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I N T R O D U C T I O N

Increasingly, when you call the bank or 
your internet provider, you might hear 

something like the following on the other 
end of the line: “Hello, I am your digital assis-

tant. Please ask your question.” Today, robots can talk 
to humans using natural language, and they’re get-
ting smarter. Even so, very few people understand how 
these robots work or how they might use these tech-
nologies in their own projects. 

Natural language processing (NLP)—a branch of artificial intelligence 
that helps machines understand and respond to human language—is the 
key technology that lies at the heart of any digital assistant product. This 
book arms you with the skills you need to start creating your own NLP appli-
cations. By the end of this book, you’ll know how to apply NLP approaches 
to real-world problems, such as analyzing sentences, capturing the meaning 
of a text, composing original texts, and even building your own chatbot.
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Using Python for Natural Language Processing
If you want to develop an NLP application, you can choose among a wide 
range of tools and technologies. All the examples in this book are imple-
mented with Python code that employs the spaCy NLP library for Python. 
Here are some compelling reasons why you might want to choose Python 
and spaCy for your NLP development. 

Python is a high-level programming language known for the following 
features: 

Simplicity If you’re new to programming, Python is a good lan-
guage with which to start, because it’s extremely easy to learn. Due to 
its simplicity, Python allows you to write code that others can easily 
understand. For example, Python’s simplicity helps chatbot develop-
ers collaborate with linguists who don’t have much programming 
experience. 

Prevalence Python is one of the most popular languages. The vast 
majority of the widely used APIs have Python wrappers that you can 
easily install using the pip installation tool. The ability to install Python 
wrappers via the pip simplifies the process of obtaining third-party tools 
you might want to use in your NLP applications. 

Significant presence in the AI ecosystem There are a lot of Python 
libraries available in the AI ecosystem. This availability simplifies the 
development of your NLP applications, allowing you to choose among a 
range of libraries to best solve a particular task. 

The spaCy Library
This book uses spaCy, a popular Python library that contains the linguis-
tic data and algorithms you’ll need to process natural language texts. As 
you’ll learn in this book, spaCy is easy to use because it provides container 
objects that represent elements of natural language texts, such as sen-
tences and words. These objects, in turn, have attributes that represent 
linguistic features, like parts of speech. At the time of this writing, spaCy 
offered pretrained models for English, German, Greek, Spanish, French, 
Italian, Lithuanian, Norwegian Bokmål, Dutch, Portuguese, and multiple 
languages combined. In addition, spaCy offers built-in visualizers that you 
can invoke programmatically to generate a graphic of the syntactic struc-
ture of a sentence or named entities in a document.

The spaCy library also natively supports advanced NLP features that 
other popular NLP libraries for Python don’t. For example, spaCy natively 
supports word vectors (discussed in detail in Chapter 5), unlike the Natural 
Language Toolkit (NLTK). When using the latter, you would need to use 
a third-party tool like Gensim, a Python implementation of the word2vec 
algorithm. 

With spaCy, you can customize existing models or individual model 
components, and you can train your own models from scratch to meet your 



Introduction   xvii

application’s requirements (you’ll learn how to do this in Chapter 10). You 
can also connect the statistical models trained by other popular machine 
learning (ML) libraries, such as TensorFlow, Keras, scikit-learn, and PyTorch. 
In addition, spaCy can operate seamlessly with other libraries in Python’s 
AI ecosystem, allowing you to, for example, take advantage of computer 
vision in your chatbot application, as you’ll do in Chapter 12. 

Who Should Read This Book?
This book is for those interested in learning how to use NLP in practice. In 
particular, it might be interesting to people who want to develop chatbots 
for businesses or just for fun. Regardless of your background or experience 
with NLP or programming, you’ll be able to follow the code examples 
provided in this book because they all include detailed explanations of 
the process involved. 

Some working knowledge of Python will be helpful, because the book 
doesn’t cover the basics of Python syntax. Also, the examples assume a 
school-level understanding of English grammar and syntax. The Appendix 
is a reference for some of the less well-known linguistic concepts. If you have 
a good understanding of NLP concepts and some basic programming, the 
examples will be even easier to follow. 

What’s in the Book?
Natural Language Processing with Python and spaCy begins with a brief intro-
duction to the basic elements and methods of the NLP technology used to 
process and analyze natural language data. Then it proceeds with increas-
ingly complicated techniques that you can use to deal with even the sophis-
ticated challenges that natural language can pose for computer processing 
and analysis. The “Try This” sections in each chapter will help you reinforce 
the material you just learned.

Here’s what you’ll find in each chapter:

Chapter 1: How Natural Language Processing Works Provides a brief 
introduction to the basic elements of NLP technology. It describes the 
machine learning techniques that generate the data NLP libraries use, 
such as spaCy, including statistical language modeling and statistical 
neural network models used for solving NLP problems. It then describes 
the tasks and challenges an NLP application developer faces.

Chapter 2: The Text-Processing Pipeline Explains what spaCy is and 
what it’s designed to do, and then shows you how to get started with it 
quickly. It covers setting up your working environment and then coding 
using the text-processing pipeline, a series of basic NLP operations used 
to determine the meaning and intent of a discourse. 

Chapter 3: Working with Container Objects and Customizing spaCy  
Covers spaCy’s architecture, focusing on the central data structures 
available in the library. You’ll get hands-on experience with spaCy’s key 
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objects by following the examples provided. You’ll also learn how to 
customize the pipeline components to suit your application’s needs.  

Chapter 4: Extracting and Using Linguistic Features Illustrates how 
to extract linguistic features, such as dependency labels, part-of-speech 
tags, and named entities. You’ll learn to generate and then walk up the 
dependency tree of a sentence, exploring syntactic relations. By doing 
so, you’ll learn how to programmatically continue a conversation with a 
chatbot user, condense long text, and complete other useful tasks.

Chapter 5: Working with Word Vectors Explains how spaCy’s models 
map natural language words to vectors of real numbers, allowing you to 
do math with words. You’ll learn how to use spaCy’s similarity method, 
which compares the word vectors of container objects to determine the 
closeness of their meanings.

Chapter 6: Finding Patterns and Walking Dependency Trees Dives 
into the details of meaning extraction, syntactic dependency parsing, 
noun chunking, and entity recognition. You’ll complete all the steps 
needed to extract meaning from raw text, using word sequence pat-
terns and walking dependency trees. The chapter introduces spaCy’s 
Matcher tool to find patterns and also covers when you might still need 
to rely on context to determine the proper processing approach.

Chapter 7: Visualizations Discusses how to take advantage of spaCy’s 
built-in displaCy visualizer, which you can use for visualizing syntactic 
dependencies and named entities in your browser. Visualizing can help 
you immediately identify patterns within your data.

Chapter 8: Intent Recognition Demonstrates intent extraction, which 
is a common task in chatbot development. You’ll learn how to extract 
meaning from text data, a typically challenging task that takes just a 
few lines of code in Python. 

Chapter 9: Storing User Input in a Database Teaches you how to 
automatically extract keywords from user input and store them in a 
relational database, which you can then use to fill out order forms or 
other business documents. 

Chapter 10: Training Models Covers how to train spaCy’s named entity 
recognizer and dependency parser to meet requirements of your applica-
tion not covered by spaCy’s default models. It details how to train an exist-
ing, pretrained model with new examples and a blank one from scratch. 

Chapter 11: Deploying Your Own Chatbot Guides you through the 
process of deploying your chatbot app to Telegram, a popular messen-
ger service, so it can interact with users over the internet.

Chapter 12: Implementing Web Data and Processing Images Shows 
how your chatbot can extract answers to questions from Wikipedia and 
react to user-submitted images by using spaCy along with some other 
libraries in Python’s AI ecosystem.  

Appendix: Linguistic Primer Contains a brief guide to the grammar 
and syntax elements discussed most frequently in the book. Readers 
who don’t come from linguistic backgrounds can use it as a reference. 
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H O W  N A T U R A L  L A N G U A G E 

P R O C E S S I N G  W O R K S

In the 19th century, explorers discovered 
rongorongo, a system of mysterious glyphs on 

the island of Rapa Nui (commonly known 
as Easter Island). Researchers have never suc-

ceeded in decoding rongorongo inscriptions or even 
figuring out whether those inscriptions are writing or 
proto-writing (pictographic symbols that convey infor-
mation but are language independent). Moreover,
although we know that the creators of the glyphs also erected Moai, the 
large statues of human figures for which the island is most famous, the 
builders’ motivations remain unclear. We can only speculate. 

If you don’t understand people’s writing—or the way in which they 
describe things—you most likely won’t understand the other aspects of 
their life, including what they do and why they do it. 

Natural language processing (NLP) is a subfield of artificial intelligence 
that tries to process and analyze natural language data. It includes teaching 
machines to interact with humans in a natural language (a language that 
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developed naturally through use). By creating machine learning algorithms 
designed to work with unknown datasets much larger than those two dozen 
tablets found on Rapa Nui, data scientists can learn how we use language. 
They can also do more than simply decipher ancient inscriptions. 

Today, you can use algorithms to observe languages whose seman-
tics and grammar rules are well known (unlike the rongorongo inscrip-
tions), and then build applications that can programmatically “understand” 
 utterances in that language. Businesses can use these applications to relieve 
humans from boring, monotonous tasks. For example, an app might take 
food orders or answer recurring customer questions requesting technical 
support. 

Not surprisingly, generating and understanding natural language are 
the most promising and yet challenging tasks involved in NLP. In this book, 
you’ll use the Python programming language to build a natural language 
processor with spaCy, the leading open source Python library for natural 
language processing. But before you get started, this chapter outlines what 
goes on behind the scenes of building a natural language processor.  

How Can Computers Understand Language?
If computers are just emotionless machines, how is it possible to train them 
to understand human language and respond properly? Well, machines 
can’t understand natural language natively. If you want your computer to 
perform computational operations on language data, you need a system 
that can translate natural language words into numbers. 

Mapping Words and Numbers with Word Embedding
Word embedding is the technique that assigns words to numbers. In word 
embedding, you map words to vectors of real numbers that distribute the 
meaning of each word between the coordinates of the corresponding word 
vector. Words with similar meanings should be nearby in such a vector space, 
allowing you to determine the meaning of a word by the company it keeps. 

The following is a fragment of such an implementation: 

the 0.0897 0.0160 -0.0571 0.0405 -0.0696  ...
and -0.0314 0.0149 -0.0205 0.0557 0.0205  ...
of -0.0063 -0.0253 -0.0338 0.0178 -0.0966 ...
to 0.0495 0.0411 0.0041 0.0309 -0.0044    ...
in -0.0234 -0.0268 -0.0838 0.0386 -0.0321 ...

This fragment maps the words “the,” “and,” “of,” “to,” and “in” to the 
coordinates that follow it. If you represented these coordinates graphically, 
the words that are closer in meaning would be closer in the graph as well. 
(But this doesn’t mean that you can expect the closer-in-meaning words 
to be grouped together in a textual representation like the one whose 
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fragment is shown here. The textual representation of a word vector space 
usually starts with the most common words, such as “the,” “and,” and so on. 
This is the way word vector space generators lay out words.)

N O T E  A graphical representation of a multidimensional vector space can be implemented 
in the form of a 2D or a 3D projection. To prepare such a projection, you can use the 
first two or three principal components (or coordinates) of a vector, respectively. We’ll 
return to this concept in Chapter 5. 

Once you have a matrix that maps words to numeric vectors, you can 
perform arithmetic on those vectors. For example, you can determine the 
semantic similarity (synonymy) of words, sentences, and even entire docu-
ments. You might use this information to programmatically determine what 
a text is about, for example.

Mathematically, determining the semantic similarity between two 
words is reduced to calculating the cosine similarity between the cor-
responding vectors, or to calculating the cosine of the angle between the 
vectors. Although a complete explanation of calculating semantic similar-
ity is outside the scope of this book, Chapter 5 will cover working with 
word vectors in more detail. 

Using Machine Learning for Natural Language Processing
You can generate the numbers to put in the vectors using a machine learn-
ing algorithm. Machine learning, a subfield of artificial intelligence, creates 
computer systems that can automatically learn from data without being 
explicitly programmed. Machine learning algorithms can make predictions 
about new data, learn to recognize images and speech, classify photos and 
text documents, automate controls, and aid in game development.

Machine learning lets computers accomplish tasks that would be dif-
ficult, if not impossible, for them to do otherwise. If you wanted to, say, pro-
gram a machine to play chess using a traditional programming approach in 
which you explicitly specify what the algorithm should do in every context, 
imagine how many if...else conditions you’d need to define. Even if you 
succeed, users of such an application will quickly discover weak points in 
your logic that they can take advantage of during the game until you make 
necessary corrections in the code. 

In contrast, applications built on machine learning algorithms 
don’t rely on predefined logic but use the capability to learn from past 
experience instead. Thus, a machine learning–based chess application 
looks for positions it remembers from the previous games and makes 
the move that leads to the best position. It stores this past experience in 
a  statistical model, which is discussed in “What Is a Statistical Model in 
NLP?” on page 8. 

In spaCy, aside from generating word vectors, machine learning allows 
you to accomplish three tasks: syntactic dependency parsing (determining the 
relationships between words in a sentence), part-of-speech tagging (identifying 
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nouns, verbs, and other parts of speech), and named entity recognition (sort-
ing proper nouns into categories like people, organizations, and locations). 
We’ll discuss all of these at length in the following chapters. 

The life cycle of a typical machine learning system has three steps: 
model training, testing, and making predictions. 

Model Training

In the first stage, you train a model by feeding your algorithm a large body 
of data. For these algorithms to give you reliable results, you must provide a 
sufficiently large volume of input—significantly more than the rongorongo 
tablets, for instance. When it comes to NLP, platforms like Wikipedia and 
Google News contain enough text to feed virtually any machine learning 
algorithm. But if you wanted to build a model specific to your particular use 
case, you might make it learn, for example, from customers using your site. 

Figure 1-1 provides a high-level depiction of the model training stage. 

 

pWikipedia

Google
News

Language data

Machine learning
algorithm

Statistical model

 Σ(fx) 

Figure 1-1: Generating a statistical model with a machine learning algorithm using a large 
volume of text data as input

Your model processes large volumes of text data to understand which 
words share characteristics; then it creates word vectors for those words that 
reflect those shared characteristics. 

As you’ll learn in “What Is a Statistical Model in NLP?” on page 8, 
such a word vector space is not the only component of a statistical model 
built for NLP. The actual structure is typically more complicated, providing 
a way to extract linguistic features for each word depending on the context 
in which it appears. 

In Chapter 10, you’ll learn how to train an already existing, pretrained 
model with new examples and a blank one from scratch.
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Testing

Once you’ve trained the model, you can optionally test it to find out how 
well it will perform. To test the model, you feed it text it hasn’t seen before 
to check whether it can successfully identify the semantic similarities and 
other features learned during the training.

Making Predictions

If everything works as expected, you can use the model to make predictions 
in your NLP application. For example, you can use it to predict a depen-
dency tree structure over the text you input, as depicted in Figure 1-2. A 
dependency tree structure represents the relationships between the words in a 
sentence. 

Utterance

Statistical model

Dependency tree

She sent me
a letter.

She sent me a letter.

PRON VERB DET NOUNPRON

Figure 1-2: Predicting a dependency tree structure for an utterance using a 
statistical model

Visually, we can represent a dependency tree using arcs of different 
lengths to connect syntactically related pairs of words. For example, the 
one shown here tells us that the verb “sent” agrees with the pronoun “she.” 

Why Use Machine Learning for Natural Language Processing?
Your algorithm’s predictions aren’t statements of fact; they’re typically cal-
culated with a degree of certainty. To achieve a higher degree of accuracy, 
you’ll need to implement more complicated algorithms, which are less effi-
cient and less practical to implement. Usually, people strive to achieve a rea-
sonable balance between accuracy and performance. 

Because machine learning models can’t predict perfectly, you might 
wonder whether machine learning is the best approach for building the 
models used in NLP applications. In other words, is there a more reliable 
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approach based on strictly defined rules, similar to the one used by compil-
ers and interpreters for processing programming languages? The quick 
answer is no. Here’s why.

To begin with, a programming language contains a relatively small 
number of words. For example, the Java programming language consists 
of 61 reserved words, each of which has a predefined meaning in the 
language. 

By contrast, the Oxford English Dictionary, released in 1989, contains 
171,476 entries for words in current use. In 2010, a team of researchers at 
Harvard University and Google counted about 1,022,000 words in a body 
of digitized texts containing approximately 4 percent of all books ever 
 published. The study estimated that the language would grow by several 
thousand words a year. Assigning each word to a corresponding number 
would take too long.

But even if you tried to do it, you’d find it impossible, for several rea-
sons, to determine the number of words used in a natural language. First 
of all, it’s unclear what really counts as an individual word. For example, 
should we count the verb “count” as one word, or two, or more? In one 
scenario, “count” might mean “to have value or importance.” In a differ-
ent scenario, it might mean, “to say numbers one after another.” Of course, 
“count” can also be a noun. 

Should we count inflections—plural form of nouns, verb tenses, and  
so on—as separate entities, too? Should we count loanwords (words adopted 
from foreign languages), scientific terms, slang, and abbreviations? Evi dently, 
the vocabulary of a natural language is defined loosely, because it’s hard to 
figure out which groups of words to include. In a programming language like 
Java, an attempt to include an unknown word in your code will force the com-
piler to interrupt processing with an error. 

A similar situation exists for formal rules. Like its vocabulary, many 
formal rules of a natural language are defined loosely. Some cause con-
troversy, like split infinitives, a grammatical construction in which an 
adverb is placed between the infinitive verb and its preposition. Here is 
an example: 

spaCy allows you to programmatically extract the meaning of an utterance. 

In this example, the adverb “programmatically” separates the preposi-
tion and infinitive “to extract.” Those who believe that split infinitives are 
incorrect could suggest rewriting the sentence as follows: 

spaCy allows you to extract the meaning of an utterance programmatically. 

But regardless of how you feel about split infinitives, your NLP applica-
tion should understand both sentences equally well. 
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In contrast, a computer program that processes code written in a pro-
gramming language isn’t designed to handle this kind of problem. The 
reason is that the formal rules for a programming language are strictly 
defined, leaving no possibility for discrepancy. For example, consider the 
following statement, written in the SQL programming language, which 
you might use to insert data into a database table:  

INSERT INTO table1 VALUES(1, 'Maya', 'Silver')

The statement is fairly self-explanatory. Even if you don’t know SQL, 
you can easily guess that the statement is supposed to insert three values 
into table 1. 

Now, imagine that you change it as follows: 

INSERT VALUES(1, 'Maya', 'Silver') INTO table1 

From the standpoint of an English-speaking reader, the second state-
ment should have the same meaning as the first one. After all, if you read it 
like an English sentence, it still makes sense. But if you try to execute it in a 
SQL tool, you’ll end up with the error missing INTO keyword. That’s because 
a SQL parser—like any other parser used in a programming language—
relies on hardcoded rules, which means you must specify exactly what you 
want it to do in a way it expects. In this case, the SQL parser expects to see 
the keyword INTO right after the keyword INSERT without any other possible 
options. 

Needless to say, such restrictions are impossible in a natural language. 
Taking all these differences into account, it’s fairly obvious that it would 
be inefficient or even impossible to define a set of formal rules that would 
specify a computational model for a natural language in the way we do for 
programming languages. 

Instead of a rule-based approach, we use an approach that is based on 
observations. Rather than encoding a language by assigning each word to 
a predetermined number, machine learning algorithms generate statisti-
cal models that detect patterns in large volumes of language data and then 
make predictions about the syntactic structure in new, previously unseen 
text data. 

Figure 1-3 summarizes how language processing works for natural lan-
guages and programming languages, respectively. 

A natural language processing system uses an underlying statistical 
model to make predictions about the meaning of input text and then 
generates an appropriate response. In contrast, a compiler processing 
 programming code applies a set of strictly defined rules.
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Input text data

NLP tool

Statistical model

Programming code

Compiler (or interpreter)

A set of predefined rules

Please make me a pizza.
 Which one would you like?
I would like a vegetarian.

...

import spacy
nlp = space.load('en')
doc = nlp(u'make me a pizza')
for token in doc:
  if token.dep_ == 'dobj':

...

Figure 1-3: On the left, a basic workflow for processing natural language; on the right,  
a basic workflow for processing a programming language 

What Is a Statistical Model in NLP?
In NLP, a statistical model contains estimates for the probability distribu-
tion of linguistic units, such as words and phrases, allowing you to assign 
linguistic features to them. In probability theory and statistics, a probability 
distribution for a particular variable is a table of values that maps all of the 
possible outcomes of that variable to their probabilities of occurrence in an 
experiment. Table 1-1 illustrates what a probability distribution over part-
of-speech tags for the word “count” might look like for a given sentence. 
(Remember that an individual word might act as more than one part of 
speech, depending on the context in which it appears.) 

Table 1-1: An Example of a Probability Distribution  
for a Linguistic Unit in a Context 

VERB NOUN

78% 22%

Of course, you’ll get other figures for the word “count” used in another 
context. 

Statistical language modeling is vital to many natural language pro-
cessing tasks, such as natural language generating and natural language 
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understanding. For this reason, a statistical model lies at the heart of virtu-
ally any NLP application.  

Figure 1-4 provides a conceptual depiction of how an NLP application 
uses a statistical model.

Statistical model

Embedding
matrix

Linguistic
annotations

Algorithms

API

NLP tool like spaCy

NLP application

Figure 1-4: A high-level conceptual view of  
an NLP application’s architecture

The application interacts with spaCy’s API, which abstracts the underly-
ing statistical model. The statistical model contains information like word 
vectors and linguistic annotations. The linguistic annotations might include 
features such as part-of-speech tags and syntactic annotations. The statistical 
model also includes a set of machine learning algorithms that can extract 
the necessary pieces of information from the stored data. 

In real systems, a model’s data is typically stored in a binary format. 
Binary data doesn’t look friendly to humans, but it’s a machine’s best friend 
because it’s easy to store and loads quickly. 

Neural Network Models
The statistical models used in NLP tools like spaCy for syntactic depen-
dency parsing, part-of-speech tagging, and named entity recognition are 
neural network models. A neural network is a set of prediction algorithms. It 
consists of a large number of simple processing elements, like neurons in a 
brain, that interact by sending and receiving signals to and from neighbor-
ing nodes. 

Typically, nodes in a neural network are grouped into layers, including 
an input layer, an output layer, and one or more hidden layers in between. 
Every node in a layer (except the output layer) connects to every node in the 
successive layer through a connection. A connection has a weight value associ-
ated with it. During the training process, the algorithm adjusts the weights 
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to minimize the error it makes in its predictions. This architecture enables a 
neural network to recognize patterns, even in complex data inputs. 

Conceptually, we can represent a neural network as shown in Figure 1-5. 

Input
layer

Hidden
layer

Output
layer

Operations at one node

x1

x2

x3 w3

w2

w1

� g y

z = �xiwi

y = g(z)

Figure 1-5: A conceptual depiction of the neural network layout and operations at  
one node

When a signal comes in, it’s multiplied by a weight value, which is a real 
number. The input and weight values passed on to a neural network gener-
ally come from the word vectors generated during the network training.  

The neural network adds the results of the multiplications together for 
each node; then it passes the sum on to an activation function. The activa-
tion function generates a result that typically ranges from 0 to 1, thus pro-
ducing a new signal that is passed on to each node in the successive layer, 
or, in the case of the output layer, an output parameter. Usually, the output 
layer has as many nodes as the number of possible distinct outputs for the 
given algorithm. For example, a neural network implemented for a part-of-
speech tagger should have as many nodes in the output layer as the number 
of part-of-speech tags supported by the system, as illustrated in Figure 1-6. 

Can we count on them?

Word embeddings Neural network–based
part-of-speech tagger

Verb: 76%

Noun: 18%

Can we count on them?
VERB

Figure 1-6: A simplified depiction of the part-of-speech tagging process 
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The part-of-speech tagger then outputs a probability distribution over 
all possible parts of speech for a given word in a given context. 

Convolutional Neural Networks for NLP
The architecture of a real neural network model can be quite complex; it’s 
formed by a number of different layers. Thus, the neural network model 
used in spaCy is a convolutional neural network (CNN) that includes a convo-
lutional layer, which is shared between the part-of-speech tagger, depen-
dency parser, and named entity recognizer. The convolutional layer applies 
a set of detection filters to regions of input data to test for the presence of 
 specific features. 

As an example, let’s look at how a CNN might work for the part-of-
speech tagging task when performed on the sentence in the previous 
example:

Can we count on them?

Instead of analyzing each word on its own, the convolutional layer first 
breaks the sentence into chunks. You can consider a sentence in NLP as 
a matrix in which each row represents a word in the form of a vector. So 
if each word vector had 300 dimensions and your sentence was five words 
long, you’d get a 5 × 300 matrix. The convolutional layer might use a detec-
tion filter size of three, applied to three consecutive words, thus having a 
tiling region size of 3 × 300. This should provide sufficient context for mak-
ing a decision on what part-of-speech tag each word is.

The operation of a part-of-speech tagging using the convolutional 
approach is depicted in Figure 1-7.  

Verb: 76%

Noun: 18%

Input
word-embedding

matrix

Convolutional
layer

Successive layers

Output

Figure 1-7: A conceptual look at how the convolutional approach works for an NLP task

In the preceding example, the most challenging task for the tagger is 
to determine what part-of-speech the word “count” is. The problem is that 
this word can be either a verb or a noun, depending on the context. But this 
task becomes a breeze when the tagger sees the chunk that includes the “we 
count on” word combination. In that context, it becomes clear that the word 
“count” can be only a verb. 

A detailed look under the hood of the convolutional architecture is 
beyond the scope of this book. To learn more about the neural network 
model architecture behind statistical models used in spaCy, check out the 
“Neural Network Model Architecture” section in spaCy’s API documentation. 
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What Is Still on You
As you learned in the preceding section, spaCy uses neural models for syn-
tactic dependency parsing, part-of-speech tagging, and named entity recog-
nition. Because spaCy provides these functions for you, what’s left for you to 
do as the developer of an NLP application? 

One thing spaCy can’t do for you is recognize the user’s intent. For 
example, suppose you sell clothes and your online application that takes 
orders has received the following request from a user:  

I want to order a pair of jeans. 

The application should recognize that the user intends to place an 
order for a pair of jeans. 

If you use spaCy to perform syntactic dependency parsing for the utter-
ance, you’ll get the result shown in Figure 1-8. 

I want to order a pair of jeans.

PRON VERB PART VERB DET NOUN ADP NOUN

dobj

pobjprepdet

xcomp

auxnsubj

Figure 1-8: The dependency tree for the sample utterance

Notice that spaCy doesn’t mark anything as the user’s intent in the gen-
erated tree. In fact, it would be strange if it did so. The reason is that spaCy 
doesn’t know how you’ve implemented your application’s logic and what 
kind of intent you expect to see in particular. Which words to consider the 
key terms for the task of intent recognition is entirely up to you. 

To extract the meaning from an utterance or a discourse, you need 
to understand the following key aspects: keywords, context, and meaning 
transition.

Keywords
You can use the results of the syntactic dependency parse to choose 
the most important words for meaning recognition. In the “I want to 
order a pair of jeans.” example, the keywords are probably “order” and 
“ jeans.” 

Normally, the transitive verb plus its direct object work well for compos-
ing the intent. But in this particular example, it’s a bit more complicated. 
You’ll need to navigate the dependency tree and extract “order” (the transi-
tive verb) and “ jeans” (the object of the preposition related to the direct 
object “pair”). 
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Context
Context can matter when selecting keywords, because the same phrase 
might have different meanings when interpreted in different applications. 
Suppose you have the following utterance to treat: 

I want the newspaper delivered to my door. 

Depending on the context, this statement might be either a request to 
subscribe to a newspaper or a request to deliver the issue to the door. In the 
first case, the keywords might be “want” and “newspaper.” In the latter case, 
the keywords might be “delivered” and “door.” 

Meaning Transition
Often, people use more than one sentence to express even a very straight-
forward intent. As an example, consider the following discourse: 

I already have a relaxed pair of jeans. Now I want a skinny pair. 

In this discourse, the words reflecting the intent expressed appear in 
two different sentences, as illustrated in Figure 1-9.

I  already  have  a  relaxed  pair  of  jeans.

Transitive
verb

Direct
object

Object of
preposition

Now  I  want  a  skinny  pair . . .

Transitive
verb

Direct
object

Figure 1-9: Recognizing the intent of the discourse

As you might guess, the words “want” and “ jeans” best describe the 
intent of this discourse. The following are the general steps to finding 
 keywords that best describe the user’s intent in this particular example: 

1. Within the discourse, find a transitive verb in the present tense.

2. Find the direct object of the transitive verb found in step 1.

3. If the direct object found in the previous step is a pro-form, find its 
antecedent in a previous sentence. 

With spaCy, you can easily implement these steps programmatically. 
We’ll describe this process in detail in Chapter 8.
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Summary
In this chapter, you learned the basics of natural language processing. You 
now know that, unlike humans, machines use vector–based representa-
tions of words, which allow you to perform math on natural language units, 
including words, sentences, and documents. 

You learned that word vectors are implemented in statistical models 
based on the neural network architecture. Then you learned about the 
tasks that are still left up to you as an NLP application developer.



2
T H E  T E X T - P R O C E S S I N G  P I P E L I N E

Now that you understand the structure of 
an NLP application, it’s time to see these 

underlying concepts in action. In this chap-
ter, you’ll install spaCy and set up your working 

environment. Then you’ll learn about the text- processing 
pipeline, a series of basic NLP operations you’ll use to 
determine the meaning and intent of a discourse. These 
operations include  tokenization, lemmatization, part-
of-speech tagging, syntactic dependency parsing, and 
named entity recognition. 
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Setting Up Your Working Environment
Before you start using spaCy, you need to set up a working environment by 
installing the following software components on your machine:

•	 Python 2.7 or later, or 3.4 or later

•	 The spaCy library

•	 A statistical model for spaCy 

You’ll need Python 2.7 or later, or 3.4 or later to use spaCy v2.0.x. Down-
load it at https://www.python.org/downloads/ and follow the instructions to set 
up a Python environment. Next, install spaCy in your Python environment 
using pip by running the following command: 

$ pip install spacy 

If you have more than one Python installation on your system, select 
the pip executable associated with the Python installation you want to use. 
For instance, if you want to use spaCy with Python 3.5, you’d run the follow-
ing command:

$ pip3.5 install spacy 

If you already have spaCy installed on your system, you might want 
to upgrade it to a new release. The examples in this book assume you 
use spaCy v2.0.x or later. You can verify which version of spaCy you have 
installed with the following command: 

$ python -m spacy info

Once again, you might need to replace the python command with the 
command for the python executable used in your particular environment, 
say, python3.5. From now on, we’ll use python and pip regardless of the exe-
cutables your system uses.

If you decide to upgrade your installed spaCy package to the latest ver-
sion, you can do this using the following pip command: 

$ pip install -U spacy

Installing Statistical Models for spaCy
The spaCy installation doesn’t include statistical models that you’ll need 
when you start using the library. The statistical models contain knowledge 
collected about the particular language from a set of sources. You must 
separately download and install each model you want to use.

Several pretrained statistical models are available for different lan-
guages. For English, for example, the following models are available for 
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download from spaCy’s website: en_core_web_sm, en_core_web_md, en_core_web_lg, 
and en_vectors_web_lg. The models use the following naming convention: 
lang_type_genre_size. Lang specifies the language. Type indicates the model’s 
capabilities (for example, core is a general-purpose model that includes 
vocabulary, syntax, entities, and vectors). Genre indicates the type of text 
the model has been trained on: web (such as Wikipedia or similar media 
resources) or news (news articles). Size indicates how large the model is: lg 
is large, md is medium, and sm is small. The larger the model is, the more 
disk space it requires. For example, the en_vectors_web_lg-2.1.0 model takes 
631MB, whereas en_core_web_sm-2.1.0 takes only 10MB.

To follow along with the examples provided in this book, en_core_web_sm 
(the most lightweight model) will work fine. spaCy will choose it by default 
when you use spaCy’s download command: 

$ python -m spacy download en

The en shortcut link in the command instructs spaCy to download and 
install the best-matching default model for the English language. The best-
matching model, in this context, means the one that is generated for the 
specified language (English in this example), a general purpose model, and 
the most lightweight.

To download a specific model, you must specify its name, like this: 

$ python -m spacy download en_core_web_md 

Once installed, you can load the model using this same shortcut you 
specified during the installation:

nlp = spacy.load('en') 

Basic NLP Operations with spaCy
Let’s begin by performing a chain of basic NLP operations that we call a 
processing pipeline. spaCy does all these operations for you behind the 
scenes, allowing you to concentrate on your application’s specific logic. 
Figure 2-1 provides a simplified depiction of this process.

Pipeline

Input
text

Tokenization Lemmatization Tagging Parsing Entity
recognition

Doc
object

Figure 2-1: A high-level view of the processing pipeline
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The processing pipeline typically includes tokenization, lemmatization, 
part-of-speech tagging, syntactic dependency parsing, and named entity 
recognition. We’ll introduce each of these tasks in this section.

Tokenization 
The very first action any NLP application typically performs on a text is 
parsing that text into tokens, which can be words, numbers, or punctuation 
marks. Tokenization is the first operation because all the other operations 
require you to have tokens already in place. 

The following code shows the tokenization process: 

u import spacy
v nlp = spacy.load('en') 
w doc = nlp(u'I am flying to Frisco')
x print([w.text for w in doc])

We start by importing the spaCy library u to gain access to its function-
ality. Then, we load a model package using the en shortcut link v to create 
an instance of spaCy’s Language class. A Language object contains the lan-
guage’s vocabulary and other data from the statistical model. We call the 
Language object nlp. 

Next, we apply the object just created w to a sample sentence, creating 
a Doc object instance. A Doc object is a container for a sequence of Token 
objects. spaCy generates it implicitly based on the text you provide it. 

At this point, with just three lines of code, spaCy has generated the 
grammatical structure for the sample sentence. How you’ll use it is entirely 
up to you. In this very simple example, you just print out the text content of 
each token from the sample sentence x. 

The script outputs the sample sentence’s tokens as a list:

['I', 'am', 'flying', 'to', 'Frisco']

The text content—the group of characters that compose the token, such 
as the letters “a” and “m” in the token “am”—is just one of many properties 
of a Token object. You can also extract various linguistic features assigned 
to a token, as you’ll see in the following examples.

Lemmatization
A lemma is the base form of a token. You can think of it as the form in  
which the token would appear if it were listed in a dictionary. For example, 
the lemma for the token “flying” is “fly.” Lemmatization is the process of 
reducing word forms to their lemma. The following script provides a  
simple example of how to do lemmatization with spaCy:

import spacy
nlp = spacy.load('en')
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doc = nlp(u'this product integrates both libraries for downloading and 
applying patches')
for token in doc:
  print(utoken.text, vtoken.lemma_)

The first three lines in the script are the same as those in the previous 
script. Recall that they import the spaCy library, load an English model 
using the en shortcut and create a text-processing pipeline, and apply the 
pipeline to a sample sentence—creating a Doc object through which you 
can access the grammatical structure of the sentence. 

N O T E  In grammar, sentence structure is the arrangement of individual words, as well as 
phrases and clauses in a sentence. The grammatical meaning of a sentence depends 
on this structural organization.

Once you have a Doc object containing the tokens from your example 
sentence, you iterate over those tokens in a loop, and then print out a 
token’s text content u along with its corresponding lemma v. This script 
produces the following output (I’ve tabulated it to make it more readable):

this        this
product     product
integrates  integrate
both        both
libraries   library
for         for
downloading download
and         and
applying    apply
patches     patch

The column on the left contains the tokens, and the column on the 
right contains their lemmas. 

Applying Lemmatization for Meaning Recognition
Lemmatization is an important step in the task of meaning recognition. To 
see how, let’s return to the sample sentence from the previous section: 

I am flying to Frisco.

Suppose this sentence was submitted to an NLP application interacting 
with an online system that provides an API for booking tickets for trips. The 
application processes a customer’s request, extracting necessary information 
from it and then passing on that information to the underlying API. This 
design might look like the one depicted in Figure 2-2.
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I am flying to Frisco.
NLP

application

Online ticket booking
API

Form of travel: fly
Destination: San Francisco

Figure 2-2: Using lemmatization in the process of extracting necessary  
information from a customer’s request 

The NLP application tries to get the following information from a cus-
tomer’s request: a form of travel (plane, rail, bus, and so on) and a destina-
tion. The application needs to first determine whether the customer wants 
an air ticket, a railway ticket, or a bus ticket. To determine this, the applica-
tion searches for a word that matches one of the keywords in the predefined 
list. An easy way to simplify the search for these keywords is to first convert 
all the words in a sentence being processed to their lemmas. In that case, the 
predefined list of keywords will be much shorter and clearer. For example, 
you won’t need to include all the word forms of the word fly (such as “fly,” 
“flying,” “flew,” and “flown”) to serve as an indicator that the customer wants 
an air ticket, reducing all possible variants to the base form of the word—
that is, “fly.”

Lemmatization also comes in handy when the application tries to deter-
mine a destination from a submitted request. There are a lot of nicknames 
for the globe’s cities. But the system that books the tickets requires official 
names. Of course, the default Tokenizer that performs lemmatization won’t 
know the difference between nicknames and official names for cities, coun-
tries, and so on. To solve this problem, you can add special case rules to an 
existing Tokenizer instance. 

The following script illustrates how you might implement lemmatiza-
tion for the destination cities example. It prints out the lemmas of the 
words composing the sentence. 

import spacy
from spacy.symbols import ORTH, LEMMA
nlp = spacy.load('en')
doc = nlp(u'I am flying to Frisco') 
print([w.text for w in doc])

u special_case = [{ORTH: u'Frisco', LEMMA: u'San Francisco'}]
v nlp.tokenizer.add_special_case(u'Frisco', special_case)
w print([w.lemma_ for w in nlp(u'I am flying to Frisco')])
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You define a special case for the word Frisco u by replacing its default 
lemma with San Francisco. Then you add this special case to the Tokenizer 
instance v. Once added, the Tokenizer instance will use this special case 
each time it’s asked for the lemma of Frisco. To make sure that everything 
works as expected, you print out the lemmas of the words in the sentence w.

The script generates the following output: 

['I', 'am', 'flying', 'to', 'Frisco']
['-PRON-', 'be', 'fly', 'to', 'San Francisco']

The output lists the lemmas for all words occurring in the sentence 
with the exception of Frisco, for which it lists San Francisco. 

Part-of-Speech Tagging
A part-of-speech tag tells you the part-of-speech (noun, verb, and so on) of 
a given word in a given sentence. (Recall from Chapter 1 that a word can 
act as more than one part of speech depending on the context in which it 
appears.) 

In spaCy, part-of-speech tags can include detailed information about a 
token. In the case of verbs, they might tell you the following features: tense 
(past, present, or future), aspect (simple, progressive, or perfect), person 
(1st, 2nd, or 3rd), and number (singular or plural). 

Extracting these verb part-of-speech tags can help identify a user’s intent 
when tokenization and lemmatization alone aren’t sufficient. For instance, 
the lemmatization script for the ticket booking application in the preceding 
section won’t decide how the NLP application chooses words in a sentence to 
compose a request to the underlying API. In a real situation, doing so might 
be quite complicated. For example, a customer’s request might consist of 
more than one sentence: 

I have flown to LA. Now I am flying to Frisco.

For these sentences, the results of lemmatization would be as follows:

['-PRON-', 'have', 'fly', 'to', 'LA', '.', 'now', '-PRON-', 'be', 'fly', 'to', 
'San Francisco', '.']

Performing lemmatization alone isn’t enough here; the application might 
consider the lemmas “fly” and “LA” from the first sentence as the keywords, 
indicating that the customer intends to fly to LA when in fact the customer 
intends to fly to San Francisco. Part of the problem is that lemmatization 
changes verbs to their infinitive forms, making it hard to know the role they 
play in a sentence. 

This is where part-of-speech tags come into play. In English, the core 
parts of speech include noun, pronoun, determiner, adjective, verb, adverb, 
preposition, conjunction, and interjection. (See the linguistic primer in 
the appendix for more information about these parts of speech.) In spaCy, 
these same categories—plus some additional ones for symbols, punctuation 
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marks, and others—are called coarse-grained parts of speech and are available 
as a fixed set of tags through the Token.pos (int) and Token.pos_ (unicode) 
attributes. 

Also, spaCy offers fine-grained parts of speech tags that provide more 
detailed information about a token, covering morphological features, such 
as verb tenses and types of pronouns. Naturally, the list of fine-grained parts 
of speech contains many more tags than the coarse-grained list. The fine-
grained part-of-speech tags are available as the Token.tag (int) and Token.tag_  
(unicode) attributes.

Table 2-1 lists some of the common part-of-speech tags used in spaCy 
for English models.

Table 2-1: Some Common spaCy Part-of-Speech Tags

TAG (fine-grained 
part of speech)

POS (coarse-grained 
part of speech)

Morphology Description 

NN NOUN Number=sing Noun, singular 
NNS NOUN Number=plur Noun, plural
PRP PRON PronType=prs Pronoun, personal
PRP$ PRON PronType=prs

 Poss=yes
Pronoun, possessive

VB VERB VerbForm=inf Verb, base form
VBD VERB VerbForm=fin

 Tense=past
Verb, past tense

VBG VERB VerbForm=part
 Tense=pres
 Aspect=prog

Verb, gerund, or 
present participle

JJ ADJ Degree=pos Adjective

N O T E  You can find the entire list of the fine-grained part-of-speech tags used in spaCy in 
the “Part-of-Speech Tagging” section in the Annotation Specifications manual at 
https://spacy.io/api/annotation#pos-tagging. 

Tense and aspect are perhaps the most interesting properties of verbs 
for NLP applications. Together, they indicate a verb’s reference to a  position 
in time. For example, we use the present tense progressive aspect form of a verb 
to describe what is happening right now or what will happen in the near 
future. To form the present tense progressive aspect verb, you add the pres-
ent tense form of the verb “to be” before an -ing verb. For example, in the 
sentence “I am looking into it,” you add “am”—the form of the verb “to be” 
in the first person, present tense—before the -ing verb “looking.” In this 
example, “am” indicates the present tense and “looking” points to the pro-
gressive aspect.

https://spacy.io/api/annotation#pos-tagging
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Using Part-of-Speech Tags to Find Relevant Verbs
The ticket booking application could use the fine-grained part-of speech 
tags available in spaCy to filter the verbs in the discourse, choosing only 
those that could be key to determining the customer’s intent. 

Before moving onto the code for this process, let’s try to figure out what 
kind of utterances a customer might use to express their intention to book 
a plane ticket to, say, LA. We could start by looking at some sentences that 
contain the following combination of lemmas: “fly”, “to”, and “LA”. Here are 
some simple options: 

I flew to LA. 
I have flown to LA. 
I need to fly to LA. 
I am flying to LA. 
I will fly to LA. 

Notice that although all of these sentences would include the “fly to LA” 
combination if reduced to lemmas, only some of them imply the customer’s 
intent to book a plane ticket to LA. The first two definitely aren’t suitable.

A quick analysis reveals that the past and past perfect forms of the verb 
“fly”—the tenses used in the first two sentences—don’t imply the intent we’re  
looking for. Only the infinitive and present progressive forms are suitable.  
The following script illustrates how to find those forms in the sample 
discourse: 

import spacy
nlp = spacy.load('en')
doc = nlp(u'I have flown to LA. Now I am flying to Frisco.')
print([w.text for w in doc if uw.tag_== v'VBG' or w.tag_== w'VB'])

The tag_ property u of a Token object contains the fine-grained part-
of-speech attribute assigned to that object. You use a loop performed over 
the tokens composing the discourse to check whether the fine-grained 
part-of-speech tag assigned to a token is VB (a verb in the base, or infinitive, 
form) w or VBG (a verb in the present progressive form) v. 

In the sample discourse, only the verb “flying” in the second sentence 
meets the specified condition. So you should see the following output: 

['flying']

Of course, fine-grained part-of-speech tags aren’t only assigned to 
verbs; they’re also assigned to the other parts of speech in a sentence. For 
example, spaCy would recognize LA and Frisco as proper nouns—nouns 
that are the names of individuals, places, objects, or organizations—and 
tag them with PROPN. If you wanted, you could add the following line of code 
to the previous script:

print([w.text for w in doc if w.pos_ == 'PROPN'])
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Adding that code should output the following list:

['LA', 'Frisco']

The proper nouns from both sentences of the sample discourse are in 
the list. 

Context Is Important
Fine-grained part-of-speech tags might not always be enough to determine 
an utterance’s meaning. For this, you might still need to rely on context. 
As an example, consider the following utterance: “I am flying to LA.” The 
part-of-speech tagger will assign the VBG tag to the verb “flying” in this 
example, because it’s in the present progressive form. But because we use 
this verb form to describe either what is happening right now or what will 
happen in the near future, the utterance might mean either “I’m already 
in the sky,  flying to LA.” or “I’m going to fly to LA.” When submitted to the 
ticket booking NLP application, the application should interpret only one 
of these sentences as “I need an air ticket to LA.” Similarly, consider the 
following discourse: “I am flying to LA. In the evening, I have to be back 
in Frisco.” This most likely implies that the speaker wants an air ticket from 
LA to Frisco for an evening flight. You’ll find more examples about recog-
nizing meaning based on context in “Using Context to Improve the Ticket-
Booking Chatbot” on page 91.

Syntactic Relations
Now let’s combine the proper nouns with the verb that the part-of-speech 
tagger selected earlier. Recall that the list of verbs you could potentially 
use to identify the intent of the discourse contains only the verb “flying” in 
the second sentence. How can you get the verb/proper noun pair that best 
describes the intent behind the discourse? A human would obviously com-
pose the verb/proper noun pairs from words found in the same sentence. 
Because the verb “flown” in the first sentence doesn’t meet the condition 
specified (remember that only infinitive and present progressive forms 
meet the condition), you’d be able to compose such a pair for the second 
sentence only: “flying, Frisco.” 

To handle these situations programmatically, spaCy features a syntactic 
dependency parser that discovers syntactic relations between individual tokens  
in a sentence and connects syntactically related pairs of words with a 
single arc. 

Like lemmas and part-of-speech tags discussed in the previous sec-
tions, syntactic dependency labels are linguistic features that spaCy assigns 
to the Token objects that make up a text contained in a Doc object. For 
example, the dependency label dobj stands for “direct object.” We could 
illustrate the syntactic relation it represents as an arrow arc, as shown in 
Figure 2-3.
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HE A D A ND CHIL D

A syntactic dependency label describes the type of syntactic relation between 
two words in a sentence. In such a pair, one word is the syntactic governor 
(also called the head or parent) and the other is the dependent (also called the 
child). spaCy assigns a syntactic dependency label to the pair’s dependent. For 
example, in the pair “need, ticket,” extracted from the sentence “I need a plane 
ticket,” the word “ticket” is the child and word “need” is the head, because 
“need” is the verb in what’s called a verb phrase. In this same sentence, “a 
plane ticket” is a noun phrase: the noun “ticket” is the head, and “a” and 
“plane” are its children. To learn more, consult “Dependency Grammars vs. 
Phrase Structure Grammars” on page 185.

Each word in a sentence has exactly one head. Consequently, a word can 
be a child only to one head. The opposite is not always the case. The same 
word can act as a head in none, one, or several pairs. The latter means that 
the head has several children. This explains why a dependency label is always 
assigned to the child. 

need ticket

VERB NOUN

dobj

Coarse-grained
part-of-speech tags

Head Child

Dependency label

Figure 2-3: A graphical representation of  
a syntactic dependency arc 

The dobj label is assigned to the word “ticket” because it’s the child 
of the relation. A dependency label is always assigned to the child. In 
your script, you can determine the head of a relation using the Token.head 
attribute.

You might also want to look at the other head/child relations in the 
 sentence, like the ones shown in Figure 2-4.

I need plane ticket

dobj

det
nsubj

a

compound

Figure 2-4: Head/child relations in an entire sentence
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As you can see, the same word in a sentence can participate in several 
syntactic relations. Table 2-2 lists some of the most commonly used English 
dependency labels. 

Table 2-2: Some Common Dependency Labels

Dependency label Description

acomp Adjectival complement
amod Adjectival modifier
aux Auxiliary
compound Compound
dative Dative
det Determiner
dobj Direct object
nsubj Nominal subject
pobj Object of preposition
ROOT Root

The ROOT label marks the token whose head is itself. Typically, spaCy 
assigns it to the main verb of the sentence (the verb that is at the heart of 
the predicate). Every complete sentence should have a verb with the ROOT  
tag and a subject with the nsubj tag. The other elements are optional. 

N O T E  Most of the examples in this book will assume that the submitted text is a complete 
sentence and use the ROOT tag to locate the sentence’s main verb. Keep in mind that 
this won’t work for every possible input.

The following script illustrates how to access the syntactic dependency 
labels of the tokens in the discourse from the example in “Part-of-Speech 
Tagging” on page 21: 

import spacy
nlp = spacy.load('en')
doc = nlp(u'I have flown to LA. Now I am flying to Frisco.')
for token in doc:
  print(token.text, utoken.pos_, vtoken.dep_)

The script outputs the coarse-grained part-of-speech tags u (see 
Table 2-1) and dependency labels assigned to the tokens v composing the 
sample discourse:  

I      PRON  nsubj
have   VERB  aux
flown  VERB  ROOT
to     ADP   prep
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LA     PROPN pobj
.      PUNCT punct
Now    ADV   advmod
I      PRON  nsubj
am     VERB  aux
flying VERB  ROOT
to     ADP   prep
Frisco PROPN pobj
.      PUNCT punct

But what it doesn’t show you is how words are related to each other in a 
sentence by means of the commonly called dependency arcs explained at the 
beginning of this section. To look at the dependency arcs in the sample dis-
course, replace the loop in the preceding script with the following one: 

for token in doc:
  print(utoken.head.text, token.dep_, token.text)

The head property of a token object u refers to the syntactic head of 
this token. When you print this line, you’ll see how words in the discourse 
sentences are connected to each other by syntactic dependencies. If they 
were presented graphically, you would see an arc for each line in the fol-
lowing output, except for the ROOT relation. The reason is that the word to 
which this label is assigned is the only word in a sentence that doesn’t have 
a head:

flown   nsubj  I
flown   aux    have
flown   ROOT   flown
flown   prep   to
to      pobj   LA
flown   punct  .
flying  advmod Now
flying  nsubj  I
flying  aux    am
flying  ROOT   flying
flying  prep   to
to      pobj   Frisco
flying  punct  .

Looking at the earlier list of syntactic dependencies, let’s try to figure 
out what labels point to the tokens that could potentially best describe the 
customer’s intent: in other words, you need to find a pair that would alone 
appropriately describe the customer’s intent. 

You might be interested in the tokens marked with the ROOT and pobj 
dependency labels, because in this example they’re key in intent recogni-
tion. As stated earlier, the ROOT label marks the main verb of the sentence, 
and pobj, in this example, marks the entity that—in conjunction with the 
verb—summarizes the meaning of the entire utterance.
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The following script locates words that are assigned to those two depen-
dency labels:

import spacy
nlp = spacy.load('en')
doc = nlp(u'I have flown to LA. Now I am flying to Frisco.')

u for sent in doc.sents:
  v print([w.text for w in sent wif w.dep_ == 'ROOT' or w.dep_ == 'pobj'])

In this script, you shred the discourse u to separate the sentences with 
the doc.sents property, which iterates over the sentences in the document. 
Shredding a text into separate sentences can be useful when you need to 
find, for example, certain parts of speech in each sentence of the discourse. 
(We’ll discuss doc.sents in the next chapter, where you’ll see an example of 
how to refer to the tokens in a document with sentence-level indices.) This 
allows you to create a list of potential keywords for each sentence based on 
specific dependency labels assigned to the tokens v. The filter conditions 
used in this example are chosen based on the examination of the syntacti-
cally related pairs generated by the previous script. In particular, you pick 
up the tokens with ROOT and pobj dependency labels w, because these tokens 
form the pairs you’re interested in.

The script’s output should look as follows:

['flown', 'LA']
['flying', 'Frisco']

In both sentence pairs, the output nouns are the ones labeled as pobj. 
You could use this in your ticket booking application to choose the noun 
that best belongs with the verb. In this case, that would be “flying,” which 
goes with “Frisco.” 

This is a simplified example of information extraction using depen-
dency labels. In the following chapters, you’ll be given more sophisticated 
examples of how to iterate over the dependency tree of a sentence or even 
an entire discourse, extracting necessary pieces of information.  

Try This
Now that you know how to take advantage of lemmatization, part-of-speech 
tags, and syntactic dependency labels, you can put them all together to do 
something useful. Try combining the examples from the preceding sections 
into a single script that correctly identifies a speaker’s intent to fly to San 
Francisco. 

Your script should generate the following output:

 ['fly', 'San Francisco'] 

To achieve this, start with the latest script from this section and 
enhance the conditional clause in the loop, adding the conditions to 
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account for fine-grained part-of-speech tags, as discussed in “Part-of-Speech 
Tagging” on page 21. Then add the lemmatization functionality to your 
script, as discussed in “Lemmatization” on page 18.

Named Entity Recognition
A named entity is a real object that you can refer to by a proper name. It can be 
a person, organization, location, or other entity. Named entities are impor-
tant in NLP because they reveal the place or organization the user is talking 
about. The following script finds named entities in the sample discourse used 
in the previous examples:

import spacy
nlp = spacy.load('en')
doc = nlp(u'I have flown to LA. Now I am flying to Frisco.')
for token in doc:

  u if token.ent_type != 0:
    print(token.text, vtoken.ent_type_)

If the ent_type attribute of a token is not set to 0 u, then the token is 
a named entity. If so, you print the ent_type_ attribute of a token v, which 
contains the type of named entity in unicode. As a result, the script should 
output the following:

LA      GPE
Frisco  GPE

Both LA and Frisco are marked as GPE, the acronym for “geopolitical 
entity” and includes countries, cities, states, and other place names.

Summary 
In this chapter, you set up a working environment for using spaCy. Then 
you learned simple scripts that illustrate how to use spaCy’s features to per-
form the basic NLP operations for extracting important information. These 
operations included tokenization, lemmatization, and identifying syntactic 
relations between individual tokens in a sentence. The examples provided 
in this chapter are simplified and don’t reflect real-world scenarios. To write 
a more sophisticated script using spaCy, you’ll need to implement an algo-
rithm to derive the necessary tokens from a dependency tree, using the lin-
guistic features assigned to tokens. We’ll return to extracting and using 
linguistic features in Chapter 4, and we’ll cover dependency trees in detail 
in Chapter 6. 

In the next chapter, you’ll look at the key objects of spaCy’s API, includ-
ing containers and processing pipeline components. Also, you’ll learn to 
use spaCy’s C-level data structures and interfaces to create Python modules 
capable of processing large amounts of text.





3
W O R K I N G  W I T H 

C O N T A I N E R   O B J E C T S  A N D 
C U S T O M I Z I N G  S P A C Y

You can divide the main objects composing 
the spaCy API into two categories: contain-

ers (such as Tokens and Doc objects) and 
processing pipeline components (such as the 

part-of-speech tagger and named entity recognizer). 
This chapter explores container objects further. Using 
container objects and their methods, you can access 
the linguistic annotations that spaCy assigns to each 
token in a text. 

You’ll also learn how to customize the pipeline components to suit your 
needs and use Cython code to speed up time-consuming NLP tasks.

spaCy’s Container Objects
A container object groups multiple elements into a single unit. It can be a col-
lection of objects, like tokens or sentences, or a set of annotations related to 
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a single object. For example, spaCy’s Token object is a container for a set of 
annotations related to a single token in a text, such as that token’s part of 
speech. Container objects in spaCy mimic the structure of natural language 
texts: a text is composed of sentences, and each sentence contains tokens.

Token, Span, and Doc, the most widely used container objects in spaCy 
from a user’s standpoint, represent a token, a phrase or sentence, and a text, 
respectively. A container can contain other containers—for example, a Doc 
contains Tokens. In this section, we’ll explore working with these container 
objects.

Getting the Index of a Token in a Doc Object
A Doc object contains a collection of the Token objects generated as a 
result of the tokenization performed on a submitted text. These tokens have 
 indices, allowing you to access them based on their positions in the text, 
as shown in Figure 3-1.

Doc container

[0]

I

PRON
...

[1]

want

VERB
...

[2]

a

DET
...

[3]

green

ADJ
...

[4]

apple.

NOUN
...

Index

Content

Annotations

Token objects

Figure 3-1: The tokens in a Doc object

The tokens are indexed starting with 0, which makes the length of the 
document minus 1 the index of the end position. To shred the Doc instance 
into tokens, you derive the tokens into a Python list by iterating over the 
Doc from the start token to the end token:

>>> [doc[i] for i in range(len(doc))]
[A, severe, storm, hit, the, beach, .]

It’s worth noting that we can create a Doc object using its constructor 
explicitly, as illustrated in the following example:

>>> from spacy.tokens.doc import Doc
>>> from spacy.vocab import Vocab
>>> doc = Doc(uVocab(), vwords=[u'Hi', u'there'])
doc
Hi there

We invoke the Doc’s constructor, passing it the following two param-
eters: a vocab object u—which is a storage container that provides vocabulary 
data, such as lexical types (adjective, verb, noun, and so on)—and a  
list of tokens to add to the Doc object being created v.
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Iterating over a Token’s Syntactic Children
Suppose we need to find the leftward children of a token in the syntactic 
dependency parse of a sentence. For example, we can apply this opera-
tion to a noun to obtain its adjectives, if any. We might need to do this if 
we want to know what adjectives are able to modify a given noun. As an 
 example, consider the following sentence:

I want a green apple.

The diagram in Figure 3-2 highlights the syntactic dependencies of 
interest.

I want a green apple.

PRON VERB DET ADJ NOUN

leftward children
of token “apple”

Figure 3-2: An example of leftward syntactic dependencies

To obtain the leftward syntactic children of the word “apple” in this 
sample sentence programmatically, we might use the following code:

>>> doc = nlp(u'I want a green apple.')
>>> [w for w in doc[4].lefts]
[a, green]

In this script, we simply iterate through the apple’s children, outputting 
them in a list.

It’s interesting to note that in this example, the leftward syntactic 
children of the word “apple” represent the entire sequence of the token’s 
syntactic children. In practice, this means that we might replace Token.lefts 
with Token.children, which finds all of a token’s syntactic children:

>>> [w for w in doc[4].children]

The result list will remain the same.
We could also use Token.rights to get a token’s rightward syntactic chil-

dren: in this example, the word “apple” is a rightward child of the word 
“want,” as shown in Figure 3-1.

The doc.sents Container
Typically, the linguistic annotations assigned to a token make sense only 
in the context of the sentence in which the token occurs. For example, 
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information about whether the word is a noun or a verb might apply only to 
the sentence in which this word is located (like the word “count,” discussed 
in previous chapters). In such cases, it would be useful to have the ability to 
access the tokens in the document with sentence-level indices. 

The Doc object’s doc.sents property lets us separate a text into its 
 individual sentences, as illustrated in the following example:

>>> doc = nlp(u'A severe storm hit the beach. It started to rain.')
u >>> for sent in doc.sents:
v ...   [sent[i] for i in range(len(sent))]

...
[A, severe, storm, hit, the, beach, .]
[It, started, to, rain, .]
>>>

We iterate over the sentences in the doc u, creating a separate list of 
tokens for each sentence v. 

At the same time, we can still refer to the tokens in a multi-sentence 
text using the global, or document-level, indices, as shown here:

>>> [doc[i] for i in range(len(doc))]
[A, severe, storm, hit, the, beach, ., It, started, to, rain, .]

The ability to refer to the Token objects in a document by their 
 sentence-level indices can be useful if, for example, we need to check 
whether the first word in the second sentence of the text being processed 
is a pronoun (say we want to figure out the connection between two sen-
tences: the first of which contains a noun and the second of which con-
tains a pronoun that refers to the noun): 

>>> for i,sent in enumerate(doc.sents):
...   if i==1 and sent[0].pos_== 'PRON':
...     print('The second sentence begins with a pronoun.')
The second sentence begins with a pronoun.

In this example, we use an enumerator in the for loop to distinguish 
the sentences by index. This allows us to filter out sentences that we’re not 
interested in and check only the second sentence.

Identifying the first word in a sentence is a breeze, because its index is 
always 0. But what about the last one? For example, what if we need to find 
out how many sentences in the text end with a verb—(not counting any 
periods, of course)?

>>> counter = 0
>>> for sent in doc.sents:
...   if sent[len(sent)-2].pos_ == 'VERB':
...     counter+=1

>>> print(counter)
1
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Although the lengths of sentences vary, we can easily determine the 
length of a given sentence using the len() function. We reduce the value of 
len(sent) by 2 for the following reasons: first, the indices always start at 0 
and end at size-1. Second, the last token in both sentences in the sample is a 
period, which we need to ignore.

The doc.noun_chunks Container
A Doc object’s doc.noun_chunks property allows us to iterate over the noun 
chunks in the document. A noun chunk is a phrase that has a noun as its head. 
For example, the previous sentence contains the following noun chunks:

A noun chunk
a phrase
a noun
its head

With doc.noun_chunks, we can extract them as follows:

>>> doc = nlp(u'A noun chunk is a phrase that has a noun as its head.')
>>> for chunk in doc.noun_chunks:
...   print(chunk)  

Alternatively, we might extract noun chunks by iterating over the 
nouns in the sentence and finding the syntactic children for each noun to 
form a chunk. Earlier in “Iterating over a Token’s Syntactic Children” on 
page 33, you saw an example of how to extract a phrase based on the 
syntactic dependency parse. Now let’s apply this technique to the sample 
sentence in this example to compose noun chunks manually:

for token in doc:
  u if token.pos_=='NOUN':

    chunk = ''
    v for w in token.children:
      w if w.pos_ == 'DET' or w.pos_ == 'ADJ':

        chunk = chunk + w.text + ' '
    x chunk = chunk + token.text

    print(chunk)

Iterating over the tokens, we pick up only nouns u. Next, in the inner 
loop, we iterate over a noun’s children v, picking up only the tokens that 
are either determiners or adjectives for the noun chunk (noun chunks can 
also include some other parts of speech, say, adverbs) w. Then we append 
the noun to the chunk x. As a result, the output of the script should be the 
same as in the previous example.

Try This
Notice that the words used to modify a noun (determiners and adjectives) 
are always the leftward syntactic children of the noun. This makes it possible 
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to replace Token.children with Token.lefts in the previous code and then 
remove the check for the children to be either a determiner or an adjective, 
as necessary. 

Rewrite the previous snippet, incorporating the changes suggested here. 
The resulting set of noun chunks should remain the same in your script.

The Span Object
The Span object is a slice from a Doc object. In the previous sections, you 
saw how to use it as a container for a sentence and a noun chunk, derived 
from doc.sents and doc.noun_chunks, respectively.

The Span object’s usage isn’t limited to being a container for sentences 
or noun chunks only. We can use it to contain an arbitrary set of neighbor-
ing tokens in the document by specifying a range of indices, as in the fol-
lowing example:

>>> doc=nlp('I want a green apple.')
>>> doc[2:5]
a green apple

The Span object contains several methods, one of the most interesting of 
which is span.merge(), which allows us to merge the span into a single token, 
retokenizing the document. This can be useful when the text contains names 
consisting of several words.

The sample sentence in the following example contains two place names 
consisting of several words (“Golden Gate Bridge” and “San Francisco”) that 
we might want to group together. The default tokenization won’t recognize 
these multi-word place names as single tokens. Look at what happens when 
we list the text’s tokens:

>>> doc = nlp(u'The Golden Gate Bridge is an iconic landmark in San Francisco.')
>>> [doc[i] for i in range(len(doc))]
[The, Golden, Gate, Bridge, is, an, iconic, landmark, in, San, Francisco, .]

Each word and punctuation mark is its own token.
With the span.merge() method, we can change this default behavior:

>>> span = doc[1:4]
>>> lem_id = doc.vocab.strings[span.text]
>>> span.merge(lemma = lem_id)
Golden Gate Bridge

In this example, we create a lemma for the “Golden Gate Bridge” span, 
and then pass the lemma to span.merge() as a parameter. (To be precise, we 
pass on the lemma’s id obtained through the doc.vocab.string attribute.)

Note that the span.merge() method doesn’t merge the corresponding 
lemmas by default. When called without parameters, it sets the lemma of 
the merged token to the lemma of the first token of the span being merged. 
To specify the lemma we want to assign to the merged token, we pass it to 
span.merge() as the lemma parameter, as illustrated here.
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Let’s check whether the lemmatizer, part-of-speech tagger, and depen-
dency parser can handle the newly created lemma correctly:

>>> for token in doc:
      print(token.text, token.lemma_, token.pos_, token.dep_)

This should produce the following output:

The                the                DET   det
Golden Gate Bridge Golden Gate Bridge PROPN nsubj
is                 be                 VERB  ROOT
an                 an                 DET   det
iconic             iconic             ADJ   amod
landmark           landmark           NOUN  attr
in                 in                 ADP   prep
San                san                PROPN compound
Francisco          francisco          PROPN pobj
.                  .                  PUNCT punct

All the attributes shown in the listing have been assigned to the 
“Golden Gate Bridge” token correctly.

Try This
The sentence in the preceding example also contains San Francisco, another 
multi-word place name that you might want to merge into a single token. 
To achieve this, perform the same operations as listed in the previous code 
snippets for the “Golden Gate Bridge” span.

When determining the start and end positions for the “San Francisco” 
span in the document, don’t forget that the indices of the tokens located 
to the right of the newly created “Golden Gate Bridge” token have been 
shifted downward respectively.

Customizing the Text-Processing Pipeline
In the previous sections, you learned how spaCy’s container objects repre-
sent linguistic units, such as a text and an individual token, allowing you 
to extract linguistic features associated with them. Let’s now look at the 
objects in the spaCy API that create those containers and fill them with 
 relevant data.

These objects are referred to as processing pipeline components. As 
you’ve already learned, a pipeline set includes—by default—a part-of-speech 
tagger, a dependency parser, and an entity recognizer. You can check what 
pipeline components are available for your nlp object like this:

>>> nlp.pipe_names
['tagger', 'parser', 'ner']
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As discussed in the following sections, spaCy allows you to customize 
the components in your pipeline to best suit your needs.

Disabling Pipeline Components
spaCy allows you to load a selected set of pipeline components, disabling 
those that aren’t necessary. You can do this when creating an nlp object by 
setting the disable parameter:

nlp = spacy.load('en', disable=['parser'])

In this example, we create a processing pipeline without a dependency 
parser. If we call this nlp instance on a text, the tokens won’t receive depen-
dency labels. The following example illustrates this point clearly:

>>> doc = nlp(u'I want a green apple.')
>>> for token in doc:
...   print(utoken.text, vtoken.pos_, wtoken.dep_)

I     PRON
want  VERB
a     DET
green ADJ
apple NOUN
.     PUNCT

We try to print out the following information for each token from the 
sample sentence: the text content u, a part-of-speech tag v, and a depen-
dency label w. But the dependency labels don’t appear.

Loading a Model Step by Step
You can perform several operations in one step with spacy.load(), which 
loads a model. For example, when you make this call:

nlp = spacy.load('en')

spaCy performs the following steps behind the scenes:

1. Looking at the name of the model to be loaded, spaCy identifies what 
Language class it should initialize. In this example, spaCy creates an 
English class instance with shared vocabulary and other language data.

2. spaCy iterates over the processing pipeline names, creates correspond-
ing components, and adds them to the processing pipeline.  

3. spaCy loads the model data from disk and makes it available to the 
Language class instance.

These implementation details are hidden by spacy.load(), which in most 
cases saves you effort and time. But sometimes, you might need to implement 
these steps explicitly to have fine-grained control over the process. For exam-
ple, you might need to load a custom component to the processing pipeline. 
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The component could print some information about the Doc object in the 
pipeline, such as the number of tokens or the presence or absence of certain 
parts of speech.

As usual, more fine-grained control requires you to provide more infor-
mation. First, rather than specifying a shortcut, you’ll need to obtain the 
actual model name so you can get the path to the model package.

You can identify the full name of the model as follows:

>>> print(nlp.meta['lang'] + '_' + nlp.meta['name'])
en_core_web_sm

The nlp.meta attribute used in this code is a dictionary that contains 
the metadata of the loaded model. What you need in this example is the 
model’s language and the model’s name.

Now that you know the model’s name, you can find its location in your 
system by using the get_package_path utility function:

>>> from spacy import util
>>> util.get_package_path('en_core_web_sm')
PosixPath('/usr/local/lib/python3.5/site-packages/en_core_web_sm')

The path specified in this code might be different on your machine, 
depending on your Python installation directory. Regardless, this is not 
the full path. You’ll need to append one more folder to it. The name of this 
folder is composed of the model name and the model version appended to 
it. (This is where the model package is located.) You can determine its name 
as follows:

>>> print(nlp.meta['lang'] + '_' + nlp.meta['name'] + '-' + nlp.
meta['version'])
en_core_web_sm-2.0.0

You might also want to look at the list of pipeline components used with 
the model. (It’s important to know what components are supported in the 
context of the model and therefore can be loaded to the pipeline.) You can 
obtain this information via the nlp.meta attribute’s 'pipeline' field, as shown 
here (or via the nlp.pipe_names attribute introduced in the beginning of 
“Customizing the Text-Processing Pipeline” on page 37):

>>> nlp.meta['pipeline']
['tagger', 'parser', 'ner']

With this information, we can create a script that implements the steps 
provided at the beginning of this section:

>>> lang = 'en'
>>> pipeline = ['tagger', 'parser', 'ner']
>>> model_data_path = '/usr/local/lib/python3.5/site-packages/en_core_web_sm/
en_core_web_sm-2.0.0'

u >>> lang_cls = spacy.util.get_lang_class(lang)   
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>>> nlp = lang_cls()                            
v >>> for name in pipeline:
w ...    component = nlp.create_pipe(name)   
x ...    nlp.add_pipe(component)            
y >>> nlp.from_disk(model_data_path)

In this script, we use spacy.util.get_lang_class() u to load a Language 
class. Which class we load depends on the two-letter language code speci-
fied as the parameter. In this example, we load English. Next, in a loop v, 
we  create w and add x the pipeline components to the processing pipeline. 
Then we load a model from disk, specifying the path to it used on your 
machine y.

Looking at the code in this script, it might seem that the pipeline compo-
nents become functional once we’ve added them to the processing pipeline. 
Actually, we can’t use them until we load the model data, so if we omit the last 
line of code in the script, we won’t even be able to create a Doc object using 
this nlp instance.

Customizing the Pipeline Components
By customizing pipeline components, you can best meet the needs of your 
application. For example, suppose you want your model’s named entity  
recognizer system to recognize the word Festy as a city district. By default,  
it recognizes it as an organization, as illustrated in the following example:

>>> doc = nlp(u'I need a taxi to Festy.')
>>> for ent in doc.ents:
...  print(ent.text, ent.label_)

Festy ORG

The label ORG stands for companies, agencies, and other institutions. 
But you want to make the entity recognizer classify it as an entity of type 
DISTRICT instead.

The entity recognizer component is implemented in the spaCy API as 
the EntityRecognizer class. Using this class’s methods, you can initialize an 
instance of ner and then apply it to a text. In most cases, you don’t need to 
perform these operations explicitly; spaCy does it for you under the hood 
when you create an nlp object and then create a Doc object, respectively.

But when you want to update the named entity recognition system of an 
existing model with your own examples, you’ll need to work with some of 
the ner object’s methods explicitly.

In the following example, you’ll first have to add a new label called 
DISTRICT to the list of supported entity types. Then you need to create a 
training example, which is what you’ll show the entity recognizer so it will 
learn what to apply the DISTRICT label to. The simplest implementation of 
the preparation steps might look as follows:

LABEL = 'DISTRICT'
TRAIN_DATA = [
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    u ('We need to deliver it to Festy.', {
        v 'entities': [(25, 30, 'DISTRICT')]

    }),
    w ('I like red oranges', {

        'entities': []
    })
]

For simplicity, this training set contains just two training samples 
( typically, you need to provide many more). Each training sample includes  
a sentence that might or might not contain an entity (or entities) to which 
the new entity label should be assigned u. If there is an entity in the sample, 
you specify its start and end position v. The second sentence in the training 
set doesn’t contain the word Festy at all w. This is due to the way the train-
ing process is organized. Chapter 10 covers the details of this process in  
more depth.

Your next step is to add a new entity label DISTRICT to the entity recog-
nizer: but before you can do this, you must get the instance of the ner pipe-
line component. You can do this as follows:

ner = nlp.get_pipe('ner')

Once you have a ner object, you can add a new label to it using the ner 
.add_label() method, as shown here: 

ner.add_label(LABEL)

Another action you need to take before you can start training the 
entity recognizer is to disable the other pipes to make sure that only 
the entity recognizer will be updated during the training process:

nlp.disable_pipes('tagger')
nlp.disable_pipes('parser')

Then you can start training the entity recognizer using the training 
samples in the TRAIN_DATA list created earlier in this section:

optimizer = nlp.entity.create_optimizer()
import random

for i in range(25):
    random.shuffle(TRAIN_DATA)
    for text, annotations in TRAIN_DATA:
        nlp.update([text], [annotations], sgd=optimizer)

During training, the sample examples are shown to the model in a loop, 
in random order, to efficiently update the underlying model’s data and avoid 
any generalizations based on the order of training examples. The execution 
will take a while.
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Once the preceding code has successfully completed, you can test how 
the updated optimizer recognizes the token Festy:

>>> doc = nlp(u'I need a taxi to Festy.')
>>> for ent in doc.ents:
...  print(ent.text, ent.label_)  
...
Festy DISTRICT

According to the output, it works correctly.
Keep in mind that the updates you just made will be lost when you close 

this Python interpreter session. To address this problem, the Pipe class—the 
parent of the EntityRecognizer class and other pipeline components classes—
has the to_disk() method, which allows you to serialize the pipe to disk:

>>> ner.to_disk('/usr/to/ner')

Now you can load the updated component to a new session with the 
from_disk() method. To make sure it works, close your current interpreter 
session, start a new one, and then run the following code:

>>> import spacy
>>> from spacy.pipeline import EntityRecognizer

u >>> nlp = spacy.load('en', disable=['ner'])
v >>> ner = EntityRecognizer(nlp.vocab)
w >>> ner.from_disk('/usr/to/ner')
x >>> nlp.add_pipe(ner)

You load the model, disabling its default ner component u. Next, you 
create a new ner instance v and then load it with the data from disk w. 
Then you add the ner component to the processing pipeline x.

Now you can test it, like this:

>>> doc = nlp(u'We need to deliver it to Festy.')
>>> for ent in doc.ents:
...  print(ent.text, ent.label_)

Festy DISTRICT

As you can see, the entity recognizer labels the name Festy correctly.
Although I’ve shown you how to customize the named entity recognizer 

only, you can also customize the other pipeline components in a similar way.

Using spaCy’s C-Level Data Structures
Even with spaCy, NLP operations that involve processing large amounts of 
text can be very time-consuming. For example, you might need to compose 
a list of the adjectives most appropriate for a certain noun, and to do this, 
you’ll have to examine a large amount of text. If processing speed is critical 
to your application, spaCy allows you to take advantage of Cython’s C-level 
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data structures and interfaces. Cython is one of the languages in which spaCy 
is written (the other one is Python). Because it’s a superset of Python, Cython 
considers almost all Python code valid Cython code. In addition to Python’s 
functionality, Cython allows you to natively call C functions and declare fast  
C types, enabling the compiler to generate very efficient code. You might 
want to use Cython to speed up time-consuming text processing operations.

spaCy’s core data structures are implemented as Cython objects, and 
 spaCy’s public API allows you to access those structures. For details, refer to 
the Cython Architecture page in the documentation at https://spacy.io/api 
/cython/.

How It Works
To use Cython code with spaCy, you must turn it into a Python extension 
module that you can then import into your program, as illustrated in 
Figure 3-3.

setup.py

C++ compiler

Cython code
cdef TokenC* c
cpdef main(Doc doc)
...

Python module

>>> from spacytext import main

Figure 3-3: Building a Python extension module from a Cython script

You can do this by saving Cython code in a .pyx file and then running a 
setup.py Python script that first converts Cython code into corresponding C 
or C++ code and then invokes a C or C++ compiler. The script generates the 
Python extension module.

Preparing Your Working Environment and Getting Text Files
Before you can start building Cython code, you need to install Cython on 
your machine and obtain a large text file to work with. 

Install Cython on your machine using pip:

pip install Cython

Next, to simulate a time-consuming task and measure performance, 
you’ll need a large text file. For this, you can use a Wikipedia dump file, 
which contains a set of pages wrapped in XML. Wikipedia dump files are 
available for download at https://dumps.wikimedia.org/enwiki/latest/. Scroll 
down to the enwiki-latest-pages-articles*.xml-*.bz2 files and choose one that is 
large enough for your tests. But don’t choose one that is too large unless 
you want to spend hours waiting for your machine to complete your test 
code. A dump file of 10–100MB should be appropriate.

Once you’ve downloaded the file, extract raw text from it with a tool like 
gensim.corpora.wikicorpus (https://radimrehurek.com/gensim/corpora/wikicorpus 
.html), which is designed specifically for constructing a text corpus from a 
Wikipedia database dump.

https://spacy.io/api/cython/
https://spacy.io/api/cython/
https://dumps.wikimedia.org/enwiki/latest/
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Your Cython Script
Now let’s write a Cython script that analyzes the text file. For simplicity, sup-
pose all you want to do is count the number of personal pronouns in the 
submitted text. That means you need to count the number of tokens with 
the PRP part-of-speech tag assigned to them. 

W A R N I N G  As stated in the documentation, C-level methods intended for use from Cython are 
designed for speed over safety. Mistakes in the code might cause the execution to crash 
abruptly.

In a directory in your local filesystem, create a file called spacytext.pyx 
and insert the following code into it:  

from cymem.cymem cimport Pool
from spacy.tokens.doc cimport Doc
from spacy.structs cimport TokenC
from spacy.typedefs cimport hash_t

u cdef struct DocStruct:
    TokenC* c
    int length

v cdef int counter(DocStruct* doc, hash_t tag):
    cdef int cnt = 0
    for c in doc.c[:doc.length]:
       if c.tag == tag:
          cnt += 1
    return cnt

w cpdef main(Doc mydoc):
    cdef int cnt
    cdef Pool mem = Pool()
    cdef DocStruct* doc_ptr = <DocStruct*>mem.alloc(1, sizeof(DocStruct))
    doc_ptr.c = mydoc.c
    doc_ptr.length = mydoc.length
    tag = mydoc.vocab.strings.add('PRP')
    cnt = counter(doc_ptr, tag)
    print(doc_ptr.length)
    print(cnt)

We start with a set of cimport statements to import necessary Cython 
modules, mostly from the spaCy library.

Then we define the Cython struct DocStruct as the container for the text 
being processed and the TokenC* variable u, a pointer to a TokenC struct used 
in spaCy as the data container for the Token object.

Next, we define a Cython function counter v that counts the number of 
personal pronouns in the text.
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N O T E  The cdef functions won’t be available in the Python code that imports the module. If 
you want to create a function that will be visible to Python and to take advantage of 
C-level data structures and interfaces at the same time, you need to declare that func-
tion as cpdef.

Finally, we define a cpdef Cython/Python main function w that we can 
use in Python.

Building a Cython Module
Unlike Python, you must compile Cython code. You can do this in several 
ways, the best of which is to write a distutils/setuptools setup.py Python 
script. Create a setup.py file in the same directory as your Cython script. 
Your setup.py file should include the following code:

from distutils.core import setup
from Cython.Build import cythonize

u import numpy

setup(name='spacy text app',
     v ext_modules=cythonize("spacytext.pyx", language="c++"),
      w include_dirs=[numpy.get_include()]

       )

This is a regular distutils/setuptools setup.py script except for two addi-
tions related to the example we’re working with. First, we import numpy u 
and then explicitly specify where to find the .h files of the library w. We do 
this to avoid the numpy/arrayobject.h compilation error that occurs in some 
systems. We use the other setup option, language = "c++" v to instruct the 
setup process to employ a C++ compiler rather than performing C compila-
tion, which is the default.

Now that we have the setup script, you can build your Cython code. You 
can do this from within a system terminal, as follows:

python setup.py build_ext --inplace

A bunch of messages will display during the compilation process. Some 
of them might be warnings, but they’re rarely critical. For example, you 
might see this message, which is not critical for the process:

#warning "Using deprecated NumPy API ...

Testing the Module
After the compilation completes successfully, the spacytext module will be 
added to your Python environment. To test the newly created module, open 
a Python session and run the following command:

>>> from spacytext import main
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If it displays no errors, you can enter the following commands (this 
assumes your text data is in a test.txt file):

>>> import spacy
>>> nlp = spacy.load('en')

u >>> f= open("test.txt","rb")
>>> contents =f.read()

v >>> doc = nlp(contents[:100000].decode('utf8'))
w >>> main(doc)

21498
216

You open the file in which you have text data for this example in binary 
mode to obtain a bytes object u. If the file is too big, you can pick up only 
part of its content when creating a Doc object v. Once you’ve created the 
Doc object, you can test the spacytext module you just created with Cython, 
invoking its main() function w.

The first figure in the output generated by the spacytext.main() func-
tion shows the total number of tokens found in the submitted text. The sec-
ond figure is the number of personal pronouns found in this same text.

Summary
In this chapter, you looked at the most important of spaCy’s container 
objects. You also learned how to customize your text-processing pipeline 
and use spaCy’s C-level data structures and interfaces from Cython.



4
E X T R A C T I N G  A N D  U S I N G 

L I N G U I S T I C  F E A T U R E S

In the previous chapters, you learned how 
to access linguistic features, such as part-

of-speech tags, syntactic dependencies, and 
named entities, as part of the text process-

ing pipeline. This chapter will show you how to use 
part-of-speech tags and syntactic dependency labels 
to extract and generate text, allowing you to build 
 question-asking chatbots, locate specific phrases in 
a text, and more.

Almost every NLP application needs to extract specific information 
from a text and generate new text that is relevant to a particular situation. 
For example, a chatbot must be able carry on a conversation with a user, 
which means it must be able to identify specific parts of a user’s text and 
then generate its own appropriate response. Let’s look at how to do all of 
that using linguistic features.
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Extracting and Generating Text with Part-of-Speech Tags
Part-of-speech tags can help you retrieve specific kinds of information 
from a text, and they can also help you generate entirely new sentences 
based on a submitted one. In this section, we’ll introduce you to some new 
part-of-speech tags, write a script that finds phrases describing amounts 
of money, and transform statements into questions. For a list of common 
part-of-speech tags used in spaCy for English models, refer to Table 2-1 on 
page 22.

Numeric, Symbolic, and Punctuation Tags
In addition to part-of-speech tags for nouns, verbs, and other words in a 
sentence, spaCy has tags for symbols, numbers, and punctuation marks. 
Let’s look at these by processing the following sentence:

The firm earned $1.5 million in 2017.

To begin, let’s extract the coarse-grained part-of-speech features from 
the tokens in the sentence to see how spaCy distinguishes between different 
part-of-speech categories. We can do this with the following script:

>>> import spacy
>>> nlp = spacy.load('en')
>>> doc = nlp(u"The firm earned $1.5 million in 2017.")
>>> for token in doc:
...   print(token.text, utoken.pos_, vspacy.explain(token.pos_))
...

We create a Doc object for the submitted sentence and then output the 
coarse-grained part-of-speech tags u. We also use the spacy.explain() func-
tion, which returns a description for a given linguistic feature v.

The output should look as follows:

The     DET   determiner
firm    NOUN  noun
earned  VERB  verb
$       SYM   symbol
1.5     NUM   numeral
million NUM   numeral
in      ADP   adposition
2017    NUM   numeral
.       PUNCT punctuation

Notice that the coarse-grained tagger distinguishes numerals, symbols, 
and punctuation marks as individual categories. As you can see, it even rec-
ognizes “million” spelled out.
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Now, for the sake of comparison, let’s output both coarse-grained and 
fine-grained part-of-speech tags for this sample sentence along with a descrip-
tion column for the fine-grained tags:

>>> for token in doc:
...   print(token.text, token.pos_, token.tag_, spacy.explain(token.tag_))

The output should look as follows:

The     DET   DT   determiner
firm    NOUN  NN   noun, singular
earned  VERB  VBD  verb, past tense
$       SYM   $    symbol, currency
1.5     NUM   CD   cardinal number
million NUM   CD   cardinal number
in      ADP   IN   conjunction, subordinating or preposition
2017    NUM   CD   cardinal number
.       PUNCT .    punctuation mark, sentence closer

The second and third columns contain the coarse-grained and fine-
grained part-of-speech tags, respectively. The fourth column gives descrip-
tions of the fine-grained tags provided in the third column.

The fine-grained tagging divides each category into subcategories. For 
example, the coarse-grained category SYM (symbols) has three fine-grained 
subcategories. These are $ for currency symbols, # for the number sign, 
and SYM for all the other symbols, such as +, −, ×, ÷, =. This sub-dividing  
can be useful when you need to distinguish between different types of 
symbols. For example, you might be processing articles about math and 
want your script to recognize symbols commonly found in math formulas. 
Or you might be writing a script that needs to recognize currency symbols 
in financial reports.

N O T E  Because spaCy’s part-of-speech tagger relies on a token’s context to generate its label, 
you might get different labels for tokens used in unusual contexts.

Now let’s look at how we can take advantage of these specific part-of-
speech tags to extract and generate text.

Extracting Descriptions of Money
Suppose you’re developing an application for processing financial reports 
that must extract necessary pieces of information from long, boring texts. 
In practice, financial reports can be quite large, but all you really need 
are the figures. In particular, you’re interested in phrases that refer to an 
amount of money and start with a currency symbol. For example, your 
script should pick out the phrase “$1.5 million” from the previous sample 
sentence, but not “2017”.



50   Chapter 4

The following script illustrates how you might extract this phrase from  
the sentence, relying on the tokens’ part-of-speech tags only. You can save 
this script to a file and then run it or execute the code from within a Python 
session:

import spacy
nlp = spacy.load('en')
doc = nlp(u"The firm earned $1.5 million in 2017.")
phrase = ''

u for token in doc: 
  v if token.tag_ == '$': 

      phrase = token.text
      i = token.i+1

      w while doc[i].tag_ == 'CD': 
          phrase += doc[i].text + ' '
          i += 1

      x break
phrase = phrase[:-1]
print(phrase)

We iterate over the sentence’s tokens u, searching for a token whose 
fine-grained part-of-speech tag is $ v. This tag indicates a currency symbol, 
and it typically starts a phrase that refers to an amount of money. Once we 
find a currency symbol, we start composing the phrase by checking whether 
the tokens that follow the currency symbol in the sentence are numbers. To 
do this, we implement a while loop in which we pick up the tokens located 
to the right of the currency symbol and check them for the CD tag, which 
is the cardinal number fine-grained part-of-speech-tag w. When we reach 
a nonnumeric token, we quit the while loop and break the for loop x that 
iterates over the sentence’s tokens.

When we run the script, the output should look as follows:

$1.5 million

This is exactly the kind of output we are looking for.
Keep in mind that a currency symbol assigned to the $ fine-grained 

part-of-speech tag might not necessarily be “$”. The part-of-speech tag 
might label other common currency symbols, such as £ and €. For example, 
the preceding script would recognize the phrase “£1.500.000”.

Try This
We wrote this script to extract a single phrase referring to an amount of 
money from the submitted sentence. Once the script finds the phrase, it 
completes its execution. But in practice, you might have a sentence that has 
more than one such phrase, as in the following example: “The firm earned 
$1.5 million in 2017, in comparison with $1.2 million in 2016.”

Modify the script so it extracts every phrase that refers to an amount of 
money within a sentence. To accomplish this, remove the break statement 
to prevent the loop from ending after it finds the first occurrence of the 
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phrase of interest. Then move the code that’s responsible for preparing and  
printing a found phrase (the last two lines of the script) into the loop, so 
you can invoke these two lines for every phrase of interest found in the sub-
mitted sentence.

Turning Statements into Questions
Suppose your NLP application must be able to generate a question from 
a submitted statement. For example, one way chatbots maintain conversa-
tions with the user is by asking the user a confirmatory question. When a 
user says, “I am sure,” the chatbot might ask something like, “Are you really 
sure?” To do this, the chatbot must be able to generate a relevant question.

Let’s say the user’s submitted sentence is this:

I can promise it is worth your time.

This sentence contains several verbs and pronouns, each with different 
morphologies. To see this more clearly, let’s look at the part-of-speech tags 
spaCy assigned to the tokens in this sentence:

>>> doc = nlp(u"I can promise it is worth your time.")
>>> for token in doc:
...   print(token.text, token.pos_, token.tag_)
...

We print the tokens, their coarse-grained part-of-speech tags, and their 
fine-grained part-of-speech-tags, producing the following output:

I       PRON   PRP
can     VERB   MD
promise VERB   VB
it      PRON   PRP
is      VERB   VBZ
worth   ADJ    JJ
your    ADJ    PRP$
time    NOUN   NN
.       PUNCT  .

From the fine-grained part-of-speech tags, you can distinguish between 
the morphological categories of the verbs and pronouns present in the sen-
tence. For example, the fine-grained part-of-speech tag PRP marks personal 
pronouns and PRP$ marks possessive pronouns, allowing you to distinguish 
between these two types of pronouns programmatically. We’ll need this 
information when working on this example.

A confirmatory question to the sentence discussed here might be as fol-
lows (another statement would require another confirmatory question, of 
course):

Can you really promise it is worth my time?
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From a human perspective, forming this question from the statement 
looks pretty straightforward: you change the order of some words, alter the 
pronouns accordingly, and add the adverbial modifier “really” to the main 
verb (the one that comes right after the subject). But how can you accom-
plish all these operations programmatically?

Let’s look at some part-of-speech tags. In the sample sentence, the verbs 
involved in forming the question are “can” and “promise”. The fine-grained 
part-of-speech tags mark the first one, “can”, as a modal auxiliary verb and 
the second one as a verb in the base form. Notice that in the preceding con-
firmatory question, the modal auxiliary verb has switched places with the 
personal pronoun, a process called inversion. We’ll have to implement this 
in the script.  

When it comes to the pronouns, the chatbot should follow a pattern 
common to regular conversations. Table 4-1 summarizes the use of pro-
nouns in such an application.

Table 4-1: The Use of Pronouns in a Chatbot

Personal pronouns Possessive pronouns

chatbot I, me my, mine

user you your, yours

In other words, a chatbot refers to itself as “I” or “me,” and it refers to a 
user as “you.”

The following steps outline what we need to do to generate a question 
from the original statement:

1. Change the order of words in the original sentence from “subject 
+ modal auxiliary verb + infinitive verb” to “modal auxiliary verb + 
 subject + infinitive verb.”

2. Replace the personal pronoun “I” (the sentence’s subject) with “you.”

3. Replace the possessive pronoun “your” with “my.”

4. Place the adverbial modifier “really” before the verb “promise” to 
emphasize the latter.

5. Replace the punctuation mark “.” with “?” at the end of the sentence.  

The following script implements these steps:

import spacy
nlp = spacy.load('en')
doc = nlp(u"I can promise it is worth your time.")
sent = ''
for i,token in enumerate(doc):

  u if token.tag_ == 'PRP' and doc[i+1].tag_ == 'MD' and doc[i+2].tag_ == 'VB':
      v sent =  doc[i+1].text.capitalize() + ' ' + doc[i].text

      sent = sent + ' ' + wdoc[i+2:].text
      x break

#By now, you should have: 'Can I promise it is worth your time.'
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#Retokenization
y doc=nlp(sent)

for i,token in enumerate(doc):
  z if token.tag_ == 'PRP' and token.text == 'I':

      sent = doc[:i].text + ' you ' +  doc[i+1:].text
      break
#By now, you should have: 'Can you promise it is worth your time.'
doc=nlp(sent)
for i,token in enumerate(doc):

  { if token.tag_ == 'PRP$' and token.text == 'your':
      sent = doc[:i].text + ' my ' +  doc[i+1:].text
      break
#By now, you should have: 'Can you promise it is worth my time.'      
doc=nlp(sent)
for i,token in enumerate(doc):
  if token.tag_ == 'VB':

      | sent = doc[:i].text + ' really ' +  doc[i:].text
      break
#By now, you should have: 'Can you really promise it is worth my time.'
doc=nlp(sent)

} sent = doc[:len(doc)-1].text + '?'
#Finally, you should have: 'Can you really promise it is worth my time?'
print(sent)

We perform the first four steps in separate for loops. First, we iterate 
over the tokens in the sentence and change the order of the subject and 
verb to make the sentence a question. In this example, we’re looking for the 
modal auxiliary verb (tagged MD) that follows a personal pronoun and is fol-
lowed by an infinitive verb u. Once we find this sequence of words, we move 
the modal auxiliary verb immediately before the personal pronoun, placing 
it at the beginning of the sentence v.  

To compose a new sentence, we use a technique known in Python 
as slicing that allows us to extract a subsequence from a sequence object, 
such as a string or a list, by specifying the start and end indices. In this 
case, we can apply slicing to a Doc object to extract a given subsequence 
of tokens from it. For example, slice doc[2:] will contain the doc’s tokens 
starting from the token at index 2 through the end of the doc, which in 
this case, is “promise it is worth your time.” w. Once we move the modal 
verb to a new position, we exit the for loop x.

You might wonder why we don’t just use the personal pronoun and 
auxiliary modal verb’s indices to perform inversion. Because we know the 
personal pronoun is at index 0 and the modal verb is at index 1, why do 
we have to use a loop that iterates over the entire set of tokens to find the 
modal verb’s position? Won’t the verb always follow the subject and so be 
the second word in the sentence?

The fact is that a sentence doesn’t always start with the subject. For 
example, what if the sentence were “Sure enough, I can promise it is worth 
your time.”? In that case, the script would know to omit the first two words 
and start processing with the subject.
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As a result of the inversion, we get the new sentence as a string. To 
make this sentence available for further processing, we need to obtain a 
Doc object for it y.

Next, we create a new for loop that will replace the personal pronoun 
“I” with the personal pronoun “you.” To do this, we search for personal 
pronouns (tagged PRP). If the personal pronoun is “I,” we replace it with 
“you” z. Then we quit the for loop.

We repeat this process to replace the possessive pronoun “your” with 
“my” by searching for the PRP$ tag {. Then, in a new for loop, we find a verb 
in the infinitive form and insert the adverbial modifier “really” before it |.

Finally, we replace the sentence’s period with a question mark. This is 
the only step where we don’t need to use a loop. The reason is that in all 
possible sentences, the period and the question mark go at the end of a sen-
tence, so we can reliably find them using their indices with len(doc)-1 }.

When we run this code, we should get the following output:

Can you really promise it is worth my time?

This script is a good start, but it won’t work with every submitted 
 statement. For example, the statement might contain a personal pronoun 
other than “I,” but our script doesn’t explicitly check for that. Also, some 
sentences don’t contain auxiliary verbs, like the sentence “I love eating ice 
cream.” In those cases, we’d have to use the word “do” to form the question 
instead of a word like “can” or “should,” like this: “Do you really love eating 
ice cream?” But if the sentence contains the verb “to be,” as in the sentence 
“I am sleepy,” we’d have to move that verb to the front, like this: “Are you 
sleepy?” 

A real implementation of this chatbot would have to be able to choose 
the appropriate option for a submitted sentence. You’ll see a “do” example 
in “Deciding What Question a Chatbot Should Ask” on page 56.

Try This
Examining the script from “Turning Statements into Questions”, you might 
notice that some blocks of code in it look very similar, containing repetitive 
operations. In every step, you make a replacement in the sentence and then 
re-tokenize it. That means you might try to generalize the code, putting 
repetitive operations in a single function.

Before writing such a function, take some time to understand what 
parameters it will need to take to perform the text-manipulation operations 
you see in the script. In particular, you’ll need to explicitly specify what token 
you’re searching for and what operation you want to perform on it by either 
replacing it with another token or adding a token before it. 

Once you define this function, you can write the main code that 
invokes it, implementing the same functionality as the original script.
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Using Syntactic Dependency Labels in Text Processing
As you learned in “Extracting and Generating Text with Part-of-Speech 
Tags” on page 48, part-of-speech tags are a powerful tool for smart text 
processing. But in practice, you might need to know more about a sen-
tence’s tokens to process it intelligently.

For example, you might need to know whether a personal pronoun is 
the subject of a sentence or a grammatical object. Sometimes, this task is 
easy. The personal pronouns “I,” “he,” “she,” “they,” and “we” will almost 
always be the subject. When used as an object, “I” turns into “me,” as in “A 
postman brought me a letter.”

But this might not be as clear when it comes to some other personal 
pronouns, such as “you” or “it,” which look the same whether they’re used 
as subjects or objects. Consider the following two sentences: “I know you. 
You know me.” In the first sentence, “you” is the direct object of the verb 
“know.” In the second sentence, “you” is the verb’s subject.

Let’s solve this problem using syntactic dependency labels and part-of-
speech tags. Then we’ll apply syntactic dependency labels to build a better 
version of the question-asking chatbot.

Distinguishing Subjects from Objects
To programmatically determine the role of a pronoun like “you” or “it” in 
a given sentence, you need to check the dependency label assigned to it. By 
using part-of-speech tags in conjunction with dependency labels, you can 
get much more information about the tokens of a sentence.

Let’s return to the sentence in the previous example and look at the 
results of the dependency parsing performed on it:

>>> doc = nlp(u"I can promise it is worth your time.")
>>> for token in doc:
...   print(token.text, token.pos_, token.tag_, token.dep_, spacy.explain(token.dep_))

We extract the part-of-speech tags, the dependency labels, and the 
description for the dependency labels:

I       PRON  PRP  nsubj     nominal subject
can     VERB  MD   aux       auxiliary
promise VERB  VB   ROOT      None
it      PRON  PRP  nsubj     nominal subject
is      VERB  VBZ  ccomp     clausal complement
worth   ADJ   JJ   acomp     adjectival complement
your    ADJ   PRP$ poss      possession modifier
time    NOUN  NN   npadvmod  noun phrase as adverbial modifier
.       PUNCT .    punct     punctuation

The second and third columns contain the coarse-grained and fine-
grained part-of-speech tags, respectively. The fourth column contains 
the dependency labels, and the fifth column contains descriptions for 
those dependency labels. 
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Combining part-of-speech tags and dependency labels can give you a 
better picture of the grammatical role of each token in a sentence—more 
so than just part-of-speech tags or dependency labels alone. For instance, in 
this example, the part-of-speech tag VBZ assigned to the token “is” indicates 
a verb in the third person singular present, whereas the dependency label 
ccomp, assigned to the same token, indicates that “is” is a clausal complement 
(a dependent clause with an internal subject). In this example, “is” is a 
clausal complement of the verb “promise” with the internal subject “it.”

To figure out the role of “you” in “I know you. You know me.”, we’d 
check the following list of part-of-speech tags and dependency labels 
assigned to the tokens:

I     PRON  PRP  nsubj  nominal subject
know  VERB  VBP  ROOT   None
you   PRON  PRP  dobj   direct object
.     PUNCT .    punct  punctuation
You   PRON  PRP  nsubj  nominal subject
know  VERB  VBP  ROOT   None
me    PRON  PRP  dobj   direct object
.     PUNCT .    Punct  punctuation

In both cases, “you” is assigned the same part-of-speech tags: PRON and 
PRP (coarse-grained and fine-grained, respectively). But the two cases have 
different dependency labels: dobj in the first sentence and nsubj in the 
second.

Deciding What Question a Chatbot Should Ask
Sometimes, you might need to navigate a sentence’s dependency tree to 
extract necessary information. For example, consider the following conver-
sation between a chatbot and its user:

User: I want an apple.
Bot: Do you want a red apple?
User: I want a green apple.
Bot: Why do you want a green one?

The chatbot is able to continue the conversation by asking questions. 
But notice that the presence or absence of an adjectival modifier for the 
noun “apple” plays a key role in deciding what type of question it should ask.

There are two basic types of questions in English: yes/no questions and 
information questions. Yes/no questions, like the one we generated in the 
example discussed in “Turning Statements into Questions” on page 51, 
can have only two possible answers: yes or no. To form a question of this 
type, you place a modal auxiliary verb before the subject and the main verb 
after the subject. For example: “Could you modify it?”
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Information questions are supposed to be answered with more informa-
tion than just yes or no. They begin with a question word, such as “what,” 
“where,” “when,” “why,” or “how.” After the question word, the process of 
forming an information question is the same as for yes/no questions. For 
example: “What do you think about it?”

In the first case in the preceding apple example, the chatbot asks a yes/
no question. In the second case, when the user modifies the noun “apple” 
with the adjective “green,” the chatbot asks an information question.

The flowchart in Figure 4-1 summarizes this approach.

If
amod
not

found:

Do you want
a red apple?

Why do you want
a green one?

else:

I want a green apple.
amod

dobj

amod: adjectival modifier
dobj: direct object

Figure 4-1: The presence of a modifier in the input sentence determines what question the 
chatbot asks.

The following script simply analyzes a submitted sentence to decide 
what kind of question to ask and then forms the proper question. We’ll  
walk through the code in separate sections, but you should save the entire 
program in a single file called question.py.

Begin by importing the sys module, which provides functionality for 
accepting a sentence for processing as an argument:

import spacy
import sys

This is an improvement from the previous scripts where we hardcoded 
the sentence to analyze. Now users can submit their own sentences as input.

Next, we define a function that recognizes and extracts any noun 
chunk that is a direct object from a submitted doc. For example, if you sub-
mit a doc that contains the sentence “I want a green apple.”, it will return 
the chunk “a green apple”:

def find_chunk(doc):
  chunk = ''

  u for i,token in enumerate(doc):
    v if token.dep_ == 'dobj':
      w shift = len([w for w in token.children])
      x #print([w for w in token.children])
      y chunk = doc[i-shift:i+1]

      break
  return chunk
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We iterate over the tokens in the submitted sentence u and look for 
the one that acts as a direct object by checking whether its dependency tag 
is dobj v. In the sentence “I want a green apple.”, The direct object is the 
noun “apple.” Once we’ve found the direct object, we need to determine its 
syntactic children w, because they form the chunk that we’ll use to decide 
what kind of question to ask. For debugging purposes, we might also want 
to look at the children of the direct object x. 

To extract the chunk, we slice the Doc object, calculating the start 
and the end indices of the slice as follows: the start index is the index of 
the direct object minus the number of its syntactic children. As you might 
guess, this is the index of the leftmost child. The end index is the index of 
the direct object plus one, so the last token included in the chunk is the 
direct object y.

For simplicity, the algorithm implemented in this script assumes that 
a direct object has only leftward children. In fact, this isn’t always the case. 
For example, in the following sentence, “I want to touch a wall painted 
green.”, we’ll need to check the left and right children of the direct object 
“wall.” Also, because “green” is not a direct child of “wall,” we’ll need to 
walk the dependency tree to determine that “green” is a modifier of “wall.” 
We’ll discuss premodifiers and postmodifiers in more depth in Chapter 6.

The following function examines the chunk and decides what kind of 
question the chatbot should ask:

def determine_question_type(chunk):
  u question_type = 'yesno'

  for token in chunk:
    v if token.dep_ == 'amod':
      w question_type = 'info'

  return question_type

We initialize the question_type variable to a value of yesno, which repre-
sents the yes/no question type u. Then, in the submitted chunk, we search 
for a token tagged amod, which stands for adjectival modifier v. If we find it, 
we set the question_type variable to 'info', which represents the information 
question type w.

Once we’ve determined what question type to use, the following func-
tion generates a question from the submitted sentence:

def generate_question(doc, question_type):
  sent = ''
  for i,token in enumerate(doc):
    if token.tag_ == 'PRP' and doc[i+1].tag_ == 'VBP':
      sent =  'do ' + doc[i].text
      sent = sent + ' ' + doc[i+1:].text
      break
  doc=nlp(sent)
  for i,token in enumerate(doc):
    if token.tag_ == 'PRP' and token.text == 'I':
      sent = doc[:i].text + ' you ' +  doc[i+1:].text
      break
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  doc=nlp(sent)
  u if question_type == 'info':

    for i,token in enumerate(doc):
      if token.dep_ == 'dobj':
        sent = 'why ' + doc[:i].text + ' one ' +  doc[i+1:].text
        break  

  v if question_type == 'yesno':
    for i,token in enumerate(doc):
      if token.dep_ == 'dobj':

        w sent = doc[:i-1].text + ' a red ' +  doc[i:].text
        break  
  doc=nlp(sent)
  sent = doc[0].text.capitalize() +' ' + doc[1:len(doc)-1].text + '?'
  return sent

In a sequence of for loops, we convert the submitted statement into a 
question by performing inversion and changing the personal pronouns. In 
this example, because there is no modal auxiliary verb in the statement, 
we add the verb “do” before the personal pronoun to form the question. 
(Remember that this will only work with certain sentences; in a more com-
plete implementation, we’d have to programmatically figure out which pro-
cessing approach to take.)

If question_type is set to info, we add the word “why” to the beginning 
of the question u. If the question_type variable is set to yesno v, we insert 
an adjective to modify the direct object in the question. In this example, 
we’ve hardcoded the adjective for the sake of simplicity. We’ve chosen the 
 adjective “red”, w which might sound strange in certain sentences. For 
example, we can say, “Do you want a red orange?” but not “Do you want a 
red idea?” In a better implementation of this chatbot, we could find a way 
to programmatically determine a suitable adjective to modify the direct 
object. We’ll come back to that topic in Chapter 6.

Notice also that the algorithm used here assumes that a submitted sen-
tence ends with a punctuation mark, such as “.” or “!”. 

Now that we’ve defined all the functions, here is the main block of the 
script:

u if len(sys.argv) > 1:
  sent = sys.argv[1]
  nlp = spacy.load('en')

  v doc = nlp(sent)
  w chunk = find_chunk(doc)
  x if str(chunk) == '':

    print('The sentence does not contain a direct object.')
    sys.exit()

  y question_type = determine_question_type(chunk)
  z question = generate_question(doc, question_type)

  print(question)
else:
  print('You did not submit a sentence!')
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First, we check whether a user has passed a sentence in as a command 
line argument u. If a sentence has been submitted, we apply spaCy’s pipeline 
to it, creating a Doc object instance v.

We then send the doc to the find_chunk function, which should return a 
noun chunk containing a direct object, such as “a green apple”, for further 
processing w. If there is no such noun chunk in the submitted sentence x, 
we’ll receive the message “The sentence does not contain a direct object.”

Next, we pass the chunk we just extracted to the determine_question_type 
function, which determines which question to ask based on the chunk’s 
structure y.

Finally, we pass the submitted sentence and the type of question to the 
generate_question function, which will generate an appropriate question and 
return it as a string z.

The script’s output depends on the specific sentence submitted. Here 
are some possible variants:

u $ python question.py 'I want a green apple.'
Why do you want a green one?

v $ python question.py 'I want an apple.'
Do you want a red apple?

w $ python question.py 'I want...'
The sentence does not contain a direct object.

x $ python question.py
You did not submit a sentence!

If we submit a sentence that contains an adjectival modifier, such as 
“green” for a direct object like “apple”, the script should generate an infor-
mation question u.

If the sentence contains a direct object without an adjectival modifier, 
the script should respond with a yes/no question v.

If we submit a sentence with no direct object, the script should recog-
nize this at once and ask us to resubmit w.

Finally, if we forget to submit a sentence, the script should respond with 
an appropriate message x. 

Try This
As noted earlier, the script discussed in the preceding section won’t work 
with all sentences. The script adds “do” to form a question, which works 
only with sentences that contain no auxiliary modal verb.

Enhance the functionality of this script so it can also work with state-
ments containing modal auxiliary verbs. For example, given the following 
statement, “I might want a green apple,” the script should generate “Why 
might you want a green one?” For details on how to turn a statement con-
taining a modal auxiliary verb into a question, refer to “Turning Statements 
into Questions” on page 51.
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Summary
Linguistic features are at the heart of all NLP tasks. This chapter taught you 
some techniques for smart text processing and text generation with linguistic 
features. You learned how to extract phrases of a certain type (say, those that 
refer to an amount of money), and then wrote a script using dependency 
labels and part-of-speech tags that generated a meaningful response to the 
sentence submitted by a user.

We’ll return to linguistic features in Chapter 6 where you’ll implement 
them in more complex scenarios.





5
W O R K I N G  W I T H  W O R D  V E C T O R S

Word vectors are the series of real numbers 
that represent the meanings of natural lan-

guage words. As you learned in Chapter 1, 
they allow machines to understand human lan-

guage. In this chapter, you’ll use word vectors to cal-
culate the semantic similarity of different texts, which 
will allow you to, for example, classify those texts 
based on the topics they cover. 

You’ll start by taking a conceptual look at word vectors so you can get an 
idea of how to mathematically calculate the semantic similarity between the 
words represented in the form of vectors. Then you’ll learn how machine 
learning algorithms generate the word vectors implemented in spaCy  models. 
You’ll use spaCy’s similarity method, which compares the word vectors of con-
tainer objects to determine the closeness of their meanings. You’ll also learn 
how to use word vectors in practice and perform preprocessing steps, such as 
choosing keywords, to make your operations more efficient. 
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Understanding Word Vectors 
When building statistical models, we map words to vectors of real num-
bers that reflect the words’ semantic similarity. You can imagine a word 
vector space as a cloud in which the vectors of words with similar mean-
ings are located nearby. For instance, the vector representing the word 
“potato” should be closer to the vector of the word “carrot” than to that  
of the word “crying.” To generate these vectors, we must be able to encode 
the meaning of these words. There are a few approaches to encoding 
meaning, which we’ll outline in this section.

Defining Meaning with Coordinates
One way to generate meaningful word vectors is by assigning an object or 
category from the real world to each coordinate of a word vector. For exam-
ple, suppose you’re generating word vectors for the following words: Rome, 
Italy, Athens, and Greece. The word vectors should mathematically reflect 
the fact that Rome is the capital of Italy and is related to Italy in a way that 
Athens is not. At the same time, they should reflect the fact that Athens and 
Rome are capital cities, and that Greece and Italy are countries. Table 5-1 
illustrates what this vector space might look like in the form of a matrix.

Table 5-1: A Simplified Word Vector Space

Country Capital Greek Italian

Italy 1 0 0 1

Rome 0 1 0 1

Greece 1 0 1 0

Athens 0 1 1 0

We’ve distributed the meaning of each word between its coordinates in 
a four-dimensional space, representing the categories “Country,” “Capital,” 
“Greek,” and “Italian.” In this simplified example, a coordinate value can 
be either 1 or 0, indicating whether or not a corresponding word belongs to 
the category.

Once you have a vector space in which vectors of numbers capture the 
meaning of corresponding words, you can use vector arithmetic on this vec-
tor space to gain insight into a word’s meaning. To find out which country 
Athens is the capital of, you could use the following equation, where each 
token stands for its corresponding vector and X is an unknown vector: 

Italy - Rome = X - Athens 

This equation expresses an analogy in which X represents the word 
vector that has the same relationship to Athens as Italy has to Rome. To solve 
for X, we can rewrite the equation like this: 

X = Italy - Rome + Athens 
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We first subtract the vector Rome from the vector Italy by subtracting the 
corresponding vector elements. Then we add the sum of the resulting vec-
tor and the vector Athens. Table 5-2 summarizes this calculation. 

Table 5-2: Performing a Vector Math Operation on a Word Vector Space

Country Capital Greek Italian

Italy 1 0 0 1

Rome 0 1 0 1

Athens 0 1 1 0

Greece 1 0 1 0

By subtracting the word vector for Rome from the word vector for Italy 
and then adding the word vector for Athens, we get a vector that is equal to 
the vector Greece. 

Using Dimensions to Represent Meaning
Although the vector space we just created had only four categories, a real-
world vector space might require tens of thousands. A vector space of this 
size would be impractical for most applications, because it would require a 
huge word-embedding matrix. For example, if you had 10,000 categories 
and 1,000,000 entities to encode, you’d need a 10,000 × 1,000,000 embed-
ding matrix, making operations on it too time-consuming. The obvious 
approach to reducing the size of the embedding matrix is to reduce the 
number of categories in the vector space. 

Instead of using coordinates to represent all categories, a real-world 
implementation of a word vector space uses the distance between vectors  
to quantify and categorize semantic similarities. The individual dimensions 
typically don’t have inherent meanings. Instead, they represent locations in 
the vector space, and the distance between vectors indicates the similarity 
of the corresponding words’ meanings. 

The following is a fragment of the 300-dimensional word vector space 
extracted from the fastText, a word vector library, which you can download 
at https://fasttext.cc/docs/en/english-vectors.html:

compete   -0.0535 -0.0207 0.0574 0.0562 ... -0.0389 -0.0389
equations -0.0337 0.2013 -0.1587 0.1499 ...  0.1504 0.1151
Upper     -0.1132 -0.0927 0.1991 -0.0302 ... -0.1209 0.2132
mentor     0.0397 0.1639 0.1005 -0.1420 ... -0.2076 -0.0238
reviewer  -0.0424 -0.0304 -0.0031 0.0874 ... 0.1403 -0.0258

Each line contains a word represented as a vector of real numbers in 
multidimensional space. Graphically, we can represent a 300-dimensional 
vector space like this one with either a 2D or 3D projection. To prepare 
such a projection, we can use first two or three principal coordinates of a 
vector, respectively. Figure 5-1 shows vectors from a 300-dimensional vector 
space in a 2D projection.

−

+

https://fasttext.cc/docs/en/english-vectors.html
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Greece
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Italy

Figure 5-1: A fragment of a 2D projection of  
a multidimensional vector space 

One interesting detail you might notice here is that the lines connect-
ing Greece with Athens and Italy with Rome, respectively, are almost paral-
lel. Their lengths also look comparable. In practice, this means that if you 
have three out of the above four vectors, you can calculate an approximate 
location of the missing one, since you know where to shift the vector and 
how far. 

The vectors in the diagram illustrate a country-capital relation, but they 
could easily have another type of relation, such as male-female, verb tense, 
and so on. 

The Similarity Method
In spaCy, every type of container object has a similarity method that allows 
you to calculate a semantic similarity estimate between two container 
objects of any type by comparing their word vectors. To calculate the simi-
larity of spans and documents, which don’t have their own word vectors, 
spaCy averages the word vectors of the tokens they contain.

N O T E  spaCy’s small models (those whose model size indicator is sm) don’t include word vec-
tors. You can still use the similarity method with these models to compare tokens, 
spans, and documents, but the results won’t be as accurate.

You can calculate the semantic similarity of two container objects even 
if the two objects are different. For example, you can compare a Token 
object with a Span object, a Span object with a Doc object, and so on.

The following example computes how similar a Span object is to a Doc 
object:

>>> doc=nlp('I want a green apple.')
>>> doc.similarity(doc[2:5])
0.7305813588233471
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This code calculates a semantic similarity estimate between the sen-
tence “I want a green apple.” and the phrase “a green apple” derived from 
this same sentence. As you can see, the computed degree of similarity is 
high enough to consider the content of two objects similar (the degree of 
similarity ranges from 0 to 1).

Not surprisingly, the similarity() method returns 1 when you compare 
an object with itself:

>>> doc.similarity(doc)
1.0
>>> doc[2:5].similarity(doc[2:5])
1.0

You can also compare a Doc object with a slice from another Doc object:

>>> doc2=nlp('I like red oranges.')
>>> doc2.similarity(doc[2:5])
0.28546574467463354

Here, we compare the sentence “I like red oranges.” stored in doc2 
with the span “a green apple” extracted from doc. In this case, the degree 
of similarity is not so high this time. Yes, oranges and apples are both fruits 
(the similarity method recognizes this fact), but the verbs “want” and “like” 
express different states of being.

You can also compare two tokens. In the following example, we compare 
the Token object “oranges” to a Span object containing a single token “apple.”

>>> token = doc2[3:4][0]
>>> token
oranges
>>> token.similarity(doc[4:5])
0.3707084280155993

First, we explicitly convert the Span object containing a single token 
“oranges” to a Token object by referring to the first element in the span. 
Then we calculate how similar it is to the span “apple.”

The similarity() method can recognize words that belong to the same 
or similar categories and that often appear in related contexts, showing a 
high level of similarity for such words. 

Choosing Keywords for Semantic Similarity Calculations 
The similarity method will calculate semantic similarity for you, but for 
the results of that calculation to be useful, you need to choose the right key-
words to compare. To understand why, consider the following text snippet: 

Redwoods are the tallest trees in the world. They are most common in the 
coastal forests of California.
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We might classify this text in a variety of ways depending on the set of cat-
egories we want to use. If, for example, we’re searching for texts about highest 
plants on the planet, the phrases “tallest trees” and “in the world” will be the 
key ones. Comparing these phrases with the search phrases “highest plants” 
and “on the planet” should show a high level of the semantic similarity. We 
can do this by extracting noun chunks using a Doc object’s doc.noun_chunk 
property and then checking the similarity of those noun chunks and the 
search phrases using the similarity method.

But if we’re looking for texts about places in the world, “California” 
will be the keyword. Of course, we don’t know in advance which geopoliti-
cal name might occur in a text: it could be California or, say, Amazonia. 
But  whatever it is, it should be semantically similar to a word like “geogra-
phy,” which we can compare with the text’s other nouns (or, even better,  
with its named entities only). If we’re able to determine that there’s a 
high level of similarity, we can assume that the named entity in question 
represents a geopolitical name. (We might also extract the token.ent_type 
attribute of a Token object to do this, as described in Chapter 2. But we 
wouldn’t be able to use named entity recognition to check the similarity  
of words that aren’t named entities, say, fruits.)

Installing Word Vectors
If a spaCy model is installed in your Python environment, you can start 
using word vectors right away. You can also install a third-party word vector 
package. Various statistical models use different word vectors, so the results 
of your operations will differ slightly based on the model you’re using. You 
can try several models to determine which one works better in your particu-
lar application. 

Taking Advantage of Word Vectors That Come with spaCy Models
Word vectors come as part of many spaCy models. For example, en_vectors 
_web_lg includes more than one million unique word vectors defined on a 
300-dimensional vector space. Check out https://github.com/explosion/spacy 
-models/releases/ for details on a particular model.

Typically, small models (those whose names end with sm) don’t contain 
word vectors. Instead, they come with context-sensitive tensors, which still 
allow you to work with the similarity methods to compare tokens, spans, 
and documents—although at the expense of accuracy.

To follow along with the examples given in this chapter, you can use any 
spaCy model, even small ones. But you’ll get more accurate results if you 
install a larger model. For details on how to install a spaCy model, refer to 
“Installing Statistical Models for spaCy” on page 16. Note that you might 
have more than one model installed in your environment.

Using Third-Party Word Vectors 
You can also use third-party packages of word vectors with spaCy. You can 
check whether a third-party will work better for your application than native 

https://github.com/explosion/spacy-models/releases/
https://github.com/explosion/spacy-models/releases/
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word vectors available in a spaCy model. For example, you can use a fastText 
pretrained model with English word vectors, which you can download at 
https://fasttext.cc/docs/en/english-vectors.html. The name of a package will iden-
tify the size of the package and word vectors, and the kind of data used to 
train the word vectors. For example, wiki-news-300d-1M.vec.zip indicates that 
it contains one million 300-dimensional word vectors trained on Wikipedia 
and the statmt.org news dataset. 

After downloading a package, unzip it, and then create a new model 
from the vectors in the package that you can use with spaCy. To do this, 
navigate to the folder where you saved the package, and then use the init-
model command line utility, like this: 

$ python -m spacy init-model en /tmp/en_vectors_wiki_lg --vectors-loc wiki-news-300d-1M.vec

The command converts the vectors taken from the wiki-news-300d-1M 
.vec file into spaCy’s format and creates the new model directory /tmp/en 
_vectors_wiki_lg for them. If everything goes well, you’ll see the following 
messages: 

Reading vectors from wiki-news-300d-1M.vec
Open loc
999994it [02:05, 7968.84it/s]
Creating model...
0it [00:00, ?it/s]

    Successfully compiled vocab
    999731 entries, 999994 vectors

Once you’ve created the model, you can load it like a regular spaCy 
model: 

nlp = spacy.load('/tmp/en_vectors_wiki_lg')

Then you can create a Doc object as you normally would: 

doc = nlp(u'Hi there!')

Unlike a regular spaCy model, a third-party model converted for use  
in spaCy might not support some of spaCy’s operations against text con-
tained in a doc object. For example, if you try to shred a doc into sentences 
using doc.sents, you’ll get the following error: ValueError: [E030] Sentence 
boundaries unset... 

Comparing spaCy Objects
Let’s use word vectors to calculate the similarity of container objects, the 
most common task for which we use word vectors. In the rest of this chap-
ter, we’ll explore some scenarios in which you’d want to determine the 
semantic similarity of linguistic units. 

https://fasttext.cc/docs/en/english-vectors.html
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Using Semantic Similarity for Categorization Tasks 
Determining two objects’ syntactic similarity can help you sort texts into 
categories or pick out only the relevant texts. For example, suppose you’re 
sorting through user comments posted to a website to find all the com-
ments related to the word “fruits.” Let’s say you have the following utter-
ances to evaluate: 

I want to buy this beautiful book at the end of the week. 
Sales of citrus have increased over the last year. 
How much do you know about this type of tree?

You can easily recognize that only the second sentence is directly related 
to fruits because it contains the word “citrus.” But to pick out this sentence 
programmatically, you’ll have to compare the word vector for the word 
“fruits” with word vectors in the sample sentences. 

Let’s start with the simplest but least successful way of doing this task: 
comparing “fruits” to each of the sentences. As stated earlier, spaCy deter-
mines the similarity of two container objects by comparing their correspond-
ing word vectors. To compare a single token with an entire sentence, spaCy 
averages the sentence’s word vectors to generate an entirely new vector. The 
following script compares each of the preceding sentence samples with the 
word “fruits”: 

import spacy
nlp = spacy.load('en')

u token = nlp(u'fruits')[0]
v  doc = nlp(u'I want to buy this beautiful book at the end of the week. Sales of 

citrus have increased over the last year. How much do you know about this type 
of tree?')

w for sent in doc.sents:
  print(sent.text)

  x print('similarity to', token.text, 'is', token.similarity(sent),'\n')

We first create a Token object for the word “fruits” u. Then we apply the 
pipeline to the sentences we’re categorizing, creating a single Doc object to 
hold all of them v. We shred the doc into sentences w, and then print each 
of the sentences and their semantic similarity to the token “fruits,” which we 
acquire using the token object’s similarity method x.

The output should look something like this (although the actual fig-
ures will depend on the model you use): 

I want to buy this beautiful book at the end of the week.
similarity to fruits is 0.06307832979619851 
Sales of citrus have increased over the last year.
similarity to fruits is 0.2712141843864381 
How much do you know about this type of tree?
similarity to fruits is 0.24646341651210604 

The degree of similarity between the word “fruits” and the first sen-
tence is very small, indicating that the sentence has nothing to do with 
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fruits. The second sentence—the one that includes the word “citrus”—is 
the most closely related to “fruits,” meaning the script correctly identi-
fied the relevant sentence.

But notice that the script also identified the third sentence as being 
somehow related to fruits, probably because it includes the word “tree,” and 
fruits grow on trees. It would be naive to think that the similarity measur-
ing algorithm “knows” that orange and citrus are fruits. All it knows is that 
these words (“orange” and “citrus”) often share the same context with word 
“fruit” and therefore they’ve been put close to it in the vector space. But the 
word “tree” can also often be found in the same context as the word “fruit.” 
For example, the phrase “fruit tree” is not uncommon. For that reason the 
level of similarity calculated between “fruits” (or “fruit” as its lemma) and 
“tree” is close to the result we got for “citrus” and “fruits.”

There’s another problem with this approach to categorizing texts. In 
practice, of course, you might sometimes have to deal with texts that are 
much larger than the sample texts used in this section. If the text you’re 
averaging is very large, the most important words might have little to no 
effect on the syntactic similarity value.

To get more accurate results from the similarity method, we’ll need to 
perform some preparations on a text. Let’s look at how we can improve the 
script.

Extracting Nouns as a Preprocessing Step
A better technique for performing categorization would be to extract the 
most important words and compare only those. Preparing a text for process-
ing in this way is called preprocessing, and it can help make your NLP opera-
tions more successful. For example, instead of comparing the word vectors 
for the entire objects, you could try comparing the word vectors for certain 
parts of speech. In most cases, you’ll focus on nouns—whether they act as 
subjects, direct objects, or indirect objects—to recognize the meaning con-
veyed in the text in which they occur. For example, in the sentence “Nearly 
all wild lions live in Africa,” you’ll probably focus on lions, Africa, or lions in 
Africa. Similarly, in the sentence about fruits, we focused on picking out the 
noun “citrus.” In other cases, you’ll need other words, like verbs, to decide 
what a text is about. Suppose you run an agricultural produce business and 
must classify offers from those who produce, process, and sell farm products. 
You often see sentences like, “We grow vegetables,” or “We take tomatoes for 
processing.” In this example, the verbs are just as important as nouns in the 
utterances in the previous examples. 

Let’s modify the script on page 70. Instead of comparing “fruits” to 
entire sentences, we’ll compare it to the sentences’ nouns only:

import spacy
nlp = spacy.load('en')

u token = nlp(u'fruits')[0]
doc = nlp(u'I want to buy this beautiful book at the end of the week. Sales of
citrus have increased over the last year. How much do you know about this type 
of tree?')
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similarity = {}
v for i, sent in enumerate(doc.sents):
  w  noun_span_list = [sent[j].text for j in range(len(sent)) if sent[j].pos_ 

  == 'NOUN']
  x noun_span_str = ' '.join(noun_span_list)
  y noun_span_doc = nlp(noun_span_str)
  z similarity.update({i:token.similarity(noun_span_doc)})

print(similarity)

We start by defining the token “fruits,” which is then used for a series of 
comparisons u. Iterating over the tokens in each sentence v, we extract the 
nouns and store them in a Python list w. Next, we join the nouns in the list 
into a plain string x, and then convert that string into a Doc object y. We 
then compare this Doc with the token “fruits” to determine their degree 
of semantic similarity. We store each token’s syntactic similarity value in a 
Python dictionary z, which we finally print out. 

The script’s output should look something like this: 

{0: 0.17012682516221458, 1: 0.5063824302533686, 2: 0.6277196645922878}

If you compare these figures with the results of the previous script, 
you’ll notice that this time the level of the similarity with the word “fruits”  
is higher for each sentence. But the overall results look similar: the similar-
ity of the first sentence is the lowest, whereas the similarity of the other two 
are much higher. 

Try This
In the previous example, comparing “fruits” to nouns only, you improved the 
results of the similarity calculations by taking into account only the words 
that matter most (nouns, in this case). You compared the word “fruits” with 
all the nouns extracted from each sentence, combined. Taking it one step 
further, you could look at how each of these nouns is semantically related to 
the word “fruits” to find out which one shows the highest level of similarity. 
This can be useful in evaluating the overall similarity of the document to the 
word “fruits.” To accomplish this, you need to modify the previous script so it 
determines the similarity between the token “fruits” and each of the nouns in 
a sentence, finding the noun that shows the highest level of similarity.

Extracting and Comparing Named Entities
In some cases, instead of extracting every noun from the texts you’re compar-
ing, you might want to extract a certain kind of noun only, such as named 
entities. Let’s say you’re comparing the following texts: 

“Google Search, often referred to as simply Google, is the most used 
search engine nowadays. It handles a huge number of searches each day.” 

“Microsoft Windows is a family of proprietary operating systems devel-
oped and sold by Microsoft. The company also produces a wide range 
of other software for desktops and servers.” 



Working with Word Vectors   73

“Titicaca is a large, deep, mountain lake in the Andes. It is known as 
the highest navigable lake in the world.”

Ideally, your script should recognize that the first two texts are about 
large technology companies, but the third text isn’t. But comparing all 
the nouns in this text wouldn’t be very helpful, because many of them, 
such as “number” in the first sentence, aren’t relevant to the context. The 
differences between the sentences involve the following words: “Google,” 
“Search,” “Microsoft,” “Windows,” “Titicaca,” and “Andes.” spaCy recognizes 
all of these as named entities, which makes it a breeze to find and extract 
them from a text, as illustrated in the following script:

import spacy
nlp = spacy.load('en')
#first sample text
doc1 = nlp(u'Google Search, often referred to as simply Google, is the most 
used search engine nowadays. It handles a huge number of searches each day.') 
#second sample text
doc2 = nlp(u'Microsoft Windows is a family of proprietary operating systems 
developed and sold by Microsoft. The company also produces a wide range of 
other software for desktops and servers.') 
#third sample text
doc3 = nlp(u"Titicaca is a large, deep, mountain lake in the Andes. It is 
known as the highest navigable lake in the world.")

u docs = [doc1,doc2,doc3]
v spans = {}
w for j,doc in enumerate(docs):
  x named_entity_span = [doc[i].text for i in range(len(doc)) if 

  doc[i].ent_type != 0]
  y print(named_entity_span)
  z named_entity_span = ' '.join(named_entity_span)
  { named_entity_span = nlp(named_entity_span) 
  | spans.update({j:named_entity_span}) 

We group the Docs with the sample texts into a list to make it possible 
to iterate over them in a loop u. We define a Python dictionary to store the 
keywords for each text v. In a loop iterating over the Docs w, we extract 
these keywords in a separate list for each text, selecting only the words 
marked as named entities x. Then we print out the list to see what it con-
tains y. Next, we convert this list into a plain string z to which we then 
apply the pipeline, converting it to a Doc object {. We then append the 
Doc to the spans dictionary defined earlier |. 

The script should produce the following output: 

['Google', 'Search', 'Google']
['Microsoft', 'Windows', 'Microsoft']
['Titicaca', 'Andes']

Now we can see the words in each text whose vectors we’ll compare. 
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Next, we call similarity() on these spans and print the results:   

print('doc1 is similar to doc2:',spans[0].similarity(spans[1]))
print('doc1 is similar to doc3:',spans[0].similarity(spans[2]))
print('doc2 is similar to doc3:',spans[1].similarity(spans[2]))

This time the output should look as follows: 

doc1 is similar to doc2: 0.7864886939527678
doc1 is similar to doc3: 0.6797676349647936
doc2 is similar to doc3: 0.6621659567003596

These figures indicate that the highest level of similarity exists between 
the first and second texts, which are both about American IT companies. 
How can word vectors “know” about this fact? They probably know because 
the words “Google” and “Microsoft” have been found more often in the 
same texts of the training text corpus rather than in the company of the 
words “Titicaca” and “Andes.”

Summary
In this chapter, you worked with word vectors, which are vectors of real 
numbers that represent the meanings of words. These representations let 
you use math to determine the semantic similarity of linguistic units, a 
 useful task for categorizing texts.

But the math approach might not work as well when you’re trying to 
determine the similarity of two texts without applying any preliminary 
steps to those texts. By applying preprocessing, you can reduce the text to 
the words that are most important in figuring out what the text is about. In 
particularly large texts, you might pick out the named entities found in it, 
because they most likely best describe the text’s category.



6
F I N D I N G  P A T T E R N S  A N D  W A L K I N G 

D E P E N D E N C Y  T R E E S

If you want your application to categorize 
a text, extract specific phrases from it, or 

determine how semantically similar it is to 
another text, it must be able to “understand” 

an utterance submitted by a user and generate a 
meaningful response to it. 

You’ve already learned some techniques for performing these tasks. 
This chapter discusses two more approaches: using word sequence patterns 
to classify and generate text, and walking the syntactic dependency tree of 
an utterance to extract necessary pieces of information from it. I’ll intro-
duce you to spaCy’s Matcher tool to find patterns. I’ll also discuss when 
you might still need to rely on context to determine the proper processing 
approach. 
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Word Sequence Patterns
A word sequence pattern consists of features of words that impose a certain 
requirement on each word in the sequence. For example, the phrase “I can” 
will match the following word sequence pattern: “pronoun + modal auxil-
iary verb.” By searching for word sequence patterns, you can recognize word 
sequences with similar linguistic features, making it possible to categorize 
input and handle it properly. 

For example, when you receive a question that begins with a word 
sequence that uses the pattern “modal auxiliary verb + proper noun,” such 
as “Can George,” you know that this question is about the ability, possibility, 
permission, or obligation of someone or something that the proper noun 
refers to.  

In the following sections, you’ll learn to classify sentences by identifying 
common patterns of linguistic features. 

Finding Patterns Based on Linguistic Features 
We need to find patterns in texts because, in most cases, we won’t be able to 
find even two identical sentences within a text. Typically, a text is composed 
of different sentences, each of which contains different words. It would be 
impractical to write the code to process each sentence in a text. 

Fortunately, some sentences that look completely different might fol-
low the same word sequence patterns. For example, consider the following 
two sentences: “We can overtake them.” and “You must specify it.”. These 
sentences have no words in common. But if you look at the syntactic depen-
dency labels assigned to the words in the sentences, a pattern emerges, as 
shown in the following script: 

import spacy
nlp = spacy.load('en')
doc1 = nlp(u'We can overtake them.')
doc2 = nlp(u'You must specify it.')

u for i in range(len(doc1)-1): 
  v if doc1[i].dep_ == doc2[i].dep_:
    w  print(doc1[i].text, doc2[i].text, doc1[i].dep_, spacy.explain(doc1[i].dep_))

Because both sentences have the same number of words, we can iter-
ate over the words in both sentences within a single loop u. If the depen-
dency label is the same for the words that have the same index in both 
sentences v, we print these words along with the label assigned to them, 
as well as a description for each label w.

The output should look as follows: 

We       You     nsubj  nominal subject
can      must    aux    auxiliary
overtake specify ROOT   None
them     it      dobj   direct object
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As you can see, the list of dependency labels is identical for both sen-
tences. This means that these sentences follow the same word sequence 
pattern based on the following syntactic dependency labels: “subject + aux-
iliary + verb + direct object.”

Also notice that the list of part-of-speech tags (coarse-grained and 
fined-grained) is also identical for these sample sentences. If we replace all 
references to .dep_ with .pos_ in the previous script, we’ll get the following 
results:

We       You     PRON  pronoun
can      must    VERB  verb
overtake specify VERB  verb
them     it      PRON  pronoun

The sample sentences match not only the syntactic dependency label 
pattern, but also the pattern of part-of-speech tags. 

Try This
In the previous example, we created two Doc objects—one for each sample 
sentence. But in practice, a text usually consists of numerous sentences, 
which makes a Doc-per-sentence approach impractical. Rewrite the script so 
it creates a single Doc object. Then use the doc.sents property introduced 
in Chapter 2 to operate on each sentence. 

But note that doc.sents is a generator object, which means it’s not 
subscriptable—you can’t refer to its items by index. To solve this issue, 
convert the doc.sents to a list, as follows:

sents = list(doc.sents)

And, of course, you can iterate over a doc.sents in a for loop to obtain 
the sents in order, as they’re requested by the loop.

Checking an Utterance for a Pattern 
In the preceding example, we compared two sample sentences to find a pat-
tern based on their shared linguistic features. But in practice, we’ll rarely 
want to compare sentences to one another to determine whether they share 
a common pattern. Instead, it’ll be more useful to check a submitted sen-
tence against the pattern we’re already interested in. 

For example, let’s say we were trying to find utterances in user input that 
express one of the following: ability, possibility, permission, or obligation 
(as opposed to utterances that describe real actions that have occurred, are 
occurring, or occur regularly). For instance, we want to find “I can do it.” 
but not “I’ve done it.”

To distinguish between utterances, we might check whether an utter-
ance satisfies the following pattern: “subject + auxiliary + verb + . . . + direct 
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object . . .”. The ellipses indicate that the direct object isn’t necessarily 
located immediately behind the verb, making this pattern a little different 
from the one in the preceding example.

The following sentence satisfies the pattern: “I might send them a card 
as a reminder.”. In this sentence, the noun “card” is a direct object, and the 
pronoun “them” is an indirect object that separates it from the verb “send.” 
The pattern doesn’t specify a position for the direct object in the sentence; 
it simply requires its presence. 

Figure 6-1 shows a graphical depiction of this design: 

subject auxiliary verb direct object+ + +. . .+ . . .

I might send them a card as a reminder.

I want to order a vegetarian pizza.

�
�

Match

Mismatch

Figure 6-1: Checking submitted utterances against a word sequence pattern  
based on linguistic features 

In the following script, we define a function that implements this pat-
tern, and then test it on a sample sentence: 

import spacy
nlp = spacy.load('en')

u def dep_pattern(doc):
  v for i in range(len(doc)-1): 
    w if doc[i].dep_ == 'nsubj' and doc[i+1].dep_ == 'aux' and 

    doc[i+2].dep_ == 'ROOT':
      x for tok in doc[i+2].children: 

          if tok.dep_ == 'dobj':
          y return True
  z return False
{ doc = nlp(u'We can overtake them.')

if |dep_pattern(doc):
  print('Found')
else:
  print('Not found')

In this script, we define the dep_pattern function that takes a Doc object 
as parameter u. In the function, we iterate over the Doc object’s tokens v, 
searching for a “subject + auxiliary + verb” pattern w. If we find this pat-
tern, we check whether the verb has a direct object among its syntactic 
children x. Finally, if we find a direct object, the function returns True y. 
Otherwise, it returns False z. 

In the main code, we apply the text-processing pipeline to the sample 
sentence { and send the Doc object to the dep_pattern function |, output-
ting Found if the sample satisfies the pattern implemented in the function or 
Not found otherwise. 
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Because the sample used in this example satisfies the pattern, the script 
should produce the following output: 

Found

You’ll see some examples of using the dep_pattern function in some of 
the following sections. 

Using spaCy’s Matcher to Find Word Sequence Patterns
In the previous section, you learned how to find a word sequence pattern in 
a doc by iterating over its tokens and checking their linguistic features. In 
fact, spaCy has a predefined feature for this task called Matcher, a tool that 
is specially designed to find sequences of tokens based on pattern rules. For 
example, an implementation of the “subject + auxiliary + verb” pattern with 
Matcher might look like this:

import spacy
from spacy.matcher import Matcher
nlp = spacy.load("en")

u matcher = Matcher(nlp.vocab)
v pattern = [{"DEP": "nsubj"}, {"DEP": "aux"}, {"DEP": "ROOT"}]
w matcher.add("NsubjAuxRoot", None, pattern)

doc = nlp(u"We can overtake them.")
x matches = matcher(doc)
y for match_id, start, end in matches:

    span = doc[start:end]  
    z print("Span: ", span.text)

    print("The positions in the doc are: ", start, "-", end)

We create a Matcher instance, passing in the vocabulary object shared 
with the documents the Matcher will work on u. Then we define a pattern, 
specifying the dependency labels that a word sequence should match v. We 
add the newly created pattern to the Matcher w. 

Next, we can apply the Matcher to a sample text and obtain the match-
ing tokens in a list x. Then we iterate over this list y, printing out the start 
and end positions of the pattern tokens in the text z. 

The script should produce the following output: 

Span: We can overtake
The positions in the doc are: 0 - 3

Matcher allows you to find a pattern in a text without iterating explicitly 
over the text’s tokens, thus hiding implementation details from you. As a 
result, you can obtain the start and end positions of the words composing a 
sequence that satisfies the specified pattern. This approach can be very use-
ful when you’re interested in a sequence of words that immediately follow 
one another. 

But often you need a pattern that includes words scattered over the 
sentence. For example, you might need to implement such patterns as 
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the “subject + auxiliary + verb + . . . + direct object . . .” pattern we used in 
“Checking an Utterance for a Pattern” on page 77. The problem is that 
you don’t know in advance how many words can occur between the “subject 
+ auxiliary + verb” sequence and the direct object. Matcher doesn’t allow 
you to define such patterns. For this reason, I’ll define patterns manually 
for the remainder of this chapter.

Applying Several Patterns 
You can apply several matching patterns to an utterance to make sure it 
satisfies all your conditions. For example, you might check an utterance 
against two patterns: one that implements a dependency label sequence 
(as discussed in “Checking an Utterance for a Pattern” on page 77) and 
one that checks against a sequence of part-of-speech tags. This might be 
helpful, if, say, you want to make sure that the direct object in an utterance 
is a personal pronoun. If so, you can start the procedure of determining 
the noun that gives its meaning to the pronoun and is mentioned else where 
in the discourse. 

Diagrammatically, this design might look like Figure 6-2. 

subject auxiliary verb direct object+ + +. . .+ . . .

We can overtake them.

them a

�
�

Match

Mismatch I might send card as a reminder.

modal
 verb

base form
   verb

personal
pronoun

Patterns

personal
pronoun

Mismatch, not a
personal pronoun

Figure 6-2: Applying several matching patterns to user input

In addition to using the dependency label sequence defined in 
“Checking an Utterance for a Pattern”, you can define a new function by 
implementing a pattern based on part-of-speech tags. The part-of-speech 
tag pattern might search the sentence to make sure that the subject and the 
direct object are personal pronouns. This new function might implement 
the following pattern: “personal pronoun + modal auxiliary verb + base 
form verb + . . . + personal pronoun . . .”.

Here is the code: 

import spacy
nlp = spacy.load('en')
#Insert the dep_pattern function from a previous listing here
#...
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u def pos_pattern(doc):
  v for token in doc:

    if token.dep_ == 'nsubj' and token.tag_ != 'PRP':
      return False
    if token.dep_ == 'aux' and token.tag_ != 'MD':
      return False
    if token.dep_ == 'ROOT' and token.tag_ != 'VB':
      return False
    if token.dep_ == 'dobj' and token.tag_ != 'PRP':
      return False

  w return True
#Testing code
doc = nlp(u'We can overtake them.')

x if dep_pattern(doc) and pos_pattern(doc):
    print('Found')
else:
    print('Not found')

We start by adding the code for the dep_pattern function defined in a 
previous script. To create the second pattern, we define the pos_pattern func-
tion u, which contains a for loop with a series of if statements in it v. Each 
if statement checks whether a certain part of a sentence matches a certain 
part-of-speech tag. When the function detects a mismatch, it returns False. 
Otherwise, after all the checks have occurred and no mismatch has been 
detected, the function returns True w.

To test the patterns, we apply the pipeline to a sentence, and then check 
whether the sentence matches both patterns x. Because the sample used in 
this example matches both patterns, we should see the following output: 

Found

But if we replace the sample sentence with this one: “I might send them 
a card as a reminder.”, we should see this output:

Not found

The reason is that the sentence doesn’t match the part-of-speech tag 
pattern, because the direct object “card” isn’t a personal pronoun, even 
though the sentence fully satisfies the conditions of the first pattern. 

Creating Patterns Based on Customized Features
When creating a word sequence pattern, you might need to enhance the 
functionality of the linguistic features spaCy provides by customizing them 
for your needs. For example, you might want the preceding script to recog-
nize another pattern that distinguishes pronouns according to number 
(whether they’re singular or plural). Once again, this could be useful when 
you need to find the noun in a previous utterance to which the pronoun 
refers.



82   Chapter 6

Although spaCy separates nouns by number, it doesn’t do this for pro-
nouns. But the ability to recognize whether a pronoun is plural or singu-
lar can be very useful in the task of meaning recognition or information 
extraction. For example, consider the following discourse: 

The trucks are traveling slowly. We can overtake them.

If we can establish that the direct object “them” in the second sentence 
is a plural pronoun, we’ll have reason to believe that it refers to the plural 
noun “trucks” in the first sentence. We often use this technique to recog-
nize a pronoun’s meaning based on the context.

The following script defines a pron_pattern function, which finds any 
direct object in the submitted sentence, determines whether that direct 
object is a personal pronoun, and then determines whether the pronoun 
is singular or plural. The script then applies the function to a sample sen-
tence after testing for the two patterns defined in “Checking an Utterance 
for a Pattern” on page 77 and “Applying Several Patterns” on page 80.

import spacy
nlp = spacy.load('en')
#Insert the dep_pattern and pos_pattern functions from the previous 
listings here
#...

u def pron_pattern(doc):
  v plural = ['we','us','they','them']

  for token in doc:
    w if token.dep_ == 'dobj' and token.tag_ == 'PRP':
      x if token.text in plural: 
        y return 'plural'

      else:
        z return 'singular'
  { return 'not found'

doc = nlp(u'We can overtake them.')
if dep_pattern(doc) and pos_pattern(doc):
    print('Found:', 'the pronoun in position of direct object is', 
    pron_pattern(doc))
else:
    print('Not found')

We start by adding the dep_pattern and pos_pattern functions defined 
in “Checking an Utterance for a Pattern” and “Applying Several Patterns” 
to the script. In the pron_pattern function u, we define a Python list that 
includes all the possible plural personal pronouns v. Next, we define a 
loop that iterates over the tokens in the submitted sentence, looking for 
a direct object that is a personal pronoun w. If we find such a token, we 
check whether it’s in the list of plural personal pronouns x. If so, the 
function returns plural y. Otherwise, it returns singular z. If the function 
either failed to detect a direct object or found one that isn’t a personal 
pronoun, it returns Not found {.
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For the sentence “We can overtake them.”, we should get the following 
output:

Found: the pronoun in position of direct object is plural

We could use this information to find a corresponding noun for the 
pronoun in the previous sentence.

Choosing Which Patterns to Apply
Once you define these patterns, you can choose which ones to apply 
for each situation. Notice that even if a sentence fails to fully satisfy the 
dep_pattern and pos_pattern functions, it might still match the pron_pattern 
function. For example, the sentence “I know it.” doesn’t match either 
the dep_pattern or pos_pattern functions, because it doesn’t have a modal 
auxiliary verb. But it satisfies pron_pattern because it contains a personal 
pronoun that is the direct object of the sentence. 

This loose coupling between the patterns lets you use them with other 
patterns or independently. For example, you might use dep_pattern, which 
checks a sentence against the “subject + auxiliary + verb + . . . + direct 
object . . .” pattern in conjunction with, say, a “noun + modal auxiliary verb 
+ base form verb + . . . + noun . . .” pattern, if you wanted to be sure that the 
subject and the direct object in the sentence are nouns. These two patterns 
would match the following example: 

Developers might follow this rule.

As you might guess, the ability to combine patterns in different ways 
allows you to handle more scenarios with less code.  

Using Word Sequence Patterns in Chatbots to Generate Statements
As stated earlier, the most challenging tasks in NLP are understanding and 
generating natural language text. A chatbot must understand a user’s input 
and then generate a proper response to it. Word sequence patterns based 
on linguistic features can help you implement these functions. 

In Chapter 4, you learned how to turn a statement into a relevant 
question to continue a conversation with a user. Using word sequence 
patterns, you could generate other kinds of responses, too, such as relevant 
statements.

Suppose your chatbot has received the following user input:

The symbols are clearly distinguishable. I can recognize them promptly.

The chatbot might react as follows: 

I can recognize symbols promptly too.
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You can use the patterns implemented in the previous sections to 
accomplish this text generation task. The list of steps might look like this: 

1. Check the conversational input against the dep_pattern and pos_pattern  
functions defined previously to find an utterance that follows the 
“subject + auxiliary + verb + . . . + direct object . . .” and “pronoun + 
modal auxiliary verb + base form verb + . . . + pronoun . . .” patterns, 
respectively.

2. Check the utterance found in step 1 against the pron_pattern pattern 
to determine whether the direct object personal pronoun is plural or 
singular. 

3. Find the noun that gives its meaning to the pronoun by searching for a 
noun that has the same number as the personal pronoun. 

4. Replace the pronoun that acts as the direct object in the sentence 
located in step 1 with the noun found in step 3. 

5. Append the word “too” to the end of the generated utterance. 

The following script implements these steps. It uses the dep_pattern, 
pos_pattern, and pron_pattern functions defined earlier in this chapter 
(their code is omitted to save space). It also introduces two new functions: 
find_noun and gen_utterance. For convenience, we’ll walk through the code 
in three steps: the initial operations and the find_noun function, which finds 
the noun that matches the personal pronoun; the gen_utterance function, 
which generates a relevant statement from that question; and finally, the 
code that tests an utterance. Here is the first part: 

import spacy
nlp = spacy.load('en')
#Insert the dep_pattern, pos_pattern and pron_pattern functions from the 
previous listings here
#...

u def find_noun(vsents, wnum):
  if num == 'plural':

    x taglist = ['NNS','NNPS']
  if num == 'singular':

    y taglist = ['NN','NNP']
  z for sent in reversed(sents):
    { for token in sent:
      | if token.tag_ in taglist: 

        return token.text
  return 'Noun not found'

After inserting the code of the dep_pattern, pos_pattern, and pron_ pattern 
functions, we define the find_noun function, which takes two parameters u. 
The first one contains a list of the sentences from the beginning of the dis-
course up to the sentence that satisfies all the patterns here. In this example, 
this list will include all the sentences from the discourse, because only the 
last sentence satisfies all the patterns v. But the noun that gives its meaning 
to the pronoun can be found in one of the previous sentences. 
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The second parameter sent to find_noun is the number of the direct object 
pronoun in the sentence that satisfies all the patterns w. The pron_pattern 
function determines this. If the value of this argument is 'plural', we define 
a Python list containing fine-grained part-of-speech tags used in spaCy to 
mark plural nouns x. If it’s 'singular', we create a tag list containing fine-
grained part-of-speech tags used to mark singular nouns y. 

In a for loop, we iterate over the sentences in reverse order, starting 
from the sentence that is the closest to the sentence containing the pronoun 
to be replaced z. We start with the closest sentence, because the noun we’re 
searching for will most likely be there. Here, we use Python’s reversed func-
tion that returns a reverse iterator over the list. In the inner loop, we iterate 
over the tokens in each sentence {, looking for a token whose fine-grained 
part-of-speech tag is in the tag list defined earlier |.  

Then we define the gen_utterance function, which generates our new 
statement:

def gen_utterance(doc, noun):
  sent = ''

  u for i,token in enumerate(doc):
    v if token.dep_ == 'dobj' and token.tag_ == 'PRP':
      w  sent = doc[:i].text + ' ' + noun + ' ' + doc[i+1:len(doc)-2].text + 'too.'
      x return sent
  y return 'Failed to generate an utterance'

We use a for loop to iterate over the tokens in the sentence u, looking 
for a direct object that is a personal pronoun v. Once we’ve found one, we 
generate a new utterance. We change the original sentence by replacing the 
personal pronoun with the matching noun and appending “too” to the end 
of it w. The function then returns this newly generated utterance x. If we 
haven’t found a direct object in the form of a personal pronoun, the func-
tion returns an error message y. 

Now that we have all the functions in place, we can test them on a sam-
ple utterance using the following code:

u doc = nlp(u'The symbols are clearly distinguishable. I can recognize them 
promptly.')

v sents = list(doc.sents)
response = ''
noun = ''

w for i, sent in enumerate(sents): 
  if dep_pattern(sent) and pos_pattern(sent):

  x noun = find_noun(sents[:i], pron_pattern(sent))
    if noun != 'Noun not found':

    y response = gen_utterance(sents[i],noun)
    break
print(response)

After applying the pipeline to the sample discourse u, we convert 
it to the list of sentences v. Then we iterate over this list w, searching 
for the sentence that matches the patterns defined in the dep_pattern 
and pos_pattern functions. Next, we determine the noun that gives the 
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meaning to the pronoun in the sentence found in the previous step, using 
the find_noun function x. Finally, we call the get_utterance function to gen-
erate a response utterance y. 

The output of the preceding code should look like this:

I can recognize symbols too.

Try This
Notice that there’s still room for improvement in the preceding code, 
because the original statement included the article “the” in front of the 
noun “symbols.” A better output would include the same article in front 
of the noun. To generate a statement that makes the most sense in this 
context, expand on the script so that it inserts the article “the” in front of 
the noun, making it “I can recognize the symbols too.” For that, you’ll 
need to check whether the noun is preceded by an article, and then add 
that article.

Extracting Keywords from Syntactic Dependency Trees
Finding a sequence of words in an utterance that satisfies a certain pattern 
allows you to construct a grammatically correct response—either a state-
ment or a question, based on the submitted text. But these patterns aren’t 
always useful for extracting the meaning of texts. 

For example, in the ticket-booking application in Chapter 2, a user 
might submit a sentence like this: 

I need an air ticket to Berlin.

You could easily find the user’s intended destination by searching for 
the pattern “to + GPE” where GPE is a named entity for countries, cities, and 
states. This pattern would match phrases like “to London,” “to California,” 
and so on.

But suppose the user submitted one of the following utterances instead:

I am going to the conference in Berlin. I need an air ticket. 
I am going to the conference, which will be held in Berlin. I would like to 
book an air ticket.

As you can see, the “to + GPE” pattern wouldn’t find the destination in 
either example. In both cases, “to” directly refers to “the conference,” not to 
Berlin. You’d need something like  “to + . . . + GPE” instead. But how would 
you know what’s required—or what’s allowed—between “to” and “GPE”? For 
example, the following sentence contains the “to + . . . + GPE” pattern but has 
nothing to do with booking a ticket to Berlin: 

I want to book a ticket on a direct flight without landing in Berlin. 
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Often, you need to examine relations between the words in a sentence 
to obtain necessary pieces of information. This is where walking the depen-
dency tree of the sentence could help a lot. 

Walking a dependency tree means navigating through it in custom 
order—not necessarily from the first token to the last one. For example, 
you can stop iterating a dependency tree just after the required component 
is found. Remember that a sentence’s dependency tree shows the syntactic 
relationships between pairs of words. We often represent these as arrows 
connecting the head with the child of a relation. Every word in a sentence 
is involved in at least one of the relations. This guarantees that you’ll pass 
through each word in a sentence when walking through the entire depen-
dency tree generated for that sentence if you start from ROOT. 

In this section, we’ll examine a sentence’s structure to figure out a 
user’s intended meaning. 

Walking a Dependency Tree for Information Extraction
Let’s return to the ticket-booking application example. To find a user’s 
intended destination, you might need to iterate over the dependency tree 
of a sentence to determine whether “to” is semantically related to “Berlin.” 
This is easy to accomplish if you remember the head/child syntactic rela-
tions that compose a dependency tree, which was introduced in the “Head 
and Child” box on page 25. 

Figure 6-3 shows the dependency tree for the sentence, “I am going to 
the conference in Berlin”: 

I am going to the conference in Berlin

PRON VERB VERB ADP DET NOUN ADP PROPN

pobj

detaux

nsubj

prep pobjprep

Figure 6-3: A syntactic dependency tree of an utterance

The verb “going” is the root of the sentence, meaning it’s not a child of 
any other word. Its child to the immediate right is “to.” If you walk through 
the dependency tree, moving to the child to the immediate right of each 
word, you’ll finally reach “Berlin.” This shows that there’s a semantic con-
nection between “to” and “Berlin” in this sentence.

Iterating over the Heads of Tokens 
Now let’s figure out how to express the relation between “to” and “Berlin” 
in the sentence programmatically. One way is to walk the dependency tree 
from left to right, starting from “to,” choosing only the immediate right 
child of each word along the way. If you can go from “to” to “Berlin” this 
way, you can reasonably assume that there’s a semantic connection between 
the two words. 



88   Chapter 6

But this approach has a drawback. In some cases, a word might have 
more than one right child. For example, in the sentence “I am going to the 
conference on spaCy, which will be held in Berlin,” the word “conference” 
has two immediate right children: the words “on” and “held.” This forces 
you to check multiple branches, complicating the code.

On the other hand, although a head can have multiple children, each 
word in a sentence has exactly one head. This means you can instead move 
from right to left, starting from “Berlin” and trying to reach “to.” The fol-
lowing script implements this process in the det_destination function: 

import spacy
nlp = spacy.load('en')
#Here's the function that figures out the destination

u def det_destination(doc):
  for i, token in enumerate(doc):

   v if token.ent_type != 0 and token.ent_type_ == 'GPE': 
      w while True:
        x token = token.head

        if token.text == 'to':
          y return doc[i].text
        z if token.head == token:

          return 'Failed to determine'
  return 'Failed to determine'
#Testing the det_destination function
doc = nlp(u'I am going to the conference in Berlin.')

{ dest = det_destination(doc)
print('It seems the user wants a ticket to ' + dest)

In the det_destination function u, we iterate over the tokens in the 
 submitted utterance, looking for a GPE entity v. If it’s found, we start 
a while loop w that iterates over the head of each token, starting from 
the token containing the GPE entity x. The loop stops when it reaches 
either the token containing “to” y or the root of the sentence. We can 
check for the root by comparing a token to its head z, because the head 
of the root token always refers to itself. (Alternatively, we can check for 
the ROOT tag.)

To test this function, we apply the pipeline to the sample sentence and 
then invoke the det_destination function on it {. 

The script should generate the following output: 

It seems the user wants a ticket to Berlin

If we change the sample sentence so it doesn’t contain “to” or a GPE 
named entity, we should get the following output:

It seems the user wants a ticket to Failed to determine

We can improve the script so it uses another message for cases when it 
fails to determine the user’s destination. 
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Condensing a Text Using Dependency Trees 
The syntactic dependency tree approach isn’t limited to chatbots, of course. 
You could use it, for example, in report-processing applications. Say, you need 
to develop an application that has to condense retail reports by extracting 
only the most important information from them. 

For example, you might want to select the sentences containing num-
bers, producing a concise summary of the data on sales volume, revenue, 
and costs. (You learned how to extract numbers in Chapter 4.) Then, 
to make your new report more concise, you might shorten the selected 
sentences. 

As a quick example, consider the following sentence:

The product sales hit a new record in the first quarter, with 18.6 million 
units sold.

After processing, it should look like this:

The product sales hit 18.6 million units sold.

To accomplish this, you can analyze the dependency trees of sentences 
by following these steps: 

1. Extract the entire phrase containing the number (it’s 18.6 in this exam-
ple) by walking the heads of tokens, starting from the token containing 
the number and moving from left to right.

2. Walk the dependency tree from the main word of the extracted phrase 
(the one whose head is out of the phrase) to the main verb of the sen-
tence, iterating over the heads and picking them up to be used in a new 
sentence.

3. Pick up the main verb’s subject, along with its leftward children, which 
typically include a determiner and possibly some other modifiers. 

Figure 6-4 represents this process.

The product sales hit a new record in the first quarter, with 18.6 million units sold.

3

2

1

Pick up the subject of the main
verb, along with its left children

Walking heads until you reach
the main verb of the utterance

Walking heads until you reach
the main word of the phrase

Figure 6-4: An example of condensing a sentence to include only important elements 
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Let’s start with the first step, which in this example should extract the 
phrase “18.6 million units sold.”. The following code snippet illustrates how 
to do this programmatically: 

doc = nlp(u"The product sales hit a new record in the first quarter, with 18.6 
million units sold.")
phrase = ''
for token in doc:

  u if token.pos_ == 'NUM': 
      while True:
        phrase = phrase + ' ' + token.text

        v token = token.head
        w if token not in list(token.head.lefts): 

          phrase = phrase + ' ' + token.text
          x break
      y break

print(phrase.strip())

We iterate over the sentence’s tokens, looking for one that represents a 
number u. If we find one, we start a while loop that iterates over right-hand 
heads v, starting from the number token and then appending the text of 
each head to the phrase variable to form a new phrase. To make sure the 
head of the next token is to the right of that token, we check whether the 
token is in the list of its head’s left children w. Once this condition returns 
false, we break from the while loop x and then from the outer for loop y. 

Next, we walk the heads of tokens, starting from the main word of the 
phrase containing the number (“sold” in this example) until we reach the 
main verb of the sentence (“hit” in this example), excluding the adposition 
(“with” in this example). We can implement this as shown in the following 
listing: 

while True:
  u token = doc[token.i].head

  if token.pos_ != 'ADP':
    v phrase = token.text + phrase
  w if token.dep_ == 'ROOT':
  x break

We walk the heads of tokens u in a while loop, appending the text of 
each head to the phrase being formed v. After reaching the main verb 
(marked as ROOT) w, we break from the loop x. 

Finally, we pick up the subject of the sentence, along with its left chil-
dren: “The” and “product.” In this example, the subject is “sales,” so we pick 
up the following noun chunk: “The product sales.” This can be done with 
the following code: 

u for tok in token.lefts:   
  v if tok.dep_ == 'nsubj':
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    w phrase = ' '.join([tok.text for tok in tok.lefts]) + ' ' + tok.text + ' ' 
       + phrase

    break
x print(phrase)

We start by iterating over the main verb’s children u, searching for the 
subject v. Then we prepend the subject’s children and the subject of the 
phrase w. To see the resulting phrase, we print it x.

The output should look like this:

The product sales hit 18.6 million units sold.

The result is a condensed version of the original sentence. 

Try This 
Write a script that condenses financial reports by extracting only those 
sentences that contain phrases referring to an amount of money. Also, the 
script needs to condense the selected sentences so they include only the 
subject, the main verb, the phrase referring to an amount of money, and 
the tokens you can pick up when walking the heads starting from the main 
word of the money phrase up to the main verb of the sentence. For exam-
ple, given the following sentence: 

The company, whose profits reached a record high this year, largely attributed 
to changes in management, earned a total revenue of $4.26 million. 

Your script should return this sentence:

The company earned revenue of $4.26 million.

In this example, “million” is the main word in the phrase “$4.26 million.” 
The head of “million” is “of,” which is a child of “revenue,” which, in turn, is 
a child of “earned,” the main verb of the sentence. 

Using Context to Improve the Ticket-Booking Chatbot
As you’ve no doubt realized by now, there’s no single solution for all 
intelligent text-processing tasks. For example, the ticket-booking script 
shown earlier in this chapter will only find a destination if the submitted 
sentence contains the word “to.”

One way to make these scripts more useful is to take context into 
account to determine an appropriate response. Let’s increase the function-
ality of the ticket-booking script so it can handle a wider set of user input, 
including utterances that don’t contain a “to + GPE” pair in any combination. 
For example, look at the following utterance: 

I am attending the conference in Berlin. 
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Here, the user has expressed an intention to go to Berlin without “to.” 
Only the GPE entity “Berlin” is in the sentence. In such cases, it would 
be reasonable for a chatbot to ask a confirmatory question, such as the 
following:

You want a ticket to Berlin, right?

The improved ticket-booking chatbot should produce different outputs 
based on three different situations:

•	 The user expresses a clear intention to book a ticket to a certain 
destination.

•	 It’s not immediately clear whether the user wants a ticket to the destina-
tion mentioned.  

•	 The user doesn’t mention any destination.

Depending on which category the user input falls under, the chatbot 
generates an appropriate response. Figure 6-5 illustrates how to represent 
this user input handling on a diagram.

User: I am going to the conference in Berlin.

 Bot: When do you need to be in Berlin?

Obviously the user wants a ticket to Berlin.

User: I am attending the conference in Berlin.

 Bot: You want a ticket to Berlin, right?

Maybe the user wants a ticket to Berlin.

User: Is it a ticket-booking service?

 Bot: Are you flying somewhere?

User’s intention is not recognized.

Figure 6-5: An example of user input handling in a ticket-booking application 

The following script implements this design.  For convenience, the code 
is divided into several parts. 

The first snippet contains the guess_destination function, which searches a 
sentence for a GPE entity. Also, we’ll need to insert the dep_destination function 
defined and discussed in “Iterating Over the Heads of Tokens” on page 87. 
Recall that this function searches a sentence for the “to + GPE” pattern. We’ll 
need the dep_destination and guess_destination functions to handle the first 
and second scenarios of user input, respectively. 
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import spacy
nlp = spacy.load('en')
#Insert the dep_destination function from a previous listing here
#...
def guess_destination(doc):
  for token in doc:

    u if token.ent_type != 0 and token.ent_type_ == 'GPE': 
      v return token.text
  w return 'Failed to determine'

The code in the guess_destination function iterates over the tokens in a 
sentence, looking for a GPE entity u. Once it finds one, the function returns 
it to the calling code v. If it fails to find one, the function returns 'Failed to 
determine' w, meaning the sentence doesn’t contain a GPE entity.

In the gen_function that follows, we generate a response based on what 
the functions defined in the preceding snippet return.

def gen_response(doc):
  u dest = det_destination(doc)

  if dest != 'Failed to determine':
    v return 'When do you need to be in ' + dest + '?'
  w dest = guess_destination(doc)

  if dest != 'Failed to determine':
    x return 'You want a ticket to ' + dest +', right?'
  y return 'Are you flying somewhere?' 

The code in the gen_response function starts by invoking the det 
_destination function u, which determines whether an utterance contains  
a “to + GPE” pair. If one is found, we assume that the user wants a ticket to 
the destination and they need to clarify their departure time v. 

If the det_destination function hasn’t found a “to + GPE” pair in the utter-
ance, we invoke the guess_destination function w. This function tries to find 
a GPE entity. If it finds such an entity, it asks the user a confirmatory question 
about whether they want to fly to that destination x. Otherwise, if it finds 
no GPE entity in the utterance, the script asks the user whether they want to 
fly somewhere y. 

To test the code, we apply the pipeline to a sentence and then send the 
doc to the gen_response function we used in the previous listing:

doc = nlp(u'I am going to the conference in Berlin.') 
print(gen_response(doc))

For the utterance submitted in this example, you should see the follow-
ing output:

When do you need to be in Berlin?

You can experiment with the sample utterance to see different output.
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Making a Smarter Chatbot by Finding Proper Modifiers 
One way to make your chatbot smarter is to use dependency trees to find 
modifiers for particular words. For example, you might teach your applica-
tion to recognize the adjectives that are applicable to a given noun. Then 
you could tell the bot, “I’d like to read a book,” to which the smart bot 
could respond like this: “Would you like a fiction book?”

A modifier is an optional element in a phrase or a clause used to change 
the meaning of another element. Removing a modifier doesn’t typically 
change the basic meaning of the sentence, but it does make it less specific. 
As a quick example, consider the following two sentences: 

I want to read a book.
I want to read a book on Python.

The first sentence doesn’t use modifiers. The second uses the modifier 
“on Python,” making your request more detailed. 

If you want to be specific, you must use modifiers. For example, to gen-
erate a proper response to a user, you might need to learn which modifiers 
you can use in conjunction with a given noun or verb. 

Consider the following phrase: 

That exotic fruit from Africa.

In this noun phrase, “fruit” is the head, “that” and “exotic” are 
premodifiers—modifiers located in front of the word being modified—and 
“from Africa” is a postmodifier phrase—a modifier that follows the word it 
limits or qualifies. Figure 6-6 shows the dependency tree for this phrase.

That exotic fruit from Africa.

ADP ADJ NOUN ADP PROPN

det

prep pobjamod

Premodifiers Postmodifiers

Figure 6-6: An example of premodifiers and postmodifiers 

Suppose you want to determine possible adjectival modifiers for the 
word “fruit.” (Adjectival modifiers are always premodifiers.) Also, you want 
to look at what GPE entities you can find in the postmodifiers of this same 
word. This information could later help you generate an utterance during a 
conversation on fruits.
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The following script implements this design:

import spacy
nlp = spacy.load('en')

u doc = nlp(u"Kiwano has jelly-like flesh with a refreshingly fruity taste. This 
   is a nice exotic fruit from Africa. It is definitely worth trying.")
v fruit_adjectives = []
w fruit_origins = []

for token in doc:
  x if token.text == 'fruit': 
    y  fruit_adjectives = fruit_adjectives + [modifier.text for modifier in  

token.lefts if modifier.pos_ == 'ADJ']
    z fruit_origins = fruit_origins + [doc[modifier.i + 1].text for modifier 
        in token.rights if modifier.text == 'from' and doc[modifier.i + 1].ent 

_type != 0]
print('The list of adjectival modifiers for word fruit:', fruit_adjectives)
print('The list of GPE names applicable to word fruit as postmodifiers:', 
fruit_origins)     

We start by applying the pipeline to a short text that contains the word 
“fruit” with both premodifiers and postmodifiers u. We define two empty 
lists: fruit_adjectives v and fruit_origins w. The first one will hold any 
adjectival modifiers found for the word “fruit.” The second list will hold 
any GPE entities found among the postmodifiers of “fruit.” 

Next, in a loop iterating over the tokens of the entire text, we look for 
the word “fruit” x. Once this word is found, we first determine its adjectival 
premodifiers by picking up its syntactic children to the left and choosing 
only adjectives (determiners and compounds can also be premodifiers). We 
append the adjectival modifiers to the fruit_adjectives list y. 

Then we search for postmodifiers by checking the right-hand syntactic 
children of the word “fruit.” In particular, we look for named entities, and 
then append them to the fruit_origins list z. 

The script outputs the following two lists: 

The list of adjectival modifiers for word fruit: ['nice', 'exotic']
The list of GPE names applicable to word fruit as postmodifiers: ['Africa']

Now your bot “knows” that a fruit can be nice, exotic (or both nice and 
exotic), and might come from Africa. 

Summary
When you need to process an utterance, or even just a phrase, it’s often 
important to look at its structure to determine which general patterns it 
matches. Using spaCy’s linguistic features, you can detect these patterns, 
allowing your script to understand the user’s intention and respond properly. 

Using patterns based on linguistic features works well when you need 
to recognize the general structure of a sentence, which involves the sub-
ject, modal auxiliary verb, main verb, and direct object. But a real-world 
application needs to recognize more complicated sentence structures 
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and be prepared for a wider set of user input. This is where the syntactic 
dependency tree of a sentence becomes very useful. You can walk the depen-
dency tree of a sentence in different ways, extracting necessary pieces of 
information from it. For example, you can use dependency trees to find 
modifiers for particular words, and then use this information later to gen-
erate intelligent text. 



7
V I S U A L I Z A T I O N S

Perhaps the simplest way to discover 
insights in data is to represent that data 

graphically. Visualizations, like the one 
shown in Figure 7-1, allow you to immediately 

identify patterns within your data.
In this chapter, you’ll learn how to generate visualizations for the syn-

tactic structure of a sentence and the named entities in a document using 
spaCy’s built-in visualizers: the displaCy dependency visualizer and the 
 displaCy named entity visualizer. 

We’ll start by exploring interactive demos of these visualizers, which 
are available on the Explosion AI website (Explosion AI is the maker of 
spaCy), to understand what the spaCy visualizers can accomplish. Next, 
you’ll learn to spin up a displaCy web server on your machine, allowing you 
to programmatically visualize a Doc object from within spaCy. You’ll also 
learn how to customize your visualizations. Finally, you’ll learn how to use 
displaCy to render manually prepared data without having to pass in a 
Doc object.
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Getting Started with spaCy’s Built-In Visualizers
Let’s begin by exploring how the displaCy dependency visualizer and the 
displaCy named entity visualizer work. The quickest way to get started with 
spaCy’s built-in visualizers is to take advantage of their interactive demos 
available at https://explosion.ai/demos/. On this page, you’ll find links to the 
demo pages for the two displaCy visualizers along with some other demo 
links. 

displaCy Dependency Visualizer
The displaCy dependency visualizer generates a syntactic dependency 
visualization for a submitted text. To use its interactive demo, navigate to 
https://explosion.ai/demos/displacy/. Replace the sample sentence in the “Text 
to parse” text box with your text, and then click the search icon (magnify-
ing glass) at the right of the box to generate a visualization. The result 
might look like Figure 7-1.

Figure 7-1: The displaCy dependency visualizer on the Explosion AI website 

The dependency visualizer shows the part-of-speech tags and syn-
tactic dependencies in a submitted text, displaying its syntactic structure 
immediately.

The visualizer allows you to customize your graphic with the “Merge 
Punctuation” and “Merge Phrases” checkboxes. “Merge Punctuation” merges 
a punctuation mark to the preceding token, making a visualization more 
compact and therefore more readable. “Merge Phrases” merges each noun 
phrase into a single token, as shown in the example in Figure 7-1. Both 
options are set by default. 

https://explosion.ai/demos/
https://explosion.ai/demos/displacy
https://explosion.ai/demos/displacy
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You can change either or both of these defaults by deselecting the cor-
responding box or boxes. For example, if you deselect the “Merge Phrases” 
box for “I want a Greek pizza now,” you’ll see a more detailed dependency 
parsing for this sentence that shows you the dependencies within the noun 
phrase “a Greek pizza.” 

Keeping the “Merge Phrases” box selected allows you to get a more 
compact dependency tree, which can be especially useful when dealing with 
a sentence containing several noun phrases. For example, consider the 
following sentence: “I see a few young people working in their vegetable 
field.” It contains two noun phrases: “a few young people” and “their 
vegetable field.” The first one is the direct object of the verb “see,” and the 
second is the object of the preposition in the prepositional phrase that 
modifies the verb “work,” showing the dependency labels dobj and pobj, 
respectively. Strictly speaking, these dependency labels are related to the 
nouns in the corresponding phrases rather than to an entire sentence. 

In addition to the “Merge Punctuation” and “Merge Phrases” options, 
you can choose a statistical language model to use from the list of avail-
able models. This option allows you to try a model for dependency parsing 
without downloading and installing it in your environment. Currently, you 
can choose from the following models: en_core_web_sm, en_core_web_md, and 
en_core_web_lg, as well as small (sm) models for other European languages, 
such as German, Spanish, Portuguese, French, Italian, and Dutch.

displaCy Named Entity Visualizer
The displaCy named entity visualizer generates a named entity visualiza-
tion for a submitted text. You’ll find its interactive demo at https://explosion 
.ai/demos/displacy-ent/. From a user’s standpoint, it works similarly to the 
displaCy dependency visualizer demo discussed in the previous section. 
To generate a visualization for a text, enter it into the text box, and then 
click the search icon. The visualizer will process your query and output an 
original text at the bottom of the window, highlighting the named entities 
discovered along with their labels, as shown in Figure 7-2.

You can choose what types of named entities the application should 
recognize in a submitted text by selecting or deselecting the boxes under 
“Entity labels”. In the example shown in Figure 7-2, you add PERCENT and 
CARDINAL to the list of entity label types chosen by default. Adding the 
PERCENT entity type tells the visualizer to recognize phrases expressing a 
percentage or that include the “%” symbol. Adding the CARDINAL entity type 
guarantees that the visualizer will recognize phrases related to numerals in 
the submitted text.

Which boxes you should select depends on your context. When process-
ing a financial report, you might select the MONEY and DATE boxes. But if the 
report includes records of the financial activities of more than one com-
pany, you might also want to select the ORG entity label box to instruct the 
visualizer to highlight company names in the text. 

https://explosion.ai/demos/displacy-ent/
https://explosion.ai/demos/displacy-ent/
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Figure 7-2: The displaCy named entity visualizer on the Explosion AI website

Visualizing from Within spaCy
Starting with spaCy v2.0, the displaCy visualizers are integrated into the 
core library. This means that you can start using them from within your 
Python code immediately after installing spaCy.

To do so, you must use the following process: start a built-in web server, 
and then send a Doc object (or a list of Doc objects) to it for rendering. 
The server will generate a visualization for the submitted Doc, which you 
can then view in your browser. We’ll walk through several examples in this 
section.

Visualizing Dependency Parsing
The following script shows the simplest way to generate a dependency tree 
visualization for a sentence: 

import spacy
nlp = spacy.load('en')

u doc = nlp(u"I want a Greek pizza.")
v from spacy import displacy
w displacy.serve(doc, xstyle='dep')

We create a Doc object to submit to displaCy u. Then we import the  
displaCy library from the core library v, after which we can start a displaCy  
web server, passing the Doc object to it. Both operations are done by calling 
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the displacy.serve() method w. By setting parameter style to 'dep', we 
instruct displaCy to use the dependency visualizer x, generating a depen-
dency tree visualization for the text in the Doc object. If you’re interested in 
implementing the checkbox options explored earlier in this chapter, refer-
ence “Try This” on page 104.

Whether you run this code in a Python session or as a separate script, 
the execution enters an infinite loop and shows messages from the displaCy 
web server. The initial messages you should see are the following: 

Serving on port 5000...
Using the 'dep' visualizer

This means that the server has generated a dependency tree visualiza-
tion for the submitted text and serves HTTP requests on port 5000 (the 
default port) on your host. In practical terms, this means you can point 
your browser to http://localhost:5000 to view the visualization. In this exam-
ple, it should look like Figure 7-3. 

Figure 7-3: An example of a dependency tree visualization you can generate from within 
your Python code and then view in your browser 

To shut down the displaCy server, enter ctrl-c in the terminal in which 
you executed the script that started the server. As a result, you should see 
the following final message from the server: 

Shutting down server on port 5000.

After shutting down the server, you won’t be able to generate a new copy 
of the visualization in your browser, but you’ll be able to view the copies 
you’ve already generated.
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Try This
Try using the named entity visualizer by altering the script for the depen-
dency visualizer in the previous section. To instruct displaCy to apply the 
named entity visualizer, set the displacy.serve() method’s style parameter  
to 'ent'. 

To produce a more interesting visualization, you might use longer text 
containing, perhaps, more than one sentence. For example, try using the 
following text: 

Microsoft Windows is a family of proprietary operating systems developed and 
sold by Microsoft. Bill Gates announced Microsoft Windows on November 10, 
1983. Microsoft first released Windows for sale on November 20, 1985. Windows 
1.0 was initially sold for $100.00, and its sales surpassed 500,000 copies in 
April 1987. For comparison, more than a million copies of Windows 95 were sold 
in just the first 4 days.

After calling the displacy.serve() method on the Doc object, point your 
browser to http://localhost:5000 to view the visualization. Pay attention to the 
named entities and their types recognized by the entity recognizer in this 
sample text. In particular, you should see that the entity recognizer finds 
the names of persons, products, and companies, as well as phrases related 
to dates, numbers, and money.  

Sentence-by-Sentence Visualizations 
Visualizing dependency trees works fine when you’re working with a single 
sentence. But the graphics can get long and space consuming when you’re 
visualizing a long text, making them difficult to read when displayed in one 
row. Although displaCy generates separate visualizations for each sentence, 
when you pass in a Doc containing more than one sentence, it lays them out 
in a single row. 

Instead of passing in a Doc object, you might want to visualize sentence-
by-sentence. For example, this might be useful when you need to extract 
the meaning from an entire discourse and want to explore a sequence of 
sentences. Starting with version 2.0.12, displaCy allows you to pass in Span 
objects and then lays out the visualizations in rows. You can pass in a list 
of doc.sents if you want to create one visualization for each sentence found 
in doc.sents, as shown in the following code:

import spacy
nlp = spacy.load('en')
doc = nlp(u"I have a relaxed pair of jeans. Now I want a skinny pair.")

u spans = list(doc.sents)
from spacy import displacy
displacy.serve(vspans, style='dep')
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As discussed in Chapter 3, the Doc object’s doc.sents property is an 
iterator over the sentences in a Doc object. For this reason, you can’t use 
this property to refer to sentences by index, but you can iterate over them 
in a loop or create a list of Span objects where each span represents a sen-
tence. In this code, we convert the sentences in the Doc into a list of Span 
objects u. Then we pass in that spans list to displacy.serve() to visualize v. 

This should generate one visualization for each sentence, laid out in 
rows, allowing you to view them by scrolling vertically. 

Customizing Your Visualizations with the Options Argument
In addition to the docs and style arguments that you saw in the examples 
so far, the displacy.serve() method can take several other arguments. 
The options argument is perhaps one of the most interesting because it 
allows you to define a dictionary of settings to customize the layout of 
the visualization. We’ll cover some of the most useful options settings in 
this section.

Using Dependency Visualizer Options
Long sentences can be difficult to view when they’re displayed in one row. 
In such cases, you can create visualizations in compact mode, which takes less 
space. For that you need to set the 'compact' option to True in the options 
argument, as illustrated in this script. The script also changes the font that 
the visualizer uses. (The entire list of available options in the displaCy API 
documentation is at https://spacy.io/api/top-level/#options-dep/.)

import spacy
nlp = spacy.load('en')
doc = nlp(u"I want a Greek pizza.")
from spacy import displacy
options = {u'compact': True, v'font': 'Tahoma'}
displacy.serve(doc, style='dep', woptions=options)

The displacy.serve() method expects the options argument to be a dic-
tionary. In this example, we set only two options: the 'compact' option to 
True u and the 'font' option to 'Tahoma' v, changing their defaults in both 
cases. (The visualizer lets you use most standard web fonts, such as Arial, 
Courier, and so on.) We then pass the dictionary of options in as the options 
argument w. 

Figure 7-4 shows what your browser should display when you point it to 
http://localhost:5000 after running the script. 

The square arcs you see in the figure might look unusual, but they make 
the overall visualization more compact, which often can spare you from 
having to scroll to see the entire diagram. 
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Figure 7-4: An example of a customized dependency visualization 

Try This 
In the dependency visualizer’s interactive demo discussed in “displaCy 
Dependency Visualizer” on page 98, you used the “Merge Phrases” and 
“Merge Punctuation” options. In spaCy, you can merge noun phrases into 
one token with the collapse_phrases option (Figure 7-1 shows the equivalent 
option on the displaCy visualizer website.), which is set to False by default. 
The collapse_punct option, which is responsible for attaching punctuation to 
tokens, is set to True by default. 

Change the code in the previous script so it sets the collapse_phrases 
option to True in the set of passed-in options. Run the script, and then view 
the generated visualization in your browser to make sure the noun phrases 
are displayed as a single token.

Using Named Entity Visualizer Options
The list of named entity visualizer options (available at https://spacy.io/api/
top-level/#displacy_options-ent/) is much shorter than the list of dependency 
visualizer options. When using the entity visualizer, you can choose which 
entity types to highlight with the 'ents' option and override default colors 
with the 'colors' option. 

The first option is the more important of the two, because it allows you 
to instruct the visualizer to highlight entities of selected types only. The 
following example illustrates a case when you might want to limit the entity 
types that the visualizer displays. 

In this script, we don’t provide any options for the entity visualizer, 
which means it will highlight entities of all types in the submitted Doc.

import spacy
nlp = spacy.load('en')
doc = nlp(u"In 2011, Google launched Google +, its fourth foray into social 
networking.")

https://spacy.io/api/top-level/#displacy_options-ent/
https://spacy.io/api/top-level/#displacy_options-ent/
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u doc.user_data['title'] = "An example of an entity visualization"
from spacy import displacy
displacy.serve(doc, style=v'ent')

We use the Doc’s user_data attribute to set a title for the Doc u. The 
displaCy visualizer automatically puts the text in this attribute as a headline 
for the visualization. Adding a title to a visualization is optional but can be 
useful when you need to annotate your visualizations. 

We set the style parameter of displacy.serve() to 'ent' v, instructing 
displaCy to use the named entity visualizer. The resulting visualization 
should look like the one in Figure 7-5 (although these images are in 
grayscale, the website uses color). 

Figure 7-5: An example of a named entity visualization generated with default options 

The visualization looks fine in general. But in this context, highlight-
ing the ordinal number “fourth” is probably unnecessary. It’s hard to figure 
out why we might need to extract that information in this context. With the 
'ents' option, we select the entity types that we want the visualizer to high-
light. The following code illustrates how to implement this. To see how it 
works, we replace the last line of code in the previous script with the follow-
ing two lines of code, and then run the updated script:

options = {u'ents': ["ORG", "PRODUCT", "DATE"], v'colors': {"ORG": "aqua", 
"PRODUCT": "aqua"}}
displacy.serve(doc, style='ent', options=options)

This time, the visualizer shouldn’t recognize any entities except for 
those that are of the ORG, PRODUCT, or DATE type u. This example also illu-
strates the use of the 'colors' option that allows us to change the default 
colors assigned to entity types. In this example, we map the ORG and PRODUCT 
types to the color "aqua" v. 
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N O T E  Using the 'colors' option, you can map entity types to web color names or hex color 
codes. In the example on page 105, using the hex code "#00FFFF" would be equal to 
using the color name "aqua".

Figure 7-6 illustrates what the resulting visualization should look like.

Figure 7-6: An example of an entity visualization generated with the 'ents' and 
'colors' options specified

As you can see, this visualization is almost identical to the one shown 
in Figure 7-5. But this time the visualizer doesn’t highlight the entity of 
type ORDINAL, because the 'ents' option list we’ve passed in doesn’t include 
this type. 

Exporting a Visualization to a File
In the examples so far, we’ve used the displaCy web server to view the 
visualizations being generated. As you learned in these examples, you can 
open the visualization generated with the displacy.serve() method in your 
browser as long as the server started with this same invocation of displacy 
.serve() is running. 

Using the displacy.render() method, you can avoid this limitation and 
create a visualization for later use. The displacy.render() method allows 
you to render the markup wrapped as an HTML page and then save it in a 
separate file. Later, you can open this file in any browser without having to 
invoke a web browser. 

The following script shows how to use the displacy.render() method for 
the named entity visualization shown in Figure 7-5:

import spacy
nlp = spacy.load('en')
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doc = nlp(u"In 2011, Google launched Google +, its fourth foray into social 
networking.")

u doc.user_data["title"] = "An example of an entity visualization"
#In the next block, you instruct displaCy to render the markup wrapped as a 
full HTML page.
from spacy import displacy

v html = displacy.render(doc, style='ent', wpage=True)
#In the next block, you save the html file generated by displacy.render() to 
disk on your machine. 

x from pathlib import Path
y output_path = Path("/visualizations/ent_visual.html")
z output_path.open("w", encoding="utf-8").write(html)

We can divide the code in this script into three parts, each of which 
begins with a comment line. The first block should be familiar. Here, we 
create a text processing pipeline and then apply it to a text. Then we use 
the Doc’s user_data attribute to set a headline for the Doc u.

In the second block, we render a named entity visualization for the Doc 
created in the previous step, using the displacy.render() method v. Unlike 
displacy.serve(), displacy.render() doesn’t run a web server but generates the 
HTML markup for a visualization. By setting the page argument to True, we 
instruct displacy.render() to generate the markup wrapped as a full HTML 
page w. 

In the final block, we import the Path class from the pathlib module  
introduced in Python 3.4 x. We can use Path to perform system calls on path 
objects. In this example, we instantiate this class on the following path:  
/visualizations/ent_visual.html y, assuming we already have the / visualizations 
folder available in our local filesystem (otherwise, an exception is thrown). 
Then we open the ent_visual.html file (it will be created if it doesn’t already 
exist) in the /visualizations folder and write the HTML page generated in 
the previous step to it z. 

To sum up, this script generates an HTML file containing a named 
entity visualization for the submitted text and saves that file in your filesys-
tem. If you move to the folder where the file has been saved and double-
click the file, it opens in your browser.

Using displaCy to Manually Render Data
The displaCy visualizers allow you to manually create a dataset that you can 
then render rather than passing in data as either a doc or span. This can 
be useful when you need, for example, to visualize output from other NLP 
libraries or when you need to create a visualization using a set of custom tags 
or custom dependency labels. (I’ll discuss how to make these custom tags 
and labels in Chapter 10.)

As an example, let’s manually render the sentence “I want a Greek pizza.” 
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Formatting the Data
To begin with, you need to put your data in displaCy’s format: a dictionary 
containing two lists: "words" and "arcs", as illustrated in the following code: 

sent = {
    "words": [

        u {"text": "I", "tag": "PRON"},
        {"text": "want", "tag": "VERB"},
        {"text": "a", "tag": "DET"},
        {"text": "Greek", "tag": "ADJ"},
        {"text": "pizza", "tag": "NOUN"}
    ],
    "arcs": [

        v {"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
        {"start": 2, "end": 4, "label": "det", "dir": "left"},
        {"start": 3, "end": 4, "label": "amod", "dir": "left"},
        {"start": 1, "end": 4, "label": "dobj", "dir": "right"}
    ]
}

The sent dictionary contains two lists: "words" and "arcs", each of which, 
in turn, includes a set of dictionaries. A dictionary in the "words" list assigns 
a tag to a certain token in the sentence u, and a dictionary in the "arcs" list 
defines an arc in the dependency tree, connecting two syntactically related 
words in the sentence v. In this example, five words are in the sentence and 
four syntactic relations are defined on them. That’s why the dictionary con-
tains five items in the "words" list and four items in the "arcs" list. 

Now that we have a dictionary with the data, we need to generate a 
dependency parsing visualization for the sample sentence; we can use the 
following code to render it: 

u from spacy import displacy
displacy.serve(vsent, style="dep", wmanual=True)

Note that we don’t have to import the entire spaCy library. All we need 
to do is import the displacy module from it u. Then we invoke the displacy 
.serve() method, passing in the sent dictionary as the first parameter in 
place of a Doc object v. The third parameter, manual, tells displaCy that we 
created the dataset for rendering manually w, so displaCy doesn’t need to 
extract the data from a Doc object. 

Try This
When you choose to manually create a dictionary with data to render into 
a visualization, you can use custom tags, specifying, for example, that the 
visualizer should use fine-grained part-of-speech tags instead of the coarse-
grained tags used by default. 

You could accomplish this task by simply setting the fine_grained option 
to True when passing in a Doc object for rendering, but for practice, try to 
implement this manually.
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In the example from “Formatting the Data” on page 108, change 
the tags in the "words" list of the "sent" dictionary so their values are fine-
grained tags. Next, start the displaCy server and instruct it to generate a 
visualization based on the data specified in the "sent" dictionary. Then 
point your browser to http://localhost:5000 to view the visualization.

Summary
You’ve seen syntactic structure visualizations in previous chapters, but in 
this chapter, you learned how to generate those visualizations using the 
displaCy dependency visualizer. You also learned to generate graphics of 
named entity information with the displaCy named entity visualizer. 





8
I N T E N T  R E C O G N I T I O N 

A chatbot should be smart enough to 
understand a user’s needs. For example, 

a conversational chatbot must recognize 
a user’s intent to properly sustain a conversa-

tion with the user, and a food-ordering chatbot needs 
to understand a customer’s intent to take an order. 
Although the task of intent recognition was touched 
on in previous chapters, this chapter discusses it in 
more depth.

You’ll start by recognizing a user’s intent by extracting the transitive 
verb and direct object of an utterance. Then you’ll explore how to derive a 
user’s intent from a sequence of sentences, recognize synonyms for different 
possible intents, and determine a user’s intent using semantic similarity. 
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Extracting the Transitive Verb and Direct Object for 
Intent Recognition

You can typically recognize a user’s intent in three steps: parsing the sen-
tence into tokens, connecting the tokens with labeled arcs representing 
syntactic relations, and navigating the arcs to extract the relevant tokens. 
In many cases, extracting the sentence’s transitive verb and direct object 
can identify the user’s intent, as shown by the syntactic dependency pars-
ing in Figure 8-1. 

find a hotel with sea view

transitive
verb

determiner direct
object

preposition compound object of
preposition

Figure 8-1: An example of a graphical representation of a sentence’s syntactic structure 

The arc connecting the transitive verb with the direct object indicates 
that the user’s intent is finding a hotel, or just findHotel, if you merged the 
transitive verb and the direct object into a single word. You could use this 
structure as an intent identifier in a later part of a program, as in the follow-
ing code fragment:

      intent = extract_intent(doc) 
      if intent == 'orderPizza': 
        print('We need you to answer some questions to place your order.') 
        ...
      elif intent == 'showPizza': 
        print('Would you like to look at our menu?') 
        ...

N O T E  In Chapter 11, you’ll see more detailed examples of how to use intent identifiers in a 
chatbot app’s code.

But sometimes finding the meaning from the transitive verb/direct 
object pair isn’t so easy. You might need to explore the transitive verb 
and direct object’s syntactic relations to find the verb and noun that best 
describe the intent. 

In other situations, a user’s intent isn’t expressed explicitly, so you must 
figure out an implied intent. In this section, you’ll learn strategies for extract-
ing intent using the syntactic dependency structure.
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Obtaining the Transitive Verb/Direct Object Pair 
Let’s start by extracting the transitive verb/direct object pair from a sen-
tence by checking the dependency label of each token, looking for dobj. 
Once we find the direct object, we can easily get the corresponding transi-
tive verb by obtaining the syntactic head of the direct object, as illustrated 
in the following script: 

import spacy
nlp = spacy.load('en')

u doc = nlp(u'show me the best hotel in berlin')
v for token in doc:

  if token.dep_ == 'dobj':
    print(wtoken.head.text + token.text.capitalize())

In this script, we apply the pipeline to a sample sentence u and then 
iterate over the tokens, searching for the one whose dependency label is 
dobj v. When it’s found, we determine the corresponding transitive verb by 
obtaining the direct object’s head w. In this example, we also concatenate 
the transitive verb and its direct object to express the intent in the form of a 
single word. 

The script generates the following string: 

showHotel

Keep in mind that not all sentences containing a transitive verb/direct 
object pair express intent. For example, “He gave me a book” is just a state-
ment of fact. We could filter out such sentences by checking the verb’s charac-
teristics, picking up only those sentences whose verbs are in the present tense 
and not third person. Still, it would be uncommon to hear a sentence like 
that from a customer talking to a chatbot that takes orders for a business. 

Extracting Multiple Intents with token.conjuncts
Sometimes, you might find a sentence that seems to express more than one 
intent. For example, consider the following sentence: 

I want a pizza and cola.

In this scenario, a user wants to order a pizza and a cola. But in 
most cases, you can consider these intents part of a single complex intent. 
Although a user requests items of different types, you’d typically treat this 
sentence as a single order consisting of several items. In this example, you 
might recognize the intent as orderPizza, formed by combining the transi-
tive verb and direct object pair, but extract pizza and cola as items for the 
order being placed. 
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Figure 8-2 shows the dependency tree for the sample sentence. 

I want a pizza and cola.

PRON VERB DET NOUN CCONJ NOUN

nsubj

dobj

det cc

conj

Figure 8-2: The dependency tree of a sentence containing a direct object and its conjunct 

In the diagram, you can see two arrows pointing to the arcs for the 
direct object “pizza” and the conjunct “cola” associated with it. The conjunct 
of a noun is another noun that is joined to it by a conjunction, such as “and,” 
“or,” and so on. To extract the direct object and the conjunct associated with 
it, we can use the following code: 

doc = nlp(u'I want a pizza and cola.')
#extract the direct object and the conjunct associated with it
for token in doc:
  if token.dep_ == 'dobj':
    dobj = [token.text]
    conj = [t.text for t in utoken.conjuncts]
#compose the list of the extracted elements

v dobj_conj = dobj + conj 
print(dobj_conj)

We extract the conjunct associated with the direct object using the 
 conjuncts property of the Token object used for the direct object u. Once 
we’ve obtained the direct object and its conjuncts, we combine them into a 
single list v. 

The script output should be as follows:

['pizza', 'cola']

To compose the intent, we should extract the verb, too. The simplest 
way to obtain it when we already have the direct object is to obtain the direct 
object’s syntactic head (you saw an example of this in “Obtaining the 
Transitive Verb/Direct Object Pair” on page 113):

verb = dobj.head

Then, using the text property of the verb and the direct object, we can 
compose the intent. 
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Try This
In the script provided in on page 114, you accessed the conjunct linked 
to the direct object through the Token object’s conjuncts property. In a new 
script, replace that line with code that extracts the conjunct by finding the 
arc labeled conj moving outward from the direct object. You can do this 
within the same loop in which you obtain the direct object by finding the 
arc labeled dobj. Be sure to check that the head of the conj arc matches the 
direct object. 

Using Word Lists to Extract the Intent
In some cases, tokens other than the transitive verb and direct object best 
describe the user’s intent. These tokens are typically related to the transi-
tive verb or direct object. So you’ll need to go a step further and explore the 
transitive verb and direct object’s syntactic relations to discover the words 
that best formulate the intent. 

As an example, consider the following utterance:

I want to place an order for a pizza.

In this sentence, the words “want” and “pizza” best describe the intent, 
but neither word is a direct object or transitive verb. However, looking at the 
utterance’s dependency tree, you’ll see that “want” and “pizza” are related 
to the transitive verb “place” and the direct object “order,” respectively. 
Figure 8-3 shows the dependency tree discussed here. 

I want to place an order for a

PRON PART VERB DET NOUN ADP DET NOUN

pizza.

VERB

det det

xcomp
xcomp

prep

dobj

aux
nsubj

Figure 8-3: The dependency tree of an utterance whose transitive verb and direct object 
don’t convey the user’s intent 

To extract these words from the utterance, we’ll use a list of predefined 
words, and then search the user’s utterance for those words. 

An experienced programmer might call into question the effectiveness 
of hardcoding such a list, because it can be quite long, especially if used in 
many different contexts. But if the list is intended for a specific context, say, 
ordering pizza, it can be surprisingly short, which makes this approach very 
efficient. The following code implements this approach:

#apply the pipeline to the sample sentence
doc = nlp(u'I want to place an order for a pizza.')
# extract the direct object and its transitive verb
dobj = ''
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tverb = ''
for token in doc:

  u if token.dep_ == 'dobj':
    dobj = token
    tverb = token.head 
# extract the verb for the intent's definition
intentVerb = ''
verbList = ['want', 'like', 'need', 'order']

v if tverb.text in verbList: 
  intentVerb = tverb

w else:
  if tverb.head.dep_ == 'ROOT':
    intentVerb = tverb.head
# extract the object for the intent's definition
intentObj = ''
objList = ['pizza', 'cola']

x if dobj.text in objList: 
  intentObj = dobj
else:   
  for child in dobj.children:
    if child.dep_ == 'prep': 

        y intentObj = list(child.children)[0]
        break

    z elif child.dep_ == 'compound': 
        intentObj = child
        break
# print the intent expressed in the sample sentence 
print(intentVerb.text + intentObj.text.capitalize())

As always, we start by finding and extracting the direct object and its 
transitive verb u. Once we’ve obtained them, we check whether they can be 
found in the corresponding lists of predefined words. Here, we use simpli-
fied lists, of course: the verbList list contains the verbs a customer might use 
to place an order, and the objList contains direct objects that are possible 
menu items. We start by checking the transitive verb v. If it’s not in the list 
of allowed verbs w, we check the main verb (ROOT) of the sentence, which is 
the head of the transitive verb. If the transitive verb is the main verb of the 
sentence, this implementation will work anyway, because the head of the 
main verb (ROOT) refers to itself. 

Next, we move on to checking the direct object x. If it’s not in the 
list of allowed words, we check its syntactic children. We start by checking 
the preposition of the direct object. If it exists, we pick up the preposi-
tion’s child (it can have only one child) y, which is always the object of 
the preposition. 

To make this approach applicable to a wider variety of cases, it’s not 
enough to just check for prepositions in the direct object’s children. For 
example, this logic wouldn’t work for the following utterance: “I want to 
place a pizza order,” where there is no preposition child branch. Instead, 
the direct object has a left child, “pizza,” which spaCy tags as a compound. 
Therefore, we check for compounds in the direct object’s children z. 
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Finally, we print the string representing the intent identifier. We should 
get the following string:

wantPizza

Notice that we use wantPizza as the intent identifier instead of placeOrder 
(which we would have gotten if we’d simply used the transitive verb/direct 
object pair). This approach allows us to reduce the number of intent identi-
fiers used in the application. 

Finding the Meanings of Words Using Synonyms and 
Semantic Similarity

English, like many other natural languages, lets you express the same 
thoughts and intents in different ways, because it contains synonyms—
words or phrases that mean nearly the same thing. 

As a developer of a chatbot application, you need to account for the 
fact that your users might use a fairly wide set of phrases for each intent 
the application is supposed to support. This means that your application 
must recognize synonymous phrases in user input. In fact, if you’re build-
ing your chatbot on a popular bot platform, such as Google’s Dialogflow, 
you’re required to submit a set of phrases for each possible intent. You then 
use these utterances behind the scenes to train the bot’s model. 

There’s more than one approach to recognizing synonyms. One option 
is to use a set of predefined lists of synonyms. You check a word of inter-
est against those lists, recognizing the word’s meaning based on the list 
in which it was found. Another option is to recognize synonyms based on 
semantic similarity, a task described in Chapter 5 in detail. I discuss both 
approaches in the following sections. 

Recognizing Synonyms Using Predefined Lists 
You already know that, in most cases, the transitive verb and its direct object 
best describe the intent of a phrase. A simple way to recognize whether 
two phrases express the same intent is to make sure the transitive verbs in 
both phrases are synonymous and their direct objects are synonyms as well.

For example, the following three sentences express the same intent, 
which you might define as orderPizza: 

I want a dish. I'd like to order a pizza. Give me a pie. 

To process these utterances, you use the following steps: 

1. Perform dependency parsing to extract a transitive verb and its direct 
object from a sentence.

2. Check with the predefined lists of synonyms to replace the transitive 
verb and the direct object with words that the application recognizes.

3. Compose the string that represents the intent. 
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The diagram in Figure 8-4 summarizes these steps, illustrating how this 
might work for, say, “I want a dish.”

order

1. Dependency parsing

2. Recognizing synonyms

3. Figuring out an intent

order

want

give
...

pizza

pie

dish
...

... ... pizza... ...

orderPizza

transitive
verb

determiner direct
object

I want a dish

subject

Figure 8-4: Processing intent recognition using lists of synonyms

After dependency parsing (done implicitly when you apply the pipeline 
to an utterance), you extract the direct object and the transitive verb, and 
then check them against the corresponding list of synonyms. If you find a 
match, you replace the word with the one that tops the list, which the appli-
cation should recognize. 

Let’s examine what a Python implementation of this scenario might 
look like:

#apply the pipeline to the sample sentence
doc = nlp(u'I want a dish.')
#extract the transitive verb and its direct object from the dependency tree

u for token in doc:
  if token.dep_ == 'dobj':
    verb = token.head.text 
    dobj = token.text
#create a list of tuples for possible verb synonyms

v verbList = [('order','want','give','make'),('show','find')]
#find the tuple containing the transitive verb extracted from the sample

w verbSyns = [item for item in verbList if verb in item]
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#create a list of tuples for possible direct object synonyms
x dobjList = [('pizza','pie','dish'),('cola','soda')]

#find the tuple containing the direct object extracted from the sample
dobjSyns = [item for item in dobjList if dobj in item]
#replace the transitive verb and the direct object with synonyms supported by
the application
#and compose the string that represents the intent 

y intent = verbSyns[0][0] + dobjSyns[0][0].capitalize()
print(intent)

We start by creating a Doc object instance for the sample sentence. 
Then we iterate over the dependency tree available through the Doc object, 
extracting the transitive verb and its direct object u. Next, we create a list of 
tuples containing all allowable transitive verbs along with their synonyms v. 
The first element in each tuple contains a transitive verb that the applica-
tion can recognize, and the other elements in the tuple are its synonyms. 

Now that we’ve defined the allowable transitive verbs and their syn-
onyms and put them all in a list of tuples, we can loop over the entire list 
to find a tuple that contains the transitive verb extracted from the sample 
sentence w. 

Similarly, we create a list of tuples for the recognized direct objects 
and their synonyms, and then find the tuple containing the direct object 
extracted from the sample x. 

Finally, we concatenate the first elements of the chosen tuples to com-
pose the intent name y. As a result, the print command should output the 
following string:

orderPizza

Keep in mind that the set of synonyms to choose for a given verb depends 
largely on the type of application we’re creating. For example, in the context 
of a bot application that takes pizza orders, the verbs “make” and “give” can 
be considered synonymous. The reason is that users might interchangeably 
use the phrases “Make me a pizza” and “Give me a pizza” when ordering  
a pizza. 

Try This
Use the sample code provided on page 118 as the basis for creating a new 
script. Make the script retain the original functionality but generate “unrec-
ognized” as the intent name when the transitive verb, its direct object, or 
both can’t be found in the respective lists. To test your code, experiment 
with the sample sentence, changing it so the new functionality can be seen 
in action. For example, you might use the following sentence:

I want an apple. 

Test it with a sentence containing a verb that isn’t included in the list. 
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Also, you might try to handle the conjunction problem discussed in the 
previous sections using synonym lists.

Recognizing Implied Intents Using Semantic Similarity 
Real-world implementations will likely include more complex logic than 
you’ve seen in the examples provided in this chapter so far. Even using a 
large set of predefined lists of synonyms won’t always work. The reason is 
that users express their intentions in many different ways, and they don’t 
always do so explicitly. 

Recognizing an implied intent depends heavily on the context. For 
example, if your bot is designed for a specific type of task, say, ordering 
food, it should recognize phrases that imply a request, such as “I feel like 
eating a pie.”, as the intention to place a pizza order. 

One widely known technique to make the user express their intent 
more clearly is asking clarifying questions. To determine what question 
to ask, you can calculate the semantic similarity of the previous user 
utterance. 

Figure 8-5 illustrates how to implement this task.

Would you like to look at our menu?

1. Analyzing the dependency tree

2. Computing semantic similarity

3. Asking a clarifying question

pizza

food

transitive
verb

determiner direct
object

I want a pizza

subject

Figure 8-5: Recognizing an implied intent by calculating semantic similarity and asking 
clarifying questions 

You start by analyzing the dependency tree of the input utterance to 
extract the direct object and its transitive verb. If, for example, the direct 
object can’t be found in the predefined list of synonyms, as discussed in 



Intent Recognition    121

“Recognizing Synonyms Using Predefined Lists” on page 117, you might 
try to determine how similar the direct object is to the words included in 
the list. Based on the results of calculating semantic similarity, you can then 
generate a clarifying user question. 

Let’s implement this technique in code, which I’ll break up into sec-
tions. As usual, we start with applying the text-processing pipeline to the 
sample sentence:

doc = nlp(u'I feel like eating a pie.')

Then we extract the direct object token:

for token in doc:
  if token.dep_ == 'dobj':
    dobj = token

We create a token for the word “food.” We’ll calculate the semantic 
similarity between this token and the direct object token:

tokens = nlp(u'food')

If the level of similarity is greater than a predefined threshold, the 
application guesses that the user is most likely interested in placing an 
order. Then it asks a clarifying question to confirm this: 

if dobj.similarity(tokens[0]) > 0.6:
  question = 'Would you like to look at our menu?'

Recall from Chapter 5 that spaCy uses word vectors to calculate the 
semantic similarity of tokens. The closer two vectors are in the vector space, 
the higher the level of similarity is between them. In this example, we use 
0.6 as the minimum degree of similarity required to assume the direct 
object resembles a food product.

Try This
Of course, you won’t know in advance which phrases the user will use 
and how easy it will be to recognize the user’s intent. Neither will your 
application. That’s why real-world applications typically combine several 
approaches to recognize intent. Combine the approach based on recog-
nizing synonyms with the approach based on handling implied intents, 
discussed in the previous sections, so you can handle more possible situ-
ations. Start by trying to extract the intent from an utterance using the 
 synonyms-based approach. Then, if that fails, try the approach based on 
using semantic similarity. If both approaches fail, you might label the  
utterance as expressing an unrecognized intent.
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Extracting Intent from a Sequence of Sentences
In a discourse, the words reflecting a user’s intent might appear across dif-
ferent sentences, as in the following example:

I have finished my pizza. I want another one. 

Your bot should be ready to handle this scenario by extracting a user’s 
intent from an entire discourse. In this section, I’ll walk you through a tech-
nique for doing this. 

Walking the Dependency Structures of a Discourse 
Let’s start by looking at the dependency parsing for the discourse, which 
will disclose the transitive verb/direct object pairs in each sentence, as 
shown in Figure 8-6.

I have finished my pizza.

transitive
verb

direct
object

I want another one.

direct
object

transitive
verb

Figure 8-6: A visual representation of the dependency parsing of  
the entire discourse 

The pale arrow in the diagram represents the dependency of inter-
est. In other words, you want to replace the substitute “one” with the noun 
“pizza” it stands for. But the dependency parser in spaCy doesn’t show this 
link because it can’t connect tokens from different sentences. So the task of 
determining these dependencies is left to you. 

Replacing Proforms with Their Antecedents
An antecedent is an expression (such as a word or clause) that gives its mean-
ing to a proform (such as a pronoun or pro-verb). In this kind of intent extrac-
tion, you’ll have to determine the antecedents and replace the corresponding 
proforms with them. You can do so using the following steps: 

1. Parse the dependencies of the entire discourse. 

2. Dissect the discourse into sentences. 

3. Find the antecedent for the pronoun that is the direct object of the 
transitive verb to be used in the intent definition.

Figure 8-7 shows these steps diagrammatically.
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I have finished my pizza. I want another one.

I want another pizza.

I have finished my pizza.
I want another one.

1. Parsing of the entire discourse

2. Dissecting the discourse into sentences

3. Replacing the pronoun with its antecedent

I have finished my pizza.

I want another one.

Figure 8-7: A graphical depiction of extracting intent from a sequence of sentences 

In spaCy, we can implement the first two steps with a couple lines of 
code:

doc = nlp(u'I have finished my pizza. I want another one.')

We convert the object that the doc.sents property returns into a list 
so we can refer to each sentence in the text by its index. (We could also 
directly iterate over a sequence of sentences contained in doc.sents using a 
for loop.)

Next, we define two lists containing the allowable transitive verbs and 
allowable direct objects, respectively:

verbList = [('order','want','give','make'),('show','find')]
dobjList = [('pizza','pie','pizzaz'),('cola','soda')]

These lists contain tuples of synonyms (refer to “Recog nizing Synonyms 
Using Predefined Lists” on page 117 for details).

We also need to define a list for allowable substitutes. To do so, we must 
determine what proforms the direct object could be. Let’s first figure out 
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what other phrases we could use in place of the last sentence, and then 
highlight the direct object in each phrase. Possible alternatives include the 
following:

I want another one. I want it again. I want the same. I want more.

So, we can define the substitute list as follows: 

substitutes = ('one','it','same','more')

Unlike the transitive verb and direct object lists, the substitute list has a 
simple structure, because we don’t need to group substitutes. The same sub-
stitute could refer to any of the direct objects. 

In addition to the lists, we might want to define a dictionary to hold the 
intent definition parts as they’re being extracted:

intent = {'verb': '', 'dobj': ''}

Now we’re ready to start the intent recognition process: 

for sent in doc.sents:
  for token in sent:
    if token.dep_ == 'dobj':
      verbSyns = [item for item in verbList if token.head.text in item]

      u dobjSyns = [item for item in dobjList if token.text in item]
      substitute =  [item for item in substitutes if token.text in item]
      if v(dobjSyns != [] or substitute != []) and wverbSyns != []:  
          intent['verb'] = verbSyns[0][0]

      x if dobjSyns != []:
          intent['dobj'] = dobjSyns[0][0]

The outer loop iterates over the sequence of sentences held in the Doc 
object. The inner loop, in turn, iterates over the tokens found in a sentence. 
We check each token to see whether it’s a direct object. If it is, we determine 
whether the direct object is part of either the direct object synonyms list or 
the substitutes list u. We also check whether the corresponding transitive 
verb is in the transitive verb synonyms list. 

We extract the direct object only if it’s in either the direct object syn-
onyms list or the substitutes list v. For example, we wouldn’t be interested 
in extracting the transitive verb from the following phrase (unless we sell 
apples, of course):

I want an apple. 

Nor are we interested in a transitive verb if it’s not in the allowable 
list w, even if its direct object satisfies this condition, as in the following 
phrase:

I like it. 
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That’s why, before picking up the transitive verb, we check not only 
whether the direct object is in either the direct object synonyms list or the 
substitutes list, but also whether the transitive verb is in the transitive verb 
synonyms list.

Finally, to pick up the direct object that defines the intent, we make 
sure we can find it in the direct object synonyms list x. Now we can com-
pose the intent definition:

intentStr = intent['verb'] + intent['dobj'].capitalize()

Optionally, we might want to print it to make sure everything works as 
expected:

print(intentStr)

We should get the following output:

orderPizza

This result indicates that the user intends to order a pizza. 

Try This
In some discourses, several sentences might separate an antecedent from its 
proform. For example, consider the following sequence of sentences:

I have finished my pizza. It was delicious. I want another one. 

Edit the script provided on page 124 so it can handle this or a similar 
sequence of sentences.

Summary
Intent recognition is a complex task that might require you to combine 
several approaches. In this chapter, you learned how to extract the most 
important parts of an utterance’s dependency tree for intent recognition. 
Then you analyzed them using predefined lists, semantic similarity, or both 
approaches. You also extracted the intent from a sequence of sentences by 
replacing proforms with their antecedents. 





9
S T O R I N G  U S E R  I N P U T 

I N   A   D A T A B A S E

Many applications designed for business 
need to transfer the data they work with to a 

database at some point. For  example, a food-
ordering chatbot might save an order form after 

filling it out using the information extracted from dia-
logue with a customer. Once the order appears in the 
database, it becomes available for further processing, 
and the product is eventually shipped to the customer. 

This chapter discusses how you can turn information extracted from 
submitted text into a structured format so you can store and manipulate it 
within a relational (row-and-column) database. Through examples, you’ll 
learn how a chatbot can shred input text into pieces and compose a ready-
for-database structure from it. 
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Converting Unstructured Data into Structured Data
Structured data is organized using a predefined data schema in a formatted 
repository. If you’ve worked with relational databases before, you know you 
must first convert any data you’ll enter in the database into a structured for-
mat so it fits into a table or set of related tables. 

The problem is that the natural language input that apps receive from 
users is unstructured, meaning it has no predefined organizational schema. 
Typical examples of unstructured data include text and multimedia con-
tent, such as emails, web pages, business documents, videos, photos, and 
so on. Although you can still store unstructured data in a database, usually 
you must perform some preprocessing when you insert it. For example, you 
might need to label photos so the database can classify them or assign IDs 
to text documents so the database can distinguish between them. 

Sometimes, you might need to perform more radical transformations 
to unstructured text content, such as extracting pieces of information from 
it, before grouping those pieces into a formatted structure. For example, a 
business chatbot typically needs to parse a customer’s utterances to fill in a 
certain form. A different app might extract just certain elements from a web 
page, label those elements, and then convert the information into a table, 
as shown in Figure 9-1. 

Apelsin is a software development 
company based in San Francisco. 
The company is quite small, with
only 26 employees, generating 
annual revenue of approximately 
$2 million.

Unstructured data

Structured data

Company

Apelsin

Activity Location Staff Revenue

Software
development

San
Francisco 26 2,000,000

Figure 9-1: An example of converting unstructured content  
into structured data 

Tools like spaCy reveal a text’s internal structure by tagging each token 
in a sentence with linguistic annotations. This preprocessing enables you 
to extract specific elements from it, usually by checking the text’s syntactic 
dependency labels. Figure 9-2 describes how a food-ordering chatbot might 
recognize and extract necessary elements from a user’s utterance by relying 
on the syntactic dependency labels spaCy assigns to each token when you 
apply the text-processing pipeline to it.
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A user’s utterance

I want a Greek pizza.

Intent recognition
and data extraction

Order form

I want a Greek pizza.

Product: pizza

Type: Greek

Qty: 1

Figure 9-2: A high-level view of how raw  
text can be converted into row–column data. 

Next, you’ll see how, once you’ve extracted these elements, you can 
structure and insert them into a database table as a row.

Extracting Data into Interchange Formats
Many current relational databases natively support multiple common data 
interchange formats. For example, MySQL natively supports XML and 
JSON, the two most common data interchange formats on the web. 

Your data format choice can affect the way in which you decide to col-
lect data. For example, if the database you’re using supports JSON, you can 
extract data directly into a JSON object that you’ll then send to the data-
base for further processing. A JSON object is a key-value data format sur-
rounded by curly brackets. It looks like this: 

{"product": "pizza", "type": "Chicago", "qty": 1}

Apart from basic values, such as strings and numbers, JSON supports 
complex values, such as arrays and other JSON objects. You’ll see how this 
works in “Building a Database-Powered Chatbot” on page 132.

In fact, using the JSON format significantly simplifies the process of 
composing a data structure for the database in your Python script. First, 
you don’t need to prepare a structure that conforms to a less widely used 
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format, which makes your code less tied to a given database type. Second, 
the elements in a JSON object can follow any order, which imposes fewer 
restrictions on how the process of determining and extraction of necessary 
elements from an input text can be organized. 

Figure 9-3 illustrates how a food-ordering chatbot app might interact 
with its underlying database using JSON.  

User

Import spaCy
 . . .

I want a Greek pizza.

NLP code

I want a Greek pizza.

1

{  
"product": "pizza",
"type": "Greek",
"qty": 1

}

Database

2

{  
  "response": "Order placed"
}

3

Your order has been placed!

4

Figure 9-3: The workflow of a food-ordering chatbot app 

In step 1, a user submits a request to the chatbot asking for a Greek 
pizza. In step 2, the chatbot processes the submitted utterance with spaCy, 
generating a JSON object that contains the information needed to take an 
order. In step 3, the JSON object representing the order form is submitted 
to the database, which stores the form and generates a response about it 
for the chatbot. In step 4, the chatbot informs the user about whether or 
not the order has been placed. 

Moving Application Logic to the Database
Notice that the database in the chatbot application in Figure 9-3 not only 
stores the submitted JSON object, but also generates a response to the 



Storing User Input in a Database   131

application about whether the operation of saving the order has been suc-
cessful. The reason is that the database runs a portion of the application 
logic. 

It’s quite common for database-powered applications to keep applica-
tion logic related to data processing within the database. This approach 
allows you to reduce data moves between the application’s logic tier and 
the underlying database, eliminating redundancy, improving data process-
ing efficiency, and maintaining data security. 

Figure 9-4 details the database part of the chatbot application depicted 
in Figure 9-3.

import spaCy
. . .

Python code

{  
  "response": "Order placed"
}

{  
  "product": "pizza",
"type": "Greek",

  "qty": 1
}

Stored procedures, triggers

order_ID product type qty

2546854 pizza Greek 1

Table

INSERT INTO orders

Figure 9-4: A more detailed view of the database used in the  
chatbot application depicted in Figure 9-3

In this application, the database will convert an input JSON object into 
relational data and store that data in a relational table in a way that guar-
antees that the data being inserted is correct and complete. If the value of 
a field is missing, the customer receives a message about what information 
they should supply.

You can check the value of each field before moving the input to the 
table with the help of stored procedures, ON ERROR clauses in SQL statements, 
or triggers defined on the table to which the data is sent. A more thorough 
discussion of SQL is outside the scope of this book. But in “Preparing Your 
Database Environment” on page 135, you’ll see an example of using SQL 
to create a database infrastructure to be used in the application, and then 
interact with this infrastructure using Python. 
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N O T E  If you’re using a database that doesn’t support features like converting JSON data 
into relational data, you’ll need to implement the logic that checks the data for com-
pleteness in Python on your own; however, this discussion is beyond the scope of this 
chapter. 

Building a Database-Powered Chatbot
Now that you have a basic idea of how to implement a database-powered  
chatbot app, let’s create a simple one for the application shown in Figure 9-3.  
The app should process a user’s utterance, extracting the information nec-
essary to fill in an order form, such as product name, product type, and 
amount. Then this information gets packed into a JSON object that is sent 
to the underlying database. The database should shred the JSON object 
into relational data and then send a response to the application based on 
the data’s completeness.

Gathering the Data and Building a JSON Object
We’ll start by developing the application’s logic tier and use Python to build 
a JSON object that we could then send to any database type. The following 
code shows what this implementation might look like: 

import spacy
nlp = spacy.load('en')
doc = nlp(u'I want a Greek pizza.')

u orderdict ={}
v for token in doc:
  w if token.dep_ == 'dobj':

    dobj = token
    x orderdict.update(product = dobj.lemma_)
    y for child in dobj.lefts:
      z if child.dep_ == 'amod' or child.dep_ == 'compound': 

        orderdict.update(ptype = child.text )
      { elif child.dep_ == 'det': 

        orderdict.update(qty = 1 )
      | elif child.dep_ == 'nummod': 

        orderdict.update(qty = child.text)
    break

We define the orderdict dictionary as a container for the JSON object 
being created u. We’ll be able to easily convert this dictionary to a JSON 
string later. 

Then we iterate over the utterance’s tokens v, looking for a direct 
object w. We might want a pizza, or we might ask someone to make us 
a pizza. In either case, “pizza” will be a direct object in our utterance so 
we’re hunting for a direct object here. Of course, a real implementation 
would make more checks. 

Once it’s found, we define a key-value pair in the orderdict dictionary, 
sending in product as the key and the direct object’s lemma as the value x. 
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We use lemmatization to reduce the possible word forms of a product’s 
name to its base form (converting from plural to singular in most cases). 

Next, we iterate over the direct object’s syntactic left children y, because 
that’s where we expect the information about the type of product requested. 
In terms of syntactic dependency labels, the product type can be either a 
compound or an adjectival modifier (amod) z. For example, spaCy would 
consider the word “Greek” in the phrase “a Greek pizza” an adjectival modi-
fier, whereas it considers the word “Chicago” in the phrase “a Chicago pizza” 
a compound. 

Now we check for the presence of a determiner in the children of 
the modifier or compound. The presence of the “a” determiner implies 
that a customer requests a single unit of a product {. In contrast, a word 
labeled with the dependency label nummod would indicate a particular num-
ber of units |. 

Print the orderdict dictionary using this command:

print(orderdict)

This should give you the following result: 

{'product': 'pizza', 'ptype': 'Greek', 'qty': 1}

Now we have a JSON string that we can send to an underlying database 
for further processing. 

Converting Number Words to Numbers
Before moving on to the code that will send your JSON string to a database, 
consider what it will look like when a user explicitly specifies the quantity of 
a product, as in the following utterance:

I want two Greek pizzas. 

If you put this into the previous script, you’d get the following result: 

{'product': 'pizza', 'ptype': 'Greek', 'qty': two}

In the first sample sentence, the value of the 'qty' key is a numeral. In 
the second, it’s a number spelled out as a word. At this stage, this difference 
doesn’t look like a problem. But the issue is that we must define a data type 
for each column of a relational table when we create it. Attempting to insert 
data of another type into that column will fail. 

You should prepare your chatbot for the fact that customers will specify 
a product’s quantity in any way they like. To solve this problem, you’ll have 
to convert strings representing number words to their corresponding inte-
ger values. 

To do this, define a list containing numbers spelled in words and sorted 
in increasing order; then iterate over that list to find the correct number. 
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In this example, we define a list for number words ranging from “zero” to 
“twenty,” which assumes we don’t expect that a customer will order more 
than twenty units of the same product with one transaction. 

We need to implement this conversion scenario as a function that  
takes either a number word or a number (in the latter case, no conversion  
is needed) and returns a number. We should then use the function to mod-
ify the script’s code in the preceding section. Here is what the implementa-
tion of such a function might look like: 

u def word2int(numword):
  num = 0

  v try:
    w num = int(numword)
    x return num

  except ValueError:
    y pass    
  z words = ["zero", "one", "two", "three", "four", "five", "six", "seven",
     "eight","nine", "ten", "eleven", "twelve", "thirteen", "fourteen", 
     "fifteen", "sixteen", "seventeen", "eighteen", "nineteen", "twenty"]
  { for idx, word in enumerate(words):
        | if word in numword:

          num = idx 
  } return num   

The word2int() function takes a single parameter: either a number word 
to be converted to the correspondent digits or a number already, in which 
case we won’t need to convert it u. The function has to handle both cases, 
because we don’t know which one we’ll find in a customer’s utterance. 

We use the try and except block to handle cases when no conversion 
is needed v. We check whether the input is an integer w, and if it is, all 
we have to do is return the input number as is x. Otherwise, we ignore an 
error caused by an attempt to treat a nonnumber value as an integer and 
move on to converting it to a number y. 

We define a list of number words, starting from zero and listing them 
in increasing order z. Then we iterate over this list with the enumerate() 
method {, looking for the word the function received as input |. When we 
find the match, we return the iteration number (the index of the word in 
the list) as the digit representation of the input number word }. 

Add the word2int() function definition to the previous script. Then 
move to the end of the script and find the following lines of code: 

      elif child.dep_ == 'nummod': 
        orderdict.update(qty = child.text)

Change them as follows, using the word2int() function defined in this 
section:

      elif child.dep_ == 'nummod': 
        orderdict.update(qty = word2int(child.text))
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Now let’s see how the script handles this sentence: 

I want two Greek pizzas. 

This time, you should get the following result: 

{'product': 'pizza', 'ptype': 'Greek', 'qty': 2}

The value of the 'qty' field is now a digit, and we have a consistent for-
mat to send to the database. 

Preparing Your Database Environment
To prepare your database environment, you need to install or obtain 
access to a database; create the components you’ll need in the database, 
such as a database schema, a table, and so on; and install a Python mod-
ule that enables you to interact with the database.

Although you can choose any database that can receive and process 
JSON data, such as an Oracle database, this section uses MySQL. The 
MySQL database has a long history of supporting the most popular data 
interchange formats, which are XML and JSON. Also, MySQL is the world’s 
most popular open source database and is available on a majority of  modern 
operating systems, including Linux, Windows, Unix, and macOS. MySQL 
has a freely downloadable version and commercial editions to meet specific 
business requirements. 

For this chapter, you can use MySQL Community Edition—the freely 
downloadable version available under the GPL license. To learn more about 
the MySQL Community Edition, visit its official page at https://www.mysql.com 
/products/community/. 

You’ll first need to install MySQL on your system. At the time of this 
writing, MySQL 8.0 is the most recent version. Refer to the “Installing 
and Upgrading MySQL” chapter at https://dev.mysql.com/doc/refman/8.0/en 
/installing.html in the MySQL 8.0 Reference Manual, or the equivalent chap-
ter for future versions of MySQL. Here, you’ll find the detailed installation 
instructions for your operating system. 

After installation, you can start the MySQL server using the command 
the installation guide specifies for your operating system. Before you can 
start working with the database, you need to obtain a password for the mysql 
superuser (‘root’@‘localhost’) generated during the installation. You’ll find 
the password in the installation error log file. 

Once you have the superuser password, you can connect to the MySQL 
server from a system terminal using the following command: 

$ mysql -uroot -p 
Enter password: ******
mysql>

If you prefer to use a GUI, you can take advantage of MySQL Workbench 
(https://www.mysql.com/products/workbench/), which is a unified visual tool 
designed to model and manage MySQL databases. 

https://www.mysql.com/products/community/
https://www.mysql.com/products/community/
https://dev.mysql.com/doc/refman/8.0/en/installing.html
https://dev.mysql.com/doc/refman/8.0/en/installing.html
https://www.mysql.com/products/workbench/
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After connecting to the server, your first step is to choose a new pass-
word for the root user, replacing the random password generated during 
the installation. Use the following command to do so:

ALTER USER 'root'@'localhost' IDENTIFIED BY 'Your-pswd';

Now you’re ready to start developing the infrastructure on the server 
that you need for your application. You’ll begin by creating a database that 
you’ll use as the container for the other objects the application needs to 
interact with. To create the database, enter the following command at the 
mysql> prompt: 

mysql> CREATE DATABASE mybot;
Query OK, 1 row affected (0.03 sec)

Then select the newly created database for use, as follows: 

mysql> USE mybot;
Database changed

You’re ready to start creating your database’s structure. For this  example, 
you’ll need a single table you create with the following command: 

CREATE TABLE orders (
  id INT NOT NULL AUTO_INCREMENT,
  product VARCHAR(30),
  ptype VARCHAR(30),
  qty INT,
  PRIMARY KEY (id)
);

With this database infrastructure set up, you need to install the MySQL 
Connector/Python driver, which allows your Python code to interact with 
that infrastructure. On any operating system, you can install Connector/
Python via pip, as follows:

pip install mysql-connector-python 

For further details on how to install this driver, check the documenta-
tion at https://dev.mysql.com/doc/connector-python/en/. 

Using the following simple script, ensure that you’ve installed 
Connector/Python: 

import mysql.connector
cnx = mysql.connector.connect(user='root', password='Your_pswd',
                              host='127.0.0.1',
                              database='mybot')
cnx.close()

If the install is successful, you should see no error messages. 

https://dev.mysql.com/doc/connector-python/en/
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Sending Data to the Underlying Database
Let’s return to the script we had on page 134. The following code con-
nects to your database and passes order data to the orders table. Append 
this code to the script: 

import json
u json_str = json.dumps(orderdict)

import mysql.connector
from mysql.connector import errorcode
try:

  v cnx = mysql.connector.connect(user='root', password='Your_pswd',
                                host='127.0.0.1',
                                database='mybot')

  w query = ("""INSERT INTO orders (product, ptype, qty)
  SELECT product, ptype, qty FROM
      JSON_TABLE(

        x %s,
        "$" COLUMNS(
          qty    INT PATH '$.qty', 
          product   VARCHAR(30) PATH "$.product",
          ptype     VARCHAR(30) PATH "$.ptype"
        )
      ) AS jt1""")

  y cursor = cnx.cursor()
  z cursor.execute(query, {(json_str,))
  | cnx.commit()
} except mysql.connector.Error as err:

  print("Error-Code:", err.errno)
  print("Error-Message: {}".format(err.msg))
finally:
  cursor.close()
  cnx.close() 

We start by converting the orderdict dictionary into a JSON string u. 
Next, we connect to the database v and define an insert SQL statement to 
be passed into the database for processing w. Note the use of a placeholder 
(called a bind variable) in the statement x. Using placeholders allows us to 
write SQL statements that accept inputs at runtime. 

Before we can execute the statement, we create a mysql.connector cursor 
object y, which enables operations over the objects in the database we’re 
connected to. Then we can execute the INSERT statement z, binding the 
JSON string { we obtained in the beginning of this code snippet to the 
placeholder in the statement. Note the use of the JSON_TABLE function that 
shreds the submitted JSON data to tabular data, making it appropriate for 
inserting into a relational table. 

After the execution of the INSERT statement, we need to explicitly com-
mit the statement’s changes with the commit() method |. Otherwise, the 
insertion will roll back when the connection closes (either explicitly with 
cnx.close() or when the script’s execution is complete). 
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The except block will begin to execute if an error occurs on the data-
base side }. In the next section, you’ll learn how to take advantage of this 
functionality when the JSON string passed in doesn’t contain all the fields. 

Now execute the script. If you don’t see any error messages, return to 
the mysql prompt you worked with in the preceding section and enter the 
following select statement:

mysql> SELECT * FROM orders;

ID   PRODUCT     PTYPE    QTY
---- ----------- -------- ---
1    pizza       Greek    2

If you can see this output, your Python script is working as expected. 

When a User’s Request Doesn’t Contain Enough Information 
Sometimes, a user’s request might not contain enough information to fill 
in all the fields in the order form. As an example, consider the following 
utterance: 

I want two pizzas.

Table 9-1 shows the order form the application discussed here will gen-
erate from this sentence. 

Table 9-1: An Order Form Missing Information

product ptype  quantity  

pizza 2

The value of the ptype field is missing because the user didn’t identify the 
type of pizza they want. To address this issue, enhance the INSERT statement 
in the previous script as follows:

  query = ("""INSERT INTO orders (product, ptype, qty)
  SELECT product, ptype, qty FROM
      JSON_TABLE(
        %s,
        "$" 
        COLUMNS(

             qty    INT PATH '$.qty' uERROR ON EMPTY, 
             product   VARCHAR(30) PATH "$.product" uERROR ON EMPTY,
             ptype     VARCHAR(30) PATH "$.ptype" uERROR ON EMPTY

        )
      ) AS jt1""");

We add the ERROR ON EMPTY option u to each column in JSON_TABLE. This 
option allows us to handle errors caused by trying to insert a JSON string 
that doesn’t contain all the fields it’s supposed to contain. 
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Now when you execute the script with the “I want two pizzas.” sample 
sentence, you should see the following output: 

Error-Code: 3665
Error-Message: Missing value for JSON_TABLE column 'ptype'

We could expand on the script so in such cases the chatbot asks the cus-
tomer to clarify their order using the following question:

What type of pizza do you want?

An answer might look like this: 

I want Greek ones.

The structure of the sentence representing the answer we’re supposed to 
receive here is similar to the structure of the original sentence. Therefore, 
we can use the same code to analyze this answer that we used to analyze 
the original sentence. Of course, this approach makes assumptions about a 
user’s response. A real implementation would start with this approach and 
then, if necessary, move on to the other possible response structures. For 
example, a user’s response might consist of a single word, “Greek.” In that 
case, all we need to do is to check whether it’s included in our list of pizza 
types. 

Try This
The error message tells you what specific field is missing. But you still need 
to extract this field name from the message so you can ask the customer to 
clarify a specific part of their order. One way to do this is to look at the object 
of the preposition in the message. For example, in the message, Error-Message: 
Missing value for JSON_TABLE column 'ptype', the object of the preposition 
is ptype. 

Summary
In this chapter, you learned how to cut raw text into shreds to insert the 
text into a relational database. You used the JSON format to interact with a 
database that can process a JSON input, extracting it into relational data. 
You also learned to implement some application logic within the database 
with the help of pure SQL, allowing you to move data processing closer to 
the data. To implement more complicated scenarios, you might need to use 
triggers and stored procedures—the details can be found in the documen-
tation for the database you’re using. 





10
T R A I N I N G  M O D E L S

As you learned in Chapter 1, spaCy con-
tains statistical neural network models 

trained to perform named entity recogni-
tion, part-of-speech tagging, syntactic depen-

dency parsing, and semantic similarity prediction. But 
you’re not limited to using only pretrained, ready-to-
use models. You can also train a model with your own 
training examples, tuning its pipeline components for 
your application’s requirements.

This chapter covers how to train spaCy’s named entity recognizer and 
dependency parser, the pipeline components that you most often need to 
customize to make the model you’re using specific to a particular use case. 
The reason is that a certain domain usually requires a specific set of entities 
and, sometimes, a certain way of parsing dependencies. You’ll learn how to 
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train an existing model with new examples and a blank one from scratch. 
You’ll also save a customized pipeline component to disk so you can load it 
later in another script or model. 

Training a Model’s Pipeline Component
You rarely have to train a model from scratch to satisfy your application’s 
specific requirements. Instead, you can use an existing model and update 
only the pipeline component you need to change. This process usually 
involves two steps: preparing training examples (sets of sentences with anno-
tations that the model can learn from), and then exposing the pipeline 
component to the training examples, as shown in Figure 10-1. 

train_data = [
  ('I need to be picked up at Greenwall.', {
     'entities':[(26,34,'GPE')]
  }),
...
]

I need to be picked up at Greenwall. 
Could you take me to Downtown?

Do you need a baby seat?

NER
�
�

Parser

Tagger

Pipeline Components

Training Temporarily 
disabled

Training Examples

Raw Text

Figure 10-1: The training process for a pipeline component

To prepare training examples, you convert raw text data into a training 
example containing a sentence and each token’s annotations. During the 
training process, spaCy uses the training examples to correct the model’s 
weights: the goal is to minimize the error (called the loss) of the model pre-
diction. Put simply, the algorithm calculates the relationship between the 
token and its annotation to determine the likelihood that a token should be 
assigned that annotation. 

A real-world implementation might require hundreds or even thousands 
of training examples to efficiently teach a certain component of a model. 
Before you start training the component, you need to temporarily disable 
all the model’s other pipeline components to protect them from unneces-
sary alterations. 
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Training the Entity Recognizer 
Suppose you’re developing a chatbot app for a taxi company. The app must 
correctly recognize all the names referring to districts within the city and 
its surroundings. To accomplish this, you might need to update a model’s 
named entity recognition system with your own examples, making it recog-
nize, for instance, the word “Solnce,” which refers to a neighborhood in a 
city, as a geopolitical entity. The following sections describe how you could 
complete this task.

Deciding Whether You Need to Train the Entity Recognizer 
Let’s begin by looking at how the existing named entity recognizer in the 
default English model (generally the en_core_web_sm model) recognizes 
the named entities of interest. It’s possible that you won’t need to update the  
named entity recognizer. For this task, you might use sentences common 
for booking a taxi, like this one:

Could you pick me up at Solnce?

To see how the recognizer will classify “Solnce” in the sentence, print 
the sentence’s named entities using the following script:

import spacy
nlp = spacy.load('en')
doc = nlp(u'Could you pick me up at Solnce?')
  for ent in doc.ents:
    print(ent.text, ent.label_)

In this example, “Solnce” is the only named entity, so the script gener-
ates the following single-line output: 

Solnce LOC

Note that the output for this entity can vary depending on the model 
and sentence you’re using. To get the description for the LOC entity label in 
the output, you can use the spacy.explain() function:

>>> print(spacy.explain('LOC'))
'Non-GPE locations, mountain ranges, bodies of water'

The result is that the named entity recognizer classified “Solnce” as a 
non-GPE location, which doesn’t match what you expect to see. To change 
this so the recognizer classifies “Solnce” as an entity of type GPE, you need to 
update the recognizer, as discussed in the following sections. 

N O T E  For simplicity, we’re using a single-named entity in this example. But you can create 
more names for districts with which to train the recognizer.
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Rather than updating the existing recognizer, you could replace it 
with a custom one.  However, in that case, you’d need many more training 
examples to retain the functionality that isn’t related to GPE entities but you 
might still need.

Creating Training Examples
Once you know you need to train the entity recognizer to satisfy your app’s 
needs, the next step is to create a set of appropriate training examples. For 
that, you need some relevant text. 

Likely, the best data source for creating such a training set is real cus-
tomer input that you gathered previously. Choose utterances that include 
the named entities you need to use for training. Typically, you’d log cus-
tomer input in a file as plaintext. For example, a customer input log file for 
the taxi app might contain the following utterances: 

Could you send a taxi to Solnce? 
Is there a flat rate to the airport from Solnce? 
How long is the wait for a taxi right now?

To create training examples from these utterances, you need to convert 
them into a list of tuples in which each training example represents a sepa-
rate tuple, as shown here:

train_exams = [
    u ('Could you send a taxi to Solnce?', {
        v 'entities': [(25, 32, 'GPE')]

    }),
    ('Is there a flat rate to the airport from Solnce?', {
        'entities': [(41, 48, 'GPE')]
    }),
    ('How long is the wait for a taxi right now?', {
        'entities': []
    })
] 

Each tuple consists of two values: the string representing an utterance u 
and the dictionary for the annotations of the entities found in that utter-
ance. The entity’s annotations include its start and end positions in terms 
of characters composing the utterance and the label to be assigned to the 
entity v.

Automating the Example Creation Process
As you’ve no doubt realized, creating a set of training examples manually 
can be time-consuming and error prone, especially if you have hundreds or 
thousands of utterances to process. You can automate this tedious task by 
using the following script, which quickly creates a set of training examples 
from the submitted text. 
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import spacy
nlp = spacy.load('en')

u doc = nlp(u'Could you send a taxi to Solnce? I need to get to Google. Could
you send a taxi an hour later?')

v #f = open("test.txt","rb")
#contents =f.read()
#doc = nlp(contents.decode('utf8'))

w train_exams = []
x districts = ['Solnce', 'Greenwal', 'Downtown']

for sent in doc.sents:
  entities = [] 
  for token in sent:
    if token.ent_type != 0: 

        y start = token.idx - sent.start_char
        if token.text in districts:
          entity = (start, start + len(token), 'GPE')
        else:
          entity = (start, start + len(token), token.ent_type_)
        entities.append(entity)
  tpl = (sent.text, {'entities': entities})

  z train_exams.append(tpl)

For readability, we pick up some utterances for processing in the usual 
way: by hardcoding them in the script u. But the commented lines of code 
show how we might pick up utterances from a file instead v.

Once we’ve obtained the utterances—either from a file or passed in to 
the doc explicitly—we can start generating a list of training examples from 
them. We begin by creating an empty list w. Next, we need to define a list 
containing the names of entities that we want the model to recognize differ-
ently than it currently does x. (This is the list of districts in this example.) 

Remember that real customer input might include entities that the recog-
nizer already correctly recognizes (say, Google or London), so we shouldn’t 
change the recognizer’s behavior when it classifies them. We create train-
ing examples for those entities and process all the entities presented in the 
utterances used for generating training examples, not only the new ones. A 
training set for a real implementation must include numerous examples for 
entities of different types. Depending on the application’s needs, the training 
set might include several hundred examples.

We iterate over the submitted utterances, creating a new empty entities 
list on each iteration. Then, to fill in this list, we loop over the tokens in 
the utterance, finding entities. For each found entity, we determine its start 
character index in the utterance y. We then calculate the end index by 
adding len(token) to the start index. 

Also, we must check whether the entity is in the list of entities to which 
we want to assign a new label. If so, we assign it the GPE label. Otherwise, the 
recognizer will use the current label in the entity annotations. After that, 
we can define a tuple representing the training example, and then append 
it to the training set z. 
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The script sends the training examples being generated to the train 
_exams list, which should look as follows after the script execution:

>>> train_exams
[

  u ('Could you send a taxi to Solnce?', {'entities': [(25, 31, 'GPE')]}),
  v ('I need to get to Google.', {'entities': [(17, 23, 'ORG')]}),
  w ('Could you send a taxi an hour later?', {'entities': []})

]

For simplicity, the training set we use here consists of just a few train-
ing examples. Notice that only the first one contains an entity from the 
list of entities we need to familiarize the recognizer with (the districts list 
in this example) u. That doesn’t mean that the second and third training 
examples aren’t useful. The second training example v mixes in another 
entity type, which prevents the recognizer from “forgetting” what it previ-
ously knew.

The third training example doesn’t contain any entity w. To improve the 
learning results, we need to mix in not only examples of other entity types, 
but also examples that don’t contain any entities. The following section “The 
Training Process” discusses the details of the training process.

Disabling the Other Pipeline Components
The spaCy documentation recommends disabling all the other pipeline com-
ponents before you start training a certain pipeline component, so you mod-
ify only the component you want to update. The following code disables all 
the pipeline components except for the named entity recognizer. You need to 
either append this code to the script introduced in the preceding section or 
execute it in the same Python session after that script (we’ll append the final 
piece of code in the next section, which covers the training process):

other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
nlp.disable_pipes(*other_pipes) 

Now you’re ready to start training the named entity recognizer to teach 
it to find the new entities defined in the training examples. 

The Training Process 
In the training process, you shuffle and loop over the training examples, 
adjusting the model with weights that more accurately reflect the relation-
ships between the tokens and the annotations. Refer back to Chapter 1 
for a more detailed explanation of neural network models, including what 
weights are.

To improve accuracy, you can apply several techniques to a training 
loop. For example, the following code illustrates how to process your train-
ing examples in batches. This technique shows the training examples to the 
model in different representations to avoid generalizations found in the 
training corpus. 
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Append the following code to the script that was first introduced in 
“Creating Training Examples” on page 144 and that was modified in the 
preceding section.

import random
from spacy.util import minibatch, compounding

u optimizer = nlp.entity.create_optimizer()
for i in range(25):

    v random.shuffle(train_exams)
    max_batch_size = 3

    w batch_size = compounding(2.0, max_batch_size, 1.001)
    x batches = minibatch(train_exams, size=batch_size)

    for batch in batches:
        texts, annotations = zip(*batch)

        y nlp.update(texts, annotations, sgd=optimizer)
z ner = nlp.get_pipe('ner')
{ ner.to_disk('/usr/to/ner')

Before we can begin training, we need to create an optimizer u—a 
 function that will be used during the training process to hold intermediate 
results between updates of the model weights. We could create an optimizer 
with the nlp.begin_training() method. But this method removes existing 
entity types. In this example, because we’re updating an existing model and 
don’t want it to “forget” the existing entity types, we use the nlp.entity.create 
_optimizer() method. This method creates an optimizer for the named entity 
recognizer without losing an existing set of entity types.

During the training process, the script shows the examples to the 
model in a loop, in random order, to avoid any generalizations that might 
come from the order of the examples v. The script also batches the train-
ing examples, which the spaCy documentation suggests might improve 
the effectiveness of the training process when the number of training 
examples is large enough. To make the batch size vary on each step, we use 
the  compounding() method, which yields a generator of batch sizes. In par-
ticular, it generates an infinite series of compounding values: it starts from 
the value specified as the first parameter and calculates the next value by 
multiplying the previous value by the compound rate specified as the third 
parameter, without exceeding the maximum value specified as the second 
parameter w. Then we batch the training examples using the minibatch() 
method. Doing so sets its size parameter to the iterator generated with the 
compounding() method invoked in the preceding line of code x. 

Next, we iterate over the batches, updating the named entity recognizer 
model on each iteration. Each batch requires us to update the model by call-
ing nlp.update() y, which makes a prediction for each entity found in the 
examples included in the batch and then checks the annotations provided 
to see whether it was correct. If the prediction is wrong, the training pro-
cess adjusts the weights in the underlying model so the correct prediction 
will score higher next time. 

Finally, we need to serialize the updated named entity recognizer 
component to disk so we can load it in another script (or another Python 
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session) later. For that, we first must obtain the component from the pipe-
line z and then save it to disk with its to_disk() method {. Be sure you’ve 
created the /usr/to directory in your system. 

Evaluating the Updated Recognizer
Now you can test the updated recognizer. If you’re performing the example 
discussed in this chapter in a Python session, close it, open a new one, and 
enter the following code to make sure the model has made the correct gen-
eralizations. (If you’ve built a separate script from the code discussed in 
the previous sections and run it, you can run the following code either as a 
separate script or from within a Python session.) 

import spacy
from spacy.pipeline import EntityRecognizer

u nlp = spacy.load('en', disable=['ner'])
v ner = EntityRecognizer(nlp.vocab)
w ner.from_disk('/usr/to/ner')
x nlp.add_pipe(ner, "custom_ner")
y print(nlp.meta['pipeline'])
z doc = nlp(u'Could you pick me up at Solnce?')

for ent in doc.ents:
  print(ent.text, ent.label_)

We first load the pipeline components without the named entity recog-
nizer component u. The reason is that training an existing model’s pipe-
line component doesn’t permanently override the component’s original 
behavior. When we load a model, the original versions of the components 
composing the model’s pipeline load by default; so to use an updated ver-
sion, we must explicitly load it from disk. This allows us to have several 
 custom versions of the same pipeline component and load an appropriate 
one when necessary. 

We create this new component in two steps: constructing a new pipeline 
instance from the EntityRecognizer class v, and then loading the data into it 
from disk, specifying the directory in which we serialized the recognizer w. 

Next, we add the loaded named entity recognizer component to the cur-
rent pipeline, optionally using a custom name x. If we print out the names 
of the currently available pipeline components y, we should see that custom 
name among the 'tagger' and 'parser' names. 

The only task left is test the loaded named entity recognizer compo-
nent. Be sure to use a different sentence than the one used in the training 
dataset z.

As a result, we should see the following output:

Available pipe components: ['tagger', 'parser', 'custom_ner']
Solnce GPE

The updated named entity recognizer component can now recognize 
the custom entity names correctly. 



Training Models   149

Creating a New Dependency Parser
In the following sections, you’ll learn how to create a custom dependency 
parser suitable for a specific task. In particular, you’ll train a parser that 
reveals semantic relations in a sentence rather than syntactic dependen-
cies. Semantic relations are between the meanings of words and phrases in a 
sentence. 

Custom Syntactic Parsing to Understand User Input
Why would you need semantic relations? Well, suppose your chatbot app is 
supposed to understand a user’s request, expressed in plain English, and 
then transform it into a SQL query to be passed into a database. To achieve 
this, the app performs syntactic parsing to extract the meaning, shredding 
the input into pieces to use in building a database query. For example, 
imagine you have the following sentence to parse:

Find a high paid job with no experience. 

A SQL query generated from this sentence might look like this: 

SELECT * FROM jobs WHERE salary = 'high' AND experience = 'no'

To begin with, let’s look at how a regular dependency parser would pro-
cess the sample sentence. For that, you might use the following script: 

import spacy
nlp = spacy.load('en')
doc = nlp(u'Find a high paid job with no experience.')
print([(t.text, t.dep_, t.head.text) for t in doc])

The script outputs each token’s text, its dependency label, and its syn-
tactic head. If you’re using the en_core_web_sm model, the result should look 
as follows:

[
  ('Find', 'ROOT', 'Find'), 
  ('a', 'det', 'job'),
  ('high', 'amod', 'job'),
  ('paid', 'amod', 'job'),
  ('job', 'dobj', 'Find'),
  ('with', 'prep', 'Find'),
  ('no', 'det', 'experience'),
  ('experience', 'pobj', 'with'),
  ('.', 'punct', 'Find')
]
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Diagrammatically, this dependency parsing looks like Figure 10-2. 

Find a high paid job with no experience.

VERB ADV VERB NOUN ADP DET NOUN

prep

amod

det

DET

det

dobj

dobj

amod

Figure 10-2: The dependency parsing of the sample sentence

This syntactic parsing probably won’t help you generate the desired 
database query from the sentence. The SQL query shown earlier in this sec-
tion uses the SELECT statement to select a job that satisfies the requirements 
“high paid” and “no experience.” In this logic, the word “ job” should be 
connected with not only “high paid” but also “no experience,” but the syn-
tactic parsing doesn’t connect “ job” with “no experience.” 

To meet your processing needs, you might want to change labeling in a 
way that will simplify the task of generating database queries. For that, you 
need to implement a custom parser that shows semantic relations rather 
than syntactic dependencies. In this case, that means you’d want an arc 
between the words “ job” and “experience.” The following sections describe 
how to implement this. 

Deciding on Types of Semantic Relations to Use
First, you need to choose a set of relation types to use for labeling. The 
spaCy documentation contains an example of a custom message parser 
(https://spacy.io/usage/training/#intent-parser) that uses the following seman-
tic relations: ROOT, PLACE, ATTRIBUTE, QUALITY, TIME, and LOCATION. You might, for 
example, assign PLACE to a place at which some activity occurs, like “hotel” 
in the utterance, “I need a hotel in Berlin.” “Berlin” would be a LOCATION in  
this same utterance, allowing you to distinguish between geographical 
areas and smaller settings.  

To comply with the semantics used in this example, you might add one 
more type to the list: ACTIVITY, which you could use to label the word “ job” 
in the sample sentence. (Of course, you could just use the original set of 
relation types. After all, a job is typically associated with a workplace, for 
which you could use the type PLACE.) 

Creating Training Examples 
As usual for the process of training a pipeline component, you start by pre-
paring training examples. When training a parser, you need information 
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about each token’s dependency label and the head of each relation. In this 
example, you use only a couple of training examples to keep it short and 
simple. Of course, a real-world implementation would require many more 
to train a parser component. 

TRAINING_DATA = [
    ('find a high paying job with no experience', {
        'heads': [0, 4, 4, 4, 0, 7, 7, 4],  
        'deps': ['ROOT', '-', 'QUALITY', 'QUALITY', 'ACTIVITY', '-', 'QUALITY', 'ATTRIBUTE']
    }),
    ('find good workout classes near home', {
        'heads': [0, 4, 4, 4, 0, 6, 4], 
        'deps': ['ROOT', '-', 'QUALITY', 'QUALITY', 'ACTIVITY', 'QUALITY', 'ATTRIBUTE']
    })
] 

Notice that the syntactically related words might not always be related 
semantically in the new parser. To see this clearly, you can perform the 
following test, which generates a list of the heads of the syntactic dependen-
cies found in the sample sentence from the first training example in the 
TRAINING_DATA list:

import spacy
nlp = spacy.load('en')
doc = nlp(u'find a high paying job with no experience')
heads = []
for token in doc:
    heads.append(token.head.i)
print(heads)

Assuming you’re using the en_core_web_sm model, this code should out-
put the following token head indexes: 

[0, 4, 4, 4, 0, 4, 7, 5]

When you compare this list with the heads provided for this same sen-
tence in the TRAINING_DATA list, you should notice discrepancies. For example, 
in the training example, the word “with” is a child of the word “experience,” 
whereas, according to standard syntactic rules, “with” is a child of “ job” in 
this sentence. This deviation makes sense if we slightly change the sentence: 

find a high paying job without any experience

In terms of semantics, “without” can be thought of as a modifier for 
“experience,” because “without” changes the meaning of “experience.” 
Modifiers, in turn, are always dependent on the word they modify. Therefore, 
considering “without” as the child in the without/experience pair in this 
example is quite reasonable when taking semantics into consideration. 
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Training the Parser
The following script illustrates how to train a parser from scratch using a 
blank model. In this example, creating a brand-new parser is more reason-
able than updating an existing one: the reason is that attempting to train 
an existing syntactic dependency parser to recognize semantic relations as 
well would be very difficult, because the two kinds of relations often con-
flict. But this doesn’t mean that you can’t use your custom parser with exist-
ing models. You can load it to any model to replace its original syntactic 
dependency parser. 

To train the parser, the following script uses the training examples 
from the TRAINING_DATA list defined in the preceding section. Be sure to 
 prepend the TRAINING_DATA list to the code that follows: 

import spacy
u nlp = spacy.blank('en')
v parser = nlp.create_pipe('parser')
w nlp.add_pipe(parser, first=True)
x for text, annotations in TRAINING_DATA:
  y for d in annotations.get('deps', []):
    z parser.add_label(d)
{ optimizer = nlp.begin_training()

import random
| for i in range(25):
    } random.shuffle(TRAINING_DATA)

    for text, annotations in TRAINING_DATA:
        nlp.update([text], [annotations], sgd=optimizer)

~ parser.to_disk('/home/oracle/to/parser')

We start by creating a blank model u. Then we create a blank parser 
component v and add it to the model’s pipeline w. 

In this example, we derive the set of labels for the parser to use from the 
TRAINING_DATA list that we had to add to the code. We implement this opera-
tion in two loops. In the outer loop, we iterate over the training examples, 
extracting the tuple with the head and dependency annotations from each 
example x. In the inner loop, we iterate over the tuple of annotations, 
extracting each label from the deps list y and adding it to the parser z. 

Now we can start the training process. First, we acquire an optimizer { 
and then implement a simple training loop |, shuffling the training exam-
ples in a random order }. Next, we iterate over the training examples, updat-
ing the parser model on each iteration. 

Finally, we serialize the custom parser to disk so we can load and use it 
later in another script ~. 

Testing Your Custom Parser
You can load a custom parser from disk to an existing model’s pipeline 
using the following script: 

import spacy
from spacy.pipeline import DependencyParser
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u nlp = spacy.load('en', disable=['parser'])
v parser = DependencyParser(nlp.vocab)
w parser.from_disk('/home/oracle/to/parser')
x nlp.add_pipe(parser, "custom_parser")

print(nlp.meta['pipeline'])
doc = nlp(u'find a high paid job with no degree')

y print([(w.text, w.dep_, w.head.text) for w in doc if w.dep_ != '-'])

Notice that this script is similar to the script for loading a custom named 
entity recognizer shown earlier in “Evaluating the Updated Recognizer” on 
page 148. We load a regular model, disabling a certain component—the 
parser, in this example u. Next, we create a parser v and load it with the 
data previously serialized to disk w. To make the parser available, we need 
to add it to the model’s pipeline x. Then we can test it y. 

The script should produce the following output: 

['tagger', 'ner', 'custom_parser']
[
  ('find', 'ROOT', 'find'),
  ('high', 'QUALITY', 'job'),
  ('paid', 'QUALITY', 'job'),
  ('job', 'ACTIVITY', 'find'),
  ('no', 'QUALITY', 'degree'),
  ('degree', 'ATTRIBUTE', 'job')
]

The original parser component has been replaced with the custom one 
in a regular model, whereas the other pipeline components remain the 
same. Later, we could reload the original component by loading the model 
using spacy.load('en'). 

Try This
Now that you have a custom parser trained to reveal semantic relations, 
you can put it to use. Continue with the example from this section by writ-
ing a script that generates a SQL statement from a plain English request. 
In that script, check the ROOT element of each request to determine whether 
you need to construct a SELECT statement. Then use the ACTIVITY element to 
refer to the database table against which the statement being generated will 
be executed. Use the QUALITY and ATTRIBUTE elements in the statement’s WHERE 
clause. 

Summary
You can download a set of pretrained statistical models from spaCy to use 
immediately. But these models might not always suit your purposes. You 
might want to improve a pipeline component in an existing model or create 
a new component in a blank model that will better suit your app’s needs.
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In this chapter, you learned how to train an existing named entity 
 recognizer component to recognize an additional set of entities that weren’t 
labeled correctly by default. Then you learned how to train a custom parser 
component to predict a type of tree structure related to input text that shows 
semantic relations rather than syntactic dependencies.

In both cases, the first (and perhaps the most important and time- 
consuming) step is to prepare training data. Once you’ve done that, you’ll 
need only a few more lines of code to implement a training loop for your 
custom component.



11
D E P L O Y I N G  Y O U R  O W N  C H A T B O T 

In previous chapters, you hardcoded all 
the input to your NLP scripts by manu-

ally assigning text to a doc object. But when 
you build chatbots for tasks like taking orders, 

things get more complicated. You’ll need to deploy 
your app to a bot channel, such as Telegram, which 
facilitates communication between a bot and a user.

This chapter begins with an overview of how to organize a chatbot app. 
You’ll be guided through the process of preparing a platform for your chat-
bot with Telegram and then deploying the bot to that platform. You’ll learn 
how to process multiple kinds of user input with the Telegram API and hold 
the state of a conversation to keep track of which questions have already 
been asked. 
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How Implementing and Deploying a Chatbot Works
This section looks closely at how information is transmitted between a typi-
cal chatbot and a user, as well as at the structure this transmission needs. 

A typical chatbot app consists of multiple tiers. After you’ve implemented 
the logic for processing user input on your machine, you’ll need a messenger 
app that allows you to create accounts that programs operate. Users won’t 
interact with the bot implementation on your machine directly; instead, 
they’ll chat with the bot through the messenger. Apart from a messenger, 
your chatbot might require some additional services, such as a database or 
other storage. 

The diagram in Figure 11-1 represents how a typical chatbot applica-
tion combines these tiers.

User

Bot API

Access token

Message
handlers

Bot application Messenger

1. Checking for 
a message

2. Sending
a message
to the bot

3. User’s message

4. Bot’s reply

Figure 11-1: Typical interactions between a user and a bot  
integrated to a messenger

The bot application first sends requests to the messenger in an infinite 
loop, checking whether a user has started a conversation. These requests 
include an authentication token generated when the developer created the 
bot in the messenger. An authentication token (also called an access token 
or API key) is unique to the bot that allows the messenger to recognize 
requests coming from this particular bot. 

When a user sends a message to the bot, the messenger processes it and 
then forwards it to the addressee. The bot chooses an appropriate handler—
a routine that generates responses to a certain type of user messages—and 
sends the generated reply to the user.  
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The intermediary program that the chatbot uses to interact with users is 
often a bot platform provided by a messenger app, such as Skype, Facebook 
Messenger, or Telegram. From the messenger’s standpoint, the bot is a third-
party application that runs inside the messenger. 

The next section guides you through the process of deploying a chatbot 
implemented in Python to the Telegram’s bot platform. You’ll see some bot 
implementation details that are specific to the Telegram’s bot platform and 
will learn to use its features to make bot development easy. 

I chose the Telegram bot platform for this example because it provides 
comprehensive resources for Python developers, including the Python 
Telegram Bot documentation, guides and tutorials, and examples on 
GitHub. That is, Telegram provides everything you need to build a chatbot 
in Python. In other messaging apps, like Facebook Messenger for example, 
you’d need to use third-party tools, such as Flask or Ngrok, complicating a 
bot’s implementation and not strictly focusing on NLP tasks. 

Using Telegram as a Platform for Your Bot
Telegram is a cloud-based messenger and one of the top messenger apps 
in the world. Among other features, it provides a platform for creating bots 
along with a Python library that offers an easy-to-use interface. You can use 
Telegram on Android, iOS, Windows, Linux, and macOS platforms. But it’s 
primarily designed for smartphones. 

Creating a Telegram Account and Authorizing Your Bot
Before you can create a bot in Telegram, you must sign up for a Telegram 
account. To do so, you’ll need a smartphone or tablet that runs either iOS or 
Android. A PC version of Telegram won’t work for this operation. However, 
once you create a Telegram account, you can use it on a PC. 

You’ll find steps that guide you through the process of creating a 
Telegram account at https://telegramguide.com/create-a-telegram-account/. 
Once you have a Telegram account, you can create a bot. You can do this 
from either a smartphone or a PC, as described in the following steps: 

1. In the Telegram app, perform a search for @BotFather or open the 
URL https://telegram.me/botfather/. BotFather is a Telegram bot that man-
ages all the other bots in your account. 

2. On the BotFather page, click the Start button to see the list of com-
mands that you can use to set up your Telegram bots. 

3. To create a new bot, enter the /newbot command in the Write a message 
box. You’ll be prompted for a name and a username for your bot. Then 
you’ll be given an authorization token for the new bot. Figure 11-2 
shows a screenshot of this process on a smartphone. 

https://telegramguide.com/create-a-telegram-account/
https://telegram.me/botfather
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Figure 11-2: Creating a new bot in Telegram using a smartphone

Now you can integrate the bot functionality implemented on your 
machine in a Python file with the bot you just created in Telegram, as dis-
cussed in the next section. 

N O T E  It’s important to know that a bot you just created in Telegram doesn’t implement the 
logic for handling user input. In fact, it’s just a wrapper for the actual bot you need 
to implement on your own.

Getting Started with the python-telegram-bot Library
To connect chatbot functionality implemented in Python, you’ll need the 
python-telegram-bot library, which is built on top of the Telegram Bot API. 
The library provides an easy-to-use interface for bot programmers develop-
ing apps for Telegram. It allows you to focus on coding the bot rather than 
on the details related to the interactions between the messenger and the 
bot implementation. 

The python-telegram-bot library is free software distributed under an 
LGPLv3 license. You can install or upgrade it via pip using the following 
command: 

$ pip install python-telegram-bot --upgrade

N O T E  The examples provided throughout the rest of this chapter assume that you’re using 
python-telegram-bot version 12.0 or later. 

Once you’ve installed the library, use the following lines of code to 
perform a quick test to verify that you can access your Telegram bot from 
Python. You must have an internet connection for this test to work.
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import telegram
bot = telegram.Bot(token='XXXXXX...') 

In place of 'XXXXX', include the token you were given when creating the 
bot. Then check your credentials using this line: 

print(bot.get_me())

If the bot.get_me() function returns your credentials, the bot’s authenti-
cation token you specified previously is valid. 

Using the telegram.ext Objects
To build a real bot, you’ll need to use the telegram.ext objects, includ-
ing telegram.ext.Updater and telegram.ext.Dispatcher. These are two of the 
most important objects in the library, because they’re required in every 
implementation. In a nutshell, an Updater object receives the messages from 
Telegram and delivers them to a Dispatcher. In turn, the Dispatcher passes 
the data to an appropriate handler for processing. The following code illus-
trates how to use these objects in a simple echo bot that replies to each mes-
sage with a message that has the same text: 

from telegram.ext import Updater, MessageHandler, Filters
#function that implements the message handler 

u def echo(update, context):
  update.message.reply_text(update.message.text)
#creating an Updater instance

v updater = Updater('TOKEN', use_context=True)
#registering a handler to handle input text messages
updater.dispatcher.add_handler(MessageHandler(Filters.text, echo))
#starting polling updates from the messenger 
updater.start_polling()
updater.idle()

We start by importing the Updater and MessageHandler modules from the 
telegram.ext package. Then we define the echo() function, which takes two 
objects as parameters: update and context u. The update object represents 
an incoming message, which can be text, a photo, a sticker, and so on. The 
context object contains attributes that can hold data from the same chat and 
user. Both update and context are generated for you behind the scenes and 
passed to the callback—a message processing function assigned to a certain 
handler. In this example, the text message handler’s callback function is 
echo(); it contains a single line of code that instructs Telegram to return a 
user’s text message without any change. 

Next, we create an Updater object v, which we’ll use to orchestrate the 
bot execution process throughout the script. When we create an Updater 
object, a Dispatcher object is created automatically for us, allowing us to 
register handlers for different types of input data, such as text and photo. 
In this example, we register a single handler designed to handle only text 
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messages, passing it the callback function implemented earlier in this script. 
Now the chatbot will call the callback function every time it receives a 
Telegram message that contains text.

Then we start the bot by invoking the start_polling() method of the 
Updater, which launches the process of polling new messages from the mes-
senger. Because start_polling() is a non-blocking method, we also have 
to call the idle() method of the Updater, which blocks our script until a 
message is received or a user enters an exit shortcut (ctrl-C). For further 
details on the classes and methods available in the python-telegram-bot 
library, read the Python Telegram Bot’s documentation.

To test the script, run it on an internet-connected machine. Once it’s 
running, any Telegram user can start a conversation with your chatbot. 
In the Telegram app, search for @<username>, entering the username you 
gave your bot when you created it; then select it. To start a conversation, 
click the /start button or enter the /start command. You can then start 
sending messages to your bot. Because you’ve implemented an echo bot, 
any reply message from the bot should contain the same text you sent it.

Creating a Telegram Chatbot That Uses spaCy
In the preceding section, we used the python-telegram-bot library and built 
a simple script integrated into Telegram. Let’s now enhance our imple-
mentation and add spaCy to make sure the bot created in Telegram is fully 
operational. 

The following code creates a simple bot that processes a user’s utter-
ance and determines whether or not it contains a direct object. Based on 
that information, it generates a reply message for the user. This code isn’t 
very useful on its own, but it should show you how to connect text-processing 
code implemented with spaCy to the code implemented with the python-
telegram-bot library.

import spacy
from telegram.ext import Updater, MessageHandler, Filters
#the callback function that uses spaCy

u def utterance(update, context):
  msg = update.message.text
  nlp = spacy.load('en')
  doc = nlp(msg)
  for token in doc:
    if token.dep_ == 'dobj':
      update.message.reply_text('We are processing your request...') 
      return
  update.message.reply_text('Please rephrase your request. Be as specific as  
  possible!')     
#the code responsible for interactions with Telegram
updater = Updater('TOKEN', use_context=True)
updater.dispatcher.add_handler(MessageHandler(Filters.text, utterance))
updater.start_polling()
updater.idle()
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Notice that the code responsible for interactions with Telegram is the 
same as in the preceding script. The only difference here is the implemen-
tation of the callback function u. In this case, the utterance() function uses 
spaCy to process a user’s input.

In that function, we first extract the message text from the update object 
passed to the function. Next, we convert it into a spaCy Doc object and then 
check whether the utterance in the doc includes a direct object. If the utter-
ance doesn’t include a direct object, we ask the user to be more specific. For 
example, a user might say “I am hungry,” which implies they want to order 
some food. But to place an order, we need them to be more specific; for 
example, “I want a pizza.” 

Perhaps the most interesting aspect of this example is that it illustrates 
where utterances that spaCy will process can come from in a bot applica-
tion. In the examples in previous chapters, we used utterances hardcoded in 
scripts. This is the first time you can see how real chatbots obtain their input. 

Expanding the Chatbot
Now that you generally know how to integrate a chatbot that uses spaCy 
into Telegram, let’s create a more interesting bot. For example, you might 
enhance the bot’s functionality in the previous section so it extracts the 
intent from a user’s message rather than just printing a message that the 
request is being processed. To accomplish this, you could recycle a script 
from one of the previous chapters.

Go back to the script in “Recognizing Synonyms Using Predefined Lists” 
on page 117 in Chapter 8, which uses lists of synonyms to extract the intent 
from a submitted utterance. Put the code from this script into a separate 
function, say, extract_intent(), which should take a single parameter—the 
text of a user’s message as a Doc object (be sure to exclude the line of code 
with the hardcoded utterance at the beginning of the script as well as the 
line that prints the intent at the end). Additionally, the function you’re creat-
ing must return a recognized intent as a string. In the script you’re creating, 
place the new function above the callback function and revise the callback 
so it looks as follows:

...
def extract_intent(doc):
  #Put the code from Chapter 8 here 

def utterance(update, context):
  msg = update.message.text
  nlp = spacy.load('en')
  doc = nlp(msg)
  for token in doc:
    if token.dep_ == 'dobj':

      u intent = extract_intent(doc) 
      v if intent == 'orderPizza': 

        update.message.reply_text('We need some more information to place your
        order.')
      elif intent == 'showPizza': 
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        update.message.reply_text('Would you like to look at our menu?')
      else:
        update.message.reply_text('Your intent is not recognized.')
      return
  update.message.reply_text('Please rephrase your request. Be as specific as  
  possible!')     
...

We call the newly created extract_intent() function from within the 
utterance callback to obtain the user’s intent u. Then we take an appropri-
ate action, depending on the intent obtained. In this example, we simply 
send the user a relevant message v.  

Although we could put the code from Chapter 8 into the callback func-
tion directly, doing so would decrease the overall readability of the code, so 
it’s considered bad practice. 

Holding the State of the Current Chat
The bot you have now does more than simply evaluate a user’s message; 
it can recognize a user’s intent. Still, this isn’t enough to take orders from 
users. The primary flaw is that the chatbot will use the same utterance call-
back function for each user input, even when the intent has been recognized 
and it’s time to ask the user additional questions. 

To address this problem, you need to hold the state of the current chat so 
your bot knows what questions have already been answered and what it still 
has to ask. Then you’ll need to modify the callback so it can process user 
messages according to the chat’s current state. 

This bot could work as follows: if the chatbot hasn’t yet discovered an 
intent, it should ask the user to express it. After finding the intent, the bot 
should switch to another question that is relevant to the conversation’s cur-
rent state. 

To help you simplify this kind of implementation, the python-telegram-bot 
library includes the ConversationHandler object; it allows you to define entry 
points and states of the conversation by tying them to a handler. 

An entry point—for example, a Telegram command like /start—is 
attached to a handler that can trigger the start of a chat. The handler’s call-
back must return the initial state of conversation; this action determines what 
handler to use for the user message that follows. To change the state of con-
versation, the handler’s callback returns a new state after replying to the user. 

The following code includes fragments of a script that illustrates how 
to change the conversation’s state between a chatbot and a user using 
ConversationHandler:

def start(update, context):
...

    u return 'ORDERING'
def intent_ext(update, context):
...

    v if context.user_data.has_key('intent'):
        return 'ADD_INFO'
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    else:
        update.message.reply_text('Please rephrase your request.')
        return 'ORDERING'
def add_info(update, context):
...
    return ConversationHandler.END
def cancel(update, context):
...
    return ConversationHandler.END
...
def main():
...
    disp = updater.dispatcher
    conv_handler = ConversationHandler(
        entry_points=[CommandHandler('start', start)],
        states={

            w 'ORDERING': [MessageHandler(Filters.text,
                                        intent_ext)
                        ],
            'ADD_INFO': [MessageHandler(Filters.text,
                                        add_info)
                        ],
        },
        fallbacks=[CommandHandler('cancel', cancel)]
    )
    disp.add_handler(conv_handler)
...

Using ConversationHandler lets us define several callback functions and 
the order in which they should be called. A callback processes the user’s 
message, and depending on the processing results, might change the state 
of the conversation flow. 

In this example, the callback for the /start command switches the 
conversation to the ORDERING state u, which means that the next message 
coming in from the user will be processed by the intent_ext() function. 
The reason is that the intent_ext() function is the callback that belongs to 
the ORDERING state’s handler w, as defined in the ConversationHandler object’s 
states dictionary. 

Note that the chatbot can switch between states based on a conditional 
logic, as illustrated in the intent_ext() function: there, the conversation’s 
state will change to ADD_INFO (the state in which you collect additional infor-
mation) only if the intent has been recognized v. 

Putting All the Pieces Together
Now that you have a cursory understanding of how to structure a Telegram 
bot that follows a predefined conversation flow, let’s look at what a full 
implementation of such a script might look like. This bot needs to ask the 
user a series of questions, one after another, to complete an order form. 
Because this is a simplified example, the chatbot can process only one 
intent, orderPizza, and ask a user to specify only the type of pizza when com-
pleting the order form.



164   Chapter 11

The following script is broken into chunks representing each function 
definition:

import logging
import sys
import spacy
from telegram.ext import Updater, CommandHandler, MessageHandler, Filters, ConversationHandler
#allows you to obtain generic debug info
logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)

def extract_intent(doc):
  #Here should be the code created as suggested in the Expanding the Chatbot section earlier
  ...
  return intent

The extract_intent() function extracts the intent from a submitted utter-
ance. We’ll call this function from within the intent_ext() callback function 
defined next. The code for extract_intent() isn’t provided here, but you can 
use the code described earlier in “Expanding the Chatbot” on page 161.

def details_to_str(user_data):
    details = list()
    for key, value in user_data.items():
        details.append('{} - {}'.format(key, value))
    return "\n".join(details).join(['\n', '\n'])

The details_to_str() function simply converts the content of the user_data  
dictionary to a string. The user_data dictionary contains information that 
the chatbot will extract from the conversation, such as the kind of pizza and 
number of pizzas the user wants. The bot includes this information in the 
final message sent to the user.

So far, we have defined the helper functions that will be invoked—either 
directly or indirectly—from within the bot’s callback functions. Let’s now 
define the callback functions. 

def start(update, context):
    update.message.reply_text('Hi! This is a pizza ordering app. Do you want to order something?')
    return 'ORDERING'

The start() function is the callback for the /start Telegram command. 
In other words, the chatbot calls this function upon starting a chat. The 
function returns the ORDERING state, which means that the next message 
received will be processed by the callback attached to the ORDERING state’s 
handler (the intent_ext() function in this example). 

def intent_ext(update, context):
  msg = update.message.text
  nlp = spacy.load('en')
  doc = nlp(msg)
  for token in doc:
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    if token.dep_ == 'dobj':
      intent = extract_intent(doc) 
      if intent == 'orderPizza': 
        context.user_data['product'] = 'pizza'
        update.message.reply_text('We need some more information to place your order. What type  
        of pizza do you want?')
        return 'ADD_INFO'
      else:
        update.message.reply_text('Your intent is not recognized. Please rephrase your request.')
        return 'ORDERING'
      return
  update.message.reply_text('Please rephrase your request. Be as specific as possible!')     

For simplicity, the intent_ext() function used here can recognize only 
one intent: orderPizza. If it detects this intent, it returns the ADD_INFO state. 
Otherwise, it returns the ORDERING state, which will cause the intent_ext() 
function to be invoked again to process the next user message. The ADD_INFO 
state’s handler can be implemented as follows:

def add_info(update, context):
  msg = update.message.text
  nlp = spacy.load('en')
  doc = nlp(msg)
  for token in doc:
    if token.dep_ == 'dobj':
      dobj = token
      for child in dobj.lefts:
        if child.dep_ == 'amod' or child.dep_ == 'compound': 
          context.user_data['type'] = child.text
          user_data = context.user_data
          update.message.reply_text("Your order has been placed."
                                    "{}"
                                    "Have a nice day!".format(details_to_str(user_data)))
          return ConversationHandler.END
    update.message.reply_text("Cannot extract necessary info. Please try again.")
    return 'ADD_INFO'

The add_info() function is the callback for the ADD_INFO state handler. In 
this implementation, it expects that a user ordering pizza will specify the 
type of pizza they want, then switches the state to ConversationHandler.END, 
the last state, as follows: 

def cancel(update, context):
    update.message.reply_text("Have a nice day!")
    return ConversationHandler.END

The cancel() function used here simply sends a goodbye message to the 
user and switches the state to ConversationHandler.END.

Finally, the main() function should look like this: 

def main():
    #Replace TOKEN with a real token 
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    updater = Updater("TOKEN", use_context=True)
    disp = updater.dispatcher
    conv_handler = ConversationHandler(
        entry_points=[CommandHandler('start', start)],
        states={
            'ORDERING': [MessageHandler(Filters.text,
                                        intent_ext)
                        ],
            'ADD_INFO': [MessageHandler(Filters.text,
                                        add_info)
                        ],
        },
        fallbacks=[CommandHandler('cancel', cancel)]
    )
    disp.add_handler(conv_handler)
    updater.start_polling()
    updater.idle()
if __name__ == '__main__':
    main()

As usual, a bot script’s main() function orchestrates the bot execution 
process.

You can test the script using either the Telegram web app on a com-
puter or the Telegram app on a smartphone. Figure 11-3 shows a screenshot 
from the Telegram web app when it’s running the script.

Figure 11-3: Testing your bot using the Telegram web app 
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Try This
Modify the script in the preceding section so it can recognize and pro-
cess more intents than just orderPizza. Another relevant intent could be 
showPizza, meaning the user wants to look at the menu. To implement this, 
you’ll need to modify the intent_ext() function, adding an if intent == 
'showPizza' condition in the doc processing loop. Also, you’ll need to add 
a new state to the states dictionary in the ConversationHandler object—say, 
SHOW_MENU—and implement the callback for it. 

Summary
In this chapter, you learned how to implement and deploy a simple chat-
bot app using the Telegram bot platform, a popular messenger app. You 
learned how to define and hold states in a conversation. Notably, you also 
saw an example of where the user messages that you’d process with spaCy 
might actually come from. 
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I M P L E M E N T I N G  W E B  D A T A  A N D 

P R O C E S S I N G  I M A G E S

Real-life chatbots should respond to a vari-
ety of inputs, such as questions from users 

on unfamiliar topics or even images sent 
through messaging apps. For example, chatbot 

app users can send not only text messages, but also 
photos, and the bot is supposed to react appropriately 
to both.

This chapter provides some examples of how to use other libraries from 
Python’s AI ecosystem when developing a bot application. First, you’ll com-
bine spaCy with Wikipedia to find information about keywords taken from 
a user’s question. Next, you’ll obtain descriptive tags for a submitted image 
with the help of Clarifai, an image and video recognition tool, so your app 
can interpret visual content.

Then you’ll put all the components together to build a Telegram bot 
that can generate relevant responses to text and images by extracting infor-
mation from Wikipedia.  
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How It Works 
Figure 12-1 shows a diagram of the bot we’ll build in this chapter. The bot is 
designed to understand text messages and pictures, and respond with text 
from Wikipedia. 

Bot

Text 
message Photo

Wikipedia
A piece of relevant 

information

Keywords,
descriptive

tags

NLP tool

Text 
message Keywords

Image recognition
tool

Image pixels

Descriptive tags
(sea, boat . . . )

User

Figure 12-1: How a bot that can process text messages and pictures works 

Using this bot, the user can post either a text message or a picture. If 
the post is a picture, the bot sends it to an image recognition tool for pro-
cessing. This tool returns a verbal description of the picture in the form of 
descriptive tags. If the post is a text message, the bot uses an NLP tool like 
spaCy to extract a keyword or a keyphrase from it. The bot then uses either 
the tag or the keyphrase to find the most relevant content on Wikipedia (or 
somewhere else on the web) and return a piece of it to the user. You can use 
this scenario in chatbots you design to hold a conversation on various topics 
for fun, learning, or personal use.

Making Your Bot Find Answers to Questions from Wikipedia 
Let’s start with a discussion of techniques that you can implement in your 
bot to make it interpret a wide range of text messages. Previous chapters 
talked about how bots used for business purposes typically ask for certain 
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information from the user and then use the answer to fill an order or book-
ing request. In contrast, a bot designed to hold informal conversations 
should be able to answer a diverse range of user questions. 

One way to help a chatbot answer user questions is to choose a keyword 
or keyphrase in the question that provides a clue as to what information 
should be included in the answer. Once you have this keyword or keyphrase, 
you can use it to search for the answer using tools like the Wikipedia API for 
Python. Wikipedia’s API lets you access and parse Wikipedia content pro-
grammatically, performing a search for a keyword to retrieve content from 
the most relevant Wikipedia article. The following sections describe how to 
do this. 

But before proceeding to the examples, make sure you’re using one 
of the most recent spaCy models, because the accuracy of the dependency 
parsing is higher in newer versions. You can check the version of your cur-
rent model using the following command:

nlp.meta['version'] 

Then visit the https://explosion.ai/demos/displacy/ demo page (discussed 
in Chapter 7) to see the latest stable versions of spaCy models available. 
Alternatively, you can visit spaCy’s documentation at https://spacy.io/usage/ 
to check for the newest version of spaCy. Both spaCy and its models follow 
the same versioning scheme. Based on that information, you might want to 
update the model you currently use. Refer to Chapter 2 for details on how 
to download and install a spaCy model. 

Determining What the Question Is About 
Some words in a question are more important than others when you’re try-
ing to determine what the speaker is asking about. Sometimes it’s enough to 
look at a single word in the question, such as the noun that follows a prepo-
sition. For example, a user might use any of the following questions to ask 
the bot to find some information about rhinos: 

Have you heard of rhinos? Are you familiar with rhinos? What could you tell me about rhinos? 

Let’s look at what the dependency parsing of such sentences might look 
like. Figure 12-2 shows a graphical representation of the parsing of the first 
sentence. 

Have you heard of rhinos?

VERB VERB ADP NOUNPRON

aux

nsubj
prep pobj

Figure 12-2: The dependency parsing of a sentence  
containing an object of a preposition 

https://explosion.ai/demos/displacy
https://spacy.io/usage
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The parsing illustrates that in this kind of question you can get the 
word “rhinos” by extracting the object of the preposition. “Rhinos” would 
be the most helpful word in the question for finding an answer. The follow-
ing code fragment shows how you might extract the first occurrence of an 
object of the preposition in the question: 

doc = nlp(u"Have you heard of rhinos?")
for t in doc:
  if t.dep_ == 'pobj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):
    phrase = (' '.join([child.text for child in t.lefts]) + ' ' + t.text).lstrip()
    break
    

In the code, we also pick up the left children of the object of the prepo-
sition, because the object might have important modifiers, as in the follow-
ing example: “What can you say about wild mountain goats?” When given 
this question, the code should assign “wild mountain goats” to the phrase 
variable.

Notice the use of the break statement at the end, which guarantees that 
only the first object of a preposition in a sentence will be picked up. For 
example, in the sentence, “Tell me about the United States of America,” the 
phrase “the United States” would be picked up, but not “America.”

But this is not always desirable behavior. What if a user asked, “Tell me 
about the color of the sky.”? This is where we need to apply more compli-
cated logic. In particular, we might want to to pick up any prepositional 
object that follows the first prepositional object, provided the latter is 
dependent on the former. 

Here is how you might implement this logic:

doc = nlp(u"Tell me about the color of the sky.")
for t in doc:
  if t.dep_ == 'pobj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):
    phrase = (' '.join([child.text for child in t.lefts]) + ' ' + t.text).lstrip()
    if bool([prep for prep in t.rights if prep.dep_ == 'prep']): 
      prep = list(t.rights)[0]
      pobj = list(prep.children)[0] 
      phrase = phrase + ' ' + prep.text + ' ' + pobj.text
    break

Note that this code will process a prepositional object that is a 
dependent of the first prepositional object only if the former exists in 
the sentence. Otherwise, this code will work the same as the code shown 
previously. 

Now let’s look at another type of question in the following examples 
where two words, a verb and its subject, provide the best information about 
what a user wants in response to the questions: 

Do you know what an elephant eats? Tell me how dolphins sleep. What is an API?
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Figure 12-3 shows what a dependency parsing for one of these sentences 
might look like. 

Tell me how dolphins sleep.

VERB ADV NOUN VERBPRON

nsubj

advmod

dobj

ccomp

Figure 12-3: The dependency parsing of a sentence in which a  
subject/verb pair is the most informative element for discovering  
what the speaker wants to know 

Looking through the parsing shown in the figure, notice that the sub-
ject/verb pair that occurs at the end of the sentence is the most informative 
when trying to determine what the speaker asks about. Programmatically, 
you can extract the subject and verb pair from a sentence using the follow-
ing code: 

doc = nlp(u"Do you know what an elephant eats?")
for t in reversed(doc):
  if t.dep_ == 'nsubj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):
    phrase = t.text + ' ' + t.head.text
    break
    

While examining this code, notice that we loop backward from the end 
of the sentence using Python’s reversed() function. The reason is that we 
need to pick up the last subject/verb pair in the sentence, as in this example: 
“Do you know what an elephant eats?” In this sentence, we’re interested in 
the phrase “elephant eats” rather than “you know,” which is also a subject/ 
verb pair.

Additionally, in some questions, the last noun in the sentence is the 
direct object of a verb that matters to determine what the question is about, 
as in the following example: 

How to feed a cat?

In this sentence, extracting the direct object “cat” wouldn’t be suf-
ficient, because we also need the word “feed” to understand the question. 
Ideally, we’d generate the keyphrase “feeding a cat.” That is, we’d replace 
the infinitive “to” form of the verb with a gerund by adding “-ing,” optimiz-
ing the keyphrase for an internet search. Figure 12-4 shows the dependency 
parsing for this sentence.
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How to feed a cat?

ADV VERB DET NOUNPART

det

dobj
advmod

aux

Figure 12-4: Dependency parsing of a sentence with a  
verb/direct object pair as the most informative phrase 

This syntactic parsing shows that extracting the required phrase is 
easy, because the direct object and its transitive verb are connected with a 
direct link. 

The code implementation for the extraction discussed here might look 
like this: 

doc = nlp(u"How to feed a cat?")
for t in reversed(doc):
  if t.dep_ == 'dobj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):
    phrase = t.head.lemma_ + 'ing' + ' ' + t.text
    break
    

In this case, we once again loop backward from the end of the sen-
tence. To understand why, consider the following sentence: “Tell me some-
thing about how to feed a cat.” It contains two verb/direct object pairs, but 
we’re interested only in the one that occurs at the end of the sentence. 

Try This
Modify the code in the previous section that extracts the phrase “elephant 
eats” so the keyphrase being extracted from the sentence includes possible 
modifiers of the subject, excluding a possible determiner. For example, 
in the sentence, “Tell me how a female cheetah hunts,” your script should 
return “female cheetah hunts” and remove the “a” determiner from the 
noun chunk. As an example of how you might implement this, look at the 
code that follows Figure 12-2. In that code, you picked up modifiers for the 
object of the preposition being extracted. 

Also, add a check to see whether the verb included in the phrase being 
extracted has a direct object, and if so, append the direct object to the key-
phrase. For example, the question “Do you know how many eggs a sea turtle 
lays?” should give you the following keyphrase: “sea turtle lays eggs.” 

Using Wikipedia to Answer User Questions
Now that you have a keyphrase that can help you find the information 
needed to generate a relevant response to the user’s question, you need to 
retrieve the information. A bot can get answers to user questions from sev-
eral places, and the proper source to use depends on the application, but 
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Wikipedia is a good place to start. The wikipedia Python library (https://pypi 
.org/project/wikipedia/) allows you to access Wikipedia articles from within 
your Python code. 

You can install the library via pip as follows:

pip install wikipedia

To test the newly installed library, use the following script, which relies 
on a code fragment from the previous section to extract a keyword from 
a submitted sentence. Then it uses that keyword as a Wikipedia search term. 

import spacy
import wikipedia
nlp = spacy.load('en')
doc = nlp(u"What do you know about rhinos?")
for t in doc:
  if t.dep_ == 'pobj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):

    u phrase = (' '.join([child.text for child in t.lefts]) + ' ' + t.text).
    lstrip()
    break

v wiki_resp = wikipedia.page(phrase)
print("Article title: ", wiki_resp.title)
print("Article url: ", wiki_resp.url)
print("Article summary: ", wikipedia.summary(phrase, sentences=1))

In this script, we extract a keyword or keyphrase from the submitted 
sentence u and send it to the wikipedia.page() function, which returns the 
most relevant article for the given keyword v. Then we simply print out the 
article’s title, URL, and first sentence.

The output this script generates should look like this:

Article title:  Rhinoceros
Article url:  https://en.wikipedia.org/wiki/Rhinoceros
Article summary:  A rhinoceros (, from Greek  rhinokero–s, meaning 'nose-horned', from  rhis, 
meaning 'nose', and  keras, meaning 'horn'), commonly abbreviated to rhino, is one of ...

Try This
Enhance the script in the previous section so it can “see” the children of 
the first prepositional object and the dependent prepositional objects. For 
example, in the question, “Have you heard of fried eggs with yellow toma-
toes?” it should extract the keyphrase “fried eggs with yellow tomatoes.”   

Reacting to Images Sent in a Chat
In addition to text messages, users of messenger apps often post images. 
Other people usually respond to these with comments about what is shown 
in the picture. For example, a user posts a photo of grapes, to which another 
user leaves the following comment: “I love fruit. It contains lots of fiber and 

https://pypi.org/project/wikipedia/
https://pypi.org/project/wikipedia/
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vitamins.” How can you teach a bot to do the same? One way is to gener-
ate descriptive tags for an image that the bot can use in processing. This 
is where you need an image recognition tool, like Clarifai, which provides 
built-in models trained with photos from different domains, such as apparel, 
travel, or celebrities. 

Clarifai allows a bot to obtain a set of categories for a submitted photo, 
making it possible for the bot to guess what is depicted in the image. You can 
get useful categories for a photo in two steps. First, you use Clarifai’s gen-
eral image recognition model to obtain descriptive tags (objects with prob-
abilities) that can give you a general idea of what is shown in the photo. For 
example, the presence of the “no person” tag indicates that no people are in 
the photo.

Second, after examining the tags, you can apply more specific models 
to the same photo, such as Clarifai’s Food or Apparel models. Both are 
trained to recognize food and fashion-related items, respectively. This time, 
you’ll obtain another, more granular set of tags to give you a better idea of 
the contents of the photo. For the entire list of Clarifai’s image recognition 
models, visit its Models page at https://www.clarifai.com/models/.

Generating Descriptive Tags for Images Using Clarifai
Clarifai offers a Python client to interact with its recognition API. You can 
install the latest stable package using pip: 

pip install clarifai --upgrade

Before you can start using the Clarifai library, you must obtain an API 
key by creating an account and then clicking the GET API KEY button at 
https://www.clarifai.com/. 

Once you have the key, you can test the Clarifai library. The following 
simple script passes an image to a Clarifai model and prints a list of tags 
expressing possible categories for the image: 

from clarifai.rest import ClarifaiApp, client, Image
app = ClarifaiApp(api_key='YOUR_API_KEY')

u model = app.public_models.general_model
filename = '/your_path/grape.jpg'

v image = Image(file_obj=open(filename, 'rb'))
response = model.predict([image])

w concepts = response['outputs'][0]['data']['concepts']
for concept in concepts:
  print(concept['name'], concept['value'])

In this example, we call Clarifai’s Predict API with the general model u.  
Clarifai takes only the pixels as input, so make sure you’re opening an image 
file in 'rb' mode v, which opens the file in binary format for reading. The 

https://www.clarifai.com/models/
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Predict API generates a list of descriptive tags, such as fruit, grape, health, 
and so on w, for the submitted photo, allowing the code to “understand” 
what it shows. 

The grape.jpg file used in this example contains the photo shown in 
Figure 12-5. 

Figure 12-5: The photo submitted to Clarifai in the preceding script 

The list of concepts that the script generates for the photo should look 
as follows: 

no person 0.9968359470367432
wine 0.9812138080596924
fruit 0.9805494546890259
juicy 0.9788177013397217
health 0.9755384922027588
grow 0.9669009447097778
grape 0.9660607576370239
...

Each entry represents a category and the probability that the image fits 
within the category. Thus, the first tag in the list tells us that the submitted 
photo contains no person with a probability of 0.99. Note that not all the 
tags will provide a direct description of the depicted content. For example, 
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the tag “wine” is included here, perhaps because wine is made from grapes. 
The presence of indirect tags in the list gives your bot more options to 
interpret the image.

Using Tags to Generate Text Responses to Images
Now that you know how to obtain descriptive tags for an image, how can 
you use these tags to respond to the image? Or how can you choose the 
most important tags from the generated list? Think about the following 
general considerations: 

•	 You might want to take into account only the tags with high likelihoods. 
For that, you can choose a threshold of likelihood for the tags. For 
example, consider only the top five or 10 tags. 

•	 You might choose only those tags that are in the context of the cur-
rent chat. Chapter 11 showed an example of how to maintain the con-
text of the current chat in a Telegram bot using the context.user_data 
dictionary. 

•	 You might iterate over the generated tags, searching for a particular 
tag. For example, you might search for the tag “fruit” or “health” to 
determine whether you should continue the conversation on this topic. 

The bot discussed in the next section will implement the third option. 

Putting All the Pieces Together in a Telegram Bot
In the rest of this chapter, we’ll build a Telegram chatbot that uses the 
Wikipedia API and the Clarifai API. This bot will respond intelligently to 
text and images of food. Refer back to Chapter 11 for details on how to cre-
ate a new bot in Telegram.

Importing the Libraries
The import section of the code must include all the libraries that we’ll 
use in the bot’s code. In this example, we include the libraries required to 
access the Telegram Bot API, Wikipedia API, Clarifai API, and spaCy.

import spacy
import wikipedia
from telegram.ext import Updater, CommandHandler, MessageHandler, Filters
from clarifai.rest import ClarifaiApp, Image 

If you’ve followed the instructions provided in this chapter and 
Chapter 11, all of these libraries should be available on your system.

Writing the Helper Functions
Next, we need to implement the helper functions that will be invoked 
from within the bot’s callback functions. The keyphrase() function takes a 
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sentence as a Doc object and tries to extract the most informative word or 
a phrase from it, as discussed earlier in “Determining What the Question 
Is About” on page 171. The following implementation uses the code frag-
ments you saw in that section, adjusting them so we can use them within a 
single function: 

def keyphrase(doc): 
  for t in doc:
    if t.dep_ == 'pobj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):
      return (' '.join([child.text for child in t.lefts]) + ' ' + t.text).
      lstrip()
  for t in reversed(doc):
    if t.dep_ == 'nsubj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):
      return t.text + ' ' + t.head.text
  for t in reversed(doc):
    if t.dep_ == 'dobj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):
      return t.head.text + 'ing' + ' ' + t.text 
  return False

Note that the conditions are arranged in order of priority in this code. 
Thus, if the object of the preposition is found, we extract it and quit without 
checking for the other conditions. Of course, some complicated questions 
might meet multiple conditions, but checking for this would complicate the 
function implementation. 

Like the keyphrase() function, the photo_tags() function is supposed 
to determine the most descriptive word for a user’s input. But unlike 
keyphrase(), it analyzes a photo. It performs the analysis with the help of 
Clarifai, which generates a set of descriptive tags for a submitted photo. 
This implementation uses only two Clarifai models: the general model  
and the food model. 

def photo_tags(filename):
  app = ClarifaiApp(api_key=CLARIFAI_API_KEY)
  model = app.public_models.general_model
  image = Image(file_obj=open(filename, 'rb'))
  response = model.predict([image])
  concepts = response['outputs'][0]['data']['concepts']
  for concept in concepts:
    if concept['name'] == 'food':
      food_model = app.public_models.food_model
      result = food_model.predict([image])
      first_concept = result['outputs'][0]['data']['concepts'][0]['name']
      return first_concept
  return response['outputs'][0]['data']['concepts'][1]['name']  

This code starts by applying the general model. If the tag 'food' is 
found in the generated list, it applies the food model to obtain more 
descriptive tags for the food items shown in the image. This implementa-
tion will use the first tag only as the keyword for the search. 
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Now that we have the keyword or keyphrase, determined either in the 
keyphrase() function or in the photo_tags() function, we need to obtain a 
piece of information that is closely related to this keyword or keyphrase. 
The following wiki() function does the trick: 

def wiki(concept):
  nlp = spacy.load('en')
  wiki_resp = wikipedia.page(concept)
  doc = nlp(wiki_resp.content)
  if len(concept.split()) == 1:
    for sent in doc.sents:
      for t in sent:
        if t.text == concept and t.dep_ == 'dobj':
          return sent.text
  return list(doc.sents)[0].text

The algorithm we use here searches for a sentence in the retrieved con-
tent that includes the keyword as the direct object. 

But this simple implementation can intelligently process only a single-
word input. When a word is submitted, the algorithm we use here just 
extracts the first sentence from the Wikipedia article found with the help 
of this word. 

Writing the Callback and main() Functions
Next, we add the bot’s callback functions. The start() function simply 
sends a greeting to the user in response to the /start command. 

def start(update, context):
    update.message.reply_text('Hi! This is a conversational bot. Ask me something.')

The text_msg() function is the callback for the bot’s user text messages 
handler. 

def text_msg(update, context):
  msg = update.message.text
  nlp = spacy.load('en')
  doc = nlp(msg)
  concept = keyphrase(doc)
  if concept != False:
    update.message.reply_text(wiki(concept))
  else: 
    update.message.reply_text('Please rephrase your question.')

First, we apply spaCy’s pipeline to the message, converting it to a Doc 
object. Then we send the Doc to the keyphrase() function discussed earlier 
to extract a keyword or keyphrase from the message. The returned keyword 
or keyphrase is then sent to the wiki() function to obtain a piece of relevant 
information, which should be a single sentence in this implementation. 
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The photo() function shown in the following code is the callback for the 
bot’s handler for the photos submitted by the user: 

def photo(update, context):
  photo_file = update.message.photo[-1].get_file()
  filename = '{}.jpg'.format(photo_file.file_id)
  photo_file.download(filename) 
  concept = photo_tags(filename)
  update.message.reply_text(wiki(concept))  

The function retrieves the submitted image as a file and sends it for 
further processing to the helper functions discussed earlier in “Writing the 
Helper Functions” on page 178. 

Finally, we add the main() function in which we register handlers for 
both text messages and photos. 

def main():
    updater = Updater("YOUR_TOKEN", use_context=True)
    disp = updater.dispatcher
    disp.add_handler(CommandHandler("start", start))
    disp.add_handler(MessageHandler(Filters.text, text_msg))
    disp.add_handler(MessageHandler(Filters.photo, photo))
    updater.start_polling()
    updater.idle()
if __name__ == '__main__':
    main()

The main() function for this Telegram bot is quite concise. We create 
the Updater and pass the bot’s token to it. Then we obtain the dispatcher to 
register handlers. In this example, we register just three handlers. The first 
one is the handler for the /start command. The second handles text mes-
sages coming from the user. The third one handles photos posted by the 
user. After registering handlers, we start the bot by invoking updater.start 
_polling() and then invoking updater.idle() to block the script to wait for a 
user message or an exit shortcut (ctrl-C). 

Testing the Bot
Now that we’ve created the bot, it’s time to test it. You can test it either on a 
smartphone or a computer. On a smartphone, in the Telegram app search for 
your bot’s name followed by the @ sign, and then enter the /start command 
to start a chat. On a computer, use Telegram Web at https://web.telegram.org.

After receiving a greeting from the bot, send it a simple request, such as 
“Tell me about fruit.” The bot should respond with a single sentence that it 
extracts from a relevant Wikipedia article. For simplicity, choose a sentence 
that uses the direct object from the sentence (“fruit” in this example) as the 
keyword. 

You can also submit a photo to check which comment the bot will give 
in response. Figure 12-6 illustrates a screenshot of such a test.



182   Chapter 12

Figure 12-6: A screenshot of the bot we created 

Remember that this implementation can properly process only photos 
of food. 

Try This
Note that the bot implementation provided in the preceding section 
can’t generate smart responses to many different types of user input. The 
wiki() function we used can properly process only those requests for which 
 keyphrase() returns a single word. It also works best if that keyword is a direct 
object. Also, the bot can only intelligently respond to images of food. 

Enhance the wiki() function so it can process phrases instead of only 
one word, such as “dolphins sleep.” Finding an appropriate sentence for 
such a phrase requires using dependency labels, because you’ll need to find 
a subject/verb pair. In addition, you’ll need to reduce the words to their 
lemmas. For example, “dolphins sleep” and “dolphin sleeps” should satisfy 
the search criteria. 

You might also want to enhance the functionality of the photo_tags() 
function so it can process not only food photos, but also those that show 
something else—for example, apparel. 
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Summary 
In this chapter, you saw examples of how to use spaCy along with other 
libraries in Python’s AI ecosystem to build an AI-powered application that 
can process data of different types. By using the Wikipedia and Clarifai 
Python APIs, we designed a chatbot that could react to images and pull text 
from Wikipedia, techniques that make the bot a smarter interlocutor. 

After reading this book, you might want to expand and improve on 
what you’ve learned. The most natural way to enhance your knowledge is to 
continue to experiment with chatbots. Start by building a Telegram script 
with Python using the instructions provided in Chapter 11; next, enhance 
its functionality using instructions provided in this chapter. Then work on 
improving the algorithms you learned in this book to make them more suit-
able for your use cases. 





L I N G U I S T I C  P R I M E R

Most of the chapters in the book focus on 
analyzing sentence structures to identify 

patterns in word sequences using spaCy. 
To understand sentence analysis and patterns, 

you need some basic knowledge of linguistics. This 
appendix contains a linguistic primer to use as a 
reference.

Dependency Grammars vs. Phrase Structure Grammars
By default, spaCy uses a dependency grammar rather than a phrase structure 
grammar more commonly used in linguistics. This section explains the dif-
ference between these two grammar types. If you have a formal linguistic 
background, you may find this information helpful. 

Also known as a constituent-based grammar, a phrase structure grammar 
models natural language based on how words combine to form constituents 
in a sentence. In syntax, a constituent is a group of words that functions as a 
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single unit in a sentence. The phrase structure rules decompose a sentence 
into its constituent parts, forming a tree structure that begins with individ-
ual words and builds up larger and larger constituents. 

In contrast, a dependency grammar is a word-based grammar that focuses 
on the relations between individual words rather than between constituents. 
As a result, a dependency parse, like the ones shown throughout this book, 
forms a tree that reflects how words relate to other words in a sentence.

Figure A-1 shows an example of a sentence parsing using both gram-
mar types.

African wild animals run quickly. African wild animals run quickly.

Constituent-based structure Word-based structure

NP VP

S

A N V AdvA A A

N

V

Adv

S
NP
VP
N
V
A
Adv

Sentence
Noun phrase
Verb phrase
Noun
Verb
Adjective
Adverb

Figure A-1: An example of tree structures for a constituent-based phrase structure  
grammar (left) and a word-based dependency grammar (right) 

The phrase structure tree breaks up the sentence based on the fact that 
the sentence consists of a noun phrase and a verb phrase. Those phrases 
appear on the second level of the hierarchy, directly under the sentence (S) 
mark—the formal top level. On the bottom level are the individual words 
that make up those phrases.

In contrast, the dependency structure uses the verb as the structural 
center of a sentence. The other words are either directly or indirectly con-
nected to this verb with the help of directed links, known as dependencies. 
The dependency grammar that spaCy uses by default expresses the gram-
matical structure of a sentence as a set of one-to-one correspondences 
between words. 

Each of these relations represents a grammatical function in which one 
word is the child, or the dependent word, and the other is the head, or the 
governor. For example, in the pair “blue sky,” the dominant word is “sky,” 
and “blue”—its modifier—is its subordinate. You can think of the head as 
the word with the most relative “importance” and without which the child 
doesn’t make sense. By contrast, the head of a relation can often stand in a 
sentence without the child (for example, you don’t need “African” or “wild” 
in the sentence shown in Figure A-1, nor “quickly”). 
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Figure A-2 shows a graphical depiction of this concept. 

African wild animals run quickly.

ADJ ADJ NOUN VERB ADV

amod

amod

nsubj advmod

Figure A-2: An example of a dependency tree structure  
based on the head/child concept 

Notice that the dependency tree shown in Figure A-2 is similar to the 
representation on the right in Figure A-1. The only difference between these 
two representations is a visual one: although the tree shown in Figure A-1 
has a pyramidal view, the tree in Figure A-2 uses labeled, directed arcs to 
emphasize the head/child link. 

Each word in a sentence must be connected to exactly one head. But the 
same word might have none, one, or several children. The spaCy grammar 
assumes that the head of a sentence (the ROOT token) is its own head. In this 
example, the verb “run” is the head of the sentence, so the head property of 
the Token object representing this word will refer to this same Token object. 

Note that the head/child relationship has nothing to do with linear 
order in the sentence. For example, the child “wild” comes before its head 
“animals,” but the child “quickly” comes after its head “run.”

Common Grammar Concepts
This section discusses the more advanced grammar concepts used in the 
book, including transitive verbs and direct objects, prepositional objects, 
modal auxiliary verbs, and personal pronouns. 

Transitive Verbs and Direct Objects
A direct object is a noun (or a noun phrase) denoting something that is 
directly acted on by a verb. A transitive verb accepts a direct object. In most 
cases, for identifying intent, the transitive verb and its direct object are 
the most important words in a sentence to extract. The reason is that these 
words typically best describe the action and the thing acted upon. For 
example, in the sentence, “I want a pizza,” the words “want” and “pizza” 
express the sentence’s intent. 

Prepositional Objects
A preposition connects noun phrases with other words in a sentence. 
Prepositions such as “in,” “above,” “under,” “after,” and “before” express 
spatial or temporal relations. Others, such as “to,” “of,” and “for,” indicate 
semantic roles. For instance, in the sentence, “You’ll find the envelope 
under the book,” the preposition “under” expresses a spatial relationship 
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between the envelope and the book. And in the sentence, “I will deploy 
it to a channel,” the use of the preposition “to” indicates the role goal 
expressed by the prepositional phrase “a channel.”

An object of a preposition (known as a complement in theoretical linguis-
tics) is a noun, pronoun, or noun phrase that follows a preposition. In the 
sentence, “I wrote a series of articles,” the word “articles” is the object of the 
preposition. 

In some questions, extracting the object of the preposition might give you  
the most informative word or phrase in terms of finding the answer, as shown 
in the question, “What can be done about climate change?” The phrase “cli-
mate change” is the key phrase in determining what the question is about. 

The spaCy dependency parser indexes prepositions as 'prep' and 
objects of the preposition as 'pobj'. 

Modal Auxiliary Verbs 
Modal auxiliary verbs include “may,” “might,” “can,” “could,” “must,” “ought,” 
“shall,” “should,” “will,” and “would,” among others. They’re used in con-
junction with a main verb in the base form to indicate modality—in other 
words, likelihood, permission, capability, necessity, willingness, or advice. 

The spaCy part-of-speech tagger recognizes modal auxiliary verbs, 
marking them with the fine-grained part-of-speech tag 'MD'. The syntactic 
dependency parser marks them as 'aux'. You might need to check whether  
a sentence uses a modal auxiliary verb when you need, for example, to 
reconstruct the sentence from a question. 

Personal Pronouns
A personal pronoun refers to a specific person, object, or to multiple people 
or objects. In English, personal pronouns have a number of forms, distin-
guished according to their grammatical role in a sentence:

•	 The nominative form (I, you, he, she, it, we, they) is typically used as 
the nominal subject of a verb. 

•	 The accusative form (me, you, him, her, it, us, them) is typically used 
as the object of a verb or preposition.

•	 The reflexive form (myself, yourself/yourselves, himself, herself, itself, 
ourselves, themselves) typically refers back to the subject specified 
within the same clause.

The spaCy parser assigns different dependency labels to personal pro-
nouns according to their forms. Thus, a personal pronoun in nominative 
form is usually assigned the 'nsubj' dependency label, which stands for 
“nominal subject.” It is interesting to note that in many user-generated sen-
tences for chatbots, the subject of the sentence is “I.”

In accusative form, a personal pronoun can be assigned either 'dobj' 
or 'iobj', which stands for direct object and indirect object, respectively. 
Reflexive pronouns also usually act as either direct objects or indirect 
objects. 
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