of the
next difference.

The remaining difference is at the very beginning of lines 5 and 11, where:

"No more"

goes with:

$number

This feels like the quantity concept, but as it stands, that method won’t work to resolve this
difference. If you were to change line 5 to call $this->quantity($number) in place of "No
more", you’d get back an all lowercase "no more," and the tests would fail.

This is a conundrum. The lowercase variant of "no more" is required by verse 1, and now verse 0
needs the same two words, except capitalized as the start of a sentence. The underlying concept

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-240/lib/Bottles.php#L15-L32

4.6. Obeying the Liskov Substitution Principle

Page 89

is the same in both cases ("no more" is to be sung when the number of bottles is 0), but it gets
expressed in slightly different ways, depending on where it falls in the song.

These words are one thing, and whether they need to be capitalized is quite another. Perhaps
knowledge of the words belongs in one place, and knowledge of the capitalization requirements
belongs in another.

If that’s the case, capitalization can reasonably happen here in the switch statement. Replace "No
more" with $this->quantity($number), and capitalize the result, as on line 3 below:

Listing 4.32: Quantity Capitalized in 0 Case
 1 case 0:
 2 return
 3 ucfirst($this->quantity($number)) . " bottles" .
 4 " of milk on the wall, " .
 5 // ...
 6 default:
 7 return
 8 $number . " " . $this->container($number) .
 9 " of milk on the wall, " .
10 // ...

The above change follows the strategy of gradually making things more alike in hopes that it will
then become clear how to make them identical. When nibbling away at the problem, you don’t
have to understand everything before you can do anything. Taking care of the small things often
cuts the big ones down to size.

Having made the above change, the evident next step is to make a similar one in the default
case, shown on line 8 below:

Listing 4.33: Quantity Capitalized in Default Case
 1 case 0:
 2 return
 3 ucfirst($this->quantity($number)) . " bottles" .
 4 " of milk on the wall, " .
 5 // ...
 6 default:
 7 return
 8 ucfirst($this->quantity($number)) . " " . $this->container($number) .
 9 " of milk on the wall, " .
10 // ...

After that change, the tests continue to pass. Notice, though, that if you enable strict mode:

1 <?php
2
3 declare(strict_types = 1);
4
5 class Bottles {
6 // ...
7 }

The tests begin to fail with:

TypeError: Return value of Bottles::quantity() must be of the type string, int returned

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-250/lib/Bottles.php#L17-L27
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-260/lib/Bottles.php#L17-L27

4.6. Obeying the Liskov Substitution Principle

Page 90

Before changing the default case to invoke ucfirst, all existing code worked regardless of
whether strict mode was enabled or not. This change is the first time that strict mode matters.
Because it now does matter, it makes sense to pretend that it’s been enabled all along, and deal
with the consequences as the example proceeds.

Because you’re working in such small steps (and pretending that strict mode has always been
enabled), you know that the previous change caused the error. Have a look at the following code
and see if you can figure out what’s wrong:

Listing 4.34: Quantity Method Reprise
1 public function quantity(int $number): string {
2 if ($number === 0) {
3 return "no more";
4 } else {
5 return $number;
6 }
7 }

The most recent change invokes quantity with an non-zero argument. This causes execution to
proceed to the false branch. The true branch returns a string, but the false branch returns the
argument that was passed, which is a number. The ucfirst function is implemented to accept a
string, and in strict mode the type of the input is checked; thus this error.

You may be itching to fix this error by making a change in the quantity method, but it’s
instructive to try attacking it here in verse. Exploring the problem from this vantage point
requires temporarily removing the type declarations from quantity. If may help to pretend that
this is legacy code foisted upon you from the distant past.

Removing the type declaration from quantity changes the error to:

TypeError: ucfirst() expects parameter 1 to be string, int given

This new error can be resolved by casting quantitys result into a string before calling ucfirst,
as shown on line 8 below:

Listing 4.35: Default Branch Converts Result
 1 case 0:
 2 return
 3 ucfirst($this->quantity($number)) . " bottles" .
 4 " of milk on the wall, " .
 5 // ...
 6 default:
 7 return
 8 ucfirst((string)$this->quantity($number)) . " " . $this->container($number) .
 9 " of milk on the wall, " .
10 // ...

The above change fixes the failing test, but introduces a new difference between the phrases. To
remove this difference, you must also insert (string) into the 0 case, as on line 3 below:

Listing 4.36: Both Branches Convert Result

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-260/lib/Bottles.php#L35-L41
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-270/lib/Bottles.php#L19-L29
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-280/lib/Bottles.php#L19-L29

4.6. Obeying the Liskov Substitution Principle

Page 91

1 case 0:
2 return
3 ucfirst((string)$this->quantity($number)) . " bottles" .
4 " of milk on the wall, " .
5 // ...
6 return
7 ucfirst((string)$this->quantity($number)) . " " . $this->container($number) .
8 " of milk on the wall, " .
9 // ...

Now that the difference is resolved and the tests are running, step back and consider this
solution. The root of the problem is that quantity returns things that conform to different APIs.
Senders of quantity expect to be able to pass the result directly to ucfirst, yet this doesn’t
always work. The inconsistent return types force the sender of the message to know more than it
should.

The verse method above knows that ucfirst requires a string, that quantity cannot be
trusted to return a string, and that it can cast the value returned by quantity to a string via
(string).

Every piece of knowledge is a dependency, and the way that quantity is written requires verse
to know too many things. If quantity were more trustworthy, verse could know less.

The idea of reducing the number of dependencies imposed upon message senders by requiring
that receivers return trustworthy objects is a generalization of the Liskov Substitution Principle.
The official definition of Liskov says that "subtypes must be substitutable for their supertypes."
This principle was originally postulated in terms of types and subtypes, but you can think of it in
broader terms.

Liskov, in straightforward language, requires that objects be what they promise they are. When
using inheritance, you must be able to freely substitute an instance of a subclass for an instance
of its superclass. Subclasses, by definition, are all that their superclasses are, plus more, so this
substitution should always work.

Liskov prohibits you from doing anything that would force the sender of a message to test the
returned result in order to know how to behave. Receivers have a contract with senders, and
despite the implicit nature of this contract in dynamically typed, object-oriented languages, it
must be fulfilled.

Liskov violations force message senders to have knowledge of the various return types, and to
either treat them differently, or convert them into something consistent. In the quantity
method above, one of the returns honored the "capitalizable" contract and one did not. An
inconsistency like this very often forces the sender to implement a conditional to identify and fix
the errant return. In this case, almost all PHP objects understand (string), so it was
programmatically convenient to blithely convert every return into a string, even those that
already were. This unconditional conversion avoids checking to see which values need to be cast
to (string), but adds the overhead of attempting to convert things that are already strings into
strings.

4.7. Taking Bigger Steps

Page 92

The sender’s entire burden is removed if the receiver honors the contract and provides a
consistent return. Instead of forcing the verse method to solve this problem, quantity should
return a trustworthy value.

This is easily accomplished by doing the conversion in the quantity method, as shown on line 5
below:

Listing 4.37: Quantity Obeys Liskov
1 public function quantity(int $number): string {
2 if ($number === 0) {
3 return "no more";
4 } else {
5 return (string)$number;
6 }
7 }

Now that quantity always returns a string you can pretend that the (string) dependency
never existed in verse, which returns the code to the state shown here:

Listing 4.38: Quantity Is Trustworthy
 1 case 0:
 2 return
 3 ucfirst($this->quantity($number)) . " bottles" .
 4 " of milk on the wall, " .
 5 // ...
 6 default:
 7 return
 8 ucfirst($this->quantity($number)) . " " . $this->container($number) .
 9 " of milk on the wall, " .
10 // ...

Having altered quantity to make it usable in all cases, the remaining difference in the first
phrase is the word "bottles." This is easily resolved by sending container in its place:

Listing 4.39: 0 Case Sends Container
 1 case 0:
 2 return
 3 ucfirst($this->quantity($number)) . " " . $this->container($number) .
 4 " of milk on the wall, " .
 5 // ...
 6 default:
 7 return
 8 ucfirst($this->quantity($number)) . " " . $this->container($number) .
 9 " of milk on the wall, " .
10 // ...

After that change, the first phrases of the 0 and default cases are identical.

4.7. Taking Bigger Steps
You’ve now turned small differences into message sends several times, and have likely noticed
the similarity between the steps taken and the resulting code. So far, the extracted methods all
have the same general shape, and are invoked in the same way.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-290/lib/Bottles.php#L37-L43
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-300/lib/Bottles.php#L19-L29
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-310/lib/Bottles.php#L19-L29

4.7. Taking Bigger Steps

Page 93

Differences remain. However, it’s beginning to feel like there’s a common refactoring pattern,
and one might reasonably theorize that future differences will be resolved following the same
process that was used in the past. If this theory is correct, it makes sense to speed up the next
refactoring by combining several steps into a single change.

The first phrase of the 0 and default cases are identical, so it’s time to examine the second. It’s
repeated below:

Listing 4.40: 0 and Default 2nd Phrases Differ
 1 case 0:
 2 return
 3 // ...
 4 "no more bottles of milk.\n" .
 5 // ...
 6 default:
 7 return
 8 // ...
 9 $number . " " . $this->container($number) . " of milk.\n" .
10 // ...

The above differences reflect the quantity and container concepts, which have long since
been identified. Resolve them by changing the code as follows:

Listing 4.41: 2nd Phrases Send Quantity and Container
 1 case 0:
 2 return
 3 // ...
 4 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
 5 // ...
 6 default:
 7 return
 8 // ...
 9 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
10 // ...

Now that phrases 1 and 2 are identical, here’s a look at the whole verse method. Consider the
code, and identify the next difference:

Listing 4.42: Phrases 1 and 2 Are Identical
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 case 0:
 4 return
 5 ucfirst($this->quantity($number)) . " " . $this->container($number) .
 6 " of milk on the wall, " .
 7 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
 8 "Go to the store and buy some more, " .
 9 "99 bottles of milk on the wall.\n";
10 default:
11 return
12 ucfirst($this->quantity($number)) . " " . $this->container($number) .
13 " of milk on the wall, " .
14 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
15 "Take " . $this->pronoun($number) . " down and pass it around, " .
16 $this->quantity($number-1) . " " . $this->container($number-1) .
17 " of milk on the wall.\n";

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-310/lib/Bottles.php#L19-L30
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-330/lib/Bottles.php#L19-L30
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-330/lib/Bottles.php#L17-L35

4.7. Taking Bigger Steps

Page 94

18 }
19 }

To locate the next difference, it can again be helpful to scan the verse backwards from the end.
Both variants end with "of milk on the wall." On line 9, phrase 4 of case 0 begins with "99"
followed by "bottles". These seem to match up with quantity and container on line 16.
Ignore this fourth phrase for now and turn your thoughts to phrase 3, isolated below:

Listing 4.43: 0 and Default 3rd Phrases Differ
 1 case 0:
 2 return
 3 // ...
 4 "Go to the store and buy some more, " .
 5 // ...
 6 default:
 7 return
 8 // ...
 9 "Take " . $this->pronoun($number) . " down and pass it around, " .
10 // ...

The only thing the above lines have in common is the trailing ", ", which means that everything
up to that point is a difference. If the 0 and default verse variants reflect a common verse
abstraction, this difference must represent a smaller concept within that larger abstraction. It
doesn’t matter how long these strings are—their presence here in opposition means they reflect
a single concept.

You must name the concept, create a method to represent it, and then replace this difference
with a message send. The first step is therefore to name the category in which these two phrases
are concrete examples.

This part of the song is about what happens as a result of the current number of bottles of milk.
If bottles of milk exist, you drink one. If not, you go shopping. These lines describe the action to
take, so that’s a good name for this concept.

Until now, you’ve been doing this refactoring in the smallest possible steps. As a reminder, those
steps are:

Define a method for the concept.

Alter it to return one of the differences.

Replace that difference with a message send.

Add the $number argument to the new method, with appropriate default.

Implement the conditional.

Pass the $number argument from the current sender.

Send the message from the other branch, this time including the $number argument.

Clean up.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-330/lib/Bottles.php#L19-L31

4.8. Discovering Deeper Abstractions

Page 95

You may have noticed that the method you create during this refactoring contains code that
exactly mirrors the shape of the original switch statement. Once this becomes apparent, it
makes sense to begin plucking out methods in a single step, as shown below:

Listing 4.44: Leap Into Action
1 public function action(int $number): string {
2 if ($number === 0) {
3 return "Go to the store and buy some more";
4 } else {
5 return "Take " . $this->pronoun($number) . " down and pass it around";
6 }
7 }

This new action method contains a conditional that reflects the switch statement from whence
it came. Just as the original switch statement switched on $number, the new action method
takes a $number argument, and uses its value to choose what to return. The true and false
branches of the new conditional contain code extracted directly from the 0 and default
branches of the switch statement.

Once action exists, the original phrases can be made identical by replacing their differences
with a common message send. This results in the following code:

Listing 4.45: 3rd Phrases Send Action
 1 case 0:
 2 return
 3 // ...
 4 $this->action($number) . ", " .
 5 // ...
 6 default:
 7 return
 8 // ...
 9 $this->action($number) . ", " .
10 // ...

The previous chapter showed an example where the entire container method was created at
once. That was held up as an example of what not to do. The action method above looks a lot
like that original container method, and it may seem as if you are now being given permission
to act in a way that was previously prohibited.

However, there is a difference. Back when the original container method was first introduced,
you had not yet learned how to create it using small steps. Since that time, you’ve practiced the
Flocking Rules, refactoring bit by bit, and on several occasions have seen differences from two
branches of the switch statement turn into a single conditional. Now that you recognize the
pattern, and know how to make this change using small steps, it makes sense to start writing
larger chunks of code.

However, if you take bigger steps and the tests begin to fail, there’s something about the problem
that you don’t understand. If this happens, don’t push forward and refactor under red. Undo,
return to green, and make incremental changes until you regain clarity.

4.8. Discovering Deeper Abstractions

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-340/lib/Bottles.php#L53-L59
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-350/lib/Bottles.php#L19-L31

4.8. Discovering Deeper Abstractions

Page 96

So far the container, pronoun, quantity, and action concepts have been identified, and
methods have been extracted to be responsible for each. This horizontal refactoring to remove
the switch statement is almost complete. This next section resolves the final difference, and in
so doing illustrates the deep power of the Flocking Rules to unearth unanticipated abstractions.

The remaining differences are in the fourth phrases of the 0 and default cases, shown on lines
9 and 16-17 below:

Listing 4.46: Phrases 1, 2, and 3 Are Identical
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 case 0:
 4 return
 5 ucfirst($this->quantity($number)) . " " . $this->container($number) .
 6 " of milk on the wall, " .
 7 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
 8 $this->action($number) . ", " .
 9 "99 bottles of milk on the wall.\n";
10 default:
11 return
12 ucfirst($this->quantity($number)) . " " . $this->container($number) .
13 " of milk on the wall, " .
14 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
15 $this->action($number) . ", " .
16 $this->quantity($number-1) . " " . $this->container($number-1) .
17 " of milk on the wall.\n";
18 }
19 }

The trailing "of milk on the wall" in the lines above is a sameness, and the word "bottles"
in line 9 is an example of the container abstraction, which is already used in this place in line
16. If you ignore these for now, the remaining difference is that:

"99"

seems to be set against:

$this->quantity($number-1)

This may lead you to conclude that "99" is a third example of the quantity abstraction. If so,
this implies that you should alter quantity to sometimes return "99". The resulting method
would look like this:

Listing 4.47: Quantity Overreaches to Handle 99
 1 public function quantity(int $number): string {
 2 switch ($number) {
 3 case -1:
 4 return '99';
 5 case 0:
 6 return 'no more';
 7 default:
 8 return (string)$number;
 9 }
10 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-350/lib/Bottles.php#L17-L35

4.8. Discovering Deeper Abstractions

Page 97

If you made the alteration shown above, and then replaced "99" with "$this-
>quantity($number-1)", the tests would continue to pass. However, just because the tests pass
doesn’t mean that the abstraction is correct. There’s something deeply wrong with this solution,
and there are many clues to the problem.

The first clue is that the above change gives quantity a different shape than that of the other
extracted methods. Here’s a reminder of how the methods looked before this alteration:

Listing 4.48: Consistent Abstractions
 1 public function quantity(int $number): string {
 2 if ($number === 0) {
 3 return "no more";
 4 } else {
 5 return (string)$number;
 6 }
 7 }
 8
 9 public function container(int $number): string {
10 if ($number === 1) {
11 return "bottle";
12 } else {
13 return "bottles";
14 }
15 }
16
17 public function action(int $number): string {
18 if ($number === 0) {
19 return "Go to the store and buy some more";
20 } else {
21 return "Take " . $this->pronoun($number) . " down and pass it around";
22 }
23 }
24
25 public function pronoun(int $number): string {
26 if ($number === 1) {
27 return "it";
28 } else {
29 return "one";
30 }
31 }

The proposed change alters quantity such that:

its conditional has 3 branches instead of 2

it sometimes checks -1, which is an invalid number of bottles of milk

These inconsistencies don’t guarantee that something is wrong, but they should certainly
motivate you to think more deeply about the underlying abstraction.

Ask yourself these two questions:

1. What is the responsibility of the quantity method?

2. Is there a way to make the fourth phrases more alike, even if not yet identical?

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-350/lib/Bottles.php#L37-L67

4.8. Discovering Deeper Abstractions

Page 98

First, consider responsibilities. The quantity concept is responsible for knowing what to sing in
the place of a number. If there are 50 bottles of milk, the quantity is "50", if 5 bottles of milk,
"5", and if 0 bottles of milk, "no more". This concept represents the mapping between the value
of a number and the string that gets sung.

As the song progresses, the verse number gets decremented. It’s been a while since you’ve seen
them, so here’s a reminder of the song and verses methods:

Listing 4.49: Song and Verses Reprise
 1 public function song(): string {
 2 return $this->verses(99, 0);
 3 }
 4
 5 public function verses(int $upper, int $lower): string {
 6 return implode(
 7 "\n",
 8 array_map([$this, 'verse'], range($upper, $lower))
 9);
10 }

Line 2 above encodes the knowledge that the overall song starts on verse 99 and counts down to
0. Lines 7-9 decrement the verse number, which moves the song from one verse to the next. But
if you are familiar with "99 Bottles," you are surely aware that the song is longer than this code
suggests. The real song goes on forever (or at least until all singers become sufficiently bored).

This "forever" happens in phrase 4 of the 0 case of verse, repeated below:

Listing 4.50: Case 0 Handles Restart
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 case 0:
 4 return
 5 // ...
 6 "99 bottles of milk on the wall.\n";
 7 default:
 8 return
 9 // ...
10 $this->quantity($number-1) . " " . $this->container($number-1) .
11 " of milk on the wall.\n";
12 }
13 }

Line 6 above contains a hard-coded 99. This is not a special case of the quantity concept, which
is the rule for what to sing in place of a number.

There’s something subtle about the difference above, such that the underlying concept is not
immediately obvious. And this, unfortunately, is a constant of programming life. If you had
perfect understanding, you’d write perfect applications. Mostly, however, you’re stumbling
around, suffering from insufficient information, seeing problems through a glass, darkly.[15]

When you’re confused, don’t try to solve the entire problem straightaway. The more confused
you are, the more important it is to nibble. You already know that it becomes easier to see how
things are different if you make them more alike. Instead of trying to understand everything at

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-350/lib/Bottles.php#L6-L15
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-350/lib/Bottles.php#L17-L35

4.8. Discovering Deeper Abstractions

Page 99

once, simply search for a way to make line 6 above look more like lines 10-11 (even if not
identical), using existing code.

It may help to consider these questions. When the value of $number is 5, what does quantity
return? How about when $number is 95? And finally, what would quantity return if you
passed in 99?

If you just realized that you can make these lines a little bit more alike by passing the 99 into
quantity, you’ve got it. Here’s the resulting code:

Listing 4.51: 99 Is a Quantity
1 case 0:
2 return
3 // ...
4 $this->quantity(99) . " bottles of milk on the wall.\n";
5 default:
6 return
7 // ...
8 $this->quantity($number-1) . " " . $this->container($number-1) .
9 " of milk on the wall.\n";

As you can see from the above, the existing quantity rule is fine, and it already applies. When
the number 99 appears in the song, you should sing the string "99."

At this point it makes sense to scan over to the word "bottles" and replace it with the container
method. This is a well-understood difference, and taking it off the table now reduces mental
clutter. Here’s the resulting code:

Listing 4.52: Case 0 Sends Container
 1 case 0:
 2 return
 3 // ...
 4 $this->quantity(99) . " " . $this->container($number-1) .
 5 " of milk on the wall.\n";
 6 default:
 7 return
 8 // ...
 9 $this->quantity($number-1) . " " . $this->container($number-1) .
10 " of milk on the wall.\n";

Having made these lines as similar as possible, it is now obvious that:

"99"

must represent the same concept as:

$number-1

As always, you must name this concept, create a method, and send the message in place of the
difference.

This concept is about knowing that when number is 50, the result is 49, when it’s 5, the result is
4, when 1, 0, and when 0, 99. It’s where the song determines the next verse to be sung.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-360/lib/Bottles.php#L19-L33
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-370/lib/Bottles.php#L19-L34

4.8. Discovering Deeper Abstractions

Page 100

Mathematically speaking, a number’s "successor" is the next number in the higher direction, and
its "predecessor" is the next number in the lower direction. This maps nicely to most people’s
intuitive sense that the default direction for numbers is up.

However, in the case of verse numbers in the "99 Bottles of Milk" song, the default direction is
down. Most verses are followed by the next lower numbered verse (with the exception of verse
0, which is followed by verse 99). Successor does feel like the right name for the current concept,
but using it requires that you define successor to mean following rather than higher.

The successor concept was unearthed using the same refactoring rules that led to container,
pronoun, quantity, and action. As this idea is a bit more abstract than the others, an
abundance of caution suggests that the refactoring be done in moderately small steps. In that
spirit, first create the method, and have it return the default branch difference. Here’s that
code:

Listing 4.53: Successor Handles Default
1 public function successor(int $number): int {
2 return $number - 1;
3 }

The code in successor refers to $number, so the argument must be defined from the first.

Now that successor exists, use it in the default branch in place of $number-1 (line 8 below):

Listing 4.54: Default Case Sends Successor
 1 switch ($number) {
 2 case 0:
 3 return
 4 // ...
 5 $this->quantity(99) . " " . $this->container($number-1) .
 6 " of milk on the wall.\n";
 7 default:
 8 return
 9 // ...
10 $this->quantity($this->successor($number)) . " " . $this->container($number-1) .
11 " of milk on the wall.\n";
12 }

The next step is to make the successor open to being used in the 0 case, by adding a conditional
to return the correct value:

Listing 4.55: Successor Handles Both Cases
1 public function successor(int $number): int {
2 if ($number === 0) {
3 return 99;
4 } else {
5 return $number - 1;
6 }
7 }

Now that the conditional exists, the 99 can be replaced by a send of successor, as shown on
line 4 below:

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-380/lib/Bottles.php#L70-L72
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-390/lib/Bottles.php#L18-L35
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-400/lib/Bottles.php#L70-L76

4.9. Depending on Abstractions

Page 101

Listing 4.56: Both Cases Send Successor
 1 switch ($number) {
 2 case 0:
 3 return
 4 // ...
 5 $this->quantity($this->successor($number)) . " " . $this->container($number-1) .
 6 " of milk on the wall.\n";
 7 default:
 8 return
 9 // ...
10 $this->quantity($this->successor($number)) . " " . $this->container($number-1) .
11 " of milk on the wall.\n";
12 }

After this change, the 0 and default cases are identical. Here’s a overview of the resulting
verses method:

Listing 4.57: Identical but Incomplete
 1 switch ($number) {
 2 case 0:
 3 return
 4 ucfirst($this->quantity($number)) . " " . $this->container($number) .
 5 " of milk on the wall, " .
 6 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
 7 $this->action($number) . ", " .
 8 $this->quantity($this->successor($number)) . " " . $this->container($number-1) .
 9 " of milk on the wall.\n";
10 default:
11 return
12 ucfirst($this->quantity($number)) . " " . $this->container($number) .
13 " of milk on the wall, " .
14 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
15 $this->action($number) . ", " .
16 $this->quantity($this->successor($number)) . " " . $this->container($number-1) .
17 " of milk on the wall.\n";
18 }
19 }

The successor concept illustrates the power of iterative application of the Flocking Rules. This
concept wasn’t even hinted at in the solutions given in Chapter 1, and if you found it when you
worked the problem yourself, you’re in a minority. The concept is so subtle most programmers
don’t notice it, and yet it simply appears if you follow this simple set of rules.

Successor is important, and separating it from quantity gives both methods a single
responsibility. If you conflate choosing-what-to-sing-for-any-number (quantity) with deciding-
what-verse-to-sing-next (successor), the resulting method would be harder to understand,
future refactorings would be more difficult, and attempts to change the code for one idea might
accidentally break it for the other.

4.9. Depending on Abstractions
Abstractions are beneficial in many ways. They consolidate code into a single place so that it can
be changed with ease. They name this consolidated code, allowing the name to be used as a
shortcut for an idea, independent of its current implementation. These are valuable benefits, but
abstractions also help in another, more subtle, way. In addition to the above, abstractions tell you

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-410/lib/Bottles.php#L18-L35
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-410/lib/Bottles.php#L18-L37

4.9. Depending on Abstractions

Page 102

where your code relies upon an idea. But to get this last benefit, you must refer to an abstraction
in every place where it applies.

Study the code above, and consider the bits that say $this->container($number-1). When
container is called from the 0 case, the value of the passed argument is -1. The -1 causes the
conditional in container to fall through to the false branch and return "bottles." Although this
code passes the tests, it does so by accident, not by design.

The code above doesn’t want the container of $number-1; it wants the container of the
following verse. The successor method is responsible for determining the following verse. You
should now defer to that abstraction, and replace all occurrences of $number-1 with $this-
>successor($number).

That final change results in this code:

Listing 4.58: Deferring to Successor
 1 switch ($number) {
 2 case 0:
 3 return
 4 // ...
 5 $this->quantity($this->successor($number)) . " " .
 6 $this->container($this->successor($number)) . " of milk on the wall.\n";
 7 default:
 8 return
 9 // ...
10 $this->quantity($this->successor($number)) . " " .
11 $this->container($this->successor($number)) . " of milk on the wall.\n";
12 }

Here’s the whole verse method, showing the 0 and default cases to be identical:

Listing 4.59: Identical and Using Successor Abstraction
 1 public function verse(int $number): string {
 2 switch ($number) {
 3 case 0:
 4 return
 5 ucfirst($this->quantity($number)) . " " . $this->container($number) .
 6 " of milk on the wall, " .
 7 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
 8 $this->action($number) . ", " .
 9 $this->quantity($this->successor($number)) . " " .
10 $this->container($this->successor($number)) . " of milk on the wall.\n";
11 default:
12 return
13 ucfirst($this->quantity($number)) . " " . $this->container($number) .
14 " of milk on the wall, " .
15 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
16 $this->action($number) . ", " .
17 $this->quantity($this->successor($number)) . " " .
18 $this->container($this->successor($number)) . " of milk on the wall.\n";
19 }
20 }

One last refactoring trick proves that this common template works for all cases. Copy the
template and insert it above the switch statement, as follows:

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-420/lib/Bottles.php#L18-L35
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-420/lib/Bottles.php#L17-L36

4.9. Depending on Abstractions

Page 103

Listing 4.60: Using the Same Template for Every Verse
 1 public function verse(int $number): string {
 2 return
 3 ucfirst($this->quantity($number)) . " " . $this->container($number) .
 4 " of milk on the wall, " .
 5 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
 6 $this->action($number) . ", " .
 7 $this->quantity($this->successor($number)) . " " .
 8 $this->container($this->successor($number)) . " of milk on the wall.\n";
 9
10 switch ($number) {
11 case 0:
12 // ...
13 default:
14 return
15 // ...
16 }
17 }

The above change lets you try this one template for all cases, while preserving an easy return to
green if it fails. The tests are green after this change, so you can safely delete the entire switch
statement.

Here’s a complete listing of the resulting code:

Listing 4.61: Final Listing
 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }
 5
 6 public function verses(int $upper, int $lower): string {
 7 return implode(
 8 "\n",
 9 array_map([$this, 'verse'], range($upper, $lower))
10);
11 }
12
13 public function verse(int $number): string {
14 return
15 ucfirst($this->quantity($number)) . " " . $this->container($number) .
16 " of milk on the wall, " .
17 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
18 $this->action($number) . ", " .
19 $this->quantity($this->successor($number)) . " " .
20 $this->container($this->successor($number)) . " of milk on the wall.\n";
21 }
22
23 public function quantity(int $number): string {
24 if ($number === 0) {
25 return "no more";
26 } else {
27 return (string)$number;
28 }
29 }
30
31 public function container(int $number): string {
32 if ($number === 1) {
33 return "bottle";
34 } else {
35 return "bottles";

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-430/lib/Bottles.php#L17-L44
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c4-flocking-440/lib/Bottles.php#L5-L66

4.10. Summary

Page 104

36 }
37 }
38
39 public function action(int $number): string {
40 if ($number === 0) {
41 return "Go to the store and buy some more";
42 } else {
43 return "Take " . $this->pronoun($number) . " down and pass it around";
44 }
45 }
46
47 public function pronoun(int $number): string {
48 if ($number === 1) {
49 return "it";
50 } else {
51 return "one";
52 }
53 }
54
55 public function successor(int $number): int {
56 if ($number === 0) {
57 return 99;
58 } else {
59 return $number - 1;
60 }
61 }
62 }

This completes the current refactoring. The verse switch statement has been reduced to a single
template that refers to a series of small, consistent abstractions.

Now that you’re done, it’s important to ask whether this new code actually improves upon the
Shameless Green from whence you began. Most programmers argue that it’s better, so you may
be distressed to hear that according to the metrics, it’s worse; all you’ve accomplished is to turn
one conditional into many, while simultaneously adding 55% more code.

However, be of good cheer. Despite the complexity score, this code is better. An improvement
has been made that is invisible to static analysis tools. The container, pronoun, quantity,
action and successor concepts were invisible in Shameless Green, but are both revealed and
isolated in this new code.

4.10. Summary
This chapter finished the refactoring that began in Chapter 3. It iteratively followed the Flocking
Rules to remove differences in the verse method, and as a result unearthed abstractions that
were deeply hidden within the 99 Bottles song.

It illustrated the power of the Flocking Rules to uncover sophisticated concepts, even those
which cast only dim shadows in the existing code. You don’t have to understand the entire
problem in order to find and express the correct abstractions—you merely apply these rules,
repeatedly, and abstractions will naturally appear.

One final thought before moving on. Consider this question: If several different programmers
started from Shameless Green and refactored the verse method according to the Flocking Rules,

4.10. Summary

Page 105

what would the resulting code look like? If you’ve guessed that everyone’s code would be
identical, excepting the names used for the concepts, you’d be right. This has enormous value.

Now on to Chapter 5, which returns to the "six-pack" problem.

5.1. Selecting the Target Code Smell

Page 106

5. Separating Responsibilities
The previous two chapters applied the Flocking Rules to reduce duplication in the verse
method. The resulting code is gratifyingly consistent, and now explicitly exposes concepts that
cast only faint shadows in the original code. Remember, however, that the impetus behind that
entire refactoring was the arrival of the six-pack requirement. Without this change in
requirements, you might very well have stopped at Shameless Green.

This chapter returns to the six-pack problem. Code smells again guide the choice of the next
refactoring. A new class eventually gets created, and along the way a number of big ideas are
examined. This chapter explores what it means to model abstractions and rely on messages; it
considers the consequences of mutation and the perils of premature performance optimization.

5.1. Selecting the Target Code Smell
Code should be open for extension and closed for modification. It’s time to reexamine the
current code in light of the ongoing six-pack requirement. Recall the following flowchart (which
originally appeared in Chapter 3):

5.1. Selecting the Target Code Smell

Page 107

Figure 5.1: Open Closed Flowchart

Despite the fact that you’ve successfully replaced a fair amount of duplication with well-named
methods that expose concepts in the 99 Bottles domain, the resulting code is not yet open to the
six-pack requirement. If anything, the current incarnation is less amenable to this requirement
than was Shameless Green. Within Shameless Green, you could have simply amended the
switch statement to add a branch for verses 6 and 7. The changes needed to meet the six-pack
requirement within the new code are not nearly so obvious. It may seem as if you have
complicated things without making any progress towards meeting the goal.

The truth about refactoring is that it sometimes makes things worse, in which case your efforts
serve gallantly to disprove an idea. The refactoring recipes don’t promise to result in code that
better expresses the problem—they merely make it easy to create that new expression, and just
as easy to revert it. Proper refactoring allows you to explore a problem domain safely.

5.1.1. Identifying Patterns in Code

Page 108

You’ve now completed one refactoring, and the resulting code is not yet open to the six-pack
requirement. Not only that, but it is entirely possible that you do not yet know what change will
make it open. At this point, you must decide whether it’s better to proceed with additional
modifications to the code, or better to revert the previous change and take a different tack.

The current code, although not open to the new requirement, is improved. This suggests that it’s
reasonable to continue forward, in hopes that more good things will come.

Therefore, have faith, and iterate. This means you must continue to be guided by code smells,
and doing so requires that you identify the smells in the current code.

5.1.1. Identifying Patterns in Code
One way to get better at identifying smells is to practice describing the characteristics of code.
Look at the Bottles class below and make note of the things that catch your eye. Include any
patterns that you see, and things you like, hate, or don’t understand. This listing is followed by a
series of questions intended to inspire further thoughts, so take a minute to ponder before
reading on.

Listing 5.1: DRY Bottles Class
 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }
 5
 6 public function verses(int $upper, int $lower): string {
 7 return implode(
 8 "\n",
 9 array_map([$this, 'verse'], range($upper, $lower))
10);
11 }
12
13 public function verse(int $number): string {
14 return
15 ucfirst($this->quantity($number)) . " " . $this->container($number) .
16 " of milk on the wall, " .
17 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
18 $this->action($number) . ", " .
19 $this->quantity($this->successor($number)) . " " .
20 $this->container($this->successor($number)) . " of milk on the wall.\n";
21 }
22
23 public function quantity(int $number): string {
24 if ($number === 0) {
25 return "no more";
26 } else {
27 return (string)$number;
28 }
29 }
30
31 public function container(int $number): string {
32 if ($number === 1) {
33 return "bottle";
34 } else {
35 return "bottles";
36 }
37 }
38

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-10/lib/Bottles.php#L5-L67

5.1.2. Spotting Common Qualities

Page 109

39 public function action(int $number): string {
40 if ($number === 0) {
41 return "Go to the store and buy some more";
42 } else {
43 return "Take " . $this->pronoun($number) . " down and pass it around";
44 }
45 }
46
47 public function pronoun(int $number): string {
48 if ($number === 1) {
49 return "it";
50 } else {
51 return "one";
52 }
53 }
54
55 public function successor(int $number): int {
56 if ($number === 0) {
57 return 99;
58 } else {
59 return $number - 1;
60 }
61 }
62 }

The following questions draw attention to a number of interesting characteristics of the code as
it’s written so far:

1. Do any methods have the same shape?

2. Do any methods take an argument of the same name?

3. Do arguments of the same name always mean the same thing?

4. If you were to make some methods private, which ones would they be?

5. If you were going to break this class into two pieces, where’s the dividing line?

For those methods created by the Flocking Rules (quantity, container, action, pronoun and
successor, hereafter referred to as the "flocked five"):

6. Do the tests in the conditionals have anything in common?

7. How many branches do the conditionals have?

8. Do the methods contain any code other than the conditional?

9. Does each method depend more on the argument that got passed, or on the class as a
whole?

The remainder of this section examines the above questions. If any didn’t occur to you, look back
at the code and try to answer them before proceeding.

5.1.2. Spotting Common Qualities

The first five questions above look at the class as a whole and expose common qualities of the
code. This next section examines these questions in detail.

5.1.2. Spotting Common Qualities

Page 110

Question 1: Do any methods have the same shape?

Yes. The flocked five all have the same shape.

You can easily identify same-shaped methods by doing the Squint Test (see sidebar). The fact that
these methods are so consistent is a tribute to the Flocking Rules. Had the methods been created
at different times, by different people, for different reasons, they could easily have contained a
variety of shapes. For example, the following three methods are logically the same:

Listing 5.2: Various Conditional Forms
 1 // verbose conditional
 2 public function container($number) {
 3 if ($number === 1) {
 4 return "bottle";
 5 } else {
 6 return "bottles";
 7 }
 8 }
 9
10 // guard clause
11 public function quantity($number) {
12 if ($number === 0) {
13 return 'no more';
14 }
15 return (string)$number;
16 }
17
18 // ternary expression
19 public function pronoun($number) {
20 return $number === 1 ? 'it' : 'one';
21 }

All of the above methods pass the tests. The problem is not that the code doesn’t work; it’s that
the non-essential variation disguises a common shape. This unnecessary variation makes the
methods appear to be different when they are actually very much the same.

Programmers naturally assume that difference exists for a reason, but here there isn’t one.
Superfluous difference raises the cost of reading code, and increases the difficulty of future
refactorings.

It’s not yet clear what it means that these methods have the same shape, but it’s important to
notice that they do.

Squint Test
One easy way to judge code is by performing a Squint Test. This test requires no setup, and
can be performed on any code at any time.

Here’s how it works:

1. Put the code of interest on your screen.

2. Lean back.*

5.1.2. Spotting Common Qualities

Page 111

3. Squint your eyes such that you can still see the code, but can no longer read it.

4. Look for:

a. changes in shape, and

b. changes in color.

Changes in indentation reveal the presence of conditionals. Two or more levels of
indentation expose nested conditionals. Conditionals result in multiple execution paths
through the code, which add complexity and make code hard to understand.

Changes in color indicate differences in the level of abstraction. A method that intermixes
many colors tells a story that will be difficult to follow.

*Instead of leaning back and squinting, it’s acceptable to zoom out in your text editor until
you can no longer read the code, but can still see its shape and color.

Question 2: Do any methods take an argument of the same name?

Six methods take $number as an argument—the verse method and the flocked five.

Listing 5.3: Methods Which Take an Argument Named Number
1 public function verse(int $number): string {
2 public function quantity(int $number): string {
3 public function container(int $number): string {
4 public function action(int $number): string {
5 public function pronoun(int $number): string {
6 public function successor(int $number): int {

Question 3: Do arguments of the same name always mean the same thing?

The easiest way to understand what $number represents is to follow its path through the code,
beginning with song. Here’s a reminder of that method:

Listing 5.4: Song Method
1 public function song(): string {
2 return $this->verses(99, 0);
3 }

When song sends $this->verses(99, 0), the 99 and 0 represent the starting and ending
verse numbers to sing. You could argue that the 99 and 0 represent the starting number of
bottles in the verse to be sung, but that would be stretching it and you’d be in a minority. Most
folks interpret the 99 and 0 as verse numbers.

If song is sending verse numbers to verses, the verses method must be receiving them. Here’s
that method:

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-10/lib/Bottles.php#L17-L59
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-10/lib/Bottles.php#L6-L8

5.1.2. Spotting Common Qualities

Page 112

Listing 5.5: Verses Method
1 public function verses(int $upper, int $lower): string {
2 return implode(
3 "\n",
4 array_map([$this, 'verse'], range($upper, $lower))
5);
6 }

The $upper and $lower arguments are verse numbers. The verses method iterates between
them, so i, the loop iterator, must also represent a verse number. Therefore, and quite sensibly
so, the argument with which verse is invoked must be the verse number to be sung. As received
by verse, this argument is named $number.

1 public function verse(int $number): string {

To repeat (with no intention to belabor the point), the $number argument taken by verse
represents a verse number.

Now switch your attention to the flocked five, all of which also take an argument named
$number. Here, for example, is container:

1 public function container(int $number): string {

The question at hand is whether $number as received by container represents the same
concept as $number as received by verse. To answer this question, consider the entire verse
method:

Listing 5.6: Verse Method
1 public function verse(int $number): string {
2 return
3 ucfirst($this->quantity($number)) . " " . $this->container($number) .
4 " of milk on the wall, " .
5 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
6 $this->action($number) . ", " .
7 $this->quantity($this->successor($number)) . " " .
8 $this->container($this->successor($number)) . " of milk on the wall.\n";
9 }

Notice that line 3 above invokes container with $number, while line 8 invokes container with
$this->successor($number). Within every verse, container is invoked twice, on two
different values.

This happens because each verse knows about two different numbers of bottles. Verse 37, for
example, begins with 37 bottles of milk, and ends with 36. As you’ve already seen, the incoming
$number argument to verse represents a verse number. However, the parameter that verse
then passes on to container stands for something else—a bottle number.

The same is true for the other flocked five methods—the argument they receive is a bottle
number rather than a verse number. Thus, the verse method and the flocked five methods use
the same argument name to represent different concepts.

This is rarely a good idea.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-10/lib/Bottles.php#L10-L15
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-10/lib/Bottles.php#L17-L26

5.1.3. Enumerating Flocked Method Commonalities

Page 113

If you have long since noticed this issue, congratulations, but you’re in a minority. Most folks
who work this problem name the argument taken by the flocked five methods after the
parameter passed from verse. Initially, this made perfect sense. Back in Chapter 3, when the
Flocking Rules led to the extraction of the container method, your grasp of the problem was
less developed than it is now. Then it was clear only that:

the switch statement in verse switched on $number, and

container needed an argument in order to decide whether to return "bottle" or "bottles."

In the interests of consistency, it was reasonable back in Chapter 3 to name the argument taken
by container after the parameter being passed from verse. In the interim it hasn’t mattered
that $number stands for a verse number within verse but a bottle number within container.

Now, however, it begins to. Having multiple methods that take the same argument is a code
smell. It’s important, however, to recognize that here the term "same" means same concept, not
identical name. In an ideal world, each different concept would have its own unique, precise
name, and there would be no ambiguity. Unfortunately, real world code often fails to meet this
ideal. In long-lived applications, the same concept might go by several different names, or, as in
this case, different concepts might hide behind a single name. These naming mistakes make it
harder to notice underlying code smells, and now that you’re looking for patterns in the code,
you must examine the arguments and clarify the abstractions that they represent.

Having examined the use of $number in Bottles, it’s now clear that this argument represents a
verse number to verse, but a bottle number to the flocked five methods.

Question 4: If you were to make some methods private, which would they be?

The flocked five.

Question 5: If you were going to break this class into two pieces, where’s the dividing line?

After verse and before the flocked five methods.

5.1.3. Enumerating Flocked Method Commonalities
Now that you’ve considered the class as a whole, it’s time to move on to questions six through
nine, which apply only to the flocked five methods.

Question 6: Do the tests in the conditionals have anything in common?

Here’s a summary of the conditionals:

Listing 5.7: Flocked Five Conditionals
 1 public function quantity(int $number): string {
 2 if ($number === 0) {
 3 // ...

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-10/lib/Bottles.php#L27-L65

5.1.3. Enumerating Flocked Method Commonalities

Page 114

 4 }
 5
 6 public function container(int $number): string {
 7 if ($number === 1) {
 8 // ...
 9 }
10
11 public function action(int $number): string {
12 if ($number === 0) {
13 // ...
14 }
15
16 public function pronoun(int $number): string {
17 if ($number === 1) {
18 // ...
19 }
20
21 public function successor(int $number): int {
22 if ($number === 0) {
23 // ...
24 }

In the code above, not only do all of the conditionals test the value of $number, but they test for
$number to be exactly equal to another value.

These conditionals could logically have used the less than, greater than or not equal operators,
and still pass the tests. The Incomprehensibly Concise example in Chapter 1 managed to use all
four of these operations, and your own solution may also have had conditionals that tested for
something other than equality.

Programmers tend to blithely interchange these different comparison operators, confident that if
the tests pass, the code is correct. However, having tests that pass doesn’t guarantee the best
expression of code, and this is a case where your choice of operator affects future costs.

Testing for equality has several benefits over the alternatives. Most obviously, it narrows the
range of things that meet the condition. In the above examples, if unexpected values of $number
arrive, the else branch executes. Knowing that the only way to get to the true branch is by
supplying an exact value of $number makes it easier for future readers to understand the code.
This reduces the difficulty of debugging errors caused by incorrect inputs. Testing for equality
also makes the code more precise, and this precision, as you will soon see, enables future
refactorings.

Question 7: How many branches do the conditionals have?

Each conditional contains two branches. This may or may not have meaning, but it’s certainly a
visible quality of the code and thus worth noting.

Question 8: Do the methods contain any code other than the conditional?

No. Each method is named after a concept, and contains a single conditional. This conditional
uses the value of $number to choose the correct concrete expression of the concept. These

5.1.4. Insisting Upon Messages

Page 115

methods are fiercely committed to having one responsibility and never conflating two concepts.

Question 9: Do methods that take $number as an argument depend more on $number, or
more on the class as a whole?

The flocked five depend only on the $number argument, rather than on the rest of the class. This
is true even for action, if you accept that although action depends on pronoun, pronoun
depends only on $number.

In conjunction, these nine questions group certain methods together. The same-shaped, same-
kind-of-conditional-testing, bottle-number-taking, argument-depending, flocked five methods fall
into one group, and the song, verses, and verse methods into another. The answers to the
questions above reveal many characteristics of the code, but there’s one more quality to discuss
before moving on.

5.1.4. Insisting Upon Messages

This code contains a deeply non-object-oriented pattern: the flocked five methods take an
argument, examine it, and then supply behavior for it.

As you’ve seen, those five methods share this common shape:

Listing 5.8: Common Shape
public function container(int $number): string {
 if ($number === 1) {
 return "bottle";
 } else {
 return "bottles";
 }
}

The above method was created by the Flocking Rules, and so exhibits many desirable qualities.
Despite that, it’s deeply flawed when considered from the point of view of an independent OO
practitioner. What that practitioner would see here is that someone has gone to the trouble of
injecting a dependency ($number), but that dependency is too impaired to supply the needed
behavior. Consequently, not only does container know about $number, but it’s also forced to
understand what the specific values of $number mean, and to know what to do in each case. The
container method depends on each of these things. If any of them change, the container
method might be forced to change in turn.

It made sense to tolerate a conditional back in Shameless Green. That solution optimized for
understandability without regard for changeability. Its goal was to get to green quickly. The
resulting code was more procedural than object-oriented, but would have been good enough if
nothing ever changed. However, now that you have a new requirement and are rearranging the
code, you’d like to apply a full-blown OO mindset, and that mindset is deeply suspicious of
conditionals.

As an OO practitioner, when you see a conditional, the hairs on your neck should stand up. Its
very presence ought to offend your sensibilities. You should feel entitled to send messages to

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-10/lib/Bottles.php#L35-L41

5.2.1. Modeling Abstractions

Page 116

objects, and look for a way to write code that allows you to do so. The above pattern means that
objects are missing, and suggests that subsequent refactorings are needed to reveal them. Be on
the lookout for this code shape, as it implies that there’s more to be done.

This is not to say that you’ll never have a conditional in an object-oriented application. There is a
place for conditionals in OO. Manageable OO applications consist of pools of small objects that
collaborate to accomplish tasks. Collaborators must be brought together in useful combinations,
and assembling these combinations requires knowing which objects are suitable. Some object,
somewhere, must choose which objects to create, and this often involves a conditional.

However, there’s a big difference between a conditional that selects the correct object and one
that supplies behavior. The first is acceptable and generally unavoidable. The second suggests
that you are missing objects in your domain.

Code is striving for ignorance, and preserving ignorance requires minimizing dependencies. The
container method yearns to be injected with a smarter object to which it could merely forward
the message, as shown here:

public function container(object $smarterNumber): string {
 $smarterNumber->container();
}

The existing code is imploring you to create that smarter object.

5.2. Extracting Classes
The questions above identify characteristics that group methods together, and many of these
groups overlap. For example, a number of methods take the same argument. Most methods that
do so have the same shape, contain a conditional, could be considered private, and depend more
on the argument than on the class as a whole.

Each item above acts like a vote, and these votes combine to point to Primitive Obsession as the
dominant code smell. Built-in types like string, integer, array, and boolean are examples of
"primitives." Primitive Obsession is when you use one of these types to represent a concept in
your domain. Obsessing on a primitive results in code that passes built-in types around, and
supplies behavior for them.

The cure for Primitive Obsession is to create a new class to use in place of the primitive. For this
operation, the refactoring recipe is Extract Class.

5.2.1. Modeling Abstractions
Having decided to cure the Primitive Obsession code smell with the Extract Class refactoring, you
must now choose a name for this new class.

The primitive that you’re replacing represents a bottle number. Notice that it is not a bottle: it’s a
bottle number. A bottle is made of plastic, or glass, or aluminum, and contains water, or soda, or
milk. A bottle has a shape and a volume. It exists in the physical world.

5.2.2. Naming Classes

Page 117

Unlike bottles, numbers aren’t things—they’re ideas, albeit ones so ubiquitous that you’ve likely
forgotten how abstract and unlikely they are. Numbers are symbols used to describe quantities
of things. They don’t physically exist. You can pick up a bottle, but you cannot pick up a "six."

This new class does not represent a kind of bottle: it represents a kind of number. The distinction
may seem subtle, but the divide between these two concepts is chasmic. A bottle is a thing, while
a number is an idea. It’s easy to imagine creating objects that stand in for things, but the power
of OO is that it lets you model ideas.

Model-able ideas often lie dormant in the interactions between other objects. For example, an
event management application might contain Buyer and Ticket classes. Buyer and Ticket are
obvious because you can reach out and touch them in the real world. These objects interact in
many ways: buyers buy tickets, perhaps at a discount, and may later change their minds and
return the tickets for refunds.

Where, in such an application, should the logic to manage purchases, discounts, and refunds
reside? You could jam everything into Buyer and Ticket, but the power of OO is that it allows
you to create a virtual world in which Purchase, Discount and Refund are just as real.
Embodying these concepts into discrete classes separates responsibilities and makes the overall
application easier to understand, test, and change.

Experienced OO programmers deftly create virtual worlds in which ideas are as real as physical
things. If you are not yet comfortable doing so, start today by thinking of the class you’re about to
extract not as a physical bottle, but as a symbolic number with an added bit of bottle-ish
behavior.

Bearing that idea in mind, consider what to name this class. The two most obvious choices are
BottleNumber, or ContainerNumber.

5.2.2. Naming Classes
You’ve been introduced to the rule about naming methods at one higher level of abstraction than
their current implementation. Extrapolated to classes, that rule suggests this new class should be
named ContainerNumber. However, you’ve also read fairly lengthy discourses about not
anticipating the future, and since the existing requirements involve only bottles, you might lean
towards BottleNumber.

BottleNumber is less flexible but more straightforward. ContainerNumber is just the opposite;
it’s a bit more general, and so would work for a broader range of vessels. BottleNumber is more
concrete. ContainerNumber is more abstract.

The tie-breaker here is that the "name things at one higher level of abstraction" rule applies more
to methods than to classes. It would be speculative to call this new class ContainerNumber. The
rule about naming can thus be amended: while you should continue to name methods after what
they mean, classes can be named after what they are.

Having two requirements for bottles firmly suggests that this class represents a bottle number,
and should be named as such. As always, you can revisit this decision if things change later.

5.2.3. Extracting BottleNumber

Page 118

5.2.3. Extracting BottleNumber
This section extracts a new class named BottleNumber from the existing code. It does not use
TDD. Instead, it creates the new class by following a slightly modified version of Martin Fowler’s
Extract Class refactoring recipe.

As you might recall, safe refactoring relies upon tests running green, so the fact that the new
BottleNumber class will come into existence before its tests arrive has a couple of
consequences. First, the existing Bottles tests become the safety net for this new class. They
were originally written as unit tests, but using them to indirectly test BottleNumber transforms
them into a kind of integration test. These tests must continue to run after every change.

Next, while extracting the class, code that is known to work is copied from Bottles into
BottleNumber. It’s important to put this new class fully into use before editing any of the copied
code. Safety is being provided by the Bottles tests, so they must exercise the new code as
quickly as possible.

In the previous chapters, the process of changing code was subdivided into four steps.

1. parse the new code

2. parse and execute it

3. parse, execute and use its result

4. delete unused code

These steps still apply. Start the class extraction by creating an empty BottleNumber class, as
shown below:

Listing 5.9: BottleNumber Class Definition
1 class Bottles {
2 // ...
3 }
4
5 class BottleNumber {
6 }

As you go through this refactoring, remember to save the code after every change, and to run the
tests after every save.

Next, copy the methods that obsess on bottle $number into the new class.

Listing 5.10: Obsessive Methods Copied to BottleNumber
 1 class Bottles {
 2 // ...
 3 public function quantity(int $number): string {
 4 // ...
 5 }
 6
 7 public function container(int $number): string {
 8 // ...
 9 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-20/lib/Bottles.php#L5-L69
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-30/lib/Bottles.php#L5-L108

5.2.3. Extracting BottleNumber

Page 119

10
11 public function action(int $number): string {
12 // ...
13 }
14
15 public function pronoun(int $number): string {
16 // ...
17 }
18
19 public function successor(int $number): int {
20 // ...
21 }
22 }
23
24 class BottleNumber {
25 public function quantity(int $number): string {
26 if ($number === 0) {
27 return "no more";
28 } else {
29 return (string)$number;
30 }
31 }
32
33 public function container(int $number): string {
34 if ($number === 1) {
35 return "bottle";
36 } else {
37 return "bottles";
38 }
39 }
40
41 public function action(int $number): string {
42 if ($number === 0) {
43 return "Go to the store and buy some more";
44 } else {
45 return "Take " . $this->pronoun($number) . " down and pass it around";
46 }
47 }
48
49 public function pronoun(int $number): string {
50 if ($number === 1) {
51 return "it";
52 } else {
53 return "one";
54 }
55 }
56
57 public function successor(int $number): int {
58 if ($number === 0) {
59 return 99;
60 } else {
61 return $number - 1;
62 }
63 }
64 }

Remember that the verse method should not be extracted. Even though its argument is also
named $number, in this case the argument represents a verse number, not a bottle number.

Notice that the above example copied methods from Bottle to BottleNumber. The methods
weren’t moved—they were duplicated, so nothing about Bottle has yet been changed. This

5.2.3. Extracting BottleNumber

Page 120

means that the old code continues to work as is and the new code is not yet being executed.
Running the tests at this point merely parses the new code, proving that it’s syntactically correct.

As mentioned earlier, the recipe being followed here was inspired by one from Martin Fowler.
The "official" Extract Class recipe begins by linking the old class to the new. Then one at a time,
the recipe moves attributes, and then methods, of interest. In contrast, the example above starts
with Fowler’s final step, and combines all of the method moves within a single change.

This may seem like a large leap, but here you can be confident that you’re moving the right
group of methods. These methods were created by the Flocking Rules, so they visibly share a
common pattern. This common pattern makes it easy to recognize that they belong together in
the extracted class. This visual similarity is a tribute to the rules, and an illustration of the value
of stable landing points (remember the stream and the rocks?) The prior refactoring resulted in
deeply consistent code, and here’s more proof that consistent code makes the current refactoring
easy.

The BottleNumber class needs to know the value of $number, so add a __construct method to
store it in a property. Here’s the code:

Listing 5.11: BottleNumber Holding Onto Number
1 class BottleNumber {
2 protected $number;
3
4 public function __construct(int $number) {
5 $this->number = $number;
6 }
7 // ...
8 }

The $number property is set within the __construct method on line 5 above. That
__construct method gets invoked when new BottleNumber() is called.

The BottleNumber class now contains all of the necessary code, but as yet this code is only
being parsed. The next small step is to execute a bit of the new class without using the result.

The following example does this by altering the quantity method of Bottles to invoke the
quantity method of BottleNumber:

Listing 5.12: Parse and Execute a Bit of New Code
 1 class Bottles {
 2 // ...
 3 public function quantity(int $number): string {
 4 (new BottleNumber($number))->quantity($number);
 5 if ($number === 0) {
 6 return "no more";
 7 } else {
 8 return (string)$number;
 9 }
10 }
11 // ...
12 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-40/lib/Bottles.php#L68-L114
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-50/lib/Bottles.php#L5-L67

5.2.3. Extracting BottleNumber

Page 121

Line 4 above executes the new method, but then discards the result in favor of existing code.
This proves that the new code can execute without blowing up, but does not prove that it returns
the correct result.

It must now be admitted that the added line of code is, by any standard, ugly.

(new BottleNumber($number))->quantity($number);

In the above code, both new BottleNumber() and quantity require the $number argument, so
it must be passed twice. You may find this annoyingly redundant. In the newly-created
BottleNumber class, the quantity method could easily make do without an argument. It can
get the right number by simply reading its own $number property. Instead of the code above,
you’d prefer:

(new BottleNumber($number))->quantity();

However, as previously mentioned, you should refrain from altering the code in these copied
methods until the new class is fully wired into the old. Regardless of how much you hate passing
the parameter twice, at this point you should resist the urge to make the change shown above.
First, fully connect BottleNumber to Bottles. Once that’s complete, you can return and
improve the methods in BottleNumber.

So, setting that unpleasant code temporarily aside, the next small step in the current refactoring
is to use the result of the quantity message within the Bottle class. The easiest way to
accomplish this is to add a return keyword to the beginning of line 4, like so:

Listing 5.13: Parse, Execute and Use Result
 1 class Bottles {
 2 // ...
 3 public function quantity(int $number): string {
 4 return (new BottleNumber($number))->quantity($number);
 5 if ($number === 0) {
 6 return "no more";
 7 } else {
 8 return (string)$number;
 9 }
10 }
11 // ...
12 }

The tests pass, so now you can delete the old implementation from quantity (lines 5-9 above).
This leaves the following code:

Listing 5.14: Resulting Quantity Method
1 class Bottles {
2 // ...
3 public function quantity(int $number): string {
4 return (new BottleNumber($number))->quantity($number);
5 }
6 // ...
7 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-60/lib/Bottles.php#L5-L67
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-70/lib/Bottles.php#L5-L62

5.2.4. Removing Arguments

Page 122

Repeat the above procedure for each of the methods copied from the Bottles class. This is an
extremely mechanical, wonderfully boring, and deeply comforting refactoring process.

Here’s the resulting Bottles class:

Listing 5.15: Forwarding Messages to BottleNumber
 1 class Bottles {
 2 // ...
 3 public function quantity(int $number): string {
 4 return (new BottleNumber($number))->quantity($number);
 5 }
 6
 7 public function container(int $number): string {
 8 return (new BottleNumber($number))->container($number);
 9 }
10
11 public function action(int $number): string {
12 return (new BottleNumber($number))->action($number);
13 }
14
15 public function pronoun(int $number): string {
16 return (new BottleNumber($number))->pronoun($number);
17 }
18
19 public function successor(int $number): int {
20 return (new BottleNumber($number))->successor($number);
21 }
22 }

These methods in Bottles now merely forward messages along to BottleNumber.

5.2.4. Removing Arguments

Now that the old Bottles class fully uses BottleNumber, the existing tests serve as a safety net
for changes to the new class. This means that you can now undertake improvements in the new
code.

Although BottleNumber works, parts of it are annoyingly redundant. The problem is that even
though instances of BottleNumber know their $number, its methods continue to require
$number as an argument. To illustrate, here are the two quantity methods:

Listing 5.16: Redundant Arguments
 1 class Bottles {
 2 // ...
 3 public function quantity(int $number): string {
 4 return (new BottleNumber($number))->quantity($number);
 5 }
 6 // ...
 7 }
 8
 9 class BottleNumber {
10 protected $number;
11
12 public function __construct(int $number) {
13 $this->number = $number;
14 }
15
16 public function quantity(int $number): string {

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-190/lib/Bottles.php#L5-L46
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-190/lib/Bottles.php#L5-L94

5.2.4. Removing Arguments

Page 123

17 if ($number === 0) {
18 return "no more";
19 } else {
20 return (string)$number;
21 }
22 }
23 // ...
24 }

Line 4 above gets a new BottleNumber and asks for its quantity. Doing so requires two
references to $number. The __construct method (invoked by new and defined on line 12) and
the quantity method (line 16) both require a $number argument.

The point of the Primitive Obsession/Extract Class refactoring is to create a smarter object to
stand in for the primitive. This smarter object, by definition, knows both the value of the
primitive and its associated behavior. Because the new BottleNumber class holds the right
number, the methods in BottleNumber don’t need to take an argument, and invokers of these
methods could be relieved of their obligation to pass a parameter.

Now that BottleNumber is fully connected to Bottles, it’s safe to start making these
improvements. Notice that if you’re willing to simultaneously alter both the senders and the
receivers of every message, it’s easy to make this change. For example, you could fix the
quantity method by changing line 4 above to remove the argument being passed to quantity,
while simultaneously deleting the parameter from line 16 and replacing the references to it on
lines 17 and 20 with $this→number. If you make both of these changes at once, and then save
the code, the tests will pass.

Keep in mind that is a multi-line change. Some problems are so simple that it’s easiest to just leap
in and make such a change, but others are so complex that it isn’t feasible to fix everything at
once. In real-world applications, the same method name is often defined several times, and a
message might get sent from many different places. Learning the art of transforming code one
line at a time, while keeping the tests passing at every point, lets you undertake enormous
refactorings piecemeal. This small problem is a good place to practice this technique, in
preparation for later tackling bigger ones.

Back in Chapter 3, you had to add an argument to a method that was already being called
without one. This is the opposite problem: here you need to remove an argument from a method
that’s currently being invoked with one.

Consider quantity, repeated again below. This method defines a $number parameter.
Remember, however, that the BottleNumber class itself has a $number property.

Listing 5.17: BottleNumber Quantity Redux
 1 class BottleNumber {
 2 // ...
 3 public function quantity(int $number): string {
 4 if ($number === 0) {
 5 return "no more";
 6 } else {
 7 return (string)$number;
 8 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-190/lib/Bottles.php#L48-L94

5.2.4. Removing Arguments

Page 124

 9 }
10 // ...
11 }

The trick to working your way forward under green while making only one-line changes, is to
alter the uses of the $number argument to refer to the $this->number property instead. Lines 4
and 7 below contain that change:

Listing 5.18: Unused Argument
 1 class BottleNumber {
 2 // ...
 3 public function quantity(int $number): string {
 4 if ($this->number === 0) {
 5 return "no more";
 6 } else {
 7 return (string)$this->number;
 8 }
 9 }
10 // ...
11 }

Above, $number has been replaced by $this->number on lines 4 and 7. That change turns the
argument reference into a property reference, which allows this method to depend upon one of
the object’s own properties rather than an argument passed by someone else.

Then delete the parameter from the quantity method definition.

 1 class BottleNumber {
 2 // ...
 3 public function quantity(): string {
 4 if ($this->number === 0) {
 5 return "no more";
 6 } else {
 7 return (string)$this->number;
 8 }
 9 }
10 // ...
11 }

Now that the parameter is gone, turn your attention to senders of quantity. In this application
there’s only the one in Bottles, shown here:

Listing 5.19: Forward With Redundant Arguments
1 class Bottles {
2 // ...
3 public function quantity(int $number): string {
4 return (new BottleNumber($number))->quantity($number);
5 }
6 // ...
7 }

Removing the $number argument from the quantity message invocation on line 4 results in
this code:

Listing 5.20: Forward Without Redundancy

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-200/lib/Bottles.php#L48-L94
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-200/lib/Bottles.php#L5-L46
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-210/lib/Bottles.php#L5-L46

5.2.4. Removing Arguments

Page 125

1 class Bottles {
2 // ...
3 public function quantity(int $number): string {
4 return (new BottleNumber($number))->quantity();
5 }
6 // ...
7 }

Because PHP is such a permissive language, you can’t rely on it to tell you whether you’ve fixed
all quantity invocations. After you remove the $number parameter from the quantity
method, PHP will silently tolerate any senders that are still providing an argument. It’s important
to be confident that you have found and fixed all invocations before moving on.

To convince yourself that you haven’t missed any other senders of quantity, temporarily add a
guard clause at the beginning of the method to check the number of arguments provided by the
sender:

 1 class BottleNumber {
 2 // ...
 3 public function quantity(): string {
 4 if (func_num_args() > 0) {
 5 throw new Exception('Wrong number of arguments.');
 6 }
 7 if ($this->number === 0) {
 8 return "no more";
 9 } else {
10 return (string)$this->number;
11 }
12 }
13 // ...
14 }

Lines 4-6 above will throw an exception if quantity is called with any arguments. Even so, the
tests still pass, so you may now feel confident that every sender has been updated. Having
gained that confidence, you may safely delete the guard clause.

Here’s a recap of the steps for removing an argument using one-line changes.

1. Alter the method body to replace occurrences of the argument with references to the
property of the same name.

In the example above:

if ($number === 0) {
 return "no more";
} else {
 return (string)$number;
}

became:

if ($this->number === 0) {
 return "no more";
} else {
 return (string)$this->number;
}

5.2.5. Trusting the Process

Page 126

2. Delete the parameter from the method definition. In the example:

public function quantity(int $number): string {

became:

public function quantity(): string {

3. Change every sender of the message to remove the argument. In the example:

return (new BottleNumber($number))->quantity($number);

became:

return (new BottleNumber($number))->quantity();

4. Confirm that you’ve updated every sender by adding a temporary guard clause to the
method body. In the example above:

public function quantity(): string {
 // ...
}

became:

public function quantity(): string {
 if (func_num_args() > 0) {
 throw new Exception('Wrong number of arguments.');
 }
 // ...

5. Finally, delete the guard clause from the method definition. So:

public function quantity(): string {
 if (func_num_args() > 0) {
 throw new Exception('Wrong number of arguments.');
 }
 // ...

became:

public function quantity(): string {
 // ...
}

As you can see, despite the length of the explanation, the technique is simple, and involves only
five steps. Having practiced on quantity, the other methods will easily bend to your will. You
can now follow this process to remove the $number argument from the remaining methods in
BottleNumber.

If you do this refactoring yourself, you’ll find that container and action work as expected, but
that when you change pronoun, the tests begin to fail.

5.2.5. Trusting the Process
Refactorings that lead to errors can shake your faith in the validity of the corresponding recipes.
However, these recipes have proven themselves reliable for many people across many

5.2.5. Trusting the Process

Page 127

circumstances. If you adhere to a recipe and tests start failing, it’s likely that there’s something
about the problem that you don’t yet understand.

In this case, you’ve been using the "remove arguments via one-line changes" process. It works
for quantity, container, and action but causes the tests to fail when applied to pronoun.

Specifically, if you go to pronoun in BottleNumber:

Listing 5.21: Initial BottleNumber Pronoun Method
1 class BottleNumber {
2 // ...
3 public function pronoun(int $number): string {
4 if ($number === 1) {
5 // ...
6 }
7 }
8 // ...
9 }

change $number on line 4 to $this->number:

Listing 5.22: Updated BottleNumber Pronoun Method
1 class BottleNumber {
2 // ...
3 public function pronoun(int $number): string {
4 if ($this->number === 1) {
5 // ...
6 }
7 }
8 // ...
9 }

and remove the unused parameter from the method definition:

Listing 5.23: BottleNumber Pronoun Method Without Parameter
1 class BottleNumber {
2 // ...
3 public function pronoun(): string {
4 if ($this->number === 1) {
5 // ...
6 }
7 }
8 // ...
9 }

Then go to the pronoun method in Bottles:

Listing 5.24: Initial Bottles Pronoun Method
1 class Bottles {
2 // ...
3 public function pronoun(int $number): string {
4 return (new BottleNumber($number))->pronoun($number);
5 }
6 // ...
7 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-280/lib/Bottles.php#L48-L94
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-281/lib/Bottles.php#L48-L94
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-290/lib/Bottles.php#L5-L46

5.2.5. Trusting the Process

Page 128

and remove the argument from the forward of pronoun to BottleNumber:

Listing 5.25: Updated Bottles Pronoun Method
1 class Bottles {
2 // ...
3 public function pronoun(int $number): string {
4 return (new BottleNumber($number))->pronoun();
5 }
6 // ...
7 }

Now when you return to the pronoun method definition in BottleNumber and add the
temporary guard clause:

Listing 5.26: Back to BottleNumber Pronoun
 1 class BottleNumber {
 2 // ...
 3 public function pronoun(): string {
 4 if (func_num_args() > 0) {
 5 throw new Exception('Wrong number of arguments.');
 6 }
 7 // ...
 8 }
 9 // ...
10 }

Then the tests begin to fail with:

Exception: Wrong number of arguments.

The process that worked for other methods is now failing for pronoun. While this error might
lead you to doubt the validity of the technique, it doesn’t point out a flaw in the process. Instead,
it exposes a slightly more complex bit of code.

Recall the steps needed to remove parameters:

1. Alter the method definition to replace occurrences of the argument with references to the
property of the same name.

2. Delete the unused parameter from the method definition.

3. Change every sender of the message to remove the argument.

4. Add a temporary guard clause to the method body.

5. Delete the guard clause.

The failure appeared after step 4. The error message indicates that some caller is still passing a
parameter to pronoun. This means step 3 isn’t complete; in other words, some sender has not
been fixed. This should trigger you to examine the source code where the failure occurred.
When you do so, you’ll see the following:

Listing 5.27: BottleNumber Action Method Uses Pronoun

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-300/lib/Bottles.php#L5-L46
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-310/lib/Bottles.php#L48-L97
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-310/lib/Bottles.php#L48-L97

5.2.5. Trusting the Process

Page 129

 1 class BottleNumber {
 2 // ...
 3 public function action(): string {
 4 if ($this->number === 0) {
 5 return "Go to the store and buy some more";
 6 } else {
 7 return "Take " . $this->pronoun($this->number) . " down and pass it around";
 8 }
 9 }
10 // ...
11 }

It turns out that pronoun is invoked only from the action method of BottleNumber, where the
message is sent to $this. The pronoun method defined back in Bottles is no longer used (as
you can confirm by cavalierly deleting it and running the tests).

Instead of changing the unused pronoun method in Bottles, step 3 should have removed the
$number argument from the call to pronoun in the action method of BottleNumber, leaving:

Listing 5.28: BottleNumber Action Method Corrected
 1 class BottleNumber {
 2 // ...
 3 public function action(): string {
 4 if ($this->number === 0) {
 5 return "Go to the store and buy some more";
 6 } else {
 7 return "Take " . $this->pronoun() . " down and pass it around";
 8 }
 9 }
10 // ...
11 }

Once you make that change and then complete the steps, the code passes the tests.

The lesson here is that the process works, and that encountering errors while following it
suggests that a closer look at the code is in order. A great benefit of these refactoring techniques
is that you can accomplish quite a bit while thinking very little. Sometimes, however, thought
just can’t be avoided. The blessing of these techniques is that altering code in such small
increments severely constrains the number of errors any change can introduce. When forced to
think, you can be confident that your efforts will be narrowly focused on an opportune topic.

Now that pronoun works, only the successor method remains. It succumbs to this refactoring
with no surprises. This completes the removal of extraneous arguments to methods in the
BottleNumber class, and leaves the code at the following resting point.

Listing 5.29: Forward Messages to Smarter Number
 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }
 5
 6 public function verses(int $upper, int $lower): string {
 7 return implode(
 8 "\n",
 9 array_map([$this, 'verse'], range($upper, $lower))

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-340/lib/Bottles.php#L44-L90
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-380/lib/Bottles.php#L5-L90

5.2.5. Trusting the Process

Page 130

10);
11 }
12
13 public function verse(int $number): string {
14 return
15 ucfirst($this->quantity($number)) . " " . $this->container($number) .
16 " of milk on the wall, " .
17 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
18 $this->action($number) . ", " .
19 $this->quantity($this->successor($number)) . " " .
20 $this->container($this->successor($number)) . " of milk on the wall.\n";
21 }
22
23 public function quantity(int $number): string {
24 return (new BottleNumber($number))->quantity();
25 }
26
27 public function container(int $number): string {
28 return (new BottleNumber($number))->container();
29 }
30
31 public function action(int $number): string {
32 return (new BottleNumber($number))->action();
33 }
34
35 public function successor(int $number): int {
36 return (new BottleNumber($number))->successor();
37 }
38 }
39
40 class BottleNumber {
41 protected $number;
42
43 public function __construct(int $number) {
44 $this->number = $number;
45 }
46
47 public function quantity(): string {
48 if ($this->number === 0) {
49 return "no more";
50 } else {
51 return (string)$this->number;
52 }
53 }
54
55 public function container(): string {
56 if ($this->number === 1) {
57 return "bottle";
58 } else {
59 return "bottles";
60 }
61 }
62
63 public function action(): string {
64 if ($this->number === 0) {
65 return "Go to the store and buy some more";
66 } else {
67 return "Take " . $this->pronoun() . " down and pass it around";
68 }
69 }
70
71 public function pronoun(): string {
72 if ($this->number === 1) {
73 return "it";

5.3. Appreciating Immutability

Page 131

74 } else {
75 return "one";
76 }
77 }
78
79 public function successor(): int {
80 if ($this->number === 0) {
81 return 99;
82 } else {
83 return $this->number - 1;
84 }
85 }
86 }

This completes the extraction of BottleNumber. The original Bottles class is now free of
conditionals, but they didn’t disappear—they just moved into this new class in a slightly simpler
form. Even with the conditionals, however, the code in BottleNumber has a regular, orderly
aspect that feels pleasing, and bodes well for future refactorings.

It’s almost time to return your focus to the Bottles class, but before doing so, there are a few
broad ideas to consider.

5.3. Appreciating Immutability
To mutate is to change. State is "the particular condition of something at a specific time." A
variable is "that which varies," or, in maths, "a quantity which admits an infinite number of
values in the same expression."

In the physical world, conditions vary over time. Your coffee cup was full, but now is empty.
You’ve been exercising, and now you’re more fit. The Himalayas are rising.

It’s the same cup, you, and mountain range, but their conditions have changed. The real world is
pervaded by this idea—what exists, will change.

Human agreement about the necessity and rightness of change is reflected in the choice of the
word variable for use within computer programming languages. What purpose has a variable
other than to vary? Most object-oriented programmers write code that both expects and relies
upon object mutation. Objects are constructed, used, mutated, and then used again.

Regardless of how intuitive and natural it may seem, mutation is not an absolute requirement. It
is perfectly possible (as programmers of functional languages will happily inform you) to
construct applications from immutable objects, meaning objects that do not change. For those
unused to this idea, it can be disorienting to imagine reality as constructed by the functional
programmer. Instead of refilling your existing cup, you discard it in favor of a new one that looks
identical but is full of coffee. Rather than changing yourself to be more fit, you swap yourself for
the new, fitter, you. As the Himalayas rise, you replace your existing copy with a brand new
mountain range that’s a tiny bit taller.

If the idea of immutability is new to you, the examples in the prior paragraph may seem
positively alarming. The first concern most folks have is for performance. The consequences of

5.4. Assuming Fast Enough

Page 132

getting a whole new cup when all you want is more coffee don’t seem so bad, but replacing an
entire mountain range to handle a five-millimeter annual height change may feel excessive.

The next section will delve into those considerations, so defer performance concerns for a
moment. For now, ponder the benefits of working with objects that do not change. What virtue
might immutability provide, and what trouble might it avoid?

One of the best things about immutable objects is that they are easy to understand and reason
about. These objects never start out one way and then secretly morph into something else. You
can be confident that what you see at creation time is always what you get later.

Because they are easy to reason about, immutable objects are also easy to test. Objects that
change need tests for the affected behavior. The change might be caused by a collaborating
object, or triggered by a distant event, so tests could need additional collaborators, or actions
triggered by apparently unrelated parts of your app. Tests for immutable objects avoid this extra
setup, which makes the tests cheaper to write and easier to understand.

Another key virtue of immutable objects is that they are thread safe. Some of the most pernicious
bugs in multi-threaded systems involve the inadvertent changing of shared state by different
threads. These bugs are often related to the timing of thread execution, and so are notoriously
difficult to reproduce, as well as costly and frustrating to debug. This class of problem is entirely
avoided by immutable objects. You can’t break shared state if shared state doesn’t change.

Therefore, there are many good reasons to prefer objects that do not mutate. You are restrained
from creating them only by the habit of mutability, and the (often unquestioned) assumption
that instantiating new objects will be unacceptably more costly than reusing existing ones.

Having read this section, look back at the new BottleNumber class in Listing 5.29: Forward
Messages to Smarter Number. The question of mutability applies directly to this new class.
Imagine that you’re holding onto an instance of BottleNumber whose $this->number variable
contains the value 99. The verse progresses such that it now needs bottle number 98. Is it better
to mutate the value of $number in the current instance of BottleNumber, or should that object
be discarded in favor of new BottleNumber(98)?

If you lean towards mutating the existing BottleNumber rather than making another, it’s
possible that you are biased against creating new objects. This bias is often unexamined, and has
its roots in the assumption that if you routinely create many new objects, your application will
be too slow.

5.4. Assuming Fast Enough
The benefits of immutability are so great that, if it were free, you’d choose it every time.
Immutability’s offsetting costs are twofold. First, you must become reconciled to the idea, which
for many programmers is no small thing. Next, achieving immutability requires the creation of
more (sometimes many more) new objects.

5.4. Assuming Fast Enough

Page 133

Getting habituated to a new way of thinking need happen only once, so this cost is not a
permanent concern; drinking the immutability Kool-Aid today suffices for forever. The ongoing
costs of immutability are therefore mostly in the creation of new objects, and that’s the topic of
this section.

You may be familiar with Phil Karlton’s famous saying "There are only two hard things in
Computer Science: cache invalidation and naming things." You’ve already read a great deal
about naming things, and it’s finally time to discuss caching.

A cache, in computer science, is a local copy of something stored elsewhere. Saving a local copy
of the results of an expensive operation, or caching it, is assumed to increase the speed of your
application, and so lower costs.

The presumptions in the above statement are twofold. First, it assumes that caching will make
applications faster, and next, it assumes that caching will lower costs. These statements are
sometimes true, but not always.

When you send a message and save the result into a variable, you’ve created a simple cache. If
the value in your variable becomes obsolete, you must invalidate this cache, either by discarding
it, or by resending the message and saving the new result.

Caching is easy. However, figuring out that a cache needs to be updated can be hard. The code to
do so is often complicated and confusing. This additional code must be tested, and inevitably,
when it turns out that the tests are insufficient, debugged. The extra code needed to manage a
cache can be so difficult to write, hard to understand, and expensive to run that it offsets the
original benefits.

Notice that the costs of caching and mutation are interrelated. If the thing you cache doesn’t
mutate, your local copy is good forever. If you cache something that changes, you must write
additional code to recognize that your copy is stale, and to re-run the initial operation to update
the cache.

If you’ve ever worked on code that handles complicated cache invalidation, it will come as no
surprise that the word itself comes from the French cacher, which means to conceal or hide.
Outdated caches can be a source of opaque, expensive, and frustrating bugs. The net cost of
caching can be calculated only by comparing the benefit of increases in speed to the cost of
creating and maintaining the cache. If you require this speed increase, any cost is cheap. If you
don’t, every cost is too much.

Mutation and caching complicate code. This complication is often accepted as necessary and
justified by the belief that it will improve performance. However, the unfortunate truth is that
humans are very bad at predicting in advance whether a program will be fast enough overall,
and, if not, which parts of it will be too slow.

Complicating code in order to solve performance problems, in advance of actual data about
where those problems are, raises costs and very often pays nothing in return. These guesses are
almost certain to be wrong, and merely serve to harm readability and impede change.

5.5. Creating BottleNumbers

Page 134

Given this, the best programming strategy is to write the simplest code possible and measure its
performance once you’re done. If the whole is not acceptably fast, profile the performance, and
speed up the slowest parts. Increasing speed may require caching, but many problems can be
fixed by substituting more efficient code in specific, narrow places. Once you understand
precisely what’s wrong, it may be possible to fix it without caching at all.

Your goal is to optimize for ease of understanding while maintaining performance that’s fast
enough. Don’t sacrifice readability in advance of having solid performance data. The first
solution to any problem should avoid caching, use immutable objects, and treat object creation
as free. This results in speedy development of simple code, which leaves plenty of time to identify
and correct the real performance problems.

Now that this somewhat theoretical discussion is complete, it’s time return to the Bottles class,
and apply ideas to actual code.

5.5. Creating BottleNumbers
Even for those comfortable with object creation, the code in Bottles constructs a notable
number of BottleNumbers. Examine the methods below, and count the number of times a new
BottleNumber is created by verse.

Listing 5.30: Lots of New BottleNumbers
 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 return
 5 ucfirst($this->quantity($number)) . " " . $this->container($number) .
 6 " of milk on the wall, " .
 7 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
 8 $this->action($number) . ", " .
 9 $this->quantity($this->successor($number)) . " " .
10 $this->container($this->successor($number)) . " of milk on the wall.\n";
11 }
12
13 public function quantity(int $number): string {
14 return (new BottleNumber($number))->quantity();
15 }
16
17 public function container(int $number): string {
18 return (new BottleNumber($number))->container();
19 }
20
21 public function action(int $number): string {
22 return (new BottleNumber($number))->action();
23 }
24
25 public function successor(int $number): int {
26 return (new BottleNumber($number))->successor();
27 }
28 }

In the code above, a new instance of BottleNumber is created each time quantity, container,
action, or successor are invoked. The verse method sends those messages a total of nine

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-380/lib/Bottles.php#L5-L42

5.5. Creating BottleNumbers

Page 135

times. Therefore, over the course of the song, 900 new instances of BottleNumber are created
(nine each in 100 verses).

This may feel excessive.

This plethora of object creation is the result of the prior refactoring. The recipe replaces the body
of each original method with code that forwards the message to a new instance of the newly-
extracted class.

Within Bottles, verse is the only method that sends the quantity, container, action, or
successor messages, so the presence of these forwarding methods may seem like overkill. In
this simple example, they probably are. In more complicated problems, however, it would not be
surprising to perform an Extract Class refactoring and find that the resulting forwarding
messages were invoked many times, from many different methods within the original class.
These forwarding methods exist to provide a single place for the original class to catch these
messages when sent to itself, and funnel them along to the new class.

The previous refactoring recipe makes no attempt to minimize the number of new objects, and
creates a set of forwarding methods that unabashedly create new instances of the extracted
class. The upshot is 900 new BottleNumbers.

This code works, and if you find it distressing, it’s likely because it feels wasteful. There are
alternatives. If unconstrained by the recipe, there are a number of ways to avoid such profligate
object creation, and it’s instructive to consider them.

For example, the first three phrases of the first verse of the song send quantity and container
twice, and action once. This creates five instances of BottleNumber for the $number 99. If the
first instance were to be cached, it could be re-used four times in these three phrases.

The fourth phrase of verse 99 sends successor twice, which creates two additional instances of
BottleNumber 99. The previously cached bottle number could be used here also. Therefore,
BottleNumber 99 could be created once, and then reused six times.

The fourth phrase of verse 99 also sends quantity and container. This creates two instances
of BottleNumber on the successor, which is 98. Caching the first instance would save another
object creation within this verse. Additionally, the cached copy could be re-used in the following
verse, saving seven more object creations for a total of eight altogether. Over the course of the
song, caching could reduce the number of new BottleNumber instances from 900 to 100.

For those who feel the need to be even more parsimonious, it’s possible to create a single
instance of BottleNumber and reuse it 900 times. To accomplish this, one would create a
BottleNumber for the $number 99, and then, when the need for bottle number 98 arose, change
the value of $number from 99 to 98 in that one existing object. And just like that, you’ve added
caching plus mutation.

So you can reduce the number of new BottleNumbers by caching existing ones, and decrease
this number further if you’re willing to mutate them. Doing either of these things may lower

5.5. Creating BottleNumbers

Page 136

some costs, but will certainly raise others. These things are not free.

As a thought exercise, take a minute before reading on and imagine altering the existing code to
use a single instance of BottleNumber. If you find that exercise easy, try another, this time
pretending that quantity, container, action, and successor are sent from multiple methods
within Bottles. Pause a moment if you care to, and go write the code. You’ll find that the
changes needed to do this add complexity. This complexity may cost more than the benefit
gained by faster performance.

Having done that experiment, return to the problem at hand. In this example, the forwarding
methods are invoked from only one method of Bottles. This means that it’s possible to reduce
object creation by adding a simple, automatically-invalidating, low-cost cache. The following
example shows a BottleNumber being cached on line 4:

Listing 5.31: Caching a BottleNumber
 1 class Bottles {
 2 // ...
 3
 4 public function verse(int $number): string {
 5 $bottleNumber = new BottleNumber($number);
 6
 7 return
 8 ucfirst($this->quantity($number)) . " " . $this->container($number) .
 9 " of milk on the wall, " .
10 $this->quantity($number) . " " . $this->container($number) . " of milk.\n" .
11 $this->action($number) . ", " .
12 $this->quantity($this->successor($number)) . " " .
13 $this->container($this->successor($number)) . " of milk on the wall.\n";
14 }
15 // ...
16 }

Line 4 above creates a new instance of BottleNumber and caches it in a temporary variable
(this is the Temporary Variable code smell) within the verse method. This cache reduces object
creation without adding much additional complexity, so here it’s justified because the benefits
outweigh the costs.

Now that this cached object exists, you can gradually alter the verse template to send messages
to the new object rather than to $this. The next example begins the transition with the simplest
change possible. Line 8 below asks this new object for its action:

Listing 5.32: Asking the Cached Object for Its Action
 1 class Bottles {
 2 // ...
 3
 4 public function verse(int $number): string {
 5 $bottleNumber = new BottleNumber($number);
 6
 7 // ...
 8 $bottleNumber->action() . ", " .
 9 // ...
10 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-390/lib/Bottles.php#L5-L44
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-400/lib/Bottles.php#L5-L27

5.6. Recognizing Liskov Violations

Page 137

In the code above, $this->action($number) has been replaced by $bottleNumber-
>action(). This sends the action message directly to the new BottleNumber, entirely
bypassing the local implementation.

A similar change can be made in the first and second phrases of the verse template, as shown
below:

Listing 5.33: Using the Cached Object in Phrases 1 and 2
 1 }
 2
 3 public function verse(int $number): string {
 4 $bottleNumber = new BottleNumber($number);
 5
 6 return
 7 ucfirst($bottleNumber->quantity()) . " " . $bottleNumber->container() .
 8 " of milk on the wall, " .
 9 $bottleNumber->quantity() . " " . $bottleNumber->container() . " of milk.\n" .
10 $bottleNumber->action() . ", " .
11 // ...
12 }

In lines 5-8 of the code above, quantity and container are now sent directly to
$bottleNumber. This, again, bypasses the local implementations in favor of sending messages to
the cached object.

Now the first three phrases of the verse template send messages to a BottleNumber rather than
to $this. Only phrase four remains to be updated.

5.6. Recognizing Liskov Violations
Phrases 1 through 3 of the verse template refer to the same bottle number, and so can share the
currently-cached BottleNumber instance. Phrase 4, however, uses a different bottle number.
Here’s a reminder of the code:

Listing 5.34: Current Phrase 4
1 public function verse(int $number): string {
2 $bottleNumber = new BottleNumber($number);
3
4 return
5 // ...
6 $this->quantity($this->successor($number)) . " " .
7 $this->container($this->successor($number)) . " of milk on the wall.\n";
8 }

The plan is to change phrase 4 to send messages to instances of BottleNumber rather than to
$this. Previously, when making a similar change to phrase 1 and 2,

$this->quantity($number)

was replaced with

$bottleNumber->quantity()

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-420/lib/Bottles.php#L15-L27
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-420/lib/Bottles.php#L17-L27

5.6. Recognizing Liskov Violations

Page 138

On line 6 above, phrase 4 also invokes quantity, but it passes a different argument than does
phrase 1:

$this->quantity($this->successor($number))

The quantity method above is passed $this->successor($number) because phrase 4 is
about the next number. For example, in a verse where phrase 1 is about number 99, then phrase
4 is about number 98.

The goal here is to send the quantity message to an object that can answer correctly, and the
problem is that you do not yet have access to such an object.

BottleNumbers implement successor, and it feels as if successor should return the object
you need. Your object-oriented intuition is bang on[16] if you expect the successor of a
BottleNumber to be another BottleNumber. If this were true, you could replace:

$this->quantity($this->successor($number))

with:

$bottleNumber->successor()->quantity()

Unfortunately, as is, this code doesn’t work. If you make the above change and run the tests,
you’ll see:

Error: Call to a member function quantity() on int

The problem is that successor still returns a number, when logically it should now return the
succeeding BottleNumber. BottleNumbers know quantity, but integers do not.

Back when successor was first created, it was correct for it to return a number. This
abstraction was identified by the Flocking Rules, which called for copying code from the old
verse switch statement into the new successor method. The switch statement originally
returned numbers, thus the successor method did the same. At that point, successor was a
number.

However, the successor method has moved to a new class, and the concept once represented
by a number is now represented by a BottleNumber. The type of the object has changed, but the
successor method still returns the old type. You have every right to expect any method named
successor to return an object that implements the same API as the receiver, but alas, this
successor method does not.

This inconsistency is another violation of the generalized Liskov Substitution Principle. A
method named successor implicitly promises that the thing it returns will behave like the
object to which you sent the message. But this successor method lies. It breaks its promise,
which forces the sender to know that the return is untrustworthy and to take steps to handle the
violation.

5.6. Recognizing Liskov Violations

Page 139

As annoying as this is, you are in the middle of altering the verse template to send messages to
objects. This current refactoring is almost complete, and it is often better to finish horizontal
refactorings before undertaking vertical tangents. You could veer from the path and fix the
Liskov violation, but in the spirit of completing the current thought before undertaking a new
task, stay the course. You’ve already declared a temporary variable to hold bottle number 99. The
current problem can be solved by declaring another variable to hold bottle number 98 and
writing some shameless code. On line 3 below, the following example bravely does just that:

Listing 5.35: Caching the Successor
 1 public function verse(int $number): string {
 2 $bottleNumber = new BottleNumber($number);
 3 $nextBottleNumber = new BottleNumber($bottleNumber->successor());
 4
 5 return
 6 ucfirst($bottleNumber->quantity()) . " " . $bottleNumber->container() .
 7 " of milk on the wall, " .
 8 $bottleNumber->quantity() . " " . $bottleNumber->container() . " of milk.\n" .
 9 $bottleNumber->action() . ", " .
10 $nextBottleNumber->quantity() . " " . $nextBottleNumber->container() .
11 " of milk on the wall.\n";
12 }

Line 3 above creates a new BottleNumber on the successor of the existing BottleNumber.
Ultimately, you’d like to improve this line of code, but at present it suffices to move the current
refactoring forward. Now that $nextBottleNumber exists, line 10 can ask it for its quantity
and container.

After that change, the verse method contains two distinct parts. Lines 6-11 above define a
template which queries instances of BottleNumber for details. Lines 2 and 3 create new
instances of BottleNumber. Line 2 seems reasonable, but line 3 is awkward because the Liskov
violation forces you to invoke successor and then convert its return into a BottleNumber
yourself.

This completes the caching of BottleNumbers in the verse method, but there’s one final change
to make. Now that verse talks directly to objects cached in temporary variables, the forwarding
methods are no longer needed. Deleting them reduces the code to the following:

Listing 5.36: Obsession Cured
 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }
 5
 6 public function verses(int $upper, int $lower): string {
 7 return implode(
 8 "\n",
 9 array_map([$this, 'verse'], range($upper, $lower))
10);
11 }
12
13 public function verse(int $number): string {
14 $bottleNumber = new BottleNumber($number);
15 $nextBottleNumber = new BottleNumber($bottleNumber->successor());
16

https://en.wikipedia.org/wiki/Stay_the_course
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-440/lib/Bottles.php#L17-L28
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-450/lib/Bottles.php#L5-L77

5.7. Summary

Page 140

17 return
18 ucfirst($bottleNumber->quantity()) . " " . $bottleNumber->container() .
19 " of milk on the wall, " .
20 $bottleNumber->quantity() . " " . $bottleNumber->container() . " of milk.\n" .
21 $bottleNumber->action() . ", " .
22 $nextBottleNumber->quantity() . " " . $nextBottleNumber->container() .
23 " of milk on the wall.\n";
24 }
25 }
26
27 class BottleNumber {
28 protected $number;
29
30 public function __construct(int $number) {
31 $this->number = $number;
32 }
33
34 public function quantity(): string {
35 if ($this->number === 0) {
36 return "no more";
37 } else {
38 return (string)$this->number;
39 }
40 }
41
42 public function container(): string {
43 if ($this->number === 1) {
44 return "bottle";
45 } else {
46 return "bottles";
47 }
48 }
49
50 public function action(): string {
51 if ($this->number === 0) {
52 return "Go to the store and buy some more";
53 } else {
54 return "Take " . $this->pronoun() . " down and pass it around";
55 }
56 }
57
58 public function pronoun(): string {
59 if ($this->number === 1) {
60 return "it";
61 } else {
62 return "one";
63 }
64 }
65
66 public function successor(): int {
67 if ($this->number === 0) {
68 return 99;
69 } else {
70 return $this->number - 1;
71 }
72 }
73 }

This completes the extraction of the BottleNumber class, resolves the Primitive Obsession code
smell, and heralds the end of Chapter 5.

5.7. Summary

5.7. Summary

Page 141

This chapter continued the quest to make Bottles open to the six-pack requirement. It
recognized that many methods in Bottles obsessed on $number, and undertook the Extract
Class refactoring to cure this obsession. The refactoring created a new class named
BottleNumber.

During the course of the refactoring, conditionals were examined from an experienced OO
practitioners' point of view. This chapter also explored the rewards of modeling abstractions, the
trade-offs of caching, the advantages of immutability, and the benefits of deferring performance
tuning.

Most programmers are happier with the current code than they were with Shameless Green, but
this version is far from perfect. The total ABC score, for example, has gone up again. From the
metrics point of view, after turning one conditional into many back in Chapter 4, you’ve now
compounded your sins by introducing a new class which adds no new behavior but increases
the length of the code.

Also, there are no unit tests for BottleNumber. It relies entirely on Bottle's tests.

The code still exudes many smells (duplication, conditionals, and temporary field, to name a
few). And, finally, it commits a Liskov violation in the successor method.

The refactorings in this and the prior chapter were undertaken in hopes of making the code
open to the six-pack requirement, but this has not yet succeeded. You’ve been acting in faith that
removing code smells would eventually lead to openness. It’s possible that your faith is being
tested.

Despite the imperfections listed above, there are ways in which the code is better. There are now
two classes, but each has focused responsibilities. While it’s true that the whole is bigger, each
part is easy to understand and reason about.

The code is consistent and regular, and embodies an extremely stable landing point that
splendidly enables the next refactoring.

With that, on to Chapter 6.

6.1. Consolidating Data Clumps

Page 142

6. Achieving Openness
Despite much refactoring, the code is still not open to the six-pack requirement. Once again, you
must decide whether to continue forward with the existing code, or to retreat and strike out in a
different direction.

Consider the code’s present state. BottleNumber now contains methods that isolate the things
that need to change. If you were willing to abandon the quest for openness and directly alter the
code, you could fulfill the six-pack requirement by simply adding another branch to the
conditionals in the quantity and container methods. When the value of number is 6, the
quantity could be changed to return "1," and container changed to return "six-pack."

This increasing isolation of the concepts that need to vary is an indication that the code is
moving in the right direction. In optimism, then, this chapter continues forward. It removes a
Data Clump, deals with the conditionals in BottleNumber, introduces a Factory, fixes a Liskov
violation, and ultimately, fulfills the six-pack requirement.

6.1. Consolidating Data Clumps
The BottleNumber class contains conditionals, and removing them would make the code easier
to understand and cheaper to maintain. Before focusing on that problem, however, there’s a
simpler code smell that can be addressed.

The verse method contains two things that always appear together. Have a look at the code
(repeated below) and see if you can identify them:

Listing 6.1: Quantity and Container Form a Data Clump
 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 $bottleNumber = new BottleNumber($number);
 5 $nextBottleNumber = new BottleNumber($bottleNumber->successor());
 6
 7 return
 8 ucfirst($bottleNumber->quantity()) . " " . $bottleNumber->container() .
 9 " of milk on the wall, " .
10 $bottleNumber->quantity() . " " . $bottleNumber->container() . " of milk.\n" .
11 $bottleNumber->action() . ", " .
12 $nextBottleNumber->quantity() . " " . $nextBottleNumber->container() .
13 " of milk on the wall.\n";
14 }
15 }

Above, quantity and container appear together in three different places (lines 8, 10, and 12).
The duplication of this pairing gives off a whiff of the Data Clump code smell. As the name
implies, Data Clump is officially about data, and is defined as the situation in which several
(three or more) data fields routinely occur together.

Having a clump of data usually means you are missing a concept. When a clump gets sent as a
set of parameters, the method that receives the clump can easily become polluted with clump

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-450/lib/Bottles.php#L5-L29

6.1. Consolidating Data Clumps

Page 143

management logic. If more than one method takes the same clump as input, some or all of this
management logic will inevitably get duplicated in several places. Not only is it a pain to
maintain this duplication, but over time the logic might accidentally diverge, introducing errors
and confusing everyone involved.

In the present case, it’s a slight stretch to call the quantity and container pairing above a Data
Clump, but the value of removing clumps is so great that it makes sense to view this code through
that lens. If these two things always appear together, it’s a signal that this pairing represents a
deeper concept, and that concept should be named.

Full-grown Data Clumps are usually removed by extracting a class, but in this small example it
makes sense to simply create a new method. As always, the method should be given a name that
reflects its purpose.

In this case, quantity and container occur together so often that one could argue that they’re
the string representation of a BottleNumber. You could implement a __toString method that
returns that combination, but __toString is a bit magical and at this point it’s best to be
explicit. Thus, the example below declares a public toString method.

Listing 6.2: BottleNumber Provides a String Representation
1 class BottleNumber {
2 // ...
3 public function toString(): string {
4 return $this->quantity() . " " . $this->container();
5 }
6 // ...

Having done the above, you can now replace the quantity/container clump with a simple
toString message send. For example, the second phrase of the verse template currently says:

$nextBottleNumber->quantity() . " " . $nextBottleNumber->container() .

Now that the custom toString exists, you can convert the object to a string:

$bottleNumber->toString()

You can make this change anywhere quantity and container are used together. Here’s the
entire verse method, with the clumps replaced by an explicit call to toString on
$bottleNumber:

Listing 6.3: Verse With Data Clumps Removed
 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 $bottleNumber = new BottleNumber($number);
 5 $nextBottleNumber = new BottleNumber($bottleNumber->successor());
 6
 7 return
 8 ucfirst($bottleNumber->toString()) .
 9 " of milk on the wall, " .
10 $bottleNumber->toString() . " of milk.\n" .
11 $bottleNumber->action() . ", " .

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-10/lib/Bottles.php#L31-L82
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-40/lib/Bottles.php#L5-L29

6.1. Consolidating Data Clumps

Page 144

12 $nextBottleNumber->toString() .
13 " of milk on the wall.\n";
14 }
15 }

Removing the clump shortens the lines so much that the code can be reformatted to more
accurately reflect the song. The four phrases of a verse can be seen more clearly now, as shown
on lines 8-11 below:

Listing 6.4: Verse Method Template in Four Phrases
 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 $bottleNumber = new BottleNumber($number);
 5 $nextBottleNumber = new BottleNumber($bottleNumber->successor());
 6
 7 return
 8 ucfirst($bottleNumber->toString()) . " of milk on the wall, " .
 9 $bottleNumber->toString() . " of milk.\n" .
10 $bottleNumber->action() . ", " .
11 $nextBottleNumber->toString() . " of milk on the wall.\n";
12 }
13 }

Now that the toString method works it can easily be converted to __toString. To do so, start
by duplicating the method and naming the new copy __toString:

 1 class BottleNumber {
 2 // ...
 3 public function toString(): string {
 4 return $this->quantity() . " " . $this->container();
 5 }
 6
 7 public function __toString(): string {
 8 return $this->quantity() . " " . $this->container();
 9 }
10 // ...
11 }

Return to Bottles and replace the toString calls with explicit casts to string (lines 8, 9, and
11 below). This cast will invoke the new __toString method.

 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 $bottleNumber = new BottleNumber($number);
 5 $nextBottleNumber = new BottleNumber($bottleNumber->successor());
 6
 7 return
 8 ucfirst((string)$bottleNumber) . " of milk on the wall, " .
 9 (string)$bottleNumber . " of milk.\n" .
10 $bottleNumber->action() . ", " .
11 (string)$nextBottleNumber . " of milk on the wall.\n";
12 }
13 }

Now you can simplify verse by taking advantage string interpolation’s implicit cast. This next
example interpolates $bottleNumber into each phrase, deleting the explicit casts. It then

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-80/lib/Bottles.php#L5-L27

6.2. Making Sense of Conditionals

Page 145

concatenates the resulting phrases into a verse, and passes that verse to ucfirst.

 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 $bottleNumber = new BottleNumber($number);
 5 $nextBottleNumber = new BottleNumber($bottleNumber->successor());
 6
 7 return
 8 ucfirst("{$bottleNumber} of milk on the wall, ") .
 9 "{$bottleNumber} of milk.\n" .
10 "{$bottleNumber->action()}, " .
11 "{$nextBottleNumber} of milk on the wall.\n";
12 }
13 }

The original toString method is now obsolete and can be deleted.

The current __toString maximizes the effect of removing the Data Clump in verse, and so this
implementation provides a great illustration of the value of clump removal. As time passes, if
you find you need a more general implementation of __toString, just give this current method
a more specific name, and explicitly send the new message from within the verse template
string.

The verse method is getting simpler, but it still has more than one responsibility. This problem
is reflected by the very structure of the code—the above method contains a blank line.
Programmers add blank lines to signify changes of topic. The presence of multiple topics
suggests the existence of multiple responsibilities, which makes code harder to understand when
reading, and easier to harm when changing.

Despite the fact that the verse method does more than one thing, it is improved. Its template
now contains four lines, which echoes the four phrases in every verse. Each template line is
short enough to display without wrapping on most reading devices. This method isn’t perfect,
but removing the data clump improves its readability and sheds light on its intentions.

6.2. Making Sense of Conditionals
Now that Bottles's quantity/container clump is resolved, it’s time to identify the next code
smell.

Switch your attention to the BottleNumber class. It’s full of conditionals, all of which have the
same shape. Here’s that code:

Listing 6.5: BottleNumber
 1 class BottleNumber {
 2 protected $number;
 3
 4 public function __construct(int $number) {
 5 $this->number = $number;
 6 }
 7
 8 public function __toString(): string {
 9 return $this->quantity() . " " . $this->container();

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-87/lib/Bottles.php#L29-L79

6.2. Making Sense of Conditionals

Page 146

10 }
11
12 public function quantity(): string {
13 if ($this->number === 0) {
14 return "no more";
15 } else {
16 return (string)$this->number;
17 }
18 }
19
20 public function container(): string {
21 if ($this->number === 1) {
22 return "bottle";
23 } else {
24 return "bottles";
25 }
26 }
27
28 public function action(): string {
29 if ($this->number === 0) {
30 return "Go to the store and buy some more";
31 } else {
32 return "Take " . $this->pronoun() . " down and pass it around";
33 }
34 }
35
36 public function pronoun(): string {
37 if ($this->number === 1) {
38 return "it";
39 } else {
40 return "one";
41 }
42 }
43
44 public function successor(): int {
45 if ($this->number === 0) {
46 return 99;
47 } else {
48 return $this->number - 1;
49 }
50 }
51 }

The conditionals above are much like the ones vociferously objected to in the Insisting Upon
Messages section of Chapter 5. The difference is that they now depend on the number property,
whereas they previously depended on a number argument.

A brief review of that transition may be helpful. Here’s a sample of how the methods looked in
Chapter 5, when they depended on the number argument:

Listing 6.6: Original Container Method Takes Number Argument
 1 class Bottles {
 2 // ...
 3 public function container(int $number): string {
 4 if ($number === 1) {
 5 return "bottle";
 6 } else {
 7 return "bottles";
 8 }
 9 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c5-extract-class-10/lib/Bottles.php#L5-L66

6.2. Making Sense of Conditionals

Page 147

10 // ...
11 }

Chapter 5 argued that instead of injecting an object and conditionally supplying it with behavior,
you should instead arrange code such that you can merely forward the message to the injected
object. The code below shows, hypothetically, how that might look:

Listing 6.7: Wishful Container Method
1 class Bottles
2 //...
3 public function container(object $smarterNumber): string {
4 $smarterNumber->container();
5 }
6 //...
7 }

And indeed, Chapter 5 introduced a method very much like the one shown above. In that
chapter, a Bottles container(number) forwarding method appeared early in the refactoring
and lived a brief (but useful) life. Ultimately, the code was changed to cache BottleNumbers
inside the Bottles verse method, rendering all of the forwarding methods obsolete, and
leading to their deletion.

So, Chapter 5 held forth against conditionals, recognized the dependency on a repeatedly-passed
argument, identified the Primitive Obsession code smell, and extracted the BottleNumber class
to cure the obsession.

Extracting BottleNumber certainly removed the conditionals from Bottles, but they didn’t
disappear: they just moved to the newly extracted class. While slightly improved in that the
methods now use the number property rather than than taking a number argument, they all
(excepting __toString) still contain conditionals. These conditionals characterize the class, and
make Switch Statement the most identifiable code smell.

Fowler offers several curative refactoring recipes. The two main contenders are Replace
Conditional with State/Strategy and Replace Conditional with Polymorphism.

The Replace Conditional with State/Strategy recipe removes conditionals by dispersing their
branches into new, smaller objects, one of which is later selected and plugged back in at runtime.
This recipe results in a code arrangement known as composition.

The Replace Conditional with Polymorphism recipe removes conditionals by creating one class to
hold the defaults of the conditionals (the false branches), and adding subclasses for each
specialization (the true branches of the various conditions). It then chooses one of these new
objects to plug back in at runtime. This recipe solves the conditional problem using inheritance.

You can be forgiven if you find the above descriptions very similar—they are. Both recipes result
in new objects that hold logic harvested from the branches of the conditionals. The main
difference is that the Polymorphism recipe uses inheritance, and the State/Strategy recipe does
not.

6.3.1. Dismembering Conditionals

Page 148

Replace Conditional with State/Strategy produces interesting results, and you are encouraged to
experiment with that recipe on your own. However, Replace Conditional with Polymorphism
leads to a code arrangement that’s felicitous for the six-pack problem, and so will be followed in
the next section.

The previous assertion that one recipe leads to better results than another may have piqued your
curiosity. Had you been working this problem alone, how would you have known which to
choose?

Skilled programmers are good at picking what best to do next. For many problems, they can
immediately identify the code smell that will be most fruitful to resolve. They have excellent
judgement. Their decision-making process looks intuitive and effortless, but also inimitable,
which makes their actions simultaneously inspiring and disheartening. It’s as if they have a
secret understanding of the underlying patterns of code, one not granted to mere mortals.

Despite appearances, these programmers weren’t born with magical talents. Their powerful
intuition isn’t innate—it’s the result of a lifetime of coding experiments. Their present-day
actions are informed by a diverse body of knowledge gained piecemeal, over time. Their deep
familiarity with many varieties of code entanglements allows them to unconsciously map
appropriate solutions onto common problems, often without the necessity of first writing code.
They know what’s right before they do it.

Or at least they do, sometimes. They also know that they don’t know everything. This belief in
their own fallibility lends them caution. Skilled programmers do what’s right when they intuit
the truth, but otherwise they engage in careful, precise, reproducible, and reversible coding
experiments. You are encouraged to do the same.

The best way to figure out what will happen if you follow competing recipes is to try it. If battling
this problem alone, tentatively identify Switch Statement as the code smell, look up the curative
refactorings, and then, speculatively, try them all. Evaluate the results. Choose one and proceed,
or revert all and try again.

Practice builds intuition. Do it enough, and you’ll seem magical too.

6.3. Replacing Conditionals with Polymorphism
It’s now time for the object-oriented miracle that turns condition-laden classes into sets of
independent objects.

This miracle relies on "polymorphism," a word which combines "poly" (many) with "morphs"
(forms). In OO, polymorphism refers to the idea of having many different kinds of objects that
respond to the same message. Senders of the message needn’t care with which of the possible
receivers they are communicating. Polymorphism allows senders to depend on the message
while remaining ignorant of the type, or class, of the receiver. Senders don’t care what receivers
are; instead, they depend on what receivers do.

6.3.1. Dismembering Conditionals

6.3.1. Dismembering Conditionals

Page 149

The current code is not polymorphic. Not only does Bottles's verse method explicitly
reference the concrete BottleNumber class, but BottleNumber itself contains many methods
comprised of conditionals that return varying results. If this code did rely on polymorphism, the
logic in those conditionals would be dispersed across several different kinds of objects, and
verse would be ignorant of BottleNumber's existence.

Polymorphism, by definition, involves more than one kind of object, so changing from a
procedural to a polymorphic code arrangement will increase the overall number of classes. This,
in turn, will force you to add new code that is aware of the existence of these new classes, and
that understands which class works for what condition. Thus, as conditionals disappear from
BottleNumber, new dependencies will arise. These new dependencies can make a mess of code,
and so are managed carefully in the examples that follow.

With that, onward with removing conditionals. Recall that BottleNumber contains the following
methods:

Listing 6.8: BottleNumber Concepts
1 class BottleNumber {
2 public function __toString(): string {
3 public function quantity(): string {
4 public function container(): string {
5 public function action(): string {
6 public function pronoun(): string {
7 public function successor(): int {
8 }

These methods serve as a list of bottle-ish concepts. The method implementations (with the
exception of __toString) share the following shape:

Listing 6.9: BottleNumber Conditional Shape
 1 class BottleNumber {
 2 // ...
 3 public function quantity(): string {
 4 if ($this->number === 0) {
 5 return "no more";
 6 } else {
 7 return (string)$this->number;
 8 }
 9 }
10 // ...
11 }

Methods like the above were created by following the Flocking Rules, and then simplified during
the Extract Class refactoring. This conditional represents an extremely stable landing point. Once
you get code into this shape, it’s time to celebrate—the problem is nearly solved.

BottleNumber represents a smart, bottle-ish kind of number. Its logic is correct in most cases
for most numbers, but not yet in every case for all. A few specific numbers are not yet smart
enough. The consistency of the code makes it easy to see just which numbers are lacking. The
code extract below contains a very broad hint:

Listing 6.10: Some Numbers Are Special

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-87/lib/Bottles.php#L29-L79
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-87/lib/Bottles.php#L29-L79
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-87/lib/Bottles.php#L29-L79

6.3.1. Dismembering Conditionals

Page 150

 1 class BottleNumber {
 2 // ...
 3 public function quantity(): string {
 4 if ($this->number === 0) {
 5 // ...
 6 public function container(): string {
 7 if ($this->number === 1) {
 8 // ...
 9 public function action(): string {
10 if ($this->number === 0) {
11 // ...
12 public function pronoun(): string {
13 if ($this->number === 1) {
14 // ...
15 public function successor(): int {
16 if ($this->number === 0) {
17 // ...
18 }

The above makes it clear that 0 and 1 are special, and need to be smarter. The fact that this is so
visible is a tribute to the benefits of checking for equality.

This code is reminiscent of primitive obsession. Here, however, the fixation is on a specific
integer (0 or 1) rather than on integers as a whole. Obsessions are usually cured by extracting a
class, and if you suspect that class extraction is called for here, you are correct.

Each conditional supplies specific behavior in its true branch and generalized behavior in its
false. If you were to go into the methods and delete everything but the bodies of the false
branches, what remained in BottleNumber would work for all numbers except for 0 and 1.
Doing so, of course, would break the tests, but at least it would leave BottleNumber itself free of
conditionals.

Removing the conditionals without breaking the tests requires a process that carefully and
systematically moves the code from each true branch into a new object, rather than willy-nilly
deleting it. The specific logic for 0 needs to be isolated in a class of its own, as does the logic for 1.
Also, as these new classes come into existence, some additional code will have to be written to
choose the correct class based on the value of number.

This transition is safely accomplished by the Replace Conditional With Polymorphism recipe. To
begin, choose one of the values being explicitly tested for in one of the conditionals. All things
being equal, it’s reasonable to start with 0.

Next, decide on a name for the bottle number class that will stand in for a smarter 0. For reasons
that will eventually become clear, it’s expedient to name this new class BottleNumber0.

Having made these decisions, the next step is to create BottleNumber0 as an empty subclass of
BottleNumber. Here’s that code:

Listing 6.11: Empty BottleNumber0 Class
1 class BottleNumber0 extends BottleNumber {
2 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-90/lib/Bottles.php#L81-L82

6.3.1. Dismembering Conditionals

Page 151

As previously stated, this recipe uses inheritance. Modern object-oriented programming is biased
towards preferring composition over inheritance. However, this bias shouldn’t be taken to mean
that the use of inheritance is banned. The current recipe calls for it, and for the problem at hand,
inheritance supplies a straightforward, cost-effective solution.

Next, copy (not cut!) one of the methods that obsesses on 0 from BottleNumber to
BottleNumber0. The quantity method is chosen here:

Listing 6.12: BottleNumber0 Duplicates Quantity Method
 1 class BottleNumber {
 2 // ...
 3 public function quantity(): string {
 4 if ($this->number === 0) {
 5 return "no more";
 6 } else {
 7 return (string)$this->number;
 8 }
 9 }
10 // ...
11 }
12
13 class BottleNumber0 extends BottleNumber {
14 public function quantity(): string {
15 if ($this->number === 0) {
16 return "no more";
17 } else {
18 return (string)$this->number;
19 }
20 }
21 }

Continuing, remove the part of BottleNumber0's quantity method that isn’t about 0. This
means you’ll need to delete everything but the body of the true branch, as shown here:

Listing 6.13: BottleNumber0 Returns Correct Result
1 class BottleNumber0 extends BottleNumber {
2 public function quantity(): string {
3 return "no more";
4 }
5 }

BottleNumber0 plays the bottle number role just as accurately as does BottleNumber.
Unfortunately, despite the fact that there are now two equally valid players of this role, the
current verse method is willing to use only one of them. It is tightly coupled to BottleNumber,
which it explicitly references twice, as shown below:

Listing 6.14: Verse Method Knows BottleNumber Class Name
1 class Bottles {
2 // ...
3 public function verse(int $number): string {
4 $bottleNumber = new BottleNumber($number);
5 $nextBottleNumber = new BottleNumber($bottleNumber->successor());
6 // ...
7 }
8 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-100/lib/Bottles.php#L29-L89
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-110/lib/Bottles.php#L81-L85
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-110/lib/Bottles.php#L5-L27

6.3.2. Manufacturing Objects

Page 152

Lines 4 and 5 above both create instances of BottleNumber. Now that you’re breaking
conditionals apart, in some cases you now actually need an instance of BottleNumber0.

One way to ensure the right kind of bottle number is to alter the code to select the class based on
the value of number, as does this next example:

$bottleNumber =
 ($number === 0 ? new BottleNumber0($number) : new BottleNumber($number));

$succ = $bottleNumber->successor();
$nextBottleNumber =
 ($succ === 0 ? new BottleNumber0($succ) : new BottleNumber($succ));

This works, but it’s certainly not optimal. It introduces a new, duplicated conditional into an
exercise whose entire point is to remove them. This change would be counterproductive.
Instead, now that more than one class plays the role of bottle number, you need shared logic to
choose the correct one.

6.3.2. Manufacturing Objects
When several classes play a common role, some code, somewhere, must know how to choose the
right role-playing class for any specific contingency. This choosing very often involves a
conditional, which should exist in one and only one place. Code like this is said to "manufacture"
an instance of the right kind of object, and so is commonly referred to as a factory. Chapter 7
takes on factories in greater detail, but for now think of a factory as a method whose job is to
return the right role-playing object.

When a factory exists for a role, the factory has sole responsibility for creating objects to play
that role. The factory’s purpose is to isolate the names of the concrete classes, and to hide the
logic needed to choose the correct one. After creating a factory, you may not refer to the names
of these classes, or duplicate this choosing logic, in other parts of your application.

Now that BottleNumber0 exists, you need a bottle number factory. The first step is to do a small
refactoring to isolate the creation of bottle numbers in a single method of Bottles.

Here’s the new method:

Listing 6.15: Simple Bottle Number Factory
1 class Bottles {
2 // ...
3 public function bottleNumberFor(int $number): BottleNumber {
4 return new BottleNumber($number);
5 }
6 }

The bottleNumberFor method inserts a level of indirection between the desire for a
BottleNumber and its creation. It introduces a seam into the code, which makes it possible to
change how the factory works without fear of breaking its invokers. It is the factory’s
responsibility to manufacture the right object, and the responsibility of all other code to query
the factory for bottle numbers.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-120/lib/Bottles.php#L5-L31

6.3.2. Manufacturing Objects

Page 153

Once bottleNumberFor exists, the verse method can be changed to invoke it, as shown here:

Listing 6.16: Verse Method Knows About the Factory
1 class Bottles {
2 // ...
3 public function verse(int $number): string {
4 $bottleNumber = $this->bottleNumberFor($number);
5 $nextBottleNumber = $this->bottleNumberFor($bottleNumber->successor());
6 // ...
7 }
8 // ...
9 }

The bottleNumberFor method has assumed responsibility for manufacturing bottle numbers.
So far this has been a straightforward refactoring, but now that the new method is in place, you
can extend its behavior.

The following example changes the factory to take the value of number into account when
choosing which kind of bottle number to return:

Listing 6.17: Factory Method
 1 class Bottles {
 2 // ...
 3 public function bottleNumberFor(int $number): BottleNumber {
 4 if ($number === 0) {
 5 return new BottleNumber0($number);
 6 } else {
 7 return new BottleNumber($number);
 8 }
 9 }
10 }

The above code works, but it’s not perfect. The problem is that the branches of the conditional
combine things that differ (BottleNumber0 and BottleNumber) with things that remain the
same (return new …($number)). This conflation forces the reader to study the code to discern
the difference.

The following alternative takes a different tack:

Listing 6.18: If Statements Return Objects
 1 class Bottles {
 2 // ...
 3 public function bottleNumberFor(int $number): BottleNumber {
 4 if ($number === 0) {
 5 $className = BottleNumber0::class;
 6 } else {
 7 $className = BottleNumber::class;
 8 }
 9 return new $className($number);
10 }
11 }

The nice thing about this version is that it isolates the things that vary, which highlights the
difference between the conditions.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-140/lib/Bottles.php#L5-L31
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-150/lib/Bottles.php#L5-L35
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-170/lib/Bottles.php#L5-L36

6.3.2. Manufacturing Objects

Page 154

Now that verse is invoking the factory to get the appropriate bottle number, you can remove
everything but the default (false branch) from BottleNumber's quantity method.

Here’s the resulting code:

Listing 6.19: BottleNumber Quantity Method Reduced to Default
1 class BottleNumber {
2 // ...
3 public function quantity(): string {
4 return (string)$this->number;
5 }
6 // ...
7 }

At this point, the tests should still pass. The fact that they do proves that the factory is
manufacturing the correct bottle number for every situation.

To briefly review, BottleNumber's quantity method initially held a conditional that checked to
see if number was equal to 0. This conditional supplied general behavior in its false branch and
behavior specifically for 0 in its true branch. The presence of this conditional indicated the need
for a new class to stand in for 0.

BottleNumber was subclassed with BottleNumber0, into which the quantity method was
copied. Here’s a reminder of the situation at that point:

Listing 6.20: BottleNumber0 With Duplicated Quantity Method
 1 class BottleNumber {
 2 // ...
 3 public function quantity(): string {
 4 if ($this->number === 0) {
 5 return "no more";
 6 } else {
 7 return (string)$this->number;
 8 }
 9 }
10 // ...
11 }
12
13 class BottleNumber0 extends BottleNumber {
14 public function quantity(): string {
15 if ($this->number === 0) {
16 return "no more";
17 } else {
18 return (string)$this->number;
19 }
20 }
21 }

The next goal was to reduce the subclass' conditional to its true branch, and the superclass' to its
false. The subclass was changed without incident, but altering the superclass would have
caused the tests to fail. This pending failure exposed the need for a factory to choose between
these classes. So the bottleNumberFor factory method was created, after which the tests again
passed.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-180/lib/Bottles.php#L38-L84
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-100/lib/Bottles.php#L29-L89

6.3.3. Prevailing with Polymorphism

Page 155

The resulting code is repeated below:

Listing 6.21: Factory Chooses Polymorphic Object
 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 $bottleNumber = $this->bottleNumberFor($number);
 5 $nextBottleNumber = $this->bottleNumberFor($bottleNumber->successor());
 6 // ...
 7 }
 8
 9 public function bottleNumberFor(int $number): BottleNumber {
10 if ($number === 0) {
11 $className = BottleNumber0::class;
12 } else {
13 $className = BottleNumber::class;
14 }
15 return new $className($number);
16 }
17 }
18
19 class BottleNumber {
20 // ...
21 public function quantity(): string {
22 return (string)$this->number;
23 }
24 // ...
25 }
26
27 class BottleNumber0 extends BottleNumber {
28 public function quantity(): string {
29 return "no more";
30 }
31 }

The above example illustrates the power of polymorphism. BottleNumber and BottleNumber0
both play the role of bottle number. They respond to the same messages and conform to the
same API, but implement quantity in completely different ways.

These classes are substitutable for one another. When you invoke the factory to get a bottle
number, you don’t need to know the class of the returned object. You merely trust that object to
act like a bottle number and to respond to the messages you plan to send.

This willful ignorance of type is fundamental to object-oriented programming. It insulates code
that calls a factory from changes of implementation within that factory. By refusing to be aware
of the classes of the objects with which you interact, you grant others the freedom to alter your
code’s behavior without editing its source. In the distant future, someone could amend the
factory to return newly introduced players of the bottle number role, and your existing code
would happily collaborate with these unanticipated objects.

The quantity method is now polymorphically implemented. It’s time to move on to the
remaining conditionals.

6.3.3. Prevailing with Polymorphism

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-180/lib/Bottles.php#L5-L90

6.3.3. Prevailing with Polymorphism

Page 156

You’ve experienced one complete round of Replace Conditional with Polymorphism, and the
remainder of this refactoring is just more of the same. Here’s a list of the recipe’s steps:

1. Create a subclass to stand in for the value upon which you switch.

a. Copy one method that switches on that value into the subclass.

b. In the subclass, remove everything but the true branch of the conditional.

i. At this point, create a factory if it does not yet exist, and

ii. Add this subclass to the factory if not yet included.

c. In the superclass, remove everything but the false branch of the conditional.

d. Repeat steps a-c until all methods that switch on the value are dispersed.

2. Iterate until a subclass exists for every different value upon which you switch.

Following those steps for the action and successor methods (both of which test for 0) results
in the following code:

Listing 6.22: 0 Has Its Own Class
 1 class BottleNumber {
 2 protected $number;
 3
 4 public function __construct(int $number) {
 5 $this->number = $number;
 6 }
 7
 8 public function __toString(): string {
 9 return $this->quantity() . " " . $this->container();
10 }
11
12 public function quantity(): string {
13 return (string)$this->number;
14 }
15
16 public function container(): string {
17 if ($this->number === 1) {
18 return "bottle";
19 } else {
20 return "bottles";
21 }
22 }
23
24 public function action(): string {
25 return "Take " . $this->pronoun() . " down and pass it around";
26 }
27
28 public function pronoun(): string {
29 if ($this->number === 1) {
30 return "it";
31 } else {
32 return "one";
33 }
34 }
35
36 public function successor(): int {
37 return $this->number - 1;
38 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-280/lib/Bottles.php#L38-L90

6.3.3. Prevailing with Polymorphism

Page 157

39 }
40
41 class BottleNumber0 extends BottleNumber {
42 public function quantity(): string {
43 return "no more";
44 }
45
46 public function action(): string {
47 return "Go to the store and buy some more";
48 }
49
50 public function successor(): int {
51 return 99;
52 }
53 }

The quantity, action and successor methods are now divided between BottleNumber and
BottleNumber0. This completes the creation of a bottle number specific to 0.

The next task is to repeat this entire procedure for 1. As before, the first step is to create an
empty class:

Listing 6.23: Create the BottleNumber1 Class
1 class BottleNumber1 extends BottleNumber {
2 }

Next, choose one method that obsesses on 1 and copy it to the subclass. The container method
is a reasonable place to start:

Listing 6.24: Duplicate the Container Method
 1 class BottleNumber {
 2 // ...
 3 public function container(): string {
 4 if ($this->number === 1) {
 5 return "bottle";
 6 } else {
 7 return "bottles";
 8 }
 9 }
10 // ...
11 }
12
13 class BottleNumber1 extends BottleNumber {
14 public function container(): string {
15 if ($this->number === 1) {
16 return "bottle";
17 } else {
18 return "bottles";
19 }
20 }
21 }

Next, remove everything but the true branch logic from the subclass:

Listing 6.25: BottleNumber1 Returns Correct Result
1 class BottleNumber1 extends BottleNumber {
2 public function container(): string {
3 return "bottle";

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-290/lib/Bottles.php#L92-L93
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-300/lib/Bottles.php#L38-L100
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-320/lib/Bottles.php#L92-L96

6.3.3. Prevailing with Polymorphism

Page 158

4 }
5 }

Now, remove everything but the false branch logic from the superclass:

Listing 6.26: BottleNumber Container Method Reduced to Default
1 class BottleNumber {
2 // ...
3 public function container(): string {
4 return "bottles";
5 }
6 // ...
7 }

Unfortunately, the tests are now failing with:

1 1) BottlesTest::test_verse_1
2 Failed asserting that two strings are equal.
3 --- Expected
4 +++ Actual
5 @@ @@
6 -'1 bottle of milk on the wall, 1 bottle of milk.\n
7 +'1 bottles of milk on the wall, 1 bottles of milk.\n
8 Take it down and pass it around, no more bottles of milk on the wall.\n
9 '

The test for verse 1 failed because it got 1 bottles but expected 1 bottle (lines 6 and 7 above).
This may be confusing because you know that BottleNumber1 correctly implements
container to return bottle. The problem, however, is not that BottleNumber1 is wrong, but
that the factory does not yet return it.

As currently written, the factory must be updated every time a new bottle number class gets
created. The following example thus changes bottleNumberFor to return an instance of
BottleNumber1 when the value of number is 1:

Listing 6.27: Factory Knows About BottleNumber1
 1 class Bottles {
 2 // ...
 3 public function bottleNumberFor(int $number): BottleNumber {
 4 switch ($number) {
 5 case 0:
 6 $className = BottleNumber0::class;
 7 break;
 8 case 1:
 9 $className = BottleNumber1::class;
10 break;
11 default:
12 $className = BottleNumber::class;
13 break;
14 }
15 return new $className($number);
16 }
17 }

While adding the new class, the syntax was also changed from if to case, for reasons previously
discussed in the Hewing to the Plan section of Chapter 2.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-330/lib/Bottles.php#L38-L72
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-360/lib/Bottles.php#L5-L42

6.3.3. Prevailing with Polymorphism

Page 159

The conditional above may be giving you a sense of deja vu. It’s reminiscent of, although not
quite identical to, the switch statement from the original Shameless Green solution. Think about
why this might be as you finish the current refactoring. The similarity will be explored at the end
of this section.

Now that instances of BottleNumber1 are being manufactured, the tests again pass, and you
can move on to pronoun. Once pronoun is resolved, the final code is as follows:

Listing 6.28: BottleNumber Hierarchy
 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }
 5
 6 public function verses(int $upper, int $lower): string {
 7 return implode(
 8 "\n",
 9 array_map([$this, 'verse'], range($upper, $lower))
10);
11 }
12
13 public function verse(int $number): string {
14 $bottleNumber = $this->bottleNumberFor($number);
15 $nextBottleNumber = $this->bottleNumberFor($bottleNumber->successor());
16
17 return
18 ucfirst("{$bottleNumber} of milk on the wall, ") .
19 "{$bottleNumber} of milk.\n" .
20 "{$bottleNumber->action()}, " .
21 "{$nextBottleNumber} of milk on the wall.\n";
22 }
23
24 public function bottleNumberFor(int $number): BottleNumber {
25 switch ($number) {
26 case 0:
27 $className = BottleNumber0::class;
28 break;
29 case 1:
30 $className = BottleNumber1::class;
31 break;
32 default:
33 $className = BottleNumber::class;
34 break;
35 }
36 return new $className($number);
37 }
38 }
39
40 class BottleNumber {
41 protected $number;
42
43 public function __construct(int $number) {
44 $this->number = $number;
45 }
46
47 public function __toString(): string {
48 return $this->quantity() . " " . $this->container();
49 }
50
51 public function quantity(): string {
52 return (string)$this->number;

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-420/lib/Bottles.php#L5-L98

6.3.3. Prevailing with Polymorphism

Page 160

53 }
54
55 public function container(): string {
56 return "bottles";
57 }
58
59 public function action(): string {
60 return "Take " . $this->pronoun() . " down and pass it around";
61 }
62
63 public function pronoun(): string {
64 return "one";
65 }
66
67 public function successor(): int {
68 return $this->number - 1;
69 }
70 }
71
72 class BottleNumber0 extends BottleNumber {
73 public function quantity(): string {
74 return "no more";
75 }
76
77 public function action(): string {
78 return "Go to the store and buy some more";
79 }
80
81 public function successor(): int {
82 return 99;
83 }
84 }
85
86 class BottleNumber1 extends BottleNumber {
87 public function container(): string {
88 return "bottle";
89 }
90
91 public function pronoun(): string {
92 return "it";
93 }
94 }

Take a minute to admire that code. While the whole is not perfect, the BottleNumber hierarchy
displays a pleasing symmetry that was effortlessly attained by way of a simple recipe.

The code has undergone a number of transitions. Each refactoring followed a recipe, which led
to a stable landing point, which in turn enabled the next refactoring. This most recent transition
arguably achieves the greatest conceptual leap by way of the least complicated recipe. The ease
with which it occurred is a tribute to the efficacy of earlier refactorings.

This completes the Replace Conditional with Polymorphism refactoring. If introducing
polymorphism improved the code, this new version ought to tell an accurate and easily
understood story about the domain. One way to evaluate the story is to revisit the domain
questions asked in Chapter 1. The original questions were:

1. How many verse variants are there?

2. Which verses are most alike? In what way?

6.4. Transitioning Between Types

Page 161

3. Which verses are most different? In what way?

4. What is the rule to determine which verse should be sung next?

If you examine the code in light of the above, you’ll notice that the questions revolve around
verse variation, while the current code is more concerned with bottle number variation. The
story the code now tells is that all verses are alike in some abstract way, and that within verses,
bottle numbers vary.

Updating the questions to reflect this more nuanced understanding, they become:

1. How many bottle number variants are there?
Three.

2. Which bottle numbers are most alike? In what way?
Bottle numbers 2-99 are most alike.

3. Which bottle numbers are most different? In what way?
Bottle numbers 0 and 1 are different from each other, and from all the others. Bottle
number 0 overrides three methods, and so is slightly more different from the others than
is bottle number 1.

4. What is the rule to determine which bottle number comes next?
The next bottle number is the successor of the current one. This concept is clearly visible
in this code. However, one would expect a successor to be the same type as the thing it
succeeds, but here that’s not the case. The successor of a bottle number is,
disappointingly, a primitive. This seems wrong, and should be addressed.

6.4. Transitioning Between Types
The code now consists of a pleasing set of small objects with clear-cut responsibilities. However,
there’s one persistent problem that can no longer be ignored: the successor methods violate
the generalized Liskov Substitution Principle. They make a promise that they fail to keep.

You have every right to expect the successor of a bottle number to act like a bottle number, but
these successors disappoint. The successor methods return a result so unexpected that it’s
perilously close to being an outright lie. Instead of bottle numbers, they return primitive
integers, which you are then forced to convert into bottle numbers yourself.

Liskov violations are insidious, and over time cause increasing harm. As your application
evolves, successor might get sent from many places. Each place will have to know that
successor returns a number, and must also know how to convert that number back into a
bottle number. This interconnected web of duplicated knowledge binds every sender of
successor to its current implementation, which inflicts dependencies that make code resistant
to change.

If successor obeyed Liskov, you could substitute the hypothetical code on line 6 below for the
code on line 5:

6.4. Transitioning Between Types

Page 162

Listing 6.29: Coding by Wishful Thinking
 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 $bottleNumber = $this->bottleNumberFor($number);
 5 $nextBottleNumber = $this->bottleNumberFor($bottleNumber->successor());
 6 // $nextBottleNumber = $bottleNumber->successor();
 7 // ...
 8 }
 9 // ...
10 }

On line 6 above, the successor method returns a bottle number. This implementation avoids
the Liskov violation, reduces the number of dependencies, and simplifies the code.

The Liskov violation on line 5 has existed for several refactorings, but has been ignored in favor
of curing other code smells. It’s instructive to recall how it originated before resolving the
problem.

In Chapter 4, when the successor method was first created in Bottles, there was no violation.
The method was extracted from the verse template using the Flocking Rules, and within that
original template, the successor was indeed a number. In that case, it was both reasonable and
correct for successor to return that number.

In Chapter 5, the successor method was identified as one that obsessed on the number
argument, and so was migrated to BottleNumber during the Extract Class refactoring. It was at
this point that the Liskov violation appeared. The root of the problem is that a new type
(BottleNumber) was introduced, but its successor method continued to return the old type
(int).

The Liskov violation was troubling enough in the final code example of Chapter 5, which
contained but one implementor and one sender of successor. Unfortunately, the refactorings in
this chapter have exacerbated the problem. There are now two implementors of successor, one
sender, and a new factory that’s in charge of bottle number construction. Deferring the Liskov
violation made it worse, and paradoxically, supplied a more useful example to learn to solve.

The current predicament stands in for the real-world problem of needing to change the type
returned by a polymorphic method that has many implementors and many senders. Such a real-
life difficulty could well contain so many parts that they couldn’t all be fixed at once. The
following technique can be used to solve type change problems of any size. It does this by
making small, reliable, independent changes over time, chipping away until eventually the entire
issue is resolved.

Here’s a summary of the code related to successor:

Listing 6.30: All About Successor
 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 $bottleNumber = $this->bottleNumberFor($number);
 5 $nextBottleNumber = $this->bottleNumberFor($bottleNumber->successor());

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-430/lib/Bottles.php#L5-L43
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-430/lib/Bottles.php#L5-L89

6.4. Transitioning Between Types

Page 163

 6 // $nextBottleNumber = $bottleNumber->successor();
 7
 8 return
 9 ucfirst("{$bottleNumber} of milk on the wall, ") .
10 "{$bottleNumber} of milk.\n" .
11 "{$bottleNumber->action()}, " .
12 "{$nextBottleNumber} of milk on the wall.\n";
13 }
14
15 public function bottleNumberFor(int $number): BottleNumber {
16 switch ($number) {
17 case 0:
18 $className = BottleNumber0::class;
19 break;
20 case 1:
21 $className = BottleNumber1::class;
22 break;
23 default:
24 $className = BottleNumber::class;
25 break;
26 }
27 return new $className($number);
28 }
29 }
30
31 class BottleNumber {
32 // ...
33 public function successor(): int {
34 return $this->number - 1;
35 }
36 }
37
38 class BottleNumber0 extends BottleNumber {
39 // ...
40 public function successor(): int {
41 return 99;
42 }
43 }

On line 5 above, the verse method knows that successor returns a number, but wishes that it
returned a bottle number as illustrated on line 6. The two successor methods (lines 33 and 40)
ought to return bottle numbers, but to do so they must invoke the factory, and the factory is not
easily within their reach. And sadly, the aforementioned difficulties are compounded by your
ongoing determination to resolve problems via a series of one-line changes.

Alterations are needed in several places. Ultimately:

1. The factory should be located such that it is reachable by the successor methods,

2. the successor methods should invoke the factory, and

3. the verse method should expect successor to return a bottle number.

That’s a fairly small list, but even so, it’s challenging to accomplish this transition via a series of
one-line changes that don’t break the tests. For problems of this size, you might be successful at
changing everything at once, but real life typically involves larger problems that require many
more changes and present a much greater challenge. The following step-wise strategy is useful

6.4. Transitioning Between Types

Page 164

because it works for problems of any size. While it may be overkill on small ones, it is deeply
comforting on big ones.

In that spirit, continue on with the code. Step 1 is to put the factory within successor's reach.
There are a number of options, but if you want to make the smallest possible change, the best
choice is to make the factory a static function on an existing class. The most reasonable choice
among existing classes is BottleNumber.

The following example copies the factory into a static function on BottleNumber:

Listing 6.31: BottleNumber Class Contains Factory
 1 class BottleNumber {
 2 // ...
 3 public static function for(int $number): BottleNumber {
 4 switch ($number) {
 5 case 0:
 6 $className = BottleNumber0::class;
 7 break;
 8 case 1:
 9 $className = BottleNumber1::class;
10 break;
11 default:
12 $className = BottleNumber::class;
13 break;
14 }
15 return new $className($number);
16 }
17 // ...
18 }

As you can see, here on BottleNumber the method name has been reduced to simply for. The
internal implementation hasn’t changed, just the name.

It made perfect sense to name the original method bottleNumberFor. That name has two parts:
a type (bottleNumber), and a generic request (for). Within Bottles, both pieces of
information were relevant and arguably necessary. Now that the method is moving to
BottleNumber, there are two good reasons to simplify its name.

First, changing the name avoids the "echo chamber" effect. BottleNumber->bottleNumberFor
is both redundant and overly specific. It suffers from the same ailment as the milk method in
Chapter 1. This name is tightly coupled to the current context, and tight coupling makes code
resistant to change. For example, if you someday decide to rename the BottleNumber class,
you’ll have to change this method name too, or forever be misled.

Second, and more abstractly, for supports polymorphism. To illustrate how, consider
__toString. Classes implement this method to control how they react when treated like strings.
Bits of your application that want string representations invoke this method, either implicitly or
explicitly.

Contemplate the consequences if this bargain didn’t exist. If every class used a unique method
name for stringification, or even qualified their stringify method name with their type
(___bottleNumberToString), you would have to know the type of an object in order to know

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-440/lib/Bottles.php#L45-L90

6.4. Transitioning Between Types

Page 165

what method to invoke to get its string. This would severely complicate your code. It’s much
simpler to have stringifiable objects polymorphically implement an identically named method,
__toString, and have others blithely expect that this method has been implemented.

Just like __toString, for is a generic request that works fine as the name of any factory. When
factory-ish objects polymorphically implement for, you can send this message without regard
for the receiver’s type. Polymorphism preserves the option of constructing applications where
the factories themselves are substitutable.

Now that the for factory method exists, you can alter verse to invoke it, as shown here:

Listing 6.32: Verse Method Uses Factory
1 class Bottles {
2 // ...
3 public function verse(int $number): string {
4 $bottleNumber = BottleNumber::for($number);
5 $nextBottleNumber = BottleNumber::for($bottleNumber->successor());
6 // ...
7 }
8 // ...
9 }

Lines 4 and 5 above directly invoke the factory in BottleNumber. This makes
bottleNumberFor obsolete. That method can now be deleted.

The factory is now easily reachable by the two successor methods, so you’ve finished step 1.

Step 2 requires that you change the two successor methods to invoke the factory, but
unfortunately, changing either one without simultaneously making all remaining changes will
cause the tests to fail. Indeed, at this point, every outstanding change breaks the tests.

For example, in step 3 you’ll want to change the verse method to read:

 $nextBottleNumber = $bottleNumber->successor()

instead of:

 $nextBottleNumber = BottleNumber::for($bottleNumber->successor)

The above, however, relies upon having completed step 2, which changes the successor
methods to return bottle numbers. You can’t skip forward and do step 3 before step 2.

Returning to step 2, the successor methods can now invoke the factory. However, changing one
(but not the other) to do so via:

 BottleNumber::for(99)

or:

 BottleNumber::for($number - 1)

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-460/lib/Bottles.php#L5-L43

6.4. Transitioning Between Types

Page 166

also causes the tests to fail.

The root of the problem is that the verse method expects successor to return something that
will work in the factory, and the factory, in turn, expects to receive a number. If you change one
of the successor methods to return a bottle number, then verse will pass the wrong type into
the bottle number factory, which breaks the tests.

Because you’re changing the type of successor, the first step in this refactoring is to
temporarily remove the type declarations from the factory and successor methods, as shown
below:

1 class BottleNumber {
2 // ...
3 public static function for($number): BottleNumber {
4 // ...
5 }
6 // ...
7 }

 1 class BottleNumber {
 2 // ...
 3 public function successor() {
 4 // ...
 5 }
 6 }
 7
 8 class BottleNumber0 extends BottleNumber {
 9 // ...
10 public function successor() {
11 // ...
12 }
13 }

Having dispensed with the type declarations, the trick to moving forward using one-undo (more
on this later) changes is to temporarily alter the factory to tolerate both kinds of input. During
the transitional period where one successor method returns a bottle number and the other
returns a primitive, the factory will have to handle both types. This requires doing something
that is anathema to your object-oriented soul: you must change the factory to check the type of
its input argument.

Here’s the code:

Listing 6.33: Return Argument If Already a Bottle Number
 1 class BottleNumber {
 2 // ...
 3 public static function for($number): BottleNumber {
 4 if ($number instanceof BottleNumber) {
 5 return $number;
 6 }
 7
 8 switch ($number) {
 9 case 0:
10 $className = BottleNumber0::class;
11 break;
12 case 1:
13 $className = BottleNumber1::class;

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-480/lib/Bottles.php#L30-L79

6.4. Transitioning Between Types

Page 167

14 break;
15 default:
16 $className = BottleNumber::class;
17 break;
18 }
19 return new $className($number);
20 }
21 // ...
22 }

The guard clause on lines 4-6 above bounces the input argument right back out if it is already a
bottle number. This line is needed only while the refactoring is in progress. Once all successor
methods return a bottle number, and all callers of successor expect to get a bottle number
back, lines 4-6 can be deleted.

If this code seems confusing, it’s because of the power of names. For example, what if the
argument on line 2 above had been named numberOrBottleNumber instead of number? In that
case 4-6 would read:

 if ($numberOrBottleNumber instanceof BottleNumber) {
 return $numberOrBottleNumber;
 }

This line tells a better story. Despite that, there’s no point in actually changing the code to read
like this. The guard clause is a temporary convenience that allows the factory to accept two
different types of argument during a refactoring that changes from one to the other. At the
beginning and end of this refactoring, the argument on line 2 is always a number. There’s no
point in changing number to numberOrBottleNumber only to then change it right back.
Imagining this alternate name is enough to help you understand what’s happening.

Now that the factory handles both input types you can continue with step 2 by altering the
successor methods to return a bottle number. Here’s the change in BottleNumber0:

Listing 6.34: BottleNumber0 Successor Returns a Bottle Number
1 class BottleNumber0 extends BottleNumber {
2 // ...
3 public function successor() {
4 return BottleNumber::for(99);
5 }
6 }

At this point, the tests pass even though one successor returns a number and the other returns
a bottle number.

Having succeeded with BottleNumber0, you can proceed to BottleNumber, like so:

Listing 6.35: BottleNumber Successor Returns a Bottle Number
1 class BottleNumber {
2 // ...
3 public function successor() {
4 return BottleNumber::for($this->number - 1);
5 }
6 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-490/lib/Bottles.php#L81-L93
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-500/lib/Bottles.php#L30-L79

6.4. Transitioning Between Types

Page 168

And voila, all implementors of successor have been updated, and you’ve accomplished step 2.

Step 3 requires changing the verse method to expect successor to return a bottle number. It
should now be possible to do just that. The following code gingerly tests this theory by
uncommenting the wishful code on line 6:

Listing 6.36: Trying Out the Wishful Code
 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 $bottleNumber = BottleNumber::for($number);
 5 $nextBottleNumber = BottleNumber::for($bottleNumber->successor());
 6 $nextBottleNumber = $bottleNumber->successor();
 7
 8 return
 9 ucfirst("{$bottleNumber} of milk on the wall, ") .
10 "{$bottleNumber} of milk.\n" .
11 "{$bottleNumber->action()}, " .
12 "{$nextBottleNumber} of milk on the wall.\n";
13 }
14 }

Line 5 above is the original code, which you hope to delete. It sets $nextBottleNumber the old
way. Line 6 is the new code, which you’d like to keep. It overwrites $nextBottleNumber with
the result of the current bottle number’s successor.

Making the transition from old code to new code by running old and new side-by-side is useful in
situations where you’re not 100% certain you got it right. If something blows up, it can ease
debugging to have both variants under your eye.

In this case, the tests continue to pass, so you can confidently delete line 5 above. This leaves the
following code:

Listing 6.37: Trusting Successor
 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 $bottleNumber = BottleNumber::for($number);
 5 $nextBottleNumber = $bottleNumber->successor();
 6
 7 return
 8 ucfirst("{$bottleNumber} of milk on the wall, ") .
 9 "{$bottleNumber} of milk.\n" .
10 "{$bottleNumber->action()}, " .
11 "{$nextBottleNumber} of milk on the wall.\n";
12 }
13 }

This is definitely an improvement. However, notice that the temporary variable
$nextBottleNumber declared on line 5 is used only in one place, on line 11. This presents a
further opportunity for simplification. Temporary variables that are used just once can be
removed with the Inline Temp refactoring, which results in the following code:

Listing 6.38: Simplified Verse Method

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-510/lib/Bottles.php#L5-L28
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-520/lib/Bottles.php#L5-L27
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-540/lib/Bottles.php#L5-L26

6.4. Transitioning Between Types

Page 169

 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 $bottleNumber = BottleNumber::for($number);
 5
 6 return
 7 ucfirst("{$bottleNumber} of milk on the wall, ") .
 8 "{$bottleNumber} of milk.\n" .
 9 "{$bottleNumber->action()}, " .
10 "{$bottleNumber->successor()} of milk on the wall.\n";
11 }
12 }

At this point, all successor methods return a bottle number, and all senders of successor
expect to receive a bottle number. The remaining issues are that the factory still contains the
guard clause, and there are missing type declarations:

Listing 6.39: Factory With Obsolete Guard Clause
 1 class BottleNumber {
 2 // ...
 3 public static function for($number): BottleNumber {
 4 if ($number instanceof BottleNumber) {
 5 return $number;
 6 }
 7
 8 switch ($number) {
 9 case 0:
10 $className = BottleNumber0::class;
11 break;
12 case 1:
13 $className = BottleNumber1::class;
14 break;
15 default:
16 $className = BottleNumber::class;
17 break;
18 }
19 return new $className($number);
20 }
21 // ...
22 }

That guard clause is now obsolete, and can be deleted. It’s also now time to add type declarations
back to the successor methods and to the for factory.

This completes the correction of the Liskov violation in successor. Here’s a full listing of the
code:

Listing 6.40: Complete Listing
 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }
 5
 6 public function verses(int $upper, int $lower): string {
 7 return implode(
 8 "\n",
 9 array_map([$this, 'verse'], range($upper, $lower))
10);
11 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-540/lib/Bottles.php#L28-L77
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-552/lib/Bottles.php#L5-L97

6.4. Transitioning Between Types

Page 170

12
13 public function verse(int $number): string {
14 $bottleNumber = BottleNumber::for($number);
15
16 return
17 ucfirst("{$bottleNumber} of milk on the wall, ") .
18 "{$bottleNumber} of milk.\n" .
19 "{$bottleNumber->action()}, " .
20 "{$bottleNumber->successor()} of milk on the wall.\n";
21 }
22 }
23
24 class BottleNumber {
25 protected $number;
26
27 public static function for(int $number): BottleNumber {
28 switch ($number) {
29 case 0:
30 $className = BottleNumber0::class;
31 break;
32 case 1:
33 $className = BottleNumber1::class;
34 break;
35 default:
36 $className = BottleNumber::class;
37 break;
38 }
39 return new $className($number);
40 }
41
42 public function __construct(int $number) {
43 $this->number = $number;
44 }
45
46 public function __toString(): string {
47 return $this->quantity() . " " . $this->container();
48 }
49
50 public function quantity(): string {
51 return (string)$this->number;
52 }
53
54 public function container(): string {
55 return "bottles";
56 }
57
58 public function action(): string {
59 return "Take " . $this->pronoun() . " down and pass it around";
60 }
61
62 public function pronoun(): string {
63 return "one";
64 }
65
66 public function successor(): object {
67 return BottleNumber::for($this->number - 1);
68 }
69 }
70
71 class BottleNumber0 extends BottleNumber {
72 public function quantity(): string {
73 return "no more";
74 }
75

6.5. Making the Easy Change

Page 171

76 public function action(): string {
77 return "Go to the store and buy some more";
78 }
79
80 public function successor(): object {
81 return BottleNumber::for(99);
82 }
83 }
84
85 class BottleNumber1 extends BottleNumber {
86 public function container(): string {
87 return "bottle";
88 }
89
90 public function pronoun(): string {
91 return "it";
92 }
93 }

Correcting the Liskov violation is important because object-oriented programming, especially in
dynamically-typed languages like PHP, relies on explicit trust in the implicit contracts between
objects. These implicit contracts consist of expectations about the messages to which other
objects respond, and presumptions about the results those messages return. Trustworthy objects
are a joy to work with because they always behave as you expect.

Untrustworthy objects, however, are a different kettle of fish.[17] Objects that sometimes fail to
respond to a message you plan to send, or occasionally return something you don’t expect, force
you into a paranoid programming style. These untrustworthy objects require senders of
messages to know too much.

When your application has code that needs knowledge of the internals of other objects in order
to correctly interact with them (as did successor above), changes to those other objects might
break your code. If you have to check the type of an object in order to know what message to
send, you’re forced into a conditional that lists every concrete class with which you’re willing to
collaborate. Doing this dooms you to changing the conditional when you add a new class.
Checking to see if an object responds to a message rather than checking that object’s type may
reduce the size of this conditional, but it doesn’t ameliorate the problem.

All of the above are symptoms of an inability to trust other objects, and failures of
trustworthiness are, at least by the current generous interpretation of the principle, Liskov
violations. Objects made promises that they did not keep. In every case, the underlying cause is
an insufficient use of polymorphism.

Having successfully fixed the problem with successor, it’s time to return to the main issue at
hand.

6.5. Making the Easy Change
The previous horizontal refactoring is complete, and it is again time to ask if the code is open to
the six-pack requirement. And finally, gloriously (and only if you’re willing to disregard the
factory for a moment) the answer is yes. Your discipline and hard work are about to pay off.

6.5. Making the Easy Change

Page 172

You can now meet the six-pack requirement by adding a new class that stands in for bottle
number 6. This new class will report its quantity as "1" and its container, "six-pack."

The factory is not open, and so for now must be updated to return an instance of
BottleNumber6 when the value of number is 6. The next chapter will explore the costs and
benefits of making the factory open for extension.

You have been refactoring for many chapters using passing tests, or green, as the wall at your
back. Now that the current arrangement of code is open to the six-pack requirement, it’s finally
time to switch from refactoring mode back into TDD mode.

At long last, it’s time to write a failing test.

The six-pack requirement changes verses 6 and 7. The simplest way to generate a test failure is to
alter the song test to change the expected text for those verses. Here’s that updated test:

Listing 6.41: Test
 1 class BottlesTest extends \PHPUnit\Framework\TestCase {
 2 // ...
 3 }
 4
 5 public function test_the_whole_song() {
 6 $expected = <<< SONG
 7 99 bottles of milk on the wall, 99 bottles of milk.
 8 // ...
 9 8 bottles of milk on the wall, 8 bottles of milk.
10 Take one down and pass it around, 7 bottles of milk on the wall.
11
12 7 bottles of milk on the wall, 7 bottles of milk.
13 Take one down and pass it around, 1 six-pack of milk on the wall.
14
15 1 six-pack of milk on the wall, 1 six-pack of milk.
16 // ...
17 1 bottle of milk on the wall, 1 bottle of milk.
18 Take it down and pass it around, no more bottles of milk on the wall.
19
20 No more bottles of milk on the wall, no more bottles of milk.
21 Go to the store and buy some more, 99 bottles of milk on the wall.
22
23 SONG;
24 $this->assertEquals($expected, (new Bottles())->song());

Lines 13 and 15 above now assert that verses 6 and 7 read "1 six-pack" instead of "6 bottles."
Running that updated test results in this error:

7 bottles of milk on the wall, 7 bottles of milk.
-Take one down and pass it around, 1 six-pack of milk on the wall.
+Take one down and pass it around, 6 bottles of milk on the wall.

-1 six-pack of milk on the wall, 1 six-pack of milk.
+6 bottles of milk on the wall, 6 bottles of milk.
Take one down and pass it around, 5 bottles of milk on the wall.

There are two problems apparent in the error message. First, the output says "6" where it should
say "1." This is the quantity concept. Second, the output says "bottles" instead of "six-pack." This

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-560/test/BottlesTest.php#L5-L387

6.5. Making the Easy Change

Page 173

is container.

The BottleNumber inheritance hierarchy provides exemplary guidance for solving these
problems. Following the pattern of BottleNumber0 and BottleNumber1, first create a new
BottleNumber6 class as a subclass of BottleNumber:

Listing 6.42: New BottleNumber6 Class
1 class BottleNumber6 extends BottleNumber {
2 }

Next, implement one of the necessary methods. For example, you could implement container
as follows:

Listing 6.43: BottleNumber6 Knows Container
1 class BottleNumber6 extends BottleNumber {
2 public function container(): string {
3 return "six-pack";
4 }
5 }

Having made the change above, you could reasonably expect the error message to change, but
alas, it does not:

7 bottles of milk on the wall, 7 bottles of milk.
-Take one down and pass it around, 1 six-pack of milk on the wall.
+Take one down and pass it around, 6 bottles of milk on the wall.

-1 six-pack of milk on the wall, 1 six-pack of milk.
+6 bottles of milk on the wall, 6 bottles of milk.
Take one down and pass it around, 5 bottles of milk on the wall.

Above, the sixth bottle still reports "bottles" as its container. The error message hasn’t changed.
This would happen if the new BottleNumber6 weren’t being used, and that’s exactly the case.
Because the factory isn’t yet open, creating the new class isn’t enough—you must also update the
factory.

Adding BottleNumber6 to the factory results in the following code:

Listing 6.44: BottleNumber6 Added to Factory
 1 class BottleNumber {
 2 // ...
 3 public static function for(int $number): BottleNumber {
 4 switch ($number) {
 5 case 0:
 6 $className = BottleNumber0::class;
 7 break;
 8 case 1:
 9 $className = BottleNumber1::class;
10 break;
11 case 6:
12 $className = BottleNumber6::class;
13 break;
14 default:
15 $className = BottleNumber::class;
16 break;

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-570/lib/Bottles.php#L99-L100
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-580/lib/Bottles.php#L99-L103
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-590/lib/Bottles.php#L28-L76

6.6. Defending the Domain

Page 174

““

17 }
18 return new $className($number);
19 }
20 // ...
21 }

Once you update the factory, running the tests produces the expected error:

7 bottles of milk on the wall, 7 bottles of milk.
-Take one down and pass it around, 1 six-pack of milk on the wall.
+Take one down and pass it around, 6 six-pack of milk on the wall.

-1 six-pack of milk on the wall, 1 six-pack of milk.
+6 six-pack of milk on the wall, 6 six-pack of milk.
Take one down and pass it around, 5 bottles of milk on the wall.

As shown above, the container for six bottles is now "six-pack."

The sixth bottle’s quantity is still incorrect. This is easily cured by implementing the quantity
method as so:

Listing 6.45: Final BottleNumber6
1 class BottleNumber6 extends BottleNumber {
2 public function quantity(): string {
3 return "1";
4 }
5
6 public function container(): string {
7 return "six-pack";
8 }
9 }

Having implemented quantity and container in BottleNumber6, the tests now pass.

Congratulations, you’ve met the six-pack requirement!

You have been refactoring under green for many chapters, and now, suddenly, almost abruptly,
the outstanding requirement can be met by two one-line methods in a class that has nine total
lines of code. It took several refactorings to make the code open, but once so, the six-pack
requirement was extraordinarily easy to fulfill.

Kent Beck describes this entire process beautifully, and sympathetically, when he says:

make the change easy (warning: this may be hard), then make the easy change
— Kent Beck

via Twitter

Most of this book has been concerned with making the change easy. That hard work paid off
here, where you made the easy change.

6.6. Defending the Domain

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-600/lib/Bottles.php#L102-L110
https://twitter.com/KentBeck/status/250733358307500032

6.7. Summary

Page 175

One final thought about BottleNumber6 before moving on: it may have occurred to you to meet
the six-pack requirement by simply overriding __toString within BottleNumber6. For
example, instead of implementing quantity and container, you could do the following:

Listing 6.46: BottleNumber6 Knows Neither Quantity nor Container
1 class BottleNumber6 extends BottleNumber {
2 public function __toString(): string {
3 return '1 six-pack';
4 }
5 }

The above code certainly passes the six-pack tests. This solution might seem attractive because
it’s shorter than the previous one, and so may feel more efficient. However, less code doesn’t
always mean better code.

Consider the meaning of __toString versus that of quantity and container. The latter two
methods reflect fundamental concepts in this domain. These concepts exist regardless of the way
your application uses bottle numbers.

Extracting BottleNumber from Bottles decouples the idea of bottle number-ness from the "99
Bottles of Milk" song. Bottle numbers are now independent objects, and ought to be freely
useable in contexts other than those from which they were extracted. If sufficiently dissociated
from the song, these bottle number classes could be used in, for example, a new inventory
system. It makes perfect sense to "Go to the store and buy some more" because a refrigerator
reports that it contains 0 bottles of milk.

Omitting quantity and container in favor of jamming "1 six-pack" directly into __toString
corrupts BottleNumber6 with knowledge of the inner workings of the Bottles verse
template. The __toString solution works only because BottleNumber6 knows that verse
implicitly sends __toString. This expectation couples BottleNumber6 to the context in which
it was discovered, and this coupling interferes with your ability to reuse the bottle number
classes when new contexts appear.

Solving the proximate problem by implementing a unique __toString passes today’s tests but
misleads future programmers. If you were to override __toString, your code would tell this
story:

1. BottleNumber6's rule for deriving its string representation differs from that of other
bottle numbers, and

2. BottleNumber6 has the same quantity and container as its superclass.

These claims are false, and they transfer costs from the present to the future.

Clever shortcuts are a false economy. Invest in code that tells the truth. Just write it down.

6.7. Summary

6.7. Summary

Page 176

The purpose of this chapter was to produce a code arrangement that was open to the six-pack
requirement. Not only did it succeed in fulfilling that requirement, but along the way it also
resolved a number of other issues.

This chapter explored the Data Clump code smell. It replaced a Switch Statement with a set of
polymorphic objects, which it created using a factory. It corrected the Liskov violation in
successor, and used that problem as a jumping-off point for a more general lesson about how
to change the return types of polymorphic methods.

The BottleNumber for factory was straightforward and most certainly did the job. While
simple factories like this work great in many situations, they’re not best for every case. There’s a
whole world of different styles of factories waiting to be explored. Therefore, on to Chapter 7.

7.1. Contrasting the Concrete Factory with Shameless Green

Page 177

7. Manufacturing Intelligence
In Chapter 6, on the way to achieving blissfully open code, you created a set of classes whose
instances polymorphically play the role of bottle number. Each class in the BottleNumber
hierarchy contains a simple set of code that represents the concrete implementation of a single
bottle number variant. Gratifyingly, those classes contain no conditionals.

And yet, the need for conditional logic did not disappear. Some code, somewhere, has to know
how to select the right bottle number class for any situation. This selection happens in the
BottleNumber::for factory. In this chapter, that simple factory launches a greater exploration
of factories in general.

7.1. Contrasting the Concrete Factory with Shameless Green
The Replace Conditional with Polymorphism refactoring in the prior chapter resulted in a small
bottle number hierarchy. That hierarchy was open for extension, which made it possible to add
six-pack behavior by simply adding a new BottleNumber6 class.

Unfortunately, there was still one bit of code that had to be changed before everything would
work. The BottleNumber::for factory contained a hard-coded conditional to pick the correct
class, and this conditional had to be updated to include the new class name.

Here’s a reminder of the resulting factory:

Listing 7.1: Bottle Number Factory
 1 class BottleNumber {
 2 // ...
 3 public static function for(int $number): BottleNumber {
 4 switch ($number) {
 5 case 0:
 6 $className = BottleNumber0::class;
 7 break;
 8 case 1:
 9 $className = BottleNumber1::class;
10 break;
11 case 6:
12 $className = BottleNumber6::class;
13 break;
14 default:
15 $className = BottleNumber::class;
16 break;
17 }
18 return new $className($number);
19 }
20 // ...
21 }

Pause for a minute to reflect upon the current code. The for method above contains a simple
switch statement that chooses a class. This conditional may remind you of one contained in the
original Shameless Green implementation, repeated below:

Listing 7.2: Shameless Green Conditional

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-600/lib/Bottles.php#L28-L76
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-initial-variations-40/lib/Bottles.php#L15-L42

7.1. Contrasting the Concrete Factory with Shameless Green

Page 178

 1 public function verse(int $number): string {
 2 switch ($number) {
 3 case 0:
 4 return
 5 "No more bottles of milk on the wall, " .
 6 "no more bottles of milk.\n" .
 7 "Go to the store and buy some more, " .
 8 "99 bottles of milk on the wall.\n";
 9 case 1:
10 return
11 "1 bottle of milk on the wall, " .
12 "1 bottle of milk.\n" .
13 "Take it down and pass it around, " .
14 "no more bottles of milk on the wall.\n";
15 case 2:
16 return
17 "2 bottles of milk on the wall, " .
18 "2 bottles of milk.\n" .
19 "Take one down and pass it around, " .
20 "1 bottle of milk on the wall.\n";
21 default:
22 return
23 $number . " bottles of milk on the wall, " .
24 $number . " bottles of milk.\n" .
25 "Take one down and pass it around, " .
26 ($number - 1) . " bottles of milk on the wall.\n";
27 }
28 }

As you know, the current factory handles six-packs while the original Shameless Green did not.
To make this comparison more meaningful, undo the last change you made to the factory, i.e.
remove the 6 branch. This reverts the factory to:

Listing 7.3: Factory Without Case 6
 1 class BottleNumber {
 2 // ...
 3 public static function for($number): BottleNumber {
 4 switch ($number) {
 5 case 0:
 6 $className = BottleNumber0::class;
 7 break;
 8 case 1:
 9 $className = BottleNumber1::class;
10 break;
11 default:
12 $className = BottleNumber::class;
13 break;
14 }
15 return new $className($number);
16 }
17 // ...
18 }

Study the previous two listings. These conditionals are the only ones that exist in their respective
examples. Both Shameless Green and the current code correctly generate the complete lyrics to
the original song. Given that these different conditionals produce the same variability, can you
explain why one contains four branches, but the other only three?

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-550/lib/Bottles.php#L28-L73

7.2. Fathoming Factories

Page 179

To answer that question, consider the case that is missing. Shameless Green has a special case for
2, but the factory does not. Recall that the conditional in Shameless Green produces verses, but
the one in the factory produces bottle numbers. Verse 2 is indeed special, but bottle number 2 is
not. Thus, Shameless Green needs a special case for verse 2 solely because verse 2 contains bottle
number 1. This explains the missing branch.

The difference in the number of branches, although highly visible, is merely an artifact of the
specific domain of the "99 Bottles of Milk" song. Having explained that difference away, another
yet remains, and this one has significantly more meaning.

The Shameless Green verse method contains a conditional that:

1. understands why you might switch (case 0, for example), and

2. knows the behavior needed for this case ("No more bottles . . .").

The factory for method:

1. is similar in that it also understands the reasons for switching (again, case 0, etc) but

2. differs in that it knows the name of the class that supplies the behavior for the case.

Factories don’t know what to do: instead, they know how to choose who does. They consolidate
the choosing and separate the chosen. Shameless Green was a procedure because it combined
these two things; the current code is object-oriented because it breaks them apart.

Having explored the difference between a conditional that supplies behavior and a conditional
that selects an object, it’s time to take a deeper look at factories.

7.2. Fathoming Factories
Object-oriented applications rely on polymorphism. Polymorphism results in multiple classes
that play a common role. The power of polymorphism is that these role-playing objects are
interchangeable from the message sender’s point of view.

Message senders can confidently collaborate with polymorphic objects in faith that each
honestly plays the common role even though they represent different variants. The message-
sending object thinks of its collaborator as a player of a role rather than a kind of a type.

All players of a role share a common API. This API exposes a set of intentions that are public.
Internally, each role-player also contains methods that implement these intentions in differing
ways. The details of these alternate implementations are invisible to the outside world.

From the message sender’s point of view, all players of a role are exactly the same. Message
senders depend on the role player’s exposed intentions while remaining studiously ignorant of
their detailed internal implementations. They know what their collaborators do, but refuse to be
aware of how they do it.

7.3. Opening the Factory

Page 180

A system comprised of message senders who collaborate with role-playing objects can be
extremely tolerant of unexpected change. For example, imagine that you create a new class that
represents a new variant of bottle number. This new bottle number is interchangeable with
every other one, so any class that already collaborates with an existing bottle number will be
able to seamlessly collaborate with this new one. The message sender doesn’t have to change;
from its point of view this new bottle number is the same as all the others.

Clearly, this system works only if message senders really do treat collaborators as if they’re
interchangeable. If message senders are to be immune from side-effects when adding or
removing role-players, these senders can’t know things that are unique to specific variants.
Message senders aren’t allowed to know the names of the concrete variant classes, nor may they
know the logic needed to choose between them.

Message senders can’t know these things, but of course someone must. Knowledge of the class
names of the variants, and of the logic necessary to choose the correct one, can be hidden in, you
guessed it—factories.

A factory’s responsibility is to manufacture the right object for a given role. Factories oughtn’t
know what the variants do, they merely know how to choose the right variant for any situation.
This choosing usually involves a conditional, and putting this conditional in a factory allows you
to isolate it to a single place in your code.

Thus, factories are where conditionals go to die. Isolating conditionals in factories loosens the
coupling between collaborating objects, which lowers the cost of change.

Factories can be implemented in many different ways, but they tend to vary along a few
interesting dimensions, each of which involves its own set of trade-offs. No one style of factory is
best for every case; the right solution depends entirely on the problem at hand. Understanding
these dimensions, and the tradeoffs between them, allows you to make good decisions when
faced with competing requirements.

Factories vary along these dimensions:

1. The factory can be open to new variants or closed.

2. The logic that chooses a variant can be owned by the factory or by the variant.

3. The factory can be responsible for knowing/figuring out which classes are eligible to be
manufactured or the variants can volunteer themselves.

The following sections explore a series of escalating factory solutions, paying particular attention
to trade-offs along these dimensions.

7.3. Opening the Factory
Back to the matter at hand, the current factory is not open for extension because it contains a
hard-coded conditional.

7.3. Opening the Factory

Page 181

You have likely noticed that the bottle number classes follow a naming convention. The default is
BottleNumber, and the specializations suffix that name with their own specific value of
number, e.g. BottleNumber0, BottleNumber1, and BottleNumber6.

This predictable pattern makes it possible for you to dynamically derive the correct bottle
number class. You can create strings that match the class names, and then use a tiny bit of meta-
programming to turn these class name strings into actual classes.

Here’s a simple way to accomplish this:

Listing 7.4: Meta Programmed Class Lookup Factory
 1 class BottleNumber {
 2 // ...
 3 public static function for(int $number): BottleNumber {
 4 $className = 'BottleNumber' . $number;
 5 if (!class_exists($className)) {
 6 $className = BottleNumber::class;
 7 }
 8 return new $className($number);
 9 }
10 // ...
11 }

The code above produces that same output as the original factory. Having examined it, you may
find yourself afflicted with objections. If so, you are not alone—many folks find this example
downright alarming. While fully acknowledging that it contains plenty of things not to like, this
code also confers clear benefits. Therefore, please put any objections aside for a moment and
read the following explanation of the syntax. The pros and cons of this approach will be
examined afterwards.

First, syntax. Notice that the for method now contains a simple conditional rather than a
switch statement. On line 4, before entering the conditional, the string "BottleNumber" gets
concatenated with the $number argument. This might result in a string that matches a class
name.

If the class exists (as BottleNumber0, for example, does), the conditional block is skipped. If the
class does not exist (BottleNumber37, et al.), the conditional statement evaluates to true, and
the conditional returns the BottleNumber class.

In its favor, this factory is open to extension. As long as you honor the naming convention, the
factory will cheerfully accommodate newly-added bottle number classes without having to
change.

Even so, there are many things to dislike about this code. Here are a few common and
thoroughly reasonable objections:

1. This version is harder to understand than the original.

Everyone understands how the original switch statement works, but many folks have no
idea that it’s possible to locate a class using the string value of its name. Some
programmers find this code unexpected and confusing.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c7-factories-20/lib/Bottles.php#L28-L66

7.4. Supporting Arbitrary Class Names

Page 182

2. BottleNumber0, etc are no longer explicitly referenced in the source code.

Good luck finding references to the classes whose names are dynamically constructed.
Although the factory is perfectly capable of creating new instances of BottleNumber0, it
doesn’t explicitly reference this concrete class name. Attempts to find where instances of
this class are created by searching the source code for BottleNumber0 are fruitless and
therefore deeply frustrating.

It’s also conceivable that, in an excess of cleanup zeal, someone might delete the
apparently unreferenced class. If this happens without being caught by the tests, the
application will break at a far distant and maximally inconvenient time.

3. The factory ignores bottle number classes whose names do not follow the convention.

If an unsuspecting programmer innocently creates the new class BottleNumberSix, the
factory won’t know about it. Attempts to use this new class will fail silently with nary a
hint at the underlying problem. This can lead to exasperating debugging sessions.

Given the list of objections, it’s logical to wonder if opening this factory could ever be
worthwhile. Do the benefits of openness justify the cost of this additional complexity?

The answer, as is true for most questions about object-oriented design, is that it depends. If you
frequently create new bottle number classes, the cost of repeatedly changing the factory might
very well exceed that of making it open. Conversely, if you never add new bottle number classes,
the factory won’t ever change, so there’s no justification for complicating the code.

Your goal is to minimize costs, and costs are determined by the situation at hand. There’s no hard
and fast rule about what’s best. It just depends.

A factory’s fundamental job is to manufacture the correct player of a role. Relative to this
responsibility, its openness is a trivial concern that can be tweaked over time.

7.4. Supporting Arbitrary Class Names
The previous example used a simple bit of meta-programming to generate the right class name
based on a convention. This, obviously, requires that all classes be named following that
convention.

What if you can’t enforce a convention and must manufacture instances of classes that have
arbitrary names? In this situation, you could always return to the switch statement. That form
of factory will work, but unfortunately it’s not open to extension and must be updated every time
someone adds a new class. If new classes get added regularly, this is annoying and expensive.

The switch statement factory is easy to understand because it centralizes the necessary
knowledge: it knows both the names of the candidate classes and also the reason any class might
be chosen. Having the condition ($number === 0) and the name of the class (BottleNumber0)
close together in the factory make it easy to read the code and understand how everything
works.

7.4. Supporting Arbitrary Class Names

Page 183

If you like the simplicity of centralizing all knowledge in the factory but need to support
arbitrary class names, it can be a challenge to make the factory open. While the following
example doesn’t end up perfectly open it gets most of the way there, and in many circumstances
will be good enough.

The first step towards an open factory that both centralizes knowledge and supports arbitrary
class names is to rearrange the code to increase the isolation of the names. You can do this by
replacing the switch statement with a key/value lookup, as follows:

Listing 7.5: Key/Value Lookup Factory
 1 class BottleNumber {
 2 // ...
 3 public static function for(int $number): BottleNumber {
 4 $classNames = [
 5 0 => 'BottleNumber0',
 6 1 => 'BottleNumber1',
 7 6 => 'BottleNumber6',
 8];
 9 if (isset($classNames[$number])) {
10 $className = $classNames[$number];
11 } else {
12 $className = BottleNumber::class;
13 }
14 return new $className($number);
15 }
16 // ...
17 }

The above example maps $number to class name (lines 5-7), attempts to select a class based on
the value of $number (lines 9-10), and defaults to BottleNumber (line 12) when the number
can’t be found. It then (line 14) creates a new instance of the selected class.

This key/value lookup factory looks very different from the previous two examples (Listing 7.3:
Factory Without Case 6 and Listing 7.4: Meta Programmed Class Lookup Factory), but despite
their syntactical differences these three examples are logically very similar. Each uses the value
of number to choose a class name. The simple switch statement, the meta-programmed class
name selection, and the key/value lookup are simply different ways to express this set of
conditionals:

If the value of number is 0, select BottleNumber0.
If the value of number is 1, select BottleNumber1.
If the value of number is 6, select BottleNumber6.
Otherwise, select BottleNumber.

The switch statement factory is simple and allows arbitrary class names, but is closed. The
meta-programmed factory is more complicated and requires a class naming convention, but is
open. The key/value factory is similar to the switch statement factory in that it allows arbitrary
class names, but it’s a bit harder to read.

It’s easy to comprehend the overall behavior of the switch statement because it’s a simple list of
"if this, do that" statements. This key/value version is slightly more complicated because the data

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c7-factories-40/lib/Bottles.php#L28-L72

7.4. Supporting Arbitrary Class Names

Page 184

has been separated from the algorithm. In this example, the "this⇒that" bits (the data) have been
grouped together in one place (the associative array) and the "if" bits (the algorithm) moved to
another (the [] lookup logic). When reading the code, you have to combine these two things in
your own head in order to understand what it does.

The benefit of this separation is that you can now think of the driving data as an entity in itself,
separate from the choosing algorithm. The algorithm lives in the code but you can store the data
in an external file, or your database, and read it at initialization time. You might even create a
nice user interface to update the database. You’ll have to update the database whenever a new
class is added, but that’s a small price to pay for being able to change the behavior of your
application without altering the actual code.

Before moving on, there’s one more difference between the switch and key/value lookup code
that’s worth noting. Take another look at those two factory variants (repeated below for
convenience), this time paying particular attention to the colors used in the syntax highlighting.

Listing 7.6: Simple Conditional Factory Redux
 1 class BottleNumber {
 2 // ...
 3 public static function for(int $number): BottleNumber {
 4 switch ($number) {
 5 case 0:
 6 $className = BottleNumber0::class;
 7 break;
 8 case 1:
 9 $className = BottleNumber1::class;
10 break;
11 case 6:
12 $className = BottleNumber6::class;
13 break;
14 default:
15 $className = BottleNumber::class;
16 break;
17 }
18 return new $className($number);
19 }
20 // ...
21 }

Listing 7.7: Key/Value Lookup Factory Redux
 1 class BottleNumber {
 2 // ...
 3 public static function for(int $number): BottleNumber {
 4 $classNames = [
 5 0 => 'BottleNumber0',
 6 1 => 'BottleNumber1',
 7 6 => 'BottleNumber6',
 8];
 9 if (isset($classNames[$number])) {
10 $className = $classNames[$number];
11 } else {
12 $className = BottleNumber::class;
13 }
14 return new $className($number);
15 }
16 // ...
17 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c6-polymorphism-600/lib/Bottles.php#L28-L76
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c7-factories-40/lib/Bottles.php#L28-L72

7.5. Dispersing The Choosing Logic

Page 185

Notice that in the switch version, the colors alternate, while in the key/value version, like colors
group more closely together. These groupings say something about the code.

When the colors change constantly it means that the code changes topics a lot. When the colors
are more tightly grouped it means that ideas or abstractions that are alike are close together.

Procedures are often characterized by many changes of color. Even if you are completely
unfamiliar with this code, you can guess that the switch statement factory is a procedure simply
by looking at the alternating colors in the syntax highlighting. Code that is more object-oriented
tends to group like things together, with fewer changes of topic. This results in more consistent
colors as in the key/value factory.

The upside of procedures is that simple ones (short and without conditionals) are easy to
understand. The downside is that complex ones (long and with many conditionals) are costly to
change. The most efficient, expedient way to fulfill a new requirement may be to write a simple,
unglamorous procedure, but if this procedure needs to change it should be converted into object-
oriented code. Procedural code can save you money when used to create small, isolated features
that never need to change, but this style of coding will break the bank if used on large, shared
features that are core to your domain.

OO asks you to break code up into small, cohesive pieces. The benefit of having smaller pieces is
that each individual piece, relative to its procedural analog, is easier to understand and change.
The corollary downside is that dividing code into many small pieces can obscure the operation of
the whole.

The straightforwardness of simple procedures can make them seem attractive, and indeed,
they’re fine as long as nothing ever changes. However, if your code needs to adapt and grow, it’s
worth paying the toll charged by OOP.

7.5. Dispersing The Choosing Logic
As stated above, the three examples shown thus far all contain the same basic underlying logic.
In each case the factory knows everything. It owns the choosing logic (the value of number is n), it
knows the things that might be chosen (the class names), and it contains the logic to map
between the two (number n means class x).

Owning the choosing logic makes sense when it’s simple and stable, as in the current example.
But it’s easy to imagine situations where the choosing logic is far more complicated. The logic
needed to select the right class might be long, complex, and more closely related to the class
being chosen than to the factory itself. If the choosing logic changes in lockstep with code that
lives in the class being chosen, then the choosing logic belongs in that class, not in the factory.

In this scenario, each choose-able object implements its own method to determine if it should be
chosen. The factory then iterates over the possible objects and asks them to make the decision.

Here’s a simple, closed form of this kind of factory:

7.5. Dispersing The Choosing Logic

Page 186

Listing 7.8: Dispersing the Choosing Logic
 1 class BottleNumber {
 2 // ...
 3 public static function for(int $number): BottleNumber {
 4 $classNames = [
 5 'BottleNumber6',
 6 'BottleNumber1',
 7 'BottleNumber0',
 8 'BottleNumber',
 9];
10 foreach ($classNames as $className) {
11 if ($className::handles($number)) {
12 return new $className($number);
13 }
14 }
15 }
16
17 public static function handles(int $number): bool {
18 return true;
19 }
20 // ...
21 }
22
23 class BottleNumber0 extends BottleNumber {
24 public static function handles(int $number): bool {
25 return $number === 0;
26 }
27 // ...
28 }
29
30 class BottleNumber1 extends BottleNumber {
31 public static function handles(int $number): bool {
32 return $number === 1;
33 }
34 // ...
35 }
36
37 class BottleNumber6 extends BottleNumber {
38 public static function handles(int $number): bool {
39 return $number === 6;
40 }
41 // ...
42 }

Each class above now implements method handles($number). The implementations in
BottleNumber0, BottleNumber1, and BottleNumber6 (lines 25, 32, and 39) return true when
the number is the one they represent. The BottleNumber implementation (line 18)
unconditionally returns true because BottleNumber is the default.

The for method in BottleNumber on line 3 iterates over an array of class names with foreach.
The conditional checks each class to determine if it handles $number, and if so returns a new
instance of that class. This code therefore manufactures an instance of the first class on the list
that responds true to handles($number).

This factory disperses the choosing logic into the things chosen. In this example, that logic is so
simple that this technique is excessive, but in some situations, choosing will involve lots of code,
and that code will change in lockstep with the class being chosen. Those are the cases where this
technique saves you money.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c7-factories-100/lib/Bottles.php#L28-L122

7.6. Self-registering Candidates

Page 187

The structure of this factory brings up several issues. First, it’s closed. Each time a new class is
added you must update the list on 5-8.

Next, since BottleNumber::handles always returns true, BottleNumber must always be the
last class on the list. If someone mistakenly adds a new class after BottleNumber, the factory
will never manufacture an instance of that new class.

Finally, it’s possible that more than one handles methods would return true. The code above
stops looking the first time a candidate answers 'Me!' but it’s possible to imagine scenarios where
you should collect all candidates who answer yes and give each a chance to execute. In that case
candidates might also want to report a priority so you can sort the resultant list in the order in
which they should go.

The example above shows the simplest way to disperse choosing logic. It might be all you need. If
you’re concerned about keeping the list in order, or need to deal with multiple candidates
wanting to volunteer, you’ll have to write a bit more code.

In each case the basic issue remains the same. If your choosing logic is more closely related to
the class being chosen than to the factory, the choosing logic should be co-located in that class.

7.6. Self-registering Candidates
The example above disperses the choosing logic, but the factory still has a hard-coded list of the
candidate classes. The implementation requires that you manually add newly created classes to
this list. If you would like the factory to simply continue working when new candidates appear,
you have two basic options.

1. The factory could dynamically figure out which classes belong on its list, or

2. classes who want to be on the list could explicitly ask the factory to put them there.

Choice #1 above is possible only if there’s something about the candidate classes that allows the
factory to identify them, and this may not always be true. Choice #2, however, is always an
option. If candidates are willing to depend on knowing the name of the factory, they can assume
responsibility for putting themselves on the list. Lists like these are often referred to as registries.

Because choice #2 is always possible, it’s the next example. The BottleNumber factory below:

1. holds onto the registry, and

2. provides a way for candidates to add themselves to it.

Listing 7.9: Creating a Registry
1 class BottleNumber {
2 protected static $registry = [];
3 // ...
4 public static function register(string $candidate): void {
5 array_unshift(self::$registry, $candidate);
6 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c7-factories-180/lib/Bottles.php#L28-L75

7.6. Self-registering Candidates

Page 188

7 // ...
8 }

Line 2 above defines the registry property, which is initialized to an empty array. Line 4
creates a static register($candidate) function, which adds candidate arguments to the front
of this registry.

Now that this registry exists, candidate classes can register themselves. Here’s how that looks for
BottleNumber0 (line 4 below):

Listing 7.10: Candidate Registration
1 class BottleNumber0 extends BottleNumber {
2 // ...
3 }
4 BottleNumber::register(BottleNumber0::class);

Once you make the above change for the other bottle number classes (BottleNumber1,
BottleNumber6, and BottleNumber), the hard-coded list of candidates in the factory can be
replaced by a reference to the registry:

Listing 7.11: Referring to the Registry in the Factory
 1 class BottleNumber {
 2 // ...
 3 public static function for(int $number): BottleNumber {
 4 foreach (self::$registry as $candidate) {
 5 if ($candidate::handles($number)) {
 6 return new $candidate($number);
 7 }
 8 }
 9 }
10 // ...
11 }

Here’s all the relevant code together in one listing:

Listing 7.12: Factory With Self Registration
 1 class BottleNumber {
 2 protected static $registry = [];
 3 // ...
 4 public static function register(string $candidate): void {
 5 array_unshift(self::$registry, $candidate);
 6 }
 7
 8 public static function for(int $number): BottleNumber {
 9 foreach (self::$registry as $candidate) {
10 if ($candidate::handles($number)) {
11 return new $candidate($number);
12 }
13 }
14 }
15 // ...
16 }
17 BottleNumber::register(BottleNumber::class);
18
19 class BottleNumber0 extends BottleNumber {
20 // ...
21 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c7-factories-180/lib/Bottles.php#L78-L95
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c7-factories-180/lib/Bottles.php#L28-L75
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c7-factories-180/lib/Bottles.php#L28-L125

7.6. Self-registering Candidates

Page 189

22 BottleNumber::register(BottleNumber0::class);
23
24 class BottleNumber1 extends BottleNumber {
25 // ...
26 }
27 BottleNumber::register(BottleNumber1::class);
28
29 class BottleNumber6 extends BottleNumber {
30 // ...
31 }
32 BottleNumber::register(BottleNumber6::class);

There are a few things to note about the listing above. First, notice that the registration lines
explicitly state the class name BottleNumber:

BottleNumber::register(BottleNumber0::class);

instead of using the name of the subclass and expecting to inherit the register method, like so:

BottleNumber0::register(BottleNumber0::class);

Since it doesn’t mention BottleNumber by name, this second example may seem as if it contains
fewer dependencies. If fact, the previous two examples contain exactly the same number of
dependencies; they just depend on different things.

The BottleNumber::register(BottleNumber0::class) example sends the register
message to BottleNumber and so depends on knowing the name of the factory. If that name
later changes, this code will also have to change.

The BottleNumber0::register(BottleNumber0::class) example sends the register
method to the subclass BottleNumber0. This code relies on finding register somewhere in the
class hierarchy, and so depends on inheritance. If someday you move the bottle number role-
playing class out of the BottleNumber hierarchy, you’ll have to change this line of code.

Remember that any class that implements the BottleNumber API can play the bottle number
role. In the current example, BottleNumber0, 1 and 6 use inheritance to acquire parts of this
API, but there’s no rule that says you have to use inheritance. Your situation might be such that,
for good reasons, it makes sense to create new classes that implement the entire API without
inheriting from BottleNumber.

Choosing between depending on a class name versus depending on inheritance means placing a
bet on which dependency is more stable. Is it more likely that the name of the factory will
change, or that role players will stop using inheritance? If you think the factory name is more
stable than the use of inheritance, you should explicitly direct the register message to
BottleNumber. If you fear that the factory name might change but believe that you’ll always use
inheritance, your code should rely on finding register in the hierarchy.

No matter how you decide in the present, your choice can only be a guess. Pay attention to how
your guesses turn out and they’ll get better. One reason experienced programmers are good at
writing change-tolerant code is that they’ve built up a set of internal guidelines about how to

7.7. Summary

Page 190

guess well. They understand that although dependencies can’t be avoided, they can be
deliberately chosen with an eye towards stability.

This factory is now open for extension, has dispersed the choosing logic, and allows candidates
to register themselves. It can manufacture instances of classes whose names it does not know, for
reasons of which it is unaware.

7.7. Summary
Maintainable OO code rests on polymorphism, on constructing applications from families of
small, interchangeable objects that represent variants of a role. Instead of writing classes that
contain a bunch of conditionals that choose behavior, polymorphism asks you to disperse
variants of behavior into classes of their own.

Placing variants into separate classes eliminates the need for conditionals inside those classes,
but it does not completely eliminate the need for conditionals; it just kicks the proverbial
conditional can down the road (or back in the stack). In every situation where a role-playing
object is needed, some code, somewhere has to know enough to pick the right one.

Enter factories.

Factories are where conditionals go to die. They contain conditionals that select classes, and they
isolate those conditionals in a single, easily-tested place. They hide the names of role-playing
classes and so allow the rest of your application to depend on the API of a role rather than on the
concrete names of whatever classes currently exist.

This chapter explored the various forms a factory might take, and considered the trade-offs
involved. No factory, whether open or closed, whether it owns the choosing logic or asks
candidates if they should be chosen, or whether it reaches out for registrants or accept
volunteers, is perfect for every situation. All factories, however, enable polymorphism and thus
improve your code.

8.1. Appreciating the Mechanical Process

Page 191

8. Developing a Programming Aesthetic
Until now, most changes to the "99 Bottles" code have been the result of formal refactorings.
You’ve been an active participant in that you’ve selected code smells to attack and picked recipes
to follow, but the resulting code was primarily dictated by those recipes. The process has been
both prescriptive and proscriptive; the refactoring recipes tell you what to do while at the same
time forbidding you from wandering off to tinker on tangential shiny things.

This chapter lifts its gaze and considers a few problems where the solutions aren’t so clear cut.
Sometimes neatly arranged, recipe-driven, fully working code remains unsatisfying because it
feels like it isn’t quite good enough. Perhaps it retains a bit of duplication, or has a place where
adding another abstraction would make it easier to fulfill an anticipated requirement, or is
implemented in a way that makes you fear for its maintainability.

Voluntarily altering working code costs money, and doing so declares that you believe that
rearranging this code right now is more important than anything else on the backlog. The
opportunity cost of improving existing code is that you can’t simultaneously attend to other
urgent things.

If you’re bothered by something in code, you likely have an idea of what you’d prefer. The
conundrum posed by these fuzzier situations is not in figuring out what to do, but in deciding
whether you’re justified in doing anything at all.

Code smells and refactoring recipes represent the distilled judgement of many deeply
experienced OO practitioners. Those folks wrote piles of code, both good and bad, and over time
noticed correlations between code arrangements and costs. Close attention to ultimate outcomes
led them to develop a sense of what to actively do (or diligently avoid) in present code to
preclude future pain. They developed a feeling, an "aesthetic", about the rightness of code, and
this aesthetic guided their decisions in times of confusion and uncertainty.

Over time their aesthetic sense of what was pleasing and beneficial got codified into a set of
rules, or heuristics. These heuristics became the code smells and refactoring recipes that have
been bequeathed to you. The definitions and directions contained therein cover a lot of ground
and solve many problems, but do not substitute for developing a programming aesthetic of your
own.

The goal of this chapter is to start you down that path.

8.1. Appreciating the Mechanical Process
Before diving into programming aesthetics, take a minute to appreciate the current code. If you
revert back to the simplest factory from Chapter 7, it looks like this:

 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }

8.1. Appreciating the Mechanical Process

Page 192

 5
 6 public function verses(int $upper, int $lower): string {
 7 return implode(
 8 "\n",
 9 array_map([$this, 'verse'], range($upper, $lower))
 10);
 11 }
 12
 13 public function verse(int $number): string {
 14 $bottleNumber = BottleNumber::for($number);
 15
 16 return
 17 ucfirst("{$bottleNumber} of milk on the wall, ") .
 18 "{$bottleNumber} of milk.\n" .
 19 "{$bottleNumber->action()}, " .
 20 "{$bottleNumber->successor()} of milk on the wall.\n";
 21 }
 22 }
 23
 24 class BottleNumber {
 25 protected $number;
 26
 27 public static function for(int $number): BottleNumber {
 28 switch ($number) {
 29 case 0:
 30 $className = BottleNumber0::class;
 31 break;
 32 case 1:
 33 $className = BottleNumber1::class;
 34 break;
 35 case 6:
 36 $className = BottleNumber6::class;
 37 break;
 38 default:
 39 $className = BottleNumber::class;
 40 break;
 41 }
 42 return new $className($number);
 43 }
 44
 45 public function __construct(int $number) {
 46 $this->number = $number;
 47 }
 48
 49 public function __toString(): string {
 50 return $this->quantity() . " " . $this->container();
 51 }
 52
 53 public function quantity(): string {
 54 return (string)$this->number;
 55 }
 56
 57 public function container(): string {
 58 return "bottles";
 59 }
 60
 61 public function action(): string {
 62 return "Take " . $this->pronoun() . " down and pass it around";
 63 }
 64
 65 public function pronoun(): string {
 66 return "one";
 67 }
 68

8.1. Appreciating the Mechanical Process

Page 193

 69 public function successor(): object {
 70 return BottleNumber::for($this->number - 1);
 71 }
 72 }
 73
 74 class BottleNumber0 extends BottleNumber {
 75 public function quantity(): string {
 76 return "no more";
 77 }
 78
 79 public function action(): string {
 80 return "Go to the store and buy some more";
 81 }
 82
 83 public function successor(): object {
 84 return BottleNumber::for(99);
 85 }
 86 }
 87
 88 class BottleNumber1 extends BottleNumber {
 89 public function container(): string {
 90 return "bottle";
 91 }
 92
 93 public function pronoun(): string {
 94 return "it";
 95 }
 96 }
 97
 98 class BottleNumber6 extends BottleNumber {
 99 public function quantity(): string {
100 return "1";
101 }
102
103 public function container(): string {
104 return "six-pack";

This code is a tribute to the intense simplicity achieved by deft handling of complexity. It’s a
testament to the efficacy of programming by identifying smells and removing them using well-
known refactoring recipes. Consider how the code above might look had you charged forward
from the end-point of your original 30-minutes-of-effort solution, or even if you’d started from
the Incomprehensibly Concise, Speculatively General, or Concretely Abstract implementations in
Chapter 1. It’s terrifyingly easy to imagine solutions that are far more complicated and far less
revealing of intentions.

As you have probably long since realized, the 99 Bottles problem is more nuanced than it
initially appears. Songs like "99 Bottles" are great for teaching deep lessons about dealing with
complexity. The song is simple enough to be grasped quickly, yet provides fodder for endless
discussions about the subtle distinctions between differing concepts. While the finely sliced code
above (pleasing though it is) may seem a bit grandiose for this situation, the techniques used to
create it scale to infinitely more difficult problems. Songs are great because they allow you to
easily practice techniques that can then be used to conquer fiendishly complex domains.

The "99 Bottles" song, in particular, has a long history of being used for this purpose. Renowned
computer scientist Donald Knuth wrote an article over 40 years ago titled The Complexity of
Songs which directly references "m Bottles of Milk on the Wall." The 99 Bottles problem is so
commonly tackled that there are over 1500 implementations in various programming languages.

http://www.cs.bme.hu/~friedl/alg/knuth_song_complexity.pdf
http://www.99-bottles-of-beer.net/

8.1. Appreciating the Mechanical Process

Page 194

The song is perfect fodder for teaching; it’s simultaneously simple enough to learn from and
hard enough to make the lessons useful.

This book is just one more link in a long chain. The story the current implementation tells is that
all verses are alike in an abstract way, and that bottle numbers vary within each verse. The song
and verses methods of Bottles accumulate individual verses. The verse method (repeated
below) turns a number into a bottle number and then uses that bottle number to produce verses.

Listing 8.1: Verse as Described With the Word And
1 public function verse(int $number): string {
2 $bottleNumber = BottleNumber::for($number);
3
4 return
5 ucfirst("{$bottleNumber} of milk on the wall, ") .
6 "{$bottleNumber} of milk.\n" .
7 "{$bottleNumber->action()}, " .
8 "{$bottleNumber->successor()} of milk on the wall.\n";
9 }

The presence of the word "and" in the previous sentence should arouse your suspicions—it
implies that the verse method does two things. That pesky blank line on line 3 above may cause
further concern. Programmers add blank lines to indicate changes of topic, and changes of topic
suggest multiple responsibilities. Blank lines smell.

Taken together, these misgivings might tempt you to proactively refactor verse into two smaller
methods, one to convert $number into a bottle number and the other to produce the actual verse.

Despite this very reasonable temptation, there’s a good argument for leaving verse as is. For
goodness' sake, the method works, it contains only six lines of code, and no one has asked for a
new feature that would force any alterations. Breaking verse into multiple methods would
introduce additional message sends and add extra levels of indirection. Increasing indirection
makes code harder to follow.

Perhaps it’s best to leave well enough alone and sneak quietly away.

In situations like this, what should you do? Is it better to voluntarily rewrite this method to
separate the responsibilities, or should you leave it as is and see what the future brings? From a
broader perspective, is it ever okay to voluntarily improve code, or should you always restrict
yourself to writing the minimal code dictated by a refactoring recipe or necessary to fulfill an
explicit requirement?

These are some of the most urgent questions for the practical programmer. What they have in
common is uncertainty. Choosing to make a voluntary change places a bet that the change’s cost
will be repaid by a future offsetting reduction. Some potential changes are such good bets that
they should always be made, and others such long shots as to be consistently avoided.

The choice about when to voluntarily change code relies on judgement. Judgement is informed
by past experience. Experience accumulates into an intuition about how best to act in the face of

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-10/lib/Bottles.php#L17-L25

8.2. Clarifying Responsibilities with Pseudocode

Page 195

uncertainty. Intuition is a form of pattern matching performed by your unconscious mind,
trained throughout your career on scores of code examples.

Because your unconscious mind can’t talk, this is where programming begins to feel like an art.
Those feelings you have about the rightness of code are likely correct, but the big super-
computer of your unconscious mind can’t supply words to defend them. Sadly, advocating
changes to code based on feelings you can’t explain is not likely to be convincing.

Thus, while intuition helpfully supplies feelings about code to draw your attention to things that
might benefit from action, it’s the job of your conscious brain to figure out how to put words on
those feelings. These words form your programming aesthetic, or the set of principles that
underlie and guide your work. Intuition drives action, justified by aesthetics, and guided by
heuristics.

There’s much to explore about programming aesthetics, but having briefly pondered these
broader questions, put them aside for now. Just in the nick of time you’re rescued by the arrival
of a new requirement.

Your customer wants other songs that are similar to "99 Bottles" but contain different lyrics.

8.2. Clarifying Responsibilities with Pseudocode
Your first question should be "Similar in what way?" Recall the verses method:

Listing 8.2: Verses Counts Down
1 public function verses(int $upper, int $lower): string {
2 return implode(
3 "\n",
4 array_map([$this, 'verse'], range($upper, $lower))
5);
6 }

This method is responsible for producing a range of verses of the song. The "99 Bottles" song,
however, is a bit special in the universe of all songs, and this specialness is exposed by the use of
range($upper, $lower) on line 4 above. Generally songs start at the bottom and count up, but
this song starts at the top and counts down. When your customer asks you to produce other
songs like the "99 Bottles" song, they’re asking you to write code to produce other songs that also
count down.

They’re asking for a variant that can produce different verses. This means that the code has to
change. As you learned in Chapter 3, the first step in deciding what code to write next is to
consult the Open-Closed Flowchart.

So:

1. Is the code open to the vary the verses requirement?
No.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-10/lib/Bottles.php#L10-L15

8.2. Clarifying Responsibilities with Pseudocode

Page 196

2. Do you know how to make it open?
Probably not.

3. What’s the best-understood code smell?
While it’s clear that the verse method might be doing too much, it’s not clear how
identifying and fixing any currently-existing code smell will help.

Paradoxically, when faced with uncertainty about what to do next, it can sometimes help to sigh
deeply, ignore everything you’ve learned, and just write a new conditional. This conditional’s
purpose is to supply more information about the problem, and writing it can clarify what needs
to change. Once you understand what should change, you can discard the conditional and write
better code.

If you were to sketch in the conditional needed to produce other kinds of verses, the verse
method might look like this:

 1 public function verse(int $number): string {
 2 // if (99BottlesSong) {
 3 $bottleNumber = BottleNumber::for($number);
 4
 5 return
 6 ucfirst("{$bottleNumber} of milk on the wall, ") .
 7 "{$bottleNumber} of milk.\n" .
 8 "{$bottleNumber->action()}, " .
 9 "{$bottleNumber->successor()} of milk on the wall.\n";
10 // } elseif (unknownSong2Verse) {
11 // ...
12 // assemble verse for unknown song 2
13 // ...
14 // } elseif (unknownSong3Verse) {
15 // ...
16 // assemble verse for unknown song 3
17 // ...
18 // }
19 }

The pseudocode[18] above is commented out but it doesn’t matter that it’s not working code—the
conditional’s mere presence helps clarify what needs to be done. In a backwards way, the
purpose of this pseudocode is to introduce new code smells. The verse method above now
contains a Switch Statement and is a Long Function. These code smells provide a glimpse into the
future, imparting information about what will happen if you embark down the solve-the-
problem-by-adding-conditionals path. The imaginary conditional provides visible,
incontrovertible proof that nothing good will come of this.

Now that you can anticipate the smells, you can preemptively choose one and apply the curative
refactoring. The function is long because of the conditional so you can ignore that smell, leaving
only Switch Statement. Each of the imaginary branches represents an unrelated set of lyrics, so
the best way to cure this conditional is to apply Extract Class to each branch.

Discard the pseudocoded conditional and revert to the earlier verse method. You can think of
the original code as one branch of an imaginary conditional that needs to be extracted into a
class of its own.

8.3. Extracting the Verse

Page 197

8.3. Extracting the Verse
You’ve already practiced Extract Class, back in the Extracting BottleNumber section of chapter 5
where a new class was created to cure the Primitive Obsession on $number. Here’s a reminder of
that recipe:

Choose a class name and create the new class.

Add a property and a __construct method to encapsulate primitive data.

Copy the methods from the old class to the new.

Forward messages from the old class to the new.

One by one, remove arguments from the methods in the new class, and corresponding
parameters from the message sends in the old class.

The first concern, as always, is what to name the new class. Classes should be named for exactly
what they are, so a class that represents a verse in the "99 Bottles" song could reasonably be
named BottleVerse, as shown below.

Listing 8.4: Create BottleVerse
1 class BottleVerse {
2 }

BottleVerse needs a __construct method that accepts a $number argument, and a property
to store this number. Here’s that code:

Listing 8.5: Initialize Number
1 class BottleVerse {
2 protected $number;
3
4 public function __construct(int $number) {
5 $this->number = $number;
6 }
7 }

You haven’t yet changed anything in Bottles->verse so running tests at this point confirms
that the old code still works and proves that the new BottleVerse class is syntactically correct.
(Note that the -> in Bottles->verse denotes that verse is an instance method on Bottles.
Had verse been a static function, this would have been written Bottles::verse.)

Because you’re creating a new class by following a refactoring recipe instead of doing TDD, you
would normally want the new class to be fully plugged into the old before altering any of the
new class’s code. The safest process is to first assemble the new class from code exactly copied
from the old, and next to alter the old class to invoke the code in the new. Only then should you
return to the new class to make improvements or changes. Working this way minimizes the
chance that you’ll break something, and makes things that you do accidentally break easier to
debug.

The next step, then, is to copy the entire verse method from Bottles to BottleVerse. This
looks like:

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-20/lib/Bottles.php#L28-L29
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-30/lib/Bottles.php#L28-L34

8.3. Extracting the Verse

Page 198

Listing 8.6: Copy Verse to BottleVerse
 1 class BottleVerse {
 2 // ...
 3 public function verse(int $number): string {
 4 $bottleNumber = BottleNumber::for($number);
 5
 6 return
 7 ucfirst("{$bottleNumber} of milk on the wall, ") .
 8 "{$bottleNumber} of milk.\n" .
 9 "{$bottleNumber->action()}, " .
10 "{$bottleNumber->successor()} of milk on the wall.\n";
11 }
12 }

As always, run the tests after this change. They should again confirm that the old code works,
and the new code is syntactically correct.

Now you can start integrating this new class back into the class from which it was extracted.
Returning to Bottles, insert a line into its verse method that creates an instance of
BottleVerse and forwards the verse message on, as shown on line 4 below.

Listing 8.7: Create a BottleVerse
 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 (new BottleVerse($number))->verse($number);
 5
 6 $bottleNumber = BottleNumber::for($number);
 7
 8 return
 9 ucfirst("{$bottleNumber} of milk on the wall, ") .
10 "{$bottleNumber} of milk.\n" .
11 "{$bottleNumber->action()}, " .
12 "{$bottleNumber->successor()} of milk on the wall.\n";
13 }
14 }

Line 4 above executes the new code but ignores the returned verse. You can’t know if the result
is correct, but you have proven that the new BottleVerse code runs without blowing up.

The next step is to actually use that result. This is easily done by commenting out the old
code and adding a return, as shown here:

Listing 8.8: Use Result From BottleVerse
 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 return (new BottleVerse($number))->verse($number);
 5
 6 // $bottleNumber = BottleNumber::for($number);
 7
 8 // return
 9 // ucfirst("{$bottleNumber} of milk on the wall, ") .
10 // "{$bottleNumber} of milk.\n" .
11 // "{$bottleNumber->action()}, " .
12 // "{$bottleNumber->successor()} of milk on the wall.\n";

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-40/lib/Bottles.php#L28-L44
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-50/lib/Bottles.php#L5-L28
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-60/lib/Bottles.php#L5-L28

8.4. Coding by Wishful Thinking

Page 199

13 }
14 }

Running the tests confirms that you’ve successfully extracted the BottleVerse class.

At this point the code works but has an annoying quirk: line 4 above refers to $number twice.
This is clearly redundant and should be fixed. These redundancies are echoed in BottleVerse
(repeated below for convenience). In lockstep with Bottles, BottleVerse must be initialized
with $number (line 4 below), and also has a verse method that requires a $number argument
(line 8).

Listing 8.9: Bottle Verse From the Recipe
 1 class BottleVerse {
 2 protected $number;
 3
 4 public function __construct(int $number) {
 5 $this->number = $number;
 6 }
 7
 8 public function verse(int $number): string {
 9 $bottleNumber = BottleNumber::for($number);
10
11 return
12 ucfirst("{$bottleNumber} of milk on the wall, ") .
13 "{$bottleNumber} of milk.\n" .
14 "{$bottleNumber->action()}, " .
15 "{$bottleNumber->successor()} of milk on the wall.\n";
16 }
17 }

These redundant references are transient and exist because of the way BottleVerse was
extracted. The recipe allows you to extract a new class without breaking an existing test. In order
to keep the tests running, you have to copy code. The code copied to the new class has no test
coverage so it oughtn’t be changed until it’s fully wired-in to the old class and safely under the
protection of the existing tests.

This style of coding leans heavily upon the refactoring recipes, operating in faith that they will
eventually result in working code. Since the extracted class is created using a time-tested recipe,
the class doesn’t have to be built test-first. Not that the extracted class doesn’t need tests of its
own—it surely does, and will eventually get them—but the tests don’t need to be written first.
You’re isolating existing behavior, not discovering new behavior. In situations like this, the
recipes supply the most straightforward and direct path to your coding goal.

You’ve now created a BottleVerse class that represents a verse. Granted, it still contains a few
redundant copies of $number, but even in its current state the Bottles class can use it instead of
generating verses itself.

At this point, the standard recipe calls for cleaning up the extraneous references to $number. In
the spirit of developing a programming aesthetic, the next section invokes intuition and follows
an alternative path.

8.4. Coding by Wishful Thinking

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-60/lib/Bottles.php#L30-L46

8.4. Coding by Wishful Thinking

Page 200

Trusting the Extract Class recipe reduces coding friction by allowing you to jump right into
extracting the BottleVerse class, but it requires that you refrain from changing the copied code
until it’s fully used. This restriction on changing copied code often leaves redundant arguments,
which must be subsequently dealt with.

You likely recall encountering a similar problem during the BottleNumber extraction in
Chapter 5 where removing the redundant arguments required a series of meticulous steps
(detailed in the Removing Arguments section). It’s important to understand how to follow those
detailed steps, but now that you do understand them and can fall back on them if trouble arises,
you can allow yourself more leeway. This section explores a more advanced technique that
transforms the code in bigger steps.

Software developers have long relied on structured speculation. Pseudocode is speculative, and
it has already been used to reveal the code smells that would have arisen had you added a new
conditional to generate other counting-down songs. That pseudocode quickly and painlessly
revealed a shortcut to a better path.

TDD is yet another example. Test-driving code begins with a speculative leap—the first thing you
do is write a test you wish would pass. Initially, of course, this test fails. You then shift
perspectives and write the production code to pass that test. Once this succeeds, you toggle back
into test writing mode and speculatively create the next test. Done well, this alternating process
streamlines the proving of ideas and produces working code almost as quickly as it’s conceived.

The seminal book Structure and Interpretation of Computer Programs (SICP) contains several
references to "wishful thinking." The authors refer to it as "a powerful strategy of synthesis."

Like pseudocode and TDD, coding by wishful thinking allows you to sketch software design ideas
economically, with a low level of commitment. In other words, you can guess, unburdened by
penalties for being wrong. This approach to writing code can feel unruly and indulgent, but it’s a
bona fide, efficient, and often elegant technique for making progress, and can be applied right
here.

The echo of $number in

(new BottleVerse($number))->verse($number);

feels clumsy and redundant. The techniques shown in the Removing Arguments section of
Chapter 5 can certainly be used to clean up this echo, but sometimes it makes sense to solve
problems like this by considering the broader domain.

What code do you wish you had? What message should Bottles expect to send to BottleVerse
to get back the words in a verse? Think about this from the message sender’s point of view: What
does Bottles want from BottleVerse?

It wants lyrics.

If Bottles wants lyrics from BottleNumber it should just ask, like so:

https://mitpress.mit.edu/books/structure-and-interpretation-computer-programs-second-edition

8.4. Coding by Wishful Thinking

Page 201

(new BottleVerse($number))->lyrics();

Now that you’ve expressed this wish, it’s easy to make it come true. Revert back to the original
Bottles->verse method and insert the wishful code, as shown below:

Listing 8.10: Lyrics by Wishful Thinking
 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 // return (new BottleVerse($number))->lyrics();
 5 $bottleNumber = BottleNumber::for($number);
 6
 7 return
 8 ucfirst("{$bottleNumber} of milk on the wall, ") .
 9 "{$bottleNumber} of milk.\n" .
10 "{$bottleNumber->action()}, " .
11 "{$bottleNumber->successor()} of milk on the wall.\n";
12 }
13 }

Line 4 above doesn’t yet work and so is temporarily commented out.

The next step is to go to BottleVerse and rename the

verse($number)

method to

lyrics

and refer to the number property rather than referencing the parameter, as shown on lines 3
and 4 below:

Listing 8.11: BottleVerse Responds to Lyrics
 1 class BottleVerse {
 2 // ...
 3 public function lyrics(): string {
 4 $bottleNumber = BottleNumber::for($this->number);
 5
 6 return
 7 ucfirst("{$bottleNumber} of milk on the wall, ") .
 8 "{$bottleNumber} of milk.\n" .
 9 "{$bottleNumber->action()}, " .
10 "{$bottleNumber->successor()} of milk on the wall.\n";
11 }
12 }

BottleVerse isn’t being used right now so running the tests just proves that this code is
syntactically correct.

Now return to Bottles and uncomment the wishful line 4, as you see here:

Listing 8.12: Get BottleVerse’s Lyrics
 1 class Bottles {
 2 // ...

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-80/lib/Bottles.php#L5-L27
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-90/lib/Bottles.php#L29-L45
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-100/lib/Bottles.php#L5-L27

8.5. Inverting Dependencies

Page 202

 3 public function verse(int $number): string {
 4 return (new BottleVerse($number))->lyrics();
 5 $bottleNumber = BottleNumber::for($number);
 6
 7 return
 8 ucfirst("{$bottleNumber} of milk on the wall, ") .
 9 "{$bottleNumber} of milk.\n" .
10 "{$bottleNumber->action()}, " .
11 "{$bottleNumber->successor()} of milk on the wall.\n";
12 }
13 }

Line 4 above executes the new BottleVerse->lyrics method and returns its result.

Finally (drum roll), delete the original implementation from the method above. This reduces
Bottles->verse to:

Listing 8.13: Verse Gets Lyrics
1 class Bottles {
2 // ...
3 public function verse(int $number): string {
4 return (new BottleVerse($number))->lyrics();
5 }
6 }

The Bottles->verse method now gets lyrics from a different class, BottleVerse.

Coding by wishing thinking led to the discovery of a more intention-revealing interface for
BottleVerse.

Notice that while this technique, making multiple changes to BottleVerse before using it in
Bottles, reduces the number of refactoring steps, it also adds risk. Running the tests after each
single-line change to BottleVerse proves that the new code is syntactically correct, but not that
it actually works. Without care, you could easily write a big pile of buggy code before plugging
the BottleVerse class back into Bottles and discovering that it doesn’t work.

If you plug BottleVerse into Bottles and tests fail, the rules of refactoring say you must undo
and fix the offending code. If you can’t immediately fix the problem, either drop back and use
the original technique that takes smaller steps, or TDD the new BottleVerse.

Despite the added risks, this alternate technique can be very efficient. It’s best used in cases
where you’re extracting a class and want to make a few small changes. If the extracted class
needs lots of alterations you’ll likely have better luck TDDing it from the start. In the future, take
the opportunity to expand your programming aesthetic by trying both techniques and paying
attention to how your choices turn out.

This completes the extraction of BottleVerse, a new class that responds to lyrics.

8.5. Inverting Dependencies
Recall that the impetus behind extracting BottleVerse was the need to produce songs with
other lyrics. Despite having completed the extraction, you can’t yet fulfill this vary-the-verse

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-110/lib/Bottles.php#L5-L20

8.5. Inverting Dependencies

Page 203

requirement. Why not? Because Bottles is currently stuck to BottleVerse. You have extracted
the class, but not yet inverted the dependency.

The Dependency Inversion Principle (DIP) contributes the 'D' in the SOLID acronym and can be
defined as "depend on abstractions, not concretions." This section demystifies the principle and
employs it to loosen the coupling between Bottles and BottleVerse.

Here’s a reminder of the current Bottles and BottleVerse classes:

Listing 8.14: Bottles Depends on BottleVerse
 1 class Bottles {
 2 public function song(): string {
 3 return $this->verses(99, 0);
 4 }
 5
 6 public function verses(int $upper, int $lower): string {
 7 return implode(
 8 "\n",
 9 array_map([$this, 'verse'], range($upper, $lower))
10);
11 }
12
13 public function verse(int $number): string {
14 return (new BottleVerse($number))->lyrics();
15 }
16 }
17
18 class BottleVerse {
19 protected $number;
20
21 public function __construct(int $number) {
22 $this->number = $number;
23 }
24
25 public function lyrics(): string {
26 $bottleNumber = BottleNumber::for($this->number);
27
28 return
29 ucfirst("{$bottleNumber} of milk on the wall, ") .
30 "{$bottleNumber} of milk.\n" .
31 "{$bottleNumber->action()}, " .
32 "{$bottleNumber->successor()} of milk on the wall.\n";
33 }
34 }

On line 14 above the verse method of Bottles knows the name of the concrete BottleVerse
class. Bottles therefore depends on BottleVerse. Put another way, there’s a tight coupling
between Bottles and BottleVerse.

This coupling has consequences, the least of which is that if the name of the BottleVerse class
changes, Bottles will also have to change. Being forced to go through your entire codebase and
change a bunch of explicit references from BottleVerse to another name would be
inconvenient but not devastating.

A far worse repercussion is that Bottles can’t collaborate with any class other than
BottleVerse. Even if you had an entire library of objects that returned lyrics for different

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-110/lib/Bottles.php#L5-L38

8.5.1. Injecting Dependencies

Page 204

songs, and even if those objects looked just like BottleVerse from the outside, meaning that
they conformed to the same API, Bottles couldn’t use them. Bottles is glued to BottleVerse
and can’t acquire lyrics from any other object.

8.5.1. Injecting Dependencies

In order for Bottles to produce varying lyrics without resorting to a conditional, the code has to
be rearranged so that Bottles can seamlessly talk to any lyrics provider. It’s time to loosen the
coupling between Bottles and BottleVerse.

Bottles depends on, or has knowledge about, two different BottleVerse-related things. It
knows:

1. a concretion, that is, the name of the BottleVerse class, and

2. an abstraction, namely, the idea that there’s an object that can provide a verse.

Knowing the abstraction is required. It’s a fundamental part of Bottles's responsibility to
understand that objects exist that can provide verses, and to know how to collaborate with them.
Bottles has to know these things in order to do its job.

Knowing about the concretion, on the other hand, is completely avoidable. Bottles doesn’t
have to know the concrete class name BottleVerse, this name could easily be passed into
Bottles from the outside. Doing so not only reduces the number of dependencies inside of
Bottles, but it also opens Bottles to an entire universe of existing and potential lyrics
providers.

You can think of classes that provide lyrics as playing a common role. The set of messages to
which BottleVerse responds establishes an API that defines this role. Classes that want to
supply lyrics must conform to this API.

Roles need names, and this role could reasonably be named verse template. Line 4 below
embodies the wish to depend on a player of the verse template role rather than on the
BottleVerse class:

Listing 8.15: Wishing to Decouple From BottleVerse
1 class Bottles {
2 // ...
3 public function verse(int $number): string {
4 // return (new $this->verseTemplate($number))->lyrics();
5 return (new BottleVerse($number))->lyrics();
6 }
7 }

The wish above breaks the tests so it’s temporarily commented out, but identifying it is
worthwhile because its presence prompts you to write code to make it come true.

Notice that the wishful code makes the smallest possible change by replacing the BottleVerse
class name with the verseTemplate role name. This line of code chains two dependencies
together. First, it knows that $this->verseTemplate(number) is a constructor function, and

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-120/lib/Bottles.php#L5-L21

8.5.1. Injecting Dependencies

Page 205

second, it knows that invoking that constructor returns an object that responds to lyrics. If this
chaining concerns you, never fear; it’s the topic of the subsequent Obeying the Law of Demeter
section. For now just recognize that changing BottleVerse to verseTemplate doesn’t add any
additional dependencies. If you are suddenly concerned about line 4 above but weren’t
previously bothered by line 5, spend a minute trying to articulate your concern before you start
reading the Demeter section.

Returning to the current wish, change Bottles so that an outside agent passes a
$verseTemplate that defaults to BottleVerse during creation (lines 4 and 5 below). Next,
create a property to store $verseTemplate's value (line 2):

Listing 8.16: Inject a Verse Template
1 class Bottles {
2 protected $verseTemplate;
3
4 public function __construct(string $verseTemplate = BottleVerse::class) {
5 $this->verseTemplate = $verseTemplate;
6 }
7 // ...
8 }

Now that verseTemplate is being injected into Bottles, the wish should work. Return to the
verse method, uncomment the wishful line, run the tests, and then delete the line that follows.
This shrinks the body of verse to the single line of code shown on line 20 below:

Listing 8.17: Use the Verse Template
 1 class Bottles {
 2 protected $verseTemplate;
 3
 4 public function __construct(string $verseTemplate = BottleVerse::class) {
 5 $this->verseTemplate = $verseTemplate;
 6 }
 7
 8 public function song(): string {
 9 return $this->verses(99, 0);
10 }
11
12 public function verses(int $upper, int $lower): string {
13 return implode(
14 "\n",
15 array_map([$this, 'verse'], range($upper, $lower))
16);
17 }
18
19 public function verse(int $number): string {
20 return (new $this->verseTemplate($number))->lyrics();
21 }
22 }
23
24 class BottleVerse {
25 protected $number;
26
27 public function __construct(int $number) {
28 $this->number = $number;
29 }
30
31 public function lyrics(): string {

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-130/lib/Bottles.php#L5-L27
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-140/lib/Bottles.php#L5-L44

8.5.2. Isolating Variants

Page 206

32 $bottleNumber = BottleNumber::for($this->number);
33
34 return
35 ucfirst("{$bottleNumber} of milk on the wall, ") .
36 "{$bottleNumber} of milk.\n" .
37 "{$bottleNumber->action()}, " .
38 "{$bottleNumber->successor()} of milk on the wall.\n";
39 }
40 }

These changes complete the extraction and injection of BottleVerse, but there are a few issues
with the current code that should be acknowledged.

First, you may be wondering why $verseTemplate defaults to the BottleVerse class (line 4
above) rather than to an instance of that class. This perhaps brings to mind a broader question:
when injecting collaborators, should you inject classes or instances of those classes?

Also, you just went to a fair amount of trouble to remove the hard-coded BottleVerse class
name from the verse method in Bottles, and yet there’s another a place in this code where a
method references a class name. On line 32 above, the BottleVerse->lyrics method is tightly
coupled to BottleNumber. If knowing the concrete name of a class is a bad idea, shouldn’t this
reference also be injected?

Both of these questions will be addressed in the Obeying the Law of Demeter section. For now,
and despite these very legitimate concerns, recognize that the current code has been improved.
Not only has BottleVerse been decoupled from Bottles, but you’ve also identified and
defined a new role—verse template—for which you can create and inject entirely new players.

8.5.2. Isolating Variants

Bottles now thinks of itself as interacting with a player of the verse template role rather than a
kind of the BottleVerse type. Because all role players look the same from the outside, Bottles
can treat them as if they’re identical. Bottles can produce as many different songs as you have
different verse templates, without itself changing.

Bottles is now composed of $verseTemplates.

Here’s the process used to create the verse template role:

1. Identify the code you want to vary.

2. Name the underlying concept.

3. Extract the identified code into its own class.

4. Inject this new role-playing object back into the object from which it was extracted.

5. Forward messages from the original class to the injected object.

Here’s an illustration. First you extracted the BottleVerse class from Bottles and then
immediately re-injected it, as shown here:

8.5.2. Isolating Variants

Page 207

Figure 8.1: Extract and Then Inject BottleVerse

Now that Bottles is being passed an object that plays a role, you can invent and inject other
objects to play this role. Bottles will happily collaborate with any verse template that responds
to lyrics, as illustrated below:

8.5.3. Grappling with Inversion

Page 208

Figure 8.2: Inject a Player of the Verse Template Role

This process can be summarized in a few words: Isolate the behavior you want to vary.

That phrase bears repeating. It may deserve flashing lights.

One of the most fundamental concepts in OO is to isolate the behavior you want to vary.

When a change is needed to a small part of your code, extracting and injecting a role-playing
object opens the possibility of creating and injecting other objects that play the same role. The
injection point becomes a seam across which objects interact in a loosely-coupled way. These
seams permit applications to expand and support new behavior without having to change
existing code.

Isolating the bottles variant of the verse template opens your code to the possibility of other
variants. It’s now possible to fulfill the current requirement by creating and injecting a new class
that plays this role.

8.5.3. Grappling with Inversion
The technical name for what happened in the prior refactoring is dependency inversion. The
Dependency Inversion Principle (DIP) can be confusing because its very name contains the
assumption that you already understand it. Webster’s Dictionary defines invert as "to turn over,
to put upside down, to place in a contrary order or direction." Inverting a dependency must
therefore mean flipping it from one state to that state’s opposite. The key to understanding the
principle is to recognize that your code should depend on abstractions. If you stumble upon code
that’s in the state of depending on concretions, DIP says that you should invert those
dependencies and depend upon abstractions instead.

Where Bottles once had a dependency on the BottleVerse concretion, it now has a
dependency on the verse template abstraction. Thus the original dependency has been inverted.

This "depend on abstractions, not on concretions" definition distills the essence of the more
verbose original DIP definition from the May 1996 issue of C++ Report, which explained it like
this:

1. High-level modules should not depend upon low-level modules. Both should depend upon
abstractions.

2. Abstractions should not depend upon details. Details should depend upon abstractions.

As a service to humanity, the following paragraphs rephrase that definition using concepts from
this code.

First, note that the word "module" in the definition above does not refer to a specific language
feature. In this definition module means an encapsulated, named unit of functionality in a
program. You can substitute the words "classes" or "objects" for "modules."

8.6. Obeying the Law of Demeter

Page 209

Bottles is thus the highest-level module in the code. Another way to think about it is that
Bottles is the outermost class. It’s what you started with, and at this point it’s the only class that
has tests. The entire public API is currently defined in Bottles.

Every other class was created by extracting behavior from the high-level module Bottles. These
extracted classes represent lower-level modules. (If you’re feeling annoyed that the highest-level
module in an application that produces many songs is named Bottles, you’re probably not
alone. It’s time to start pondering a better name. This will be addressed in Chapter 9.)

Class names are concretions. When Bottles contained a hardcoded reference to BottleVerse
it depended directly on that concretion. Thus, a higher-level module had a concrete dependency
on a lower-level module. It depended upon a detail rather than an abstraction.

In terms of the current code, the official Dependency Inversion Principle definition can be
rephrased as:

1. High-level modules like Bottles should not depend on lower-level modules like
BottleVerse. Each should depend on abstractions.

2. Bottles should not depend on concrete details like the name of the BottleVerse class.
Bottles should instead depend on an object that polymorphically generates song verses.

Alternatively, using the shorter form of the DIP definition from Chapter 3, you might say:

Bottles should depend on the verseTemplate abstraction rather than the
BottleVerse concretion.

Isolating variants often requires that you invert dependencies, and an excellent technique for
inverting dependencies is to inject them. This section isolated the BottleVerse variant and then
inverted the dependency by injecting BottleVerse as a player of the verse template role.

Bottles depends on the verse template role. BottleVerse plays this role. Because Bottles
now depends upon an abstract role rather than a concrete class, you can create and inject other
players of the verse template role without needing to change Bottles.

You can now fulfill the requirement introduced at the beginning of this chapter by simply
creating and injecting a new variant that plays the abstract verse template role but returns
different concrete lyrics.

Having reached this point, it seems as if you should be done, but yet again it’s time to bring
aesthetics into play.

8.6. Obeying the Law of Demeter
The summary of the Injecting Dependencies section voiced concerns about a line of code that
contained a chain of dependencies . Lines that contain chained dependencies (often exposed by
the presence of many '->'s) might violate the Law of Demeter (LoD). This section defines that law,

8.6.1. Understanding the Law

Page 210

determines where it applies, explores the consequences of ignoring it, and explains how to fix
violations.

8.6.1. Understanding the Law

Have a look at the following example:

Listing 8.18: Verse Method Contains Many Dependencies
1 class Bottles {
2 // ...
3 public function verse(int $number): string {
4 return (new $this->verseTemplate($number))->lyrics();
5 }
6 }

On line 4 above the verse method knows:

that $this->verseTemplate can be called with new

that new expects an argument

that the argument to new must be a number

that the object returned from new …($number) responds to the message lyrics

that lyrics returns the actual lyrics of interest

This list enumerates many things that Bottles knows about but doesn’t control, which means
they’re dependencies. Dependencies are vulnerabilities—if their owner changes them, the effects
of that change will roll downhill to Bottles, which might then be forced to change in turn.
Dependencies can’t be avoided but should certainly be minimized. Be alert for superfluous
dependencies and remove them with extreme prejudice.

None of the extra dependencies in this code are good, but one of them falls into an especially
pernicious category. This code violates the Law of Demeter. The problem solved by this law is
best explained with a new example.

Consider the following (where type declarations have been omitted for brevity):

Listing 8.19: Many Hops
1 class Foo {
2 public function durabilityOfPreferredToyOfBestFriendsPet() {
3 return $this->bestFriend->pet()->preferredToy()->durability();
4 }
5 }

Note: In this and the following permutations of this exaggerated example, assume that the
$bestFriend dependency was injected.

Line 3 above contains a chain of messages, ($this->bestFriend->pet()->preferredToy()-
>durability()), each of which results in an object that conforms to a different API.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-140/lib/Bottles.php#L5-L26

8.6.1. Understanding the Law

Page 211

Code like the above, sadly, is so common that this example may not seem surprising. Typical
though it may be, describing its dependencies is awkward. Line 3 above requires that Foo know:

that the pet message is in the API of the object held in $bestFriend ,

that preferredToy is in the API of the object that the pet message returns, and

that durability is in the API of the object that the preferredToy message sent to the
object returned by the pet message returns.

The fact that the prior sentence is painful to read reflects an underlying problem with the code.

Here’s a visualization of the objects and messages:

Figure 8.3: Violating the Law of Demeter

In the diagram above, Foo first sends pet to $bestFriend. Because $bestFriend is known to
Foo, you can think of it as a direct collaborator. This returns an instance of Pet.

So far so good, but the next thing Foo does is send preferredToy to that returned Pet object.
Notice that Pet is not a direct collaborator of Foo; instead it’s a collaborator of Friend. This
means that Foo has knowledge about, or depends on, its collaborators' collaborators.

The process then repeats when Foo sends durability to the Toy returned by preferredToy.
This message requires that Foo know about the API of Toy. Consequently, Foo has knowledge of
its collaborators' collaborators' collaborators.

8.6.1. Understanding the Law

Page 212

““

The underlying code looks innocuous but the diagram makes it inescapably obvious that you
can’t have a Foo unless you can provide it with a Friend who has a Pet who has a Toy. The
code may produce the correct output at this moment, but will not age well. This tight coupling
across many objects introduces two serious problems which are then blithely lobbed into the
future.

First, arranging the code in this way interferes with your ability to use Foo in new and
unexpected contexts. If an unforeseen feature request arrives that needs Foo's behavior, you
won’t be able to fulfill that request by merely providing a Foo — you’ll also need to supply a
Friend that has a Pet that has a Toy. These messages tightly couple Foo to a chain of different
objects, all of which must be available. Nothing here stands alone—this group of objects acts like
a single thing and any use requires every piece.

These consequences become obvious when you attempt to reuse Foo. Tests serve many
purposes, one of which is to reveal how easy it is to reuse code. Tightly-coupled code is difficult
to test. Tightly-coupled objects require adding lots of context, all of which must be provided in
order to run any test.

If test setup involves creating a bunch of increasingly distant objects, or if you find yourself
putting stubs in stubs, it means that the object you are testing is too tightly coupled to other parts
of your application. An object that’s hard to test is attempting to warn you that it will be difficult
to reuse.

As bad as those consequences are, there’s a second problem here that may be worse. Satisfying a
requirement by chaining messages together allows you to make code work without figuring out
what the objects actually want. In this case, Foo is sending $this->bestFriend->pet()-
>preferredToy()->durability() for a reason. That reason hasn’t been identified or given a
name.

This application depends on a concept, an abstraction, that is implicit in the code. The current
author surely understands the intention behind this code, but future maintainers are forced into
mind-reading and their psychic powers may be unreliable.

Resolving this LoD violation by naming the missing concept will happen soon, but before moving
on, there’s one final part to understanding the Law of Demeter. It’s time to have a look at the
Demeter’s formal definition. The Object-Oriented Programming: An Objective Sense of Style
whitepaper defines the law as follows:

For all classes C and for all methods M attached to C, all objects to which M
sends a message must be instances of classes associated with the following
classes:

1. The argument classes of M (including C).

2. The instance variable classes of C.

(Objects created by M, or by functions or methods which M calls, and objects in
global variables are considered as arguments of M.)

http://www.ccs.neu.edu/research/demeter/papers/law-of-demeter/oopsla88-law-of-demeter.pdf

8.6.2. Curing Demeter Violations

Page 213

The above is a marvel of succinct precision but its very terseness makes it difficult to
understand. While it’s worth having a passing familiarity with this formal definition, now that
you’ve seen Demeter in action, the definition can be restated in more straightforward language.

The Law of Demeter says that from within a method, messages should be sent only to:

objects that are passed in as arguments to the method

objects that are directly available to $this

Be aware that Demeter is slightly more subtle than that definition suggests. It cares about the
APIs of the returned objects, not about each individual object. Therefore, the code

$i1 = new DateInterval("P10D");
$i2 = new DateInterval("P1D");
(new DateTimeImmutable("2050-06-04"))->add($i1)->sub($i2); // '2050-06-13'

contains many object operators but is not a Demeter violation because each intermediate
message returns an object that conforms to the same API. It’s not the number of object operators
that matter, but the kind of object returned by each message.

The Law of Demeter effectively restricts the list of other objects to which an object may send a
message. Its purpose is to reduce the coupling between objects. From the message-senders point
of view, an object may talk to its neighbors but not to its neighbor’s neighbors. Objects may only
send messages to direct collaborators.

8.6.2. Curing Demeter Violations

One obvious way to cure message chains is by introducing message forwarding,[19] a technique
often referred to in casual conversation as delegation.[20] The forwarding code for this example
might look like the following:

 1 class Friend {
 2 public function durabilityOfPreferredToyOfPet() {
 3 return $this->pet->durabilityOfPreferredToy();
 4 }
 5 }
 6
 7 class Pet {
 8 public function durabilityOfPreferredToy() {
 9 return $this->preferredToy->durability();
10 }
11 }
12
13 class Toy {
14 public function durability() {
15 return "1 hour";
16 }
17 }
18
19 // Foo now only sends messages to $bestFriend.
20 class Foo {
21 public function durabilityOfPreferredToyOfBestFriendsPet() {
22 return $this->bestFriend->durabilityOfPreferredToyOfPet();
23 }
24 }

8.6.2. Curing Demeter Violations

Page 214

The code in each method above obeys the Law of Demeter by sending messages only to direct
collaborators. The new methods in Friend and Pet supply the hops that allow Foo to navigate to
the duration method of Toy without coupling itself to each intermediate object in that chain.

Message forwarding definitely helps, but you can be forgiven if you’re feeling objections along
the lines of "Hey, that just added a bunch of new levels of indirection without fundamentally
changing anything." While that’s true, the coupling between Foo and other objects has been
loosened and the benefits of this loosening are immediately visible in Foo's tests. Test setup now
requires supplying only a $bestFriend object that can respond to
durabilityOfPreferredToyOfPet. You no longer have to supply instances of Toy and Pet, or
stub in stubs. Adding these forwarding messages makes Foo easier to test, which means it will be
easier to reuse.

Here’s an updated visualization:

Figure 8.4: LoD Violation Cured With Forwarding

This change certainly improved the code, but Foo still contains troubling echos of the
application’s structural problems. While adding the forwarding technically decouples Foo from
Pet and Toy, the new durabilityOfPreferredToyOfPet message very much implies their
continued existence. This message name is merely a concatenation of the object types and
messages from the original message chain, and it strongly suggests that Foo can only be used in
contexts that also contain Pets and Toys.

8.6.2. Curing Demeter Violations

Page 215

Forwarding messages get named like this when attempts to avoid Demeter violations are
hijacked by knowledge of an application’s existing objects and messages. The trick to honoring
the Law while simultaneously avoiding encoding the names of existing objects into the names of
the forwarding messages is to think about design from the message senders point of view. Foo
wants to know the durability of the favorite toy of the pet of their best friend for a reason, and
the message Foo sends to $bestFriend should be named to reflect Foo's desires.

In this case, Foo is trying to figure out the right length of time to schedule for a pet playdate. The
pets generally play happily until one demolishes its toy, so the playdate’s time-limit should be
based on how long the toy can be expected to survive.

If the message Foo sends to $bestFriend is playdateTimeLimit, the diagram changes to look
like this:

Figure 8.5: LoD Violation Cured With Abstraction

Notice that the above diagram implies nothing about the existence of objects other than Foo and
Friend. As far as Foo is concerned, no other objects exist. The playdateTimeLimit message
reflects Foo's desire to schedule a playdate, but contains no expectation about how the Friend
satisfies this request.

Once you decide on this new message name, fixing the code is as simple as changing Foo to send
it and Friend to implement it, as shown on lines 13 and 2 below:

8.6.2. Curing Demeter Violations

Page 216

 1 class Friend {
 2 public function playdateTimeLimit() {
 3 return $this->pet->durabilityOfPreferredToy();
 4 }
 5 }
 6
 7 // Pet and Toy are unchanged
 8
 9 // Foo now asks for what it wants instead of
10 // making assumptions about its collaborators' collaborators.
11 class Foo {
12 public function playdateTimeLimit() {
13 return $this->bestFriend->playdateTimeLimit();
14 }
15 }

Now that Foo is talking only to a direct collaborator instead poking around in distant objects, it
more easily tolerates unexpected change. If a new requirement arises for playdates to sometimes
involve children rather than pets, you can satisfy this requirement without changing Foo, as
shown below.

 1 class FriendWithPet {
 2 public function playdateTimeLimit() {
 3 return $this->pet->durabilityOfPreferredToy();
 4 }
 5 }
 6
 7 class Pet {
 8 public function durabilityOfPreferredToy() {
 9 return $this->preferredToy->durability();
10 }
11 }
12
13 class Toy {
14 public function durability() {
15 return 3600;
16 }
17 }
18
19 class FriendWithChild {
20 public function playdateTimeLimit() {
21 return $this->child->toleranceForSocialContact();
22 }
23 }
24
25 class Child {
26 public function toleranceForSocialContact() {
27 return 1800;
28 }
29 }
30
31 class Foo {
32 public function playdateTimeLimit() {
33 return $this->bestFriend->playdateTimeLimit();
34 }
35 }

In the above code, there are now two players of the friend role, one with a pet and another with
a child. Both polymorphically implement playdateTimeLimit. The world outside of Foo has
increased in complexity; it’s been redesigned in unanticipated and perhaps alarming ways, but

8.7. Identifying What The Verse Method Wants

Page 217

Foo's behavior has expanded without Foo itself changing at all. These two changes, injecting the
$bestFriend dependency and sending a message named after what Foo wants, permit Foo to
seamlessly collaborate with new objects and tolerate unexpected change.

8.7. Identifying What The Verse Method Wants
Now that you’ve explored the definition and correction of Law of Demeter violations, it’s time to
return to the problem in the Bottles verse method. Here’s a reminder of that code, where line
4 contains the problem:

Listing 8.23: Verse Method Contains Many Dependencies Redux
1 class Bottles {
2 // ...
3 public function verse(int $number): string {
4 return (new $this->verseTemplate($number))->lyrics();
5 }
6 }

You may resist the idea that line 4 above violates the Law of Demeter because you know that
verseTemplate contains a class, and you’ve acquired the habit of thinking of new as special.
Syntactically it is, but in cases like this it’s useful to think of new as a message sent to the class.
The problem here is that line 4 always needs a verseTemplate with a constructor that takes an
argument and then creates an object that in turn responds to lyrics. From the new-is-just-a-
message perspective, this line of code is very much a LoD violation.

The rule for injecting dependencies is that you should inject the thing you want to talk to. In
other words, the receiver may directly send messages only to the injected object, not to it and all
of its friends. The practical effect of this rule is to prohibit the use of injected objects in message
chains that violate the Law of Demeter. If new counts as a real message despite its syntactical
oddness, then this rule also suggests that you should inject instances, not classes to which you
are forced to send new and then something else—in this case, lyrics.

The rule gets broken here because in this case it is not possible to inject an instance of
BottleVerse. Have a look at the entire Bottles class (shown below) and see if you can explain
why.

Listing 8.24: Bottles Generates Verse Numbers
 1 class Bottles {
 2 protected $verseTemplate;
 3
 4 public function __construct(string $verseTemplate = BottleVerse::class) {
 5 $this->verseTemplate = $verseTemplate;
 6 }
 7
 8 public function song(): string {
 9 return $this->verses(99, 0);
10 }
11
12 public function verses(int $upper, int $lower): string {
13 return implode(
14 "\n",
15 array_map([$this, 'verse'], range($upper, $lower))
16);

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-140/lib/Bottles.php#L5-L26
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-140/lib/Bottles.php#L5-L26

8.7. Identifying What The Verse Method Wants

Page 218

17 }
18
19 public function verse(int $number): string {
20 return (new $this->verseTemplate($number))->lyrics();
21 }
22 }

Notice that when new is used to call $verseTemplate on line 20 above, $number is passed as an
argument. One of Bottles' responsibilities is to calculate $number (in the array_map on line
15). For Bottles to be independent of BottleVerse, BottleVerse has to be injected. Because
it’s impossible for outsiders to know the value of $number, they can’t create and inject an
instance—the best they can do is pass in the class in hopes that some downstream process
determines the right $number and creates the right object.

Peculiarities of this domain have pushed you into a coding corner. You’d like to follow the rule
and inject an instance of BottleVerse, but you can’t because the correct value of $number isn’t
known until later. Injecting the class condemns you to a Law of Demeter violation on line 20. You
now have to decide whether it’s worthwhile to fix this violation. This is where your
programming aesthetic comes into play.

The code doesn’t look that bad and future maintainers may not find it surprising. Many folks
won’t even notice the problem, or may feel comfortable ignoring it. What possible harm can
come from leaving this violation in the code?

One way to get a quick handle on the consequences of a code arrangement is to attempt to test it.
It’s long past time for these extracted classes to have their own tests. The original Bottles tests
are providing safety against regressions but supplying no feedback on the evolving design. Since
testing everything is the topic of the next chapter, for now just imagine how you might test the
Bottles->verse method.

Remember that testing is the first form of reuse, so this mental exercise will give you a hint
about how easy it will be to reuse Bottles elsewhere in your application. The amount of test
setup needed will tell you how tightly coupled Bottles is to other objects.

To make this exercise correspond to a real-life problem, pretend that lyrics is an expensive
operation. Your Bottles tests should be able to confirm the correctness of Bottles without
running that distant and costly code, so you’d prefer this test not execute the actual lyrics
method of BottleVerse.

Because of the Demeter violation, you can’t just inject a $verseTemplate that has a simpler
lyrics implementation. Instead you have to inject a $verseTemplate whose new
implementation returns a different object that contains the simpler lyrics implementation.
Already this is almost too complicated to explain, which doesn’t bode well for the tests.

Test setup seems likely to be painful. Pain in testing is a sign of a rigid application and an
indication that there’s something wrong with the design.

These difficulties are directly related to the Demeter violation. If Bottles sent lyrics directly
to $verseTemplate, everything would be more straightforward.

8.7. Identifying What The Verse Method Wants

Page 219

It’s time to make another wish. If you have a verse template and you want its lyrics for a given
verse number, as a dyed-in-the-wool OO practitioner you have every right to feel entitled to send
your lyrics(number) request directly to the $verseTemplate object you have, as shown on
line 4 below:

Listing 8.25: Collaborate Directly With Verse Template
1 class Bottles {
2 // ...
3 public function verse(int $number): string {
4 // return $this->verseTemplate->lyrics($number);
5 return (new $this->verseTemplate($number))->lyrics();
6 }
7 }

If you want something, just ask for it. If the receiver doesn’t know how to comply, teach it. Don’t
be trapped by what’s currently true, but instead, loosen coupling by designing a conversation
that embodies what the message sender wants.

The wish on line 4 above invokes the lyrics method on verseTemplate. You could say that this
code depends on verseTemplate containing an instance. To fulfill the wish as written requires
introducing something new that implements the lyrics($number) method.

An alternative route to fulfillment is to make the existing verseTemplate smarter, i.e. to add a
static lyrics($number) function directly to the BottleVerse class. This has the advantage of
minimizing the overall number of moving parts, but the disadvantage of forcing the wishful code
to explicitly depend on verseTemplate containing a class. The advantages are compelling
enough, at least for now, to justify creating and depending on the static function. If requirements
change, you can always revisit this decision.

Two things need to happen before the static BottleVerse::lyrics($number) function is
created. First, the name of the BottleVerse->lyrics instance method has to change. Second,
the wish has to be altered to invoke a static function.

The first step is to change the name of the lyrics method. In the spirit of postponing decisions,
the code below shrugs and renames it to _lyrics (lines 5 and 11). Note that these two changes
were made simultaneously with a regular expression, so this is a one-undo rather than a one-line
change (more on one-undo changes later):

 1 class Bottles {
 2 // ...
 3 public function verse(int $number): string {
 4 // return $this->verseTemplate->lyrics($number);
 5 return (new $this->verseTemplate($number))->_lyrics();
 6 }
 7 }
 8
 9 class BottleVerse {
10 // ...
11 public function _lyrics(): string {
12 // ...
13 }
14 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-150/lib/Bottles.php#L5-L27

8.7. Identifying What The Verse Method Wants

Page 220

The next step is to update the wish to use a static function:

1 class Bottles {
2 // ...
3 public function verse(int $number): string {
4 // return $this->verseTemplate::lyrics($number);
5 return (new $this->verseTemplate($number))->_lyrics();
6 }
7 }

Now you can add the lyrics($number) function to the BottleVerse class, as shown on lines
3-5 below:

Listing 8.26: Teach BottleVerse About Lyrics
1 class BottleVerse {
2 // ...
3 public static function lyrics(int $number): string {
4 return (new BottleVerse($number))->_lyrics();
5 }
6 // ...
7 }

This static function does two things. First, it uses forwarding to eradicate the extra hop and
resolve the Demeter violation. Next, it establishes a new API for players of the verse template
role. Objects that play this role must respond to BottleVerse::lyrics($number).

Inside of Bottles, the $verseTemplate variable is now thought of as holding a player of the
verse template role rather than the BottleVerse class. The BottleVerse class name is still
visible as the default in the initializer, but in Chapter 9 even this will fall away.

While the lyrics static function might sound a lot like the _lyrics instance method, don’t let
the similarity confuse you. This new BottleVerse::lyrics($number) message embodies the
desire of Bottles to get lyrics from a verse template and represents the abstraction of what
Bottles wants. Notice that it’s named lyrics rather than newLyrics; this name is not the
combination of the message names in the original Demeter violation. This message is more like
playdateTimeLimit than durabilityOfPreferredToyOfPet.

The instance methods of BottleVerse are now private implementation details and have
effectively disappeared from sight. Now that the BottleVerse::lyrics($number) static
function exists, you might be tempted to move the behavior from those private instance methods
into this new static function. This would certainly work, and it would reduce the amount of code.
Why bother to create an instance of BottleVerse at all?

Despite the fact that earlier in this chapter, classes were treated as "just another object" when
deciding if new contributed to a Demeter violation, classes are different from instances in the
most fundamental object-oriented way. In instances, common behavior combines with differing
data to create objects that collaborate to form your application.

Putting domain behavior in a static function rather than in an instance method places a bet that
this domain concept will never involve data that varies. This bet makes sense only if the value of

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-160/lib/Bottles.php#L29-L49

8.7. Identifying What The Verse Method Wants

Page 221

not typing n e and w today is greater than the future cost of converting all the static functions to
instance methods should you find that data needs to vary.

Since static functions resist refactoring,[21] the cost of moving domain behavior from the class to
the instance can be very high, and can far outweigh the paltry savings you get from avoiding
typing new. Because you cannot know the future, you cannot correctly guess when to follow
which strategy. This suggests that the most economical overall plan is to always create instances
of objects. Don’t waste a minute thinking about whether or not to do this. Part of your
programming aesthetic is to reflexively put domain behavior on instances.

Now that the BottleVerse class responds to BottleVerse::lyrics($number) you can
return to Bottles and reduce the verse to the wishful line of code, as shown below:

Listing 8.27: Reduce Verse to the Fulfilled Wish
1 class Bottles {
2 // ...
3 public function verse(int $number): string {
4 return $this->verseTemplate::lyrics($number);
5 }
6 }

Having made that change, here’s an overview of the resulting Bottles and BottleVerse
classes.

Listing 8.28: BottleVerse Class Responds to Lyrics
 1 class Bottles {
 2 protected $verseTemplate;
 3
 4 public function __construct(string $verseTemplate = BottleVerse::class) {
 5 $this->verseTemplate = $verseTemplate;
 6 }
 7
 8 public function song(): string {
 9 return $this->verses(99, 0);
10 }
11
12 public function verses(int $upper, int $lower): string {
13 return implode(
14 "\n",
15 array_map([$this, 'verse'], range($upper, $lower))
16);
17 }
18
19 public function verse(int $number): string {
20 return $this->verseTemplate::lyrics($number);
21 }
22 }
23
24 class BottleVerse {
25 protected $number;
26
27 public static function lyrics(int $number): string {
28 return (new BottleVerse($number))->_lyrics();
29 }
30
31 public function __construct(int $number) {
32 $this->number = $number;

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-171/lib/Bottles.php#L5-L26
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-171/lib/Bottles.php#L5-L48

8.8. Pushing Object Creation to the Edge

Page 222

33 }
34
35 private function _lyrics(): string {
36 $bottleNumber = BottleNumber::for($this->number);
37
38 return
39 ucfirst("{$bottleNumber} of milk on the wall, ") .
40 "{$bottleNumber} of milk.\n" .
41 "{$bottleNumber->action()}, " .
42 "{$bottleNumber->successor()} of milk on the wall.\n";
43 }
44 }

Not only has the BottleVerse class has been extracted and injected, but the resulting Demeter
violation has been fixed by adding a forwarding method.

Now that you understand the Law of Demeter, following it should become a part of your
programming aesthetic. Be extremely biased towards fixing violations. The overall cost of
dealing with each transgression as it occurs is guaranteed to be less than the ultimate cost of
repairing the few that spiral out of control after infecting your code for several years.
Admittedly, there are a few situations in which violating Demeter makes sense. For example, a
report that prints all the relationships in your database should violate Demeter rather than
introduce a bunch of new forwarding messages. But these situations are exceptions. In general,
don’t violate the Law of Demeter, and fix violations as you come upon them.

The above code looks quite reasonable, but studying it should remind you of one final concern.
Despite the efforts in this chapter to depend on abstractions rather than concretions, line 36
above still contains a concretion. The lyrics method of BottleVerse contains a hard-coded
reference to BottleNumber. The next and final section explores alternative ways to arrange this
code.

8.8. Pushing Object Creation to the Edge
The final unresolved issue is that the _lyrics instance method in BottleVerse directly
references the concrete BottleNumber class.

Here’s a reminder of BottleVerse:

Listing 8.29: Lyrics Instance Method Depends on BottleNumber Class
 1 class BottleVerse {
 2 protected $number;
 3
 4 public static function lyrics(int $number): string {
 5 return (new BottleVerse($number))->_lyrics();
 6 }
 7
 8 public function __construct(int $number) {
 9 $this->number = $number;
10 }
11
12 private function _lyrics(): string {
13 $bottleNumber = BottleNumber::for($this->number);
14
15 return
16 ucfirst("{$bottleNumber} of milk on the wall, ") .

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-171/lib/Bottles.php#L28-L48

8.8. Pushing Object Creation to the Edge

Page 223

17 "{$bottleNumber} of milk.\n" .
18 "{$bottleNumber->action()}, " .
19 "{$bottleNumber->successor()} of milk on the wall.\n";
20 }
21 }

The above code contains a lyrics(number) static function (line 4) and a _lyrics instance
method (line 12). The static function is injected with a $number. This static function creates a
new instance of BottleVerse, which it initializes with that $number and then sends _lyrics to
the result.

The code in the _lyrics instance method is concerning in a number of ways.

First, line 13 of _lyrics knows about, or depends on, both BottleNumber and for. It would be
better if the method could do its job without having to know these things.

Next, _lyrics contains a blank line. This suggests a change of topic, which in turn suggests that
the method does more than one thing. The Blank Line ™ code smell tells you that _lyrics
probably violates the Single Responsibility Principle.

Finally, pause a minute and attempt to describe how _lyrics uses $number. Notice that there is
only one reference to $number in the entire method, and that the purpose of this single
reference is to convert $number into something else. This should make the hair on your OO neck
stand up. If someone else knows enough to provide _lyrics with the right $number, surely that
someone can provide the right BottleNumber instead.

If you consider these observations in combination, you’ll notice that they overlap. The code offset
by the blank line contains the BottleNumber concretion, which responds to for, and thus turns
$number into a different object. While the three listed concerns might appear to reflect
unrelated problems, each is actually a symptom of a single design issue. This is good news
because it means that one fix will cure them all.

Well-designed object-oriented applications consist of loosely-coupled objects that rely on
polymorphism to vary behavior. Injecting dependencies loosens coupling. Polymorphism
isolates variant behavior into sets of interchangeable objects that look the same from the outside
but behave differently on the inside.

From the point of view of the object whose collaborators are being injected, this is perfect.
Because these injection-receiving objects can interact with new and unexpected collaborators
without having to change, they are extremely flexible. Need a new variant? Just create a new
class to represent that variant and inject it. The receiver knows not and cares not.

However, this way of thinking about OO introduces a concern that hasn’t yet been fully
addressed. Where do these injected objects get created? When? And by whom?

Applications that use dependency injection evolve, naturally and of necessity, into systems
where object creation begins to separate from object use. Object creation gets pushed more
towards the edges, towards the outside, and the objects themselves interact more towards the
middle, or the inside.

8.8. Pushing Object Creation to the Edge

Page 224

In this case, the code would be simpler if you converted $number to BottleNumber at an earlier
point in the code and just used the result later in _lyrics. This change would move object
creation back in the stack, more towards the edge of this application.

Taking a step back, consider that the current code arrangement works. You don’t have a new
requirement. Also, despite being bound to a concretion, the _lyrics method is already fairly
flexible. Because BottleNumber::for is a factory, it’s already possible to add or change bottle
number role players without breaking the _lyrics method. The factory could manufacture new
bottle numbers of a different type, and BottleVerse->lyrics could happily collaborate with
these new objects without having to change.

Everything in the prior paragraph argues that this code is fine as is and suggests that you should
walk away now. But there’s one more rule (or perhaps more a guideline) that belongs in your
aesthetic about writing object-oriented code. The hard-coded reference to the BottleNumber
class in the _lyrics instance method is troubling. Experienced object-oriented programmers
know that applications most easily adapt to the unknown future if they:

resist giving instance methods knowledge of concrete class names, and

seek opportunities to move the object creation towards the edges of the application.

These are guidelines, not hard and fast rules, so you can allow yourself some leeway. This is
especially true in cases like this where the hard-coded reference is to a factory, so the coupling is
already loose. Even so, you should be eternally alert for instance methods that reference class
names and perpetually on the lookout for ways to remove those references.

In this case, it’s easy to remove the BottleNumber reference from _lyrics while
simultaneously pushing object creation back in the stack. By happy coincidence, fixing the
Demeter violation in the prior section created the perfect place to convert $number into a
BottleNumber.

Have a look at the new wish on line 4 below:

Listing 8.30: Inject a BottleNumber Via Wishful Thinking
1 class BottleVerse {
2 // ...
3 public static function lyrics(int $number): string {
4 // return (new BottleVerse(BottleNumber::for($number)))->_lyrics();
5 return (new BottleVerse($number))->_lyrics();
6 }
7 // ...
8 }

Line 4 above converts $number to BottleNumber in the same method where the BottleVerse
instance gets created. Notice how this change begins to group object creation and separate it
from object use.

This wish changes the type of the object that gets passed to BottleVerse instances during
initialization. As you may recall from Listing 6.33: Return Argument If Already a Bottle Number,
the way to refactor through a type change is to alter the receiving code so that it temporarily

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-180/lib/Bottles.php#L28-L49

8.8. Pushing Object Creation to the Edge

Page 225

tolerates both the old type and the new. Lines 4-6 below do just that by tolerating both $numbers
and BottleNumbers.

Listing 8.31: Accept Number or BottleNumber
1 class BottleVerse {
2 // ...
3 private function _lyrics(): string {
4 $bottleNumber = $this->number instanceof BottleNumber ?
5 $this->number :
6 BottleNumber::for($this->number);
7 // ...
8 }
9 }

Notice that because this refactoring is changing a type, the prior code won’t work until you
remove the type declaration from the $number parameter in BottleVerse's __construct
method, as shown below.

1 class BottleVerse {
2 // ...
3 public function __construct($number) {
4 $this->number = $number;
5 }
6 // ...
7 }

Now that _lyrics works regardless of type, you can return to the
BottleVerse::lyrics($number) static function and uncomment the wishful code, as shown
below:

Listing 8.32: Try the Wishful Code
1 class BottleVerse {
2 // ...
3 public static function lyrics(int $number): string {
4 return (new BottleVerse(BottleNumber::for($number)))->_lyrics();
5 return (new BottleVerse($number))->_lyrics();
6 }
7 // ...
8 }

Running the tests proves that the code works. Next, delete the old code on 5 and run the tests
again. This should work, reducing BottleVerse to:

Listing 8.33: Inject a BottleNumber Into BottleVerse at Creation
 1 class BottleVerse {
 2 protected $number;
 3
 4 public static function lyrics(int $number): string {
 5 return (new BottleVerse(BottleNumber::for($number)))->_lyrics();
 6 }
 7
 8 public function __construct(object $number) {
 9 $this->number = $number;
10 }
11
12 private function _lyrics(): string {
13 $bottleNumber = $this->number instanceof BottleNumber ?

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-190/lib/Bottles.php#L28-L51
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-200/lib/Bottles.php#L28-L51
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-210/lib/Bottles.php#L28-L50

8.8. Pushing Object Creation to the Edge

Page 226

14 $this->number :
15 BottleNumber::for($this->number);
16
17 return
18 ucfirst("{$bottleNumber} of milk on the wall, ") .
19 "{$bottleNumber} of milk.\n" .
20 "{$bottleNumber->action()}, " .
21 "{$bottleNumber->successor()} of milk on the wall.\n";
22 }
23 }

Now that the new type is being injected, you can remove the temporary type check in _lyrics.
This reduces line 13 below to the following slightly confusing line of code.

Listing 8.34: Remove Temporary Type Check
 1 class BottleVerse {
 2 protected $number;
 3
 4 public static function lyrics(int $number): string {
 5 return (new BottleVerse(BottleNumber::for($number)))->_lyrics();
 6 }
 7
 8 public function __construct(object $number) {
 9 $this->number = $number;
10 }
11
12 private function _lyrics(): string {
13 $bottleNumber = $this->number;
14
15 return
16 ucfirst("{$bottleNumber} of milk on the wall, ") .
17 "{$bottleNumber} of milk.\n" .
18 "{$bottleNumber->action()}, " .
19 "{$bottleNumber->successor()} of milk on the wall.\n";
20 }
21 }

The above works but contains obsolete remnants of $number. This code is tantalizingly close to
being finished, and at this point it’s tempting to jump ahead and make several changes at once.
For example, if you were to rename $number to $bottleNumber on lines 8-10 and delete lines
13-14, you’d be done.

This last bit is easy if you’re willing to change everything at once, but since this example stands
in for bigger, real-world problems, it’s worth practicing how to fix these names with smaller
changes. Before doing so, however, it’s finally time to amend the one-line rule.

Instead of being restricted to one-line changes, refactoring permits one-undo changes. The
broadened one-undo rule allows you to use the find/replace feature of your text editor to make
many changes at once. If you make a swath of changes in one editor command and the tests
continue to pass, you can go on. If any test fails, you must undo and make a better change.

The following examples show a simple refactoring that renames $number to $bottleNumber in
BottleVerse. You might find it interesting to attempt bigger leaps by changing many lines at
once with your editor. Just remember, undo and try again if any change breaks the tests.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-220/lib/Bottles.php#L28-L48

8.8. Pushing Object Creation to the Edge

Page 227

For this refactoring, first add a property to store $bottleNumber and initialize it to the currently
injected $number variable (line 7).

Listing 8.35: Set Bottle Number to Number
 1 class BottleVerse {
 2 protected $number;
 3 protected $bottleNumber;
 4 // ...
 5 public function __construct(object $number) {
 6 $this->number = $number;
 7 $this->bottleNumber = $number;
 8 }
 9 // ...
10 }

Now make two changes in _lyrics. Refer to the property via $this->bottleNumber and
delete the $bottleNumber = $this->number; line. Once you’ve done that, you can delete the
blank line, which leaves:

Listing 8.36: Lyrics No Longer Uses a Local Variable
 1 class BottleVerse {
 2 protected $number;
 3 protected $bottleNumber;
 4 // ...
 5 public function __construct(object $number) {
 6 $this->number = $number;
 7 $this->bottleNumber = $number;
 8 }
 9
10 private function _lyrics(): string {
11 return
12 ucfirst("{$this->bottleNumber} of milk on the wall, ") .
13 "{$this->bottleNumber} of milk.\n" .
14 "{$this->bottleNumber->action()}, " .
15 "{$this->bottleNumber->successor()} of milk on the wall.\n";
16 }
17 }

Now delete the $number property assignment on line 6 above, and the $number property
definition on line 2. Next, change $number to $bottleNumber on line 7. This reduces the
BottleVerse class to:

Listing 8.37: Consolidated Object Creation
 1 class BottleVerse {
 2 protected $bottleNumber;
 3
 4 public static function lyrics(int $number): string {
 5 return (new BottleVerse(BottleNumber::for($number)))->_lyrics();
 6 }
 7
 8 public function __construct(object $bottleNumber) {
 9 $this->bottleNumber = $bottleNumber;
10 }
11
12 private function _lyrics(): string {
13 return
14 ucfirst("{$this->bottleNumber} of milk on the wall, ") .
15 "{$this->bottleNumber} of milk.\n" .

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-240/lib/Bottles.php#L28-L50
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-250/lib/Bottles.php#L28-L48
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c8-extract-bottleverse-280/lib/Bottles.php#L28-L46

8.9. Summary

Page 228

16 "{$this->bottleNumber->action()}, " .
17 "{$this->bottleNumber->successor()} of milk on the wall.\n";
18 }
19 }

That’s the end of this refactoring. Before moving on to the chapter summary, ponder one last
issue. It could be argued that BottleVerse::lyrics($number) is doing more than one thing.
Not only does it create two new objects, a player of the bottle number role and an instance of the
BottleVerse class, but it also sends _lyrics to one of those creations.

If you wanted to rigorously separate object creation from object use, you could refactor this code
into the following:

 1 class BottleVerse {
 2 protected $bottleNumber;
 3
 4 public static function for(int $number): object {
 5 return new BottleVerse(BottleNumber::for($number));
 6 }
 7
 8 public static function lyrics(int $number) {
 9 return BottleVerse::for($number)->_lyrics();
10 }
11 // ...
12 }

The above code, however, may be more abstract and indirect than even your newly-expanded
programming aesthetic requires. This separation can be deferred until someone asks for a
change that requires direct access to a BottleVerse object, rather than simply requesting that
object’s lyrics.

8.9. Summary
This chapter pulled the lyrics of the "99 Bottles" song out of Bottles and put them into a new
BottleVerse class. It then injected an instance of BottleVerse back into Bottles. Extracting
BottleVerse reduced the Bottles's responsibilities, making it easier to understand and
maintain. Injecting BottleVerse into Bottles loosened the coupling between Bottles and the
outside world. Bottles now thinks of itself as being injected with players of the verse template
role and will happily collaborate with any newly arriving object as long as that object responds
to lyrics(number).

The impetus behind extracting BottleVerse was a new requirement to produce songs with
different lyrics, that is, to vary the verse. The refactorings in this chapter satisfied that
requirement by following a fundamental strategy of object-oriented design: extracting the
BottleVerse class isolated the behavior that the new requirement needed to vary.

While continuing to lean on code smells and refactoring recipes, this chapter introduced the idea
of a programming aesthetic. A programming aesthetic is the set of internal heuristics that guide
your behavior in times of uncertainty. Vague feelings about the rightness of code become part of
your aesthetic once you can eloquently and convincingly use actual words to explain your

8.9. Summary

Page 229

concerns and proposed improvements. A good programming aesthetic focuses attention on
improvements that are likely to prove worthwhile.

This chapter suggested five precepts that belong in everyone’s object-oriented programming
aesthetic:

Put domain behavior on instances.

Be averse to allowing instance methods to know the names of constants.

Seek to depend on injected abstractions rather than hard-coded concretions.

Push object creation to the edges, expecting objects to be created in one place and used in
another.

Avoid Demeter violations, using the temptation to create them as a spur to search for
deeper abstractions.

The practical effect of following these precepts is to loosen the coupling between objects. The
code to which you would apply them generally already works so adherence might seem optional,
and is certainly not free. Complying with these precepts will frequently increase the amount of
code and add levels of indirection, at least in the short term. However, these added costs are
overwhelmingly offset by the eventual savings accrued as a result of decoupling.

Any application that survives will change. The only thing of which you can be more confident is
that you cannot predict where this change will occur. The certainty of change coupled with the
uncertainty of that change’s location means that your best programming strategy is to strive to
loosen the coupling of all code everywhere from the moment of initial creation.

Therefore, these precepts don’t attempt to guess the future; rather, they leverage against it.
Instead of writing code that speculatively imagines a later need for one specific feature, they tell
you to loosen the coupling of all code so that you can easily adapt to whatever future arrives.

Uncertainty about the future is not a license to guess; it’s a directive to decouple. Your future will
be brighter if you develop a programming aesthetic that drives you to do so.

9.1.1. Contrasting Unit and Integration Tests

Page 230

9. Reaping the Benefits of Design
The current "99 Bottles" application satisfies all of the known requirements. The code looks very
object-oriented, and you can articulate a persuasive justification for every decision that led to its
current shape.

But the tests are a bit musty. They’ve gradually transformed from tests that tell a helpful story
about the "99 Bottles" song into tests that misrepresent, if not outright lie, about the entire
domain. Their only redeeming quality is that at least they fail if the code gets broken.

It’s important to know if something breaks, but tests can do far more. They give you the
opportunity to explain the domain to future readers. They expose design problems that make
code hard to reuse. Well-designed code is easy to test; when testing is hard, the code’s design
needs attention.

Writing tests, even at this late date, will improve the code. As a final exercise, this chapter does
just that.

9.1. Choosing Which Units to Test
Every class should have its own unit test, unless doing otherwise saves money. The allowed-to-
skip-tests bar is high, but some code meets it. This first section explores such a case.

9.1.1. Contrasting Unit and Integration Tests
Back in Chapter 2, unit tests drove the Shameless Green implementation of "99 Bottles." Those
initial tests continue to provide a safety net, and have assured the code’s correctness through
many refactorings.

Comforting as the tests are, over time they have gotten woefully out of date. In early chapters,
Bottles was the only class. After BottleNumber was extracted, the unit tests for Bottles
morphed into integration tests that covered both classes. This integration coverage expanded
further as more classes were extracted. The original unit tests now cover Bottles,
BottleVerse, and the entire BottleNumber hierarchy. They remain useful because they’ll
break if someone introduces an error, but they mislead readers about the intent and workings of
the present code.

Improving the tests will accomplish two things. First, this will reduce costs. Tests that tell the
right story make it easier for future readers to understand the code. Improving the story will
save you money forever.

Next, updating the tests will lay bare the consequences of the code’s design. It should be easy to
create simple, intention-revealing tests. When it’s not, the chief problem is often too much
coupling. In such cases the solution is not to write complicated tests that overcome tight
coupling, but rather to loosen the coupling so that you can write simple tests. The most cost-
effective time to intervene in tightly coupled code is right now, before new requirements cause
you to to start reusing these objects.

9.1.1. Contrasting Unit and Integration Tests

Page 231

The good news is that writing tests will uncover every bit of overlooked tight coupling and
immediately reward you for fixing it. Here’s a reminder of the current tests:

Listing 9.1: Bottles Tests Reminder
 1 class BottlesTest extends \PHPUnit\Framework\TestCase {
 2 public function test_the_first_verse() {
 3 $expected =
 4 "99 bottles of milk on the wall, " .
 5 "99 bottles of milk.\n" .
 6 "Take one down and pass it around, " .
 7 "98 bottles of milk on the wall.\n";
 8 $this->assertEquals($expected, (new Bottles())->verse(99));
 9 }
10
11 public function test_another_verse() {
12 $expected =
13 "3 bottles of milk on the wall, " .
14 "3 bottles of milk.\n" .
15 "Take one down and pass it around, " .
16 "2 bottles of milk on the wall.\n";
17 $this->assertEquals($expected, (new Bottles())->verse(3));
18 }
19
20 public function test_verse_2() {
21 $expected =
22 "2 bottles of milk on the wall, " .
23 "2 bottles of milk.\n" .
24 "Take one down and pass it around, " .
25 "1 bottle of milk on the wall.\n";
26 $this->assertEquals($expected, (new Bottles())->verse(2));
27 }
28
29 public function test_verse_1() {
30 $expected =
31 "1 bottle of milk on the wall, " .
32 "1 bottle of milk.\n" .
33 "Take it down and pass it around, " .
34 "no more bottles of milk on the wall.\n";
35 $this->assertEquals($expected, (new Bottles())->verse(1));
36 }
37
38 public function test_verse_0() {
39 $expected =
40 "No more bottles of milk on the wall, " .
41 "no more bottles of milk.\n" .
42 "Go to the store and buy some more, " .
43 "99 bottles of milk on the wall.\n";
44 $this->assertEquals($expected, (new Bottles())->verse(0));
45 }
46
47 public function test_a_couple_verses() {
48 // ...
49 $this->assertEquals($expected, (new Bottles())->verses(99, 98));
50 }
51
52 public function test_a_few_verses() {
53 // ...
54 $this->assertEquals($expected, (new Bottles())->verses(2, 0));
55 }
56
57 public function test_the_whole_song() {
58 // ...
59 $this->assertEquals($expected, (new Bottles())->song());

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-10/test/BottlesTest.php#L5-L389

9.1.1. Contrasting Unit and Integration Tests

Page 232

60 }
61 }

These tests made perfect sense when Bottles was the only class. As a first stab in an unknown
domain they stand up pretty well, but now that you better understand the 99 Bottles problem
you might be itching to do a few things differently.

It’s worth taking a minute to remember why there’s such a dearth of tests. The original
BottleNumber class was extracted from and then used in Bottles by way of the Extract Class
refactoring recipe. This recipe is known to work. As long as you make one-undo changes and
confirm that the tests pass after every change, you can follow the recipe with confidence in the
result.

Creating a new class by following a recipe instead of by doing TDD is perfectly allowable, but the
result relies on the original tests to confirm that the extracted class remains error-free. Using the
recipe consigns BottleNumber's correctness to Bottles' tests. If BottleNumber is wrong, a
Bottles test breaks.

Instead of updating the tests immediately after extracting BottleNumber, or after further
extracting the BottleNumber subclasses, the sins against TDD were compounded by extracting
yet another class, BottleVerse. Bottles' tests provided an increasingly broad safety net over
an extended series of other objects.

Bottles' tests started out as unit tests but have become integration tests. Unit tests are meant to
test the public API of a single class. The unit under test often requires a few collaborating objects
in order to run, but these other objects are tangential and exist only so you can address the unit
of interest. Unit tests ought not test collaborators.

Integration tests are intended to prove that groups of objects collaborate correctly; they show
that an entire chain of behavior works. This is exactly what these Bottles tests do.

Your general approach to testing should be to create a unit test for every class, and to test every
method in that class’s public API. To do so here, you have to choose where to begin. In hopes that
fixing the easy problems will clarify the hard ones, begin with the extremely simple
BottleNumber subclasses. Not only are these classes small, but they are also leaf nodes on your
object dependency graph[22] which suggests that they are minimally entangled with your overall
domain. BottleNumber1 is a reasonable starting point.

Despite the fact that BottleNumber1 is tiny, testing it presents a conundrum. For example, here’s
its pronoun method:

public function pronoun(): string {
 return "it";
}

The only reasonable test would look like:

public function test_pronoun() {
 $this->assertEquals("it", (new BottleNumber1(1))->pronoun());

9.1.2. Foregoing Tests

Page 233

}

This is woefully circular. The test assertion exactly mirrors the method implementation. When
the assertion duplicates the code, they both must change in lockstep or the test will fail.

Having to change 'it' in two places is a small thing, but this still feels like a waste of time and
money. This test doesn’t add much value, and imagining it should spur you to consider
alternatives. Contrary to your original intentions, perhaps pronoun (and by extension
BottleNumber1 as a whole) shouldn’t be tested at all.

Tests are most valuable when they exercise confirmable behavior, and you could argue that
BottleNumber1->pronoun has none. While this code should very definitely be exercised
during testing, the most cost-effective place to do so may be within some other unit’s test.

Some other test is already covering this code; it gets executed during the Bottles tests. You can
confirm this by arbitrarily changing pronoun and running the tests. For example, altering the
code to return oops instead of it…

class BottleNumber1 extends BottleNumber {
 // ...
 public function pronoun() {
 return "oops";
 }
}

…causes these three tests to fail:

There were 3 failures:

1) BottlesTest::test_verse_1
// ...

2) BottlesTest::test_a_few_verses
// ...

3) BottlesTest::test_the_whole_song
// ...

While it’s comforting that tests fail if the code gets broken, the Bottles tests seem very far away
from bottle number-ish concerns. Although you might be casting around for justification to omit
unit tests for BottleNumber1, this code has to be executed as part of some test, and counting on
the Bottles tests for coverage feels like a stretch. It’s time to develop some principles to handle
this situation.

9.1.2. Foregoing Tests

As previously mentioned, you should approach testing with the intent of creating unit tests for
every class. After long and careful consideration you might decide to allow one object’s unit tests
to cover a collaborator as well, but this is the exception. You should plan to write a unit test for
every class, and you are entitled to expect to see a unit test for every class in someone else’s code.

The Bottles tests provide complete coverage for all the existing classes, but they’re really
integration tests masquerading as unit tests. Faux unit tests that reach out to cover distant

9.1.2. Foregoing Tests

Page 234

collaborators become increasingly unhelpful to the next programmer. When a test involves
many objects in combination, the code could break quite far from the origin of the problem. This
makes it hard to determine the cause of an error.

Integration tests are important, but they serve a different purpose than unit tests. Integration
tests are great at proving the correctness of the collaboration between groups of objects. They
demonstrate the overall operation of all or a subset of your application. Because they cover a lot
of ground, they’re often slow.

In contrast, unit tests are for you, the programmer. They help you write down, communicate the
expected behavior of, prevent regression in, and debug smaller units of code. When something
goes wrong, it’s the unit tests that provide an error message near the offending line of code. Since
they narrow the set of potential code culprits behind any problem, they make debugging easier.
They should stay out of your way when writing code, which means they should be fast.

It cannot be emphasized strongly enough that most classes deserve their own explicit unit tests.
This should be your default point of view. But just as every rule is meant to be broken,
occasionally the most useful thing to communicate about an object is that it is so small, simple, or
invisible that testing it individually would raise costs rather than lower them. Every now and
then it makes sense to test an object in conjunction with its enclosing unit. Doing so creates a test
that leaks into the space between integration and unit, but if you think of the smaller objects as
being private, you can be justified in calling the whole thing a unit test.

The classes in the BottleNumber hierarchy are examples of things so small, simple, and
invisible that they might not deserve their own unit tests.

If you subscribe to the principle that applications should have 100% test coverage, you might
need to reexamine your definition of that rule. Perhaps it means "100% of the code should be
exercised during unit tests," rather than "100% of the public methods should have their own
personal tests."

The tests previously imagined for BottleNumber1->pronoun are so tightly bound to
implementation details that they may very well interfere with change. Tests should give you the
freedom to improve code, not glue you to its current implementation. When they constrain
rather than liberate, ask if they’re worthwhile, and consider omitting them.

In the rare case where you decide to forego giving a class its own unit test, you must be able to
defend this decision with a clearly articulated justification. In addition to size and complexity,
visibility is also an important consideration. Visibility is determined by the context in which the
class is known.

To illustrate, here’s a reminder of the BottleVerse class, which references BottleNumber on
line 5:

Listing 9.2: BottleVerse Reminder
 1 class BottleVerse {
 2 protected $bottleNumber;
 3

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-10/lib/Bottles.php#L28-L46

9.1.2. Foregoing Tests

Page 235

 4 public static function lyrics(int $number): string {
 5 return (new BottleVerse(BottleNumber::for($number)))->_lyrics();
 6 }
 7
 8 public function __construct(object $bottleNumber) {
 9 $this->bottleNumber = $bottleNumber;
10 }
11
12 private function _lyrics(): string {
13 return
14 ucfirst("{$this->bottleNumber} of milk on the wall, ") .
15 "{$this->bottleNumber} of milk.\n" .
16 "{$this->bottleNumber->action()}, " .
17 "{$this->bottleNumber->successor()} of milk on the wall.\n";
18 }
19 }

The entire public API of BottleVerse consists of the lyrics static function on line 2, so all of
BottleVerse's instance methods can be thought of as private. Within this one public method,
BottleVerse invokes the BottleNumber factory to get a player of the bottle number role.

Notice how profoundly BottleVerse depends on bottle numbers. Instances of BottleVerse
are entirely reliant on a bottle number to produce a verse. It’s hard to imagine any use of
BottleVerse that doesn’t require a concomitant bottle number. From BottleVerse's point of
view, it is inseparable from its bottle numbers. Bottle numbers exist in the context of
BottleVerse.

Now flip your point of view and consider the relationship between these classes from the
perspective of a bottle number. Things change dramatically. Individual bottle numbers aren’t
aware of BottleVerse. They don’t know that they’re part of a song. They are perfectly willing to
be used in any situation. They are independent of context, which means that they could easily be
reused in a new one.

Everything in the prior paragraph argues that bottle numbers are their own self-contained thing,
which in turn argues that they should have their own tests. And yet. They are small, painfully
simple, used nowhere other than in BottleVerse, and could be completely exercised by the
soon-to-be-written BottleVerse tests.

The tipping point for deciding how to test is visibility. BottleVerse has assumed personal
responsibility for supplying itself with BottleNumbers. BottleNumbers do not get created and
injected from the outside, but instead, BottleVerse knows about them inside itself. The
dependency between BottleVerse and BottleNumber is not visible to outside observers.

At this point, no other place in the application references the BottleNumber factory or any of
the manufactured classes. It’s certainly possible that someone might eventually do so, but no one
does right now.

This wrapping of BottleNumber by BottleVerse means that if you stand in the space between
the public objects of this app, you’ll never see a reference to BottleNumber. It’s so invisible to
outside observers that it may as well not exist.

9.1.2. Foregoing Tests

Page 236

In summary, BottleNumbers are:

small

simple

invisible from outside of BottleVerse

used in no context other than BottleVerse

These factors combine to suggest that, at least for the moment, you should think about bottle
numbers as an integral part of BottleVerse, and test them within BottleVerse's unit test.

Most situations are more convoluted, which means that objects should generally have their own
unit tests. Even this situation might someday change such that BottleNumbers should be unit
tested independently. If these classes get more complicated, or begin to be used in other contexts,
revisit this decision. When BottleNumbers need their own story, they should have their own
tests.

One last point before moving on. The most critical and complicated part of bottle numbers is the
factory, which you might want to unit test explicitly even if you defer to BottleVerse for testing
the other bottle number behavior. When testing the factory it’s important to test the factory’s
responsibilities, not the responsibilities of the objects the factory manufactures. The factory’s job
is to take a number and turn that number into an instance of the correct class. Thus the test
might look like this:

Listing 9.3: Testing the Bottle Number Factory
 1 class BottleNumberTest extends \PHPUnit\Framework\TestCase {
 2 public function test_factory() {
 3 // 0,1,6 are special
 4 $this->assertInstanceOf(BottleNumber0::class, BottleNumber::for(0));
 5 $this->assertInstanceOf(BottleNumber1::class, BottleNumber::for(1));
 6 $this->assertInstanceOf(BottleNumber6::class, BottleNumber::for(6));
 7
 8 // Other numbers get the default
 9 $this->assertInstanceOf(BottleNumber::class, BottleNumber::for(3));
10 $this->assertInstanceOf(BottleNumber::class, BottleNumber::for(7));
11 $this->assertInstanceOf(BottleNumber::class, BottleNumber::for(43));
12 }
13 }

The above test puts many assertions in a single test, which violates a commonly adopted rule.
However, as this is the most parsimonious expression of the factory’s responsibilities, breaking
that general rule is justified.

This section laid out some considerations for choosing to omit unit tests. It doesn’t give license to
write a bunch of monster integration-y tests and pass them off as unit tests, but instead
acknowledges that some things are so interrelated that testing them independently will increase
rather than reduce costs. The reason you’re writing tests is to save money, and every potential
test must be evaluated against that criteria.

9.2.1. Gathering BottleVerse Tests

Page 237

Use good judgement. Be extremely biased towards creating a unit test for every method in every
class’s public API. But make sure that all tests justify their existence and eliminate those that
don’t.

While all code needs to be tested, some tests aren’t worth writing.

9.2. Reorganizing Tests
Unit tests ought to tell an illuminating story. They should demonstrate and confirm the class’s
direct responsibilities, and do nothing else. You should strive to write the fastest tests possible, in
the fewest number necessary, using the most intention-revealing expectations, and the least
amount of code.

This next section examines the existing tests with an eye towards determining who is really
responsible for the behavior, and thus who should own the tests.

With that, it’s time to take up BottleVerse.

9.2.1. Gathering BottleVerse Tests
BottleVerse is both more complicated and more visible than the simple bottle number classes.
Here’s a reminder of its code:

Listing 9.4: BottleVerse Implements an Algorithm
 1 class BottleVerse {
 2 protected $bottleNumber;
 3
 4 public static function lyrics(int $number): string {
 5 return (new BottleVerse(BottleNumber::for($number)))->_lyrics();
 6 }
 7
 8 public function __construct(object $bottleNumber) {
 9 $this->bottleNumber = $bottleNumber;
10 }
11
12 private function _lyrics(): string {
13 return
14 ucfirst("{$this->bottleNumber} of milk on the wall, ") .
15 "{$this->bottleNumber} of milk.\n" .
16 "{$this->bottleNumber->action()}, " .
17 "{$this->bottleNumber->successor()} of milk on the wall.\n";
18 }
19 }

There’s a fair amount going on here. Relative to the bottle number classes, BottleVerse is
definitely more involved. It’s not quite as easy to tell what’s happening, and it seems possible that
a hasty change might break something. Tests would add safety and help tell the story of this
code.

BottleVerse gets used when some outside entity chooses it for the verse template and injects it
into Bottles, as shown on line 4 below:

Listing 9.5: BottleVerse Is Loosely Coupled to Bottles

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-10/lib/Bottles.php#L28-L46
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-10/lib/Bottles.php#L5-L26

9.2.1. Gathering BottleVerse Tests

Page 238

 1 class Bottles {
 2 protected $verseTemplate;
 3
 4 public function __construct(string $verseTemplate = BottleVerse::class) {
 5 $this->verseTemplate = $verseTemplate;
 6 }
 7 // ...
 8 public function verse(int $number): string {
 9 return $this->verseTemplate::lyrics($number);
10 }
11 }

In the previous section, the connection between BottleNumber and BottleVerse was invisible
from the outside. In the above code, the relationship between Bottles and its verse template is
completely exposed. Bottles doesn’t supply its own template; someone else picks the right
object and passes it in.

This collaboration is public. Injecting the verse template dependency loosens the coupling
between Bottles and BottleVerse, which drives these concrete classes apart. The two classes
are independent.

Don’t be confused by the fact that $verseTemplate defaults to BottleVerse on line 4 above;
this isn’t a tight coupling between the classes. That default is an artifact of an earlier refactoring
and is temporarily necessary because existing tests construct new Bottles without passing an
argument. A later section of this chapter will update the Bottles tests and tend to this default.

This combination of code complexity and public visibility means that BottleVerse should get
its own unit tests.

As always, start by creating a class to hold the tests:

Listing 9.6: Create Test for BottleVerse
1 class BottleVerseTest extends \PHPUnit\Framework\TestCase {
2 }

Now you have to decide what to test. Since a unit test should contain at least one test for every
method in the class’s public API, you’ll need to test the BottleVerse lyrics static function. It’s
fine to create multiple tests for a single method if doing so will better explain its behavior to
future readers.

This lyrics method is responsible for taking a number and returning the lyrics for the
associated verse. Keeping that in mind, peruse the existing Bottles tests:

Listing 9.7: Existing Bottles Tests
 1 class BottlesTest extends \PHPUnit\Framework\TestCase {
 2 public function test_the_first_verse() {
 3 $expected =
 4 "99 bottles of milk on the wall, " .
 5 "99 bottles of milk.\n" .
 6 "Take one down and pass it around, " .
 7 "98 bottles of milk on the wall.\n";
 8 $this->assertEquals($expected, (new Bottles())->verse(99));
 9 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-20/test/BottleVerseTest.php#L5-L6
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-20/test/BottlesTest.php#L5-L389

9.2.1. Gathering BottleVerse Tests

Page 239

10
11 public function test_another_verse() {
12 // ...
13 $this->assertEquals($expected, (new Bottles())->verse(3));
14 }
15
16 public function test_verse_2() {
17 // ...
18 $this->assertEquals($expected, (new Bottles())->verse(2));
19 }
20
21 public function test_verse_1() {
22 // ...
23 $this->assertEquals($expected, (new Bottles())->verse(1));
24 }
25
26 public function test_verse_0() {
27 // ...
28 $this->assertEquals($expected, (new Bottles())->verse(0));
29 }
30
31 public function test_a_couple_verses() {
32 // ...
33 $this->assertEquals($expected, (new Bottles())->verses(99, 98));
34 }
35
36 public function test_a_few_verses() {
37 // ...
38 $this->assertEquals($expected, (new Bottles())->verses(2, 0));
39 }
40
41 public function test_the_whole_song() {
42 // ...
43 $this->assertEquals($expected, (new Bottles())->song());
44 }
45 }

BottlesTest already contains a number of tests for individual "99 Bottles" verses. For example,
the test on line 2 above confirms that an input of 99 results in the lyrics for that verse. Similar
single verse tests occur four more times above (notice the assertions on lines 13, 18, 23 and 28).

These tests were created during the initial TDD of Bottles back in Chapter 2, at which time they
made perfect sense. Now that BottleVerse is responsible for creating individual verses for the
"99 Bottles" song, BottleVerseTest should take responsibility for proving that the lyrics are
correct. This means that every test in Bottles that makes assertions about individual "99
Bottles" verses should move into BottleVerseTest.

The best way to get started is to carefully move just one test. Since test_the_first_verse
already exists, moving it will be accomplished with a refactoring. The test suite is currently
passing and you don’t want to accidentally introduce an error. The safest way to move code is by
way of a now-familiar technique: copy the code, get it working in the new place, and then delete
it from the old.

With that in mind, copy test_the_first_verse from BottlesTest to BottleVerseTest, as
shown below (note that despite appearing together in the following listing, BottlesTest and
BottesVerseTest reside in separate files):

9.2.1. Gathering BottleVerse Tests

Page 240

Listing 9.8: Copy the First Test
 1 class BottlesTest extends \PHPUnit\Framework\TestCase {
 2 public function test_the_first_verse() {
 3 $expected =
 4 "99 bottles of milk on the wall, " .
 5 "99 bottles of milk.\n" .
 6 "Take one down and pass it around, " .
 7 "98 bottles of milk on the wall.\n";
 8 $this->assertEquals($expected, (new Bottles())->verse(99));
 9 }
10 // ...
11 }
12
13 class BottleVerseTest extends \PHPUnit\Framework\TestCase {
14 public function test_the_first_verse() {
15 $expected =
16 "99 bottles of milk on the wall, " .
17 "99 bottles of milk.\n" .
18 "Take one down and pass it around, " .
19 "98 bottles of milk on the wall.\n";
20 $this->assertEquals($expected, (new Bottles())->verse(99));
21 }
22 }

Change nothing about the copied test. Run the tests. Nine should pass.

Next, alter the new assertion to test BottleVerse::lyrics($number) rather than Bottles-
>verse, as shown on line 8 below:

Listing 9.9: Update the Assertion
 1 class BottleVerseTest extends \PHPUnit\Framework\TestCase {
 2 public function test_the_first_verse() {
 3 $expected =
 4 "99 bottles of milk on the wall, " .
 5 "99 bottles of milk.\n" .
 6 "Take one down and pass it around, " .
 7 "98 bottles of milk on the wall.\n";
 8 $this->assertEquals($expected, (new Bottles())->verse(99));
 9 }
10 }

Running the tests will show that nine still pass.

Now that the new test in BottleVerseTest has been shown to work, you can delete the old
version from BottlesTest. This leaves eight passing tests.

Having verified this process, go ahead and copy all the other individual verse tests from
BottlesTest to BottleVerseTest, again without altering the copied code. After completing
the copying, BottleVerseTest will look like this:

Listing 9.10: Copy Remaining Tests for Individual Verses
 1 class BottleVerseTest extends \PHPUnit\Framework\TestCase {
 2 public function test_the_first_verse() {
 3 // ...
 4 $this->assertEquals($expected, BottleVerse::lyrics(99));
 5 }
 6

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-30/test/BottlesTest.php#L5-L389
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-30/test/BottleVerseTest.php#L5-L14
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-60/test/BottleVerseTest.php#L5-L50

9.2.1. Gathering BottleVerse Tests

Page 241

 7 public function test_another_verse() {
 8 // ...
 9 $this->assertEquals($expected, (new Bottles())->verse(3));
10 }
11
12 public function test_verse_2() {
13 // ...
14 $this->assertEquals($expected, (new Bottles())->verse(2));
15 }
16
17 public function test_verse_1() {
18 // ...
19 $this->assertEquals($expected, (new Bottles())->verse(1));
20 }
21
22 public function test_verse_0() {
23 // ...
24 $this->assertEquals($expected, (new Bottles())->verse(0));
25 }
26 }

At this point you will have 12 passing tests. After ensuring that you do, update the assertions in
BottleVerseTest to invoke BottleVerse::lyrics as shown on lines 9, 14, 19, and 24 below,
perhaps using this as an opportunity to practice search/replace using regular expressions:

Listing 9.11: Update Test Assertions
 1 class BottleVerseTest extends \PHPUnit\Framework\TestCase {
 2 public function test_the_first_verse() {
 3 // ...
 4 $this->assertEquals($expected, BottleVerse::lyrics(99));
 5 }
 6
 7 public function test_another_verse() {
 8 // ...
 9 $this->assertEquals($expected, BottleVerse::lyrics(3));
10 }
11
12 public function test_verse_2() {
13 // ...
14 $this->assertEquals($expected, BottleVerse::lyrics(2));
15 }
16
17 public function test_verse_1() {
18 // ...
19 $this->assertEquals($expected, BottleVerse::lyrics(1));
20 }
21
22 public function test_verse_0() {
23 // ...
24 $this->assertEquals($expected, BottleVerse::lyrics(0));
25 }
26 }

After the above update, 12 tests should still pass. Once you confirm that, you can delete the four
obsolete tests from BottlesTest with confidence that you haven’t broken anything. This
deletion returns you to eight total passing tests, and reduces BottlesTest to just three tests.

BottleVerse's tests now prove that it correctly produces each different flavor of "99 Bottles"
verse. The lyrics tests are correct and complete, and are basically just an updated copy of the

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-70/test/BottleVerseTest.php#L5-L50

9.2.2. Revealing Intent

Page 242

tests as they were initially created in Chapter 2. At that time these tests seemed good enough, but
now that you’re addressing the test suite as a whole, you might be disappointed by the story
these tests tell. They miss a golden opportunity to convey a deeper understanding of the domain
to future readers.

Some of the BottleVerse tests need better names.

9.2.2. Revealing Intent
Writing the very first test for a new domain can be paralyzingly difficult. It’s often much easier
to write the tenth test, or the fifth, or even the second. The first test is important because without
it you can’t get started, but sometimes its ultimate purpose is to teach you that it’s not quite right.

During the initial round of TDD back in Chapter 2, you had to make several moderately arbitrary
decisions in order to write the first test. At that point you didn’t thoroughly understand the
domain of the song—this knowledge, after all, comes as a result of conceiving of and writing
tests. The problem is circular. You can’t write tests until you understand the problem, but you
can’t understand the problem without writing some tests. No wonder it’s hard to get started.

Even so, here is where writing tests first really shines. It’s far better to struggle with a test that
you don’t understand than to write code that you don’t understand. Tests force you to clarify
your intentions because they make explicit assertions. Code has no such pressure, and can be left
a confusing mess forever.

So despite being a bit vague on the details, when given the task of writing code to produce 1) the
entire "99 Bottles" song, 2) a range of verses, or 3) a single verse, you intrepidly decided to create
a Bottles class with a public API of song, verses and verse. You then chose to follow the
classic TDD inside-out style and begin testing at the verse method. At this point you wanted to
write a test which took a number and returned the lyrics for the associated verse. In order to do
that, you had to decide which number to use and what to name the test.

Names are important, and you could have invested time finding the perfect name for that first
test. In this case, ignorance comes in handy. Since you knew it would be hard to pick a great
name until you understood the domain better, and you also knew that writing tests would
improve your understanding of the domain, you didn’t spend a lot of time on this first name.
Calling it test_the_first_verse allowed you to move on, and moving on gave you hope of
someday knowing enough to do better.

As far as choosing the first number to test, 99 made sense because it appeared first in the song.
When future programmers read your tests they will infer meaning from every decision. Starting
with 99 is unsurprising. Any other number would cause them to wonder about the deep
meaning behind your choice.

After getting that first test to pass, you realized that there were other variants of verse that
should be tested. You noticed that the lyrics for verses in the range between 99 and 3 are
identical except for the value of the number. The test for the top end of this range already
existed, so you decided that next you should test the bottom, using 3 as input. You named this
test 'another verse'.

9.2.2. Revealing Intent

Page 243

The test_the_first_verse/'another verse' tests exist to show that the lyrics of verses
from 99 through 3 follow a similar rule, but nothing about their names gives any hint of this
rule’s existence. The bodies of the tests are fine—the problem is in their names. These vague
names were perfectly acceptable when they were the best you could do, but now you know more
and can do better. It’s time to improve the story.

The names of these two tests should convey the following:

this is a verse test

a rule exists

it applies to most verses

it involves a range

one test is for the upper bound

the other test is for the lower bound

Names like 'verse general rule upper bound' and 'verse general rule lower bound'
perfectly satisfy these constraints.

Now that you’ve done the hard part and unearthed better names, rename the first two
BottleVerse tests as shown on lines 2 and 11 below:

Listing 9.12: Rename Verse Tests for 99 and 3
 1 class BottleVerseTest extends \PHPUnit\Framework\TestCase {
 2 public function test_verse_general_rule_upper_bound() {
 3 $expected =
 4 "99 bottles of milk on the wall, " .
 5 "99 bottles of milk.\n" .
 6 "Take one down and pass it around, " .
 7 "98 bottles of milk on the wall.\n";
 8 $this->assertEquals($expected, BottleVerse::lyrics(99));
 9 }
10
11 public function test_verse_general_rule_lower_bound() {
12 $expected =
13 "3 bottles of milk on the wall, " .
14 "3 bottles of milk.\n" .
15 "Take one down and pass it around, " .
16 "2 bottles of milk on the wall.\n";
17 $this->assertEquals($expected, BottleVerse::lyrics(3));
18 }
19 // ...
20 }

Here’s an overall look at the resulting BottleVerseTest:

Listing 9.13: Interim BottleVerse Tests
 1 class BottleVerseTest extends \PHPUnit\Framework\TestCase {
 2 public function test_verse_general_rule_upper_bound() {
 3 // ...
 4 $this->assertEquals($expected, BottleVerse::lyrics(99));
 5 }
 6

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-100/test/BottleVerseTest.php#L5-L50
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-100/test/BottleVerseTest.php#L5-L50

9.2.2. Revealing Intent

Page 244

 7 public function test_verse_general_rule_lower_bound() {
 8 // ...
 9 $this->assertEquals($expected, BottleVerse::lyrics(3));
10 }
11
12 public function test_verse_2() {
13 // ...
14 $this->assertEquals($expected, BottleVerse::lyrics(2));
15 }
16
17 public function test_verse_1() {
18 // ...
19 $this->assertEquals($expected, BottleVerse::lyrics(1));
20 }
21
22 public function test_verse_0() {
23 // ...
24 $this->assertEquals($expected, BottleVerse::lyrics(0));
25 }
26 }

The above names are consistent and symmetrical. They please the eye and convey more
information about the song. But they’re still not good enough.

The names clearly indicate that some verses follow a common rule and that others do not. While
completely true, these suggestions continue to mislead the reader. The names strongly imply that
every special verse has its own personal test. Now that you have fulfilled the six-pack
requirement, verse 6 and verse 7 are also unique. Telling the best story requires that you give
them their own tests.

It doesn’t matter that verses 6 and 7 are also tested in the song test. The other special verses (2, 1,
0) are already being tested there too. Appearing in the song doesn’t make these special verses
less special. The point behind these tests is tell a story to future readers, and that story should be
consistent and complete.

The expectations needed to test verse 7 and verse 6 can be plucked directly from the song test.
Use these expectations to create two new verse tests whose names follow the current pattern, as
shown below:

Listing 9.14: Test Special Verses 7 and 6
 1 class BottleVerseTest extends \PHPUnit\Framework\TestCase {
 2 public function test_verse_general_rule_upper_bound() {
 3 // ...
 4 $this->assertEquals($expected, BottleVerse::lyrics(99));
 5 }
 6
 7 public function test_verse_general_rule_lower_bound() {
 8 // ...
 9 $this->assertEquals($expected, BottleVerse::lyrics(3));
10 }
11
12 public function test_verse_7() {
13 $expected =
14 "7 bottles of milk on the wall, " .
15 "7 bottles of milk.\n" .
16 "Take one down and pass it around, " .
17 "1 six-pack of milk on the wall.\n";

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-120/test/BottleVerseTest.php#L5-L68

9.3. Seeking Context Independence

Page 245

18 $this->assertEquals($expected, BottleVerse::lyrics(7));
19 }
20
21 public function test_verse_6() {
22 $expected =
23 "1 six-pack of milk on the wall, " .
24 "1 six-pack of milk.\n" .
25 "Take one down and pass it around, " .
26 "5 bottles of milk on the wall.\n";
27 $this->assertEquals($expected, BottleVerse::lyrics(6));
28 }
29
30 public function test_verse_2() {
31 // ...
32 $this->assertEquals($expected, BottleVerse::lyrics(2));
33 }
34
35 public function test_verse_1() {
36 // ...
37 $this->assertEquals($expected, BottleVerse::lyrics(1));
38 }
39
40 public function test_verse_0() {
41 // ...
42 $this->assertEquals($expected, BottleVerse::lyrics(0));
43 }
44 }

At this point there should be 10 passing tests, half of which handle the special verses 7, 6, 2, 1 and
0.

Adding tests for verses 7 and 6 made the special cases consistent, but muddied the once crystal
clear water of the general verse rule. There are now two special cases embedded within the
range covered by that rule. If you worry that readers will be confused by this, spend a moment
thinking about how you might rename these tests to mitigate that confusion.

The current names, however, are probably good enough. They’ve been significantly improved,
and divulge information that was formerly only implicit. They are a tribute to the power of
names.

This is a good time to declare BottleVerse's tests complete and move on to Bottles.

9.3. Seeking Context Independence
The word "context" has been used a number of times under the assumption that its technical
meaning would be clear based on, well, context. You’ve probably already developed an idea
about its meaning, but a discussion of the term is in order.

An object’s context is its surrounding environment, or the interrelated conditions under which it
can exist. Objects that require large, convoluted contexts are picky about their surroundings;
they know too much about the outside world. They require particular things to be true about
their environment, which limits their use to very specific situations.

Objects are more usable when they know less. Objects that expect little of their surroundings can
be more easily applied to novel situations, and so provide greater utility. The most useful are

9.3. Seeking Context Independence

Page 246

those that are entirely independent of context; they have no expectations about, and make no
demands upon the external world. As far as context goes, ignorance truly is bliss.

This section explores these ideas by examining the Bottles class and its remaining tests with an
eye towards reducing their context.

9.3.1. Examining Bottles' Responsibilities

Page 247

9.3.1. Examining Bottles' Responsibilities

Before looking at Bottles' tests, pause and refresh your memory of the class itself.

Listing 9.15: Reconsidering Bottles
 1 class Bottles {
 2 protected $verseTemplate;
 3
 4 public function __construct(string $verseTemplate = BottleVerse::class) {
 5 $this->verseTemplate = $verseTemplate;
 6 }
 7
 8 public function song(): string {
 9 return $this->verses(99, 0);
10 }
11
12 public function verses(int $upper, int $lower): string {
13 return implode(
14 "\n",
15 array_map([$this, 'verse'], range($upper, $lower))
16);
17 }
18
19 public function verse(int $number): string {
20 return $this->verseTemplate::lyrics($number);
21 }
22 }

The code above is the end result of iteratively extracting bits that needed to vary. The outcome is
a class that has almost nothing to do with the "99 Bottles" song. It retains vestiges of its former
context (the name Bottles, the default BottleVerse, the magic number 99) but someone
unfamiliar with the code’s history would not recognize this class as that song.

Bottles is no longer the right name. This is not a Bottles at all; it’s something completely
different.

The name Bottles diminishes this class, making it appear to be less than it is. Remnants of the
circumstances from which it came continue to bind it to a specific context, even though it is now
more generally useful. The class has become more abstract but its very name will prevent
programmers from recognizing its broader utility.

Take a fresh look at this code and describe what it does. Classes should be named after what they
are: what is this?

You might be tempted to say it’s a Song. That is correct, but you can do better. It’s a particular
kind of song, and is distinguished by the range($upper, $lower) on line 15 above. It’s
reasonable to assume that a song with numbered verses will count up. This song is a bit
unexpected in that it starts at the top and counts down. This is a CountdownSong.

The next section renames Bottles to CountdownSong, but before moving on, sit back for a
minute and think about how dissimilar a class named CountdownSong feels from a class named
Bottles. Bottles is parochial and useful in one specific case. CountdownSong is generic and
useful in many cases. For a class named Bottles, the BottleVerse default and the hard-coded

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-120/lib/Bottles.php#L5-L26

9.3.1. Examining Bottles' Responsibilities

Page 248

99 seem entirely reasonable. In a class named CountdownSong, these relics of a prior context
are just plain annoying, and you will be motivated to remove them. Bottles constricts
possibilities; CountdownSong expands them.

Did you feel the world pivot under your feet? This is yet another testament to the power of
names.

Bottles can be renamed to CountdownSong with a straightforward refactoring. As always, the
process is to make one-undo changes and ensure the tests pass after every change.

Start by duplicating the entire Bottles class and changing the duplicate copy’s name to
CountdownSong:

Listing 9.16: Duplicate Bottles as CountdownSong
 1 class CountdownSong {
 2 protected $verseTemplate;
 3
 4 public function __construct(string $verseTemplate = BottleVerse::class) {
 5 $this->verseTemplate = $verseTemplate;
 6 }
 7
 8 public function song(): string {
 9 return $this->verses(99, 0);
10 }
11
12 public function verses(int $upper, int $lower): string {
13 return implode(
14 "\n",
15 array_map([$this, 'verse'], range($upper, $lower))
16);
17 }
18
19 public function verse(int $number): string {
20 return $this->verseTemplate::lyrics($number);
21 }
22 }
23
24 class Bottles {
25 // ...
26 }

Now that CountdownSong exists, you can update the tests.

First, rename the test from BottlesTest to CountdownSongTest as shown on line 1 below:

Listing 9.17: Change Test Name
 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 public function test_a_couple_verses() {
 3 // ...
 4 $this->assertEquals($expected, (new Bottles())->verses(99, 98));
 5 }
 6
 7 public function test_a_few_verses() {
 8 // ...
 9 $this->assertEquals($expected, (new Bottles())->verses(2, 0));
10 }
11

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-130/lib/Bottles.php#L5-L49
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-140/test/CountdownSongTest.php#L5-L344

9.3.2. Purifying Tests With Fakes

Page 249

12 public function test_the_whole_song() {
13 // ...
14 $this->assertEquals($expected, (new Bottles())->song());
15 }
16 }

Now go into CountdownSongTest and update the places that mention Bottles to refer to
CountdownSong (lines 4, 9, and 14 below):

Listing 9.18: Use CountdownSong in Tests
 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 public function test_a_couple_verses() {
 3 // ...
 4 $this->assertEquals($expected, (new CountdownSong())->verses(99, 98));
 5 }
 6
 7 public function test_a_few_verses() {
 8 // ...
 9 $this->assertEquals($expected, (new CountdownSong())->verses(2, 0));
10 }
11
12 public function test_the_whole_song() {
13 // ...
14 $this->assertEquals($expected, (new CountdownSong())->song());
15 }
16 }

At this point the old Bottles class is no longer used, so you can delete it. This should leave you
with 10 passing tests.

This process for changing a class name involved a few small steps rather than one big one. It
ordered the five necessary changes (the class’s name, the test’s name, and the test’s three
references to the old class name) so they could be made in series, all the while keeping the tests
running green.

In a problem this small you’d likely have been fine making all of the changes at once, but you
shouldn’t. Build a habit of doing refactorings. When you insist on making changes under green,
you never have far to go to debug whatever it is that you just broke. This makes everything
easier. It’s cheaper to always do refactorings than to sometimes debug big piles of altered code.

9.3.2. Purifying Tests With Fakes
Now that the CountdownSong exists, take a closer look at its tests (repeated below):

Listing 9.19: CountdownSong Tests Still Stuck to 99 Bottles Lyrics
 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 public function test_a_couple_verses() {
 3 $expected =
 4 "99 bottles of milk on the wall, " .
 5 "99 bottles of milk.\n" .
 6 "Take one down and pass it around, " .
 7 "98 bottles of milk on the wall.\n" .
 8 "\n" .
 9 "98 bottles of milk on the wall, " .
10 "98 bottles of milk.\n" .
11 "Take one down and pass it around, " .

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-150/test/CountdownSongTest.php#L5-L344
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-150/test/CountdownSongTest.php#L5-L344

9.3.2. Purifying Tests With Fakes

Page 250

12 "97 bottles of milk on the wall.\n";
13 $this->assertEquals($expected, (new CountdownSong())->verses(99, 98));
14 }
15
16 public function test_a_few_verses() {
17 $expected =
18 "2 bottles of milk on the wall, " .
19 "2 bottles of milk.\n" .
20 "Take one down and pass it around, " .
21 "1 bottle of milk on the wall.\n" .
22 "\n" .
23 "1 bottle of milk on the wall, " .
24 "1 bottle of milk.\n" .
25 "Take it down and pass it around, " .
26 "no more bottles of milk on the wall.\n" .
27 "\n" .
28 "No more bottles of milk on the wall, " .
29 "no more bottles of milk.\n" .
30 "Go to the store and buy some more, " .
31 "99 bottles of milk on the wall.\n";
32 $this->assertEquals($expected, (new CountdownSong())->verses(2, 0));
33 }
34
35 public function test_the_whole_song() {
36 $expected = <<< SONG
37 99 bottles of milk on the wall, 99 bottles of milk.
38 Take one down and pass it around, 98 bottles of milk on the wall.
39
40 98 bottles of milk on the wall, 98 bottles of milk.
41 Take one down and pass it around, 97 bottles of milk on the wall.
42
43 97 bottles of milk on the wall, 97 bottles of milk.
44 Take one down and pass it around, 96 bottles of milk on the wall.
45
46 // ...
47
48 No more bottles of milk on the wall, no more bottles of milk.
49 Go to the store and buy some more, 99 bottles of milk on the wall.
50
51 SONG;
52 $this->assertEquals($expected, (new CountdownSong())->song());
53 }
54 }

These tests are useful in that they prevent regressions, but they’re an abysmal failure at telling
the story of CountdownSong. They suffer from the problem you just fixed in the code; they still
reflect the context from which they came. The expectations are misleading, and the 290 lines of
code elided on line 46 drag your mind back to the "99 Bottles" context by sheer weight alone.
These tests strongly imply that CountdownSong is about "99 Bottles."

It’s a given that tests should prove that code works. But they have other purposes too, one of
which is to explain the domain to the reader. The story told by these tests is not the story of
CountdownSong. Tests should explain the essence of a class. The core responsibility of
CountdownSong is to take a verse template and produce a song that counts down. These tests fail
to convey those things.

If you study the tests long enough, you might eventually discern that the expectations contain
verses that count down—but then again, you might not. Additionally, the fact that

9.3.2. Purifying Tests With Fakes

Page 251

CountdownSong accepts an injected verse template is completely invisible. You cannot tell from
reading the tests that the verse template can vary.

Consider the first expectation. The test_a_couple_verses test would be much more intention-
revealing if instead of this:

$expected =
 "99 bottles of milk on the wall, " .
 "99 bottles of milk.\n" .
 "Take one down and pass it around, " .
 "98 bottles of milk on the wall.\n" .
 "\n" .
 "98 bottles of milk on the wall, " .
 "98 bottles of milk.\n" .
 "Take one down and pass it around, " .
 "97 bottles of milk on the wall.\n";

Its expectation read like this:

$expected =
 "This is verse 99.\n" .
 "\n" .
 "This is verse 98.\n" .
 "\n" .
 "This is verse 97.\n";

The second example above makes it crystal clear that the output is expected to contain verses
that count down. This is a better test, and having it is as easy as imagining it. Don’t be bound to
the original context by your knowledge of existing verse templates; CountdownSong's tests are
not doomed to collaborate with BottleVerse. Formulate a wish for the story you want to tell
and then make that wish come true.

Doing so simply requires creating a new player of the verse template role that fulfills this more
intention-revealing expectation. Here’s a new class that does just that:

Listing 9.20: VerseFake With Lyrics Implementation
1 class VerseFake {
2 public static function lyrics(int $number): string {
3 return "This is verse {$number}.\n";
4 }
5 }

The VerseFake class above is perfect for your needs, though it must be acknowledged that it
unrepentantly breaks several common programming rules.

First, Chapter 8 suggested that you put domain behavior on instances. This class violates that
rule; its behavior is on the static side.

Next, there’s an as-yet-unmentioned object-oriented programming rule that prohibits the use of
pattern names in class names. The word "Fake" above refers to a testing pattern, so naming this
class VerseFake violates that rule.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-170/test/CountdownSongTest.php#L5-L9

9.3.2. Purifying Tests With Fakes

Page 252

Fake things first. You’re probably familiar with the idea of design patterns[23], which are named,
re-usable solutions to common software problems. Pattern names act as shortcuts to big ideas
and allow programmers to communicate with speed and precision. Pattern thinking has so
influenced software design that most programmers are familiar with a number of patterns. For
example, you’ve likely heard of Decorator, Adapter, Enumerator, and so on, even if you’re a bit
fuzzy on the specifics of some of their definitions.

Since pattern names are so meaningful, it can be tempting to stick them in class names. For
example, you might use the Decorator[24] pattern to enclose a number in a new class that adds
additional responsibility. Initially, NumberDecorator might seem like a good name for the result.
The problem with including the name of a pattern in the name of a class is that this permits you
the feeling of having created a useful name without actually having done so. Pattern names don’t
generally reflect concepts in your application. Appending them to class names pollutes your
domain with programmer-y words and circumvents the search for names that add semantic
meaning. Class names that include patterns are a signal that you’ve given up too soon on the
hard problem of naming.

Class names should reflect concepts in your domain, not the patterns used to create them.
Compared to BottleNumber, the much-richer name you gave this class in Chapter 4,
NumberDecorator is so abstract as to be meaningless. Future readers won’t care that the class
was created using Decoration but they’ll be grateful to know that it’s a bottle-ish kind of number.

The xUnit Test Patterns[25] book by Gerard Meszaros standardizes the pattern names of a set of
objects that are used to simplify testing.[26]. TestDouble is his generic name for all of the
patterns. Within TestDouble he further delineates the Dummy, Stub, Spy, Mock, Fake, and
Temporary Test Stub patterns.

Meszaros defines Fake as a TestDouble that provides a lightweight implementation of a
collaborator that is needed by the class you are actually unit testing. A Fake is a regular old
object; no testing magic is involved. In this case the new VerseFake class is a real player of the
verse template role; it’s called a Fake because it’s only used during testing. BottleVerse plays
the role of verse template in production. VerseFake was created to play this role during
Bottles' unit tests.

The upshot is that Fake is the name of a pattern, so VerseFake violates the don’t-include-
pattern-names-in-class-names rule.

Rules exist to save money, and the two rules that VerseFake breaks are primarily meant to save
money in production code; they might not be so applicable in code created to simplify tests. For
example, the purpose of VerseFake is to fake the role of verse template. In this case, VerseFake
might be the most intention-revealing name possible. If you end up needing a number of
different kinds of fakes, you might need additional qualifiers in their names (SimpleVerseFake,
ComplicatedVerseFake) but the word "fake" still adds meaning in the domain of your tests.

Similarly, it’s important that the shape of production code not interfere with your ability to
change it. The put-domain-behavior-on-instances rule serves this goal. In tests, however, you’re
less concerned with preserving the fake’s changeability and more interested in directly

9.3.2. Purifying Tests With Fakes

Page 253

communicating its responsibilities. Putting the behavior in a static function simplifies the code in
VerseFake at the expense of making it less adaptable. This is a trade-off you’ll happily make in
code used only by the tests.

To use VerseFake, create an alternate test_a_couple_verses test. Because duplicate names
aren’t allowed, you’ll first have to alter the name of the original. Line 5 belows does this by
appending original to the initial test’s name, and line 2 shows the beginnings of a new test that
reuses the old name.

Listing 9.21: Introduce Alternate Test
 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 public function test_a_couple_verses() {
 3 }
 4
 5 public function test_a_couple_verses_original() {
 6 $expected =
 7 "99 bottles of milk on the wall, " .
 8 "99 bottles of milk.\n" .
 9 "Take one down and pass it around, " .
10 "98 bottles of milk on the wall.\n" .
11 "\n" .
12 "98 bottles of milk on the wall, " .
13 "98 bottles of milk.\n" .
14 "Take one down and pass it around, " .
15 "97 bottles of milk on the wall.\n";
16 $this->assertEquals($expected, (new CountdownSong())->verses(99, 98));
17 }
18 // ...
19 }

Next, fill this alternate test with an entirely new implementation that uses the fake, as shown
here:

Listing 9.22: Alternate Test
 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 public function test_a_couple_verses() {
 3 $expected =
 4 "This is verse 99.\n" .
 5 "\n" .
 6 "This is verse 98.\n" .
 7 "\n" .
 8 "This is verse 97.\n";
 9 $this->assertEquals(
10 $expected,
11 (new CountdownSong(VerseFake::class))->verses(99, 97)
12);
13 }
14
15 public function test_a_couple_verses_original() {
16 $expected =
17 "99 bottles of milk on the wall, " .
18 // ...
19 $this->assertEquals($expected, (new CountdownSong())->verses(99, 98));
20 }
21 // ...
22 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-180/test/CountdownSongTest.php#L11-L353
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-190/test/CountdownSongTest.php#L11-L363

9.3.3. Purging Redundant Tests

Page 254

The alternate test_a_couple_verses test above injects VerseFake (line 11) and sets its
expectations (line 3) based on the behavior of that verse template.

At this point 11 tests should pass.

Now that the alternate test has been shown to work, delete the old one to cleanup obsolete code.
You should again have 10 passing tests.

This reduces CountdownSongTest to:

Listing 9.23: Retain Alternate Test
 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 public function test_a_couple_verses() {
 3 $expected =
 4 "This is verse 99.\n" .
 5 "\n" .
 6 "This is verse 98.\n" .
 7 "\n" .
 8 "This is verse 97.\n";
 9 $this->assertEquals(
10 $expected,
11 (new CountdownSong(VerseFake::class))->verses(99, 97)
12);
13 }
14
15 public function test_a_few_verses() {
16 // ...
17 }
18
19 public function test_the_whole_song() {
20 // ...
21 }
22 }

Notice that test_a_couple_verses is more expressive now that it contains less noise. This new
version also verifies three contiguous verses (the 99, 97 on line 11) rather than only two.
VerseFake's verses are so short that you can broaden the expectation to illustrate more clearly
that the input is a range without overly complicating the test.

The test_a_couple_verses name is now out-of-date. Make a note that it needs to be updated,
but tolerate it for the moment. Working on the other CountdownSong tests may provide more
information about how to name this one.

Relative to the old, the body of this new test is both more intention-revealing and shorter. Using
the fake converted it into a model of expressive concision. One might wish all tests to be so
straightforward.

9.3.3. Purging Redundant Tests

Next, turn your attention to the other test that makes assertions about verses,
test_a_few_verses, shown on line 15 below:

Listing 9.24: Comparing Verses Tests

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-200/test/CountdownSongTest.php#L11-L349
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-200/test/CountdownSongTest.php#L11-L349

9.3.3. Purging Redundant Tests

Page 255

 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 public function test_a_couple_verses() {
 3 $expected =
 4 "This is verse 99.\n" .
 5 "\n" .
 6 "This is verse 98.\n" .
 7 "\n" .
 8 "This is verse 97.\n";
 9 $this->assertEquals(
10 $expected,
11 (new CountdownSong(VerseFake::class))->verses(99, 97)
12);
13 }
14
15 public function test_a_few_verses() {
16 $expected =
17 "2 bottles of milk on the wall, " .
18 "2 bottles of milk.\n" .
19 "Take one down and pass it around, " .
20 "1 bottle of milk on the wall.\n" .
21 "\n" .
22 "1 bottle of milk on the wall, " .
23 "1 bottle of milk.\n" .
24 "Take it down and pass it around, " .
25 "no more bottles of milk on the wall.\n" .
26 "\n" .
27 "No more bottles of milk on the wall, " .
28 "no more bottles of milk.\n" .
29 "Go to the store and buy some more, " .
30 "99 bottles of milk on the wall.\n";
31 $this->assertEquals($expected, (new CountdownSong())->verses(2, 0));
32 }
33
34 public function test_the_whole_song() {
35 // ...
36 }
37 }

Is test_a_few_verses necessary? If test_a_couple_verses and test_a_few_verses test
different things, you should keep both. If they test same thing, you should delete one of them.

Even though the tests define different expectations, they are logically identical. Each test asserts
that CountdownSong produces the correct list of verses for a given verse template and range.
Since they test the same thing, you don’t need both.

They have been redundant since they were initially created back in Chapter 2. It’s so easy now to
recognize that test_a_few_verses isn’t needed that it’s instructive to ask why this test ever
seemed necessary.

Notice that the expectation in test_a_few_verses lists every verse of the initial "99 Bottles"
implementation that did not follow the common rule. Put another way, verse 2, 1, and 0 were
special, and each rightly had their own individual verse test. The fact that these single verses
were special made it somehow seem reasonable to test them in combination. But this was never
necessary. As long as you have tests to prove that every verse is correct, you don’t need to test
verses against more than one range. If verses works with one, it will work with all.

9.3.3. Purging Redundant Tests

Page 256

This point is more effectively made by imagining the logical outcome of adding other redundant
verses tests. If you feel the need to test both 99-97 and 2-0, then why not 99-96? And 99-95? 40-
28, etc? This way lies madness. These superfluous tests confuse the reader and increase
maintenance costs without adding additional safety. One verses test is enough. Stop there.

Deleting test_a_few_verses condenses the tests to:

Listing 9.25: Testing the Verses Method Just Once
 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 public function test_a_couple_verses() {
 3 $expected =
 4 "This is verse 99.\n" .
 5 "\n" .
 6 "This is verse 98.\n" .
 7 "\n" .
 8 "This is verse 97.\n";
 9 $this->assertEquals(
10 $expected,
11 (new CountdownSong(VerseFake::class))->verses(99, 97)
12);
13 }
14
15 public function test_the_whole_song() {
16 $expected = <<< SONG
17 99 bottles of milk on the wall, 99 bottles of milk.
18 // ...
19 Go to the store and buy some more, 99 bottles of milk on the wall.
20
21 SONG;
22 $this->assertEquals($expected, (new CountdownSong())->song());
23 }
24 }

The resulting CountdownSongTest contains two tests. The entire suite now contains nine tests,
all of which pass.

CountdownSong's public API contains three methods, but CountdownSongTest covers only two
of them. The above example has no test for verse. Since CountdownSong offers this public
method, CountdownSongTest must test it.

CountdownSongTest originally tested the entire API (song, verses and verse). However, the
original verse tests were specific to "99 Bottles" and they recently moved to BottleVerseTest
where they belong. This move left a gap in CountdownSong's coverage; it should have a test for
verse.

Having gone through the exercise of creating and using VerseFake, it’s exceedingly easy to
construct an intention-revealing test for verse in CountdownSongTest. Here’s an example:

Listing 9.26: Test Entire API in CountdownSongTest
 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 public function test_verse() {
 3 $expected =
 4 "This is verse 500.\n";
 5 $this->assertEquals(
 6 $expected,

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-210/test/CountdownSongTest.php#L11-L330
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-220/test/CountdownSongTest.php#L11-L339

9.3.3. Purging Redundant Tests

Page 257

 7 (new CountdownSong(VerseFake::class))->verse(500)
 8);
 9 }
10
11 public function test_a_couple_verses() {
12 // ...
13 }
14
15 public function test_the_whole_song() {
16 // ...
17 }
18 }

Notice that CountdownSong tests verse using 500 for the verse number. It intentionally conveys
the idea that a number outside the 99-0 range is acceptable. This is visible evidence that
CountdownSong is not constrained by the limits of the "99 Bottles" context from which it came.

There should again be 10 passing tests.

Now that you’ve chosen test_verse for the name of the test for verse, reevaluate the
test_a_couple_verses name. Calling this test test_verse suggests a pattern, and following
the pattern would make the other tests easier to understand. Your intention would be clearer if
test_a_couple_verses was renamed to test_verses, as shown below:

Listing 9.27: Improve Verses Test Name
 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 public function test_verse() {
 3 $expected =
 4 "This is verse 500.\n";
 5 $this->assertEquals(
 6 $expected,
 7 (new CountdownSong(VerseFake::class))->verse(500)
 8);
 9 }
10
11 public function test_verses() {
12 $expected =
13 "This is verse 99.\n" .
14 "\n" .
15 "This is verse 98.\n" .
16 "\n" .
17 "This is verse 97.\n";
18 $this->assertEquals(
19 $expected,
20 (new CountdownSong(VerseFake::class))->verses(99, 97)
21);
22 }
23
24 public function test_the_whole_song() {
25 // ...
26 }
27 }

Using VerseFake greatly simplified the verse and verses tests. The fake enhances the story of
CountdownSong rather than distracting from it, as did the old expectations with their obsolete
"99 Bottles" context. A glance at these two tests makes it clear that CountdownSong has nothing
to do with "99 Bottles", but instead, it’s about counting down.

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-230/test/CountdownSongTest.php#L11-L339

9.3.4. Profiting from Loose Coupling

Page 258

The one remaining test is for song. It currently contains 305 lines of code, most of which are
misleading.

9.3.4. Pro�ting from Loose Coupling

Having clarified the verse and verses tests, it’s now time to address test_the_whole_song,
shown in an abbreviated form below:

Listing 9.28: Revisit Test the Whole Song
 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 // ...
 3 public function test_the_whole_song() {
 4 $expected = <<< SONG
 5 99 bottles of milk on the wall, 99 bottles of milk.
 6 Take one down and pass it around, 98 bottles of milk on the wall.
 7
 8 98 bottles of milk on the wall, 98 bottles of milk.
 9 Take one down and pass it around, 97 bottles of milk on the wall.
10
11 // ...
12
13 1 bottle of milk on the wall, 1 bottle of milk.
14 Take it down and pass it around, no more bottles of milk on the wall.
15
16 No more bottles of milk on the wall, no more bottles of milk.
17 Go to the store and buy some more, 99 bottles of milk on the wall.
18
19 SONG;
20 $this->assertEquals($expected, (new CountdownSong())->song());
21 }
22 }

This test needs work. Counting the lines elided by the comment on line 11 above, it’s 305 lines
long, most of which involve the expectation. This wall of expectation text makes it impossible to
understand the story the test wants to tell.

You’ve already employed VerseFake to improve the other tests. Injecting it here would certainly
help, but would not solve the wall-of-text problem. Even if you used the fake to simplify each
individual verse listed in the expectation, the expectation would still be dauntingly long, listing
100 verses.

Have a look at CountdownSong and see if you can spot the source of this problem:

Listing 9.29: CountdownSong Reprise
 1 class CountdownSong {
 2 protected $verseTemplate;
 3
 4 public function __construct(string $verseTemplate = BottleVerse::class) {
 5 $this->verseTemplate = $verseTemplate;
 6 }
 7
 8 public function song(): string {
 9 return $this->verses(99, 0);
10 }
11
12 public function verses(int $upper, int $lower): string {
13 return implode(

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-230/test/CountdownSongTest.php#L11-L339
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-230/lib/Bottles.php#L5-L26

9.3.4. Profiting from Loose Coupling

Page 259

14 "\n",
15 array_map([$this, 'verse'], range($upper, $lower))
16);
17 }
18
19 public function verse(int $number): string {
20 return $this->verseTemplate::lyrics($number);
21 }
22 }

The 99 on line 9 above condemns you to an expectation that lists 100 verses.

Early in this chapter three remnants of the original "99 Bottles" context were identified in this
song-producing code. First, the class was named Bottles, second, the verse template defaulted
to BottleVerse, and third, the class contained a hard-coded 99.

Generalizing the class name to CountdownSong resolved the first problem but the other two
vestiges remain. These echos of a now-obsolete context mislead readers and interfere with reuse.
Since tests are the first reuse of your code, reusability problems are exposed by the tests. This is
exactly what’s behind that wall of text in test_the_whole_song. The awkward test is pointing
out that all CountdownSong's are required to have exactly 100 verses. This is cripplingly
restrictive.

Fortunately, it’s easy to gain independence from the old context; just alter CountdownSong to
handle songs of any number of verses, within any range. Extract and then inject the 99 and the 0
to isolate the things you want to vary.

The first step is to name the concepts represented by these numbers. You might, for example,
choose max and min.

Start using these names by creating properties as shown in on line 2 below:

1 class CountdownSong {
2 protected $verseTemplate, $min, $max;
3 // ...
4 }

Having done that, you can change CountdownSong to accept and save these arguments during
construction, as shown below:

Listing 9.30: Inject and Set Max and Min
1 class CountdownSong {
2 // ...
3 public function __construct(string $verseTemplate = BottleVerse::class, int $max = 99, int $min
= 0) {
4 $this->verseTemplate = $verseTemplate;
5 $this->max = $max;
6 $this->min = $min;
7 }
8 // ...
9 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-250/lib/Bottles.php#L5-L28

9.3.4. Profiting from Loose Coupling

Page 260

Now the song method can refer to these abstract names rather than to the concrete values on
line 11 below:

Listing 9.31: Use Max and Min in Song
 1 class CountdownSong {
 2 protected $verseTemplate, $min, $max;
 3
 4 public function __construct(string $verseTemplate = BottleVerse::class, int $max = 99, int $min
= 0) {
 5 $this->verseTemplate = $verseTemplate;
 6 $this->max = $max;
 7 $this->min = $min;
 8 }
 9
10 public function song(): string {
11 return $this->verses($this->max, $this->min);
12 }
13
14 public function verses(int $upper, int $lower): string {
15 return implode(
16 "\n",
17 array_map([$this, 'verse'], range($upper, $lower))
18);
19 }
20
21 public function verse(int $number): string {
22 return $this->verseTemplate::lyrics($number);
23 }
24 }

Thus the dependency is inverted. Where CountdownSong previously depended on the 99 and 0
concretions, it now depends on the max and min abstractions. Where it was once handcuffed by
the context from which it came, it is now independent of that context. Paradoxically, now that it
knows less, it can do more.

This completes the extraction of max and min. Before moving on to update the tests, there a few
things to note about the code.

First, max and min are given defaults on line 4, and these defaults look suspiciously like values
that make sense only in the context of the "99 Bottles" song. It would be better to pass more
general defaults, but you can’t do that yet because test_the_whole_song will fail unless max is
99. For now just recognize that you’d like this default to be context-independent and be alert for
an opportunity to make it so.

Next, notice that the song accepts pairs of numbers delineating a range of verses in two different
places (lines 4 and 14). In one place, the pair is named max and min, and in the other, upper and
lower. This is intentional. The idea that an entire countdown song has a fixed number of verses
is embodied in max and min. This is about the song. In contrast, the idea that the verses method
can produce a requested range of descending verses is reflected in upper and lower. This is
about the subset of verses to be produced. These are two different concepts, and giving them
different names clarifies the code.

Now that max and min exist, you can use them to simplify test_the_whole_song. Line 3 below
shows a much shorter but arguably more useful song test:

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-260/lib/Bottles.php#L5-L28

9.3.4. Profiting from Loose Coupling

Page 261

Listing 9.32: Alternate Whole Song Test
 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 // ...
 3 public function test_the_whole_song() {
 4 $expected =
 5 "This is verse 47.\n" .
 6 "\n" .
 7 "This is verse 46.\n" .
 8 "\n" .
 9 "This is verse 45.\n" .
10 "\n" .
11 "This is verse 44.\n" .
12 "\n" .
13 "This is verse 43.\n";
14 $this->assertEquals(
15 $expected,
16 (new CountdownSong(VerseFake::class, 47, 43))->song()
17);
18 }
19
20 public function test_the_whole_song_original() {
21 $expected = <<< SONG
22 99 bottles of milk on the wall, 99 bottles of milk.
23 Take one down and pass it around, 98 bottles of milk on the wall.
24
25 // ...
26
27 No more bottles of milk on the wall, no more bottles of milk.
28 Go to the store and buy some more, 99 bottles of milk on the wall.
29
30 SONG;
31 $this->assertEquals($expected, (new CountdownSong())->song());
32 }
33 }

Now that this better test exists, you can delete the older version.

You’re almost done with CountdownSongTest. The only remaining task is to rename
test_the_whole_song so that it’s consistent with the other names. Calling it test_song works
perfectly well, and after making it so the final CountdownSongTest looks like this:

Listing 9.33: A Beautiful Test Suite
 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 public function test_verse() {
 3 $expected =
 4 "This is verse 500.\n";
 5 $this->assertEquals(
 6 $expected,
 7 (new CountdownSong(VerseFake::class))->verse(500)
 8);
 9 }
10
11 public function test_verses() {
12 $expected =
13 "This is verse 99.\n" .
14 "\n" .
15 "This is verse 98.\n" .
16 "\n" .
17 "This is verse 97.\n";
18 $this->assertEquals(
19 $expected,

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-270/test/CountdownSongTest.php#L11-L356
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-290/test/CountdownSongTest.php#L11-L50

9.4.1. Enriching Code with Signals

Page 262

20 (new CountdownSong(VerseFake::class))->verses(99, 97)
21);
22 }
23
24 public function test_song() {
25 $expected =
26 "This is verse 47.\n" .
27 "\n" .
28 "This is verse 46.\n" .
29 "\n" .
30 "This is verse 45.\n" .
31 "\n" .
32 "This is verse 44.\n" .
33 "\n" .
34 "This is verse 43.\n";
35 $this->assertEquals(
36 $expected,
37 (new CountdownSong(VerseFake::class, 47, 43))->song()
38);
39 }
40 }

The above is a dramatically simplified but information-rich 40 lines of tests. Not only are the
tests much improved, but your insistence on having high-value tests like these forced you to
improve the code.

This point cannot be emphasized strongly enough. Tight coupling between objects made testing
difficult. Instead of succumbing to those flaws and writing verbose, confusing tests, the code was
altered to allow you to write better tests. The changes to the code loosened the coupling between
objects by extracting and injecting dependencies. Now that max, min and $verseTemplate are
being injected, the code is more broadly useful, and the tests convey more information.

Insisting on simple tests improved both the tests and the code. It ought to be easy to reuse
objects. Tests are a form of reuse. Making code easy to test therefore serves the greater purpose
of making it easy to reuse. This pays off now and forevermore.

9.4. Communicating With the Future
The tests have been squarely focused on communicating the intent of the code to imagined
readers. This commitment to thorough communication has guided the choice of where to locate
tests, what to name them, and which collaborators to provide. As helpful and necessary as the
previous changes were, there’s still a bit more that can be done to improve the code.

This last section makes a few final changes to add more information and safety, and to reduce
potential confusion. Think of this round as the last pass through the code before you check it all
in and walk away.

9.4.1. Enriching Code with Signals
All current tests share a similar three-phase structure. Each test:

1. defines an expectation,

2. executes some code, and

9.4.1. Enriching Code with Signals

Page 263

3. asserts that the result matches the expectation

This pattern is known as Arrange-Act-Assert (AAA)[27]. Nothing requires that tests be formatted
this way. They can obviously be made to work regardless of arrangement. This rigorous
consistency isn’t for the tests; it’s for the humans.

Committing to a common shape lowers the cognitive load imposed upon future readers. When
every test is structured in the same way, readers don’t have to waste time determining if
spurious differences matter. The very shape of the code communicates "nothing odd to see here,
la, la, la, all is boring and normal, move on along."

Choosing to arrange tests in a similar way is a matter of programming style. Your team should
agree upon a common style. Lacking this, everyone’s code will differ in meaningless ways, which
raises the cost of reading code.

A pattern that suits all situations can sometimes feel a bit heavy for extremely simple cases. For
example, test_verse deliberately declares the expected variable on line 3 below even though
it could have merely hard-coded "This is verse 500.\n" on line 6.

Listing 9.34: Style Trumps Substance
 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 public function test_verse() {
 3 $expected =
 4 "This is verse 500.\n";
 5 $this->assertEquals(
 6 $expected,
 7 (new CountdownSong(VerseFake::class))->verse(500)
 8);
 9 }
10 // ...
11 }

In the test above, the commitment to honoring a common style overrode the desire to shorten
the listing. Following the style communicates to readers that there’s nothing special or
uncommon about this test, and conveying that information is more valuable than reducing this
listing by one line.

By definition, future readers of your code know less than you know now. They are swimming in
murky water, bumping into dimly perceived concepts, searching for clarity. The very shape of
code can be a beacon of light, rich with meaning. You’re always on the lookout for code
arrangements that send signals to these hapless readers.

Style is one kind of signal, but there are others. For example, you may have wondered why
test_song chose 47 and 43 for max and min (lines 16 below).

Listing 9.35: Signaling With Prime Numbers
 1 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 2 // ...
 3 public function test_song() {
 4 $expected =
 5 "This is verse 47.\n" .

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-290/test/CountdownSongTest.php#L11-L50
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-290/test/CountdownSongTest.php#L11-L50

9.4.1. Enriching Code with Signals

Page 264

 6 "\n" .
 7 "This is verse 46.\n" .
 8 "\n" .
 9 "This is verse 45.\n" .
10 "\n" .
11 "This is verse 44.\n" .
12 "\n" .
13 "This is verse 43.\n";
14 $this->assertEquals(
15 $expected,
16 (new CountdownSong(VerseFake::class, 47, 43))->song()
17);
18 }
19 }

Among the infinite universe of numbers, why choose these?

Future readers will wonder if there’s meaning behind your choice of test data. They want very
much to know whether the numbers shown on lines 16 above matter, or if other values would
suffice. This problem is easy to solve in tests that take a string because in those cases you can
communicate directly with the reader (for example "any string goes here"). Communicating
that any number will do, however, requires an agreed-upon signal.

This test uses prime numbers to signal arbitrariness. Programmers familiar with the Prime
Number Signal ™ will immediately recognize that the 47 and 43 do not matter; the numbers
signal that they themselves are arbitrary examples.

Once you start thinking about sending signals, opportunities abound. It’s sometimes possible to
imbue actual language syntax with additional meaning. For example, the late Jim Weirich[28]

took advantage of the fact that Ruby , his preferred language, allows code blocks to be delimited
either with curly braces {…} or with do…end. Because most folks use these variants
interchangeably, he felt free to co-opt them to send signals. Weirich used do…end to warn that
the enclosed block had side-effects, and {…} to assure that it did not. Readers of his code remain
grateful for these signals.

You might be wondering if it would be more straightforward to break down and write a
comment rather than trying to send a signal. After all, a comment can be read by anyone, but
someone unfamiliar with the signal will miss it. While true, this ignores a key quality of
comments. Maintenance is hit-or-miss, and over time they often become invisible and outdated.
As long as your team can agree upon a style guide, code-based signals are ultimately more
reliable than comments.

Now that you’re familiar with the Prime Number Signal, you might be wondering if every test
for CountdownSong should use it. The short answer is that it would be perfectly fine to go back
and change those other tests to use prime numbers. The longer answer is that it might not be
necessary to do so.

The 500 used in test_verse is so ridiculously large that it already signals that any number,
even a big one, will do. The 99/97 used in test_verses is a bit more difficult to defend, but
readers will probably not be confused. If you are concerned that they will be, you should go alter
those tests to use prime numbers right now.

9.4.2. Verifying Roles

Page 265

Signals offer a cheap way to add valuable information to code. Look for opportunities to develop
and use them. Even if your team consists only of you, the information imparted by a signal will
be useful to your future self.

9.4.2. Verifying Roles

VerseFake and BottleVerse play the verseTemplate role. In production, CountdownSong
collaborates with BottleVerse, but in the tests it collaborates with VerseFake.

The fake helps in two ways. It speeds upCountdownSong's tests, and it encourages you to think of
CountdownSong as something that interacts with the verseTemplate abstraction rather than
the BottleVerse concretion.

So far so good, but using the fake introduces a new problem. As the code stands, it’s possible to
create a world where the tests run correctly but the application fails. If the API of the
verseTemplate role changes, and BottleVerse gets updated but VerseFake and
CountdownSong do not, the tests will continue pass even though the application is broken.

The fix for this problem is to declare an interface. An interface is a list of methods that a class
must implement in order to play a role. Interfaces define an API without specifying behavior.
Classes that want to play the role declare that they implement the interface, and then must do so.

Here’s how it all fits together. First, declare the interface:

Listing 9.36: CountdownSongVerse Interface
1 interface CountdownSongVerse {
2 public static function lyrics(int $number): string;
3 }

The above states that classes that want to play to role of CountdownSongVerse must implement
a public static function named lyrics that takes an int and returns a string.

Now that the interface is defined, BottleVerse and VerseFake can implement it. They already
contain a static function with the correct name, so all that’s needed is to add the implements
keyword to the class definition. Here’s that change in BottleVerse (line 1 below):

Listing 9.37: BottleVerse Is a CountdownSongVerse
1 class BottleVerse implements CountdownSongVerse {
2 // ...
3 public static function lyrics(int $number): string {
4 return (new BottleVerse(BottleNumber::for($number)))->_lyrics();
5 }
6 // ...
7 }

And here’s the same change in VerseFake (also on line 1):

Listing 9.38: VerseFake Is a CountdownSongVerse
1 class VerseFake implements CountdownSongVerse {
2 public static function lyrics(int $number): string {
3 return "This is verse {$number}.\n";

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-291/lib/Bottles.php#L30-L32
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-292/lib/Bottles.php#L34-L52
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-340/test/CountdownSongTest.php#L5-L9

9.4.3. Obliterating Obsolete Context

Page 266

4 }
5 }

Running the tests now confirms that VerseFake correctly plays the verse template role.

Good OO leads to polymorphic, role-playing objects. As you identify and define roles, embody
them in interfaces and leverage PHP to do the work of keeping the players in sync.

9.4.3. Obliterating Obsolete Context
The final task in this last section is to pass through the code one more time, locating and
removing obsolete context. CountdownSong retains a few misleading vestiges of "99 Bottles"; it’s
finally time to remove them.

Consider the code below:

Listing 9.39: CountdownSong Default Reflect Obsolete Context
 1 class CountdownSong {
 2 protected $verseTemplate, $min, $max;
 3
 4 public function __construct(string $verseTemplate = BottleVerse::class, int $max = 99, int $min
= 0) {
 5 $this->verseTemplate = $verseTemplate;
 6 $this->max = $max;
 7 $this->min = $min;
 8 }
 9 // ...
10 }

In line 4 above, the default values for $verseTemplate, max, and min are artifacts of the "99
Bottles" context from which CountdownSong came. These defaults give the impression that the
old context still matters. It doesn’t, and the best way to make that clear is to change this code.

You now have to decide whether to provide defaults at all, and if so, what values to use.
CountdownSong could conceivably supply defaults for max and min, but can’t reasonably guess
which verse template should be used.

Making outsiders supply a $verseTemplate is as easy as removing the default, as shown on line
4 below:

Listing 9.40: Remove Verse Template Default
 1 class CountdownSong {
 2 protected $verseTemplate, $min, $max;
 3
 4 public function __construct(string $verseTemplate, int $max = 99, int $min = 0) {
 5 $this->verseTemplate = $verseTemplate;
 6 $this->max = $max;
 7 $this->min = $min;
 8 }
 9 // ...
10 }

This couldn’t be done earlier because the old tests expected CountdownSong to set
$verseTemplate to BottleVerse. Now that all tests supply a verse template, they work

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-340/lib/Bottles.php#L5-L28
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-350/lib/Bottles.php#L5-L28

9.4.3. Obliterating Obsolete Context

Page 267

seamlessly throughout this transition.

This leaves max and min. The lower number, min, feels almost as straightforward as
$verseTemplate. Songs probably count down to 0; it’s easy to defend a decision to default min
to 0 in CountdownSong.

The max number is a bit trickier. It can be argued that, just as CountdownSong can’t know what
verse template you want, it can’t know how many verses your song contains. Users of
CountdownSong will likely always need to provide this value. Even so, CountdownSong might
want to set a default in order to send a signal.

Defaulting max to a ridiculously large number signals that CountdownSong can handle very long
songs. The following snippet does just that:

Listing 9.41: Reset the Max
1 public function __construct(string $verseTemplate, int $max = 999999, int $min = 0) {
2 // ...
3 }

Having made that final change, peruse the complete listings and glory in your accomplishments:

Listing 9.42: Final Code
 1 class CountdownSong {
 2 protected $verseTemplate, $min, $max;
 3
 4 public function __construct(string $verseTemplate, int $max = 999999, int $min = 0) {
 5 $this->verseTemplate = $verseTemplate;
 6 $this->max = $max;
 7 $this->min = $min;
 8 }
 9
 10 public function song(): string {
 11 return $this->verses($this->max, $this->min);
 12 }
 13
 14 public function verses(int $upper, int $lower): string {
 15 return implode(
 16 "\n",
 17 array_map([$this, 'verse'], range($upper, $lower))
 18);
 19 }
 20
 21 public function verse(int $number): string {
 22 return $this->verseTemplate::lyrics($number);
 23 }
 24 }
 25
 26 interface CountdownSongVerse {
 27 public static function lyrics(int $number): string;
 28 }
 29
 30 class BottleVerse implements CountdownSongVerse {
 31 protected $bottleNumber;
 32
 33 public static function lyrics(int $number): string {
 34 return (new BottleVerse(BottleNumber::for($number)))->_lyrics();
 35 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-360/lib/Bottles.php#L8-L12
https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-360/lib/Bottles.php#L5-L136

9.4.3. Obliterating Obsolete Context

Page 268

 36
 37 public function __construct(object $bottleNumber) {
 38 $this->bottleNumber = $bottleNumber;
 39 }
 40
 41 private function _lyrics(): string {
 42 return
 43 ucfirst("{$this->bottleNumber} of milk on the wall, ") .
 44 "{$this->bottleNumber} of milk.\n" .
 45 "{$this->bottleNumber->action()}, " .
 46 "{$this->bottleNumber->successor()} of milk on the wall.\n";
 47 }
 48 }
 49
 50 class BottleNumber {
 51 protected $number;
 52
 53 public static function for(int $number): BottleNumber {
 54 switch ($number) {
 55 case 0:
 56 $className = BottleNumber0::class;
 57 break;
 58 case 1:
 59 $className = BottleNumber1::class;
 60 break;
 61 case 6:
 62 $className = BottleNumber6::class;
 63 break;
 64 default:
 65 $className = BottleNumber::class;
 66 break;
 67 }
 68 return new $className($number);
 69 }
 70
 71 public function __construct(int $number) {
 72 $this->number = $number;
 73 }
 74
 75 public function __toString(): string {
 76 return $this->quantity() . " " . $this->container();
 77 }
 78
 79 public function quantity(): string {
 80 return (string)$this->number;
 81 }
 82
 83 public function container(): string {
 84 return "bottles";
 85 }
 86
 87 public function action(): string {
 88 return "Take " . $this->pronoun() . " down and pass it around";
 89 }
 90
 91 public function pronoun(): string {
 92 return "one";
 93 }
 94
 95 public function successor(): object {
 96 return BottleNumber::for($this->number - 1);
 97 }
 98 }
 99

9.4.3. Obliterating Obsolete Context

Page 269

100 class BottleNumber0 extends BottleNumber {
101 public function quantity(): string {
102 return "no more";
103 }
104
105 public function action(): string {
106 return "Go to the store and buy some more";
107 }
108
109 public function successor(): object {
110 return BottleNumber::for(99);
111 }
112 }
113
114 class BottleNumber1 extends BottleNumber {
115 public function container(): string {
116 return "bottle";
117 }
118
119 public function pronoun(): string {
120 return "it";
121 }
122 }
123
124 class BottleNumber6 extends BottleNumber {
125 public function quantity(): string {
126 return "1";
127 }
128
129 public function container(): string {
130 return "six-pack";
131 }
132 }

Listing 9.43: Final Tests
 1 class VerseFake implements CountdownSongVerse {
 2 public static function lyrics(int $number): string {
 3 return "This is verse {$number}.\n";
 4 }
 5 }
 6
 7 class CountdownSongTest extends \PHPUnit\Framework\TestCase {
 8 public function test_verse() {
 9 $expected =
 10 "This is verse 500.\n";
 11 $this->assertEquals(
 12 $expected,
 13 (new CountdownSong(VerseFake::class))->verse(500)
 14);
 15 }
 16
 17 public function test_verses() {
 18 $expected =
 19 "This is verse 99.\n" .
 20 "\n" .
 21 "This is verse 98.\n" .
 22 "\n" .
 23 "This is verse 97.\n";
 24 $this->assertEquals(
 25 $expected,
 26 (new CountdownSong(VerseFake::class))->verses(99, 97)
 27);
 28 }

https://github.com/sandimetz/99bottles_php_milk/blob/2.1.1-c9-revisit-tests-360/test/CountdownSongTest.php#L5-L50

9.4.3. Obliterating Obsolete Context

Page 270

 29
 30 public function test_song() {
 31 $expected =
 32 "This is verse 47.\n" .
 33 "\n" .
 34 "This is verse 46.\n" .
 35 "\n" .
 36 "This is verse 45.\n" .
 37 "\n" .
 38 "This is verse 44.\n" .
 39 "\n" .
 40 "This is verse 43.\n";
 41 $this->assertEquals(
 42 $expected,
 43 (new CountdownSong(VerseFake::class, 47, 43))->song()
 44);
 45 }
 46 }
 47
 48 class BottleVerseTest extends \PHPUnit\Framework\TestCase {
 49 public function test_verse_general_rule_upper_bound() {
 50 $expected =
 51 "99 bottles of milk on the wall, " .
 52 "99 bottles of milk.\n" .
 53 "Take one down and pass it around, " .
 54 "98 bottles of milk on the wall.\n";
 55 $this->assertEquals($expected, BottleVerse::lyrics(99));
 56 }
 57
 58 public function test_verse_general_rule_lower_bound() {
 59 $expected =
 60 "3 bottles of milk on the wall, " .
 61 "3 bottles of milk.\n" .
 62 "Take one down and pass it around, " .
 63 "2 bottles of milk on the wall.\n";
 64 $this->assertEquals($expected, BottleVerse::lyrics(3));
 65 }
 66
 67 public function test_verse_7() {
 68 $expected =
 69 "7 bottles of milk on the wall, " .
 70 "7 bottles of milk.\n" .
 71 "Take one down and pass it around, " .
 72 "1 six-pack of milk on the wall.\n";
 73 $this->assertEquals($expected, BottleVerse::lyrics(7));
 74 }
 75
 76 public function test_verse_6() {
 77 $expected =
 78 "1 six-pack of milk on the wall, " .
 79 "1 six-pack of milk.\n" .
 80 "Take one down and pass it around, " .
 81 "5 bottles of milk on the wall.\n";
 82 $this->assertEquals($expected, BottleVerse::lyrics(6));
 83 }
 84
 85 public function test_verse_2() {
 86 $expected =
 87 "2 bottles of milk on the wall, " .
 88 "2 bottles of milk.\n" .
 89 "Take one down and pass it around, " .
 90 "1 bottle of milk on the wall.\n";
 91 $this->assertEquals($expected, BottleVerse::lyrics(2));
 92 }

9.5. Summary

Page 271

 93
 94 public function test_verse_1() {
 95 $expected =
 96 "1 bottle of milk on the wall, " .
 97 "1 bottle of milk.\n" .
 98 "Take it down and pass it around, " .
 99 "no more bottles of milk on the wall.\n";
100 $this->assertEquals($expected, BottleVerse::lyrics(1));
101 }
102
103 public function test_verse_0() {
104 $expected =
105 "No more bottles of milk on the wall, " .
106 "no more bottles of milk.\n" .
107 "Go to the store and buy some more, " .
108 "99 bottles of milk on the wall.\n";
109 $this->assertEquals($expected, BottleVerse::lyrics(0));
110 }
111 }

In the heat of coding, it can be tempting to skip this final, cleanup pass. But don’t miss this last bit
of scrubbing to make the code shine.

9.5. Summary
Tests help prevent errors in code, but to characterize them so simply is a disservice; they offer
far more. Good OO is built upon small, interchangeable objects that interact via abstractions. The
behavior of each individual object is often quite obvious, but the same cannot be said for the
operation of the whole. Tests fill this breach.

Object-oriented applications rely on message sending. The key virtue of messages is that they
add indirection. Messages allow the sender to ask for an abstraction and be confident that the
receiver will use the appropriate concrete implementation to fulfill the request. Senders are
responsible for knowing what they want, receivers, for knowing how to do it. Separating
intention from implementation in this way allows you to introduce new variations without
altering existing code; simply create a new object that responds to the original message with a
different implementation.

When designed with the following features, object-oriented code can interact with new and
unanticipated variants without having to change:

1. Variants are isolated.
They’re usually isolated in some kind of object, often a new class.

2. Variant selection is isolated.
Selection happens in factories, which may be as simple as isolated conditionals that
choose a class.

3. Message senders and receivers are loosely coupled.
This is commonly accomplished by injecting dependencies.

4. Variants are interchangeable.
Message senders treat injected objects as equivalent players of identical roles.

9.5. Summary

Page 272

Initially, this reliance on abstractions and indirection increases the complexity of code. What OO
promises in return is a reduction in the future cost of change. Highly concrete, tightly coupled
code will resist tomorrow’s change. Code that depends on loosely coupled abstractions will
encourage it.

Because tests need to execute code, they supply early and direct information about inadequate
design, and they provide impetus and inspiration for refinements. When tests are difficult to
write, require lots of setup, or can’t tell a satisfying story, something is wrong. Listen. Fixing
problems now is not only cheaper than fixing them later, but will improve your code, clarify
your tests, and make glad your work.

Afterword

Page 273

Afterword
Congratulations, you’ve made it. You are now, if not at the end of all things, at least at the end of
this thing. Completing this book is an accomplishment, and you deserve to take a minute to revel
in your success before moving on. Regardless of your mindset or experience level before you
started, you’re different now that you’re done.

This book has two primary goals. The first relates to process, and the second, perspective.

The first goal is to supply concrete, repeatable techniques that you can employ to improve your
own applications. These techniques were illustrated, not just with code, but also by chronicling
the rationale behind every decision—there was no hand-waving around awkward corners. The
detailed, specific explanations eventually accumulated into a number of general ideas, or
canons, about how to write code.

Strive for simplicity. Don’t abstract too soon. Focus on smells. Concentrate on difference. Take
small steps. Follow the Flocking Rules. Refactor under green. Fix the easy problems first. Work
horizontally. Seek stable landing points. Be disciplined. Don’t chase the shiny thing.

In addition, deal with new requirements by first refactoring existing code to be open to them,
and then writing new code to meet them. Achieving openness is usually the more challenging
task, but can be sought in absolute safety if you have tests that act as a wall at your back.

You may need better tests. If so, writing them will save you money.

The canons are practical rules that guide the programming process. Adhering to them will lower
your stress, speed up your work, and improve your code. If you commit to nothing more than to
follow them, your reading time will have been well spent.

However, this book is not just about process. It has a second, more abstract, goal—it aspires to
infect you with a certain perspective about object-oriented programming. This book wants you
to fall in love with polymorphism.

When you write conditionals that supply behavior, and put those conditionals in classes whose
names other classes know, your code depends upon concretions, and will break with every
change.

However, when you disperse behavior into polymorphic objects, you can use factories to isolate
both the names of the classes and the conditionals that choose them. Factories instantiate role-
playing objects, which you can then inject as dependencies. When you inject smart
dependencies, and trust them to behave correctly, your code depends upon abstract roles rather
than on concrete classes. This loosens the coupling between objects and makes code open to
change.

Trust is necessary, but the path to reaching it is circular. Acting in trust requires faith, and faith
can only be earned by trustworthiness. Your objects must be trustworthy, and your code must

Afterword

Page 274

trust your objects. Failing at either obligation dooms you to conditionals.

The secret to programming happiness is to combine the canons with the infection, building
applications from polymorphic, trustworthy objects, and changing them one step at a time.

That’s officially the end, but before you go, one last request.

Hold high standards, but judge yourself gently. Perfection is just not that likely. Most times the
requirements you’re given aren’t quite right, or are incompletely conveyed, or misunderstood,
or about to change, ad nauseam. Circumstances conspire to make it hard to get everything
exactly right, despite your best efforts.

Think of your code as a message in a bottle, written in haste for future readers. They’ll always
know more than you know right now. Your job is not to be perfect, but to write a generous and
sympathetic story. Tell them a story they can understand, and they’ll cherish you forever.

Thanks for reading, and we hope that you’ve enjoyed the book.

Getting the exercise

Page 275

Appendix A: Initial Exercise

Getting the exercise
The code in this book is on GitHub. The simplest way to get the exercise is to clone the repository
and check out the correct branch, as follows:

git clone --depth=1 --branch=2.1-appendix-b-exercise-10 https://github.com/sandimetz/99bottles_php_m
ilk.git

The directory structure for the exercise should look like this:

├── lib
│ └── Bottles.php
└── test
 └── BottlesTest.php

If you don’t have git installed, create the expected directory structure, and then copy and paste
the contents of the raw file on GitHub into BottlesTest.php.

Finally, if you don’t have an Internet connection, you can find the full code listing for the test
suite below, in the Test Suite section.

Doing the exercise
To run the test suite, install the dependencies with composer install, then invoke PHPUnit:

./vendor/bin/phpunit test

The test suite contains one failing test, and many skipped tests. Your goal is to write code that
passes all of the tests. Follow this protocol:

run the tests and examine the failure

write only enough code to pass the failing test

unskip the next test (this simulates writing it yourself)

Repeat the above until no test is skipped, and you’ve written code to pass each one.

Work on this task for 30 minutes. The vast majority of folks do not finish in 30 minutes, but it’s
useful, for later comparison purposes, to record how far you got. Even if you can’t force yourself
to stop at that point, take a break at 30 minutes and save your code.

Return to Preface.

Return to Chapter 1.

Test Suite

https://raw.githubusercontent.com/sandimetz/99bottles_php_milk/2.1-appendix-b-exercise-10/test/BottlesTest.php

Getting the exercise

Page 276

Listing A.1: Exercise
 1 <?php
 2
 3 require __DIR__ . "/../lib/Bottles.php";
 4
 5 class BottlesTest extends \PHPUnit\Framework\TestCase {
 6 public function test_the_first_verse() {
 7 $expected =
 8 "99 bottles of milk on the wall, " .
 9 "99 bottles of milk.\n" .
 10 "Take one down and pass it around, " .
 11 "98 bottles of milk on the wall.\n";
 12
 13 $this->assertEquals($expected, (new Bottles())->verse(99));
 14 }
 15
 16 public function test_another_verse() {
 17 $this->markTestSkipped('delete when ready to make test pass');
 18 $expected =
 19 "3 bottles of milk on the wall, " .
 20 "3 bottles of milk.\n" .
 21 "Take one down and pass it around, " .
 22 "2 bottles of milk on the wall.\n";
 23
 24 $this->assertEquals($expected, (new Bottles())->verse(3));
 25 }
 26
 27 public function test_verse_2() {
 28 $this->markTestSkipped('delete when ready to make test pass');
 29 $expected =
 30 "2 bottles of milk on the wall, " .
 31 "2 bottles of milk.\n" .
 32 "Take one down and pass it around, " .
 33 "1 bottle of milk on the wall.\n";
 34
 35 $this->assertEquals($expected, (new Bottles())->verse(2));
 36 }
 37
 38 public function test_verse_1() {
 39 $this->markTestSkipped('delete when ready to make test pass');
 40 $expected =
 41 "1 bottle of milk on the wall, " .
 42 "1 bottle of milk.\n" .
 43 "Take it down and pass it around, " .
 44 "no more bottles of milk on the wall.\n";
 45
 46 $this->assertEquals($expected, (new Bottles())->verse(1));
 47 }
 48
 49 public function test_verse_0() {
 50 $this->markTestSkipped('delete when ready to make test pass');
 51 $expected =
 52 "No more bottles of milk on the wall, " .
 53 "no more bottles of milk.\n" .
 54 "Go to the store and buy some more, " .
 55 "99 bottles of milk on the wall.\n";
 56
 57 $this->assertEquals($expected, (new Bottles())->verse(0));
 58 }
 59
 60 public function test_a_couple_verses() {
 61 $this->markTestSkipped('delete when ready to make test pass');
 62 $expected =
 63 "99 bottles of milk on the wall, " .

Getting the exercise

Page 277

 64 "99 bottles of milk.\n" .
 65 "Take one down and pass it around, " .
 66 "98 bottles of milk on the wall.\n" .
 67 "\n" .
 68 "98 bottles of milk on the wall, " .
 69 "98 bottles of milk.\n" .
 70 "Take one down and pass it around, " .
 71 "97 bottles of milk on the wall.\n";
 72
 73 $this->assertEquals($expected, (new Bottles())->verses(99, 98));
 74 }
 75
 76 public function test_a_few_verses() {
 77 $this->markTestSkipped('delete when ready to make test pass');
 78 $expected =
 79 "2 bottles of milk on the wall, " .
 80 "2 bottles of milk.\n" .
 81 "Take one down and pass it around, " .
 82 "1 bottle of milk on the wall.\n" .
 83 "\n" .
 84 "1 bottle of milk on the wall, " .
 85 "1 bottle of milk.\n" .
 86 "Take it down and pass it around, " .
 87 "no more bottles of milk on the wall.\n" .
 88 "\n" .
 89 "No more bottles of milk on the wall, " .
 90 "no more bottles of milk.\n" .
 91 "Go to the store and buy some more, " .
 92 "99 bottles of milk on the wall.\n";
 93
 94 $this->assertEquals($expected, (new Bottles())->verses(2, 0));
 95 }
 96
 97 public function test_the_whole_song() {
 98 $this->markTestSkipped('delete when ready to make test pass');
 99 $expected = <<< SONG
100 99 bottles of milk on the wall, 99 bottles of milk.
101 Take one down and pass it around, 98 bottles of milk on the wall.
102
103 98 bottles of milk on the wall, 98 bottles of milk.
104 Take one down and pass it around, 97 bottles of milk on the wall.
105
106 97 bottles of milk on the wall, 97 bottles of milk.
107 Take one down and pass it around, 96 bottles of milk on the wall.
108
109 96 bottles of milk on the wall, 96 bottles of milk.
110 Take one down and pass it around, 95 bottles of milk on the wall.
111
112 95 bottles of milk on the wall, 95 bottles of milk.
113 Take one down and pass it around, 94 bottles of milk on the wall.
114
115 94 bottles of milk on the wall, 94 bottles of milk.
116 Take one down and pass it around, 93 bottles of milk on the wall.
117
118 93 bottles of milk on the wall, 93 bottles of milk.
119 Take one down and pass it around, 92 bottles of milk on the wall.
120
121 92 bottles of milk on the wall, 92 bottles of milk.
122 Take one down and pass it around, 91 bottles of milk on the wall.
123
124 91 bottles of milk on the wall, 91 bottles of milk.
125 Take one down and pass it around, 90 bottles of milk on the wall.
126
127 90 bottles of milk on the wall, 90 bottles of milk.

Getting the exercise

Page 278

128 Take one down and pass it around, 89 bottles of milk on the wall.
129
130 89 bottles of milk on the wall, 89 bottles of milk.
131 Take one down and pass it around, 88 bottles of milk on the wall.
132
133 88 bottles of milk on the wall, 88 bottles of milk.
134 Take one down and pass it around, 87 bottles of milk on the wall.
135
136 87 bottles of milk on the wall, 87 bottles of milk.
137 Take one down and pass it around, 86 bottles of milk on the wall.
138
139 86 bottles of milk on the wall, 86 bottles of milk.
140 Take one down and pass it around, 85 bottles of milk on the wall.
141
142 85 bottles of milk on the wall, 85 bottles of milk.
143 Take one down and pass it around, 84 bottles of milk on the wall.
144
145 84 bottles of milk on the wall, 84 bottles of milk.
146 Take one down and pass it around, 83 bottles of milk on the wall.
147
148 83 bottles of milk on the wall, 83 bottles of milk.
149 Take one down and pass it around, 82 bottles of milk on the wall.
150
151 82 bottles of milk on the wall, 82 bottles of milk.
152 Take one down and pass it around, 81 bottles of milk on the wall.
153
154 81 bottles of milk on the wall, 81 bottles of milk.
155 Take one down and pass it around, 80 bottles of milk on the wall.
156
157 80 bottles of milk on the wall, 80 bottles of milk.
158 Take one down and pass it around, 79 bottles of milk on the wall.
159
160 79 bottles of milk on the wall, 79 bottles of milk.
161 Take one down and pass it around, 78 bottles of milk on the wall.
162
163 78 bottles of milk on the wall, 78 bottles of milk.
164 Take one down and pass it around, 77 bottles of milk on the wall.
165
166 77 bottles of milk on the wall, 77 bottles of milk.
167 Take one down and pass it around, 76 bottles of milk on the wall.
168
169 76 bottles of milk on the wall, 76 bottles of milk.
170 Take one down and pass it around, 75 bottles of milk on the wall.
171
172 75 bottles of milk on the wall, 75 bottles of milk.
173 Take one down and pass it around, 74 bottles of milk on the wall.
174
175 74 bottles of milk on the wall, 74 bottles of milk.
176 Take one down and pass it around, 73 bottles of milk on the wall.
177
178 73 bottles of milk on the wall, 73 bottles of milk.
179 Take one down and pass it around, 72 bottles of milk on the wall.
180
181 72 bottles of milk on the wall, 72 bottles of milk.
182 Take one down and pass it around, 71 bottles of milk on the wall.
183
184 71 bottles of milk on the wall, 71 bottles of milk.
185 Take one down and pass it around, 70 bottles of milk on the wall.
186
187 70 bottles of milk on the wall, 70 bottles of milk.
188 Take one down and pass it around, 69 bottles of milk on the wall.
189
190 69 bottles of milk on the wall, 69 bottles of milk.
191 Take one down and pass it around, 68 bottles of milk on the wall.

Getting the exercise

Page 279

192
193 68 bottles of milk on the wall, 68 bottles of milk.
194 Take one down and pass it around, 67 bottles of milk on the wall.
195
196 67 bottles of milk on the wall, 67 bottles of milk.
197 Take one down and pass it around, 66 bottles of milk on the wall.
198
199 66 bottles of milk on the wall, 66 bottles of milk.
200 Take one down and pass it around, 65 bottles of milk on the wall.
201
202 65 bottles of milk on the wall, 65 bottles of milk.
203 Take one down and pass it around, 64 bottles of milk on the wall.
204
205 64 bottles of milk on the wall, 64 bottles of milk.
206 Take one down and pass it around, 63 bottles of milk on the wall.
207
208 63 bottles of milk on the wall, 63 bottles of milk.
209 Take one down and pass it around, 62 bottles of milk on the wall.
210
211 62 bottles of milk on the wall, 62 bottles of milk.
212 Take one down and pass it around, 61 bottles of milk on the wall.
213
214 61 bottles of milk on the wall, 61 bottles of milk.
215 Take one down and pass it around, 60 bottles of milk on the wall.
216
217 60 bottles of milk on the wall, 60 bottles of milk.
218 Take one down and pass it around, 59 bottles of milk on the wall.
219
220 59 bottles of milk on the wall, 59 bottles of milk.
221 Take one down and pass it around, 58 bottles of milk on the wall.
222
223 58 bottles of milk on the wall, 58 bottles of milk.
224 Take one down and pass it around, 57 bottles of milk on the wall.
225
226 57 bottles of milk on the wall, 57 bottles of milk.
227 Take one down and pass it around, 56 bottles of milk on the wall.
228
229 56 bottles of milk on the wall, 56 bottles of milk.
230 Take one down and pass it around, 55 bottles of milk on the wall.
231
232 55 bottles of milk on the wall, 55 bottles of milk.
233 Take one down and pass it around, 54 bottles of milk on the wall.
234
235 54 bottles of milk on the wall, 54 bottles of milk.
236 Take one down and pass it around, 53 bottles of milk on the wall.
237
238 53 bottles of milk on the wall, 53 bottles of milk.
239 Take one down and pass it around, 52 bottles of milk on the wall.
240
241 52 bottles of milk on the wall, 52 bottles of milk.
242 Take one down and pass it around, 51 bottles of milk on the wall.
243
244 51 bottles of milk on the wall, 51 bottles of milk.
245 Take one down and pass it around, 50 bottles of milk on the wall.
246
247 50 bottles of milk on the wall, 50 bottles of milk.
248 Take one down and pass it around, 49 bottles of milk on the wall.
249
250 49 bottles of milk on the wall, 49 bottles of milk.
251 Take one down and pass it around, 48 bottles of milk on the wall.
252
253 48 bottles of milk on the wall, 48 bottles of milk.
254 Take one down and pass it around, 47 bottles of milk on the wall.
255

Getting the exercise

Page 280

256 47 bottles of milk on the wall, 47 bottles of milk.
257 Take one down and pass it around, 46 bottles of milk on the wall.
258
259 46 bottles of milk on the wall, 46 bottles of milk.
260 Take one down and pass it around, 45 bottles of milk on the wall.
261
262 45 bottles of milk on the wall, 45 bottles of milk.
263 Take one down and pass it around, 44 bottles of milk on the wall.
264
265 44 bottles of milk on the wall, 44 bottles of milk.
266 Take one down and pass it around, 43 bottles of milk on the wall.
267
268 43 bottles of milk on the wall, 43 bottles of milk.
269 Take one down and pass it around, 42 bottles of milk on the wall.
270
271 42 bottles of milk on the wall, 42 bottles of milk.
272 Take one down and pass it around, 41 bottles of milk on the wall.
273
274 41 bottles of milk on the wall, 41 bottles of milk.
275 Take one down and pass it around, 40 bottles of milk on the wall.
276
277 40 bottles of milk on the wall, 40 bottles of milk.
278 Take one down and pass it around, 39 bottles of milk on the wall.
279
280 39 bottles of milk on the wall, 39 bottles of milk.
281 Take one down and pass it around, 38 bottles of milk on the wall.
282
283 38 bottles of milk on the wall, 38 bottles of milk.
284 Take one down and pass it around, 37 bottles of milk on the wall.
285
286 37 bottles of milk on the wall, 37 bottles of milk.
287 Take one down and pass it around, 36 bottles of milk on the wall.
288
289 36 bottles of milk on the wall, 36 bottles of milk.
290 Take one down and pass it around, 35 bottles of milk on the wall.
291
292 35 bottles of milk on the wall, 35 bottles of milk.
293 Take one down and pass it around, 34 bottles of milk on the wall.
294
295 34 bottles of milk on the wall, 34 bottles of milk.
296 Take one down and pass it around, 33 bottles of milk on the wall.
297
298 33 bottles of milk on the wall, 33 bottles of milk.
299 Take one down and pass it around, 32 bottles of milk on the wall.
300
301 32 bottles of milk on the wall, 32 bottles of milk.
302 Take one down and pass it around, 31 bottles of milk on the wall.
303
304 31 bottles of milk on the wall, 31 bottles of milk.
305 Take one down and pass it around, 30 bottles of milk on the wall.
306
307 30 bottles of milk on the wall, 30 bottles of milk.
308 Take one down and pass it around, 29 bottles of milk on the wall.
309
310 29 bottles of milk on the wall, 29 bottles of milk.
311 Take one down and pass it around, 28 bottles of milk on the wall.
312
313 28 bottles of milk on the wall, 28 bottles of milk.
314 Take one down and pass it around, 27 bottles of milk on the wall.
315
316 27 bottles of milk on the wall, 27 bottles of milk.
317 Take one down and pass it around, 26 bottles of milk on the wall.
318
319 26 bottles of milk on the wall, 26 bottles of milk.

Getting the exercise

Page 281

320 Take one down and pass it around, 25 bottles of milk on the wall.
321
322 25 bottles of milk on the wall, 25 bottles of milk.
323 Take one down and pass it around, 24 bottles of milk on the wall.
324
325 24 bottles of milk on the wall, 24 bottles of milk.
326 Take one down and pass it around, 23 bottles of milk on the wall.
327
328 23 bottles of milk on the wall, 23 bottles of milk.
329 Take one down and pass it around, 22 bottles of milk on the wall.
330
331 22 bottles of milk on the wall, 22 bottles of milk.
332 Take one down and pass it around, 21 bottles of milk on the wall.
333
334 21 bottles of milk on the wall, 21 bottles of milk.
335 Take one down and pass it around, 20 bottles of milk on the wall.
336
337 20 bottles of milk on the wall, 20 bottles of milk.
338 Take one down and pass it around, 19 bottles of milk on the wall.
339
340 19 bottles of milk on the wall, 19 bottles of milk.
341 Take one down and pass it around, 18 bottles of milk on the wall.
342
343 18 bottles of milk on the wall, 18 bottles of milk.
344 Take one down and pass it around, 17 bottles of milk on the wall.
345
346 17 bottles of milk on the wall, 17 bottles of milk.
347 Take one down and pass it around, 16 bottles of milk on the wall.
348
349 16 bottles of milk on the wall, 16 bottles of milk.
350 Take one down and pass it around, 15 bottles of milk on the wall.
351
352 15 bottles of milk on the wall, 15 bottles of milk.
353 Take one down and pass it around, 14 bottles of milk on the wall.
354
355 14 bottles of milk on the wall, 14 bottles of milk.
356 Take one down and pass it around, 13 bottles of milk on the wall.
357
358 13 bottles of milk on the wall, 13 bottles of milk.
359 Take one down and pass it around, 12 bottles of milk on the wall.
360
361 12 bottles of milk on the wall, 12 bottles of milk.
362 Take one down and pass it around, 11 bottles of milk on the wall.
363
364 11 bottles of milk on the wall, 11 bottles of milk.
365 Take one down and pass it around, 10 bottles of milk on the wall.
366
367 10 bottles of milk on the wall, 10 bottles of milk.
368 Take one down and pass it around, 9 bottles of milk on the wall.
369
370 9 bottles of milk on the wall, 9 bottles of milk.
371 Take one down and pass it around, 8 bottles of milk on the wall.
372
373 8 bottles of milk on the wall, 8 bottles of milk.
374 Take one down and pass it around, 7 bottles of milk on the wall.
375
376 7 bottles of milk on the wall, 7 bottles of milk.
377 Take one down and pass it around, 6 bottles of milk on the wall.
378
379 6 bottles of milk on the wall, 6 bottles of milk.
380 Take one down and pass it around, 5 bottles of milk on the wall.
381
382 5 bottles of milk on the wall, 5 bottles of milk.
383 Take one down and pass it around, 4 bottles of milk on the wall.

Getting the exercise

Page 282

384
385 4 bottles of milk on the wall, 4 bottles of milk.
386 Take one down and pass it around, 3 bottles of milk on the wall.
387
388 3 bottles of milk on the wall, 3 bottles of milk.
389 Take one down and pass it around, 2 bottles of milk on the wall.
390
391 2 bottles of milk on the wall, 2 bottles of milk.
392 Take one down and pass it around, 1 bottle of milk on the wall.
393
394 1 bottle of milk on the wall, 1 bottle of milk.
395 Take it down and pass it around, no more bottles of milk on the wall.
396
397 No more bottles of milk on the wall, no more bottles of milk.
398 Go to the store and buy some more, 99 bottles of milk on the wall.
399
400 SONG;
401 $this->assertEquals($expected, (new Bottles())->song());
402 }
403 }

References

Page 283

References
Abelson, Harold, and Sussman, Gerald, with Sussman Julie. Structure and Interpretation of
Computer Programs, Second Edition. Cambridge, MA: The MIT Press, 1996.

Beck, Kent. Test-driven development by example. Boston: Addison-Wesley, 2002.

Beck, Kent. “Don’t Cross the Beams: Avoiding Interference Between Horizontal and Vertical
Refactorings” https://www.facebook.com/kentlbeck/notes. 15 September 2011. Web. 26 Feb 2017.

Fowler, Martin, and Kent Beck. Refactoring Improving the Design of Existing Code. Boston:
Addison-Wesley, 1999.

Fowler, Martin, with Beck, Kent. Refactoring Improving the Design of Existing Code, Second
Edition. Boston: Addison-Wesley, 2018.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vissides. Design patterns: Elements of
Reusable Object-Oriented Software. Boston: Addison-Wesley, 1994.

Kerievsky, Joshua. Refactoring To Patterns. Boston: Addison-Wesley, 2004.

Knuth, Donald. "The Complexity of Songs." Communications of the ACM, Volume 27 Issue 4.
Association for Computing Machinery (ACM). April 1984. Web. 15 Feb 2019.

Lieberherr, K., Holland, I., Riel, A. "Object-Oriented Programming: An Objective Sense of Style".
OOPSLA '88 Proceedings. September, 1988. Web. 15 Feb 2019.

Meszaros, Gerard. xUnit Test Patterns. Boston: Addison-Wesley, 2007.

https://mitpress.mit.edu/books/structure-and-interpretation-computer-programs-second-edition
https://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530/
https://www.facebook.com/notes/kent-beck/dont-cross-the-beams-avoiding-interference-between-horizontal-and-vertical-refac/260531380646400/
https://www.facebook.com/kentlbeck/notes
https://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672/
https://martinfowler.com/books/refactoring.html
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/
https://www.amazon.com/Refactoring-Patterns-Joshua-Kerievsky/dp/0321213351/
https://dl.acm.org/citation.cfm?id=358042
https://www2.ccs.neu.edu/research/demeter/papers/law-of-demeter/oopsla88-law-of-demeter.pdf
https://www.amazon.com/xUnit-Test-Patterns-Refactoring-Code/dp/0131495054

Acknowledgements

Page 284

Acknowledgements
Sandi Metz

This book represents the distillation of innumerable discussions about object-oriented
programming and design. As every programmer knows, these conversations aren’t for everyone.
Accordingly, I am deeply grateful to all those who graciously and enthusiastically participated in
extended debates about these ideas.

My heartfelt thanks to Jim Gay, Avdi Grimm, Sara Mei, Katrina Owen, TJ Stankus, and Tom
Stuart, all of whom have helped teach the Practical Object Oriented Design course from which
this book arose. Their deep expertise and gentle objections challenged my certainties and refined
my thoughts. Their influence is felt throughout this book.

I owe a special debt to all who’ve taken the POOD course. There’s nothing like trying to explain
something to make it obvious that you don’t actually understand it. The explanations herein
were vastly improved as a result of students insisting that they make sense. I am grateful for
their tenacity.

Julia Trimmer’s flair for editing is evident throughout the book. This book is a tribute to her
unwavering commitment to readability, and her determination to teach me the usage difference
between "which" and "that". I fear she succeeded in only the first of these, so I am grateful for
both her past and her future efforts.

And finally, my thanks to Amy Germuth, who smiled and nodded when I swore that I would
never write another book, and then watched patiently for years while I battled with this one.
Having her in my corner made this possible.

Katrina Owen

Learning to refactor was fun and confusing and strenuous. Perhaps more strenuous for Thomas
Drevon and my other colleagues at Bengler than for me. They not only put up with my endless
search for better design, but encouraged me in it. I’m sorry for all the spurious abstractions that I
saddled you with when I left.

The “99 Bottles of Beer” song is not an obvious choice of topic for a programming book. I don’t
think we’d have stumbled onto it if it hadn’t been for the students at Turing School of Software
and Design, whose struggles and trials led me to create Exercism. If you solved the “99 Bottles of
Beer” problem on Exercism in the early days, you might be the direct inspiration for this book.

A special thanks goes to Jim Weirich who explored the design ideas present in the “99 Bottles of
Beer” problem with us, and who generously shared all of his knowledge and insights.

Writing a book has been an adventure. Thanks to Mariana Lenetis, who would go drinking with
me when everything became too much. The hot chocolate was amazing. Thanks also to John
Ryan, who has compassionately listened to my rants, and who contributed perspective and

Acknowledgements

Page 285

advice. And thanks to Sander who has miraculously taken care of the thousands of small and
enormous things to keep our lives running smoothly.

TJ Stankus

In 2005 I found myself in a meeting room with developers from different departments within the
vast Duke University system. In that group was a woman named Sandi, who I found myself
nodding in agreement with every time she spoke. We bumped into each other again in 2006, at
the first RailsConf. Since then, I’ve enjoyed a working relationship and friendship with Sandi that
has been one of the most rewarding aspects of my career.

Around 2014, I was a student in a Practical Object-Oriented Design (POOD) course taught by
Sandi and Katrina. It was (and still is) the best programming course I’ve ever taken. Later, when
Sandi and Katrina invited me along to be a co-instructor, I couldn’t have been more thrilled and
appreciative.

When the first edition of the this book came out, we were able to more quickly cover material in
the POOD course, and with the time that freed up, we experimented with additional
requirements to the problem. These requirements ended up becoming new content for the
second edition of the book you are now reading.

Thank you to the many students whose questions and feedback allowed us to refine the new
content over the course of a couple years. There are only three names on the cover of this book,
but it is the collective output of an extensive collaboration of engaged and inquisitive
programmers. I could not be more grateful for the conversations and generous interactions I’ve
had with each of you.

1. From the novel by Joseph Heller, a catch-22 is a paradoxical situation from which you cannot escape because of
contradictory rules.

2. As per Cambridge Dictionary, "separated from an event by an amount of time or other events."
3. For those unfamiliar with the fairy tale, this is a reference to everything owned by the Little, Small, Wee Bear in Goldilocks

(Goldenlocks) and the Three Bears.
4. This quote was historically thought to originate with Mark Twain but is now widely attributed to Charles Dudley Warner.

Twain and Warner were neighbors and the former apparently heard it from the latter.
5. The branch counts include everything that ends with parentheses, all standard library calls, but not coersion.
6. The ABC scores are the magnitude of the vector <A,B,C> as per wikipedia.
7. A red herring is something that misleads or distracts from a relevant or important issue.
8. A hair shirt, or cilice, is an undergarment made of animal hair, worn to induce discomfort as a sign of repentance or

atonement.
9. An opportunity cost is the "cost" incurred by not enjoying the benefit associated with the best alternative choice.
10. See Kent Beck Don’t Cross the Beams: Avoiding Interference Between Horizontal and Vertical Refactorings.
11. Thanks to Avdi Grimm for the suggestion of using rows and columns in an imaginary spreadsheet to help find names for

underlying concepts.
12. Thanks to Tom Stuart for the suggestion that, when you’re struggling to name a concept for which you have only a few

examples, it can help to imagine other concrete things that might also fall into the same category.
13. "You’ll never know less than you know right now" is a quote from Kent Beck.
14. Spidey (or spider) sense is a tingling feeling at the base of Marvel Comics superhero Spider-Man's skull that alerts him to

danger.
15. A quote from 1 Corinthians 13:12 of the King James Version of the Christian Bible.
16. Merriam Webster defines bang on as "exactly correct or appropriate."
17. A fine kettle of fish is a muddle, or awkward state of affairs.

http://en.wikipedia.org/wiki/Catch-22_(logic)
https://dictionary.cambridge.org/us/dictionary/english/at-one-this-etc-remove
http://en.wikisource.org/wiki/The_Story_of_the_Three_Bears_(Brooke)
http://en.wikipedia.org/wiki/Charles_Dudley_Warner
https://en.wikipedia.org/wiki/ABC_Software_Metric
https://en.wikipedia.org/wiki/Red_herring
https://en.wikipedia.org/wiki/Cilice
https://en.wikipedia.org/wiki/Opportunity_cost
https://www.facebook.com/notes/kent-beck/dont-cross-the-beams-avoiding-interference-between-horizontal-and-vertical-refac/260531380646400/
http://devblog.avdi.org/about/
https://codon.com/about
https://en.wikipedia.org/wiki/Spider-Man%27s_powers_and_equipment
https://en.wikipedia.org/wiki/1_Corinthians_13#.22Through_a_glass.2C_darkly.22
http://www.merriam-webster.com/dictionary/bang%20on
http://www.phrases.org.uk/meanings/kettle-of-fish.html

Acknowledgements

Page 286

18. Pseudocode is an informal high-level description of the operating principle of a computer program or other algorithm.
19. Forwarding is an OO technique whereby a message is directed to another object.
20. Delegation is like forwarding except that in the receiving object `self` refers to the original sender, not the current object.
21. Why Ruby Class Methods Resist Refactoring from the Code Climate Blog.
22. Leaf nodes on a dependency graph are the end of the line. Other objects depend on them, but they depend on no one. As

such, they are often simpler than average, and usually represent concepts that are far from the center of your domain.
23. The idea of a Design Pattern was introduced by the architect Christopher Alexander. It was applied to software by the

Gang of Four in their seminal book Design Patterns: Elements of Reusable Object-Oriented Software.
24. The decorator pattern allows behavior to be added to an individual object, dynamically, without affecting the behavior of

other objects from the same class.
25. Martin Fowler’s introduction to xUnitTest Patterns is a better explanation of why you should read this book than the

official book blurb.
26. Any early version of Meszaros’s section on Mock, Fakes, Stubs and Dummies is available on his xUnitPatterns website.
27. Arrange Act Assert is a pattern for arranging code in unit tests. It suggests that group your tests into 3 sections: 1) Arrange

→ inputs and preconditions, 2) Act → on the object or method you’re testing, and 3) Assert → that you got what you
expected.

28. We still miss you, Jim.

https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Forwarding_(object-oriented_programming)
https://en.wikipedia.org/wiki/Delegation_(object-oriented_programming)
https://en.wikipedia.org/wiki/Forwarding_(object-oriented_programming)
https://codeclimate.com/blog/why-ruby-class-methods-resist-refactoring/
https://codeclimate.com/blog/
https://en.wikipedia.org/wiki/Dependency_graph
https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Decorator_pattern
https://martinfowler.com/books/meszaros.html
https://www.amazon.com/gp/product/0131495054
http://xunitpatterns.com/Mocks,%20Fakes,%20Stubs%20and%20Dummies.html
http://xunitpatterns.com/index.html
https://wiki.c2.com/?ArrangeActAssert
https://en.wikipedia.org/wiki/Jim_Weirich

	Colophon
	Your Rights As A Reader
	Dedication
	Preface
	What This Book Is About
	Who Should Read This Book
	Before You Read This Book
	How To Read This Book
	Code Examples
	Errata
	About the Authors
	About the Translators

	Introduction
	1. Rediscovering Simplicity
	1.1. Simplifying Code
	1.1.1. Incomprehensibly Concise
	1.1.2. Speculatively General
	1.1.3. Concretely Abstract
	1.1.4. Shameless Green

	1.2. Judging Code
	1.2.1. Evaluating Code Based on Opinion
	1.2.2. Evaluating Code Based on Facts
	1.2.3. Comparing Solutions

	1.3. Summary

	2. Test Driving Shameless Green
	2.1. Understanding Testing
	2.2. Writing the First Test
	2.3. Removing Duplication
	2.4. Tolerating Duplication
	2.5. Hewing to the Plan
	2.6. Exposing Responsibilities
	2.7. Choosing Names
	2.8. Revealing Intentions
	2.9. Writing Cost-Effective Tests
	2.10. Avoiding the Echo-Chamber
	2.11. Considering Options
	2.12. Summary

	3. Unearthing Concepts
	3.1. Listening to Change
	3.2. Starting With the Open/Closed Principle
	3.3. Recognizing Code Smells
	3.4. Identifying the Best Point of Attack
	3.5. Refactoring Systematically
	3.6. Following the Flocking Rules
	3.7. Converging on Abstractions
	3.7.1. Focusing on Difference
	3.7.2. Simplifying Hard Problems
	3.7.3. Naming Concepts
	3.7.4. Making Methodical Transformations
	3.7.5. Refactoring Gradually

	3.8. Summary

	4. Practicing Horizontal Refactoring
	4.1. Replacing Difference With Sameness
	4.2. Equivocating About Names
	4.3. Deriving Names From Responsibilities
	4.4. Choosing Meaningful Defaults
	4.5. Seeking Stable Landing Points
	4.6. Obeying the Liskov Substitution Principle
	4.7. Taking Bigger Steps
	4.8. Discovering Deeper Abstractions
	4.9. Depending on Abstractions
	4.10. Summary

	5. Separating Responsibilities
	5.1. Selecting the Target Code Smell
	5.1.1. Identifying Patterns in Code
	5.1.2. Spotting Common Qualities
	5.1.3. Enumerating Flocked Method Commonalities
	5.1.4. Insisting Upon Messages

	5.2. Extracting Classes
	5.2.1. Modeling Abstractions
	5.2.2. Naming Classes
	5.2.3. Extracting BottleNumber
	5.2.4. Removing Arguments
	5.2.5. Trusting the Process

	5.3. Appreciating Immutability
	5.4. Assuming Fast Enough
	5.5. Creating BottleNumbers
	5.6. Recognizing Liskov Violations
	5.7. Summary

	6. Achieving Openness
	6.1. Consolidating Data Clumps
	6.2. Making Sense of Conditionals
	6.3. Replacing Conditionals with Polymorphism
	6.3.1. Dismembering Conditionals
	6.3.2. Manufacturing Objects
	6.3.3. Prevailing with Polymorphism

	6.4. Transitioning Between Types
	6.5. Making the Easy Change
	6.6. Defending the Domain
	6.7. Summary

	7. Manufacturing Intelligence
	7.1. Contrasting the Concrete Factory with Shameless Green
	7.2. Fathoming Factories
	7.3. Opening the Factory
	7.4. Supporting Arbitrary Class Names
	7.5. Dispersing The Choosing Logic
	7.6. Self-registering Candidates
	7.7. Summary

	8. Developing a Programming Aesthetic
	8.1. Appreciating the Mechanical Process
	8.2. Clarifying Responsibilities with Pseudocode
	8.3. Extracting the Verse
	8.4. Coding by Wishful Thinking
	8.5. Inverting Dependencies
	8.5.1. Injecting Dependencies
	8.5.2. Isolating Variants
	8.5.3. Grappling with Inversion

	8.6. Obeying the Law of Demeter
	8.6.1. Understanding the Law
	8.6.2. Curing Demeter Violations

	8.7. Identifying What The Verse Method Wants
	8.8. Pushing Object Creation to the Edge
	8.9. Summary

	9. Reaping the Benefits of Design
	9.1. Choosing Which Units to Test
	9.1.1. Contrasting Unit and Integration Tests
	9.1.2. Foregoing Tests

	9.2. Reorganizing Tests
	9.2.1. Gathering BottleVerse Tests
	9.2.2. Revealing Intent

	9.3. Seeking Context Independence
	9.3.1. Examining Bottles' Responsibilities
	9.3.2. Purifying Tests With Fakes
	9.3.3. Purging Redundant Tests
	9.3.4. Profiting from Loose Coupling

	9.4. Communicating With the Future
	9.4.1. Enriching Code with Signals
	9.4.2. Verifying Roles
	9.4.3. Obliterating Obsolete Context

	9.5. Summary

	Afterword
	Appendix A: Initial Exercise
	Getting the exercise
	Doing the exercise
	Test Suite

	References
	Acknowledgements

