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Introduction

Which approach shown in Figure 1 would 
you prefer? On the left, you see an example 

of a traditional approach to teaching math, 
involving definitions, propositions, and proofs. 

This method requires a lot of reading and odd sym-
bols. You’d never guess this had anything to do with 
geometric figures. In fact, this text explains how to 
find the centroid, or the center, of a triangle. But tradi-
tional approaches like this don’t tell us why we should 
be interested in finding the center of a triangle in the 
first place.
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Figure 1: Two approaches to teaching about the centroid

Next to this text, you see a picture of a dynamic sketch with a hundred 
or so rotating triangles. It’s a challenging programming project, and if 
you want it to rotate the right way (and look cool), you have to find the 
centroid of the triangle. In many situations, making cool graphics is nearly 
impossible without knowing the math behind geometry, for example. As 
you’ll see in this book, knowing a little of the math behind triangles, like 
the centroid, will make it easy to create our artworks. A student who knows 
math and can create cool designs is more likely to delve into a little geom-
etry and put up with a few square roots or a trig function or two. A student 
who doesn’t see any outcome, and is only doing homework from a textbook, 
probably doesn’t have much motivation to learn geometry.

In my eight years of experience as a math teacher and three years 
of experience as a computer science teacher, I’ve met many more math 
learners who prefer the visual approach to the academic one. In the 
process of creating something interesting, you come to understand that 
math is not just following steps to solve an equation. You see that explor-
ing math with programming allows for many ways to solve interesting 
problems, with many unforeseen mistakes and opportunities for improve-
ments along the way.

This is the difference between school math and real math.

The Problem with School Math
What do I mean by “school math” exactly? In the US in the 1860s, school 
math was preparation for a job as a clerk, adding columns of numbers by 
hand. Today, jobs are different, and the preparation for these jobs needs to 
change, too.

People learn best by doing. This hasn’t been a daily practice in schools, 
though, which tend to favor passive learning. “Doing” in English and his-
tory classes might mean students write papers or give presentations, and 
science students perform experiments, but what do math students do? It 
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used to be that all you could actively “do” in math class was solve equations, 
factor polynomials, and graph functions. But now that computers can do 
most of those calculations for us, these practices are no longer sufficient.

Simply learning how to automate solving, factoring, and graphing is not 
the final goal. Once a student has learned to automate a process, they can 
go further and deeper into a topic than was ever possible before.

Figure 2 shows a typical math problem you’d find in a textbook, asking 
students to define a function, “f(x),” and evaluate it for a ton of values.

Figure 2: A traditional approach to teaching functions

This same format goes on for 18 more questions! This kind of exercise 
is a trivial problem for a programming language like Python. We could sim-
ply define the function f(x) and then plug in the values by iterating over a 
list, like this:

import math

def f(x):
    return math.sqrt(x + 3) - x + 1

#list of values to plug in
for x in [0,1,math.sqrt(2),math.sqrt(2)-1]:
    print("f({:.3f}) = {:.3f}".format(x,f(x)))

The last line just makes the output pretty while rounding all the solu-
tions to three decimal places, as shown here:

f(0.000) = 2.732
f(1.000) = 2.000
f(1.414) = 1.687
f(0.414) = 2.434

In programming languages like Python, JavaScript, Java, and so on, 
functions are a vitally important tool for transforming numbers and other 
objects—even other functions! Using Python, you can give a descriptive  
name to a function, so it’s easier to understand what’s going on. For example, 
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you can name a function that calculates the area of a rectangle by calling it 
calculateArea(), like this:

def calculateArea(width,height):

A math textbook published in the 21st century, decades after Benoit 
Mandelbrot first generated his famous fractal on a computer when working 
for IBM, shows a picture of the Mandelbrot set and gushes over the discov-
ery. The textbook describes the Mandelbrot set, which is shown in Figure 3, 
as “a fascinating mathematical object derived from the complex numbers. 
Its beautiful boundary illustrates chaotic behavior.”

Figure 3: The Mandelbrot set

The textbook then takes the reader through a painstaking “exploration” 
to show how to transform a point in the complex plane. But the student is 
only shown how to do this on a calculator, which means only two points can 
be transformed (iterated seven times) in a reasonable amount of time. Two 
points.

In this book, you’ll learn how to do this in Python, and you’ll make the 
program transform hundreds of thousands of points automatically and 
even create the Mandelbrot set you see above!

About This Book
This book is about using programming tools to make math fun and rel-
evant, while still being challenging. You’ll make graphs to show all the pos-
sible outputs of a function. You’ll make dynamic, interactive works of art. 
You’ll even make an ecosystem with sheep that move around, eat grass, and 
multiply, and you’ll create virtual organisms that try to find the shortest 
route through a bunch of cities while you watch!
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You’ll do this using Python and Processing in order to supercharge 
what you can do in math class. This book is not about skipping the math;  
it’s about using the newest, coolest tools out there to get creative and learn  
real computer skills while discovering the connections between math,  
art, science, and technology. Processing will provide the graphics, shapes,  
motion, and colors, while Python does the calculating and follows your 
instructions behind the scenes.

For each of the projects in this book, you’ll build the code up from 
scratch, starting from a blank file, and checking your progress at every  
step. Through making mistakes and debugging your own programs, you’ll 
get a much deeper understanding of what each block of code does.

Who Should Use This Book
This book is for anyone who’s learning math or who wants to use the most 
modern tools available to approach math topics like trigonometry and alge-
bra. If you’re learning Python, you can use this book to apply your growing 
programming skills to nontrivial projects like cellular automata, genetic 
algorithms, and computational art.

Teachers can use the projects in this book to challenge their students 
or to make math more approachable and relevant. What better way to teach 
matrices than to save a bunch of points to a matrix and use them to draw a 
3D figure? When you know Python, you can do this and much more.

What's in This Book?
This book begins with three chapters that cover basic Python concepts 
you'll build on to explore more complicated math. The next nine chapters 
explore math concepts and problems that you can visualize and solve using 
Python and Processing. You can try the exercises peppered throughout the 
book to apply what you learned and challenge yourself.

Chapter 1: Drawing Polygons with Turtles teaches basic programming 
concepts like loops, variables, and functions using Python’s built-in 
turtle module.

Chapter 2: Making Tedious Arithmetic Fun with Lists and Loops goes 
deeper into programming concepts like lists and Booleans.

Chapter 3: Guessing and Checking with Conditionals applies your 
growing Python skills to problems like factoring numbers and making 
an interactive number-guessing game.

Chapter 4: Transforming and Storing Numbers with Algebra ramps up 
from solving simple equations to solving cubic equations numerically 
and by graphing.

Chapter 5: Transforming Shapes with Geometry shows you how to 
create shapes and then multiply, rotate, and spread them all over 
the screen.
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Chapter 6: Creating Oscillations with Trigonometry goes beyond right 
triangles and lets you create oscillating shapes and waves.

Chapter 7: Complex Numbers teaches you how to use complex num-
bers to move points around the screen, creating designs like the 
Mandelbrot set.

Chapter 8: Using Matrices for Computer Graphics and Systems of 
Equations takes you into the third dimension, where you’ll translate 
and rotate 3D shapes and solve huge systems of equations with one 
program.

Chapter 9: Building Objects with Classes covers how to create one 
object, or as many as your computer can handle, with roaming sheep 
and delicious grass locked in a battle for survival.

Chapter 10: Creating Fractals Using Recursion shows how recursion 
can be used as a whole new way to measure distances and create wildly 
unexpected designs.

Chapter 11: Cellular Automata teaches you how to generate and pro-
gram cellular automata to behave according to rules you make.

Chapter 12: Solving Problems Using Genetic Algorithms shows you 
how to harness the theory of natural selection to solve problems we 
couldn’t solve in a million years otherwise!

Downloading and Installing Python
The easiest way to get started is to use the Python 3 software distribution, 
which is available for free at https://www.python.org/. Python has become 
one of the most popular programming languages in the world. It’s used to 
create websites like Google, YouTube, and Instagram, and researchers at 
universities all over the world use it to crunch numbers in various fields,  
from astronomy to zoology. The latest version released to date is Python 3.7. 
Go to https://www.python.org/downloads/ and choose the latest version of 
Python 3, as shown in Figure 4.

Figure 4: The official website of the Python Software Foundation

https://www.python.org/
https://www.python.org/downloads/
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You can choose the version for your operating  
system. The site detected that I was using Windows. 
Click the file when the download is complete, as 
shown in Figure 5.

Follow the directions, and always choose the 
default options. It might take a few minutes to 
install. After that, search your system for “IDLE.” 
That’s the Python IDE, or integrated development environment, which is what 
you’ll need to write Python code. Why “IDLE”? The Python programming 
language was named after the Monty Python comedy troupe, and one of 
the members is Eric Idle.

Starting IDLE
Find IDLE on your system and open it.

Figure 6: Opening IDLE on Windows

A screen called a “shell” will appear. You can use this for the interactive 
coding environment, but you’ll want to save your code. Click FileNew 
File or press ctrl-N, and a file will appear (see Figure 7).

Figure 7: Python’s interactive shell (left) and a new module (file) window, ready for code!

This is where you’ll write your Python code. We will also use Processing, 
so let’s go over how to download and install Processing next.

Installing Processing
There’s a lot you can do with Python, and we’ll use IDLE a lot. But when  
we want to do some heavy-duty graphics, we’re going to use Processing.  
Processing is a professional-level graphics library used by coders and artists  
to make dynamic, interactive artwork and graphics.

Figure 5: Click the down­
loaded file to start the 
install
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Go to https://processing.org/download/ and choose your operating system, 
as shown in Figure 8.

Figure 8: The Processing website

Download the installer for 
your operating system by click-
ing it and following the instruc-
tions. Double-click the icon to 
start Processing. This defaults 
to Java mode. Click Java to open 
the drop-down menu, as shown 
in Figure 9, and then click 
Add Mode.

Select Python ModeInstall. 
It should take a minute or two, 
but after this you’ll be able to 
code in Python with Processing.

Now that you’ve set up Python 
and Processing, you’re ready to 
start exploring math!

Figure 9: Where to find other Processing 
modes, like the Python mode we’ll be using

https://processing.org/download/
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1
Drawing Polygons with 

the Turtle module

Before you can start using math to build 
all the cool things you see in this book, 

you’ll need to learn how to give instructions 
to your computer using a programming language 

called Python. In this chapter you’ll get familiar with 
some basic programming concepts like loops, vari-
ables, and functions by using Python’s built-in turtle 
tool to draw different shapes. As you’ll see, the turtle 
module is a fun way to learn about Python’s basic fea-
tures and get a taste of what you’ll be able to create 
with programming.

Centuries ago a Westerner heard a Hindu say the Earth  
rested on the back of a turtle. When asked what the turtle was  

standing on, the Hindu explained, “It’s turtles all the way down.” 
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Python’s turtle Module
The Python turtle tool is based on the original “turtle” agent from the 
Logo programming language, which was invented in the 1960s to make 
computer programming more accessible to everyone. Logo’s graphical envi-
ronment made interacting with the computer visual and engaging. (Check 
out Seymour Papert’s brilliant book Mindstorms for more great ideas for 
learning math using Logo’s virtual turtles.) The creators of the Python 
programming language liked the Logo turtles so much that they wrote 
a module called turtle in Python to copy the Logo turtle functionality.

Python’s turtle module lets you control a small image shaped like a 
turtle, just like a video game character. You need to give precise instruc-
tions to direct the turtle around the screen. Because the turtle leaves a 
trail wherever it goes, we can use it to write a program that draws different 
shapes.

Let’s begin by importing the turtle module!

Importing the turtle Module
Open a new Python file in IDLE and save it as myturtle.py in the Python 
folder. You should see a blank page. To use turtles in Python, you have to 
import the functions from the turtle module first.

A function is a set of reusable code for performing a specific action in a 
program. There are many built-in functions you can use in Python, but you 
can also write your own functions (you’ll learn how to write your own func-
tions later in this chapter).

A module in Python is a file that contains predefined functions and 
statements that you can use in another program. For example, the turtle 
module contains a lot of useful code that was automatically downloaded 
when you installed Python.

Although functions can be imported from a module in many ways, 
we’ll use a simple one here. In the myturtle.py file you just created, enter 
the following at the top:

from turtle import *

The from command indicates that we’re importing something from 
outside our file. We then give the name of the module we want to import 
from, which is turtle in this case. We use the import keyword to get the use-
ful code we want from the turtle module. We use the asterisk (*) here as a 
wildcard command that means “import everything from that module.” Make 
sure to put a space between import and the asterisk.

Save the file and make sure it’s in the Python folder; otherwise, the 
program will throw an error.

W a r n i n g 	 Do not save the file as turtle.py. This filename already exists and will cause a con-
flict with the import from the turtle module! Anything else will work: myturtle.py, 
turtle2.py, mondayturtle.py, and so on.
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Moving Your Turtle
Now that you’ve imported the turtle module, you’re ready to enter instruc-
tions to move the turtle. We’ll use the forward() function (abbreviated as fd) 
to move the turtle forward a certain number of steps while leaving a trail 
behind it. Note that forward() is one of the functions we just imported from 
the turtle module. Enter the following to make the turtle go forward:

forward(100)

Here, we use the forward() function with the number 100 inside paren-
theses to indicate how many steps the turtle should move. In this case, 100 
is the argument we pass to the forward() function. All functions take one or 
more arguments. Feel free to pass other numbers to this function. When 
you press F5 to run the program, a new window should open with an arrow 
in the center, as shown in Figure 1-1.

Figure 1-1: Running your first line of code!

As you can see, the turtle started in the middle of the screen and walked 
forward 100 steps (it’s actually 100 pixels). Notice that the default shape is 
an arrow, not a turtle, and the default direction the arrow is facing is to the 
right. To change the arrow into a turtle, update your code so that it looks 
like this:

from turtle import *
forward(100)
shape('turtle')

As you can probably tell, shape() is another function defined in the 
turtle module. It lets you change the shape of the default arrow into other 
shapes, like a circle, a square, or an arrow. Here, the shape() function takes 

myturtle.py
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the string value 'turtle' as its argument, not a number. (You’ll learn more 
about strings and different data types in the next chapter.) Save and run 
the myturtle.py file again. You should see something like Figure 1-2.

Figure 1-2: Changing the arrow into a turtle!

Now your arrow should look like a tiny turtle!

Changing Directions
The turtle can go only in the direction it’s facing. To change the turtle’s 
direction, you must first make the turtle turn a specified number of 
degrees using the right() or left() function and then go forward. Update 
your myturtle.py program by adding the last two lines of code shown next:

from turtle import *
forward(100)
shape('turtle')
right(45)
forward(150)

Here, we’ll use the right() function (or rt() for short) to make the turtle 
turn right 45 degrees before moving forward by 150 steps. When you run this 
code, the output should look like Figure 1-3.

Figure 1-3: Changing turtle’s  
direction

myturtle.py
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As you can see, the turtle started in the middle of the screen, went for-
ward 100 steps, turned right 45 degrees, and then went forward another 
150 steps. Notice that Python runs each line of code in order, from top to 
bottom.

Exercise 1-1: Square Dance

Return to the myturtle.py program. Your first challenge is to modify the code in 
the program using only the forward and right functions so that the turtle draws 
a square.

Repeating Code with Loops
Every programming language has a way to automatically repeat commands 
a given number of times. This is useful because it saves you from having 
to type out the same code over and over and cluttering your program. It 
also helps you avoid typos that can prevent your program from running 
properly.

Using the for Loop
In Python we use the for loop to repeat code. We also use the range keyword 
to specify the number of times we go through the loop. Open a new program 
file in IDLE, save it as for_loop.py, and then enter the following:

for i in range(2):
    print('hello')

Here, the range() function creates i, or an iterator, for each for loop. The 
iterator is a value that increases each time it’s used. The number 2 in paren-
theses is the argument we pass to the function to control its behavior. This 
is similar to the way we passed different values to the forward() and right() 
functions in previous sections.

In this case, range(2) creates a sequence of two numbers, 0 and 1. For 
each of these two numbers, the for command performs the action specified 
after the colon, which is to print the word hello.

Be sure to indent all the lines of the code you want to repeat by pressing 
tab (one tab is four spaces). Indentation tells Python which lines are inside 
the loop so for knows exactly what code to repeat. And don’t forget the colon 
at the end; it tells the computer what’s coming up after it is in the loop. When 
you run the program, you should see the following printed in the shell:

hello
hello

for_loop.py
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As you can see, the program prints hello twice because range(2) creates 
a sequence containing two numbers, 0 and 1. This means that the for com-
mand loops over the two items in the sequence, printing “hello” each time. 
Let’s update the number in the parentheses, like this:

for i in range(10):
    print('hello')

When you run this program, you should get hello ten times, like this:

hello
hello
hello
hello
hello
hello
hello
hello
hello
hello

Let’s try another example since you’ll be writing a lot of for loops in 
this book:

for i in range(10):
    print(i)

Because counting begins at 0 rather than 1 in Python, for i in range(10) 
gives us the numbers 0 through 9. This sample code is saying “for each value 
in the range 0 to 9, display the current number.” The for loop then repeats 
the code until it runs out of numbers in the range. When you run this code, 
you should get something like this:

0
1
2
3
4
5
6
7
8
9

In the future you’ll have to remember that i starts at 0 and ends before 
the last number in a loop using range, but for now, if you want something 
repeated four times, you can use this:

for i in range(4):

It’s as simple as that! Let’s see how we can put this to use.

for_loop.py

for_loop.py
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Using a for Loop to Draw a Square
In Exercise 1-1 your challenge was to make a square using only the forward()  
and right() functions. To do this, you had to repeat forward(100) and right(90)  
four times. But this required entering the same code multiple times, which 
is time-consuming and can lead to mistakes.

Let’s use a for loop to avoid repeating the same code. Here’s the myturtle 
.py program, which uses a for loop instead of repeating the forward() and 
right() functions four times:

from turtle import *
shape('turtle')
for i in range(4):
    forward(100)
    right(90)

Note that shape('turtle') should come right after you import the turtle 
module and before you start drawing. The two lines of code inside this for 
loop tell the turtle to go forward 100 steps and then turn 90 degrees to the 
right. (You might have to face the same way as the turtle to know which way 
“right” is!) Because a square has four sides, we use range(4) to repeat these 
two lines of code four times. Run the program, and you should see some-
thing like Figure 1-4.

Figure 1-4: A square made  
with a for loop

You should see that the turtle moves forward and turns to the right a 
total of four times, finally returning to its original position. You successfully 
drew a square using a for loop!

Creating Shortcuts with Functions
Now that we’ve written code to draw a square, we can save all that code to 
a magic keyword that we can call any time we want to use that square code 
again. Every programming language has a way to do this, and in Python it’s 
called a function, which is the most important feature of computer program-
ming. Functions make code compact and easier to maintain, and dividing a 
problem up into functions often allows you to see the best way of solving it. 
Earlier you used some built-in functions that come with the turtle module. 
In this section you learn how to define your own function.

myturtle.py
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To define a function you start by giving it a name. This name can be 
anything you want, as long as it’s not already a Python keyword, like list, 
range, and so on. When you’re naming functions, it’s better to be descriptive 
so you can remember what they’re for when you use them again. Let’s call 
our function square() because we’ll be using it to make a square:

def square():
    for i in range(4):
        forward(100)
        right(90)

The def command tells Python we’re defining a function, and the word 
we list afterward will become the function name; here, it’s square(). Don’t 
forget the parentheses after square! They’re a sign in Python that you’re 
dealing with a function. Later we’ll put values inside them, but even without 
any values inside, the parentheses need to be included to let Python know 
you are defining a function. Also, don’t forget the colon at the end of the 
function definition. Note that we indent all the code inside the function to 
let Python know which code goes inside it.

If you run this program now, nothing will happen. You’ve defined a 
function, but you didn’t tell the program to run it yet. To do this, you need 
to call the function at the end of the myturtle.py file after the function defini-
tion. Enter the code shown in Listing 1-1.

from turtle import *
shape('turtle')
def square():
    for i in range(4):
        forward(100)
        right(90)
square()

Listing 1-1: The square() function is called at the end of the file.

When you call square() at the end like this, the program should run 
properly. Now you can use the square() function at any point later in the 
program to quickly draw another square.

You can also use this function in a loop to build something more compli-
cated. For example, to draw a square, turn right a little, make another square, 
turn right a little, and repeat those steps multiple times, putting the function 
inside a loop makes sense.

The next exercise shows an interesting-looking shape that’s made 
of squares! It might take your turtle a while to create this shape, so 
you can speed it up by adding the speed() function to myturtle.py after 
shape('turtle'). Using speed(0) makes the turtle move the fastest, whereas 
speed(1) is the slowest. Try different speeds, like speed(5) and speed(10), if 
you want.

myturtle.py

myturtle.py
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Exercise 1-2: A Circle of Squares

Write and run a function that draws 60 squares, turning right 5 degrees after 
each square. Use a loop! Your result should end up looking like this:

Using Variables to Draw Shapes
So far all our squares are the same size. To make squares of different sizes, 
we’ll need to vary the distance the turtle walks forward for each side. Instead 
of changing the definition for the square() function every time we want a 
different size, we can use a variable, which in Python is a word that repre-
sents a value you can change. This is similar to the way x in algebra can rep-
resent a value that can change in an equation.

In math class, variables are single letters, but in programming you can 
give a variable any name you want! Like with functions, I suggest naming 
variables something descriptive to make reading and understanding your 
code easier.

Using Variables in Functions
When you define a function, you can use variables as the function’s param-
eters inside the parentheses. For example, you can change your square() 
function definition in the myturtle.py program to the following to create 
squares of any size rather than a fixed size:

def square(sidelength):
    for i in range(4):
        forward(sidelength)
        right(90)

Here, we use sidelength to define the square() function. Now when you 
call this function, you have to place a value, which we call an argument, inside 
the parentheses, and whatever number is inside the parentheses will be used 
in place of sidelength. For example, calling square(50) and square(80) would 
look like Figure 1-5.

myturtle.py
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50

80

Figure 1-5: A square of size 50  
and a square of size 80

When you use a variable to define a function, you can simply call the 
square() function by entering different numbers without having to update 
the function definition each time.

Variable Errors
At the moment, if we forget to put a value in the parentheses for the function, 
we’ll get this error:

Traceback (most recent call last):
  File "C:/Something/Something/my_turtle.py", line 12, in <module>
    square()
TypeError: square() missing 1 required positional argument: 'sidelength'

This error tells us that we’re missing a value for sidelength, so Python 
doesn’t know how big to make the square. To avoid this, we can give a default 
value for the length in the first line of the function definition, like this:

def square(sidelength=100):

Here, we place a default value of 100 in sidelength. Now if we put a 
value in the parentheses after square, it’ll make a square of that length, but 
if we leave the parentheses empty, it’ll default to a square of sidelength 100 
and won’t give us an error. The updated code should produce the drawing 
shown in Figure 1-6:

square(50)
square(30)
square()

30
50

100

Figure 1-6: A default square of  
size 100, a square of size 50,  
and a square of size 30
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Setting a default value like this makes it easier to use our function with-
out having to worry about getting errors if we do something wrong. In pro-
gramming this is called making the program more robust.

Exercise 1-3: Tri and Tri Again

Write a triangle() function that will draw a triangle of a given “side length.”

Equilateral Triangles
A polygon is a many-sided figure. An equilateral triangle is a special type of 
polygon that has three equal sides. Figure 1-7 shows what it looks like.

60˚

60˚

60˚ 120˚

Figure 1-7: The angles in an equilateral triangle,  
including one external angle

An equilateral triangle has three equal internal angles of 60 degrees. 
Here’s a rule you might remember from geometry class: all three angles of 
an equilateral triangle add up to 180 degrees. In fact, this is true for all tri-
angles, not just equilateral triangles.

Writing the triangle() Function
Let’s use what you’ve learned so far to write a function that makes the 
turtle walk in a triangular path. Because each angle in an equilateral 
triangle is 60 degrees, you can update the right() movement in your 
square() function to 60, like this:

def triangle(sidelength=100):
    for i in range(3):
        forward(sidelength)
        right(60)

triangle()

But when you save and run this program, you won’t get a triangle. 
Instead, you'll see something like Figure 1-8.

myturtle.py



14   Chapter 1

Figure 1-8: A first attempt  
at drawing a triangle

That looks like we’re starting to draw a hexagon (a six-sided polygon), 
not a triangle. We get a hexagon instead of a triangle because we entered 
60 degrees, which is the internal angle of an equilateral triangle. We need 
to enter the external angle to the right() function instead, because the turtle 
turns the external angle, not the internal angle. This wasn’t a problem with 
the square because it just so happens the internal angle of a square and the 
external angle are the same: 90 degrees.

To find the external angle for a triangle, simply subtract the internal 
angle from 180. This means the external angle of an equilateral triangle is 
120 degrees. Update 60 in the code to 120, and you should get a triangle.

Exercise 1-4: Polygon Functions

Write a function called polygon that takes an integer as an argument and 
makes the turtle draw a polygon with that integer’s number of sides.

Making Variables Vary
There’s more we can do with variables: we can automatically increase the 
variable by a certain amount so that each time we run the function, the 
square is bigger than the last. For example, using a length variable, we can 
make a square, then increase the length variable a little before making the 
next square by incrementing the variable like this:

length = length + 5

As a math guy, this line of code didn’t make sense to me when I first 
saw it! How can “length equal length + 5”? It’s not possible! But code isn’t an 
equation, and an equal sign (=) in this case doesn’t mean “this side equals 
that side.” The equal sign in programming means we’re assigning a value.

Take the following example. Open the Python shell and enter the follow-
ing code:

>>> radius = 10
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This means we’re creating a variable called radius (if there isn’t one 
already) and assigning it the value 10. You can always assign a different 
value to it later, like this:

radius = 20

Press enter and your code will be executed. This means the value 20 
will be assigned to the radius variable. To check whether a variable is equal 
to something, use double equal signs (==). For example, to check whether 
the value of the radius variable is 20, you can enter this into the shell:

>>> radius == 20

Press enter and it should print the following:

True

Now the value of the radius variable is 20. It’s often useful to increment 
variables rather than assign them number values manually. You can use a 
variable called count to count how many times something happens in a pro-
gram. It should start at 0 and go up by one after every occurrence. To make 
a variable go up by one in value, you add 1 to its value and then assign the 
new value to the variable, like this:

count = count + 1

You can also write this as follows to make the code more compact:

count += 1

This means “add 1 to my count variable.” You can use addition, subtrac-
tion, multiplication, and division in this notation. Let’s see it in action by 
running this code in the Python shell. We’ll assign x the value 12 and y the 
value 3, and then make x go up by y:

>>> x = 12
>>> y = 3
>>> x += y
>>> x
15
>>> y
3

Notice y didn’t change. We can increment x using addition, subtraction, 
multiplication, and division with similar notation:

>>> x += 2
>>> x
17
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Now we’ll set x to one less than its current value:

>>> x -= 1
>>> x
16

We know that x is 16. Now let’s set x to two times its current value:

>>> x *= 2
>>> x
32

Finally, we can set x to a quarter of its value by dividing it by 4:

>>> x /= 4
>>> x
8.0

Now you know how to increment a variable using arithmetic operators 
followed by an equal sign. In sum, x += 3 will make x go up by 3, whereas 
x -= 1 will make it go down by 1, and so on.

You can use the following line of code to make the length increment 
by 5 every loop, which will come in handy in the next exercises:

length += 5

With this notation, every time the length variable is used, 5 is added to 
the value and saved into the variable.

Exercise 1-5: Turtle Spiral

Make a function to draw 60 squares, turning 5 degrees after each square and 
making each successive square bigger. Start at a length of 5 and increment 
5 units every square. It should look like this:
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Summary
In this chapter you learned how to use Python’s turtle module and its 
built-in functions like forward() and right() to draw different shapes. You 
also saw that the turtle can perform many more functions than those we cov-
ered here. There are dozens more that I encourage you to experiment with 
before moving on to the next chapter. If you do a web search for “python 
turtle,” the first result will probably be the turtle module documentation on 
the official Python website (https://python.org/) website. You’ll find all the 
turtle methods on that page, some of which is shown in Figure 1-9.

Figure 1-9: You can find many more turtle functions and methods on the 
Python website!

You learned how to define your own functions, thus saving valuable code 
that can be reused at any time. You also learned how to run code multiple 
times using for loops without having to rewrite the code. Knowing how to 
save time and avoid mistakes using functions and loops will be useful when 
you build more complicated math tools later on. 

In the next chapter we’ll build on the basic arithmetic operators you 
used to increment variables. You’ll learn more about the basic operators 
and data types in Python and how to use them to build simple computation 
tools. We’ll also explore how to store items in lists and use indices to access 
list items.

https://python.org
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Exercise 1-6: A Star Is Born

First, write a “star” function that will draw a five-pointed star, like this:

Next, write a function called starSpiral() that will draw a spiral of stars, 
like this:



2
Making Tedious Arithmetic 
Fun with Lists and Loops

“You mean I have to go again tomorrow?” 
—Aidan Farrell after the first day of school

Most people think of doing arithmetic when 
they think of math: adding, subtracting, 

multiplying, and dividing. Although doing 
arithmetic is pretty easy using calculators and 

computers, it can still involve a lot of repetitive tasks. For 
example, to add 20 different numbers using a calcula-
tor, you have to enter the + operator 19 times!

In this chapter you learn how to automate some of the tedious parts 
of arithmetic using Python. First, you learn about math operators and the 
different data types you can use in Python. Then you learn how to store 
and calculate values using variables. You also learn to use lists and loops 
to repeat code. Finally, you combine these programming concepts to write 
functions that automatically perform complicated calculations for you. 
You’ll see that Python can be a much more powerful calculator than any 
calculator you can buy—and best of all, it’s free!
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Basic Operators
Doing arithmetic in the interactive Python shell is easy: you just enter the 
expression and press enter when you want to do the calculation. Table 2-1 
shows some of the most common mathematical operators.

Table 2-1: Common Mathematical Operators in Python

Operator Syntax

Addition +

Subtraction –

Multiplication *

Division /

Exponent **

Open your Python shell and try out some basic arithmetic with the 
example in Listing 2-1.

>>> 23 + 56  #Addition
79
>>> 45 * 89  #Multiplication is with an asterisk
4005
>>> 46 / 13  #Division is with a forward slash
3.5384615384615383
>>> 2 ** 4   #2 to the 4th power
16

Listing 2-1: Trying out some basic math operators

The answer should appear as the output. You can use spaces to make 
the code more readable (6 + 5) or not (6+5), but it won’t make any differ-
ence to Python when you’re doing arithmetic.

Keep in mind that division in Python 2 is a little tricky. For example, 
Python 2 will take 46/13 and think you’re interested only in integers, thus 
giving you a whole number (3) for the answer instead of returning a decimal 
value, like in Listing 2-1. Because you downloaded Python 3, you shouldn’t 
have that problem. But the graphics package we’ll see later uses Python 2, 
so we’ll have to make sure we ask for decimals when we divide.

Operating on Variables
You can also use operators on variables. In Chapter 1 you learned to use 
variables when defining a function. Like variables in algebra, variables in 
programming allow long, complicated calculations to be broken into sev-
eral stages by storing results that can be used again later. Listing 2-2 shows 
how you can use variables to store numbers and operate on them, no matter 
what their value is.
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>>> x = 5
>>> x = x + 2
>>> length = 12
>>> x + length
19

Listing 2-2: Storing results in variables

Here, we assign the value 5 to the x variable, then increment it by 2, so x 
becomes 7. We then assign the value 12 to the variable length. When we add 
x and length, we’re adding 7 + 12, so the result is 19.

Using Operators to Write the 
average() Function
Let’s practice using operators to find the mean of a series of numbers. As 
you may know from math class, to find the mean you add all the numbers 
together and divide them by how many numbers there are in the series. For 
example, if your numbers are 10 and 20, you add 10 and 20 and divide the 
sum by 2, as shown here:

(10 + 20) / 2 = 15

If your numbers are 9, 15, and 23, you add them together and divide 
the sum by 3:

(9 + 15 + 23) / 3 = 47 / 3 = 15.67

This can be tedious to do by hand but simple to do with code. Let’s start 
a Python file called arithmetic.py and write a function to find the average of 
two numbers. You should be able to run the function and give it two numbers 
as arguments, without any operators, and have it print the average, like this:

>>> average(10,20)
15.0

Let’s give it a try.

Mind the Order of Operations!
Our average() function transforms two numbers, a and b, into half their sum 
and then returns that value using the return keyword. Here’s the code for 
our function:

def average(a,b):
    return a + b / 2

We define a function called average(), which requires two numbers, 
a and b, as inputs. We write that the function should return the sum of 

arithmetic.py
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the two numbers divided by 2. However, when we test the function in the 
shell, we get the wrong output:

>>> average(10,20)
20.0

That’s because we didn’t take the order of operations into account when 
writing our function. As you probably remember from math class, multi-
plication and division take precedence over addition and subtraction, so 
in this case division is performed first. This function is dividing b by 2 and 
then adding a. So how do we fix this?

Using Parentheses with Operators
We need to use parentheses to tell Python to add the two numbers first, 
before dividing:

def average(a,b):
    return (a + b) / 2

Now the function should add a and b before dividing by 2. Here’s what 
happens when we run the function in the shell:

>>> average(10,20)
15.0

If you perform this same calculation by hand, you can see the output is 
correct! Try the average() function using different numbers.

Data Types in Python
Before we continue doing arithmetic on numbers, let’s explore some basic 
Python data types. Different data types have different capabilities, and you 
can’t always perform the same operations on all of them, so it’s important 
to know how each data type works.

Integers and Floats
Two Python data types you commonly perform operations on are integers 
and floats. Integers are whole numbers. Floats are numbers containing deci-
mals. You can change integers to floats, and vice versa, by using the float() 
and int() functions, respectively, like so:

>>> x = 3
>>> x
3
>>> y = float(x)
>>> y
3.0

arithmetic.py
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>>> z = int(y)
>>> z
3

In this example we use x = 3 to assign the value 3 to the variable x. We 
then convert x into a float using float(x) and assign the result (3.0) to the 
variable y. Finally, we convert y into an integer and assign the result (3) to 
the variable z. This shows how you can easily switch between floats and ints.

Strings
Strings are ordered alphanumeric characters, which can be a series of letters, 
like words, or numbers. You define a string by enclosing the characters in 
single ('') or double quotes (""), like so:

>>> a = "hello"
>>> a + a
'hellohello'
>>> 4*a
'hellohellohellohello'

Here, we store the string "hello" in variable a. When we add variable a to 
itself, we get a new string, 'hellohello', which is a combination of two hellos. 
Keep in mind that you can’t add strings and number data types (integers and 
floats) together, though. If you try adding the integer 2 and the string "hello", 
you’ll get this error message:

>>> b = 2
>>> b
2
>>> d = "hello"
>>> b + d
Traceback (most recent call last):
  File "<pyshell#34>", line 1, in <module>
    b + d
TypeError: unsupported operand type(s) for +: 'int' and 'str'

However, if a number is a string (or enclosed in quotes), you can add it 
to another string, like this:

>>> b = '123'
>>> c = '4'
>>> b + c
'1234'
>>> 'hello' + ' 123'
'hello 123'

In this example both '123' and '4' are strings made up of numbers, 
not number data types. So when you add the two together you get a longer 
string ('1234') that is a combination of the two strings. You can do the same 
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with the strings 'hello' and ' 123', even though one is made of letters and 
the other is made of numbers. Joining strings to create a new string is called 
concatenation.

You can also multiply a string by an integer to repeat the string, like this:

>>> name = "Marcia"
>>> 3 * name
'MarciaMarciaMarcia'

But you can’t subtract, multiply, or divide a string by another string. 
Enter the following in the shell to see what happens:

>>> noun = 'dog'
>>> verb = 'bark'
>>> noun * verb
Traceback (most recent call last):
  File "<pyshell#6>", line 1, in <module>
    noun * verb
TypeError: can't multiply sequence by non-int of type 'str'

As you can see, when you try to multiply 'dog' and 'bark', you get an 
error telling you that you can’t multiply two string data types.

Booleans
Booleans are true/false values, which means they can be only one or the other 
and nothing in between. Boolean values have to be capitalized in Python and 
are often used to compare the values of two things. To compare values you 
can use the greater-than (>) and less-than (<) symbols, like so:

>>> 3 > 2
True

Because 3 is greater than 2, this expression returns True. But checking 
whether two values are equal requires two equal signs (==), because one 
equal sign simply assigns a value to a variable. Here’s an example of how 
this works:

>>> b = 5
>>> b == 5
True
>>> b == 6
False

First we assign the value 5 to variable b using one equal sign. Then we 
use two equal signs to check whether b is equal to 5, which returns True.
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Checking Data Types
You can always check which data type you’re dealing with by using the type() 
function with a variable. Python conveniently tells you what data type the 
value in the variable is. For example, let’s assign a Boolean value to a variable, 
like this:

>>> a = True
>>> type(a)
<class 'bool'>

When you pass variable a into the type() function, Python tells you that 
the value in a is a Boolean.

Try checking the data type of an integer:

>>> b = 2
>>> type(b)
<class 'int'>

The following checks whether 0.5 is a float:

>>> c = 0.5
>>> type(c)
<class 'float'>

This example confirms that alphanumeric symbols inside quotes are 
a string:

>>> name = "Steve"
>>> type(name)
<class 'str'>

Now that you know the different data types in Python and how to check 
the data type of a value you’re working with, let’s start automating simple 
arithmetic tasks.

Using Lists to Store Values
So far we’ve used variables to hold a single value. A list is a type of variable 
that can hold multiple values, which is useful for automating repetitive 
tasks. To declare a list in Python, you simply create a name for the list, use 
the = command like you do with variables, and then enclose the items you 
want to place in the list in square brackets, [], separating each item using a 
comma, like this:

>>> a = [1,2,3]
>>> a
[1, 2, 3]
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Often it’s useful to create an empty list so you can add values, such as 
numbers, coordinates, and objects, to it later. To do this, just create the list 
as you would normally but without any values, as shown here:

>>> b = []
>>> b
[]

This creates an empty list called b, which you can fill with different 
values. Let’s see how to add things to a list.

Adding Items to a List
To add an item to a list, use the append() function, as shown here:

>>> b.append(4)
>>> b
[4]

First, type the name of the list (b) you want to add to, followed by a 
period, and then use append() to name the item you want to add inside 
parentheses. You can see the list now contains just the number 4.

You can also add items to lists that aren’t empty, like this:

>>> b.append(5)
>>> b
[4, 5]
>>> b.append(True)
>>> b
[4, 5, True]

Items appended to an existing list appear at the end of the list. As you 
can see, your list doesn’t have to be just numbers. Here, we append the 
Boolean value True to a list containing the numbers 4 and 5.

A single list can hold more than one data type, too. For example, you 
can add text as strings, as shown here:

>>> b.append("hello")
>>> b
[4, 5, True, 'hello']

To add a string, you need to include either double or single quotes 
around the text. Otherwise, Python looks for a variable named hello, which 
may or may not exist, thus causing an error or unexpected behavior. Now 
you have four items in list b: two numbers, a Boolean value, and a string.

Operating on Lists
Like on strings, you can use addition and multiplication operators on lists, 
but you can’t simply add a number and a list. Instead, you have to append it 
using concatenation.
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For example, you can add two lists together using the + operator, like this:

>>> c = [7,True]
>>> d = [8,'Python']
>>> c + d #adding two lists
[7, True, 8, 'Python']

We can also multiply a list by a number, like this:

>>> 2 * d #multiplying a list by a number
[8, 'Python', 8, 'Python']

As you can see, multiplying the number 2 by list d doubles the number 
of items in the original list.

But when we try to add a number and a list using the + operator, we get 
an error called a TypeError:

>>> d + 2 #you can't add a list and an integer
Traceback (most recent call last):
  File "<pyshell#22>", line 1, in <module>
    d + 2
TypeError: can only concatenate list (not "int") to list

This is because you can’t add a number and a list using the addition 
symbol. Although you can add two lists together, append an item to a list, 
and even multiply a list by a number, you can concatenate a list only to 
another list.

Removing Items from a List
Removing an item from a list is just as easy: you can use the remove() function 
with the item you want to remove as the argument, as shown next. Make sure 
to refer to the item you’re removing exactly as it appears in the code; other-
wise, Python won’t understand what to delete.

>>> b = [4,5,True,'hello']
>>> b.remove(5)
>>> b
[4, True, 'hello']

In this example, b.remove(5) removes 5 from the list, but notice that the 
rest of the items stay in the same order. The fact that the order is maintained 
like this will become important later.

Using Lists in Loops
Often in math you need to apply the same action to multiple numbers. For 
example, an algebra book might define a function and ask you to plug a 
bunch of different numbers into the function. You can do this in Python 
by storing the numbers in a list and then using the for loop you learned 
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about in Chapter 1 to perform the same action on each item in the list. 
Remember, when you perform an action repeatedly, it’s known as iterating. 
The iterator is the variable i in for i in range(10), which we’ve used in previ-
ous programs, but it doesn’t always have to be called i; it can be called any-
thing you want, as in this example:

>>> a = [12,"apple",True,0.25]
>>> for thing in a:
        print(thing)

12
apple
True
0.25

Here, the iterator is called thing and it’s applying the print() function to 
each item in the list a. Notice that the items are printed in order, with each 
item on a new line. To print everything on the same line, you need to add 
an end argument and an empty string to your print() function, like this:

>>> for thing in a:
        print(thing, end='')
12appleTrue0.25

This prints all the items on the same line, but all the values run together, 
making it hard to distinguish between them. The default value for the end 
argument is the line break, as you saw in the preceding example, but you can 
insert any character or punctuation you want by putting it in the quotes. Here 
I’ve added a comma instead:

>>> a = [12,"apple",True,0.25]
>>> for thing in a:
        print(thing, end=',')
12,apple,True,0.25,

Now each item is separated by a comma, which is much easier to read.

Accessing Individual Items with 
List Indices
You can refer to any element in a list by specifying the name of the list and 
then entering its index in square brackets. The index is an item’s place or 
position number in the list. The first index of a list is 0. An index enables us 
to use a meaningful name to store a series of values and access them easily 
within our program. Try this code out in IDLE to see indices in action:

>>> name_list = ['Abe','Bob','Chloe','Daphne']
>>> score_list = [55,63,72,54]
>>> print(name_list[0], score_list[0])
Abe 55



Making Tedious Arithmetic Fun with Lists and Loops   29

The index can also be a variable or an iterator, as shown here:

>>> n = 2
>>> print(name_list[n], score_list[n+1])
Chloe 54
>>> for i in range(4):
        print(name_list[i], score_list[i])

Abe 55
Bob 63
Chloe 72
Daphne 54

Accessing Index and Value with 
enumerate()
To get both the index and the value of an item in a list, you can use a handy 
function called enumerate(). Here’s how it works:

>>> name_list = ['Abe','Bob','Chloe','Daphne']
>>> for i, name in enumerate(name_list):
        print(name,"has index",i)

Abe has index 0
Bob has index 1
Chloe has index 2
Daphne has index 3

Here, name is the value of the item in the list and i is the index. The 
important thing to remember with enumerate() is that the index comes 
first, then the value. You’ll see this later on when we put objects into a list 
and then access both an object and its exact place in the list.

Indices Start at Zero
In Chapter 1 you learned that the range(n) function generates a sequence 
of numbers starting with 0 and up to, but excluding, n. Similarly, list indices 
start at 0, not 1, so the index of the first element is 0. Try the following to see 
how this works:

>>> b = [4,True,'hello']
>>> b[0]
4
>>> b[2]
'hello'

Here, we create a list called b and then ask Python to show us the item 
at index 0 in list b, which is the first position. We therefore get 4. When we 
ask for the item in list b at position 2, we get 'hello'.
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Accessing a Range of List Items
You can use the range (:) syntax inside the brackets to access a range of ele-
ments in a list. For example, to return everything from the second item of a 
list to the sixth, for example, use the following syntax:

>>> myList = [1,2,3,4,5,6,7]
>>> myList[1:6]
[2, 3, 4, 5, 6]

It’s important to know that the 1:6 range syntax includes the first index in 
that range, 1, but excludes the last index, 6. That means the range 1:6 actually 
gives us the items with indexes 1 to 5.

If you don’t specify the ending index of the range, Python defaults to the 
length of the list. It returns all elements, from the first index to the end of the 
list, by default. For example, you can access everything from the second ele-
ment of list b (index 1) to the end of the list using the following syntax:

>>> b[1:]
[True, 'hello']

If you don’t specify the beginning, Python defaults to the first item in 
the list, and it won’t include the ending index, as shown here:

>>> b[:1]
[4]

In this example, b[:1] includes the first item (index 0) but not the item 
with index 1. One very useful thing to know is that you can access the last 
terms in a list even if you don’t know how long it is by using negative num-
bers. To access the last item, you’d use -1, and to access the second-to-last 
item, you’d use -2, like this:

>>> b[-1]
'hello'
>>> b[-2]
True

This can be really useful when you are using lists made by other people 
or using really long lists where it’s hard to keep track of all the index positions.

Finding Out the Index of an Item
If you know that a certain value is in the list but don’t know its index, you can 
find its location by giving the list name, followed by the index function, and 
placing the value you’re searching for as its argument inside parentheses. In 
the shell, create list c, as shown here, and try the following:

>>> c = [1,2,3,'hello']
>>> c.index(1)
0
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>>> c.index('hello')
3
>>> c.index(4)
Traceback (most recent call last):
  File "<pyshell#85>", line 1, in <module>
    b.index(4)
ValueError: 4 is not in list

You can see that asking for the value 1 returns the index 0, because 
it’s the first item in the list. When you ask for the index of 'hello', you’re 
told it’s 3. That last attempt, however, results in an error message. As you 
can see from the last line in the error message, the cause of the error is 
that 4, the value we are looking for, is not in the list, so Python can’t give 
us its index.

To check whether an item exists in a list, use the in keyword, like this:

>>> c = [1,2,3,'hello']
>>> 4 in c
False
>>> 3 in c
True

Here, Python returns True if an item is in the list and False if the item is 
not in the list.

Strings Use Indices, Too
Everything you’ve learned about list indices applies to strings, too. A string 
has a length, and all the characters in the string are indexed. Enter the fol-
lowing in the shell to see how this works:

>>> d = 'Python'
>>> len(d) #How many characters are in 'Python'?
6
>>> d[0]
'P'
>>> d[1]
'y'
>>> d[-1]
'n'
>>> d[2:]
'thon'
>>> d[:5]
'Pytho'
>>> d[1:4]
'yth'

Here, you can see that the string 'Python' is made of six characters. 
Each character has an index, which you can access using the same syntax 
you used for lists.
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Summation
When you’re adding a bunch of numbers inside a loop, it’s useful to keep 
track of the running total of those numbers. Keeping a running total like 
this is an important math concept called summation.

In math class you often see summation associated with a capital sigma, 
which is the Greek letter S (for sum). The notation looks like this: 

∑
i = 1

n
100

The summation notation means that you replace n with i starting at the 
minimum value (listed below the sigma) and going up to the maximum 
value (listed above the sigma). Unlike in Python’s range(n), the summation 
notation includes the maximum value.

Creating the runninG_sum Variable
To write a summation program in Python, we can create a variable called 
running_sum (sum is taken already as a built-in Python function). We set it to 
a value of zero to begin with and then increment the running_sum variable 
each time a value is added. For this we use the += notation again. Enter the 
following in the shell to see an example:

>>> running_sum = 0
>>> running_sum += 3
>>> running_sum
3
>>> running_sum += 5
>>> running_sum
8

You learned how to use the += command as a shortcut: using running_sum 
+= 3 is the same as running_sum = running_sum + 3. Let’s increment the running 
sum by 3 a bunch of times to test it out. To do this, add the following code to 
the arithmetic.py program:

running_sum = 0
 for i in range(10):
     running_sum += 3

print(running_sum)

We first create a running_sum variable with the value 0 and then run the 
for loop 10 times using range(10) . The indented content of the loop 
adds 3 to the value of running_sum on each run of the loop . After the 
loop runs 10 times, Python jumps to the final line of code, which in this 
case is the print statement that displays the value of running_sum at the 
end of 10 loops.

arithmetic.py
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From this, you might be able to figure out what the final sum is, and 
here’s the output:

30

In other words, 10 multiplied by 3 is 30, so the output makes sense!

Writing the mySum() Function
Let’s expand our running sum program into a function called mySum(), which 
takes an integer as a parameter and returns the sum of all the numbers from 
1 up to the number specified, like this:

>>> mySum(10)
55

First, we declare the value of the running sum and then increment it in 
the loop:

def mySum(num):
    running_sum = 0
    for i in range(1,num+1):
        running_sum += i
    return running_sum

To define the mySum() function, we start the running sum off at 0. Then 
we set up a range of values for i, from 1 to num. Keep in mind that range(1,num) 
won’t include num itself! Then we add i to the running sum after every loop. 
When the loop is finished, it should return the value of the running sum.

Run the function with a much larger number in the shell. It should be 
able to return the sum of all the numbers, from 1 to that number, in a flash:

>>> mySum(100)
5050

Pretty convenient! To solve for the sum of our more difficult sigma 
problem from earlier, simply change your loop to go from 0 to 20 (includ-
ing 20) and add the square of i plus 1 every loop:

def mySum2(num):
    running_sum = 0
    for i in range(num+1):
        running_sum += i**2 + 1
    return running_sum

I changed the loop so it would start at 0, as the sigma notation indicates:

∑
i = 0

n2 + 1
20

arithmetic.py

arithmetic.py
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When we run this, we get the following:

>>> mySum2(20)
2891

Exercise 2-1: Finding the Sum

Find the sum of all the numbers from 1 to 100. How about from 1 to 1,000? 
See a pattern?

Finding the Average of a List of 
Numbers

Now that you have a few new skills under your belt, let’s improve our average 
function. We can write a function that uses lists to find the average of any list 
of numbers, without us having to specify how many there are.

In math class you learn that to find the average of a bunch of numbers, 
you divide the sum of those numbers by how many numbers there are. In 
Python you can use a function called sum() to add up all the numbers in a 
list, like this:

>>> sum([8,11,15])
34

Now we just have to find out the number of items in the list. In the 
average() function we wrote earlier in this chapter, we knew there were 
only two numbers. But what if there are more? Fortunately, we can use the 
len() function to count the number of items in a list. Here’s an example:

>>> len([8,11,15])
3

As you can see, you simply enter the function and pass the list as the 
argument. This means that we can use both the sum() and len() functions to 
find the average of the items in the list by dividing the sum of the list by the 
length of the list. Using these built-in keywords, we can create a concise ver-
sion of the average function, which would look something like this:

def average3(numList):
    return sum(numList)/len(numList)

arithmetic.py
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When you call the function in the shell, you should get the following 
output:

>>> average3([8,11,15])
11.333333333333334

The good thing about this version of the average function is that it 
works for a short list of numbers as well as for a long one! 

Exercise 2-2: Finding the Average

Find the average of the numbers in the list below:

d = [53, 28, 54, 84, 65, 60, 22, 93, 62, 27, 16, 25, 74, 42, 4, 42, 
15, 96, 11, 70, 83, 97, 75]

Summary
In this chapter you learned about data types like integers, floats, and 
Booleans. You learned to create a list, add and remove elements from a list, 
and find specific items in a list using indices. Then you learned how to use 
loops, lists, and variables to solve arithmetic problems, such as finding the 
average of a bunch of numbers and keeping a running sum.

In the next chapter you’ll learn about conditionals, another important 
programming concept you’ll need to learn to tackle the rest of this book.





3
Guessing and Checking 

with Conditionals

“Put your dough into the oven when it is hot:  
After making sure that it is in fact dough.” 
—Idries Shah, Learning How to Learn

In almost every program you write for this 
book, you’re going to instruct the computer 

to make a decision. You can do this using an 
important programming tool called conditionals. 

In programming we can use conditional statements 
like “If this variable is more than 100, do this; otherwise, do that” to check 
whether certain conditions are met and then determine what to do based 
on the result. In fact, this is a very powerful method that we apply to big 
problems, and it’s even at the heart of machine learning. At its most basic 
level, the program is guessing and then modifying its guesses based on 
feedback.

In this chapter you learn how to apply the guess-and-check method 
using Python to take user input and tell the program what to print depend-
ing on the input. You then use conditionals to compare different numerical 
values in different mathematical situations to make a turtle wander around 
the screen randomly. You also create a number-guessing game and use the 
same logic to find the square root of large numbers.
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Comparison Operators
As you learned in Chapter 2, True and False (which we capitalize in Python) 
are called Boolean values. Python returns Booleans when comparing two val-
ues, allowing you to use the result to decide what to do next. For example, we 
can use comparison operators like greater than (>) or less than (<) to compare 
two values, like this:

>>> 6 > 5
True
>>> 6 > 7
False

Here, we ask Python whether 6 is greater than 5, and Python returns 
True. Then we ask whether 6 is greater than 7, and Python returns False.

Recall that in Python we use one equal sign to assign a value to a vari-
able. But checking for equality requires two equal signs (==), as shown here:

>>> 6 = 6
SyntaxError: can't assign to literal
>>> 6 == 6
True

As you can see, when we try to check using only one equal sign, we get a 
syntax error. We can also use comparison operators to compare variables:

>>> y = 3
>>> x = 4
>>> y > x
False
>>> y < 10
True

We set the variable y to contain 3, and then set the variable x to contain 
4. Then we use those variables to ask whether y is greater than x, so Python 
returns False. Then we asked whether y is less than 10, which returns True. 
This is how Python makes comparisons.

Making Decisions with if and else 
Statements

You can have your program make decisions about what code to run using 
if and else statements. For example, if the condition you set turns out to 
be True, the program runs one set of code. If the condition turns out to be 
False, you can write the program to do something else or even do nothing 
at all. Here’s an example:

>>> y = 7
>>> if y > 5:
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    print("yes!")

yes!

Here, we are saying, assign variable y the value 7. If the value of y is 
more than 5, print “yes!”; otherwise, do nothing.

You can also give your program alternative code to run using else and 
elif. Since we'll be writing some longer code, open a new Python file and 
save it as conditionals.py.

y = 6
if y > 7:
    print("yes!")
else:
    print("no!")

In this example we’re saying, if the value of y is more than 7, print 
“yes!”; otherwise, print “no!”. Run this program, and it should print “no!” 
because 6 is not larger than 7.

You can add more alternatives using elif, which is short for “else if.” 
You can have as many elif statements as you want. Here’s a sample program 
with three elif statements:

age = 50
if age < 10:
    print("What school do you go to?")
elif 11 < age < 20:
    print("You're cool!")
elif 20 <= age < 30:
    print("What job do you have?")
elif 30 <= age < 40:
    print("Are you married?")
else:
    print("Wow, you're old!")

This program runs different code depending on which of the specified 
ranges the value of age falls into. Notice you can use <= for “less than or 
equal to” and you can use compound inequalities like if 11 < age < 20: for 
“if age is between 11 and 20.” For example, when age = 50, the output is the 
following string:

Wow, you're old!

Being able to have your programs make decisions quickly and automatically 
according to the conditions you define is an important aspect of programming!

Using Conditionals to Find Factors
Now let’s use what you’ve learned so far to factor a number! A factor is a 
number that divides evenly into another number; for example, 5 is a factor 

conditionals.py

conditionals.py
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of 10 because we can divide 10 evenly by 5. In math class, we use factors to do 
everything from finding common denominators to determining whether a 
number is prime. But finding factors manually can be a tedious task involving 
a lot of trial and error, especially when you’re working with bigger numbers. 
Let’s see how to automate factoring using Python.

In Python you can use the modulo operator (%) to calculate the remain-
der when dividing two numbers. For example, if a % b equals zero, it means 
that b divides evenly into a. Here’s an example of the modulo in action:

>>> 20 % 3
2

This shows that when you divide 20 by 3, you get a remainder of 2, 
which means that 3 is not a factor of 20. Let’s try 5 instead:

>>> 20 % 5
0

Now we get a remainder of zero, so we know that 5 is a factor of 20.

Writing the factors.py Program
Let’s use the modulo operator to write a function that takes a number and 
returns a list of that number’s factors. Instead of just printing the factors, 
we’ll put them in a list so we can use the factors list in another function 
later. Before we start writing this program, it’s a good idea to lay out our 
plan. Here are the steps involved in the factors.py program:

1.	 Define the factors function, which takes a number as an argument.

2.	 Create an empty factors list to fill with factors.

3.	 Loop over all the numbers from 1 to the given number.

4.	 If any of these numbers divides evenly, add it to the factors list.

5.	 Return the list of factors at the end.

Listing 3-1 shows the factors() function. Enter this code into a new file 
in IDLE and save it as factors.py.

def factors(num):
    '''returns a list of the factors of num'''
    factorList = []
    for i in range(1,num+1):
        if num % i == 0:
            factorList.append(i)
    return factorList

Listing 3-1: Writing the factors.py program

We first create an empty list called factorList, which we’ll later fill with 
the factors as we find them. Then we start a loop, beginning with 1 (we 
can’t divide by zero) and ending with num + 1, so that the loop will include 

factors.py
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num. Inside the loop we instruct the program to make a decision: if num is 
divisible by the current value of i (if the remainder is 0), then the program 
appends i to the factors list. Finally, we return the list of factors.

Now run factors.py by pressing the F5 key or by clicking Run 4 Run 
Module, as shown in Figure 3-1.

Figure 3-1: Running the factors.py module

After running this module, you can use the factors function in the 
normal IDLE terminal by passing it a number you want to find the factors 
for, like this:

>>> factors(120)
[1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120]

You found all the factors of 120 using the factors function! This is much 
easier and faster than using trial and error.

Exercise 3-1: Finding the factor

The factors() function could come in handy for finding the greatest common 
factor (GCF) of two numbers. Write a function that will return the GCF of two 
numbers, like this:

>>> gcf(150,138) 
6

The Wandering Turtle
Now that you know how to instruct a program to make decisions automati-
cally, let’s explore how to let a program execute indefinitely! To start, we’ll 
make a turtle walk around the screen and use conditionals to make it turn 
around if it goes beyond a certain point.

The turtle’s window is a classic x-y grid whose x- and y-axes go from –300 
to 300 by default. Let’s limit the turtle’s position to anywhere between –200 
and 200 for x and y, as shown in Figure 3-2.
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(0,0)

(200,200)

(−200,−200)

Figure 3-2: The rectangle of  
coordinates the turtle is limited to

Open a new Python file in IDLE and save it as wander.py. First, let’s 
import the turtle module. To do so, add the following code:

from turtle import *
from random import randint

Note that we also need to import the randint function from the random 
module to generate random integers.

Writing the wander.py Program

Now let’s create a function called wander to make the turtle wander around 
the screen, as shown in Listing 3-2. To do this, we use Python’s infinite 
while True loop, which always evaluates to True. This will make the turtle 
wander around without stopping. To stop it, you can click the X on the 
turtle graphics window.

speed(0)

def wander():
    while True:
        fd(3)
        if xcor() >= 200 or xcor() <= -200 or ycor()<= -200 or ycor() >= 200:
            lt(randint(90,180))

wander()

Listing 3-2: Writing the wander.py program

First, we set the turtle’s speed to 0, which is the fastest, and then define 
the wander() function. Inside the function we use the infinite loop, so every-
thing inside while True will execute forever. Then the turtle goes forward 
three steps (or 3 pixels) and evaluates its position using a conditional. The 
functions for the x-coordinate and y-coordinate of a turtle are xcor() and 
ycor(), respectively.

Using the if statement, we tell the program that if any one of the con-
ditional statements is True (the turtle is outside the specified region), then 
make the turtle turn left a random number of degrees, between 90 and 180, 

wander.py
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to prevent it from straying. If the turtle is inside the rectangle, the condi-
tional evaluates to False and no code is executed. Either way, the program 
returns to the top of the while True loop and does fd(3) again.

Running the wander.py Program

When you run the wander.py program, you should see something like 
Figure 3-3.

Figure 3-3: The output of wander.py

As you can see, the turtle walks in a straight line until its x-coordinate 
gets to 200. (The turtle always starts walking to the right in the positive 
x-direction.) Then it turns left a random number of degrees, between 90 
and 180, and keeps walking straight again. Sometimes the turtle is able to 
walk outside of the boundary lines, because after the 90-degree turn it’s 
still pointed off the screen and you’ll see it turning around every loop, try-
ing to get back into the rectangle. This causes the little blobs outside the 
rectangle you see in Figure 3-3.

Creating a Number-Guessing Game
You successfully used conditionals to create a turtle that seemed to make 
decisions on its own! Let’s use conditionals to write an interactive number-
guessing program that seems conscious. In this game I think of a number 
between 1 and 100, and you guess what the number is. How many guesses 
do you think you would need to guess my number correctly? To narrow down 
your options, after each incorrect guess, I tell you whether you should guess 
higher or lower. Fortunately, we can use the average function we wrote in 
Chapter 2 to make this task infinitely easier.

When you make an incorrect guess, your next guess should depend on 
whether your guess was too low or too high. For example, if your guess was 
too low, your next guess should be the middle number between your last 
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guess and the maximum value the number can be. If your guess was too 
high, your next guess should be the middle number between your last guess 
and the minimum value the number can be.

This sounds like calculating the average of two numbers—good thing we 
have the average function! We’ll use it to write the numberGame.py program, 
which makes smart guesses by narrowing down half the possible numbers 
every time. You’ll be surprised how quickly you can hone in on the answer.

Let’s take this one step at a time, starting with making a random num-
ber generator.

Making a Random Number Generator
First, we need the computer to choose a number at random between 1 and 
100. Create a new file in IDLE and save it as numberGame.py. Then enter the 
code in Listing 3-3.

from random import randint

def numberGame():
    #choose a random number
    #between 1 and 100
    number = randint(1,100)

Listing 3-3: Writing the numberGame() function

Here, we import the random module and assign a random integer to a vari-
able using the randint() function. Then we create a number variable that will 
hold a random number between 1 and 100, generated each time we call it.

Taking User Input
Now the program needs to ask the user for input so they can take a guess! 
Here’s an example you can enter into the interactive shell to see how the 
input() function works:

>>> name = input("What's your name? ")
What's your name?

The program prints the text “What’s your name?” in the shell, asking 
the user to input their name. The user types something, presses enter, 
and the program saves the input.

We can check whether Python saves the user input to the name variable, 
like so:

What's your name? Peter
>>> print(name)
Peter

When we ask the program to print name, it prints the user input that was 
saved in that variable (in this case, Peter).

number 
Game.py
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We can create a function called greet() that we’ll use later in our program:

def greet():
    name = input("What's your name? ")
    print("Hello, ",name)

greet()

The output will be the following:

>>>
What's your name? Al
Hello, Al
>>>

Try writing a short program that takes the user’s name as input, and 
if they enter “Peter,” it will print “That’s my name, too!” If the name is not 
“Peter,” it will just print “Hello” and the name.

Converting User Input to Integers
Now you know how to work with text that the user inputs, but we’ll be taking 
in number inputs in our guessing game. In Chapter 2 you learned about basic 
data types, like integers and floats, that you can use to perform math opera-
tions. In Python, all input from users is always taken in as a string. This means 
that if we want numbers as inputs, we have to convert them to an integer data 
type so we can use them in operations.

To convert a string to an integer, we pass the input to int(), like this:

print("I'm thinking of a number between 1 and 100.")
guess = int(input("What's your guess? "))

Now whatever the user enters will be transformed into an integer that 
Python can operate on.

Using Conditionals to Check for 
a Correct Guess
Now the numberGame.py program needs a way to check whether the number 
the user guessed is correct. If it is, we’ll announce that the guess is right 
and the game is over. Otherwise, we tell the user whether they should guess 
higher or lower.

We use the if statement to compare the input to the content of number, 
and we use elif and else to decide what to do in each circumstance. Revise 
the existing code in numberGame.py to look like the code in Listing 3-4.

from random import randint

def numberGame():
    #choose a random number
    #between 1 and 100

number 
Game.py
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    number = randint(1,100)

    print("I'm thinking of a number between 1 and 100.")
    guess = int(input("What's your guess? "))

    if number == guess:
        print("That's correct! The number was", number)
    elif number > guess:
        print("Nope. Higher.")
    else:
        print("Nope. Lower.")

numberGame()

Listing 3-4: Checking for a correct guess

If the random number held in number is equal to the input stored in guess, 
we tell the user their guess was correct and print the random number. Oth-
erwise, we tell the user whether they need to guess higher or lower. If the 
number they guessed is lower than the random number, we tell them to 
guess higher. If they guessed higher, we tell them to guess lower.

Here’s an example of the output so far:

I'm thinking of a number between 1 and 100.
What's your guess? 50
Nope. Higher.

Pretty good, but currently our program ends here and doesn’t let the 
user make any more guesses. We can use a loop to fix that.

Using a Loop to Guess Again!
To allow the user to guess again, we can make a loop so that the program 
keeps asking for more guesses until the user guesses correctly. We use the 
while loop to keep looping until guess is equal to number, and then the pro-
gram will print a success message and break out of the loop. Replace the 
code in Listing 3-4 with the code in Listing 3-5.

from random import randint

def numberGame():
    #choose a random number
    #between 1 and 100
    number = randint(1,100)

    print("I'm thinking of a number between 1 and 100.")
    guess = int(input("What's your guess? "))

    while guess:
        if number == guess:
            print("That's correct! The number was", number)
            break
        elif number > guess:

number 
Game.py
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            print("Nope. Higher.")
        else:
            print("Nope. Lower.")
        guess = int(input("What's your guess? "))

numberGame()

Listing 3-5: Using a loop to allow the user to guess again

In this example, while guess means “while the variable guess contains a 
value.” First, we check whether the random number it chose is equal to the 
guess. If it is, the program prints that the guess is correct and breaks out of 
the loop. If the number is greater than the guess, the program prompts the 
user to guess higher. Otherwise, it prints that the user needs to guess lower. 
Then it takes in the next guess and the loop starts over, allowing the user to 
guess as many times as needed to get the correct answer. Finally, after we’re 
done defining the function, we write numberGame() to call the function to 
itself so the program can run it.

Tips for Guessing
Save the numberGame.py program and run it. Each time you make an incor-
rect guess, your next guess should be exactly halfway between your first 
guess and the closest end of the range. For example, if you start by guess-
ing 50 and the program tells you to guess higher, your next guess would be 
halfway between 50 and 100 at the top of the range, so you’d guess 75.

This is the most efficient way to arrive at the correct number, because for 
each guess you’re eliminating half the possible numbers, no matter whether 
the guess is too high or too low. Let’s see how many guesses it takes to guess a 
number between 1 and 100. Figure 3-4 shows an example.

Figure 3-4: The output of the number-guessing game

This time it took six guesses.
Let’s see how many times you can multiply 100 by a half before you get 

to a number below 1:

>>> 100*0.5
50.0
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>>> 50*0.5
25.0
>>> 25*0.5
12.5
>>> 12.5*0.5
6.25
>>> 6.25*0.5
3.125
>>> 3.125*0.5
1.5625
>>> 1.5625*0.5
0.78125

It takes seven times to get to a number less than 1, so it makes sense 
that on average it takes around six or seven tries to guess a number between 
1 and 100. This is the result of eliminating half the numbers in our range 
with every guess. This might not seem like a useful strategy for anything but 
number-guessing games, but we can use this exact idea to find a very accu-
rate value for the square root of a number, which we’ll do next.

Finding Square Roots
You can use the number-guessing game strategy to approximate square 
roots. As you know, some square roots can be whole numbers (the square 
root of 100 is 10, for example). But many more are irrational numbers, which 
are never-ending, never-repeating decimals. They come up a lot in coordi-
nate geometry when you have to find the roots of polynomials.

So how could we possibly use the number-guessing game strategy to 
find an accurate value for a square root? You can simply use the averaging 
idea to calculate the square root, correct to eight or nine decimal places. In 
fact, your calculator or computer uses an iterative method like the number-
guessing strategy to come up with square roots that are correct to 10 decimal 
places!

Applying the Number-Guessing Game Logic
For example, let’s say you don’t know the square root of 60. First, you narrow 
your options down to a range, like we did for the number-guessing game. You 
know that 7 squared is 49 and 8 squared is 64, so the square root of 60 must 
be between 7 and 8. Using the average() function, you can calculate the aver-
age of 7 and 8 to get 7.5, which is your first guess.

>>> average(7,8)
7.5

To check whether 7.5 is the correct guess, you can square 7.5 to see if it 
yields 60:

>>> 7.5**2
56.25
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As you can see, 7.5 squared is 56.25. In our number-guessing game, 
we’d be told to guess higher since 56.25 is lower than 60.

Because we have to guess higher, we know the square root of 60 has to be 
between 7.5 and 8, so we average those and plug in the new guess, like so:

>>> average(7.5, 8)
7.75

Now we check the square of 7.75 to see if it’s 60:

>>> 7.75**2
60.0625

Too high! So the square root must be between 7.5 and 7.75.

Writing the squareRoot() Function
We can automate this process using the code in Listing 3-6.  Open a new 
Python file and name it squareRoot.py.

def average(a,b):
    return (a + b)/2

def squareRoot(num,low,high):
    '''Finds the square root of num by
    playing the Number Guessing Game
    strategy by guessing over the
    range from "low" to "high"'''
    for i in range(20):
        guess = average(low,high)
        if guess**2 == num:
            print(guess)
        elif guess**2 > num: #"Guess lower."
            high = guess
        else: #"Guess higher."
            low = guess
    print(guess)

squareRoot(60,7,8)

Listing 3-6: Writing the squareRoot() function

Here, the squareRoot() function takes three parameters: num (the number 
we want the square root of), low (the lowest limit num can be), and high (the 
upper limit of num). If the number you guess squared is equal to num, we just 
print it and break out of the loop. This might happen for a whole number, 
but not for an irrational number. Remember, irrational numbers never end!

Next, the program checks whether the number you guess squared is 
greater than num, in which case you should guess lower. We shorten our range 
to go from low to the guess by replacing high with the guess. The only other 
possibility is if the guess is too low, in which case we shorten our range to go 
from the guess to high by replacing low with the guess.

squareRoot.py
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The program keeps repeating that process as many times as we want (in 
this case, 20 times) and then prints the approximate square root. Keep in 
mind that any decimal, no matter how long, can only approximate an irra-
tional number. But we can still get a very good approximation!

In the final line we call the squareRoot() function, giving it the number 
we want the square root of, and the low and high numbers in the range we 
know the square root has to be in. Our output should look like this:

7.745966911315918

We can find out how close our approximation is by squaring it:

>>> 7.745966911315918**2
60.00000339120106

That’s pretty close to 60! Isn’t it surprising that we can calculate an irra-
tional number so accurately just by guessing and averaging?

Exercise 3-2: Finding the Square Root

Find the square root of these numbers:

•	 200 

•	 1000

•	 50000 (Hint: you know the square root has to be somewhere between 1  
and 500, right?)

Summary
In this chapter, you learned about some handy tools like arithmetic opera-
tors, lists, inputs, and Booleans, as well as a crucial programming concept 
called conditionals. The idea that we can get the computer to compare 
values and make choices for us automatically, instantly, and repeatedly is 
extremely powerful. Every programming language has a way to do this, and 
in Python we use if, elif, and else statements. As you’ll see throughout this 
book, you’ll build on these tools to tackle meatier tasks to explore math.

In the next chapter, you’ll practice the tools you learned so far to solve 
algebra problems quickly and efficiently. You’ll use the number-guessing 
strategy to solve complicated algebraic equations that have more than one 
solution! And you’ll write a graphing program so you can better estimate 
the solutions to equations and make your math explorations more visual!
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Transforming and Storing 

Numbers with Algebra

“Mathematics may be defined as the subject  
in which we never know what we are talking about,  

nor whether what we are saying is true.” 
—Bertrand Russell

If you learned algebra in school, you’re 
probably familiar with the idea of replac-

ing numbers with letters. For example, you 
can write 2x where x is a placeholder that can  

represent any number. So 2x represents the idea of 
multiplying two by some unknown number. In math 
class, variables become “mystery numbers” and you’re required to find 
what numbers the letters represent. Figure 4-1 shows a student’s cheeky 
response to the problem “Find x.”

4 cm

3 cmx

3. Find x
Here it is

Figure 4-1: Locating the x variable instead  
of solving for its value
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As you can see, this student has located the variable x in the diagram 
instead of solving for its value. Algebra class is all about solving equations 
like this: solve 2x + 5 = 13. In this context, “to solve” means to figure out 
which number, when you replace x with that number, makes the equation 
true. You can solve algebra problems by balancing equations, which requires 
a lot of rules you have to memorize and follow.

Using letters as placeholders in this way is just like using variables in 
Python. In fact, you already learned how to use variables to store and cal-
culate numerical values in previous chapters. The important skill math 
students should learn is not solving for variables but rather using variables. 
In fact, solving equations by hand is only of limited value. In this chapter 
you use variables to write programs that find unknown values quickly and 
automatically without having to balance equations! You also learn to use a 
programming environment called Processing to graph functions to help 
you explore algebra visually.

Solving First-degree Equations
One way to solve a simple equation like 2x + 5 = 13 with programming is 
by using brute force (that is, plugging in random numbers until we find the 
right one). For this particular equation we need to find a number, x, that 
when we multiply it by 2 and then add 5, returns 13. I’ll make an educated 
guess that x is a value between −100 and 100, since we’re working with 
mostly double-digit numbers or lower.

This means that we can write a program that plugs all the integers 
between −100 and 100 into the equation, checks the output, and prints the 
number that makes the equation true. Open a new file in IDLE, save it as 
plug.py, and enter the code in Listing 4-1 to see such a program in action.

def plug():
     x = -100 #start at -100

    while x < 100: #go up to 100
         if 2*x + 5 == 13: #if it makes the equation true

            print("x =",x) #print it out
         x += 1 #make x go up by 1 to test the next number

plug() #run the plug function

Listing 4-1: Brute-force program that plugs in numbers to see which one satisfies the equation

Here, we define the plug() function and initialize the x variable at -100 . 
On the next line we start a while loop that repeats until x equals 100, which 
is the upper limit of the range we set. We then multiply x by 2 and add 5 . 
If the output equals 13, we tell the program to print the number, because 
that’s the solution. If the output does not equal 13, we tell the program to 
keep going through the code.

The loop then starts over, and the program tests the next number, 
which we get by incrementing x by 1 . We continue the loop until we hit 
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a match. Be sure to include the last line, which makes the program run the 
plug() function we just defined; if you don’t, your program won’t do any-
thing! The output should be this:

x = 4

Using the guess-and-check method is a perfectly valid way to solve this 
problem. Plugging in all the digits by hand can be laborious, but using 
Python makes it a cinch! If you suspect the solution isn’t an integer, you 
might have to increment by smaller numbers by changing the line at  to 
x += .25 or some other decimal value.

Finding the Formula for First-degree 
Equations
Another way to solve an equation like 2x + 5 = 13 is to find a general formula 
for this type of equation. We can then use this formula to write a program in 
Python. You might recall from math class that the equation 2x + 5 = 13 is an 
example of a first-degree equation, because the highest exponent a variable has 
in this equation is 1. And you probably know that a number raised to the first 
power equals the number itself.

In fact, all first-degree equations fit into this general formula: ax + b = 
cx + d, where a, b, c, and d represent different numbers. Here are some 
examples of other first-degree equations:

3 5 22

4 12 2 9

1
2

2
3

1
5

7
8

x

x x

x x

On each side of the equal sign, you can see an x term and a constant, 
which is a number with no x attached to it. The number that precedes the x 
variable is called a coefficient. For example, the coefficient of 3x is 3.

But sometimes there’s no x term at all on one side of the equation, 
which means that the coefficient of that x is zero. You can see this in the 
first example, 3x − 5 = 22, where 22 is the only term on the right side of the 
equal sign:

ax + b = cx + d
3x − 5 = 0 + 22

Using the general formula, you can see that a = 3, b = −5, and d = 22. 
The only thing that seems to be missing is the value of c. But it’s not actu-
ally missing. In fact, the fact that there’s nothing there means cx = 0, which 
means that c must equal zero.

Now let’s use a little algebra to solve the equation ax + b = cx + d for x. 
If we can find what x is in the formula, we can use it to solve virtually all 
equations of this form.
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To solve this equation, we first get all the x’s on one side of the equal 
sign by subtracting cx and b from both sides of the equation, like this:

ax − cx = d − b

Then we can factor out the x from ax and cx :

x(a − c) = d − b

Finally, divide both sides by a − c to isolate x, which gives us the value of 
x in terms of a, b, c, and d:

x
d b
a c

Now you can use this general equation to solve for any variable x when 
the equation is a first-degree equation and all coefficients (a, b, c, and d) 
are known. Let’s use this to write a Python program that can solve first-
degree algebraic equations for us.

Writing the equation() Function
To write a program that will take the four coefficients of the general equa-
tion and print out the solution for x, open a new Python file in IDLE. Save 
it as algebra.py. We’ll write a function that takes the four numbers a, b, c, 
and d as parameters and plug them into the formula (see Listing 4-2).

def equation(a,b,c,d):
    ''''solves equations of the
    form ax + b = cx + d''''
    return (d - b)/(a - c)

Listing 4-2: Using programming to solve for x

Recall that the general formula of a first-degree equation is this:

x
d b
a c

This means that for any equation with the form ax + b = cx + d, if we 
take the coefficients and plug them into this formula, we can calculate the 
x value. First, we set the equation() function to take the four coefficients as 
its parameters. Then we use the expression (d - b)/(a − c) to represent the 
general equation.

Now let’s test our program with an equation you’ve already seen: 
2x + 5 = 13. Open the Python shell, type the following code at the >>> 
prompt, and press enter:

>>> equation(2,5,0,13)
4.0

If you input the coefficients of this equation into the function, you get 4 
as the solution. You can confirm that it’s correct by plugging in 4 in place of 
x. It works!
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Exercise 4-1: Solving More Equations for x

Solve 12x + 18 = –34x + 67 using the program you wrote in Listing 4-2.

Using print() Instead of return
In Listing 4-2, we used return instead of print() to display our results. This 
is because return gives us our result as a number that we can assign to a vari-
able and then use again. Listing 4-3 shows what would happen if we used 
print() instead of return to find x :

def equation(a,b,c,d):
    ''''solves equations of the
    form ax + b = cx + d''''
    print((d - b)/(a − c))

Listing 4-3: Using print() doesn’t let us save the output

When you run this, you get the same output:

>>> x = equation(2,5,0,13)
4.0
>>> print(x)
None

But when you try to call the x value using print(), the program doesn’t 
recognize your command because it hasn’t saved the result. As you can see, 
return can be more useful in programming because it lets you save the out-
put of a function so you can apply it elsewhere. This is why we used return in 
Listing 4-2.

To see how you can work with the returned output, use the equation 
12x + 18 = −34x + 67 from Exercise 4-1 and assign the result to the x vari-
able, as shown here:

>>> x = equation(12,18,-34,67)
>>> x
1.065217391304348

First, we pass the coefficients and constants of our equation to the 
equation() function so that it solves the equation for us and assigns the 
solution to the variable x. Then we can simply enter x to see its value. Now 
that the variable x stores the solution, we can plug it back into the equa-
tion to check that it’s the correct answer.

Enter the following to find out what 12x + 18, the left side of the equa-
tion, evaluates to:

>>> 12*x + 18
30.782608695652176
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We get 30.782608695652176. Now enter the following to do the same for 
−34x + 67, the right side of the equation:

>>> -34*x + 67
30.782608695652172

Except for a slight rounding discrepancy at the 15th decimal place, you 
can see that both sides of the equation evaluate to around 30.782608. So 
we can be confident that 1.065217391304348 is indeed the correct solution 
for x! Good thing we returned the solution and saved the value instead 
of just printing it out once. After all, who wants to type in a number like 
1.065217391304348 again and again?

Exercise 4-2: Fractions as Coefficients

Use the equation() function to solve the last, most sinister-looking equation you 
saw on page 55:

1
2

2
3

1
5

7
8

x x

Solving Higher-Degree Equations
Now that you know how to write programs that solve for unknown values in 
first-degree equations, let’s try something harder. For example, things get 
a little more complicated when an equation has a term raised to the second 
degree, like x2 + 3x − 10 = 0. These are called quadratic equations, and their 
general form looks like ax2 + bx + c = 0, where a, b, and c can be any number: 
positive or negative, whole numbers, fractions, or decimals. The only excep-
tion is that a can’t be 0 because that would make this a first-degree equation. 
Unlike first-degree equations, which have one solution, quadratic equations 
have two possible solutions.

To solve an equation with a squared term, you can use the quadratic 
formula, which is what you get when you isolate x by balancing the equation 
ax2 + bx + c = 0:

x
b b ac

a
�
� � �2 4

2

The quadratic formula is a very powerful tool for solving equations, 
because no matter what a, b, and c are in ax2 + bx + c = 0, you can just plug 
them in to the formula and use basic arithmetic to find your solutions.
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We know that the coefficients of x2 + 3x − 10 = 0 are 1, 3, and −10. When 
we plug those in to the formula, we get

x
3 3 4 1 10

2 1

2 ( )( )
( )

Isolate x and this simplifies to

x
3 49

2
3 7
2

There are two solutions: 

x
3 7
2

which is equal to 2, and

x
3 7
2

which is equal to −5.
We can see that replacing x in the quadratic formula with either of 

these solutions makes the equation true:

(2)2 + 3(2) − 10 = 4 + 6 − 10 = 0

(−5)2 + 3(−5) − 10 = 25 − 15 − 10 = 0

Next, we’ll write a function that uses this formula to return two solutions 
for any quadratic equation.

Using quad() to Solve Quadratic Equations
Let’s say we want to use Python to solve the following quadratic equation:

2x2 + 7x − 15 = 0

To do this, we’ll write a function called quad() that takes the three coef-
ficients (a, b, and c) and returns two solutions. But before we do anything, 
we need to import the sqrt method from the math module. The sqrt method 
allows us to find the square root of a number in Python, just like a square 
root button on a calculator. It works great for positive numbers, but if you try 
finding the square root of a negative number, you’ll see an error like this:

>>> from math import sqrt
>>> sqrt(-4)
Traceback (most recent call last):
  File "<pyshell#11>", line 1, in <module>
    sqrt(-4)
ValueError: math domain error
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Open a new Python file in IDLE and name it polynomials.py. Add the 
following line to the top of your file to import the sqrt function from the 
math module:

from math import sqrt

Then enter the code in Listing 4-4 to create the quad() function.

def quad(a,b,c):
    ''''Returns the solutions of an equation
    of the form a*x**2 + b*x + c = 0''''
    x1 = (-b + sqrt(b**2 - 4*a*c))/(2*a)
    x2 = (-b - sqrt(b**2 - 4*a*c))/(2*a)
    return x1,x2

Listing 4-4: Using the quadratic formula to solve an equation

The quad() function takes the numbers a, b, and c as parameters and 
plugs them in to the quadratic formula. We use x1 to assign the result of 
(the first solution), and x2 will store the value of (the second solution).

Now, let’s test this program to solve for x in 2x2 + 7x − 15 = 0. Plugging in 
the numbers 2, 7, and −15 for a, b, and c should return the following output:

>>> quad(2,7,-15)
(1.5, -5.0)

As you can see, the two solutions for x are 1.5 and −5, which means both 
values should satisfy the equation 2x2 + 7x − 15 = 0. To test this, replace all 
the x variables in the original equation 2x2 + 7x − 15 = 0 with 1.5, the first 
solution, and then with −5, the second solution, as shown here:

>>> 2*1.5**2 + 7*1.5 - 15
0.0
>>> 2*(-5)**2 + 7*(-5) - 15
0

Success! This confirms that both values work in the original equation. 
You can use the equation() and quad() functions any time in the future. Now  
that you’ve learned to write functions to solve first-degree and second-degree  
equations, let’s discuss how to solve even higher-degree equations!

Using plug() to Solve a Cubic Equation
In algebra class, students are often asked to solve a cubic equation like 
6x3 + 31x2 + 3x − 10 = 0, which has a term raised to the third degree. 
We can tweak the plug() function we wrote in Listing 4-1 to solve this 
cubic equation using the brute-force method. Enter the code shown in 
Listing 4-5 into IDLE to see this in action.
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def g(x):
    return 6*x**3 + 31*x**2 + 3*x − 10

def plug():
    x = -100
    while x < 100:

if g(x) == 0:
print("x =",x)

x += 1
    print("done.")

Listing 4-5: Using plug() to solve a cubic equation

First, we define g(x) to be a function that evaluates the expression 
6*x**3 + 31*x**2 + 3*x − 10, the left side of our cubic equation. Then we tell 
the program to plug all numbers between −100 and 100 into the g(x) func-
tion we just defined. If the program finds a number that makes g(x) equal 
zero, then it has found the solution and prints it for the user.

When you call plug(), you should see the following output:

>>> plug()
x = -5
done.

This gives you −5 as the solution, but as you might suspect from work-
ing with quadratic equations previously, the x3 term means there could be 
as many as three solutions to this equation. As you can see, you can brute-
force your way to a solution like this, but you won’t be able to determine 
whether other solutions exist or what they are. Fortunately, there’s a way 
to see all the possible inputs and corresponding outputs of a function; it’s 
called graphing.

Solving Equations Graphically
In this section, we’ll use a nifty tool called Processing to graph higher-degree 
equations. This tool will help us find solutions to higher-degree equations in 
a fun and visual way! If you haven’t already installed Processing, follow the 
instructions in “Installing Processing” on page xxiii.

Getting Started with Processing
Processing is a programming environment and a graphics library that 
makes it easy to visualize your code. You can see the cool, dynamic, inter-
active art you can make with Processing in the examples page at https://
processing.org/examples/. You can think of Processing as a sketchbook for 
your programming ideas. In fact, each Processing program you create is 
called a sketch. Figure 4-2 shows what a short Processing sketch in Python 
mode looks like.

plug.py
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Figure 4-2: Example of a Processing sketch

As you can see, there’s a programming environment where you enter 
code and a separate display window that shows the visualization of the code. 
This is a sketch of a simple program that creates a small circle. Every one of 
the Processing sketches we’ll create will contain two of Processing’s built-in 
functions: setup() and draw(). The code we put in the setup() function will 
be run once, when you click the play button, the arrow at the top left of the 
interface. Whatever we put in draw() will be repeated as an infinite loop 
until you click the stop button next to the play button.

In Figure 4-2 you can see in the setup() function we declared the size 
of the display screen to be 600 pixels by 600 pixels using the size() func-
tion. In the draw() function we told the program to draw a circle using the 
ellipse() function. Where? How big? We have to tell the ellipse() function 
four numbers: the x-coordinate of the ellipse, its y-coordinate, its width, 
and its height.

Notice the circle shows up in the middle of the screen, which in math 
class is the origin (0,0). But in Processing and in many other graphics 
libraries, (0,0) is in the top left corner of the screen. So to put a circle in 
the middle, I had to divide the length of the window (600) and the width 
of the window (600) in half. So its location is (300,300), and not (0,0).

Processing has a number of functions, like ellipse(), that make it easy 
to draw shapes. To see the full list, look at the reference pages at https://
processing.org/reference/ to find functions for drawing ellipses, triangles, rect-
angles, arcs, and much more. We’ll explore drawing shapes with Processing 
in more detail in the next chapter.

N O T E 	 The code colors in Processing appear different from those used in IDLE. For example, 
you can see that def appears green in Processing in Figure 4-2, whereas it is orange 
in IDLE.
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Creating Your Own Graphing Tool
Now that you’ve downloaded Processing, let’s use it to create a graphing tool 
that allows us to see how many solutions an equation has. First, we create a 
grid of blue lines that looks like graphing paper. Then, we create the x- and 
y-axes using black lines.

Setting Graph Dimensions

In order to make a grid for our graphing tool, we first need to set the dimen-
sions of the display window. In Processing, you can use the size() function to 
indicate the width and height of the screen in pixels. The default screen size 
is 600 pixels by 600 pixels, but for our graphing tool we’ll create a graph that 
includes x- and y-values ranging from −10 to 10.

Open a new file in Processing and save it as grid.pyde. Make sure you’re 
in Python mode. Enter the code in Listing 4-6 to declare the range of x- and 
y-values we’re interested in displaying for our graph.

#set the range of x-values
xmin = -10
xmax = 10

#range of y-values
ymin = -10
ymax = 10

#calculate the range
rangex = xmax - xmin
rangey = ymax - ymin

def setup():
    size(600,600)

Listing 4-6: Setting the range of x- and y-values for the graph

In Listing 4-6 we create two variables, xmin and xmax, for the minimum 
and maximum x-values in our grid, then we repeat the process for the 
y-values. Next we declare rangex for the x-range and rangey variable for the 
y-range. We calculate the value of rangex by subtracting xmin from xmax and 
do the same for the y-values.

Because we don’t need a graph that’s 600 units by 600 units, we need 
to scale the coordinates down by multiplying the x- and y-coordinates by 
scale factors. When graphing we have to remember to multiply all our 
x-coordinates and y-coordinates by these scale factors; otherwise, they 
won’t show up correctly on the screen. To do this, update the existing 
code in the setup() function with the lines of code in Listing 4-7.

def setup()
    global xscl, yscl
    size(600,600)

grid.pyde

grid.pyde
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    xscl = width / rangex
    yscl = height / rangey

Listing 4-7: Scaling coordinates using scale factors

First, we declare the global variables xscl and yscl, which we’ll use to 
scale our screen. xscl and yscl stand for the x-scale factor and y-scale fac-
tor, respectively. For example, the x-scale factor would be 1 if we want our 
x-range to be 600 pixels, or the full width of the screen. But if we want our 
screen to be between −300 and 300, the x-scale factor would be 2, which we 
get by dividing the width (600) by the rangex (300).

In our case, we can calculate the scale factor by dividing 600 by the 
x-range, which is 20 (−10 to 10). So the scale factor has to be 30. From now 
on, we need to scale up all of our x- and y-coordinates by a factor of 30 so 
that they show on the screen. The good news is that the computer will do all 
the dividing and scaling for us. We just have to remember to use xscl and 
yscl when graphing!

Drawing a Grid

Now that we’ve set the proper dimensions for our graph, we can draw grid 
lines like the ones you see on graphing paper. Everything in the setup() 
function will be run once. Then we create an infinite loop with a function 
called draw(). Setup() and draw() are built-in Processing functions, and you 
can’t change their names if you want the sketch to run. Add the code in 
Listing 4-8 to create the draw() function.

#set the range of x-values
xmin = -10
xmax = 10

#range of y-values 
ymin = -10
ymax = 10

#calculate the range
rangex = xmax - xmin
rangey = ymax - ymin

def setup():
    global xscl, yscl 
    size(600,600)
    xscl = width / rangex
    yscl = height / rangey 

def draw():
    global xscl, yscl
    background(255) #white
    translate(width/2,height/2)
    #cyan lines
    strokeWeight(1)

grid.pyde
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    stroke(0,255,255)
    for i in range(xmin,xmax + 1):
        line(i*xscl,ymin*yscl,i*xscl,ymax*yscl)
        line(xmin*xscl,i*yscl,xmax*xscl,i*yscl)

Listing 4-8: Creating blue grid lines for the graph

First, we use global xscl, yscl to tell Python we’re not creating new 
variables but just using the global ones we already created. Then we set 
the background color to white using the value 255. We use Processing’s 
translate() function to move shapes up and down, or left and right. The 
code translate(width/2,height/2) will move the origin (where x and y are 
both 0) from the top left to the center of the screen. Then we set the 
thickness of the lines with strokeWeight, where 1 is the thinnest. You can 
make them thicker if you want by using higher numbers. You can also 
change the color of the lines using stroke. Here, we’re using cyan (“sky 
blue”), whose RGB value is (0,255,255), which means no red values, maxi-
mum green, and maximum blue.

After that, we use a for loop to avoid having to type 40 lines of code to 
draw 40 blue lines. We want the blue lines to go from xmin to xmax, including 
xmax, because that’s how wide our graph should be.

RGB Values

An RGB value is a mixture of red, green, and blue, in that order. The values 
range from 0 to 255. For example, (255,0,0) means “maximum red, no green, 
no blue.” Yellow is a mixture of red and green only, and cyan (“sky blue”) is a 
mixture of green and blue only.

(255,0,0) (255,255,0) (0,255,0) (0,255,255) (0,0,255)

Other colors are a mixture of different levels of red, green, and blue:

(255,0,255) (128,0,128) (255,140,0) (102,51,0) (250,128,114)

You can do a web search for “RGB Tables” to get RGB values for many 
more colors!
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In Processing, you can draw a line by declaring four numbers: the x- 
and y-coordinates of the beginning and endpoints of the line. The vertical 
lines would look something like this:

line(-10,-10, -10,10)
line(-9,-10, -9,10)
line(-8,-10, -8,10)

But because range(x) doesn’t include x (as you learned previously), our 
for loop needs to go from xmin to xmax + 1 to include xmax.

Similarly, the horizontal lines would go like this:

line(-10,-10, 10,-10)
line(-10,-9, 10,-9)
line(-10,-8, 10,-8)

This time, you can see that the y-values are −10, −9, −8 and so on, whereas 
the x-values stay constant at −10 and 10, which are xmin and xmax. Let’s add 
another loop to go from ymin to ymax:

for i in range(xmin,xmax+1):
    line(i,ymin,i,ymax)
for i in range(ymin,ymax+1):
    line(xmin,i,xmax,i)

If you graphed this right, you would now see a tiny splotch in the 
middle of the screen because the x- and y-coordinates go from −10 to 10, 
but the screen goes from 0 to 600 by default. This is because we haven’t 
multiplied all our x- and y-coordinates by their scale factor yet! To display 
the grid properly, update your code as follows:

for i in range(xmin,xmax+1):
    line(i*xscl,ymin*yscl,i*xscl,ymax*yscl)
for i in range(ymin,ymax+1):
    line(xmin*xscl,i*yscl,xmax*xscl,i*yscl)

Now you’re ready to create the x- and y-axes.

Creating the X- and Y-Axes

To add the two black lines for the x- and y-axes, we first set the stroke color 
to black by calling the stroke() function (with 0 being black and 255 being 
white). Then we draw a vertical line from (0,−10) to (0,10) and a horizon-
tal line from (−10,0) to (10,0). Don’t forget to multiply the values by their 
respective scale factors, unless they’re 0, in which case multiplying them 
wouldn’t change them anyway.

Listing 4-9 shows the complete code for creating the grid.

    #cyan lines
    strokeWeight(1)
    stroke(0,255,255)

grid.pyde
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    for i in range(xmin,xmax+1):
        line(i*xscl,ymin*yscl,i*xscl,ymax*yscl)
    for i in range(ymin,ymax+1):
        line(xmin*xscl,i*yscl,xmax*xscl,i*yscl)
    stroke(0) #black axes
    line(0,ymin*yscl,0,ymax*yscl)
    line(xmin*xscl,0,xmax*xscl,0)

Listing 4-9: Creating the grid lines

When you click Run, you should get a nice grid, like in Figure 4-3.

Figure 4-3: You’ve created a grid for  
graphing—and you only have to do it once!

This looks done, but if we try to put a point (a tiny ellipse, actually) at 
(3,6), we see a problem. Add the following code to the end of the draw() 
function:

#test with a circle
fill(0)
ellipse(3*xscl,6*yscl,10,10)

When you run this, you’ll see the output in Figure 4-4.

Figure 4-4: Checking our graphing  
program. Almost there!

grid.pyde
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As you can see, the point ends up on (3,−6) instead of at (3,6). Our 
graph is upside-down! To fix this, we can add a negative sign to the y-scale 
factor in the setup() function to flip it over:

yscl = -height/rangey

Now, you should see the point at the correct location, like in Figure 4-5.

Figure 4-5: The grapher is working properly!

Now that we’ve written the graphing tool, let’s put it into a function so 
we can reuse it whenever we need to graph an equation.

Writing the grid() Function

To keep our code organized, we’ll separate all the code that makes the grid 
and place it in its own function, which we’ll call grid(). Then we’ll call the 
grid() function in the draw() function like in Listing 4-10.

def draw():
    global xscl, yscl
    background(255)
    translate(width/2,height/2)
    grid(xscl,yscl) #draw the grid

def grid(xscl,yscl):
    #Draws a grid for graphing
    #cyan lines
    strokeWeight(1)
    stroke(0,255,255)
    for i in range(xmin,xmax+1):
        line(i*xscl,ymin*yscl,i*xscl,ymax*yscl)
    for i in range(ymin,ymax+1):
        line(xmin*xscl,i*yscl,xmax*xscl,i*yscl)
    stroke(0) #black axes

grid.pyde
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    line(0,ymin*yscl,0,ymax*yscl)
    line(xmin*xscl,0,xmax*xscl,0)

Listing 4-10: Moving all the grid code into a separate function

In programming we often organize our code into functions. Notice in 
Listing 4-10 we can easily see what we’re executing in our draw() function. 
Now we’re ready to solve our cubic equation, 6x3 + 31x2 + 3x − 10 = 0.

Graphing an Equation
Plotting graphs is a fun and visual way to find solutions of polynomials that 
have more than one potential solution for x. But before we try to graph a 
complicated equation like 6x3 + 31x2 + 3x − 10 = 0, let’s plot a simple parabola.

Plotting Points

Add this function after the draw() function from Listing 4-10:

def f(x):
    return x**2

This defines the function we’re calling f(x). We’re telling Python what 
to do with the number x to produce the output of the function. In this case, 
we’re telling it to square the number x  and return the output. Math classes 
have traditionally called functions f(x), g(x), h(x) and so on. Using a 
programming language, you can call functions whatever you like! We could 
have given this function a descriptive name like parabola(x), but since f(x) 
is commonly used, we’ll stick to that for now.

This is a simple parabola that we’ll graph before getting into more com-
plicated functions. All the points on this curve are simply the values for x 
and its corresponding y-value. We could use a loop and draw small ellipses 
for points at all the whole-number values for x, but that would look like an 
unconnected group of points, as in Figure 4-6.

Figure 4-6: A graph of disconnected dots.

grid.pyde
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Using a different kind of loop, we could draw dots closer together, as in 
Figure 4-7.

Figure 4-7: The dots are closer together,  
but it’s still not a convincing curve.

The best way to make a connected curve is to draw lines from point to 
point. If the points are close enough together, they’ll look curved. First, 
we’ll create a graphFunction() function after f(x).

Connecting the Points

In the graphFunction() function, start x at xmin, like this:

def graphFunction():
    x = xmin

To make the graph extend across the whole grid, we’ll keep increasing 
x until it’s equal to xmax. That means we’ll keep this loop going “while x is 
less than or equal to xmax,” as shown here:

def graphFunction():
    x = xmin
    while x <= xmax:

To draw the curve itself, we’ll draw lines from every point to every next 
point, going up a tenth of a unit at a time. Even if our function produces 
a curve, you probably won’t notice if we’re drawing a straight line between 
two points that are really close together. For example, the distance from 
(2, f(2)) to (2.1, f(2.1)) is tiny, so overall the output will look curved.

def graphFunction():
    x = xmin
    while x <= xmax:
        fill(0)
        line(x*xscl,f(x)*yscl,(x+0.1)*xscl,f(x+0.1)*yscl)
        x += 0.1

grid.pyde
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This code defines a function that draws a graph of f(x) by starting at xmin 
and going all the way up to xmax. While the x-value is less than or equal to 
xmax, we’ll draw a line from (x, f(x)) to ((x + 0.1), f(x + 0.1)). We can’t forget to 
increment x by 0.1 at the end of the loop.

Listing 4-11 shows the whole code for grid.pyde.

#set the range of x-values
xmin = -10
xmax = 10

#range of y-values
ymin = -10
ymax = 10

#calculate the range
rangex = xmax - xmin
rangey = ymax - ymin

def setup():
    global xscl, yscl
    size(600,600)
    xscl = width / rangex
    yscl = -height / rangey

def draw():
    global xscl, yscl
    background(255) #white
    translate(width/2,height/2)
    grid(xscl,yscl)
    graphFunction()

def f(x):
    return x**2

def graphFunction():
    x = xmin
    while x <= xmax:
        stroke(0)
        line(x*xscl,f(x)*yscl,(x+0.1)*xscl,f(x+0.1)*yscl)
        x += 0.1

def grid(xscl, yscl):
    #Draws a grid for graphing
    #cyan lines
    strokeWeight(1)
    stroke(0,255,255)
    for i in range(xmin,xmax+1):
        line(i*xscl,ymin*yscl,i*xscl,ymax*yscl)
    for i in range(ymin,ymax+1):
        line(xmin*xscl,i*yscl,xmax*xscl,i*yscl)
    stroke(0) #black axes

grid.pyde
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    line(0,ymin*yscl,0,ymax*yscl)
    line(xmin*xscl,0,xmax*xscl,0)

Listing 4-11: Complete code for graphing the parabola

This gets us the curve we’re looking for, as shown in Figure 4-8.

Figure 4-8: A nice continuous graph of  
a parabola!

Now we can change our function to something more complicated, and 
the grapher will easily draw it:

def f(x):
    return 6*x**3 + 31*x**2 + 3*x − 10

With this simple change, you’ll see the output in Figure 4-9, but the 
function will be in black. If you prefer a red curve, change the stroke(0) line 
in graphFunction() to stroke(255,0,0), and you’ll get a red function.

Figure 4-9: Graphing a polynomial function

grid.pyde
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It’s great to be able to simply change one line in the f() function and 
have the program automatically graph a different function! The solutions 
(called the roots) of the equation are where the graph crosses the x-axis. We 
can see three places: one where x = −5, another where x is between −1 and 0, 
and a third where x is between 0 and 1.

Using Guess and Check to Find the Roots
We already saw how effective our guess-and-check method was for guess-
ing numbers in Chapter 3. Now we can use it to approximate the roots, or 
solutions, for the equation 6x3 + 31x2 + 3x − 10 = 0. Let’s start with the root 
between 0 and 1. Is it 0.5 or something else? To test this, we can easily plug 
0.5 into the equation. Create a new file in IDLE, name it guess.py, and enter 
the following code:

def f(x):
    return 6*x**3 + 31*x**2 + 3*x − 10

>>> f(0.5)
0.0

As you can see, when x equals 0.5, it makes the function equal 0, so 
another solution of our equation is x = 0.5.

Next, let’s try to find the root between −1 and 0. We’ll try the average of 
−1 and 0 to start:

>>> f(-0.5)
-4.5

At x = −0.5, the function is negative, not zero. Looking at the graph, we 
can tell we guessed too high, so the root must be somewhere between −1 
and −0.5. We’ll average those endpoints and try again:

>>> f(-0.75)
2.65625

We get a positive number, so we guessed too low. Therefore, the solution 
must be between −0.75 and −0.5:

>>> f(-0.625)
-1.23046875

Still too high. This is getting a bit tedious. Let’s see how we might use 
Python to do these steps for us.

Writing the guess() Function
Let’s create a function that will find the roots of an equation by averaging 
the lower and upper values and adjusting its next guesses accordingly. This 
will work for our current task, where the function is passing through the 

guess.py
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x-axis from positive to negative. For a function going up, from negative to 
positive, we’d have to change it around a little. Listing 4-12 shows the com-
plete code for this function.

'''The guess method'''
def f(x):
    return 6*x**3 + 31*x**2 + 3*x - 10

def average(a,b):
    return (a + b)/2.0

def guess():
    lower = -1
    upper = 0

     for i in range(20):
        midpt = average(lower,upper)
        if f(midpt) == 0:
            return midpt
        elif f(midpt) < 0:
            upper = midpt
        else:
            lower = midpt
    return midpt

x = guess()

print(x,f(x))

Listing 4-12: The guess method for solving equations

First, we declare the function for the equation we’re trying to solve 
using f(x). Then we create the average() function to find the average of two 
numbers, which we’ll be using at every step. Finally, we write a guess() func-
tion that starts with a lower limit of −1 and an upper limit of 0, since that’s 
where our graph crossed the x-axis.

We then use for i in range(20):  to create a loop that cuts the range 
by half 20 times. Our guess will be the average, or midpoint, of the upper 
and lower limits. We put that midpoint into f(x) and if the output equals 0, 
we know that’s our root. If the output is negative, we know we guessed too 
high. Then the midpoint will replace our upper limit and we’ll take another 
guess. Otherwise, if we guessed too low, the midpoint will become our 
lower limit and we’ll guess again.

If we haven’t returned the solution in 20 guesses, we return the latest 
midpoint and the function of that midpoint.

When we run this, we should get two values as the output:

-0.6666669845581055 9.642708896251406e-06

The first output is the x-value, which is very close to −2/3. The second 
output is what f(x) evaluates to when we plug in −2/3 as the x-value. The e-06 
at the end is scientific notation, which means you take 9.64 and move the dec-
imal place to the left six places. So f(x) evaluates to 0.00000964, which is very 
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close to zero. To go through this guess-and-check program and get this solu-
tion, or rather an approximation accurate to within a millionth of the actual 
solution, to pop up in less than a second is still surprising and wonderful to 
me! Can you see the power in exploring math problems using free software 
like Python and Processing?

If we increase the number of iterations from 20 to 40, we get a number 
even closer to 0:

-0.6666666666669698 9.196199357575097e-12

Let’s check f(-0.6666666666669698), or f(-2/3):

>>> f(-2/3)
0.0

This checks out, so the three solutions to 6x3 + 31x2 + 3x − 10 = 0 are 
x = −5, −2/3, and 1/2.

Exercise 4-3: Finding More Roots

Use the graphing tool you just created to find the roots of 2x2 + 7x − 15 = 0. 
Remember, the roots are where the graph crosses the x-axis, or where the func-
tion equals 0. Check your answers using your quad() function.

Summary
Math class used to be all about taking years to learn how to solve equations 
of higher and higher degree. In this chapter you learned that this isn’t so 
hard to do programmatically using our guess-and-check method. You also 
wrote programs that solve equations in other ways, like using the quadratic 
formula and graphing. In fact, you learned that all we have to do to solve an 
equation, no matter how complicated, is to graph it and approximate where 
it crosses the x-axis. By iterating and halving the range of values that work, 
we can get as accurate as we want.

In programming, we use algebra to create variables to represent values 
that will change, like the size or coordinates of an object. The user can then 
change the value of a variable in one place, and the program will automati-
cally change the value of that variable everywhere in the program. The user 
can also change these variables using a loop or declare the value in a func-
tion call. In future chapters we’ll model real-life situations where we need 
to use variables to represent parameters and constraints on the model, like 
energy content and force of gravity. Using variables lets us change values 
easily, to vary different aspects of the model.

In the next chapter you’ll use Processing to create interactive graphics, 
like rotating triangles and colorful grids!





5
Transforming Shapes 

with Geometry

In geometry class, everything you learn 
about involves dimensions in space using 

shapes. You typically start by examining 
one-dimensional lines and two-dimensional 

circles, squares, or triangles, then move on to three-
dimensional objects like spheres and cubes. These 
days, creating geometric shapes is easy with technology 
and free software, though manipulating and changing 
the shapes you create can be more of a challenge.

In this chapter, you’ll learn how to manipulate and transform geomet-
ric shapes using the Processing graphics package. You’ll start with basic 
shapes like circles and triangles, which will allow you to work with compli-
cated shapes like fractals and cellular automata in later chapters. You will 
also learn how to break down some complicated-looking designs into simple 
components.

In the teahouse one day Nasrudin announced he was  
selling his house. When the other patrons asked him to describe  

it, he brought out a brick. “It’s just a collection of these.” 
—Idries Shah
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Drawing a Circle
Let’s start with a simple one-dimensional circle. Open a new sketch in 
Processing and save it as geometry.pyde. Then enter the code in Listing 5-1 
to create a circle on the screen.

def setup():
    size(600,600)

def draw():
    ellipse(200,100,20,20)

Listing 5-1: Drawing a circle

Before we draw the shape, we first define the size of our sketchbook, 
known as the coordinate plane. In this example, we use the size() function to 
say that our grid will be 600 pixels wide and 600 pixels tall.

With our coordinate plane set up, we then use the drawing function 
ellipse() to create our circle on this plane. The first two parameters, 200 
and 100, show where the center of the circle is located. Here, 200 is the 
x-coordinate and the second number, 100, is the y-coordinate of this circle’s 
center, which places it at (200,100) on the plane.

The last two parameters determine the width and height of the shape in 
pixels. In the example, the shape is 20 pixels wide and 20 pixels tall. Because 
the two parameters are the same, it means that the points on the circumfer-
ence are equidistant from the center, forming a perfectly round circle.

Click the Run button (it looks like a play symbol), and a new window 
with a small circle should open, like in Figure 5-1.

Figure 5-1: The output of Listing 5-1 showing a small circle

geometry.pyde
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Processing has a number of functions you can use to draw shapes. 
Check out the full list at https://processing.org/reference/ to explore other 
shape functions.

Now that you know how to draw a circle in Processing, you’re almost 
ready to use these simple shapes to create dynamic, interactive graphics. 
In order to do that, you’ll first need to learn about location and transfor-
mations. Let’s start with location.

Specifying Location Using Coordinates
In Listing 5-1, we used the first two parameters of the ellipse() function 
to specify our circle’s location on the grid. Likewise, each shape we create 
using Processing needs a location that we specify with the coordinate sys-
tem, where each point on the graph is represented by two numbers: (x,y). 
In traditional math graphs, the origin (where x=0 and y=0) is at the center 
of the graph, as shown in Figure 5-2.

(0,0)

(100,100)

Figure 5-2: A traditional coordinate  
system with the origin in the center

In computer graphics, however, the coordinate system is a little different. 
Its origin is in the top-left corner of the screen so that x and y increase as you 
move right and down, respectively, as you can see in Figure 5-3.

(0,0)

(100,100)

Figure 5-3: The coordinate system for computer  
graphics, with the origin in the top-left corner

https://processing.org/reference/
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Each coordinate on this plane represents a pixel on the screen. As 
you can see, this means you don’t have to deal with negative coordinates. 
We’ll use functions to transform and translate increasingly complex shapes 
around this coordinate system.

Drawing a single circle was fairly easy, but drawing multiple shapes can 
get complicated pretty quickly. For example, imagine drawing a design like 
the one shown in Figure 5-4.

Figure 5-4: A circle made of  
circles

Specifying the size and location of each individual circle and spacing 
them out perfectly evenly would involve entering many lines of similar code. 
Fortunately, you don’t really need to know the absolute x- and y-coordinates 
of each circle to do this. With Processing, you can easily place objects wher-
ever you want on the grid.

Let’s see how you can do this using a simple example to start.

Transformation Functions
You might remember doing transformations with pencil and paper in geom-
etry class, which you performed on a collection of points to laboriously move 
a shape around. It’s much more fun when you let a computer do the trans-
forming. In fact, there wouldn’t be any computer graphics worth looking at 
without transformations! Geometric transformations like translation and 
rotation let you change where and how your objects appear without altering 
the objects themselves. For example, you can use transformations to move a 
triangle to a different location or spin it around without changing its shape. 
Processing has a number of built-in transformation functions that make it 
easy to translate and rotate objects.

Translating Objects with translate()
To translate means to move a shape on a grid so that all points of the shape 
move in the same direction and the same distance. In other words, transla-
tions let you move a shape on a grid without changing the shape itself and 
without tilting it in the slightest.
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Translating an object in math class involves manually changing the 
coordinates of all the points in the object. But in Processing, you translate 
an object by moving the grid itself, while the object’s coordinates stay the 
same! For an example of this, let’s put a rectangle on the screen. Revise 
your existing code in geometry.pyde with the code in Listing 5-2.

def setup():
    size(600,600)

def draw():
    rect(20,40,50,30)

Listing 5-2: Drawing a rectangle to translate

Here, we use the rect() function to draw the rectangle. The first two 
parameters are the x- and y-coordinates telling Processing where the top-
left corner of the rectangle should be. The third and fourth parameters 
indicate its width and its height, respectively.

Run this code, and you should see the rectangle shown in Figure 5-5.

(0,0)

(300,300)

Figure 5-5: The default coordinate setup with the origin at the top left

N o t e 	 In these examples, I’m showing the grid for reference, but you won’t see it on your screen.

Now let’s tell Processing to translate the rectangle using the code in 
Listing 5-3. Notice that we don’t change the coordinates of the rectangle.

def setup():
    size(600,600)

def draw():
    translate(50,80);
    rect(50,100,100,60)

Listing 5-3: Translating the rectangle

geometry.pyde

geometry.pyde
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Here, we use translate() to move the rectangle. We provide two param-
eters: the first tells Processing how far to move the grid in the horizontal (x) 
direction, and the second parameter is for how far to move the grid vertically, 
in the y-direction. So translate(50,80) should move the entire grid 50 pixels to 
the right and 80 pixels down, as shown in Figure 5-6.

(0,0)

(300,300)

Figure 5-6: Translating a rectangle by moving the grid 50 pixels  
to the right and 80 pixels down

Very often it’s useful (and easier!) to have the origin (0,0) in the cen-
ter of the canvas. You can use translate() to easily move the origin to the 
center of your grid. You can also use it to change the width and height 
of your canvas if you want it bigger or smaller. Let’s explore Processing’s 
built-in width and height variables, which let you update the size of your 
canvas without having to change the numbers manually. To see this in 
action, update the existing code in Listing 5-3 so it looks like Listing 5-4.

def setup():
    size(600,600)

def draw():
    translate(width/2, height/2)
    rect(50,100,100,60)

Listing 5-4: Using the width and height variables to translate the rectangle

Whatever numbers you put in the size declaration in the setup() func-
tion will become the “width” and “height” of the canvas. In this case, 
because I used size(600,600), they’re both 600 pixels. When we change 
the translate() line to translate(width/2, height/2) using variables instead 

geometry.pyde
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of specific numbers, we tell Processing to move the location (0,0) to the 
center of the display window, no matter what the size is. This means that 
if you change the size of the window, Processing will automatically update 
width and height, and you won’t have to go through all your code and 
change the numbers manually.

Run the updated code, and you should see something like Figure 5-7.

(0,0)

(300,300)

Figure 5-7: The grid is translated to the center of the screen.

Notice that the origin is still labeled as (0,0), which shows that we 
haven’t actually moved the origin point but rather the entire coordinate 
plane itself so that the origin point falls in the middle of our canvas.

Rotating Objects with rotate()
In geometry, rotation is a kind of transformation that turns an object around a 
center point, as if it’s turning on an axis. The rotate() function in Processing 
rotates the grid around the origin (0,0). It takes a single number as its argu-
ment to specify the angle at which you want to rotate the grid around the 
point (0,0). The units for the rotation angle are radians, which you learn 
about in precalculus class. Instead of using 360 degrees to do a full rotation, 
we can use 2π (around 6.28) radians. If you think in degrees, like I do, you 
can use the radians() function to easily convert your degrees to radians so you 
don’t have to do the math yourself.

To see how the rotate() function works, enter the code shown in 
Figure 5-8 into your existing sketch by replacing the translate() code 
inside the draw() function with each of these examples, and then run 
them. Figure 5-8 shows the results.
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(0,0)

(300,300)

(0,0)

(0,0)

(300,300)

translate(200,200);
rotate(radians(20));

rotate(radians(20));

Figure 5-8: The grid always rotates around (0,0)

On the left side of Figure 5-8, the grid is rotated 20 degrees around 
(0,0), which is at the top-left corner of the screen. In the example on the 
right, the origin is first translated 200 units to the right and 200 units down 
and then the grid is rotated.

The rotate() function makes it easy to draw a circle of objects like the 
one in Figure 5-4 using the following steps:

1.	 Translate to where you want the center of the circle to be.

2.	 Rotate the grid and put the objects along the circumference of the circle.

Now that you know how to use transformation functions to manipu-
late the location of different objects on your canvas, let’s actually re-create 
Figure 5-4 in Processing.

Drawing a Circle of Circles
To create the circles arranged in a circle in Figure 5-4, we’ll use a for i 
in range() loop to repeat the circles and make sure the circles are evenly 
spaced. First, let’s think about how many degrees should be between the 
circles to make a full circle, remembering that a circle is 360 degrees.

Enter the code shown in Listing 5-5 to create this design.

def setup():
    size(600,600)

def draw():
    translate(width/2,height/2)
    for i in range(12):

geometry.pyde
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        ellipse(200,0,50,50)
        rotate(radians(360/12))

Listing 5-5: Drawing a circular design

Note that the translate(width/2,height/2) function inside the draw() 
function translates the grid to the center of the screen. Then, we start a for 
loop to create an ellipse at a point on the grid, starting at (200,0), as you 
can see from the first two parameters of the function. Then we set the size 
of each small circle by setting both the width and height of the ellipse to 50. 
Finally, we rotate the grid by 360/12, or 30 degrees, before creating the 
next ellipse. Note that we use radians() to convert 30 degrees into radians 
inside the rotate() function. This means that each circle will be 30 degrees 
away from the next one.

When you run this, you should see what’s shown in Figure 5-9.

Figure 5-9: Using transformation to create a circular design

We have successfully arranged a bunch of circles into a circular shape!

Drawing a Circle of Squares
Modify the program you wrote in Listing 5-5 and change the circles into 
squares. To do this, just change ellipse in the existing code to rect to make 
the circles into squares, as shown here:

def setup():
    size(600,600)

def draw():
    translate(width/2,height/2)
    for i in range(12):
        rect(200,0,50,50)
        rotate(radians(360/12))

geometry.pyde
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That was easy!

Animating Objects
Processing is great for animating your objects to create dynamic graphics. 
For your first animation, you’ll use the rotate() function. Normally, rotate 
happens instantly, so you don’t get to see the action take place—only the 
result of the rotation. But this time, we’ll use a time variable t, which allows 
us to see the rotation unfold in real time!

Creating the t Variable
Let’s use our circle of squares to write an animated program. To start, create 
the t variable and initialize it to 0 by adding t = 0 before the setup() function. 
Then insert the code in Listing 5-6 before the for loop.

t = 0

def setup():
    size(600,600)

def draw():
    translate(width/2,height/2)
    rotate(radians(t))
    for i in range(12):
        rect(200,0,50,50)
        rotate(radians(360/12))

Listing 5-6: Adding the t variable

However, if you try to run this code, you’ll get the following error message:

UnboundLocalError: local variable 't' referenced before assignment

This is because Python doesn’t know whether we’re creating a new local 
variable named t inside the function that doesn’t have anything to do with 
the global variable t outside the function, or just calling the global variable. 
Because we want to use the global variable, add global t at the beginning of 
the draw() function so the program knows which one we’re referring to.

Enter the complete code shown here:

t = 0

def setup():
    size(600,600)

def draw():
    global t
    #set background white
    background(255)

geometry.pyde

geometry.pyde
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    translate(width/2,height/2)
    rotate(radians(t))
    for i in range(12):
        rect(200,0,50,50)
        rotate(radians(360/12))
    t += 1

This code starts t at 0, rotates the grid that number of degrees, incre-
ments t by 1, and then repeats. Run it, and you should see the squares start 
to rotate in a circular pattern, as in Figure 5-10.

Figure 5-10: Making squares rotate in a circle

Pretty cool! Now let’s try rotating each individual square.

Rotating the Individual Squares
Because rotating is done around (0,0) in Processing, inside the loop we first 
have to translate to where each square needs to be, then rotate, and finally 
draw the square. Change the loop in your code to look like Listing 5-7.

    for i in range(12):
        translate(200,0)
        rotate(radians(t))
        rect(0,0,50,50)
        rotate(radians(360/12))

Listing 5-7: Rotating each square

This translates the grid to where we want to place the square, rotates 
the grid so the square rotates, and then draws the square using the rect() 
function.

geometry.pyde
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Saving Orientation with pushMatrix() 
and popMatrix()
When you run Listing 5-7, you should see that it creates some strange 
behavior. The squares don’t rotate around the center, but keep moving 
around the screen instead, as shown in Figure 5-11.

Figure 5-11: The squares are flying all over!

This is due to changing the center and changing the orientation of the 
grid so much. After translating to the location of the square, we need to 
rotate back to the center of the circle before translating to the next square. 
We could use another translate() function to undo the first one, but we 
might have to undo more transformations, and that could get confusing. 
Fortunately, there’s an easier way.

Processing has two built-in functions that save the orientation of the 
grid at a certain point and then return to that orientation: pushMatrix() and 
popMatrix(). In this case, we want to save the orientation when we’re in the 
center of the screen. To do this, revise the loop to look like Listing 5-8.

for i in range(12):
    pushMatrix() #save this orientation
    translate(200,0)
    rotate(radians(t))
    rect(0,0,50,50)
    popMatrix() #return to the saved orientation
    rotate(radians(360/12))

Listing 5-8: Using pushMatrix() and popMatrix()

The pushMatrix() function saves the position of the coordinate system at 
the center of the circle of squares. Then we translate to the location of the 

geometry.pyde
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square, rotate the grid so the square will spin, and then draw the square. 
Then we use popMatrix() to return instantly to the center of the circle of 
squares and repeat for all 12 squares.

Rotating Around the Center
The preceding code should work perfectly, but the rotation may look strange;  
that’s because Processing by default locates a rectangle at its top-left corner  
and rotates it about its top-left corner. This makes the squares look like they’re  
veering off the path of the larger circle. If you want your squares to rotate 
around their centers, add this line to your setup() function:

    rectMode(CENTER)

Note that the all-uppercase CENTER in rectMode() matters. (You can also 
experiment with other types of rectMode(), like CORNER, CORNERS, and RADIUS.) 
Adding rectMode(CENTER) should make each square rotate around its center. 
If you want the squares to spin more quickly, change the rotate() line to 
increase the time in t, like so:

    rotate(radians(5*t))

Here, 5 is the frequency of the rotation. This means the program 
multiplies the value of t by 5 and rotates by the product. Therefore, 
the square will rotate five times as far as before. Change it to see what 
happens! Comment out the rotate() line outside the loop (by adding a 
hashtag at the beginning) to make the squares rotate in place, as shown 
in Listing 5-9.

    translate(width/2,height/2)
    #rotate(radians(t))
    for i in range(12):
        rect(200,0,50,50)

Listing 5-9: Commenting out a line instead of deleting it

Being able to use transformations like translate() and rotate() to create 
dynamic graphics is a very powerful technique, but it can produce unex-
pected results if you do things in the wrong order!

Creating an Interactive Rainbow Grid
Now that you’ve learned how to create designs using loops and to rotate 
them in different ways, we’ll create something pretty awesome: a grid of 
squares whose rainbow colors follow your mouse cursor! The first step is to 
make a grid.
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Drawing a Grid of Objects
Many tasks involved in math and in creating games like Minesweeper require 
a grid. Grids are necessary for some of the models and all the cellular auto
mata we’ll create in later chapters, so it’s worth learning how to write code 
for making a grid that we can reuse. To begin with, we’ll make a 12 × 12 grid 
of squares, evenly sized and spaced. Making a grid this size may seem like a 
time-consuming task, but in fact it’s easy to do using a loop.

Open a new Processing sketch and save as colorGrid.pyde. Too bad we 
used the name “grid” previously. We’ll make a 20 × 20 grid of squares on a 
white background. The squares need to be rect, and we need to use a for 
loop within a for loop to make sure they are all the same size and spaced 
equally. Also, we need our 25 × 25 pixel squares to be drawn every 30 pixels, 
using this line:

rect(30*x,30*y,25,25)

As the x and y variables go up by 1, squares are drawn at 50-pixel inter-
vals in two dimensions. We’ll start off, as usual, by writing our setup() and 
draw() functions, as in the previous sketch (see Listing 5-10).

def setup():
    size(600,600)

def draw():
    #set background white
    background(255)

Listing 5-10: The standard structure for a Processing sketch: setup() and draw()

This sets the size of the window at 600 by 600 pixels, and sets the back-
ground color to white. Next we’ll create a nested loop, where two variables 
will both go from 0 to 19, for a total of 20 numbers, since we want 20 rows 
of 20 squares. Listing 5-11 shows the code that creates the grid.

def setup():
    size(600,600)

def draw():
    #set background white
    background(255)
    for x in range(20):
        for y in range(20):
            rect(30*x,30*y,25,25)

Listing 5-11: The code for a grid

This should create a 20 × 20 grid of squares, as you can see in Figure 5-12.  
Time to add some colors to our grid.

colorGrid.pyde
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Figure 5-12: A 20 × 20 grid!

Adding the Rainbow Color to Objects
Processing’s colorMode() function helps us add some cool color to our 
sketches! It’s used to switch between the RGB and HSB modes. Recall that 
RGB uses three numbers indicating amounts of red, green, and blue. In 
HSB, the three numbers represent levels of hue, saturation, and bright-
ness. The only one we need to change here is the first number, which 
represents the hue. The other two numbers can be the maximum value, 
255. Figure 5-13 shows how to make rainbow colors by changing only the 
first value, the hue. Here, the 10 squares have the hue values shown in the 
figure, with 255 for saturation and 255 for brightness.

0 20 40 60 80 100 120 140 160 180

Figure 5-13: The colors of the rainbow using HSB mode and  
changing the hue value

Since we’re locating the rectangles at (30*x,30*y) in Listing 5-11, we’ll cre-
ate a variable that measures the distance of the mouse from that location:

         d = dist(30*x,30*y,mouseX,mouseY)

Processing has a dist() function that finds the distance between two 
points, and in this case it’s the distance between the square and the mouse. 
It saves the distance to a variable called d, and we’ll link the hue to that vari-
able. Listing 5-12 shows the changes to the code.
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def setup():
    size(600,600)
    rectMode(CENTER)

    u colorMode(HSB)

def draw():
    #set background black

     background(0)
    translate(20,20)
    for x in range(30):
        for y in range(30):

             d = dist(30*x,30*y,mouseX,mouseY)
            fill(0.5*d,255,255)
            rect(30*x,30*y,25,25)

Listing 5-12: Using the dist() function

We insert the colorMode() function and pass HSB to it u. In the draw() func-
tion, we set the background to black first . Then we calculate the distance 
from the mouse to the square, which is at (30*x,30*y) . In the next line, we 
set the fill color using HSB numbers. The hue value is half the distance, while 
the saturation and brightness numbers are both 255, the maximum.

The hue is the only thing we change: we update the hue according to 
the distance the rectangle is from the mouse. We do this with the dist() 
function, which takes four arguments: the x- and y-coordinates of two 
points. It returns the distance between the points.

Run this code and you should see a very colorful design that changes 
colors according to the mouse’s location, as shown in Figure 5-14.

Now that you’ve learned how to add colors to your objects, let’s explore 
how we can create more complicated shapes.

Figure 5-14: Adding colors to your grid

colorGrid.pyde
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Drawing Complex Patterns Using 
Triangles

In this section, we create more 
complicated, Spirograph-style pat-
terns using triangles. For example, 
take a look at the sketch made up 
of rotating triangles in Figure 5-15, 
created by the University of Oslo’s 
Roger Antonsen.

The original design moves, 
but in this book you’ll have to 
imagine all the triangles rotat-
ing. This sketch blew me away! 
Although this design looks very 
complicated, it’s not that difficult 
to make. Remember Nasrudin’s 
joke about the brick from the 
beginning of the chapter? Like 
Nasrudin’s house, this compli-
cated design is just a collection of 
identical shapes. But what shape? 
Antonsen gave us a helpful clue 
to creating this design when he 
named the sketch “90 Rotating Equilateral Triangles.” It tells us that all we 
have to do is figure out how to draw an equilateral triangle, rotate it, and 
then repeat that for a total of 90 triangles. Let’s first discuss how to draw 
an equilateral triangle using the triangle() function. To start, open a new 
Processing sketch and name it triangles.pyde. The code in Listing 5-13 shows 
one way to create a rotating triangle but not an equilateral one.

def setup():
    size(600,600)
    rectMode(CENTER)

t = 0

def draw():
    global t
    translate(width/2,height/2)
    rotate(radians(t))
    triangle(0,0,100,100,200,-200)
    t += 0.5

Listing 5-13: Drawing a rotating triangle, but not the right kind

Listing 5-13 uses the lessons you learned previously: it creates a t vari-
able (for time), translates to where we want the triangle to be, rotates the 
grid, and then draws the triangle. Finally, it increments t. When you run 
this code, you should see something like Figure 5-16.

Figure 5-15: Sketch of 90 rotating equilateral 
triangles by Roger Antonsen. See it in motion 
at https://rantonse.no/en/art/2016-11-30.

triangles.pyde

https://rantonse.no/en/art/2016-11-30
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Figure 5-16: Rotating a triangle around one of its vertices

As you can see in Figure 5-16, the triangle rotates around one of its 
vertices, or points, and thus creates a circle with the outer point. You’ll also 
notice that this is a right triangle (a triangle containing a 90-degree angle), 
not an equilateral one.

To re-create Antonsen’s sketch, we need to draw an equilateral triangle, 
which is a triangle with equal sides. We also need to find the center of the 
equilateral triangle to be able to rotate it about its center. To do this, we 
need to find the location of the three vertices of the triangle. Let’s discuss 
how to draw an equilateral triangle by locating it at its center and specifying 
the location of its vertices.

A 30-60-90 Triangle
To find the location of the three vertices 
of our equilateral triangle, we’ll review 
a particular type of triangle you’ve likely 
seen in geometry class: the 30-60-90 tri-
angle, which is a special right triangle. First, 
we need an equilateral triangle, as shown 
in Figure 5-17.

This equilateral triangle is made up 
of three equal parts. The point in the 
middle is the center of the triangle, with 
the three dissecting lines meeting at 120 
degree angles. To draw a triangle in Pro-
cessing, we give the triangle() function 
six numbers: the x- and y-coordinates of all three vertices. To find the coor-
dinates of the vertices of the equilateral triangle shown in Figure 5-17, let’s 
cut the bottom triangle in half, as shown in Figure 5-18.

120°120°

120°

Figure 5-17: An equilateral triangle  
divided into three equal parts
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120°120°

90°

60°

30°

Figure 5-18: Dividing up the equilat-
eral triangle into special triangles

Dividing the bottom triangle in half creates two right triangles, which are 
classic 30-60-90 triangles. As you might recall, the ratio between the sides of a 
30-60-90 triangle can be expressed as shown in Figure 5-19.

x
60°

30°

2x

x √
−3

Figure 5-19: The ratios of the  
sides in a 30-60-90 triangle,  
from the legend on an SAT test

If we call the length of the smaller leg x, the hypotenuse is twice that 
length, or 2x, and the longer leg is x times the square root of 3, or approx-
imately 1.732x. We’re going to be creating our function using the length 
from the center of the big equilateral triangle in Figure 5-18 to one of 
its vertices, which happens to be the hypotenuse of the 30-60-90 triangle. 
That means we can measure everything in terms of that length. For exam-
ple, if we call the hypotenuse length, then the smaller leg will be half that 
length, or length/2. Finally, the longer leg will be length divided by 2 times 
the square root of 3. Figure 5-20 zooms in on the 30-60-90 triangle.

length

90°

60°

30°

length/2

length*√−3/2

Figure 5-20: The 30-60-90 triangle  
up close and personal

As you can see, a 30-60-90 triangle has internal angles of 30, 60, and 
90 degrees, and the lengths of the sides are in known proportions. You may 



96   Chapter 5

be familiar with this from the Pythagorean Theorem, which will come up 
again shortly.

We’ll call the distance from the center of the larger equilateral triangle 
to its vertex the “length,” which is also the hypotenuse of the 30-60-90 triangle. 
You’ll need to know the ratios between the lengths of the sides of this special  
triangle in order to find the three vertices of the equilateral triangle with  
respect to the center—you can draw it (the big equilateral triangle we’re try-
ing to draw) by specifying where each point of the triangle should be.

The shorter leg of the right triangle opposite the 30 degree angle is 
always half the hypotenuse, and the longer leg is the measure of the shorter 
leg times the square root of 3. So if we use the center point for drawing the 
big equilateral triangle, the coordinates of the three vertices would be as 
shown in Figure 5-21.

(0, −length)

(0,0)

(length*√−3/2, length/2)(−length*√−3/2, length/2)

Figure 5-21: The vertices of the equilateral triangle

As you can see, because this triangle is made up of 30-60-90 triangles 
on all sides, we can use the special relation between them to figure out how 
far each vertex of the equilateral triangle should be from the origin.

Drawing an Equilateral Triangle
Now we can use the vertices we derived from the 30-60-90 triangle to create 
an equilateral triangle, using the code in Listing 5-14.

def setup():
    size(600,600)
    rectMode(CENTER)

t = 0

def draw():
    global t
    translate(width/2,height/2)
    rotate(radians(t))
    tri(200) #draw the equilateral triangle
    t += 0.5

u def tri(length):

triangles.pyde
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    '''Draws an equilateral triangle
    around center of triangle'''

     triangle(0,-length,
             -length*sqrt(3)/2, length/2,
             length*sqrt(3)/2, length/2)

Listing 5-14: The complete code for making a rotating equilateral triangle

First, we write the tri() function to take the variable length , which 
is the hypotenuse of the special 30-60-90 triangles we cut the equilateral 
triangle into. We then make a triangle using the three vertices we found. 
Inside the call to the triangle() function , we specify the location of 
each of the three vertices of the triangle: (0,-length), (-length*sqrt(3)/2, 
length/2), and (length*sqrt(3)/2, length/2).

When you run the code, you should see something like Figure 5-22.

Figure 5-22: A rotating equilateral triangle!

Now we can cover up all the triangles created during rotation by adding 
this line to the beginning of the draw() function:

    background(255) #white

This should erase all the rotating triangles except for one, so we just 
have a single equilateral triangle on the screen. All we have to do is put 90 
of them in a circle, just like we did earlier in this chapter, using the rotate() 
function.

Exercise 5-1: Spin Cycle

Create a circle of equilateral triangles in a Processing sketch and rotate them 
using the rotate() function.
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Drawing Multiple Rotating Triangles
Now that you’ve learned how to rotate a single equilateral triangle, we need 
to figure out how to arrange multiple equilateral triangles into a circle. This 
is similar to what you created while rotating squares, but this time we’ll use 
our tri() function. Enter the code in Listing 5-15 in place of the def draw() 
section in Processing and then run it.

def setup():
    size(600,600)
    rectMode(CENTER)

t = 0

def draw():
    global t
    background(255)#white
    translate(width/2,height/2)

     for i in range(90):
        #space the triangles evenly
        #around the circle
        rotate(radians(360/90))

         pushMatrix() #save this orientation
        #go to circumference of circle
        translate(200,0)
        #spin each triangle
        rotate(radians(t))
        #draw the triangle
        tri(100)
        #return to saved orientation

         popMatrix()
    t += 0.5

def tri(length):

     noFill() #makes the triangle transparent

    triangle(0,-length,
             -length*sqrt(3)/2, length/2,
             length*sqrt(3)/2, length/2)

Listing 5-15: Creating 90 rotating triangles

At , we use the for loop to arrange 90 triangles around the circle, 
making sure they’re evenly spaced by dividing 360 by 90. Then at  we 
use pushMatrix() to save this position before moving the grid around. At 
the end of the loop at  we use popMatrix() to return to the saved position. 
In the tri() function at , we add the noFill() line to make the triangles 
transparent.

triangles.pyde



Transforming Shapes with Geometry   99

Now we have 90 rotating transparent triangles, but they’re all rotating 
in exactly the same way. It’s kind of cool, but not as cool as Antonsen’s sketch 
yet. Next, you’ll learn how to make each triangle rotate a little differently 
from the adjacent ones to make the pattern more interesting.

Phase-Shifting the Rotation
We can change the pattern in which the triangles rotate with a phase 
shift, which makes each triangle lag a little bit behind its neighbor, giving 
the sketch a “wave” or “cascade” effect. Each triangle has been assigned 
a number in the loop, represented by i. We need to add i to t in the 
rotate(radians(t)) function, like this:

        rotate(radians(t+i))

When you run this, you should see something like Figure 5-23.

Figure 5-23: Rotating triangles with phase shift

Notice there’s a break in the pattern on the right side of the screen. This 
break in the pattern is caused by the phase shifts not matching up from the 
beginning triangle to the last triangle. We want a nice, seamless pattern, so 
we have to make the phase shifts add up to a multiple of 360 degrees to com-
plete the circle. Because there are 90 triangles in the design, we’ll divide 360 
by 90 and multiply that by i:

        rotate(radians(t+i*360/90))
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It’s easy enough to calculate 360/90, which is 4, and then use that 
number to plug into the code, but I’m leaving the expression in because 
we’ll need it in case we want to change the number of triangles later. For 
now, this should create a nice seamless pattern, as shown in Figure 5-24.

Figure 5-24: Seamlessly rotating triangles with phase shift

By making our phase shifts add up to a multiple of 360, we were able to 
remove the break in the pattern.

Finalizing the Design
To make the design look more like the one in Figure 5-15, we need to 
change the phase shift a little. Play around with it yourself to see how you 
can change the look of the sketch!

Here, we’re going to change the phase shift by multiplying i by 2, which 
will increase the shift between each triangle and its neighbor. Change the 
rotate() line in your code to the following:

        rotate(radians(t+2*i*360/90))

After making this change, run the code. As you can see in Figure 5-25, 
our design now looks very close to the design we were trying to re-create.
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Figure 5-25: Re-creation of Antonsen’s “90 Rotating  
Equilateral Triangles” from Figure 5-15

Now that you’ve learned how to re-create a complicated design like this, 
try the next exercise to test your transformation skills!

Exercise 5-2: Rainbow Triangles

Color each triangle of the rotating triangle sketch using stroke(). It should look 
like this.
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Summary
In this chapter, you learned how to draw shapes like circles, squares, and 
triangles and arrange them into different patterns using Processing’s 
built-in transformation functions. You also learned how to make your 
shapes dynamic by animating your graphics and adding color. Just like 
how Nasrudin’s house was just a collection of bricks, the complicated 
code examples in this chapter are just a collection of simpler shapes or 
functions.

In the next chapter, you’ll build on what you learned in this chapter and 
expand your skills to using trigonometric functions like sine and cosine. 
You’ll draw even cooler designs and write new functions to create even more 
complicated behaviors, like leaving a trail and creating any shape from a 
bunch of vertices.



6
Creating Oscillations with 

Trigonometry

I’ve got an oscillating fan at my house. The fan goes back and forth.  
It looks like the fan is saying “No.” So I like to ask it questions that a 
fan would say “No” to. “Do you keep my hair in place? Do you keep my 

documents in order? Do you have three settings? Liar!” My fan lied to me. 
—Mitch Hedberg

Trigonometry literally means the study of 
triangles. Specifically, it is the study of right 

triangles and the special ratios that exist between 
their sides. Judging from what’s taught in a traditional 
trigonometry class, though, you’d think that’s where it 
ends. Figure 6-1 shows just one part of a typical trigo-
nometry homework assignment.
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For each question, find the length of the side marked x.

1.

12 cm

A B

C

x

2.
15 cmE D

x30°

72°

3.

IH

G

36°
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5. 6.

32°x

38 cm
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27°

12 cm

x

G H

I

Figure 6-1: Question after question in traditional trig class on unknown  
sides in triangles

This is the kind of task most people remember from their trigonometry 
class, where solving for unknown sides in a triangle is a common assignment. 
But this is seldom how trig functions are used in reality. The more common uses of 
trig functions such as sine and cosine are for oscillating motion, like water, 
light, and sound waves. Suppose you take your graphing code from grid.pyde 
in Chapter 4 and change the function to the following:

def f(x):
    return sin(x)

In this case, you’d get this output shown in Figure 6-2.

2�

Figure 6-2: A sine wave

The values on the x-axis are the radians, the input of the sine function. 
The y-axis is the output. If you put sin(1) into your calculator or the Python 
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shell, you’ll get out a long decimal starting with 0.84. . . . That’s the height 
of the curve when x = 1. It’s almost at the top of the curve in Figure 6-2. 
Put sin(3) into the calculator and you’ll get 0.14. . . . On the curve, you can 
see it’s almost on the x-axis when x = 3. Enter any other values for x, and 
the output should follow this up-and-down pattern, oscillating between 1 
and –1. The wave takes just over six units to make a complete wave, or one 
wavelength, which we also call the period of the function. The period of the 
sine function is 2π, or 6.28 radians in Processing and Python. In school, you 
won’t go any further than drawing lots of waves like this. But in this chap-
ter, you’ll use sine, cosine, and tangent to simulate oscillating motion in 
real time. You’ll also use trigonometry to make some interesting, dynamic, 
interactive sketches in Processing. The main trig functions are shown in 
Figure 6-3.

a

B

hyp
otenu

sec

b CA
adjacent

opposite
sin A = opposite / hypotenuse
cos A = adjacent / hypotenuse
tan A = opposite / adjacent

Figure 6-3: The ratios of the sides of a right triangle

We’ll use trig functions to generate polygons of any number of sides 
as well as stars with any (odd) number of prongs. After that, you’ll create 
a sine wave from a point rotating around a circle. You’ll draw Spirograph- 
and harmonograph-type designs, which require trig functions. You’ll also 
oscillate a wave of colorful points in and out of a circle!

Let’s start by discussing how using trig functions is going to make trans-
forming, rotating, and oscillating shapes much easier than before.

Using Trigonometry for Rotations 
and Oscillations

First of all, sines and cosines make rotations a cinch. In Figure 6-3, sin A is 
expressed as the opposite side divided by the hypotenuse, or side a divided 
by side c:

sin A
a
c

=

Solve this for side a, and you get the hypotenuse times the sine of A:

a � c Sin A

Therefore, the y-coordinate of a point can be expressed as the dis-
tance from the origin times the sine of the angle the point makes with the 
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horizontal. Imagine a circle with radius r, the hypotenuse of the triangle, 
rotating around the point at (0,0), as shown in Figure 6-4.

theta

r*sin(theta)

(r*cos(theta),r*sin(theta))

r*cos(theta)

r

Figure 6-4: Polar form of coordinates of a point

To rotate a point, we’re going to keep the radius of the circle constant 
and simply vary theta, the angle. The computer is going to do the hard part 
of recalculating all the positions of the point by multiplying the radius r by 
the cosine or sine of the angle theta! We also need to remember that sine 
and cosine expect radian input, not degrees. Fortunately, you’ve already 
learned how easy it is to use Processing’s built-in radians() and degrees() 
functions to convert to whatever units we want.

Writing Functions to Draw Polygons
Thinking about vertices as points that rotate around a center makes creat-
ing polygons very easy. Recall that a polygon is a many-sided figure; a regu-
lar polygon is made by connecting a certain number of points equally spaced 
around a circle. Remember how much geometry we needed to know to draw 
an equilateral triangle in Chapter 5? With trigonometry functions helping 
us with rotations, all we have to do to draw polygons is use Figure 6-4 to cre-
ate a polygon function.

Open a new sketch in Processing and save it as polygon.pyde. Then enter 
the code in Listing 6-1 to make a polygon using by the vertex() function.

def setup():
    size(600,600)

def draw():
    beginShape()
    vertex(100,100)
    vertex(100,200)
    vertex(200,200)
    vertex(200,100)
    vertex(150,50)
    endShape(CLOSE)

Listing 6-1: Drawing a polygon using vertex()

polygon.pyde



Creating Oscillations with Trigonometry   107

We could always draw polygons using line(), but once we connect all 
the lines, we couldn’t fill in the shape with color. The Processing functions 
beginShape() and endShape() define any shape we want by using the vertex() 
function to say where the points of the shape should be. This lets us create 
as many vertices as we want.

We always start the shape with beginShape(), list all the points on the 
shape by sending them to the vertex() function, and finally end the shape 
with endShape(). If we put CLOSE inside the endShape() function, the program 
will connect the last vertex with the first vertex.

When you run this code, you should see something like Figure 6-5.

Figure 6-5: A house-shaped polygon  
made from vertices

However, it’s laborious to enter more than four or five points manually. 
It would be great if we could just rotate a single point around another point 
using a loop. Let’s try that next.

Drawing a Hexagon with Loops
Let’s use a for loop to create six vertices of a hexagon using the code in 
Listing 6-2.

def draw():
    translate(width/2,height/2)
    beginShape()
    for i in range(6):
        vertex(100,100)
        rotate(radians(60))
    endShape(CLOSE)

Listing 6-2: Trying to use rotate() inside a for loop

However, you’ll find out that if you run this code, you get a blank screen!  
You can’t use the rotate() function inside a shape because this function spins  
the entire coordinate system. This is precisely why we need the sine and cosine  
notation you saw in Figure 6-4 to rotate the vertices!

Figure 6-6 shows how the expression (r*cos(60*i),r*sin(60*i)) creates 
each vertex of a hexagon. When i = 0, the angle in the parentheses will be 
0 degrees; when i = 1, the angle will be 60 degrees; and so on.

polygon.pyde
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r

r

rr

r

r

60°
60°

60°
60°
60°

60°

(r*cos(60),r*sin(60))

(r*cos(0),r*sin(0))

(r*cos(300),r*sin(300))(r*cos(240),r*sin(240))

(r*cos(180),r*sin(180))

(r*cos(120),r*sin(120))

Figure 6-6: Using sines and cosines to rotate a point around the center

To re-create this hexagon in code, we have to create a variable, r, that 
represents the distance from the center of rotation to each vertex, which 
won’t change. The only thing we need to change is the number of degrees 
in the sin() and cos() functions, which are all multiples of 60. Generally, it 
can be written like this:

for i in range(6):
    vertex(r*cos(60*i),r*sin(60*i))

First, we make i go from 0 to 5 so that every vertex will be a multiple of 
60 (0, 60, 120, and so on), as shown in Figure 6-7. Let’s change r to 100 and 
convert the degree numbers to radians so the code looks like Listing 6-3.

def setup():
    size(600,600)

def draw():
    translate(width/2,height/2)
    beginShape()
    for i in range(6):
        vertex(100*cos(radians(60*i)),
               100*sin(radians(60*i)))
    endShape(CLOSE)

Listing 6-3: Drawing a hexagon

Now that we’ve set r equal to 100 and 
converted the degrees to radians, when 
we run this code, we should see a hexa-
gon like in Figure 6-7.

In fact, we could create a function to 
make any polygon this way!

polygon.pyde

Figure 6-7: A hexagon built with a 
vertex() function and a for loop
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Drawing an Equilateral Triangle
Now let’s make an equilateral triangle using this function. Listing 6-4 shows 
a simpler way to make an equilateral triangle using looping instead of using 
square roots like we did in Chapter 5.

def setup():
    size(600,600)

def draw():
    translate(width/2,height/2)
    polygon(3,100) #3 sides, vertices 100 units from the center

def polygon(sides,sz):
    '''draws a polygon given the number
    of sides and length from the center'''
    beginShape()
    for i in range(sides):
    step = radians(360/sides)
        vertex(sz*cos(i * step),
               sz*sin(i * step))
    endShape(CLOSE)

Listing 6-4: Drawing an equilateral triangle

In this example, we create a polygon() function that draws a polygon 
given the number of sides (sides) and the size of the polygon (sz). The rota-
tion for each vertex is 360 divided by sides. For our hexagon, we rotate by 
60 degrees because there are six sides to a hexagon (360 / 6 = 60). The line 
polygon(3,100) calls the polygon function and passes two inputs: 3 for the 
number of sides and 100 for the distance from the center to the vertices.

Run this code and you should get what’s shown in Figure 6-8.

Figure 6-8: An equilateral triangle!

Now making regular polygons of any number of sides should be a breeze.  
No square roots necessary! Figure 6-9 shows some sample polygons you can 
make using the polygon() function.

polygon.pyde
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Figure 6-9: All the polygons you want!

Try updating the numbers in polygon(3,100) to see how the polygons 
change shape!

Making Sine Waves
Like Mitch Hedberg’s fan at the beginning of the chapter, sines and cosines 
are for rotating and oscillating. Sine and cosine functions make waves when 
the height of a point on a circle is measured over time. To make this more 
concrete, let’s create a circle to visualize making sine waves by putting a point 
(shown as a red ellipse) on the circumference of the circle. As this point trav-
els around the circle, its height over time will draw out a sine wave.

Start a new Processing sketch and save it as CircleSineWave.pyde. Create 
a big circle on the left side of the screen, like in Figure 6-10. Try it yourself 
before looking at the code.

Figure 6-10: The start of the sine wave sketch
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Listing 6-5 shows the code to make the sketch of a red point on the cir-
cumference of a big circle.

r1 = 100 #radius of big circle
r2 = 10  #radius of small circle
t = 0 #time variable

def setup():
    size(600,600)

def draw():
    background(200)
    #move to left-center of screen
    translate(width/4,height/2)
    noFill() #don't color in the circle
    stroke(0) #black outline
    ellipse(0,0,2*r1,2*r1)

    #circling ellipse:
    fill(255,0,0) #red
    y = r1*sin(t)
    x = r1*cos(t)
    ellipse(x,y,r2,r2)

Listing 6-5: Our circle and the point

First, we declare variables for the radii of the circles, and we use t to 
represent the time it takes to make the point move. In draw(), we set the 
background to gray(200), translated to the center of the screen, and draw 
the big circle with radius r1. Next, we draw the circling ellipse by using our 
polar coordinates for x and y.

To make the ellipse rotate around the circle, all we have to do is vary 
the number inside the trig functions (in this case, t). At the end of the 
draw() function, we simply make the time variable go up by a little bit, 
like this:

    t += 0.05

If you try to run this code right now, you’ll get an error message about 
local variable 't' referenced before assignment. Python functions have local 
variables, but we want the draw() function to use the global time variable t. 
Therefore, we have to add the following line to the beginning of the draw() 
function:

global t

Now you’ll see a red ellipse traveling along the circumference of the 
circle, as in Figure 6-11.

CircleSine 
Wave.pyde
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Figure 6-11: The red ellipse travels along  
the circumference of the big circle.

Now we need to choose a place over to the right of the screen to start 
drawing the wave. We’ll extend a green line from the red ellipse to, say, x = 
200. Add these lines to your draw() function right before t += 0.05. The full 
code for drawing the sine wave should look like Listing 6-6.

r1 = 100 #radius of big circle
r2 = 10  #radius of small circle
t = 0 #time variable

def setup():
    size(600,600)

def draw():
    global t
    background(200)
    #move to left-center of screen
    translate(width/4,height/2)
    noFill() #don't color in the circle
    stroke(0) #black outline
    ellipse(0,0,2*r1,2*r1)

    #circling ellipse:
    fill(255,0,0) #red
    y = r1*sin(t)
    x = r1*cos(t)
    ellipse(x,y,r2,r2)

    stroke(0,255,0) #green for the line
    line(x,y,200,y)
    fill(0,255,0) #green for the ellipse
    ellipse(200,y,10,10)

    t += 0.05

Listing 6-6: Adding a line to draw the wave

Here, we draw a green line on the same height (y-value) as the rotat-
ing red ellipse. This green line stays parallel to the horizontal, so as the 

CircleSine 
Wave.pyde
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red ellipse goes up and down, the green ellipse will be at the same height. 
When you run your program, you’ll see something like Figure 6-12.

Figure 6-12: Getting ready to draw the wave!

You can see that we’ve added a green ellipse that only measures how far 
up and down the red ellipse moves, nothing else.

Leaving a Trail
Now we want the green ellipse to leave a trail to show its height over  
time. Leaving a trail really means that we save all the heights and display  
them—every loop. To save a bunch of things, like numbers, letters, words, 
points, and so on, we need a list. Add this line to the variables we declared 
at the beginning of the program, before the setup() function:

circleList = []

This creates an empty list in which we’ll save the locations of the 
green ellipse. Add the circleList variable to the global line in the draw() 
function:

global t, circleList

After we calculate x and y in the draw() function, we need to add the 
y-coordinate to the circleList, but there are a couple of different ways to 
do this. You already know the append() function, but this adds the point at 
the end of the list. We could use Python’s insert() function to put the new 
points at the beginning of the list, like so:

circleList.insert(0,y)

However, the list is going to get bigger every loop. We could limit its 
length to 250 by adding the new value to the first 249 items already in the 
list, as shown in Listing 6-7.

    y = r1*sin(t)
    x = r1*cos(t)
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    #add point to list:
    circleList = [y] + circleList[:249]

Listing 6-7: Adding a point to a list and limiting the list to 250 points

The new line of code concatenates the list containing the y-value we just 
calculated and the first 249 items in the circleList. That 250-point list now 
becomes the new circleList.

At the end of the draw() function (before incrementing t), we’ll put 
in a loop that iterates over all the elements of the circleList and draws a 
new ellipse, to look like the green ellipse is leaving a trail. This is shown 
in Listing 6-8.

    #loop over circleList to leave a trail:
    for i in range(len(circleList)):
        #small circle for trail:
        ellipse(200+i,circleList[i],5,5)

Listing 6-8: Looping over the circle list and drawing an ellipse at each point in the list

This code uses a loop, with i going up from 0 to the length of the 
circleList and drawing an ellipse for each point in the list. The x-value 
starts at 200 and is incremented by whatever value i is. The y-value of the 
ellipse is the y-value we saved to the circleList.

When you run this, you’ll see something like Figure 6-13.

Figure 6-13: A sine wave!

You can see the wave being drawn out, leaving a green trail.

Using Python’s Built-in enumerate() 
Function
You can also draw an ellipse at each point in the list using Python’s built-in 
enumerate() function. It’s a handy and more “Pythonic” way of keeping track 
of the index and value of the items in a list. To see this in action, open a 
new file in IDLE and enter the code in Listing 6-9.
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>>> myList = ["I","love","using","Python"]
>>> for index, value in enumerate(myList):
        print(index,value)

0 I
1 love
2 using
3 Python

Listing 6-9: Learning to use Python’s enumerate() function

You’ll notice there are two variables (index and value) instead of just 
one (i). To use the enumerate() function in your circle list, you can use two 
variables to keep track of the iterator (i, the index) and the circle (c, the 
value), like in Listing 6-10.

    #loop over circleList to leave a trail:
    for i,c in enumerate(circleList):
        #small circle for trail:
        ellipse(200+i,c,5,5)

Listing 6-10: Using enumerate() to get the index and the value of every item in a list

The final code should look like what you see in Listing 6-11.

r1 = 100 #radius of big circle
r2 = 10  #radius of small circle
t = 0 #time variable
circleList = []

def setup():
    size(600,600)

def draw():
    global t, circleList
    background(200)
    #move to left-center of screen
    translate(width/4,height/2)
    noFill() #don't color in the circle
    stroke(0) #black outline
    ellipse(0,0,2*r1,2*r1)

    #circling ellipse:
    fill(255,0,0) #red
    y = r1*sin(t)
    x = r1*cos(t)
    #add point to list:
    circleList = [y] + circleList[:245]

    ellipse(x,y,r2,r2)
    stroke(0,255,0) #green for the line
    line(x,y,200,y)
    fill(0,255,0) #green for the ellipse
    ellipse(200,y,10,10)

CircleSine 
Wave.pyde
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    #loop over circleList to leave a trail:
    for i,c in enumerate(circleList):
        #small circle for trail:
        ellipse(200+i,c,5,5)

    t += 0.05

Listing 6-11: The final code for the CircleSineWave.pyde sketch

This is the animation that’s usually shown to beginning trig students, 
and you’ve made your own version!

Creating a Spirograph Program
Now that you know how to rotate circles and leave trails, let’s make a 
Spirograph-type model! Spirograph is a toy that’s made up of two overlap-
ping circular gears that slide against each other. The gears have holes you 
can put pens and pencils through to draw cool, curvy designs. Many people 
played with Spirograph as kids, drawing the designs by hand. But we can 
make Spirograph-type designs using a computer and the sine and cosine 
code you just learned.

First, start a new sketch in Processing called spirograph.pyde. Then add 
the code in Listing 6-12.

r1 = 300.0 #radius of big circle
r2 = 175.0 #radius of circle 2
r3 = 5.0   #radius of drawing "dot"
#location of big circle:
x1 = 0
y1 = 0
t = 0 #time variable
points = [] #empty list to put points in

def setup():
    size(600,600)

def draw():
    global r1,r2,x1,y1,t
    translate(width/2,height/2)
    background(255)
    noFill()
    #big circle
    stroke(0)
    ellipse(x1,y1,2*r1,2*r1)

Listing 6-12: Getting our big circle on the screen

We first put a big circle in the middle of the screen and create variables 
for the big circle, and then we put a smaller circle on its circumference, like 
the discs in a Spirograph set.

spirograph.pyde
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Drawing the Smaller Circle
Let’s place the smaller circle on the circumference of the big circle, as in 
Figure 6-14.

Figure 6-14: The two circles

Next, we’ll make the smaller circle rotate around “inside” the bigger 
circle, just like a Spirograph gear. Update the code in Listing 6-12 with the 
code in Listing 6-13 to draw the second circle.

    #big circle
    stroke(0)
    ellipse(x1,y1,2*r1,2*r1)

    #circle 2
    x2 = (r1 - r2)
    y2 = 0
    ellipse(x2,y2,2*r2,2*r2)

Listing 6-13: Adding the smaller circle

To make the smaller circle rotate around inside the bigger circle, we 
need to add the sine and cosine parts to the location of “circle 2” so it’ll 
oscillate.

Rotating the Smaller Circle
Finally, at the very end of the draw() function, we have to increment our 
time variable, t, as in Listing 6-14.

    #big circle
    stroke(0)
    ellipse(x1,y1,2*r1,2*r1)
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    #circle 2
    x2 = (r1 - r2)*cos(t)
    y2 = (r1 - r2)*sin(t)
    ellipse(x2,y2,2*r2,2*r2)
    t += 0.05

Listing 6-14: The code to make the circle rotate

This means circle 2 will oscillate up and down, and left and right, in a 
circular path inside the big circle. Run the code, and you should see circle 2 
spinning nicely! But how about that hole on the gear where the pen sits and 
draws the trail? We’ll create a third ellipse to represent that point. Its loca-
tion will be the second circle’s center plus the difference of the radii. The 
code for the “drawing dot” is shown in Listing 6-15.

    #drawing dot
    x3 = x2+(r2 - r3)*cos(t)
    y3 = y2+(r2 - r3)*sin(t)
    fill(255,0,0)
    ellipse(x3,y3,2*r3,2*r3)

Listing 6-15: Adding the drawing dot

When you run this code, you’ll see the drawing dot right on the edge 
of circle 2, rotating as if circle 2 were sliding along circle 1’s circumfer-
ence. Circle 3 (the drawing dot) has to be a certain proportion between 
the center of circle 2 and its circumference, so we need to introduce a 
proportion variable (prop) before the setup() function. Be sure to declare 
it as a global variable at the beginning of the draw() function, as you see in 
Listing 6-16.

prop = 0.9
--snip--

global r1,r2,x1,y1,t,prop

--snip--
x3 = x2+prop*(r2 - r3)*cos(t)
y3 = y2+prop*(r2 - r3)*sin(t)

Listing 6-16: Adding the proportion variable

Now we have to figure out how fast the drawing dot rotates. It only takes 
a little algebra to prove its angular velocity (how fast it spins around) is the 
ratio of the size of the big circle to the little circle. Note that the negative 
sign means the dot spins in the opposite direction. Change the x3 and y3 
lines in the draw() function to this:

x3 = x2+prop*(r2 - r3)*cos(-((r1-r2)/r2)*t)
y3 = y2+prop*(r2 - r3)*sin(-((r1-r2)/r2)*t)
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All that’s left is to save the dot (x3,y3) to a points list and draw lines 
between the points, just like we did in the wave sketch. Add the points list 
to the global line:

global r1,r2,x1,y1,t,prop,points

After drawing the third ellipse, put the points into a list. This is the  
same procedure we used in CircleSineWave.pyde earlier in the chapter. Finally,  
go through the list and draw lines between the points, as in Listing 6-17.

    fill(255,0,0)
    ellipse(x3,y3,2*r3,2*r3)
    #add points to list
    points = [[x3, y3]] + points[:2000]
    for i,p in enumerate(points): #go through the points list
        if i < len(points)-1: #up to the next to last point
            stroke(255,0,0) #draw red lines between the points
            line(p[0],p[1],points[i+1][0],points[i+1][1])

    t += 0.05

Listing 6-17: Graphing the points in the Spirograph

We used a similar trick for adding the points to the list in the circular 
wave example. We concatenated a list with the current point in it to a list 
with 2000 of the items in the circleList. This automatically limits the num-
ber of points we’re saving to the points list. Run this code and watch the 
program draw a Spirograph, as shown in Figure 6-15.

Figure 6-15: Drawing the Spirograph

You can change the size of the second circle (r2) and the position of the 
drawing dot (prop) to draw different designs. For example, the Spirograph 
in Figure 6-16 has r2 equal to 105 and prop equal to 0.8.
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Figure 6-16: Another Spirograph design,  
created by changing r2 and prop

So far, we’ve been making shapes oscillate up and down, or left and 
right, using sine and cosine, but what about making shapes oscillate in two 
different directions? We’ll try that next.

Making Harmonographs
In the 1800s, there was an invention called the harmonograph that was 
a table connected to two pendulums. When the pendulums swung, the 
attached pen would draw on a piece of paper. As the pendulums swung 
back and forth and died down (decayed), the patterns would change in 
interesting ways, as illustrated in Figure 6-17.

Figure 6-17: Harmonograph machine and design
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Using programming and a few equations, we can model how a har-
monograph draws its patterns. The equations to model the oscillation of 
one pendulum are

x = a * cos( ft + p)e–dt

y = a * sin( ft + p)e–dt

In these equations, x and y represent the horizontal and vertical 
displacement left/right and up/down distance) of the pen, respectively. 
Variable a is the amplitude (size) of the motion, f is the frequency of the 
pendulum, t is the elapsed time, p is the phase shift, e is the base of the nat-
ural logarithms (it’s a constant, around 2.7), and d is the decay factor (how 
fast the pendulum slows down). The time variable, t, will of course be the 
same in both of these equations, but all the other variables can be differ-
ent: the left/right frequency can be different from the up/down frequency, 
for example.

Writing the harmonograph Program
Let’s create a Python-Processing sketch that models the movement of a pen-
dulum. Create a new Processing sketch and call it harmonograph.pyde. The 
initial code is shown in Listing 6-18.

t = 0

def setup():
    size(600,600)
    noStroke()

def draw():
    global t

     a1,a2 = 100,200 #amplitudes
    f1,f2 = 1,2 #frequencies
    p1,p2 = 0,PI/2 #phase shifts
    d1,d2 = 0.02,0.02 #decay constants
    background(255)
    translate(width/2,height/2)

     x = a1*cos(f1*t + p1)*exp(-d1*t) 
    y = a2*cos(f2*t + p2)*exp(-d2*t)
    fill(0) #black
    ellipse(x,y,5,5)
    t += .1

Listing 6-18: The initial code for the harmonograph sketch

This is just the usual setup() and draw() functions with a time variable 
(t) and values for the amplitude (a1,a2), frequency (f1,f2), phase shift 
(p1,p2), and decay constants (d1,d2).

Then, starting at , we define a bunch of variables to plug into the two 
formulas for the location of the harmonograph drawing pen. The x = and 
y = lines  use those variables and calculate the coordinates for the ellipse.

harmonograph 
.pyde
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Now run this code, and you should see the circle moving, but what is it 
drawing? We need to put the points in a list and then graph all the points 
in the list. Right after declaring the t variable, create a list called points. 
The code so far is shown in Listing 6-19.

t = 0
points = []

def setup():
    size(600,600)
    noStroke()

def draw():
    global t,points
    a1,a2 = 100,200
    f1,f2 = 1,2
    p1,p2 = 0,PI/2
    d1,d2 = 0.02,0.02
    background(255)
    translate(width/2,height/2)
    x = a1*cos(f1*t + p1)*exp(-d1*t)
    y = a2*cos(f2*t + p2)*exp(-d2*t)
    #save location to points List
    points.append([x,y])
    #go through points list and draw lines between them
    for i,p in enumerate(points):
        stroke(0) #black
        if i < len(points) - 1:
            line(p[0],p[1],points[i+1][0],points[i+1][1])
    t += .1

Listing 6-19: The code to draw a harmonograph using lines between points

We start by defining the points list at 
the top of the file and adding points to 
the global variables in the draw() func-
tion. After calculating where x and y are, 
we add the line to add the point [x,y] 
to the points list. Finally, we go through 
the points list and draw a line from each 
point to the next one. Then we use 
Python’s enumerate() function and stop 
one point before the last one. This is so 
we don’t get an error message telling us 
the index is out of range when it tries 
to draw a line from the last point to the 
next one. Now when we run the code, we 
see the dot leave a trail behind it, as in 
Figure 6-18.

harmonograph 
.pyde

Figure 6-18: The harmonograph
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Notice if you comment out the decay part of the formulas, like this, the 
program will simply draw over the same lines:

    x = a1*cos(f1*t + p1)#*exp(-d1*t)
    y = a2*cos(f2*t + p2)#*exp(-d2*t)

The decay models the gradual decrease in a pendulum’s maximum  
amplitude, and it’s what creates the “scalloped” effect of so many harmono-
graph images. The first few times it’s cool to watch the code draw the design,  
but it takes a while. What if we could fill the points list all at once?

Filling the List Instantly
Instead of drawing the whole list at every frame, let’s come up with a way to 
fill the list instantly. We can cut the whole harmonograph code out of the 
draw() function and paste it into its own function, like in Listing 6-20.

def harmonograph(t):
    a1,a2 = 100,200
    f1,f2 = 1,2
    p1,p2 = PI/6,PI/2
    d1,d2 = 0.02,0.02
    x = a1*cos(f1*t + p1)*exp(-d1*t)
    y = a2*cos(f2*t + p2)*exp(-d2*t)
    return [x,y]

Listing 6-20: Separating out the harmonograph() function

Now in the draw() function, you just need a loop where you add a bunch 
of points for values of t, as in Listing 6-21.

def draw():
    background(255)
    translate(width/2,height/2)
    points = []
    t = 0
    while t < 1000:
        points.append(harmonograph(t))
        t += 0.01

    #go through points list and draw lines between them
    for i,p in enumerate(points):
        stroke(0) #black
        if i < len(points) - 1:
            line(p[0],p[1],points[i+1][0],points[i+1][1])

Listing 6-21: The new draw() function, which calls the harmonograph() function

Run this code and you’ll instantly see a complete harmonograph! 
Because we changed the size of the ellipses and the phase shifts, this one 
looks different, as you can see in Figure 6-19. Change each of the values 
yourself and see how this changes the design!
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Figure 6-19: Using a different formula  
to make the harmonograph

Two Pendulums Are Better Than One
We can add another pendulum to make more complicated designs by add-
ing another term to each formula, like this:

    x = a1*cos(f1*t + p1)*exp(-d1*t) + a3*cos(f3*t + p3)*exp(-d3*t)
    y = a2*sin(f2*t + p2)*exp(-d2*t) + a4*sin(f4*t + p4)*exp(-d4*t)

All this does is add identical code to each line, with a few numbers 
changed, to simulate more than one pendulum in each direction. Of 
course, you have to create more variables and give them values. In 
Listing 6-22 are my suggestions for copying one of the designs I found 
at http://www.walkingrandomly.com/?p=151.

def harmonograph(t):
    a1=a2=a3=a4 = 100
    f1,f2,f3,f4 = 2.01,3,3,2
    p1,p2,p3,p4 = -PI/2,0,-PI/16,0
    d1,d2,d3,d4 = 0.00085,0.0065,0,0
    x = a1*cos(f1*t + p1)*exp(-d1*t) + a3*cos(f3*t + p3)*exp(-d3*t)
    y = a2*sin(f2*t + p2)*exp(-d2*t) + a4*sin(f4*t + p4)*exp(-d4*t)
    return [x,y]

Listing 6-22: The harmonograph code for the design in Figure 6-20

In Listing 6-22, all we changed were the constants for a, f, p, and d to 
make a completely different design. If you add stroke(255,0,0) to the code 
before drawing the lines, you’ll make the lines red, as shown in Figure 6-20.
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Figure 6-20: A complete harmonograph!

Listing 6-23 shows the final code for harmonograph.pyde.

t = 0
points = []

def setup():
    size(600,600)
    noStroke()

def draw():
    background(255)
    translate(width/2,height/2)
    points = []
    t = 0
    while t < 1000:
        points.append(harmonograph(t))
        t += 0.01

    #go through points list and draw lines between them
    for i,p in enumerate(points):
        stroke(255,0,0) #red
        if i < len(points) - 1:
            line(p[0],p[1],points[i+1][0],points[i+1][1])

def harmonograph(t):
    a1=a2=a3=a4 = 100
    f1,f2,f3,f4 = 2.01,3,3,2
    p1,p2,p3,p4 = -PI/2,0,-PI/16,0
    d1,d2,d3,d4 = 0.00085,0.0065,0,0
    x = a1*cos(f1*t + p1)*exp(-d1*t) + a3*cos(f3*t + p3)*exp(-d3*t)
    y = a2*sin(f2*t + p2)*exp(-d2*t) + a4*sin(f4*t + p4)*exp(-d4*t)
    return [x,y]

Listing 6-23: The final code for the harmonograph sketch

harmonograph 
.pyde
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Summary
Students in trigonometry class have to solve for unknown side lengths or 
angle measurements in triangles. But now you know the real use of sines and 
cosines is to rotate and transform points and shapes to make Spirograph and 
harmonograph designs! In this chapter, you saw how useful it is to save points 
to a list and then loop through the list to draw lines between the points. We 
also revisited some Python tools like enumerate() and vertex().

In the next chapter, we’ll use sines and cosines and the rotation ideas 
you learned in this chapter to invent a whole new kind of number! We’ll 
also rotate and transform grids using these new numbers, and we’ll create 
complex (pun intended) works of art using the locations of pixels!



7
Complex Numbers

    Imaginary numbers are a fine and wonderful refuge of the  
divine spirit, almost an amphibian between being and non-being. 

—Gottfried Leibniz

Numbers containing the square root of –1 
have been given a bad name in math classes. 

We call the square root of –1 an imaginary 
number, or i. Calling something “imaginary” makes it 
seem like it doesn’t exist or like there’s no real purpose 
for it. But imaginary numbers do exist, and they have 
a lot of real-world applications in fields such as electro
magnetism, for instance.

In this chapter, you get a taste of the kinds of beautiful art you can 
create using complex numbers, which are numbers that have both a real and 
imaginary part written in the form of a + bi, where a and b are real num-
bers and i is the imaginary number. Because a complex number holds two 
different bits of information, real and imaginary, you can use it to turn 
one-dimensional objects into two-dimensional ones. Using Python, manipu-
lating these numbers becomes easier, and we can use them for some very 
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magical purposes. In fact, we use complex numbers to explain behaviors of 
electrons and photons, and what we think of as natural, “normal” numbers 
are actually complex numbers whose imaginary parts equal zero!

We begin this chapter by reviewing how to plot complex numbers in the 
complex coordinate plane. You also learn how to express complex numbers 
as Python lists and then write functions to add and multiply them. Finally, 
you learn how to find the magnitude, or absolute value, of a complex num-
ber. Knowing how to manipulate complex numbers will come in handy 
when we write the programs for creating the Mandelbrot set and the Julia 
set later in this chapter.

The Complex Coordinate System
As Frank Farris summed up in his brilliant and beautifully illustrated 
book Creating Symmetry, “Complex numbers . . . are simply a way to express 
the Cartesian ordered pair of real numbers, (x, y), compactly as a single 
number z = x + iy.” We all know the Cartesian coordinate system uses x to 
represent the horizontal axis and y to represent the vertical axis, but we 
never add or multiply those numbers; they just represent a location.

In contrast, complex numbers not only can represent locations but they 
can also be operated on like any other numbers. It helps to look at complex 
numbers geometrically. Let’s change our coordinate system a little so that 
now the real numbers are on the horizontal axis and the imaginary num-
bers are on the vertical axis, as in Figure 7-1.

Imaginary axis

a + bib

–b

a

a – bi

i

Real axis R

Figure 7-1: The complex coordinate system

Here, you can see where a + bi and a – bi would be located on a complex 
coordinate system.
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Adding Complex Numbers
Adding and subtracting complex numbers are the same as with real num-
bers: you start at one number and take the number of steps represented by 
the other number. For example, to add the numbers 2 + 3i and 4 + i, you 
would simply add the real parts and the imaginary parts of the numbers 
separately to get 6 + 4i, as shown in Figure 7-2.

6 + 4i

4 + 1i

+3

+2

2 + 3i

Figure 7-2: Adding two complex numbers

As you can see, we start at 4 + i. To add 2 + 3i, we move two units in the 
positive real direction and three units in the positive imaginary direction, 
and end up at 6 + 4i.

Let’s write the function for adding two complex numbers using the 
code in Listing 7-1. Open a new file in IDLE and name it complex.py.

def cAdd(a,b):
    '''adds two complex numbers'''
    return [a[0]+b[0],a[1]+b[1]]

Listing 7-1: The function for adding two complex numbers

Here, we define the function called cAdd(), giving it two complex num-
bers in list form [x,y], which returns another list. The first term of the list, 
a[0]+b[0], is the sum of the first terms of the complex numbers (index 0) 
we provide. The second term, a[1]+b[1], is the sum of the second terms 
(index 1) of the two complex numbers. Save and run this program.

Now let’s test the program using the complex numbers u = 1 + 2i 
and v = 3 + 4i. Plug them into our cAdd() function in the interactive shell, 
like this:

>>> u = [1,2]
>>> v = [3,4]
>>> cAdd(u,v)
[4, 6]
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You should get 4 + 6i, which is the sum of the complex numbers  
1 + 2i and 3 + 4i. Adding complex numbers is just like taking steps in  
the x-direction and then in the y-direction, and we’ll see this function 
again when we want to create beautiful designs like the Mandelbrot set  
and the Julia set.

Multiplying a Complex Number by i
But adding complex numbers isn’t the most useful thing. Multiplying them 
is. For example, multiplying a complex number by i rotates the complex 
number around the origin by 90 degrees. In the complex coordinate sys-
tem, multiplying a real number by –1 would rotate it 180 degrees around 
the origin, as shown in Figure 7-3.

–1 1

Figure 7-3: Multiplying a number by –1 as a 180-degree rotation

As you can see, 1 times –1 equals –1, which rotates 1 over to the other 
side of zero.

Because multiplying a complex number by –1 is the same as a 180 degree  
rotation, the square root of –1 would represent a 90 degree rotation, as 
shown in Figure 7-4.

–1

1i

1

Figure 7-4: Multiplying a number by i as a 90-degree rotation
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This means that i represents the square root of –1, the number that 
rotates us halfway to –1 when we multiply it by 1. Multiplying the result (i) 
by i again causes us to rotate 90 degrees more, and we end up with –1. This 
confirms the definition of the square root because we are able to get to the 
negative value of a number by multiplying it by the same number (i) twice.

Multiplying Two Complex Numbers
Let’s see what happens when we multiply two complex numbers. Just like 
you would multiply two binomial expressions, you can multiply two complex 
numbers algebraically using the FOIL method:

(a + bi)(c + di)

= ac + adi + bci + bdi 2

= ac + (ad + bc)i + bd(–1)

= ac – bd + (ad + bc)i

= [ac – bd, ad + bc]

To make this easier, let’s translate this process into a cMult() function, as 
shown in Listing 7-2.

def cMult(u,v):
    '''Returns the product of two complex numbers'''
    return [u[0]*v[0]-u[1]*v[1],u[1]*v[0]+u[0]*v[1]]

Listing 7-2: Writing the function for multiplying two complex numbers

To test the cMult() function, try multiplying u = 1 + 2i by v = 3 + 4i. Enter 
the following in the interactive shell:

>>> u = [1,2]
>>> v = [3,4]
>>> cMult(u,v)
[-5, 10]

As you can see, the product is –5 + 10i.
Recall from the previous section that multiplying a complex number 

by i is the same as performing a 90 degree rotation about the origin of the 
complex coordinate system. Let’s try it now with v = 3 + 4i:

>>> cMult([3,4],[0,1])
[-4, 3]

The result is –4 + 3i. When we graph 3 + 4i and –4 + 3i, you should see 
something like what’s shown in Figure 7-5.
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−4 + 3i
3 + 4i

Figure 7-5: Rotating a complex number  
90 degrees by multiplying by i

As you can see, –4 + 3i is 90 degrees rotation from 3 + 4i.
Now that you know how to add and multiply complex numbers, let’s go 

over how to find the magnitude of a complex number, which you’ll use to 
create the Mandelbrot set and Julia set.

Writing the magnitude() Function
The magnitude, or absolute value, of a complex number is how far the complex 
number is away from the origin on the complex coordinate plane. Now let’s 
create a magnitude function using the Pythagorean theorem. Return to 
complex.py and make sure to import the square root function from Python’s 
math module at the top of the file:

from math import sqrt

The magnitude() function is just the Pythagorean theorem:

def magnitude(z):
    return sqrt(z[0]**2 + z[1]**2)

Let’s find the magnitude of the complex number 2 + i:

>>> magnitude([2,1])
2.23606797749979

Now you’re ready to write a Python program that colors the pixels on 
the display window according to how large the complex numbers get. The 
unexpected behavior of complex numbers will result in an infinitely compli-
cated design that’s impossible to replicate without a computer!

Creating the Mandelbrot Set
To create the Mandelbrot set, we’re going to represent each pixel on our 
display window as a complex number, z, then repeatedly square the value, 
and add the original number z.

zn+1 = zn
2 + c
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Then, we’re going to do the same to the output, again and again. If 
the number keeps getting larger, we’ll color the pixel corresponding to the 
original complex number according to how many iterations it takes for its 
magnitude to get bigger than a certain number, like 2. If the number keeps 
getting smaller, we’ll give it a different color.

You already know that multiplying a number by a number larger than 1 
makes the original number larger. A number multiplied by 1 stays the same, 
and multiplying by a number smaller than 1 makes the original number 
smaller. Complex numbers follow a similar pattern, which you can repre-
sent on the complex plane as shown in Figure 7-6.

Smaller

LargerSame i

–i

–1 1

Figure 7-6: Visualizing what happens when you multiply complex numbers

If we were only multiplying complex numbers, the Mandelbrot set 
would look like Figure 7-6, a circle. But not only is the complex number 
squared, a number is added afterward. This will change the circle into an 
infinitely complicated and surprisingly beautiful figure. But before we can 
do that, we need to operate on every point on the grid!

Depending on the result of the operation, some will get smaller and 
converge to zero. Others will get bigger and diverge. Getting close to a number 
in math terms is called converging. Getting too big in math terms is called 
diverging. For our purposes, we’ll color every pixel on the grid according to 
how many iterations it takes it to get too big and fly off the grid. The formula 
we plug the number into is similar to our cMult() function from Listing 7-2, 
with an extra step. We square the number, add the original complex number 
to the square, and then repeat that process until it diverges. If the magnitude 
of the squared complex number gets larger than 2, it means it has diverged 
(we can pick any number we want to be the maximum). If it never gets bigger 
than 2, we’ll leave it black.

For example, let’s try the Mandelbrot set operation manually using the 
complex number z = 0.25 + 1.5i:

>>> z = [0.25,1.5]
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We square z by multiplying it by itself and saving the result to the 
variable z2:

>>> z2 = cMult(z,z)
>>> z2
[-2.1875, 0.75]

Then we add z2 and z using the cAdd() function:

>>> cAdd(z2,z)
[-1.9375, 2.25]

We have a function we can use to test if this complex number is more 
than two units away from the origin using the Pythagorean theorem. Let’s 
use our magnitude() function from earlier to check if the magnitude of the 
complex number we got is greater than 2:

>>> magnitude([-1.9375,2.25])
2.969243380054926

We set the rule as follows: “If a number gets more than two units away 
from the origin, it diverges.” Therefore, the complex number z = 0.25 + 1.5i 
diverges after only 1 iteration!

This time, let’s try with z = 0.25 + 0.75i, as shown next:

>>> z = [0.25,0.75]
>>> z2 = cMult(z,z)
>>> z3 = cAdd(z2,z)
>>> magnitude(z3)
1.1524430571616109

Here, we repeated the same process as before, except this time we need 
to add z2 and z again, saving it as z3. It’s still within two units of the origin, so 
let’s replace z with this new value and put it back through the process again. 
First, we create a new variable, z1, that we can use to square the original z:

>>> z1 = z

Let’s repeat the process using the newest value of our complex number, 
z3. We’ll square it, add z1, and find the magnitude:

>>> z2 = cMult(z3,z3)
>>> z3 = cAdd(z2,z1)
>>> magnitude(z3)
0.971392565148097

Because 0.97 is smaller than 1.152, we might guess that the result is get-
ting smaller and therefore doesn’t look like it’s going to diverge, but we’ve 
only repeated the process twice. Doing this by hand is laborious! Let’s auto-
mate the steps so that we can repeat the process quickly and easily. We’ll 
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use the squaring, adding, and finding the magnitude functions to write a 
function called mandelbrot() that automates the checking process so that 
we can visually separate the diverging numbers from the converging ones. 
What design do you think it’ll make? A circle? An ellipse? Let’s find out!

Writing the mandelbrot() Function
Let’s open a Processing sketch and call it mandelbrot.pyde. The Mandelbrot 
set we’re trying to re-create here is named after the mathematician Benoit 
Mandelbrot, who first explored this process using computers in the 1970s. 
We’ll repeat the squaring and adding process a maximum number of times, 
or until the number diverges, as shown in Listing 7-3.

def mandelbrot(z,num):
    '''runs the process num times
    and returns the diverge count '''

     count=0
    #define z1 as z
    z1=z
    #iterate num times

     while count <= num:
        #check for divergence
        if magnitude(z1) > 2.0:
        #return the step it diverged on
            return count
        #iterate z

         z1=cAdd(cMult(z1,z1),z)
        count+=1
    #if z hasn't diverged by the end
    return num

Listing 7-3: Writing the mandelbrot() function to check how many steps a complex  
number takes to diverge

The mandelbrot() function takes a complex number, z, and a number 
of iterations as parameters. It returns the number of times it took for z to 
diverge, and if it never diverges, it returns num (at the end of the function). 
We create a count variable  to keep track of the iterations, and we create a 
new complex number, z1, that gets squared and so on without changing z.

We start a loop to repeat the process while the count variable is less 
than num . Inside the loop we check the magnitude of z1 to see whether z1 
has diverged, and if it has, we return count and stop the code. Otherwise, 
we square z1 and add z to it , which is the definition of our operation on 
complex numbers. Finally, we increment the count variable by 1 and loop 
through the process again.

Using the mandelbrot.pyde program, we can plug in our complex number 
z = 0.25 + 0.75i and check the magnitude after every iteration. Here are the 
magnitudes after each loop:

0.7905694150420949
1.1524430571616109
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0.971392565148097
1.1899160852817983
2.122862368187107

The first number is the magnitude of z = 0.25 + 0.75i before any 
iterations:

0.252 + 0.752 = 0.790569…

You can see that it diverges after four iterations because it gets bigger 
than two units away from the origin. Figure 7-7 graphs each step so you can 
visualize them.

6

5

43

2
1

Figure 7-7: Running the complex number 0.25 + 0.75i  
through the mandelbrot() function until it diverges

The red circle has a radius of two units and represents the limit we put 
on the complex number diverging. When squaring and adding in the origi-
nal value of z, we cause the locations of the numbers to rotate and translate 
and eventually to get further away from the origin than our rule allows.

Let’s use some of the graphing tricks we learned in Chapter 4 to graph 
points and functions in the Processing display. Copy and paste all the com-
plex number functions from complex.py (cAdd, cMult, and magnitude) to the 
bottom of mandelbrot.pyde. We’ll use Processing’s println() function to print 
to the console the number of steps it takes a point to diverge. Add the code 
in Listing 7-4 before the mandelbrot() code you wrote in Listing 7-3.

#range of x-values
xmin = -2
xmax = 2

#range of y-values
ymin = -2
ymax = 2

mandelbrot 
.pyde
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#calculate the range
rangex = xmax - xmin
rangey = ymax - ymin

def setup():
    global xscl, yscl
    size(600,600)
    noStroke()
    xscl = float(rangex)/width
    yscl = float(rangey)/height

def draw():
    z = [0.25,0.75]
    println(mandelbrot(z,10))

Listing 7-4: The beginning of the Mandelbrot code

We calculate the range of real values (x) and imaginary values (y) at 
the top of the program. Inside setup(), we calculate the scale factors (xscl 
and yscl) we need to multiply the pixels by (in this case, 0 to 600) in order 
to get the complex numbers (in this case, between –2 and 2). In the draw() 
function we define our complex number z, and then we feed it into the man-
delbrot() function and print out what we get. Nothing will appear on the 
screen yet, but in the console, you’ll see the number 4 printed out. Now 
we’ll go through every pixel on the screen and put their location into the 
mandelbrot() function and display the results.

Let’s return to our mandelbrot() function in the mandelbrot.pyde program. 
Repeating the multiplication and addition operations on a pixel’s location 
returns a number, and if the number never diverges, we color the pixel 
black. The entire draw() function is shown in Listing 7-5.

def draw():
    #origin in center:
    translate(width/2,height/2)
    #go over all x's and y's on the grid

    u for x in range(width):
        for y in range(height):
         v z = [(xmin + x * xscl) ,
                 (ymin + y * yscl) ]
            #put it into the mandelbrot function

            w col=mandelbrot(z,100)
            #if mandelbrot returns 0
            if col == 100:
                fill(0) #make the rectangle black
            else:
                fill(255) #make the rectangle white
            #draw a tiny rectangle
            rect(x,y,1,1)

Listing 7-5: Looping over all the pixels in the display window

mandelbrot 
.pyde
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Going over all the pixels requires a nested loop for x and y . We 
declare complex number z to be x + iy . Calculating the complex number 
z from the window coordinates is a little tricky. We start at the xmin value, for 
instance, and add the number of steps we’re taking multiplied by the scale 
factor. We’re not going between 0 and 600, which is the size of the display 
window in pixels; we’re just going between –2 and 2. We run that through 
the mandelbrot() function .

The mandelbrot() function squares and adds the complex number 
100 times and returns the number of iterations it took for the number to 
diverge. This number is saved to a variable called col since color is already a 
keyword in Processing. The number in col determines what color we make 
that pixel. For now, let’s just get a Mandelbrot set on the screen by making 
every pixel that never diverges black. Otherwise, we’ll make the rectangle 
white. Run this code and you should see the famous Mandelbrot set, like in 
Figure 7-8.

Figure 7-8: The famous Mandelbrot set

Isn’t it amazing? And it’s definitely unexpected: just by squaring and 
adding complex numbers, and coloring the pixels according to how large 
the numbers get, we’ve drawn an infinitely complicated design that could 
never have been imagined without a computer! You can zoom in on specific 
spots in the design by changing the range of x and y, like in Listing 7-6.

#range of x-values
xmin = -0.25
xmax = 0.25

#range of y-values
ymin = -1
ymax = -0.5

Listing 7-6: Changing the range of values to zoom in on the Mandelbrot set
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Now the output should look like Figure 7-9.

  

Figure 7-9: Zooming in on the Mandelbrot set!

I highly recommend that you investigate videos people have posted on 
the internet of zooming in on the Mandelbrot set.

Adding Color to the Mandelbrot Set
Now let’s add some color to your Mandelbrot design. Let Processing know 
you’re using the HSB (Hue, Saturation, Brightness) scale, not the RGB 
(Red, Green, Blue) scale, by adding the following code:

def setup():
    size(600,600)
    colorMode(HSB)
    noStroke()

Then color the rectangles according to the value returned by the 
mandelbrot() function:

            if col == 100:
                fill(0)
            else:
                fill(3*col,255,255)
            #draw a tiny rectangle
            rect(x*xscl,y*yscl,1,1)

In the fill line, we multiply the col variable (the number of iterations 
it takes the complex number to diverge) by 3 and make that the H (hue) 
component of the HSB color mode. Run this code, and you should see a 
nicely colored Mandelbrot set like in Figure 7-10.
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Figure 7-10: Using divergence values to color the  
Mandelbrot set

You can see the points that diverge every step, from the dark orange 
circle to lighter orange ovals that become the black Mandelbrot set. You can 
experiment with other colors too. For example, change the fill line to the 
following:

                fill(255-15*col,255,255)

Run this update, and you’ll see more blue in the picture, as shown in 
Figure 7-11.

Figure 7-11: Experimenting with different colors in the  
Mandelbrot set
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Next, we’ll explore a related design called the Julia set, which can 
change its appearance depending on the inputs we give it.

Creating the Julia Set
In the Mandelbrot set, to determine the color of each point, we started with 
the point as a complex number z and then repeatedly squared the value 
and added the original number z. The Julia set is constructed just like the 
Mandelbrot set, but after squaring the complex number, instead of adding 
the original complex number of that point, we keep adding a constant com-
plex number, c, which has the same value for all points. By starting with dif-
ferent values for c, we can create lots of different Julia sets.

Writing the julia() Function
The Wikipedia page for the Julia set gives a bunch of examples of beautiful 
Julia sets and the complex numbers to use to create them. Let’s try to create 
one using c = –0.8 + 0.156i. We can easily modify our mandelbrot() function 
to be a julia() function. Save your mandelbrot.pyde sketch as julia.pyde and 
change the code for the mandelbrot() function so it looks like Listing 7-7.

def julia(z,c,num):
    '''runs the process num times
    and returns the diverge count'''
    count = 0
    #define z1 as z
    z1 = z
    #iterate num times
    while count <= num:
        #check for divergence
        if magnitude(z1) > 2.0:
            #return the step it diverged on
            return count
        #iterate z

         z1 = cAdd(cMult(z1,z1),c)
        count += 1
    return num

Listing 7-7: Writing the julia() function

It’s pretty much the same as the Mandelbrot function. The only line 
of code that changed is , where z is changed to c. The complex number c 
will be different from z, so we’ll have to pass that to the julia() function in 
draw(), as shown in Listing 7-8.

def draw():
    #origin in center:
    translate(width/2,height/2)
    #go over all x's and y's on the grid

julia.pyde
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    x = xmin
    while x < xmax:
        y = ymin
        while y < ymax:
            z = [x,y]

             c = [-0.8,0.156]
            #put it into the julia program
            col = julia(z,c,100)
            #if julia returns 100
            if col == 100:
                fill(0)
            else:
                #map the color from 0 to 100
                #to 0 to 255
                #coll = map(col,0,100,0,300)
                fill(3*col,255,255)
            rect(x*xscl,y*yscl,1,1)
            y += 0.01
        x += 0.01

Listing 7-8: Writing the draw() function for the Julia set

Everything is the same as in mandelbrot.pyde until we declare the com-
plex number c  we’ve chosen for this Julia set. Just below that we add c to 
the arguments in the call to the julia() function. When you run it, you get a 
design much different from the Mandelbrot set, as shown in Figure 7-12.

Figure 7-12: The Julia set for c = –0.8 + 0.156i

The great thing about the Julia set is you can change the input c and 
get a different output. For example, if you change c to 0.4 + 0.6i, you should 
see something like Figure 7-13.
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Figure 7-13: The Julia set for c =  –0.4 + 0.6i

Exercise 7-1: Drawing a Julia Set

Draw a Julia set with c = 0.285 + 0.01i.

Summary
In this chapter, you learned how complex numbers get plotted on the com-
plex coordinate plane and how they allow you to perform rotations—and 
you followed their logic down the rabbit hole, learning how to add and mul-
tiply them. You used what you learned to write the mandelbrot() and julia() 
functions to transform complex numbers into incredible art that never 
would have been possible without the creation of complex numbers and 
the invention of computers.

As you’ve seen, these numbers are anything but imaginary! Hopefully, 
when you think of complex numbers now, they’ll remind you of the beauti-
ful designs you can make with numbers and code.





8
Using Matrices for 

Computer Graphics and 
Systems of Equations

“I am large, I contain multitudes.” 
—Walt Whitman, from “Song of Myself”

In math class, students are taught how to 
add, subtract, and multiply matrices with-

out ever learning how they’re really used. This 
is too bad because matrices allow us to easily group 
together large collections of items and simulate coor-
dinates of an object from multiple perspectives, mak-
ing them useful in machine learning and absolutely 
crucial to 2D and 3D graphics. In other words, with-
out matrices, there would be no video games!

To understand how matrices are useful for creating graphics, you first 
need to understand how to perform arithmetic on them. In this chapter, 
you review how to add and multiply matrices so that you can create and 
transform 2D and 3D objects in Processing. Finally, you learn how to solve 
large systems of equations instantaneously using matrices.
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What Is a Matrix?
A matrix is a rectangular array of numbers that have specific rules for oper-
ating on them. Figure 8-1 shows what a matrix looks like.

m-by-n matrix
n columns       j changes      

m 
rows

a i , j

i 

c
h
a
n
g
e
s

a1.1

a2.1

a3.1

a1.2

a2.2

a3.2

a1.3

a2.3

a3.3

. . .

. . .

. . .

. . .. .
 .

. .
 .

. .
 .

Figure 8-1: Matrices have m rows and n columns

Here, the numbers are arranged in rows and columns, where m and n 
represent the total number of rows and columns, respectively. You can have 
a 2 × 2 matrix, with two rows and two columns, like this:

1
–9

5
2

⎡
⎣

⎤
⎦

Or you can have a 3 × 4 matrix with three rows and four columns, 
like this:

4
1

–12

–3
0
2

11
7
5

–13
20
6

⎡
⎢
⎣

⎤
⎥
⎦

Traditionally, we use the letter i to represent the row number and 
the letter j to represent the column number. Note that the numbers in a 
matrix aren’t being added to each other; they’re just arranged together. 
This is similar to how we arrange coordinates using the format (x,y), but 
you don’t operate on coordinates. For example, a point at (2,3) doesn’t 
mean you add or multiply 2 and 3; they just sit next to each other and tell 
you where the point is located on a graph. But as you’ll soon see, you can 
add, subtract, and multiply two matrices just like you can normal numbers.

Adding Matrices
You can only add and subtract matrices of the same dimensions (size and 
shape), which means that you can add or subtract only the corresponding 
elements. Here is an example of how to add two 2 × 2 matrices:

1
3

+ =
–2
4

⎡
⎣

⎤
⎦

5
–7

6
8

⎡
⎣

⎤
⎦

6
–4

4
12

⎡
⎣

⎤
⎦
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For example, we add 1 and 5 because they are corresponding elements 
in their matrices, meaning they’re in the same spot: the first row, first col-
umn. Thus, we get 6 in the top-left corner. Adding the corresponding ele-
ments 3 and –7 gives us –4, as you can see in the bottom-left corner of the 
result.

That’s easy enough to put into a Python function since you can save a 
matrix to a variable. Open a new file in IDLE and save it as matrices.py. Then 
write the code in Listing 8-1.

A = [[2,3],[5,-8]]
B = [[1,-4],[8,-6]]

def addMatrices(a,b):
    '''adds two 2x2 matrices together'''
    C = [[a[0][0]+b[0][0],a[0][1]+b[0][1]],
         [a[1][0]+b[1][0],a[1][1]+b[1][1]]]
    return C

C = addMatrices(A,B)
print(C)

Listing 8-1: Writing the matrices.py program to add matrices

Here, we declare a couple of 2 × 2 matrices, A and B, using Python’s list 
syntax. For example, A is a list that contains two lists, each of which has two 
elements. We then declare a function called addMatrices(), which takes two 
matrices as arguments. Finally, we create another matrix, C, which adds each 
element in the first matrix to the corresponding element in the second.

When you run this, the output should be something like this:

[[3, -1], [13, -14]]

This shows the 2 × 2 matrix that results from adding matrices A and B:

3
13

–1
–14

⎡
⎣

⎤
⎦

Now that you know how to add matrices, let’s try multiplying them, 
which will let you transform coordinates.

Multiplying Matrices
Multiplying matrices is much more useful than adding them. For example, 
you can rotate a 2D or 3D shape by multiplying a matrix of (x,y) coordi-
nates by a transformation matrix, as you’ll do later in this chapter.

When multiplying matrices, you don’t simply multiply the correspond-
ing elements. Instead, you multiply the elements in each row of the first 
matrix by the corresponding elements in each column of the second matrix. 
This means that the number of columns in the first matrix has to equal the 

matrices.py
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number of rows in the second. Otherwise, they can’t be multiplied. For 
example, the following two matrices can be multiplied:

1
3

2
4

5
6

First, we multiply the elements in the first row of the first matrix (1 and 2)  
with the elements in only the first column of the second matrix (5 and 6). 
The sum of those products would become the element in the first row and 
column of the resultant matrix. We do the same for the second row of the 
first matrix, and so on. It would look like this:

1
3

2
4

=
5
6

1 × 5 + 2 × 6
3 × 5 + 4 × 6

=
17
39

Here is the general formula for multiplying a 2 × 2 matrix by a 2 × 2 
matrix:

a
c

b
d

=
e
g

f
h

ae + bg
ce + dg

af + bh
ch + dh

We can also multiply the following two matrices, because A is a 1 × 4 
matrix and B is a 4 × 2 matrix:

A = [ 1   2   –3   –1 ]

4
–2
6
1

B =

–1
3
–3
0

What will the resultant matrix look like? Well, the first row of A will be 
multiplied by the first column of B to become the number in the first row, 
first column of the result. It works the same way for the first row, second col-
umn. The resultant matrix will be a 1 × 2 matrix. You can see when you’re 
multiplying matrices, the elements in the rows of the first matrix are being 
matched up with the elements in the columns of the second matrix. That 
means the resultant matrix will have the number of rows of the first matrix 
and the number of columns of the second matrix.

Now we’ll directly multiply the elements in matrix A by their corre-
sponding elements in matrix B and add all the products.

AB = [ 1 × 4 + 2 × −2 + −3 × 6 + −1 × 1  1 × −1 + 2 × 3 + −3 × −3 + −1 × 0 ]

AB = [ –19  14 ]

This might seem like a complicated process to have to automate, but as 
long as we have the matrices as input, we can easily find out the number of 
columns and rows.

Listing 8-2 shows a matrix multiplication program in Python that requires  
a bit more work than the addition code. Add this code to matrices.py.
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def multmatrix(a,b):
    #Returns the product of matrix a and matrix b
    m = len(a) #number of rows in first matrix
    n = len(b[0]) #number of columns in second matrix
    newmatrix = []
    for i in range(m):
        row = []
        #for every column in b
        for j in range(n):
            sum1 = 0
            #for every element in the column
            for k in range(len(b)):
                sum1 += a[i][k]*b[k][j]
            row.append(sum1)
        newmatrix.append(row)
    return newmatrix

Listing 8-2: Writing a matrix multiplication function

In this example, the multmatrix() function takes two matrices as parame-
ters: a and b. Right at the beginning of the function we declare m, the number  
of rows in matrix a, and n, the number of columns in matrix b. We create an 
empty list called newmatrix as the resultant matrix. The “row times column” 
operation will occur m times, so the first loop is for i in range(m), making i 
repeat m number of times. For every row, we add an empty row to newmatrix 
so we can fill the row with n elements. The next loop makes j repeat n times 
because there are n columns in b. The tricky part will be matching up the 
correct elements, but it just takes a little thinking.

Just think of what elements will be multiplied together. When j = 0, we 
multiply the elements in the ith row of a by the first column (index 0) of 
b, and the product becomes the first column in the new row of newmatrix, 
as you saw in the previous example. Then, when j = 1, the same happens 
to the ith row of a and the second column (index 1) of b. That product 
becomes the second column in the new row of newmatrix. This process gets 
repeated for every row of a.

For every element in the row in matrix a, there’s a corresponding ele-
ment in the column in matrix b. The number of columns of a and the num-
ber of rows of b are the same, but we can express it as len(a[0]) or len(b). I 
chose len(b). So in the third loop, k will repeat len(b) times. The first ele-
ment in the ith row of a and the first element in the jth column of b will be 
multiplied together, which can be written like this:

a[i][0] * b[0][j]

The same for the second element in the ith row of a and the second ele-
ment in the jth column of b:

a[i][1] * b[1][j]
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So for every column (in the j loop), we’ll start a running sum at 0 
(because sum is already a Python keyword, I use sum1), and it will increment 
for every one of the k elements:

sum1 += a[i][k] * b[k][j]

It doesn’t look like much, but that’s the line that’s going to keep track 
of and multiply all the corresponding elements! After going through all k 
elements (after the k loop is finished), we’ll append the sum to the row, and 
once we’ve gone through all the columns in b (after the j loop is finished), 
we’ll put that row into newmatrix. After going through all the rows in a, we 
return the resultant matrix.

Let’s test this program by multiplying our sample matrices, a 1 × 4 
matrix by a 4 × 2 matrix:

>>> a = [[1,2,-3,-1]]
>>> b = [[4,-1],
         [-2,3],
         [6,-3],
         [1,0]]
>>> print(multmatrix(a,b))
[[-19, 14]]

This checks out:

(1)(4) + (2)(–2) + (–3)(6) + (–1)(1) = –19 

and 

(1)(–1) + (2)(3) + (–3)(–3) + (–1)(0) = 14

Therefore, our new function for multiplying any two matrices (if they  
can be multiplied) works. Let’s test it by multiplying a 2 × 2 matrix by a 
2 × 2 matrix:

1
2

–2
1

a  =

3
5

–4
6

b  =

Enter the following to multiply matrix a by matrix b:

>>> a = [[1,-2],[2,1]]
>>> b = [[3,-4],[5,6]]
>>> multmatrix(a,b)
[[-7, -16], [11, -2]]

The code shows how to enter 2 × 2 matrices using Python lists. The mul-
tiplication also looks like this:

1
2

–2
1

=
–7
2

–16
–2

3
5

–4
6
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Let’s check these answers. We begin by multiplying the first row of a by 
the first column of b:

(1)(3) + (–2)(5) = 3 – 10 = –7

And –7 is the number in the first row, first column of the resultant 
matrix. We next multiply the second row of a by the first column of b:

(2)(3) + (1)(5) = 6 + 5 = 11

And 11 is the number in the second row, first column of the resultant 
matrix. The other numbers are correct, too. The multmatrix() function is 
going to save us from doing a lot of laborious arithmetic!

Order Matters in Matrix Multiplication
An important fact about multiplying matrices is that A × B doesn’t necessarily 
equal B × A. Let’s prove that by reversing our previous example:

3
5

–4
6

=
–5
17

–10
–4

1
2

–2
1

Here’s how to multiply these matrices in the other direction in the 
Python shell:

>>> a = [[1,-2],[2,1]]
>>> b = [[3,-4],[5,6]]
>>> multmatrix(b,a)
[[-5, -10], [17, -4]]

As you can see, when you multiply the same matrices in the reverse 
order using multmatrix(b,a) instead of multmatrix(a,b), you get a completely 
different resultant matrix. Remember that when you’re multiplying matri-
ces, A × B doesn’t necessarily equal B × A.

Drawing 2D Shapes
Now that you know how to operate on matrices, let’s put a bunch of points 
into a list to make a 2D shape. Open a new sketch in Processing and save it 
as matrices.pyde. If you still have your grid.pyde sketch from Listing 4-11, you 
can copy and paste the essentials for drawing a grid. Otherwise, add the 
code in Listing 8-3.

#set the range of x-values
xmin = -10
xmax = 10

#range of y-values
ymin = -10
ymax = 10

matrices.pyde
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#calculate the range
rangex = xmax - xmin
rangey = ymax - ymin

def setup():
    global xscl, yscl
    size(600,600)
    #the scale factors for drawing on the grid:
    xscl= width/rangex
    yscl= -height/rangey
    noFill()

def draw():
    global xscl, yscl
    background(255) #white
    translate(width/2,height/2)
    grid(xscl, yscl)

def grid(xscl,yscl):
    '''Draws a grid for graphing'''
    #cyan lines
    strokeWeight(1)
    stroke(0,255,255)
    for i in range(xmin,xmax+1):
        line(i*xscl,ymin*yscl,i*xscl,ymax*yscl)
    for i in range(ymin,ymax+1):
        line(xmin*xscl,i*yscl,xmax*xscl,i*yscl)
    stroke(0) #black axes
    line(0,ymin*yscl,0,ymax*yscl)
    line(xmin*xscl,0,xmax*xscl,0)

Listing 8-3: The code for drawing a grid

We’re going to draw a simple figure and transform it using matrices. 
I’ll use the letter F because it has no rotational or reflectional symmetry 
(and because it’s my initial). We’ll sketch it out to get the points, as shown 
in Figure 8-2.

Figure 8-2: The points needed  
to draw an F
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Add the code in Listing 8-4 after the draw() function to enter the points 
for all the corners of the F and draw lines between those points.

fmatrix = [[0,0],[1,0],[1,2],[2,2],[2,3],[1,3],[1,4],[3,4],[3,5],[0,5]]

def graphPoints(matrix):
    #draw line segments between consecutive points
    beginShape()
    for pt in matrix:
        vertex(pt[0]*xscl,pt[1]*yscl)
    endShape(CLOSE)

Listing 8-4: Graphing the points to draw the F

Here, we first create a list called fmatrix and enter points on each row 
corresponding to the points in the letter F. The graphPoints() function 
takes a matrix as a parameter, and each row becomes a vertex of the shape 
using Processing’s beginShape() and endShape() functions. Also, we call the 
graphPoints() function using fmatrix as an argument in the draw() function. 
Add the code in Listing 8-5 to the end of the draw() function:

    strokeWeight(2) #thicker line
    stroke(0) #black
    graphPoints(fmatrix)

Listing 8-5: Getting the program to graph the points in the F

We’re creating the fmatrix as a list containing a bunch of coordinates, 
and we call the graphPoints() function to tell the program to graph all the 
points.

Processing’s built-in strokeWeight() function lets you control how thick you 
want the outline to be, and the stroke() function lets you choose the color of 
the outline. We’ll draw the first F in black. The output looks like Figure 8-3.

Figure 8-3: The output of graphing the points  
in the matrix, called the “f-matrix”
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When we learn about matrices in school, we learn how to add and mul-
tiply them, but we never learn why. It’s only when you graph them that you 
realize that multiplying matrices is transforming them. Next, we’ll use matrix 
multiplication to transform our F.

Transforming Matrices
To see how multiplying matrices lets you transform them, we’ll use a 2 × 2 
transformation matrix I found on the web (see Figure 8-4).

Figure 8-4: A transformation matrix found online at mathworld.wolfram.com

It’s going to rotate our F counterclockwise by an angle, given by theta (θ). 
If the angle is 90 degrees, cos(90) = 0 and sin(90) = 1. Therefore, the rotation 
matrix for a counterclockwise rotation of 90 degrees is

=R
0
1

–1
0

We can create a transformation matrix by adding the following code 
to matrices.pyde before the setup() function:

transformation_matrix = [[0,-1],[1,0]]

Next, we multiply the f-matrix by the transformation matrix and 
save the result to a new matrix. Since the f-matrix is a 10 × 2 matrix and 
the transformation matrix is 2 × 2, the only way to multiply them is F × T, 
not T × F.

Remember, the number of columns in the first matrix has to equal 
the number of rows in the second matrix. We’ll graph the f-matrix in 
black and change the stroke color to red for the new matrix. Replace 
graphPoints(fmatrix) by adding the following code in Listing 8-6 to the  
draw() function.

    newmatrix = multmatrix(fmatrix,transformation_matrix)
    graphPoints(fmatrix)
    stroke(255,0,0) #red resultant matrix
    graphPoints(newmatrix)

Listing 8-6: Multiplying the matrices and graphing the points
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When you run this, it will look like Figure 8-5.

Figure 8-5: A clockwise rotation?

That’s not a counterclockwise rotation! Looking at the math notation 
in Figure 8-4 again, we see the order of the multiplication is different from 
ours. The accepted way is to multiply by the transformation matrix first and 
then the point(s) to be transformed:

v ′ =  R� v0

This means the transformed vector v (v') is the result of the rotation 
vector Rθ being multiplied by the initial vector v0. Vector notation is differ-
ent from coordinate notation. For instance, the vector that goes 2 in the 
x-direction and 3 in the y-direction is not given as (2,3), like in standard 
(x,y) coordinates. Rather, it’s given as

2
3

like a 2 × 1 matrix, instead of a 1 × 2 matrix. In our list notation, we’d write 
that as [[2],[3]]. That means we have to change our f-matrix to

fmatrix = [[[0],[0]],[[1],[0]],[[1],[2]],[[2],[2]],[[2],[3]], 
           [[1],[3]],[[1],[4]],[[3],[4]],[[3],[5]],[[0],[5]]]

or

fmatrix = [[0,1,1,2,2,1,1,3,3,0],[0,0,2,2,3,3,4,4,5,5]]

The first example at least keeps the x- and y-values of a point together, 
but that’s a lot of brackets! The second doesn’t even keep the x- and y-values 
next to each other. Let’s see if there’s another way.
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Transposing Matrices
An important concept in matrices is transposition, where the columns become  
the rows, and vice versa. In our example, we want to change F into F T, the 
notation for “the f-matrix, transposed.”

0
0

1
0

1
2

2
2

2
3

1
3

1
4

3
4

3
5

0
5

F T  =

0
1
1
2
2
1
1
3
3
0

0
0
2
2
3
3
4
4
5
5

F  =

Let’s write a transpose() function that will transpose any matrix. Add 
the code in Listing 8-7 to matrices.pyde after the draw() function.

def transpose(a):
    '''Transposes matrix a'''
    output = []
    m = len(a)
    n = len(a[0])
    #create an n x m matrix
    for i in range(n):
        output.append([])
        for j in range(m):
            #replace a[i][j] with a[j][i]
            output[i].append(a[j][i])
    return output

Listing 8-7: The code to transpose a matrix

First, we create an empty list called output that will be the transposed 
matrix. We then define m, the number of rows in the matrix, and n, the 
number of columns. We’re going to make output into an n × m matrix. For 
all n rows, we’re going to start an empty list, and then everything in the ith 
row of the matrix we add to the jth column of the transposed matrix.

The following line of code in the transpose function switches the rows 
and columns of a:

output[i].append(a[j][i])
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Finally, we return the transposed matrix. Let’s test it out. Add the 
transpose() function to your matrices.py file and run it. Then we can enter 
the following code in the shell:

>>> a = [[1,2,-3,-1]]
>>> transpose(a)
[[1], [2], [-3], [-1]]
>>> b = [[4,-1],
         [-2,3],
         [6,-3],
         [1,0]]
>>> transpose(b)
[[4, -2, 6, 1], [-1, 3, -3, 0]]

It works! All we’ll have to do is transpose our f-matrix before multiply-
ing it by the transformation matrix. To graph it, we’ll transpose it back, as 
shown in Listing 8-8.

def draw():
    global xscl, yscl
    background(255) #white
    translate(width/2,height/2)
    grid(xscl, yscl)
    strokeWeight(2) #thicker line
    stroke(0) #black

     newmatrix = transpose(multmatrix(transformation_matrix,
                           transpose(fmatrix)))

    graphPoints(fmatrix)
    stroke(255,0,0) #red resultant matrix
    graphPoints(newmatrix)

Listing 8-8: Transposing a matrix, multiplying, and then transposing again

Add the calls to the transpose()  function to the newmatrix line  of 
the draw() function. This should get you the correct counterclockwise rota-
tion, as shown in Figure 8-6.

Figure 8-6: A counterclockwise rotation,  
by matrices

matrices.pyde
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The final code for matrices.pyde should look like Listing 8-9.

#set the range of x-values
xmin = -10
xmax = 10

#range of y-values
ymin = -10
ymax = 10

#calculate the range
rangex = xmax - xmin
rangey = ymax - ymin

transformation_matrix = [[0,-1],[1,0]]

def setup():
    global xscl, yscl
    size(600,600)
    #the scale factors for drawing on the grid:
    xscl= width/rangex
    yscl= -height/rangey
    noFill()

def draw():
    global xscl, yscl
    background(255) #white
    translate(width/2,height/2)
    grid(xscl,yscl)
    strokeWeight(2) #thicker line
    stroke(0) #black
    newmatrix = transpose(multmatrix(transformation_matrix,
                          transpose(fmatrix)))
    graphPoints(fmatrix)
    stroke(255,0,0) #red resultant matrix
    graphPoints(newmatrix)

fmatrix = [[0,0],[1,0],[1,2],[2,2],[2,3],[1,3],[1,4],[3,4],[3,5],[0,5]]

def multmatrix(a,b):
    '''Returns the product of
    matrix a and matrix b'''
    m = len(a) #number of rows in first matrix
    n = len(b[0]) #number of columns in second matrix
    newmatrix = []
    for i in range(m): #for every row in a
        row = []
        #for every column in b
        for j in range(n):
            sum1 = 0
            #for every element in the column

matrices.pyde
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            for k in range(len(b)):
                sum1 += a[i][k]*b[k][j]
            row.append(sum1)
        newmatrix.append(row)
    return newmatrix

def transpose(a):
    '''Transposes matrix a'''
    output = []
    m = len(a)
    n = len(a[0])
    #create an n x m matrix
    for i in range(n):
        output.append([])
        for j in range(m):
            #replace a[i][j] with a[j][i]
            output[i].append(a[j][i])
    return output

def graphPoints(matrix):
    #draw line segments between consecutive points
    beginShape()
    for pt in matrix:
        vertex(pt[0]*xscl,pt[1]*yscl)
    endShape(CLOSE)

def grid(xscl, yscl):
    '''Draws a grid for graphing'''
    #cyan lines
    strokeWeight(1)
    stroke(0,255,255)
    for i in range(xmin,xmax + 1):
        line(i*xscl,ymin*yscl,i*xscl,ymax*yscl)
    for i in range(ymin,ymax+1):
        line(xmin*xscl,i*yscl,xmax*xscl,i*yscl)
    stroke(0) #black axes
    line(0,ymin*yscl,0,ymax*yscl)
    line(xmin*xscl,0,xmax*xscl,0)

Listing 8-9: The entire code to draw and transform the letter F

Exercise 8-1: More Transformation Matrices

See what happens to your shape when you change your transformation matrix 
to each of these matrices:

1
0

a
0

–1 
0
–1

b
–1
0

–1
1

c
1
1
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Rotating Matrices in Real Time
So you just learned how matrices can transform points. But this can happen 
in real time, and interactively too! Change the code in the draw() function in 
matrices.pyde to what’s in Listing 8-10.

def draw():
    global xscl, yscl
    background(255) #white
    translate(width/2,height/2)
    grid(xscl, yscl)
    ang = map(mouseX,0,width,0,TWO_PI)
    rot_matrix = [[cos(ang),-sin(ang)],
                [sin(ang),cos(ang)]]
    newmatrix = transpose(multmatrix(rot_matrix,transpose(fmatrix)))
    graphPoints(fmatrix)
    strokeWeight(2) #thicker line
    stroke(255,0,0) #red resultant matrix
    graphPoints(newmatrix)

Listing 8-10: Rotating in real time using matrices

Recall that we used sin() and cos() in Chapter 7 to rotate and oscillate 
shapes. In this example, we’re transforming a matrix of points using a rota-
tion matrix. Here is what a typical 2 × 2 rotation matrix looks like:

R (θ) =
cos(θ)
sin(θ)

–sin(θ)
cos(θ)

Because I don’t have a theta (θ) key, I’ll call the rotation angle ang. The 
interesting thing we’re doing right now is changing the ang variable with the 
mouse. So, at every loop, the mouse position determines the value of ang and 
then plugs ang into each expression. It then quickly calculates the sine and 
cosine of ang and multiplies the rotation matrix by the f-matrix. For each 
loop, the rotation matrix will be a little different, depending on where your 
mouse is.

Now the red F should rotate around 
the origin as you move your mouse left 
and right over the graph, as shown in 
Figure 8-7.

This is the kind of transformation 
that’s happening all the time when 
you see any kind of animation on a 
computer screen. Creating computer 
graphics is perhaps the most common 
application of matrices.

Figure 8-7: Transforming points in real 
time using matrices!



Using Matrices for Computer Graphics   161

Creating 3D Shapes
So far we used matrices to create and manipulate two-dimensional shapes. 
You might be curious as to how we mathematicians crunch the numbers to 
represent a three-dimensional object on a two-dimensional surface like the 
computer screen.

Return to your code in Listing 8-11 and save it as matrices3D.pyde. Turn 
fmatrix into the following matrix of points:

fmatrix = [[0,0,0],[1,0,0],[1,2,0],[2,2,0],[2,3,0],[1,3,0],[1,4,0],
          [3,4,0],[3,5,0],[0,5,0],
          [0,0,1],[1,0,1],[1,2,1],[2,2,1],[2,3,1],[1,3,1],[1,4,1],
          [3,4,1],[3,5,1],[0,5,1]]

Listing 8-11: A 3D version of our f-matrix

Adding depth to our F requires adding another layer to our matrix of  
points. Because our F only has two dimensions right now, it’s made up 
of only x- and y-values. But we can think of 2D objects as having a third 
dimension, represented by a z-axis. 2D objects have a z-value of 0. So for 
each point we’ll add a zero as its third value, making the first 10 points  
three-dimensional. Then we’ll copy and paste these values and change the 
third value to a 1. This creates the rear layer, which is an identical F drawn 
one unit behind the front one.

Now that we’ve created the two layers for the F, we need to connect the 
points on the front layer with those on the rear layer. Let’s create an edges 
list so we can simply tell the program which points to link with line seg-
ments, as shown in Listing 8-12.

#list of points to connect:
edges = [[0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],
        [7,8],[8,9],[9,0],
        [10,11],[11,12],[12,13],[13,14],[14,15],[15,16],[16,17],
        [17,18],[18,19],[19,10],
        [0,10],[1,11],[2,12],[3,13],[4,14],[5,15],[6,16],[7,17],
        [8,18],[9,19]]

Listing 8-12: Keeping track of the edges (the lines between the points on the F)

This is a way to keep track of which points are going to be connected 
with segments, or edges. For example, the first entry [0,1] draws an edge 
from point 0 (0,0,0) to point 1 (1,0,0). The first 10 edges draw the front F, 
and the next 10 edges draw the rear F. Then we draw edges between a point 
on the front F and the corresponding point on the rear F. For example, 
edge [0,10] draws a segment between point 0 (0,0,0) and point 10 (0,0,1).

Now when we’re graphing the points, we’re not just drawing lines  
between every consecutive point. Listing 8-13 shows the new graphPoints()  
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function that graphs the edges between the points in the list. Replace the 
old graphPoints() function with the following code, just before the defini-
tion of the grid() function.

def graphPoints(pointList,edges):
    '''Graphs the points in a list using segments'''
    for e in edges:
        line(pointList[e[0]][0]*xscl,pointList[e[0]][1]*yscl,
            pointList[e[1]][0]*xscl,pointList[e[1]][1]*yscl)

Listing 8-13: Graphing points using the edges

Remember that in Processing you draw a line between two points, 
(x1,y1) and (x2,y2), by using line(x1,y1,x2,y2). Here, we call the points in 
the pointList (we’ll send fmatrix when we run this) by using their numbers 
in the edges list. The function loops over every item, e, in the edges list and 
connects the point represented by the first number, e[0], to the point repre-
sented by the second number, e[1]. The x-coordinates are multiplied by the 
xscl variable, which scales the x-values:

pointList[e[0]][0]*xscl

We do the same for the y-coordinates:

pointList[e[0]][1]*yscl

We can make our mouse represent the angle of rotation again by creat-
ing two rotation variables: rot and tilt. The first one, rot, maps the x-value 
of the mouse to an angle between 0 and 2π, and that value will go in a rota-
tion matrix like the one we made in Listing 8-5. We do the same for tilt 
so it can map the y-value of the mouse. Put the code in Listing 8-14 in the 
draw() function before multiplying the matrices together.

    rot = map(mouseX,0,width,0,TWO_PI)
    tilt = map(mouseY,0,height,0,TWO_PI)

Listing 8-14: Linking the up-down and left-right rotations with the movements of the mouse

Next, we’ll create a function to multiply the rotation matrices together so 
that all our transformations can be consolidated into one matrix. This is the 
great thing about using matrix multiplication to perform transformations. 
You can just keep “adding” more transformations simply by multiplying!

Creating the Rotation Matrix
Now let’s make a single rotation matrix out of two individual matrices. If you 
see 3D rotation matrices in a math book, they may look like the following 
equations.
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Ry(θ) =
cos(θ)

0
–sin(θ)

0
1
0

sin(θ)
0

cos(θ)

Rx(θ) =
0

cos(θ)
–sin(θ)

1
0
0

0
sin(θ)
cos(θ)

Ry() will rotate the points, with the y-axis serving as the axis of rotation, 
so it’s a left/right rotation. Rx() will rotate the points around the x-axis, so 
it’ll be an up-down rotation.

Listing 8-15 shows the code for creating the rottilt() function, which will 
take the rot and tilt values and put them into the matrices. This is how we 
combine two matrices into one. Add the code in Listing 8-15 to matrices3D.pyde:

def rottilt(rot,tilt):
    #returns the matrix for rotating a number of degrees
    rotmatrix_Y = [[cos(rot),0.0,sin(rot)],
                   [0.0,1.0,0.0],
                   [-sin(rot),0.0,cos(rot)]]
    rotmatrix_X = [[1.0,0.0,0.0],
                   [0.0,cos(tilt),sin(tilt)],
                   [0.0,-sin(tilt),cos(tilt)]]
    return multmatrix(rotmatrix_Y,rotmatrix_X)

Listing 8-15: Function for creating the rotation matrix

We multiply rotmatrix_Y and rotmatrix_X to get one rotation matrix as 
output. This is useful when there’s a series of matrix operations, such as 
rotate about the x-axis Rx, rotate about the y-axis Ry, scale S, and translate 
T. Instead of performing a separate multiplication for each operation, we 
can combine all these operations in a single matrix. Matrix multiplication 
allows us to create a new matrix: M = Ry(Rx(S(T))). That means our draw() 
function will change, too. With the new additions above, the draw() function 
should look like Listing 8-16:

def draw():
    global xscl, yscl
    background(255) #white
    translate(width/2,height/2)
    grid(xscl, yscl)
    rot = map(mouseX,0,width,0,TWO_PI)
    tilt = map(mouseY,0,height,0,TWO_PI)
    newmatrix = transpose(multmatrix(rottilt(rot,tilt),transpose(fmatrix)))
    strokeWeight(2) #thicker line
    stroke(255,0,0) #red resultant matrix
    graphPoints(newmatrix,edges)

Listing 8-16: The new draw() function

When you run the program, you get what’s shown in Figure 8-8.
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Figure 8-8: A 3D F!

We can remove the blue grid and make the F bigger by changing the 
xmin, xmax, ymin, and ymax variables and commenting out the call to the grid() 
function in draw().

Listing 8-17 shows the full code for drawing a rotating 3D shape.

#set the range of x-values
xmin = -5
xmax = 5

#range of y-values
ymin = -5
ymax = 5

#calculate the range
rangex = xmax - xmin
rangey = ymax - ymin

def setup():
    global xscl, yscl
    size(600,600)
    #the scale factors for drawing on the grid:
    xscl= width/rangex
    yscl= -height/rangey
    noFill()

def draw():
    global xscl, yscl
    background(0) #black
    translate(width/2,height/2)
    rot = map(mouseX,0,width,0,TWO_PI)
    tilt = map(mouseY,0,height,0,TWO_PI)
    strokeWeight(2) #thicker line
    stroke(0) #black
    newmatrix = transpose(multmatrix(rottilt(rot,tilt),transpose(fmatrix)))

matrices3D 
.pyde



Using Matrices for Computer Graphics   165

    #graphPoints(fmatrix)
    stroke(255,0,0) #red resultant matrix
    graphPoints(newmatrix,edges)

fmatrix = [[0,0,0],[1,0,0],[1,2,0],[2,2,0],[2,3,0],[1,3,0],[1,4,0],
          [3,4,0],[3,5,0],[0,5,0],
          [0,0,1],[1,0,1],[1,2,1],[2,2,1],[2,3,1],[1,3,1],[1,4,1],
          [3,4,1],[3,5,1],[0,5,1]]

#list of points to connect:
edges = [[0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],
        [7,8],[8,9],[9,0],
        [10,11],[11,12],[12,13],[13,14],[14,15],[15,16],[16,17],
        [17,18],[18,19],[19,10],
        [0,10],[1,11],[2,12],[3,13],[4,14],[5,15],[6,16],[7,17],
        [8,18],[9,19]]

def rottilt(rot,tilt):
    #returns the matrix for rotating a number of degrees
    rotmatrix_Y = [[cos(rot),0.0,sin(rot)],
                   [0.0,1.0,0.0],
                   [-sin(rot),0.0,cos(rot)]]
    rotmatrix_X = [[1.0,0.0,0.0],
                   [0.0,cos(tilt),sin(tilt)],
                   [0.0,-sin(tilt),cos(tilt)]]
    return multmatrix(rotmatrix_Y,rotmatrix_X)

def multmatrix(a,b):
    '''Returns the product of
    matrix a and matrix b'''
    m = len(a) #number of rows in first matrix
    n = len(b[0]) #number of columns in second matrix
    newmatrix = []
    for i in range(m): #for every row in a
        row = []
        #for every column in b
        for j in range(n):
            sum1 = 0
            #for every element in the column
            for k in range(len(b)):
                sum1 += a[i][k]*b[k][j]
            row.append(sum1)
        newmatrix.append(row)
    return newmatrix

def graphPoints(pointList,edges):
    '''Graphs the points in a list using segments'''
    for e in edges:
        line(pointList[e[0]][0]*xscl,pointList[e[0]][1]*yscl,
             pointList[e[1]][0]*xscl,pointList[e[1]][1]*yscl)

def transpose(a):
    '''Transposes matrix a'''
    output = []
    m = len(a)
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    n = len(a[0])
    #create an n x m matrix
    for i in range(n):
        output.append([])
        for j in range(m):
            #replace a[i][j] with a[j][i]
            output[i].append(a[j][i])
    return output

Listing 8-17: The full code for rotating the 3D F

I got rid of the grid and changed the call to the background() function 
in draw() to background(0), so the background will be black and the F will 
appear to be rotating in outer space (see Figure 8-9)!

Figure 8-9: Moving your mouse around will transform the F!

Solving Systems of Equations 
with Matrices

Have you ever tried solving a system of equations with two or three unknown 
values? That’s a tricky task for any math student. And as the number of 
unknowns increases, the more complicated the system of equations gets to 
solve. Matrices are very useful for solving systems of equations like this one:

2x + 5y = –1

3x – 4y = –13

For example, you can express this multiplication using matrices:

2
3

=
5
–4

x
y

–1
–13
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This looks similar to the algebra equation 2x = 10, which we can solve 
easily by dividing both sides by 2. If only we could divide both sides of our 
system by the matrix on the left!

In fact, there is a way to do just that by finding the inverse of a matrix, 
the same way you can divide a number by 2 by multiplying it by ½. This is 
known as the multiplicative inverse of 2, but it’s a complicated method.

Gaussian Elimination
The more efficient way to solve a system of equations using matrices is to 
use row operations to transform the 2 × 2 matrix on the left into the identity 
matrix, which is the matrix that represents the number 1. For example, mul-
tiplying a matrix by the identity matrix would result in the original matrix, 
like this:

1
0

=
0
1

x
y

x
y

The numbers on the right would be the solutions for x and y, so getting 
those zeroes and ones in the right place is our goal. The right place is the 
diagonal of the matrix, like this:

1
0

0
1

or
0
1
0

0
0
1

1
0
0

The identity matrix in every square matrix has a 1 on the diagonal, 
where the row number equals the column number.

Gaussian elimination is a method that involves doing operations on 
entire rows of matrices in order to get to the identity matrix. You can mul-
tiply or divide a row by a constant, and you can add or subtract a row from 
another row.

Before using Gaussian elimination, we first have to arrange the coeffi-
cients and constants into one matrix, like this:

2
3

=
5
–4

x
y

–1
–13

�
2
3

5
–4

–1
–13

Then, we divide the entire row by the number that will give us a 1 in 
the top left. This means that first we need to divide all the terms in the first 
row by 2, since 2/2 is 1. That operation gives us the following:

1
3

5/2
–4

–1/2
–13

Now we get the additive inverse (the number that gives us 0 when added to 
another number) of the term where we want a zero. For example, in row 2, we 
want a zero where the 3 is because we’re looking to change this matrix into 
the identity matrix. Because the additive inverse of 3 is –3, we multiply each 
term in the first row by –3 and add the product to the corresponding term 
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in row 2. That means we multiply the 1 in the first row by –3 and then add 
the product, which is still –3, to the second row. We repeat the process with 
all the terms in the row. For example, the –1/2 in the third column would be 
multiplied by –3 (to get 1.5) and added to all the numbers in that column. 
In this case, it’s just –13, so the sum is –11.5 or –23/2. Continue this, and you 
should get the following:

1
0

5/2
–23/2

–1/2
–23/2

Now repeat where we want the 1 to be in the second row. We can multi-
ply everything in row 2 by –2/23, which should give us this:

1
0

5/2
1

–1/2
1

Finally, we add everything in the first row to the second row, multiplied 
by the additive inverse of 5/2, which is where we want the zero to be in the 
first row. We’ll add every term in the first row to its corresponding term in 
the second row multiplied by –5/2. Notice this doesn’t affect the 1 in the 
first row, which we want to keep:

1
0

0
1

–3
1

The solutions to the system of equations are now in the right column: 
x = –3, y = 1.

We can check our answers by plugging those numbers into the original 
system of equations:

2(–3) + 5(1) = –6 + 5 = –1

3(–3) – 4(1) = –9 – 4 = –13

Both solutions are correct, but this is a laborious process. Let’s automate 
this process with Python so we can solve systems that are as big as we want!

Writing the gauss() Function
In this section, we write a function called gauss() that solves systems of equa-
tions for us. Trying to do this programmatically might seem complicated, 
but there are really only two steps that we need to code:

1.	 Divide all the elements in a row by the term in the diagonal.

2.	 Add each term in one row to the corresponding term in another row.

Dividing All Items in a Row

The first task is to divide all the terms in a row by a number. Let’s say we 
have the row of numbers [1,2,3,4,5]. For example, we can use the code in 
Listing 8-18 to divide this row by 2. Open a new Python file, call it gauss.py 
and enter the code in Listing 8-18.
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divisor = 2
row = [1,2,3,4,5]
for i, term in enumerate(row):
    row[i] = term / divisor
print(row)

Listing 8-18: Dividing all the terms in a row by a divisor

This loops over the row list, keeping track of the index and the value 
using the enumerate() function. We then replace each term row[i] with the 
term divided by the divisor. When you run this, you’ll get a list of five values:

[0.5, 1.0, 1.5, 2.0, 2.5]

Adding Each Element to Its Corresponding Element

The second task is to add each element of one row to the corresponding ele-
ment in the other row. For example, add all the elements in row 0 below to 
the elements in row 1 and replace the elements in row 1 with the sum:

>>> my_matrix = [[2,-4,6,-8],
             [-3,6,-9,12]]
>>> for i in range(len(my_matrix[1])):
        my_matrix[1][i] += my_matrix[0][i]
>>> print(my_matrix)
[[2, -4, 6, -8], [-1, 2, -3, 4]]

We’re looping over all the items in the second row (index 1) of my_matrix. 
Then we’re incrementing each term (index i) in the second row by the cor-
responding term in the first row (index 0). We successfully added the terms 
in the first row to those in the second row. Notice the first row didn’t change. 
We’ll use these steps in solving systems of equations.

Repeating the Process for Every Row

Now we just have to put those steps together for all the rows in a matrix. We’ll 
call the matrix A. Once we’ve put the x, y, and z’s and the constant terms in 
order, we put only the coefficients and the constants into the matrix:

A =
2
–3
–2

1
–1
1

  2x + y – z = 8
–3x – y + 2z = –1
–2x + y + 2z = –3

–1
2
2

8
–1
–3

First, we divide every term in the row by the term on the diagonal so 
that the diagonal term will be 1, using the code in Listing 8-19.

    for j,row in enumerate(A):
        #diagonal term to be 1
        #by dividing row by diagonal term
        if row[j] != 0: #diagonal term can't be 0
            divisor = row[j] #diagonal term
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            for i, term in enumerate(row):
                row[i] = term / divisor

Listing 8-19: Dividing every term in a row by the row’s diagonal term

Using enumerate, we can get the first row of A ([2,1,-1,8]), for example, 
and j will be the index of that row (in this case, zero). The diagonal terms 
are where the row number is the same as the column number, like row 0, 
column 0, or row 1, column 1.

Now we go through every other row in the matrix and perform the sec-
ond step. Now, for each of the other rows (where i is not equal to j), calcu-
late the additive inverse of the jth term, multiply each term in row j by that 
inverse, and add those terms to their corresponding terms in the ith row. 
Add the code in Listing 8-20 to the gauss() function.

        for i in range(m):
            if i != j: #don't do this to row j
                #calculate the additive inverse
                addinv = -1*A[i][j]
           #for every term in the ith row
           for ind in range(n):
               #add the corresponding term in the jth row
               #multiplied by the additive inverse
               #to the term in the ith row
               A[i][ind] += addinv*A[j][ind]

Listing 8-20: Making every nondiagonal term in a row 0

This happens to every row, so since m is the number of rows, we start 
off with for i in range(m). We already divided the row in question by the 
diagonal term, so we don’t have to do anything to that row. That’s why we 
do it only if i is not equal to j. In our example, each term in the first row 
of A is going to be multiplied by 3 and added to the corresponding term in 
the second row. And then every term in the first row is going to be multi-
plied by 2 and added to the corresponding term in the third row. That will 
get us zeroes in the second and third rows of the first column:

1
–3
–2

1/2
–1
1

–1/2
2
2

4
–1
–3

1
0
0

1/2
1/2

2

–1/2
1/2

1

4
1
5

Now our first column is done, and we want a 1 in the diagonal. Therefore, 
we want a 1 in the second row of the second column, so we repeat the process.

Putting It All Together

Put all the code together into a gauss() function and print out the results. 
Listing 8-21 shows the complete code.

def gauss(A):
    '''Converts a matrix into the identity
    matrix by Gaussian elimination, with
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    the last column containing the solutions
    for the variables'''
    m = len(A)
    n = len(A[0])
    for j,row in enumerate(A):
        #diagonal term to be 1
        #by dividing row by diagonal term
        if row[j] != 0: #diagonal entry can't be zero
            divisor = row[j]
            for i, term in enumerate(row):
                row[i] = term / divisor
        #add the other rows to the additive inverse
        #for every row
        for i in range(m):
            if i != j: #don't do it to row j
                #calculate the additive inverse
                addinv = -1*A[i][j]
                #for every term in the ith row
                for ind in range(n):
                    #add the corresponding term in the jth row
                    #multiplied by the additive inverse
                    #to the term in the ith row
                    A[i][ind] += addinv*A[j][ind]
    return A
#example:
B = [[2,1,-1,8],
     [-3,-1,2,-1],
     [-2,1,2,-3]]
print(gauss(B))

Listing 8-21: The complete code for the gauss() function

The output should be the following:

[[1.0, 0.0, 0.0, 32.0], [0.0, 1.0, 0.0, -17.0], [-0.0, -0.0, 1.0, 39.0]]

And here is how it looks in matrix form:

1
0
0

0
1
0

0
0
1

32
–17
39

We look at the last numbers in each row, so our solutions are x = 32, 
y = –17, and z = 39. We check this by plugging those values into the original 
equations:

2(32) + (–17) – (39) = 8. Check!

–3(32) – (–17) + 2(39) = –1. Check!

–2(32) + (–17) + 2(39) = –3. Check!

This is a major achievement! Now, not only can we solve systems of two 
or three unknowns, but we can also solve for any number of unknowns! 
Solving a system of four unknowns is a laborious task if the student doesn’t 
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know Python. But luckily for us, we do! When the correct solution pops up 
so quickly in the Python shell, I’m always blown away. If you’ve ever had to 
perform Gaussian elimination by hand, Exercise 8-2 will blow you away too.

Exercise 8-2: Enter the Matrix

Solve this system of equations for w, x, y, and z using the program you just wrote:

2w – x + 5y + z = –3
3w + 2x + 2y – 6z = –32
w + 3x + 3y – z = –47
5w – 2x – 3y + 3z = 49

Summary
You’ve come a long way in your math adventure! You started with some 
basic Python to make turtles walk around and then went on to create more 
complicated Python functions to solve harder math problems. In this chap-
ter, not only did you learn how to use Python to add and multiply matrices, 
but you also experienced first-hand how matrices can create an transform 
2D and 3D graphics! The power we have to add, multiply, transpose, and 
otherwise operate on matrices using Python is mind-boggling.

You also learned to automate the process you would have done by hand 
to solve a system of equations. The same program that works for a 3 × 3 
matrix will also work for a 4 × 4 or any larger square matrix!

Matrices are vital tools in making a neural network, with dozens or even 
hundreds of paths leading to and from virtual neurons. An input is “propa-
gated” through the network using matrix multiplication and transposition, 
the same tools you created in this chapter.

There was a time when what you’ve done in this chapter was out of reach 
to anyone who didn’t have access to an enormous, expensive computer that 
took up a whole floor at a university or major corporation. Now you can per-
form lightning-fast matrix calculations using Python and visualize the results 
using Processing!

In this chapter, I pointed out how great it is that we get instantaneous 
solutions to our complicated systems of equations as well as immediate 
responses to our mouse movements in our exploration of graphics. In the 
next chapter, we’ll create a model of an ecosystem containing grass and 
sheep and let it run on its own. The model will morph and change over 
time as the sheep are born, eat, reproduce, and die. Only after letting the 
model run for a minute or more will we be able to judge if the environment 
can find a balance between grass growing and sheep eating and multiplying.
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Building Objects 

with Classes

Old teachers never die, they just lose their class. 
—Anonymous

Now that you’ve created cool graphics using 
functions and other code in Processing, you 

can supercharge your creativity using classes. 
A class is a structure that lets you create new types of 
objects. The object types (usually just called objects) 
can have properties, which are variables, and methods, 
which are functions. There are times you want to draw multiple objects 
using Python, but drawing lots of them would be way too much work. 
Classes make drawing several objects with the same properties easy, but 
they require a specific syntax you’ll need to learn.

The following example from the official Python website shows how to 
create a “Dog” object using a class. To code along, open a new file in IDLE, 
name it dog.py and enter the following code.

class Dog:
    def __init__(self,name):
        self.name = name

dog.py
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This creates a new object called Dog using class Dog. It’s customary in 
Python and many other languages to capitalize the name of a class, but 
it’ll still work if you don’t. To instantiate, or create, the class, we have to use 
Python’s __init__ method, which has two underscores before and two after 
init, meaning it’s a special method to create (or construct) an object. The 
__init__ line makes it possible to create instances of the class (in this case, 
dogs). In the __init__ method, we can create any properties of the class we 
want. Since it’s a dog, it can have a name, and because every dog has its 
own name, we use the self syntax. We don’t need to use it when we call the 
objects, only when we’re defining them.

We can then create a dog with a name using the following line of code:

d = Dog('Fido')

Now d is a Dog and its name is Fido. You can confirm this by running the 
file and entering the following in the shell:

>>> d.name
'Fido'

Now when we call d.name, we get Fido because that is the name property we 
just gave to it. We can create another Dog and give it the name Bettisa, like so:

>>> b = Dog('Bettisa')
>>> b.name
'Bettisa'

You can see one dog’s name can be different from another’s, but the 
program remembers them perfectly! This will be crucial when we give loca-
tions and other properties to the objects we create.

Finally, we can give the dog something to do by putting a function in 
the class. But don’t call it a function! A function inside a class is called a 
method. Dogs bark, so we’ll add that method to the code in Listing 9-1.

class Dog:
    def __init__(self,name):
        self.name = name

    def bark(self):
        print("Woof!")

d = Dog('Fido')

Listing 9-1: Creating a dog that barks!

When we call the bark() method of the d dog, it barks:

>>> d.bark()
Woof!

dog.py
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It might not be clear why you’d need a Dog class from this simple example,  
but it’s good to know you can do literally anything you want with classes  
and be as creative as you want. In this chapter, we use classes to make lots  
of useful objects like bouncing balls and grazing sheep. Let’s start with the 
Bouncing Ball example to see how using classes lets us do something really 
cool while saving us a lot of work.

Bouncing Ball Program
Start a Processing sketch and save it as BouncingBall.pyde. We’ll draw a single 
circle on the screen, which we’ll make into a bouncing ball. Listing 9-2 shows 
the code for drawing one circle.

def setup():
    size(600,600)

def draw():
    background(0) #black
    ellipse(300,300,20,20)

Listing 9-2: Drawing a circle

First, we set the size of the window to be 600 pixels wide and 600 pixels 
tall. Then we set the background to black and drew a circle using the ellipse() 
function. The first two numbers in the function describe how far the center 
of the circle is from the top-left corner of the window, and the last two num-
bers describe the width and height of the ellipse. In this case, ellipse(300,300, 
20,20) creates a circle that is 20 pixels wide and 20 pixels high, located in the 
center of the display window, as shown in Figure 9-1.

Figure 9-1: Drawing one circle for the Bouncing Ball sketch

Now that we have successfully created a circle located in the center of 
the display window, let’s try to make it move.

BouncingBall 
.pyde
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Making the Ball Move
We’ll make the ball move by changing its position. To do this, let’s first cre-
ate a variable for the x-value and a variable for the y-value and set them to 
300, which is the middle of the screen. Go back to Listing 9-2 and insert the 
following two lines at the beginning of the code, like in Listing 9-3.

xcor = 300
ycor = 300

def setup():
    size(600,600)

Listing 9-3: Setting variables for the x- and y-values

Here, we use the xcor variable to represent the x-value and the ycor vari-
able to represent the y-value. Then we set both variables to 300.

Now let’s change the x-value and y-value by a certain number in order 
to change the location of the ellipse. Make sure to use the variables to draw 
the ellipse, as shown in Listing 9-4.

xcor = 300
ycor = 300

def setup():
    size(600,600)

def draw():
     global xcor, ycor

    background(0) #black
    xcor += 1
    ycor += 1
    ellipse(xcor,ycor,20,20)

Listing 9-4: Incrementing xcor and ycor to change the location of the ellipse

The important thing to notice in this example is global xcor, ycor , 
which tells Python to use the variables we’ve already created and not to 
create new ones just for the draw() function. If you don’t include this line, 
you’ll get an error message, something like “local variable ‘xcor’ referenced 
before assignment.” Once Processing knows what value to assign to xcor and 
ycor, we increment them both by 1 and draw the ellipse with its center at the 
location specified using the global variables: (xcor, ycor).

When you save and run Listing 9-4, you should see the ball move, like 
in Figure 9-2.

Now the ball moves down and to the right, because its x- and y-values 
are both increasing, but then it moves off the screen and we never see it  
again! The program keeps incrementing our variables obediently. It doesn’t 
know it’s drawing a ball or that we want the ball to bounce off the walls. Let’s 
explore how to keep the ball from disappearing.

BouncingBall 
.pyde

BouncingBall 
.pyde
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Figure 9-2: The ball moves!

Making the Ball Bounce Off the Wall
When we change the x-value and the y-value by adding 1, we’re changing  
the position of an object. In math, this change in position over time is called  
velocity. A positive change in x over time (positive x-velocity) will look like  
movement to the right (since x is getting bigger), whereas negative x-velocity 
will look like movement to the left. We can use this “positive-right, negative- 
left” concept to make the ball bounce off the wall. First, let’s create the  
x-velocity and y-velocity variables by adding the following lines to our exist-
ing code, as shown in Listing 9-5.

xcor = 300
ycor = 300
xvel = 1
yvel = 2

def setup():
    size(600,600)

def draw():
    global xcor,ycor,xvel,yvel
    background(0) #black
    xcor += xvel
    ycor += yvel
    #if the ball reaches a wall, switch direction.
    if xcor > width or xcor < 0:
        xvel = -xvel
    if ycor > height or ycor < 0:
        yvel = -yvel
    ellipse(xcor,ycor,20,20)

Listing 9-5: Adding code to make the ball bounce off the wall

BouncingBall 
.pyde
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First, we set xvel = 1 and yvel = 2 to specify how the ball will move. You 
can use other values and see how they change the movement. Then in the 
draw() function, we tell Python that xvel and yvel are global variables, and 
we change the x- and y-coordinates by incrementing using these variables. 
For example, when we set xcor += xvel, we’re updating the position by the 
velocity (the change in position).

The two if statements tell the program that if the ball’s position goes 
outside the boundaries of the screen, it should change the ball’s velocity to 
its negative value. When we change the ball’s velocity to its negative value, 
we tell the program to move the ball in the opposite direction it was moving 
in, making it seem like the ball is bouncing off the wall.

We need to be precise in telling at what point the ball should move in 
the opposite direction in terms of its coordinates. For example, xcor > width 
represents cases where xcor is larger than the width of the display window, 
which is when the ball touches the right edge of the screen. And xcor < 0 
represents instances where the xcor is less than 0 or when the ball touches 
the left edge of the screen. Similarly, ycor > height checks for instances 
where ycor is larger than the height of the window or when the ball reaches 
the bottom of the screen. Finally, ycor < 0 checks for instances where the  
ball reaches the upper edge of the screen. Since moving to the right is  
positive x-velocity (positive change in x), the opposite direction is negative 
x-velocity. If the velocity is already negative (it’s moving to the left), then the 
negative of a negative is a positive, which means the ball will move to the 
right, just like we want it to.

When you run Listing 9-5, you should see something like what’s shown 
in Figure 9-3.

Figure 9-3: One bouncing ball!

The ball looks like it’s bouncing off the walls and therefore stays in view.
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Making Multiple Balls Without Classes
Now suppose we want to make another bouncing ball, or many other bounc-
ing balls. How would we do that? We could make a new variable for the 
second ball’s x-value, another variable for the second ball’s y-value, a third 
variable for its x-velocity, and a fourth for its y-velocity. Then we’d have to 
increment its position by its velocity, check if it needs to bounce off a wall, 
and finally draw it. However, we’d end up with double the amount of code! 
Adding a third ball would triple our code! Twenty balls would simply be out 
of the question. You don’t want to have to keep track of all these variables 
for position and velocity. Listing 9-6 show what this would look like.

#ball1:
ball1x = random(width)
ball1y = random(height)
ball1xvel = random(-2,2)
ball1tvel = random(-2,2)

#ball2:
ball2x = random(width)
ball2y = random(height)
ball2xvel = random(-2,2)
ball2tvel = random(-2,2)

#ball3:
ball3x = random(width)
ball3y = random(height)
ball3xvel = random(-2,2)
ball3tvel = random(-2,2)

#update ball1:
ball1x += ball1xvel
ball1y += ball1yvel
ellipse(ball1x,ball1y,20,20)

#update ball2:
ball2x += ball2xvel
ball2y += ball2yvel
ellipse(ball2x,ball2y,20,20)

#update ball3:
ball3x += ball3xvel
ball3y += ball3yvel
ellipse(ball3x,ball3y,20,20)

Listing 9-6: Creating multiple balls without classes. Way too much code!

This is the code for creating only three balls. As you can see, it’s very 
long, and this doesn’t even include the bouncing part! Let’s see how we can 
use classes to make this task easier.
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Creating Objects Using Classes
In programming, a class works like a recipe that details a way to create an 
object with its own specific properties. Using classes, we tell Python how to 
make a ball once. Then all we have to do is create a bunch of balls using a 
for loop and put them in a list. Lists are great for saving numerous things—
strings, numbers, and objects!

Follow these three steps when using classes to create objects:

1.	 Write the class. This is like a recipe for how to make balls, planets, 
rockets, and so on.

2.	 Instantiate the object or objects. You do this by calling the objects in the 
setup() function.

3.	 Update the object or objects. Do this in the draw() function (the display loop).

Let’s use these steps to put the code we’ve already written into a class.

Writing the Class

The first step in creating objects using classes is to write a class that tells the 
program how to make a ball. Let’s add the code in Listing 9-7 at the very 
beginning of our existing program.

ballList=[] #empty list to put the balls in

class Ball:
    def __init__(self,x,y):
        '''How to initialize a Ball'''
        self.xcor = x
        self.ycor = y
        self.xvel = random(-2,2)
        self.yvel = random(-2,2)

Listing 9-7: Defining a class called Ball

Note that because we’re putting the position and velocity variables into 
the Ball class as properties, you can delete the following lines from your 
existing code:

xcor = 300
ycor = 300
xvel = 1
yvel = 2

In Listing 9-7, we create an empty list we’ll use to save the balls in; then 
we start defining the recipe. The name of a class object, which is Ball in this 
case, is always capitalized. The __init__ method is a requirement to create a 
class in Python that contains all the properties the object gets when it’s ini-
tialized. Otherwise, the class won’t work.

The self syntax simply means every object has its own methods and prop-
erties, which are functions and variables that can’t be used except by a Ball 

BouncingBall 
.pyde
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object. This means that each Ball has its own xcor, its own ycor, and so on. 
Because we might have to create a Ball at a specific location at some point, we 
made x and y parameters of the __init__ method. Adding these parameters 
allows us to tell Python the location of a Ball when we create it, like this:

Ball(100,200)

In this case, the ball will be located at the coordinate (100,200).
The last lines in Listing 9-7 tell Processing to assign a random number 

between –2 and 2 to be the x- and y-velocity of the new ball.

Instantiating the Object

Now that we’ve created a class called Ball, we need to tell Processing how 
to update the ball every time the draw() function loops. We’ll call that the 
update method and nest it inside the Ball class, just like we did with __init__. 
You can simply cut and paste all the ball code into the update() method and 
then add self. to each of the object’s properties, as shown in Listing 9-8.

ballList=[] #empty list to put the balls in

class Ball:
    def __init__(self,x,y):
        '''How to initialize a Ball'''
        self.xcor = x
        self.ycor = y
        self.xvel = random(-2,2)
        self.yvel = random(-2,2)

    def update(self):
        self.xcor += self.xvel
        self.ycor += self.yvel
        #if the ball reaches a wall, switch direction
        if self.xcor > width or self.xcor < 0:
            self.xvel = -self.xvel
        if self.ycor > height or self.ycor < 0:
            self.yvel = -self.yvel
        ellipse(self.xcor,self.ycor,20,20)

Listing 9-8: Creating the update() method

Here, we placed all the code for moving and bouncing a ball into the 
update() method of the Ball class. The only new code is self in the velocity 
variables, making them velocity properties of the Ball object. Although it 
might seem like there are many instances of self, that’s how we tell Python 
that the x-coordinate, for example, belongs to that specific ball and not 
another. Very soon, Python is going to be updating a hundred balls, so we 
need self to keep track of each one’s location and velocity.

Now that the program knows how to create and update a ball, let’s  
update the setup() function to create three balls and put them into the ball  
list (ballList), as shown in Listing 9-9.

BouncingBall 
.pyde
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def setup():
    size(600,600)
    for i in range(3):
        ballList.append(Ball(random(width),
                             random(height)))

Listing 9-9: Creating three balls in the setup() function

We created ballList in Listing 9-7 already, and here we’re appending 
to the list a Ball at a random location. When the program creates (instanti-
ates) a new ball, it will now choose a random number between 0 and the 
width of the screen to be the x-coordinate and another random number  
between 0 and the height of the screen to be the y-coordinate. Then it’ll put  
that new ball into the list. Because we used the loop for i in range(3), the 
program will add three balls to the ball list.

Updating the Object

Now let’s tell the program to go through ballList and update all the balls in 
the list (which means drawing them) every loop using the following draw() 
function:

def draw():
    background(0) #black
    for ball in ballList:
        ball.update()

Note that we still want the background to be black, and then we loop 
over the ball list and for every ball in the list we run its update() method. All 
the previous code in draw() went into the Ball class!

When you run this sketch, you should see three balls moving around 
the screen and bouncing off the walls! The great thing about using classes 
is that it’s super easy to change 
the number of balls. All you 
have to do is change the number 
in for i in range(number): in 
the setup() function to create 
even more bouncing balls. 
When you change this to 20, 
for example, you’ll see some-
thing like Figure 9-4.

What’s cool about using 
classes is that you can give an 
object any properties or meth-
ods you want. For example, we 
don’t have to make our balls 
all the same color. Add the 
three lines of code shown in 
Listing 9-10 to your existing 
Ball class.

BouncingBall 
.pyde

Figure 9-4: Creating as many bouncing balls as 
you want!
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class Ball:
    def __init__(self,x,y):
        '''How to initialize a Ball'''
        self.xcor = x
        self.ycor = y
        self.xvel = random(-2,2)
        self.yvel = random(-2,2)
        self.col = color(random(255),
                         random(255),
                         random(255))

Listing 9-10: Updating the Ball class

This code gives every ball its own color when it’s created. Processing’s 
color() function needs three numbers that represent red, green, and blue, 
respectively. RGB values go from 0 to 255. Using random(255) lets the pro-
gram choose the numbers randomly, resulting in a randomly chosen color. 
However, because the __init__ method runs only one time, once the ball 
has a color, it keeps it.

Next, in the update() method, add the following line so the ellipse gets 
filled with its own randomly chosen color:

        fill(self.col)
        ellipse(self.xcor,self.ycor,20,20)

Before a shape or line gets drawn, you can declare its color using fill 
for shapes or stroke for lines. Here, we tell Processing to use the ball’s own 
color (using self) to fill in the following shape.

Now when you run the program, each ball should have a random color, 
as shown in Figure 9-5!

Figure 9-5: Giving balls their own colors

BouncingBall 
.pyde
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Exercise 9-1:  
Creating Balls of Different Sizes

Give each ball its own size, between 5 and 50 units.

Grazing Sheep Program
Now that you can create classes, let’s make something useful. We’ll code 
a Processing sketch of an ecosystem that simulates sheep walking around 
eating grass. In this sketch, the sheep have a certain level of energy that 
gets depleted as they walk around, and their energy gets replenished when 
they eat grass. If they get enough energy, they reproduce. If they don’t get 
enough energy, they die. We could potentially learn a lot about biology, 
ecology, and evolution by creating and tweaking this model.

In this program, the Sheep objects are kind of like the Ball objects you 
created earlier in this chapter; each has its own x- and y-position and size, 
and is represented by a circle.

Writing the Class for the Sheep
Start a new Processing sketch and save it as SheepAndGrass.pyde. First, let’s 
create a class that makes a Sheep object with its own x- and y-position and its 
own size. Then we’ll create an update method that draws an ellipse repre-
senting the sheep’s size at the sheep’s location.

The class code is nearly identical to the Ball class, as you can see in 
Listing 9-11.

class Sheep:
    def __init__(self,x,y):
        self.x = x #x-position
        self.y = y #y-position
        self.sz = 10 #size

    def update(self):
        ellipse(self.x,self.y,self.sz,self.sz)

Listing 9-11: Creating a class for one sheep

Because we know we’ll be making a bunch of sheep, we start off creating 
a Sheep class. In the required __init__ method, we set the x- and y-coordinates 
of the sheep to the parameters we’ll declare when creating a sheep instance. 
I’ve set the size of the sheep (the diameter of the ellipse) to 10 pixels, but 
you can have bigger or smaller sheep if you like. The update() method simply 
draws an ellipse of the sheep’s size at the sheep’s location.

SheepAnd 
Grass.pyde
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Here’s the setup() and draw() code for a Processing sketch containing 
one Sheep, which I’ve named shawn. Add the code shown in Listing 9-12 right 
below the update() method you just wrote in Listing 9-11.

def setup():
    global shawn
    size(600,600)
    #create a Sheep object called shawn at (300,200)
    shawn = Sheep(300,200)

def draw():
    background(255)
    shawn.update()

Listing 9-12: Creating a Sheep object named shawn

We first create shawn, an instance of a Sheep object, in the setup() function. 
Then we update it in the draw() function—but Python doesn’t know we mean 
the same shawn unless we tell it that shawn is a global variable.

When you run this code, you should see something like what’s shown in 
Figure 9-6.

Figure 9-6: One sheep

You get a white screen with a little circular sheep at the coordinate 
(300,200), which is 300 pixels to the right of the starting point and 
200 pixels down.

Programming Sheep to Move Around
Now let’s teach a Sheep how to move around. We’ll start by programming 
the Sheep to move around randomly. (You can always program it to move 
differently in the future if you want to.) Listing 9-13 changes the x- and 
y-coordinates of a Sheep by a random number between –10 and 10. Return 
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to your existing code and add the following lines above the ellipse() func-
tion within the update() method:

    def update(self):
        #make sheep walk randomly
        move = 10 #the maximum it can move in any direction
        self.x += random(-move, move)
        self.y += random(-move, move)
        fill(255) #white
        ellipse(self.x,self.y,self.sz,self.sz)

Listing 9-13: Making the sheep move randomly

This code creates a variable called move to specify the maximum value or 
distance the sheep will be able to move on the screen. Then we set move to 10 
and use it to update the sheep’s x- and y-coordinates by a random number 
between -move (–10) and move (10). Finally, we use fill(255) to set the sheep’s 
color to white for now.

When you run this code, you should see the sheep wandering around 
randomly—and it might wander off the screen.

Let’s give the sheep some company. If we want to create and update 
more than one object, it’s a good idea to put them in a list. Then in the 
draw() function, we’ll go through the list and update each Sheep. Update 
your existing code to look like Listing 9-14.

class Sheep:
    def __init__(self,x,y):
        self.x = x #x-position
        self.y = y #y-position
        self.sz = 10 #size

    def update(self):
        #make sheep walk randomly
        move = 10 #the maximum it can move in any direction
        self.x += random(-move, move)
        self.y += random(-move, move)
        fill(255) #white
        ellipse(self.x,self.y,self.sz,self.sz)

sheepList = [] #list to store sheep

def setup():
    size(600,600)
    for i in range(3):
        sheepList.append(Sheep(random(width),
                               random(height)))
def draw():
    background(255)
    for sheep in sheepList:
        sheep.update()

Listing 9-14: Creating more sheep using a for loop

SheepAnd 
Grass.pyde

SheepAnd 
Grass.pyde
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This code is similar to the code we wrote to put the bouncing balls in a 
list. First, we create a list to store the sheep. Then we create a for loop and 
put a Sheep in the sheep list. Then in the draw() function, we write another 
for loop to go through the sheep list and update each one according to the 
update() method we already defined. When you run this code, you should 
get three Sheep walking around randomly. Change the number 3 in for i in 
range(3): to a larger number to add even more sheep.

Creating the energy Property
Walking takes up energy! Let’s give the sheep a certain level of energy when 
they’re created and take away their energy when they walk. Use the code in 
Listing 9-15 to update your existing __init__ and update() methods in the 
SheepAndGrass.pyde.

class Sheep:
    def __init__(self,x,y):
        self.x = x #x-position
        self.y = y #y-position
        self.sz = 10 #size
        self.energy = 20 #energy level

    def update(self):
        #make sheep walk randomly
        move = 1
        self.energy -= 1 #walking costs energy
        if self.energy <= 0:
            sheepList.remove(self)
        self.x += random(-move, move)
        self.y += random(-move, move)
        fill(255) #white
        ellipse(self.x,self.y,self.sz,self.sz)

Listing 9-15: Updating __init__ and update() with the energy property

We do this by creating an energy property in the __init__ method and 
set it to 20, the energy level every sheep starts with. Then self.energy -= 1 
in the update() method lowers the sheep’s energy level by 1 when it walks 
around.

Then we check whether the sheep is out of energy, and if it is, we  
remove it from the sheepList. Here, we use a conditional statement to check 
whether if sheep.energy <= 0 returns True. If so, we remove that sheep from 
the sheepList using the remove() function. Once that Sheep instance is gone 
from the list, it doesn’t exist anymore.

Creating Grass Using Classes
When you run the program, you should see the Sheep move around for a sec-
ond and then disappear—walking around is costing the sheep energy, and 
once that energy is gone, the sheep dies. What we need to do is to give the 
sheep grass to eat. We’ll call each patch of grass Grass and make a new class 
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for it. Grass will have its own x- and y-value, size, and energy content. We’ll 
also make it change color when it’s eaten.

In fact, we’ll be using a bunch of different colors in this sketch for our 
sheep and our grass, so let’s add the code in Listing 9-16 to the very begin-
ning of the program so we can just refer to the colors by their names. Feel 
free to add other colors too.

WHITE = color(255)
BROWN = color(102,51,0)
RED = color(255,0,0)
GREEN = color(0,102,0)
YELLOW = color(255,255,0)
PURPLE = color(102,0,204)

Listing 9-16: Setting colors as constants

Using all-caps for the color names indicates that they’re constants and 
won’t change in value, but that’s just for the programmer. There’s nothing 
inherently magical about the constants, and you can change these values 
if you want. Setting constants lets you just type the names of the colors 
instead of having to write the RGB values every time. We’ll do this when 
we make the grass green. Update your existing code by adding the code in 
Listing 9-17 right after the Sheep class in SheepAndGrass.pyde :

class Grass:
    def __init__(self,x,y,sz):
        self.x = x
        self.y = y
        self.energy = 5 #energy from eating this patch
        self.eaten = False #hasn't been eaten yet
        self.sz = sz

    def update(self):
        fill(GREEN)
        rect(self.x,self.y,self.sz,self.sz)

Listing 9-17: Writing the Grass class

You’re probably starting to get used to the structure of the class nota-
tion. It conventionally starts with the __init__ method, where you create its 
properties. In this case, you tell the program that Grass will have an x- and 
y-location, an energy level, a Boolean (True/False) variable that keeps track 
of whether the grass has been eaten or not, and a size. To update a patch of 
grass, we just create a green rectangle at the Grass object’s location.

Now we have to initialize and update our grass, the same way we did for 
our sheep. Because there will be a lot of grass, let’s create a list for it. Before 
the setup() function, add the following code.
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sheepList = [] #list to store sheep
grassList = [] #list to store grass
patchSize = 10 #size of each patch of grass

We might want to vary the size of the patch of grass in the future, so 
let’s create a variable called patchSize so we’ll only have to change it in one 
place. In the setup() function, after creating the sheep, create the grass by 
adding the new code in Listing 9-18.

def setup():
    global patchSize
    size(600,600)
    #create the sheep
    for i in range(3):
        sheepList.append(Sheep(random(width),
                               random(height)))
    #create the grass:
    for x in range(0,width,patchSize):
        for y in range(0,height,patchSize):
            grassList.append(Grass(x,y,patchSize))

Listing 9-18: Updating the Grass object using patchSize variable

In this example, global patchSize tells Python that we’re using the same 
patchSize variable everywhere. Then we write two for loops (one for x and 
the other for y) to append Grass to the grass list so we can create a square 
grid of grass.

Then we update everything in the draw() function, just like we did for 
the sheep. Whatever is drawn first will be drawn covered up by what’s drawn 
after, so we’ll update the grass first by changing the draw() function to the 
code in Listing 9-19.

def draw():
    background(255)
    #update the grass first
    for grass in grassList:
        grass.update()
    #then the sheep
    for sheep in sheepList:
        sheep.update()

Listing 9-19: Updating the grass before the sheep

When you run this code, you should see a grid of green squares, like in 
Figure 9-7.

SheepAnd 
Grass.pyde
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Figure 9-7: Grass with grid lines

Let’s shut off the black outline so it’ll look like a smooth field of grass. 
Add noStroke() to the setup() function to remove the outline of the green 
squares:

def setup():
    global patchSize
    size(600,600)
    noStroke()

Now we have our grass!

Making the Grass Brown when Eaten
How do we make it so that when a sheep is on a patch of grass, the sheep 
gets the grass’s energy and the patch of grass turns brown to show that the 
sheep has eaten it? Change the update() method for Grass by adding the fol-
lowing lines of code:

    def update(self):
        if self.eaten:
            fill(BROWN)
        else:
            fill(GREEN)
        rect(self.x,self.y,self.sz,self.sz)

This code tells Processing that if the patch of grass is “eaten,” the rect-
angle should be filled with a brown color. Otherwise, the grass should be 
colored green. There’s more than one way for a sheep to “eat” grass. One 
way is to make each patch of grass check the entire sheepList for a sheep  
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on its location, which could mean tens of thousands of patches are check-
ing thousands of sheep. Those numbers could get big. However, because  
each patch of grass is in the grassList, an alternate way is that when a sheep 
changes its location, it could simply change the patch at that location to  
“eaten” (if it isn’t already) and get energy from eating it. That would mean 
a lot less checking.

The problem is that the x- and y-coordinates of the sheep don’t exactly 
match up to where the patches of grass are in the grassList. For example, 
our patchSize is 10, meaning that if a sheep is at (92,35), it’ll be on the 10th 
patch to the right and the 4th patch down (because the “first” patch is from 
x = 0 to x = 9). We’re dividing by the patchSize to get the “scaled” x- and 
y-values, 9 and 3.

However, the grassList doesn’t have rows and columns. We do know that 
the x-value, 9, means it’s the 10th row (don’t forget row 0), so we’ll just have 
to add in nine rows of 60 (the height divided by the patchSize) and then add 
the y-value to get the index of the patch of grass the sheep is on. Therefore, 
we need a variable to tell us how many patches of grass there are in a row, 
which we’ll call rows_of_grass. Add global rows_of_grass to the beginning of 
the setup() function and then add this line to setup() after declaring the size:

rows_of_grass = height/patchSize

This takes the width of the display window and divides it by the size of 
the patches of grass to tell us how many columns of grass there are. The 
code to add to the Sheep class is in Listing 9-20.

        self.x += random(-move, move)
        self.y += random(-move, move)
        #"wrap" the world Asteroids-style

         if self.x > width:
            self.x %= width
        if self.y > height:
            self.y %= height
        if self.x < 0:
            self.x += width
        if self.y < 0:
            self.y += height
        #find the patch of grass you're on in the grassList:

         xscl = int(self.x / patchSize)
        yscl = int(self.y / patchSize)

         grass = grassList[xscl * rows_of_grass + yscl]
        if not grass.eaten:
            self.energy += grass.energy
            grass.eaten = True

Listing 9-20: Updating the sheep’s energy level and turning the grass brown

After updating the sheep’s location, we “wrap” the coordinates  so  
if the sheep walks off the screen in one direction, it shows up on the other  
side of the screen, like in the video game Asteroids. We calculate which  
patch the sheep is on according to the patchSize . Then we use code to go 

SheepAnd 
Grass.pyde
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from x- and y-values to the index of that patch in the grassList . We now 
know the exact index of the patch of grass the sheep is on. If this patch 
of grass is not already eaten, the sheep eats it! It gets the energy from the 
grass, and the grass’s eaten property is set to True.

Run this code, and you’ll see the three sheep running around eating 
grass, which turns brown once it’s eaten. Slow the sheep down by changing the 
move variable to a lesser value, such as 5. You can also scale down the patches by 
changing one number, the patchSize variable, to 5. Try other values if you like.

Now we can create more Sheep. Let’s change the number in the for i in 
range line to 20, like so:

    #create the sheep
    for i in range(20):
        sheepList.append(Sheep(random(width),
                               random(height)))

When you run this code, you should see something like Figure 9-8.

Figure 9-8: A herd of sheep!

Now there are 20 sheep walking around, leaving patches of brown grass.

Giving Each Sheep a Random Color
Let’s have the sheep choose a color when they’re “born.” After the code 
defining the color constants, let’s put some colors into a color list, like this:

YELLOW = color(255,255,0)
PURPLE = color(102,0,204)
colorList = [WHITE,RED,YELLOW,PURPLE]
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Make the following changes to the Sheep class to use different colors. 
First, you need to give Sheep a color property. Because color is already a key-
word in Processing, col is used in Listing 9-21.

class Sheep:
    def __init__(self,x,y,col):
        self.x = x #x-position
        self.y = y #y-position
        self.sz = 10 #size
        self.energy = 20
        self.col = col

Listing 9-21: Adding a color property to the Sheep class

Then in the update() method, replace the fill line with this:

        fill(self.col) #its own color
        ellipse(self.x,self.y,self.sz,self.sz)

Before the ellipse is drawn, fill(self.col) tells Processing to fill the 
ellipse with the Sheep’s own randomly chosen color.

When all the Sheep are instantiated in the setup() function, you need to 
give them a random color. That means at the top of the program you have 
to import the choice() function from the random module, like this:

from random import choice

Python’s choice() function allows you to have one item chosen at ran-
dom from a list and then returned. We should be able to tell the program 
to do this as follows:

choice(colorList)

Now the program will return a single value from the color list. Finally, 
when you’re creating the Sheep, add the random choice of color from the 
color list as one of the arguments you pass to the Sheep constructor, as 
shown here:

def setup():
    size(600,600)
    noStroke()
    #create the sheep
    for i in range(20):
        sheepList.append(Sheep(random(width),
                               random(height),
                               choice(colorList)))

Now when you run this code, you should see a bunch of randomly 
colored sheep walking around the screen, as shown in Figure 9-9.
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Figure 9-9: Multicolored sheep

Each new sheep gets assigned one of the four colors we defined in 
colorList: white, red, yellow, or purple.

Programming Sheep to Reproduce
Unfortunately, in our current program the sheep eat the grass until they 
wander too far away from the grass, run out of energy, and die. To prevent 
this, let’s tell the sheep to use some of that energy to reproduce.

Let’s use the code in Listing 9-22 to tell the sheep to reproduce if their 
energy level reaches 50.

if self.energy <= 0:
    sheepList.remove(self)
if self.energy >= 50:
    self.energy -= 30 #giving birth takes energy
    #add another sheep to the list
    sheepList.append(Sheep(self.x,self.y,self.col))

Listing 9-22: Adding a conditional for sheep to reproduce

The conditional if self.energy >= 50: checks whether that sheep’s energy 
is greater than or equal to 50. If it is, we decrement the energy level by 30 for 
birthing and add another sheep to the sheep list. Notice that the new sheep 
is at the same location and is the same color as its parent. Run this code, and 
you should see the sheep reproduce, like in Figure 9-10.



Building Objects with Classes   197

Figure 9-10: Sheep eating grass and reproducing

Soon you should see what looks like tribes of similarly colored sheep.

Letting the Grass Regrow
Unfortunately, the sheep soon eat up all the grass in their area and die 
(probably a lesson in there somewhere). We need to allow our grass to 
regrow. To do this, change the Grass’s update() method to this:

    def update(self):
        if self.eaten:
            if random(100) < 5:
                self.eaten = False
            else:
                fill(BROWN)
        else:
            fill(GREEN)
        rect(self.x,self.y,self.sz,self.sz)

The Processing code random(100) generates a random number between 
0 and 100. If the number is less than 5, we regrow a patch of grass by setting  
its eaten property to False. We use the number 5 because this gives us a  
probability of 5/100 that eaten grass will regrow during each frame. Other-
wise, it stays brown.

Run the code, and you should see something like Figure 9-11.
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Figure 9-11: The grass regrows and the sheep populate  
the whole screen!

Now you might get so many sheep that the program starts to slow down! 
This could be because the sheep have too much energy. If so, try reducing 
the amount of energy each patch of grass contains from 5 to 2:

class Grass:
    def __init__(self,x,y,sz):
        self.x = x
        self.y = y
        self.energy = 2 #energy from eating this patch
        self.eaten = False #hasn't been eaten yet
        self.sz = sz

That seems to be a good balance that lets the sheep population grow at a 
reasonable pace. Play around with the numbers all you want—it’s your world!

Providing an Evolutionary Advantage
Let’s give one of the sheep groups an advantage. You can choose any advan-
tage you can think of (getting more energy from grass or producing more 
offspring at a time, for instance). For this example, we’re going to let the pur-
ple sheep walk a little further than the others. Will that make any difference? 
To find out, make the Sheep’s update() method match the following code:

    def update(self):
        #make sheep walk randomly



Building Objects with Classes   199

        move = 5 #the maximum it can move in any direction
        if self.col == PURPLE:
            move = 7
        self.energy -= 1

This conditional checks whether the Sheep’s color is purple. If so, it sets 
the Sheep’s move value to 7. Otherwise, it leaves the value at 5. This allows the  
purple sheep to travel further, and therefore more likely to find green  
patches, than the other sheep. Let’s run the code and check the outcome, 
which should look like Figure 9-12.

Figure 9-12: Giving purple sheep an advantage

After a little while it sure looks like that tiny advantage paid off for the 
purple sheep. They’re dominating the environment and pushing out all 
the other sheep just by competing for grass. This simulation could spark 
interesting discussions about ecology, invasive species, biodiversity, and 
evolution.

Exercise 9-2: Setting Sheep Lifespan

Create an “age” property and decrease it every time the sheep update so they 
live for only a limited amount of time.
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Exercise 9-3: Changing Sheep Size

Vary the size of the sheep according to their energy level.

Summary
In this chapter, you learned how to make objects using classes, which involved 
defining the class using properties and then instantiating (“creating”) and  
updating the object. This let you create multiple similar-but-independent 
objects with the same properties more efficiently. The more you use classes, 
the more creative you can get by making autonomous objects walk, fly, or 
bounce around without your having to code every step!

Knowing how to use classes supercharges your coding abilities. Now you 
can create models of complicated situations easily, and once you tell the pro-
gram what to do with one particle, or planet, or sheep, it’ll be able to make a 
dozen, a hundred, or even a million of them very easily!

You also got a taste of setting up models to explore physical, biological, 
chemical, or environmental situations with very few equations! A physicist 
once told me that’s often the most efficient method for solving problems 
involving many factors, or “agents.” You set up a computer model, let it run, 
and look at the results.

In the next chapter, you’ll learn how to create fractals using an almost-
magical phenomenon called recursion.
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Creating Fractals 
Using Recursion

What’s another word for thesaurus? 
—Steven Wright

Fractals are delightfully complicated 
designs, where each smaller part of the 

design contains the entire design (see 
Figure 10-1). They were invented (or discovered, 
since fractals exist in nature) by Benoit Mandelbrot 
in 1980 when he was visualizing some complex func-
tions on a state-of-the-art IBM computer.

Figure 10-1: Examples of fractals
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Fractals don’t look like regular shapes we recognize from geometry, 
like squares, triangles, and circles. Their shapes are crooked and jagged, 
making them great models for simulating natural phenomena. In fact, 
scientists use fractals to model everything from the arteries in your heart, 
to earthquakes, to neurons in your brain.

What makes fractals so interesting is that they illustrate how you can 
get surprisingly complex designs from simple rules being run over and over 
and patterns being repeated at smaller and smaller scale.

Our main interest is the interesting, complicated designs you can 
make using fractals. There’s a picture of a fractal in every math book 
these days, but textbooks never show you how to make one—you need 
a computer to do that. In this chapter, you learn how to make your own 
fractals using Python.

The Length of a Coastline
Before you can start creating fractals, let’s look at a simple example to under-
stand how fractals can be useful. A mathematician named Lewis Richardson 
asked a simple question; “How long is the coastline of England?” As you can 
see in Figure 10-2, the answer depends on how long your ruler is.

Figure 10-2: Approximating the length of a coastline

The smaller your ruler, the more closely you can approximate the coast-
line’s jagged edges, which means you’ll end up with a longer measurement. 
The cool thing is that the length of the coastline approaches infinity as the length 
of the ruler gets close to zero! This is known as the Coastline Paradox.

Think this is just abstract mathematical noodling? Coastline length 
estimates can vary wildly in the real world. Even with modern technology, it 
all depends on the scale used to measure the map. We’ll draw a figure like 
Figure 10-3, the Koch snowflake, to show how a fractal can prove a rough 
enough coastline can get as long as you want!
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Figure 10-3: An increasingly detailed fractal, modeling an increasingly rough coastline

First, you’re going to need to learn a few tricks, like recursion.

What Is Recursion?
The power of fractals is that you can repeat patterns of numbers or shapes 
that get smaller at every step until you’re dealing with very small numbers. 
The key to repeating all this code is a concept called recursion, which is 
when something is defined in terms of itself. Some of these jokes illustrate 
how recursion works:

•	 If you google “recursion,” it asks you, “Did you mean recursion?”

•	 In the index to more than one computer programming book, there’s 
an entry like this: “recursion, see recursion.”

As you can imagine, recursion is a pretty strange concept. The virtue 
of recursion is that it can tidy up code that would otherwise be too com-
plicated, but the disadvantage is that you can end up using up too much 
memory.

Writing the factorial() Function
Let’s see recursion in action by writing a function for the factorial of a 
number. You may recall from math class that the factorial of n (expressed 
as n!) is defined as the product of all the integers from 1 to n. For example, 
5! = 1 × 2 × 3 × 4 × 5 = 120.

The formula looks like this: n! = 1 × 2 × 3 . . . × (n – 2) × (n – 1) × n. 
This is an example of a recursive sequence, because 5! = 5 × 4! and 4! = 4 
× 3!, and so on. Recursion is an important concept in math because math 
is all about patterns, and recursion allows you to copy and extend patterns 
infinitely!

We can define the factorial of n as the product of n and the factorial 
of n – 1. We just have to define the factorial of 0 (which is 1, not 0) and the 
factorial of 1 and then use a recursive statement. Open a new file in IDLE, 
save it as factorial.py, and then enter with the code in Listing 10-1.

def factorial(n):
    if n == 0:
        return 1
    else:
        return n * factorial(n – 1)

Listing 10-1: Using a recursive statement to write the factorial() function

factorial.py
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First, we’re saying, “If the user (or the program) asks for the factorial 
of 0 or 1, return 1.” This is because 0! and 1! both equal 1. Then we tell the 
program, “For any other number n, return n times the factorial of the num-
ber 1 less than n.”

Notice that on the last line of Listing 10-1, we’re calling the factorial() 
function inside the definition of the factorial() function! That’s like a 
recipe for a loaf of bread containing the step “Bake a loaf of bread.” People 
wouldn’t even begin following a recipe written like that. But computers can 
start going through the steps and follow them throughout the process.

In this example, when we ask for the factorial of 5, the program proceeds 
obediently and makes it to the last line, where it asks for the factorial of n – 1, 
which in this case (because n = 5) is the factorial of 4. To calculate factorial 
(5 – 1), the program starts the factorial() function again with n = 4 and tries 
to evaluate the factorial of 4 the same way, followed by the factorial of 3, the 
factorial of 2, the factorial of 1, and finally the factorial of 0. Because we 
already defined the function to return the factorial of 0 as 1, the function 
can go back up through the process, evaluating the factorial of 1, then 2, 
then 3, then 4, and finally 5.

Defining a function recursively (by calling the function inside its own 
definition) might seem confusing, but it’s the key to making all the fractals 
in this chapter. Let’s start with a classic: the fractal tree.

Building a Fractal Tree
Making a fractal starts with defining a simple function and adding a call to 
the function inside the function itself. Let’s try building a fractal tree that 
looks like Figure 10-4.

Figure 10-4: A fractal tree

This would be an incredibly complicated design to create if you had 
to tell the program every line to draw. But it takes surprisingly little code 
if you use recursion. Using translations, rotations, and the line() function, 
we’ll first draw a Y in Processing, as shown in Figure 10-5.
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Figure 10-5: The beginnings  
of a fractal tree

The only requirement to eventually make this Y into a fractal is that 
after the program draws the Y tree, along with the branches, the program 
has to return to the bottom of the “trunk.” This is because the “branches” 
are going to become Y’s themselves. If the program doesn’t return to the 
bottom of the Y every time, we won’t get our tree.

Writing the y() Function

Your Y doesn’t have to be perfect or symmetrical, but here’s my code for 
drawing a Y. Open a new sketch in Processing, name it fractals.pyde, and 
enter the code in Listing 10-2.

def setup():
    size(600,600)

def draw():
    background(255)
    translate(300,500)
    y(100)

def y(sz):
    line(0,0,0,-sz)
    translate(0,-sz)
    rotate(radians(30))
    line(0,0,0,-0.8*sz) #right branch
    rotate(radians(-60))
    line(0,0,0,-0.8*sz) #left branch
    rotate(radians(30))
    translate(0,sz)

Listing 10-2: Writing the y() function for the fractal tree

We set up the Processing sketch the way we always do: in the setup() 
function we tell the program what size to make the display window, and 
then in the draw() function we set the background color (255 is white) and 
translate to where we want to start drawing. Finally, we call the y() function 
and pass the number 100 for the size of the “trunk” of the fractal tree.

The y() function takes a number sz as a parameter to be the length of 
the trunk of the tree. Then all the branches will be based on that number. 
The first line of code in the y() function draws the trunk of the tree using 

fractals.pyde
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a vertical line. To create a line branching off to the right, we translate the 
vertical line up the trunk of the tree (in the negative y-direction) and then 
rotate it 30 degrees to the right. Next, we draw another line for the right 
branch, rotate to the left (negative 60 degrees), and draw another line for 
the left branch. Finally, we have to rotate so we’re facing straight up again 
so that we can translate down the trunk again. Save and run this sketch, 
and you should see the Y in Figure 10-5.

We can convert this program that draws a single Y into one that draws 
a fractal by making the branches into smaller Y’s. But if we simply replace 
“line” with “y” in the y() function, our program will get stuck in an infinite 
loop, throwing an error like this:

RuntimeError: maximum recursion depth exceeded

Recall that we didn’t call factorial(n) inside the factorial function but 
rather called factorial(n-1). We have to introduce a level parameter to the  
y() function. Then each branch up, the tree will be a level down, so the  
branch will get the parameter level – 1. This means the trunk is always the 
highest numbered level and the last set of branches up the tree is always 
level 0. Here’s how to change the y() function in Listing 10-3.

def setup():
    size(600,600)

def draw():
    background(255)
    translate(300,500)
    y(100,2)

def y(sz,level):
    if level > 0:
        line(0,0,0,-sz)
        translate(0,-sz)
        rotate(radians(30))
        y(0.8*sz,level-1)
        rotate(radians(-60))
        y(0.8*sz,level-1)
        rotate(radians(30))
        translate(0,sz)

Listing 10-3: Adding recursion to the y() function

Notice that we replaced all the line() functions in the code with y() func-
tions to draw the branches. Because we changed the call to the y() function 
in draw() to y(100,2), we’ll get a tree of trunk size 100 with two levels. Try a 
three-level tree, a four-level one, and so on! You should see something like 
Figure 10-6.

fractals.pyde
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Level 2Level 1 Level 3 Level 4

Figure 10-6: Trees of levels 1 through 4

Mapping the Mouse

Now let’s make a program that allows you to control the shape of the fractal 
in real time, just by moving your mouse up or down! We can vary the level of 
rotation dynamically by tracking the mouse and returning a value between 
0 and 10 based on its location. Update the draw() function with the code in 
Listing 10-4.

def draw():
    background(255)
    translate(300,500)
    level = int(map(mouseX,0,width,0,10))
    y(100,level)

Listing 10-4: Adding the level parameter to the draw() function

Our mouse’s x-value can be anywhere between 0 and the width of the 
window. The map() function replaces one range of values with another. In 
Listing 10-4, map() will take the x-value and instead of the output being 
between 0 and 600 (the width of the display screen), it will be between 0 
and 10, the range of levels we want to draw. So we assign that value to a vari-
able called level and pass that value to the y() function in the next line.

Now that we’ve tweaked the draw() function to return a value based on 
the position of the mouse, we can vary the shape of our tree by linking the 
y-coordinate of the mouse to the angle we’re rotating by.

The angle of rotation should only go up to 180 because the tree will 
“fold up” completely at 180 degrees, but the mouse’s y-value can go up to 
600 since that’s the height of the screen we declared in setup(). We could 
do a little math to convert the values ourselves, but it would be easier to just 
use Processing’s built-in map() function. We tell the map() function what vari-
able we want to map, specifying its current minimum and maximum values 
and the desired minimum and maximum values. The entire code for the Y 
fractal tree is shown in Listing 10-5.

fractals.pyde
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def setup():
    size(600,600)

def draw():
    background(255)
    translate(300,500)
    level = int(map(mouseX,0,width,0,15))
    y(100,level)

def y(sz,level):
    if level > 0:
        line(0,0,0,-sz)
        translate(0,-sz)
        angle = map(mouseY,0,height,0,180)
        rotate(radians(angle))
        y(0.8*sz,level-1)
        rotate(radians(-2*angle))
        y(0.8*sz,level-1)
        rotate(radians(angle))
        translate(0,sz)

Listing 10-5: The entire code to make a dynamic fractal tree

We take the mouse’s y-value and convert it to a range between 0 and 180 
(if you already think in radians, you can map it to between 0 and pi). In the 
rotate() lines, we give it that angle (which is in degrees) and have Processing 
convert the degrees to radians. The first rotate() line will rotate to the right. 
The second rotate() line will rotate a negative angle, meaning to the left. 
It’ll rotate twice as much to the left. Then the third rotate() line will rotate 
to the right again.

When you run the code, you should see something like Figure 10-7.

Figure 10-7: A dynamic fractal tree

Now when you move the mouse up or down, left or right, the level and 
shape of the fractal should change accordingly.

fractals.pyde
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Through drawing the fractal tree, you learned how to use recursion to 
draw complicated designs using a surprisingly small amount of code. Now 
we’ll return to the coastline problem. How could a coastline, or any line, 
double or triple in length just from getting more jagged?

Koch Snowflake
The Koch snowflake is a famous fractal named after Swedish mathemati-
cian Helge von Koch, who wrote about the shape in a paper in 1904! It’s 
made from an equilateral triangle. We start with a line and add a “bump” to 
it. Then, we add a smaller bump to each resulting line segment and repeat 
the process, like in Figure 10-8.

Figure 10-8: Adding a “bump” to each segment

Let’s start a new Processing sketch, call it snowflake.pyde, and add the 
code in Listing 10-6, which will give us an upside-down equilateral triangle.

def setup():
    size(600,600)

def draw():
    background(255)
    translate(100,100)
    snowflake(400,1)

def snowflake(sz,level):
    for i in range(3):
        line(0,0,sz,0)
        translate(sz,0)
        rotate(radians(120))

Listing 10-6: Writing the snowflake() function

In the draw() function, we call the snowflake() function, which for now 
takes only two parameters: sz (the size of the initial triangle) and level (the 
level of the fractal). The snowflake() function draws a triangle by starting 
a loop that repeats the code three times. Inside the loop we draw a line of 
length sz, which will be the side of the triangle, and then translate along 
the line to the next vertex of the triangle and rotate 120 degrees. Then we 
draw the next side of the triangle.

When you run the code in Listing 10-6, you should see Figure 10-9.

snowflake.pyde
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Figure 10-9: Level 1 snowflake: a triangle

Writing the segment() Function
Now we need to tell the program how to change a line into a segment 
that will have different levels. Level 0 will just be a straight line, but the 
next level will introduce the “bump” in the side. We’re really dividing the 
segment into three segments and then taking the middle segment and 
replicating it to make it into a little equilateral triangle. We’ll change the 
snowflake() function to call another function to draw the segment. This will 
be the recursive function, because as the levels go up, the segments will 
become smaller copies of the segment in Figure 10-10.

Figure 10-10: Cutting a segment into thirds and adding a “bump” to the middle third

We’ll call the side a segment. If the level is 0, the segment is simply a 
straight line, the side of the triangle. In the next step, a bump is added 
in the middle of the side. All the segments in Figure 10-10 are the same 
length, a third of the whole sidelength. This requires 11 steps:

1.	 Draw a line a third of the sidelength.

2.	 Translate to the end of the segment you just drew.

3.	 Rotate –60 degrees (to the left).

4.	 Draw another segment.

5.	 Translate to the end of that segment.

6.	 Rotate 120 degrees (to the right).

7.	 Draw a third segment.

8.	 Translate to the end of that segment.

9.	 Rotate –60 degrees again (to the left).

10.	 Draw the last segment.

11.	 Translate to the end of that segment.
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Now, instead of drawing a line, the snowflake() function will call 
a segment() function, which will do the drawing and translating. Add the 
segment() function in Listing 10-7.

def snowflake(sz,level):
    for i in range(3):
        segment(sz,level)
        rotate(radians(120))

def segment(sz,level):
    if level == 0:
        line(0,0,sz,0)
        translate(sz,0)
    else:
        line(0,0,sz/3.0,0)
        translate(sz/3.0,0)
        rotate(radians(-60))
        line(0,0,sz/3.0,0)
        translate(sz/3.0,0)
        rotate(radians(120))
        line(0,0,sz/3.0,0)
        translate(sz/3.0,0)
        rotate(radians(-60))
        line(0,0,sz/3.0,0)
        translate(sz/3.0,0)

Listing 10-7: Drawing a “bump” on the sides of the triangle

In the segment() function, if the level is 0, it’s just a straight line, and we 
translate to the end of the line. Otherwise, we have 11 lines of code corre-
sponding to the 11 steps of making a “bump.” First, we draw a line a third of 
the length of the side and then translate to the end of that line. We rotate 
left (–60 degrees) to draw the second segment in the line. That segment is 
also a third of the length of the side of the triangle. We translate to the end 
of that segment and then turn right by rotating 120 degrees. We then draw 
a segment and turn left one last time by rotating –60 degrees. Finally, we 
draw a fourth line (segment) and translate to the end of the side.

This draws a triangle if the level is 0 and puts a bump on each side if 
the level isn’t 0. As you can see in Figure 10-8, at every step, every segment 
in the previous step gets a bump. This would be a headache to do without 
recursion! But we’ll take the line of code that draws a line and change that 
into a segment, just one level lower. This is the recursive step.

Next, we need to replace each line with a segment one level down,  
whose length is sz divided by 3. The code for the segment() function is shown 
in Listing 10-8.

def segment(sz,level):
    if level == 0:
        line(0,0,sz,0)
        translate(sz,0)
    else:
        segment(sz/3.0,level-1)

snowflake.pyde

snowflake.pyde
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        rotate(radians(-60))
        segment(sz/3.0,level-1)
        rotate(radians(120))
        segment(sz/3.0,level-1)
        rotate(radians(-60))
        segment(sz/3.0,level-1)

Listing 10-8: Replacing the lines with segments

So all we did was replace each instance of line in Listing 10-7 (whose 
level is greater than 0) with segment(). Because we don’t want to enter an 
infinite loop, the segments have to be one level down (level – 1) from the 
previous segment. Now we can change the level of the snowflake in the 
draw() function, as shown in the following code, and we’ll see different 
designs, as shown in Figure 10-11.

def draw():
    background(255)
    translate(100,height-100)
    snowflake(400,3)

Figure 10-11: A level 3 snowflake

Even better, we can make it interactive by mapping the mouse’s x-value 
to the level. The mouse’s x-value can be anywhere from 0 to whatever the 
width of the screen is. We want to change that range to between 0 and 7. 
Here’s the code for that:

level = map(mouseX,0,width,0,7)

However, we want only integer levels, so we’ll change that value to an 
integer using int, like this:

level = int(map(mouseX,0,width,0,7))
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We’ll add that to our draw() function and send the output “level” to the 
snowflake() function. The entire code for the Koch snowflake is shown in 
Listing 10-9.

def setup():
    size(600,600)

def draw():
    background(255)
    translate(100,200)
    level = int(map(mouseX,0,width,0,7))
    #y(100,level)
    snowflake(400,level)

def snowflake(sz,level):
    for i in range(3):
        segment(sz,level)
        rotate(radians(120))

def segment(sz,level):
    if level == 0:
        line(0,0,sz,0)
        translate(sz,0)
    else:
        segment(sz/3.0,level-1)
        rotate(radians(-60))
        segment(sz/3.0,level-1)
        rotate(radians(120))
        segment(sz/3.0,level-1)
        rotate(radians(-60))
        segment(sz/3.0,level-1)

Listing 10-9: Complete code for the Koch snowflake

Now when you run the program and move your mouse left and 
right, you’ll see the snowflake get more “bumps” on its segments, like in 
Figure 10-12.

Figure 10-12: A level 7 snowflake

snowflake.pyde
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How does this help us understand the Coastline Paradox? Looking back 
at Figure 10-3, let’s call the length of the line (the side of the triangle) 1 unit  
(for example, 1 mile). When we split it in thirds, take out the middle, and  
add a “bump” two thirds long in the middle, the side is now 1 1/3 units long. 
It just got 1/3 longer, right? The perimeter of the snowflake (the “coastline”) 
gets 1/3 longer every step. So at the nth step, the length of the coastline is 
(4/3)n times the perimeter of the original triangle. It might not be possible 
to see, but after 20 steps, the coastline of the snowflake is so jagged that its 
total length is over 300 times the original measurement!

Sierpinski Triangle
The Sierpinski triangle is a famous fractal first described by Polish math-
ematician Wacław Sierpiński in 1915, but there are examples of the design 
on the floors of churches in Italy from as far back as the 11th century! It 
follows a geometric pattern that’s easy to describe, but the design is sur-
prisingly complicated. It works on an interesting recursive idea: draw a tri-
angle for the first level, and for the next level turn each triangle into three 
smaller triangles at its corners, as shown in Figure 10-13.

Level 1Level 0 Level 2

Figure 10-13: Sierpinski triangles, levels 0, 1, and 2

The first step is easy: just draw a triangle. Open a new sketch and name 
it sierpinski.pyde. We set it up as usual, with setup() and draw() functions. In 
setup(), we set the size of the output window to 600 pixels by 600 pixels. In 
draw(), we set the background white and translate to a point (50,450) in 
the bottom left of the screen to start drawing our triangle. Next, we write a 
function named sierpinski(), similar to what we did with tree(), that draws 
a triangle if the level is 0. The code so far is shown in Listing 10-10.

def setup():
    size(600,600)

def draw():
    background(255)
    translate(50,450)
    sierpinski(400,0)

def sierpinski(sz, level):
    if level == 0: #draw a black triangle
        fill(0)
        triangle(0,0,sz,0,sz/2.0,-sz*sqrt(3)/2.0)

Listing 10-10: The setup of the Sierpinski fractal

sierpinski.pyde



Creating Fractals Using Recursion   215

The sierpinski() function takes two parameters: the size of the figure 
(sz) and the level variable. The fill color is 0 for black, but you can make it 
any color you want by using RGB values. The triangle line contains six num-
bers: the x- and y-coordinates of the three corners of an equilateral triangle 
with sidelength sz.

As you can see in Figure 10-13, level 1 contains three triangles at each 
corner of the original triangle. These triangles are also half the size of the 
triangle in the previous level. What we’ll do is create a smaller, lower-level  
Sierpinski triangle, translate to the next corner, and then rotate 120 degrees.  
Add the code in Listing 10-11 to the sierpinski() function.

def draw():
    background(255)
    translate(50,450)
    sierpinski(400,8)

def sierpinski(sz, level):
    if level == 0: #draw a black triangle
        fill(0)
        triangle(0,0,sz,0,sz/2.0,-sz*sqrt(3)/2.0)
    else: #draw sierpinskis at each vertex
        for i in range(3):
            sierpinski(sz/2.0,level-1)
            translate(sz/2.0,-sz*sqrt(3)/2.0)
            rotate(radians(120))

Listing 10-11: Adding the recursive step to the Sierpinski program

This new code tells Processing what to do when the level isn’t 0 (the line 
for i in range(3): means “repeat this three times”): draw a half-sized Sierpin-
ski triangle of one level lower, and then translate halfway across and halfway  
up the equilateral triangle and turn right 120 degrees. Notice the sierpinski()  
function in sierpinski(sz/2.0,level-1) is executed inside the definition of the 
sierpinski() function itself. That’s the recursive step! When you call

sierpinski(400,8)

in the draw() function, you get a level 
8 Sierpinski triangle, which you see in 
Figure  10-14.

An interesting thing about the Sier-
pinski triangle is that it shows up in other 
fractals too, like the next one, which 
doesn’t start with a triangle.

Figure 10-14: A level 8 Sierpinski 
triangle
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Square Fractal
We can make the Sierpinski triangle out of squares too. For example, we 
can create a square, remove the lower-right quadrant, and then replace 
each remaining quadrant with the resulting shape. When we repeat this 
process, we should get something like Figure 10-15.

Level 1Level 0 Level 2 Level 3

Figure 10-15: The square fractal at levels 0, 1, 2, and 3

To create this fractal, we have to make each of the three smaller squares  
into a copy of the whole. Start a new Processing sketch called squareFractal.pyde  
and then set up the sketch with the code in Listing 10-12.

def setup():
    size(600,600)
    fill(150,0,150) #purple
    noStroke()

def draw():
    background(255)
    translate(50,50)
    squareFractal(500,0)

def squareFractal(sz,level):
    if level == 0:
        rect(0,0,sz,sz)

Listing 10-12: Creating the squareFractal() function

We can use the RGB values for 
purple in the setup() function just 
because we won’t be changing the 
fill anywhere else. We use noStroke() 
so that we won’t see black outlines 
on the squares. In the draw() func-
tion we call the squareFractal() 
function, telling it to make the size 
of each square 500 pixels and level 
0. In the function definition, we 
tell the program to simply draw 
a square if the level is zero. This 
should give us a nice big purple 
square, as shown in Figure 10-16.

For the next level, we’ll make 
squares of half the sidelength of 

squareFractal 
.pyde

Figure 10-16: Purple square (level 0)
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the initial square. One will be positioned at the top left of the figure; then 
we’ll translate around to put the other two squares at the bottom left and 
top right of Figure 10-16. Listing 10-13 does this while leaving out a quarter 
of the big square.

def squareFractal(sz,level):
    if level == 0:
        rect(0,0,sz,sz)
    else:
        rect(0,0,sz/2.0,sz/2.0)
        translate(sz/2.0,0)
        rect(0,0,sz/2.0,sz/2.0)
        translate(-sz/2.0,sz/2.0)
        rect(0,0,sz/2.0,sz/2.0)

Listing 10-13: Adding more squares to the square fractal

Here, we draw a big square if the level is 0. If the level is not 0, we add  
a smaller square in the top left of the screen, translate to the right, add  
another smaller square in the top right, translate left (negative x) and down 
(positive y), and add a smaller square at the bottom left of the screen.

That’s the next level, and when we update squareFractal(500,0) in the 
draw() function to squareFractal(500,1), it should give us a square with the 
bottom-right quarter left out, as shown in Figure 10-17.

Figure 10-17: The next level of the square fractal

For the next levels, we want each of the squares to be further subdivided 
into fractals, so we’ll replace the rect lines with squareFractal(), divide the 
value in sz by 2, and tell it to move one level down, like in Listing 10-14.

def squareFractal(sz,level):
    if level == 0:
        rect(0,0,sz,sz)
    else:
        squareFractal(sz/2.0,level-1)
        translate(sz/2.0,0)
        squareFractal(sz/2.0,level-1)

squareFractal 
.pyde

squareFractal 
.pyde
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        translate(-sz/2.0,sz/2.0)
        squareFractal(sz/2.0,level-1)

Listing 10-14: Adding the recursive step to the square fractal

In Listing 10-14, notice that the 
rect lines (when the level isn’t 0) are 
replaced with squareFractal(). When we 
call squareFractal(500,2) in the draw() 
function, we don’t get the output we 
were expecting—we get Figure 10-18 
instead.

This is because we didn’t trans-
late back to the starting point like we 
did with our Y fractal earlier in the 
chapter.

Although we can calculate how 
much to translate manually, we can 
also use the pushMatrix() and popMatrix() 
functions in Processing, which you 
learned about in Chapter 5.

We can use the pushMatrix() func-
tion to save the current orientation 
of the screen—that is, where the origin (0,0) is located and how much the 
grid is rotated. After that, we can do as much translating and rotating as we 
like and then use the popMatrix() function to return to the saved orientation 
without any calculating!

Let’s add pushMatrix() at the beginning of the squareFractal() function 
and popMatrix() at the end, like in Listing 10-15.

def squareFractal(sz,level):
    if level == 0:
        rect(0,0,sz,sz)
    else:
        pushMatrix()
        squareFractal(sz/2.0,level-1)
        translate(sz/2.0,0)
        squareFractal(sz/2.0,level-1)
        translate(-sz/2.0,sz/2.0)
        squareFractal(sz/2.0,level-1)
        popMatrix()

Listing 10-15: Using pushMatrix() and popMatrix() to complete the squares

Now, each of the smaller squares from level 1 should be transformed into 
a fractal, with the bottom-right square removed, as shown in Figure 10-19.

Figure 10-18: Not what we were 
expecting!

squareFractal 
.pyde
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Figure 10-19: Level 2 of the square fractal

Now let’s try making our mouse generate the level numbers like we’ve 
done before by replacing squareFractal(500,2) with the code in Listing 10-16.

def draw():
    background(255)
    translate(50,50)
    level = int(map(mouseX,0,width,0,7))
    squareFractal(500,level)

Listing 10-16: Making the square fractal interactive

At higher levels, the square fractal looks a lot like the Sierpinski 
triangle, as you can see in Figure 10-20!

Figure 10-20: High-level square fractals look  
like the Sierpinski triangle!

squareFractal 
.pyde
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Dragon Curve
The final fractal we’ll create looks different from the others we’ve created 
so far in that the shapes on each level don’t get smaller, they get bigger. 
Figure 10-21 shows an example of the dragon curve for levels 0 through 3.

Level 0 Level 1 Level 2 Level 3

Figure 10-21: The first four levels of the dragon curve

As mathematical entertainer Vi Hart shows in one of her YouTube 
videos, the second half of the dragon curve is a perfect copy of the first 
half, and she models it by folding and then unfolding pieces of paper. The 
third level (level 2) in Figure 10-21 looks like two left turns followed by a 
right turn. The “hinge” or “fold” is at the midpoint of each dragon curve. 
See if you can find it in your dragon curves! Later, you’ll rotate part of the 
curve dynamically to match the next-level curve.

Open a new Processing sketch and name it dragonCurve.pyde. To 
create this fractal, we first create a function for the “left dragon,” as in 
Listing 10-17.

def setup():
    size(600,600)
    strokeWeight(2) #a little thicker lines

def draw():
    background(255)
    translate(width/2,height/2)
    leftDragon(5,11)

def leftDragon(sz,level):
    if level == 0:
        line(0,0,sz,0)
        translate(sz,0)
    else:
        leftDragon(sz,level-1)
        rotate(radians(-90))
        rightDragon(sz,level-1)

Listing 10-17: Writing the leftDragon() function

After the usual setup() and draw() functions, we define our leftDragon() 
function. If the level is 0, we just draw a line and then translate along the 

dragonCurve 
.pyde
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line. It’s kind of like the turtle from Chapter 1 drawing a line as it walks 
along. If the level is greater than 0, make a left dragon (one level down), 
turn left 90 degrees, and make a right dragon (one level down).

Now we’ll make the “right dragon” function (see Listing 10-18). It’s 
pretty similar to the leftDragon() function. If the level is 0, simply draw a 
line and move along it. Otherwise, make a left dragon, and this time turn 
right 90 degrees and make a right dragon.

def rightDragon(sz,level):
    if level == 0:
        line(0,0,sz,0)
        translate(sz,0)
    else:
        leftDragon(sz,level-1)
        rotate(radians(90))
        rightDragon(sz,level-1)

Listing 10-18: Writing the rightDragon() function

It’s interesting that the recursive statement in this case is not only inside 
one function, but it also jumps back and forth from the left dragon function 
to the right dragon function! Execute it, and the 11th level will look like 
Figure 10-22.

Figure 10-22: A level 11 dragon curve

Far from being simply a chaotic jumble of angles, this fractal starts to 
look like a dragon after enough levels! Remember I said the dragon curve 
is “folded” in the middle? In the version shown in Listing 10-19, I’ve added 
a few variables to change the level and the size, and I made an angle vari-
able change with the mouse’s x-coordinate. This will rotate a dragon curve 
around a “hinge” in the middle of the next-level dragon curve. See how you 
can simply rotate the curve to get both halves of the next-level curve!

 RED = color(255,0,0)
BLACK = color(0)

dragonCurve 
.pyde

dragonCurve 
.pyde
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def setup():
     global thelevel,size1

    size(600,600)
     thelevel = 1

    size1 = 40

def draw():
    global thelevel
    background(255)
    translate(width/2,height/2)

     angle = map(mouseX,0,width,0,2*PI)
    stroke(RED)
    strokeWeight(3)
    pushMatrix()
    leftDragon(size1,thelevel)
    popMatrix()
    leftDragon(size1,thelevel-1)

     rotate(angle)
    stroke(BLACK)
    rightDragon(size1,thelevel-1)

def leftDragon(sz,level):
    if level == 0:
        line(0,0,sz,0)
        translate(sz,0)
    else:
        leftDragon(sz,level-1)
        rotate(radians(-90))
        rightDragon(sz,level-1)

def rightDragon(sz,level):
    if level == 0:
        line(0,0,sz,0)
        translate(sz,0)
    else:
        leftDragon(sz,level-1)
        rotate(radians(90))
        rightDragon(sz,level-1)

def keyPressed():
    global thelevel,size1

     if key == CODED:
        if keyCode == UP:
            thelevel += 1
        if keyCode == DOWN:
            thelevel -= 1
        if keyCode == LEFT:
            size1 -= 5
        if keyCode == RIGHT:
            size1 += 5

Listing 10-19: A dynamic dragon curve
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In Listing 10-19, we add a couple of colors  to use for the curves. In 
the setup() function, we declare two global variables, thelevel and size1 , 
whose initial values we declare at  and which we change with the arrow 
keys in the keyPressed() function at the end of the file.

In the draw() function, we link an angle variable  to the x-position of 
the mouse. After that, we set the stroke color to red, make the stroke weight 
a little heavier, and draw a left dragon with the initial values of thelevel and 
size1. The pushMatrix() and popMatrix() functions, as you’ll remember, simply 
return the drawing point to the original spot, to draw another curve. Then 
we rotate the grid by however many radians the angle variable is , and 
draw another dragon curve, in black. The leftDragon() and rightDragon() 
functions are exactly the same as before.

Processing’s built-in keyPressed() function could come in handy for  
changing variables in a sketch! All you have to do is declare the global vari-
ables you want to change with the left (in this case), right, up, and down 
arrow keys on the keyboard. Note that CODED  just means it’s not a letter or 
character key. Finally, it checks which arrow key is being pressed and makes  
the level variable go up or down (if the up or down arrow key is being  
pressed) or the size variable go up or down (if the left or right arrow key is 
being pressed).

When you run this version of the dragonCurve sketch, it draws a dragon 
curve at level 5 in red; then you can rotate a level 4 curve and see how the 
level 5 curve is made up of two level 4’s, just rotated in the middle, as shown 
in Figure 10-23.

Figure 10-23: A level 5 dragon curve and  
a dynamic, interactive level 4 curve

When you move the mouse, the black dragon curve should rotate, and 
you can see how it fits both halves of the red curve. The up and down arrow 
keys control the level of the curve; press the up arrow key and the curve gets 
longer. If the curve extends off the display window, use the left arrow key 
to make each segment shorter, so it’ll fit on the screen. The right arrow key 
makes it bigger.
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This makes sense, because the leftDragon() function comes first, turns 
left, and makes a right dragon curve. The rightDragon() function just turns 
the opposite way from leftDragon(): it makes a right turn in the middle 
instead of a left. No wonder it turns out to be a perfect copy.

Summary
We’ve only scratched the surface of fractals, but hopefully you got a taste of 
how beautiful fractals can be and how powerful they are at modeling the 
messiness of nature. Fractals and recursion can help us reevaluate our ideas 
about logic and measurement. The question is no longer “how long is the 
coastline?” but rather “how jagged is it?”

For fractal lines like coastlines and meandering rivers, the standard 
characteristic is the scale of self-similarity, or how much we have to scale  
the map up by before it looks like a different scale of the same thing. This is 
effectively what you did by feeding 0.8*sz, sz/2.0, or sz/3.0 into the next level.

In the next chapter, we’ll create cellular automata (CAs), which we’ll 
draw as little squares on the screen that are born, grow, and respond to 
their surroundings. Just like with our grass-eating sheep in Chapter 9, we’ll 
create CAs and let them run—and just like with fractals, we’ll watch the 
surprising and beautiful patterns that are created from very simple rules.



11
Cellular Automata

I like to put a humidifier and a dehumidifier  
in a room and just let them fight it out. 

—Steven Wright

Math equations are a very powerful tool 
for modeling things we can measure; 

equations even got us to the moon, after 
all. But as powerful as they are, equations are 

of limited use in the biological and social sciences 
because organisms don’t grow according to equations.

Organisms grow in an environment among many other organisms and 
spend their day performing innumerable interactions. That web of inter-
actions determines how something will grow, and equations often can’t 
capture this complicated relationship. Equations can help us calculate the 
energy or mass converted by a single interaction or reaction, but to model 
a biological system, for example, you’d have to repeat that calculation hun-
dreds or thousands of times.

Fortunately, there’s a tool that models how cells, organisms, and other 
living systems grow and change according to their environment. Because 
of their similarity to independent biological organisms, these models are 
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called cellular automata (CAs). The term automaton refers to something that 
can run on its own. Figure 11-1 shows two examples of cellular automata 
generated using a computer.

Figure 11-1: An example of an elementary cellular automaton, and a screen full of virtual organisms

The CAs we’ll create in this chapter are grids made up of cells. Each cell 
in a CA has a number of states (for example, on/off, alive/dead, or colored/
blank). Cells change according to the state of their neighbors, which allows 
them to grow and change as if they were alive!

CAs have been the subject of some study, as far back as the 1940s, but 
they really took off when computers became more commonplace. In fact, 
CAs can really only be studied using computers because, even though they 
follow very simple rules, like “if an organism doesn’t have enough neigh-
bors, it dies,” these rules produce useful results only if hundreds or thou-
sands of these organisms are created and allowed to run for hundreds or 
thousands of generations.

Because math is the study of patterns, the math topic of cellular 
automata is rife with interesting ideas, programming challenges, and 
endless possibilities for beautiful output!

Creating a Cellular Automaton
Open a new Processing sketch and name it cellularAutomata.pyde. Let’s start 
with a square grid where our cells will reside. We can easily draw a 10-by-10 
grid of squares of size 20, as shown in Listing 11-1.

def setup():
    size(600,600)

def draw():
    for x in range(10):

cellular 
Automata.pyde
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        for y in range(10):
            rect(20*x,20*y,20,20)

Listing 11-1: Creating a grid of squares

Save and run this sketch, and you should see a grid like the one shown 
in Figure 11-2.

Figure 11-2: A 10 × 10 grid

However, we need to change a bunch of numbers every time we want 
bigger cells, for example, or a grid with different dimensions. Therefore, 
it’s much easier to change things later if we use variables. Because the key-
words height, width, and size already exist for the graphics window, we have 
to use different variable names. Listing 11-2 improves on Listing 11-1 by cre-
ating a grid that’s easy to resize, with cells that are also easy to resize—all by 
using variables.

GRID_W = 15
GRID_H = 15

#size of cell
SZ = 18
def setup():
    size(600,600)

def draw():
    for c in range(GRID_W): #the columns
        for r in range(GRID_H): #the rows
            rect(SZ*c,SZ*r,SZ,SZ)

Listing 11-2: Improved grid program using variables

We create variables for the height (GRID_H) and width (GRID_W) of the 
grid using all capital letters to indicate that these are constants and their 
values won’t be changing. The size of the cell is also a constant (for now), 

cellular 
Automata.pyde
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so we capitalize it as well (SZ) when declaring its initial value. Now when 
you run this code, you should see a larger grid, like the one shown in 
Figure 11-3.

Figure 11-3: A larger grid, made with variables

Writing a Cell Class
We need to write a class because every cell we create needs its own location, 
state (“on” or “off”), neighbors (the cells next to it), and so on. We create 
the Cell class by adding the code shown in Listing 11-3.

#size of cell
SZ = 18

class Cell:
    def __init__(self,c,r,state=0):
        self.c = c
        self.r = r
        self.state = state

    def display(self):
        if self.state == 1:
            fill(0) #black
        else:
            fill(255) #white
        rect(SZ*self.r,SZ*self.c,SZ,SZ)

Listing 11-3: Creating the Cell class

cellular 
Automata.pyde
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The cell’s initial state property is 0 (or off). The code state=0 in the 
parameters of the __init__ method means that if we don’t specify a state, 
state is set to 0. The display() method just tells the Cell object how to display 
itself on the screen. If it’s “on,” the cell is black; otherwise, it’s white. Also, 
each cell is a square, and we need to spread out the cells by multiplying 
their column and row numbers by their size (self.SZ).

After the draw() function, we need to write a function to create an 
empty list to put our Cell objects in and use a nested loop to append these 
Cell objects to the list instead of drawing them one by one, as shown in 
Listing 11-4.

def createCellList():
    '''Creates a big list of off cells with
    one on Cell in the center'''

    u newList=[]#empty list for cells
    #populate the initial cell list
    for j in range(GRID_H):

        v newList.append([]) #add empty row
        for i in range(GRID_W):

            w newList [j].append(Cell(i,j,0)) #add off Cells or zeroes
    #center cell is set to on

    x newList [GRID_H//2][GRID_W//2].state = 1
    return newList

Listing 11-4: Function for creating a list of cells

First, we create an empty list called newList  and add an empty list as a 
row  to be filled in with Cell objects . Then, we get the index of the center 
square by dividing the number of rows and columns by 2 (the double slash 
means integer division) and setting that cell’s state property to 1 (or “on”) .

In setup(), we’ll use the createCellList() function and declare cellList as  
a global variable so it can be used in the draw() function. Finally, in draw(),  
we’ll loop over each row in cellList and update it. The new setup() and draw()  
functions are shown in Listing 11-5.

def setup():
    global cellList
    size(600,600)
    cellList = createCellList()

def draw():
    for row in cellList:
        for cell in row:
            cell.display()

Listing 11-5: The new setup() and draw() functions for creating a grid

However, when we run this code, we get a grid with smaller cells in the 
corner of the display window, as shown in Figure 11-4.

cellular 
Automata.pyde
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Figure 11-4: A grid of cells that’s not yet centered

Now we’re able to make as big or small a list of cells as we want by 
changing the size of our 15-by-15 grid.

Resizing Each Cell
To resize our cells, we can make SZ automatically dependent on the width 
of the window. Right now the width is 600, so let’s change setup() using the 
code in Listing 11-6.

def setup():
    global SZ,cellList
    size(600,600)
    SZ = width // GRID_W + 1
    cellList = createCellList()

Listing 11-6: Resizing the cells to autofit the display window

The double forward slash (//) means integer division, which returns only 
the integer part of the quotient. Now, when you run the program, it should 
produce a grid with all empty cells except for one colored cell in the center, 
like in Figure 11-5.

cellular 
Automata.pyde
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GRID_W = 51
GRID_H = 51

GRID_W = 15
GRID_H = 15

Figure 11-5: Grids with the center cell “on”

Note that this code works better when you add 1 to SZ, the size of the 
Cell, as in Listing 11-16, because otherwise the grid sometimes doesn’t fill 
the whole display window. But feel free to leave it out.

Making a CA Grow
Now we want to make the cells change according to the number of their  
neighbors whose state is “on.” This section was inspired by a two-dimensional  
CA from Stephen Wolfram’s New Kind of Science. You can see how a version 
of this CA grows in Figure 11-6.

Figure 11-6: Stages of growth of a cellular automaton
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In this design, if a cell has one or four neighbors that are on, we make it 
turn on (and stay on).

Putting the Cells into a Matrix
It’s easy to find the cells immediately before and after a cell in the list, which 
gives us the neighbors to its left and right. But how do we find the neighbors 
above and below a cell? To do this more easily, we can put the cells in a two- 
dimensional array or matrix, which is a list with lists for the rows. That way, 
if a cell is in column 5, for example, we know that its “above” and “below” 
neighbors will also be in column 5.

In the Cell class, we add a method called checkNeighbors() so that a cell 
can count how many of its neighbors are on, and if the count is 1 or 4, that 
cell will return 1 for “on.” Otherwise, it returns 0 for “off.” We begin by 
checking the neighbor above:

    def checkNeighbors(self):
        if self.state == 1: return 1 #on Cells stay on
        neighbs = 0
        #check the neighbor above
        if cellList[self.r-1][self.c].state == 1:
            neighbs += 1

This code checks for the item in cellList that’s in the same column 
(self.c) but in the previous row (self.r – 1). If that item’s state property is 
1, then it’s on, and we increment the neighbs variable by 1. Then we have to 
do the same for the cell’s neighbor below, and then for the neighbors to the 
left and right. Do you see an easy pattern here?

cellList[self.r - 1][self.c + 0] #above
cellList[self.r + 1][self.c + 0] #below
cellList[self.r + 0][self.c - 1] #left
cellList[self.r + 0][self.c + 1] #right

We only need to keep track of the change in the row number and the 
change in the column number. There are only four directions we need 
to check, for the “one to the left, one to the right” neighbors, and so on: 
[-1,0], [1,0], [0,-1] and [0,1]. If we call those dr and dc (d, or the Greek 
letter delta, is the traditional math symbol for change), we can keep from 
repeating ourselves:

def checkNeighbors(self):
    if self.state == 1: return 1 #on Cells stay on
    neighbs = 0	 #check the neighbors
    for dr,dc in [[-1,0],[1,0],[0,-1],[0,1]]:
        if cellList[self.r + dr][self.c + dc].state == 1:
            neighbs += 1
    if neighbs in [1,4]:
        return 1
    else:
        return 0

cellular 
Automata.pyde
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Finally, if the neighbor count is 1 or 4, the state property will be set 
to 1. In Python, if neighbs in [1,4] is the same as saying if neighbs == 1 or 
neighbs == 4:.

Creating the Cell List
So far, we’ve created the cell list by running the createCellList() function in  
setup() and assigning the output to cellList, and we’ve gone through every row 
in cellList and updated each cell in the row. Now we have to check whether 
the rules work. The four squares surrounding the center cell should change  
state in the next step. That means we’ll have to run the checkNeighbors()  
method and then show the result. Update your draw() function as follows:

def draw():
    for row in cellList:
        for cell in row:

            u cell.state = cell.checkNeighbors()
            cell.display()

The updated line  runs all the checkNeighbors() code and sets the cell on 
or off according to the result. Run it, and you should get the following error:

IndexError: index out of range: 15

The error is in the line that checks the neighbor to the right. Sure 
enough, because there are only 15 cells in a row, it makes sense that the 
15th cell has no neighbor to the right.

If a cell has no neighbor to the right (meaning its column number is GRID_W  
minus one), we obviously don’t need to check that neighbor and can continue 
on to the next cell. The same for checking the neighbor above the cells in row 
0, because they have no cells above them. Similarly, the cells in column 0 have 
no neighbors to the left, and the cells in row 14 (GRID_H minus 1) have no cells  
below them. In Listing 11-7, we add a valuable Python trick called exception  
handling to the checkNeighbors() method using the keywords try and except.

    def checkNeighbors(self,cellList):
        if self.state == 1: return 1 #on Cells stay on
        neighbs = 0
        #check the neighbors
        for dr,dc in [[-1,0],[1,0],[0,-1],[0,1]]:

            u try:
                if cellList[self.r + dr][self.c + dc].state == 1:
                    neighbs += 1

            v except IndexError:
                continue
        if neighbs in [1,4]:
            return 1
        else:
            return 0

Listing 11-7: Adding conditionals to checkNeighbors()

cellular 
Automata.pyde
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The try keyword  literally means “try to run this next line of code.” 
In the earlier error message, we got an IndexError. We use the except key-
word  to mean “if you get this error, do this.” Therefore, if we get an 
IndexError, we continue on to the next loop. Run this code, and you’ll get 
something interesting, as shown in Figure 11-7. This is definitely not what 
we saw in Figure 11-6.

Figure 11-7: Not what we expected!

The problem is that we’re checking neighbors and changing the state of 
the current cell. Then the cell’s neighbors are checking their neighbors, but 
they’re checking the new state of their neighbors. We want all the cells to 
check their neighbors and save the information in a new list; then, when all 
the cells are done, we can update the grid all at once. That calls for another 
list for our cells, newList, that will replace cellList at the end of the loop.

So all we need to do is declare that newList is equal to cellList, right?

cellList = newList  #?

Although that seems to make sense, Python doesn’t copy the contents of 
newList over the previous contents of cellList, which is what you might have 
expected. It technically refers to the newList, but when you change newList, 
you end up changing cellList as well.

Python Lists Are Strange
Python lists have an odd behavior. Let’s say you declare a list and set another 
one equal to it, and then you change the first list. You wouldn’t expect the 
second one to change too, but that’s exactly what happens, as shown here:

>>> a = [1,2,3]
>>> b = a
>>> b
[1, 2, 3]
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>>> a.append(4)
>>> a
[1, 2, 3, 4]
>>> b
[1, 2, 3, 4]

As you can see, we created list a, then assigned the value of list a to list b. 
When we change list a without updating list b, Python also changes list b!

List Index Notation
One way to make sure when we’re updating one list that we’re not updating 
another one accidentally is to use index notation. Giving list b all the con-
tents of list a should prevent this from happening:

>>> a = [1,2,3]
>>> b = a[::]
>>> b
[1, 2, 3]
>>> a.append(4)
>>> a
[1, 2, 3, 4]
>>> b
[1, 2, 3]

Here, we use b = a[::] to say “assign all the contents inside list a to the 
variable b,” as opposed to simply declaring that list a is equal to list b. This 
way, the lists aren’t linked to each other.

After we declare SZ, we need to add the following line of code to declare 
the initial value of the generation variable, which will keep track of which 
generation we’re looking at:

generation = 0

We’re going to avoid the list reference problem by using the index nota-
tion at the end of the updating code. Let’s create a new update() function 
after draw() so that all the updating will be done in that separate function. 
Listing 11-8 shows how your setup() and draw() functions should look.

def setup():
    global SZ, cellList
    size(600,600)
    SZ = width // GRID_W + 1
    cellList = createCellList()

def draw():
    global generation,cellList
    cellList = update(cellList)
    for row in cellList:
        for cell in row:
            cell.display()

cellular 
Automata.pyde
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    generation += 1
    if generation == 3:
        noLoop()

def update(cellList):
    newList = []
    for r,row in enumerate(cellList):
        newList.append([])
        for c,cell in enumerate(row):
            newList[r].append(Cell(c,r,cell.checkNeighbors()))
    return newList[::]

Listing 11-8: Checking whether the updating is working and then stopping after three 
generations

We create the first cellList once in the setup() function and then  
declare it a global variable so we can use it in other functions. In the draw()  
function, we use the generation variable for however many generations  
we want to check (in this case, three); then we make a call to update the 
cellList. We draw the cells as before, using the display() method, and then 
increment generation and check whether it has reached our desired genera-
tion. If it has, the built-in Processing function noLoop() stops the loop.

We use noLoop() to turn off the infinite loop, because we only want to 
draw the given number of generations. If you comment it out, the pro-
gram will keep going! Figure 11-8 shows what the CA looks like after three 
generations.

Figure 11-8: A working CA!
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What’s great about using variables for our grid size is that we can change 
the CA drastically by simply changing the GRID_W and GRID_H variables, like so:

GRID_W = 41
GRID_H = 41

If we increase the number of generations to 13 (in the line that cur-
rently reads if generation == 3), the output should look like Figure 11-9.

Figure 11-9: Our CA at a higher level, with a grid (left) and without a grid (right)

To remove the grid around the empty cells in the CA, simply add this 
line to the setup() function:

    noStroke()

That should turn off the outline around the squares, but the fill color 
will still be drawn, like Figure 11-9.

So far we’ve done a lot! We’ve created two-dimensional lists, filled them 
with cells, and turned on certain cells according to a simple rule. Then we 
updated the cells and displayed them. The CA just keeps growing!

Exercise 11-1: Manually Growing the CA

Use the keyPressed() function you learned about in Chapter 10 to manually 
grow the CA.
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Letting Your CA Grow Automatically
If you want the CA to cycle from level 0 to a maximum number of genera-
tions (you choose the right number for your window), simply change the 
draw() function to what’s shown in Listing 11-9.

def draw():
    global generation,cellList

    u frameRate(10)
    cellList = update(cellList)
    for row in cellList:
        for cell in row:
            cell.display()
    generation += 1

    v if generation == 30:
        generation = 1
        cellList = createCellList()

Listing 11-9: Making the CA grow and regrow automatically

To slow down the animation, we use Processing’s built-in frameRate()  
function . The default is 60 frames per second, so here we slowed it down 
to 10. Then we tell the program that if the generation variable reaches 30  
(you can change this to another number), reset generation to 1, and create 
a new cellList. Now you should be able to watch the CA grow as quickly or 
slowly as you want. Change the rule and see how that changes the CA. You 
can change the colors too!

We’ve just taken a simple rule (if a cell has 1 or 4 neighbors, it’s “on”) 
and wrote a program to apply that rule to thousands of cells at once! The 
result looks like a living, growing organism. Now we’ll expand our code into 
a famous CA where the virtual organisms can move around, grow, and die!

Playing the Game of Life
In a 1970 issue of Scientific American, math popularizer Martin Gardner 
brought attention to a strange and wonderful game where cells live or die 
according to how many neighbors they have. The brainchild of English 
mathematician John Conway, this game features three simple rules:

1.	 If a living cell has less than two living neighbors, it dies.

2.	 If a living cell has more than three living neighbors, it dies.

3.	 If a dead cell has exactly three living neighbors, it comes to life.

With a simple set of rules like that, it’s surprising how intricate this 
game gets. In 1970, most people could only use checkers on a board to 
visualize the game, and one generation could take quite a while to calcu-
late. Conveniently, we have a computer, and the CA code we just wrote has 
most of the code necessary to create this game in Python. Save the CA file 
we’ve been working on so far and then save it with different name, like 
GameOfLife.

cellular 
Automata.pyde
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In this game, our cells will have diagonal neighbors too. That means 
we have to add four more values to our dr,dc line. Listing 11-10 shows the 
changes you need to make to the checkNeighbors() code.

    def checkNeighbors(self):
        neighbs = 0  #check the neighbors

        u for dr,dc in [[-1,-1],[-1,0],[-1,1],[1,0],[1,-1],[1,1],[0,-1],[0,1]]:
            try:
                if cellList[self.r + dr][self.c + dc].state == 1:
                    neighbs += 1
            except IndexError:
                continue

        v if self.state == 1:
            if neighbs in [2,3]:
                return 1
            return 0
        if neighbs == 3:
            return 1
        return 0

Listing 11-10: Changes to the checkNeighbors() code to include diagonal neighbors

First, we add four values  to check the diagonal neighbors: [-1,-1] 
for the neighbor to the left and up, [1,1] for the neighbor to the right and 
down, and so on. Then we tell the program that if the cell is on , check if 
it has two or three neighbors that are also on. If so, we tell the program to 
return 1, and if not, we tell the program to return 0. Otherwise, if the cell is 
off, we tell it to check if it has three neighbors that are on. If it does, return 
1; if doesn’t, return 0.

Then we place living cells randomly around the grid, so we have to 
import the choice() function from Python’s random module. Add this line to 
the top of the program:

from random import choice

Then we use the choice() function to randomly choose whether a 
new Cell is on or off. So all we have to do is change the append line in the 
createCellList() function to the following:

newList [j].append(Cell(i,j,choice([0,1])))

Now we no longer need the generation code from the previous file. The 
remaining code in the draw() function looks like this:

def draw():
    global cellList
    frameRate(10)
    cellList = update(cellList)
    for row in cellList:
        for cell in row:
            cell.display()

GameOfLife 
.pyde
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Run this code, and you’ll see a wild, dynamic game play out, where organ-
isms are moving, morphing, splitting, and interacting with other organisms, 
like in Figure 11-10.

Figure 11-10: The Game of Life in action!

It’s interesting how the “clouds” of cells morph, move, and collide with 
other clouds (families? colonies?). Some organisms wander around the 
screen until, eventually, the grid will settle into a kind of equilibrium. Fig-
ure 11-11 shows an example of that kind of equilibrium.

Figure 11-11: An example of the Game of Life that has  
entered a stable state
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In this example of a state of equilibrium, some shapes appear stable 
and unmoving, while other shapes become stuck in repeating patterns.

The Elementary Cellular Automaton
This last CA is really cool and involves a little more math, but it’s still a 
simple pattern that’s extended, though only in one dimension (which is 
why it’s called an “elementary CA”). We start off with one row of cells and 
set the middle cell’s state to one, as shown in Figure 11-12.

Figure 11-12: The first row of an elementary CA

This is easy to code. Start a new Processing sketch and call it 
elementaryCA.pyde. The code to draw the first row of cells is shown in 
Listing 11-11.

 #CA variables
w = 50
rows = 1
cols = 11

def setup():
    global cells
    size(600,600)
    #first row:

    v cells = []
    for r in range(rows):
        cells.append([])
        for c in range(cols):
            cells[r].append(0)

    w cells[0][cols//2] = 1

def draw():
    background(255) #white
    #draw the CA
    for i, cell in enumerate(cells): #rows
        for j, v in enumerate(cell): #columns

            x if v == 1:
                fill(0)
            else: fill(255)

            y rect(j*w-(cols*w-width)/2,w*i,w,w)

Listing 11-11: Drawing the first row (generation) of the elementary CA

First, we declare a few important variables , such as the size of each 
cell and the number of rows and columns in our CA. Next, we start our 
cells list . We create rows number of rows and append cols number of 0’s 
in each list inside cells. We set the middle cell in the row to 1 (or on) . 
In the draw() function, we loop through the rows (there will be more than 

elementaryCA 
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one row soon!) and columns using enumerate. We check if the element is a 1, 
and if so, we color it black . Otherwise, we color it white. Finally, we draw 
the square for the cell . The x-value looks a bit complicated, but this just 
makes sure the CA is always centered.

When you run this code, you should see what’s shown in Figure 11-12: 
a row of cells with one “on” cell in the center. The state of the cells in the 
next row of the CA will depend on the rules we set up for a cell and its two 
neighbors. How many possibilities are there? Each cell has two possible 
states (1 or 0, or “on” or “off”) so that’s two states for the left neighbor, two 
for the center cell, and two for the right neighbor. That’s 2 × 2 × 2 = 8 pos-
sibilities. All the combinations are shown in Figure 11-13.

Figure 11-13: All the possible combinations of a cell and its two neighbors

The first possibility is that the center cell is on and both its neighbors 
are on. The next possibility is that the center cell is on, the left neighbor is 
on, and the right neighbor is off—and so on. This order is very important. 
(Do you see the pattern?) How are we going to describe these possibilities 
to the computer program? We could write eight conditional statements like 
this one:

if left == 1 and me == 1 and right == 1:

But there’s an easier way. In A New Kind of Science, Stephen Wolfram 
assigns numbers to the possibilities according to the binary number the three 
cells represent. Keeping in mind that 1 is on and 0 is off, you can see that 111 
is 7 in binary, 110 is 6 in binary, and so on, as illustrated in Figure 11-14.

1 1
7

1 1 1
6

0 1 0
5

1 1 0
4

0 0 1
3

1 0 1
2

0 0 0
1

1 0 0
0

0

Figure 11-14: The numbering method for the eight possibilities

Now that we’ve numbered each possibility, we can create a rule set—
that is, a list that will contain the rules for what to do with each possibility 
in the next generation. Notice the numbers are like the indices of a list, 
except backwards. We can easily get around that. We can assign a result to 
each one randomly or because of some plan. Figure 11-15 shows one set 
of results.

Figure 11-15: A set of results assigned to each possibility in the CA
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The box under each possibility signifies the result, or the state of the 
cell in the next generation of the CA. The white box under “possibility 7” 
on the left means “if the cell is on and both of its neighbors are on, it will 
be off in the next generation.” Same for the next two possibilities (which 
don’t exist in our CA so far): the result is “off.” As illustrated earlier in Fig-
ure 11-12, we have a lot of “off” cells surrounded by “off” cells, which is the 
possibility shown on the far right of Figure 11-14: three white squares. In 
this case, the cell in the middle will be off in the next generation. We also 
have one “on” cell surrounded by two “off” cells (possibility 5). In the next 
generation, the cell will be on. We’ll use 0’s and 1’s for our ruleset list, as 
illustrated in Figure 11-16.

0 0 0 1 1 1 1 0

Figure 11-16: Putting the rules for generating the next row into a list

We’ll collect all these numbers into a list called ruleset, which we’ll add 
just before the setup() function:

ruleset = [0,0,0,1,1,1,1,0]

The order of the possibilities is important because this rule set is referred 
to as “Rule 30” (00011110 is 30 in binary). Our task is to create the next row 
according to the rules. Let’s create a generate() function that looks at the first 
row and generates the second row, then looks at the second row and gener-
ates the third row, and so on. Add the code shown in Listing 11-12.

#CA variables
w = 50

u rows = 10
cols = 100
--snip--
ruleset = [0,0,0,1,1,1,1,0] #rule 30

v def rules(a,b,c):
    return ruleset[7 - (4*a + 2*b + c)]

def generate():
    for i, row in enumerate(cells): #look at first row
        for j in range(1,len(row)-1):
            left = row[j-1]
            me = row[j]
            right = row[j+1]
            if i < len(cells) - 1:
                cells[i+1][j] = rules(left,me,right)
    return cells

Listing 11-12: Writing the generate() function to generate new rows in the CA

elementaryCA 
.pyde
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First, we make the CA larger by updating the number of rows and col-
umns . Next, we create the rules() function , which takes three param-
eters: the left neighbor’s number, the current cell’s number, and the right 
neighbor’s number. The function checks the ruleset and returns the value 
for the cell in the next generation. We make use of the binary numbers, 
and the line 4*a + 2*b + c converts “1,1,1” to 7 and “1,1,0” to 6, and so on. 
However, as you’ll recall from Figure 11-15, the indices are in reverse order, 
so we subtract the total from 7 to get the proper index of the ruleset.

Add the following line to the end of the setup() function:

cells = generate()

This creates the full CA and not just the first row. When you run this 
code, you should see the first 10 rows of a CA made using “Rule 30,” as illus-
trated in Figure 11-17.

Figure 11-17: The first 10 rows of Rule 30

The program is going 
through each row, starting at 
the top, and generating the 
next row according to the rules 
we gave it in the ruleset. What 
if we keep going? Change the 
number of rows and columns 
to 1000 and the width (w) of 
each cell to 3. Add noStroke() to 
the setup() function to get rid 
of the outline of the cells, and 
then run the sketch. You should 
see what’s in Figure 11-18.

Rule 30 is a fascinating 
design because it’s not com-
pletely random, but it’s not 
completely regular either. Figure 11-18: More of Rule 30



Cellular Automata   245

Rule 73 is also cool; in fact a woman named Fabienne Serriere programs 
the rule into a knitting machine to create scarves with the pattern, like in 
Figure 11-19. You can order scarves with this and other algorithmically gener-
ated rules on them from https://knityak.com/.

Figure 11-19: A scarf whose design is a cellular automaton: Rule 73!

Exercise 11-2: Changing the Rule Set

Change ruleset to the binary form of the number 90. What does the resulting 
CA look like? Hint: it’s a fractal.

Exercise 11-3: Zooming In and Out

Use the keyPressed() function you learned about in Chapter 10 to change the 
value of the width variable w using the up and down arrow keys. This should let 
you zoom in and out of the CA!
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Summary
In this chapter, you learned to use Python to create cellular automata, or cells 
that act independently, according to specific rules. We wrote programs to 
make a huge grid of these cells follow certain rules and update themselves, 
generation after generation, and we created unexpectedly beautiful designs 
and surprisingly life-like behavior.

In the next chapter, we’ll create virtual organisms that solve problems 
for us! These organisms will be able to guess a secret phrase and find the 
shortest route through a bunch of cities just by evolving better and better 
solutions.



12
Solving Problems Using 

Genetic Algorithms

Steve: We’re lost. 
Mike: How lost are we?

When many people think of math, they 
think of equations and operations that are 

“set in stone” and answers that are either 
right or wrong. They might be surprised to learn 

how much guessing and checking we’ve done in our 
algebra explorations already.

In this chapter, you learn to crack passwords and hidden messages 
in an indirect fashion. It’s kind of like the “guess-and-check” method of 
Chapter 4, where we just plugged a bunch of integers into an equation 
and if any made the equation true, we printed them out. This time, we’ll 
guess a bunch of values, not just one. It’s not the most elegant way of solv-
ing a problem, but with a computer at our disposal, sometimes brute force 
works best.

To figure out our secret phrase, we generate guesses and then rate 
them on how well they match the target. But here’s where we depart from 
a guess-and-check method: we keep the best guesses and mutate them, 
randomly, again and again until we uncover the message. The program  
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won’t know which letters are right and which letters are wrong, but we get 
closer and closer by mutating the best guess we’ve made so far. Although 
this method might not seem promising right now, you’ll see that it helps 
crack the code surprisingly quickly. This method is called a genetic algorithm, 
which computer scientists use to find solutions to problems based on the  
theory of natural selection and evolutionary biology. It was inspired by 
biological organisms that adapt and mutate, and the way they build on tiny  
advantages, as we saw in the Sheep model in Chapter 9, on Classes.

For more complicated problems, however, random mutating won’t be 
enough to solve our problem. In those cases, we add crossover, which we use 
to combine the most fit organisms (or best guesses) to improve their like-
lihood of cracking the code, just like how the fittest organisms are more 
likely to pass down a combination of their genetic material. All this activity, 
other than the scoring, will be fairly random, so it might be surprising that 
our genetic algorithms work so well.

Using a Genetic Algorithm to 
Guess Phrases

Open IDLE and create a new file called geneticQuote.py. Instead of guessing  
a number like in Chapter 4, this program tries to guess a secret phrase. 
All we have to tell the program is the number of characters it guessed 
correctly—not where or which characters, just how many.

Our program is going to be able to do much better than guess short 
passwords.

Writing the makeList() Function
To see how this works, let’s create a target phrase. Here’s a long sentence 
that my son came up with from the comic book Naruto:

target = "I never go back on my word, because that is my Ninja way."

In English, we have a bunch of characters we can choose from: lower-
case letters, uppercase letters, a space, and some punctuation.

characters = " abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ.',?!"

Let’s create a function called makeList() that will randomly create a list 
of characters that’s the same length as target. Later, when we try to guess 
what the target phrase is, we’ll score the guess by comparing it character by 
character with the target. A higher score means a guess is closer to the tar-
get. Then, we’ll randomly change one of the characters in that guess to see 
if that increases its score. It seems surprising that such a random method 
will ever get us to the exact target phrase, but it will.

First, import the random module and write the makeList() function, as 
shown in Listing 12-1.



Solving Problems Using Genetic Algorithms   249

import random

target = "I never go back on my word, because that is my Ninja way."
characters = " abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ.',?!"

def makeList():
    '''Returns a list of characters the same length
    as the target'''
    charList = [] #empty list to fill with random characters
    for i in range(len(target)):
        charList.append(random.choice(characters))
    return charList

Listing 12-1: Writing the makeList() function to create a list of random characters that’s the 
same length as the target

Here, we create an empty list called charList and loop over the list 
the same number of times as there are characters in the target. On each 
loop,the program puts a random character from characters into charList.  
Once the loop is done, it returns charList. Let’s test it to make sure it works.

Testing the makeList() Function
First, let’s find out what the length of the target is, and check that our ran-
dom list is the same length:

>>> len(target)
57
>>> newList = makeList()
>>> newList
['p', 'H', 'Z', '!', 'R', 'i', 'e', 'j', 'c', 'F', 'a', 'u', 'F', 'y', '.',
'w', 'u', '.', 'H', 'W', 'w', 'P', 'Z', 'D', 'D', 'E', 'H', 'N', 'f', ' ',
'W', 'S', 'A', 'B', ',', 'w', '?', 'K', 'b', 'N', 'f', 'k', 'g', 'Q', 'T',
'n', 'Q', 'H', 'o', 'r', 'G', 'h', 'w', 'l', 'l', 'W', 'd']
>>> len(newList)
57

We measured the length of the target list, and it’s 57 characters long. 
Our new list is the same length, 57 characters. Why make a list instead of a 
string? We make a list because lists are sometimes easier to work with than 
strings. For example, you can’t simply replace a character in a string with 
another character. But in a list you can, as you can see here:

>>> a = "Hello"
>>> a[0] = "J"
Traceback (most recent call last):
  File "<pyshell#16>", line 1, in <module>
    a[0] = "J"
TypeError: 'str' object does not support item assignment
>>> b = ["H","e","l","l","o"]
>>> b[0] = "J"
>>> b
['J', 'e', 'l', 'l', 'o']

genetic 
Quote.py
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In this example, when we try to replace the first item in the "Hello" 
string with "J", Python doesn’t let us, and we get an error. Doing the same 
thing using a list, however, is no problem.

In the case of our geneticQuote.py program, we want to see the random 
quote as a string because that’s easier to read. Here’s how to print out a list 
as a string, using Python’s join() function:

>>> print(''.join(newList))
pHZ!RiejcFauFy.wu.HWwPZDDEHNf WSAB,w?KbNfkgQTnQHorGhwllWd

Those are all the characters in newList, but in string form. It doesn’t 
look like a very promising start!

Writing the score() Function
Now let’s write a function called score() to score each guess by comparing it 
character by character with the target, like in Listing 12-2.

def score(mylist):
    '''Returns one integer: the number of matches with target'''
    matches = 0
    for i in range(len(target)):
        if mylist[i] == target[i]:
            matches += 1
    return matches

Listing 12-2: Writing the score() function for scoring a guess

The score() function takes each item in a list we feed it (mylist) and  
checks if the first character of mylist matches the first character of the  
target list. Then the function checks whether the second characters match, 
and so on. For each character matched, we increment matches by 1. In the 
end, this function returns a single number, not which ones are right, so we 
don’t actually know which characters we got right!

What’s our score?

>>> newList = makeList()
>>> score(newList)
0

Our first guess was a total strikeout. Not a single match!

Writing the mutate() Function
Now we’ll write a function to mutate a list by randomly changing one char-
acter. This will allow our program to “make guesses” until we get closer to 
the target phrase we’re trying to guess. The code is in Listing 12-3.

def mutate(mylist):
    '''Returns mylist with one letter changed'''
    newlist = list(mylist)

genetic 
Quote.py
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Quote.py
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    new_letter = random.choice(characters)
    index = random.randint(0,len(target)-1)
    newlist[index] = new_letter
    return newlist

Listing 12-3: Writing the mutate() function for changing one character in a list

First, we copy the elements of the list to a variable called newlist. We 
then randomly choose a character from the characters list to be the new let-
ter that will replace one of the existing characters. We randomly choose a 
number between 0 and the length of the target to be the index of the letter 
we replace. Then we set the character in newlist at that index to be the new 
letter. This process repeats over and over again in a loop. If the new list has 
a higher score, it’ll become the “best” list, and the best list will keep getting 
mutated in the hope of improving its score even more.

Generating a Random Number
Starting off the program after all the function definitions, we make sure 
of our randomness by calling random.seed(). Calling random.seed() resets the 
random number generator to the present time. Then we make a list of char-
acters and, since the first list is the best one so far, declare it the best list. Its 
score will be the best score.

random.seed()
bestList = makeList()
bestScore = score(bestList)

We keep track of how many guesses we’ve made:

guesses = 0

Now we start an infinite loop that will mutate bestList to make a new 
guess. We calculate its score and increment the guesses variable:

while True:
    guess = mutate(bestList)
    guessScore = score(guess)
    guesses += 1

If the score of the new guess is less than or equal to the best score so 
far, the program can “continue,” as shown next. That means it will go back 
to the beginning of the loop, since it wasn’t a good guess, and we don’t 
need to do anything else with it.

    if guessScore <= bestScore:
        continue

If we’re still in the loop, that means the guess is good enough to print 
out. We print its score, too. We can print the list (as a string), the score, and 

genetic 
Quote.py
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how many total guesses were made. If the score of the new guess is the same 
as the length of the target, then we’ve solved the quote and we can break 
out of the loop:

    print(''.join(guess),guessScore,guesses)
    if guessScore == len(target):
        break

Otherwise, the new guess must be better than the best list so far, but 
not perfect yet, so we can declare it the best list and save its score as the best 
score:

    bestList = list(guess)
    bestScore = guessScore

Listing 12-4 shows the entire code for the geneticQuote.py program.

import random

target = "I never go back on my word, because that is my Ninja way."
characters = " abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ.',?!"

#function to create a "guess" list of characters the same length as target
def makeList():
    '''Returns a list of characters the same length
    as the target'''
    charList = [] #empty list to fill with random characters
    for i in range(len(target)):
        charList.append(random.choice(characters))
    return charList

#function to "score" the guess list by comparing it to target
def score(mylist):
    '''Returns one integer: the number of matches with target'''
    matches = 0
    for i in range(len(target)):
        if mylist[i] == target[i]:
            matches += 1
    return matches

#function to "mutate" a list by randomly changing one letter
def mutate(mylist):
    '''Returns mylist with one letter changed'''
    newlist = list(mylist)
    new_letter = random.choice(characters)
    index = random.randint(0,len(target)-1)
    newlist[index] = new_letter
    return newlist

#create a list, set the list to be the bestList
#set the score of bestList to be the bestScore

genetic 
Quote.py
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random.seed()
bestList = makeList()
bestScore = score(bestList)

guesses = 0

#make an infinite loop that will create a mutation
#of the bestList, score it
while True:
    guess = mutate(bestList)
    guessScore = score(guess)
    guesses += 1

#if the score of the newList is lower than the bestList,
#"continue" on to the next iteration of the loop
    if guessScore <= bestScore:
        continue

#if the score of the newlist is the optimal score,
#print the list and break out of the loop
    print(''.join(guess),guessScore,guesses)
    if guessScore == len(target):
        break

#otherwise, set the bestList to the value of the newList
#and the bestScore to be the value of the score of the newList
    bestList = list(guess)
    bestScore = guessScore

Listing 12-4: The complete code for the geneticQuote.py program

Now when we run this, we get a very fast solution, with all the guesses 
that improved the score printed out.

i.fpzgPG.'kHT!NW WXxM?rCcdsRCiRGe.LWVZzhJe zSzuWKV.FfaCAV 1 178
i.fpzgPG.'kHT!N  WXxM?rCcdsRCiRGe.LWVZzhJe zSzuWKV.FfaCAV 2 237
i.fpzgPG.'kHT!N  WXxM?rCcdsRCiRGe.LWVZzhJe zSzuWKV.FfwCAV 3 266
i fpzgPG.'kHT!N  WXxM?rCcdsRCiRGe.LWVZzhJe zSzuWKV.FfwCAV 4 324
--snip--
I nevgP go back on my word, because that is my Ninja way. 55 8936
I neveP go back on my word, because that is my Ninja way. 56 10019
I never go back on my word, because that is my Ninja way. 57 16028

This output shows that the final score was 57, and it took 16,028 total 
guesses to match the quote exactly. Notice on the first line of output that 
178 guesses were needed to get a score of 1! There are more efficient ways  
of guessing a quote, but I wanted to introduce the idea of genetic algorithms  
using an easy example. The point was to show how a method of scoring  
guesses and randomly mutating the “best guess so far” could produce accu-
rate results in a surprisingly short amount of time.

Now, you can use this idea of scoring and mutating thousands of 
random guesses to solve other problems, too.
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Solving the Traveling Salesperson 
Problem (TSP)

One of my students was unimpressed with the quote-guessing program 
because “we already know what the quote is.” So let’s use a genetic algo-
rithm to solve a problem we don’t already know the solution for. The 
Traveling Salesperson Problem, or TSP for short, is an age-old brainteaser that  
is easy to understand but can become very difficult to solve. A salesperson 
has to travel to a given number of cities, and the goal is to find the route 
with the shortest distance. Sounds easy? And with a computer, we should 
simply be able to run all the possible routes through a program and mea-
sure their distances, right?

It turns out, above a certain number of cities, the computational com-
plexity gets too much even for today’s supercomputers. Let’s see how many 
possible routes there are when you have six cities, as shown in Figure 12-1.

Figure 12-1: The number of paths between n cities for n between 2 and 6

When there are two or three cities, there’s only one possible route. 
Add a fourth city, and it could be visited between any of the previous 
three, so multiply the previous number of routes by 3. So between four 
cities there are three possible routes. Add a fifth city, and it could be vis-
ited between any of the previous four, so there are four times as many as 
the previous step, so 12 possible routes. See the pattern? Between n cities, 
there are

n –1( )!
2

possible routes. So between 10 cities there are 181,440 possible routes. 
Between 20 cities, there are 60,822,550,204,416,000 routes. What’s after a 
trillion? Even if a computer can check a million routes per second, it would 
still take almost 2,000 years to calculate. That’s too slow for our purposes. 
There must be a better way.

Using Genetic Algorithms
Similar to our quote-guessing program, we’re going to create an object 
with a route in its “genes” and then score its route by how short it is. The 
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best route will then be mutated randomly, and we’ll score its mutation. 
We could take a bunch of “best routes,” splice together their lists, and 
score their “offspring.” The best part of this exploration is we don’t know 
the answer already. We could give the program a set of cities and their 
locations, or just have it randomly draw cities and try to optimize the 
route.

Open a new Processing sketch and call it travelingSalesperson.pyde. 
The first thing we should create is a City object. Each city will have its 
own x- and y-coordinate and a number we use to identify it. That way, we 
can define a route using a list of city numbers. For example, [5,3,0,2,4,1] 
means you start at city 5 and go to city 3, then city 0, and so on. The rules 
are the salesperson has to finally return to the first city. Listing 12-5 shows 
the City class.

class City:
    def __init__(self,x,y,num):
        self.x = x
        self.y = y
        self.number = num #identifying number

    def display(self):
        fill(0,255,255) #sky blue
        ellipse(self.x,self.y,10,10)
        noFill()

Listing 12-5: Writing the City class for the travelingSalesperson.pyde program

When initializing City, we get an x- and y-coordinate and give each City 
its own (self) x- and y-component. We also get a number that’s the city’s 
identifying number. In the display() method, we choose a color (sky blue, 
in this case) and create an ellipse at that location. We turn off the fill after 
drawing the city with the noFill() function, since no other shapes need to 
be filled in with color.

Let’s make sure that works. Let’s create the setup() function, declaring 
a size for the display window and creating an instance of our City class. 
Remember, we have to give it a location of two coordinates and an identi-
fying number as in Listing 12-6.

def setup():
    size(600,600)
    background(0)
    city0 = City(100,200,0)
    city0.display()

Listing 12-6: Writing the setup() function for creating one city

Run this, and you’ll see your first city (see Figure 12-2)!

travelingSales 
person.pyde
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Figure 12-2: The first city

It might help to have the city display its number above it. To do that, 
add this to the city’s display() method, just before noFill():

        textSize(20)
        text(self.number,self.x-10,self.y-10)

We declare the size of the text using Processing’s built-in textSize() 
function. Then we use the text() function to tell the program what to 
print (the number of the city) and where to print it (10 pixels to the left 
and above the city). While we’re creating cities, let’s start a cities list and 
put a few more cities on the screen in random locations. To use methods 
from the random module, we have to import random at the top of the file:

import random

Now we can update our setup() function like in Listing 12-7.

cities = []

def setup():
    size(600,600)
    background(0)
    for i in range(6):
        cities.append(City(random.randint(50,width-50),
                           random.randint(50,height-50),i))

    for city in cities:
        city.display()

Listing 12-7: Writing the setup() function for creating six random cities

travelingSales 
person.pyde
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In the setup() function, we’ve added a loop to run six times. It adds a 
City object at a random location on the screen 50 units from the edges. The 
next loop iterates over all the elements in the cities list and displays each 
one. Run this, and you’ll see six cities in random locations, labeled with 
their ID numbers, as in Figure 12-3.

Figure 12-3: Six cities, labeled with their numbers

Now let’s think about the route between the cities. We put the City 
objects (containing their locations and numbers) into the cities list, and 
eventually that list of numbers (our “genetic material”) will consist of the 
city numbers in a certain order. So the Route object needs a random list 
of numbers, too: a random sequence of all the city numbers. Of course, 
the numbers will be range from 0 to 1 less than the number of cities. We 
don’t want to keep changing numbers here and there in our code when-
ever we want to change the number of cities, so we’ll create a variable 
for the number of cities. Put this line at the beginning of the file, before 
the City class:

N_CITIES = 10

Why is N_CITIES in all capital letters? Throughout all the code, we won’t 
be changing the number of cities. So it’s not really a variable; instead, it’s a 
constant. It’s customary in Python to capitalize constant names to set them 
apart from variables. This doesn’t change the way Python deals with them 
at all; variables with capitalized names can still be changed. So be careful.

We’ll use N_CITIES wherever we would be using the total number of  
cities, and we’ll only need to change the value once! Place the code shown 
in Listing 12-8 after the City class.
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class Route:
    def __init__(self):
        self.distance = 0
        #put cities in a list in order:
        self.cityNums = random.sample(list(range(N_CITIES)),N_CITIES)

Listing 12-8: The Route class

First, we set the route’s distance (or length, but length is a keyword in 
Processing) to zero, and then we create a cityNums list that puts the numbers 
of the cities in a random order for that route.

You can use the random module’s sample() function to give Python a list 
and then sample a number of items from that list by telling it how many 
items to choose randomly. It’s like choice(), but it won’t select an item more 
than once. In probability, it’s called “sampling without replacement.” Enter 
the following in IDLE to see how sampling works:

>>> n = list(range(10))
>>> n
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> import random
>>> x = random.sample(n,5)
>>> x
[2, 0, 5, 3, 8]

Here, we create a list called n of the numbers between 0 and 9 by calling 
range(10) and converting it (it’s a “generator”) into a list. We then import 
the random module and ask Python to use the sample() function to pick a 
sample of five items from list n and save them to list x. In our Route code in 
Listing 12-8, since the variable N_CITIES, representing the number of cities, 
is 10, we’re choosing 10 numbers at random using range(10), the numbers 
0 to 9, and assigning them to the Route’s cityNums property.

And how will this display? Let’s draw purple lines between the cities. 
You can use any color you’d prefer.

Drawing lines between cities like this should remind you of drawing 
lines between the points on a graph in algebra or trigonometry lessons. 
The only difference is now at the end of the graph we have to return to 
the starting point. Remember using beginShape, vertex, and endShape in 
Chapter 6? Just like we used lines to draw a shape, we’ll draw the Route 
object as the outline of a shape, except this time we just won’t fill it in. 
Using endshape(CLOSE) will automatically close the loop! Add the code in 
Listing 12-9 to the Route class.

    def display(self):
        strokeWeight(3)
        stroke(255,0,255) #purple
        beginShape()
        for i in self.cityNums:
            vertex(cities[i].x,cities[i].y)
            #then display the cities and their numbers



Solving Problems Using Genetic Algorithms   259

            cities[i].display()
        endShape(CLOSE)

Listing 12-9: Writing the display method of the Route class

The loop makes every city in the Route’s cityNums list a vertex of a poly-
gon. The route is the outline of the polygon. Notice that inside the Route’s 
display() method we call the city’s display() method. That way, we don’t 
have to manually command the cities to display separately.

In the setup() function, we’ll create a Route object with the cities list 
and a list of numbers as arguments. Then we’ll display it. The last two lines 
of code at the bottom of Listing 12-10 do this.

def setup():
    size(600,600)
    background(0)
    for i in range(N_CITIES):
        cities.append(City(random.randint(50,width-50),
                           random.randint(50,height-50),i))
    route1 = Route()
    route1.display()

Listing 12-10: Displaying a route

Run this, and you’ll see a path between the cities, in random order, as 
shown in Figure 12-4.

Figure 12-4: A random route order

To change the number of cities, simply change the first line, where 
we declare N_CITIES, to a different number and then run the program. 
Figure 12-5 shows my output for N_CITIES = 7.
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Figure 12-5: A route with seven cities

Now that you can create and display routes, let’s write a function to 
measure the distance of each route.

Writing the calcLength() Method
The Route object has a distance property that’s set to zero when it’s created. 
Each Route object also has a list of cities, in order, called cityNums. We just 
have to loop through the cityNums list and keep a running total of the dis-
tances between each pair of cities. No problem for cities 0 to 4, but we also 
need to calculate the distance from the last city back to the first one.

Listing 12-11 shows the code for the calcLength() method, which goes 
inside the Route object.

    def calcLength(self):
        self.distance = 0
        for i,num in enumerate(self.cityNums):
        # find the distance from the current city to the previous city
            self.distance += dist(cities[num].x,
                                cities[num].y,
                                cities[self.cityNums[i-1]].x,
                                cities[self.cityNums[i-1]].y)
        return self.distance

Listing 12-11: Calculating a Route’s length

First, we zero out the distance property of the Route so every time we call 
this method it’ll start at zero. We use the enumerate() function so we can get 
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not just the number in the cityNums list but also its index. We then incre-
ment the distance property by the distance from the current city (num) to the 
previous city (self.cityNums[i-1]). Next, let’s add this line of code to the end 
of our setup() function:

    println(route1.calcLength())

We can now see the total distance covered by the salesperson in the 
console, like in Figure 12-6.

Figure 12-6: We’ve calculated the  
distance . . . I think.

Is this really the distance? Let’s make sure.

Testing the calcLength() Method
Let’s give the program an easy route that’s a square of sidelength 200 
and check the distance. First, we change our constant for the number of 
cities to 4:

N_CITIES = 4

Next, we change the setup() function to what’s shown in Listing 12-12.

cities = [City(100,100,0), City(300,100,1),
                  City(300,300,2), City(100,300,3)]

def setup():
    size(600,600)
    background(0)
    '''for i in range(N_CITIES):
        cities.append(City(random.randint(0,width),
                           random.randint(0,height),i))'''
    route1 = Route()
    route1.cityNums = [0,1,2,3]
    route1.display()
    println(route1.calcLength())

Listing 12-12: Creating a Route manually to test the calcLength() method
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We comment out the loop to create cities at random, because we’ll go 
back to it after checking the calcLength() method. We create a new cities 
list containing the vertices of a square of sidelength 200. We also declare 
the cityNums list for route1; otherwise, it would randomly mix the cities. We 
expect the length of this Route to be 800.

When we run the code, we see what’s in Figure 12-7.

Figure 12-7: The calcLength() method works!

It’s 800 units, as predicted! You can try some rectangles or some other 
easy-to-verify routes.

Random Routes
In order to find the shortest possible route to a destination, we need to 
find all the possible routes. To do this, we need our infinite loop and  
Processing’s built-in draw() function. We’ll move the route code from setup() 
to the draw() function. We’ll also create a bunch of random routes and dis-
play them and their length. The entire code is shown in Listing 12-13.

import random

N_CITIES = 10

class City:
    def __init__(self,x,y,num):
        self.x = x
        self.y = y
        self.number = num #identifying number

    def display(self):
        fill(0,255,255) #sky blue

travelingSales 
person.pyde
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        ellipse(self.x,self.y,10,10)
        textSize(20)
        text(self.number,self.x-10,self.y-10)
        noFill()

class Route:
    def __init__(self):
        self.distance = 0
        #put cities in a list in numList order:
        self.cityNums = random.sample(list(range(N_CITIES)),N_CITIES)

    def display(self):
        strokeWeight(3)
        stroke(255,0,255) #purple
        beginShape()
        for i in self.cityNums:
            vertex(cities[i].x,cities[i].y)
            #then display the cities and their numbers
            cities[i].display()
        endShape(CLOSE)

    def calcLength(self):
        self.distance = 0
        for i,num in enumerate(self.cityNums):
        # find the distance to the previous city
            self.distance += dist(cities[num].x,
                                cities[num].y,
                                cities[self.cityNums[i-1]].x,
                                cities[self.cityNums[i-1]].y)
        return self.distance

cities = []

def setup():
    size(600,600)
    for i in range(N_CITIES):
        cities.append(City(random.randint(50,width-50),
                           random.randint(50,height-50),i))

def draw():
    background(0)
    route1 = Route()
    route1.display()
    println(route1.calcLength())

Listing 12-13: Creating and displaying random routes

When you run this, you should see a bunch of routes being displayed 
and a bunch of numbers being printed to the console.

But we’re really only interested in keeping the best (shortest) route, 
so we’ll add some code to save the “bestRoute” and check the new random 
routes. Change setup() and draw() to what’s shown in Listing 12-14.
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cities = []
random_improvements = 0
mutated_improvements = 0

def setup():
    global best, record_distance
    size(600,600)
    for i in range(N_CITIES):
        cities.append(City(random.randint(50,width-50),
                           random.randint(50,height-50),i))
    best = Route()
    record_distance = best.calcLength()

def draw():
    global best, record_distance, random_improvements
    background(0)
    best.display()
    println(record_distance)
    println("random: "+str(random_improvements))
    route1 = Route()
    length1 = route1.calcLength()
    if length1 < record_distance:
        record_distance = length1
        best = route1

        random_improvements += 1

Listing 12-14: Keeping track of random improvements

Before the setup() function, we create a variable to count the number 
of random improvements that are made by the program. At the same 
time, we create a variable we’ll use in a few steps to count the mutated 
improvements.

In setup(), we created route1 to be the first Route, we named it the “best 
route,” and we named its distance the record_distance. Since we want to 
share these variables with other functions, we declare them to be global 
variables at the beginning of the function.

In draw(), we keep generating new random routes and checking if they’re 
better than the one we think is the best route so far. Since we’re using only 
10 cities, this could pay off with an optimal solution, if we leave it running a 
while. You’ll see that it only requires around a dozen random improvements. 
But, remember, there are only 181,440 unique routes through 10 cities. One 
10-city route is shown in Figure 12-8.

If you change the number of cities to 20, however, your program will 
just keep running, for days if you let it, and will probably not get close to an 
optimal solution. We need to start using the idea from the phrase-guessing 
program at the beginning of the chapter of scoring our guesses and mutat-
ing the best ones. Unlike before, we’ll create a “mating pool” of the best 
routes and combine their number lists as if they were genes.
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Figure 12-8: Finding an optimal route randomly—if you  
can wait a few minutes

Applying the Phrase-Guessing 
Mutation Idea
The list of numbers (the cities the salesperson will visit in order) will be the 
genetic material of the Route. First, we see how well some randomly mutated 
routes solve the Traveling Salesman Problem (just like with our phrase-
guessing programs) and then we mutate and “mate” the better routes with 
each other to (hopefully) create a more optimal route.

Mutating Two Numbers in a List
Let’s write a method to randomly mutate two of the numbers in a Route 
object’s cityNums list. It’s really just a swap. You can probably guess how we’ll 
randomly choose two numbers and make the city numbers that have those 
indices in the list trade places.

Python has a unique notation for swapping the values of two numbers.  
You can swap two numbers without creating a temporary variable. For  
example, if you enter the code in Listing 12-15 in IDLE, it wouldn’t work.

>>> x = 2
>>> y = 3
>>> x = y
>>> y = x
>>> x
3
>>> y
3

Listing 12-15: The wrong way to swap the values of variables
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When you change the value of x to be the same as y by entering x = y, 
they both become 3. Now when you try to set y to be the same as x, it’s not 
set to the original value of x (2), but the current value of x, which is 3. So 
both variables ended up as 3.

But you can swap the values on the same line, like this:

>>> x = 2
>>> y = 3
>>> x,y = y,x
>>> x
3
>>> y
2

Swapping the values of two variables like this is very useful for the 
mutating we’re about to do. Instead of limiting the swapping to only two 
numbers, we can mutate more cities. We can put the swapping in a loop so 
the program will choose any number of cities and swap the first two num-
bers, then the next pair, and so on. The code for the mutateN() method is 
shown in Listing 12-16.

def mutateN(self,num):
    indices = random.sample(list(range(N_CITIES)),num)
    child = Route()
    child.cityNums = self.cityNums[::]
    for i in range(num-1):
        child.cityNums[indices[i]],child.cityNums[indices[(i+1)%num]] = \
        child.cityNums[indices[(i+1)%num]],child.cityNums[indices[i]]
    return child

Listing 12-16: Writing the mutateN() method, for mutating any number of cities

We give the mutateN() method num, a number of cities to swap. Then the 
method makes a list of indices to swap by taking a random sample from 
the range of city numbers. It creates a “child” Route and copies its own city 
number list to the child. Then it swaps num-1 times. If it swapped the full num 
times, the first city swapped would simply get swapped with all the other 
indices and end up where it started.

That long line of code is simply the a,b = b,a syntax we saw before, only 
with the two cityNums being swapped. The mod (%) operator makes sure 
your indices don’t exceed num, the number of cities in your sample. So if 
you’re swapping four cities, for example, when i is 4, it changes i + 1 from 5 
to 5 % 4, which is 1.

Next, we add a section to the end of the draw() function to mutate the 
best Route’s list of numbers and test the mutated Route’s length, as shown in 
Listing 12-17.

def draw():
    global best,record_distance,random_improvements
    global mutated_improvements
    background(0)
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    best.display()
    println(record_distance)
    println("random: "+str(random_improvements))
    println("mutated: "+str(mutated_improvements))
    route1 = Route()
    length1 = route1.calcLength()
    if length1 < record_distance:
        record_distance = length1
        best = route1
        random_improvements += 1

    for i in range(2,6):
        #create a new Route
        mutated = Route()
        #set its number list to the best one
        mutated.cityNums = best.cityNums[::]
        mutated = mutated.mutateN(i) #mutate it
        length2 = mutated.calcLength()
        if length2 < record_distance:
            record_distance = length2
            best = mutated
            mutated_improvements += 1

Listing 12-17: Mutating the best “organism”

In the for i in range(2,6): loop, we’re telling the program to mutate  
2, 3, 4, and 5 numbers in the number list and check the results. Now the  
program often does pretty well on a 20-city route in a few seconds, like in  
Figure 12-9.

Figure 12-9: A 20-city route

The mutated “organisms” are improving the distance much better than 
the random ones! Figure 12-10 shows the printout.
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Figure 12-10: The mutations  
are doing much better than  
the random improvements!

Figure 12-10 categorizes all the improvements, and here 29 of them 
were due to mutations and only one was due to a randomly generated Route. 
This shows that mutating lists is better at finding the optimal route than 
creating new random ones. I stepped up the mutating to swap anywhere 
from 2 to 10 cities by changing this line:

for i in range(2,11):

Although this improves its performance for 20-city problems and even 
for some 30-city problems, the program often gets stuck in a non-optimal 
rut, like in Figure 12-11.

Figure 12-11: A 30-city problem stuck in a non-optimal rut

We’re going to take the final step and go fully genetic. Now we won’t be 
restricting ourselves to what we think is the best route so far. Instead, we’ll 
have an enormous population to choose from.

We’ll make a population list for any number of routes we want, we’ll  
take the “fittest” ones, cross their number lists, and hopefully make an  
even better route! Just before the setup() function, after the cities list, add  
the population list and the constant for the number of routes, as shown in 
Listing 12-18.
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cities = []
random_improvements = 0
mutated_improvements = 0
population = []
POP_N = 1000 #number of routes

Listing 12-18: Starting a population list and a variable for population size

We just created an empty list to put our population of routes into, and 
a variable for the total number of routes. In the setup() function, we fill the 
population list with POP_N routes, as shown in Listing 12-19.

def setup():
    global best,record_distance,first,population
    size(600,600)
    for i in range(N_CITIES):
        cities.append(City(random.randint(50,width-50),
                           random.randint(50,height-50),i))
    #put organisms in population list
    for i in range(POP_N):
        population.append(Route())
    best = random.choice(population)
    record_distance = best.calcLength()
    first = record_distance

Listing 12-19: Creating a population of routes

Notice we had to declare the population list to be a global variable. We 
put POP_N routes in the population list by using for i in range(POP_N), and then 
we made a randomly chosen route the best one so far.

Crossing Over to Improve Routes
In the draw() function, we’re going to sort the population list so the Route 
objects with the lowest lengths are at the beginning. We’ll create a method 
called crossover() to splice the cityNums lists together at random. Here’s what 
it’ll do:

a: [6, 0, 7, 8, 2, 1, 3, 9, 4, 5]
b: [1, 0, 4, 9, 6, 2, 5, 8, 7, 3]
index: 3
c: [6, 0, 7, 1, 4, 9, 2, 5, 8, 3]

The “parents” are lists a and b. The index is chosen randomly: index 3. 
Then a list is sliced off between index 2 (7) and index 3 (8), so the child list 
starts [6,0,7]. The remaining numbers that aren’t in that slice are added 
to the child list in the order they occur in list b: [1,4,9,2,5,8,3]. We concat-
enate those two lists, and that’s the child list. The code for the crossover() 
method is shown in Listing 12-20.
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    def crossover(self,partner):
        '''Splice together genes with partner's genes'''
        child = Route()
        #randomly choose slice point
        index = random.randint(1,N_CITIES - 2)
        #add numbers up to slice point
        child.cityNums = self.cityNums[:index]
        #half the time reverse them
        if random.random()<0.5:
            child.cityNums = child.cityNums[::-1]
        #list of numbers not in the slice
        notinslice = [x for x in partner.cityNums if x not in child.cityNums]
        #add the numbers not in the slice
        child.cityNums += notinslice
        return child

Listing 12-20: Writing the crossover() method of the Route class

The crossover() method requires we specify the partner, the other par-
ent. The child route is created, and an index where the slicing will take 
place is chosen randomly. The child list gets the numbers in the first slice, 
and then half the time we reverse those numbers, for genetic diversity. We 
create a list of the numbers that aren’t in the slice and add each one as it 
occurs in the other parent’s (or partner’s) list. Finally, concatenate those 
slices and return the child route.

In the draw() function, we need to check the routes in the population list  
for the shortest one. Do we need to check each one like before? Luckily,  
Python provides a handy sort() function we can use to sort the population 
list by calcLength(). So the first Route in the list will be the shortest one. The 
final code for the draw() function is shown in Listing 12-21.

def draw():
    global best,record_distance,population
    background(0)
    best.display()
    println(record_distance)
    #println(best.cityNums) #If you need the exact Route through the cities!

     population.sort(key=Route.calcLength)
    population = population[:POP_N] #limit size of population
    length1 = population[0].calcLength()
    if length1 < record_distance:
        record_distance = length1
        best = population[0]

    #do crossover on population
     for i in range(POP_N):

        parentA,parentB = random.sample(population,2)
        #reproduce:
        child = parentA.crossover(parentB)
        population.append(child)
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    #mutateN the best in the population
     for i in range(3,25):

        if i < N_CITIES:
            new = best.mutateN(i)
            population.append(new)

    #mutateN random Routes in the population
     for i in range(3,25):

        if i < N_CITIES:
            new = random.choice(population)
            new = new.mutateN(i)
            population.append(new)

Listing 12-21: Writing the final draw() function

We use the sort() function at , and then trim the end of the population 
list (the longest routes) so the list remains POP_N routes long. Then we check 
the first item in the population list to see if it’s shorter than the best route. If 
so, we make it the best, like before. Next, we randomly sample two routes 
from the population and perform a crossover on their cityNums lists and add 
the resulting child route to the population . At , we mutate the best route, 
swapping 3, 4, and 5 numbers, all the way up to 24 numbers (if that’s less 
than the number of cities in the sketch). Finally, we randomly choose routes 
from the population and mutate them to try to improve our distance .

Now, using a population of 10,000 routes, our program can make  
a pretty good approximation of the optimal route through 100 cities.  
Figure 12-12 shows the program improving a route from an initial length  
of 26,000 units to under 4,000 units.

26,000 units 13,000 units 5,100 units 3,957 units

Figure 12-12: Improvements of the route through 100 cities

This took “only” a half an hour to crank through!

Summary
In this chapter, we didn’t just use Python to answer the types of questions 
you get in math class whose answers are already known. Instead, we used 
indirect methods (scoring a string of characters or a route through a bunch 
of cities) to find solutions to questions without an answer key!
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To do this, we mimicked the behavior of organisms whose genes mutate,  
taking advantage of the fact that some mutations are more useful than 
others for solving the problem at hand. We knew our target phrase at the 
beginning of the chapter, but to figure out whether our final route was the 
optimal one, we had to save the city locations and run the program a few 
more times. This is because genetic algorithms, just like real organisms,  
can only work with what they start out with, and they often end up in a non-
optimal rut, as you saw.

But these indirect methods are surprisingly effective and are used 
extensively in machine learning and industrial processes. Equations are 
good for expressing a very simple relationship, but many situations are not 
that simple. Now you have plenty of useful tools, like our “sheep and grass” 
model, fractals, cellular automata, and, finally, genetic algorithms, for 
studying and modeling very complicated systems.
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