
Mission Python is a hands-on guide to build-
ing a computer game in Python—a beginner-
friendly programming language used by
millions of professionals as well as hobbyists
who just want to have fun.

In Mission Python, you’ll code a puzzle-
based adventure game, complete with graphics,
sound, and animations. Your mission: to
escape the station before your air runs out.
To make it to safety, you must explore the
map, collect items, and solve puzzles while
avoiding killer drones and toxic spills. When
you’ve finished building your game, you can
share it with your friends!

As you code, you’ll learn fundamentals of
Python, like how to:

 Store data in variables, lists, and
 dictionaries

 Add keyboard controls to your game

 Create functions to organize your
 instructions

 Make loops to repeat blocks of code

 Add graphics, sound, and animations
 to your game

The book uses Pygame Zero, a free
resource that makes coding games easier.
Plus, all graphics, sound, and code used in
the game are available for you to download
for free!

ABOUT THE AUTHOR

Sean McManus is a computer book author
with extensive experience in writing coding
books for children. Visit his website at
www.sean.co.uk.

SHELVE IN
: PROGRAM

M
ING

LANGUAGES/PYTHON

Ages 11+

M
c

M
a

n
u

s

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™
.$29 95 .)($39 95 CDN

Code your own Space
Station adventure game!

Code your own Space
Station adventure game!

Requires Python 3.x on Windows
or Raspberry Pi (it’s free!)

M
is

s
io

n
 P

y
t

h
o

n
M

is
s

io
n

 P
y

t
h

o
n

Mission
Python
Mission
Python

Code a Space Adventure Game!

S e a n M c M a n u s

Build this game!

Mission Python

Mission
Python

Code a Space Adventure Game!

by Sean McManus

San Francisco

Mission Python. Copyright © 2018 by Sean McManus.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-857-8
ISBN-13: 978-1-59327-857-1

Publisher: William Pollock
Production Editor: Riley Hoffman
Cover Illustration: Josh Ellingson
Game Illustrations: Rafael Pimenta
Developmental Editor: Liz Chadwick
Technical Reviewer: Daniel Aldred
Copyeditor: Anne Marie Walker
Compositor: Riley Hoffman
Proofreader: Emelie Burnette

The following images are reproduced with permission:
Figure 1-1 courtesy of Johnson Space Center, NASA
Figure 1-6 courtesy of NASA/JPL-Caltech/UCLA
Figure 1-7 image of Mars courtesy of NASA

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Control Number: 2018950581

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

To my wife, Karen, with thanks for all
her support throughout this mission;
and to Leo, our wonderful son, who is

taking us on the most amazing journey.

About the Author
Sean McManus is an expert technology and business writer. His other
books include Cool Scratch Projects in Easy Steps, Scratch Programming in
Easy Steps, Coder Academy, and Raspberry Pi For Dummies (co-authored
with Mike Cook). As a freelance copywriter, he writes for many of the
world’s largest technology companies. His novel for adults, Earworm,
goes undercover in the music industry, exposing a conspiracy to
replace bands with computer-generated music. He has been a Code
Club volunteer, helping children at a local school to learn computer
programming. Visit his website at www.sean.co.uk for sample chapters
and bonus content from his books.

About the Technical Reviewer
Daniel Aldred is a passionate and experienced teacher of computer
science. He leads the computing department at a CAS hub school
that supports and develops other schools and organizations in the
local area. He frequently writes for Linux User & Developer and has
created resources and projects for Raspberry Pi, Pimoroni, micro:bit,
and Cambridge International Assessment. In his spare time he curates
two websites, www.canyoucompute.co.uk for the UK Computing exami-
nation course and www.tecoed.co.uk for his own personal hacks. Daniel
also led and managed a team of eight students to win the first Astro Pi
competition, where the astronaut Major Tim Peake ran their program
aboard the ISS.

Brief Contents

Acknowledgments . xv

Introduction . 1

Chapter 1: Your First Spacewalk . . 13

Chapter 2: Lists Can Save Your Life . . 33

Chapter 3: Repeat After Me . 47

Chapter 4: Creating the Space Station . 59

Chapter 5: Preparing the Space Station Equipment . 79

Chapter 6: Installing the Space Station Equipment . . 97

Chapter 7: Moving into the Space Station . 111

Chapter 8: Repairing the Space Station . 127

Chapter 9: Unpacking Your Personal Items . . 151

Chapter 10: Make Yourself Useful . . 171

Chapter 11: Activating Safety Doors . 183

Chapter 12: Danger! Danger! Adding Hazards . 197

Appendix A: Escape: The Complete Game Listing . . 217

Appendix B: Table of Variables, Lists, and Dictionaries . 245

Appendix C: Debugging Your Listings . 249

Index . . 253

Contents in Detail

Acknowledgments	 xv

Introduction	 1
How to Use This Book . 1
What’s in This Book? . . 2
Installing the Software . 3

Installing the Software on Raspberry Pi . 4
Installing Python on Windows . 4
Installing Pygame Zero on Windows . 5
Installing the Software on Other Machines . 6

Downloading the Game Files . 7
Downloading and Unzipping the Files on a Raspberry Pi 7
Unzipping the File on a Windows PC . 8
What’s in the ZIP File . 8

Running the Game . 9
Running Pygame Zero Programs on the Raspberry Pi . 9
Running Pygame Zero Programs in Windows . 10

Playing the Game . 11

1
Your First Spacewalk	 13
Starting the Python Editor . 14

Starting IDLE in Windows 10 . . 14
Starting IDLE in Windows 8 . . 15
Starting IDLE on the Raspberry Pi . 15

Introducing the Python Shell . 15
Displaying Text . 16
Training Mission #1 . 17
Outputting and Using Numbers . 17

Introducing Script Mode . . 18
Creating the Starfield . . 18

Understanding the Program So Far . . 21
Stopping Your Pygame Zero Program . 23
Adding the Planet and Spaceship . 23

Changing Perspective: Flying Behind the Planet . 24
Training Mission #2 . 25
Spacewalking! . 26

x Contents in Detail

Training Mission #3 . 27
Understanding the Spacewalk Listing . 27
Training Mission #4 . 29

Are You Fit to Fly? . . 29
Mission Debrief . 31

2
Lists Can Save Your Life	 33
Making Your First List: The Take-Off Checklist . 34

Seeing Your List . 35
Adding and Removing Items . 35

Using Index Numbers . 36
Inserting an Item . 36
Accessing an Individual Item . 36
Replacing an Item . 37
Deleting an Item . . 37
Training Mission #1 . 37

Creating the Spacewalk Checklist . 38
Training Mission #2 . 38

A List of Lists: The Flight Manual . 38
Making a List of Lists . . 38
Training Mission #3 . 39
Finding an Item in the Flight Manual . . 39

Combining Lists . . 40
Making Maps from Lists: The Emergency Room . . 41

Making the Map . 42
Finding an Emergency Item . 43
Training Mission #4 . 44
Swapping Items in the Room . 44
Training Mission #5 . 45

Are You Fit to Fly? . . 45
Mission Debrief . 46

3
Repeat After Me	 47
Displaying Maps with Loops . . 48

Making the Room Map . 48
Displaying the Map with a Loop . 49
Training Mission #1 . 50

Loop the Loop . . 50
Nesting Loops to Get Room Coordinates . . 50
Cleaning Up the Map . 52
Training Mission #2 . 53

Displaying a 3D Room Image . 53
Understanding How the Room Is Drawn . . 55
Working Out Where to Draw Each Item . 56

Training Mission #3 . 57
Are You Fit to Fly? . . 57

Mission Debrief . 58

Contents in Detail xi

4
Creating the Space Station 	 59
Automating the Map Making Process . 59
How the Automatic Map Maker Works . . 60
Creating the Map Data . 60
Writing the GAME_MAP Code . 62
Testing and Debugging the Code . 65
Generating Rooms from the Data . 66

How the Room Generating Code Works . 68
Creating the Basic Room Shape . 69
Adding Exits . 71
Testing the Program . 72
Training Mission #1 . 72

Exploring the Space Station in 3D . . 72
Training Mission #2 . 75

Making Your Own Maps . 76
Are You Fit to Fly? . . 76

Mission Debrief . 77

5
Preparing the Space Station Equipment	 79
Creating a Simple Planets Dictionary . 80

Understanding the Difference Between a List and a Dictionary 80
Making an Astronomy Cheat Sheet Dictionary . 80
Error-Proofing the Dictionary . 82
Training Mission #1 . 82
Putting Lists Inside Dictionaries . 83
Extracting Information from a List Inside a Dictionary 84
Training Mission #2 . 85

Making the Space Station Objects Dictionary . 85
Adding the First Objects in Escape . 87
Viewing Objects with the Space Station Explorer . 89
Designing a Room . 89
Training Mission #3 . 91
Adding the Rest of the Objects . . 91
Training Mission #4 . 95

Are You Fit to Fly? . . 95
Mission Debrief . 96

6
Installing the Space Station Equipment	 97
Understanding the Dictionary for the Scenery Data . 97
Adding the Scenery Data . 99
Adding the Perimeter Fence for the Planet Surface . . 102
Loading the Scenery into Each Room . 104
Updating the Explorer to Tour the Space Station . 107

Training Mission #1 . 109
Are You Fit to Fly? . . 109

Mission Debrief . 110

xii Contents in Detail

7
Moving into the Space Station	 111
Arriving on the Space Station . 112

Disabling the Room Navigation Controls in the EXPLORER Section 112
Adding New Variables . 112
Teleporting onto the Space Station . 115

Adding the Movement Code . . 116
Understanding the Movement Code . 119

Training Mission #1 . 122
Moving Between Rooms . . 122
Are You Fit to Fly? . . 126

Mission Debrief . 126

8
Repairing the Space Station	 127
Sending Information to a Function . 128

Creating a Function that Receives Information . 128
How It Works . 129
Training Mission #1 . 129

Adding Variables for Shadows, Wall Transparency, and Colors 130
Deleting the EXPLORER Section . 132
Adding the DISPLAY Section . . 133

Adding the Functions for Drawing Objects . 134
Drawing the Room . 136
Understanding the New draw() Function . 138

Positioning the Room on Your Screen . . 141
Making the Front Wall Fade In and Out . . 142
Displaying Hints, Tips, and Warnings . 145
Showing the Room Name When You Enter the Room . 146
Are You Fit to Fly? . . 148

Mission Debrief . 149

9
Unpacking Your Personal Items	 151
Adding the Props Information . 151
Adding Props to the Room Map . 154
Finding an Object Number from the Room Map . 157
Picking Up Objects . 159

Picking Up Props . 159
Adding the Keyboard Controls . 160

Adding the Inventory Functionality . . 161
Displaying the Inventory . 162
Adding the Tab Keyboard Control . 164
Testing the Inventory . 165

Dropping Objects . 166
Training Mission #1 . 167

Examining Objects . 168
Training Mission #2 . 169

Are You Fit to Fly? . . 169
Mission Debrief . 170

Contents in Detail xiii

10
Make Yourself Useful	 171
Adding the Keyboard Control for Using Objects . 172
Adding Standard Messages for Using Objects . 172
Adding the Game Progress Variables . 174
Adding the Actions for Specific Objects . 174
Combining Objects . 177

Training Mission #1 . 179
Adding the Game Completion Sequence . 180
Exploring the Objects . 180
Are You Fit to Fly? . . 181

11
Activating Safety Doors	 183
Planning Where to Put Safety Doors . 184
Positioning the Doors . 185
Adding Access Controls . . 185
Making the Doors Open and Close . 187
Adding the Door Animation . 189

Training Mission #1 . 190
Shutting the Timed Door . . 190
Adding a Teleporter . 192

Training Mission #2 . 193
Activating the Airlock Security Door . 193
Removing Exits for Your Own Game Designs . 195
Mission Accomplished? . 196
Are You Fit to Fly? . . 196

12
Danger! Danger! Adding Hazards	 197
Adding the Air Countdown . 198

Displaying the Air and Energy Bars . 198
Adding the Air Countdown Functions . 199
Starting the Air Countdown and Sounding the Alarm 202
Training Mission #1 . 202

Adding the Moving Hazards . 203
Adding the Hazard Data . 204
Sapping the Player’s Energy . 205
Starting and Stopping Hazards . 205
Setting Up the Hazard Map . 208
Making the Hazards Move . 208
Displaying Hazards in the Room . 210
Training Mission #2 . 211
Stopping the Player from Walking Through Hazards 212

Adding the Toxic Spills . 212
Making the Finishing Touches . 213

Disabling the Teleporter . 213
Cleaning Up the Data . . 213
Your Adventure Begins . 214

xiv Contents in Detail

Your Next Mission: Customizing the Game . 215
Are You Fit to Fly? . . 216

Mission Debrief . 216

A
Escape: The Complete Game Listing	 217

B
Table of Variables, Lists, and Dictionaries	 245

C
Debugging Your Listings	 249
Indentation . 250
Case Sensitivity . . 251
Parentheses and Brackets . 251
Colons . . 251
Commas . 252
Images and Sounds . 252
Spelling . 252

Index	 253

Acknowledgments

Many thanks to everyone at No Starch Press who worked hard to bring you
this book, including developmental editor Liz Chadwick, production edi-
tor Riley Hoffman, copyeditor Anne Marie Walker, proofreaders Emelie
Burnette and Meg Sneeringer, and production manager Serena Yang.
Thank you to Tyler Ortman, who commissioned the book, and Bill Pollock,
for his support on this project. Josh Ellingson created the stunning cover
artwork. Thank you to Amanda Hariri, Anna Morrow, and Rachel Barry for
their support with marketing.

Rafael Pimenta designed the awesome graphics for the game. Daniel
Aldred was the technical editor, testing the code and providing feedback
on the text. Thanks to them both.

We wouldn’t have been able to create this book without the dedicated
work of the open source community. Daniel Pope created Pygame Zero and
helped with research queries. You can learn about some more cool features
of Pygame Zero that weren’t required for our mission at http://pygame-zero
.readthedocs.io/en/latest/. Pygame Zero extends Pygame, so thanks also to the
Pygame development team and to the wider Python community who con-
tribute to its success.

NASA allows us to use many of its images to tell our story, for which we
are grateful. Its work is hugely inspiring.

http://pygame-zero.readthedocs.io/en/latest/
http://pygame-zero.readthedocs.io/en/latest/

xvi Acknowledgments

Thank you to Russell Barnes, Sam Alder, Eben Upton, and Carrie Anne
Philbin at the Raspberry Pi Foundation who helped to get this project off
the ground.

Finally, thank you for reading the book! If you enjoy it, please consider
sharing a review, tweet, or blog post to help others to discover it. In any
event, I hope you enjoy it.

Introduction

Air is running out. There’s a leak in the
space station, so you’ve got to act fast. Can

you find your way to safety? You’ll need to
navigate your way around the space station, find

access cards to unlock doors, and fix your damaged
space suit. The adventure has begun!

And it starts here: on Earth, at mission command, also known as your
computer. This book shows you how to use Python to build a space station
on Mars, explore the station, and escape danger in an adventure game com-
plete with graphics. Can you think like an astronaut to make it to safety?

How to Use This Book
By following the instructions in this book, you can build a game called Escape
with a map to explore and puzzles to solve. It’s written in Python, a popular
programming language that is easy to read. It also uses Pygame Zero, which
adds some instructions for managing images and sounds, among other
things. Bit by bit, I’ll show you how to make the game and how the main

2 Introduction

parts of the code work, so you can customize it or build your own games
based on my game code. You can also download all the code you need.
If you get stuck or just want to jump straight into playing the game and
seeing it work, you can do so. All the software you need is free, and I’ve
provided instructions for Windows PCs and the Raspberry Pi. I recommend
you use the Raspberry Pi 3 or Raspberry Pi 2. The game may run too slowly
to enjoy on the Pi Zero, original Model B+, and older models.

There are several different ways you can use the book and the game:

•	 Download the game, play it first, and then use the book to understand
how it works. This way, you eliminate the risk of seeing any spoilers in
the book before you play the game! Although I’ve kept them to a mini-
mum, you might notice a few clues in the code as you read the book. If
you get really stuck on a problem in the game, you can try reading the
code to work out the solution. In any case, I recommend you run the
game at least once to see what you’ll be building and learn how to run
your programs.

•	 Build the game, and then play it. This book guides you through creat-
ing the game from start to finish. As you work your way through the
chapters, you’ll add new sections to the game and see how they work. If
you can’t get the code working at any point, you can just use my version
of the code listing and continue building from there. If you choose this
route, avoid making any custom changes to the game until you’ve built
it, played it, and finished it. Otherwise, you might accidentally make the
game impossible to complete. (It’s okay to make any changes I suggest
in the exercises.)

•	 Customize the game. When you understand how the program works,
you can change it by using your own maps, graphics, objects, and
puzzles. The Escape game is set on a space station, but yours could
be in the jungle, under the sea, or almost anywhere. You could use
the book to build your own version of Escape first, or use my version
of the final game and customize that. I’d love to see what you make
using the program as a starting point! You can find me on Twitter at
@musicandwords or visit my website at www.sean.co.uk.

What’s in This Book?
Here’s a briefing on what’s in store for you as you embark on your mission.

•	 Chapter 1 shows you how to go on a spacewalk. You’ll learn how to use
graphics in your Python programs using Pygame Zero and discover
some of the basics of making Python programs.

•	 Chapter 2 introduces lists, which store much of the information in the
Escape game. You’ll see how to use lists to make a map.

•	 Chapter 3 shows you how to get parts of a program to repeat and how
to use that knowledge to display a map. You’ll also design a room layout
for the space station, using wall pillars and floor tiles.

Introduction 3

•	 In Chapter 4, you’ll start to build the Escape game, laying down the
blueprints for the station. You’ll see how the program understands the
station layout and uses it to create the fabric for the rooms, putting the
walls and floor in place.

•	 In Chapter 5, you’ll learn how to use dictionaries in Python, which are
another important way of storing information. You’ll add informa-
tion for all the objects the game uses, and you’ll see how to create a
preview of your own room design. When you extend the program in
Chapter 6, you’ll see all the scenery in place and will be able to look
at all the rooms.

•	 After building the space station, you can move in. In Chapter 7, you’ll
add your astronaut character and discover how to move around the
rooms and animate movements.

•	 Chapter 8 shows you how to polish the game’s graphics with shadows,
fading walls, and a new function to draw the rooms that fixes the
remaining graphical glitches.

•	 When the space station is operational, you can unpack your personal
effects. In Chapter 9, you’ll position items the player can examine, pick
up, and drop. In Chapter 10, you’ll see how to use and combine items,
so you can solve puzzles in the game.

•	 The space station is nearly complete. Chapter 11 adds safety doors that
restrict access to certain zones. Just as you’re putting your feet up and
celebrating a job well done, there’s danger around the corner, as you’ll
add moving hazards in Chapter 12.

As you work through the book, you’ll complete training missions that
give you an opportunity to test your programs and your coding skills. The
answers, if you need them, are at the end of each chapter.

The appendixes at the back of the book will help you, too. Appendix A
contains the listing for the whole game. If you’re not sure where to add a
new chunk of code, you can check here. Appendix B contains a table of
the most important variables, lists, and dictionaries if you can’t remember
what’s stored where, and Appendix C has some debugging tips if a program
doesn’t work for you.

For more information and supporting resources for the book, visit the
book’s website at www.sean.co.uk/books/mission-python/. You can also find
information and resources at https://nostarch.com/missionpython/.

Installing the Software
The game uses the Python programming language and Pygame Zero,
which is software that makes it easier to handle graphics and sound. You
need to install both of these before you begin.

N o t e 	 For updated installation instructions, visit the book’s web page at https://nostarch
.com/missionpython/.

https://nostarch.com/missionpython/
https://nostarch.com/missionpython/

4 Introduction

Installing the Software on Raspberry Pi
If you’re using a Raspberry Pi, Python and Pygame Zero are already installed.
You can skip ahead to “Downloading the Game Files” on page 7.

Installing Python on Windows
To install the software on a Windows PC, follow these steps:

1.	 Open your web browser and visit https://www.python.org/downloads/.

2.	 At the time of this writing, 3.7 is the latest version of Python, but
Pygame isn’t available for easy installation on it yet. I recommend you
use the latest version of Python 3.6 instead (3.6.6 at the time of writ-
ing). You can find old versions of Python farther down the screen
on the downloads page (see Figure 1). Save the file on your desktop
or somewhere else you can easily find it. (Pygame Zero works only
with Python 3, so if you usually use Python 2, you’ll need to switch to
Python 3 for this book.)

Figure 1: The Python downloads page

3.	 When the file has downloaded, double-click it to run it.

4.	 In the window that opens, select the checkbox to Add Python 3.6 to
PATH (see Figure 2).

5.	 Click Install Now.

Introduction 5

Figure 2: The Python installer

6.	 If you’re asked whether you want to allow this application to make
changes to your device, click Yes.

7.	 Python will take a few minutes to install. When it finishes, click Close
to complete the installation.

Installing Pygame Zero on Windows
Now that you have Python installed on your computer, you can install
Pygame Zero. Follow these steps:

1.	 Hold down the Windows Start key and press R. The Run window
should open (see Figure 3).

2.	 Enter cmd (see Figure 3). Press enter or click OK.

Figure 3: The Windows Run dialog box

3.	 The command line window should open, as shown in Figure 4. Here
you can enter instructions for managing files or starting programs.
Enter pip install pgzero and press enter at the end of the line.

6 Introduction

Figure 4: The command line window

4.	 Pygame Zero should start to install. It will take a few moments, and
you’ll know it’s finished when your > prompt appears again.

5.	 If you get an error message saying that pip is not recognized, try install-
ing Python again. You can uninstall Python first by running the instal-
lation program again or using the Windows Control panel. Make sure
you select the box for the PATH when installing Python (see Figure 2).
After you have reinstalled Python, try installing Pygame Zero again.

6.	 When Pygame Zero has finished downloading and you can type again,
enter the following:

echo print("Hello!") > test.py

7.	 This line creates a new file called test.py that contains the instruction
print("Hello!"). I’ll explain the print() instruction in Chapter 1, but
for now, this is just a quick way to make a test file. Be careful when you
enter the parentheses (curved brackets) and quotation marks: if you
miss one, the file won’t work properly.

8.	 Open the test file by entering the following:

pgzrun test.py

9.	 After a short delay, a blank window should open with the title Pygame
Zero Game. Click the command line window again to bring it to the
front: you should see the text Hello! Press ctrl-C in the command line
window to stop the program.

10.	 If you want to delete your test program, enter del test.py.

Installing the Software on Other
Machines
Python and Pygame Zero are available for other computer systems. Pygame
Zero has been designed in part to enable games to work across different
computers, so the Escape code should run wherever Pygame Zero runs. This
book only provides guidance for users of Windows and Raspberry Pi com-
puters. But if you have a different computer, you can download Python at
https://www.python.org/downloads/ and can find advice on installing Pygame
Zero at http://pygame-zero.readthedocs.io/en/latest/installation.html.

Introduction 7

Downloading the Game Files
I’ve provided all the program files, sounds, and images you need for the
Escape game. You can also download all the listings in the book, so if you
can’t get one to work, you can use mine instead. All the book’s content
downloads as a single ZIP file called escape.zip.

Downloading and Unzipping the Files on a
Raspberry Pi
To download the game files on a Raspberry Pi, follow these steps, and refer
to Figure 5. The numbers in Figure 5 show you where to do each step.

u	Open your web browser and visit https://nostarch.com/missionpython/.
Click the link to download the files.

v	From your desktop, click the File Manager icon on the taskbar at the
top of the screen.

w	Double-click your Downloads folder to open it

x	Double-click the escape.zip file.

y	Click the Extract Files button to open the Extract Files dialog box.

z	Change the folder that you’ll extract to so it reads /home/pi/escape.

{	Ensure that the option is selected to Extract files with full path.

|	Click Extract.

�

� �

�

�

�

�

�

Figure 5: The steps you should take to unzip your files

8 Introduction

Unzipping the File on a Windows PC
To unzip the files on a Windows PC, follow these steps.

1.	 Open your web browser and visit https://nostarch.com/missionpython/.
Click the link to download the files. Save the ZIP file on your desktop,
in your Documents folder, or somewhere else you can easily find it.

2.	 Depending on the browser you’re using, the ZIP file might open auto-
matically, or there might be an option to open it at the bottom of the
screen. If not, hold down the Windows Start key and press E. The
Windows Explorer window should open. Go to the folder where you
saved the ZIP file. Double-click the ZIP file.

3.	 Click Extract All at the top of the window.

4.	 I recommend that you create a folder called escape in your Documents
folder and extract the files there. My documents folder is C:\Users\Sean\
Documents, so I just typed \escape at the end of the folder name to create
a new folder in that folder (see Figure 6). You can use the Browse
button to get to your Documents folder first if necessary.

5.	 Click Extract.

Figure 6: Setting the folder to unzip the game files into

What’s in the ZIP File
The ZIP file you’ve just downloaded contains three folders and a Python
program, escape.py (see Figure 7). The Python program is the final version
of the Escape game, so you can start playing it right away. The images folder
contains all the images you’ll need for the game and other projects in this
book. The sounds folder contains the sound effects.

Introduction 9

In the listings folder, you’ll find all the numbered listings in this book. If
you can’t get a program to work, try my version from this folder. You’ll need
to copy it from the listings folder first, and then paste it in the escape folder
where the escape.py program is now. The reason you do this is because the
program needs be alongside the images and sounds folders to work correctly.

Figure 7: The contents of the ZIP file as they might
appear in Windows

Running the Game
When you downloaded Python, another program called IDLE will have
been downloaded with it. IDLE is an integrated development environ-
ment (IDE), which is software you can use to write programs in Python.
You can run some of the listings in this book from the IDLE Python editor
using the instructions provided. Most of the programs, though, use Pygame
Zero, and you have to run those programs from the command line. Follow
the instructions here to run the Escape game and any other Pygame Zero
programs.

Running Pygame Zero Programs on the
Raspberry Pi
If you’re using a Raspberry Pi, follow these steps to run the Escape game:

1.	 Using the File Manager, go to your escape folder in your pi folder.

2.	 Click Tools on the menu and select Open Current Folder in Terminal,
or you can press F4. The command line window (also known as the
shell) should open, as shown in Figure 8. You can enter instructions
here for managing files or starting programs.

Figure 8: The command line window on the Raspberry Pi

3.	 Type in the following command and press enter. The game begins!

pgzrun escape.py

10 Introduction

This is how you run a Pygame Zero program on the Pi. To run the same
program again, repeat the last step. To run a different program that’s saved
in the same folder, repeat the last step but change the name of the filename
after pgzrun. To run a Pygame Zero program in a different folder, follow the
steps starting from step 1, but open the command line from the folder with
the program you want to run.

Running Pygame Zero Programs in Windows
If you’re using Windows, follow these steps to run the program:

1.	 Go to your escape folder. (Hold down the Windows Start key and press E
to open the Windows Explorer again.)

2.	 Click the long bar above your files, as shown in Figure 9. Type cmd into
this bar and press enter.

Figure 9: Finding the path to your Pygame files

3.	 The command line window will open. Your folder named escape will
appear just before the > on the last line, as shown in Figure 10.

Figure 10: The command line window in Windows

4.	 Type pgzrun escape.py in the command line window. Press enter, and
the Escape game begins.

This is how you run a Pygame Zero program on a Windows computer.
You can run the program again by repeating the last step. To run a differ-
ent program that’s saved in the same folder, repeat the last step but change
the name of the filename after pgzrun. To run a Pygame Zero program in
a different folder, follow the steps starting from step 1, but open the com-
mand line from the folder with the program you want to run.

Introduction 11

Playing the Game
You’re working alone on the space station on Mars, many millions of kilome-
ters from home. The rest of the crew is on a long-distance mission, exploring
a canyon for signs of life, and won’t be back for days. The murmuring hum of
the life support systems surrounds you.

You’re startled when the alarm sounds! There’s a breach in the space
station wall, and your air is slowly venting into the Martian atmosphere. You
climb quickly but carefully into your space suit, but the computer tells you
the suit is damaged. Your life is at risk.

Your first priority is to repair your suit and ensure a reliable air supply.
Your second priority is to radio for help, but the space station’s radio sys-
tems are malfunctioning. Last night the Poodle lander, sent from Earth,
crash-landed in the Martian dust. If you can find it, perhaps you can use its
radio to issue a distress signal.

Use the arrow keys to move around the space station. To examine an
object, stand on it and press the spacebar. Alternatively, if the object is
something you can’t walk on, press the spacebar while walking into it.

To pick up an object, walk onto it and press the G key (for get).
To select an object in your inventory, shown at the top of the screen

(see Figure 11), press the tab key to move through the items. To drop the
selected object, press D.

Figure 11: Your adventure begins!

12 Introduction

To use an object, either select it in your inventory or walk onto or into
it and press U. You can combine objects or use them together when you
press U while you carry one object and stand on the other or while you
carry one and walk into the other.

You’ll need to work out how to use your limited resources creatively to
overcome obstacles and get to safety. Good luck!

1
Your First Spacewalk

Welcome to the space corps. Your mission
is to build the first human outpost on Mars.

For years, the world’s greatest scientists have
been sending robots to study it up close. Soon

you too will set foot on its dusty surface.
Travel to Mars takes between six and eight months, depending on how

Earth and Mars are aligned. During the journey, the spaceship risks hitting
meteoroids and other space debris. If any damage occurs, you’ll need to put
on your spacesuit, go to the airlock, and then step into the void of space to
make repairs, similar to the astronaut in Figure 1-1.

In this chapter, you’ll go on a spacewalk by using Python to move a
character around the screen. You’ll launch your first Python program and
learn some of the essential Python instructions you’ll need to build the
space station later in the book. You’ll also learn how to create a sense of
depth by overlapping images, which will prove essential when we create
the Escape game in 3D later (starting with our first room mock-up in
Chapter 3).

14 Chapter 1

Figure 1-1: NASA astronaut Rick Mastracchio on a 26-minute spacewalk in 2010, as
photographed by astronaut Clayton Anderson. The spacewalk outside the International
Space Station was one of a series to replace coolant tanks.

If you haven’t already installed Python and Pygame Zero (Windows
users), see “Installing the Software” on page 3. You’ll also need the Escape
game files in this chapter. “Downloading the Game Files” on page 7 tells
you how to download and unzip those files.

Starting the Python Editor
As I mentioned in the Introduction, in this book we’ll use the Python pro-
gramming language. A programming language provides a way to write
instructions for a computer. Our instructions will tell the computer how
to do things like react to a keypress or display an image. We’ll also be
using Pygame Zero, which gives Python some additional instructions for
handling sound and images.

Python comes with the IDLE editor, and we’ll use the editor to create
our Python programs. Because you’ve already installed Python, IDLE
should now be on your computer as well. The following sections explain
how to start IDLE, depending on the type of computer you’re using.

Starting IDLE in Windows 10
To start IDLE in Windows 10, follow these steps:

1.	 Click the Cortana search box at the bottom of the screen, and enter
Python in the box.

2.	 Click IDLE to open it.

Your First Spacewalk 15

3.	 With IDLE running, right-click its icon in the taskbar at the bottom
of the screen and pin it. Then you can run it from there in the future
using a single click.

Starting IDLE in Windows 8
To start IDLE in Windows 8, follow these steps:

1.	 Move your mouse to the top right of the screen to show the Charms bar.

2.	 Click the Search icon, and enter Python in the box.

3.	 Click IDLE to open it.

4.	 With IDLE running, right-click its icon in the taskbar at the bottom
of the screen and pin it. Then you can run it from there in the future
using a single click.

Starting IDLE on the Raspberry Pi
To start IDLE on the Raspberry Pi, follow these steps:

1.	 Click the Programs menu at the top left of the screen.

2.	 Find the Programming category.

3.	 Click the Python 3 (IDLE) icon. The Raspberry Pi has both Python 2
and Python 3 installed, but most of the programs in this book will work
only in Python 3.

Introducing the Python Shell
When you start IDLE, you should see the Python shell, as shown in
Figure 1-2. This window is where you can give Python instructions and
immediately see the computer respond. The three arrows (>>>) are called a
prompt. They tell you that Python is ready for you to enter an instruction.

Figure 1-2: The Python shell

So let’s give Python something to do!

16 Chapter 1

Displaying Text
For our first instruction, let’s tell Python to display text on the screen. Type
the following line and press enter:

>>> print("Prepare for launch!")

As you type, the color of your text will change. It starts off black, but as
soon as Python recognizes a command, like print, the text changes color.

Figure 1-3 shows the names of the different parts of the instruction you
just entered. The purple word print is the name of a built-in function, which
is one of many instructions that are always available in Python. The print()
function displays onscreen the information you place between the parentheses
(curved brackets). The information between a function’s parentheses is the
function’s argument.

print("Prepare for launch!")

function name argument

parentheses

Figure 1-3: The different parts of your first instruction

In our first instruction, the print() function’s argument is a string, which
is what programmers call a piece of text. (A string can include numbers,
but they’re treated as letters, so you can’t do calculations with numbers in
a string.) The double quotation marks (" ") show the start and end of the
string. Anything you type between double quotation marks will be green,
and so will the quotation marks.

The colors do more than brighten up the screen: they highlight the
different parts of the instruction to help you find mistakes. For example, if
your final parenthesis is green, it means you forgot the closing double quote
on the string.

If you entered the instruction correctly, your computer will display
this text:

Prepare for launch!

The string that was shown in green is now displayed onscreen in blue.
All output (information the computer gives to you) appears in blue. If your
command didn’t work, check that you did the following:

1.	 Spelled print correctly. If you did, it will be purple (see Figure 1-3).

2.	 Used two parentheses. Other bracket shapes won’t work.

Your First Spacewalk 17

3.	 Used two double quotes. Don’t use two apostrophes ('') instead of a
double quote ("). Although the double quote includes two marks, it’s
just one symbol on the keyboard. On a US keyboard, the double quote
is in the middle row of letters, on the right, and must be used with the
shift key. On a UK keyboard, the double quote is on the 2 key.

If you make a mistake typing the text between the double quotes, the
instruction will still work, but the computer will display exactly what you
typed. For example, try this:

>>> print("Prepare for lunch!")

It doesn’t matter if you mistype the string now, but be careful when you
type a string or an instruction later in the book. Mistakes often prevent a
program from working correctly, and it can be hard to track down a mis-
take in a longer program, even with the color coding.

Training Mission #1

Can you enter a new instruction to output your name? (You’ll find the answers to
the Training Missions in the “Mission Debrief” section at the end of each chapter.)

Outputting and Using Numbers
So far you’ve used the print() function to output a string, but it can also do
calculations and output a number. Enter the following line:

>>> print(4 + 1)

The computer should output the number 5, the solution to 4 + 1.
Unlike with a string, you don’t use quotes around numbers and calcula-
tions. But you still use the parentheses to mark the start and end of the
information you want to give the print() function.

What happens if you do put quotes around 4 + 1? Try it! The result is
that the computer outputs "4 + 1" because it doesn’t treat 4 and 1 as num-
bers. Instead, it treats the argument as a string. You ask it to output "4 + 1",
and it does exactly that!

>>> print(4 + 1)
5
>>> print("4 + 1")
4 + 1

Python does the calculation only when you don’t include the quotes.
You’ll use the print() function a lot in your programs.

18 Chapter 1

Introducing Script Mode
The shell is great for quick calculations and for short instructions. But for
longer sets of instructions, like games, it’s much easier to create programs
instead. Programs are repeatable sets of instructions that we save so we can
run them whenever we want and change them whenever we need to without
retyping them. We’ll build programs using IDLE’s script mode. When you
enter instructions in script mode, they don’t run immediately as they do in
the shell.

Using the menu at the top of the shell window, select File and then
select New File to open a blank new window, as shown in Figure 1-4. The
title bar at the top of the window displays Untitled until you save your file
and name it. Once you’ve saved your file, the title bar will display the file’s
name. From now on, we’ll use script mode nearly all the time when we’re
creating Python code.

Figure 1-4: Python script mode

When you enter instructions in script mode, you can change, add, and
delete instructions using the mouse or the arrow keys, so it’s much easier to
fix mistakes and build your programs. Starting from Chapter 4, we’ll build
the Escape game by adding to it piece-by-piece in script mode and testing
each new section as we go.

Tip

If you’re not sure whether you’re in the shell or the script mode window, look at the
title bar at the top. The shell displays Python Shell. The script mode window dis-
plays either Untitled or the name of your program.

Creating the Starfield
The first program we’ll write will display the starfield image that we’ll use
as the space background for our Spacewalk program. This image is in the
images folder within the escape folder. Start by entering Listing 1-1 into the
new blank window in IDLE.

Your First Spacewalk 19

N o t e 	 In this book, I’ll use numbers in circles (like this: ) to refer to different bits of code in
the explanations so it’s easier for you to follow along. Don’t type these numbers in
your program. When you see a number in a circle in the text, refer back to the pro-
gram listing to see which part of the program I’m talking about.

Listing 1-1 is a short program, but there are a couple of details that
you should pay attention to while you’re typing: the def statement  needs
a colon at the end of its line, and the next line  needs to start with four
spaces. When you add the colon to the end of the def line and press enter,
IDLE automatically adds the four spaces at the beginning of the next line
for you.

 # Spacewalk
by Sean McManus
www.sean.co.uk / www.nostarch.com

 WIDTH = 800
HEIGHT = 600

 player_x = 600
player_y = 350

 def draw():
 screen.blit(images.backdrop, (0, 0))

Listing 1-1: See the starfield in Pygame Zero.

Select the File menu at the top of the screen and then select Save
(from now on, we’ll use a shorthand for menu selections that looks like this:
File4Save). In the Save dialog, name your program listing1-1.py. You need
to save your file in the escape folder you set up in the Introduction. This way,
it’s in the same folder as the book’s images folder, and Pygame Zero can find
the images when you run the program. After you save the file, your escape
folder should now contain your listing1-1.py file and the images folder, as
shown in Figure 1-5 (along with the listings and sounds folders).

Figure 1-5: Your new Python program and the images folder should be stored in the same
place.

listing1-1.py

20 Chapter 1

I’ll explain how the listing1-1.py program works shortly, but first let’s
run the program so we can admire the starfield. The program needs
some instructions from Pygame Zero to manage the images, so to use those
instructions, we need to run the program using a pgzrun instruction. When-
ever we use any instructions from Pygame Zero in a Python program, we
need to run it using pgzrun.

We’ll type this on the computer’s command line, just like we did in the
Introduction to run the Escape game. First, look back at “Running the Game”
on page 9, and follow the directions there to open your computer’s com-
mand line terminal from your escape folder. Then run the following instruc-
tion from the command line:

pgzrun listing1-1.py

R e d A l e r t 	 Don’t type this instruction in IDLE: be sure to type it in your Windows or Raspberry
Pi command line. The Introduction shows you how.

If all went according to plan, you should be looking at the majesty of
space, as shown in Figure 1-6.

y = 0

y = 599

x = 0 x = 799

close
button

Figure 1-6: The starfield. The starfield image is courtesy of NASA/JPL-Caltech/
UCLA and shows star cluster NGC 2259.

Your First Spacewalk 21

Using My Example Listings

If you can’t get a program in this book to work, you can use my example program
instead. For instance, you can use my listing1-1.py example and modify it to make
your own listing1-2.py shortly so you can continue following along.

You’ll find my programs in the listings folder, which is in the escape folder.
Simply open the listings folder in Windows or the Raspberry Pi desktop, find the
listing you need, copy it, and then paste it into the escape folder. Then open the
copied listing in IDLE and follow along with the next step in the book. When you
look at the folder, you should be able to see your Python file and the images folder
are in the same place (see Figure 1-5).

Understanding the Program So Far
Most of the instructions you’ll see in this book will work in any Python pro-
gram. The print() function, for example, is always available. To make the
programs in this book, we’re also using Pygame Zero. This adds some new
functions and capabilities to Python for creating games, especially for the
screen display and sound. Listing 1-1 introduces our first instructions from
Pygame Zero, used to set up the game window and draw the starfield.

Let’s take a closer look at how the listing1-1.py program works.
The first few program lines are comments . When you use a # symbol,

Python ignores everything after it on the same line, and the line appears in
red. The comments help you and other people reading the program under-
stand what a program does and how it works.

Next, the program needs to store some information. Programs almost
always need to store information that the program uses or needs to refer
back to at a later time. For example, in many games, the computer needs
to keep track of the score and the player’s position on the screen. Because
these details can change (or vary) as the program runs, they’re stored in
something called a variable. A variable is a name you give to a piece of infor-
mation, either a number or some text.

To create a variable, you use an instruction like this:

variable_name = value

N o t e 	 Code terms shown in italics are placeholders that would be filled in. Instead of
variable_name, you would enter your own variable name.

For example, the following instruction puts the number 500 into the
variable score:

score = 500

You can name your variables almost anything you want. However,
to make your program easy to write and understand, you should choose

22 Chapter 1

variable names that describe the information inside each variable. Note
that you can’t use names for your variables that Python uses for its lan-
guage, such as print.

R e d A l e r t 	 Python is case-sensitive, which means it is strict about whether variables use upper-
case or lowercase letters. In fact, it treats score, SCORE, and Score as three completely
different variables. Make sure you copy my example programs exactly, or they might
not work properly.

Listing 1-1 begins by creating some variables. Pygame Zero uses the
WIDTH and HEIGHT variables  to set the size of the game window on the
screen. Our window is wider than it is tall because the WIDTH value (800) is
bigger than the HEIGHT value (600).

Notice that we’ve spelled these variables with capital letters. The capital
letters in variable names tell us that they’re constants. A constant is a particu-
lar kind of variable with values that aren’t supposed to change after they’ve
been set up. The capital letters help other programmers who are looking
at the program understand that they shouldn’t let anything else in the pro-
gram change these variables.

The player_x and player_y variables  will store your position on the
screen as you carry out your spacewalk. Later in the chapter, we’ll use these
variables to draw you on the screen.

We then define a function using the def() statement . A function is a
group of instructions you can run whenever you need them in your pro-
gram. You’ve already seen one built-in function called print(). We’ll make
our own function in this program called draw(). Pygame Zero will use it to
draw the screen display whenever the screen changes.

We define a function using the keyword def , followed by the function
name we choose, empty parentheses, and a colon. Sometimes you’ll use a
function’s parentheses to contain information for that function, as you’ll
see later in this book.

We then need to give the function instructions for what it should do.
To tell Python which instructions belong to the function, we indent them
by four spaces. The screen.blit() instruction  from Pygame Zero draws an
image on the screen. In the parentheses, we tell it which image to draw and
where to draw it, like this:

screen.blit(images.image_name, (x, y))

From the images folder, we’ll use the backdrop.jpg file, which is the
starfield. In our listing1-1.py program, we refer to it as images.backdrop. We
don’t have to use the file’s .jpg extension, because we’re using Pygame Zero
to handle the images, and Pygame Zero doesn’t require the extension.
Also, the program knows where the image is because all the images must
be in the images folder so Pygame Zero can find them.

We put the image on the screen at position (0, 0) , which is the top-
left corner of the screen. The first number, known as the x position, tells the
screen.blit() instruction how far from the left edge we want our image to

Your First Spacewalk 23

be; the second number, known as the y position, describes how far down we
want it to be. The x positions go from 0 on the left edge of the window to
799 on the right edge because our window is 800 pixels wide. Similarly, the
y positions run from 0 at the top of the window to 599 at the bottom (see
Figure 1-6).

For positions onscreen, we use a tuple, which is just a group of numbers
or strings in parentheses, such as (0, 0). In a tuple, the numbers are sepa-
rated with a comma, plus an optional space for readability.

The most important thing you need to know about tuples is that you
have to take care with the punctuation. Because the tuple uses parentheses,
and we put this tuple inside the parentheses for screen.blit(), there are two
sets of parentheses here. So you need parentheses around the tuple values,
but you also need to close the parentheses for screen.blit() after the tuple.

Stopping Your Pygame Zero Program
Similar to space, your Pygame Zero program will go on forever. To stop
it, click the game window’s close button at the top right (see Figure 1-6).
You can also close the program from the command line window where
you entered the pgzrun instruction by pressing ctrl-C.

R e d A l e r t 	 Don’t close the command line window itself. Otherwise, you’ll have to open it again
to run another Pygame Zero program. If you do close it by mistake, refer back to
“Running the Game” on page 9 to open it again.

Adding the Planet and Spaceship
Let’s bring Mars and the spaceship into view. In IDLE, add the last two lines
in Listing 1-2 to your existing listing 1-1.py program.

N o t e 	 I’ll use --snip-- in code listings to show you where I’ve left out some code, usually
because the code is repeated from before. I’ll also show any repeated code in gray so
you can see the new code you need to add more clearly. Don’t add in the repeated
code again!

In the following code, I’ve excluded the comments and variable setup
to save space and make it easier for you to see the new code. But make sure
you keep those instructions in your program. Just add the two new lines at
the end.

--snip--
def draw():
 screen.blit(images.backdrop, (0, 0))
 screen.blit(images.mars, (50, 50))
 screen.blit(images.ship, (130, 150))

Listing 1-2: Adding Mars and the ship

listing1-2.py

24 Chapter 1

Save your updated program as listing1-2.py by selecting File4Save As.
Run your program by switching back to the command line window and
entering the command pgzrun listing1-2.py. Figure 1-7 shows how the
screen should now look, with the red planet and the spaceship above it.

Figure 1-7: Mars and the spaceship. The Mars image was taken by the Hubble
Space Telescope in 1991.

N o t e 	 If your program doesn’t work as expected, check that all your screen.blit() instruc-
tions have exactly four spaces before them and are lined up with each other.

The first of the new instructions places the image mars.jpg at the posi-
tion (50, 50), which is near the top-left corner of the screen. The second
new instruction positions the ship at (130, 150). In each case, the coordi-
nates used are for the top-left corner of the image.

Changing Perspective:
Flying Behind the Planet
Now let’s look at how we can make the ship fly behind the planet. Swap the
order of the last two instructions in IDLE, as shown in Listing 1-3. To do
this, highlight one of the lines, press ctrl-X to cut it, click on a new line,
and press ctrl-V to paste it in place. You can also use the cut and paste
options in the Edit menu at the top of the screen.

--snip--
def draw():
 screen.blit(images.backdrop, (0, 0))

listing1-3.py

Your First Spacewalk 25

 screen.blit(images.ship, (130, 150))
 screen.blit(images.mars, (50, 50))

Listing 1-3: Swapping the order of the planet and ship instructions

If the previous version of your program is still running, close it now.
Save your new program as listing1-3.py and run it from the command line
by entering pgzrun listing1-3.py. You should see that the spaceship is now
behind the planet, as shown in Figure 1-8. If not, make sure you ran the
right file (listing1-3.py), and then check that the instructions in the program
are correct.

The ship goes behind the planet because the images are added to the
screen in the order they are drawn in the program. In our updated pro-
gram, we draw the starfield, draw the ship, and then draw Mars. Each new
image appears on top of the previous one. If two images overlap, the image
that was drawn last appears in front of the one drawn earlier.

Figure 1-8: The spaceship is now behind the planet.

Training Mission #2

Can you move just one drawing instruction in your program to make the planet
and the spaceship disappear? If you’re not sure what to do, experiment by moving
the drawing instructions to see what effect it has when you save the program and
run it again.

Make sure you keep the drawing instructions aligned and indented with four
spaces inside the draw() function. When you’re done experimenting, match the
instructions in Listing 1-3 again to bring the ship and Mars back into view.

26 Chapter 1

Spacewalking!
It’s time to climb out of the underside of the spaceship and begin your
spacewalk. Edit your program so it matches Listing 1-4. But be sure to
keep the variable instructions that aren’t shown here the same as they
were before. Save the updated program as listing1-4.py.

--snip--
def draw():
 screen.blit(images.backdrop, (0, 0))
 screen.blit(images.mars, (50, 50))

 screen.blit(images.astronaut, (player_x, player_y))
 screen.blit(images.ship, (550, 300))

 def game_loop():
 global player_x, player_y
y if keyboard.right:
 player_x += 5
 elif keyboard.left:

 player_x -= 5
 elif keyboard.up:

 player_y -= 5
 elif keyboard.down:
 player_y += 5

 clock.schedule_interval(game_loop, 0.03)

Listing 1-4: Adding the spacewalk instructions

In this listing, we add a new instruction  to draw the astronaut image
at the position in the player_x and player_y variables, which were set up at
the start of the program in Listing 1-1. As you can see, we can use these
variable names in place of numbers for the astronaut’s position. The pro-
gram will use the current numbers stored in these variables to figure out
where to put the astronaut every time it is drawn.

Note that the order of drawing the images has changed in the program
and is now backdrop, Mars, astronaut, and ship. Make sure you change the
order of your screen.blit() instructions to match this listing.

The astronaut starts off overlapping the ship. Because the astronaut
is drawn before the ship, the astronaut will appear to emerge from under-
neath (behind) the spaceship. We also changed the position of the ship 
to the bottom-right area of the screen. This gives the astronaut space to fly
toward the planet.

Run the program by entering pgzrun listing1-4.py. You should now be
able to use the arrow keys to move freely through space, protected by your
spacesuit, as shown in Figure 1-9. You’ll see that you fly behind the space-
ship but in front of Mars and the starfield. The order in which we draw
the images creates a simple illusion of depth. When we draw the space
station beginning in Chapter 3, we’ll use this drawing technique to create
a 3D perspective of each room. We’ll draw the rooms from back to front to
create a sense of depth.

listing1-4.py

Your First Spacewalk 27

Figure 1-9: You emerge from the ship for your spacewalk.

Training Mission #3

Can you edit the code to move the spaceship and the astronaut to the top-right
corner of the screen? You’ll need to change the starting values for player_x and
player_y, as well as where the spaceship is drawn. Make sure the player is “inside”
(actually underneath) the ship at the start of the program. Experiment with other
positions, too. This is a great way to get familiar with screen positions. Refer back
to Figure 1-6 if you need to.

Understanding the Spacewalk Listing
The spacewalk listing, Listing 1-4, is interesting because it lets you control
part of the program from the keyboard, which will be crucial in the Escape
game. Let’s look at how our final spacewalk program works.

We build on our earlier listings and add a new function called game
_loop() . This function’s job is to change the values of the player_x and
player_y variables when you press the arrow keys. Changing the variables
enables you to move the astronaut character because those variables posi-
tion the astronaut when it’s drawn.

Before we go on, we need to look at two different types of variables.
Variables that are changed inside a function usually belong to that func-
tion and can’t be used by other functions. They’re called local variables,
and they make it harder for bits of the program to interfere with other
bits accidentally and cause errors.

28 Chapter 1

But in the spacewalk listing, we need both the draw() and game_loop()
functions to use the same player_x and player_y variables, so they need to
be global variables, which any part of the program can use. We set up global
variables at the start of the program, outside of any functions.

To tell Python that the game_loop() function needs to use and change
the global variables we set up outside of this function, we use the global
command . We put it at the beginning of the function and list the vari-
ables we want to use as global variables. Doing this is like overriding the
safety feature that stops you from changing variables that weren’t created
inside the function. We don’t need to use global in the draw() function,
because the draw() function doesn’t need to change those variables. It only
needs to look at what those variables contain.

We tell the program to use keyboard controls using the if command.
With this instruction, we tell Python to do something only if certain condi-
tions are met. We use four spaces to indent the instructions that belong
to the if command. That means these instructions are indented by eight
spaces in total in Listing 1-4 because they are also inside the game_loop()
function. These instructions run only if the statement after the if com-
mand is true. If not, the instructions that belong to the if command are
skipped over.

It might seem odd to use spaces like this to show which instructions
belong together, especially if you’ve used other programming languages,
but it makes the programs easy to read. Other languages often need brackets
around sets of instructions like this. Python keeps it simple.

We use the if command to check whether the right arrow key is
pressed . If it is, we change the value of player_x by adding 5 , moving
the astronaut image to the right. The symbols += mean increase by, so the
following line increases the number in the player_x variable by 5:

player_x += 5

Similarly, -= means decrease by, so the following instruction reduces the
number in player_x by 5:

player_x -= 5

If the right arrow key is not pressed, we check whether the left key is
pressed. If it is, the program subtracts 5 from the player_x value, moving
the astronaut’s position left. To do that, we use an elif command , which
is short for “else if.” You can think of else as meaning otherwise here. In plain
English, this part of our program means, “If the right arrow key is pressed,
add 5 to the x position. Otherwise, if the left key is pressed, subtract 5 from
the x position.” We then use elif to check for up and down keypresses in the
same way, and change the y position to move the astronaut up or down. The
draw() function uses the player_x and player_y variables for the astronaut’s
position, so changing the numbers in these variables makes the astronaut
move on the screen.

Your First Spacewalk 29

Tip

If you change the elif command at  to an if command, the program allows
you to move up or down at the same time as moving left or right, letting you walk
diagonally. That’s fun in the spacewalk program, but we’ll use code similar to this
to move around the space station later, and it doesn’t look natural there.

The final instruction  sets the game_loop() function to run every
0.03 seconds using the clock in Pygame Zero, so the program keeps check-
ing for your keypresses and changing your position variables frequently.
Note that you don’t put any parentheses after game_loop here. This instruc-
tion isn’t indented, because it doesn’t belong to any function. When the
program starts, it runs the instructions that aren’t in any function in the
order they are in the listing, from top to bottom. Therefore, the last line of
the program is one of the first to run after the variables are set up. This last
line starts the game_loop() function running.

The draw() function runs automatically whenever the screen needs
updating. This is a feature of Pygame Zero.

Training Mission #4

Let’s fit some new thrusters to the spacesuit. Can you work out how to make the
astronaut move faster in the up and down directions than it does in the left and
right directions? Each keypress in the up or down direction should make the space
suit move more than a keypress in the left or right direction.

Enjoy the breathtaking views as you take your spacewalk and conduct
any essential repairs to your ship. We’ll reconvene in Chapter 2, where
you’ll learn some procedures that will help you stay safe in space.

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons
in this chapter. If you’re not sure about something, flip back through the
chapter and give the topic another look.

�� You use IDLE’s script mode to create a program that you can save, edit,
and run again. Enter script mode by selecting File4New File or edit an
existing file by selecting File4Open.

�� Strings are pieces of text in code. Double quotes mark the start and end
of a string. A string can include numbers, but they’re treated as letters.

�� Variables store information, either numbers or strings.

�� The print() function outputs information on the screen. You can use it
for strings, numbers, calculations, or the values of variables.

30 Chapter 1

�� The # symbol in a program marks a comment. Python ignores anything
on the same line after a #, and comments can be a handy reminder for
you and anyone you share your code with.

�� Use the WIDTH and HEIGHT variables to set the size of your game window.

�� To run a Pygame Zero program, open the command line from the
folder your Python program is in, and then enter pgzrun filename.py
in the command line to run it.

�� A function is a group of instructions you can run whenever you want
your program to use the instructions. Pygame Zero uses the draw()
function to draw or update the game screen.

�� Use screen.blit(images.image_name, (x, y)) to draw an image at position
(x, y) on the screen. The x- and y-axes are numbered starting at 0 in the
top-left corner.

�� A tuple is a group of numbers or strings in parentheses, separated by a
comma. The contents of a tuple can’t be changed by the program after
they’ve been set up.

�� To end your Pygame Zero program, click the window’s close button or
press ctrl-C in the command line window.

�� If images overlap, the image you drew last in the program appears at
the front.

�� The elif command is short for “else if.” Use it to combine if conditions
so that only one set of instructions can run. In our program, we use it
to stop the player from moving in two directions at the same time.

�� If we want to change a variable inside a function and use it in a differ-
ent function, we need to use a global variable. We set it up outside of the
functions and use the global keyword inside a function when we plan to
change the variable there.

�� We can set a function to run at regular intervals using the clock feature
in Pygame Zero.

Your First Spacewalk 31

Mission Debrief
Here are the answers for the training missions in this chapter.

Training Mission # 1

This answer will vary, depending on your name, but it should look something like this:

>>> print("Neil Armstrong")

Training Mission # 2

If you draw the starfield last, it will hide the planet and the spaceship. Cunning!
Place the images in this order:

--snip--
def draw():
 screen.blit(images.mars, (50, 50))
 screen.blit(images.ship, (130, 150))
 screen.blit(images.backdrop, (0, 0))

Training Mission # 3

Change the value of player_y at the start of the program from 350 to a lower
number, such as 150. Change the second number in the tuple for the screen.blit()
instruction for the ship image to a lower number, such as 50. Other numbers will
also work as long as the ship is in the top right and the astronaut starts behind
the ship.

Training Mission # 4

To make the player move faster up and down than left and right, change how much
the player_y variable changes by each time the key is pressed. If you change the
fives to a higher number, the player will move a greater distance up or down the
screen for each up or down keypress. As a result, the astronaut will appear to move
faster. But if you make the value too high, the illusion of animation will be lost, and
the suit will seem to just teleport through space. Experiment with a few values to
see what works.

--snip--
 elif keyboard.up:
 player_y -= 15
 elif keyboard.down:
 player_y += 15
--snip--

2
Lists Can Save Your Life

Astronauts live by lists. The safety check-
lists they use help make sure all systems

are working before they entrust their lives to
those systems. For example, emergency check-

lists tell the astronauts what to do in dire situations to
prevent them from panicking. Procedural checklists
confirm that they’re using their equipment correctly
so nothing breaks and prevents them from returning
home. These lists just might save their lives one day.

In this chapter, you’ll learn how to manage lists in Python and how to
use them for checklists, maps, and almost anything in the universe. When
you build the Escape game, you’ll use lists to store information about the
space station layout.

34 Chapter 2

Making Your First List:
The Take-Off Checklist

Take-off is one of the most dangerous aspects of space travel. When you’re
strapped to a rocket, you want to double-check everything before it launches.
A simple checklist for take-off might contain the following steps:

�� Put on suit

�� Seal hatch

�� Check cabin pressure

�� Fasten seatbelt

Python has the perfect way to store this information: the Python list
is like a variable that stores multiple items. As you’ll see, you can use it for
numbers and text as well as a combination of both.

Let’s make a list in Python called take_off_checklist for our astronauts
to use. Because we’re just practicing with a short example, we’ll enter the
code in the Python shell rather than creating a program. (If you need a
refresher on how to use the Python shell, see “Introducing the Python
Shell” on page 15.) Enter the following in the IDLE shell, pressing enter
at the end of each line to start a new line in the list:

>>> take_off_checklist = ["Put on suit",
 "Seal hatch",
 "Check cabin pressure",
 "Fasten seatbelt"]

R e d A l e r t 	 Make sure the brackets, quote marks, and commas in your code are precise. If you get
any errors, enter the list code again, and double-check that the brackets, quotes, and
commas are in the correct places. To avoid having to retype the code, use your mouse
to highlight the text in the shell, right-click the text, select Copy, right-click again, and
select Paste.

Let’s take a closer look at how the take_off_checklist list is made. You
mark the start of the list with an opening square bracket. Python knows
the list is not finished until it detects the final closing square bracket. This
means you can press enter at the end of each line to continue typing the
instruction, and Python will know you’re not finished until you’ve given it
the final bracket.

Quote marks tell Python that you’re giving it some text and where each
piece of text starts and ends. Each entry needs its own opening and clos-
ing quote marks. You also need to separate the different pieces of text with
commas. The last entry doesn’t need a comma after it, because there isn’t
another list item following it.

Lists Can Save Your Life 35

Seeing Your List
To see your checklist, you can use the print() function, as we did in
Chapter 1. Add the name of your list to the print() function, like this:

>>> print(take_off_checklist)
['Put on suit', 'Seal hatch', 'Check cabin pressure', 'Fasten seatbelt']

You don’t need quotes around take_off_checklist, because it’s the name
of a list, not a piece of text. If you do put quotes around it, Python will just
write the text take_off_checklist onscreen instead of giving you back your
list. Try it to see what happens.

Adding and Removing Items
Even after you’ve created a list, you can add an item to it using the append()
command. The word append means to add something at the end (think of
an appendix, at the end of a book). You use the append() command like this:

>>> take_off_checklist.append("Tell Mission Control checks are complete")

You enter the name of the list (without quote marks) followed by a
period and the append() command, and then put the item to add in paren-
theses. The item will be added to the end of the list, as you’ll see when you
print the list again:

>>> print(take_off_checklist)
['Put on suit', 'Seal hatch', 'Check cabin pressure', 'Fasten seatbelt', 'Tell
Mission Control checks are complete']

You can also take items out of the list using the remove() command. Let’s
remove the Seal hatch item:

>>> take_off_checklist.remove("Seal hatch")
>>> print(take_off_checklist)
['Put on suit', 'Check cabin pressure', 'Fasten seatbelt', 'Tell Mission
Control checks are complete']

Again, you enter the name of the list followed by a period and the
remove() command, and then specify the item you want to remove inside
the parentheses.

R e d A l e r t 	 When you’re removing an item from a list, make sure what you type matches the item
exactly, including capital letters and any punctuation. Otherwise, Python won’t rec-
ognize it and will give you an error.

36 Chapter 2

Using Index Numbers
Hmm, we should probably put the Seal hatch check back into the list before
anyone at Mission Control notices. You can insert an item in a specific posi-
tion in the list by using that item’s index number. The index is the position
of the item in the list. Python starts counting at 0, not 1, so the first item
in the list always has an index of 0, the second item has an index of 1, and
so on.

Inserting an Item
Using the position index, we’ll put Seal hatch back where it belongs:

>>> take_off_checklist.insert(1, "Seal hatch")
>>> print(take_off_checklist)
['Put on suit', 'Seal hatch', 'Check cabin pressure', 'Fasten seatbelt', 'Tell
Mission Control checks are complete']

Phew! I think we got away with it. Because the index starts at 0, when
we inserted Seal hatch, we placed it at position 1, the second item in the list.
The rest of the list items shifted down in the list to make room, increasing
their index numbers, as shown in Figure 2-1.

["Put on suit", "Seal hatch", "Check cabin pressure", "Fasten seatbelt", "Tell Mission Control..."]

index 0 index 1 index 2

["Put on suit", "Check cabin pressure", "Fasten seatbelt", "Tell Mission Control..."]

index 0 index 1 index 2 index 3

index 3 index 4

Figure 2-1: Inserting an item at index 1. Top row: before insertion. Bottom row: after insertion.

Accessing an Individual Item
You can also access a particular item in a list using the list name with
the index number of the item you want to access in square brackets. For
example, to print particular items in the list, you can enter the following:

>>> print(take_off_checklist[0])
Put on suit
>>> print(take_off_checklist[1])
Seal hatch
>>> print(take_off_checklist[2])
Check cabin pressure

Now you can see individual items in the list!

Lists Can Save Your Life 37

R e d A l e r t 	 Don’t mix up your brackets. Roughly speaking: Use square brackets when you’re tell-
ing Python which list item to use. Use parentheses when you’re doing something to the
list or items in it, such as printing the list or appending items to it. Every opening
bracket needs a closing bracket of the same type.

Replacing an Item
You can also replace an item if you know its index number. Simply enter
the list name followed by the index of the item you want to replace, and
then use an equal sign (=) to tell Python what you want at that index,
like this:

>>> take_off_checklist[3] = "Take a selfie"
>>> print(take_off_checklist)
['Put on suit', 'Seal hatch', 'Check cabin pressure', 'Take a selfie', 'Tell
Mission Control checks are complete']

The old item at index 3 is removed and replaced with the new item. Be
aware that when you replace an item, Python forgets the original. Recall
your training to put it back, like this:

>>> take_off_checklist[3] = "Fasten seatbelt"
>>> print(take_off_checklist)
['Put on suit', 'Seal hatch', 'Check cabin pressure', 'Fasten seatbelt', 'Tell
Mission Control checks are complete']

Deleting an Item
If you know where an item is in a list, you can delete it using its index
number too, like this:

>>> del take_off_checklist[2]
>>> print(take_off_checklist)
['Put on suit', 'Seal hatch', 'Fasten seatbelt', 'Tell Mission Control checks
are complete']

The "Check cabin pressure" item disappears from the list.

Training Mission #1

It’s time to practice your skills! We just deleted item 2 in the list. Can you insert it
back into the list in the correct position? Print the list to check that it worked.

38 Chapter 2

Creating the Spacewalk Checklist
As you know from Chapter 1, another dangerous activity for an astronaut is
venturing out into the black vacuum of space with just a suit to protect you
and provide oxygen. Here is a checklist to help keep you safe when you’re
spacewalking:

�� Put on suit

�� Check oxygen

�� Seal helmet

�� Test radio

�� Open airlock

Let’s make this checklist into a Python list. We’ll call it spacewalk
_checklist, like this:

>>> spacewalk_checklist = ["Put on suit",
 "Check oxygen",
 "Seal helmet",
 "Test radio",
 "Open airlock"]

Remember to be careful with the commas and brackets.

Training Mission #2

It’s always a good idea to test your code so you know it’s working as it should.
Can you try printing all the list items to check that they’re in the right place?

A List of Lists: The Flight Manual
We have two checklists now: one for take-off and one for spacewalking. We
can organize them by putting them into another list to create our “flight
manual.” Think of the flight manual as a folder that contains two sheets of
paper, and each piece of paper has one list on it.

Making a List of Lists
Here is how we make the flight manual list of lists:

>>> flight_manual = [take_off_checklist, spacewalk_checklist]

We give IDLE the flight_manual list name, use the equal sign (=), and
then add the two lists we want to put in the flight_manual list inside square
brackets. As we did earlier when making lists, we separate the two items
with a comma. The new flight_manual list has two items in it: the take_off

Lists Can Save Your Life 39

_checklist and the spacewalk_checklist. When you print flight_manual, it
looks like this:

>>> print(flight_manual)
[['Put on suit', 'Seal hatch', 'Check cabin pressure', 'Fasten seatbelt',
'Tell Mission Control checks are complete'], ['Put on suit', 'Check oxygen',
'Seal helmet', 'Test radio', 'Open airlock']]

Tip

Remember that you don’t need to use quote marks around list names; you use them
only when you’re entering text into a list.

R e d A l e r t 	 If you don’t see 'Check cabin pressure' in your list, it’s because you skipped Training
Mission #1. To make it easier to follow along, I recommend you go back and complete
that mission. You can check the training mission answers at the end of the chapter if
you need to.

The output looks messy! To work out what’s going on, look closely at the
brackets. Square brackets mark the start and end of each list. If you strip
out the list items, the output looks like this:

[[first list is here], [second list is here]]

In the middle, you can see where the first list ends with a closed bracket
followed by a comma before the next list begins with an opening bracket. So
what happens when you try to print the first item in the flight_manual list?

>>> print(flight_manual[0])

The first item is the take_off_checklist, so the output looks like this:

['Put on suit', 'Seal hatch', 'Check cabin pressure', 'Fasten seatbelt', 'Tell
Mission Control checks are complete']

Training Mission #3

Try adding other checklists to flight_manual and printing them. For example, you
could add a checklist for landing on a planet or docking with another spaceship.

Finding an Item in the Flight Manual
If you want to look at a particular item in one of the lists in flight_manual,
you must give Python two pieces of information: the list the item is in, and

40 Chapter 2

the index of the item in the list, in that order. For each piece of informa-
tion, you can use index numbers, like this:

>>> print(flight_manual[0][1])
Seal hatch

Check your result against the printout of your checklist higher up
in the shell. The Seal hatch item is in the first list (index 0), which is the
take_off_checklist, and it’s the second item in that list (index 1). Those are
the two index numbers we used to find it. Let’s choose an item from the
second list:

>>> print(flight_manual[1][3])
Test radio

This time, we’re printing from the second list (index 1), and from that
list, we’re printing the fourth item (index 3). Although it might seem con-
fusing that Python starts counting at 0, soon it will become second nature
to subtract one from the position number you want. Be careful that you
don’t end up buying one fewer of everything when you go shopping!

Tip

To print a list or variable on the screen, you can leave out the print() command
when you’re typing into the shell, like so:

>>> flight_manual[0][2]
'Check cabin pressure'

This only works in the shell, though, and not in a program. Often, you’ll have
many ways to do the same thing in Python. This book focuses on the techniques
that will most help you make the Escape game. As you learn Python, you’ll find
your own style and preferences.

Combining Lists
You can join two lists using a plus sign (+) to combine them into a single list.
Let’s make a list of all the skills needed for take-off and spacewalking and
call it skills_list:

>>> skills_list = take_off_checklist + spacewalk_checklist
>>> print(skills_list)
['Put on suit', 'Seal hatch', 'Check cabin pressure', 'Fasten seatbelt', 'Tell
Mission Control checks are complete', 'Put on suit', 'Check oxygen', 'Seal
helmet', 'Test radio', 'Open airlock']

Lists Can Save Your Life 41

The output you see here is a single list containing the skills astronauts
need from the two lists we already made. We can also add more skills to the
list by entering the combined list’s name and using += to add single items or
other lists to the end of it. (In Chapter 1, you learned how to use += to add a
number to a variable’s value.)

Few people get to go into space, so a big part of an astronaut’s role is
to share that experience. Let’s add a list called pr_list for public relations
(PR) skills that an astronaut might need. I think there might be a place for
selfie skills after all!

>>> pr_list = ["Taking a selfie",
 "Delivering lectures",
 "Doing TV interviews",
 "Meeting the public"]
>>> skills_list += pr_list
>>> print(skills_list)
['Put on suit', 'Seal hatch', 'Check cabin pressure', 'Fasten seatbelt',
'Tell Mission Control checks are complete', 'Put on suit', 'Check oxygen',
'Seal helmet', 'Test radio', 'Open airlock', 'Taking a selfie', 'Delivering
lectures', 'Doing TV interviews', 'Meeting the public']

The skills_list now has the items from pr_list added. The skills_list
is still just a single list with individual items in it, unlike flight_manual, which
has two separate lists inside it.

Tip

You might have noticed that this code line:

skills_list += pr_list

is just a shorter way of writing this:

skills_list = skills_list + pr_list

It’s a very useful shortcut!

Making Maps from Lists:
The Emergency Room

Navigation is an essential skill for an astronaut. You must always know where
you are, where your nearest sanctuary is, and even where the air is so you’re
always ready in an emergency. The Escape game will keep a map of the room
the player is in, so it can draw the room correctly and enable the player to
interact with objects. Let’s look at how we can use lists to make a map of the
emergency supplies room.

42 Chapter 2

Making the Map
Now that you know how to manage lists and lists inside lists, you can make
maps. This time, we’ll create a program rather than working in the shell. At
the top of the Python window, select File4New File to open a new window.

Enter Listing 2-1 into your new program window:

room_map = [[1, 0, 0, 0, 0],
 [0, 0, 0, 2, 0],
 [0, 0, 0, 0, 0],
 [0, 3, 0, 0, 0],
 [0, 0, 0, 0, 4]
]
print(room_map)

Listing 2-1: Setting up the emergency room

Note that you don’t need a comma at the end of the last line in the list.
This program creates and displays a list called room_map. Our new emergency
room is five meters by five meters. The room_map list contains five lists. Each
of those lists contains five numbers, which represent one row of the map.
I’ve lined up the numbers in the code so it looks like the grid shown in Fig-
ure 2-2, which shows a map of the room. Compare the diagram and the
program; you’ll see that the first list is for the top row, the second list is
for the second row, and so on. A 0 repre-
sents an empty space in the grid, and the
numbers 1 to 4 are for various emergency
items in the room. The numbers we’ll use in
this chapter represent the following items:

1.	 Fertilizer

2.	 Spare oxygen tanks

3.	 Scissors

4.	 Toothpaste

5.	 Emergency blankets

6.	 Emergency radio

R e d A l e r t 	 Make sure your brackets and commas are in the correct places. One reason for putting
Listing 2-1 into a program instead of typing it into the shell is so you can easily make
corrections if you make a mistake.

Click File4Save and save your program as listing2-1.py. This program
doesn’t use Pygame Zero, so we can run it from IDLE. Click Run in the
menu bar at the top of the window, and then click Run Module. You should
see the following output in the shell window:

[[1, 0, 0, 0, 0], [0, 0, 0, 2, 0], [0, 0, 0, 0, 0], [0, 3, 0, 0, 0],
[0, 0, 0, 0, 4]]

listing2-1.py

1

2

3

4

Figure 2-2: Our first simple map

Lists Can Save Your Life 43

It’s hard to work out what you’re looking at when the list is shown like
this, which is why I lined up the numbers in a grid in the program listing.
But this shell output is the same map and the same data, so everything is
where it should be: it’s just being presented in a different way. In Chapter 3,
you’ll learn how to print this map data so it looks more like the listing we
created.

Finding an Emergency Item
To find out what item is at a particular point in the map, you need to give
Python a coordinate to check. The coordinates are a combination of the
y position (from top to bottom) and the x position (from left to right), in
that order. The y position will be the list in room_map you want to check (the
row in the grid). The x position will be the item in that list you want to look
at (the column) (see Figure 2-3). As always, remember that index numbers
start at 0.

1

2

3

4

0 1 2 3 4

0

1

2

3

4

x = Which list item?

y
=

W
hi

ch
 li

st?

Figure 2-3: The y-coordinate indicates the
list we want to look at. The x-coordinate
indicates the item in that list.

R e d A l e r t 	 If you’ve used coordinates before, you know that you usually put the x-coordinate
before the y-coordinate. We’re doing the opposite here because it makes the code
simpler. If we put x first, we would have to make each list in room_map represent a
column of the map, from top to bottom, instead of a row, from left to right. That
would make the map look wrong in our code: the map would be on its side and a
mirror image, which would be very confusing! Just remember that our map coordi-
nates use y and then x.

Let’s work through an example: we’ll find out what item is at the posi-
tion marked 2 on our simple map diagram. We need to know the following:

•	 The 2 is in the second row (from top to bottom), so it’s in the second
list in room_map. The index starts at 0, so we subtract 1 from 2 to get the
index number for the y position, which is 1. Use Figure 2-3 to check
this index number: the index numbers for the rows are on the left of
the grid in red.

44 Chapter 2

•	 The 2 is in the fourth column (from left to right) of the list. Again, we
subtract 1 to get the index number for the x position, which is 3. Use
Figure 2-3 to check this index number as well. The index numbers for
the columns are shown across the top of the grid in red.

Go to the shell and enter the following print() command to view the
number in that position on the map:

>>> print(room_map[1][3])
2

As expected, the result is the number 2, which happens to be spare oxy-
gen tanks. You’ve successfully navigated your first map!

Training Mission #4

Try to predict the output before you enter the following command into the shell:

>>> print(room_map[3][1])

Refer to the map in Figure 2-2 and your code listing to make your prediction.
If you need more help, look at Figure 2-3. Then check your answer by entering the
instruction in the shell.

Swapping Items in the Room
You can also change items in the room. Let’s check which item is at the top-
left position of the map, using the shell again:

>>> print(room_map[0][0])
1

The 1 is fertilizer. We don’t need fertilizer in the emergency room, so
let’s change that item to emergency blankets in the map. We’ll use a 5 to
represent them. Remember how we used an equal sign (=) to change the
value of an item in a list? We can do the same to change the number in the
map, like this:

>>> room_map[0][0] = 5

We enter the coordinates and then enter a new number to replace the
original number. We can check that the code worked by printing the value
at that coordinate again, which was 1 a moment ago. Let’s also print room_map
and confirm that the emergency blankets appear in the correct position:

>>> print(room_map[0][0])
5

Lists Can Save Your Life 45

>>> print(room_map)
[[5, 0, 0, 0, 0], [0, 0, 0, 2, 0], [0, 0, 0, 0, 0], [0, 3, 0, 0, 0], [0, 0, 0,
0, 4]]

Perfect! The emergency blankets are stored in the top-left corner of the
room. Item 5 is the first item in the first list.

Training Mission #5

Space is precious in the emergency room! Replace the toothpaste (4) with an emer-
gency radio (6). You’ll need to find the coordinates of the 4 first and then enter the
command to change it. Refer to Figure 2-2 and Figure 2-3 if you need more help
with the index numbers.

In the Escape game, the room_map list is used to remember the items
in the room the player is currently in. The map stores the number of the
object that appears at each position on the map, or a 0 if the floor space is
empty. The rooms in the game will be bigger than this 5 × 5 grid, so the size
of the room_map will vary depending on the width and height of the room the
player is in.

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons in
this chapter.

�� Python lists store words, numbers, or a mixture of both.

�� To see an item in a list, use its index number in square brackets: for
example, print(take_off_checklist[2]).

�� The append() function adds items to the end of a list.

�� The remove() function removes items from a list: for example, spacewalk
_checklist.remove("Seal helmet").

�� You can use index numbers to delete or insert an item at a particular
position in a list.

�� Index numbers start at 0.

�� You can change an item in a list using the equal sign (=): for example,
take_off_checklist[3] = "Test comms".

�� You can make a list that contains other lists to build a simple map.

�� You can check which item is in your map using coordinates: for
example, use room_map[y coordinate][x coordinate].

�� Be sure to use y first and then x for your coordinates. In space, every-
thing is upside down.

�� The coordinates are index numbers, so both start at 0, not 1.

�� You can use += to add an item to a list, or to join two lists.

46 Chapter 2

Mission Debrief
Here are the answers for the training missions in this chapter.

Training Mission # 1

>>> take_off_checklist.insert(2, "Check cabin pressure")

Training Mission # 2

Print the items from your list using their index numbers:

>>> print(spacewalk_checklist[0])
Put on suit
>>> print(spacewalk_checklist[1])
Check oxygen
>>> print(spacewalk_checklist[2])
Seal helmet
>>> print(spacewalk_checklist[3])
Test radio
>>> print(spacewalk_checklist[4])
Open airlock

Training Mission # 3

>>> docking_checklist = ["Doors to manual", "Rotational lock-on", "Approach and lock"]
>>> flight_manual.append(docking_checklist)
>>> print(flight_manual)
[['Put on suit', 'Seal hatch', 'Check cabin pressure', 'Fasten seatbelt', 'Tell
Mission Control checks are complete'], ['Put on suit', 'Check oxygen', 'Seal helmet',
'Test radio', 'Open airlock'], ['Doors to manual', 'Rotational lock-on', 'Approach
and lock']]
>>> print (flight_manual[2])
['Doors to manual', 'Rotational lock-on', 'Approach and lock']

Training Mission # 4

3

Training Mission # 5

>>> room_map[4][4] = 6
>>> print(room_map)
[[1, 0, 0, 0, 0], [0, 0, 0, 2, 0], [0, 0, 0, 0, 0], [0, 3, 0, 0, 0],
[0, 0, 0, 0, 6]]

3
Repeat After Me

Everyone talks about the heroism and
glamour of space travel, but some of it is

routine, repetitive work. When you’re clean-
ing, gardening in the space station greenhouse,

or exercising to keep your strength up, you’re follow-
ing detailed plans designed to keep the team safe and
the space station operating. Luckily, robots take care
of some of the drudgery, and they never complain
about having to repeat themselves.

Whether you’re programming robots or building games, the loop is one
of your basic programming building blocks. A loop is a section of a program
that repeats: sometimes it repeats a set number of times, and sometimes it
continues until a particular event takes place. Sometimes, you’ll even set a
loop to keep going forever. In this chapter, you’ll learn how to use loops to

48 Chapter 3

repeat instructions a certain number of times in your programs. You’ll use
loops, along with your knowledge of lists, to display a map and draw a 3D
room image.

Displaying Maps with Loops
In the Escape game, we’ll use loops extensively. Often, we’ll use them to pull
information from a list and perform some action on it.

Let’s start by using loops to display a text map.

Making the Room Map
We’ll make a new map for the example in this chapter and use 1 to rep-
resent a wall and 0 to represent a floor space. Our room has a wall all the
way around the edge and a pillar near the middle. The pillar is the same
as a section of wall, so it’s also marked with a 1. I’ve chosen its position so it
looks good when we draw a 3D room later in this chapter. The room doesn’t
have any other objects, so we won’t use any other numbers at this time.

In IDLE, open a new Python program, and enter the code in Listing 3-1,
saving it as listing3-1.py:

room_map = [[1, 1, 1, 1, 1],
 [1, 0, 0, 0, 1],
 [1, 0, 1, 0, 1],
 [1, 0, 0, 0, 1],
 [1, 0, 0, 0, 1],
 [1, 0, 0, 0, 1],
 [1, 1, 1, 1, 1]
]

print(room_map)

Listing 3-1: Adding the room map data

This program creates a list called room_map that contains seven other
lists. Each list starts and ends with square brackets and is separated from
the next list with a comma. As you learned in Chapter 2, the last list doesn’t
need a comma after it. Each list represents a row of the map. Run the pro-
gram by clicking Run4Run Module and you should see the following in
the shell window:

[[1, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 0, 1, 0, 1], [1, 0, 0, 0, 1], [1, 0, 0,
0, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]]

As you saw in Chapter 2, printing the map list shows you all the rows
run together, which isn’t a useful way to view a map. We’ll use a loop to dis-
play the map in a way that is much easier to read.

listing3-1.py

Repeat After Me 49

Displaying the Map with a Loop
To display the map in rows and columns, delete the last line of your pro-
gram and add the two new lines shown in Listing 3-2. As before, don’t type
in the grayed-out lines—just use them to find your place in the program.
Save your program as listing3-2.py.

--snip--
 [1, 0, 0, 0, 1],
 [1, 1, 1, 1, 1]
]

 for y in range(7):
 print(room_map[y])

Listing 3-2: Using a loop to display the room map

R e d A l e r t 	 Remember to place a colon at the end of the first new line! The program won’t work
without it. The second new line should be indented with four spaces to show Python
which instructions you want to repeat. If you add the colon at the end of the for
line, the spaces are added automatically for you when you press enter to go to the
next line.

When you run the program again, you should see the following in the
shell:

[1, 1, 1, 1, 1]
[1, 0, 0, 0, 1]
[1, 0, 1, 0, 1]
[1, 0, 0, 0, 1]
[1, 0, 0, 0, 1]
[1, 0, 0, 0, 1]
[1, 1, 1, 1, 1]

That’s a more useful way to view a map. Now you can easily see that
a wall (represented by 1s) runs all around the edge. So how does the
code work? The for command  is the engine here. It’s a loop command
that tells Python to repeat a piece of code a certain number of times. List-
ing 3-2 tells Python to repeat the print() instruction for each item in our
room_map list . Each item in room_map is a list containing one row of the map,
so printing them separately displays our map one row at a time, resulting in
this organized display.

Let’s break down the code in more detail. We use the range() function
to create a sequence of numbers. With range(7), we tell Python to generate
a sequence of numbers up to, but not including, 7. Why does it leave out
the last number? That’s just how the range() function works! If we give the
range() function just one number, Python assumes we want to start counting
at 0. So range(7) creates the sequence of numbers 0, 1, 2, 3, 4, 5, and 6.

listing3-2.py

50 Chapter 3

Each time the code repeats, the variable in the for command takes the
next item from the sequence. In this case, the y variable takes on the values
0, 1, 2, 3, 4, 5, and 6 in turn. This matches the index numbers in room_map
perfectly.

I’ve chosen y as the variable name because we’re using it to represent
which map row we want to display, and the row on the map is referred to as
the y-coordinate.

The print(room_map[y]) command  is indented four spaces, telling
Python that this is the chunk of code we want our for loop  to repeat.

The first time through the loop, y has a value of 0, so print(room_map[y])
prints the first item in room_map, which is a list containing the data for the first
row of the map. The second time through, y has a value of 1, so print(room
_map[y]) prints the second row. The code repeats until it’s printed all seven
lists inside room_map.

Training Mission #1

In an emergency situation on the space station, you might need to issue a distress
signal. Write a simple program to print the word Mayday! three times only, using
a loop.

If you’re stuck, start with Listing 3-2, used for printing the map. You just need
to change what the program prints and how many times it loops the print code.

Loop the Loop
Our map output is getting better, but it still has a couple of limitations. One
is that the commas and brackets make it look cluttered. The other limita-
tion is that we can’t do anything with the individual wall panels or spaces
in the room. We’ll need to be able to handle whatever is at each position in
the room separately, so we can display its image correctly. To do that, we’ll
need to use more loops.

Nesting Loops to Get Room Coordinates
The listing3-2.py program uses a loop to extract each row of the map. Now
we need to use another loop to examine each position in the row, so we can
access the objects there individually. Doing so will enable us to have full
control over how the items are displayed.

You just saw that we can repeat a piece of code inside a loop. We can
also put a loop inside another loop, which is known as a nested loop. To see
how this works, we’ll first use this technique to print the coordinates for
each space in the room. Edit your code to match Listing 3-3:

--snip--
 [1, 0, 0, 0, 1],
 [1, 1, 1, 1, 1]
]

listing3-3.py

Repeat After Me 51

 for y in range(7):
 for x in range(5):
 print("y=", y, "x=", x)
 print()

Listing 3-3: Printing the coordinates

R e d A l e r t 	 As every astronaut knows, space can be dangerous. Spaces can, too. If the indenta-
tion in a loop is wrong, the program won’t work correctly. Indent the first print()
command  with eight spaces so it’s part of the inner x loop. Make sure the final
print() instruction  is lined up with the second for command  (with four spaces
of indentation) so it stays in the outer loop. When you start a new line, Python
indents it the same as the previous one, but you can delete the indentation when
you no longer need it.

Save your program as listing3-3.py and run the program by clicking
Run4Run Module. You’ll see the following output:

y= 0 x= 0
y= 0 x= 1
y= 0 x= 2
y= 0 x= 3
y= 0 x= 4

y= 1 x= 0
y= 1 x= 1
y= 1 x= 2
y= 1 x= 3
y= 1 x= 4

y= 2 x= 0
y= 2 x= 1
y= 2 x= 2
--snip--

The output continues and ends on y= 6 x= 4.
We’ve set up the y loop the same as before so it repeats seven times ,

once for each number from 0 to 6, putting that value into the y variable.
This is what is different in our program this time: inside the y loop, we start
a new for loop that uses the x variable and gives it a range of five values,
from 0 to 4 . The first time through the y loop, y is 0, and x then takes
the values 0, 1, 2, 3, and 4 in turn while y is 0. The second time through the
y loop, y is 1. We start a new x loop, and it takes the values 0, 1, 2, 3, and 4
again while y is 1. This looping keeps going until y is 6 and x is 4.

You can see how the loops work when you look at the program’s out-
put: inside the x loop, we print the values for y and x each time the x loop
repeats . When the x loop finishes, we print a blank line  before the
next repeat of the y loop. We do this by leaving the print() function’s paren-
theses empty. The blank line breaks up where the y loop repeats, and the

52 Chapter 3

output shows you what the values of x and y are each time through the inner
x loop. As you can see, this program outputs the y- and x-coordinates of every
position in the room.

Tip

We’ve used the variable names y and x in our loops, but those variable names
don’t affect the way the program runs. You could call them sausages and eggs,
and the program would work just the same. It wouldn’t be as easy to understand,
though. Because we’re getting x- and y-coordinates, it makes sense to use x and y
for our variable names.

Cleaning Up the Map
We’ll use the coordinates in the loops to print our map without any brackets
and commas. Edit your program to change the inner nested loop as shown
in Listing 3-4:

--snip--
for y in range(7):
 for x in range(5):
 print(room_map[y][x], end="")
 print()

Listing 3-4: Tidying up the map display

Save your program as listing3-4.py and run the program by clicking
Run4Run Module. You should see the following in the shell:

11111
10001
10101
10001
10001
10001
11111

That map is much cleaner and easier to understand. It works by going
through the coordinates in the same way the program in Listing 3-3 did.
It takes each row in turn using the y loop, and then uses the x loop to get
each position in that row. This time, instead of printing the coordinates,
we look at what is in the room_map at each position, and print that. As you
learned in Chapter 2, you can pull any item out of the map using coordi-
nates in the form room_map[y coordinate][x coordinate].

The way we’ve formatted the output means the map resembles the
room: we put all the numbers from one row together, and only start a new
line on the screen when we start a new row of the map (a new repeat of the
y loop).

listing3-4.py

Repeat After Me 53

The print() instruction inside the x loop finishes with end="" (with no
space between the quote marks) to stop it from starting a new line after
each number. Otherwise, by default, the print() function would end each
piece of output by adding a code that starts a new line. But instead, we tell it
to put nothing ("") at the end. As a result, all the items from one complete
run of the x loop (from 0 to 4) appear on the same line.

After each row is printed, we use an empty print() command to start a
new line. Because we indent this command with only four spaces, it belongs
to the y loop and is not part of the code that repeats in the x loop. That
means it runs only once each time through the y loop, after the x loop has
finished printing a row of numbers.

Training Mission #2

The final print() command is indented using four spaces. See what happens when
you indent it eight spaces, and then see what happens if you don’t indent it at all.
In each case, record how many times it runs and how the indentation changes the
output.

Displaying a 3D Room Image
You now know enough about maps to display a 3D room image. In Chapter 1,
you learned how to use Pygame Zero to place images on the screen. Let’s
combine that knowledge with your newfound skills in getting data from the
room_map, so we can display our map with images instead of 0s and 1s.

Click File4New File to start a new file in Python, and then enter the
code in Listing 3-5. You can copy the room_map data from your most recent
program for this chapter.

room_map = [[1, 1, 1, 1, 1],
 [1, 0, 0, 0, 1],
 [1, 0, 1, 0, 1],
 [1, 0, 0, 0, 1],
 [1, 0, 0, 0, 1],
 [1, 0, 0, 0, 1],
 [1, 1, 1, 1, 1]
]

 WIDTH = 800 # window size
 HEIGHT = 800

top_left_x = 100
top_left_y = 150

 DEMO_OBJECTS = [images.floor, images.pillar]

room_height = 7
room_width = 5

listing3-5.py

54 Chapter 3

 def draw():
 for y in range(room_height):
 for x in range(room_width):

 image_to_draw = DEMO_OBJECTS[room_map[y][x]]
 screen.blit(image_to_draw,

 (top_left_x + (x*30),
 top_left_y + (y*30) - image_to_draw.get_height()))

Listing 3-5: Code for displaying the room in 3D

Save the program as listing3-5.py. You need to save it in your escape folder,
because the program will use the files inside the images folder stored there.
Don’t save your file inside the images folder: your file should be alongside it
instead. If you haven’t downloaded the Escape game files yet, see “Download-
ing the Game Files” on page 7 for download instructions.

The listing3-5.py program uses Pygame Zero, so you need to go to the
command line and enter the instruction pgzrun listing3-5.py to run the
program. See “Running the Game” on page 9 for advice on running
programs that use Pygame Zero, including the final Escape game.

The listing3-5.py program uses the Escape game’s image files to create an
image of a room. Figure 3-1 shows the room with its single pillar. The Escape
game uses a simplified 3D perspective where we can see the front and top
surfaces of an object. Objects at the front and back of the room are drawn
at the same size.

When you created the spacewalk simulator in Chapter 1, you saw how
the order in which objects are drawn determines which ones are in front
of the others. In the Escape game and Listing 3-5, the objects are drawn
from the back of the room to the front, enabling us to create the 3D effect.
Objects nearer to the viewer (sitting at their computer) appear to be in
front of those at the back of the room.

Front wall

Pillar

Back wall

Side wall

Floor

Figure 3-1: Your first 3D room (left) and the same room with the parts
labeled (right)

Repeat After Me 55

Understanding How the Room Is Drawn
Now let’s look at how the listing3-5.py program works. Much of the program
will be familiar to you from Chapters 1 and 2. The WIDTH  and HEIGHT 
variables hold the size of the window, and we use the draw() function to
tell Pygame Zero what to draw onscreen . The y and x loops come from
Listing 3-4 earlier in this chapter and give us coordinates for each space in
the room.

Instead of using numbers in the range() functions to tell Python how
many times to repeat our y and x loops, we’re using the new variables
room_height and room_width. These variables store the size of our room map
and tell Python how many times to repeat the loops. For example, if we
changed the room_height variable to 10, the y loop would repeat 10 times
and work through 10 rows of the map. The room_width variable controls
how many times the x loop repeats in the same way, so we can display
wider rooms.

R e d A l e r t 	 If you use room widths and heights that are bigger than the actual room_map data,
you’ll cause an error.

The listing3-5.py program uses two images
from the images folder: a floor tile (with the file-
name floor.png) and a wall pillar (called pillar.
png), as shown in Figure 3-2. A PNG (Portable Net-
work Graphics) is a type of image file that Pygame
Zero can use. PNG enables parts of the image to
be see-through, which is important for our 3D
game perspective. Otherwise, we wouldn’t be able
to see the background scenery through the gaps
in a plant, for example, and the astronaut would
look like they had a square halo around them.

Inside the draw() function , we use y and x
loops to look at each position in the room map
in turn. As you saw earlier, we can find the number at each position in the
map by accessing room_map[y][x]. In this map, that number will be either 1
for a wall pillar or 0 for an empty floor space. Instead of printing the num-
ber onscreen, as we did before, we use the number to look up an image of
the item in the DEMO_OBJECTS list . That list contains our two images : the
floor tile is at index position 0, and the wall pillar is at index position 1. If
the room_map contains a 1 at the position we’re looking at, for example, we’ll
take the item at list index 1 in the DEMO_OBJECTS list, which is the wall pillar
image. We store that image in the variable image_to_draw .

We then use screen.blit() to draw this image onscreen, giving it the
x and y coordinate of the pixel on the screen where we want to draw it .
This instruction extends over three lines to make it easier to read. The
amount of indentation on the second and third lines doesn’t matter,
because these lines are surrounded by the screen.blit() parentheses.

floor.png pillar.png

Figure 3-2: The images
used to make your first
3D room

56 Chapter 3

Working Out Where to Draw Each Item
To figure out where to draw each image that makes up the room, we need
to do a calculation at . We’ll look at how that calculation works, but before
we do, I’ll explain how the space station was designed. All the images are
designed to fit a grid. The units we use for measuring images on a com-
puter are called pixels and are the size of the smallest dot you can see on
your screen. We’ll call each square of the grid a tile. Each tile is 30 pixels
across the screen and 30 pixels down the screen. It’s the same size as one
floor tile. We position objects in terms of tiles, so a chair might be 4 tiles
down and 4 tiles across, measured from the top-left corner.

Figure 3-3 shows the room we’ve just created
with a grid laid on top. Each floor tile and pillar
is one tile wide. The pillar is tall, so it covers
three tile spaces: the front surface of the wall
pillar is two tiles tall, and the top surface of
the pillar covers another tile space.

The top_left_x and top_left_y variables store
the coordinates at which we want to start draw-
ing the first image of the room in the window.
We never change these variables in this chapter.
I’ve chosen to start drawing where x is 100 and
y is 150 so we have a bit of a border around the
room image.

To work out where to draw a piece of wall
or floor, we need to convert our map positions
(which range from 0 to 4 in the x direction, for
example) into pixel positions in the window.

Each tile space is 30 pixels square, so we
multiply the x loop number by 30 and add it
to the top_left_x position to get the x-coordinate for the image. In Python,
the * symbol is for multiplication. The top_left_x value is 100, so the first
image is drawn at 100 + (0 * 30), which is 100. The second image is drawn
at 100 + (1 * 30), which is 130, one tile position to the right of the first. The
third image is drawn at 100 + (2 * 30), which is 160. These positions ensure
that the images sit perfectly side by side.

The y position is calculated in a similar way. We use top_left_y as
the starting position vertically and add y * 30 to it to make the images
join together precisely. The difference is that we subtract the height of
the image we’re drawing, so we ensure that the images align at the same
point at the bottom. As a result, tall objects can rise out of a tile space and
obscure any scenery or floor tiles behind them, making the room display
look three-dimensional. If we didn’t align the images at the bottom, they
would all align at the top, which would destroy the 3D effect. The second
and third rows of floor tiles would cover up the front surface of the back
wall, for example.

Figure 3-3: The tile grid
overlaid on your first room

Repeat After Me 57

Training Mission #3

Now that you know how to display a 3D room, try to adjust the map to change the
room layout, adding new pillars or floor spaces. You can edit the room_map data to
add new rows or columns to the map. Remember to change the room_height and
room_width variables too.

Perhaps try making a room with more rows and adding a doorway by replac-
ing the 1s used for pillars with 0s. In the final Escape game, each doorway will be
three spaces. For best results, design rooms with an odd width and height so you
can center the door in the wall.

Figure 3-4 shows a room I designed with a width and height of 9. You can try
copying my design if you like. I’ve added a grid to make it easier to work out the
data for the room_map list. The wall pillars rise two tiles out of the floor, so the grid
shown is 11 tiles high. Look at the bottoms of the pillars, not the tops, to work out
where to position them. See the end of the chapter for the code to make this room.

Figure 3-4: One possible new room design

In the real Escape game, the tall wall pillars will only be used at the
edges of the rooms. They can look a bit odd in the middle of the room,
especially if they touch the back wall. When we add shadows to the game
later in the book, objects in the middle of the room won’t look like they’re
floating in space, which is a risk of this way of simulating a 3D perspective.

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons in
this chapter.

�� The for loop repeats a section of code a set number of times.

�� The range() function creates a sequence of numbers.

58 Chapter 3

�� You can use range() to tell a for loop how many times to repeat.

�� The colon at the end of the for line is essential.

�� To show Python which lines to repeat in the loop, indent the lines using
four spaces.

�� A loop inside another loop is called a nested loop.

�� Images are aligned at the bottom to create a 3D illusion with tall
objects rising up from the floor.

�� The room_height and room_width variables store the room size in Escape
and are used to set up the loop that displays the room.

Mission Debrief
Here are the answers for the training missions in this chapter.

Training Mission # 1

for y in range(3):
 print("Mayday!")

Training Mission # 2

If you don’t indent the final print() command, it won’t repeat; instead, the final print()
command will run only once after both loops have finished. As a result, all the output
will be on one line because the program doesn’t start a new line between rows.

If you indent the command with eight spaces, it becomes part of the x loop. That
means the print() command runs each time a number is printed, so every number is
on a new line.

Training Mission # 3

Here is the data for the room design in Figure 3-4. You also need to change room
_height to 9 and room_width to 9.

room_map = [[1, 1, 1, 1, 1, 1, 1, 1, 1],
 [1, 1, 0, 0, 0, 0, 0, 1, 1],
 [1, 0, 0, 0, 0, 0, 0, 0, 1],
 [1, 0, 0, 0, 0, 0, 0, 0, 0],
 [1, 0, 0, 1, 1, 0, 0, 0, 0],
 [1, 0, 0, 0, 1, 0, 0, 0, 0],
 [1, 0, 0, 0, 0, 0, 0, 0, 1],
 [1, 0, 0, 0, 0, 0, 0, 0, 1],
 [1, 1, 1, 0, 0, 0, 1, 1, 1]
]

4
Creating the Space Station

In this chapter, you’ll build the map for
your space station on Mars. Using the

simple Explorer code that you’ll add in this
chapter, you’ll be able to look at the walls of

each room and start to find your bearings. We’ll
use lists, loops, and the techniques you learned in
Chapters 1, 2, and 3 to create the map data and dis-
play the room in 3D.

Automating the Map Making Process
The problem with our current room_map data is that there’s a lot of it. The
Escape game includes 50 locations. If you had to enter room_map data for
every location, it would take ages and be hugely inefficient. As an example,
if each room consisted of 9 × 9 tiles, we would have 81 data items per room,
or 4,050 data items in total. Just the room data would take up 10 pages of
this book.

60 Chapter 4

Much of that data is repeated: 0s mark the floor and exits, and 1s mark
the walls at the edges. You know from Chapter 3 that we can use loops to
efficiently manage repetition. We can use that knowledge to make a pro-
gram that will generate the room_map data automatically when we give it cer-
tain information, such as the room size and the location of the exits.

How the Automatic Map Maker Works
The Escape program will work like this: when the player visits a room, our
code will take the data for that room (its size and exit positions) and con-
vert it into the room_map data. The room_map data will include columns and
rows that represent the floor, walls around the edge, and gaps where the
exits should be. Eventually, we’ll use the room_map data to draw the room
with the floor and walls in the correct place.

Figure 4-1 shows the map for the space station. I’ll refer to each loca-
tion as a room, although numbers 1 to 25 are sectors on the planet surface
within the station compound, similar to a
garden. Numbers 26 to 50 are rooms inside
the space station.

The indoor layout is a simple maze with
many corridors, dead-ends, and rooms to
explore. When you make your own maps,
try to create winding paths and corners to
explore, even if the map isn’t very big. Be
sure to reward players for their exploration
by placing a useful or appealing item at the
end of each corridor. Players also often feel
more comfortable travelling from left to right
as they explore a game world, so the player’s
character will start on the left of the map in
room 31.

Outside, players can walk anywhere, but a
fence will stop them from leaving the station
compound (or wandering off the game map).
Due to the claustrophobic atmosphere inside
the space station, players will experience a
sense of freedom outside with space to roam.

When you’re playing the final Escape game, you can refer to this map,
but you might find it more enjoyable to explore without a map or to make
your own. This map doesn’t show where the doors are, which in the final
game will stop players from accessing some parts of the map until they find
the right key cards.

Creating the Map Data
Let’s create the map data. The rooms in our space station will all join up, so
we only need to store the location of an exit from one side of the wall. For

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

41 42 43 44 45

46 47 48 49 50

Figure 4-1: The space
station map

Creating the Space Station 61

instance, an exit on the right of room 31 and an exit on the left of room 32
would be the same doorway connecting the two rooms. We don’t need
to specify that exit for both rooms. For each room in the map, we’ll store
whether it has an exit at the top or on the right. The program can work out
on its own whether an exit exists at the bottom or on the left (as I’ll explain
shortly). This approach also ensures that the map is consistent and no exits
seem to vanish after you walk through them. If you can go one way through
an exit, you can always go back the other way.

Each room in the map needs the following data:

•	 A short description of the room.

•	 Height in tiles, which is the size of the room from top to bottom on the
screen. (This has nothing to do with the distance from floor to ceiling.)

•	 Width in tiles, which is the size of the room from left to right across the
screen.

•	 Whether or not there is an exit at the top (True or False).

•	 Whether or not there is an exit on the right (True or False).

Tip

True and False are known as Boolean values. In Python, these values must start
with a capital letter, and they don’t need quotes around them, because they’re not
strings.

We call the unit we use to measure the room size a tile because it’s
the same size as a floor tile. As you learned in Chapter 3, a tile will be our
basic unit of measurement for all objects. For instance, a single object in
the room, such as a chair or a cabinet, will often be the size of one tile. In
Chapter 3 (see Figure 3-1 and Listing 3-5), we made a room map that had
seven rows with five list items in each row, so that room would be seven tiles
high and five tiles wide.

Having rooms of different sizes adds variety to the map: some rooms
can be narrow like corridors, and some can be expansive like community
rooms. To fit in our game window, the maximum size of a room is 15 tiles
high by 25 tiles wide. Large rooms or rooms with lots of objects in them
might run more slowly on older computers, though.

Here’s an example of the data for room 26: it’s a narrow room 13 tiles
high and 5 tiles wide with an exit at the top but none to the right (see the
map in Figure 4-1).

["The airlock", 13, 5, True, False]

We give the room a name (or description), numbers for the height and
width respectively, and True and False values for whether the top and right
edges have an exit. In this game, each wall can have only one exit, and that
exit will be automatically positioned in the middle of the wall.

62 Chapter 4

When the program makes the room_map data for room 27 next door,
it will check room 26 to see whether it has an exit on the right. Because
room 26 has no exit on the right, the program will know that room 27 has
no left exit.

We’ll store the lists of data for each room in a list called GAME_MAP.

Writing the GAME_MAP Code
Click File4New File to start a new file in Python. Enter the code
from Listing 4-1 to start building the space station. Save your listing
as listing4-1.py.

Tip

Remember to save your work regularly when you’re typing a long program. As in
many applications, you can press ctrl-S to save in IDLE.

Escape - A Python Adventure
by Sean McManus / www.sean.co.uk
Typed in by PUT YOUR NAME HERE

import time, random, math

###############
VARIABLES
###############

WIDTH = 800 # window size
HEIGHT = 800

#PLAYER variables
 PLAYER_NAME = "Sean" # change this to your name!

FRIEND1_NAME = "Karen" # change this to a friend's name!
FRIEND2_NAME = "Leo" # change this to another friend's name!
current_room = 31 # start room = 31

 top_left_x = 100
top_left_y = 150

 DEMO_OBJECTS = [images.floor, images.pillar, images.soil]

###############
MAP
###############

 MAP_WIDTH = 5
MAP_HEIGHT = 10
MAP_SIZE = MAP_WIDTH * MAP_HEIGHT

listing4-1.py

Creating the Space Station 63

 GAME_MAP = [["Room 0 - where unused objects are kept", 0, 0, False, False]]

outdoor_rooms = range(1, 26)
 for planetsectors in range(1, 26): #rooms 1 to 25 are generated here

 GAME_MAP.append(["The dusty planet surface", 13, 13, True, True])

 GAME_MAP += [
 #["Room name", height, width, Top exit?, Right exit?]
 ["The airlock", 13, 5, True, False], # room 26
 ["The engineering lab", 13, 13, False, False], # room 27
 ["Poodle Mission Control", 9, 13, False, True], # room 28
 ["The viewing gallery", 9, 15, False, False], # room 29
 ["The crew's bathroom", 5, 5, False, False], # room 30
 ["The airlock entry bay", 7, 11, True, True], # room 31
 ["Left elbow room", 9, 7, True, False], # room 32
 ["Right elbow room", 7, 13, True, True], # room 33
 ["The science lab", 13, 13, False, True], # room 34
 ["The greenhouse", 13, 13, True, False], # room 35
 [PLAYER_NAME + "'s sleeping quarters", 9, 11, False, False], # room 36
 ["West corridor", 15, 5, True, True], # room 37
 ["The briefing room", 7, 13, False, True], # room 38
 ["The crew's community room", 11, 13, True, False], # room 39
 ["Main Mission Control", 14, 14, False, False], # room 40
 ["The sick bay", 12, 7, True, False], # room 41
 ["West corridor", 9, 7, True, False], # room 42
 ["Utilities control room", 9, 9, False, True], # room 43
 ["Systems engineering bay", 9, 11, False, False], # room 44
 ["Security portal to Mission Control", 7, 7, True, False], # room 45

 [FRIEND1_NAME + "'s sleeping quarters", 9, 11, True, True], # room 46
 [FRIEND2_NAME + "'s sleeping quarters", 9, 11, True, True], # room 47
 ["The pipeworks", 13, 11, True, False], # room 48
 ["The chief scientist's office", 9, 7, True, True], # room 49
 ["The robot workshop", 9, 11, True, False] # room 50
]

simple sanity check on map above to check data entry
 assert len(GAME_MAP)-1 == MAP_SIZE, "Map size and GAME_MAP don't match"

Listing 4-1: The GAME_MAP data

Let’s take a closer look at this code for setting out the room map data.
Keep in mind that as we build the Escape game, we’ll keep adding to the
program. To help you find your way around the program, I’ll mark the dif-
ferent sections with headings like this:

###############
VARIABLES
###############

The # symbol marks a comment and tells Python to ignore anything
after it on the same line, so the game will work with or without these com-
ments. The comments will make it easier to figure out where you are in

64 Chapter 4

the code and where you need to add new instructions as the program gets
bigger. I’ve drawn boxes using the comment symbols to make the headings
stand out as you scroll through the program code.

Three astronauts are based on the space station, and you can person-
alize their names in the code . Change the PLAYER_NAME to your own, and
add the names of two friends for the FRIEND1_NAME and FRIEND2_NAME variables.
Throughout the code, we’ll use these variables wherever we need to use
the name of one of your friends: for example, each astronaut has their own
sleeping quarters. We need to set up these variables now because we’ll use
them to set up some of the room descriptions later in this program. Who
will you take with you to Mars?

The program also sets up some variables we’ll need at the end of this
chapter to draw our room: the top_left_x and top_left_y variables  specify
where to start drawing the room; and the DEMO_OBJECTS list contains the
images to use .

First, we set up variables to contain the height, width, and overall size
of the map in tiles . We create the GAME_MAP list  and give it the data for
room 0: this room is for storing items that aren’t in the game yet because
the player hasn’t discovered or created them. It’s not a real room the player
can visit.

We then use a loop  to add the same data for each of the 25
planet surface rooms that make up the grounds of the compound. The
range(1, 26) function is used to repeat 25 times. The first number is the
one we want to start at, and the second is the number we want to finish at
plus one (range() doesn’t include the last number you give it, remember).
Each time through the loop, the program adds the same data to the end of
GAME_MAP because all the planet surface “rooms” are the same size and have
exits in every direction. The data for every surface room looks like this:

["The dusty planet surface", 13, 13, True, True]

When this loop finishes, GAME_MAP will include room 0 and also have
the same “dusty planet surface” data for rooms 1 to 25. We also set up the
outdoor_rooms range to store the room numbers 1 to 25. We’ll use this range
when we need to check whether a room is inside or outside the space station.

Finally, we add rooms 26 to 50 to GAME_MAP . We do this by using +=
to add a new list to the end of GAME_MAP. That new list includes the data
for the remaining rooms. Each of these rooms will be different, so we
need to enter the data for them separately. You saw the information for
room 26 earlier: the data contains the room name, its height and width,
and whether it has exits at the top and the right. Each piece of room data
is a list, so it has square brackets at the start and end. At the end of each
piece of room data (except the last one), we must use a comma to separate
it from the next one. I’ve also put the room number in a comment at the
end of each line to help keep track of the room numbers. These comments
will be helpful as you develop the game. It’s good practice to annotate your
code like this so you can understand it when you revisit it.

Creating the Space Station 65

Rooms 46 and 47 add the variables FRIEND1_NAME and FRIEND2_NAME to the
room description, so you have two rooms called something like “Karen’s
sleeping quarters,” using your friends’ names . As well as using the +
symbol to add numbers and combine lists, you can also use it to combine
strings.

At the end of listing4-1.py, we perform a simple check using assert() to
make sure the map data makes sense . We check whether the length of
the GAME_MAP (the number of rooms in the map data) is the same as the size
of the map, which we calculated at  by multiplying its width by its height.
If it’s not, it means we’re missing some data or have too much.

We have to subtract 1 from the length of GAME_MAP because it also includes
room 0, which we didn’t include when we calculated the map size. This check
won’t catch all errors, but it can tell you whether you missed a line of the map
data when entering it. Wherever possible, I’ll try to include simple tests like
this to help you check for any errors as you enter the program code.

Testing and Debugging the Code
Run listing4-1.py by clicking Run4Run Module or press F5 (the keyboard
shortcut). Nothing much should happen. The shell window should just dis-
play a message that says "RESTART:" together with your filename. The reason
is that all we’ve asked the program to do is set up some variables and a list,
so there is nothing to see. But if you made a mistake entering the listing,
you might also see a red error message in the shell window. If you do get an
error, double-check the following details:

•	 Are the quote marks in the right place? Strings are in green in the
Python program window, so look for large areas of green, which sug-
gest you didn’t close your string. If room descriptions are in black, you
didn’t open the string. Both indicate a missing quote mark.

•	 Are you using the correct brackets and parentheses in the proper
places? In this listing, square brackets surround list items, and paren-
theses (curved brackets) are used for functions, such as range() and
append(). Curly brackets {…} are not used at all.

•	 Are you missing any brackets or parentheses? A simple way to check is
to count the number of opening and closing brackets and parentheses.
Every opening bracket or parenthesis should have a closing bracket or
parenthesis of the same shape.

•	 You have to close brackets and parentheses in the reverse order of
how you opened them. If you have an opening parenthesis and then an
opening square bracket, you must close them first with a closing square
bracket and then a closing parenthesis. This format is correct: ([…]).
This format is wrong: ([…)].

•	 Are your commas in the correct place? Remember that each list for a
room in GAME_MAP must have a comma after the closing square bracket to
separate it from the next room’s data (except for the last room).

66 Chapter 4

Tip

Why not ask a friend to help you build the game? Programmers often work in pairs
to help each other with ideas and, perhaps most importantly, have two pairs of
eyes checking everything. You can take turns typing too!

Generating Rooms from the Data
Now the space station map is stored in our GAME_MAP list. The next step is to
add the function that takes the data for the current room from GAME_MAP and
expands it into the room_map list that the Escape game will use to see what’s at
each position in the room. The room_map list always stores information about
the room the player is currently in. When the player enters a different
room, we replace the data in room_map with the map of the new room. Later
in the book, we’ll add scenery and props to the room_map, so the player has
items to interact with too.

The room_map data is made by a function we’ll create called generate_map(),
shown in Listing 4-2.

Add the code in Listing 4-2 to the end of Listing 4-1. The grayed
out code shows you where Listing 4-1 ends. Make sure all the indenta-
tion is correct. The indentation determines whether code belongs to the
get_floor_type() or generate_map() function, and some code is indented fur-
ther to tell Python which if or for command it belongs to.

Save your program as listing4-2.py and click Run4Run Module to run
it and check for any error messages in the shell.

R e d A l e r t 	 Don’t start a new program with the code in Listing 4-2: make sure you add Listing 4-2
to the end of Listing 4-1. As you follow along in this book, you’ll increasingly add to
your existing program to build the Escape game.

--snip--
simple sanity check on map above to check data entry
assert len(GAME_MAP)-1 == MAP_SIZE, "Map size and GAME_MAP don't match"

###############
MAKE MAP
###############

 def get_floor_type():
 if current_room in outdoor_rooms:
 return 2 # soil
 else:
 return 0 # tiled floor

def generate_map():
This function makes the map for the current room,
using room data, scenery data and prop data.

listing4-2.py

Creating the Space Station 67

 global room_map, room_width, room_height, room_name, hazard_map
 global top_left_x, top_left_y, wall_transparency_frame

 room_data = GAME_MAP[current_room]
 room_name = room_data[0]
 room_height = room_data[1]
 room_width = room_data[2]

 floor_type = get_floor_type()
 if current_room in range(1, 21):
 bottom_edge = 2 #soil
 side_edge = 2 #soil
 if current_room in range(21, 26):
 bottom_edge = 1 #wall
 side_edge = 2 #soil
 if current_room > 25:
 bottom_edge = 1 #wall
 side_edge = 1 #wall

 # Create top line of room map.
 room_map=[[side_edge] * room_width]

 # Add middle lines of room map (wall, floor to fill width, wall).
 for y in range(room_height - 2):

 room_map.append([side_edge]
 + [floor_type]*(room_width - 2) + [side_edge])
 # Add bottom line of room map.

 room_map.append([bottom_edge] * room_width)

 # Add doorways.
 middle_row = int(room_height / 2)

 middle_column = int(room_width / 2)

 if room_data[4]: # If exit at right of this room
 room_map[middle_row][room_width - 1] = floor_type
 room_map[middle_row+1][room_width - 1] = floor_type
 room_map[middle_row-1][room_width - 1] = floor_type

 if current_room % MAP_WIDTH != 1: # If room is not on left of map
 room_to_left = GAME_MAP[current_room - 1]
 # If room on the left has a right exit, add left exit in this room
 if room_to_left[4]:
 room_map[middle_row][0] = floor_type
 room_map[middle_row + 1][0] = floor_type
 room_map[middle_row - 1][0] = floor_type

 if room_data[3]: # If exit at top of this room
 room_map[0][middle_column] = floor_type
 room_map[0][middle_column + 1] = floor_type
 room_map[0][middle_column - 1] = floor_type

 if current_room <= MAP_SIZE - MAP_WIDTH: # If room is not on bottom row
 room_below = GAME_MAP[current_room+MAP_WIDTH]
 # If room below has a top exit, add exit at bottom of this one
 if room_below[3]:
 room_map[room_height-1][middle_column] = floor_type

68 Chapter 4

 room_map[room_height-1][middle_column + 1] = floor_type
 room_map[room_height-1][middle_column - 1] = floor_type

Listing 4-2: Generating the room_map data

You can build the Escape game and even make your own game maps
without understanding how the room_map code works. But if you’re curious,
read on and I’ll walk you through it.

How the Room Generating Code Works
Let’s start with a reminder of what we want the generate_map() function to
do. Given the height and width of a room, and the location of the exits, we
want it to generate a room map, which might look something like this:

[
[1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]

This is room number 31 on the map, the room the player starts the
game in. It’s 7 tiles high and 11 tiles wide, and it has an exit at the top and
right. The floor spaces (and exits in the wall) are marked with a 0. The
walls around the room are marked with a 1. Figure 4-2 shows the same
room in a grid layout, with the index numbers for the lists shown at the
top and on the left.

0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 0 1

2 1 0 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0 0 0

4 1 0 0 0 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0 0 0 0 1

6 1 1 1 1 1 1 1 1 1 1 1

Figure 4-2: A grid representing room 31; the 1s
are wall pillars, and the 0s are empty floor spaces.

The number of the room the player is currently in is stored in the
current_room variable, which you set up in the VARIABLES section of your pro-
gram (see Listing 4-1). The generate_map() function starts by collecting the
room data for the current room from the GAME_MAP  and putting it into a
list called room_data.

Creating the Space Station 69

If you cast your mind back to when we set up GAME_MAP, the information
in the room_data list will now look similar to this:

["The airlock", 13, 5, True, False]

This list format allows us to set up the room_name by taking the first ele-
ment from this list at index 0. We can find the room’s height at index 1 and
width at index 2 by taking the next elements. The generate_map() function
stores the height and width information in the room_height and room_width
variables.

Creating the Basic Room Shape
The next step is to set the materials we’ll use to build the rooms and create
the basic room shape using them. We’ll add exits later. We’ll use three ele-
ments for each room:

•	 The floor type, which is stored in the variable floor_type. Inside the space
station, we use floor tiles (represented by 0 in room_map), and outside we
use soil (represented by 2 in room_map).

•	 The edge type, which appears in each space at the edge of the room. For
an inside room, this is a wall pillar, represented by 1. For an outside
room, this is the soil.

•	 The bottom edge type, which is a wall inside the station and usually soil
outside. The bottom row of the outside compound, where it meets the
space station, is a special case because the station wall is visible here, so
the bottom_edge type is a wall pillar (see Figure 4-3).

A planet surface room A planet surface room
bordering the space station

An inside room

Figure 4-3: Different materials are used for the edges and bottom edge of the room,
depending on where the room is in the space station compound. (Note that the astro-
naut and additional scenery won’t be in your game yet.)

We use a function called get_floor_type()  to find out the correct floor
type for the room. Functions can send information back to other parts of
the program using the return instruction, as you can see in this function.

70 Chapter 4

The get_floor_type() function checks whether the current_room value is in
the outdoor_rooms range. If so, the function returns the number 2, which
represents Martian soil. Otherwise, it returns the number 0, which rep-
resents a tiled floor. This check is in a separate function so other parts of
the program can use it too. The generate_map() function puts the number
that get_floor_type() returns into the floor_type variable. Using one instruc-
tion , generate_map() sets up the floor_type variable to be equal to whatever
get_floor_type() sends back, and it tells the get_floor_type() function to run
now too.

The generate_map() function also sets up variables for the bottom_edge
and side_edge. These variables store the type of material that will be used to
make the edges of the room, as shown in Figure 4-3. The side edge mate-
rial is used for the top, left, and right sides, and the bottom edge material is
for the bottom edge. If the room number is between 1 and 20 inclusive, it’s
a regular planet surface room. The bottom and edge are soil in that case.
If the room number is between 21 and 25, it’s a planet surface room that
touches the space station at the bottom. This is a special case: the side edge
material is soil, but the bottom edge is made of wall pillars. If the room
number is higher than 25, the side and bottom edges are made of wall
pillars because it’s an inside room. (You can check that these room num-
bers make sense in Figure 4-1.)

We start making the room_map list by creating the top row, which will
be a row of soil outside or the back wall inside. The top row is made of the
same material all the way across, so we can use a shortcut. Try this in the
shell:

>>> print([1] * 10)
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

The [1] in the print() instruction is a list that contains just one item.
When we multiply it by 10, we get a list that contains that item 10 times. In
our program, we multiply the edge type we’re using by the width of the
room . If the top edge has an exit in it, we’ll add that shortly.

The middle rows of the room are made using a loop  that adds each
row in turn to the end of room_map. All the middle rows in a room are the
same and are made up of the following:

1.	 An edge tile (either wall or soil) for the left side of the room.

2.	 The floor in the middle. We can use our shortcut again here. We mul-
tiply the floor_type by the size of the space in the middle of the room.
That is the room_width minus 2 because there are two edge spaces.

3.	 The edge piece at the right side.

The bottom line is then added  and is generated in the same way as
the top line.

Creating the Space Station 71

Adding Exits
Next, we add exits in the walls where required. We’ll put the exits in
the middle of the walls, so we start by figuring out where the middle row
and middle column are  by dividing the room height and width by 2.
Sometimes this calculation results in a number with a decimal. We need
a whole number for our index positions, so we use the int() function to
remove the decimal part . The int() function converts a decimal number
into a whole number (an integer).

We check for a right exit first . Remember that room_data contains the
information for this room, which was originally taken from GAME_MAP. The
value room_data[4] tells us whether there is an exit on the right of this room.
This instruction:

if room_data[4]:

is shorthand for this instruction:

if room_data[4] == True:

We use == to check whether two things are the same. One reason that
Boolean values are often a great choice to use for your data is that they
make the code easier to read and write, as this example shows.

When there is a right exit, we change three positions in the middle of
the right wall from the edge type to the floor type, making a gap in the
wall there. The value room_width-1 finds the x position on the right edge:
we subtract 1 because index numbers start at 0. In Figure 4-2, for example,
you can see that the room width is 11 tiles, but the index position for the
right wall is 10. On the planet surface, this code doesn’t change anything,
because there’s no wall there to put a gap in. But it’s simpler to let the pro-
gram add the floor tiles anyway so we don’t have to write code for special
cases.

Before we check whether we need an exit for the left wall, we make sure
the room isn’t on the left edge of the map where there can be no exit . The
% operator gives us the remainder when we divide one number by another. If
we divide the current room number by the map width, 5, using the % opera-
tor, we’ll get a 1 if the room is on the left edge. The left edge room numbers
are 1, 6, 11, 16, 21, 26, 31, 36, 41, and 46. So we only continue checking for a
left exit if the remainder is not 1 (!= means “is not equal to”).

To see whether we need an exit on the left in this room, we work out
which room is on the other side of that wall by subtracting 1 from the cur-
rent room number. Then we check whether that room has a right exit. If so,
our current room needs a left exit, and we add it.

The exits at the top and bottom are added in a similar way . We check
room_data directly to see whether there’s an exit at the top of the room, and
if so, we add a gap in that wall. We can check the room below as well to see
whether there should be a bottom exit in the room.

72 Chapter 4

Testing the Program
When you run the program, you can confirm that you don’t see any errors
in the Python shell. You can also check that the program is working by gen-
erating the map and then printing it from the shell, like this:

>>> generate_map()
>>> print(room_map)
[[1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1]]

The current_room variable is set by default to be room 31, the starting
room in the game, so that is the room_map data that prints. From our GAME_MAP
data (and Figure 4-2) we can see that this room has 7 rows and 11 columns,
and our output confirms that we have 7 lists, each containing 11 numbers:
perfect. What’s more, we can see that the first row features four wall pillars,
three empty spaces, and then four more wall pillars, so the function has put
an exit here as we would expect. Three of the lists have a 0 as their last num-
ber too, indicating an exit on the right. It looks like the program is working!

Training Mission #1

You can change the value of current_room from the shell to print a different room.
Try entering different values for the room, regenerating the map, and printing it.
Check the output against the map and the GAME_MAP code to make sure the results
match what you expect. Here is one example:

>>> current_room = 45
>>> generate_map()
>>> print(room_map)
[[1, 1, 0, 0, 0, 1, 1], [1, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1],
[1, 1, 0, 0, 0, 1, 1]]

What happens when you enter a value for one of the planet surface rooms?

Exploring the Space Station in 3D
Let’s turn our room maps into rooms! We’ll combine the code we created for
turning room maps into 3D rooms in Chapter 3 with our code for extracting
the room map from the game map. Then we can tour the space station and
start to get our bearings.

The Explorer feature of our program will enable us to view all the rooms
on the space station. We’ll give it its own EXPLORER section in the program.
It’s a temporary measure to enable us to quickly see results. We’ll replace
the Explorer with better code for viewing rooms in Chapters 7 and 8.

Creating the Space Station 73

Add the code in Listing 4-3 to the end of your program for Listing 4-2,
after the instructions shown in gray. Then save the program as listing4-3.py.
Remember to save it with your other programs for this book in the escape
folder so the images folder is in the right place (see “Downloading the Game
Files” on page 7).

 room_map[room_height-1][middle_column] = floor_type
 room_map[room_height-1][middle_column + 1] = floor_type
 room_map[room_height-1][middle_column - 1] = floor_type

###############
EXPLORER
###############

def draw():
 global room_height, room_width, room_map

 generate_map()
 screen.clear()

 for y in range(room_height):
 for x in range(room_width):
 image_to_draw = DEMO_OBJECTS[room_map[y][x]]
 screen.blit(image_to_draw,
 (top_left_x + (x*30),
 top_left_y + (y*30) - image_to_draw.get_height()))

 def movement():
 global current_room
 old_room = current_room

 if keyboard.left:
 current_room -= 1
 if keyboard.right:
 current_room += 1
 if keyboard.up:
 current_room -= MAP_WIDTH
 if keyboard.down:
 current_room += MAP_WIDTH

 if current_room > 50:
 current_room = 50

 if current_room < 1:
 current_room = 1

 if current_room != old_room:
 print("Entering room:" + str(current_room))

 clock.schedule_interval(movement, 0.1)

Listing 4-3: The Explorer code

The new additions in Listing 4-3 should look familiar to you. We call
the generate_map() function to create the room_map data for the current

listing4-3.py

74 Chapter 4

room . We then display it  using the code we created in Listing 3-5 in
Chapter 3. We use keyboard controls to change the current_room variable ,
similar to how we changed the x and y position of our spacewalking astro-
naut in Chapter 1 (see Listing 1-4). To go up or down a row in the map,
we change the current_room number by the width of the game map. For
example, to go up a row from room 32, we subtract 5 to go into room 27
(see Figure 4-1). If the room number has changed, the program prints the
current_room variable . The str() function converts the room number to a
string , so it can be joined to the "Entering room:" string. Without using the
str() function, you can’t join a number to a string.

Finally, we schedule the movement function to run at regular intervals ,
as we did in Chapter 1. This time, we have a longer gap between each time
the function runs (0.1 seconds), so the keys are less responsive.

From the command line, navigate to your escape folder and run the pro-
gram from the command line using pgzrun listing4-3.py.

The screen should be similar to Figure 4-4, which shows the walls and
doorways for room 31.

Figure 4-4: The Explorer shows your starting room in 3D.

Now you can use the arrow keys to explore the map. The program will
draw a room for you and enable you to go to the neighboring rooms by press-
ing an arrow key. At this point, you only see the shell of the room: walls and
floor. We’ll add more objects in the rooms and your character later.

At the moment, you can walk in any direction, including through walls:
the program doesn’t check for any movement errors. If you walk off the left
of the map, you’ll reappear on the right, a row higher. If you walk off the
right, you’ll reappear on the left, a row lower. If you try to go off the top or

Creating the Space Station 75

the bottom of the map, the program will return you to room 1 (at the top)
or room 50 (at the bottom). For example, if the room number is more than
(>) 50 x it’s reset to 50 y. In this code, I’ve lowered the sensitivity of the
keys to reduce the risk of whizzing through the rooms too fast. If you find
the controls unresponsive or sluggish, you might need to press the keys for
slightly longer.

Explore the space station and compare what you see on screen with
the map in Figure 4-1. If you see any errors, go back to the GAME_MAP data to
check the data, and then take another look at the generate_map() function to
make sure it’s been entered correctly. To help you follow the map, when you
move to a new room, its number will appear in the command line window
where you entered the pgzrun command, as shown in Figure 4-5.

Figure 4-5: The command line window tells you which room you’re entering.

Also, check that exits exist from both sides: if you go through a door
and it isn’t there when you look from the other side, generate_map() has been
entered incorrectly. Follow along on the map first to make sure you’re not
going off the edge of the map and coming back on the other side before
you start debugging. It’s worth taking the time to make sure your map data
and functions are all correct at this point, because broken map data can
make it impossible to complete the Escape game!

Training Mission #2

To enjoy playing Escape and solving the puzzles, I recommend that you use the
data I’ve provided for the game map. It’s best not to change the data until you’ve
completed playing the game and have decided to redesign it. Otherwise, objects
might be in locations you can’t reach, making the game impossible to complete.

However, you can safely extend the map. The easiest way to do so is to add
another row of rooms at the bottom of the map, making sure a door connects at
least one of the new rooms to the existing bottom row of the map. Remember to
change the MAP_HEIGHT variable. You’ll also need to change the number 50 in the
Explorer code (listing4-3.py) to your highest room number (see  and ). Why not
add a corridor now?

76 Chapter 4

Making Your Own Maps
After you’ve finished building and playing Escape, you can customize the
map or design your own game layouts using this code.

If you want to add your own map data for rooms 1 to 25, delete the code
that generates their data automatically (see z in Listing 4-1). You can then
add your own data for these rooms.

Alternatively, if you don’t want to use the planet surface locations,
just block the exit to them. The exit onto the planet surface is in room 26.
Change that room’s entry in the GAME_MAP list so it doesn’t have a top exit.
You can use room numbers starting at room 26 and extend the map down-
ward to make a game that is completely indoors. As a result, you won’t need
to make any code changes to account for the planet surface.

If you remove a doorway from the Escape game map (including the one
in room 26), you might also need to remove a door. Some of the exits at the
top and bottom of the room will have doors that seal them off. (We’ll add
doors to the Escape game in Chapter 11.)

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons in
this chapter.

�� The GAME_MAP list stores the main map data for Escape.

�� The GAME_MAP only needs to store the exit at the top and right of a room.

�� When the player visits a room, the generate_map() function makes the
room_map list for the current room. The room_map list describes where the
walls and objects are in the room.

�� Locations 1 to 25 are on the planet surface, and a loop generates their
map data. Locations 26 to 50 are the space station rooms, and you need
to input their data manually.

�� We use comments to help us find our way around the Escape program
listing.

�� When adding data using a program in script mode, you can use the
shell to check the contents of lists and variables to make sure the pro-
gram is working correctly. Remember to run the program first to set up
the data!

�� The Explorer code enables you to look at every room in the game map
using the arrow keys.

�� It’s important to make sure the game map matches Figure 4-1. Other
wise, it might not be possible for players to complete the Escape game.
You can use the Explorer program to do this.

Creating the Space Station 77

Mission Debrief
Here are the solutions to the training missions in this chapter.

Training Mission # 1

If you go to one of the planet surface rooms, the entire map consists of Martian soil,
so you should see only the number 2 repeated. If you go to a surface room that bor-
ders the space station, you should also see the space station wall at the bottom.

Training Mission # 2

To extend my game, I added a secret passageway at the bottom of the map that
connects rooms 46 and 50. To do so, in the MAP section of the program, change
MAP_HEIGHT from 10 to 11:

MAP_HEIGHT = 11

In the GAME_MAP list, add a comma at the end of room 50’s data but before the #
comment:

["The south east corner", 7, 9, True, False], # room 50

Add a row of rooms in the GAME_MAP list, after room 50. Each room’s list must end
with a comma except for the final room list. All of the lists should be inside the final
closing square bracket of GAME_MAP:

--snip--
 ["The robot workshop", 9, 11, True, False], # room 50
 ["Secret Passageway", 9, 15, True, True], # room 51
 ["Secret Passageway", 9, 9, False, True], # room 52
 ["Secret Passageway", 9, 15, False, True], # room 53
 ["Secret Passageway", 9, 9, False, True], # room 54
 ["Secret Passageway", 9, 15, True, False] # room 55
]
--snip--

I alternated the width of the rooms in this passageway between 15 and 9, so you
can easily see when you’ve moved to another room. If your rooms all look the same, it’s
hard to know when you’ve moved to a different room in this simple Explorer program.
In the final Escape game, you will be able to clearly see when you walk between similar
rooms because the character will walk out one door and enter through the opposite door.

I also changed the Explorer code (listing4-3.py) to show my new row of rooms up
to room 55:

--snip--
 if current_room > 55:
 current_room = 55
 if current_room < 1:
 current_room = 1
--snip--

5
Preparing the Space Station

Equipment

Now that the space station walls are in
place, we can start installing the equip-

ment. We’ll need detailed information about
the different pieces of equipment, including the

furniture, survival systems, and experimental machin-
ery. In this chapter, you’ll add information about all
the items on the space station, including their images
and descriptions. You’ll also experiment with design-
ing your own room and view it using the Explorer pro-
gram you created in Chapter 4.

80 Chapter 5

Creating a Simple Planets Dictionary
To store the information about the space station equipment, we’ll use a pro-
gramming concept called dictionaries. A dictionary is a bit like a list but with
a built-in search engine. Let’s take a closer look at how it works.

Understanding the Difference Between a
List and a Dictionary
As with a paper dictionary, you can use a word or phrase to look up infor-
mation in a Python dictionary. That word or phrase is called the key, and
the information linked to the key is called the value. Unlike in a paper dic-
tionary, the entries in a Python dictionary can be in any order. They don’t
have to be alphabetical. Python can go directly to the entry you need, wher-
ever it is.

Imagine you have a list that contains information about previous space
missions. You could get the first item from that list by using this line:

print(mission_info[0])

If mission_info was a dictionary instead of a list, you could use a mission
name instead of an index number to get the information on that mission,
like this:

print(mission_info["Apollo 11"])

The key can be a word or phrase but can also be a number. We’ll start
by using words because it’s easier to understand the difference between a
list and a dictionary that way.

Making an Astronomy Cheat Sheet
Dictionary
All astronauts need a good understanding of the solar system, so let’s learn
about the planets as we build our first dictionary. We’ll use the planet names
as the keys and connect each name to information about that planet.

Take a look at Listing 5-1, which creates a dictionary called planets. When
you make a dictionary, you use curly brackets {} to mark the start and end
of it, instead of the square brackets you use for a list.

Each entry in the dictionary is made up of the key, followed by a colon
and then the information for that entry. As with a list, we separate the entries
with commas and put double quotes around pieces of text.

Open a new file in IDLE (File4New File) and enter the following pro-
gram. Save it as listing5-1.py.

planets = { "Mercury": "The smallest planet, nearest the Sun",
 "Venus": "Venus takes 243 days to rotate",
 "Earth": "The only planet known to have native life",
 "Mars": "The Red Planet is the second smallest planet",

listing5-1.py

Preparing the Space Station Equipment 81

 "Jupiter": "The largest planet, Jupiter is a gas giant",
 "Saturn": "The second largest planet is a gas giant",
 "Uranus": "An ice giant with a ring system",
 "Neptune": "An ice giant and farthest from the Sun"
 }

 while True:
 query = input("Which planet would you like information on? ")
 print(planets[query])

Listing 5-1: Your first dictionary program

This program doesn’t use Pygame Zero, so you can run it by clicking
Run4Run Module at the top of the IDLE window. (It will still work if you
run it using pgzrun, but it’s easier to use the menu.) When you run the pro-
gram, it asks you which planet you want information on using the input()
built-in function . Try entering Earth or Jupiter for the planet name.

Which planet would you like information on? Earth
The only planet known to have native life
Which planet would you like information on? Jupiter
The largest planet, Jupiter is a gas giant

Whichever planet name you enter is stored in the variable query. That
variable is then used to look up the information for that planet in the
planets dictionary . Instead of using an index number inside the square
brackets as we did with a list, we use the word we entered to get the infor-
mation, and that word is stored in the variable query.

In Python, we can use a while  loop to repeat a set of instructions.
Unlike a for loop, which we use to repeat a certain number of times, a while
loop usually repeats until something changes. Often in a game, the while
command will check a variable to decide whether to keep repeating instruc-
tions. For example, the instruction while lives > 0 could keep a game going
until the player runs out of lives. When the lives variable changes to 0, the
instructions in the loop would stop repeating.

The while True command we use in listing5-1.py will keep repeating for-
ever, because it means “while True is True,” which is always. For this while True
command to work, make sure you capitalize True and place a colon at the
end of the line.

Under the while command, we use four spaces to indent the instructions
that should repeat. Here, we’ve indented the lines that ask you for a planet
name and then give you the planet information, so they’re the instructions
that repeat. After you enter a planet name and get the information, the pro-
gram asks you for another planet name, and another, forever. Or until you
stop the program by pressing ctrl-C, at least.

Although this program works, it isn’t complete yet. You might get an
unhelpful error if you enter a planet name that isn’t in the dictionary. Let’s
fix the code so it returns a useful message instead.

82 Chapter 5

Error-Proofing the Dictionary
When you enter a key that isn’t in the dictionary, you’ll see an error mes-
sage. Python looks for an exact match. So, if you try to look up something
that isn’t in the dictionary or make even a tiny spelling mistake, you won’t
get the information you want.

Dictionary keys, like variable names, are case sensitive, so if you type
earth instead of Earth, the program will crash. If you enter a planet that
doesn’t exist, this is what happens:

Which planet would you like information on? Pluto
Traceback (most recent call last):
 File "C:\Users\Sean\Documents\Escape\listing5-1.py", line 13, in <module>
 print(planets[query])
KeyError: 'Pluto'
>>>

Poor Pluto! After 76 years of service, it was disqualified as a planet in
2006, so it’s not in our planets dictionary.

Training Mission #1

Can you add an entry for Pluto in the dictionary? Pay special attention to the
position of the quotes, colon, and comma. You can add it at any position in the
dictionary.

When the program looks for an item in the dictionary that isn’t there, it
stops the program and drops you back at the Python shell prompt. To avoid
this, we need the program to check whether the word entered is one of the
keys in the dictionary before it tries to use it.

You can see which keys are in the dictionary by entering the dictionary
name followed by a dot and keys(). The technical jargon for this is a method.
Roughly speaking, a method is a set of instructions that you can attach to a
piece of data using a period. Run the following code in the Python shell:

>>> print(planets.keys())
dict_keys(['Mars', 'Pluto', 'Jupiter', 'Earth', 'Uranus', 'Saturn', 'Mercury',
'Neptune', 'Venus'])

You might notice something odd here. When I completed Training Mis-
sion #1, I added Pluto to the dictionary as the last item. But in this output,
it’s in second place in my list of keys. When you add items to a list, they’re
placed at the end, but in a dictionary, that is not always the case. It depends
on which version of Python you’re using. (The latest version does keep
dictionary items in the same order you added them.) As mentioned ear-
lier, the order of the keys in the dictionary doesn’t matter, though. Python
figures out where the keys are in the dictionary, so you never need to think
about it.

Preparing the Space Station Equipment 83

To stop the program from crashing when a user asks for information
on a planet that isn’t in the dictionary, modify your program with the new
lines shown in Listing 5-2.

--snip--
while True:
 query = input("Which planet would you like information on? ")

 if query in planets.keys():
 print(planets[query])

 else:
 print("No data available! Sorry!")

Listing 5-2: Error proofing the dictionary lookup

Save the program as listing5-2.py, and run it by clicking Run4Run
Module. Check that it works by entering a planet correctly, and then enter
another planet that isn’t in the list of keys. Here’s an example:

Which planet would you like information on? Venus
Venus takes 243 days to rotate
Which planet would you like information on? Tatooine
No data available! Sorry!

We protect our program from crashing by making it check whether the
key in query exists in the dictionary before the program tries to use it . If
the key does exist, we use the query as we did before . Otherwise, we send
a message to users telling them that we don’t have that information in our
dictionary . Now the program is much friendlier.

Putting Lists Inside Dictionaries
Our planet dictionary is a bit limited at the moment. What if we want to
add extra information, such as whether the planet has rings and how many
moons it has? To do so, we can use a list to store multiple pieces of informa-
tion about a planet and then put that list inside the dictionary.

For example, here is a new entry for Venus:

"Venus": ["Venus takes 243 days to rotate", False, 0]

The square brackets mark the start and end of the list, and there are
three items in the list: a short description, a True or False value that indi-
cates whether or not the planet has rings, and the number of moons it has.
Because Venus doesn’t have rings, the second entry is False. It also doesn’t
have any moons, so the third entry is 0.

R e d A l e r t 	 True and False values need to start with a capital letter and shouldn’t be in quotes.
The words turn orange when you type them correctly in IDLE.

listing5-2.py

84 Chapter 5

Change your dictionary code so each key has a list, as shown in List-
ing 5-3, keeping the rest of the code the same. Remember that dictionary
entries are separated by commas, so there’s a comma after the closing
bracket for all the lists except the last one. Save your updated program as
listing5-3.py.

I’ve slipped in information for Pluto too. Some speculate that Pluto
might have rings, and exploration continues. By the time you read this
book, our understanding of Pluto might have changed.

planets = { "Mercury": ["The smallest planet, nearest the Sun", False, 0],
 "Venus": ["Venus takes 243 days to rotate", False, 0],
 "Earth": ["The only planet known to have native life", False, 1],
 "Mars": ["The second smallest planet", False, 2],
 "Jupiter": ["The largest planet, a gas giant", True, 67],
 "Saturn": ["The second largest planet is a gas giant", True, 62],
 "Uranus": ["An ice giant with a ring system", True, 27],
 "Neptune": ["An ice giant and farthest from the Sun", True, 14],
 "Pluto": ["Largest dwarf planet in the Solar System", False, 5]
 }
--snip--

Listing 5-3: Putting a list in a dictionary

Run the program by selecting Run4Run Module. Now when you ask
for information on a planet, the program should display the entire list for
that planet:

Which planet would you like information on? Venus
['Venus takes 243 days to rotate', False, 0]
Which planet would you like information on? Mars
['The second smallest planet', False, 2]

Extracting Information from a List Inside
a Dictionary
We know how to get a list of information from a dictionary, so the next step
is to get individual pieces of information from that list. For example, the
False entry doesn’t mean much by itself. If we can separate it from the list,
we can add an explanation beside it so the results are easier to understand.
We previously used lists inside lists for the room map in Chapter 4. Now, as
then, we’ll use index numbers to get items from a list in a dictionary.

Because planets[query] is the entire list, we can see just the description
(the first item in the list) by using planets[query][0]. We can see whether it
has rings or not by using planets[query][1]. Briefly, here is what we’re doing:

1.	 We’re using the planet name, stored in the variable query, to access a
particular list from the planets dictionary.

2.	 We’re using an index number to take an individual item from that list.

listing5-3.py

Preparing the Space Station Equipment 85

Modify your program to look like Listing 5-4. As before, change only
the lines that are not grayed out. Save your program as listing5-4.py, and run
it by clicking Run4Run Module.

--snip--
while True:
 query = input("Which planet would you like information on? ")
 if query in planets.keys():

 print(planets[query][0])
 print("Does it have rings? ", planets[query][1])

 else:
 print("Databanks empty. Sorry!")

Listing 5-4: Displaying information from the list stored in the dictionary

When you run the listing5-4.py program, you should see something like
the following:

Which planet would you like information on? Earth
The only planet known to have native life
Does it have rings? False
Which planet would you like information on? Saturn
The second largest planet is a gas giant
Does it have rings? True

This should work for every planet in the dictionary!
When you enter the name of a planet that’s in the dictionary, the pro-

gram now prints the first item from its list of information, which is the
description . On the next line, the program asks itself whether that planet
has rings and then shows you the True or False answer, which is the second
item in that planet’s list of information . You can display some text and
some data using the same print() instruction, by separating them with a
comma. The display is much clearer than printing the entire list, and the
information is easier to understand.

Training Mission #2

Can you modify the program to also tell you how many moons the planet has?

Making the Space Station Objects
Dictionary

Let’s put our knowledge of how to use dictionaries, and lists inside diction-
aries, to use in the space station. With all the furniture, life support equip-
ment, tools, and personal effects required on the space station, there’s a lot
of information to keep track of. We’ll use a dictionary called objects to store
information about all the different items in the game.

listing5-4.py

86 Chapter 5

We’ll use numbers as the keys for the objects. It’s simpler than using
a word for each object. Also, using numbers makes it easier to understand
the room map if you want to print it as we did in Chapter 4. There’s less
risk of mistyping, too. When we create the code for the puzzles later, it’ll be
less obvious what the solution is, which means there will be fewer spoilers if
you’re building the game before playing it.

You might remember that we used the numbers 0, 1, and 2 to represent
floor tiles, wall pillars, and soil in Chapter 4. We’ll continue using those
numbers for those items, and the rest of the objects will use numbers 3
to 81.

Each entry in the dictionary is a list containing information about the
item, similar to how we made the planets dictionary earlier in this chapter.
The lists contain the following information for each object:

An object image file  Different objects can use the same image file.
For example, all the access cards use the same image.

A shadow image file  We use shadows to enhance the 3D perspective
in the game. The two standard shadows are images.full_shadow, which
fills a full tile space and is for larger objects, and images.half_shadow,
which fills half a tile space for smaller objects. Objects with a distinc-
tive outline, such as the cactus, have their own shadow image file that
is used only for that object. Some items, like the chair, have the shadow
within the image file. Some items have no shadow, like the crater and
any items the player can carry. When an image has no shadow, we
write None where its shadow filename belongs in the dictionary. The
word None is a special data type in Python. Like with True and False,
you don’t need any quotes around it, and it should start with a capital
letter. When you enter it correctly, None turns orange in the code.

A long description  A long description is displayed when you examine
or select an object while playing the game. Some of the long descrip-
tions include clues, and others simply describe the environment.

A short description  Typically just a few words, such as “an access card,”
a short description is shown onscreen when you do something with the
object while playing the game. For example, “You have dropped an access
card.” A short description is only required for items that the player can
pick up or use, such as an access card or the vending machine.

The game can reuse items in the objects dictionary. For example, if a
room is made of 60 or more identical wall pillars, the game can just reuse
the same wall pillar object. It only needs to be in the dictionary once.

There are some items that use the same image files but have other
differences, which means we must store them separately in the dictionary.
For example, the access cards have different descriptions depending on
who they belong to, and the doors have different descriptions to tell you
which key to use. Each access card and door has its own entry in the objects
dictionary.

Preparing the Space Station Equipment 87

Adding the First Objects in Escape
Open listing4-3.py, which you created in Chapter 4. This listing contains the
game map and the code to generate the room map. We’ll add to this pro-
gram to continue building the Escape game.

First, we need to set up some additional variables. Before the adventure
begins, a research craft, called the Poodle lander, crash-lands on the planet
surface. We’ll store coordinates for a random crash site in these new vari-
ables. We’ll add these variables now because the map object (number 27)
will require them for its description.

Add the new lines in Listing 5-5 to the VARIABLES section, marked out
with a hashed box, in your existing listing4-3.py file. I recommend adding
them at the end of your other variables, just above where the MAP section
begins, so your listing and my listing are consistent. Save your program as
listing5-5.py. The program won’t do anything new if you run it now, but if
you want to try it, enter pgzrun listing5-5.py.

--snip--
###############
VARIABLES
###############

--snip--

DEMO_OBJECTS = [images.floor, images.pillar, images.soil]

LANDER_SECTOR = random.randint(1, 24)
LANDER_X = random.randint(2, 11)
LANDER_Y = random.randint(2, 11)

###############
MAP
###############
--snip--

Listing 5-5: Adding the crash site location variables

These new instructions create variables to remember the sector (or
room number) the Poodle landed on, and its x and y position in that sector.
The instructions use the random.randint() function, which picks a random
number between the two numbers you give it. These instructions run once
at the start of the game, so the lander location is different each time you
play but doesn’t change during the game.

Now let’s add the first chunk of the objects data, shown in Listing 5-6.
This section provides the data for objects 0 to 12. Because the player cannot
pick up or use these objects, they don’t have a short description.

Place this section of the listing just above the MAKE MAP section of your
existing program (listing5-5.py). To help you find your way around the list-
ing, you can press ctrl-F in IDLE to search for a particular word or phrase.
For example, try searching for make map to see where to start adding the
code in Listing 5-6. After searching, click Close on the search dialog box.

listing5-5.py

88 Chapter 5

Remember that if you get lost in the listing, you can always refer to the com-
plete game listing in Appendix A.

If you prefer not to type the data, use the file data-chapter5.py, in the list-
ings folder. It contains the objects dictionary, so you can copy and paste it
into your program. You can start by just pasting the first 12 items.

--snip--

assert len(GAME_MAP)-1 == MAP_SIZE, "Map size and GAME_MAP don't match"

###############
OBJECTS
###############

objects = {
 0: [images.floor, None, "The floor is shiny and clean"],
 1: [images.pillar, images.full_shadow, "The wall is smooth and cold"],
 2: [images.soil, None, "It's like a desert. Or should that be dessert?"],
 3: [images.pillar_low, images.half_shadow, "The wall is smooth and cold"],
 4: [images.bed, images.half_shadow, "A tidy and comfortable bed"],
 5: [images.table, images.half_shadow, "It's made from strong plastic."],
 6: [images.chair_left, None, "A chair with a soft cushion"],
 7: [images.chair_right, None, "A chair with a soft cushion"],
 8: [images.bookcase_tall, images.full_shadow,
 "Bookshelves, stacked with reference books"],
 9: [images.bookcase_small, images.half_shadow,
 "Bookshelves, stacked with reference books"],
 10: [images.cabinet, images.half_shadow,
 "A small locker, for storing personal items"],
 11: [images.desk_computer, images.half_shadow,
 "A computer. Use it to run life support diagnostics"],
 12: [images.plant, images.plant_shadow, "A spaceberry plant, grown here"]
 }

###############
MAKE MAP
###############
--snip--

Listing 5-6: Adding the first objects

Remember that the colors of the code can help you spot errors. If
your text sections aren’t green, you’ve left out the opening double quotes.
If there is too much green, you might have forgotten the closing double
quotes. Some of the lists continue on the next line, and Python knows the
list isn’t complete until it sees the closing bracket. If you struggle to get any
of the listings to work, you can use my version of the code (see “Using My
Example Listings” on page 21) and pick up the project from any point.

Listing 5-6 looks similar to our earlier planets dictionary: we use curly
brackets to mark the start and end of the dictionary, and each entry in the
dictionary is a list so it is inside square brackets. The main difference is that
this time the key is a number instead of a word.

listing5-6.py

Preparing the Space Station Equipment 89

Save your new program as listing5-6.py. This program uses Pygame Zero
for the graphics, so you need to run your new program by entering pgzrun
listing5-6.py. It should work the same as it did previously because we’ve
added new data but haven’t done anything with that data yet. It’s worth
running the program anyway, because if you see an error message in the
command line window, you can fix the new code before you go any further.

Viewing Objects with the Space Station
Explorer
To see the objects, we have to tell the game to use the new dictionary.
Change the following line in the EXPLORER part of the program from this:

image_to_draw = DEMO_OBJECTS[room_map[y][x]]

to the following:

image_to_draw = objects[room_map[y][x]][0]

This small change makes the Explorer code use our new objects diction-
ary instead of the DEMO_OBJECTS list we told it to use previously.

Notice that we’re now using lowercase letters instead of capital letters.
In this program, I use capital letters for constants whose values won’t change.
The DEMO_OBJECTS list never changed: it was only used for looking up the
image filenames. But the objects dictionary will sometimes have its content
changed as the game is played.

The other difference is that [0] is on the end of the line now. This is
because when we pull an item from the objects dictionary, it gives us an
entire list of information. But we just want to use the image here, which is
the first item in that list, so we use the index number [0] to extract it.

Save the program and run it again, and you should see that the rooms
look the same as before. That’s because we haven’t added any new objects
yet, and we kept the object numbers for the floor, wall, and soil the same as
the index numbers we were using for them before.

Designing a Room
Let’s add some items to the room display. In the EXPLORER section of the
code, add the new lines shown in Listing 5-7:

--snip--

###############
EXPLORER
###############

def draw():
 global room_height, room_width, room_map
 print(current_room)
 generate_map()

listing5-7.py

90 Chapter 5

 screen.clear()
 room_map[2][4] = 7
 room_map[2][6] = 6
 room_map[1][1] = 8
 room_map[1][2] = 9
 room_map[1][8] = 12
 room_map[1][9] = 9
--snip--

Listing 5-7: Adding some objects in the room display

These new instructions add objects to the room_map list at different posi-
tions before the room is displayed.

Remember that room_map uses the y-coordinate before the x-coordinate.
The first index number says how far from the back of the room the objects
are; the smaller the number the nearer to the back they are. The smallest
useful number is usually 1 because the wall is in row 0.

The second number says how far across the room the objects are, from
left to right. There’s usually a wall in column 0, so 1 is the smallest useful
number for this position too.

The number on the other side of the equal sign is the key for a particu-
lar object. You can check which object each number represents by looking
at the objects dictionary in Listing 5-6.

So this line:

room_map[1][1] = 8

places object 8 (a tall bookcase) into the top-left corner of the room. And
this line:

room_map[2][6] = 6

places a chair (object 6) three rows from the top and seven positions from
the left. (Remember that index numbers start at 0.)

Save your program as listing5-7.py and enter pgzrun listing5-7.py to run
it. Figure 5-1 shows what you should see now.

Figure 5-1: Cozy! Some objects displayed
in the space station Explorer program

Preparing the Space Station Equipment 91

Because the Explorer program is just a demo, some things don’t work
yet. For example, some objects have a black square under them because
there’s no floor tile there. Also, all the rooms look the same because we’ve
coded the objects into the EXPLORER section, so they appear in every room
we display. This means you can’t view all the rooms anymore, because the
objects won’t fit in some of them. As a result, you can’t use the arrow keys
to look at all the rooms. The program doesn’t display wide objects such as
the bed correctly yet, either. We’ll fix all of these problems later, but we can
continue building and testing the space station in the meantime.

Training Mission #3

Experiment with the code you’ve added to the Explorer program to reposition
the furniture to your liking. Playing with this code is a great way to learn how to
position objects in the rooms. If you want to play with a bigger room, change the
value of current_room in the VARIABLES section from 31 to 40 (which is the biggest
room in the game). Save your program as mission5-3.py and run it using pgzrun
mission5-3.py. You’ll need to keep a safe copy of the existing Explorer code
(listing5-7.py) to use in Training Mission #4.

Adding the Rest of the Objects
So far we’ve added objects 0 to 12 to the objects dictionary. There are 81
objects in total in the game, so let’s add the rest now by adding the new
lines in Listing 5-8. Remember to add a comma after item 12 before adding
the rest of the items in the dictionary.

When the same filename or a similar description is used for more than
one object, you can just copy and paste it. To copy code, click and hold
down the mouse button at the beginning of the chunk of code, move the
mouse to highlight it, and then press ctrl-C. Then click the mouse where
you want to paste that code and press ctrl-V. Remember too that you can
copy and paste the whole dictionary from the data-chapter5.py file if you
want to save time typing.

Save the program as listing5-8.py. You can test that the program still
works by entering pgzrun listing5-8.py, although you won’t see anything
new yet.

This is Listing 5-8:

###############
OBJECTS
###############

objects = {
 0: [images.floor, None, "The floor is shiny and clean"],
 --snip--

 12: [images.plant, images.plant_shadow, "A spaceberry plant, grown locally"],

listing5-8.py

92 Chapter 5

 13: [images.electrical1, images.half_shadow,
 "Electrical systems used for powering the space station"],
 14: [images.electrical2, images.half_shadow,
 "Electrical systems used for powering the space station"],
 15: [images.cactus, images.cactus_shadow, "Ouch! Careful on the cactus!"],
 16: [images.shrub, images.shrub_shadow,
 "A space lettuce. A bit limp, but amazing it's growing here!"],
 17: [images.pipes1, images.pipes1_shadow, "Water purification pipes"],
 18: [images.pipes2, images.pipes2_shadow,
 "Pipes for the life support systems"],
 19: [images.pipes3, images.pipes3_shadow,
 "Pipes for the life support systems"],

 20: [images.door, images.door_shadow, "Safety door. Opens automatically \
for astronauts in functioning spacesuits."],
 21: [images.door, images.door_shadow, "The airlock door. \
For safety reasons, it requires two person operation."],
 22: [images.door, images.door_shadow, "A locked door. It needs " \
 + PLAYER_NAME + "'s access card"],
 23: [images.door, images.door_shadow, "A locked door. It needs " \
 + FRIEND1_NAME + "'s access card"],
 24: [images.door, images.door_shadow, "A locked door. It needs " \
 + FRIEND2_NAME + "'s access card"],
 25: [images.door, images.door_shadow,
 "A locked door. It is opened from Main Mission Control"],
 26: [images.door, images.door_shadow,
 "A locked door in the engineering bay."],

 27: [images.map, images.full_shadow,
 "The screen says the crash site was Sector: " \
 + str(LANDER_SECTOR) + " // X: " + str(LANDER_X) + \
 " // Y: " + str(LANDER_Y)],
 28: [images.rock_large, images.rock_large_shadow,
 "A rock. Its coarse surface feels like a whetstone", "the rock"],
 29: [images.rock_small, images.rock_small_shadow,
 "A small but heavy piece of Martian rock"],
 30: [images.crater, None, "A crater in the planet surface"],
 31: [images.fence, None,
 "A fine gauze fence. It helps protect the station from dust storms"],
 32: [images.contraption, images.contraption_shadow,
 "One of the scientific experiments. It gently vibrates"],
 33: [images.robot_arm, images.robot_arm_shadow,
 "A robot arm, used for heavy lifting"],
 34: [images.toilet, images.half_shadow, "A sparkling clean toilet"],
 35: [images.sink, None, "A sink with running water", "the taps"],
 36: [images.globe, images.globe_shadow,
 "A giant globe of the planet. It gently glows from inside"],
 37: [images.science_lab_table, None,
 "A table of experiments, analyzing the planet soil and dust"],
 38: [images.vending_machine, images.full_shadow,
 "A vending machine. It requires a credit.", "the vending machine"],
 39: [images.floor_pad, None,
 "A pressure sensor to make sure nobody goes out alone."],
 40: [images.rescue_ship, images.rescue_ship_shadow, "A rescue ship!"],
 41: [images.mission_control_desk, images.mission_control_desk_shadow, \
 "Mission Control stations."],

Preparing the Space Station Equipment 93

 42: [images.button, images.button_shadow,
 "The button for opening the time-locked door in engineering."],
 43: [images.whiteboard, images.full_shadow,
 "The whiteboard is used in brainstorms and planning meetings."],
 44: [images.window, images.full_shadow,
 "The window provides a view out onto the planet surface."],
 45: [images.robot, images.robot_shadow, "A cleaning robot, turned off."],
 46: [images.robot2, images.robot2_shadow,
 "A planet surface exploration robot, awaiting set-up."],
 47: [images.rocket, images.rocket_shadow, "A 1-person craft in repair."],
 48: [images.toxic_floor, None, "Toxic floor - do not walk on!"],
 49: [images.drone, None, "A delivery drone"],
 50: [images.energy_ball, None, "An energy ball - dangerous!"],
 51: [images.energy_ball2, None, "An energy ball - dangerous!"],
 52: [images.computer, images.computer_shadow,
 "A computer workstation, for managing space station systems."],
 53: [images.clipboard, None,
 "A clipboard. Someone has doodled on it.", "the clipboard"],
 54: [images.bubble_gum, None,
 "A piece of sticky bubble gum. Spaceberry flavour.", "bubble gum"],
 55: [images.yoyo, None, "A toy made of fine, strong string and plastic. \
Used for antigrav experiments.", PLAYER_NAME + "'s yoyo"],
 56: [images.thread, None,
 "A piece of fine, strong string", "a piece of string"],
 57: [images.needle, None,
 "A sharp needle from a cactus plant", "a cactus needle"],
 58: [images.threaded_needle, None,
 "A cactus needle, spearing a length of string", "needle and string"],
 59: [images.canister, None,
 "The air canister has a leak.", "a leaky air canister"],
 60: [images.canister, None,
 "It looks like the seal will hold!", "a sealed air canister"],
 61: [images.mirror, None,
 "The mirror throws a circle of light on the walls.", "a mirror"],
 62: [images.bin_empty, None,
 "A rarely used bin, made of light plastic", "a bin"],
 63: [images.bin_full, None,
 "A heavy bin full of water", "a bin full of water"],
 64: [images.rags, None,
 "An oily rag. Pick it up by a corner if you must!", "an oily rag"],
 65: [images.hammer, None,
 "A hammer. Maybe good for cracking things open...", "a hammer"],
 66: [images.spoon, None, "A large serving spoon", "a spoon"],
 67: [images.food_pouch, None,
 "A dehydrated food pouch. It needs water.", "a dry food pack"],
 68: [images.food, None,
 "A food pouch. Use it to get 100% energy.", "ready-to-eat food"],
 69: [images.book, None, "The book has the words 'Don't Panic' on the \
cover in large, friendly letters", "a book"],
 70: [images.mp3_player, None,
 "An MP3 player, with all the latest tunes", "an MP3 player"],
 71: [images.lander, None, "The Poodle, a small space exploration craft. \
Its black box has a radio sealed inside.", "the Poodle lander"],
 72: [images.radio, None, "A radio communications system, from the \
Poodle", "a communications radio"],

94 Chapter 5

 73: [images.gps_module, None, "A GPS Module", "a GPS module"],
 74: [images.positioning_system, None, "Part of a positioning system. \
Needs a GPS module.", "a positioning interface"],
 75: [images.positioning_system, None,
 "A working positioning system", "a positioning computer"],
 76: [images.scissors, None, "Scissors. They're too blunt to cut \
anything. Can you sharpen them?", "blunt scissors"],
 77: [images.scissors, None,
 "Razor-sharp scissors. Careful!", "sharpened scissors"],
 78: [images.credit, None,
 "A small coin for the station's vending systems",
 "a station credit"],
 79: [images.access_card, None,
 "This access card belongs to " + PLAYER_NAME, "an access card"],
 80: [images.access_card, None,
 "This access card belongs to " + FRIEND1_NAME, "an access card"],
 81: [images.access_card, None,
 "This access card belongs to " + FRIEND2_NAME, "an access card"]
 }

 items_player_may_carry = list(range(53, 82))
Numbers below are for floor, pressure pad, soil, toxic floor.

 items_player_may_stand_on = items_player_may_carry + [0, 39, 2, 48]

###############
MAKE MAP
###############
--snip--

Listing 5-8: Completing the objects data for the Escape game

Some of the lists for objects extend over more than one line in the
program . This is fine because Python knows the list isn’t complete until
it sees a closing bracket. To break a string (or any other piece of code)
over more than one line, you can use a \ at the end of the line . The line
breaks in listing5-8.py are just there to make the code fit onto the book page
neatly: onscreen, the code can extend to the right if you want it to.

Object 27 is a map showing the Poodle’s crash site. Its long description
includes the variables that you set in Listing 5-5 for the Poodle’s position.
The str() function is used to convert the numbers in those variables into
strings so they can be combined with other strings to make up the long
description .

We’ve also set up some additional lists we’ll need in the game: items
_player_may_carry stores the numbers of the objects the player can pick up .
These are objects 53 to 81. Because they’re grouped together, we can set up
the items_player_may_carry list using a range. A range is a sequence of num-
bers that starts from the first number given and finishes at the one before the
last number. (We used ranges in Chapter 3.) We turn that range into a list
using list(range(53 to 82)), which makes a list of all the numbers from 53
to 81.

If you add more objects that a player can carry later, you can add them
to the end of this list. For example, to add new objects numbered 89 and 93

Preparing the Space Station Equipment 95

that the player can carry, use items_player_may_carry = list(range(54, 82)) +
[89, 93]. You can also add new objects to the end of the objects list and just
extend the range used to set up items_player_may_carry.

The other new list is items_player_may_stand_on, which specifies whether
a player is allowed to stand on a particular item . Players can only stand
on objects small enough to be picked up and on the different types of floor.
We make this list by adding the object numbers for the different floor types
to the items_player_may_carry list.

After you’ve entered Listing 5-8, you’ve completed the OBJECTS section
of the Escape game! But we haven’t put the objects into the game map yet.
We’ll start to do that in Chapter 6.

Training Mission #4

Experiment with some of the new objects you just added to the game. By modify-
ing the code, can you . . .

•	 Swap the tall bookcase for a bin (object 62)?

•	 Swap the spaceberry plant for a small rock (object 29)?

•	 Swap the chair on the right for a patch of toxic floor (object 48)?

To understand which instruction places which object, you can either use the
coordinates in your existing code or look up the object numbers in the objects dic-
tionary (onscreen or in the listings in this chapter). Run your program to make sure
it works.

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons in
this chapter.

�� To get information from a dictionary, you use the key for that informa-
tion. The key can be a word or a number and can also be stored in a
variable.

�� If you try to use a key that isn’t in the dictionary, you’ll cause an error.

�� To avoid an error, check whether the key is in the dictionary before the
program tries to use it.

�� You can put lists inside dictionaries. Then you can use the dictionary
key followed by the list index to get a particular item from the list. For
example: planets["Earth"][1].

�� The Escape game uses the objects dictionary to store information about
all the objects in the game. Each item in the dictionary is a list.

�� You can use the index number of that list to access the object’s image
file, shadow image file, and long and short description.

96 Chapter 5

Mission Debrief
Here are the answers for the training missions in this chapter.

Training Mission # 1

Make sure you add a comma after Neptune’s entry, and place the quotes and colon in
the correct place in Pluto’s entry.

planets = { "Mercury": "The smallest planet, nearest the Sun",
 "Venus": "Venus takes 243 days to rotate",
 "Earth": "The only planet known to have native life",
 --snip--
 "Neptune": "An ice giant and farthest from the Sun",
 "Pluto": "The largest dwarf planet in the Solar System"
 }

Training Mission # 2

Modify the code by adding the line in color as shown.

while True:
 query = input("Which planet would you like information on? ")
 if query in planets.keys():
 print(planets[query][0])
 print("Does it have rings? ", planets[query][1])
 print("How many moons? ", planets[query][2])
 else:
 print("No data available! Sorry!")

Training Mission # 3

You can create any room design to complete this mission. Here’s one suggestion:
delete the existing instructions that add objects to the room, and use the following
instructions instead. Run the program to see what this change does!

 room_map[2][6] = 12
 room_map[1][9] = 10
 room_map[1][1] = 7
 room_map[1][3] = 1

Training Mission # 4

Edit the EXPLORER section of your program as shown here:

 room_map[2][4] = 7
 room_map[2][6] = 48
 room_map[1][1] = 62
 room_map[1][2] = 9
 room_map[1][8] = 29
 room_map[1][9] = 10

6
Installing the Space

Station Equipment

In Chapter 5, you prepared information
about all the equipment you’ll use on your

mission. In this chapter, you’ll install some
of that equipment in the space station and use

the Explorer to view any room or planet surface loca-
tion. This is your first chance to explore the design
of the Mars base that will become your home.

Understanding the Dictionary for the
Scenery Data

There are two different types of objects on the space station:

•	 Scenery is the equipment that stays in the same place throughout the
Escape game and includes furniture, pipes, and electronic equipment.

98 Chapter 6

•	 Props are items that can appear, disappear, or move around during the
game. They include things the player can create and pick up. Props also
include doors, which appear in the room when they’re closed and dis-
appear when they’re open.

The data for positioning scenery and the data for props are stored
separately and organized differently. In this chapter, we’ll just add the
scenery data.

Our program already knows the image and description to use for
all the objects in the game, because they’re in the objects dictionary you
created in Chapter 5. Now we’ll tell the program where to put the scenery
objects in the space station. To do that, we’ll create a new dictionary called
scenery. This is how we’ll structure the entry for one room:

room number: [[object number, y, x], [object number, y, x]]

The key for the dictionary will be the room number. For each room
number, the dictionary stores a list, with a square bracket at the start and
the end of it. Each item in that list is another list that tells the program
where in the room to put one object. Here, I’ve made one object red and
the other green so you can see where they start and end.

These are the three pieces of information you need for each object:

The object number  This is the same as the number that is used as the
key in the objects dictionary. For example, number 5 represents a table.

The object’s y position  This is the object’s position in the room,
from back to front. The back wall is usually in row 0, so we typically
start placing objects at 1. The largest useful number will be the room
height minus 2: we subtract 1 because the map positions start at 0 and
subtract another 1 for the space the front wall occupies. In practice, it’s
a good idea to leave a bit more space at the front of the room, because
the front wall can obscure other items. You can check the size of the
room in the GAME_MAP code you added in Chapter 4.

The object’s x position  This tells the program how far across the
room from left to right the object should be. Again, a wall is usually in
position 0. The largest useful number will generally be the room width
minus 2.

To get a better understanding of these numbers, let’s take a look at Fig-
ure 6-1, which shows one of the rooms on the space station as a screenshot
and a map. In this image, the sink (S) is in the second row from the back,
so its y position is 1. Remember that the wall in the first row at the back is in
position y = 0. The sink’s x position is 3. There are two other tile spaces to
the left of it, and the wall is in position x = 0.

Installing the Space Station Equipment 99

0 1 2 3 4

0

1

2

3

4

T S

P

Figure 6-1: An example space station room as seen in
the game (left) and represented by a map (right).
T = toilet, S = sink, P = player.

Let’s look at the data for this room. Don’t enter this code yet. I’ll give
you all the scenery data shortly.

scenery = {
--snip--
30: [[34,1,1], [35,1,3]],
--snip--
}

This code tells the program about the objects in room 30. Room 30 has
object number 34, a toilet, in the top-left corner at position y = 1 and x = 1,
and object number 35, a sink, at position number y = 1 and x = 3, quite close
to the toilet.

You can have the same object in the room several times by adding a list
for each position and using the same object number for them. For example,
you could fill the room with toilets in different positions if you wanted to,
although that would be a rather bizarre thing to do.

You don’t need to include the walls in the scenery data, because the
program automatically adds them to the room when it creates the room_map
list, as you’ve already seen.

Even though putting the information for each item into a list means
adding more brackets, it’s much easier to understand the data at a glance.
The brackets help you see how many items are in the room, which numbers
are the object numbers, and which are the position numbers.

Adding the Scenery Data
Open listing5-8.py, the final listing in Chapter 5. This listing contains your
game map and objects data. Now we’ll add the scenery data to it.

Listing 6-1 shows the scenery data. Add this new SCENERY section before
the MAKE MAP section. Make sure the placement of the brackets and commas is
correct. Remember that each piece of scenery needs a list of three numbers,

100 Chapter 6

and each list is separated with a comma too. If you prefer not to type all the
data in, use the file data-chapter6.py, which is in the listings folder. It contains
the scenery dictionary for you to copy and paste into your program.

--snip--

items_player_may_stand_on = items_player_may_carry + [0, 39, 2, 48]

###############
SCENERY
###############

Scenery describes objects that cannot move between rooms.
room number: [[object number, y position, x position]...]
scenery = {
 26: [[39,8,2]],
 27: [[33,5,5], [33,1,1], [33,1,8], [47,5,2],
 [47,3,10], [47,9,8], [42,1,6]],
 28: [[27,0,3], [41,4,3], [41,4,7]],
 29: [[7,2,6], [6,2,8], [12,1,13], [44,0,1],
 [36,4,10], [10,1,1], [19,4,2], [17,4,4]],
 30: [[34,1,1], [35,1,3]],
 31: [[11,1,1], [19,1,8], [46,1,3]],
 32: [[48,2,2], [48,2,3], [48,2,4], [48,3,2], [48,3,3],
 [48,3,4], [48,4,2], [48,4,3], [48,4,4]],
 33: [[13,1,1], [13,1,3], [13,1,8], [13,1,10], [48,2,1],
 [48,2,7], [48,3,6], [48,3,3]],
 34: [[37,2,2], [32,6,7], [37,10,4], [28,5,3]],
 35: [[16,2,9], [16,2,2], [16,3,3], [16,3,8], [16,8,9], [16,8,2], [16,1,8],
 [16,1,3], [12,8,6], [12,9,4], [12,9,8],
 [15,4,6], [12,7,1], [12,7,11]],
 36: [[4,3,1], [9,1,7], [8,1,8], [8,1,9],
 [5,5,4], [6,5,7], [10,1,1], [12,1,2]],
 37: [[48,3,1], [48,3,2], [48,7,1], [48,5,2], [48,5,3],
 [48,7,2], [48,9,2], [48,9,3], [48,11,1], [48,11,2]],
 38: [[43,0,2], [6,2,2], [6,3,5], [6,4,7], [6,2,9], [45,1,10]],
 39: [[38,1,1], [7,3,4], [7,6,4], [5,3,6], [5,6,6],
 [6,3,9], [6,6,9], [45,1,11], [12,1,8], [12,1,4]],
 40: [[41,5,3], [41,5,7], [41,9,3], [41,9,7],
 [13,1,1], [13,1,3], [42,1,12]],
 41: [[4,3,1], [10,3,5], [4,5,1], [10,5,5], [4,7,1],
 [10,7,5], [12,1,1], [12,1,5]],
 44: [[46,4,3], [46,4,5], [18,1,1], [19,1,3],
 [19,1,5], [52,4,7], [14,1,8]],
 45: [[48,2,1], [48,2,2], [48,3,3], [48,3,4], [48,1,4], [48,1,1]],
 46: [[10,1,1], [4,1,2], [8,1,7], [9,1,8], [8,1,9], [5,4,3], [7,3,2]],
 47: [[9,1,1], [9,1,2], [10,1,3], [12,1,7], [5,4,4], [6,4,7], [4,1,8]],
 48: [[17,4,1], [17,4,2], [17,4,3], [17,4,4], [17,4,5], [17,4,6], [17,4,7],
 [17,8,1], [17,8,2], [17,8,3], [17,8,4],
 [17,8,5], [17,8,6], [17,8,7], [14,1,1]],
 49: [[14,2,2], [14,2,4], [7,5,1], [5,5,3], [48,3,3], [48,3,4]],
 50: [[45,4,8], [11,1,1], [13,1,8], [33,2,1], [46,4,6]]
 }

listing6-1.py

Installing the Space Station Equipment 101

checksum = 0
check_counter = 0
for key, room_scenery_list in scenery.items():
 for scenery_item_list in room_scenery_list:

u checksum += (scenery_item_list[0] * key
 + scenery_item_list[1] * (key + 1)
 + scenery_item_list[2] * (key + 2))
 check_counter += 1
print(check_counter, "scenery items")

v assert check_counter == 161, "Expected 161 scenery items"
w assert checksum == 200095, "Error in scenery data"

print("Scenery checksum: " + str(checksum))

###############
MAKE MAP
###############
--snip--

Listing 6-1: Adding the scenery data

Save your listing as listing6-1.py, and run it using pgzrun listing6-1.py in
the command line. We’ve added some data, but we haven’t told the program
to do anything with it, so you won’t see any change. But if you made a mistake
entering the data, the program should stop and display the message Error in
scenery data. In this case, go back and double-check your code against the
book. Check that you entered the checksum number correctly first! w

The second half of this listing is a safety measure, called a checksum.
It checks that all the data is present and correct by making a calculation
involving the data and then checking the result against the correct answer.
If there’s a mistake in the data you’ve entered, this bit of code will stop the
program until you fix it. This stops your game from running with bugs in it.
(Some errors could get through, but this code catches most mistakes.)

The program uses the assert instruction to check the data. The first
instruction checks that the program has the right number of data items. If
it doesn’t, the program stops and shows an error message . The program
also checks whether the checksum (the result from the calculation) is the
expected number, and if it isn’t, it stops the program . Notice that one of
the instructions in Listing 6-1 spreads across three lines : Python knows
we haven’t finished the instruction until we close the final parenthesis.

Tip

If you want to change the scenery data, to redesign rooms or to add your own
rooms, you will need to turn off the checksum. This is because the calculation
based on your changed data will be different, so the checksum will fail and the
program won’t run. You can simply put a # symbol before the two lines that start
with assert v to switch them off. As you know, the # symbol is used for a com-
ment, and Python ignores everything after it on the same line. It can be a handy
off switch when you’re building or testing programs.

102 Chapter 6

Adding the Perimeter Fence for the
Planet Surface

You might have noticed that we haven’t added any scenery for rooms 1 to
25 yet. Our data starts at room 26. As you might remember, the first 25
locations are outside on the planet surface.
For simplicity, we’ll still call them rooms,
although they have no walls.

Figure 6-2 shows rooms 1 to 25 on the
map. A fence, shown as a dotted line in
Figure 6-2, surrounds the outside of these
rooms. The fence stops people from wan-
dering out of the compound and off the
game map.

We need to add fences at the following
locations:

•	 On the left in rooms 1, 6, 11, 16, and 21

•	 At the top in rooms 1, 2, 3, 4, and 5

•	 On the right in rooms 5, 10, 15, 20, 25

Each outside room has one item of planet surface scenery too, which
is randomly chosen from a small selection of suitable items that includes
rocks, shrubs, and craters. For the game, it doesn’t matter where these
items are placed, so they can also be randomly positioned.

Listing 6-2 shows the code that generates the random planet surface
scenery and adds the fences. Add the code to the end of the SCENERY section
you just created, and save your program as listing6-2.py. You can use pgzrun
listing6-2.py to check whether the program reports any errors.

--snip--
print("Scenery checksum: " + str(checksum))

for room in range(1, 26): # Add random scenery in planet locations.
 if room != 13: # Skip room 13.
 scenery_item = random.choice([16, 28, 29, 30])
 scenery[room] = [[scenery_item, random.randint(2, 10),

 random.randint(2, 10)]]

Use loops to add fences to the planet surface rooms.

 for room_coordinate in range(0, 13):
 for room_number in [1, 2, 3, 4, 5]: # Add top fence
 scenery[room_number] += [[31, 0, room_coordinate]]
 for room_number in [1, 6, 11, 16, 21]: # Add left fence
 scenery[room_number] += [[31, room_coordinate, 0]]

 for room_number in [5, 10, 15, 20, 25]: # Add right fence
 scenery[room_number] += [[31, room_coordinate, 12]]

 del scenery[21][-1] # Delete last fence panel in Room 21
del scenery[25][-1] # Delete last fence panel in Room 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 6-2: Adding the fence
around the planet surface
locations

listing6-2.py

Installing the Space Station Equipment 103

###############
MAKE MAP
###############

--snip--

Listing 6-2: Generating random planet surface scenery

You don’t need to understand this code to enjoy building and playing
Escape, but if you want to dig deeper, I’ll explain the code in more detail.

The first section in Listing 6-2 adds the random scenery. For each
room, random.choice()  chooses a scenery item randomly. In the same
way that random.randint() gave us a random number (like rolling dice),
random.choice() gives us a random item (like a grab bag or lucky dip game).
The item is chosen from the list [16, 28, 29, 30]. Those object numbers
represent a shrub, a large rock, a small rock, and a crater, respectively.

We also add a new entry to the scenery dictionary for the room . This
entry contains the random scenery item and random y and x positions for
that item. The y and x positions place the item inside the room but not too
near the edge.

The != operator  means “not equal to,” so scenery is added only if the
room number is not 13. Who knows? Maybe it’ll be useful to have an empty
space on the planet surface when you’re on your mission…

In the second part of Listing 6-2, we add the fences. All the planet sur-
face locations are 13 tiles high and 13 tiles wide, so we can use one loop 
to add the top and side fences. The loop’s variable, room_coordinate, counts
from 0 to 12, and each time around the loop, fence panels are put in place
at the top and the sides of the appropriate rooms.

Inside the room_coordinate loop, there are three loops for the room_number.
The first room_number loop  adds a fence along the top row of the top rooms.
Instead of using a range(), this time we’re looping through a list. Each time
through the list, the variable room_number takes the next number from the list
[1, 2, 3, 4, 5]. We add a piece of scenery to the scenery list for the room,
using += . This is scenery item 31 (a fence), in the top row of the room (at
position y = 0). The room_coordinate value is used for the x position. This puts
the top fence into rooms 1 to 5, in the top row of those rooms.

There are two other room_number loops inside the room_coordinate loop.
The first one adds the left fence to rooms 1, 6, 11, 16, and 21 . This time,
the program uses the room_coordinate variable for the y position and uses
0 for the x position . This puts fence panels along the left edge of those
rooms. The second loop adds the right edge fence to rooms 5, 10, 15, 20, and
25. This also uses the room_coordinate for the y position of the fence panel but
uses 12 for the x coordinate, putting a fence along the right edge of those
rooms .

We don’t want side fence panels where the outside area joins the space
station wall. Figure 6-3 shows a map of room 21. The bottom-left corner
of the room should be wall, so there shouldn’t be a fence panel here.
The loops we used just added a fence panel here, though, so we use an

104 Chapter 6

instruction  to delete the last item of scenery added to this room, and to
room 25, which is on the other side of the compound (see Figure 6-2). It’s
easier to add these two panels and take them out again than it is to write
code that avoids putting these fence panels in. The index number -1 is a
handy shortcut for referring to the last item in a list.

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

9

10

11

12

Planet surface

Fe
nc

e

Space station wall Space station wall

Figure 6-3: Map showing how the fence touches the wall in an
outside room next to the space station

Using random scenery and loops to position fences enables us to have
a large area to explore without having to type in data for over 200 fence
panels and scenery items.

Tip

If you’re customizing the game and don’t want to add random scenery or fences in
rooms 1 to 25, you can delete the code sections shown in Listing 6-2.

Loading the Scenery into Each Room
Now that we’ve added scenery data to the program, let’s add some code so
we can see the scenery in the space station! You might remember that the
generate_map() function creates the room_map list for the room you’re currently
exploring. The room_map list is used to display and navigate the room.

So far, the generate_map() function just calculates the size of the room
and where the doors are, and places the floor and walls. We need to add

Installing the Space Station Equipment 105

some code to extract the scenery from our new dictionary and add it to the
room_map. But first, we’ll make one small but important adjustment to the
program. In the VARIABLES section, near the start of the program, add the
new line shown in Listing 6-3. Save your program as listing6-3.py.

--snip--

###############
VARIABLES
###############

--snip--

LANDER_SECTOR = random.randint(1, 24)
LANDER_X = random.randint(2, 11)
LANDER_Y = random.randint(2, 11)

TILE_SIZE = 30

###############
MAP
###############

--snip--

Listing 6-3: Setting up the TILE_SIZE variable

This line creates a variable to store the size of a tile. Using it makes the
program easier to read because we can replace the number 30 with a more
meaningful phrase. Instead of seeing the number 30 in the code and hav-
ing to remember what it represents, we can see the words TILE SIZE instead,
which gives us a hint about what the code is doing.

Next, find the MAKE MAP section of the program: it comes before the
EXPLORER section. Add Listing 6-4 to the end of the MAKE MAP section to place
the scenery in the current room. All the code in Listing 6-4 belongs to the
generate_map() function, so we need to indent the first line by four spaces
and then indent the remaining lines as shown. Save your program as
listing6-4.py.

--snip--

def generate_map():
--snip--

 if current_room in scenery:
 for this_scenery in scenery[current_room]:
 scenery_number = this_scenery[0]
 scenery_y = this_scenery[1]
 scenery_x = this_scenery[2]
 room_map[scenery_y][scenery_x] = scenery_number

 image_here = objects[scenery_number][0]
 image_width = image_here.get_width()

listing6-3.py

listing6-4.py

106 Chapter 6

 image_width_in_tiles = int(image_width / TILE_SIZE)

 for tile_number in range(1, image_width_in_tiles):
 room_map[scenery_y][scenery_x + tile_number] = 255

###############
EXPLORER
###############

--snip--

Listing 6-4: Additional code for generate_map() that adds the scenery for the current room
to the room_map list

Let’s break this down. The line at  checks whether there’s an entry for
the current room in the scenery dictionary. This check is essential because
some rooms in our game might not have any scenery, and if we try to use a
dictionary key that doesn’t exist, Python stops with an error.

We then set up a loop  that cycles through the scenery items for the
room and copies them into a list called this_scenery. The first time through
the loop, this_scenery contains the list for the first scenery item. The second
time, it contains the list for the second item, and so on until it reaches the
final scenery item for the current room.

Each scenery item has a list containing its object number, y position, and
x position. The program extracts these details from this_scenery using index
numbers and puts them into variables called scenery_number , scenery_y ,
and scenery_x .

Now the program has all the information it needs to add the scenery
item to room_map. You might remember that room_map stores the object number
of the item in each position in the room. It uses the y position and x position
in the room as list indexes. This program uses the scenery_y and scenery_x
values as list indexes to put the item scenery_number into room_map .

If all our objects were one tile wide, that is all we would need to do. But
some objects are wider and cover several tiles. For example, a wide object
positioned in one tile might cover two more tiles to its right, but at the
moment, the program only sees it in that one tile.

We need to add something to room_map in those additional spaces so the
program knows the player can’t walk on those tiles. I’ve used the number
255 to represent a space that doesn’t have an object in it but also cannot be
walked on.

Why the number 255? It’s a large enough number to give you space to
add many more objects to the game if you want to, allowing for 254 items in
the objects dictionary. Also, it feels like a nice number to me: it’s the highest
number you can write with one byte of data (that mattered when I started
writing games in the 1980s, and the computer only had about 65,000 bytes
of memory to store all its data, graphics, and program code).

First, we need to figure out how wide an image is so we know how
many tiles it fills. We use scenery_number as the dictionary key to get infor-
mation about the object from the objects dictionary . We know the
objects dictionary returns a list of information, the first item of which is

Installing the Space Station Equipment 107

the image. So we use the index 0 to extract the image and put it into the
variable image_here.

Then we can use Pygame Zero to find out the width of an image by
adding get_width() after its name . We put that number into a variable
called image_width. Because we need to know how many tiles the image
covers, the program divides the image width (in pixels) by the tile size, 30,
and makes it an integer (a whole number) . We must convert the number
to an integer because we’re going to use it in the range() function , which
can only take integers. If we didn’t convert the number, the width would be
a floating-point number—a number with a decimal point.

Finally, we set up a loop that adds the value 255 in the spaces to the
right of the scenery item, wherever the tile is covered .

If an image is 90 pixels wide, we divide it by the tile size of 30 and
store the result, 3, in image_width_in_tiles. Then the loop counts to 2 using
range() because we give it a range of 1 to image_width_in_tiles . We add the
loop numbers to the x position of the object, and those positions in room_map
are marked with 255. Large objects that cover three tiles now have 255 in
the next two spaces to the right.

Now our program contains all the scenery and can add it to the
room_map, ready for display. Next, we’ll make some small changes to the
EXPLORER section so we can tour the space station.

Updating the Explorer to Tour the
Space Station

The EXPLORER part of the program lets you view all the rooms on the space
station and move around the map using the arrow keys. Let’s update that
section so you can see all the scenery in place.

If your Explorer code includes any lines for adding scenery to the room_map,
you’ll need to switch them off now. Although they’re a good way to experi-
ment with a room design, they force the same scenery into every room and
override the real room designs. Because these lines might include your ideas
for room designs, rather than deleting them, you can comment them out
so Python will ignore them. Click and drag the mouse to highlight all the
lines at once, and then click FormatComment Out Region (or use the
keyboard shortcut alt-3). Comment symbols will be added at the start of
the highlighted lines, as shown in Listing 6-5:

--snip--

###############
EXPLORER
###############

def draw():
 global room_height, room_width, room_map
 print(current_room)
 generate_map()

listing6-5.py

108 Chapter 6

 screen.clear()
room_map[2][4] = 7
room_map[2][6] = 6
room_map[1][1] = 8
room_map[1][2] = 9
room_map[1][8] = 12
room_map[1][9] = 10
--snip--

Listing 6-5: Commenting out code in the EXPLORER section

Now we need to make a small change to the code that displays the
room so it doesn’t try to draw an image for a floor space marked with 255.
That space will be covered by an image to the left of it, and we don’t have
an entry in the objects dictionary for 255.

Listing 6-6 shows the new line you need to add to the EXPLORER part of
the program where indicated. The if statement makes sure the instructions
that draw an object run only if the object number is not (!=) 255.

After adding the line, indent the existing code that comes after it by
four spaces. The indentation tells Python that those instructions belong to
the if instruction. You can either type four spaces at the start of the next
two lines, or you can highlight them and click FormatIndent Region.

--snip--

###############
EXPLORER
###############

--snip--

 for y in range(room_height):
 for x in range(room_width):
 if room_map[y][x] != 255:
 image_to_draw = objects[room_map[y][x]][0]
 screen.blit(image_to_draw,
 (top_left_x + (x*30),
 top_left_y + (y*30) - image_to_draw.get_height()))

--snip--

Listing 6-6: Updating the Explorer so it doesn’t try to show image 255

Now you’re ready to take a tour of the base. Save the program as
listing6-6.py and run it by entering pgzrun listing6-6.py. Use the arrow
keys to move around the map and familiarize yourself with the layout of
the space station. As before, the Explorer program allows you to move any
direction around the map, even if a wall would block your path when play-
ing the game.

All the scenery should be in place in the rooms. Wide objects should
display correctly now, and you should be able to view all the rooms again
because of the changes you made earlier in Listing 6-5. Some objects will

listing6-6.py

Installing the Space Station Equipment 109

still have a black square under them because there’s no floor tile under-
neath, but we’ll fix that in Chapter 8.

The space station map and scenery are now complete. It’s time to move
into the space station. In the next chapter, you’ll teleport down to the sur-
face and set foot on Mars at last.

Training Mission #1

Can you add your own room design to the scenery data? Room number 43 has
been left empty for you to fill. It is 9 × 9 tiles in size, so you can place objects
in positions 1 to 7 in each direction (remember the wall!). You could base your
design on a room you created previously in the Explorer in Chapter 5 or invent a
new layout. Remember that you need to turn off the assert instructions to stop the
checksum complaining when the scenery numbers don’t add up.

Your program’s objects dictionary (shown in Chapter 5) tells you the number
of each object. Use object numbers between 1 and 47 to ensure that you don’t
create any problems now that might affect the code when you complete and play
the Escape game later.

If you get stuck, try building my example, which is shown in the Mission
Debrief on page 110. Change the value of current_room in the VARIABLES sec-
tion to 43 so you can see your redesigned room when you first run the program.
Remember to change current_room back to 31 when you’ve finished.

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons in
this chapter.

�� Items that cannot move during the Escape game are called scenery.

�� The scenery dictionary uses the room number as its key and provides a
list of the fixed items in each room.

�� Each scenery item is stored as a list containing the object number,
y position, and x position.

�� Checksums check whether the data has been changed or entered
incorrectly.

�� Loops can be used to add items to the scenery dictionary. Some scenery
can be positioned randomly, too.

�� The generate_map() function takes items that are in the current room
from the scenery dictionary and puts them in the room_map list. Then the
items can be displayed in the room.

�� The number 255 in room_map represents a space that is covered by a wide
object, when the object doesn’t start in that space.

110 Chapter 6

Mission Debrief
Here is the answer for the training mission in this chapter.

Training Mission # 1

To use my design for room 43, add the line shown here to the scenery dictionary. The
result looks like Figure 6-4.

--snip--
 41: [[4,3,1], [10,3,5], [4,5,1], [10,5,5], [4,7,1],
 [10,7,5], [12,1,1], [12,1,5]],
 43: [[18,1,1], [18,1,4], [14,1,6], [52,4,5], [52,4,2]],
 44: [[46,4,3], [46,4,5], [18,1,1], [19,1,3],
 [19,1,5], [52,4,7], [14,1,8]],
--snip--

To stop the checksum from halting the program, you also need to comment out
the two assert instructions in the SCENERY part of the program:

--snip--
print(check_counter, "scenery data items")
##assert check_counter == 161, "Expected 161 scenery items"
##assert checksum == 200095, "Error in scenery data"
print("Scenery checksum: " + str(checksum))
--snip--

Figure 6-4: My custom design for room 43

7
Moving into

the Space Station

Now that we’ve outfitted the space station
with scenery, life support systems, and other

equipment, it’s time to move in. In this chap-
ter, you’ll see yourself in the space station for

the first time, and you’ll be able to move around and
explore the rooms. You might feel a bit stiff from the
journey to begin with, but you’ll soon be walking all
over the base.

You’ll discover how to animate the astronaut and use the keyboard con-
trols to move them around. You’ll also add code to enable the astronaut to
move between rooms. Is there life on Mars? There is now.

112 Chapter 7

Arriving on the Space Station
We’ll use Listing 6-6 from Chapter 6 as a starting point in this chapter, so
open listing6-6.py. We’ll add code to show you in your space suit in the space
station. Eventually, you’ll be able to move around using the arrow keys.

Disabling the Room Navigation Controls
in the EXPLORER Section
So far, we’ve been using the arrow keys in the EXPLORER section to show dif-
ferent rooms on the map. We’re going to start using those keys to move the
astronaut around the rooms. First, we need to disable the existing controls.
Scroll down to the EXPLORER part of the program and highlight the instruc-
tions shown in Listing 7-1. Click FormatComment Out Region to turn
those instructions into comments so the program will ignore them. (You
can also just delete them if you prefer.) Save your program as listing7-1.py.

--snip--
##def movement():
global current_room
old_room = current_room

if keyboard.left:
current_room -= 1
if keyboard.right:
current_room += 1
if keyboard.up:
current_room -= MAP_WIDTH
if keyboard.down:
current_room += MAP_WIDTH
##
if current_room > 50:
current_room = 50
if current_room < 1:
current_room = 1
##
if current_room != old_room:
print("Entering room:" + str(current_room))
##
##clock.schedule_interval(movement, 0.08)
--snip--

Listing 7-1: Turning off the keyboard controls in the EXPLORER section

Now we can add code that uses the arrow keys to move the astronaut.

Adding New Variables
Let’s start by setting up some variables. The most important of these are
your starting coordinates where you’ll teleport in. As before, we add vari-
ables to the VARIABLES part of the program, near the start. Add the new lines
in Listing 7-2. Save your program as listing7-2.py.

listing7-1.py

Moving into the Space Station 113

--snip--
TILE_SIZE = 30

 player_y, player_x = 2, 5
 game_over = False

 PLAYER = {
 "left": [images.spacesuit_left, images.spacesuit_left_1,
 images.spacesuit_left_2, images.spacesuit_left_3,
 images.spacesuit_left_4
],
 "right": [images.spacesuit_right, images.spacesuit_right_1,
 images.spacesuit_right_2, images.spacesuit_right_3,
 images.spacesuit_right_4
],
 "up": [images.spacesuit_back, images.spacesuit_back_1,
 images.spacesuit_back_2, images.spacesuit_back_3,
 images.spacesuit_back_4
],
 "down": [images.spacesuit_front, images.spacesuit_front_1,
 images.spacesuit_front_2, images.spacesuit_front_3,
 images.spacesuit_front_4
]
 }

x player_direction = "down"
y player_frame = 0
z player_image = PLAYER[player_direction][player_frame]

player_offset_x, player_offset_y = 0, 0

--snip--

Listing 7-2: Adding player variables

The VARIABLES section already includes a value for current_room, which
is the room you’ll start in. (If you changed the value of current_room while
experimenting in Chapter 6, make sure you change it back to 31.) We make
new player_y and player_x variables  to contain numbers for your starting
position in the room. Here, we’re setting up two variables in a single line.
The numbers are put into the variables in the same order they’re listed, so 2
goes into player_y (the first number goes into the first variable), and 5 goes
into player_x. These variables will change as you move around the rooms
on the space station and will be used to check where you are and draw you
in the correct place. Your position is measured using the same tile coordi-
nates as for the scenery positions.

We also set up a game_over variable  to tell the program whether the
game has ended. At the start of the program, we set the variable to False.
It will stay False until the game ends and then become True. The program
checks this variable to see whether the player is allowed to move. It would
be odd if the player kept moving after they died!

Next, we’ll set up the images for the player’s walking animation. Ani-
mation is a trick of the eye. You start with a series of similar pictures with

listing7-2.py

114 Chapter 7

slight differences that show small movements. When you switch between
them quickly, you can fool the eye into thinking the image is moving. In
our game, we’ll use a series of images of the astronaut walking that show
the legs in different positions. When we switch between them quickly, the
astronaut’s legs will look like they’re moving.

Tip

The key to making animation work is to make sure the images are similar enough.
If the images are too different, the effect doesn’t work.

Each image in an animation is known as a frame. Table 7-1 shows the
animation frames we’ll use. We’ll number our frames starting at 0, which
will be the resting position when the astronaut isn’t walking. When the
player is walking up the screen, we see their back because they’re walking
away from us in the room.

Table 7-1: The Animation Frames for the Astronaut

Key Frame 0 Frame 1 Frame 2 Frame 3 Frame 4

left

right

up

down

The PLAYER dictionary  stores the animation frames. The direction
names—up, down, left, and right—are the dictionary keys. Each dictionary

Moving into the Space Station 115

entry is a list that has the image of the player standing, plus four anima-
tion frames for that direction of walking (see Table 7-1). The PLAYER dic-
tionary will be used together with the direction the player is facing x and
the number of the animation frame y to display the correct image as the
player walks or stands still. The player_image variable z stores the current
image of the astronaut.

Tip

Appendix B at the back of the book describes the important variables in the Escape
program, so look there if you can’t remember what a particular variable does.

Teleporting onto the Space Station
Get ready to beam down! With the starting coordinates in place, let’s add
the code to make you appear in the space station.

Listing 7-3 shows the lines you need to add to the EXPLORER part of the
program. As before, you only need to add the new lines. Don’t change the
other lines. Just use them to find your way around the program code. The
first new line  is indented by eight spaces because it’s inside a function
and also inside a loop. Save your program as listing7-3.py.

--snip--
 for y in range(room_height):
 for x in range(room_width):
 if room_map[y][x] != 255:
 image_to_draw = objects[room_map[y][x]][0]
 screen.blit(image_to_draw,
 (top_left_x + (x*30),
 top_left_y + (y*30) - image_to_draw.get_height()))

 if player_y == y:
 image_to_draw = PLAYER[player_direction][player_frame]
 screen.blit(image_to_draw,

 (top_left_x + (player_x*30)+(player_offset_x*30),
 top_left_y + (player_y*30)+(player_offset_y*30)
 - image_to_draw.get_height()))
--snip--

Listing 7-3: Drawing the player in the room

These new instructions draw you in the room. The y loop draws the
room from back to front. The x loop draws the scenery in each row from
left to right.

After each row is drawn, the program checks whether the player is
standing in that row . This instruction should be lined up with the for
x in range(room_width) line rather than indented further, because it’s not
inside the x loop. It will run once, after the x loop has finished.

listing7-3.py

116 Chapter 7

If the player is in the row the program has just drawn, the next line 
puts the picture of the player into the variable image_to_draw. The image is
taken from the PLAYER dictionary of animation frames, using the player’s
direction and the animation frame number.

The last new line  draws the player using the image_to_draw variable you
just set up, which contains the picture. It also uses the player’s x and y posi-
tion variables to work out where to draw the image on the screen. Chapter 3
explains how the position onscreen is calculated (see “Working Out Where
to Draw Each Item” on page 56). The player_offset_x and player_offset_y
variables were set up in Listing 7-2 and are used to position the player part-
way between tiles as they walk between them. You’ll learn more about these
variables shortly.

Get ready to teleport! Brace yourself! Take a deep breath.
Run your program using pgzrun listing7-3.py. If your teleportation was

successful, you should be on the space station (see Figure 7-1). If not, check
the program changes you made in this chapter.

One side effect of teleporting is that at first you can’t move. As we add
more code, you’ll find that the side effect wears off.

Figure 7-1: The astronaut arrives!

Adding the Movement Code
Now we’ll add a totally new section called GAME LOOP. This is the heart of
the program. The game_loop() function will run several times a second and
enable you to move. Later in the book, we’ll add more instructions here
that enable you to do things with the objects you find.

Add this new section between the MAKE MAP and EXPLORER sections. List-
ing 7-4 shows you what it looks like. Save the program as listing7-4.py.

--snip--

 for tile_number in range(1, image_width_in_tiles):
 room_map[scenery_y][scenery_x + tile_number] = 255

listing7-4.py

Moving into the Space Station 117

###############
GAME LOOP
###############

 def game_loop():
 global player_x, player_y, current_room

 global from_player_x, from_player_y
 global player_image, player_image_shadow
 global selected_item, item_carrying, energy
 global player_offset_x, player_offset_y
 global player_frame, player_direction

 if game_over:
 return

 if player_frame > 0:
 player_frame += 1
 time.sleep(0.05)
 if player_frame == 5:
 player_frame = 0
 player_offset_x = 0
 player_offset_y = 0

 # save player's current position
 old_player_x = player_x
 old_player_y = player_y

 # move if key is pressed
 if player_frame == 0:
 if keyboard.right:
 from_player_x = player_x
 from_player_y = player_y
 player_x += 1
 player_direction = "right"
 player_frame = 1
 elif keyboard.left: #elif stops player making diagonal movements
 from_player_x = player_x
 from_player_y = player_y
 player_x -= 1
 player_direction = "left"
 player_frame = 1
 elif keyboard.up:
 from_player_x = player_x
 from_player_y = player_y
 player_y -= 1
 player_direction = "up"
 player_frame = 1
 elif keyboard.down:
 from_player_x = player_x
 from_player_y = player_y
 player_y += 1
 player_direction = "down"
 player_frame = 1

118 Chapter 7

 # If the player is standing somewhere they shouldn't, move them back.
 # Keep the 2 comments below - you'll need them later
 if room_map[player_y][player_x] not in items_player_may_stand_on: #\
 # or hazard_map[player_y][player_x] != 0:
 player_x = old_player_x
 player_y = old_player_y

 player_frame = 0

 if player_direction == "right" and player_frame > 0:
 player_offset_x = -1 + (0.25 * player_frame)
 if player_direction == "left" and player_frame > 0:
 player_offset_x = 1 - (0.25 * player_frame)
 if player_direction == "up" and player_frame > 0:
 player_offset_y = 1 - (0.25 * player_frame)
 if player_direction == "down" and player_frame > 0:
 player_offset_y = -1 + (0.25 * player_frame)

###############
EXPLORER
###############

--snip--

Listing 7-4: Adding player movement

At the very end of the program, you also need to add a new section called
START, which will make the game_loop() function run every 0.03 seconds. List-
ing 7-5 shows you the lines to add. This instruction isn’t indented, because it
doesn’t belong to a function. Python runs the instructions that aren’t inside a
function in the order they appear in the program, from top to bottom. This
instruction runs after all the variables, map, scenery, and prop data have
been set up and the functions have been defined in the instructions above.
Save your program as listing7-5.py.

--snip--
###############
START
###############

clock.schedule_interval(game_loop, 0.03)

--snip--

Listing 7-5: Setting the game_loop() function to run regularly

Run the program using pgzrun listing7-5.py. You should be in the room
(as shown in Figure 7-1) and be able to move using the arrow keys! You
might notice your legs disappear when you walk up the screen. This is a
side effect of teleportation that will wear off when we improve the code
for drawing rooms in Chapter 8.

At this point, the program won’t work properly if you walk out the door,
but it should stop you from walking through walls or furniture. If you can

listing7-5.py

Moving into the Space Station 119

walk through objects, double-check the new code you just added. If you still
have problems, carefully check the line that sets up the items_player_may
_stand_on list at the end of the OBJECTS part of the program.

Understanding the Movement Code
If you want to play the game and customize it with your own designs, you
don’t need to understand how the code in this chapter works. You can
simply replace the images and the data for maps, scenery, and props. This
movement code, and the code for moving between rooms, which you’ll add
later in this chapter, should keep working. However, if you want to under-
stand how the code works and want to see how you could add animation to
your programs, I’ll break it down now. This code is the real engine of the
game, so in many ways it’s the most exciting bit!

If you’re getting a sense of déjà vu, it’s because you’ve already seen
much of this code. In Chapter 2, for your spacewalk, you used code to
change the player’s position using keyboard controls and a function called
game_loop() to control movement. Let’s refresh our memories and see what’s
new in Listing 7-4.

In Listing 7-4, we define a function called game_loop()  at the start of
this new section. The clock.schedule_interval() function we added at the end
of the program (see Listing 7-5) makes this game_loop() function run every
0.03 seconds. Each time the game_loop() function runs, it checks whether
you’ve pressed an arrow key or are walking and, if so, updates your position.

At the start of game_loop(), we tell Python which variables are global
variables  (see “Understanding the Spacewalk Listing” on page 27 for
a refresher on why we need to do this). Some of these aren’t used yet, but
we’ll need them later.

Then we check the game_over variable. If it’s set to True , the game_loop()
function finishes without running any of its other instructions because the
game is over. This variable stops the player from moving when the game
ends. For now, it won’t do anything, because nothing in our program causes
the game to end.

The game_loop() function checks whether the player is already walk-
ing . It takes four animation frames to walk one tile across the screen. If
the player is moving, the player_frame variable contains a number between
1 and 4, which represents the animation frame being used. If the player is
walking, the program increases the player_frame variable by 1 to move to the
next animation frame. That means the draw() function in the EXPLORER sec-
tion will show the next animation frame the next time it runs.

When player_frame reaches 5, it means all the animation frames have
been shown and the animation has ended. In that case, the program resets
player_frame to 0 to end the animation. When the animation ends, the pro-
gram also resets the player_offset_x and player_offset_y variables. I’ll tell you
what these do in a minute.

Next, we see whether the player has pressed a key to start a new walking
animation. Before we let the player move, we save their current position 

120 Chapter 7

by storing the x position in the variable old_player_x and the y position in
the variable old_player_y. We will use these variables to move the player back
if they try to walk somewhere they shouldn’t, such as into a wall pillar.

The program then uses a familiar block of code to change the player’s
x and y position variables if an arrow key is pressed . We measure the play-
er’s position in tiles, the same units we use for positioning the scenery. This
is different from when we used pixels as the measurement in Chapter 1.

When the player presses the right arrow key, the program adds 1 to
the x position. If the player presses the left arrow key, it subtracts 1. We use
similar code to change the y position if the player presses the up or down
arrow keys.

When the player moves, the global variables from_player_x and from
_player_y store the position the player is walking from. These variables will
be used later to check whether the player has been hit by a hazard while
walking. The player_direction variable is also set to the direction they’re
moving, and the player_frame is set to 1, the first frame in the animation
sequence.

As in Chapter 1, we use elif to combine our checks for a keypress. This
ensures the player cannot change the x and y positions at the same time
to move diagonally. In our 3D room, walking diagonally would enable the
player to walk through obstacles, squeezing through impossible gaps.

After moving the player, we check whether the new position puts them
somewhere they’re allowed to be . We do this by using room_map to see
what item is in the position they’re standing at and checking it against the
list items_player_may_stand_on. There is some code I’ve commented out here
too, which we’ll need to enable later to stop players from walking through
hazards.

We can use the keyword in to check whether something is in a list. By
using the keyword not with it, we can see whether something is missing from
a list. The following line means “If the number in the map where the player
is standing isn’t in the list of items, the player is allowed to stand on . . .”

if room_map[player_y][player_x] not in items_player_may_stand_on:

If the player is standing on something that isn’t in the items_player_may
_stand_on list, we reset the player’s x and y positions to their position before
they moved.

All of this happens so fast that the player doesn’t notice anything. If
they try to walk into a wall, it looks like they never went anywhere! This is a
simpler way of stopping the player from walking through walls than check-
ing whether each movement is allowed before making it.

The program also sets the player_frame variable to 0 if the player’s posi-
tion must be reset . This turns off the player animation again.

When you press the right arrow key, the astronaut steps one tile to the
right. It takes four frames to animate this, so the astronaut is displayed
at positions that are partway across the tile while this animation plays
out. The player_offset_x and player_offset_y variables are used to work

Moving into the Space Station 121

out where to draw the astronaut. These variables are calculated at the
end of the game_loop() function . The draw() function (see Listing 7-3)
multiplies the offset values by the size of a tile (30 pixels) because images
are drawn in pixels. For example, if the offset is 0.25 tiles, the astronaut
is drawn roughly 7 pixels away from the center of the new tile. The com-
puter will round the number because you can’t position something using
half a pixel.

Look at the left side of Figure 7-2. For the first animation frame when the
astronaut is walking left, we need to add three-quarters of a tile to the player’s
new tile position (0.75). For the second animation frame, we add half a tile
(0.5) to the player’s new tile position before drawing it. For the third anima-
tion frame, we add a quarter of a tile to the player’s new tile position.

Walking rightWalking left

old tile

new tile

x offset x offset old tile

new tile

frame

0

1

2

3

4

1

0.75

0.5

0.25

0

−1

−0.75

−0.5

−0.25

0

Figure 7-2: Understanding how the astronaut is positioned during the animation

We can calculate these offset numbers using the frame number. Here’s
the calculation for walking left:

player_offset_x = 1 - (0.25 * player_frame)

Check that this calculation makes sense by working out the numbers
on your own. For example, here is the calculation when the animation
frame is 2:

0.25 × 2 = 0.5

1 − 0.5 = 0.5

122 Chapter 7

In Figure 7- 2, 0.5 is the correct offset for frame 2.
When the player walks right, we need to subtract part of a tile from the

player’s position, so the offsets are negative. Look at the right side of Fig-
ure 7-2. For frame 1, adding −0.75 puts the astronaut three-quarters of a
tile to the left of their new position.

We can work out the x offset for walking right using the frame number
too. Here’s the formula:

player_offset_x = -1 + (0.25 * player_frame)

Training Mission #1

Can you check that the formula works? Use it to find the offset values for frames 1
and 3, and check that they match the offset values in Figure 7-2.

The offsets for the y direction work the same. When the astronaut is
moving up, we calculate the y offset using the same formula as the left off-
set. When the astronaut is moving down, we calculate the y offset using the
same formula as the right offset.

In summary, the game_loop() function does this:

•	 If you’re not walking, it starts the walking animation when you press
a key.

•	 If you are walking, it works out the next animation frame and the posi-
tions partway across the tile to use when drawing you.

•	 If you’ve reached the end of the animation sequence, it resets it so you
can move again. The movement is fluid, so if you hold down a key,
you’ll cycle through animation frames 1 to 4 and won’t see the stand-
ing position until you stop walking.

Moving Between Rooms
Now that you’re on your feet, you’ll want to explore the space station fully.
Let’s add some code to the game_loop() function that lets you walk into the
next room. Add the new code in Listing 7-6, which goes after we check for
keypresses and before we check whether the player is standing somewhere
they shouldn’t be. Make sure you include the instructions with comment
symbols (#) at the start. We’ll need them later.

The grayed-out lines in Listing 7-6 show you where to add the new code.
Save your program as listing7-6.py. Run it using pgzrun listing7-6.py and
then walk around the space station! This is a good time to look around,
before the doors are fitted and certain areas are locked down.

--snip--

def game_loop():

listing7-6.py

Moving into the Space Station 123

--snip--
 player_direction = "down"
 player_frame = 1

check for exiting the room
 if player_x == room_width: # through door on RIGHT

 #clock.unschedule(hazard_move)
 current_room += 1
 generate_map()
 player_x = 0 # enter at left
 player_y = int(room_height / 2) # enter at door
 player_frame = 0
 #start_room()
 return

 if player_x == -1: # through door on LEFT
 #clock.unschedule(hazard_move)
 current_room -= 1
 generate_map()
 player_x = room_width - 1 # enter at right
 player_y = int(room_height / 2) # enter at door
 player_frame = 0
 #start_room()
 return

 if player_y == room_height: # through door at BOTTOM
 #clock.unschedule(hazard_move)
 current_room += MAP_WIDTH
 generate_map()
 player_y = 0 # enter at top
 player_x = int(room_width / 2) # enter at door
 player_frame = 0
 #start_room()
 return

 if player_y == -1: # through door at TOP
 #clock.unschedule(hazard_move)
 current_room -= MAP_WIDTH
 generate_map()
 player_y = room_height - 1 # enter at bottom
 player_x = int(room_width / 2) # enter at door
 player_frame = 0
 #start_room()
 return

 # If the player is standing somewhere they shouldn't, move them back.
 if room_map[player_y][player_x] not in items_player_may_stand_on: #\
 # or hazard_map[player_y][player_x] != 0:
 player_x = old_player_x
--snip--

Listing 7-6: Enabling the player to move between rooms

124 Chapter 7

To see how this code works, let’s use an example room map. Figure 7-3
shows a room 9 tiles wide and 9 tiles high with exits on each wall. We’ll use
this image to understand the player’s position when they’ve left the room.

As you know, the positions on the map are numbered starting at 0 in
the top left. The yellow squares show where the player might be if they
walked out of the room:

•	 If the player’s y position is −1, they’ve walked out of the top exit.

•	 If the player’s x position is −1, they’ve walked out of the left exit.

•	 If the player’s y position is the same as the room_height variable, they’ve
walked out of the bottom. The tile positions are numbered starting
at 0, so if the player goes into row 9 in a room that has 9 rows, they’ve
already left the room.

•	 Similarly, if the player’s x position is the same as the room_width variable,
they’ve walked out of the right exit.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

y = −1

x = 9x = −1

y = 9

Figure 7-3: Working out whether the player has walked through an exit

The new code lines check whether the player position means they’ve
walked out of the room. If the player’s x position is the same as room_width ,
they’re outside the door on the right, as shown in Figure 7-3.

When a player leaves the room, we need to change the number of the
room they’re in, which is stored in the current_room variable. When they go

Moving into the Space Station 125

through a door on the right, the room number increases by 1 . Look at
the room map again (flip back to Figure 4-1 on page 60) to see that this
makes sense: room numbers increase from left to right. For example, if the
player is in room 33 and walks through the exit on the right, they end up in
room 34.

The program then generates a new room_map list  to use in displaying
and navigating the new room. The player is repositioned at the opposite
side of the room , so it looks like they’ve walked through the doorway. If
the player exits to the right of the room, they enter the next room from the
left .

Rooms are lots of different sizes, so we also need to change the player’s
y position to put them in the middle of the doorway. Otherwise, the player
might emerge from a wall! We set the player’s position to be half the height
of the room , which means they’re right in the middle of the doorway.
When they enter the room, we reset the player animation, too .

I’ve included a couple of features here that we’ll need later, so make
sure you include the clock.unschedule(hazard_move)  and start_room() 
instructions. The start_room() function will display the room name when
the player enters a new room. We’ll talk about those instructions more later
in the book.

Finally, the return instruction exits the game_loop() function . Any
further instructions in the function won’t run this time around. When the
function starts again, it will start from the top as usual.

The next code block  checks whether the player went through the left
door. To go through the left door, the program does the following:

•	 Checks whether the player_x variable contains -1 (see Figure 7-3).

•	 Subtracts 1 from the current room number to go into the room on
the left.

•	 Sets the player’s x position to be just inside the doorway on the
right. This position is the room_width minus 1. (You can check this in
Figure 7-3. In a room that has a room_width of 9, the player’s x position
should be 8.)

•	 Sets the player’s y position to the middle using the room_height. This is
the same approach as walking through the right exit.

The same code structure is used for the top and bottom exits . How-
ever, the program checks the player’s y position to see if they used an exit
and sets their new position to enter through a top or bottom doorway.

This time, we change the room number by 5 instead of 1 because that’s
how many rooms wide the game map is (see Figure 4-1). For example, if
you’re in room 37 and you go through the top exit, you end up in room 32
(which is 37 minus 5). If you’re in room 37 and go through the bottom exit,
you end up in room 42 (37 plus 5). We stored the number 5 in the variable
MAP_WIDTH earlier, and the program uses it here.

Now you’re able to freely explore the space station. In the next chapter,
we’ll fix the remaining few bugs in the room display.

126 Chapter 7

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons in
this chapter.

�� The player’s position in the Escape game is measured in tiles, just like
the scenery.

�� The game_loop() function controls player movement and is scheduled to
run every 0.03 seconds.

�� If the player moves somewhere they aren’t allowed to be, they’re put
back in their previous position so fast you won’t see them move.

�� The program checks the player’s x and y positions to see whether they’ve
walked out of an exit. If they have, they’ll appear in the middle of the
opposite exit in the next room.

�� The animation frames are stored in the PLAYER dictionary and have a list
of images for each direction. The dictionary key is the direction name,
and an index number gets the particular frame needed.

�� Frame 0 is the standing-still position. Frames 1, 2, 3, and 4 show the
astronaut walking.

�� The game_loop() function increases the animation frame number used
when the player is walking.

�� The player_offset_x and player_offset_y variables are used to position
the astronaut correctly when walking into a new tile.

Mission Debrief
Here is the answer for the training mission in this chapter.

Training Mission # 1

For frame 1:

0.25 × 1 = 0.25

–1 + 0.25 = –0.75

For frame 3:

0.25 × 3 = 0.75

–1 + 0.75 = –0.25

8
Repairing the Space Station

While wandering around the space station,
you must have noticed that some things

don’t look quite right. To get the program
up and running quickly, we used the EXPLORER

section to display the rooms. However, it has a few
drawbacks:

•	 Sometimes a blank space is shown beneath the scenery because there’s
no floor there.

•	 When you walk to the front of the room, the front wall hides the
astronaut.

•	 The astronaut’s legs disappear when walking to the back of the screen.

•	 The rooms are all drawn in the top left of the game window. This makes
it look uneven and inconsistent, because there’s much more space on the
right of the rooms than on the left, and wider rooms leave less space on
the right than narrow rooms do.

128 Chapter 8

•	 There are no shadows, making it harder to understand the position of
objects in the room.

In this chapter, we’ll fix these glitches and also add a function for dis-
playing messages at the top of the window. These messages will give players
information about the space station and their progress in the game.

As you read through the chapter, you’ll learn how to send information
to a Python function and discover how to draw rectangles using Pygame
Zero. By the end of the chapter, the space station will look great!

Sending Information to a Function
For the first time, we’ll need to send information to a function. You’ve
already seen how to send information to the print() function by putting it
between the parentheses. For example, you can output a message like this:

print("Learn your emergency evacuation drill")

When that instruction runs, the print() function receives information
you put in the brackets, and displays it in the command line window or the
Python shell.

We can also send information to functions we’ve made.

Creating a Function that Receives
Information
To experiment with functions, we’ll build a function that adds two numbers
that we send it. Click File4New to open a new window, and enter the pro-
gram in Listing 8-1.

 def add(first_number, second_number):
 total = first_number + second_number
 print(first_number, "+", second_number, "=", total)

 add(5, 7)
add(2012, 137)
add(1234, 4321)

Listing 8-1: Sending information to a function

Save the program as listing8-1.py. Because it doesn’t use any Pygame
Zero features, you can run it by clicking Run4Run Module or by pressing
F5. (If you do run it using Pygame Zero, the results will appear in the com-
mand line window, and the game window will be empty.)

When you run the program, you should see the following output:

5 + 7 = 12
2012 + 137 = 2149
1234 + 4321 = 5555

listing8-1.py

Repairing the Space Station 129

We create a new function called add() . After we’ve defined add(), we
can run it by using its name  and send it numbers by putting them in the
parentheses, using commas between them . The function will then add
those two numbers.

How It Works
To enable the function to receive the numbers, we give it two variables to
store the numbers in when we define it. I’ve called them first_number and
second_number  to make the program easier to understand, but the variable
names could be anything. These are local variables: they only work inside
this function.

When you use the function, it takes the first item it receives and puts it
into the variable first_number. The second item goes into second_number.

Of course, it doesn’t matter which order you add two numbers in, so
it doesn’t matter what order you send the numbers in. The instructions
add(5, 7) and add(7, 5) give the same result. But some functions will need you
to send the information in the same order the function expects to receive it.
For example, if the function were subtracting numbers, you’d get a different
result if you sent the numbers in the wrong order. The only way to know what
information a function expects to receive is to take a look at its code.

The body of the function is quite simple. It creates a new variable called
total, which stores the result of adding the two numbers . The program
then prints a line that contains the first number, a plus sign, the second
number, an equal sign, and the total .

In the last three instructions, we send the function three pairs of
numbers to add .

This simple demonstration shows you how information (or arguments)
can be sent to a function. You can make functions that take more argu-
ments than just two, and even take lists, dictionaries, or images. Functions
make it easy to reuse sets of instructions, and sending arguments means
we can reuse those instructions with different information. For example,
Listing 8-1 uses the same print() instruction three times, to display the sum
of three different number pairs. In this case, we’ve avoided repeating the
print() instruction and the one that sets up the total variable. More sophis-
ticated functions can avoid repeating a lot of code, and this can make the
program much easier to write and understand.

Training Mission #1

Try modifying the program to subtract one number from another rather than add-
ing. What happens when you change the order of the numbers you send to the
new function? You might want to change more than just the calculation to make
sure the function is easy to use.

Now we’re ready to add some new functions to Escape to draw objects on
the space station.

130 Chapter 8

Adding Variables for Shadows, Wall
Transparency, and Colors

To fix our space station, we’ll create new display functions for the Escape
game, using our newfound knowledge of functions. Before we make these
new functions, we need to set up new variables for the functions to use.

Open listing7-6.py, the last listing you saved in Chapter 7. Find the
VARIABLES section near the start of the program, and add the new lines
shown in Listing 8-2. Save the program as listing8-2.py. As always, it’s a
good idea to run the program (using pgzrun listing8-2.py) to check for
any new errors.

--snip--

###############
VARIABLES
###############

--snip--

player_image = PLAYER[player_direction][player_frame]
player_offset_x, player_offset_y = 0, 0

 PLAYER_SHADOW = {
 "left": [images.spacesuit_left_shadow, images.spacesuit_left_1_shadow,
 images.spacesuit_left_2_shadow, images.spacesuit_left_3_shadow,
 images.spacesuit_left_3_shadow
],
 "right": [images.spacesuit_right_shadow, images.spacesuit_right_1_shadow,
 images.spacesuit_right_2_shadow,
 images.spacesuit_right_3_shadow, images.spacesuit_right_3_shadow
],
 "up": [images.spacesuit_back_shadow, images.spacesuit_back_1_shadow,
 images.spacesuit_back_2_shadow, images.spacesuit_back_3_shadow,
 images.spacesuit_back_3_shadow
],
 "down": [images.spacesuit_front_shadow, images.spacesuit_front_1_shadow,
 images.spacesuit_front_2_shadow, images.spacesuit_front_3_shadow,
 images.spacesuit_front_3_shadow
]
 }

 player_image_shadow = PLAYER_SHADOW["down"][0]

 PILLARS = [
 images.pillar, images.pillar_95, images.pillar_80,
 images.pillar_60, images.pillar_50
]

 wall_transparency_frame = 0

listing8-2.py

Repairing the Space Station 131

 BLACK = (0, 0, 0)
BLUE = (0, 155, 255)
YELLOW = (255, 255, 0)
WHITE = (255, 255, 255)
GREEN = (0, 255, 0)
RED = (128, 0, 0)

###############
MAP
###############

--snip--

Listing 8-2: Adding the variables needed for the new display functions

We add a PLAYER_SHADOW dictionary  that’s similar to the PLAYER diction-
ary. It contains animation frames for the astronaut’s shadow on the floor.
As the astronaut moves, the shadow also changes shape. The player_image
_shadow  stores the astronaut’s current shadow, like the player_image vari-
able that stores the astronaut’s current animation frame (or the standing
image).

Later in this chapter, we’ll add animation that fades out the front wall
when you walk behind it so you can still see the astronaut. Here, we set up
a list of the animation frames  and a wall_transparency_frame variable to
remember the one that’s being shown now . You’ll learn more about how
these work later on.

We’ve also set up some names that we can use to refer to color num-
bers . Colors in Pygame Zero are stored as tuples. A tuple is like a list
whose content you can’t change, and it uses parentheses instead of square
brackets. You’ve seen tuples used for coordinates when drawing on the
screen (see Chapter 1). Colors are stored as three numbers that specify the
amount of red, green, and blue in the color, in that order. The scale for
each color ranges from 0 to 255. This color is bright red:

(255, 0, 0)

The red is at its maximum (255), and there’s no green (0) or blue (0)
in the color.

Because we’ve set up these color variables, we can now use the name
BLACK instead of using the tuple (0, 0, 0) to represent black. Using color
names will make the program easier to read.

Table 8-1 shows you some of the color combinations that you might
want to use in your programs. You can also try different numbers to invent
your own colors.

132 Chapter 8

Table 8-1: Some Example RGB Color Numbers

Red Green Blue Description

255 0 0 Bright red

0 255 0 Bright green

0 0 255 Bright blue

0 0 50 Very dark blue (nearly black!)

255 255 255 White (all the colors at maximum strength)

255 255 150 Creamy yellow (slightly less blue than white)

230 230 230 Silver (a slightly toned-down white)

200 150 200 Lilac

255 100 0 Orange (maximum red with a dash of green)

255 105 180 Pink

Deleting the EXPLORER Section
We need to add a new DISPLAY section with some new functions that will
improve the game’s appearance onscreen. The EXPLORER section has enabled
us to get up and running quickly, but we’re going to build a new and better
draw() function in this chapter that replaces the one we’ve used so far. To
avoid any problems caused by EXPLORER code still being in the program, we’re
going to remove it. Your EXPLORER section might have more or fewer lines
than mine does in Figure 8-1, depending on whether you deleted some of it
in earlier chapters.

To delete the entire EXPLORER section, follow these steps:

1.	 Find the EXPLORER part of the program near the end of the code.

2.	 Click the start of the EXPLORER comment box, hold down the mouse but-
ton, and drag the mouse to the bottom of the section (see Figure 8-1).
The section ends just above where the START section begins.

3.	 Press delete or backspace on the keyboard.

There’s one instruction in the EXPLORER section that we still need: it runs
the generate_map() function to set up the room map for the first room. You’ll
need to add that instruction to the end of the program as a single line, as
shown in Listing 8-3.

--snip--
###############
START
###############

clock.schedule_interval(game_loop, 0.03)
generate_map()

Listing 8-3: Generating the map for the first room

listing8-3.py

Repairing the Space Station 133

The generate_map() line will run after the variables have been set up and
will make the map for the current room.

Figure 8-1: Deleting the EXPLORER section

Save your new listing as listing8-3.py and run it using pgzrun listing8-3.py.
If all is going to plan, you should see no error messages in the command
line window. The game window shows the inky blackness of space because
we haven’t added the new code to draw anything yet.

Adding the DISPLAY Section
Now we’ll add the new DISPLAY section to replace the deleted EXPLORER section.
This section contains most of the code for updating the screen display. It
includes code for drawing the room, showing messages, and changing the
transparency of the front wall.

134 Chapter 8

Adding the Functions for Drawing Objects
First, we’ll make some functions to draw an object, a shadow, or the player
at a particular tile position. Between the GAME LOOP and START sections, add
the new DISPLAY section shown in Listing 8-4 to your program. Save this pro-
gram as listing8-4.py and run it using pgzrun listing8-4.py. Again, you won’t
see anything in the game window yet.

If there are any errors in the command line window, you can use them
to help you fix the program. It’s better to test as you add code to the pro-
gram than to add a lot of code and not know where the mistakes might be.

--snip--

 if player_direction == "down" and player_frame > 0:
 player_offset_y = -1 + (0.25 * player_frame)

###############
DISPLAY
###############

 def draw_image(image, y, x):
 screen.blit(

 image,
 (top_left_x + (x * TILE_SIZE),
 top_left_y + (y * TILE_SIZE) - image.get_height())
)

 def draw_shadow(image, y, x):
 screen.blit(
 image,
 (top_left_x + (x * TILE_SIZE),
 top_left_y + (y * TILE_SIZE))
)

def draw_player():
 player_image = PLAYER[player_direction][player_frame]
 draw_image(player_image, player_y + player_offset_y,

 player_x + player_offset_x)
 player_image_shadow = PLAYER_SHADOW[player_direction][player_frame]
 draw_shadow(player_image_shadow, player_y + player_offset_y,

 player_x + player_offset_x)

###############
START
###############

clock.schedule_interval(game_loop, 0.03)
generate_map()

Listing 8-4: Adding the first functions in the DISPLAY section

listing8-4.py

Repairing the Space Station 135

The first new function, draw_image() , draws a given image on the
screen. When we use it, we give it the image we want to draw and the y and
x tile positions of the object in the room. The function will work out where
on the screen to draw the image (the pixel position), based on the tile posi-
tion in the room. For example, we might use the function like this:

draw_image(player_image, 5, 2)

This line draws the player image at position y = 5 and x = 2 in the room.
When we define the draw_image() function, we set it up to give the image

the name image, put the y position into the y variable, and put the x posi-
tion into the x variable . Although the draw_image() function is several
lines long, its only instruction is screen.blit(), which draws the image at the
position we specify . This instruction is virtually the same as the one we
used in the old EXPLORER section, so take a look at Chapter 3 for a refresher
on how it works.

Tip

Make sure all the parentheses are in the correct places. You need a pair around
all the screen.blit() arguments and another pair around the y and x positions
because they make up a single tuple. You also need a pair around the multiplica-
tion parts of the position calculations. If the program doesn’t work, start checking
for errors by counting the opening and closing parentheses to make sure you have
the same number of each of them.

We then add a new draw_shadow() function . This is similar to the func-
tion for drawing an image, except that the image’s height is not subtracted
when calculating its onscreen position. This is what places the shadow
below the main image. Figure 8-2 shows the astronaut and their shadow
based on the same tile position. Remember that the y position given to
screen.blit() is for the top edge of the image.

top_left_y + (y * TILE_SIZE) - image.get_height()

top_left_y + (y * TILE_SIZE)

Figure 8-2: Working out the position of the image and the
shadow

The third new function, draw_player(), draws the astronaut. First, it puts
the correct astronaut animation frame into player_image . It then uses the

136 Chapter 8

new draw_image() function to draw it . The draw_image() function requires
the following arguments:

•	 The variable player_image, which contains the image to draw.

•	 The result after adding the global variables for player_y and player
_offset_y. This is the y position in tiles, which might include a decimal
part (such as 5.25).

•	 The result after adding player_x and player_offset_x for the x position in
tiles. (See “Understanding the Movement Code” on page 119 for more
information on how the offset variables are used for animation.)

We use similar code to draw the player’s shadow: the correct animation
frame from the PLAYER_SHADOW dictionary is put into player_image_shadow .
Then the draw_shadow() function is used to draw it . The draw_shadow() func-
tion uses the same tile positions as the draw_image() function.

Drawing the Room
Now that we’ve created the functions for drawing objects and the player, we
can add the code to draw the room. The new draw() function in Listing 8-5
adds shadows for scenery and the player, and fixes the visual glitches we saw
previously.

Add the new code at the end of the DISPLAY section, save your program
as listing8-5.py, and run it using pgzrun listing8-5.py. As if you’ve flicked the
lights on, the shadows appear in front of the objects. The game won’t look
quite right yet because all the rooms will be drawn in the top left of the
window, and sometimes a room won’t be cleared properly when you leave
it. We’ll fix this in a moment. At this point, you shouldn’t see any error
messages.

--snip--

def draw_player():
 player_image = PLAYER[player_direction][player_frame]
 draw_image(player_image, player_y + player_offset_y,
 player_x + player_offset_x)
 player_image_shadow = PLAYER_SHADOW[player_direction][player_frame]
 draw_shadow(player_image_shadow, player_y + player_offset_y,
 player_x + player_offset_x)

def draw():
 if game_over:
 return

 # Clear the game arena area.
 box = Rect((0, 150), (800, 600))
 screen.draw.filled_rect(box, RED)
 box = Rect ((0, 0), (800, top_left_y + (room_height - 1)*30))

listing8-5.py

Repairing the Space Station 137

 screen.surface.set_clip(box)
 floor_type = get_floor_type()

 for y in range(room_height): # Lay down floor tiles, then items on floor.
 for x in range(room_width):
 draw_image(objects[floor_type][0], y, x)
 # Next line enables shadows to fall on top of objects on floor
 if room_map[y][x] in items_player_may_stand_on:
 draw_image(objects[room_map[y][x]][0], y, x)

 # Pressure pad in room 26 is added here, so props can go on top of it.
 if current_room == 26:
 draw_image(objects[39][0], 8, 2)
 image_on_pad = room_map[8][2]
 if image_on_pad > 0:
 draw_image(objects[image_on_pad][0], 8, 2)

 for y in range(room_height):
 for x in range(room_width):
 item_here = room_map[y][x]
 # Player cannot walk on 255: it marks spaces used by wide objects.
 if item_here not in items_player_may_stand_on + [255]:
 image = objects[item_here][0]

 if (current_room in outdoor_rooms
 and y == room_height - 1
 and room_map[y][x] == 1) or \
 (current_room not in outdoor_rooms
 and y == room_height - 1
 and room_map[y][x] == 1
 and x > 0
 and x < room_width - 1):
 # Add transparent wall image in the front row.
 image = PILLARS[wall_transparency_frame]

 draw_image(image, y, x)

 if objects[item_here][1] is not None: # If object has a shadow
 shadow_image = objects[item_here][1]
 # if shadow might need horizontal tiling

 if shadow_image in [images.half_shadow,
 images.full_shadow]:
 shadow_width = int(image.get_width() / TILE_SIZE)
 # Use shadow across width of object.
 for z in range(0, shadow_width):
 draw_shadow(shadow_image, y, x+z)
 else:
 draw_shadow(shadow_image, y, x)

 if (player_y == y):
 draw_player()

 screen.surface.set_clip(None)

138 Chapter 8

###############
START
###############

clock.schedule_interval(game_loop, 0.03)
generate_map()

Listing 8-5: The new draw() function

As with the movement code in Chapter 7, you don’t need to know how
the draw() function works, even if you want to customize the program. I will
explain the draw() function in the next section, so if you don’t want to know
how it works just yet, skip to “Positioning the Room on Your Screen” on
page 141.

Understanding the New draw() Function
You can think of the new draw() function as a more elaborate version of the
code used for the EXPLORER section previously. I’ll give you an overview of
how each bit works.

Clearing the Game Arena

The program starts by clearing the game arena  where the space station
will be drawn. It does this by drawing a big red rectangle, wiping out the
previous screen display. The areas at the top and the bottom that give the
player information are separate, so they’re not changed.

There are two steps for putting a rectangle on the screen. First, you
create the shape using a Pygame object called a Rect, which works like this
(don’t type this in):

box = Rect((left position, top position), (width, height))

The name can be almost anything you like, but I use the name box in
my programs. The position and size are tuples, so they have parentheses
around them.

Second, you draw the Rect you created on the screen by using an
instruction like this (again, don’t type this in):

screen.draw.filled_rect(box, color)

The first item in parentheses is the box Rect you previously created.
The second item is the color of the rectangle you want to draw. This can
be a tuple of the red, green, and blue numbers that make up the number.
In Listing 8-5, I’ve used the name RED, which we set up in the VARIABLES
section earlier.

You can also use a Rect shape to create a clipping area . This is like an
invisible window through which you view the screen. If the program draws

Repairing the Space Station 139

something outside the window, it can’t be seen. I’ve set up a clipping area
that’s the height of the room to stop the player’s shadow from spilling out of
the bottom of the game when they’re in the front doorway.

Drawing the Room

The room is drawn in two stages. First, the program draws the floor tiles
and anything that the player can walk on . Drawing them first enables
scenery, the player, and shadows to be drawn on top of them. This solves
the problem of black holes appearing under scenery, because there will be
floor tiles in those spaces before the scenery is drawn on top.

Second, the program adds the scenery in the room, including its shad-
ows , using new loops. Because this is drawn after the floor for the whole
room has been drawn, the shadows will be drawn on top of floor tiles and
items on the floor. The shadows are transparent, so you can still see the
object underneath the shadow. The scenery drawing loops also add trans-
parent walls  and draw the player on top of the floor .

As always, the room is drawn from back to front to ensure that objects
near the front of the room appear to be in front of objects near the back.

We’ve also added a small chunk of code for a special object that’s
only used in one place in the game. Room 26 has a pressure pad on the
floor that you might want to drop things on when you’re playing the game
(maybe heavy things or things you can make heavy . . .). The special code
here ensures that both the floor pad and the object on it are visible.

After the floor tiles have been drawn, the draw() function checks
whether the current room is room 26: if it is, it draws the floor pad and
then any object that is on top of it .

R e d A l e r t 	 If you’re customizing the game with your own map, delete this piece of code to remove
the floor pad from the game. Start with the comment line , and remove the instruc-
tions down to (and including) the draw_image(objects[image_on_pad][0], 8, 2)
instruction.

Making the Front Wall Transparent

When the program is drawing the front row of the room (when the y loop
equals room_height - 1), it checks whether it needs to draw a semitransparent
wall instead of the solid wall object taken from the room map . The semi-
transparent wall is used if the player is standing behind it (see Figure 8-3).

On the planet surface, the program makes the whole wall transparent.
Inside the space station, a transparent wall panel is used only if it’s not in
one of the bottom corner positions (see Figure 8-3). The corners always use
a solid wall panel. The reason is that it looks odd if you see the solid edge
wall start in the second row from the bottom.

Later on, we’ll add the code to animate the transparency on the wall,
by changing the number in wall_transparency_frame. You won’t see the semi-
transparent wall yet in the game.

140 Chapter 8

Figure 8-3: The transparent wall at the front of the room, as seen in the final game

Adding Shadows

If an object has a shadow, the shadow is taken from the objects dictionary
and put into shadow_image . Then the program checks whether it should
use half_shadow or full_shadow, which fill half a tile or a whole tile respec-
tively. These two standard shadows are used with blocky items (such as
electrical units and walls) that don’t need a distinctive shadow outline. The
program checks whether the shadow_image is in a list that contains those two
standard images .

That’s a simple, and easy-to-read, way to check whether shadow_image is
one of two things. If you’re checking for three or more things, this tech-
nique can make the program much easier to read than having lots of if
comparisons using == and combining them with or.

If the shadow is one of the standard images, the program then works
out how wide the shadow should be in tiles. That is calculated by taking the
width of the object casting the shadow and dividing it by the width of a tile
(30 pixels). For example, an image that is 90 pixels wide will be 3 tiles wide.

The program then creates a loop to draw the
standard shadow images, using the variable z. It
starts at 0 and runs until the width of the shadow
minus 1. That’s because a range leaves out the last
item: range(0, 3) would give us the numbers 0, 1,
and 2. The z values are added to the x position
from the main loop and are used to draw the
shadow tiles. Figure 8-4 shows an object with a
width of 3 tiles. The z loop takes the values 0, 1,
and 2 to add the shadow in the correct place.

By drawing the player in position after the
floor has been laid, we make sure the astro-
naut’s legs don’t disappear when walking up
the screen .

z 0 1 2

Figure 8-4: An object
that is 3 tiles wide could
have a standard shadow
below it that is used three
times.

Repairing the Space Station 141

The draw() function ends by turning off the clipping area that stopped
shadows from spilling out of the bottom of the game area .

Positioning the Room on Your Screen
Now let’s fix the problem of the room appearing in the top left of your
screen. The program uses two variables to position the room: top_left_x
and top_left_y. At the moment, these are set to 100 and 150, which means
the room is always drawn in the top left of the window. We’ll add some code
that will change these variables depending on the size of the room so the
room is drawn in the middle of the window (see Figure 8-5). The screen
layout will look better, and it will make the game easier to play too.

Figure 8-5: A room centered in the window

Add the new lines shown in Listing 8-6 to the end of the generate_map()
function, which is in the MAKE MAP section of the program. Because they’re
inside a function, you need to indent each line by four spaces.

Save the program as listing8-6.py and run it using pgzrun listing8-6.py.
As Figure 8-5 shows, each room should be centered on the screen now.

--snip--

def generate_map():

listing8-6.py

142 Chapter 8

--snip--

 for tile_number in range(1, image_width_in_tiles):
 room_map[scenery_y][scenery_x + tile_number] = 255

 center_y = int(HEIGHT / 2) # Center of game window
 center_x = int(WIDTH / 2)
 room_pixel_width = room_width * TILE_SIZE # Size of room in pixels
 room_pixel_height = room_height * TILE_SIZE
 top_left_x = center_x - 0.5 * room_pixel_width
 top_left_y = (center_y - 0.5 * room_pixel_height) + 110

Listing 8-6: Creating variables to put the room in the middle of the game window

These instructions are inside the generate_map() function, which sets up
the room_map list for each room when the player enters it. The generate_map()
function now also sets up the top_left_x and top_left_y variables that remem-
ber where the room should be drawn in the window.

The new code in Listing 8-6 starts by working out where the middle
of the window is. The HEIGHT and WIDTH variables store the window’s size in
pixels. Dividing them by 2 gives us the coordinates of the center of the
window. We store these in the center_y  and center_x  variables.

The program then works out how wide the image of the room is in
pixels . That will be the width of the room in tiles multiplied by the size
of a tile. The result is stored in room_pixel_width. A similar calculation is
done for the room height .

To put the room image in the middle of the room, we want half the
room to be to the left of the center line and half to the right. So we subtract
half the room width in pixels from the center line  and start drawing the
room there.

A similar calculation is used for top_left_y except we add 110 to the
result . We need to add 110 because our final screen layout will use an
area at the top of the screen as an information panel. We nudge the room
image down a bit to make room for the panel.

Making the Front Wall Fade In and Out
At this point, there are some dead spots in the game where the player can’t
be seen. In the middle of the room, we can avoid that by making sure objects
are not so tall that they obstruct the player. We need a tall wall at the front of
the room, though.

Blocking the player with a wall at the front of the room can cause all
sorts of problems: if you drop something, you won’t be able to find it, or
if something is hurting you, you won’t be able to see it! The solution is to
make the wall fade away when the player approaches it.

The draw() function already draws the front wall pillars using animation
frames. The wall animation has five frames (numbered from 0 to 4) in the
PILLARS list. The first frame is the solid wall, and the last frame shows the
wall at its most translucent (see Table 8-2). As the animation frame number

Repairing the Space Station 143

increases, the wall becomes more transparent. The current frame is stored
in the variable wall_transparency_frame.

Because of the way the transparency works in the images, when the
transparent wall is drawn on top of the player, the player can be seen
through it.

Table 8-2: The Animation Frames for the Front Wall

Frame number 0 1 2 3 4

Image

Listing 8-7 shows the new function called adjust_wall_transparency(),
which will fade the wall in and out. Add it at the end of the DISPLAY section,
after the draw() function you just completed, and before the START section.
You also need to add a line at the end of the program, outside the function,
which will schedule it to run regularly. This line is also in Listing 8-7.

Save your updated program as listing8-7.py and run it using pgzrun
listing8-7.py. If you walk behind the front wall, it now fades to transparent
so you can be seen through it (see Figure 8-3 earlier in this chapter). When
you walk away again, the wall changes back to being solid again.

--snip--

###############
DISPLAY
###############

--snip--

 screen.surface.set_clip(None)

def adjust_wall_transparency():
 global wall_transparency_frame

 if (player_y == room_height - 2
 and room_map[room_height - 1][player_x] == 1
 and wall_transparency_frame < 4):
 wall_transparency_frame += 1 # Fade wall out.

 if ((player_y < room_height - 2
 or room_map[room_height - 1][player_x] != 1)
 and wall_transparency_frame > 0):
 wall_transparency_frame -= 1 # Fade wall in.

listing8-7.py

144 Chapter 8

###############
START
###############

clock.schedule_interval(game_loop, 0.03)
generate_map()

 clock.schedule_interval(adjust_wall_transparency, 0.05)

Listing 8-7: Making the front wall see-through when you approach it

The final line we added in Listing 8-7 makes the function adjust_wall
_transparency() run once every 0.05 seconds . This makes the wall fade in
or out as necessary as the player walks around the room.

Let’s see how this new function works. If the player is standing behind
the wall, the following two statements are true:

•	 Their y position will be equal to room_height - 2 . As Figure 8-6 shows,
the bottom row of the map is room_height - 1. So we check whether the
player is in the row above that.

•	 There is a piece of wall in the bottom row of the room that is in line
with the player’s x position . In Figure 8-6, the red square marks a
position where we can’t see the player. The bottom row in front of them
contains a 1 for the wall. The green square shows where we can see the
player, because they’re in the doorway. Here, the bottom row of the
room map contains a 0.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

1 1 1 1 1 1

1 1 1 1 1 10 0 0

1 1

1 1

1 1

1 1

room_height - 3

room_height - 2

room_height - 1

Figure 8-6: Working out whether the player is behind the wall

Repairing the Space Station 145

If the player is behind the wall   and the wall transparency is not set
to maximum , the wall transparency is increased by 1 .

If either of the following is true, it means the player isn’t hidden by
the wall:

•	 Their y position is less than room_height - 2 . The player can be seen,
at least in part, if they’re farther back in the room.

•	 There is not a piece of wall in the bottom row of the room in line with
their x position .

In these cases, if the wall transparency is set to more than the mini-
mum , it’s reduced by one .

The draw() function uses the value of wall_transparency_frame to work
out which image from the animation frames in the PILLARS list to use in the
front row.

The effect is that the wall gradually fades in and out, depending on
whether the player is behind it or not. This fading happens fast enough
that players won’t be delayed by it but not so fast that it vanishes instantly,
which would be distracting.

Displaying Hints, Tips, and Warnings
There are times when the Escape game uses text to tell you what’s going on.
For example, it might use text to tell you what happens when you do some-
thing with an object, or provide a description of it.

The final function in the DISPLAY section of the program writes messages
at the top of the game window. There are two lines of text:

•	 The first line, positioned at 15 pixels from the top of the window, tells
players about what they’re doing. For example, it displays object descrip-
tions and tells them what happens when they use the objects.

•	 The second line, positioned at 50 pixels from the top of the window, is
for important messages.

The lines of text are separated like this so important messages don’t get
covered up by less important messages. If the game needs to tell you about
a life-threatening situation, you don’t want that message to be replaced with
one that tells you about the new room you’ve entered!

Add the new code in Listing 8-8 to the end of the DISPLAY section, after
where you added the wall transparency code in Listing 8-7. Save the listing
as listing8-8.py. You can test it by running it with pgzrun listing8-8.py, but
you won’t see any difference yet. In a moment, we’ll add some instructions
to use this new show_text() function.

146 Chapter 8

--snip--

 if ((player_y < room_height - 2
 or room_map[room_height - 1][player_x] != 1)
 and wall_transparency_frame > 0):
 wall_transparency_frame -= 1 # Fade wall in.

 def show_text(text_to_show, line_number):
 if game_over:
 return

 text_lines = [15, 50]
 box = Rect((0, text_lines[line_number]), (800, 35))
 screen.draw.filled_rect(box, BLACK)
 screen.draw.text(text_to_show,

 (20, text_lines[line_number]), color=GREEN)

###############
START
###############

--snip--

Listing 8-8: Adding the text display function

We’ll use the show_text()  function like this (don’t type this in):

show_text("message", line number)

The line number will be either 0 for the top row or 1 for the second
row, which is reserved for important messages. At the start of the function,
the message is put into the variable text_to_show and the row number goes
into line_number .

We use a list called text_lines to remember the vertical positions (in
pixels) of the two lines of text . We also define a box  and fill it with
black , to clear the row of text before the new message is drawn.

Finally, we use the screen.draw.text() function in Pygame Zero to put
the text on the screen . This function takes the text, the text’s x and y
position, and the text color. The position numbers go inside parentheses
(they make up a tuple).

In Listing 8-8 , the x position is 20 pixels from the left, and the vertical
position is taken from the text_lines list, using the number in line_number as
the list index.

Showing the Room Name When You
Enter the Room

To test the show_text() function, let’s add the start_room() function, which
displays the name of the room when you walk into it. Put this function

listing8-8.py

Repairing the Space Station 147

in the GAME LOOP section before the game_loop() function, as shown in List
ing 8-9. Save your program as listing8-9.py. When you run it, you won’t see
anything new yet.

--snip--

###############
GAME LOOP
###############

def start_room():
 show_text("You are here: " + room_name, 0)

def game_loop():
--snip--

Listing 8-9: Adding the start_room() function

This function uses the room_name variable, which we set up in the
generate_map() function. It contains the name of the current room, taken
from the GAME_MAP list. The room name is combined with the text "You are
here: " and is sent to the show_text() function.

Now we need to set our new start_room() function to run whenever the
player enters a new room. We included the code to do this in Listing 7-6 in
Chapter 7, but we commented it out. Now we’re ready for it! Anywhere we
have the code #start_room() we want to replace it with start_room(). That # is
working as an “off switch,” telling Python to ignore the instruction. To turn
the instruction on, we remove the # sign.

Rather than manually finding all the lines that need to change, we’ll
get IDLE to do it for us. Follow these steps, and refer to Figure 8-7:

1.	 Click Edit4Replace (or press ctrl-H) in IDLE to show the replace text
dialog box.

2.	 Enter #start_room() into the Find box.

3.	 Enter start_room() into the Replace With box.

4.	 Click Replace All.

Figure 8-7: Enabling the start_room() function when the player enters a
new room

listing8-9.py

148 Chapter 8

IDLE should replace the instruction in four places and will jump to the
last one in the listing, as shown in Listing 8-10 (there’s no need to type this
listing in).

Save the listing as listing8-10.py and run the program using pgzrun
listing8-10.py. A message should appear announcing each new room as you
enter it. It’s triggered by walking through the door, so it doesn’t work in the
first room.

--snip--
 if player_y == -1: # through door at TOP
 #clock.unschedule(hazard_move)
 current_room -= MAP_WIDTH
 generate_map()
 player_y = room_height - 1 # enter at bottom
 player_x = int(room_width / 2) # enter at door
 player_frame = 0
 start_room()
 return
--snip--

Listing 8-10: Enabling the start_room() function when the player leaves the room

This completes the DISPLAY section of the Escape game! We’ll make a few
small changes later to show enemies, but otherwise we’ve laid the founda-
tion for the rest of the game.

In the next chapter, we’ll start unpacking your personal effects as we
add props to the game.

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons in
this chapter.

�� A piece of information sent to a function is called an argument.

�� To send information to a function, you put it between the parentheses
after the function name. You can send several arguments if you sepa-
rate them with commas. For example: add(5, 7).

�� To enable a function to accept information, you set up local variables to
receive the arguments when you define the function.

�� The DISPLAY section of the program draws the room, animates the trans-
parent wall, and displays text messages.

�� The show_text() function takes two arguments: the string you want to
display and the row number (0 or 1). Row 1 is reserved for important
messages.

listing8-10.py

Repairing the Space Station 149

�� You define a Rect by giving Python tuples for its position and size.

�� The screen.draw.filled_rect() function draws a filled rectangle.

�� The colors in Pygame Zero use the RGB (red, green, blue) format. For
example (255, 100, 0) is orange: maximum red, a dash of green, and
no blue.

�� If you want to replace some code throughout the whole program, you
can use the Replace All option in IDLE.

Mission Debrief
Here is the answer for the training mission in this chapter.

Training Mission # 1

As well as changing the calculation, remember to change the name of the function,
and change the plus sign to a minus sign inside the print() function. The program
would still work if you didn’t do this, but it would be confusing to use an add() function
to subtract.

If you change the order that you send the numbers in, the function still subtracts
the second number from the first number, but you get a different result. This is why
it’s important to make sure you send information to a function in the same order it
expects to receive it. With some functions, if you send arguments in the wrong order,
you’ll trigger a Python error.

def subtract(first_number, second_number):
 total = first_number - second_number
 print(first_number, "-", second_number, "=", total)

subtract(5, 7)
subtract(2012, 137)
subtract(1234, 4321)

9
Unpacking Your
Personal Items

Now that the space station is operational,
it’s time to unpack your personal items and

the various tools and pieces of equipment
you’ll need as you carry out your work.

In this chapter, you’ll build the code for objects that can move between
rooms (props). When you play the game, you’ll be able to discover new items,
pick them up, move them around, and use them to solve puzzles.

Adding the Props Information
You’ve already added some information about props in Chapter 5 when
you added the image filenames and descriptions to the objects dictionary.
The objects dictionary contains information about what an item is. In this
chapter, we’ll add information to tell the game where the props go.

You might be wondering why we’re handling the props separately
from the scenery. We do this because their information is used in different
ways: the scenery dictionary stores information using the room as the key.
This makes sense, because the program needs to get information about

152 Chapter 9

all the scenery in a room at the same time. After the scenery information
is added to the room map, the scenery dictionary is not needed again until
the player enters a new room.

By contrast, props move around, so the information for a prop might
be needed at any time in any room. If that information is buried in a list of
scenery items, it’s harder to find and change.

We’ll create a new dictionary called props to store information about
props. We’ll use the object number as a key, and each entry will be a list
that contains the following:

•	 The number of the room the prop is in

•	 The y position of the prop in the room (in tiles)

•	 The x position of the prop in the room (in tiles)

For example, here’s the entry for the hammer, which is object 65:

65: [50, 1, 7]

It’s in room 50, at y position 1 and x position 7.
Objects that are not in the game world or that are being carried by

the player will have a room number of 0, which is not a real location in the
game. Some objects aren’t in the game world until they’ve been created or
after they’ve been destroyed, for example. These would be stored in room 0.

Tip

The props and objects dictionaries use the same keys. If you want to know what
item 65 is in the props dictionary, read its details in the objects dictionary.

Listing 9-1 shows the code for adding the props information to the
game. Open listing8-10.py, your final program from the previous chapter.
Add the new PROPS section after the show_text() function in the DISPLAY sec-
tion and before the START section. Only add the new lines, and save the new
program as listing9-1.py. If you want to avoid typing the data, you can copy
and paste it from the data-chapter9.py file.

You can run the program with pgzrun listing9-1.py. It won’t do anything
new yet, but you can check whether there are any error messages in the
command line window.

--snip--
 screen.draw.text(text_to_show,
 (20, text_lines[line_number]), color=GREEN)

###############
PROPS
###############

listing9-1.py

Unpacking Your Personal Items 153

Props are objects that may move between rooms, appear or disappear.
All props must be set up here. Props not yet in the game go into room 0.
object number : [room, y, x]

 props = {
 20: [31, 0, 4], 21: [26, 0, 1], 22: [41, 0, 2], 23: [39, 0, 5],
 24: [45, 0, 2],

 25: [32, 0, 2], 26: [27, 12, 5], # two sides of same door
 40: [0, 8, 6], 53: [45, 1, 5], 54: [0, 0, 0], 55: [0, 0, 0],
 56: [0, 0, 0], 57: [35, 4, 6], 58: [0, 0, 0], 59: [31, 1, 7],
 60: [0, 0, 0], 61: [36, 1, 1], 62: [36, 1, 6], 63: [0, 0, 0],
 64: [27, 8, 3], 65: [50, 1, 7], 66: [39, 5, 6], 67: [46, 1, 1],
 68: [0, 0, 0], 69: [30, 3, 3], 70: [47, 1, 3],

 71: [0, LANDER_Y, LANDER_X], 72: [0, 0, 0], 73: [27, 4, 6],
 74: [28, 1, 11], 75: [0, 0, 0], 76: [41, 3, 5], 77: [0, 0, 0],
 78: [35, 9, 11], 79: [26, 3, 2], 80: [41, 7, 5], 81: [29, 1, 1]
 }

checksum = 0
for key, prop in props.items():

 if key != 71: # 71 is skipped because it's different each game.
 checksum += (prop[0] * key
 + prop[1] * (key + 1)
 + prop[2] * (key + 2))

 print(len(props), "props")
assert len(props) == 37, "Expected 37 prop items"
print("Prop checksum:", checksum)

 assert checksum == 61414, "Error in props data"

 in_my_pockets = [55]
selected_item = 0 # the first item
item_carrying = in_my_pockets[selected_item]

###############
START
###############
--snip--

Listing 9-1: Adding the props information to Escape

We start the new PROPS section by creating the dictionary to store the
information about the props . This dictionary lists the position locations
for all the props, starting with some doors (20 to 24) and including a
rescue ship (40) and the carryable items starting at 53.

There is just one oddity to draw your attention to. We count doors as
props rather than scenery, because they’re not always there: when they’re
open, they’re removed from the room. Most doors stay open when they’re
opened until the game ends. However, the door that connects rooms 27
and 32 can also shut, meaning players can see it from both sides. As a result,
we need two props to represent this door , showing it in the top of room 27
and the bottom of room 32. These two doors are object numbers 25 and 26.

Prop 71 is the Poodle lander, which crash-landed on the planet surface
before the game began. We use the LANDER_Y and LANDER_X variables from the

154 Chapter 9

VARIABLES part of the program  to position the lander, because its location
will change with each new game. The Poodle landed with such force that
it might have become covered with Martian soil. It lives in room 0 until the
player can dig it up.

As with the scenery information (see Chapter 6), I’ve used a checksum
here to help you spot whether you made an error entering the data. It might
not be possible to play the game all the way to the end if a mistake is made
here. The only prop missing from the checksum calculation is number 71,
because its position uses different random numbers in each game .

If you want to change the props data, the easiest thing to do is to com-
ment out the two checksum instructions  like this to turn them off:

#assert len(props) == 37, "Expected 37 prop items"
#assert checksum == 61414, "Error in props data"

The program shows the checksum total and number of data items in
the command line window , so if you change the props data, you can use
this information to update the numbers in the two assert instructions so
they are correct for your customized data. If you do this, you can continue
using these lines rather than commenting them out.

The program also sets up two new variables and a list we’ll need later in
the chapter. The in_my_pockets  list stores all the items the player has picked
up, also known as their inventory. One of these items is always selected, so the
player is ready to do something with it. The selected_item variable stores its
index number in the in_my_pockets list. The item_carrying variable stores the
object number of the item the player has selected. You can think of the item
_carrying variable as being the number of the object in their hands. I’ll tell
you more about these variables later in this chapter.

Adding Props to the Room Map
We’ve added the information about where the props are located, so now
let’s display the props. We’ll make it so that when props are located in
the current room, they’re put into the room_map list as the player enters the
room. Then the draw() function uses that list to draw the room.

We’ll place the instructions to add the props to the room map into
the MAKE MAP part of the program, inside the generate_map() function. We’ll
simply add these instructions after the instructions you added in Chapter 8
for working out the top_left_x and top_left_y variables, just above the start
of the GAME LOOP section.

Because the new instructions are all part of the generate_map() function,
you need to indent them by at least four spaces.

Add the new instructions shown in Listing 9-2 to your program, and
save it as listing9-2.py. Run the program with pgzrun listing9-2.py. You
should see that new objects have appeared in some of the rooms, as shown
in Figure 9-1.

Unpacking Your Personal Items 155

Figure 9-1: That door wasn’t there a minute ago!
That air canister might come in handy, though.

--snip--
 top_left_x = center_x - 0.5 * room_pixel_width
 top_left_y = (center_y - 0.5 * room_pixel_height) + 110

 for prop_number, prop_info in props.items():
 prop_room = prop_info[0]

 prop_y = prop_info[1]
 prop_x = prop_info[2]

 if (prop_room == current_room and
 room_map[prop_y][prop_x] in [0, 39, 2]):
 room_map[prop_y][prop_x] = prop_number
 image_here = objects[prop_number][0]

 image_width = image_here.get_width()
 image_width_in_tiles = int(image_width / TILE_SIZE)

{ for tile_number in range(1, image_width_in_tiles):
 room_map[prop_y][prop_x + tile_number] = 255

###############
GAME LOOP
###############
--snip--

Listing 9-2: Adding the props to the room map for the current room

In the new code, we start by setting up a loop to go through the items in
the props dictionary . For each item, the dictionary key goes into the vari-
able prop_number, and the list with the position information goes into the list
prop_info.

To make the program easier to read, I’ve set up some variables to store
the information from the prop_info list . The program extracts the infor-
mation for the room number (and puts it into prop_room) and the y and x
positions (which go into the prop_y and prop_x variables).

listing9-2.py

156 Chapter 9

We add a check to see whether the prop_room matches the room the
player is in  and whether the prop is sitting on the floor . The floor
check puts the three different floor types in a list (0 for inside, 2 for soil,
and 39 for the pressure pad in room 26). The program checks the prop’s
position to see what’s in that location in the room map. If it’s one of these
floor types, it means the object is sitting on the floor in full view. If not, the
prop is hidden inside an item of scenery and shouldn’t be visible yet. For
example, if a cabinet is in the prop’s location instead of the floor, the prop
won’t be shown onscreen. The player can still find the prop by examining
the cabinet at that location, though.

If the prop is in the room and on the floor, the room map is updated
with the prop number .

Some props, like doors, are wider than one tile. So we add the number
255 to any tiles that the prop covers other than the first one {. This is simi-
lar to the code we used to mark wide scenery earlier in the generate_map()
function (see Listing 6-4 on page 106).

Getting Information from a Function:
Rolling Dice

In Chapter 8, you learned how to send information (or arguments) to a function.
Let’s look more closely at how to get information back from a function. We’ll use
this skill to create a function that tells us what object the player is standing on.

Listing 9-3 shows a simple program that sends a number back from a function
and puts it into a variable. This isn’t part of the Escape game, so create a new file
by clicking File4New first.

Save the program as listing9-3.py. This program doesn’t use Pygame Zero, so
you can run it using Run4Run Module in the script window. The program simulates
a 10-sided die.

 import random

 def get_number():
 die_number = random.randint(1, 10)
 return die_number

 random_number = get_number()
 print(random_number)

Listing 9-3: A 10-sided die simulator shows how to send a number back from a
function.

This program starts by telling Python to use the random module , which gives
Python new functions for making random choices. We then create a new function
called get_number() , which generates a random number between 1 and 10 
and puts the result into a variable called dice_number.

listing9-3.py

Unpacking Your Personal Items 157

Finding an Object Number from the
Room Map

Shortly, we’ll add the code to enable you to pick up objects in the space
station. First we need a way to find out which object is being picked up.

When the player interacts with scenery or props, we need to find the
number of the object they’re using. Normally, this is simple. If the room
map shows that the object number of the prop at the player’s location is 65,
that’s a hammer. The program can show a description of the hammer, and
let the player pick it up or use it.

Identifying the object number gets tricky with wide objects that span
multiple tiles. We use the number 255 to mark tiles covered by a wide object,
but that number doesn’t correspond to a prop. The program needs to work
out what the real object number is by moving left in the room map until it
finds a number that isn’t 255.

For example, if the player examines the rightmost third of a door, the
program would see that this position contains 255, so it would check the
position to the left. That position also contains 255, so the program would
check farther left. If that tile contains a number other than 255, the pro-
gram knows it’s found the real object number, which might be 20 (one of
the doors), for example. Using the object number 20, the program can then
let the player examine or open the door.

We’ll create two functions that will work out the object number, shown
in Listing 9-4. You need to add these to Listing 9-2, so click File4Open
to open listing9-2.py again if necessary. We’ll start a new section of the

Normally, when you start a function (known as calling a function in Python
jargon), you use its name, like this:

get_number()

This time, we not only start the function, but tell Python to put the result from
the function into a variable called random_number . When the function sends its
result back using the return command , the result goes into the random_number
variable. The main part of the program can then print out its value .

This code shows that the way to get information from a function is to set up
a variable to store the information when the function is started  and to use the
return instruction to send that information back when the function finishes . You
can send strings and lists back too, not just numbers. Where possible, this is the
best way to enable other parts of the program to use information from a function.
This technique enables the main part of the program to get information from a
function’s local variable (in this case dice_number), which would usually only be
visible inside that function.

You won’t need this program again, so you can close it when you’ve finished
experimenting with it.

158 Chapter 9

program called PROP INTERACTIONS. Put this after the PROPS section. This new
section will be where we put the code for picking up and dropping props.

Save the updated program as listing9-4.py. It won’t do anything new yet,
but you can run it using pgzrun listing9-4.py to check that you haven’t added
any mistakes. Look in the command line window for any error messages.

--snip--
in_my_pockets = [55]
selected_item = 0 # the first item
item_carrying = in_my_pockets[selected_item]

#######################
PROP INTERACTIONS
#######################

 def find_object_start_x():
 checker_x = player_x
 while room_map[player_y][checker_x] == 255:
 checker_x -= 1
 return checker_x

 def get_item_under_player():
 item_x = find_object_start_x()
 item_player_is_on = room_map[player_y][item_x]
 return item_player_is_on

--snip--

Listing 9-4: Finding the real object number

Before we get into how this code works, I’ll explain how the game loop
lets players interact with props and scenery:

1.	 When the player presses a movement key, the program changes the
player’s position (even if that puts them somewhere impossible, like
inside a wall).

2.	 The program carries out any actions the player requires using the
object at the player’s location. This means the player and the object
are in the same position in the room at this time.

3.	 If the player is standing somewhere they’re not allowed to be (such as
inside a wall), the program moves them back to where they were.

The entire process happens so fast you never see the player go inside
the wall or other piece of scenery. This way, the player can use a movement
key plus an action key to examine or use the scenery. For example, you
can walk into a wall and press the spacebar to examine the wall and see a
description of it. This process also works with an object the player is stand-
ing on, such as a prop on the floor.

The first new function we added in Listing 9-4 is find_object_start_x() .
This function finds the start position of whatever object is at the player’s posi-
tion, going left to find the real object number if the location contains 255.

listing9-4.py

Unpacking Your Personal Items 159

To do this, the function sets the variable checker_x to be the same as the
player’s x position . We use a loop that keeps going for as long as the room
map contains 255 at the x position of checker_x and at the player’s y posi-
tion . Inside that loop is a single instruction to reduce checker_x by 1 ,
moving 1 tile to the left. When the loop finishes, checker_x contains the left
position where the object begins. That number is then sent back  to the
instruction that started the function.

The second new function is get_item_under_player() , which works out
which object is at the player’s position. It uses the first function to find out
where the object starts and stores the x position in the variable item_x .
Then it looks at the room map data for that position to see what object is
there  and sends that number back to the instruction that started the
function .

Picking Up Objects
Now that these functions are in place, we can create a couple of functions
for picking up objects and then storing them in a player’s inventory. Then
we’ll add some keyboard controls.

Picking Up Props
Add the two functions shown in Listing 9-5 to the end of the PROP INTERACTIONS
section of the program, just after where you added the code in Listing 9-4.

Save this program as listing9-5.py. You can check for any errors by run-
ning it using pgzrun listing9-5.py, but you won’t see any difference yet. This
code adds some new functions but doesn’t include any key controls to
enable the player to use them.

--snip--
 item_player_is_on = room_map[player_y][item_x]
 return item_player_is_on

def pick_up_object():
 global room_map

 item_player_is_on = get_item_under_player()
 if item_player_is_on in items_player_may_carry:
 room_map[player_y][player_x] = get_floor_type()
 add_object(item_player_is_on)

 show_text("Now carrying " + objects[item_player_is_on][3], 0)
 sounds.pickup.play()
 time.sleep(0.5)

 else:
 show_text("You can't carry that!", 0)

 def add_object(item): # Adds item to inventory.
 global selected_item, item_carrying

 in_my_pockets.append(item)
 item_carrying = item
 selected_item = len(in_my_pockets) - 1

listing9-5.py

160 Chapter 9

 display_inventory()
 props[item][0] = 0 # Carried objects go into room 0 (off the map).

def display_inventory():
 print(in_my_pockets)
--snip--

Listing 9-5: Adding the functions to pick up objects

The function pick_up_object() will start when the player presses the get
key (G) to pick up an item. It begins by putting the object number for the
item at the player’s position into the variable item_player_is_on . If the item
is carryable , the rest of the function picks it up.

To remove the item from the floor, the program replaces the room
map at the player’s position with the object number for the floor (either
soil or floor tiles) . The get_floor_type() function is used to find out what
the floor type should be in this room. When the room is redrawn, the item
will disappear from the floor, so it looks like it’s been picked up. The item is
then added to the list of items the player is carrying, using the add_object()
function .

We then show a message onscreen telling the player they picked up an
item and play a sound effect. We add a short delay of half a second using
the time.sleep(0.5) instruction to make sure the confirmation message isn’t
overwritten if the player holds down the key too long.

If the item isn’t carryable, we show a message telling them they can’t
carry it . For example, scenery can’t be carried, so we need to tell players
that. Otherwise, they might just think they’re pressing the wrong key or the
program isn’t working.

The add_object() function adds an item to the in_my_pockets list, which
stores the items the player is carrying (their inventory). At the start of the
function, the object number this function receives is put into the local vari-
able item . The item is added to the end of the in_my_pockets_list using
append() .

We use the global variable item_carrying to store the object number of
whatever’s in the player’s hands, so it is set to be the object number of this
item . We set the selected_item variable as the last item in the list, mean-
ing the item the player just picked up is selected . These variables will be
important when objects are used later on, and when the display_inventory()
function shows the list of items on the screen. For now, that function just
prints out the list in the command line window.

Finally, we set the item’s position in the props dictionary to be room 0 .
This means the item just picked up is not shown in the game map anywhere.
If we didn’t do this, the item would reappear in the room again when the
player next entered it.

Adding the Keyboard Controls
To enable the new functions to work their magic, we need to add the key-
board control too. We’ll use the G key as our get key.

Unpacking Your Personal Items 161

Place the new instructions, shown in Listing 9-6, in the game_loop() func-
tion in the GAME LOOP section of the program. The new instruction belongs
after the exit checks have been made and before the player is moved back if
they’re standing somewhere they shouldn’t be.

--snip--
 player_frame = 0
 start_room()
 return

 if keyboard.g:
 pick_up_object()

 # If the player is standing somewhere they shouldn't, move them back.
 if room_map[player_y][player_x] not in items_player_may_stand_on: #\
 # or hazard_map[player_y][player_x] != 0:
--snip--

Listing 9-6: Adding the keyboard control

You need to indent the first new instruction by four spaces , because
it’s inside the game_loop() function. Indent the second one  by four more
spaces, because it belongs to the if instruction above. These instructions
run the pick_up_object() function  when the player presses the G key .

Save the listing as listing9-6.py. When you run pgzrun listing9-6.py, you
should be able to pick up objects.

Test it starting with the air canister in the first room. Just walk onto it
and press G. You’ll hear a sound and see a message, and the object will dis-
appear from the room.

The command line window (where you entered the pgzrun instruction)
will also show the inventory list every time you pick up an object, like this:

[55, 59]

Each time, you’ll see a new item added to the end of the list. Item 55,
the yoyo, is in your pocket at the start of the game.

Adding the Inventory Functionality
Now you can pick up props that you find around the space station. We
should add an easy way to see what you’re carrying and to choose different
items to use. We’ll make a new display_inventory() function that displays a
strip at the top of the game window showing the
items the player is carrying.

We’ll then add controls so the player can
press the tab key to select the next item in the
list. The selected item has a box drawn around
it, and its description is shown underneath. Fig-
ure 9-2 shows you what it will look like.

listing9-6.py

Figure 9-2: The inventory
at the top of the game
window

162 Chapter 9

Displaying the Inventory
Listing 9-7 shows you the code to add. Listing 9-5 included some code for
the display_inventory() function. Replace that with the new code. Save this
listing as listing9-7.py. When you run the program using pgzrun listing9-7.py,
you’ll be able to see items added to your inventory at the top of the screen
as you collect them.

--snip--
 selected_item = len(in_my_pockets) - 1
 display_inventory()
 props[item][0] = 0 # Carried objects go into room 0 (off the map).

def display_inventory():
 box = Rect((0, 45), (800, 105))

 screen.draw.filled_rect(box, BLACK)

 if len(in_my_pockets) == 0:
 return

 start_display = (selected_item // 16) * 16
 list_to_show = in_my_pockets[start_display : start_display + 16]
 selected_marker = selected_item % 16

 for item_counter in range(len(list_to_show)):
 item_number = list_to_show[item_counter]
 image = objects[item_number][0]

 screen.blit(image, (25 + (46 * item_counter), 90))

 box_left = (selected_marker * 46) - 3
 box = Rect((22 + box_left, 85), (40, 40))

 screen.draw.rect(box, WHITE)
 item_highlighted = in_my_pockets[selected_item]
 description = objects[item_highlighted][2]

 screen.draw.text(description, (20, 130), color="white")

###############
START
###############

clock.schedule_interval(game_loop, 0.03)
generate_map()
clock.schedule_interval(adjust_wall_transparency, 0.05)

 clock.schedule_unique(display_inventory, 1)

Listing 9-7: Displaying the inventory

The new display_inventory() function starts by drawing a black box over
the inventory area to clear it . If the player isn’t carrying anything, the
function returns without taking any further action because there are no
items to display .

listing9-7.py

Unpacking Your Personal Items 163

There is only room to show 16 items on the screen, but the player could
carry many more items than that. If the in_my_pockets list is too long to fit on
the screen, the program shows it 16 items at a time. The player can select any
of the items shown on the screen by pressing the tab key to move through
them, from left to right. If the last item displayed is selected and they press
tab, the next chunk of the list is shown. If the player presses tab on the final
item in the list, the start of the list appears again.

We store the part of the in_my_pockets list currently displayed on the
screen in another list called list_to_show and use a loop to display it .
The loop puts numbers into a variable called item_counter, which is used
to extract the right image to draw each time, and also work out where to
draw it .

The clever bit is working out which items should go into list_to_show.
In the start_display variable, we store the index number for the first item in
in_my_pockets that the program should draw . The // operator divides the
selected item number by 16, rounding down. The result is then multiplied
by 16 to get the index number for the first item in the batch. For example,
if the selected item is number 9, you’d divide 9 by 16 (0.5625), round
down (0), and multiply by 16 (still 0), getting a result of 0. That’s the start
of the list, which makes sense, because we know there’s room for 16 items
onscreen and that 9 is less than 16. If you wanted to see the group of items
that includes item 22, you’d divide 22 by 16 (1.375), round down (1), and
multiply by 16, getting a result of 16. That’s the start of the next batch,
because the first batch has index numbers that range from 0 to 15.

We create the list_to_show list using a technique called list slicing, which
is simply using just a part of a list. When you give Python two list indexes
with a colon between them, the program will cut out that part of the list.
The section we’re using starts at the start_display index and finishes 15
items later . A list slice leaves out the last item, so we use start_display + 16
as the end point.

We also need another calculation to work out which item to highlight as
the selected item from the new list . The item will have an index between 0
and 15, and we’ll store it in selected_marker. We calculate it as the remainder
after we divide the selected item number by 16. For example, if the selected
item is number 18, it will be at index number 2 when the second group of
items is displayed. (The first item is at index 0, remember.) Python has the
modulo operator % , which you can use to get the remainder after a division.

To highlight the selected item on the screen, we draw a box around it
using a Rect positioned at its left edge . Unlike the filled rectangles you’ve
seen (for example ), this instruction draws a hollow box with a white edge.

The description for the selected item is displayed underneath the inven-
tory , so players can tab through their items to read their descriptions
again.

Finally, when the program first runs, it needs to display the inventory.
This is scheduled with a slight delay  to avoid any problems that are caused
by trying to use a screen.blit() instruction before Pygame Zero has finished
starting up. While clock.schedule_interval() is used to run a function regu-
larly, clock.schedule_unique() is used to run a function just once, after a delay.

164 Chapter 9

Adding the Tab Keyboard Control
When you run the program, you can see the inventory, but you have no way
to cycle between items yet, so the latest item you collected is always selected.
Let’s add the keyboard control that enables you to tab through the inven-
tory to select different items.

Place the new instructions in Listing 9-8 into the game_loop() function,
just after where you added the keyboard control to get items in Listing 9-6.
You need to indent them by at least four spaces because they’re inside the
game_loop() function.

Save this listing as listing9-8.py. When you run the program using pgzrun
listing9-8.py, you’ll be able to press the tab key to select different items in
your inventory. (The tab key is usually on the left side of the keyboard and
might have a picture of two arrows on it.)

Pick up a few items before testing the new keyboard control, or skip
ahead to the next section to fill up your inventory with more items to
test with.

--snip--
 if keyboard.g:
 pick_up_object()

 if keyboard.tab and len(in_my_pockets) > 0:
 selected_item += 1
 if selected_item > len(in_my_pockets) - 1:

 selected_item = 0
 item_carrying = in_my_pockets[selected_item]
 display_inventory()

 if keyboard.d and item_carrying:
 drop_object(old_player_y, old_player_x)

| if keyboard.space:
} examine_object()

--snip--

Listing 9-8: Enabling the tab key to select items in the inventory

The first chunk of instructions runs when the player presses the tab
key, but only if the in_my_pockets list contains some items (so its length is
more than 0) .

To select the next item in the inventory, we increase the selected_item
variable by 1  when the tab key is pressed. This variable stores an index
number (which starts at 0), so the program subtracts 1 from the length of
the list to see whether the selected_item is now past the end of the list . If it
is, the selected item is reset to be the first item again, at 0.

We set the variable item_carrying as the object number of the selected
item (which is taken from the in_my_pockets list) . For example, if the
in_my_pockets list contained the object numbers 55 and 65, and the

listing9-8.py

Unpacking Your Personal Items 165

selected_item was 0, item_carrying would contain 55 (the first item from in_my
_pockets). Finally, the inventory is displayed using the display_inventory()
function you created earlier .

While we’re working with this part of the program, we’ve added the
keyboard controls for dropping and examining items too. When the player
presses the D key and the item_carrying variable is not False, the drop_object()
function runs . This function is sent the player’s old y and x positions as
the location for dropping the item . Remember that the player’s current
location might be inside a wall because of where we are in the game loop.
We know that their most recent position before any movement is a safe
place to drop something.

We also added the instructions to start the examine_object() function }
when the spacebar is pressed |.

Don’t press D or the spacebar in the game yet: pressing them will cause
the program to crash because we haven’t added the functions for them.
We’ll add them shortly.

Testing the Inventory
We want to test the program properly, but at the moment you don’t have
many items in your inventory. To save time, we’ll tweak the code to give
you a fuller inventory so you can test the display and the tab control.

We’ll fill the in_my_pockets list with items when the game begins. The
quickest way to do this is to change the instruction that sets up that list in
the PROPS section of the program, like this (but don’t do this yet!):

in_my_pockets = items_player_may_carry

That would mean you start the game carrying all the items it’s possible
to carry. If you do that, it might spoil your enjoyment of the game, though.
You’ll be carrying some items you might prefer not to see until later in the
game. It’ll make some of the puzzle solutions obvious.

Instead, I recommend you create a test list like this:

in_my_pockets = [55, 59, 61, 64, 65, 66, 67] * 3

This line creates a list that contains that sequence of items three times.
You’ll end up with an inventory that contains three of each item (which is
impossible in the real game), but it will enable you to test that the inventory
works correctly when it contains more than 16 items.

When you’ve finished testing, change the code back again. Otherwise,
you might get unexpected results when playing the game. Here’s what that
line should look like:

in_my_pockets = [55]

166 Chapter 9

Dropping Objects
Being able to collect stuff strewn all over the space station is great fun, but
sometimes you’ll want to put it down, so you can either work with it or leave
it somewhere. We’ll need two new functions for dropping items that will
work a bit like the opposites of the functions for picking up items.

The drop_object() function (the opposite of the pick_up_object() func-
tion) will let you drop an object on the floor where the player was most
recently standing. You added the keyboard control to start this function
in Listing 9-8.

The remove_object() function is like the add_object() function in reverse:
it takes items out of the inventory and updates it.

Add the new functions, shown in Listing 9-9, to the end of the PROP
INTERACTIONS part of the program. Save the new program as listing9-9.py.

When you run the program using pgzrun listing9-9.py, you’ll be able to
drop objects. That includes the yoyo you start the game carrying and any
new objects you pick up as you explore the space station.

--snip--
 description = objects[item_highlighted][2]
 screen.draw.text(description, (20, 130), color="white")

 def drop_object(old_y, old_x):
 global room_map, props

 if room_map[old_y][old_x] in [0, 2, 39]: # places you can drop things
 props[item_carrying][0] = current_room

 props[item_carrying][1] = old_y
 props[item_carrying][2] = old_x

 room_map[old_y][old_x] = item_carrying
 show_text("You have dropped " + objects[item_carrying][3], 0)
 sounds.drop.play()

 remove_object(item_carrying)
 time.sleep(0.5)

 else: # This only happens if there is already a prop here
 show_text("You can't drop that there.", 0)
 time.sleep(0.5)

def remove_object(item): # Takes item out of inventory
 global selected_item, in_my_pockets, item_carrying

 in_my_pockets.remove(item)
 selected_item = selected_item - 1
 if selected_item < 0:

 selected_item = 0
 if len(in_my_pockets) == 0: # If they're not carrying anything

 item_carrying = False # Set item_carrying to False
 else: # Otherwise set it to the new selected item
 item_carrying = in_my_pockets[selected_item]
 display_inventory()

listing9-9.py

Unpacking Your Personal Items 167

###############
START
###############
--snip--

Listing 9-9: Adding the functions for dropping objects

The drop_object() function needs two pieces of information: the player’s
old y and x positions. If the player moved this time through the game_loop()
function, this will be the position they were in before they tried to move. If
not, these numbers will be the same position as where they currently are.
We know this is a sensible place to drop an item that won’t put the object
inside a wall. The player’s old position goes into the variables old_y and
old_x within this function .

The program checks whether the room map at the player’s old position
is a type of floor. If so, it’s okay to drop a prop here, so the drop instructions
are used. If not , the player sees a message telling them they can’t drop
objects there. This will happen, for example, if there is already a prop in
that position.

If the player can drop the item, we need to update the props dictionary.
The variable item_carrying contains the number of the object the player is
carrying. Its entry in the props dictionary is a list. The first list item (index 0)
is the room the prop is in, the second item (index 1) is its y position, and the
third item is its x position (index 2). These values are set to be the current
room and the player’s old position .

 The room map for the current room also needs to be updated, so the
room contains the dropped item . The game will show a message and play a
sound to tell the player that they’ve successfully dropped something and then
the item is removed from the inventory using the remove_object() function .

The remove_object() function takes an item from the player’s inventory
and updates the selected_item variable. The object number sent to this func-
tion is stored in the variable item, and then remove()  removes it from the
in_my_pockets list. Now that the selected item has been removed, the number
of the selected item is reduced by 1 , so the previous item in the list is now
selected. If this means the selected item is now less than 0, the selected item
is reset to 0 . This happens if the player drops the first item from their
inventory.

If the player’s hands are now empty, the item_carrying variable is set to
False . Otherwise, it’s set to the number of their selected item. Finally,
display_inventory() redraws the inventory to show the item has been
removed.

Training Mission #1

It’s time to do a safety drill. Can you pick up the air canister and deliver it to the
sick bay? Drop it near the middle bed. To test whether the program is working
correctly, leave the room after your delivery and come back to make sure it’s still
there.

168 Chapter 9

Examining Objects
As you explore the space station, you’ll want to study objects closely to see
how they might help with your mission. The examine instruction shows the
long description for an object and works for scenery and props. By examin-
ing an object, you can also sometimes find other objects. For example, when
you examine a cupboard, you might find something inside it.

Pressing the spacebar triggers the examine_object() function. (You added
the keyboard control in Listing 9-8.) Place the new function, shown in List-
ing 9-10, after the remove_object() function you added in Listing 9-9.

Save your program as listing9-10.py. Run the program using pgzrun
listing9-10.py. You can now examine objects by walking up to or onto them
and pressing the spacebar. For example, if you press the up arrow key and
the spacebar when you’re against the wall at the back of the room, you can
examine the wall.

--snip--
 item_carrying = in_my_pockets[selected_item]
 display_inventory()

def examine_object():
 item_player_is_on = get_item_under_player()
 left_tile_of_item = find_object_start_x()
 if item_player_is_on in [0, 2]: # don't describe the floor

 return
 description = "You see: " + objects[item_player_is_on][2]
 for prop_number, details in props.items():

 # props = object number: [room number, y, x]
 if details[0] == current_room: # if prop is in the room

 # If prop is hidden (= at player's location but not on map)
 if (details[1] == player_y
 and details[2] == left_tile_of_item
 and room_map[details[1]][details[2]] != prop_number):

 add_object(prop_number)
 description = "You found " + objects[prop_number][3]

 sounds.combine.play()
 show_text(description, 0)
 time.sleep(0.5)

###############
START
###############
--snip--

Listing 9-10: Adding the code to examine objects

Listing 9-10 builds on the work you’ve already done adding functions
in this chapter. We start by getting the number of the object the player
wants to examine and storing it in item_player_is_on . At this point in the
game_loop() function, the player’s position will be on or possibly inside the
item they want to examine, if it’s a piece of scenery. We put the starting x
position of the item into the variable left_tile_of_item . If there isn’t an

listing9-10.py

Unpacking Your Personal Items 169

object to examine at the player’s location, the function finishes without tak-
ing any further action . Ignoring an empty space feels more natural than
describing the floor, especially if you make a mistake with the controls. If
there is an item at the player’s location, the description of the object goes
into the description variable, taken from the long description from the
objects dictionary .

The program then checks whether there’s an item hidden inside the
item the player is examining. We use a loop to go through all the items in
the props dictionary . If an item is in the current room at the player’s
position, but the room map at that position doesn’t contain the prop num-
ber , it means the item is hidden. We therefore add the hidden object to
the player’s inventory , and give the player a message that tells them they
found something. This message uses the object’s short description to tell
them what they’ve found .

At the end of the function, the description is shown , and we’ve put a
short pause here to stop it being immediately overwritten if the player holds
the key down .

If you want to hide props inside scenery in your own game design, make
sure you give players a strong hint about where you’ve hidden something. In
Escape, you might find objects in cupboards. If you see something unusual,
it’s usually a good idea to examine it to learn about it, and you might find
something else of interest. You won’t need to search every chair, bed, and
wall panel though.

If you decide to hide props in wide scenery (such as a bed), make sure
you hide your prop in the x position of the scenery item, not in a space that
would be covered by 255 in the room map.

Training Mission #2

Can you find the MP3 player? It’s in the sleeping quarters that belong to the per-
son you named FRIEND2 in Chapter 4. If you’re using my code, it’s in Leo’s sleeping
quarters.

Now that all the props are unpacked, you can relax with your yoyo and
see what else you can find. In the next chapter, you’ll add a new section to
the program that enables you to use the props you come across.

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons in
this chapter.

�� Information about the position of props is stored in the props dictionary.

�� The prop number is the dictionary key, and each entry contains a list
with the room number and y and x positions of the prop.

170 Chapter 9

�� To receive a number from a function, set up a variable to store that
information when you call the function. For example, variable_name =
function_name().

�� To send a number (or anything else) back from a function, use the
return instruction.

�� The // operator is used for division and rounds the result down, remov-
ing any decimal in the answer.

�� The % operator gives you the remainder after dividing two numbers:
5 % 2 is 1.

�� You can change the value of variables and lists to help test the program,
for example, creating a full inventory at the start. Remember to change
them back afterward!

�� You can hide props inside scenery, but make sure they’re in the position
where the scenery starts, and give players a strong hint about where it’s
worth searching.

Mission Debrief
Here are the answers for the training missions in this chapter.

Training Mission # 1

The canister is in your starting room (31). The sick bay is room 41. From the starting
room, go right, down all the way, left, and up.

Training Mission # 2

It’s in the cabinet in room 47. Leave the starting room (31), and go all the way down
the map.

10
Make Yourself Useful

You’ve added the props to the game, so in
this chapter, you’ll add the code to enable

astronauts to use objects and combine them
to make new objects. These skills will be essen-

tial for your mission. You’ll get a chance to rehearse
them, so you’re ready for any situation.

The code in this chapter is simpler than some of the listings you’ve
seen recently and contains the answers for many of the puzzles in the Escape
game. So I don’t give away too many spoilers, I won’t explain every item and
solution here. For example, sometimes you might see an object number in
the code, but I won’t tell you the name of that object.

If you get stuck playing the game, you could read this code and use it
to work out which objects are which by referring to the objects dictionary
(see Listing 5-6 and Listing 5-8 in Chapter 5). That should be a last resort,
though. You can solve all the puzzles by thinking like an astronaut. Ask
yourself: What do you have access to that could be useful? How could you
make something more useful?

172 Chapter 10

Adding the Keyboard Control for Using
Objects

We’ll start by adding the keyboard control in the game_loop() function. Open
listing9-10.py, your last listing in Chapter 9. We’ll build on this listing.

Listing 10-1 shows the new instructions to add inside the game_loop()
function. Add them after the keyboard controls for drop and examine, which
you added in the previous chapter. These instructions start the use_object()
function when the player presses the U key. Save the program as listing10-1.py.
Don’t try running the program yet: it won’t do anything new, but it will crash
if you press the U key.

--snip--

 if keyboard.space:
 examine_object()

 if keyboard.u:
 use_object()
--snip--

Listing 10-1: Adding the keyboard control for using objects

Adding Standard Messages for Using
Objects

The function for using objects is long, so I’ve given it its own section in the
program. Place the new USE OBJECTS section after the PROP INTERACTIONS sec-
tion that you added in Chapter 9. Listing 10-2 shows the start of this new
section. Add this code after the examine_object() function ends but before
the START section.

--snip--
 show_text(description, 0)
 time.sleep(0.5)

#################
USE OBJECTS
#################

def use_object():
 global room_map, props, item_carrying, air, selected_item, energy
 global in_my_pockets, suit_stitched, air_fixed, game_over

 use_message = "You fiddle around with it but don't get anywhere."
 standard_responses = {

 4: "Air is running out! You can't take this lying down!",
 6: "This is no time to sit around!",
 7: "This is no time to sit around!",
 32: "It shakes and rumbles, but nothing else happens.",

listing10-1.py

listing10-2.py

Make Yourself Useful 173

 34: "Ah! That's better. Now wash your hands.",
 35: "You wash your hands and shake the water off.",
 37: "The test tubes smoke slightly as you shake them.",
 54: "You chew the gum. It's sticky like glue.",
 55: "The yoyo bounces up and down, slightly slower than on Earth",
 56: "It's a bit too fiddly. Can you thread it on something?",
 59: "You need to fix the leak before you can use the canister",
 61: "You try signalling with the mirror, but nobody can see you.",
 62: "Don't throw resources away. Things might come in handy...",
 67: "To enjoy yummy space food, just add water!",
 75: "You are at Sector: " + str(current_room) + " // X: " \
 + str(player_x) + " // Y: " + str(player_y)
 }

 # Get object number at player's location.
 item_player_is_on = get_item_under_player()
 for this_item in [item_player_is_on, item_carrying]:
 if this_item in standard_responses:
 use_message = standard_responses[this_item]

 show_text(use_message, 0)
 time.sleep(0.5)

###############
START
###############
--snip--

Listing 10-2: Adding the first instructions for using objects

Listing 10-2 shows the first part of the use_object() function. We’ll flesh
this out in further listings in this chapter. At the end of the function, the
program shows players a message to tell them what happened when they
tried to use the object . That message will be in the use_message variable.
At the start of this function, we set it up as an error message . Later on, it
will be changed to a message of success if they used an object.

Some of the objects have no real function in the game but will reward
the player with a message when they try to use them. These messages could
include clues as well as add to the game story. The dictionary standard
_responses contains messages to show players when they use certain objects .
The dictionary key is the object number. For example, if they want to use
the bed (lazy bones!), which is object 4, they see a message that says, “You
can’t take this lying down!”

The variable item_the_player_is_on stores the object number at the player’s
position in the room . Players can use objects they are carrying or standing
on. We set up a loop that goes through a list that contains two items: the item
number the player is standing on and the item number the player is carry-
ing . If either of them is a key for the standard_responses dictionary , the
use_message is updated to the object’s message from that dictionary . The
program prioritizes items you’re carrying over items you’re standing on if
they both have standard messages.

174 Chapter 10

Save your file as listing10-2.py. Run it using pgzrun listing10-2.py. To test
that it works, press U to use the yoyo you’re carrying.

Adding the Game Progress Variables
There are a few new variables we need to add to the program to store
important data about the player’s progress in the game:

•	 air, which stores how much air you have available, as a percentage

•	 energy, which stores your energy, as a percentage, and will be reduced if
you injure yourself

•	 suit_stitched, which stores a True or False value, depending on whether
the suit has been repaired

•	 air_fixed, which stores a True or False value, depending on whether the
air tank has been fixed

Add the variables to the end of the VARIABLES section, as shown in List-
ing 10-3. Save your updated program as listing10-3.py. This program won’t
do anything new if you run it: we’ve set up some variables but aren’t doing
anything with them yet.

--snip--
GREEN = (0, 255, 0)
RED = (128, 0, 0)

air, energy = 100, 100
suit_stitched, air_fixed = False, False
launch_frame = 0

###############
MAP
###############
--snip--

Listing 10-3: Adding the game progress variables

Adding the Actions for Specific Objects
The next stage in the use_object() function is to check particular objects to
see if they have actions that can be performed with them. These checks will
override any standard messages that might have been set up earlier and are
shown in Listing 10-4. Because these instructions are inside the use_object()
function, they are indented by at least four spaces. Save your program as
listing10-4.py. Run it using pgzrun listing10-4.py.

listing10-3.py

Make Yourself Useful 175

--snip--
 if this_item in standard_responses:
 use_message = standard_responses[this_item]

 if item_carrying == 70 or item_player_is_on == 70:
 use_message = "Banging tunes!"
 sounds.steelmusic.play(2)

 elif item_player_is_on == 11:
 use_message = "AIR: " + str(air) + \

 "% / ENERGY " + str(energy) + "% / "
 if not suit_stitched:
 use_message += "*ALERT* SUIT FABRIC TORN / "
 if not air_fixed:
 use_message += "*ALERT* SUIT AIR BOTTLE MISSING"
 if suit_stitched and air_fixed:
 use_message += " SUIT OK"
 show_text(use_message, 0)
 sounds.say_status_report.play()
 time.sleep(0.5)
 # If "on" the computer, player intention is clearly status update.
 # Return to stop another object use accidentally overriding this.

 return

 elif item_carrying == 60 or item_player_is_on == 60:
 use_message = "You fix " + objects[60][3] + " to the suit"

 air_fixed = True
 air = 90
 air_countdown()
 remove_object(60)

 elif (item_carrying == 58 or item_player_is_on == 58) \
 and not suit_stitched:
 use_message = "You use " + objects[56][3] + \
 " to repair the suit fabric"
 suit_stitched = True
 remove_object(58)

 elif item_carrying == 72 or item_player_is_on == 72:
 use_message = "You radio for help. A rescue ship is coming. \
Rendezvous Sector 13, outside."
 props[40][0] = 13

 elif (item_carrying == 66 or item_player_is_on == 66) \
 and current_room in outdoor_rooms:
 use_message = "You dig..."
 if (current_room == LANDER_SECTOR
 and player_x == LANDER_X
 and player_y == LANDER_Y):
 add_object(71)
 use_message = "You found the Poodle lander!"

listing10-4.py

176 Chapter 10

 elif item_player_is_on == 40:
 clock.unschedule(air_countdown)
 show_text("Congratulations, "+ PLAYER_NAME +"!", 0)
 show_text("Mission success! You have made it to safety.", 1)
 game_over = True
 sounds.take_off.play()
 game_completion_sequence()

 elif item_player_is_on == 16:
 energy += 1
 if energy > 100:
 energy = 100
 use_message = "You munch the lettuce and get a little energy back"
 draw_energy_air()

 elif item_carrying == 68 or item_player_is_on == 68:
 energy = 100
 use_message = "You use the food to restore your energy"
 remove_object(68)
 draw_energy_air()

 if suit_stitched and air_fixed: # open airlock access
 if current_room == 31 and props[20][0] == 31:
 open_door(20) # which includes removing the door
 sounds.say_airlock_open.play()
 show_text("The computer tells you the airlock is now open.", 1)
 elif props[20][0] == 31:
 props[20][0] = 0 # remove door from map
 sounds.say_airlock_open.play()
 show_text("The computer tells you the airlock is now open.", 1)

 show_text(use_message, 0)
 time.sleep(0.5)

###############
START
###############
--snip--

Listing 10-4: Adding the ability to use certain objects

Listing 10-4 includes a series of instructions that check whether the
object that’s being used is a particular object number. If so, the instructions
for that object are carried out.

For example, if the player is carrying or standing on object 70 , which
is an MP3 player, they’ll see a message that says “Banging tunes!” and hear
some music. If the player is using the computer , the message shown is
made by combining information from the air and energy variables, and add-
ing an alert if the suit or air bottle is faulty. There’s also a computer speech
sound effect here that says “status report!”

Make Yourself Useful 177

I’ve included a return instruction at the end of this set of instructions ,
which prevents the player from accidentally using another object when they
intended to use the computer. If we didn’t include this return instruction,
the player might end up using another prop that they’re carrying instead
of the computer. Keeping the controls simple means there can be some
ambiguity about what the player intended to use, but the game is designed
to prioritize results that help the player complete the game.

In a couple of places, I’ve used the short description from the objects
dictionary instead of typing the name of the object into the string . That’s
to prevent you from seeing any spoilers in the code!

The \ symbol at the end of a line  tells Python that the code contin-
ues on the next line. Some of the lines here are quite long, so I’ve used this
symbol to break them up and to fit them on the book page.

Try out some of the new code by walking into one of the computer ter-
minals and pressing the U key. You’ll see a status update. If you can find the
MP3 player, you can listen to that too.

R e d A l e r t 	 Be particularly careful when you’re entering the object numbers and the rest of the
code in Listing 10-4. If you make a mistake here, you might not be able to complete
the puzzles in the game!

Combining Objects
Some of the puzzles in the game require you to use objects together. For
example, you might use one object as a tool to do something to the other
object, or you might join two objects together. For instance, one of the
puzzles requires you to insert a GPS module into a positioning system.
When you find the two parts, you need to combine them to make a work-
ing positioning system. To use two objects together, you select one in your
inventory and walk on or into the other one. You might need to drop
an object from your inventory onto the floor so you can work on it with
another object you’re carrying.

In the Escape game engine, combinations are called recipes. A single
recipe contains three object numbers in a list. The first two are the items
that are combined, and the third one is the object number they make when
they’re combined. Here’s an example:

[73, 74, 75]

Object 73 (a GPS module) plus object 74 (a positioning system) makes
object 75 (a working positioning system).

When you combine objects, the new object goes into your inventory.
The objects you combined are removed from the game if they’re props.
Sometimes one will be a piece of scenery and so will remain in the game.

178 Chapter 10

Listing 10-5 shows you the list of recipes. Add it to the end of the PROPS
part of your program where the information for props is set up. Save your
file as listing10-5.py. The listing shouldn’t do anything new yet if you run it,
but it will check that the new data is correct.

--snip--
in_my_pockets = [55]
selected_item = 0 # the first item
item_carrying = in_my_pockets[selected_item]

RECIPES = [
 [62, 35, 63], [76, 28, 77], [78, 38, 54], [73, 74, 75],
 [59, 54, 60], [77, 55, 56], [56, 57, 58], [71, 65, 72],
 [88, 58, 89], [89, 60, 90], [67, 35, 68]
]

checksum = 0
check_counter = 1
for recipe in RECIPES:
 checksum += (recipe[0] * check_counter
 + recipe[1] * (check_counter + 1)
 + recipe[2] * (check_counter + 2))
 check_counter += 3
print(len(RECIPES), "recipes")
assert len(RECIPES) == 11, "Expected 11 recipes"
assert checksum == 37296, "Error in recipes data"
print("Recipe checksum:", checksum)

#######################
PROP INTERACTIONS
#######################
--snip--

Listing 10-5: Adding recipes to the Escape game

Now add the code to use the recipes near the end of the use_object()
function, as shown in Listing 10-6. Add it to your use_object() function, and
save the program as listing10-5.py. When you run the program, using pgzrun
listing10-5.py, you’ll be able to combine objects.

--snip--
 sounds.say_airlock_open.play()
 show_text("The computer tells you the airlock is now open.", 1)

 for recipe in RECIPES:
 ingredient1 = recipe[0]

 ingredient2 = recipe[1]
 combination = recipe[2]

 if (item_carrying == ingredient1
 and item_player_is_on == ingredient2) \

 or (item_carrying == ingredient2
 and item_player_is_on == ingredient1):

listing10-5.py

listing10-6.py

Make Yourself Useful 179

 use_message = "You combine " + objects[ingredient1][3] \
 + " and " + objects[ingredient2][3] \
 + " to make " + objects[combination][3]

 if item_player_is_on in props.keys():
 props[item_player_is_on][0] = 0
 room_map[player_y][player_x] = get_floor_type()
 in_my_pockets.remove(item_carrying)
 add_object(combination)

 sounds.combine.play()

 show_text(use_message, 0)
 time.sleep(0.5)
--snip--

Listing 10-6: Combining objects in the game

You might find you can work out what’s going on in this new code: it
mostly combines ideas you’ve seen before. We use a loop to go through all
the items in the RECIPES list , and a new recipe goes into the recipe list each
time. We put the ingredients and combination object numbers into vari-
ables to make the function easier to understand .

The program checks whether the player is carrying the first ingredient
and standing on the second one , or the other way around . If so, the use
message is updated to tell them what they combined and what they made .

When the combined object is made, it usually replaces the ingredient
objects. If one of the objects is scenery instead of a prop, though, it remains
in the game. So the program checks whether the item the player is on is a
prop , and if so, its room number is set to 0, removing it from the game .
If it’s a prop, it’s also deleted from the room map for the current room .

The object that was being carried is removed from the player’s inven-
tory , and the newly created object is added to it .

Training Mission #1

Let’s do a simple test to check that the combination code is working. We’ll need to
hack the code a bit for this test. In the PROPS section, change the line that sets up
in_my_pockets so you’re carrying items 73 and 74:

in_my_pockets = [55, 73, 74]

Now run the program: you’ll be carrying the GPS module and the positioning
system. Drop one of them and stand on it. Select the other one in your inventory,
and press U. The items should be combined into a working GPS system! You can
use it to see your location in the game. To be certain the code is working, try
switching the objects so you’re standing on the other one this time.

Make sure you change the code back again afterward:

in_my_pockets = [55]

180 Chapter 10

Adding the Game Completion Sequence
There is one final function in the USE OBJECTS part of the program, which is
a short animation that plays when the player completes the game: the astro-
naut takes off in the rescue ship. Add this function to the end of your USE
OBJECTS section, as shown in Listing 10-7:

--snip--
 show_text(use_message, 0)
 time.sleep(0.5)

def game_completion_sequence():
 global launch_frame #(initial value is 0, set up in VARIABLES section)
 box = Rect((0, 150), (800, 600))
 screen.draw.filled_rect(box, (128, 0, 0))
 box = Rect ((0, top_left_y - 30), (800, 390))
 screen.surface.set_clip(box)

 for y in range(0, 13):
 for x in range(0, 13):
 draw_image(images.soil, y, x)

 launch_frame += 1
 if launch_frame < 9:
 draw_image(images.rescue_ship, 8 - launch_frame, 6)
 draw_shadow(images.rescue_ship_shadow, 8 + launch_frame, 6)
 clock.schedule(game_completion_sequence, 0.25)
 else:
 screen.surface.set_clip(None)
 screen.draw.text("MISSION", (200, 380), color = "white",
 fontsize = 128, shadow = (1, 1), scolor = "black")
 screen.draw.text("COMPLETE", (145, 480), color = "white",
 fontsize = 128, shadow = (1, 1), scolor = "black")
 sounds.completion.play()
 sounds.say_mission_complete.play()

###############
START
###############
--snip--

Listing 10-7: Blast off!

Exploring the Objects
Now you can explore the objects you find in the space station and try using
them to see what they do. Before you can find all the props, though, and get
to work on the space station, you’ll need to work out how to open the safety
doors that seal off parts of the space station. In the next chapter, you’ll com-
plete the space station setup by engineering the door mechanism to open
when you use the correct access pass.

listing10-7.py

Make Yourself Useful 181

You can also use what you’ve learned in this chapter to add your own
puzzles to the Escape game code. The simplest approach is to use standard
messages (Listing 10-2) for clues and to use recipes (Listing 10-5) to com-
bine objects. You can also add simple instructions (Listing 10-4) to see
whether the player is carrying a particular object, and then increase their
air or energy variables, display a message, or do something else in the game.
Happy adventuring!

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons in
this chapter.

�� The instructions for using objects go into the use_object() function.

�� The standard_responses dictionary contains messages for when the player
uses a particular object.

�� For many objects, there are specific instructions to update different lists
or variables when the player uses them.

�� The RECIPES list stores the details of how the player can combine objects
in the game.

�� In a recipe, the first two items are ingredients, and the third item is
what they make.

11
Activating Safety Doors

On the space station, doors restrict access
to certain zones and ensure that astro-

nauts can only get into areas where they’re
qualified to work. Many doors require personal

access passes to open, and the engineering bay doors
can only be opened with a button in Mission Control.
The engineering bay doors also have a timer that
closes them automatically to increase security.

The doors also enforce safety rules that require astronauts to have a
working suit before they can enter the airlock and to have a buddy with
them before the door to the planet surface can open. Footage from the
security camera suggests that some astronauts have found a way to bypass
the buddy requirement so they can enjoy the serenity of a solo walk on the
planet’s surface.

184 Chapter 11

You installed the doors in the space station when you installed the
props. In this chapter, you’ll add the code to open and close the doors,
as well as add a few other tricks and puzzles to make the game more
interesting.

Planning Where to Put Safety Doors
Doors are clearly a vital part of the space station design, but they’re also
important for the game’s design. Most obviously, they present a challenging
puzzle: players need to find a way to open locked doors.

The doors also help us to tell a story, in which there are obstacles that
the hero must overcome using their survival training and logical thinking.
The game’s puzzles will only be satisfying if the player has to think about
them a little bit. So it’s important that we can control when players see the
different puzzle elements. Imagine you enter a room and there’s rampant
fire blocking the other exit. If you’re already carrying a fire extinguisher,
you just whip it out and use it. There’s no real challenge. It’s more intrigu-
ing if you see the threat (or the puzzle), and then have to figure out the
solution. By sealing off parts of the map, we can guide players to see a
problem before they see its solution. We can’t be certain they’ll notice
everything we put in their path, but we can give them an opportunity to
experience the game at its best.

Doors also enable us to get more value from the map. Although it might
not feel like it after typing it in, the game map isn’t huge. We can provide a
richer experience and a longer game by requiring players to cross difficult
rooms more than once. For example, if we put a key at the end of a corridor,
we can direct the player to retrace their steps along the corridor and use the
key in a door they passed on the way.

Figure 11-1 shows the location of doors
in the game. Without giving too much away,
players won’t be able to get into room 36
before they’ve gotten into the top-right sec-
tion of the space station (via room 34). They
won’t be able to visit room 27 until they’ve
gotten into room 40, either. By strategically
placing items in the locked rooms, including
access cards, we can direct the player through
the game and through the story.

When you’re designing your own games,
think carefully about where you put your
props. It’s one of the most important ele-
ments in ensuring the game presents players
with an enjoyable challenge.

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

41 42 43 44 45

46 47 48 49 50

Figure 11-1: The game map
with doors shown in red

Activating Safety Doors 185

Positioning the Doors
I’ve positioned all the doors in Escape at the top or bottom exit of a room
because of the game’s top-down perspective. If a door was in a side exit,
players would only see its top surface, and we need to make sure something
as important as a door can be clearly seen.

Most of the doors are at the top of the room and remain open after the
player opens them. The exception is the door between rooms 32 and 27,
which has a timer mechanism that shuts it automatically. This timer pro-
vides an additional challenge: the player must rush to get to the room from
the switch that opens the door, before the door closes.

The doors in Escape are objects 20 to 26. Their images and descriptions
are set up in the objects dictionary (see “Making the Space Station Objects
Dictionary” on page 85). The door positions are set up in the props dic-
tionary (see “Adding the Props Information” on page 151). Each door has
an x position that puts it in the room’s doorway. To work out the x position
for a door, just divide the room width by 2, round it down, and then sub-
tract 1.

Now let’s add some controls to enable players to open the doors.

Adding Access Controls
To enable the player to open the doors, we need to add some instructions
to the use_object() function in the USE OBJECTS part of the program. One
new code snippet will open the timed door to the engineering bay when the
player presses a button in one of the rooms. You’ll add this code between
the instructions for handling objects 16 and 68.

The other new code addition will enable the player to use access cards
to open the doors: put this after the code for using recipes.

Listing 11-1 shows the new code to add. Because these instructions are
part of the use_object() function, the first one is indented by four spaces.
Your new elif instruction should line up with the elif instruction above it.

Open listing10-7.py from the previous chapter and add these new
lines to it. Save your program as listing11-1.py. You can run it using pgzrun
listing11-1.py, but we haven’t added all the code necessary to make the
doors work properly yet. You shouldn’t see any error messages, though.

--snip--
 elif item_player_is_on == 16:
 energy += 1
 if energy > 100:
 energy = 100
 use_message = "You munch the lettuce and get a little energy back"

listing11-1.py

186 Chapter 11

 draw_energy_air()

 elif item_player_is_on == 42:
 if current_room == 27:
 open_door(26)
 props[25][0] = 0 # Door from RM32 to engineering bay

 props[26][0] = 0 # Door inside engineering bay
 clock.schedule_unique(shut_engineering_door, 60)

 use_message = "You press the button"
 show_text("Door to engineering bay is open for 60 seconds", 1)
 sounds.say_doors_open.play()
 sounds.doors.play()

 elif item_carrying == 68 or item_player_is_on == 68:
 energy = 100
 use_message = "You use the food to restore your energy"
 remove_object(68)
 draw_energy_air()

--snip--

 for recipe in RECIPES:
 ingredient1 = recipe[0]
 ingredient2 = recipe[1]
--snip--
 add_object(combination)
 sounds.combine.play()

 # {key object number: door object number}
 ACCESS_DICTIONARY = { 79:22, 80:23, 81:24 }
 if item_carrying in ACCESS_DICTIONARY:

 door_number = ACCESS_DICTIONARY[item_carrying]
 if props[door_number][0] == current_room:

 use_message = "You unlock the door!"
 sounds.say_doors_open.play()

 sounds.doors.play()
 open_door(door_number)

 show_text(use_message, 0)
 time.sleep(0.5)

--snip--

Listing 11-1: Adding the ability to open doors

The button to open the door to the engineering bay is object 42. There
is one of these buttons outside the engineering bay to provide access, and
another inside the engineering bay, so the player doesn’t get trapped inside.

If the player is using the button , the code to open the door runs. If
they’re using the button inside the room , the open_door() function is used
to show the door opening . We’ll add that function shortly.

The props dictionary is updated to change the room number for
the door to 0, removing the door from the room (and from the game) .
This door works on a timer, so the program schedules the function to close

Activating Safety Doors 187

the door 60 seconds later . If you find it too difficult to get to the room
in time, you can change the number 60 to a larger number. This number
should give you just about enough time, whether you’re using a PC or Rasp-
berry Pi 3; or a Raspberry Pi 2, where the game runs a little bit more slowly.

The second chunk of code enables players to use keys to open the
doors. We create a new dictionary called ACCESS_DICTIONARY that uses the
access card number as the dictionary key and the door number as the
data . So object 79 (an access card) is used to open door 22, for example.

Tip

The objects used to open the doors in Escape are all access cards, but if you’re
modifying the game, you could use any object. You could use a crowbar to pry
doors open, or (if you make a game set in a fantasy world) you could use different
magic spells. Just make sure players can reasonably work out what to use.

When the player presses U, the door opens if they have selected one of
the items in the dictionary for unlocking doors { and if they are standing
in the same room as the door it unlocks |. We also play a sound effect of
a computer voice saying “doors open” . This is just a recording, like any
other sound in the game.

Making the Doors Open and Close
We’ll place the functions for opening, closing, and animating the doors
into a new DOORS section of the program. You need to add this section after
the USE OBJECTS section but before the START section at the end.

Listing 11-2 shows the first two functions you need to add to start the
DOORS section. Add the new lines, and save your program as listing11-2.py.
The DOORS section is still incomplete: you can run the program (using
pgzrun listing11-2.py) to check for errors, but the doors won’t work yet.

--snip--
 sounds.completion.play()
 sounds.say_mission_complete.play()

###############
DOORS
###############

 def open_door(opening_door_number):
 global door_frames, door_shadow_frames
 global door_frame_number, door_object_number

 door_frames = [images.door1, images.door2, images.door3,
 images.door4, images.floor]
 # (Final frame restores shadow ready for when door reappears).
 door_shadow_frames = [images.door1_shadow, images.door2_shadow,
 images.door3_shadow, images.door4_shadow,
 images.door_shadow]

listing11-2.py

188 Chapter 11

 door_frame_number = 0
 door_object_number = opening_door_number

 do_door_animation()

 def close_door(closing_door_number):
 global door_frames, door_shadow_frames
 global door_frame_number, door_object_number, player_y

 door_frames = [images.door4, images.door3, images.door2,
 images.door1, images.door]
 door_shadow_frames = [images.door4_shadow, images.door3_shadow,
 images.door2_shadow, images.door1_shadow,
 images.door_shadow]
 door_frame_number = 0
 door_object_number = closing_door_number
 # If player is in same row as a door, they must be in open doorway

 if player_y == props[door_object_number][1]:
 if player_y == 0: # if in the top doorway
 player_y = 1 # move them down

 else:
 player_y = room_height - 2 # move them up
 do_door_animation()

###############
START
###############
--snip--

Listing 11-2: Setting up the door animations

The open_door() and close_door() functions set up the door animations
for opening and closing. You’ve already seen open_door()  mentioned in
Listing 11-1. In Listing 11-2, we define that function so it can run if the
player opens a door using a key, for example.

The door animation has five frames, numbered 0 to 4, as shown in
Table 11-1. We store images for the animation in a list called door_frames v
and store the frame number in the variable door_frame_number. In the open
_door() and close_door() functions, we set the frame number to 0, the first
frame.

In the variable door_object_number, we store the object number of the
door that will be opening or closing. After the variables and list have been
set up, the function do_door_animation() is started to carry out the animation
using them w. We’ll add that function shortly.

The function for closing the door  is similar to the function for open-
ing the door  with two exceptions: the animation frames are different,
and there is a check to stop the door from closing on top of the player.

If the player is in the same y position as the door , it means the player
is standing in the doorway. In that case, if the player is in the top row , we
set their y position to 1  to move them to the next row down. If the player
is not in the top row, we set their y position to the second row from the
bottom , just inside the door.

Activating Safety Doors 189

This means the astronaut jumps out of the way of the doors of their
own accord, but it’s more realistic than them ending up inside the door!

Table 11-1: The Animation Frames for the Doors

Frame
number

0 1 2 3 4

Opening

Final frame
is a floor tile
(no door).

Closing

Adding the Door Animation
The do_door_animation() function will manage the animation of the doors
opening and closing.

Place the do_door_animation() function inside the DOORS section of the
program, after the close_door() function you added in Listing 11-2. Add the
new lines in Listing 11-3, and save your program as listing11-3.py. You can
run this version of the game using pgzrun listing11-3.py. The doors that are
opened with a key should now be working. I’ll tell you how to test them in
Training Mission #1 shortly.

--snip--
 player_y = room_height - 2 # move them up
 do_door_animation()

def do_door_animation():
 global door_frames, door_frame_number, door_object_number, objects

 objects[door_object_number][0] = door_frames[door_frame_number]
 objects[door_object_number][1] = door_shadow_frames[door_frame_number]

 door_frame_number += 1
 if door_frame_number == 5:
 if door_frames[-1] == images.floor:
 props[door_object_number][0] = 0 # remove door from props list

 # Regenerate room map from the props
 # to put the door in the room if required.

 generate_map()
 else:
 clock.schedule(do_door_animation, 0.15)

listing11-3.py

190 Chapter 11

###############
START
###############
--snip--

Listing 11-3: Adding the door animation

The objects dictionary contains, among other things, the image to use
for a particular object. This new function starts by changing the door’s
image in that dictionary to the current animation frame . When the room
is redrawn, it will now use that animation frame.

The function then increases the animation frame number by 1  so
the next animation frame can be shown next time this function runs. If the
frame is now 5, it means we’ve reached the end of the animation . In that
case, we check whether the door has opened (rather than closed) by see-
ing whether the final frame was a floor tile, showing no door . (An index
number of -1 gives you the last item in a list.)

If the door has now fully opened, the props data is updated to remove
this door from the game by changing its room number to 0 . If the cur-
rent animation frame is the final frame, whether the door is opening or
closing, a new room map is generated , which ensures the door is added
or removed correctly in the current room.

If the current frame isn’t the final animation frame , the function
sets itself to run again in 0.15 seconds  to show the next frame in the
sequence.

You may be wondering why I didn’t combine the two if instructions w.
The reason is that the generate_map() function needs to run at the end of the
animation, whether the door is opening or closing. If we combined the two if
instructions, this function would only run when the door had opened.

Training Mission #1

At this point in the program, the doors should be fully functional. Can you test that
they work? Find the access card for the door in the community room and use it.
Stand in the community room and use the access card for its door by selecting the
access card in your inventory and pressing U. If you need a hint, look at the map
in Figure 11-1. The community room is number 39, and the key for it is in room 41.
Remember that people sometimes tidy things away, and the key might not be lying
in plain sight.

Shutting the Timed Door
Next, we need to add a new function called shut_engineering_door() to shut
the door to the engineering bay automatically. This function is set to run
after a delay of 60 seconds when the door is opened (see Listing 11-1), giv-
ing the player a minute to run from the button to the door before it shuts!

Activating Safety Doors 191

Put this function in the DOORS section of the program after the do_door
_animation() function you just added. Add the new lines in Listing 11-4,
and save the program as listing11-4.py. Then run this program using pgzrun
listing11-4.py. You should see no error messages. The timed door should be
working now, but I’ll show you an easier way to test it shortly.

--snip--

 else:
 clock.schedule(do_door_animation, 0.15)

def shut_engineering_door():
 global current_room, door_room_number, props

 props[25][0] = 32 # Door from room 32 to the engineering bay.
 props[26][0] = 27 # Door inside engineering bay.
 generate_map() # Add door to room_map for if in affected room.
 if current_room == 27:
 close_door(26)
 if current_room == 32:
 close_door(25)

 show_text("The computer tells you the doors are closed.", 1)
 sounds.say_doors_closed.play()

###############
START
###############
--snip--

Listing 11-4: Adding the code to shut the engineering door automatically

The shut_engineering_door() function has two door props to work with,
objects 25 and 26, because the player can see this door from either side
depending on which room they’re in. The first thing we do is update the
props dictionary so these doors appear in the rooms u.

We then call the generate_map() function . If the player is in a room
with one of these doors, this function updates the room map for the cur-
rent room. In other cases, the generate_map() function still runs, but nothing
changes.

If the player is in the engineering bay (room 27) , they need to see
door 26 closing , so the program starts the animation. If the player is on
the other side of the door, in room 32 , we need to show them door 25
closing .

R e d A l e r t 	 Don’t mix up door numbers and room numbers. Door numbers are object numbers
and aren’t related to the room they’re in.

To test that the engineering bay door is working correctly, we’d have to
run the game, press the button, and race to the engineering bay. So to save
time, let’s engineer a solution that enables us to get around the space station
more quickly.

listing11-4.py

192 Chapter 11

Adding a Teleporter
While you’re still building the space station, you might find it helpful to
be able to jump to any room in an instant. Using the latest in molecular
transfer technology, we can install a teleporter that allows you to type in a
room number and go straight there. This is a huge benefit when you’re test-
ing the game, but it’s a restricted technology and isn’t approved for use in a
real mission on the space station. You’ll need to remove it before you finish
building the game. I’m trusting you with highly classified technology here.

Place the teleporter code with the other player controls in the game_loop()
function, in the GAME LOOP part of the program. I recommend that you add
it after the instructions for starting the use_object function. Because these
instructions are inside a function, you need to indent the if instruction by
four spaces and then indent the instructions under it by four more spaces.

Add the new instructions in Listing 11-5, and then save your file as
listing11-5.py. You can run this program using pgzrun listing11-5.py.

--snip--

 if keyboard.u:
 use_object()

Teleporter for testing
Remove this section for the real game

 if keyboard.x:
 current_room = int(input("Enter room number:"))
 player_x = 2

 player_y = 2
 generate_map()
 start_room()

 sounds.teleport.play()
Teleport section ends

--snip--

Listing 11-5: Adding a teleporter

When you press the X key , the program will ask you to type in a
room number . This request appears in the command line window where
you type in your pgzrun instruction to run the program. You might need to
click this window to bring it to the front and will need to click the game
window to play again afterwards.

The input() function takes whatever you enter and puts it in a string.
Because we need the input as a number, we use the int() function to con-
vert it to an integer (or whole number) .

The number you enter goes into the current_room variable. There’s no
error checking here, so the program might crash if you don’t enter a valid
room number. If you enter text instead of a number, for example, the pro-
gram freezes.

You’re teleported to position y = 2, x = 2  inside the room you choose.
This is usually a fairly safe place to be, but if the teleporter puts you inside

listing11-5.py

Activating Safety Doors 193

some scenery, you can usually just walk out of it. The room map is regener-
ated , and the room is restarted , completing your teleportation to your
new destination.

Training Mission #2

Use the teleporter to beam into room 27 so you can test the door in the engineer-
ing bay. Use the button at the top of the room to open the door (press U while
walking into the button), and wait in the room until the door closes. Open the door
again, but this time leave the room and check that the door still closes when seen
from the other side. The door animation should work correctly.

Activating the Airlock Security Door
As a safety feature, the airlock door to the planet’s surface uses a weight
sensor to open it. One astronaut must stand on the pressure pad to open
the door, enabling another one to walk through it. This design ensures that
astronauts cannot go out onto the planet’s surface without support in the
space station.

To enable this safety feature, we’ll need to add a new function to the pro-
gram’s DOORS section. Listing 11-6 shows the code for the new function, which
animates the door. Add this code after the shut_engineering_door() function
you added in Listing 11-4. Save your updated program as listing11-6.py. You
can run your program using pgzrun listing11-6.py, but the airlock door is not
activated yet.

--snip--
 show_text("The computer tells you the doors are closed.", 1)
 sounds.say_doors_closed.play()

def door_in_room_26():
 global airlock_door_frame, room_map

 frames = [images.door, images.door1, images.door2,
 images.door3,images.door4, images.floor
]

 shadow_frames = [images.door_shadow, images.door1_shadow,
 images.door2_shadow, images.door3_shadow,
 images.door4_shadow, None]

 if current_room != 26:
 clock.unschedule(door_in_room_26)
 return

 # prop 21 is the door in Room 26.
 if ((player_y == 8 and player_x == 2) or props[63] == [26, 8, 2]) \

 and props[21][0] == 26:
 airlock_door_frame += 1

listing11-6.py

194 Chapter 11

 if airlock_door_frame == 5:
 props[21][0] = 0 # Remove door from map when fully open.
 room_map[0][1] = 0
 room_map[0][2] = 0
 room_map[0][3] = 0

 if ((player_y != 8 or player_x != 2) and props[63] != [26, 8, 2]) \
 and airlock_door_frame > 0:
 if airlock_door_frame == 5:
 # Add door to props and map so animation is shown.
 props[21][0] = 26
 room_map[0][1] = 21
 room_map[0][2] = 255
 room_map[0][3] = 255
 airlock_door_frame -= 1

 objects[21][0] = frames[airlock_door_frame]
 objects[21][1] = shadow_frames[airlock_door_frame]

###############
START
###############
--snip--

Listing 11-6: Adding the weight-activated door in the airlock

I’ve added the door_in_room_26() function to the game to enable a spe-
cific puzzle. To avoid telling you the solution and spoiling the puzzle, I
won’t cover everything that’s in the code here, but I’m sure you can work it
out if you want to!

We store the animation frames for the door in the list frames, including
the first frame that shows the door shut and the final frame that shows an
empty floor tile instead of the door .

We store the animation frame for the airlock door in the airlock_door
_frame variable. If the player is standing on the pressure pad (at position
y = 8 and x = 2) and the door is in the room , the animation frame num-
ber is increased to open the door a bit more . If the animation frame is
now 5 , then the door is fully opened, and the props dictionary and room
map are updated to remove the door from the room.

We add another section of code to close the door when the player is
not standing on the pressure pad and the door is already at least partially
open , so the door closes if the player moves off the pressure pad. The
program only displays props that are in the room map for the current
room, so the first instructions put the door (object 21) into the room map,
even though the first animation frame will show the door fully open.

Finally, we change the image file for the door in the objects dictionary to
the current animation frame . The door’s shadow image is also updated. As
a result, when the room is drawn, the picture for the door shows its current
animation frame.

This airlock routine creates a smooth effect where the door slides open
when the player steps on the pressure pad, but slides shut again the moment

Activating Safety Doors 195

they walk off. If they step back onto the pad while the door is shutting, it
starts to open again.

To make the airlock routine work, we also need to add the instruction
to make the door_in_room_26() function run every 0.05 seconds when the
player enters the room. When the door_in_room_26() function starts, it checks
whether the player is still in room 26. If the player has left the room, the
instructions at  in Listing 11-6 stop the function from running regularly
and exit the function (using a return instruction) so that the door anima-
tion stops.

We’ll put the code that starts the door_in_room_26() function into the
start_room() function at the top of the GAME LOOP section. The start_room()
function runs when the player enters a room. Listing 11-7 shows the new
instructions to add.

--snip--
###############
GAME LOOP
###############

def start_room():
 global airlock_door_frame
 show_text("You are here: " + room_name, 0)
 if current_room == 26: # Room with self-shutting airlock door
 airlock_door_frame = 0
 clock.schedule_interval(door_in_room_26, 0.05)

--snip--

Listing 11-7: Scheduling the door animation for the airlock

Save your program as listing11-7.py and run it using
pgzrun listing11-7.py. In the game, press X to use the
teleporter and beam into room 26. Now you can test
that the pressure pad works as expected (see Fig-
ure 11-2). Try walking on it, off it, and across it to see
how the door behaves.

Note that if you leave through the exit at the
bottom of this room, a door appears that blocks your
way back again. (Normally, you would only enter the
airlock by opening that door and removing it from
the game.) When you teleport into rooms, strange
things like this might happen. It messes with the
space-time continuum.

Removing Exits for Your Own
Game Designs

If you’re closing off exits for your own map designs,
you might need to move or remove doors in those

listing11-7.py

Figure 11-2: Standing
on the pressure pad
opens the door.

196 Chapter 11

exits as well. To remove a door from the game, change the entry for that
door in the props dictionary so its first number is a 0, or delete its entry from
the dictionary.

If you’re customizing the game, you might also want to remove some
of the custom code here that enables the special doors for the engineering
bay and the airlock. To disable the pressure pad door, remove the new code
in Listings 11-6 and 11-7. To remove the timed door to the engineering bay,
remove the code shown in Listing 11-4, and additionally remove the first
chunk of new code in Listing 11-1 for pressing the button (using object 42).

Mission Accomplished?
You’ve now finished building the space station, and it’s fully functional. It
seems you can now settle into your new life, conducting experiments and
exploring the red planet.

But, wait! What’s this? There could be trouble ahead.

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons in
this chapter.

�� Doors can seal off parts of the game map, so players can discover
puzzle elements in the right order.

�� Doors need to go at the top or the bottom of a room.

�� Doors that are opened with access cards stay open.

�� You can use the functions provided to add doors that close automati-
cally, such as the door in the engineering bay.

�� Doors are positioned using the props dictionary. Their images and
descriptions are stored in the objects dictionary.

�� To animate the door, the program changes its image in the objects dic-
tionary. When the room is redrawn, the new image is used for the door.

�� If a door can be seen from both sides, it needs to be represented with
two door props: one in each of the rooms where it can be seen.

�� ACCESS_DICTIONARY is used to remember which access cards unlock which
doors. You could use other objects to open doors by making changes in
this dictionary.

�� To adjust the difficulty of the game, you can change the delay before
the engineering door slams shut.

�� The teleporter enables you to beam into any room for testing purposes.

�� The input() function in Python treats what you enter as a string. To
enable players to type in a number, use the int() function to convert
what they enter to an integer.

12
Danger! Danger!
Adding Hazards

When the space station systems fail, all
kinds of threats emerge. In this chapter,

you’ll see the air start to leak from the sta-
tion and will discover moving hazards in some

of the rooms, including rogue robots, balls of energy,
and toxic puddles.

I’ve put the dangers last so you can test the game up to this point with-
out worrying about your time or energy running out. In this chapter, we’ll
start the air leak and draw a timer bar to let you know how much air you
have left. We’ll also add hazards that can harm you and drain your energy.
Finally, we’ll clean up the game and get it ready to play!

198 Chapter 12

Adding the Air Countdown
There are two ways for the player to fail in the game: their air can run out
or their energy can run out. At the bottom of the screen, two bars show
players how much air and how much energy they have remaining (see
Figure 12-1).

Figure 12-1: Two bars at the bottom of the screen show your
remaining air and energy.

You lose energy when you walk over toxic spills or are hit by moving
hazards, and the air gradually runs out because of the leak in the space sta-
tion wall. If you put on a space suit, you can buy more time, but the air in
the suit’s canister will eventually run out too. Some of your toughest deci-
sions could be deciding when to top up your air and use food to restore
your energy.

Displaying the Air and Energy Bars
We’ll create a new section of the program called AIR, which you need to
place after the DOORS section but before the START section at the end of the
program. Add the new code shown in Listing 12-1 to your final listing from
the previous chapter (listing11-7.py). Save your file as listing12-1.py. If you
run the program, it won’t do anything new yet, but this code creates the
function for drawing the air and energy bars.

Danger! Danger! Adding Hazards 199

--snip--
 objects[21][0] = frames[airlock_door_frame]
 objects[21][1] = shadow_frames[airlock_door_frame]

###############
AIR
###############

def draw_energy_air():
 box = Rect((20, 765), (350, 20))

 screen.draw.filled_rect(box, BLACK) # Clear air bar.
 screen.draw.text("AIR", (20, 766), color=BLUE)
 screen.draw.text("ENERGY", (180, 766), color=YELLOW)

 if air > 0:
 box = Rect((50, 765), (air, 20))
 screen.draw.filled_rect(box, BLUE) # Draw new air bar.

 if energy > 0:
 box = Rect((250, 765), (energy, 20))
 screen.draw.filled_rect(box, YELLOW) # Draw new energy bar.

###############
START
###############
--snip--

Listing 12-1: Drawing the air and energy bars

We begin the new draw_energy_air() function by drawing a black box
over the status area at the bottom of the screen to clear it . We then add
the AIR label in blue , and the ENERGY label in yellow . This function
will use the air and energy variables, which are already set to 100 in the
VARIABLES part of the program.

If the player has some air left (if the variable air is more than 0) ,
a box is created that uses the air variable for its width . The box is then
filled with the color blue . This draws the AIR indicator bar, which starts
off being 100 pixels wide and gets smaller as the AIR variable decreases.

We use similar instructions to draw the energy bar , but the bar’s start
position is farther to the right (the x position is 250 instead of 50).

Adding the Air Countdown Functions
We’ll make three functions to enable the air countdown. The end_the_game()
function runs when you’re out of air. It displays the reason the player failed
the mission, plays some sound effects, and shows a large GAME OVER
message in the middle of the game window.

The air_countdown() function saps the air supply. We’ll also add an
alarm() function that runs shortly after the game begins to warn the player
that their air is failing.

listing12-1.py

200 Chapter 12

These three functions are in Listing 12-2. Add the new code shown
here in the AIR section of the program, after the draw_energy_air() function
you just added. Save your program as listing12-2.py. You can run this pro-
gram using pgzrun listing12-2.py, but you won’t see anything new yet.

--snip--
 if energy > 0:
 box = Rect((250, 765), (energy, 20))
 screen.draw.filled_rect(box, YELLOW) # Draw new energy bar.

 def end_the_game(reason):
 global game_over

 show_text(reason, 1)
 game_over = True

 sounds.say_mission_fail.play()
 sounds.gameover.play()

 screen.draw.text("GAME OVER", (120, 400), color = "white",
 fontsize = 128, shadow = (1, 1), scolor = "black")

 def air_countdown():
 global air, game_over
 if game_over:
 return # Don't sap air when they're already dead.

 air -= 1
 if air == 20:

 sounds.say_air_low.play()
 if air == 10:
 sounds.say_act_now.play()

 draw_energy_air()
 if air < 1:

 end_the_game("You're out of air!")

 def alarm():
 show_text("Air is running out, " + PLAYER_NAME
 + "! Get to safety, then radio for help!", 1)
 sounds.alarm.play(3)
 sounds.say_breach.play()

###############
START
###############
--snip--

Listing 12-2: Adding the air countdown

The air_countdown() function  reduces the air variable’s value by 1
each time it runs . If the value is equal to 20  or 10, a warning sound
effect plays to let the player know their air is low.

The draw_energy_air() function you added in Listing 12-1 updates the air
and energy display . If the air has run out , the end_the_game() function
runs and displays the string "You're out of air!".

listing12-2.py

Danger! Danger! Adding Hazards 201

Tip

Sound files must be stored in the sounds folder and should be in .wav or .ogg for-
mat. To play a sound called bang.wav, you would use sounds.bang.play(). As with
images, you don’t need to tell Pygame Zero the file extension or where the sound
is stored. Why not try recording and adding your own sound effects for various
points in the game?

In the end_the_game() function , we use the variable reason for the
information it receives, and display that on the screen as the reason for
death . The game_over variable is set to True . Other functions use this
variable to know when the game has finished so everything can come to
a stop. The end_the_game() function then draws the words GAME OVER in
large text in the middle of the screen. The text is drawn at position x = 120,
y = 400 in white text using a font size of 128 . We also add a drop shadow
under the text for effect, which is offset by 1 pixel in each direction and is
colored black (see Figure 12-2).

Figure 12-2: Oh no! You’re out of air!

The final function in this section, alarm() , plays the alarm sound and
displays a message telling you to radio for help. It uses the player’s name in
the warning to personalize it.

The number in parentheses in the sounds.alarm.play() command is the
number of times the sound should be played (in Listing 12-2, it’s three).

202 Chapter 12

Starting the Air Countdown and Sounding
the Alarm
We haven’t set the three new functions to run yet. To do that, we need to
add some instructions to the START section of the program, which is (per-
haps confusingly!) at the end of the program listing. Add the new instruc-
tions shown in Listing 12-3, and save it as listing12-3.py.

--snip--
###############
START
###############

clock.schedule_interval(game_loop, 0.03)
generate_map()
clock.schedule_interval(adjust_wall_transparency, 0.05)
clock.schedule_unique(display_inventory, 1)
clock.schedule_unique(draw_energy_air, 0.5)
clock.schedule_unique(alarm, 10)
A higher number below gives a longer time limit.
clock.schedule_interval(air_countdown, 5)

Listing 12-3: Starting the air countdown

Now the game has a time limit. When the air runs out, the game ends.
Run the program using pgzrun listing12-3.py, and you should see your air
supply slowly go down.

If you find the game too difficult when you’re playing the final ver-
sion, you can give yourself more time by changing the 5 in the final line
in Listing 12-3 to a higher number. This number decides how often the
air_countdown() function saps your air supply, and is measured in seconds.
In particular, if you’re using a Raspberry Pi 2, the time limit might be chal-
lenging because the game runs a bit more slowly there. It’s still possible to
complete the game, but you can increase the number 5 to give yourself a
little more, ahem, breathing space.

Training Mission #1

When your air supply reaches 0, you should see the GAME OVER message and
find that you can no longer move the astronaut. Your energy goes down by 1 per-
cent every 5 seconds, so it’ll take about 8.5 minutes (500 seconds) to run out. Can
you work out how to make the air leak more often, so you can more easily test
what happens when the air runs out?

After completing the training mission, make sure you change the program
back again: otherwise, you’ll find your mission rather hard to complete!

listing12-3.py

Danger! Danger! Adding Hazards 203

Adding the Moving Hazards
There are three types of moving hazards in the game: two types of energy
balls and a flying drone that’s gone rogue.

Figure 12-3 shows the direction numbers the
moving hazards use.

Hazards move in a straight line until they hit
something, and then we add a number to change
their direction. The number we add will decide
the hazard’s movement pattern. For example, if we
add 1 to the direction number, the hazard moves
in a clockwise pattern (up, right, down, left). If we
add -1 to the direction number, the hazard moves
in a counterclockwise pattern (left, down, right,
up). If we add 2, it will bounce between going left
and right (2 and 4) or up and down (1 and 3).
Take a look at Figure 12-3 and check this makes
sense to you. Each hazard can have its own pattern
of movement.

If the addition results in a number that’s higher than 4, we subtract 4.
For example, if a hazard is moving clockwise, we add 1 to its direction num-
ber each time it hits something. If it’s going down (direction 3), we add 1
when it hits something, so it starts to move left (direction 4). The next
time it hits something, we add 1, but that makes the direction number 5.
So we subtract 4, and that gives us a direction number of 1. As Figure 12-3
shows, that’s the next direction number after 4, going around in a clockwise
pattern.

Table 12-1 summarizes the numbers we can use to get different move-
ment patterns.

Table 12-1: How to Change Direction When a Hazard Hits Something

Movement pattern Number to add to the direction number

Clockwise 1

Counterclockwise -1

Left/right 2

Up/down 2

R e d A l e r t 	 Take care not to mix up the two numbers that describe the movement. The direction
number (see Figure 12-3) tells the program which direction a hazard is moving in.
The number we add to the direction number (see Table 12-1) tells the program which
way the hazard should bounce when it hits something.

1

3

24

Figure 12-3: The direc-
tion numbers the moving
hazards use are num-
bered in a clockwise
order.

204 Chapter 12

Adding the Hazard Data
Between the AIR and START sections, we’ll add a new section to the program
called HAZARDS. Listing 12-4 shows you the hazard data. Add it to your pro-
gram, and save it as listing12-4.py. If you run the program, it won’t do any-
thing new yet, but you can check that you don’t get any error messages in
the command line window.

--snip--
 sounds.alarm.play(3)
 sounds.say_breach.play()

###############
HAZARDS
###############

hazard_data = {
 # room number: [[y, x, direction, bounce addition to direction]]

 28: [[1, 8, 2, 1], [7, 3, 4, 1]], 32: [[1, 5, 1, 1]],
 34: [[5, 1, 1, 1], [5, 5, 1, 2]], 35: [[4, 4, 1, 2], [2, 5, 2, 2]],
 36: [[2, 1, 2, 2]], 38: [[1, 4, 3, 2], [5, 8, 1, 2]],
 40: [[3, 1, 3, 1], [6, 5, 2, 2], [7, 5, 4, 2]],
 41: [[4, 5, 2, 2], [6, 3, 4, 2], [8, 1, 2, 2]],
 42: [[2, 1, 2, 2], [4, 3, 2, 2], [6, 5, 2, 2]],
 46: [[2, 1, 2, 2]],
 48: [[1, 8, 3, 2], [8, 8, 1, 2], [3, 9, 3, 2]]
 }

###############
START
###############
--snip--

Listing 12-4: Adding the hazard data

We create a hazard_data dictionary that uses room numbers as dictionary
keys. For each room, there is a list that contains the data for all the hazards.
The data for each hazard is in a list that contains the hazard’s y position,
x position, starting direction, and number to add when it hits something.

For example, room 28  has a hazard with the list data [7, 3, 4, 1].
This means the hazard starts at y = 7, x = 3. It starts moving left (direction 4),
and it moves clockwise when it hits something because we add 1 to its direc-
tion number.

Room 41 contains three hazards (in three lists), which are moving from
left to right and back again. We know that because they start with a direc-
tion of 2 or 4 (right or left) and add 2 to the direction when they hit some-
thing (making 4 or 6: we know that 6 becomes 2 after we subtract 4).

listing12-4.py

Danger! Danger! Adding Hazards 205

Sapping the Player’s Energy
After the hazard data, we need to add a function called deplete_energy(),
which reduces the player’s energy when a hazard hits them. Listing 12-5
shows the new function. Add it after Listing 12-4 in the HAZARDS section
of the program, and save your program as listing12-5.py. You can run the
program to check for errors using pgzrun listing12-5.py, but it won’t do any-
thing new.

--snip--
 46: [[2, 1, 2, 2]],
 48: [[1, 8, 3, 2], [8, 8, 1, 2], [3, 9, 3, 2]]
 }

 def deplete_energy(penalty):
 global energy, game_over
 if game_over:
 return # Don't sap energy when they're already dead.

 energy = energy - penalty
 draw_energy_air()
 if energy < 1:
 end_the_game("You're out of energy!")

###############
START
###############
--snip--

Listing 12-5: Reducing the player’s energy

The deplete_energy() function accepts a number  and uses that number
to reduce the player’s energy variable . As a result, we can use this function
for hazards that drain different amounts of energy.

Starting and Stopping Hazards
When the player enters a new room, the function hazard_start() puts the
hazards into the room. Listing 12-6 shows this function, which you need
to add after the deplete_energy() function in the HAZARDS section of the
program. Save your program as listing12-6.py. If you run it using pgzrun
listing12-6.py, you shouldn’t notice any difference yet, because we haven’t
set this function to run.

--snip--
 if energy < 1:
 end_the_game("You're out of energy!")

def hazard_start():
 global current_room_hazards_list, hazard_map

 if current_room in hazard_data.keys():
 current_room_hazards_list = hazard_data[current_room]

listing12-5.py

listing12-6.py

206 Chapter 12

 for hazard in current_room_hazards_list:
 hazard_y = hazard[0]
 hazard_x = hazard[1]

 hazard_map[hazard_y][hazard_x] = 49 + (current_room % 3)
 clock.schedule_interval(hazard_move, 0.15)

###############
START
###############
--snip--

Listing 12-6: Adding the hazards to the current room

The hazard_start() function will run whenever the player enters a new
room, so it begins by checking whether the current room has an entry in
the hazard_data dictionary . If it does, that room should have moving haz-
ards in it, and the rest of the function runs. We put the hazard data for the
room into a list called current_room_hazards_list . The function then uses a
loop  to process each hazard in the list in turn.

The hazards use their own room map called hazard_map, so they can eas-
ily fly over objects on the floor without overwriting them in the room map.
If the hazards used the same room map as the props, they would wipe out
props as they flew over them, or we’d need a complicated way to remember
what’s underneath the hazards.

The three hazard objects have the numbers 49, 50, and 51 in the objects
dictionary. The program uses a simple calculation to work out which one
goes into a particular room. As you’ve seen before, Python’s % operator
gives you the remainder after doing a division. When you divide any num-
ber by 3, the remainder will be 0, 1, or 2. So the program divides the room
number by 3 and adds the remainder to 49 to pick an object number . So,
for example, if we were in room 34, the program would work out that 34 % 3
is 1, and add 1 to 49 to select hazard number 50 for all the hazards in that
room.

This way of selecting hazard numbers ensures the hazard is always the
same type when the player enters the room. Because the map is five rooms
wide, it also guarantees that two directly connected rooms cannot have the
same hazard in them. That adds a sense of variety to the map, although
not all rooms have hazards, so in practice, players might still encounter
the same hazard twice in a row, walking through some empty rooms in
between.

The function finishes by scheduling the hazard_move() function to run
every 0.15 seconds .

To start the hazard_start() function when the player enters a new room,
add an instruction to the start_room() function, as shown in Listing 12-7.
Save your program as listing12-7.py. This version of the program will freeze
when you leave the start room, because we haven’t finished adding the code
for the hazards yet.

Danger! Danger! Adding Hazards 207

--snip--
###############
GAME LOOP
###############

def start_room():
 global airlock_door_frame
 show_text("You are here: " + room_name, 0)
 if current_room == 26: # Room with self-shutting airlock door
 airlock_door_frame = 0
 clock.schedule_interval(door_in_room_26, 0.05)
 hazard_start()
--snip--

Listing 12-7: Starting hazards when the player enters the room

Not all rooms have hazards, so we will stop the hazards from mov-
ing when the player leaves a room. We previously added instructions in
the game_loop() function to turn off the function that makes the hazards
move when the player changes room. We commented them out because we
weren’t ready for them yet.

We’re ready for them now! Follow these steps to uncomment the
instructions (you did something similar in Chapter 8):

1.	 Click Edit4Replace (or press ctrl-H) in IDLE to show the Replace
Text dialog box.

2.	 Type #clock.unschedule(hazard_move) into the Find box.

3.	 Type clock.unschedule(hazard_move) into the Replace With box.

4.	 Click Replace All. IDLE should replace the instruction in four places,
and jump to the last one in the listing. Listing 12-8 shows the new line
that will be highlighted at the end of the process (you don’t need to
type this listing in). Above this block of code, there are three similar
blocks that also now stop the hazards moving when the player leaves
the room through one of the exits.

--snip--
 if player_y == -1: # through door at TOP
 clock.unschedule(hazard_move)
 current_room -= MAP_WIDTH
 generate_map()
 player_y = room_height - 1 # enter at bottom
 player_x = int(room_width / 2) # enter at door
 player_frame = 0
 start_room()
 return
--snip--

Listing 12-8: Stopping hazards when the player leaves the room

listing12-7.py

listing12-8.py

208 Chapter 12

Save your updated program as listing12-8.py. If you run this version of
the program, you’ll see an error message in the console, and the game will
freeze when you leave the room. The reason is that we haven’t added the
hazard_move() function yet.

Setting Up the Hazard Map
We now need to make sure that when the room map is generated for scen-
ery and props, an empty hazard map is also generated. The hazard_start()
function will fill it with any hazards in the room.

Add the new code shown in Listing 12-9 at the end of the generate_map()
function in the MAKE MAP section of the program. Place this new code just
before the GAME LOOP section, and make sure you indent the first line by four
spaces because it’s inside a function.

Save your program as listing12-9.py. When you run it, the program won’t
work properly yet because it is still incomplete.

--snip--
 for tile_number in range(1, image_width_in_tiles):
 room_map[prop_y][prop_x + tile_number] = 255

 hazard_map = [] # empty list
 for y in range(room_height):
 hazard_map.append([0] * room_width)

###############
GAME LOOP
###############
--snip--

Listing 12-9: Creating the empty hazard map

These new instructions create an empty list for the hazard map and fill
it with rows of 0s that are as wide as the room width.

Making the Hazards Move
Now let’s add the missing hazard_move() function to make the hazards
move. Put this at the end of the HAZARDS section of the program after the
hazard_start() function, as shown in Listing 12-10. Save your program as
listing12-10.py.

--snip--
 hazard_map[hazard_y][hazard_x] = 49 + (current_room % 3)
 clock.schedule_interval(hazard_move, 0.15)

def hazard_move():
 global current_room_hazards_list, hazard_data, hazard_map
 global old_player_x, old_player_y

 if game_over:
 return

listing12-9.py

listing12-10.py

Danger! Danger! Adding Hazards 209

 for hazard in current_room_hazards_list:
 hazard_y = hazard[0]
 hazard_x = hazard[1]
 hazard_direction = hazard[2]

 old_hazard_x = hazard_x
 old_hazard_y = hazard_y
 hazard_map[old_hazard_y][old_hazard_x] = 0

 if hazard_direction == 1: # up
 hazard_y -= 1
 if hazard_direction == 2: # right
 hazard_x += 1
 if hazard_direction == 3: # down
 hazard_y += 1
 if hazard_direction == 4: # left
 hazard_x -= 1

 hazard_should_bounce = False

 if (hazard_y == player_y and hazard_x == player_x) or \
 (hazard_y == from_player_y and hazard_x == from_player_x
 and player_frame > 0):
 sounds.ouch.play()
 deplete_energy(10)
 hazard_should_bounce = True

 # Stop hazard going out of the doors
 if hazard_x == room_width:
 hazard_should_bounce = True
 hazard_x = room_width - 1
 if hazard_x == -1:
 hazard_should_bounce = True
 hazard_x = 0
 if hazard_y == room_height:
 hazard_should_bounce = True
 hazard_y = room_height - 1
 if hazard_y == -1:
 hazard_should_bounce = True
 hazard_y = 0

 # Stop when hazard hits scenery or another hazard.
 if room_map[hazard_y][hazard_x] not in items_player_may_stand_on \
 or hazard_map[hazard_y][hazard_x] != 0:
 hazard_should_bounce = True

 if hazard_should_bounce:
 hazard_y = old_hazard_y # Move back to last valid position.
 hazard_x = old_hazard_x

 hazard_direction += hazard[3]
 if hazard_direction > 4:

 hazard_direction -= 4
 if hazard_direction < 1:
 hazard_direction += 4

 hazard[2] = hazard_direction

210 Chapter 12

 hazard_map[hazard_y][hazard_x] = 49 + (current_room % 3)
 hazard[0] = hazard_y
 hazard[1] = hazard_x

###############
START
###############
--snip--

Listing 12-10: Adding the hazard movement function

The hazard_move() function uses an idea similar to the player movement.
The hazard’s position is stored in the old_hazard_x and old_hazard_y vari-
ables . The hazard is then moved .

Then we check whether the hazard has hit the player , gone out
the door , or hit the scenery or another hazard . If it has , then its
position is reset to its old values, and we change its direction by adding
the last number in its list of data to the direction number . If adding
this number increases the direction number to more than 4 , the func-
tion subtracts 4, as we discussed earlier in this chapter, because 4 is the
highest valid direction number. On the other hand, if adding this num-
ber decreases the direction number to less than 1, the function adds 4.
Finally, the new direction is saved in the hazard data .

At the end of the function , the hazard is put into the hazard map.
You can run this program using pgzrun listing12-10.py. The first room

with a hazard is the one to the right of your starting room. When you enter
it, your energy will mysteriously go down sometimes, even though you can’t
see anything dangerous. This is because we haven’t added code to draw the
hazards yet.

Tip

When a hazard hits you , the deplete_energy() function reduces your energy
by 10 percent. If you find the game too difficult, you can change this number to 5.
If you complete the game and want a tougher challenge the next time around, you
could change it to 20!

Displaying Hazards in the Room
It doesn’t seem fair to have invisible dangers, so let’s add a few lines to show
the hazards in the room. Listing 12-11 shows three new lines to add to the
draw() function in the DISPLAY section of the program. Put these near the
end of the function, before the code to draw the player.

Indent these instructions by a total of 12 spaces because they’re inside
the draw() function (4 spaces), inside the y loop (another 4), and inside the
x loop (another 4-space indentation). Save your program as listing12-11.py.

Danger! Danger! Adding Hazards 211

--snip--
 # Use shadow across width of object.
 for z in range(0, shadow_width):
 draw_shadow(shadow_image, y, x+z)
 else:
 draw_shadow(shadow_image, y, x)

 hazard_here = hazard_map[y][x]
 if hazard_here != 0: # If there's a hazard at this position
 draw_image(objects[hazard_here][0], y, x)

 if (player_y == y):
 draw_player()
--snip--

Listing 12-11: Displaying the moving hazards

This listing completes the moving hazards. Run your program using
pgzrun listing12-11.py. Then start running for your life! You should now be
able to see the moving hazards, such as the energy ball shown in Figure 12-4.

Figure 12-4: This energy ball bounces around
the room in a counterclockwise pattern.

Training Mission #2

Test that the moving hazards work correctly. Enter the room to the right of your start
room (or teleport into room 32 if necessary). When the energy ball hits you, does
your energy decrease? Does the energy ball bounce off you? Can you bounce the
energy ball into both doorways to check that it stays in the room? Does the game
end when you run out of energy?

listing12-11.py

212 Chapter 12

Stopping the Player from Walking
Through Hazards
We also need to add a line to stop the player from walking into or through
hazards. In practice, the hazard will usually bounce off the player, but with-
out making the fix shown in Listing 12-12, it’s sometimes possible to pass
through the hazard.

We already added the code we need in the game_loop() function, but we
commented it out. Now it’s time to uncomment it by deleting the # symbol
before the \ at the end of one line, and removing the # at the start of the
next line.

We also need to delete the colon after items_player_may_stand_on. A quick
way to find the right part of the program is to press ctrl-F to open the
search box, and then enter #\. Listing 12-12 shows you the lines to modify.

--snip--
 # If the player is standing somewhere they shouldn't, move them back.
 if room_map[player_y][player_x] not in items_player_may_stand_on \
 or hazard_map[player_y][player_x] != 0:
 player_x = old_player_x
 player_y = old_player_y
 player_frame = 0
--snip--

Listing 12-12: Stopping the player from passing through hazards

Save your program as listing12-12.py and run it with pgzrun listing12-12.py.
Can you track down all three types of flying hazards in the space station?

Adding the Toxic Spills
You might have noticed the green splash on the floor in Figure 12-4. It’s a
toxic spill, and it saps your energy when you walk on it. You’ll have to think
strategically. Should you run through it to get somewhere faster? Or should
you walk carefully around it, saving your energy for later but maybe slow-
ing you down?

Listing 12-13 shows the instructions to add to sap your energy when
you’re walking on the toxic floor. These instructions go in the game_loop()
function, just after the instructions you fixed in Listing 12-12.

Save your program as listing12-13.py. You can test that it works by run-
ning the program using pgzrun listing12-13.py and then walking on the
toxic floor. The toxic floor is object 48 and is positioned as scenery in
the room.

--snip--
 # If the player is standing somewhere they shouldn't, move them back.
 if room_map[player_y][player_x] not in items_player_may_stand_on \
 or hazard_map[player_y][player_x] != 0:

listing12-12.py

listing12-13.py

Danger! Danger! Adding Hazards 213

 player_x = old_player_x
 player_y = old_player_y
 player_frame = 0

 if room_map[player_y][player_x] == 48: # toxic floor
 deplete_energy(1)

 if player_direction == "right" and player_frame > 0:
 player_offset_x = -1 + (0.25 * player_frame)
--snip--

Listing 12-13: Reducing the player’s energy when they walk on the toxic floor

Making the Finishing Touches
The game is now nearly complete. Before you embark on your exploration
of the space station, we need to remove some of the instructions we used
while building and testing the game.

Disabling the Teleporter
Mission rules forbid the use of the teleporter once your work on the space
station begins. Find its instructions in the game_loop() function, highlight
them using your mouse, and then click FormatComment Out Region to
disable them. Your code should now look like Listing 12-14.

--snip--
Teleporter for testing
Remove this section for the real game
if keyboard.x:
current_room = int(input("Enter room number:"))
player_x = 2
player_y = 2
generate_map()
start_room()
sounds.teleport.play()
Teleport section ends
--snip--

Listing 12-14: The teleporter is turned off.

Cleaning Up the Data
While testing the game, you might have changed the contents of some
of the variables and lists. The game should look like Figure 12-5 when it
begins. If it doesn’t, look at the VARIABLES section of the program and make
sure the current_room variable is set to 31.

listing12-14.py

214 Chapter 12

Figure 12-5: The start of your mission

If you’re carrying more than your yoyo, look at the PROPS part of the pro-
gram and check that this line is correct:

in_my_pockets = [55]

Your Adventure Begins
It’s an exciting moment: your training is complete; the space station is
ready; and your mission on Mars is about to begin. Let’s set a sci-fi fanfare
to play when the game starts. Listing 12-15 shows the final instruction you’ll
add to Escape.

--snip--
clock.schedule_unique(alarm, 10)
clock.schedule_interval(air_countdown, 11) # A higher number gives a longer
time limit.
sounds.mission.play() # Intro music

Listing 12-15: A sci-fi fanfare plays when the game begins.

Save your final program as escape.py. You can now play the game using
pgzrun escape.py. See “Playing the Game” on page 11 for instructions.

Congratulations on completing the space station construction. You’ve
truly earned your place on this mission. It’s time to begin your work on the
planet’s surface!

listing12-15.py

Danger! Danger! Adding Hazards 215

Your Next Mission:
Customizing the Game

Did you make it to safety in the Escape game? That was a close shave! For
your next mission, try customizing the game. There are different ways to
use this book, so you might already have made some customizations as you
built the game. Here are some suggestions for modifying the game, starting
with the easiest:

•	 Change the names of the characters in the game to those of your
friends. See Listing 4-1 on page 63 in Chapter 4.

•	 Customize the images. You can edit our images, or create your own.
The game includes a whiteboard image that you can edit using your
favorite art package. If you make your images the same size as ours, use
the same filenames, and store them in the images folder, they should just
drop into the game world with no problem.

•	 Redesign the room layouts. Chapter 6 explains how scenery is positioned
in a room.

•	 Add your own objects to the game. Start by creating their images.
Props should be 30 pixels square. Scenery items can be bigger and
should touch the left and right sides of their tile spaces so that it
doesn’t look odd when the player can’t get closer to the scenery than
the tile next door. (For example, if your image is 30, 60, or 90 pixels
wide and touches the ground at both sides, it should look fine.) You
need to add the new items in the objects dictionary (see Chapter 5).
For help positioning scenery, see Chapter 6. For advice on positioning
props, see Chapter 9.

•	 Create your own space station map (see Chapter 4).

•	 Use the game engine to make your own game. You can replace the
images and maps, and code your own puzzles to make a new game
based on the Escape code. The USE OBJECTS section is where the game
puzzles are programmed. It details what happens when objects are
used, individually or in combination with other objects. It might be use-
ful to keep the code for combining objects (recipes) and just update it
(see Chapter 10); keep the code for displaying standard responses (see
Chapter 10); and keep the code for opening doors (see Chapter 11).

If you make any changes that affect room 26, you’ll need to disable the
code for its pressure pad (see Chapter 11).

Bear in mind that any changes you make might break the puzzles in
the original Escape game, making it impossible to complete. For example,
it might become impossible to find important tools. I recommend sav-
ing any changes you make separately, so you can always come back to the
original code.

216 Chapter 12

Sharing Your Customizations

I’d love to hear about your customizations! You can find me on Twitter at
@musicandwords or visit my website at www.sean.co.uk, which includes bonus
content for the book. If you share your modified Escape game with others or share
your own games built using its code, sounds, or images, please credit this book
and its author, and make it clear that you’ve modified the code. Thank you!

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons in
this chapter.

�� You can use Pygame Zero to draw text with a shadow underneath it and
can adjust the size of the text displayed.

�� You can play a sound multiple times by putting the number of times in
parentheses in its sounds.sound_name.play() instruction.

�� The moving hazards’ directions are numbered from 1 at the top, mov-
ing clockwise. To create a movement pattern for a hazard, you pro-
vide the number you want to add to its direction number when it hits
something.

�� The deplete_energy() function reduces the player’s energy.

�� Hazards use their own room map called hazard_map. This enables them
to more easily move over objects on the floor.

�� Before playing the game, check that the starting variables are correct.

Mission Debrief
Here is the answer for the first training mission in this chapter.

Training Mission # 1

In the final line of Listing 12-3, change the value 5 to 1. That will make the function
that reduces the air run every second instead of every 5 seconds. You could make it
go even faster by changing the value to 0.5 or another decimal number.

A
Escape:

The Complete Game Listing

This appendix shows the final listing for
the Escape game. You can use it as a refer-

ence to see where to place particular func-
tions and sections, or read through it if you

want to see the whole listing in one place. This list-
ing doesn’t include the temporary sections you wrote
while building the game, such as the EXPLORER section.
It just contains the code that is in the final game.

Remember that you can also download the escape.py listing and read it
in IDLE, which lets you search it by pressing ctrl-F.

I’ve changed PLAYER_NAME to “Captain” in this listing. When you’re build-
ing or customizing the game, you can use your own name (see  in List-
ing 4-1 on page 63).

To test this project, I rebuilt the game using the instructions in this
book. This game listing has been copied from game code that has been
tested to completion on Windows, the Raspberry Pi 3 Model B+, and the
Raspberry Pi 2 Model B.

218 Appendix A

Escape - A Python Adventure
by Sean McManus / www.sean.co.uk
Art by Rafael Pimenta
Typed in by PUT YOUR NAME HERE

import time, random, math

###############
VARIABLES
###############

WIDTH = 800 #window size
HEIGHT = 800

#PLAYER variables
PLAYER_NAME = "Captain" # change this to your name!
FRIEND1_NAME = "Karen" # change this to a friend's name!
FRIEND2_NAME = "Leo" # change this to another friend's name!
current_room = 31 # start room = 31

top_left_x = 100
top_left_y = 150

DEMO_OBJECTS = [images.floor, images.pillar, images.soil]

LANDER_SECTOR = random.randint(1, 24)
LANDER_X = random.randint(2, 11)
LANDER_Y = random.randint(2, 11)

TILE_SIZE = 30

player_y, player_x = 2, 5
game_over = False

PLAYER = {
 "left": [images.spacesuit_left, images.spacesuit_left_1,
 images.spacesuit_left_2, images.spacesuit_left_3,
 images.spacesuit_left_4
],
 "right": [images.spacesuit_right, images.spacesuit_right_1,
 images.spacesuit_right_2, images.spacesuit_right_3,
 images.spacesuit_right_4
],
 "up": [images.spacesuit_back, images.spacesuit_back_1,
 images.spacesuit_back_2, images.spacesuit_back_3,
 images.spacesuit_back_4
],
 "down": [images.spacesuit_front, images.spacesuit_front_1,
 images.spacesuit_front_2, images.spacesuit_front_3,
 images.spacesuit_front_4
]
 }

Escape: The Complete Game Listing 219

player_direction = "down"
player_frame = 0
player_image = PLAYER[player_direction][player_frame]
player_offset_x, player_offset_y = 0, 0

PLAYER_SHADOW = {
 "left": [images.spacesuit_left_shadow, images.spacesuit_left_1_shadow,
 images.spacesuit_left_2_shadow, images.spacesuit_left_3_shadow,
 images.spacesuit_left_3_shadow
],
 "right": [images.spacesuit_right_shadow, images.spacesuit_right_1_shadow,
 images.spacesuit_right_2_shadow,
 images.spacesuit_right_3_shadow, images.spacesuit_right_3_shadow
],
 "up": [images.spacesuit_back_shadow, images.spacesuit_back_1_shadow,
 images.spacesuit_back_2_shadow, images.spacesuit_back_3_shadow,
 images.spacesuit_back_3_shadow
],
 "down": [images.spacesuit_front_shadow, images.spacesuit_front_1_shadow,
 images.spacesuit_front_2_shadow, images.spacesuit_front_3_shadow,
 images.spacesuit_front_3_shadow
]
 }

player_image_shadow = PLAYER_SHADOW["down"][0]

PILLARS = [
 images.pillar, images.pillar_95, images.pillar_80,
 images.pillar_60, images.pillar_50
]

wall_transparency_frame = 0

BLACK = (0, 0, 0)
BLUE = (0, 155, 255)
YELLOW = (255, 255, 0)
WHITE = (255, 255, 255)
GREEN = (0, 255, 0)
RED = (128, 0, 0)

air, energy = 100, 100
suit_stitched, air_fixed = False, False
launch_frame = 0

###############
MAP
###############

MAP_WIDTH = 5
MAP_HEIGHT = 10
MAP_SIZE = MAP_WIDTH * MAP_HEIGHT

220 Appendix A

GAME_MAP = [["Room 0 - where unused objects are kept", 0, 0, False, False]]

outdoor_rooms = range(1, 26)
for planetsectors in range(1, 26): #rooms 1 to 25 are generated here
 GAME_MAP.append(["The dusty planet surface", 13, 13, True, True])

GAME_MAP += [
 #["Room name", height, width, Top exit?, Right exit?]
 ["The airlock", 13, 5, True, False], # room 26
 ["The engineering lab", 13, 13, False, False], # room 27
 ["Poodle Mission Control", 9, 13, False, True], # room 28
 ["The viewing gallery", 9, 15, False, False], # room 29
 ["The crew's bathroom", 5, 5, False, False], # room 30
 ["The airlock entry bay", 7, 11, True, True], # room 31
 ["Left elbow room", 9, 7, True, False], # room 32
 ["Right elbow room", 7, 13, True, True], # room 33
 ["The science lab", 13, 13, False, True], # room 34
 ["The greenhouse", 13, 13, True, False], # room 35
 [PLAYER_NAME + "'s sleeping quarters", 9, 11, False, False], # room 36
 ["West corridor", 15, 5, True, True], # room 37
 ["The briefing room", 7, 13, False, True], # room 38
 ["The crew's community room", 11, 13, True, False], # room 39
 ["Main Mission Control", 14, 14, False, False], # room 40
 ["The sick bay", 12, 7, True, False], # room 41
 ["West corridor", 9, 7, True, False], # room 42
 ["Utilities control room", 9, 9, False, True], # room 43
 ["Systems engineering bay", 9, 11, False, False], # room 44
 ["Security portal to Mission Control", 7, 7, True, False], # room 45
 [FRIEND1_NAME + "'s sleeping quarters", 9, 11, True, True], # room 46
 [FRIEND2_NAME + "'s sleeping quarters", 9, 11, True, True], # room 47
 ["The pipeworks", 13, 11, True, False], # room 48
 ["The chief scientist's office", 9, 7, True, True], # room 49
 ["The robot workshop", 9, 11, True, False] # room 50
]

#simple sanity check on map above to check data entry
assert len(GAME_MAP)-1 == MAP_SIZE, "Map size and GAME_MAP don't match"

###############
OBJECTS
###############

objects = {
 0: [images.floor, None, "The floor is shiny and clean"],
 1: [images.pillar, images.full_shadow, "The wall is smooth and cold"],
 2: [images.soil, None, "It's like a desert. Or should that be dessert?"],
 3: [images.pillar_low, images.half_shadow, "The wall is smooth and cold"],
 4: [images.bed, images.half_shadow, "A tidy and comfortable bed"],
 5: [images.table, images.half_shadow, "It's made from strong plastic."],
 6: [images.chair_left, None, "A chair with a soft cushion"],
 7: [images.chair_right, None, "A chair with a soft cushion"],
 8: [images.bookcase_tall, images.full_shadow,
 "Bookshelves, stacked with reference books"],

Escape: The Complete Game Listing 221

 9: [images.bookcase_small, images.half_shadow,
 "Bookshelves, stacked with reference books"],
 10: [images.cabinet, images.half_shadow,
 "A small locker, for storing personal items"],
 11: [images.desk_computer, images.half_shadow,
 "A computer. Use it to run life support diagnostics"],
 12: [images.plant, images.plant_shadow, "A spaceberry plant, grown here"],
 13: [images.electrical1, images.half_shadow,
 "Electrical systems used for powering the space station"],
 14: [images.electrical2, images.half_shadow,
 "Electrical systems used for powering the space station"],
 15: [images.cactus, images.cactus_shadow, "Ouch! Careful on the cactus!"],
 16: [images.shrub, images.shrub_shadow,
 "A space lettuce. A bit limp, but amazing it's growing here!"],
 17: [images.pipes1, images.pipes1_shadow, "Water purification pipes"],
 18: [images.pipes2, images.pipes2_shadow,
 "Pipes for the life support systems"],
 19: [images.pipes3, images.pipes3_shadow,
 "Pipes for the life support systems"],
 20: [images.door, images.door_shadow, "Safety door. Opens automatically \
for astronauts in functioning spacesuits."],
 21: [images.door, images.door_shadow, "The airlock door. \
For safety reasons, it requires two person operation."],
 22: [images.door, images.door_shadow, "A locked door. It needs " \
 + PLAYER_NAME + "'s access card"],
 23: [images.door, images.door_shadow, "A locked door. It needs " \
 + FRIEND1_NAME + "'s access card"],
 24: [images.door, images.door_shadow, "A locked door. It needs " \
 + FRIEND2_NAME + "'s access card"],
 25: [images.door, images.door_shadow,
 "A locked door. It is opened from Main Mission Control"],
 26: [images.door, images.door_shadow,
 "A locked door in the engineering bay."],
 27: [images.map, images.full_shadow,
 "The screen says the crash site was Sector: " \
 + str(LANDER_SECTOR) + " // X: " + str(LANDER_X) + \
 " // Y: " + str(LANDER_Y)],
 28: [images.rock_large, images.rock_large_shadow,
 "A rock. Its coarse surface feels like a whetstone", "the rock"],
 29: [images.rock_small, images.rock_small_shadow,
 "A small but heavy piece of Martian rock"],
 30: [images.crater, None, "A crater in the planet surface"],
 31: [images.fence, None,
 "A fine gauze fence. It helps protect the station from dust storms"],
 32: [images.contraption, images.contraption_shadow,
 "One of the scientific experiments. It gently vibrates"],
 33: [images.robot_arm, images.robot_arm_shadow,
 "A robot arm, used for heavy lifting"],
 34: [images.toilet, images.half_shadow, "A sparkling clean toilet"],
 35: [images.sink, None, "A sink with running water", "the taps"],
 36: [images.globe, images.globe_shadow,
 "A giant globe of the planet. It gently glows from inside"],
 37: [images.science_lab_table, None,
 "A table of experiments, analyzing the planet soil and dust"],

222 Appendix A

 38: [images.vending_machine, images.full_shadow,
 "A vending machine. It requires a credit.", "the vending machine"],
 39: [images.floor_pad, None,
 "A pressure sensor to make sure nobody goes out alone."],
 40: [images.rescue_ship, images.rescue_ship_shadow, "A rescue ship!"],
 41: [images.mission_control_desk, images.mission_control_desk_shadow, \
 "Mission Control stations."],
 42: [images.button, images.button_shadow,
 "The button for opening the time-locked door in engineering."],
 43: [images.whiteboard, images.full_shadow,
 "The whiteboard is used in brainstorms and planning meetings."],
 44: [images.window, images.full_shadow,
 "The window provides a view out onto the planet surface."],
 45: [images.robot, images.robot_shadow, "A cleaning robot, turned off."],
 46: [images.robot2, images.robot2_shadow,
 "A planet surface exploration robot, awaiting set-up."],
 47: [images.rocket, images.rocket_shadow, "A 1-person craft in repair."],
 48: [images.toxic_floor, None, "Toxic floor - do not walk on!"],
 49: [images.drone, None, "A delivery drone"],
 50: [images.energy_ball, None, "An energy ball - dangerous!"],
 51: [images.energy_ball2, None, "An energy ball - dangerous!"],
 52: [images.computer, images.computer_shadow,
 "A computer workstation, for managing space station systems."],
 53: [images.clipboard, None,
 "A clipboard. Someone has doodled on it.", "the clipboard"],
 54: [images.bubble_gum, None,
 "A piece of sticky bubble gum. Spaceberry flavour.", "bubble gum"],
 55: [images.yoyo, None, "A toy made of fine, strong string and plastic. \
Used for antigrav experiments.", PLAYER_NAME + "'s yoyo"],
 56: [images.thread, None,
 "A piece of fine, strong string", "a piece of string"],
 57: [images.needle, None,
 "A sharp needle from a cactus plant", "a cactus needle"],
 58: [images.threaded_needle, None,
 "A cactus needle, spearing a length of string", "needle and string"],
 59: [images.canister, None,
 "The air canister has a leak.", "a leaky air canister"],
 60: [images.canister, None,
 "It looks like the seal will hold!", "a sealed air canister"],
 61: [images.mirror, None,
 "The mirror throws a circle of light on the walls.", "a mirror"],
 62: [images.bin_empty, None,
 "A rarely used bin, made of light plastic", "a bin"],
 63: [images.bin_full, None,
 "A heavy bin full of water", "a bin full of water"],
 64: [images.rags, None,
 "An oily rag. Pick it up by a corner if you must!", "an oily rag"],
 65: [images.hammer, None,
 "A hammer. Maybe good for cracking things open...", "a hammer"],
 66: [images.spoon, None, "A large serving spoon", "a spoon"],
 67: [images.food_pouch, None,
 "A dehydrated food pouch. It needs water.", "a dry food pack"],
 68: [images.food, None,
 "A food pouch. Use it to get 100% energy.", "ready-to-eat food"],

Escape: The Complete Game Listing 223

 69: [images.book, None, "The book has the words 'Don't Panic' on the \
cover in large, friendly letters", "a book"],
 70: [images.mp3_player, None,
 "An MP3 player, with all the latest tunes", "an MP3 player"],
 71: [images.lander, None, "The Poodle, a small space exploration craft. \
Its black box has a radio sealed inside.", "the Poodle lander"],
 72: [images.radio, None, "A radio communications system, from the \
Poodle", "a communications radio"],
 73: [images.gps_module, None, "A GPS Module", "a GPS module"],
 74: [images.positioning_system, None, "Part of a positioning system. \
Needs a GPS module.", "a positioning interface"],
 75: [images.positioning_system, None,
 "A working positioning system", "a positioning computer"],
 76: [images.scissors, None, "Scissors. They're too blunt to cut \
anything. Can you sharpen them?", "blunt scissors"],
 77: [images.scissors, None,
 "Razor-sharp scissors. Careful!", "sharpened scissors"],
 78: [images.credit, None,
 "A small coin for the station's vending systems",
 "a station credit"],
 79: [images.access_card, None,
 "This access card belongs to " + PLAYER_NAME, "an access card"],
 80: [images.access_card, None,
 "This access card belongs to " + FRIEND1_NAME, "an access card"],
 81: [images.access_card, None,
 "This access card belongs to " + FRIEND2_NAME, "an access card"]
 }

items_player_may_carry = list(range(53, 82))
Numbers below are for floor, pressure pad, soil, toxic floor.
items_player_may_stand_on = items_player_may_carry + [0, 39, 2, 48]

###############
SCENERY
###############

Scenery describes objects that cannot move between rooms.
room number: [[object number, y position, x position]...]
scenery = {
 26: [[39,8,2]],
 27: [[33,5,5], [33,1,1], [33,1,8], [47,5,2],
 [47,3,10], [47,9,8], [42,1,6]],
 28: [[27,0,3], [41,4,3], [41,4,7]],
 29: [[7,2,6], [6,2,8], [12,1,13], [44,0,1],
 [36,4,10], [10,1,1], [19,4,2], [17,4,4]],
 30: [[34,1,1], [35,1,3]],
 31: [[11,1,1], [19,1,8], [46,1,3]],
 32: [[48,2,2], [48,2,3], [48,2,4], [48,3,2], [48,3,3],
 [48,3,4], [48,4,2], [48,4,3], [48,4,4]],
 33: [[13,1,1], [13,1,3], [13,1,8], [13,1,10], [48,2,1],
 [48,2,7], [48,3,6], [48,3,3]],
 34: [[37,2,2], [32,6,7], [37,10,4], [28,5,3]],

224 Appendix A

 35: [[16,2,9], [16,2,2], [16,3,3], [16,3,8], [16,8,9], [16,8,2], [16,1,8],
 [16,1,3], [12,8,6], [12,9,4], [12,9,8],
 [15,4,6], [12,7,1], [12,7,11]],
 36: [[4,3,1], [9,1,7], [8,1,8], [8,1,9],
 [5,5,4], [6,5,7], [10,1,1], [12,1,2]],
 37: [[48,3,1], [48,3,2], [48,7,1], [48,5,2], [48,5,3],
 [48,7,2], [48,9,2], [48,9,3], [48,11,1], [48,11,2]],
 38: [[43,0,2], [6,2,2], [6,3,5], [6,4,7], [6,2,9], [45,1,10]],
 39: [[38,1,1], [7,3,4], [7,6,4], [5,3,6], [5,6,6],
 [6,3,9], [6,6,9], [45,1,11], [12,1,8], [12,1,4]],
 40: [[41,5,3], [41,5,7], [41,9,3], [41,9,7],
 [13,1,1], [13,1,3], [42,1,12]],
 41: [[4,3,1], [10,3,5], [4,5,1], [10,5,5], [4,7,1],
 [10,7,5], [12,1,1], [12,1,5]],
 44: [[46,4,3], [46,4,5], [18,1,1], [19,1,3],
 [19,1,5], [52,4,7], [14,1,8]],
 45: [[48,2,1], [48,2,2], [48,3,3], [48,3,4], [48,1,4], [48,1,1]],
 46: [[10,1,1], [4,1,2], [8,1,7], [9,1,8], [8,1,9], [5,4,3], [7,3,2]],
 47: [[9,1,1], [9,1,2], [10,1,3], [12,1,7], [5,4,4], [6,4,7], [4,1,8]],
 48: [[17,4,1], [17,4,2], [17,4,3], [17,4,4], [17,4,5], [17,4,6], [17,4,7],
 [17,8,1], [17,8,2], [17,8,3], [17,8,4],
 [17,8,5], [17,8,6], [17,8,7], [14,1,1]],
 49: [[14,2,2], [14,2,4], [7,5,1], [5,5,3], [48,3,3], [48,3,4]],
 50: [[45,4,8], [11,1,1], [13,1,8], [33,2,1], [46,4,6]]
 }

checksum = 0
check_counter = 0
for key, room_scenery_list in scenery.items():
 for scenery_item_list in room_scenery_list:
 checksum += (scenery_item_list[0] * key
 + scenery_item_list[1] * (key + 1)
 + scenery_item_list[2] * (key + 2))
 check_counter += 1
print(check_counter, "scenery items")
assert check_counter == 161, "Expected 161 scenery items"
assert checksum == 200095, "Error in scenery data"
print("Scenery checksum: " + str(checksum))

for room in range(1, 26): # Add random scenery in planet locations.
 if room != 13: # Skip room 13.
 scenery_item = random.choice([16, 28, 29, 30])
 scenery[room] = [[scenery_item, random.randint(2, 10),
 random.randint(2, 10)]]

Use loops to add fences to the planet surface rooms.
for room_coordinate in range(0, 13):
 for room_number in [1, 2, 3, 4, 5]: # Add top fence
 scenery[room_number] += [[31, 0, room_coordinate]]
 for room_number in [1, 6, 11, 16, 21]: # Add left fence
 scenery[room_number] += [[31, room_coordinate, 0]]
 for room_number in [5, 10, 15, 20, 25]: # Add right fence
 scenery[room_number] += [[31, room_coordinate, 12]]

Escape: The Complete Game Listing 225

del scenery[21][-1] # Delete last fence panel in Room 21
del scenery[25][-1] # Delete last fence panel in Room 25

###############
MAKE MAP
###############

def get_floor_type():
 if current_room in outdoor_rooms:
 return 2 # soil
 else:
 return 0 # tiled floor

def generate_map():
This function makes the map for the current room,
using room data, scenery data and prop data.
 global room_map, room_width, room_height, room_name, hazard_map
 global top_left_x, top_left_y, wall_transparency_frame
 room_data = GAME_MAP[current_room]
 room_name = room_data[0]
 room_height = room_data[1]
 room_width = room_data[2]

 floor_type = get_floor_type()
 if current_room in range(1, 21):
 bottom_edge = 2 #soil
 side_edge = 2 #soil
 if current_room in range(21, 26):
 bottom_edge = 1 #wall
 side_edge = 2 #soil
 if current_room > 25:
 bottom_edge = 1 #wall
 side_edge = 1 #wall

 # Create top line of room map.
 room_map=[[side_edge] * room_width]
 # Add middle lines of room map (wall, floor to fill width, wall).
 for y in range(room_height - 2):
 room_map.append([side_edge]
 + [floor_type]*(room_width - 2) + [side_edge])
 # Add bottom line of room map.
 room_map.append([bottom_edge] * room_width)

 # Add doorways.
 middle_row = int(room_height / 2)
 middle_column = int(room_width / 2)

 if room_data[4]: # If exit at right of this room
 room_map[middle_row][room_width - 1] = floor_type
 room_map[middle_row+1][room_width - 1] = floor_type
 room_map[middle_row-1][room_width - 1] = floor_type

226 Appendix A

 if current_room % MAP_WIDTH != 1: # If room is not on left of map
 room_to_left = GAME_MAP[current_room - 1]
 # If room on the left has a right exit, add left exit in this room
 if room_to_left[4]:
 room_map[middle_row][0] = floor_type
 room_map[middle_row + 1][0] = floor_type
 room_map[middle_row - 1][0] = floor_type

 if room_data[3]: # If exit at top of this room
 room_map[0][middle_column] = floor_type
 room_map[0][middle_column + 1] = floor_type
 room_map[0][middle_column - 1] = floor_type

 if current_room <= MAP_SIZE - MAP_WIDTH: # If room is not on bottom row
 room_below = GAME_MAP[current_room+MAP_WIDTH]
 # If room below has a top exit, add exit at bottom of this one
 if room_below[3]:
 room_map[room_height-1][middle_column] = floor_type
 room_map[room_height-1][middle_column + 1] = floor_type
 room_map[room_height-1][middle_column - 1] = floor_type

 if current_room in scenery:
 for this_scenery in scenery[current_room]:
 scenery_number = this_scenery[0]
 scenery_y = this_scenery[1]
 scenery_x = this_scenery[2]
 room_map[scenery_y][scenery_x] = scenery_number

 image_here = objects[scenery_number][0]
 image_width = image_here.get_width()
 image_width_in_tiles = int(image_width / TILE_SIZE)

 for tile_number in range(1, image_width_in_tiles):
 room_map[scenery_y][scenery_x + tile_number] = 255

 center_y = int(HEIGHT / 2) # Center of game window
 center_x = int(WIDTH / 2)
 room_pixel_width = room_width * TILE_SIZE # Size of room in pixels
 room_pixel_height = room_height * TILE_SIZE
 top_left_x = center_x - 0.5 * room_pixel_width
 top_left_y = (center_y - 0.5 * room_pixel_height) + 110

 for prop_number, prop_info in props.items():
 prop_room = prop_info[0]
 prop_y = prop_info[1]
 prop_x = prop_info[2]
 if (prop_room == current_room and
 room_map[prop_y][prop_x] in [0, 39, 2]):
 room_map[prop_y][prop_x] = prop_number
 image_here = objects[prop_number][0]
 image_width = image_here.get_width()
 image_width_in_tiles = int(image_width / TILE_SIZE)
 for tile_number in range(1, image_width_in_tiles):
 room_map[prop_y][prop_x + tile_number] = 255

Escape: The Complete Game Listing 227

 hazard_map = [] # empty list
 for y in range(room_height):
 hazard_map.append([0] * room_width)

###############
GAME LOOP
###############

def start_room():
 global airlock_door_frame
 show_text("You are here: " + room_name, 0)
 if current_room == 26: # Room with self-shutting airlock door
 airlock_door_frame = 0
 clock.schedule_interval(door_in_room_26, 0.05)
 hazard_start()

def game_loop():
 global player_x, player_y, current_room
 global from_player_x, from_player_y
 global player_image, player_image_shadow
 global selected_item, item_carrying, energy
 global player_offset_x, player_offset_y
 global player_frame, player_direction

 if game_over:
 return

 if player_frame > 0:
 player_frame += 1
 time.sleep(0.05)
 if player_frame == 5:
 player_frame = 0
 player_offset_x = 0
 player_offset_y = 0

save player's current position
 old_player_x = player_x
 old_player_y = player_y

move if key is pressed
 if player_frame == 0:
 if keyboard.right:
 from_player_x = player_x
 from_player_y = player_y
 player_x += 1
 player_direction = "right"
 player_frame = 1
 elif keyboard.left: #elif stops player making diagonal movements
 from_player_x = player_x
 from_player_y = player_y
 player_x -= 1
 player_direction = "left"
 player_frame = 1

228 Appendix A

 elif keyboard.up:
 from_player_x = player_x
 from_player_y = player_y
 player_y -= 1
 player_direction = "up"
 player_frame = 1
 elif keyboard.down:
 from_player_x = player_x
 from_player_y = player_y
 player_y += 1
 player_direction = "down"
 player_frame = 1

check for exiting the room
 if player_x == room_width: # through door on RIGHT
 clock.unschedule(hazard_move)
 current_room += 1
 generate_map()
 player_x = 0 # enter at left
 player_y = int(room_height / 2) # enter at door
 player_frame = 0
 start_room()
 return

 if player_x == -1: # through door on LEFT
 clock.unschedule(hazard_move)
 current_room -= 1
 generate_map()
 player_x = room_width - 1 # enter at right
 player_y = int(room_height / 2) # enter at door
 player_frame = 0
 start_room()
 return

 if player_y == room_height: # through door at BOTTOM
 clock.unschedule(hazard_move)
 current_room += MAP_WIDTH
 generate_map()
 player_y = 0 # enter at top
 player_x = int(room_width / 2) # enter at door
 player_frame = 0
 start_room()
 return

 if player_y == -1: # through door at TOP
 clock.unschedule(hazard_move)
 current_room -= MAP_WIDTH
 generate_map()
 player_y = room_height - 1 # enter at bottom
 player_x = int(room_width / 2) # enter at door
 player_frame = 0
 start_room()
 return

Escape: The Complete Game Listing 229

 if keyboard.g:
 pick_up_object()

 if keyboard.tab and len(in_my_pockets) > 0:
 selected_item += 1
 if selected_item > len(in_my_pockets) - 1:
 selected_item = 0
 item_carrying = in_my_pockets[selected_item]
 display_inventory()

 if keyboard.d and item_carrying:
 drop_object(old_player_y, old_player_x)

 if keyboard.space:
 examine_object()

 if keyboard.u:
 use_object()

Teleporter for testing
Remove this section for the real game
if keyboard.x:
current_room = int(input("Enter room number:"))
player_x = 2
player_y = 2
generate_map()
start_room()
sounds.teleport.play()
Teleport section ends

 # If the player is standing somewhere they shouldn't, move them back.
 if room_map[player_y][player_x] not in items_player_may_stand_on \
 or hazard_map[player_y][player_x] != 0:
 player_x = old_player_x
 player_y = old_player_y
 player_frame = 0

 if room_map[player_y][player_x] == 48: # toxic floor
 deplete_energy(1)

 if player_direction == "right" and player_frame > 0:
 player_offset_x = -1 + (0.25 * player_frame)
 if player_direction == "left" and player_frame > 0:
 player_offset_x = 1 - (0.25 * player_frame)
 if player_direction == "up" and player_frame > 0:
 player_offset_y = 1 - (0.25 * player_frame)
 if player_direction == "down" and player_frame > 0:
 player_offset_y = -1 + (0.25 * player_frame)

###############
DISPLAY
###############

230 Appendix A

def draw_image(image, y, x):
 screen.blit(
 image,
 (top_left_x + (x * TILE_SIZE),
 top_left_y + (y * TILE_SIZE) - image.get_height())
)

def draw_shadow(image, y, x):
 screen.blit(
 image,
 (top_left_x + (x * TILE_SIZE),
 top_left_y + (y * TILE_SIZE))
)

def draw_player():
 player_image = PLAYER[player_direction][player_frame]
 draw_image(player_image, player_y + player_offset_y,
 player_x + player_offset_x)
 player_image_shadow = PLAYER_SHADOW[player_direction][player_frame]
 draw_shadow(player_image_shadow, player_y + player_offset_y,
 player_x + player_offset_x)

def draw():
 if game_over:
 return

 # Clear the game arena area.
 box = Rect((0, 150), (800, 600))
 screen.draw.filled_rect(box, RED)
 box = Rect ((0, 0), (800, top_left_y + (room_height - 1)*30))
 screen.surface.set_clip(box)
 floor_type = get_floor_type()

 for y in range(room_height): # Lay down floor tiles, then items on floor.
 for x in range(room_width):
 draw_image(objects[floor_type][0], y, x)
 # Next line enables shadows to fall on top of objects on floor
 if room_map[y][x] in items_player_may_stand_on:
 draw_image(objects[room_map[y][x]][0], y, x)

 # Pressure pad in room 26 is added here, so props can go on top of it.
 if current_room == 26:
 draw_image(objects[39][0], 8, 2)
 image_on_pad = room_map[8][2]
 if image_on_pad > 0:
 draw_image(objects[image_on_pad][0], 8, 2)

 for y in range(room_height):
 for x in range(room_width):
 item_here = room_map[y][x]
 # Player cannot walk on 255: it marks spaces used by wide objects.
 if item_here not in items_player_may_stand_on + [255]:
 image = objects[item_here][0]

Escape: The Complete Game Listing 231

 if (current_room in outdoor_rooms
 and y == room_height - 1
 and room_map[y][x] == 1) or \
 (current_room not in outdoor_rooms
 and y == room_height - 1
 and room_map[y][x] == 1
 and x > 0
 and x < room_width - 1):
 # Add transparent wall image in the front row.
 image = PILLARS[wall_transparency_frame]

 draw_image(image, y, x)

 if objects[item_here][1] is not None: # If object has a shadow
 shadow_image = objects[item_here][1]
 # if shadow might need horizontal tiling
 if shadow_image in [images.half_shadow,
 images.full_shadow]:
 shadow_width = int(image.get_width() / TILE_SIZE)
 # Use shadow across width of object.
 for z in range(0, shadow_width):
 draw_shadow(shadow_image, y, x+z)
 else:
 draw_shadow(shadow_image, y, x)

 hazard_here = hazard_map[y][x]
 if hazard_here != 0: # If there's a hazard at this position
 draw_image(objects[hazard_here][0], y, x)

 if (player_y == y):
 draw_player()

 screen.surface.set_clip(None)

def adjust_wall_transparency():
 global wall_transparency_frame

 if (player_y == room_height - 2
 and room_map[room_height - 1][player_x] == 1
 and wall_transparency_frame < 4):
 wall_transparency_frame += 1 # Fade wall out.

 if ((player_y < room_height - 2
 or room_map[room_height - 1][player_x] != 1)
 and wall_transparency_frame > 0):
 wall_transparency_frame -= 1 # Fade wall in.

def show_text(text_to_show, line_number):
 if game_over:
 return
 text_lines = [15, 50]
 box = Rect((0, text_lines[line_number]), (800, 35))
 screen.draw.filled_rect(box, BLACK)
 screen.draw.text(text_to_show,
 (20, text_lines[line_number]), color=GREEN)

232 Appendix A

###############
PROPS
###############

Props are objects that may move between rooms, appear or disappear.
All props must be set up here. Props not yet in the game go into room 0.
object number : [room, y, x]
props = {
 20: [31, 0, 4], 21: [26, 0, 1], 22: [41, 0, 2], 23: [39, 0, 5],
 24: [45, 0, 2],
 25: [32, 0, 2], 26: [27, 12, 5], # two sides of same door
 40: [0, 8, 6], 53: [45, 1, 5], 54: [0, 0, 0], 55: [0, 0, 0],
 56: [0, 0, 0], 57: [35, 4, 6], 58: [0, 0, 0], 59: [31, 1, 7],
 60: [0, 0, 0], 61: [36, 1, 1], 62: [36, 1, 6], 63: [0, 0, 0],
 64: [27, 8, 3], 65: [50, 1, 7], 66: [39, 5, 6], 67: [46, 1, 1],
 68: [0, 0, 0], 69: [30, 3, 3], 70: [47, 1, 3],
 71: [0, LANDER_Y, LANDER_X], 72: [0, 0, 0], 73: [27, 4, 6],
 74: [28, 1, 11], 75: [0, 0, 0], 76: [41, 3, 5], 77: [0, 0, 0],
 78: [35, 9, 11], 79: [26, 3, 2], 80: [41, 7, 5], 81: [29, 1, 1]
 }

checksum = 0
for key, prop in props.items():
 if key != 71: # 71 is skipped because it's different each game.
 checksum += (prop[0] * key
 + prop[1] * (key + 1)
 + prop[2] * (key + 2))
print(len(props), "props")
assert len(props) == 37, "Expected 37 prop items"
print("Prop checksum:", checksum)
assert checksum == 61414, "Error in props data"

in_my_pockets = [55]
selected_item = 0 # the first item
item_carrying = in_my_pockets[selected_item]

RECIPES = [
 [62, 35, 63], [76, 28, 77], [78, 38, 54], [73, 74, 75],
 [59, 54, 60], [77, 55, 56], [56, 57, 58], [71, 65, 72],
 [88, 58, 89], [89, 60, 90], [67, 35, 68]
]

checksum = 0
check_counter = 1
for recipe in RECIPES:
 checksum += (recipe[0] * check_counter
 + recipe[1] * (check_counter + 1)
 + recipe[2] * (check_counter + 2))
 check_counter += 3
print(len(RECIPES), "recipes")
assert len(RECIPES) == 11, "Expected 11 recipes"
assert checksum == 37296, "Error in recipes data"
print("Recipe checksum:", checksum)

Escape: The Complete Game Listing 233

#######################
PROP INTERACTIONS
#######################

def find_object_start_x():
 checker_x = player_x
 while room_map[player_y][checker_x] == 255:
 checker_x -= 1
 return checker_x

def get_item_under_player():
 item_x = find_object_start_x()
 item_player_is_on = room_map[player_y][item_x]
 return item_player_is_on

def pick_up_object():
 global room_map
 # Get object number at player's location.
 item_player_is_on = get_item_under_player()
 if item_player_is_on in items_player_may_carry:
 # Clear the floor space.
 room_map[player_y][player_x] = get_floor_type()
 add_object(item_player_is_on)
 show_text("Now carrying " + objects[item_player_is_on][3], 0)
 sounds.pickup.play()
 time.sleep(0.5)
 else:
 show_text("You can't carry that!", 0)

def add_object(item): # Adds item to inventory.
 global selected_item, item_carrying
 in_my_pockets.append(item)
 item_carrying = item
 # Minus one because indexes start at 0.
 selected_item = len(in_my_pockets) - 1
 display_inventory()
 props[item][0] = 0 # Carried objects go into room 0 (off the map).

def display_inventory():
 box = Rect((0, 45), (800, 105))
 screen.draw.filled_rect(box, BLACK)

 if len(in_my_pockets) == 0:
 return

 start_display = (selected_item // 16) * 16
 list_to_show = in_my_pockets[start_display : start_display + 16]
 selected_marker = selected_item % 16

 for item_counter in range(len(list_to_show)):
 item_number = list_to_show[item_counter]
 image = objects[item_number][0]
 screen.blit(image, (25 + (46 * item_counter), 90))

234 Appendix A

 box_left = (selected_marker * 46) - 3
 box = Rect((22 + box_left, 85), (40, 40))
 screen.draw.rect(box, WHITE)
 item_highlighted = in_my_pockets[selected_item]
 description = objects[item_highlighted][2]
 screen.draw.text(description, (20, 130), color="white")

def drop_object(old_y, old_x):
 global room_map, props
 if room_map[old_y][old_x] in [0, 2, 39]: # places you can drop things
 props[item_carrying][0] = current_room
 props[item_carrying][1] = old_y
 props[item_carrying][2] = old_x
 room_map[old_y][old_x] = item_carrying
 show_text("You have dropped " + objects[item_carrying][3], 0)
 sounds.drop.play()
 remove_object(item_carrying)
 time.sleep(0.5)
 else: # This only happens if there is already a prop here
 show_text("You can't drop that there.", 0)
 time.sleep(0.5)

def remove_object(item): # Takes item out of inventory
 global selected_item, in_my_pockets, item_carrying
 in_my_pockets.remove(item)
 selected_item = selected_item - 1
 if selected_item < 0:
 selected_item = 0
 if len(in_my_pockets) == 0: # If they're not carrying anything
 item_carrying = False # Set item_carrying to False
 else: # Otherwise set it to the new selected item
 item_carrying = in_my_pockets[selected_item]
 display_inventory()

def examine_object():
 item_player_is_on = get_item_under_player()
 left_tile_of_item = find_object_start_x()
 if item_player_is_on in [0, 2]: # don't describe the floor
 return
 description = "You see: " + objects[item_player_is_on][2]
 for prop_number, details in props.items():
 # props = object number: [room number, y, x]
 if details[0] == current_room: # if prop is in the room
 # If prop is hidden (= at player's location but not on map)
 if (details[1] == player_y
 and details[2] == left_tile_of_item
 and room_map[details[1]][details[2]] != prop_number):
 add_object(prop_number)
 description = "You found " + objects[prop_number][3]
 sounds.combine.play()
 show_text(description, 0)
 time.sleep(0.5)

Escape: The Complete Game Listing 235

#################
USE OBJECTS
#################

def use_object():
 global room_map, props, item_carrying, air, selected_item, energy
 global in_my_pockets, suit_stitched, air_fixed, game_over

 use_message = "You fiddle around with it but don't get anywhere."
 standard_responses = {
 4: "Air is running out! You can't take this lying down!",
 6: "This is no time to sit around!",
 7: "This is no time to sit around!",
 32: "It shakes and rumbles, but nothing else happens.",
 34: "Ah! That's better. Now wash your hands.",
 35: "You wash your hands and shake the water off.",
 37: "The test tubes smoke slightly as you shake them.",
 54: "You chew the gum. It's sticky like glue.",
 55: "The yoyo bounces up and down, slightly slower than on Earth",
 56: "It's a bit too fiddly. Can you thread it on something?",
 59: "You need to fix the leak before you can use the canister",
 61: "You try signalling with the mirror, but nobody can see you.",
 62: "Don't throw resources away. Things might come in handy...",
 67: "To enjoy yummy space food, just add water!",
 75: "You are at Sector: " + str(current_room) + " // X: " \
 + str(player_x) + " // Y: " + str(player_y)
 }

 # Get object number at player's location.
 item_player_is_on = get_item_under_player()
 for this_item in [item_player_is_on, item_carrying]:
 if this_item in standard_responses:
 use_message = standard_responses[this_item]

 if item_carrying == 70 or item_player_is_on == 70:
 use_message = "Banging tunes!"
 sounds.steelmusic.play(2)

 elif item_player_is_on == 11:
 use_message = "AIR: " + str(air) + \
 "% / ENERGY " + str(energy) + "% / "
 if not suit_stitched:
 use_message += "*ALERT* SUIT FABRIC TORN / "
 if not air_fixed:
 use_message += "*ALERT* SUIT AIR BOTTLE MISSING"
 if suit_stitched and air_fixed:
 use_message += " SUIT OK"
 show_text(use_message, 0)
 sounds.say_status_report.play()
 time.sleep(0.5)
 # If "on" the computer, player intention is clearly status update.
 # Return to stop another object use accidentally overriding this.
 return

236 Appendix A

 elif item_carrying == 60 or item_player_is_on == 60:
 use_message = "You fix " + objects[60][3] + " to the suit"
 air_fixed = True
 air = 90
 air_countdown()
 remove_object(60)

 elif (item_carrying == 58 or item_player_is_on == 58) \
 and not suit_stitched:
 use_message = "You use " + objects[56][3] + \
 " to repair the suit fabric"
 suit_stitched = True
 remove_object(58)

 elif item_carrying == 72 or item_player_is_on == 72:
 use_message = "You radio for help. A rescue ship is coming. \
Rendezvous Sector 13, outside."
 props[40][0] = 13

 elif (item_carrying == 66 or item_player_is_on == 66) \
 and current_room in outdoor_rooms:
 use_message = "You dig..."
 if (current_room == LANDER_SECTOR
 and player_x == LANDER_X
 and player_y == LANDER_Y):
 add_object(71)
 use_message = "You found the Poodle lander!"

 elif item_player_is_on == 40:
 clock.unschedule(air_countdown)
 show_text("Congratulations, "+ PLAYER_NAME +"!", 0)
 show_text("Mission success! You have made it to safety.", 1)
 game_over = True
 sounds.take_off.play()
 game_completion_sequence()

 elif item_player_is_on == 16:
 energy += 1
 if energy > 100:
 energy = 100
 use_message = "You munch the lettuce and get a little energy back"
 draw_energy_air()

 elif item_player_is_on == 42:
 if current_room == 27:
 open_door(26)
 props[25][0] = 0 # Door from RM32 to engineering bay
 props[26][0] = 0 # Door inside engineering bay
 clock.schedule_unique(shut_engineering_door, 60)
 use_message = "You press the button"
 show_text("Door to engineering bay is open for 60 seconds", 1)
 sounds.say_doors_open.play()
 sounds.doors.play()

Escape: The Complete Game Listing 237

 elif item_carrying == 68 or item_player_is_on == 68:
 energy = 100
 use_message = "You use the food to restore your energy"
 remove_object(68)
 draw_energy_air()

 if suit_stitched and air_fixed: # open airlock access
 if current_room == 31 and props[20][0] == 31:
 open_door(20) # which includes removing the door
 sounds.say_airlock_open.play()
 show_text("The computer tells you the airlock is now open.", 1)
 elif props[20][0] == 31:
 props[20][0] = 0 # remove door from map
 sounds.say_airlock_open.play()
 show_text("The computer tells you the airlock is now open.", 1)

 for recipe in RECIPES:
 ingredient1 = recipe[0]
 ingredient2 = recipe[1]
 combination = recipe[2]
 if (item_carrying == ingredient1
 and item_player_is_on == ingredient2) \
 or (item_carrying == ingredient2
 and item_player_is_on == ingredient1):
 use_message = "You combine " + objects[ingredient1][3] \
 + " and " + objects[ingredient2][3] \
 + " to make " + objects[combination][3]
 if item_player_is_on in props.keys():
 props[item_player_is_on][0] = 0
 room_map[player_y][player_x] = get_floor_type()
 in_my_pockets.remove(item_carrying)
 add_object(combination)
 sounds.combine.play()

 # {key object number: door object number}
 ACCESS_DICTIONARY = { 79:22, 80:23, 81:24 }
 if item_carrying in ACCESS_DICTIONARY:
 door_number = ACCESS_DICTIONARY[item_carrying]
 if props[door_number][0] == current_room:
 use_message = "You unlock the door!"
 sounds.say_doors_open.play()
 sounds.doors.play()
 open_door(door_number)

 show_text(use_message, 0)
 time.sleep(0.5)

def game_completion_sequence():
 global launch_frame #(initial value is 0, set up in VARIABLES section)
 box = Rect((0, 150), (800, 600))
 screen.draw.filled_rect(box, (128, 0, 0))
 box = Rect ((0, top_left_y - 30), (800, 390))
 screen.surface.set_clip(box)

238 Appendix A

 for y in range(0, 13):
 for x in range(0, 13):
 draw_image(images.soil, y, x)

 launch_frame += 1
 if launch_frame < 9:
 draw_image(images.rescue_ship, 8 - launch_frame, 6)
 draw_shadow(images.rescue_ship_shadow, 8 + launch_frame, 6)
 clock.schedule(game_completion_sequence, 0.25)
 else:
 screen.surface.set_clip(None)
 screen.draw.text("MISSION", (200, 380), color = "white",
 fontsize = 128, shadow = (1, 1), scolor = "black")
 screen.draw.text("COMPLETE", (145, 480), color = "white",
 fontsize = 128, shadow = (1, 1), scolor = "black")
 sounds.completion.play()
 sounds.say_mission_complete.play()

###############
DOORS
###############

def open_door(opening_door_number):
 global door_frames, door_shadow_frames
 global door_frame_number, door_object_number
 door_frames = [images.door1, images.door2, images.door3,
 images.door4, images.floor]
 # (Final frame restores shadow ready for when door reappears).
 door_shadow_frames = [images.door1_shadow, images.door2_shadow,
 images.door3_shadow, images.door4_shadow,
 images.door_shadow]
 door_frame_number = 0
 door_object_number = opening_door_number
 do_door_animation()

def close_door(closing_door_number):
 global door_frames, door_shadow_frames
 global door_frame_number, door_object_number, player_y
 door_frames = [images.door4, images.door3, images.door2,
 images.door1, images.door]
 door_shadow_frames = [images.door4_shadow, images.door3_shadow,
 images.door2_shadow, images.door1_shadow,
 images.door_shadow]
 door_frame_number = 0
 door_object_number = closing_door_number
 # If player is in same row as a door, they must be in open doorway
 if player_y == props[door_object_number][1]:
 if player_y == 0: # if in the top doorway
 player_y = 1 # move them down
 else:
 player_y = room_height - 2 # move them up
 do_door_animation()

Escape: The Complete Game Listing 239

def do_door_animation():
 global door_frames, door_frame_number, door_object_number, objects
 objects[door_object_number][0] = door_frames[door_frame_number]
 objects[door_object_number][1] = door_shadow_frames[door_frame_number]
 door_frame_number += 1
 if door_frame_number == 5:
 if door_frames[-1] == images.floor:
 props[door_object_number][0] = 0 # remove door from props list
 # Regenerate room map from the props
 # to put the door in the room if required.
 generate_map()
 else:
 clock.schedule(do_door_animation, 0.15)

def shut_engineering_door():
 global current_room, door_room_number, props
 props[25][0] = 32 # Door from room 32 to the engineering bay.
 props[26][0] = 27 # Door inside engineering bay.
 generate_map() # Add door to room_map for if in affected room.
 if current_room == 27:
 close_door(26)
 if current_room == 32:
 close_door(25)
 show_text("The computer tells you the doors are closed.", 1)
 sounds.say_doors_closed.play()

def door_in_room_26():
 global airlock_door_frame, room_map
 frames = [images.door, images.door1, images.door2,
 images.door3,images.door4, images.floor
]

 shadow_frames = [images.door_shadow, images.door1_shadow,
 images.door2_shadow, images.door3_shadow,
 images.door4_shadow, None]

 if current_room != 26:
 clock.unschedule(door_in_room_26)
 return

 # prop 21 is the door in Room 26.
 if ((player_y == 8 and player_x == 2) or props[63] == [26, 8, 2]) \
 and props[21][0] == 26:
 airlock_door_frame += 1
 if airlock_door_frame == 5:
 props[21][0] = 0 # Remove door from map when fully open.
 room_map[0][1] = 0
 room_map[0][2] = 0
 room_map[0][3] = 0

240 Appendix A

 if ((player_y != 8 or player_x != 2) and props[63] != [26, 8, 2]) \
 and airlock_door_frame > 0:
 if airlock_door_frame == 5:
 # Add door to props and map so animation is shown.
 props[21][0] = 26
 room_map[0][1] = 21
 room_map[0][2] = 255
 room_map[0][3] = 255
 airlock_door_frame -= 1

 objects[21][0] = frames[airlock_door_frame]
 objects[21][1] = shadow_frames[airlock_door_frame]

###############
AIR
###############

def draw_energy_air():
 box = Rect((20, 765), (350, 20))
 screen.draw.filled_rect(box, BLACK)
 screen.draw.text("AIR", (20, 766), color=BLUE)
 screen.draw.text("ENERGY", (180, 766), color=YELLOW)

 if air > 0:
 box = Rect((50, 765), (air, 20))
 screen.draw.filled_rect(box, BLUE) # Draw new air bar.

 if energy > 0:
 box = Rect((250, 765), (energy, 20))
 screen.draw.filled_rect(box, YELLOW) # Draw new energy bar.

def end_the_game(reason):
 global game_over
 show_text(reason, 1)
 game_over = True
 sounds.say_mission_fail.play()
 sounds.gameover.play()
 screen.draw.text("GAME OVER", (120, 400), color = "white",
 fontsize = 128, shadow = (1, 1), scolor = "black")

def air_countdown():
 global air, game_over
 if game_over:
 return # Don't sap air when they're already dead.
 air -= 1
 if air == 20:
 sounds.say_air_low.play()
 if air == 10:
 sounds.say_act_now.play()
 draw_energy_air()
 if air < 1:
 end_the_game("You're out of air!")

Escape: The Complete Game Listing 241

def alarm():
 show_text("Air is running out, " + PLAYER_NAME
 + "! Get to safety, then radio for help!", 1)
 sounds.alarm.play(3)
 sounds.say_breach.play()

###############
HAZARDS
###############

hazard_data = {
 # room number: [[y, x, direction, bounce addition to direction]]
 28: [[1, 8, 2, 1], [7, 3, 4, 1]], 32: [[1, 5, 4, -1]],
 34: [[5, 1, 1, 1], [5, 5, 1, 2]], 35: [[4, 4, 1, 2], [2, 5, 2, 2]],
 36: [[2, 1, 2, 2]], 38: [[1, 4, 3, 2], [5, 8, 1, 2]],
 40: [[3, 1, 3, -1], [6, 5, 2, 2], [7, 5, 4, 2]],
 41: [[4, 5, 2, 2], [6, 3, 4, 2], [8, 1, 2, 2]],
 42: [[2, 1, 2, 2], [4, 3, 2, 2], [6, 5, 2, 2]],
 46: [[2, 1, 2, 2]],
 48: [[1, 8, 3, 2], [8, 8, 1, 2], [3, 9, 3, 2]]
 }

def deplete_energy(penalty):
 global energy, game_over
 if game_over:
 return # Don't sap energy when they're already dead.
 energy = energy - penalty
 draw_energy_air()
 if energy < 1:
 end_the_game("You're out of energy!")

def hazard_start():
 global current_room_hazards_list, hazard_map
 if current_room in hazard_data.keys():
 current_room_hazards_list = hazard_data[current_room]
 for hazard in current_room_hazards_list:
 hazard_y = hazard[0]
 hazard_x = hazard[1]
 hazard_map[hazard_y][hazard_x] = 49 + (current_room % 3)
 clock.schedule_interval(hazard_move, 0.15)

def hazard_move():
 global current_room_hazards_list, hazard_data, hazard_map
 global old_player_x, old_player_y

 if game_over:
 return

 for hazard in current_room_hazards_list:
 hazard_y = hazard[0]
 hazard_x = hazard[1]
 hazard_direction = hazard[2]

242 Appendix A

 old_hazard_x = hazard_x
 old_hazard_y = hazard_y
 hazard_map[old_hazard_y][old_hazard_x] = 0

 if hazard_direction == 1: # up
 hazard_y -= 1
 if hazard_direction == 2: # right
 hazard_x += 1
 if hazard_direction == 3: # down
 hazard_y += 1
 if hazard_direction == 4: # left
 hazard_x -= 1

 hazard_should_bounce = False

 if (hazard_y == player_y and hazard_x == player_x) or \
 (hazard_y == from_player_y and hazard_x == from_player_x
 and player_frame > 0):
 sounds.ouch.play()
 deplete_energy(10)
 hazard_should_bounce = True

 # Stop hazard going out of the doors
 if hazard_x == room_width:
 hazard_should_bounce = True
 hazard_x = room_width - 1
 if hazard_x == -1:
 hazard_should_bounce = True
 hazard_x = 0
 if hazard_y == room_height:
 hazard_should_bounce = True
 hazard_y = room_height - 1
 if hazard_y == -1:
 hazard_should_bounce = True
 hazard_y = 0

 # Stop when hazard hits scenery or another hazard.
 if room_map[hazard_y][hazard_x] not in items_player_may_stand_on \
 or hazard_map[hazard_y][hazard_x] != 0:
 hazard_should_bounce = True

 if hazard_should_bounce:
 hazard_y = old_hazard_y # Move back to last valid position.
 hazard_x = old_hazard_x
 hazard_direction += hazard[3]
 if hazard_direction > 4:
 hazard_direction -= 4
 if hazard_direction < 1:
 hazard_direction += 4
 hazard[2] = hazard_direction

 hazard_map[hazard_y][hazard_x] = 49 + (current_room % 3)
 hazard[0] = hazard_y
 hazard[1] = hazard_x

Escape: The Complete Game Listing 243

###############
START
###############

clock.schedule_interval(game_loop, 0.03)
generate_map()
clock.schedule_interval(adjust_wall_transparency, 0.05)
clock.schedule_unique(display_inventory, 1)
clock.schedule_unique(draw_energy_air, 0.5)
clock.schedule_unique(alarm, 10)
A higher number below gives a longer time limit.
clock.schedule_interval(air_countdown, 5)
sounds.mission.play() # Intro music

B
Table of Variables, Lists,

and Dictionaries

To help you to understand the Escape list-
ing, I’ve provided the following table, which

contains some of the variables, lists, and dic-
tionaries used in the game. I’ve included those

that I think will be most useful for customizing the
game. You can also use the book’s index to find refer-
ences to specific variables, lists, and dictionaries.

If the name of a variable, list, or dictionary is capitalized, it means its
contents are not intended to be changed after they’re set up.

Variable, list, or dictionary Description

ACCESS_DICTIONARY Dictionary that pairs keys with doors. See “Adding
Access Controls” on page 185 (Chapter 11).

air Air remaining for player. Set to starting value in
VARIABLES section.

air_fixed Set to True when the player has fitted the air canister
to the suit. Otherwise, False.

246 Appendix B

Variable, list, or dictionary Description

checksum Used to check data has been entered correctly when
typing in the game listing. If you modify the game
data, you will need to modify or disable check-
sum code. Put a # before the assert instructions to
disable them.

current_room Number of the room the player is now in. Set it as
the starting room in the VARIABLES section.

energy Energy remaining for player. Set to starting value in
VARIABLES section.

FRIEND1_NAME A friend’s name, used in descriptions of rooms and
objects.

FRIEND2_NAME A friend’s name, used in descriptions of rooms and
objects.

GAME_MAP Stores the map of how rooms connect to each
other. See “Creating the Map Data” on page 60
(Chapter 4).

game_over Set to True when the game has finished. Otherwise, it
should be False.

hazard_data Dictionary containing position and movement infor-
mation for the moving hazards. See “Adding the
Moving Hazards” on page 203 (Chapter 12).

hazard_map Used to keep track of where moving hazards are in
the room the player is now in. Automatically gener-
ated. You don’t need to modify this.

HEIGHT Height of the game window in pixels.
in_my_pockets List of object numbers for items player is carrying. Set

up in the PROPS section to contain the items the player
begins the game with.

item_carrying Object number of the item the player has selected in
their inventory.

item_player_is_on Object number of the item the player is standing on.
items_player_may_carry List containing the object numbers of items the player

can pick up.
items_player_may_stand_on List containing the object numbers of items the player

can walk on.
LANDER_SECTOR Room number where the Poodle lander is hidden.
LANDER_X The x-coordinate of where the Poodle lander

is hidden.
LANDER_Y The y-coordinate of where the Poodle lander

is hidden.
MAP_HEIGHT How many rooms tall the map is (see Chapter 4,

Figure 4-1 on page 60).
MAP_WIDTH How many rooms wide the map is (see Chapter 4,

Figure 4-1 on page 60).

Table of Variables, Lists, and Dictionaries 247

Variable, list, or dictionary Description

objects Dictionary containing images and descriptions for all
objects in the game. See “Making the Space Station
Objects Dictionary” on page 85 (Chapter 5).

outdoor_rooms A range of the planet surface room numbers (see
Chapter 4, Figure 4-1 on page 60).

PILLARS Dictionary containing animation frames for front wall
transparency.

PLAYER Dictionary containing player animation frames.
player_direction Direction player is facing. Should be left, right, up,

or down.
player_frame Used for the player’s animation frame.
PLAYER_NAME Used in descriptions of objects and messages to the

player. Set it as your name in the VARIABLES section.
PLAYER_SHADOW Dictionary containing shadows for player animation.
player_x Player’s x position in the room, measured in tiles. Set

it as the starting position in the VARIABLES section.
player_y Player’s y position in the room, measured in tiles. Set

it as the starting position in the VARIABLES section.
props Dictionary containing location of all the move-

able objects in the game. See “Adding the Props
Information” on page 151 (Chapter 9).

RECIPES List containing ways that objects can be combined
to make new objects. See “Combining Objects” on
page 177 (Chapter 10).

room_map Used to remember what’s at each position in the
room the player is now in. Automatically generated.
You don’t need to modify this.

scenery Dictionary containing data for positioning fixed
objects in rooms. See “Understanding the Dictionary
for the Scenery Data” on page 97 (Chapter 6).

standard_responses Dictionary of messages to display when the player
uses items that serve no other purpose.

suit_stitched Set to True when the player has fixed the suit.
Otherwise, False.

use_message Text shown to player when they use or try to use an
object.

WIDTH Width of the game window in pixels.

C
Debugging Your Listings

Some of the listings in this book might not
work for you the first time. Don’t be put off!

This is normal when programming, even for
experienced coders. It’s easy to overlook details

that will make a huge difference to the program.
Fixing errors in a program is called debugging.

To minimize problems, I’ve kept the listings as short as possible, so if
something doesn’t work in a listing, you won’t have to check many instruc-
tions. I’ve also included warnings in the text when there’s anything particu-
larly tricky that you should look out for.

Remember that if you can’t work out how to fix a program, you can use
my version of that listing that you downloaded in the book’s resources (see
“What’s in the ZIP File” on page 8). If you’ve modified the program, try
copying and pasting the new bits from my listing into your program.

250 Appendix C

In this appendix, I’ve compiled some tips to help you fix any programs
that aren’t working for you. When Python spots an error, it usually shows
you the line in the program where it first noticed something was wrong.
That isn’t always the line where the mistake actually is: it’s just how far
Python got before it noticed a problem. If the line shown looks okay, check
the previous line first and then check the other new instructions in the list-
ing for mistakes.

Indentation
Indentation is used to tell Python which bits of the program belong
together. For example, all the instructions that belong to a function need
to be indented underneath the def instruction that defines the function.
Instructions that belong to a while, for, if, or else command need to be
indented too. Listing C-1 provides an example, part of the get_floor_type()
function.

--snip--
 def get_floor_type():
 if current_room in outdoor_rooms:
 return 2 # soil
 else:
 return 0 # tiled floor

--snip--

Listing C-1: An excerpt from the game listing, showing indentation levels

All the instructions belong to the function get_floor_type() u, so
they’re all indented by at least four spaces (see  and ). The return
instructions ( and ) also belong to the if  and else  commands
above them, so they’re indented by another four spaces, making eight
spaces in total. When you add the colon at the end of the line when typ-
ing in the def, if, and else instructions, the indentation on the next line is
added automatically in IDLE. Use the delete key to remove indentation you
don’t need.

If you get the indentation level wrong for some instructions, the pro-
gram might behave strangely or simply run slower, even if Python doesn’t
report any errors. So it’s worth double-checking your indentation levels.

If Python does give an error that shows it expected an indented block,
it means you haven’t indented something that you should have. If Python
tells you there’s an unexpected indent, you’ve added too many spaces at the
start of the instruction, or you might have instructions indented at different
levels that should be lined up. In this book, I’ve used four spaces for each
level of indentation.

Debugging Your Listings 251

Case Sensitivity
Python is case sensitive, which means it matters whether you use uppercase
(ABC…) or lowercase (abc…) letters. Most of the time, you should use
lowercase when writing Python code. Here are the exceptions:

•	 The values True, False, and None have a capital letter at the start. When
you type them correctly, they’ll be orange in IDLE.

•	 Some of the variable, dictionary, and list names in the program are
uppercase, such as TILE_SIZE and PLAYER. If your capitalization is incon-
sistent, you might get an error message saying that a particular name
is not defined. Python doesn’t recognize two names with different
capitalization as the same name. (Check for spelling errors in the
name too.)

•	 Anything inside quotation marks may vary in case. This is text the pro-
gram uses to do something and is often written so it looks correct when
people read it.

•	 Python ignores anything after a # symbol on the same line, so you can
use whatever capitalization you like there.

Parentheses and Brackets
Check that you’re using the correct bracket shapes in the correct order,
especially if Python tells you there’s a problem with something in a list or
dictionary:

•	 Parentheses () are used for tuples and for giving information to a func-
tion. For example, the range(), print() and len() functions use parenthe-
ses. So do our own functions in the Escape game, such as remove_object()
and draw_image().

•	 Square brackets [] mark the start and the end of a list. Sometimes, you
might have a list inside another list, so you’ll have several pairs.

•	 Curly brackets {} mark the start and the end of a dictionary.

Colons
When the code line begins with for, while, if, else or def, it needs a colon (:)
at the end of it. A colon also separates the key from the data in a dictionary.
The Escape listing doesn’t use semicolons (;), so if there’s one in your code,
change it to a colon.

252 Appendix C

Commas
Items in a list or tuple need commas between them. When adding new lines
to a list, make sure you include a comma after the last item before add-
ing new items. Look for patterns in the data to help you spot any mistakes
involving commas. For example, each list in the props dictionary and recipes
list has three numbers in it.

Images and Sounds
If Python tells you that no images or sounds directory was found, check that
you’ve downloaded the files and are saving your files in the right place. See
“Downloading the Game Files” on page 7 and Listing 1-1 on page 19.

Spelling
IDLE’s color coding can help you spot spelling errors in some instructions.
Check that the colors on your screen match the colors in the book. Be care-
ful when you’re spelling variables and lists: any mistakes might cause the
program to stop or behave strangely.

Symbols and Numbers
' (apostrophe), 17
\ (backslash), 94, 177
#\ in Escape, 212
: (colon), 19, 251
, (comma), 84, 252
(for comments), 21, 63–64

case sensitivity, of comments, 251
commenting to turn code off,

101, 107, 112, 212, 213
uncommenting to turn code on,

147, 207, 212
{} (curly brackets), 80, 251
" (double quotation mark), 17,

29, 251
// (floor division operator), 163, 170
% (modulo operator), 71, 163,

170, 206
* (multiplication), 56, 70
!= (not-equal-to operator), 71, 103
-= operator, 28
+ operator

for adding numbers, 17
for combining lists, 40
for combining strings, 65

+= operator
for adding numbers, 28
for combining or extending

lists, 41, 64, 103
() (parentheses), 16, 22, 23, 37, 65,

135, 251
; (semicolon), 251
[] (square brackets), 34, 36, 37,

65, 251
-1 (as index number), 104, 190
3D effect, 25–26, 30
3D room display, 53, 72
255, in room_map, 106–107, 108, 109,

156, 157, 169

A
access cards, 86, 184, 185–187,

190, 196
ACCESS_DICTIONARY, 187, 196
add(), 128–129
adding numbers, 17, 128–129
add_object(), 159–160
adjust_wall_transparency(), 143–145
air, 174, 198–202
air_countdown(), 199–200
air_fixed, 174, 235, 236, 237
airlock_door_frame, 194
AIR section, 198–200
alarm(), 199, 201, 202
Anderson, Clayton, 14
animation

airlock door, 194
astronaut, 113–114, 116, 119–122
doors, 184–196
front wall, 142–145
game completion, 180

apostrophe ('), 17
append(), 35, 45, 65, 160, 208
arguments, 16, 128, 129, 148, 156
arrow keys

in Escape, 116, 119–120
in Explorer, 74, 91, 108
in Spacewalk, 26, 27, 28

assert, 65, 101, 109, 110, 154, 246
astronaut names, changing, 64, 215

B
backslash (\), 94, 177
black space, under objects, 91, 109,

127, 139
Boolean values, 61, 71
bottom_edge, 70
bottom edge type, 69

Index

254 Index

box Rect, 138
brackets, differences between,

65, 251
bugs. See errors
built-in functions, 16

C
cabinets, 156, 169
calculations, 17
calling a function, 157
case sensitivity, 22, 82, 251
centering the room display, 141
checksum, 101, 109–110

turning off for props, 154
clearing

game arena, 138
text area, 146

clipping area, 138–139, 141
clock, 29, 30, 74, 119, 163
clock.schedule_interval(), 119, 163
clock.schedule_unique(), 163
close button, 23
close_door(), 188
clues, 2, 86, 173, 181
cmd, 5, 10
collision detection, 120, 212
colon (:), 19, 251
color coding, 16, 21, 88, 252
colors, in Pygame Zero, 131–132,

138, 149
combining lists, 40–41
combining objects, 177–179
command line window, 23, 75

on Raspberry Pi, 9
on Windows, 5–6, 10

comma (,), 84, 252
comments. See # (for comments)
constants, 22
continuing code on next line,

94, 177
controls. See keyboard controls
converting

decimal numbers to integers, 71
numbers to strings, 74, 94

coordinates, 43, 45, 52, 56
corridors, 75, 77

cupboards, 169
curly brackets, {}, 80, 251
current_room, 72, 74, 109, 213
current_room_hazards_list, 206
curved brackets (parentheses), 16,

22, 23, 37, 65, 135, 251
customizing the game, 2, 215–216

difficulty, 187, 202, 210
doors, 184, 187, 195
game map, 76, 104, 139
images, 215
props, 154, 169
room designs, 89, 96, 101,

107, 109
sharing your customizations, 216

D
debugging, 65, 88, 249
decimal numbers, 71, 107
def statement, 19, 22, 250, 251
delays, 160, 163
deleting a list item, 37
del statement, 37
DEMO_OBJECTS, 55, 64
deplete_energy(), 205, 210, 216
diagonal movement, 29, 120
dice example, 156
dictionaries, 80, 95

as arguments, 129
checking keys, 82
compared to lists, 80
containing lists, 83–84, 95
creating, 80
errors, 82–83, 95, 251
keys, 80, 95
order of items, 82
using a variable as a key, 81
values, 80

difficulty of game, adjusting, 187,
202, 210

displaying numbers, 17
displaying text. See print()
display_inventory(), 160, 161, 162,

165, 167
DISPLAY section, 133, 136, 143, 145,

148, 210

Index 255

division
// operator, 163, 170
calculating remainder, 71, 163,

170, 206
do_door_animation(), 188, 189
door_in_room_26(), 194, 195
door_object_number, 188
doors, 86, 98, 180, 184–196.

See also exits
airlock (room 26), 193, 194
animation, 188, 189, 193, 196
closing, 187, 193
in customized map, 76
data, 185
opening, 185–190, 193–194
positioning, 184, 185
removing from game, 195–196
setting up in props

dictionary, 153
testing, 190, 193
timed, 185, 186, 190, 193, 196

DOORS section, 187, 189, 191, 193
double quotation mark ("), 17,

29, 251
downloading game files, 7, 21
draw()

3D room, 55
final code for Escape game, 132,

136–139, 142
hazards, 210
in Spacewalk, 22, 25

draw_energy_air(), 199, 200
draw_image(), 135
drawing

filled rectangles, 138, 149
images, 135
player, 135
room, 55, 136–139
scenery, 139
shadows, 135, 139, 140
text, 146, 201

draw_player(), 135
draw_shadow(), 135
drones. See hazards
drop_object(), 165, 166, 167
dropping objects, 11, 166
drop shadow (text effect), 201

E
edge type, 69
elif command, 28, 30, 120
else command, 250, 251
end_the_game(), 199, 200, 201
energy, 174

drawing indicator bar, 199
reducing, 205
restoring, 198
variable, 199

energy balls. See hazards
engineering bay, 185, 186, 190, 193
errors, 249. See also debugging

error message, 173
not defined, 251
without error message, 250

escape folder, 7, 8
Escape game, 1, 8

building, 2
compatibility, 6
complete code listing, 217
customizing. See customizing

the game
downloading files, 7, 21
playing, 2, 11
running, 9
sections in program listing, 63

escape.zip, 7, 8
examine_object(), 165, 168
examining objects in the game, 11,

156, 165, 168
example listings, 21
exits, 61, 62, 68, 71. See also

movement: between
rooms

adding to room_map, 71
in customized map, 76
in game map, 60
testing from both sides, 75

Explorer, 72–74, 76, 91, 97, 107–108
EXPLORER section, 72–74, 89, 115

deleting, 132
disabling keyboard controls, 112
drawbacks, 127
modifying to show room

design, 89

256 Index

F
False, 61, 83, 251
fanfare, adding to game, 214
fences, 102
File4Save, 19
find and replace, 147, 207
find_object_start_x(), 158
floating-point numbers, 71, 107
floor, 68, 70, 74
floor division operator (//), 163, 170
floor pad, 139
floor type, 69
floor_type, 70
for command, 49, 50, 58, 103,

250, 251
frames list, 194
FRIEND1_NAME, 64, 65
FRIEND2_NAME, 64, 65
from_player_x, 120
from_player_y, 120
functions, 16, 22, 30, 251. See also

arguments
built-in, 16
calling, 157
defining, 19
receiving information in, 128,

129, 148
returning information from,

156, 170
sending information to,

128–129, 148

G
game. See Escape game
game_completion_sequence(), 180
game design, 184
game_loop()

in Escape, 116, 119, 122, 126, 161,
164, 172, 207, 212

in Spacewalk, 26, 27
GAME LOOP section, 116, 119, 147, 161
GAME_MAP, 61, 62, 64, 66, 75, 76
game_over, 113, 119, 201
GAME OVER message, 199, 201
generate_map()

adding props, 154–156
centering the map, 141–142

generating rooms, 66, 68, 76
hazards, 208
scenery, 104–105, 109
starting, 132

get, 11, 159, 160
get_floor_type(), 69, 160
get_item_under_player(), 158, 159
get_width(), 107
global, 28, 30
global variables, 28, 30
GPS system, 177, 179
gray in code listings, 23

H
hazard_data, 204, 206
hazard_map, 206, 208, 210
hazard_move(), 206, 208, 210
hazards, 197, 203

choosing, for each room, 206
data for, 204
direction numbers, 203, 210, 216
drawing, 210
movement patterns, 203, 204,

210, 216
object numbers, 206
positioning, 184
room map for, 206, 208, 210
starting, 205, 206
stopping, 205, 207
stopping player from walking

through, 212
testing, 211
toxic spills, 212

HAZARDS section, 204, 205, 208
hazard_start(), 205, 206, 208
HEIGHT, 22, 30, 55, 142
hidden props, 156, 168, 169

I
IDE (integrated development

environment), 9
IDLE, 9, 14

color coding, 16, 21, 88, 252
cut and paste, 24
find and replace, 147, 207
opening a new window, 18

Index 257

Replace All, 147, 207
script mode, 18, 29, 76
searching within code, 87
starting, 14
title bar, 18

if command, 28, 30, 108, 250, 251
using a list instead of, 140

image_here, 107
images

as arguments, 129
customizing, 215
filenames in Pygame Zero, 22
getting width, 107

images folder, 8, 9, 18, 19, 22, 54,
55, 252

image_to_draw, 116
image_width, 107
image_width_in_tiles, 107
indentation, 22, 28, 49, 51, 66, 81,

108, 250
index numbers, 36, 40, 45, 68, 104

-1 (final item in list), 104, 190
equivalent for dictionary, 81

in keyword, 120, 140
in_my_pockets, 154, 163, 164, 165

adding items, 160
removing items, 167

input(), 192, 196
insert(), 36
int(), 71, 192, 196
integer, 71
integrated development

environment (IDE), 9
interactive mode. See shell
International Space Station, 14
inventory, 154, 159, 177

adding items, 160
displaying, 160, 161, 162, 165
keyboard control, 164
removing items, 166, 167
testing, 165

item_carrying, 154, 160, 164, 165, 167
False, 167

item_counter, 163
item_player_is_on, 160, 168
items_player_may_carry, 94, 95, 165
items_player_may_stand_on, 95,

120, 212

K
keyboard controls

drop, 165, 166
in Escape, 116–119
examine, 165, 168
get, 160
playing Escape, 11
sensitivity, 74
spacebar, 168
in Spacewalk, 26–28
tab, 164
use, 172

keys, in dictionaries, 80, 95

L
LANDER_SECTOR, 87
LANDER_X, 87, 153
LANDER_Y, 87, 153
launch, 180
left_tile_of_item, 168
legs of astronaut, disappearing,

118, 127, 140
line_number, 146
listings folder, 9, 21
lists, 34, 251, 252

-1 (as index number), 104, 190
accessing an item, 36, 39, 45
across multiple lines, 94
adding items to, 35, 45, 103
append(), 35, 45
as arguments, 129
checking whether an item is

in a list, 120, 140
combining two lists, 40–41
compared to dictionaries, 80
creating a list of 0s, 208
creating with list(), 94
deleting an item, 37
in keyword, 120
insert(), 36
inserting an item, 36
inside another list, 38, 39
inside dictionaries, 83, 84, 95
last item in, 104, 190
looping through items, 103
for maps, 42, 45
multiplying, 70

258 Index

lists, continued
nested, 38, 39
printing, 35
remove(), 35, 45
removing items from, 35, 45
replacing an item, 37, 45
slicing, 163

list_to_show, 163
local variables, 27, 129, 148, 157
loops, 47, 49–50. See also

for command;
while command

inside another loop, 50–52
looping through a list, 103

lowercase, 251

M
MAKE MAP section, 105, 208
map, 42, 45, 184. See also room_map

accessing an item, 43
coordinates, 43, 45
data format, 60, 61
designing your own, 60–61,

76–77, 139
doors, 184
extending, 75, 77
fixing errors, 65
moving between rooms,

122, 126
planet surface rooms, 64
printing an item number, 44
removing planet surface

scenery, 104
replacing an item, 44
for space station, 60
using printed numbers, 49

MAP_HEIGHT, 75
map maker, 60
Mars, 13
Mastracchio, Rick, 14
math, 17
maze, 60
messages, 145
methods, 82
modulo operator (%), 71, 163,

170, 206

movement
between rooms, 122, 126
of player, 116–122, 158

movement(), 74
MP3 player, 169, 176
multiline code, 94, 177
multiplication (*), 56, 70

N
NASA, 14, 20
nested lists, 38–39
nested loops, 50, 58
None, 86, 251
not, 120
not defined error, 251
not-equal-to operator (!=), 71, 103
numbers in circles, 19

O
object number, 98, 99
objects

adding your own, 215
combining, 177
destroying, 152
dictionary. See objects dictionary
display errors, 91
displaying in Explorer, 89
drawing, 135
dropping, 11, 166
examining, 11, 168
hidden, 156, 168, 169
image file, 86
long description, 86
not currently in the game, 152
picking up, 11, 159, 160
selecting, 11
shadow image, 86
short description, 86
standard use messages, 172
using, 12, 171–181

objects dictionary, 85, 88, 91–95,
106, 109, 151, 171, 177

changing images, 190, 194
doors, 194
doors animation, 190

offset numbers, in astronaut
animation, 121

Index 259

.ogg files, 201
old_hazard_x, 210
old_hazard_y, 210
old_player_x, 120
old_player_y, 120
open_door(), 186, 188
outdoor_rooms, 64, 70
output, 16

P
parentheses, (), 16, 22, 23, 37, 65,

135, 251
pgzrun, 9–10, 20
picking up objects, 11, 159, 160
pick_up_object(), 159–161, 166
PILLARS, 142
pixels, 56
planets, 80–85
planet surface rooms, 64, 70,

76, 102
player

drawing in room, 115, 135
movement, 116, 119, 158
movement between rooms,

122, 126
PLAYER dictionary, 114, 126
player_direction, 120
player_frame, 119, 120
player_image, 115, 131, 136
player_image_shadow, 131
PLAYER_NAME, 64
player_offset_x, 116, 119, 121,

126, 136
player_offset_y, 116, 119, 121,

126, 136
PLAYER_SHADOW dictionary, 131, 136
player_x

for Escape, 113, 136
for Spacewalk, 22, 26, 27

player_y

for Escape, 113, 136
for Spacewalk, 22, 26, 27

Pluto, 82, 84
Poodle lander, 11, 87, 94, 153
Portable Network Graphics

(PNG), 55

pressure pad, 139, 193, 194, 196
print(), 16–17, 29, 53, 128

item number from map, 44
lists, 35
numbers, 17

programming languages, 14
programs, 18, 29
prompt, 15
prop 71 (Poodle lander), 153
prop_info, 155
PROP INTERACTIONS section 158,

159, 166
prop_number, 155
prop_room, 155
props, 71, 98, 151–170

adding to room_map, 154
creating your own, 215
doors, 185
hidden, 156, 168, 169
interactions, 158
picking up, 11, 159, 160
positioning, 184
using, 12, 171–181
wide, 156

PROPS section, 152, 153, 160, 165,
167, 169, 178, 179

prop_x, 155
prop_y, 155
puzzles, 171, 177

creating your own, 215
design, 184

Pygame Zero, 1, 14, 20, 21, 22, 54
drawing images, 22, 25
installing, 3, 5–6
on other computers, 6
running programs, 8, 9, 30
saving files, 54
testing installation, 6

Python, 1, 14, 21
editor. See IDLE
installing, 3–5

Q
quotation mark ("), 17, 29, 251

260 Index

R
random, 156
random.choice(), 103
random.randint(), 87
range(), 49, 57, 64, 65, 94, 107, 140
Raspberry Pi

compatibility, 2, 6, 217
downloading game files, 7
running Pygame Zero

programs, 9
software installation, 4
speed, 187, 202
starting IDLE, 15

reason variable, 201
recipes, 177–179, 181
RECIPES, 178
Rect, 138, 149, 163
remove(), 35, 45
remove_object(), 166, 167
repeating

using clock, 119, 163
using loops. See loops

Replace All, 147, 207
replacing a list item, 37
rescue ship, 180
return, 69, 125, 157, 177
robots. See hazards
room

centering in the window, 141
designing your own, 89
drawing, 136, 139
drawing in 3D, 53, 55, 56
height, 69
maximum size, 61
name, 69
showing name on entry, 146
sizes, 77
width, 69

room 0 (for storing extra items),
64, 152, 179

room 26 (contains pressure pad),
139, 193, 215

room 27 (engineering bay), 185
room 32 (outside engineering

bay), 185
room_coordinate, 103
room_data, 68, 71
room_height, 55, 69

room map, 167, 206
room_map, 76

adding props, 154
adding scenery, 104–107
designing a room in the

Explorer, 89–91
displaying with loops, 48–53
drawing the room, 55
emergency room example,

42–45
generating, 59–60, 62, 66–72
in player movement, 120
printing, 72
wide objects, 157

room_name, 69, 147
room_number, 103
room_pixel_width, 142
rooms

drawing, 72
designing, 96, 101, 107, 109
moving between, 122, 126

room_width, 55, 69
Run Module, 65

S
saving, 18, 19, 54, 62
scenery, 97, 108

adding to room_map, 105
changing, 109
changing the data, 101
combining with props, 177–179
creating your own, 215
dictionary, 98–100, 109
drawing, 139
error in data, 101
on planet surface, 102
randomly chosen, 103
randomly positioned, 103
removing for planet surface

rooms, 104
shadows, 136
using, 12, 171–181

scenery dictionary, 151
scenery_number, 106
SCENERY section, 99, 102
scenery_x, 106
scenery_y, 106

Index 261

scheduling, 74
score, 21
screen.blit(), 22, 30, 55, 135, 163
screen.draw.filled_rect(), 138, 149
screen.draw.text(), 146
script mode, 18, 29, 76
searching in your code, 87
selected_item, 154, 160, 164
selected_marker, 163
selecting objects, 11, 164
semicolon (;), 251
sensitivity of keyboard controls, 74
shadows, 57, 128, 130, 135, 139

drawing, 140
scenery, 136
spilling out of the

game area, 138
standard, 140

shell
Python, 15, 18, 72, 76
Raspberry Pi, 9

short description, 177
show_text(), 146, 148
shut_engineering_door(), 190
side_edge, 70
slicing, lists, 163
slow programs, 2, 250
--snip--, 23
software installation, 3–6
soil, 70
sound effects

alarm, 199
doors open, 187
fanfare, 214
playing, 201, 216

sounds folder, 8, 9, 201, 252
space station

inhabitants, 64
map, 60
rooms, 76

Spacewalk, 14, 18–31
spelling errors, 251–252
spoilers, 2, 86, 171
square brackets, [], 34, 36, 37,

65, 251
standard_responses, 173, 181
starfield, 18, 22
start_display, 163

start_room(), 125, 146, 206
START section, 118, 144, 162, 202
stopping programs, 23, 30
storytelling, 184
str(), 74, 94
strings, 16, 29, 65

combining, 65
converting to numbers, 192, 196
drawing, 145, 201, 216
typing into a program, 192

subtracting numbers, 149
suit_stitched, 174
switching off instructions, 101, 107,

112, 212, 213

T
tab key, 11, 161, 163, 164
teleporter

adding, 192
disabling, 213
using, 192, 195

testing, 65, 72, 197, 212
text. See strings
text_lines, 146
text_to_show, 146
this_scenery, 106
tiles, 56, 61, 113, 126
TILE_SIZE, 105
time limit, 202
time.sleep(), 160
top_left_x, 56, 64, 141
top_left_y, 56, 64, 141
toxic spills, 212
training missions, 3
True, 61, 71, 81, 83, 251
tuple, 23, 30, 131, 252
turning off instructions, 101, 107,

112, 212, 213

U
uncommenting, 147, 207, 212
unexpected indent, 250
uppercase, 251
use_message, 173
use_object(), 173, 174, 181, 185
USE OBJECTS section, 172, 180
using objects, 12, 171–173, 174–179

262 Index

V
values, in dictionaries, 80
variables, 21, 29, 76, 105

as dictionary keys, 81
game progress, 174
global, 28, 30
increasing and decreasing

values, 28
local, 129, 148, 157
names, 21, 22, 52
for player movement, 112

VARIABLES section, 105, 199, 213

W
walls, 68, 69, 70, 74, 99. See also exits

fading in and out, 142
front, 139
transparency, 130, 139, 142

wall_transparency_frame, 131, 143
.wav files, 201
weight sensor. See pressure pad
while command, 81, 250, 251
while True, 81

whiteboard, 215
whole number, 71
wide objects, 91, 106, 108, 157
wide props, 156
WIDTH, 22, 30, 55, 142
Windows 8, starting IDLE in, 15
Windows 10, starting IDLE in, 14
Windows Explorer, 8
window size, 22
Windows PC, 4, 6, 8, 10

X
x position, 22, 24, 98

Y
"You're out of air!", 200
y position, 23, 24, 98

Z
ZIP file, 7, 8

Resources
Visit https://nostarch.com/missionpython/ for updates, errata, program files, and other
information.

Python Flash Cards
Syntax, Concepts, and Examples
by eric matthes

fall 2018, 101 cards, $27.95
isbn 978-1-59327-896-0
full color

Cracking Codes
with Python
An Introduction to Building
and Breaking Ciphers
by al sweigart

january 2018, 416 pp., $29.95
isbn 978-1-59327-822-9

Coding with Minecraft
Build Taller, Farm Faster, Mine Deeper,
and Automate the Boring Stuff
by al sweigart

may 2018, 256 pp., $29.95
isbn 978-1-59327-853-3
full color

1.800.420.7240 or 1.415.863.9900 | sales@nostarch.com | www.nostarch.com

More Smart Books for Curious Kids!

20 Easy Raspberry Pi
Projects
Toys, Tools, Gadgets, and More!
by rui santos and sara santos

april 2018, 288 pp., $24.95
isbn 978-1-59327-843-4
full color

Math Adventures
with Python
Fractals, Automata, 3D Graphics,
and More!
by peter farrell

fall 2018, 304 pp., $29.95
isbn 978-1-59327-867-0
full color

Learn Robotics
with Raspberry Pi
Build and Code Your Own Moving,
Sensing, Thinking Robots
by matt timmons-brown

fall 2018, 200 pp., $24.95
isbn 978-1-59327-920-2
full color

Mission Python is a hands-on guide to build-
ing a computer game in Python—a beginner-
friendly programming language used by
millions of professionals as well as hobbyists
who just want to have fun.

In Mission Python, you’ll code a puzzle-
based adventure game, complete with graphics,
sound, and animations. Your mission: to
escape the station before your air runs out.
To make it to safety, you must explore the
map, collect items, and solve puzzles while
avoiding killer drones and toxic spills. When
you’ve finished building your game, you can
share it with your friends!

As you code, you’ll learn fundamentals of
Python, like how to:

 Store data in variables, lists, and
 dictionaries

 Add keyboard controls to your game

 Create functions to organize your
 instructions

 Make loops to repeat blocks of code

 Add graphics, sound, and animations
 to your game

The book uses Pygame Zero, a free
resource that makes coding games easier.
Plus, all graphics, sound, and code used in
the game are available for you to download
for free!

ABOUT THE AUTHOR

Sean McManus is a computer book author
with extensive experience in writing coding
books for children. Visit his website at
www.sean.co.uk.

SHELVE IN
: PROGRAM

M
ING

LANGUAGES/PYTHON

Ages 11+

M
c

M
a

n
u

s

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™
.$29 95 .)($39 95 CDN

Code your own Space
Station adventure game!

Code your own Space
Station adventure game!

Requires Python 3.x on Windows
or Raspberry Pi (it’s free!)

M
is

s
io

n
 P

y
t

h
o

n
M

is
s

io
n

 P
y

t
h

o
n

Mission
Python
Mission
Python

Code a Space Adventure Game!

S e a n M c M a n u s

Build this game!

	Brief Contents

	Contents in Detail

	Acknowledgments
	Introduction
	How to Use This Book
	What’s in This Book?
	Installing the Software
	Installing the Software on Raspberry Pi
	Installing Python on Windows
	Installing Pygame Zero on Windows
	Installing the Software on Other Machines

	Downloading the Game Files
	Downloading and Unzipping the Files on a Raspberry Pi
	Unzipping the File on a Windows PC
	What’s in the ZIP File

	Running the Game
	Running Pygame Zero Programs on the Raspberry Pi
	Running Pygame Zero Programs in Windows

	Playing the Game

	Chapter 1: Your First Spacewalk

	Starting the Python Editor
	Starting IDLE in Windows 10
	Starting IDLE in Windows 8
	Starting IDLE on the Raspberry Pi

	Introducing the Python Shell
	Displaying Text
	Outputting and Using Numbers

	Introducing Script Mode
	Creating the Starfield
	Understanding the Program So Far

	Stopping Your Pygame Zero Program
	Adding the Planet and Spaceship
	Changing Perspective: Flying Behind the Planet

	Training Mission #2
	Spacewalking!
	Understanding the Spacewalk Listing

	Are You Fit to Fly?
	Mission Debrief

	Chapter 2: Lists Can Save Your Life

	Making Your First List:
The Take-Off Checklist
	Seeing Your List
	Adding and Removing Items

	Using Index Numbers
	Inserting an Item
	Accessing an Individual Item
	Replacing an Item
	Deleting an Item
	Training Mission #1

	Creating the Spacewalk Checklist
	A List of Lists: The Flight Manual
	Making a List of Lists
	Finding an Item in the Flight Manual

	Combining Lists
	Making Maps from Lists: The Emergency Room

	Making the Map
	Finding an Emergency Item
	Training Mission #4
	Swapping Items in the Room

	Are You Fit to Fly?
	Mission Debrief

	Chapter 3: Repeat After Me

	Displaying Maps with Loops
	Making the Room Map
	Displaying the Map with a Loop
	Training Mission #1

	Loop the Loop
	Nesting Loops to Get Room Coordinates
	Cleaning Up the Map

	Displaying a 3D Room Image
	Understanding How the Room Is Drawn
	Working Out Where to Draw Each Item
	Are You Fit to Fly?
	Mission Debrief

	Chapter 4: Creating the Space Station

	Automating the Map Making Process
	How the Automatic Map Maker Works
	Creating the Map Data
	Writing the GAME_MAP Code
	Testing and Debugging the Code
	Generating Rooms from the Data
	How the Room Generating Code Works
	Creating the Basic Room Shape
	Adding Exits
	Testing the Program

	Exploring the Space Station in 3D
	Training Mission #2

	Making Your Own Maps
	Are You Fit to Fly?
	Mission Debrief

	Chapter 5: Preparing the Space Station Equipment

	Creating a Simple Planets Dictionary
	Understanding the Difference Between a List and a Dictionary
	Making an Astronomy Cheat Sheet Dictionary
	Error-Proofing the Dictionary
	Putting Lists Inside Dictionaries
	Extracting Information from a List Inside a Dictionary

	Making the Space Station Objects Dictionary
	Adding the First Objects in Escape
	Viewing Objects with the Space Station Explorer
	Designing a Room
	Adding the Rest of the Objects

	Are You Fit to Fly?
	Mission Debrief

	Chapter 6: Installing the Space Station Equipment

	Understanding the Dictionary for the Scenery Data
	Adding the Scenery Data
	Adding the Perimeter Fence for the Planet Surface
	Loading the Scenery into Each Room
	Updating the Explorer to Tour the Space Station
	Are You Fit to Fly?
	Mission Debrief

	Chapter 7: Moving into
the Space Station

	Arriving on the Space Station
	Disabling the Room Navigation Controls in the EXPLORER Section
	Adding New Variables
	Teleporting onto the Space Station

	Adding the Movement Code
	Understanding the Movement Code
	Training Mission #1

	Moving Between Rooms
	Are You Fit to Fly?
	Mission Debrief

	Chapter 8: Repairing the Space Station

	Sending Information to a Function
	Creating a Function that Receives Information
	How It Works
	Training Mission #1

	Adding Variables for Shadows, Wall Transparency, and Colors
	Deleting the EXPLORER Section
	Adding the DISPLAY Section
	Adding the Functions for Drawing Objects
	Drawing the Room
	Understanding the New draw() Function

	Positioning the Room on Your Screen
	Making the Front Wall Fade In and Out
	Displaying Hints, Tips, and Warnings
	Showing the Room Name When You Enter the Room
	Are You Fit to Fly?
	Mission Debrief

	Chapter 9: Unpacking Your Personal Items

	Adding the Props Information
	Adding Props to the Room Map
	Finding an Object Number from the Room Map
	Picking Up Objects
	Picking Up Props
	Adding the Keyboard Controls

	Adding the Inventory Functionality
	Displaying the Inventory
	Adding the Tab Keyboard Control
	Testing the Inventory

	Dropping Objects
	Training Mission #1

	Examining Objects
	Are You Fit to Fly?
	Mission Debrief

	Chapter 10: Make Yourself Useful

	Adding the Keyboard Control for Using Objects
	Adding Standard Messages for Using Objects
	Adding the Game Progress Variables
	Adding the Actions for Specific Objects
	Combining Objects
	Training Mission #1

	Adding the Game Completion Sequence
	Exploring the Objects
	Are You Fit to Fly?

	Chapter 11: Activating Safety Doors

	Planning Where to Put Safety Doors
	Positioning the Doors
	Adding Access Controls
	Making the Doors Open and Close
	Adding the Door Animation
	Training Mission #1

	Shutting the Timed Door
	Adding a Teleporter
	Activating the Airlock Security Door
	Removing Exits for Your Own Game Designs
	Mission Accomplished?
	Are You Fit to Fly?

	Chapter 12: Danger! Danger! Adding Hazards

	Adding the Air Countdown
	Displaying the Air and Energy Bars
	Adding the Air Countdown Functions
	Starting the Air Countdown and Sounding the Alarm

	Adding the Moving Hazards
	Adding the Hazard Data
	Sapping the Player’s Energy
	Starting and Stopping Hazards
	Setting Up the Hazard Map
	Making the Hazards Move
	Displaying Hazards in the Room
	Training Mission #2
	Stopping the Player from Walking Through Hazards

	Adding the Toxic Spills
	Making the Finishing Touches
	Disabling the Teleporter
	Cleaning Up the Data
	Your Adventure Begins

	Your Next Mission:
Customizing the Game
	Are You Fit to Fly?
	Mission Debrief

	Appendix A: Escape:
The Complete Game Listing

	Appendix B: Table of Variables, Lists, and Dictionaries

	Appendix C: Debugging Your Listings

	Indentation
	Case Sensitivity
	Parentheses and Brackets
	Colons
	Commas
	Images and Sounds
	Spelling

	Index

