
C H R I S T I A N M A Y E R

P Y T H O N
O N E - L I N E R S

P Y T H O N
O N E - L I N E R S

W R I T E C O N C I S E , E L O Q U E N T P Y T H O N

L I K E A P R O F E S S I O N A L

PYTHON ONE-LINERS

by Christ ian Mayer

San Francisco

P Y T H O N
O N E ‑ L I N E R S

W r i t e C o n c i s e, E l o q u e n t
P y t h o n L i k e a P r o f e s s i o n a l

PYTHON ONE-LINERS. Copyright © 2020 by Christian Mayer.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-7185-0050-5
ISBN-13: 978-1-7185-0050-1

Publisher: William Pollock
Production Editors: Janelle Ludowise and Kassie Andreadis
Cover Illustration: Rob Gale
Interior Design: Octopod Studios
Developmental Editors: Liz Chadwick and Alex Freed
Technical Reviewer: Daniel Zingaro
Copyeditor: Sharon Wilkey
Compositor: Danielle Foster
Proofreader: James Fraleigh
Indexer: JoAnne Burek

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

The Library of Congress issued the following Cataloging-in-Publication Data for the first edition:

Names: Mayer, Christian (Computer Scientist), author.
Title: Python one-liners: write concise, eloquent Python like a professional / Christian Mayer.
Description: San Francisco : No Starch Press, Inc., 2020. | Includes index.
Identifiers: LCCN 2020001449 (print) | LCCN 2020001450 (ebook) | ISBN
 9781718500501 | ISBN 9781718500518 (ebook)
Subjects: LCSH: Python (Computer program language)
Classification: LCC QA76.73.P98 M39 2020 (print) | LCC QA76.73.P98
 (ebook) | DDC 005.13/3--dc23
LC record available at https://lccn.loc.gov/2020001449
LC ebook record available at https://lccn.loc.gov/2020001450

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

www.nostarch.com

To my wife Anna

About the Author
Christian Mayer is a doctor of computer science and the founder
and maintainer of the popular Python site https://blog.finxter.com/
and its associated newsletter, which has 20,000 active subscrib-
ers and is still growing. His rapidly growing websites help tens
of thousands of students improve their coding skills and online
businesses. Christian is also the author of the Coffee Break Python
series of self-published books.

About the Technical Reviewer
Dr. Daniel Zingaro is an assistant teaching professor of computer
science and award-winning teacher at the University of Toronto.
His main area of research is computer science education, where
he studies how students learn (and sometimes don’t learn) com-
puter science material. He is the author of Algorithmic Thinking
(forthcoming from No Starch Press).

B R I E F C O N T E N T S

Acknowledgments . xvii

Introduction . xix

Chapter 1: Python Refresher . 1

Chapter 2: Python Tricks . 17

Chapter 3: Data Science . 41

Chapter 4: Machine Learning . . 81

Chapter 5: Regular Expressions . 127

Chapter 6: Algorithms . 151

Afterword . . 183

Index . . 185

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS	 xvii

INTRODUCTION	 xix
Python One-Liner Example . xx
A Note on Readability . xxi
Who Is This Book For? . xxii
What Will You Learn? . xxii
Online Resources . xxiii

1
PYTHON REFRESHER	 1
Basic Data Structures . 2

Numerical Data Types and Structures . 2
Booleans . 2
Strings . 4
The Keyword None . 5

Container Data Structures . . 6
Lists . 6
Stacks . . 9
Sets . 9
Dictionaries . 11
Membership . 11
List and Set Comprehension . . 12

Control Flow . 12
if, else, and elif . 13
Loops . 13

Functions . 14
Lambdas . 15
Summary . 16

2
PYTHON TRICKS	 17
Using List Comprehension to Find Top Earners . 18

The Basics . 18
The Code . 20
How It Works . 20

Using List Comprehension to Find Words with High Information Value 21
The Basics . 21
The Code . 21
How It Works . 22

xii Contents In Detail

Reading a File . 22
The Basics . 22
The Code . 23
How It Works . 23

Using Lambda and Map Functions . 24
The Basics . 24
The Code . 25
How It Works . 26

Using Slicing to Extract Matching Substring Environments . 26
The Basics . 26
The Code . 28
How It Works . 29

Combining List Comprehension and Slicing . 29
The Basics . 29
The Code . 30
How It Works . 30

Using Slice Assignment to Correct Corrupted Lists . 31
The Basics . 31
The Code . 32
How It Works . 32

Analyzing Cardiac Health Data with List Concatenation . 33
The Basics . 33
The Code . 35
How It Works . 35

Using Generator Expressions to Find Companies That Pay Below Minimum Wage 35
The Basics . 35
The Code . 36
How It Works . 36

Formatting Databases with the zip() Function . 37
The Basics . 37
The Code . 38
How It Works . 39

Summary . 39

3
DATA SCIENCE	 41
Basic Two-Dimensional Array Arithmetic . 42

The Basics . 42
The Code . 45
How It Works . 45

Working with NumPy Arrays: Slicing, Broadcasting, and Array Types 46
The Basics . 46
The Code . 51
How It Works . 52

Conditional Array Search, Filtering, and Broadcasting to Detect Outliers 53
The Basics . 53
The Code . 54
How It Works . 55

Contents In Detail xiii

Boolean Indexing to Filter Two-Dimensional Arrays . 57
The Basics . 57
The Code . 58
How It Works . 58

Broadcasting, Slice Assignment, and Reshaping to Clean Every i-th Array Element 60
The Basics . 60
The Code . 62
How It Works . 63

When to Use the sort() Function and When to Use the argsort() Function in NumPy 64
The Basics . 64
The Code . 66
How It Works . 66

How to Use Lambda Functions and Boolean Indexing to Filter Arrays 68
The Basics . 68
The Code . 68
How It Works . 69

How to Create Advanced Array Filters with Statistics, Math, and Logic 70
The Basics . 70
The Code . 73
How It Works . 74

Simple Association Analysis: People Who Bought X Also Bought Y 74
The Basics . 74
The Code . 75
How It Works . 76

Intermediate Association Analysis to Find Bestseller Bundles . 77
The Basics . 77
The Code . 77
How It Works . 78

Summary . 79

4
MACHINE LEARNING	 81
The Basics of Supervised Machine Learning . 82

Training Phase . 82
Inference Phase . 83

Linear Regression . 83
The Basics . 83
The Code . 86
How It Works . 87

Logistic Regression in One Line . 89
The Basics . 89
The Code . 92
How It Works . 93

K-Means Clustering in One Line . 94
The Basics . 94
The Code . 97
How It Works . 97

K-Nearest Neighbors in One Line . 100
The Basics . 100
The Code . 101
How It Works . 102

xiv Contents In Detail

Neural Network Analysis in One Line . 104
The Basics . 104
The Code . 108
How It Works . 109

Decision-Tree Learning in One Line . 111
The Basics . 111
The Code . 112
How It Works . 113

Get Row with Minimal Variance in One Line . 113
The Basics . 113
The Code . 114
How It Works . 115

Basic Statistics in One Line . 116
The Basics . 116
The Code . 118
How It Works . 118

Classification with Support-Vector Machines in One Line . 119
The Basics . 120
The Code . 121
How It Works . 122

Classification with Random Forests in One Line . . 123
The Basics . 123
The Code . 124
How It Works . 125

Summary . 126

5
REGULAR EXPRESSIONS	 127
Finding Basic Textual Patterns in Strings . 128

The Basics . 128
The Code . 130
How It Works . 131

Writing Your First Web Scraper with Regular Expressions . 132
The Basics . 132
The Code . 133
How It Works . 133

Analyzing Hyperlinks of HTML Documents . 134
The Basics . 134
The Code . 136
How It Works . 137

Extracting Dollars from a String . . 137
The Basics . 138
The Code . 138
How It Works . 139

Finding Nonsecure HTTP URLs . 140
The Basics . 140
The Code . 140
How It Works . 141

Contents In Detail xv

Validating the Time Format of User Input, Part 1 . 141
The Basics . 142
The Code . 142
How It Works . 143

Validating Time Format of User Input, Part 2 . . 143
The Basics . 143
The Code . 144
How It Works . 144

Duplicate Detection in Strings . 145
The Basics . 145
The Code . 146
How It Works . 146

Detecting Word Repetitions . 147
The Basics . 147
The Code . 147
How It Works . 148

Modifying Regex Patterns in a Multiline String . 148
The Basics . 149
The Code . 149
How It Works . 149

Summary . 150

6
ALGORITHMS	 151
Finding Anagrams with Lambda Functions and Sorting . 152

The Basics . 152
The Code . 153
How It Works . 153

Finding Palindromes with Lambda Functions and Negative Slicing 154
The Basics . 154
The Code . 155
How It Works . 155

Counting Permutations with Recursive Factorial Functions . 156
The Basics . 156
The Code . 158
How It Works . 158

Finding the Levenshtein Distance . 159
The Basics . 159
The Code . 160
How It Works . 160

Calculating the Powerset by Using Functional Programming . 162
The Basics . 162
The Code . 164
How It Works . 165

Caesar’s Cipher Encryption Using Advanced Indexing and List Comprehension 165
The Basics . 165
The Code . 166
How It Works . 167

xvi Contents In Detail

Finding Prime Numbers with the Sieve of Eratosthenes . 168
The Basics . 168
The Code . 169
How It Works . 170

Calculating the Fibonacci Series with the reduce() Function . 174
The Basics . 174
The Code . 175
How It Works . 175

A Recursive Binary Search Algorithm . . 176
The Basics . 177
The Code . 178
How It Works . 179

A Recursive Quicksort Algorithm . 180
The Basics . 180
The Code . 181
How It Works . 181

Summary . 182

AFTERWORD	 183

INDEX	 185

A C K N O W L E D G M E N T S

The world doesn’t need more books; it needs better books. I’m incredibly
grateful to the people at No Starch Press for putting everything at work
toward this philosophy. This book is the result of their invaluable advice,
constructive feedback, and hundreds of hours of diligent work. My deep
gratitude goes to the No Starch team for making the book-writing process
such a fun experience.

In particular, I’d like to thank Bill Pollock for inviting me to write this
book and for providing me inspiration and deep insights into the publish-
ing world.

I’m very grateful for my brilliant content editor, Liz Chadwick, who
skillfully, patiently, and eloquently transformed my rough drafts into a
much more human-readable form. It’s because of her excellent support that
the book reached a level of clarity I would have never imagined when start-
ing this project.

I want to express my appreciation to Alex Freed for her relentless focus
on improving the text quality. It has been an honor to work together with
such a talented editor.

I’d like to thank my production editor, Janelle Ludowise, for polishing
the book with a great love for every detail. Janelle put her skills to work—in
a positive and enthusiastic manner—to craft the final version of the book.

xviii Acknowledgments

Thanks, Janelle. Many thanks as well to Kassie Andreadis, who energetically
pushed the book through to completion.

My distinctive appreciation goes to Professor Daniel Zingaro. He didn’t
shy away from investing much of his time, effort, and excellent computer
science skills into eradicating inaccuracies from the book. He also contrib-
uted many wonderful suggestions that brought clarity to the book. Without
his effort, the book would not only contain more bugs but also be harder to
read. That said, any inaccuracies that remain are my own.

My doctorate supervisor, Professor Rothermel, contributed indirectly to
this book by investing considerable time, skill, and effort into my computer
science education. I owe him my deepest gratitude and appreciation.

I’m forever grateful to my beautiful wife, Anna Altimira, who keeps
listening to, encouraging, and supporting even my wildest ideas. I’m also
thankful to my kids, Amalie and Gabriel, for their inspiring curiosity and
the happiness they bring to my life through thousands of smiles.

Lastly, the greatest source of motivation came from the active members
of the Finxter community. First and foremost, I’ve written this book for
ambitious coders—like you—who want to advance their coding skills and
solve practical problems in the real world. After long working days, it was
grateful emails from Finxter members that encouraged me to write more
sections of the book.

I N T R O D U C T I O N

With this book, I want to help you become
a Python expert. To do this, we’re going

to focus on Python one-liners: concise, useful
programs packed into a single line of Python.

Focusing on one-liners will help you read and write
code faster and more concisely, and will improve your
understanding of the language.

There are five more reasons I think learning Python one-liners will
help you improve and are worth studying.

First, by improving your core Python skills, you’ll be able to overcome
many of the small programming weaknesses that hold you back. It’s hard to
make progress without a profound understanding of the basics. Single lines
of code are the basic building block of any program. Understanding these
basic building blocks will help you master high-level complexity without
feeling overwhelmed.

Second, you’ll learn how to leverage wildly popular Python libraries,
such as those for data science and machine learning. The book consists of

xx Introduction

five one-liner chapters, each addressing a different area of Python, from
regular expressions to machine learning. This approach will give you an
overview of possible Python applications you can build, as well as teach you
how to use these powerful libraries.

Third, you’ll learn to write more Pythonic code. Python beginners,
especially those coming from other programming languages, often write
code in un-Pythonic ways. We’ll cover Python-specific concepts like list
comprehension, multiple assignment, and slicing, all of which will help you
write code that’s easily readable and sharable with other programmers in
the field.

Fourth, studying Python one-liners forces you to think clearly and con-
cisely. When you’re making every single code symbol count, there’s no room
for sparse and unfocused coding.

Fifth, your new one-liner skill set will allow you to see through overly
complicated Python codebases, and impress friends and interviewers alike.
You may also find it fun and satisfying to solve challenging programming
problems with a single line of code. And you wouldn’t be alone: a vibrant
online community of Python geeks compete for the most compressed, most
Pythonic solutions to various practical (and not-so-practical) problems.

Python One-Liner Example
The central thesis of this book is that learning Python one-liners is both
fundamental to understanding more-advanced codebases and an excellent
tool for improving your skills. Before understanding what’s going on in a
codebase with thousands of lines, you must understand the meaning of a
single line of code.

Let’s have a quick look at a Python one-liner. Don’t worry if you don’t
fully understand it. You will master this one-liner in Chapter 6.

q = lambda l: q(u[x for x in l[1:] if x <= l[0]]) + [l[0]] + q([x for x in l if x > l[0]]) if l else []

This one-liner is a beautiful and concise way of compressing the famous
Quicksort algorithm, though the meaning may be difficult to grasp for
many Python beginners and intermediates.

Python one-liners often build on each other, so one-liners will increase
in complexity throughout the book. In this book, we’ll start with simple
one-liners that will become the basis for more-complex one-liners later. For
example, the preceding Quicksort one-liner is difficult and long, based on
the easier concept of list comprehension u. Here’s a simpler list comprehen-
sion that creates a list of squared numbers:

lst = [x**2 for x in range(10)]

We can break this one-liner into even simpler one-liners that teach
important Python basics, such as variable assignments, math operators,
data structures, for loops, membership operators, and the range() func-
tion—all of which happens in a single line of Python!

Introduction xxi

Know that basic doesn’t mean trivial. All the one-liners we’ll look at are
useful, and each chapter addresses a separate area or discipline in com-
puter science, giving you a broad perspective on the power of Python.

A Note on Readability
The Zen of Python comprises 19 guiding principles for the Python program-
ming languages. You can read it in your Python shell by entering import this:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
--snip--

According to The Zen of Python, “Readability counts.” One-liners are
minimalistic programs to solve problems. In many cases, rewriting a piece
of code as a Python one-liner will improve readability and make the code
more Pythonic. An example is using list comprehension to reduce the creation
of lists into a single line of code. Have a look at the following example:

BEFORE
squares = []

for i in range(10):
 squares.append(i**2)

print(squares)
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

In this code snippet, we need five lines of code to create a list of the
first 10 square numbers and print it to the shell. However, it’s much better
to use a one-liner solution that accomplishes the same thing in a more read-
able and concise way:

AFTER
print([i**2 for i in range(10)])
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The output is the same, but the one-liner builds on the more Pythonic
concept of list comprehension. It’s easier to read and more concise.

However, Python one-liners can also be hard to understand. In some
cases, writing a solution as a Python one-liner isn’t more readable. But just
as the chess master must know all possible moves before deciding which one

xxii Introduction

is best, you must know all ways of expressing your thoughts in code so that
you can decide on the best one. Going for the most beautiful solution is not
a low-priority matter; it’s at the core of the Python ecosystem. As The Zen of
Python teaches, “Beautiful is better than ugly.”

Who Is This Book For?
Are you a beginner- to intermediate-level Python coder? Like many of your
peers, you may be stuck in your coding progress. This book can help you
out. You’ve read a lot of programming tutorials online. You’ve written your
own source code and successfully shipped small projects. You’ve finished
a basic programming course and read a programming textbook or two.
Maybe you’ve even finished a technical program in college, where you’ve
learned about the basics of computer science and programming.

Perhaps you’re limited by certain beliefs, like that most coders under-
stand source code much faster than you, or that you’re nowhere near the top
10 percent of programmers. If you want to reach an advanced coding level
and join the top coding experts, you need to learn new applicable skills.

I can relate because when I started out studying computer science
10 years ago, I struggled with the belief that I knew nothing about coding.
At the same time, it seemed that all my peers were already very experienced
and proficient.

In this book, I want to help you overcome these limiting beliefs and
push you one step further toward Python mastery.

What Will You Learn?
Here is an overview of what you will learn.

Chapter 1: Python Refresher  Introduces the very basics of Python to
refresh your knowledge.

Chapter 2: Python Tricks  Contains 10 one-liner tricks to help you
master the basics, such as list comprehension, file input, the functions
lambda, map(), and zip(), the all() quantifier, slicing, and basic list arith-
metic. You’ll also learn how to use, manipulate, and leverage data struc-
tures to solve various day-to-day problems.

Chapter 3: Data Science  Contains 10 one-liners for data science, build-
ing on the NumPy library. NumPy is at the heart of Python’s powerful
machine learning and data science capabilities. You’ll learn elementary
NumPy basics such as array, shape, axis, type, broadcasting, advanced
indexing, slicing, sorting, searching, aggregating, and statistics.

Chapter 4: Machine Learning  Covers 10 one-liners for machine
learning with Python’s scikit-learn library. You’ll learn about regres-
sion algorithms that predict values. Examples of these include linear
regression, K-Nearest Neighbors, and neural networks. You’ll also learn
classification algorithms such as logistic regression, decision-tree learn-
ing, support-vector machines, and random forests. Furthermore, you’ll

Introduction xxiii

learn about how to calculate basic statistics of multidimensional data
arrays, and the K-Means algorithm for unsupervised learning. These
algorithms and methods are among the most important algorithms in
the field of machine learning.

Chapter 5: Regular Expressions  Contains 10 one-liners to help you
achieve more with regular expressions. You’ll learn about various basic
regular expressions that you can combine (and recombine) in order to
create more-advanced regular expressions, using grouping and named
groups, negative lookaheads, escaped characters, whitespaces, character
sets (and negative characters sets), and greedy/nongreedy operators.

Chapter 6: Algorithms  Contains 10 one-liner algorithms addressing
a wide range of computer science topics, including anagrams, palin-
dromes, supersets, permutations, factorials, prime numbers, Fibonacci
numbers, obfuscation, searching, and algorithmic sorting. Many of
these form the basis of more-advanced algorithms and contain the
seeds of a thorough algorithmic education.

Afterword  Concludes this book and releases you into the real world,
packed with your new and improved Python coding skills.

Online Resources
To enhance the training material in this book, I’ve added supplementary
resources that you can find online at https://pythononeliners.com/ or http://www​
.nostarch.com/pythononeliners/. The interactive resources include the following:

Python cheat sheets  You can download those Python cheat sheets as
printable PDFs and pin them to your wall. The cheat sheets contain
essential Python language features, and if you study them thoroughly,
you can refresh your Python skills and ensure that you’ve closed any
knowledge gap you may have.

One-liner video lessons  As part of my Python email course, I’ve
recorded many Python one-liner lessons from this book, which you can
access for free. Those lessons can assist you in your learning and pro-
vide a multimedia learning experience.

Python puzzles  You can visit the online resources to solve Python puz-
zles and use the Finxter.com app for free to test and train your Python
skills and measure your learning progress as you go through the book.

Code files and Jupyter notebooks  You must roll up your sleeves and
start working with code to make progress toward Python mastery. Take
your time to play around with various parameter values and input data.
For your convenience, I’ve added all Python one-liners as executable
code files.

https://pythononeliners.com/
http://www.nostarch.com/pythononeliners
http://www.nostarch.com/pythononeliners

1
P Y T H O N R E F R E S H E R

The purpose of this chapter is to refresh
your knowledge of basic Python data struc-

tures, keywords, control flow operations, and
other fundamentals. I wrote this book for inter-

mediate Python programmers who want to reach the
next level of programming expertise. To get to the
expert level, you need a thorough study of the basics.

Understanding the basics allows you to take a step back and see the
bigger picture—an important skill whether you want to become tech lead
at Google, a computer science professor, or just a great programmer. For
instance, computer science professors will often have an incredibly pro-
found knowledge of the basics in their field that allows them to argue from
first principles and identify research gaps, rather than being blinded by the
latest state-of-the-art technology. This chapter presents the most important
Python basics, which serve as a foundation for the more advanced topics
in this book.

2 Chapter 1

Basic Data Structures
A thorough understanding of data structures is one of the most funda-
mental skills you can acquire as a programmer. It will help you no matter
whether you create machine learning projects, work on large code bases,
set up and manage websites, or write algorithms.

Numerical Data Types and Structures
The two most important numerical data types are the integer and float.
An integer is a positive or negative number without a floating point (for
example, 3). A float is a positive or negative number with floating-point pre-
cision (for example, 3.14159265359). Python offers a wide variety of built-
in numerical operations, as well as functionality to convert between those
numerical data types. Study the examples in Listing 1-1 carefully to master
these highly important numerical operations.

Arithmetic Operations
x, y = 3, 2
print(x + y) # = 5
print(x - y) # = 1
print(x * y) # = 6
print(x / y) # = 1.5
print(x // y) # = 1
print(x % y) # = 1
print(-x) # = -3
print(abs(-x)) # = 3
print(int(3.9)) # = 3
print(float(x)) # = 3.0
print(x ** y) # = 9

Listing 1-1: The numerical data types

Most of the operators are self-explanatory. Note that the // operator
performs integer division. The result is an integer value that is rounded
down (for example, 3 // 2 == 1).

Booleans
A variable of type Boolean can take only two values—either False or True.

In Python, Boolean and integer data types are closely related: the
Boolean data type internally uses integer values (by default, the Boolean
value False is represented by integer 0, and the Boolean value True is rep-
resented by integer 1). Listing 1-2 gives an example of these two Boolean
keywords.

x = 1 > 2
print(x)
False

y = 2 > 1

Python Refresher 3

print(y)
True

Listing 1-2: The Boolean values False and True

After evaluating the given expressions, variable x refers to the Boolean
value False, and variable y refers to the Boolean value True.

You can use Booleans with three important keywords to create more-
complicated expressions in Python.

Keywords: and, or, not

Boolean expressions represent basic logical operators. Using them in com-
bination with only the following three keywords, you can craft a wide vari-
ety of potentially complicated expressions:

and  The expression x and y evaluates to True if value x is True and value y
is True. If either of those is False, the overall expression becomes False too.

or  The expression x or y evaluates to True if value x is True or value y is
True (or both values are True). If even just one of those is True, the over-
all expression becomes True too.

not  The expression not x evaluates to True if value x is False. Otherwise,
the expression evaluates to False.

Consider the following Python code in Listing 1-3.

x, y = True, False

print((x or y) == True)
True

print((x and y) == False)
True

print((not y) == True)
True

Listing 1-3: The keywords and, or, and not

By using these three keywords, you can express all the logical expres-
sions you’ll ever need.

Boolean Operator Precedence

The order that Boolean operators are applied is an important aspect of
understanding Boolean logic. For example, consider the natural language
statement "it rains and it's cold or windy". We can interpret this in two ways:

"(it rains and it's cold) or windy"  In this case, the statement would be
True if it is windy—even if it doesn’t rain.

and "it rains and (it's cold or windy)"  In this case, however, the statement
would be False if it doesn’t rain—no matter whether it’s cold or windy.

4 Chapter 1

The order of Boolean operators matters. The correct interpretation of
this statement would be the first one because the and operator takes prece-
dence before the or operator. Let’s consider the code snippet in Listing 1-4.

1. Boolean Operations
x, y = True, False

print(x and not y)
True

print(not x and y or x)
True

2. If condition evaluates to False
if None or 0 or 0.0 or '' or [] or {} or set():
 print("Dead code") # Not reached

Listing 1-4: The Boolean data type

This code shows two important points. First, Boolean operators are
ordered by priority—the operator not has the highest priority, followed by
the operator and, followed by the operator or. Second, the following values
are automatically evaluated to False: the keyword None, the integer value 0,
the float value 0.0, empty strings, or empty container types.

Strings
Python strings are sequences of characters. Strings are immutable and so can-
not be changed after creation. While other ways to create strings exist, these
are the five most commonly used:

Single quotes  'Yes'

Double quotes  "Yes"

Triple quotes for multiline strings  '''Yes''' or """Yes"""

The string method  str(5) == '5' is True

Concatenation  'Py' + 'thon' becomes 'Python'

Often, you’ll explicitly want to use whitespace characters in strings. The
most frequently used whitespace characters are the newline character \n,
the space character \s, and the tab character \t.

Listing 1-5 shows the most important string methods.

Most Important String Methods
y = " This is lazy\t\n "

print(y.strip())
Remove Whitespace: 'This is lazy'

print("DrDre".lower())
Lowercase: 'drdre'

Python Refresher 5

print("attention".upper())
Uppercase: 'ATTENTION'

print("smartphone".startswith("smart"))
Matches the string's prefix against the argument: True

print("smartphone".endswith("phone"))
Matches the string's suffix against the argument: True

print("another".find("other"))
Match index: 2

print("cheat".replace("ch", "m"))
Replaces all occurrences of the first by the second argument: meat

print(','.join(["F", "B", "I"]))
Glues together all elements in the list using the separator string: F,B,I

print(len("Rumpelstiltskin"))
String length: 15

print("ear" in "earth")
Contains: True

Listing 1-5: The string data type

This non-exclusive list of string methods shows that the string data type
is powerful, and you can solve many common string problems with built-
in Python functionality. If in doubt about how to achieve a certain result
regarding string problems, consult the online reference listing all built-in
string methods: https://docs.python.org/3/library/string.html#module-string.

Booleans, integers, floats, and strings are the most important basic data
types in Python. But often, you’ll need to structure data items rather than
just create them. In those cases, container types are the answer. But before
we dive into container data structures, let’s quickly learn about an impor-
tant special data type: None.

The Keyword None
The keyword None is a Python constant and it means the absence of a value.
Other programming languages such as Java use the value null instead.
However, the term null often confuses beginners, who assume it’s equal
to the integer value 0. Instead, Python uses the keyword None, as shown as
Listing 1-6, to indicate that it’s different from any numerical value for zero,
an empty list, or an empty string. An interesting fact is that the value None is
the only value in the NoneType data type.

def f():
 x = 2

The keyword 'is' will be introduced next
print(f() is None)

6 Chapter 1

True

print("" == None)
False

print(0 == None)
False

Listing 1-6: Using the keyword None

This code shows several examples of the None data value (and what it is
not). If you don’t define a return value for a function, the default return
value is None.

Container Data Structures
Python ships with container data types that can handle complex operations
efficiently while being easy to use.

Lists
The list is a container data type that stores a sequence of elements. Unlike
strings, lists are mutable—you can modify them at runtime. I can best
describe the list data type with a series of examples:

l = [1, 2, 2]
print(len(l))
3

This code snippet shows how to create a list by using square brackets
and how to populate it with three integer elements. You can also see that
lists can have repeated elements. The len() function returns the number of
elements in a list.

Keyword: is

The keyword is simply checks whether both variables refer to the same
object in memory. This can confuse Python newcomers. Listing 1-7 checks
whether two integers and two lists refer to the same object in memory.

y = x = 3

print(x is y)
True

print([3] is [3])
False

Listing 1-7: Using the keyword is

If you create two lists—even if they contain the same elements—they
still refer to two different list objects in memory. Modifying one list object

Python Refresher 7

does not affect the other list object. We say that lists are mutable because
you can modify them after creation. Therefore, if you check whether one
list refers to the same object in memory, the result is False. However, integer
values are immutable, so there is no risk of one variable changing the object
that will then accidentally change all other variables. The reason is that you
cannot change the integer object 3—trying it will only create a new integer
object and leave the old one unmodified.

Adding Elements

Python provides three common ways to add elements to an existing list:
append, insert, or list concatenation.

1. Append
l = [1, 2, 2]
l.append(4)
print(l)
[1, 2, 2, 4]

2. Insert
l = [1, 2, 4]
l.insert(2, 3)
print(l)
[1, 2, 3, 4]

3. List Concatenation
print([1, 2, 2] + [4])
[1, 2, 2, 4]

All three operations generate the same list [1, 2, 2, 4]. But the append
operation is the fastest because it neither has to traverse the list to insert an
element at the correct position (as with insert), nor create a new list out of
two sublists (as with list concatenation). Roughly speaking, you use the insert
operation only if you want to add an element at a specific position in the
list that is not the last position. And you use the list concatenation opera-
tion to concatenate two lists of arbitrary length. Note that a fourth method,
extend(), allows you to append multiple elements to the given list in an effi-
cient manner.

Removing Elements

You can easily remove an element x from a list by using the list method
remove(x):

l = [1, 2, 2, 4]
l.remove(1)
print(l)
[2, 2, 4]

The method operates on the list object itself, rather than creating a
new list with the changes made. In the previous code example, we create a

8 Chapter 1

list object named l and modify this exact object in memory by removing an
element. This saves memory overhead by reducing redundant copies of the
same list data.

Reversing Lists

You can reverse the order of list elements by using the method list.reverse():

l = [1, 2, 2, 4]
l.reverse()
print(l)
[4, 2, 2, 1]

Reversing the list also modifies the original list object and does not
merely create a new list object.

Sorting Lists

You can sort list elements by using the method list.sort():

l = [2, 1, 4, 2]
l.sort()
print(l)
[1, 2, 2, 4]

Again, sorting the list modifies the original list object. The resulting
list is sorted in an ascending manner. Lists containing string objects would
be sorted in an ascending lexicographical manner (from 'a' to 'z'). In
general, the sorting function assumes that two objects can be compared.
Roughly speaking, if you can calculate a > b for objects a and b of any data
type, Python can also sort the list [a, b].

Indexing List Elements

You can find out the index of a specified list element x by using the method
list.index(x):

print([2, 2, 4].index(2))
0

print([2, 2, 4].index(2,1))
1

The method index(x) finds the first occurrence of the element x in the
list and returns its index. Like other major programming languages, Python
assigns index 0 to the first sequence and index i−1 to the i-th sequence.

Stacks
The stack data structure works intuitively as a first-in, first-out (FIFO)
structure. Think of it as a stack of paperwork: you place every new paper

Python Refresher 9

on the top of a pile of old papers, and when you work through the stack,
you keep removing the topmost document. The stack is still a fundamental
data structure in computer science, used in operating system management,
algorithms, syntax parsing, and backtracking.

Python lists can be used intuitively as stacks with the list operations
append() to add to the stack and pop() to remove the most recently added item:

stack = [3]
stack.append(42) # [3, 42]
stack.pop() # 42 (stack: [3])
stack.pop() # 3 (stack: [])

Because of the efficiency of the list implementation, there is usually no
need to import external stack libraries.

Sets
The set data structure is a basic collection data type in Python and many
other programming languages. Popular languages for distributed comput-
ing (for example, MapReduce or Apache Spark) even focus almost exclu-
sively on set operations as programming primitives. So what is a set exactly?
A set is an unordered collection of unique elements. Let’s break this defini-
tion into its main pieces.

Collection

A set is a collection of elements like a list or a tuple. The collection consists
of either primitive elements (integers, floats, strings), or complex elements
(objects, tuples). However, all data types in a set must be hashable, meaning
that they have an associated hash value. A hash value of an object never
changes and is used to compare the object to other objects. Let’s look at an
example in Listing 1-8, which creates a set from three strings after check-
ing their hash values. You try to create a set of lists, but fail because lists are
not hashable.

hero = "Harry"
guide = "Dumbledore"
enemy = "Lord V."
print(hash(hero))
6175908009919104006

print(hash(guide))
-5197671124693729851

Can we create a set of strings?
characters = {hero, guide, enemy}
print(characters)
{'Lord V.', 'Dumbledore', 'Harry'}

Can we create a set of lists?
team_1 = [hero, guide]

10 Chapter 1

team_2 = [enemy]
teams = {team_1, team_2}
TypeError: unhashable type: 'list'

Listing 1-8: The set data type allows for only hashable elements.

You can create a set of strings because strings are hashable. But you can-
not create a set of lists, because lists are unhashable. The reason is that the
hash value depends on the content of the item, and lists are mutable ; if you
change the list data type, the hash value must change too. Because mutable
data types are not hashable, you cannot use them in sets.

Unordered

Unlike lists, elements in a set have no fixed order. Regardless of the order
in which you put stuff into the set, you can never be sure in which order the
set stores these elements. Here is an example:

characters = {hero, guide, enemy}
print(characters)
{'Lord V.', 'Dumbledore', 'Harry'}

I put in the hero first, but my interpreter prints the enemy first (the
Python interpreter is on the dark side, obviously). Note that your inter-
preter may print yet another order of the set elements.

Unique

All elements in the set must be unique. Formally, each of two values x, y in
the set with x!=y have different hash values hash(x)!=hash(y). Because every
two elements x and y in the set are different, you cannot create an army of
Harry Potter clones to fight Lord V.:

clone_army = {hero, hero, hero, hero, hero, enemy}
print(clone_army)
{'Lord V.', 'Harry'}

No matter how often you put the same value into the same set, the set
stores only one instance of this value. The reason is that those heroes have the
same hash value, and a set contains at most one element per hash value. An
extension of the normal set data structure is the multiset data structure, which
can store multiple instances of the same value. However, it is seldom used in
practice. In contrast, you will use sets in almost any nontrivial code project—
for example, to intersect a set of customers with a set of persons who visited a
store, which will return a new set of customers who also visited the store.

Dictionaries
The dictionary is a useful data structure for storing (key, value) pairs:

calories = {'apple' : 52, 'banana' : 89, 'choco' : 546}

Python Refresher 11

You can read and write elements by specifying the key within brackets:

print(calories['apple'] < calories['choco'])
True

calories['cappu'] = 74

print(calories['banana'] < calories['cappu'])
False

Use the keys() and values() functions to access all keys and values of
the dictionary:

print('apple' in calories.keys())
True

print(52 in calories.values())
True

Access the (key, value) pairs of a dictionary with the items() method:

for k, v in calories.items():
 print(k) if v > 500 else None
'choco'

This way, it’s easy to iterate over all keys and all values in a dictionary
without accessing them individually.

Membership
Use the keyword in to check whether the set, list, or dictionary contains an
element (see Listing 1-9).

u print(42 in [2, 39, 42])
True

v print("21" in {"2", "39", "42"})
False

print("list" in {"list" : [1, 2, 3], "set" : {1,2,3}})
True

Listing 1-9: Using the keyword in

You use the keyword in to test membership of the integer value 42 u in
a list of integer values or to test membership of a string value "21" in a set of
strings v. We say x is a member of y if element x appears in the collection y.

Checking set membership is faster than checking list membership:
to check whether element x appears in list y, you need to traverse the
whole list until you find x or have checked all elements. However, sets are

12 Chapter 1

implemented much like dictionaries: to check whether element x appears
in set y, Python internally performs one operation y[hash(x)] and checks
whether the return value is not None.

List and Set Comprehension
List comprehension is a popular Python feature that helps you quickly create
and modify lists. The simple formula is [expression + context]:

Expression  Tells Python what to do with each element in the list.

Context  Tells Python which list elements to select. The context con-
sists of an arbitrary number of for and if statements.

For example, in the list comprehension statement [x for x in range(3)],
the first part x is the (identity) expression, and the second part for x in
range(3) is the context. The statement creates the list [0, 1, 2]. The range()
function returns a range of subsequent integer values 0, 1, and 2—when
used with one argument as in the example. Another code example for list
comprehension is the following:

(name, $-income)
customers = [("John", 240000),
 ("Alice", 120000),
 ("Ann", 1100000),
 ("Zach", 44000)]

your high-value customers earning >$1M
whales = [x for x,y in customers if y>1000000]
print(whales)
['Ann']

Set comprehension is like list comprehension, but creates a set rather
than a list.

Control Flow
Control flow functionality allows you to make decisions in your code. Algorithms
are often compared to cooking recipes that consist of a sequential list of
commands: fill the pot with water, add salt, add rice, drain the water, and
serve the rice. As it is, without a conditional execution, the sequence of com-
mands would take only a few seconds to execute, and the rice would not be
ready for sure. For example, you would fill in water, salt, and rice and imme-
diately get rid of the water without waiting for the water to be hot and the
rice to be soft.

You need to respond in a different way to different circumstances: you
need to put the rice in the pot only if the water is hot, and you need to
remove the water from the pot only if the rice is soft. It’s almost impossible
to write programs in a way that anticipates what happens deterministically
in the real world. Instead, you need to write programs that respond differ-
ently if different conditions are met.

Python Refresher 13

if, else, and elif
The keywords if, else, and elif (see Listing 1-10) enable you to perform
conditional execution of different code branches.

u x = int(input("your value: "))
v if x > 3:

 print("Big")
w elif x == 3:

 print("Medium")
x else:

 print("Small")

Listing 1-10: Using the keywords if, else, and elif

This first takes the user input, converts it into an integer, and stores it
in the variable x u. It then tests whether the variable value is larger than v,
equal to w, or smaller than x the value 3. In other words, the code responds
to real-world input that is unpredictable in a differentiated manner.

Loops
To allow for repeated execution of code snippets, Python uses two types of
loops: for loops and while loops. Using these, you can easily write a program
consisting only of two lines of code that execute forever. This repetition
would be difficult otherwise (an alternative is recursion.)

In Listing 1-11, you can see both loop variants in action.

For loop declaration
for i in [0, 1, 2]:
 print(i)

'''
0
1
2
'''

While loop - same semantics
j = 0
while j < 3:
 print(j)
 j = j + 1

'''
0
1
2
'''

Listing 1-11: Using the keywords for and while

Both loop variants print the integers 0, 1, and 2 to the shell, but accom-
plish the task in two ways.

14 Chapter 1

The for loop declares a loop variable i that iteratively takes on all values
in the list [0, 1, 2]. It keeps running until it runs out of values.

The while loop executes the loop body as long as a particular condition
is met—in our case, while j < 3.

There are two fundamental ways of terminating a loop: you can define a
loop condition that eventually evaluates to False, or use the keyword break at
the exact position in the loop body. Listing 1-12 shows an example of the latter.

while True:
 break # no infinite loop

print("hello world")
hello world

Listing 1-12: Using the keyword break

You create a while loop with a loop condition that will always evaluate to
True. So, at first sight, it seems to run forever. An infinite while loop is com-
mon practice when, for example, developing web servers that forever repeat
the following procedure: wait for a new web request and serve the request.
However, in some cases, you’ll still want to terminate the loop prematurely.
In the web server example, you would stop serving files for security reasons
when your server detects that it is under attack. In these cases, you can use
the keyword break to stop the loop and execute the code that follows imme-
diately. In Listing 1-12, the code executes print("hello world") after the loop
ends prematurely.

It is also possible to force the Python interpreter to skip certain areas
in the loop without ending it prematurely. For example, you may want to
skip malicious web requests instead of halting the server completely. You
can achieve this by using the continue statement, which finishes the current
loop iteration and brings the execution flow back to the loop condition
(see Listing 1-13).

while True:
 continue
 print("43") # dead code

Listing 1-13: Using the keyword continue

This code executes forever without executing the print statement once.
The reason is that the continue statement finishes the current loop iteration
and takes it back to the start, so execution never reaches the print state-
ment. Code that never executes is known as dead code. For this reason, the
continue statement (as well as the break statement) is commonly used under
a certain condition by using a conditional if-else environment.

Functions
Functions help you to reuse code snippets at your leisure: write them
once but use them often. You define a function with the keyword def,

Python Refresher 15

a function name, and a set of arguments to customize the execution of the
function body. Calling the function with two sets of arguments can drasti-
cally change the result of the function. For example, you can define the
function square(x) that returns the square number of input argument x.
Calling square(10) results in 10 × 10 = 100 while calling square(100) results
in 100 × 100 = 10,000.

The keyword return terminates the function and passes the flow of exe-
cution to the caller of the function. You can also provide an optional value
after the return keyword to specify the function result (see Listing 1-14).

def appreciate(x, percentage):
 return x + x * percentage / 100

print(appreciate(10000, 5))
10500.0

Listing 1-14: Using the keyword return

You create a function appreciate() that calculates how much a given
investment appreciates at a given percentage of return. In the code, you
calculate how much an investment of $10,000 appreciates in one year when
assuming an interest rate of 5 percent. The result is $10,500. You use the
keyword return to specify that the result of the function should be the sum
of the original investment and the nominal interest of this investment. The
return value of the function appreciate() is of type float.

Lambdas
You use the keyword lambda to define lambda functions in Python. Lambda
functions are anonymous functions that are not defined in the namespace.
Roughly speaking, they are functions without names, intended for single
use. The syntax is as follows:

lambda <arguments> : <return expression>

A lambda function can have one or multiple arguments, separated by
commas. After the colon (:), you define the return expression that may
(or may not) use the defined argument. The return expression can be any
expression or even another function.

Lambda functions play a major role in Python. You’ll see them a lot in
practical code projects: for example, to make code shorter and more con-
cise, or to create arguments of various Python functions (such as map() or
reduce()). Consider the code in Listing 1-15.

print((lambda x: x + 3)(3))
6

Listing 1-15: Using the keyword lambda

16 Chapter 1

First, you create a lambda function that takes a value x and returns
the result of the expression x + 3. The result is a function object that can
be called like any other function. Because of its semantics, you denote
this function as an incrementor function. When calling this incrementor
function with the argument x=3—the suffix (3) within the print statement
in Listing 1-15—the result is the integer value 6. This book uses lambda
functions heavily, so make sure you understand them properly (though
you will also have opportunities to improve your intuitive understanding
of lambda functions).

Summary
This chapter gave you a concise Python crash course to refresh your basic
Python education. You studied the most important Python data structures
and how to use them in code examples. You learned how to control the pro-
gram execution flow by using if-elif-else statements, as well as while and for
loops. You revisited the basic data types in Python—Boolean, integer, float,
and string—and saw which built-in operations and functions are commonly
used. Most code snippets in practice and nontrivial algorithms are built
around more-powerful container types such as lists, stacks, sets, and dic-
tionaries. By studying the given examples, you learned how to add, remove,
insert, and reorder elements. You also learned about membership operators
and list comprehension: an efficient and powerful built-in method to create
lists programmatically in Python. Finally, you learned about functions and
how to define them (including the anonymous lambda function). Now, you
are ready for the first 10 basic Python one-liners.

2
P Y T H O N T R I C K S

For our purposes, a trick is a way of accom-
plishing a task in a surprisingly fast or easy

manner. In this book, you’ll learn a wide
variety of tricks and techniques to make your code

more concise, while boosting your speed of implemen-
tation. While all technical chapters in this book show
you Python tricks, this chapter addresses the low-hanging fruit: tricks you
can adopt quickly and effortlessly, but with great effect on your coding
productivity.

This chapter also serves as a stepping-stone for the more advanced
chapters that follow. You need to understand the skills introduced in these
one-liners to understand those that follow. Notably, we’ll cover a range of
basic Python functionality to help you write effective code, including list
comprehension, file access, the map() function, the lambda function, the
reduce() function, slicing, slice assignments, generator functions, and the
zip() function.

18 Chapter 2

If you’re already an advanced programmer, you could skim over this
chapter and decide which individual parts you want to study in more
depth—and which ones you already understand well.

Using List Comprehension to Find Top Earners
In this section, you’ll learn a beautiful, powerful, and highly efficient Python
feature to create lists: list comprehension. You’ll use list comprehension in
many of the one-liners to come.

The Basics
Say you work in the human resources department of a large company and
need to find all staff members who earn at least $100,000 per year. Your
desired output is a list of tuples, each consisting of two values: the employee
name and the employee’s yearly salary. Here’s the code you develop:

employees = {'Alice' : 100000,
 'Bob' : 99817,
 'Carol' : 122908,
 'Frank' : 88123,
 'Eve' : 93121}

top_earners = []
for key, val in employees.items():
 if val >= 100000:
 top_earners.append((key,val))

print(top_earners)
[('Alice', 100000), ('Carol', 122908)]

While the code is correct, there’s an easier and much more concise—
and therefore more readable—way of accomplishing the same result. All
things being equal, the solution with fewer lines allows the reader to grasp
the meaning of code faster.

Python offers a powerful way of creating new lists: list comprehension.
The simple formula is as follows:

[expression + context]

The enclosing brackets indicate that the result is a new list. The context
defines which list elements to select. The expression defines how to modify
each list element before adding the result to the list. Here’s an example:

[x * 2 for x in range(3)]

Python Tricks 19

The bold part of the equation, for x in range(3), is the context and the
remaining part x * 2, is the expression. Roughly speaking, the expression
doubles the values 0, 1, 2 generated by the context. Thus, the list compre-
hension results in the following list:

[0, 2, 4]

Both the expression and the context can be arbitrarily complicated. The
expression may be a function of any variable defined in the context and may
perform any computation—it can even call outside functions. The goal of the
expression is to modify each list element before adding it to the new list.

The context can consist of one or many variables defined using one
or many nested for loops. You can also restrict the context by using if state-
ments. In this case, a new value will be added to the list only if the user-
defined condition holds.

List comprehension is best explained by example. Study the following
examples carefully and you’ll get a good sense of list comprehension:

print([ux vfor x in range(5)])
[0, 1, 2, 3, 4]

Expression u: Identity function (does not change the context variable x).
Context v: Context variable x takes all values returned by the range

function: 0, 1, 2, 3, 4.

print([u(x, y) vfor x in range(3) for y in range(3)])
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]

Expression u: Create a new tuple from the context variables x and y.
Context v: The context variable x iterates over all values returned by

the range function (0, 1, 2), while context variable y iterates over all values
returned by the range function (0, 1, 2). The two for loops are nested,
so the context variable y repeats its iteration procedure for every single
value of the context variable x. Thus, there are 3 × 3 = 9 combinations of
context variables.

print([ux ** 2 vfor x in range(10) if x % 2 > 0])
[1, 9, 25, 49, 81]

Expression u: Square function on the context variable x.
Context v: Context variable x iterates over all values returned by the

range function—0, 1, 2, 3, 4, 5, 6, 7, 8, 9—but only if they are odd values; that
is, x % 2 > 0.

print([ux.lower() vfor x in ['I', 'AM', 'NOT', 'SHOUTING']])
['i', 'am', 'not', 'shouting']

20 Chapter 2

Expression u: String lowercase function on context variable x.
Context v: Context variable x iterates over all string values in the list:

'I', 'AM', 'NOT', 'SHOUTING'.
Now, you should be able to understand the following code snippet.

The Code
Let’s consider the same employee salary problem introduced earlier: given
a dictionary with string keys and integer values, create a new list of (key,
value) tuples so that the value associated with the key is larger than or
equal to 100,000. Listing 2-1 shows the code.

Data
employees = {'Alice' : 100000,
 'Bob' : 99817,
 'Carol' : 122908,
 'Frank' : 88123,
 'Eve' : 93121}

One-Liner
top_earners = [(k, v) for k, v in employees.items() if v >= 100000]

Result
print(top_earners)

Listing 2-1: One-liner solution for list comprehension

What’s the output of this code snippet?

How It Works
Let’s examine the one-liner:

top_earners = [u(k, v) vfor k, v in employees.items() if v >= 100000]

Expression u: Creates a simple (key, value) tuple for context variables
k and v.

Context v: The dictionary method dict.items() ensures that context
variable k iterates over all dictionary keys and that context variable v iter-
ates over the associated values for context variable k—but only if the value
of context variable v is larger than or equal to 100,000 as ensured by the
if condition.

The result of the one-liner is as follows:

print(top_earners)
[('Alice', 100000), ('Carol', 122908)]

Python Tricks 21

This simple one-liner program introduces the important concept of list
comprehension. We use list comprehension in multiple instances in this book, so
make sure that you understand the examples in this section before moving on.

Using List Comprehension to Find Words with
High Information Value

In this one-liner, you’ll dive even deeper into the powerful feature of list
comprehension.

The Basics
Search engines rank textual information according to its relevance to a
user query. To accomplish this, search engines analyze the content of the
text to be searched. All text consists of words. Some words provide a lot
of information about the content of the text—and others don’t. Examples
for the former are words like white, whale, Captain, Ahab (Do you know the
text?). Examples for the latter are words like is, to, as, the, a, or how, because
most texts contain those words. Filtering out words that don’t contribute a
lot of meaning is common practice when implementing search engines. A
simple heuristic is to filter out all words with three characters or less.

The Code
Our goal is to solve the following problem: given a multiline string, create
a list of lists—each consisting of all the words in a line that have more than
three characters. Listing 2-2 provides the data and the solution.

Data
text = '''
Call me Ishmael. Some years ago - never mind how long precisely - having
little or no money in my purse, and nothing particular to interest me
on shore, I thought I would sail about a little and see the watery part
of the world. It is a way I have of driving off the spleen, and regulating
the circulation. - Moby Dick'''

One-Liner
w = [[x for x in line.split() if len(x)>3] for line in text.split('\n')]

Result
print(w)

Listing 2-2: One-liner solution to find words with high information value

What’s the output of this code?

22 Chapter 2

How It Works
The one-liner creates a list of lists by using two nested list comprehension
expressions:

•	 The inner list comprehension expression [x for x in line.split() if
len(x)>3] uses the string split() function to divide a given line into a
sequence of words. We iterate over all words x and add them to the list
if they have more than three characters.

•	 The outer list comprehension expression creates the string line used in
the previous statement. Again, it uses the split() function to divide the
text on the newline characters '\n'.

Of course, you need to get used to thinking in terms of list comprehen-
sions, so the meaning may not come naturally to you. But after reading this
book, list comprehensions will be your bread and butter—and you’ll quickly
read and write Pythonic code like this.

Reading a File
In this section, you’ll read a file and store the result as a list of strings (one
string per line). You’ll also remove any leading and trailing whitespaces
from the lines.

The Basics
In Python, reading a file is straightforward but usually takes a few lines of
code (and one or two Google searches) to accomplish. Here’s one standard
way of reading a file in Python:

filename = "readFileDefault.py" # this code

f = open(filename)
lines = []
for line in f:
 lines.append(line.strip())

print(lines)
"""
['filename = "readFileDefault.py" # this code',
'',
'f = open(filename)',
'lines = []',
'for line in f:',
'lines.append(line.strip())',
'',
'print(lines)']
"""

Python Tricks 23

The code assumes that you’ve stored this code snippet in a file named
readFileDefault.py in a folder. The code then opens this file, creates an empty
list, lines, and fills the list with strings by using the append() operation in the
for loop body to iterate over all the lines in the file. You also use the string
method strip() to remove any leading or trailing whitespace (otherwise,
the newline character '\n' would appear in the strings).

To access files on your computer, you need to know how to open and
close files. You can access a file’s data only after you’ve opened it. After clos-
ing the file, you can be sure that the data was written into the file. Python
may create a buffer and wait for a while before it writes the whole buffer
into the file (Figure 2-1). The reason for this is simple: file access is slow.
For efficiency reasons, Python avoids writing every single bit independently.
Instead, it waits until the buffer has filled with enough bytes and then
flushes the whole buffer at once into the file.

open()

0
0

0

1

0

1
0

0

0
1
0
0

close()

read/write

Figure 2-1: Opening and closing a file in Python

That’s why it’s good practice to close the file after reading it with the
command f.close(), to ensure all the data is properly written into the file
instead of residing in temporary memory. However, in a few exceptions,
Python closes the file automatically: one of these exceptions occurs when
the reference count drops to zero, as you’ll see in the following code.

The Code
Our goal is to open a file, read all lines, strip the leading and trailing
whitespace characters, and store the result in a list. Listing 2-3 provides the
one-liner.

print([line.strip() for line in open("readFile.py")])

Listing 2-3: One-liner solution to read a file line by line.

Go ahead and guess the output of this code snippet before reading on.

How It Works
You use the print() statement to print the resulting list to the shell. You cre-
ate the list by using list comprehension (see “Using List Comprehension to
Find Top Earners” on page 18). In the expression part of the list compre-
hension, you use the strip() method of string objects.

24 Chapter 2

The context part of the list comprehension iterates over all lines in
the file.

The output of the one-liner is simply the one-liner itself (because it
reads its Python source code file with the name readFile.py), wrapped into a
string and filled into a list:

print([line.strip() for line in open("readFile.py")])
['print([line.strip() for line in open("readFile.py")])']

This section demonstrates that by making code shorter and more con-
cise, you make it more readable without compromising efficiency.

Using Lambda and Map Functions
This section introduces two important Python features: the lambda and
map() functions. Both functions are valuable tools in your Python toolbox.
You’ll use these functions to search a list of strings for occurrences of
another string.

The Basics
In Chapter 1, you learned how to define a new function with the expres-
sion def x, followed by the content of the function. However, this is not the
only way of defining a function in Python. You can also use lambda functions
to define a simple function with a return value (the return value can be any
object, including tuples, lists, and sets). In other words, every lambda func-
tion returns an object value to its calling environment. Note that this poses
a practical restriction to lambda functions, because unlike standard func-
tions, they are not designed to execute code without returning an object
value to the calling environment.

N O T E 	 We already covered lambda functions in Chapter 1, but because it’s such an impor-
tant concept used throughout this book, we’ll take a deeper look in this section.

Lambda functions allow you to define a new function in a single line
by using the keyword lambda. This is useful when you want to quickly create
a function that you’ll use only once and can be garbage-collected immedi-
ately afterward. Let’s first study the exact syntax of lambda functions:

lambda arguments : return expression

You start the function definition with the keyword lambda, followed by
a sequence of function arguments. When calling the function, the caller
must provide these arguments. You then include a colon (:) and the return
expression, which calculates the return value based on the arguments of the
lambda function. The return expression calculates the function output and

Python Tricks 25

can be any Python expression. Consider the following function definition
as an example:

lambda x, y: x + y

The lambda function has two arguments, x and y. The return value is
simply the sum of both arguments, x + y.

You typically use a lambda function when you call the function only once
and can easily define it in a single line of code. One common example is
using lambda with the map() function that takes as input arguments a func-
tion object f and a sequence s. The map() function then applies the function f
on each element in the sequence s. Of course, you could define a full-fledged
named function to define the function argument f. But this is often incon-
venient and reduces readability—especially if the function is short and you
need it only once—so it’s usually best to use a lambda function here.

Before presenting the one-liner, I’ll quickly introduce another small
Python trick that makes your life easier: checking whether string x contains
substring y by using the expression y in x. This statement returns True if there
exists at least one occurrence of the string y in the string x. For example,
the expression '42' in 'The answer is 42' evaluates to True, while the expres-
sion '21' in 'The answer is 42' evaluates to False.

Now let’s look at our one-liner.

The Code
When given a list of strings, our next one-liner (Listing 2-4) creates a new
list of tuples, each consisting of a Boolean value and the original string.
The Boolean value indicates whether the string 'anonymous' appears in the
original string! We call the resulting list mark because the Boolean values
mark the string elements in the list that contain the string 'anonymous'.

Data
txt = ['lambda functions are anonymous functions.',
 'anonymous functions dont have a name.',
 'functions are objects in Python.']

One-Liner
mark = map(lambda s: (True, s) if 'anonymous' in s else (False, s), txt)

Result
print(list(mark))

Listing 2-4: One-liner solution to mark strings that contain the string 'anonymous'

What’s the output of this code?

26 Chapter 2

How It Works
The map() function adds a Boolean value to each string element in the origi-
nal txt list. This Boolean value is True if the string element contains the
word anonymous. The first argument is the anonymous lambda function,
and the second is a list of strings you want to check for the desired string.

You use the lambda return expression (True, s) if 'anonymous' in s else
(False, s) to search for the 'anonymous' string. The value s is the input argu-
ment of the lambda function, which, in this example, is a string. If the string
query 'anonymous' exists in the string, the expression returns the tuple (True, s).
Otherwise, it returns the tuple (False, s).

The result of the one-liner is the following:

Result
print(list(mark))
[(True, 'lambda functions are anonymous functions.'),
(True, 'anonymous functions dont have a name.'),
(False, 'functions are objects in Python.')]

The Boolean values indicate that only the first two strings in the list
contain the substring 'anonymous'.

You’ll find lambdas incredibly useful in the upcoming one-liners.
You’re also making consistent progress toward your goal: understanding
every single line of Python code you’ll encounter in practice.

E X E RCISE 2-1

Use list comprehension rather than the map() function to accomplish the same
output. (You can find the solution at the end of this chapter.)

Using Slicing to Extract Matching Substring Environments
This section teaches you the important basic concept of slicing—the process
of carving out a subsequence from an original full sequence—to process
simple text queries. We’ll search some text for a specific string, and then
extract that string along with a handful of characters around it to give
us context.

The Basics
Slicing is integral to a vast number of Python concepts and skills, both
advanced and basic, such as when using any of Python’s built-in data struc-
tures like lists, tuples, and strings. Slicing is also the basis of many advanced
Python libraries such as NumPy, Pandas, TensorFlow, and scikit-learn.
Studying slicing thoroughly will have a positive ripple effect throughout
your career as a Python coder.

Python Tricks 27

Slicing carves out subsequences of a sequence, such as a part of a string.
The syntax is straightforward. Say you have a variable x that refers to a string,
list, or tuple. You can carve out a subsequence by using the following notation:

x[start:stop:step].

The resulting subsequence starts at index start (included) and ends at
index stop (excluded). You can include an optional third step argument that
determines which elements are carved out, so you could choose to include
just every step-th element. For example, the slicing operation x[1:4:1] used on
variable x = 'hello world' results in the string 'ell'. Slicing operation x[1:4:2]
on the same variable results in string 'el' because only every other element is
taken into the resulting slice. Recall from Chapter 1 that the first element of
any sequence type, such as strings and lists, has index 0 in Python.

If you don’t include the step argument, Python assumes the default step
size of one. For example, the slice call x[1:4] would result in the string 'ell'.

If you don’t include the beginning or ending arguments, Python assumes
you want to start at the start, or end at the end. For example, the slice call
x[:4] would result in the string 'hell', and the slice call x[4:] would result
in the string 'o world'.

Study the following examples to improve your intuitive understanding
even further.

s = 'Eat more fruits!'

print(s[0:3])
Eat

u print(s[3:0])
(empty string '')

print(s[:5])
Eat m

print(s[5:])
ore fruits!

v print(s[:100])
Eat more fruits!

print(s[4:8:2])
mr

w print(s[::3])
E rfi!

x print(s[::-1])
!stiurf erom taE

print(s[6:1:-1])
rom t

28 Chapter 2

These variants of the basic [start:stop:step] pattern of Python slicing
highlight the technique’s many interesting properties:

•	 If start >= stop with a positive step size, the slice is empty u.

•	 If the stop argument is larger than the sequence length, Python will
slice all the way to and including the rightmost element v.

•	 If the step size is positive, the default start is the leftmost element, and
the default stop is the rightmost element (included) w.

•	 If the step size is negative (step < 0), the slice traverses the sequence in
reverse order. With empty start and stop arguments, you slice from the
rightmost element (included) to the leftmost element (included) x.
Note that if the stop argument is given, the respective position is
excluded from the slice.

Next, you’ll use slicing along with the string.find(value) method to find the
index of string argument value in a given string.

The Code
Our goal is to find a particular text query within a multiline string. You want
to find the query in the text and return its immediate environment, up to
18 positions around the found query. Extracting the environment as well as
the query is useful for seeing the textual context of the found string—just
as Google presents text snippets around a searched keyword. In Listing 2-5,
you’re looking for the string 'SQL' in an Amazon letter to shareholders—with
the immediate environment of up to 18 positions around the string 'SQL'.

Data
letters_amazon = '''
We spent several years building our own database engine,
Amazon Aurora, a fully-managed MySQL and PostgreSQL-compatible
service with the same or better durability and availability as
the commercial engines, but at one-tenth of the cost. We were
not surprised when this worked.
'''

One-Liner
find = lambda x, q: x[x.find(q)-18:x.find(q)+18] if q in x else -1

Result
print(find(letters_amazon, 'SQL'))

Listing 2-5: One-liner solution to find strings in a text and their direct environment

Take a guess at the output of this code.

Python Tricks 29

How It Works
You define a lambda function with two arguments: a string value x, and a
query q to search for in the text. You assign the lambda function to the name
find. The function find(x, q) finds the string query q in the string text x.

If the query q does not appear in the string x, you directly return the
result -1. Otherwise, you use slicing on the text string to carve out the first
occurrence of the query, plus 18 characters to the left of the query and
18 characters to the right, to capture the query’s environment. You find
that the index of the first occurrence of q in x is using the string function
x.find(q). You call the function twice: to help determine the start index and
the stop index of the slice, but both function calls return the same value
because both the query q and the string x do not change. Although this
code works perfectly fine, the redundant function call causes unnecessary
computations—a disadvantage that could easily be fixed by adding a helper
variable to temporarily store the result of the first function call. You could
then reuse the result from the first function call by accessing the value in
the helper variable.

This discussion highlights an important trade-off: by restricting yourself
to one line of code, you cannot define and reuse a helper variable to store
the index of the first occurrence of the query. Instead, you must execute the
same function find to compute the start index (and decrement the result
by 18 index positions) and to compute the end index (and increment the
result by 18 index positions). In Chapter 5, you’ll learn a more efficient way
of searching patterns in strings (using regular expressions) that resolves
this issue.

When searching for the query 'SQL' in Amazon’s letter to shareholders,
you find an occurrence of the query in the text:

Result
print(find(letters_amazon, 'SQL'))
a fully-managed MySQL and PostgreSQL

As a result, you get the string and a few words around it to provide con-
text for the find. Slicing is a crucial element of your basic Python education.
Let’s deepen your understanding even more with another slicing one-liner.

Combining List Comprehension and Slicing
This section combines list comprehension and slicing to sample a two-
dimensional data set. We aim to create a smaller but representative sample
of data from a prohibitively large sample.

The Basics
Say you work as a financial analyst for a large bank and are training a new
machine learning model for stock-price forecasting. You have a training data
set of real-world stock prices. However, the data set is huge, and the model
training seems to take forever on your computer. For example, it’s common

30 Chapter 2

in machine learning to test the prediction accuracy of your model for differ-
ent sets of model parameters. In our application, say, you must wait for hours
until the training program terminates (training highly complex models on
large-scale data sets does in fact take hours). To speed things up, you reduce
the data set by half by excluding every other stock-price data point. You don’t
expect this modification to decrease the model’s accuracy significantly.

In this section, you’ll use two Python features you learned about previ-
ously in this chapter: list comprehension and slicing. List comprehension
allows you to iterate over each list element and modify it subsequently.
Slicing allows you to select every other element from a given list quickly—
and it lends itself naturally to simple filtering operations. Let’s have a
detailed look at how these two features can be used in combination.

The Code
Our goal is to create a new training data sample from our data—a list of
lists, each consisting of six floats—by including only every other float value
from the original data set. Take a look at Listing 2-6.

Data (daily stock prices ($))
price = [[9.9, 9.8, 9.8, 9.4, 9.5, 9.7],
 [9.5, 9.4, 9.4, 9.3, 9.2, 9.1],
 [8.4, 7.9, 7.9, 8.1, 8.0, 8.0],
 [7.1, 5.9, 4.8, 4.8, 4.7, 3.9]]

One-Liner
sample = [line[::2] for line in price]

Result
print(sample)

Listing 2-6: One-liner solution to sample data

As usual, see if you can guess the output.

How It Works
Our solution is a two-step approach. First, you use list comprehension to
iterate over all lines of the original list, price. Second, you create a new list
of floats by slicing each line; you use line[start:stop:step] with default start
and stop parameters and step size 2. The new list of floats consists of only
three (instead of six) floats, resulting in the following array:

Result
print(sample)
[[9.9, 9.8, 9.5], [9.5, 9.4, 9.2], [8.4, 7.9, 8.0], [7.1, 4.8, 4.7]]

This one-liner using built-in Python functionality is not complicated.
However, you’ll learn about an even shorter version that uses the NumPy
library for data science computations in Chapter 3.

Python Tricks 31

E X E RCISE 2-2

Revisit this one-liner after studying Chapter 3 and come up with a more concise
one-liner solution using the NumPy library. Hint: Use NumPy’s more powerful
slicing capabilities.

Using Slice Assignment to Correct Corrupted Lists
This section shows you a powerful slicing feature in Python: slice assignments.
Slice assignments use slicing notation on the left-hand side of an assignment
operation to modify a subsequence of the original sequence.

The Basics
Imagine you work at a small internet startup that keeps track of its users’
web browsers (Google Chrome, Firefox, Safari). You store the data in a
database. To analyze the data, you load the gathered browser data into a
large list of strings, but because of a bug in your tracking algorithm, every
second string is corrupted and needs to be replaced by the correct string.

Assume that your web server always redirects the first web request of
a user to another URL (this is a common practice in web development
known under the HTML code 301: moved permanently). You conclude
that the first browser value will be equal to the second one in most cases
because the browser of a user stays the same while waiting for the redi-
rection to occur. This means that you can easily reproduce the original
data. Essentially, you want to duplicate every other string in the list: the
list ['Firefox', 'corrupted', 'Chrome', 'corrupted'] becomes ['Firefox',
'Firefox', 'Chrome', 'Chrome'].

How can you achieve this in a fast, readable, and efficient way (prefera-
bly in a single line of code)? Your first idea is to create a new list, iterate over
the corrupted list, and add every noncorrupted browser twice to the new
list. But you reject the idea because you’d then have to maintain two lists in
your code—and each may have millions of entries. Also, this solution would
require a few lines of code, which would hurt conciseness and readability of
your source code.

Luckily, you’ve read about a beautiful Python feature: slice assignments.
You’ll use slice assignments to select and replace a sequence of elements between
indices i and j by using the slicing notation lst[i:j] = [0 0 ...0]. Because
you are using slicing lst[i:j] on the left-hand side of the assignment opera-
tion (rather than on the right-hand side as done previously), the feature is
denoted as slice assignments.

The idea of slice assignments is simple: replace all selected elements in
the original sequence on the left with the elements on the right.

32 Chapter 2

The Code
Our goal is to replace every other string with the string immediately in
front of it; see Listing 2-7.

Data
visitors = ['Firefox', 'corrupted', 'Chrome', 'corrupted',
 'Safari', 'corrupted', 'Safari', 'corrupted',
 'Chrome', 'corrupted', 'Firefox', 'corrupted']

One-Liner
visitors[1::2] = visitors[::2]

Result
print(visitors)

Listing 2-7: One-liner solution to replace all corrupted strings

What’s the fixed sequence of browsers in this code?

How It Works
The one-liner solution replaces the 'corrupted' strings with the browser
strings that precede them in the list. You use the slice assignment notation
to access every corrupted element in the visitors list. I’ve highlighted the
selected elements in the following code snippet:

visitors = ['Firefox', 'corrupted', 'Chrome', 'corrupted',
 'Safari', 'corrupted', 'Safari', 'corrupted',
 'Chrome', 'corrupted', 'Firefox', 'corrupted']

The code replaces these selected elements with the slice on the right of
the assignment operation. These elements are highlighted in the following
code snippet:

visitors = ['Firefox', 'corrupted', 'Chrome', 'corrupted',
 'Safari', 'corrupted', 'Safari', 'corrupted',
 'Chrome', 'corrupted', 'Firefox', 'corrupted']

The former elements are replaced by the latter. Therefore, the resulting
visitors list is the following (highlighting the replaced elements):

Result
print(visitors)
'''
['Firefox', 'Firefox', 'Chrome', 'Chrome',
'Safari', 'Safari', 'Safari', 'Safari',
'Chrome', 'Chrome', 'Firefox', 'Firefox']
'''

Python Tricks 33

The result is the original list with each 'corrupted' string replaced by its
preceding browser string. This way, you clean the corrupted data set.

Using slice assignments for this problem is the quickest and most
effective way of accomplishing your small task. Note that the cleaned data
has nonbiased browser usage statistics: a browser with 70 percent market
share in the corrupted data will maintain its 70 percent market share in the
cleaned data. The cleaned data can then be used for further analysis—for
example, to find out whether Safari users are better customers (after all,
they tend to spend more money on hardware). You’ve learned a simple and
concise way of modifying a list programmatically and in place.

Analyzing Cardiac Health Data with List Concatenation
In this section, you’ll learn how to use list concatenation to repeatedly copy
smaller lists and merge them into a larger list to generate cyclic data.

The Basics
This time, you’re working on a small code project for a hospital. Your goal
is to monitor and visualize the health statistics of patients by tracking
their cardiac cycles. By plotting expected cardiac cycle data, you’ll enable
patients and doctors to monitor any deviation from that cycle. For example,
given a series of measurements stored in the list [62, 60, 62, 64, 68, 77, 80,
76, 71, 66, 61, 60, 62] for a single cardiac cycle, you want to achieve the
visualization in Figure 2-2.

Figure 2-2: Visualizing expected cardiac cycles by copying selected values from
the measured data

34 Chapter 2

The problem is that the first and the last two data values in the list are
redundant: [62, 60, 62, 64, 68, 77, 80, 76, 71, 66, 61, 60, 62]. This may
have been useful when plotting only a single cardiac cycle to indicate that
one full cycle has been visualized. However, we must get rid of this redun-
dant data to ensure that our expected cardiac cycles do not look like the
ones in Figure 2-3 when copying the same cardiac cycle.

Figure 2-3: Visualizing expected cardiac cycles by copying all values from the
measured data (no filtering of redundant data)

Clearly, you need to clean the original list by removing the redundant
first and the last two data values: [62, 60, 62, 64, 68, 77, 80, 76, 71, 66, 61,
60, 62] becomes [60, 62, 64, 68, 77, 80, 76, 71, 66, 61].

You’ll combine slicing with the new Python feature list concatenation,
which creates a new list by concatenating (that is, joining) existing lists. For
example, the operation [1, 2, 3] + [4, 5] generates the new list [1, 2, 3, 4,
5], but doesn’t replace the original lists. You can use this with the * opera-
tor to concatenate the same list again and again to create large lists: for
example, the operation [1, 2, 3] * 3 generates the new list [1, 2, 3, 1, 2,
3, 1, 2, 3].

In addition, you’ll use the matplotlib.pyplot module to plot the cardiac
data you generate. The matplotlib function plot(data) expects an iterable
argument data—an iterable is simply an object over which you can iterate,
such as a list—and uses it as y values for subsequent data points in a two-
dimensional plot. Let’s dive into the example.

Python Tricks 35

The Code
Given a list of integers that reflect the measured cardiac cycle, you first want
to clean the data by removing the first and last two values from the list.
Second, you create a new list with expected future heart rates by copying
the cardiac cycle to future time instances. Listing 2-8 shows the code.

Dependencies
import matplotlib.pyplot as plt

Data
cardiac_cycle = [62, 60, 62, 64, 68, 77, 80, 76, 71, 66, 61, 60, 62]

One-Liner
expected_cycles = cardiac_cycle[1:-2] * 10

Result
plt.plot(expected_cycles)
plt.show()

Listing 2-8: One-liner solution to predict heart rates at different times

Next, you’ll learn about the result of this code snippet.

How It Works
This one-liner consists of two steps. First, you use slicing to clean the data
by using the negative stop argument -2 to slice all the way to the right but
skip the last two redundant values. Second, you concatenate the resulting
data values 10 times by using the replication operator *. The result is a list
of 10 × 10 = 100 integers made up of the concatenated cardiac cycle data.
When you plot the result, you get the desired output shown previously in
Figure 2-2.

Using Generator Expressions to Find Companies That Pay
Below Minimum Wage

This section combines some of the Python basics you’ve already learned
and introduces the useful function any().

The Basics
You work in law enforcement for the US Department of Labor, finding
companies that pay below minimum wage so you can initiate further inves-
tigations. Like hungry dogs on the back of a meat truck, your Fair Labor
Standards Act (FLSA) officers are already waiting for the list of companies
that violated the minimum wage law. Can you give it to them?

36 Chapter 2

Here’s your weapon: Python’s any() function, which takes an iterable,
such as a list, and returns True if at least one element of the iterable evalu-
ates to True. For example, the expression any([True, False, False, False])
evaluates to True, while the expression any([2<1, 3+2>5+5, 3-2<0, 0]) evalu-
ates to False.

N O T E 	 Python’s creator, Guido van Rossum, was a huge fan of the built-in function any()
and even proposed to include it as a built-in function in Python 3. See his 2005
blog post, “The Fate of reduce() in Python 3000” at https://www.artima.com​
/weblogs/viewpost.jsp?thread=98196 for more details.

An interesting Python extension is a generalization of list comprehen-
sion: generator expressions. Generator expressions work exactly like list com-
prehensions—but without creating an actual list in memory. The numbers
are created on the fly, without storing them explicitly in a list. For example,
instead of using list comprehension to calculate the squares of the first
20 numbers, sum([x*x for x in range(20)]), you can use a generator expres-
sion: sum(x*x for x in range(20)).

The Code
Our data is a dictionary of dictionaries storing the hourly wages of company
employees. You want to extract a list of the companies paying below your
state’s minimum wage (< $9) for at least one employee; see Listing 2-9.

Data
companies = {
 'CoolCompany' : {'Alice' : 33, 'Bob' : 28, 'Frank' : 29},
 'CheapCompany' : {'Ann' : 4, 'Lee' : 9, 'Chrisi' : 7},
 'SosoCompany' : {'Esther' : 38, 'Cole' : 8, 'Paris' : 18}}

One-Liner
illegal = [x for x in companies if any(y<9 for y in companies[x].values())]

Result
print(illegal)

Listing 2-9: One-liner solution to find companies that pay below minimum wage

Which companies must be further investigated?

How It Works
You use two generator expressions in this one-liner.

The first generator expression, y<9 for y in companies[x].values(),
generates the input to the function any(). It checks each of the compa-
nies’ employees to see whether they are being paid below minimum wage,
y<9. The result is an iterable of Booleans. You use the dictionary function

https://www.artima.com/weblogs/viewpost.jsp?thread=98196
https://www.artima.com/weblogs/viewpost.jsp?thread=98196

Python Tricks 37

values() to return the collection of values stored in the dictionary. For
example, the expression companies['CoolCompany'].values() returns the col-
lection of hourly wages dict_values([33, 28, 29]). If at least one of them
is below minimum wage, the function any() would return True, and the
company name x would be stored as a string in the resulting list illegal, as
described next.

The second generator expression is the list comprehension [x for x in
companies if any(...)] and it creates a list of company names for which the
previous call of the function any() returns True. Those are the companies
that pay below minimum wage. Note that the expression for x in companies
visits all dictionary keys—the company names 'CoolCompany', 'CheapCompany',
and 'SosoCompany'.

The result is therefore as follows:

Result
print(illegal)
['CheapCompany', 'SosoCompany']

Two out of three companies must be investigated further because they
pay too little money to at least one employee. Your officers can start to talk
to Ann, Chrisi, and Cole!

Formatting Databases with the zip() Function
In this section, you’ll learn how to apply database column names to a list of
rows by using the zip() function.

The Basics
The zip() function takes iterables iter_1, iter_2, ..., iter_n and aggregates
them into a single iterable by aligning the corresponding i-th values into a
single tuple. The result is an iterable of tuples. For example, consider these
two lists:

[1,2,3]
[4,5,6]

If you zip them together—after a simple data type conversion, as you’ll
see in a moment—you’ll get a new list:

[(1,4), (2,5), (3,6)]

Unzipping them back into the original tuples requires two steps. First,
you remove the outer square bracket of the result to get the following
three tuples:

(1,4)
(2,5)
(3,6)

38 Chapter 2

Then when you zip those together, you get the new list:

[(1,2,3), (4,5,6)]

So, you have your two original lists again! The following code snippet
shows this process in full:

lst_1 = [1, 2, 3]
lst_2 = [4, 5, 6]

Zip two lists together
zipped = list(zip(lst_1, lst_2))
print(zipped)
[(1, 4), (2, 5), (3, 6)]

Unzip to lists again
lst_1_new, lst_2_new = zip(u*zipped)
print(list(lst_1_new))
print(list(lst_2_new))

You use the asterisk operator * to unpack u all elements of the list. This
operator removes the outer bracket of the list zipped so that the input to the
zip() function consists of three iterables (the tuples (1, 4), (2, 5), (3, 6)).
If you zip those iterables together, you package the first three tuple values 1,
2, and 3 into a new tuple, and the second three tuple values 4, 5, and 6 into
another new tuple. Together, you get the resulting iterables (1, 2, 3) and
(4, 5, 6), which is the original (unzipped) data.

Now, imagine you work in the IT branch of the controlling department
of your company. You maintain the database of all employees with the col-
umn names: 'name', 'salary', and 'job'. However, your data is out of shape—
it’s a collection of rows in the form ('Bob', 99000, 'mid-level manager'). You
want to associate your column names to each data entry to bring it into the
readable form {'name': 'Bob', 'salary': 99000, 'job': 'mid-level manager'}.
How can you achieve that?

The Code
Your data consists of the column names and the employee data organized
as list of tuples (rows). Assign the column names to the rows and, thus, cre-
ate a list of dictionaries. Each dictionary assigns the column names to the
respective data values (Listing 2-10).

Data
column_names = ['name', 'salary', 'job']
db_rows = [('Alice', 180000, 'data scientist'),
 ('Bob', 99000, 'mid-level manager'),
 ('Frank', 87000, 'CEO')]

One-Liner
db = [dict(zip(column_names, row)) for row in db_rows]

Python Tricks 39

Result
print(db)

Listing 2-10: One-liner solution to apply a database format to a list of tuples

What’s the printed format of the database db?

How It Works
You create the list by using list comprehension (see “Using List Comprehension
to Find Top Earners” on page 18 for more on expression + context). The
context consists of a tuple of every row in the variable db_rows. The expres-
sion zip(column_names, row) zips together the schema and each row. For
example, the first element created by the list comprehension would be
zip(['name', 'salary', 'job'], ('Alice', 180000, 'data scientist')), which
results in a zip object that, after conversion to a list, is in the form [('name',
'Alice'), ('salary', 180000), ('job', 'data scientist')]. The elements are
in (key, value) form so you can convert it into a dictionary by using the con-
verter function dict() to arrive at the required database format.

N O T E 	 The zip() function doesn’t care that one input is a list and the other is a tuple.
The function requires only that the input is an iterable (and both lists and tuples
are iterables).

Here’s the output of the one-liner code snippet:

Result
print(db)
'''
[{'name': 'Alice', 'salary': 180000, 'job': 'data scientist'},
{'name': 'Bob', 'salary': 99000, 'job': 'mid-level manager'},
{'name': 'Frank', 'salary': 87000, 'job': 'CEO'}]
'''

Every data item is now associated with its name in a list of dictionaries.
You’ve learned how to use the zip() function effectively.

Summary
In this chapter, you’ve mastered list comprehensions, file input, the func-
tions lambda, map(), and zip(), the all() quantifier, slicing, and basic list arith-
metic. You’ve also learned how to use and manipulate data structures to
solve various day-to-day problems.

Converting data structures back and forth easily is a skill with a pro-
found impact on your coding productivity. Rest assured that your pro-
gramming productivity will soar as you increase your ability to quickly
manipulate data. Small processing tasks like the ones you’ve seen in this
chapter contribute significantly to the common “death by a thousand cuts”:
the overwhelming harm that performing many small tasks has on your
overall productivity. By using the Python tricks, functions, and features

40 Chapter 2

introduced in this chapter, you’ve obtained effective protection against
those thousand cuts. Speaking metaphorically, the newly acquired tools
help you recover from each cut much faster.

In the next chapter, you’ll improve your data science skills even further
by diving into a new set of tools provided by the NumPy library for numeri-
cal computations in Python.

SOLU T ION TO E X E RCISE 2-1

Here’s how to use list comprehension instead of the map() function to achieve the
same problem of filtering out all lines that contain the string 'anonymous'. In this
case, I even recommend using the faster and cleaner list comprehension feature.

mark = [(True, s) if 'anonymous' in s else (False, s) for s in txt]

The ability to analyze real-world data is
one of the most sought-after skills in the

21st century. With the help of powerful hard
ware capabilities, algorithms, and ubiquitous

sensing, data scientists create meaning from massive-​
scale raw data of weather statistics, financial transactions,

3
D A T A S C I E N C E

customer behavior, and so much else. The largest companies in the world
today—Google, Facebook, Apple, and Amazon—are essentially huge data-
processing entities, with data at the heart of their business models.

This chapter equips you with the skills to process and analyze numeri-
cal data by using Python’s library for numerical calculations, NumPy. I’ll give
you 10 practical problems and explain how to solve them in a single line of
NumPy code. Because NumPy is the basis of many high-level libraries for
data science and machine learning (Pandas, scikit-learn, and TensorFlow, for
example), carefully studying this chapter will increase your market value in
today’s data-driven economy. So, give me your full attention!

42 Chapter 3

Basic Two-Dimensional Array Arithmetic
Here you’ll solve a day-to-day accounting task in a single line of code. I’ll
introduce some elementary functionalities of NumPy, Python’s wildly
important library for numerical computations and data science.

The Basics
At the heart of the NumPy library are NumPy arrays, which hold the data you
want to manipulate, analyze, and visualize. Many higher-level data science
libraries like Pandas build upon NumPy arrays, either implicitly or explicitly.

NumPy arrays are similar to Python lists but with some added bonuses.
First, NumPy arrays have a smaller memory footprint and are faster in most
instances. Second, NumPy arrays are more convenient when accessing more
than two axes, known as multidimensional data (multidimensional lists are
difficult to access and modify). Because a NumPy array can consist of more
than one axis, we think of arrays in terms of dimensions: an array with two
axes is a two-dimensional array. Third, NumPy arrays have more powerful
access functionality, such as broadcasting, which you’ll learn more about in
this chapter.

Listing 3-1 exemplifies how to create one-dimensional, two-dimensional,
and three-dimensional NumPy arrays.

import numpy as np

Creating a 1D array from a list
a = np.array([1, 2, 3])
print(a)
"""
[1 2 3]
"""

Creating a 2D array from a list of lists
b = np.array([[1, 2],
 [3, 4]])
print(b)
"""
[[1 2]
 [3 4]]
"""

Creating a 3D array from a list of lists of lists
c = np.array([[[1, 2], [3, 4]],
 [[5, 6], [7, 8]]])
print(c)
"""
[[[1 2]
 [3 4]]

Data Science 43

 [[5 6]
 [7 8]]]
"""

Listing 3-1: Creating 1D, 2D, and 3D arrays in NumPy

You start by importing the NumPy library into the namespace by using
the de facto standard name for the library: np. After importing the library,
you create a NumPy array by passing a standard Python list as an argument to
the function np.array(). A one-dimensional array corresponds to a simple list
of numerical values (in fact, NumPy arrays can contain other data types too,
but we’ll focus on numbers here). A two-dimensional array corresponds to a
nested list of lists of numerical values. A three-dimensional array corresponds
to a nested list of lists of lists of numerical values. The number of opening and
closing brackets gives you the dimensionality of the NumPy array.

NumPy arrays are more powerful than built-in Python lists. For instance,
you can calculate basic arithmetic operators +, -, *, and / on two NumPy
arrays. These element-wise operations combine two arrays a and b (for example,
adding them together with the + operator) by combining each element of
array a with the corresponding element of array b. In other words, an ele-
ment-wise operation aggregates two elements that are at the same positions
in the arrays a and b. Listing 3-2 shows examples of basic arithmetic opera-
tions on two-dimensional arrays.

import numpy as np

a = np.array([[1, 0, 0],
 [1, 1, 1],
 [2, 0, 0]])

b = np.array([[1, 1, 1],
 [1, 1, 2],
 [1, 1, 2]])

print(a + b)
"""
[[2 1 1]
 [2 2 3]
 [3 1 2]]
"""

print(a - b)
"""
[[0 -1 -1]
 [0 0 -1]
 [1 -1 -2]]
"""

print(a * b)
"""

44 Chapter 3

[[1 0 0]
 [1 1 2]
 [2 0 0]]
"""

print(a / b)
"""
[[1. 0. 0.]
 [1. 1. 0.5]
 [2. 0. 0.]]
"""

Listing 3-2: Basic arithmetic array operations

N O T E 	 When you apply NumPy operators to integer arrays, they try to generate integer arrays
as results too. Only when dividing two integer arrays by using the division operator,
a / b, will the result be a float array. This is indicated by the decimal points: 1., 0.,
and 0.5.

If you look closely, you’ll find that each operation combines two corre-
sponding NumPy arrays element-wise. When adding two arrays, the result is
a new array: each new value is the sum of the corresponding value from the
first and the second array. The same holds true when you use subtraction,
multiplication, and division, as shown.

NumPy provides a lot more capabilities for manipulating arrays, includ-
ing the np.max() function, which calculates the maximum value of all values
in a NumPy array. The np.min() function calculates the minimum value of all
values in a NumPy array. The np.average() function calculates the average
value of all values in a NumPy array.

Listing 3-3 gives an example of these three operations.

import numpy as np

a = np.array([[1, 0, 0],
 [1, 1, 1],
 [2, 0, 0]])

print(np.max(a))
2

print(np.min(a))
0

print(np.average(a))
0.6666666666666666

Listing 3-3: Calculating the maximum, minimum, and average value of a NumPy array

The maximum value of all values in the NumPy array is 2, the minimum
value is 0, and the average is (1 + 0 + 0 + 1 + 1 + 1 + 2 + 0 + 0) / 9 = 2/3.
NumPy has many more powerful tools, but this is already enough to solve

Data Science 45

the following problem: how do we find the maximum after-tax income in a
group of people, given their yearly salary and tax rates?

The Code
Let’s tackle this problem by using the salary data of Alice, Bob, and Tim. It
seems like Bob has enjoyed the highest salary in the last three years. But is
he actually bringing home the most money, considering the individual tax
rates of our three friends? Take a look at Listing 3-4.

Dependencies
import numpy as np

Data: yearly salary in ($1000) [2017, 2018, 2019]
alice = [99, 101, 103]
bob = [110, 108, 105]
tim = [90, 88, 85]

salaries = np.array([alice, bob, tim])
taxation = np.array([[0.2, 0.25, 0.22],
 [0.4, 0.5, 0.5],
 [0.1, 0.2, 0.1]])

One-liner
max_income = np.max(salaries - salaries * taxation)

Result
print(max_income)

Listing 3-4: One-liner solution using basic array arithmetic

Take a guess: what’s the output of this code?

How It Works
After importing the NumPy library, you put the data into a two-dimensional
NumPy array with three rows (one row for each person: Alice, Bob, and
Tim) and three columns (one column for each year: 2017, 2018, and 2019).
You have two two-dimensional arrays: salaries holds the yearly incomes, and
taxation holds the taxation rates for each person and year.

To calculate the after-tax income, you need to deduct the tax (as a dol-
lar amount) from the gross income stored in the array salaries. For this,
you use the overloaded NumPy operators - and *, which perform element-
wise computations on the NumPy arrays.

The element-wise multiplication of two multidimensional arrays is
called the Hadamard product.

Listing 3-5 shows how the NumPy array looks after deducting the taxes
from the gross incomes.

46 Chapter 3

print(salaries - salaries * taxation)
"""
[[79.2 75.75 80.34]
 [66. 54. 52.5]
 [81. 70.4 76.5]]
"""

Listing 3-5: Basic array arithmetic

Here, you can see that Bob’s large income is significantly reduced after
paying 40 percent and 50 percent tax rates, shown in the second row.

The code snippet prints the maximum value of this resulting array.
The np.max() function simply finds the maximum value in the array, which
you store in max_income. Thus, the maximum value is Tim’s $90,000 income
in 2017, which is taxed at only 10 percent—the result of the one-liner is 81.
(again, the dot indicates the float data type).

You’ve used NumPy’s basic element-wise array arithmetic to analyze the
taxation rates of a group of people. Let’s use the same example data set in
applying intermediate NumPy concepts such as slicing and broadcasting.

Working with NumPy Arrays: Slicing, Broadcasting,
and Array Types

This one-liner demonstrates the power of three interesting NumPy features:
slicing, broadcasting, and array types. Our data is an array of multiple profes-
sions and salaries. You’ll use the three concepts in combination to increase
the salaries of just the data scientists by 10 percent every other year.

The Basics
The crux of our problem is being able to change specific values in a NumPy
array with many rows. You want to change every other value for one single
row. Let’s explore the basics you need to know to be able to solve this problem.

Slicing and Indexing

Indexing and slicing in NumPy are similar to indexing and slicing in Python
(see Chapter 2): you can access elements of a one-dimensional array by
using the bracket operation [] to specify the index or index range. For
example, the indexing operation x[3] returns the fourth element of the
NumPy array x (because you access the first element with index 0).

You can also use indexing for a multidimensional array by specifying
the index for each dimension independently and using comma-separated
indices to access the different dimensions. For example, the indexing oper-
ation y[0,1,2] would access the first element of the first axis, the second ele-
ment of the second axis, and the third element of the third axis. Note that
this syntax would be invalid for multidimensional Python lists.

Let’s move on to slicing in NumPy. Study the examples in Listing 3-6
to master one-dimensional slicing in NumPy, and feel free to go back to

Data Science 47

Chapter 2 to revisit basic Python slicing if you have difficulties understand-
ing these examples.

import numpy as np

a = np.array([55, 56, 57, 58, 59, 60, 61])
print(a)
[55 56 57 58 59 60 61]

print(a[:])
[55 56 57 58 59 60 61]

print(a[2:])
[57 58 59 60 61]

print(a[1:4])
[56 57 58]

print(a[2:-2])
[57 58 59]

print(a[::2])
[55 57 59 61]

print(a[1::2])
[56 58 60]

print(a[::-1])
[61 60 59 58 57 56 55]

print(a[:1:-2])
[61 59 57]

print(a[-1:1:-2])
[61 59 57]

Listing 3-6: One-dimensional slicing examples

The next step is to fully understand multidimensional slicing. Much
as for indexing, you apply one-dimensional slicing separately for each axis
(comma-separated) to select a range of elements along this axis. Take your
time to thoroughly understand the examples in Listing 3-7.

import numpy as np

a = np.array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])

print(a[:, 2])
Third col: [2 6 10 14]

48 Chapter 3

print(a[1, :])
Second row: [4 5 6 7]

print(a[1, ::2])
Second row, every other element: [4 6]

print(a[:, :-1])
All columns except last:
[[0 1 2]
[4 5 6]
[8 9 10]
[12 13 14]]

print(a[:-2])
Same as a[:-2, :]
[[0 1 2 3]
[4 5 6 7]]

Listing 3-7: Multidimensional slicing examples

Study Listing 3-7 until you understand multidimensional slicing. You
can perform two-dimensional slicing by using the syntax a[slice1, slice2].
For any additional dimension, add a comma-separated slicing operation
(using the start:stop or start:stop:step slicing operators). Each slice selects
an independent subsequence of the elements in its respective dimension. If
you understand this basic idea, going from one-dimensional to multidimen-
sional slicing is trivial.

Broadcasting

Broadcasting describes the automatic process of bringing two NumPy arrays
into the same shape so that you can apply certain element-wise operations
(see “Slicing and Indexing” on page 46). Broadcasting is closely related
to the shape attribute of NumPy arrays, which in turn is closely related to the
concept of axes. So, let’s dive into axes, shapes, and broadcasting next.

Each array comprises several axes, one for each dimension (Listing 3-8).

import numpy as np

a = np.array([1, 2, 3, 4])
print(a.ndim)
1

b = np.array([[2, 1, 2], [3, 2, 3], [4, 3, 4]])
print(b.ndim)
2

c = np.array([[[1, 2, 3], [2, 3, 4], [3, 4, 5]],
 [[1, 2, 4], [2, 3, 5], [3, 4, 6]]])
print(c.ndim)
3

Listing 3-8: Axes and dimensionality of three NumPy arrays

Data Science 49

Here, you can see three arrays: a, b, and c. The array attribute ndim stores
the number of axes of this particular array. You simply print it to the shell for
each array. Array a is one-dimensional, array b is two-dimensional, and array c
is three-dimensional. Every array has an associated shape attribute, a tuple
that gives you the number of elements in each axis. For a two-dimensional
array, there are two values in the tuple: the number of rows and the number
of columns. For higher-dimensional arrays, the i-th tuple value specifies the
number of elements of the i-th axis. The number of tuple elements is there-
fore the dimensionality of the NumPy array.

N O T E 	 If you increase the dimensionality of an array (for example, you move from 2D to 3D
arrays), the new axis becomes axis 0, and the i-th axis of the low-dimensional array
becomes the (i + 1)-th axis of the high-dimensional array.

Listing 3-9 gives the shape attributes of the same arrays from Listing 3-8.

import numpy as np

a = np.array([1, 2, 3, 4])
print(a)
"""
[1 2 3 4]
"""
print(a.shape)
(4,)

b = np.array([[2, 1, 2], [3, 2, 3], [4, 3, 4]])
print(b)
"""
[[2 1 2]
 [3 2 3]
 [4 3 4]]
"""
print(b.shape)
(3, 3)

c = np.array([[[1, 2, 3], [2, 3, 4], [3, 4, 5]],
 [[1, 2, 4], [2, 3, 5], [3, 4, 6]]])
print(c)
"""
[[[1 2 3]
 [2 3 4]
 [3 4 5]]

 [[1 2 4]
 [2 3 5]
 [3 4 6]]]
"""
print(c.shape)
(2, 3, 3)

Listing 3-9: The shape property of 1D, 2D, and 3D NumPy arrays

50 Chapter 3

Here, you can see that the shape attributes contain much more informa-
tion than the ndim attributes. Every shape attribute is a tuple with the num-
ber of elements along each axis:

•	 Array a is one-dimensional, so the shape tuple has only a single element
that represents the number of columns (four elements).

•	 Array b is two-dimensional, so the shape tuple has two elements that
enumerate the number of rows and columns.

•	 Array c is three-dimensional, so the shape tuple has three elements—
one for each axis. Axis 0 has two elements (each element is a two-
dimensional array), axis 1 has three elements (each is a one-dimensional
array), and axis 2 has three elements (each is an integer value).

Now that you understand the shape attribute, it’ll be easier to grasp
the general idea of broadcasting: bringing two arrays into the same shape
by rearranging the data. Let’s see how broadcasting works. Broadcasting
automatically fixes element-wise operations of NumPy arrays with differ-
ent shapes. For example, the multiplication operator * usually performs
element-wise multiplication when applied to NumPy arrays. But what hap-
pens if the left and right data don’t match (say, the left operator is a NumPy
array, while the right is a float value)? In this case, rather than throwing an
error, NumPy automatically creates a new array from the right-side data.
The new array has the same size and dimensionality as the array on the left
and contains the same float values.

Broadcasting, therefore, is the act of converting a low-dimensional
array into a higher-dimensional array to perform element-wise operations.

Homogenous Values

NumPy arrays are homogeneous, meaning all values have the same type. Here
is a non-exclusive list of possible array data types:

bool  The Boolean data type in Python (1 byte)

int  The integer data type in Python (default size: 4 or 8 bytes)

float  The float data type in Python (default size: 8 bytes)

complex  The complex data type in Python (default size: 16 bytes)

np.int8  An integer data type (1 byte)

np.int16  An integer data type (2 bytes)

np.int32  An integer data type (4 bytes)

np.int64  An integer data type (8 bytes)

np.float16  A float data type (2 bytes)

np.float32  A float data type (4 bytes)

np.float64  A float data type (8 bytes)

Listing 3-10 shows how to create NumPy arrays with different types.

Data Science 51

import numpy as np

a = np.array([1, 2, 3, 4], dtype=np.int16)
print(a) # [1 2 3 4]
print(a.dtype) # int16

b = np.array([1, 2, 3, 4], dtype=np.float64)
print(b) # [1. 2. 3. 4.]
print(b.dtype) # float64

Listing 3-10: NumPy arrays with different types

This code has two arrays, a and b. The first array a is of data type np.int16.
The numbers are of type integer (there is no “dot” after the number).
Specifically, when printing out the dtype property of array a, you get the
result int16.

The second array b is of data type float64. So even if you create the array
based on a list of integers, NumPy will convert the array type to np.float64.

There are two important takeaways here: NumPy gives you control over
the data type, and the data type of a NumPy array is homogeneous.

The Code
You have data for a variety of professions, and you want to increase the
salaries of just the data scientists by 10 percent every other year. Listing 3-11
presents the code.

Dependencies
import numpy as np

Data: yearly salary in ($1000) [2025, 2026, 2027]
dataScientist = [130, 132, 137]
productManager = [127, 140, 145]
designer = [118, 118, 127]
softwareEngineer = [129, 131, 137]

employees = np.array([dataScientist,
 productManager,
 designer,
 softwareEngineer])

One-liner
employees[0,::2] = employees[0,::2] * 1.1

Result
print(employees)

Listing 3-11: One-liner solution using slicing and slice assignments

52 Chapter 3

Take a minute and think about the output of this code snippet. What
would you expect to change? What’s the data type of the resulting array?
What is the output of this code?

How It Works
The code snippet places you in the year 2024. First, you create a NumPy array
with each row holding the expected yearly salaries of one professional (data
scientist, product manager, designer, or software engineer). Each column
gives the respective future years’ salaries in 2025, 2026, and 2027. The
resulting NumPy array has four rows and three columns.

You have funds available to reinforce the most important professionals
in the company. You believe in the future of data science, so you decide to
reward the hidden heroes of your company: the data scientists. You need to
update the NumPy array so that only the data scientists’ salaries increase by
10 percent every other year (non-cumulatively), starting from the year 2025.

You develop the following beautiful one-liner:

employees[0,::2] = employees[0,::2] * 1.1

It looks simple and clean, and provides the following output:

[[143 132 150]
 [127 140 145]
 [118 118 127]
 [129 131 137]]

Though simple, your one-liner has three interesting and advanced con-
cepts at play.

Slicing

First, you use the concept of slices and slice assignment. In the example, you
use slicing to get every other value of the first row from the NumPy array
employees. Then, you perform some modifications and update every other
value of the first row by using slice assignment. Slice assignment uses the
same syntax as slicing, with one crucial difference: you select the slice on
the left of the assignment. These elements will be replaced by the elements
specified on the right of the assignment operation. In the code snippet, you
replace the content of the first row in the NumPy array with the updated
salary data.

Broadcasting

Second, you use broadcasting, which automatically fixes element-wise
operations of NumPy arrays with different shapes. In the one-liner, the left
operator is a NumPy array, while the right is a float value. Again, NumPy
automatically creates a new array, making it the same size and dimension-
ality as the array on the left and filling it, conceptually, with copies of the

Data Science 53

float value. In reality, NumPy performs a computation that looks more like
the following:

np.array([130 137]) * np.array([1.1, 1.1])

Array Types

Third, you may have realized that the resulting data type is not float but
integer, even if you are performing floating-point arithmetic. When you cre-
ate the array, NumPy realizes it contains only integer values, and so assumes
it to be an integer array. Any operation you perform on the integer array
won’t change the data type, and NumPy will round down to integer values.
Again, you can access the array’s type by using the dtype property:

print(employees.dtype)
int32
employees[0,::2] = employees[0,::2] * 1.1
print(employees.dtype)
int32

In summary, you’ve learned about slicing, slice assignments, broad-
casting, and NumPy array types—quite an accomplishment in a one-liner
code snippet. Let’s build upon that by solving a small data science prob-
lem with real-world impact: detecting outliers in pollution measurements
of various cities.

Conditional Array Search, Filtering, and Broadcasting to
Detect Outliers

In this one-liner, you’ll explore air-quality data of cities. Specifically, given
a two-dimensional NumPy array with pollution measurements (columns)
for multiple cities (rows), you’ll find the cities that have above-average pol-
lution measurements. The skills you’ll acquire by reading this section are
important in finding outliers in data sets.

The Basics
The Air Quality Index (AQI) measures the danger of adverse health effects
and is commonly used to compare differences in cities’ air quality. In this
one-liner, you’re going to look at the AQI of four cities: Hong Kong, New
York, Berlin, and Montreal.

The one-liner finds above-average polluted cities, defined as cities that
have a peak AQI value that is above the overall average among all the mea-
surements of all cities.

An important element of our solution will be to find elements in a
NumPy array that meet a certain condition. This is a common problem in
data science you’ll use very often.

54 Chapter 3

So, let’s explore how to find array elements that meet a specific condi-
tion. NumPy offers the function nonzero() that finds indices of elements in
an array that are, well, not equal to zero. Listing 3-12 gives an example.

import numpy as np

X = np.array([[1, 0, 0],
 [0, 2, 2],
 [3, 0, 0]])

print(np.nonzero(X))

Listing 3-12: The nonzero function

The result is a tuple of two NumPy arrays:

(array([0, 1, 1, 2], dtype=int64), array([0, 1, 2, 0], dtype=int64)).

The first array gives the row indices, and the second gives the column
indices of the nonzero elements. There are four nonzero elements in the
two-dimensional array: 1, 2, 2, and 3, found at positions X[0,0], X[1,1],
X[1,2], and X[2,0] in the original array.

Now, how can you use nonzero() to find elements that meet a certain
condition in your array? You’ll use another great NumPy feature: Boolean
array operations with broadcasting (see Listing 3-13)!

import numpy as np

X = np.array([[1, 0, 0],
 [0, 2, 2],
 [3, 0, 0]])

print(X == 2)
"""
[[False False False]
 [False True True]
 [False False False]]
"""

Listing 3-13: Broadcasting and element-wise Boolean operators in NumPy

Broadcasting occurs as the integer value 2 is copied (conceptually) into
a new array with the same shape as the array. NumPy then performs an
element-wise comparison of each integer against the value 2 and returns
the resulting Boolean array.

In our main code, you’ll combine the nonzero() and Boolean array oper-
ation features to find elements that meet a certain condition.

The Code
In Listing 3-14, you’re finding cities with above-average pollution peaks
from a set of data.

Data Science 55

Dependencies
import numpy as np

Data: air quality index AQI data (row = city)
X = np.array(
 [[42, 40, 41, 43, 44, 43], # Hong Kong
 [30, 31, 29, 29, 29, 30], # New York
 [8, 13, 31, 11, 11, 9], # Berlin
 [11, 11, 12, 13, 11, 12]]) # Montreal

cities = np.array(["Hong Kong", "New York", "Berlin", "Montreal"])

One-liner
polluted = set(cities[np.nonzero(X > np.average(X))[0]])

Result
print(polluted)

Listing 3-14: One-liner solution using broadcasting, Boolean operators, and
selective indexing

See if you can determine what the output of this code would be.

How It Works
The data array X contains four rows (one row for each city) and six columns
(one column for each measurement unit—in this case, days). The string
array cities contains the four names of the cities in the order they occur in
the data array.

Here is the one-liner that finds the cities with above-average observed
AQI values:

One-liner
polluted = set(cities[np.nonzero(X > np.average(X))[0]])

You first need to understand the parts before you can understand the
whole. To better understand the one-liner, let’s deconstruct it by starting
from within. At the heart of the one-liner is the Boolean array operation
(see Listing 3-15).

print(X > np.average(X))
"""
[[True True True True True True]
 [True True True True True True]
 [False False True False False False]
 [False False False False False False]]
"""

Listing 3-15: Boolean array operation using broadcasting

You use a Boolean expression to bring both operands to the same
shape with broadcasting. You use the function np.average() to compute the

56 Chapter 3

average AQI value of all NumPy array elements. The Boolean expression
then performs an element-wise comparison to come up with a Boolean
array that contains True if the respective measurement observed is an above-
average AQI value.

By generating this Boolean array, you know precisely which elements
satisfy the condition of being above-average and which elements don’t.

Recall that Python’s True value is represented by the integer 1, and
False is represented by 0. In fact, the True and False objects are of type bool,
which is a subclass of int. Thus, every Boolean value is also an integer value.
With this, you can use the function nonzero() to find all row and column
indices that meet the condition, like so:

print(np.nonzero(X > np.average(X)))
"""
(array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2], dtype=int64),
array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 2], dtype=int64))
"""

You have two tuples, the first giving the row indices of nonzero ele-
ments, and the second giving their respective column indices.

We’re looking only for the names of the cities with above-average
AQI values, and nothing else, so you need just the row indices. You can
use these row indices to extract the string names from our string array by
using advanced indexing, an indexing technique that allows you to define a
sequence of array indices without requiring it to be a continuous slice. This
way, you can access arbitrary elements from a given NumPy array by specify-
ing either a sequence of integers (the indices to be selected) or a sequence
of Booleans (to select the specific indices where the corresponding Boolean
value is True):

print(cities[np.nonzero(X > np.average(X))[0]])
"""
['Hong Kong' 'Hong Kong' 'Hong Kong' 'Hong Kong' 'Hong Kong' 'Hong Kong'
 'New York' 'New York' 'New York' 'New York' 'New York' 'New York'
 'Berlin']
"""

You’ll notice many duplicates in the resulting sequence of strings,
because Hong Kong and New York have multiple above-average AQI
measurements.

Now, there is only one thing left to do: remove duplicates. You’ll do this
by converting the sequence to a Python set, which is by default duplicate-free,
giving a succinct summary of all city names with pollution that exceeded the
average AQI values.

Data Science 57

E X E RCISE 3-1

Go back to the taxation example in “Basic Two-Dimensional Array Arithmetic”
on page 42 and pull the name of the person with the highest salary from
the matrix by using this idea of selective Boolean indexing. Problem recap:
How do we find the person with maximum after-tax income in a group of
people, given their yearly salary and tax rates?

In summary, you learned about using Boolean expressions on NumPy
arrays (using broadcasting again) and the nonzero() function to find rows
or columns that satisfy certain conditions. After saving the environment in
this one-liner, let’s move on and analyze influencers in social media.

Boolean Indexing to Filter Two-Dimensional Arrays
Here you’ll strengthen your knowledge of array indexing and broadcast-
ing by pulling Instagram users with more than 100 million followers from
a small data set. In particular, given a two-dimensional array of influencers
(rows), with a first column that defines the influencer’s name as a string
and a second column that defines the influencer’s follower count, you’ll
find all influencer names with more than 100 million followers!

The Basics
NumPy arrays enrich the basic list data type with additional functionality
such as multidimensional slicing and multidimensional indexing. Have a
look at the code snippet in Listing 3-16.

import numpy as np

a = np.array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

indices = np.array([[False, False, True],
 [False, False, False],
 [True, True, False]])

print(a[indices])
[3 7 8]

Listing 3-16: Selective (Boolean) indexing in NumPy

58 Chapter 3

You create two arrays: a contains two-dimensional numerical data
(think of it as the data array), and indices contains Boolean values (think
of it as the indexing array). A great feature of NumPy is that you can use the
Boolean array for fine-grained access to the data array. In plain English,
you create a new array containing only those elements of the data array a
for which the indexing array indices contains True values at the respective
array positions. For example, if indices[i,j]==True, the new array contains
the value a[i,j]. Similarly, if indices[i,j]==False, the new array does not con-
tain the value a[i,j]. Thus, the resulting array contains the three values 3,
7, and 8.

In the following one-liner, you are going to use this feature for a toy
analysis of a social network.

The Code
In Listing 3-17, you’ll find the names of the Instagram superstars with more
than 100 million followers!

Dependencies
import numpy as np

Data: popular Instagram accounts (millions followers)
inst = np.array([[232, "@instagram"],
 [133, "@selenagomez"],
 [59, "@victoriassecret"],
 [120, "@cristiano"],
 [111, "@beyonce"],
 [76, "@nike"]])

One-liner
superstars = inst[inst[:,0].astype(float) > 100, 1]

Results
print(superstars)

Listing 3-17: One-liner solution using slicing, array types, and Boolean operators

As usual, see if you can compute the result of this one-liner in your
head before reading through the explanation.

How It Works
The data consists of a two-dimensional array, inst, and each row represents
an Instagram influencer. The first column states their number of followers
(in millions), and the second column states their Instagram name. From
this data, you want to pull the names of the Instagram influencers with
more than 100 million followers.

Data Science 59

There are many ways to solve this in one line. The following approach is
the easiest one:

One-liner
superstars = inst[inst[:,0].astype(float) > 100, 1]

Let’s deconstruct this one-liner step by step. The inner expression cal-
culates a Boolean value that says whether each influencer has more than
100 million followers:

print(inst[:,0].astype(float) > 100)
[True True False True True False]

The first column contains the number of followers, so you use slicing to
access this data; inst[:,0] returns all rows in just the first column. However,
because the data array contains mixed data types (integers and strings),
NumPy automatically assigns a non-numerical data type to the array. The
reason is that a numerical data type would not be able to capture the string
data, so NumPy converts the data to a type that can represent all data in
the array (string and numerical). You need to perform numerical compari-
sons on the first column of the data array to check whether each value is
larger than 100, so you first convert the resulting array into a float type by
using .astype(float).

Next, you check whether the values in the float type NumPy array are
each larger than the integer value 100. Here, NumPy again uses broadcast-
ing to automatically bring the two operands into the same shape so it can
do the comparison element-wise. The result is an array of Boolean values
that shows that four influencers have more than 100 million followers.

You now take this Boolean array (also called a mask index array) to select
the influencers with more than 100 million followers (the rows) by using
Boolean indexing:

inst[inst[:,0].astype(float) > 100, 1]

Because you are interested only in the names of these influencers,
you select the second column as the final result and store it in the
superstars variable.

The influencers from our data set with more than 100 million
Instagram followers are as follows:

['@instagram' '@selenagomez' '@cristiano' '@beyonce']

In summary, you’ve applied NumPy concepts such as slicing, broadcast-
ing, Boolean indexing, and data type conversion to a small data science
problem in social media analysis. Next, you’ll learn about a new application
scenario in the Internet of Things.

60 Chapter 3

Broadcasting, Slice Assignment, and Reshaping to Clean
Every i-th Array Element

Real-world data is seldom clean and may contain errors or missing values
for a huge variety of reasons, including damaged or faulty sensors. In this
section, you’ll learn about how to handle small cleaning tasks to eliminate
erroneous data points.

The Basics
Say you’ve installed a temperature sensor in your garden to measure tem-
perature data over many weeks. Every Sunday, you bring the temperature
sensor in from the garden to digitize the sensor values. You’re aware that
the Sunday sensor values are therefore faulty because for part of the day
they measure the temperature in your home instead of outside.

You want to clean your data by replacing every Sunday sensor value with
the average sensor value of the previous seven days (you include the Sunday
value in the average computation because it’s not entirely faulty). Before
diving into the code, let’s explore the most important concepts you need as
a basic understanding.

Slice Assignment

With NumPy’s slice assignment feature (see “Working with NumPy Arrays:
Slicing, Broadcasting, and Array Types” on page 46), you specify the values
you want to replace on the left of the equation, and the values to replace
them with on the right-hand side of the equation. Listing 3-18 provides an
example in case you need a small recap.

import numpy as np

a = np.array([4] * 16)
print(a)
[4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4]

a[1::] = [42] * 15
print(a)
[4 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42]

Listing 3-18: Simple Python list creation and slice assignment

The code snippet creates an array containing the value 4 sixteen times.
You use slice assignment to replace the last fifteen values with the value 42.
Recall that the notation a[start:stop:step] selects the sequence starting at
index start, ending at index stop (exclusive), and considering only every
step-th sequence element. If no arguments are specified, NumPy assumes
default values. The notation a[1::] replaces all sequence elements but the
first one. Listing 3-19 shows how to use slice assignment in combination
with a feature you’ve already seen multiple times.

Data Science 61

import numpy as np

a = np.array([4] * 16)

a[1:8:2] = 16
print(a)
[4 16 4 16 4 16 4 16 4 4 4 4 4 4 4 4]

Listing 3-19: Slice assignment in NumPy

Here you replace every other value between index 1 and 8 (exclusive).
You can see that you need to specify only a single value, 16, to replace the
selected elements, because of—you guessed it—broadcasting! The right side
of the equation is automatically transformed into a NumPy array that is the
same shape as the left array.

Reshaping

Before diving into the one-liner, you need to learn about an important
NumPy function: the x.reshape((a,b)) function that transforms the NumPy
array x into a new NumPy array with a rows and b columns (with shape
(a,b)). Here’s an example:

a = np.array([1, 2, 3, 4, 5, 6])
print(a.reshape((2, 3)))
'''
[[1 2 3]
 [4 5 6]]
'''

If the number of columns is unambiguous, you can also let NumPy do
the work of figuring out the number of columns automatically. Let’s say you
want to reshape an array with six elements into a two-dimensional array
with two rows. NumPy can now figure out that it needs three columns to
match the six elements in the original array. Here’s an example:

a = np.array([1, 2, 3, 4, 5, 6])
print(a.reshape((2, -1)))
'''
[[1 2 3]
 [4 5 6]]
'''

The shape value -1 for the column argument indicates that NumPy should
replace it with the correct number of columns (which is three in this case).

The Axis Argument

Finally, let’s consider the following code snippet that introduces the axis
argument. Here is an array solar_x that contains daily stock prices of Elon

62 Chapter 3

Musk’s SolarX company. We want to calculate the average stock prices in
the mornings, middays, and evenings. How can we achieve this?

import numpy as np

daily stock prices
[morning, midday, evening]
solar_x = np.array(
 [[1, 2, 3], # today
 [2, 2, 5]]) # yesterday

midday - weighted average
print(np.average(solar_x, axis=0))
[1.5 2. 4.]

The array solar_x consists of stock prices of the SolarX company. It
has two rows (one for each day) and three columns (one for each stock
price). Say we want to calculate the average stock price in the mornings,
the middays, and the evenings. Roughly speaking, we want to collapse
together all values in each column by averaging them. In other words, we
calculate the average along axis 0. This is exactly what the keyword argu-
ment axis=0 is doing.

The Code
This is everything you need to know to solve the following problem
(Listing 3-20): given an array of temperature values, replace every seventh
temperature value with the average of the last seven days (including the
seventh day’s temperature value).

Dependencies
import numpy as np

Sensor data (Mo, Tu, We, Th, Fr, Sa, Su)
tmp = np.array([1, 2, 3, 4, 3, 4, 4,
 5, 3, 3, 4, 3, 4, 6,
 6, 5, 5, 5, 4, 5, 5])

One-liner
tmp[6::7] = np.average(tmp.reshape((-1,7)), axis=1)

Result
print(tmp)

Listing 3-20: One-liner solution using the average and reshape operators, slice
assignments, and the axis argument

Can you calculate the output of this code snippet?

Data Science 63

How It Works
The data arrives in the shape of a one-dimensional array of sensor values.

First, you create the data array tmp with a one-dimensional sequence of
sensor values. In every line, you define all seven sensor values for seven days
of the week.

Second, you use slice assignment to replace all the Sunday values of this
array. Because Sunday is the seventh day, you use the expression tmp[6::7]
to select the respective Sunday values, starting from the seventh element in
the original array tmp.

Third, we reshape the one-dimensional sensor array into a two-dimensional
array with seven columns and three rows, which makes it easier to calculate
the weekly average temperature value to replace the Sunday data. Because
of the reshaping, you can now merge all seven values of each row into a
single average value. To reshape the array, you pass the tuple values -1 and 7
to tmp.reshape(), which tells NumPy that the number of rows (axis 0) should
be selected automatically. Roughly speaking, you specify seven columns,
and NumPy creates an array with however many rows are needed to satisfy
our condition of seven columns. In our case, it results in the following array
after reshaping:

print(tmp.reshape((-1,7)))
"""
[[1 2 3 4 3 4 4]
 [5 3 3 4 3 4 6]
 [6 5 5 5 4 5 5]]
"""

You have one row per week and one column per weekday.
Now you calculate the seven-day average by collapsing every row into a

single average value by using the np.average() function with the axis argu-
ment: axis=1 tells NumPy to collapse the second axis into a single average
value. Note that the Sunday value is included in the average computation
(see the problem formulation at the beginning of this section). This is the
result of the right-hand side of the equation:

print(np.average(tmp.reshape((-1,7)), axis=1))
[3. 4. 5.]

The goal of the one-liner is to replace the three Sunday temperature
values. All other values should stay constant. Let’s see whether you achieved
this objective. After replacing all Sunday sensor values, you get the follow-
ing final result of the one-liner:

[1 2 3 4 3 4 3 5 3 3 4 3 4 4 6 5 5 5 4 5 5]

Note that you still have a one-dimensional NumPy array with all tem-
perature sensor values. But now you’ve replaced the unrepresentative read-
ings with more representative ones.

64 Chapter 3

In summary, this one-liner is all about hammering down the concepts
of array shapes and reshaping, and how to use the axis property for aggre-
gator functions such as np.average(). While this application was rather
specific, it will be useful in a range of situations. Next, you’ll learn about
a super general concept: sorting in NumPy.

When to Use the sort() Function and When to Use the
argsort() Function in NumPy

Sorting is useful, even essential, in numerous situations. Say you search
your bookshelf for Python One-Liners. It would be much easier to find the
book if your bookshelf were alphabetically sorted by title.

This one-liner solution will show you how to use sorting in a single line
of Python by using NumPy.

The Basics
Sorting is at the heart of more advanced applications such as commercial
computing, process scheduling in operating systems (priority queues), and
search algorithms. Fortunately, NumPy provides various sorting algorithms.
The default is the popular Quicksort algorithm. In Chapter 6, you’ll learn how
to implement the Quicksort algorithm yourself. However, for this one-liner,
you’ll take a higher-level approach, viewing the sorting function as a black
box into which you’ll put a NumPy array to get out a sorted NumPy array.

Figure 3-1 shows the algorithm transforming an unsorted array into a
sorted array. This is the purpose of NumPy’s sort() function.

Sorting
algorithm

Sorted array

Sorted indices

Unsorted array

Unsorted array indices

10 6 8 2 5 4 9 1
0 1 2 3 4 5 6 7

1 2 4 5 6 8 9 10
7 3 5 4 1 2 6 0

ARGSORT

SORT

Figure 3-1: The difference between the sort() and argsort() functions

But often, it’s also important to get the array of indices that would trans-
form the unsorted array into a sorted array. For example, the unsorted array
element 1 has index 7. Because the array element 1 is the first element of the
sorted array, its index 7 is the first element of the sorted indices. This is what
NumPy’s argsort() function does: it creates a new array of the original index
values after sorting (see the example in Figure 3-1). Roughly speaking, these
indices would sort the elements in the original array. By using this array, you
can reconstruct both the sorted and the original array.

Data Science 65

Listing 3-21 demonstrates the use of sort() and argsort() in NumPy.

import numpy as np

a = np.array([10, 6, 8, 2, 5, 4, 9, 1])

print(np.sort(a))
[1 2 4 5 6 8 9 10]

print(np.argsort(a))
[7 3 5 4 1 2 6 0]

Listing 3-21: The sort() and argsort() functions in NumPy

You create an unsorted array a, sort it with np.sort(a), and get the
original indices in their new sorted order with np.argsort(a). NumPy’s sort()
function is different from Python’s sorted() function in that it can sort multi-
dimensional arrays too!

Figure 3-2 shows two ways of sorting a two-dimensional array.

1 6 2
5 1 1
8 0 1A

xi
s

0

Axis 1
1 0 1
5 1 1
8 6 2

Axis 1

Axis 0
Sort

1 2 6
1 1 5
0 1 8

Figure 3-2: Sorting along an axis

The array has two axes: axis 0 (the rows) and axis 1 (the columns).
You can sort along axis 0, known as vertical sorting, or along axis 1, known
as horizontal sorting. In general, the axis keyword defines the direction along
which you perform the NumPy operation. Listing 3-22 shows technically
how to do this.

import numpy as np

a = np.array([[1, 6, 2],
 [5, 1, 1],
 [8, 0, 1]])

print(np.sort(a, axis=0))
"""
[[1 0 1]
 [5 1 1]
 [8 6 2]]
"""

66 Chapter 3

print(np.sort(a, axis=1))
"""
[[1 2 6]
 [1 1 5]
 [0 1 8]]
"""

Listing 3-22: Sorting along an axis

The optional axis argument helps you sort the NumPy array along a
fixed direction. First, you sort by columns, starting with the smallest value.
Then you sort by rows. This is the main strength of NumPy’s sort() function
compared to Python’s built-in sorted() function.

The Code
This one-liner will find the names of the top three students with the highest
SAT scores. Note that you’ll ask for the student names and not the sorted SAT
scores. Have a look at the data and see if you can find the one-liner solution
yourself. When you’ve had a go at that, take a look at Listing 3-23.

Dependencies
import numpy as np

Data: SAT scores for different students
sat_scores = np.array([1100, 1256, 1543, 1043, 989, 1412, 1343])
students = np.array(["John", "Bob", "Alice", "Joe", "Jane", "Frank", "Carl"])

One-liner
top_3 = students[np.argsort(sat_scores)][:-4:-1]

Result
print(top_3)

Listing 3-23: One-liner solution using the argsort() function and slicing with negative
step size

As usual, try to figure out the output.

How It Works
Our initial data consists of the SAT scores of students as a one-dimensional
data array, and another array with the corresponding names of the stu-
dents. For example, John achieved a solid SAT score of 1100, while Frank
achieved an excellent SAT score of 1412.

The task is to find the names of the three most successful students.
You’ll achieve this—not by simply sorting the SAT scores—but by running

Data Science 67

the argsort() function to get an array of the original indices in their new
sorted positions.

Here is the output of the argsort() function on the SAT scores:

print(np.argsort(sat_scores))
[4 3 0 1 6 5 2]

You need to retain the indexes because you need to be able to find the
name of the student from the students array, which corresponds only to the
original positions. Index 4 is at the first position of the output because Jane
has the lowest SAT score, with 989 points. Note that both sort() and argsort()
sort in an ascending manner, from lowest to highest values.

Now that you have sorted indices, you need to get the names of the
respective students by indexing the student array:

print(students[np.argsort(sat_scores)])
['Jane' 'Joe' 'John' 'Bob' 'Carl' 'Frank' 'Alice']

This is a useful feature of the NumPy library: you can reorder a sequence
by using advanced indexing. If you specify a sequence of indices, NumPy
triggers advanced indexing and returns a new NumPy array with reordered
elements as specified by your index sequence. For instance, the command
students[np.argsort(sat_scores)] evaluates to students[[4 3 0 1 6 5 2]] so
NumPy creates a new array as follows:

[students[4] students[3] students[0] students[1] students[6] students[5] students[2]]

From this, you know that Jane has the lowest SAT score, while Alice
has the highest. The only thing left is to reverse the list and extract the top
three students by using simple slicing:

One-liner
top_3 = students[np.argsort(sat_scores)][:-4:-1]

Result
print(top_3)
['Alice' 'Frank' 'Carl']

Alice, Frank, and Carl have the highest SAT scores of 1543, 1412, and
1343, respectively.

In summary, you’ve learned about the application of two important
NumPy functions: sort() and argsort(). Next, you’ll improve your advanced
understanding of NumPy indexing and slicing by using Boolean indexing
and lambda functions in a practical data science problem.

68 Chapter 3

How to Use Lambda Functions and Boolean Indexing to
Filter Arrays

Real-world data is noisy. As a data scientist, you get paid to get rid of the
noise, make the data accessible, and create meaning. Filtering data is there-
fore vital for real-world data science tasks. In this section, you’ll learn how
to create a minimal filter function in a single line of code.

The Basics
To create a function in one line, you’ll need to use lambda functions. As you
know from Chapter 2, lambda functions are anonymous functions that you
can define in a single line of code:

lambda arguments : expression

You define a comma-separated list of arguments that serve as inputs.
The lambda function then evaluates the expression and returns the result.

Let’s explore how to solve our problem by creating a filter function
using the lambda function definition.

The Code
Consider the following problem, depicted in Listing 3-24: create a filter
function that takes a list of books x and a minimum rating y and returns a
list of potential bestsellers that have higher than minimum rating, y'>y.

Dependencies
import numpy as np

Data (row = [title, rating])
books = np.array([['Coffee Break NumPy', 4.6],
 ['Lord of the Rings', 5.0],
 ['Harry Potter', 4.3],
 ['Winnie-the-Pooh', 3.9],
 ['The Clown of God', 2.2],
 ['Coffee Break Python', 4.7]])

One-liner
predict_bestseller = lambda x, y : x[x[:,1].astype(float) > y]

Results
print(predict_bestseller(books, 3.9))

Listing 3-24: One-liner solution using lambda functions, type conversion, and
Boolean operators

Take a guess at the output of this code before moving on.

Data Science 69

How It Works
The data consists of a two-dimensional NumPy array in which each row holds
the name of the book title and the average user rating (a floating-point num-
ber between 0.0 and 5.0). There are six books in the rated data set.

The goal is to create a filter function that takes as input the book rating
data set x and a threshold rating y, and returns the books that have a higher
rating than the threshold y. You set the threshold to 3.9.

You achieve this by defining an anonymous lambda function that
returns the result of the following expression:

x[ux[:,1] v.astype(float)w> y]

The array x is assumed to have two columns as our book rating array
books. To access the potential bestsellers, you use an advanced indexing
scheme similar to the one in Listing 3-17.

First, you carve out the second column u that holds the book ratings
and convert it to a float array by using the astype(float) method v on the
NumPy array x. This is necessary because the initial array x consists of
mixed data types (float and strings).

Second, you create a Boolean array that holds the value True if the
book at the respective row index has a rating larger than y w. Note that the
float y is implicitly broadcasted to a new NumPy array so that both oper-
ands of the Boolean operator > have the same shape. At this point, you’ve
created a Boolean array indicating for each book whether it can be con-
sidered a bestseller: x[:,1].astype(float)> y = [True True True False False
True]. So, the first three books and the last one are bestsellers.

Third, we use the Boolean array as an indexing array on the original
book rating array to carve out all the books that have above-threshold
ratings. More specifically, we use Boolean indexing x[[True True True False
False True]] to get a subarray of the original array with only four books:
the ones with True value. This results in the following final output of this
one-liner:

Results
print(predict_bestseller(books, 3.9))
"""
[['Coffee Break NumPy' '4.6']
 ['Lord of the Rings' '5.0']
 ['Harry Potter' '4.3']
 ['Coffee Break Python' '4.7']]
"""

In summary, you’ve learned how to filter data using only Boolean
indexing and lambda functions. Next, you’ll dive into logical operators and
learn a useful trick to write the logical and operation concisely.

70 Chapter 3

How to Create Advanced Array Filters with Statistics,
Math, and Logic

This section shows you the most basic outlier detection algorithm: if an
observed value deviates from the mean by more than the standard devia-
tion, it is considered an outlier. You’ll work through an example of analyzing
website data to determine the number of active users, the bounce rate, and
the average session duration in seconds. (The bounce rate is the percentage
of visitors who leave immediately after visiting only one website. A high
bounce rate is a bad signal: it might indicate that a site is boring or irrel-
evant.) You’ll look at the data and identify outliers.

The Basics
To solve the outlier detection problem, you’ll first study three basic skills:
understanding the mean and standard deviation, finding the absolute
value, and performing the logical and operation.

Understanding Mean and Standard Deviation

First, you’ll slowly develop our definition of an outlier by using basic sta-
tistics. You’ll make the basic assumption that all observed data is normally
distributed around a mean value. For example, consider the following
sequence of data values:

[8.78087409 10.95890859 8.90183201 8.42516116 9.26643393 12.52747974
 9.70413087 10.09101284 9.90002825 10.15149208 9.42468412 11.36732294
 9.5603904 9.80945055 10.15792838 10.13521324 11.0435137 10.06329581
--snip--
 10.74304416 10.47904781]

If you plot the histogram of this sequence, you’ll get the result in Figure 3-3.
The sequence seems to resemble a normal distribution with a mean value

of 10 and a standard deviation of 1. The mean, denoted with a µ symbol, is the
average value of all sequence values. The standard deviation, denoted with
a σ symbol, measures the variation of a data set around the mean value. By
definition, if the data is truly normally distributed, 68.2 percent of all sample
values fall into the standard deviation interval [w1 = µ – σ,w2 = µ + s]. This
provides a range for outliers: anything that doesn’t fall within the range is
considered an outlier.

In the example, I generated the data from the normal distribution µ=10
and σ=1, which results in the interval w1 = µ – 1 = 9 and w2 = µ + 1 = 11.
In the following, you simply assume that any observed value that is outside
the interval marked by the standard deviation around the mean is an outlier. For
our data, this means that any value that doesn’t fall into the interval [9,11]
is an outlier.

Data Science 71

Figure 3-3: Histogram of the sequence of data values

The simple code I used to generate the plot is shown in Listing 3-25.
Can you find the code lines that define the mean and standard deviation?

import numpy as np
import matplotlib.pyplot as plt

sequence = np.random.normal(10.0, 1.0, 500)
print(sequence)

plt.xkcd()
plt.hist(sequence)
plt.annotate(r"$\omega_1=9$", (9, 70))
plt.annotate(r"$\omega_2=11$", (11, 70))
plt.annotate(r"$\mu=10$", (10, 90))
plt.savefig("plot.jpg")
plt.show()

Listing 3-25: Plotting the histogram by using the Matplotlib library

This code shows how to plot a histogram by using Python’s Matplotlib
library. However, this is not the focus of this section; I want to highlight
only how you can create the preceding sequence of data values.

Simply import the NumPy library and use the module np.random,
which provides a function normal(mean, deviation, shape) that creates a new
NumPy array with values randomly drawn from the normal distribution
with a given mean and standard deviation. This is where you set mean=10.0
and deviation=1.0 to create the data in the sequence. In this case, setting
shape=500 indicates that you’re interested in only a one-dimensional data

72 Chapter 3

array with 500 data points. The remaining code imports the special xkcd
plot styling plt.xkcd(), plots the histogram based on the sequence using
plt.hist(sequence), styles the plot with annotations, and outputs the final plot.

N O T E 	 The name of the xkcd plot is taken from the popular web comic page xkcd
(https://xkcd.com/).

Before diving into the one-liner, let’s quickly explore the other two
basic skills you’ll need to complete this task.

Finding the Absolute Value

Second, you need to turn negative values into positive, so you can check
whether each outlier deviates more than the standard deviation from the
mean. You are interested in only the absolute deviation, not in whether it’s
positive or negative. This is known as taking the absolute value. The NumPy
function in Listing 3-26 creates a new NumPy array with the absolute values
of the original.

import numpy as np

a = np.array([1, -1, 2, -2])

print(a)
[1 -1 2 -2]

print(np.abs(a))
[1 1 2 2]

Listing 3-26: Calculating the absolute value in NumPy

The function np.abs() converts the negative values in a NumPy array
into their positive counterparts.

Performing the Logical And Operation

Third, the following NumPy function performs an element-wise logical and
operation to combine two Boolean arrays a and b and give back an array
that combines the individual Boolean values using the logical and operation
(see Listing 3-27).

import numpy as np

a = np.array([True, True, True, False])
b = np.array([False, True, True, False])

print(np.logical_and(a, b))
[False True True False]

Listing 3-27: The logical and operation applied to NumPy arrays

Data Science 73

You combine each element at index i of array a with element i of array b
by using np.logical_and(a, b). The result is an array of Boolean values that
are True if both operands a[i] and b[i] are already True, and False otherwise.
In this way, you can combine multiple Boolean arrays into a single Boolean
array by using standard logical operations. One useful application of this is
to combine Boolean filter arrays as done in the following one-liner.

Note that you can also multiply two Boolean arrays a and b—and this is
equivalent to the np.logical_and(a, b) operation. Python represents a True
value as an integer value 1 (or really any integer value different from 0) and
a False value as an integer value 0. If you multiply anything by 0, you get 0,
and therefore False. That means you’ll receive a True result (an integer value
>1) only when all operands are already True.

With this information, you are now fully equipped to understand the
following one-liner code snippet.

The Code
This one-liner will find all outlier days for which the statistics deviate more
than the standard deviation from their mean statistics.

Dependencies
import numpy as np

Website analytics data:
(row = day), (col = users, bounce, duration)
a = np.array([[815, 70, 115],
 [767, 80, 50],
 [912, 74, 77],
 [554, 88, 70],
 [1008, 65, 128]])
mean, stdev = np.mean(a, axis=0), np.std(a, axis=0)
[811.2 76.4 88.], [152.97764543 6.85857128 29.04479299]

One-liner
outliers = ((np.abs(a[:,0] - mean[0]) > stdev[0])
 * (np.abs(a[:,1] - mean[1]) > stdev[1])
 * (np.abs(a[:,2] - mean[2]) > stdev[2]))

Result
print(a[outliers])

Listing 3-28: One-liner solution using the mean function, standard deviation, and Boolean
operators with broadcasting

Can you guess the output of this code snippet?

74 Chapter 3

How It Works
The data set consists of rows that represent different days, and three col-
umns that represent daily active users, bounce rate, and average session
duration in seconds, respectively.

For each column, you calculate the mean value and the standard devia-
tion. For example, the mean value of the Daily Active Users column is 811.2,
and its standard deviation is 152.97. Note that you use the axis argument
in the same way as in “Broadcasting, Slice Assignment, and Reshaping to
Clean Every i-th Array Element” on page 60.

Our goal is to detect websites that are outliers in all three columns. For
the Daily Active Users column, every observed value that is smaller than
811.2 – 152.97 = 658.23 or larger than 811.2 + 152.23 = 963.43 is considered
an outlier.

However, you consider a whole day to be an outlier only if all three
observed columns are outliers. You achieve this by combining the three
Boolean arrays using the logical and operator. The result is only a single
row for which all three columns are outliers:

[[1008 65 128]]

In summary, you have learned about the NumPy’s logical and operator
and how to use it to perform basic outlier detection, while making use of
simple statistical measures from the NumPy library. Next, you’ll learn about
a secret ingredient of Amazon’s success: coming up with relevant recom-
mendations of products to buy.

Simple Association Analysis: People Who Bought X
Also Bought Y

Have you ever bought a product recommended by Amazon’s algorithms? The
recommendation algorithms are often based on a technique called association
analysis. In this section, you’ll learn about the basic idea of association analy-
sis and how to dip your toe into the deep ocean of recommender systems.

The Basics
Association analysis is based on historical customer data, such as the
“people who bought x also bought y” data on Amazon. This association of
different products is a powerful marketing concept because it not only ties
together related but complementary products, but also provides you with an
element of social proof—knowing that other people have bought a product
increases the psychological safety for you to buy the product yourself. This
is an excellent tool for marketers.

Let’s have a look at a practical example in Figure 3-4.

Data Science 75

Alice

Bob

Louis

Larissa

Figure 3-4: Product-Customer matrix—which customer has bought which product?

The four customers Alice, Bob, Louis, and Larissa bought different
combinations of the products: book, game, soccer ball, laptop, headphones.
Imagine that you know every product bought by all four persons, but not
whether Louis has bought the laptop. What do you think: is Louis likely to
buy the laptop?

Association analysis (or collaborative filtering) provides an answer to this
problem. The underlying assumption is that if two people performed similar
actions in the past (for example, bought a similar product), they are more
likely to keep performing similar actions in the future. Louis has a similar
buying behavior to Alice, and Alice bought the laptop. Thus, the recom-
mender system predicts that Louis is likely to buy the laptop too.

The following code snippet simplifies this problem.

The Code
Consider the following problem: what fraction of customers bought two
ebooks together? Based on this data, the recommender system can offer
customers a book “bundle” to buy if it sees that they originally intended to
buy a single book. See Listing 3-29.

Dependencies
import numpy as np

Data: row is customer shopping basket
row = [course 1, course 2, ebook 1, ebook 2]
value 1 indicates that an item was bought.
basket = np.array([[0, 1, 1, 0],
 [0, 0, 0, 1],
 [1, 1, 0, 0],
 [0, 1, 1, 1],
 [1, 1, 1, 0],
 [0, 1, 1, 0],
 [1, 1, 0, 1],
 [1, 1, 1, 1]])

76 Chapter 3

One-liner
copurchases = np.sum(np.all(basket[:,2:], axis = 1)) / basket.shape[0]

Result
print(copurchases)

Listing 3-29: One-liner solution using slicing, the axis argument, the shape property, and
basic array arithmetic with broadcasting

What is the output of this code snippet?

How It Works
The basket data array contains one row per customer and one column per
product. The first two products with column indices 0 and 1 are online
courses, and the latter two with column indices 2 and 3 are ebooks. The
value 1 in cell (i,j) indicates that customer i has bought the product j.

Our task is to find the fraction of customers who bought both ebooks,
so we’re interested in only columns 2 and 3. First, then, you carve out the
relevant columns from the original array to get the following subarray:

print(basket[:,2:])
"""
[[1 0]
 [0 1]
 [0 0]
 [1 1]
 [1 0]
 [1 0]
 [0 1]
 [1 1]]
"""

This gives you an array of only the third and the fourth columns.
The NumPy all() function checks whether all values in a NumPy array

evaluate to True. If this is the case, it returns True. Otherwise, it returns
False. When used with the axis argument, the function performs this opera-
tion along the specified axis.

N O T E 	 You’ll notice that the axis argument is a recurring element for many NumPy func-
tions, so it’s worth taking your time to understand the axis argument properly. The
specified axis is collapsed into a single value based on the respective aggregator func-
tion (all() in this case).

Thus, the result of applying the all() function on the subarray is the
following:

print(np.all(basket[:,2:], axis = 1))
[False False False True False False False True]

Data Science 77

In plain English: only the fourth and the last customers have bought
both ebooks.

Because you are interested in the fraction of customers, you sum over this
Boolean array, giving you a total of 2, and divide by the number of customers,
8. The result is 0.25, the fraction of customers who bought both ebooks.

In summary, you’ve strengthened your understanding of NumPy fun-
damentals such as the shape attribute and the axis argument, as well as how
to combine them to analyze copurchases of different products. Next, you’ll
stay with this example and learn about more advanced array aggregation
techniques using a combination of NumPy’s and Python’s special capabili-
ties—that is, broadcasting and list comprehension.

Intermediate Association Analysis to Find Bestseller Bundles
Let’s explore the topic of association analysis in more detail.

The Basics
Consider the example of the previous section: your customers purchase
individual products from a corpus of four different products. Your com-
pany wants to upsell related products (offer a customer an additional, often
related, product to buy). For each combination of products, you need to
calculate how often they’ve been purchased by the same customer, and find
the two products purchased together most often.

For this problem, you’ve already learned everything you need to know,
so let’s dive right in!

The Code
This one-liner aims to find the two items that were purchased most often
together; see Listing 3-30.

Dependencies
import numpy as np

Data: row is customer shopping basket
row = [course 1, course 2, ebook 1, ebook 2]
value 1 indicates that an item was bought.
basket = np.array([[0, 1, 1, 0],
 [0, 0, 0, 1],
 [1, 1, 0, 0],
 [0, 1, 1, 1],
 [1, 1, 1, 0],
 [0, 1, 1, 0],
 [1, 1, 0, 1],
 [1, 1, 1, 1]])

One-liner (broken down in two lines;)
copurchases = [(i,j,np.sum(basket[:,i] + basket[:,j] == 2))

78 Chapter 3

 for i in range(4) for j in range(i+1,4)]

Result
print(max(copurchases, key=lambda x:x[2]))

Listing 3-30: One-liner solution using a lambda function as the max() function’s key
parameter, list comprehension, and Boolean operators with broadcasting

What’s the output of this one-liner solution?

How It Works
The data array consists of historical purchasing data with one row per
customer and one column per product. Our goal is to get a list of tuples:
each tuple describes a combination of products and how often that com-
bination was bought together. For each list element, you want the first
two tuple values to be column indices (the combination of two products)
and the third tuple value to be the number of times these products were
bought together. For example, the tuple (0,1,4) indicates that customers
who bought product 0 also bought product 1 four times.

So how can you achieve this? Let’s break down the one-liner, reformat-
ted a little here as it’s too wide to fit on a single line:

One-liner (broken down in two lines;)
copurchases = [(i,j,np.sum(basket[:,i] + basket[:,j] == 2))
 for i in range(4) for j in range(i+1,4)]

You can see in the outer format [(..., ..., ...) for ... in ... for ...
in ...] that you create a list of tuples by using list comprehension (see
Chapter 2). You’re interested in every unique combination of column indi-
ces of an array with four columns. Here’s the result of just the outer part of
this one-liner:

print([(i,j) for i in range(4) for j in range(i+1,4)])
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]

So, there are six tuples in the list, each a unique combination of col-
umn indices.

Knowing this, you can now dive into the third tuple element: the num-
ber of times these two products i and j have been bought together:

np.sum(basket[:,i] + basket[:,j] == 2)

You use slicing to extract both columns i and j from the original NumPy
array. Then you add them together element-wise. For the resulting array,
you check element-wise whether the sum is equal to 2, which would indicate
that there was a 1 in both columns and so both products have been pur-
chased together. The result is a Boolean array with True values if two prod-
ucts have been purchased together by a single customer.

Data Science 79

You store all resulting tuples in the list copurchases. Here are the ele-
ments of the list:

print(copurchases)
[(0, 1, 4), (0, 2, 2), (0, 3, 2), (1, 2, 5), (1, 3, 3), (2, 3, 2)]

Now there is one thing left: find the two products that have been
co-purchased most often:

Result
print(max(copurchases, key=lambda x:x[2]))

You use the max() function to find the maximum element in the list. You
define a key function that takes a tuple and returns the third tuple value
(number of copurchases), and then find the max out of those values. The
result of the one-liner is as follows:

Result
print(max(copurchases, key=lambda x:x[2]))
(1, 2, 5)

The second and third products have been purchased together five times.
No other product combination reaches copurchasing power this high. Hence,
you can tell your boss to upsell product 2 when selling product 1, and vice versa.

In summary, you’ve learned about various core features of both Python
and NumPy, such as broadcasting, list comprehension, lambda functions, and
the key function. Often, the expressive power of your Python code emerges
from the combination of multiple language elements, functions, and
code tricks.

Summary
In this chapter, you learned elementary NumPy basics such as array, shape,
axis, type, broadcasting, advanced indexing, slicing, sorting, searching,
aggregating, and statistics. You’ve also improved your basic Python skills
by practicing important techniques such as list comprehension, logics, and
lambda functions. Last but not least, you’ve improved your ability to read,
understand, and write concise code quickly, while mastering fundamental
data science problems on the way.

Let’s keep this fast pace of studying various interesting topics in the
Python space. Next, you’ll dive into the exciting topic of machine learning.
You’ll learn about basic machine learning algorithms and how to leverage
their powerful capabilities in a single line of code by using the popular
scikit-learn library. Every machine learning expert knows this library very
well. But fear not—your freshly acquired NumPy skills will help you greatly
in understanding the code snippets covered next.

4
M A C H I N E L E A R N I N G

Machine learning is found in almost every
area of computer science. Over the past

few years, I’ve attended computer science
conferences in fields as diverse as distributed sys-

tems, databases, and stream processing, and no matter
where I go, machine learning is already there. At some
conferences, more than half of the presented research
ideas have relied on machine learning methods.

As a computer scientist, you must know the fundamental machine
learning ideas and algorithms to round out your overall skill set. This chap-
ter provides an introduction to the most important machine learning algo-
rithms and methods, and gives you 10 practical one-liners to apply these
algorithms in your own projects.

82 Chapter 4

The Basics of Supervised Machine Learning
The main aim of machine learning is to make accurate predictions using
existing data. Let’s say you want to write an algorithm that predicts the
value of a specific stock over the next two days. To achieve this goal, you’ll
need to train a machine learning model. But what exactly is a model?

From the perspective of a machine learning user, the machine learning
model looks like a black box (Figure 4-1): you put data in and get predic-
tions out.

Model yx

Figure 4-1: A machine learning model,
shown as a black box

In this model, you call the input data features and denote them using
the variable x, which can be a numerical value or a multidimensional vector
of numerical values. Then the box does its magic and processes your input
data. After a bit of time, you get prediction y back, which is the model’s
predicted output, given the input features. For regression problems, the
prediction consists of one or multiple numerical values—just like the input
features.

Supervised machine learning is divided into two separate phases: the
training phase and the inference phase.

Training Phase
During the training phase, you tell your model your desired output y' for a
given input x. When the model outputs the prediction y, you compare it
to y', and if they are not the same, you update the model to generate an
output that is closer to y', as shown in Figure 4-2. Let’s look at an example
from image recognition. Say you train a model to predict fruit names (out-
puts) when given images (inputs). For example, your specific training input
is an image of a banana, but your model wrongly predicts apple. Because
your desired output is different from the model prediction, you change the
model so that next time the model will correctly predict banana.

Model y = y' ?x

Figure 4-2: The training phase of a machine
learning model

Machine Learning 83

As you keep telling the model your desired outputs for many different
inputs and adjusting the model, you train the model by using your training
data. Over time, the model will learn which output you’d like to get for cer-
tain inputs. That’s why data is so important in the 21st century: your model
will be only as good as its training data. Without good training data, the
model is guaranteed to fail. Roughly speaking, the training data supervises
the machine learning process. That’s why we denote it supervised learning.

Inference Phase
During the inference phase, you use the trained model to predict output val-
ues for new input features x. Note that the model has the power to predict
outputs for inputs that have never been observed in the training data. For
example, the fruit prediction model from the training phase can now identify
the name of the fruits (learned in the training data) in images it has never
seen before. In other words, suitable machine learning models possess the
ability to generalize : they use their experience from the training data to
predict outcomes for new inputs. Roughly speaking, models that generalize
well produce accurate predictions for new input data. Generalized predic-
tion for unseen input data is one of the strengths of machine learning and
is a prime reason for its popularity across a wide range of applications.

Linear Regression
Linear regression is the one machine learning algorithm you’ll find most
often in beginner-level machine learning tutorials. It’s commonly used in
regression problems, for which the model predicts missing data values by using
existing ones. A considerable advantage of linear regression, both for teach-
ers and users, is its simplicity. But that doesn’t mean it can’t solve real prob-
lems! Linear regression has lots of practical use cases in diverse areas such
as market research, astronomy, and biology. In this section, you’ll learn
everything you need to know to get started with linear regression.

The Basics
How can you use linear regression to predict stock prices on a given day?
Before I answer this question, let’s start with some definitions.

Every machine learning model consists of model parameters. Model
parameters are internal configuration variables that are estimated from
the data. These model parameters determine how exactly the model cal-
culates the prediction, given the input features. For linear regression, the
model parameters are called coefficients. You may remember the formula for
two-dimensional lines from school: f(x) = ax + c. The two variables a and
c are the coefficients in the linear equation ax + c. You can describe how
each input x is transformed into an output f(x) so that all outputs together
describe a line in the two-dimensional space. By changing the coefficients,
you can describe any line in the two-dimensional space.

84 Chapter 4

Given the input features x1, x2, . . ., xk, the linear regression model com-
bines the input features with the coefficients a1, a2, . . ., ak to calculate the
predicted output y by using this formula:

y f x a a x a x a xk k� � � � � � � � � � �0 1 1 2 2 

In our stock price example, you have a single input feature, x, the
day. You input the day x with the hope of getting a stock price, the out-
put y. This simplifies the linear regression model to the formula of a
two-dimensional line:

y f x a a x� � � � �0 1

Let’s have a look at three lines for which you change only the two model
parameters a0 and a1 in Figure 4-3. The first axis describes the input x. The
second axis describes the output y. The line represents the (linear) relation-
ship between input and output.

Figure 4-3: Three linear regression models (lines) described by different model param-
eters (coefficients). Every line represents a unique relationship between the input and the
output variables.

In our stock price example, let’s say our training data is the indices of
three days, [0, 1, 2], matched with the stock prices [155, 156, 157]. To put
it differently:

•	 Input x=0 should cause output y=155

•	 Input x=1 should cause output y=156

•	 Input x=2 should cause output y=157

Machine Learning 85

Now, which line best fits our training data? I plotted the training data
in Figure 4-4.

Apple stock price

Figure 4-4: Our training data, with its index in the array as the x coordinate, and its price
as the y coordinate

To find the line that best describes the data and, thus, to create a lin-
ear regression model, we need to determine the coefficients. This is where
machine learning comes in. There are two principal ways of determining
model parameters for linear regression. First, you can analytically calculate
the line of best fit that goes between these points (the standard method
for linear regression). Second, you can try different models, testing each
against the labeled sample data, and ultimately deciding on the best one. In
any case, you determine “best” through a process called error minimization,
in which the model minimizes the squared difference (or selects the coef-
ficients that lead to a minimal squared difference) of the predicted model
values and the ideal output, selecting the model with the lowest error.

For our data, you end up with coefficients of a0 = 155.0 and a1 = 1.0.
Then you put them into our formula for linear regression:

y f x a a x x� � � � � � � �0 1 155 0 1 0. .

and plot both the line and the training data in the same space, as shown in
Figure 4-5.

86 Chapter 4

Apple stock price

Figure 4-5: A prediction line made using our linear regression model

A perfect fit! The squared distance between the line (model prediction)
and the training data is zero—so you have found the model that minimizes
the error. Using this model, you can now predict the stock price for any value
of x. For example, say you want to predict the stock price on day x = 4. To
accomplish this, you simply use the model to calculate f(x) = 155.0 + 1.0 × 4
= 159.0. The predicted stock price on day 4 is $159. Of course, whether this
prediction accurately reflects the real world is another story.

That’s the high-level overview of what happens. Let’s take a closer look
at how to do this in code.

The Code
Listing 4-1 shows how to build a simple linear regression model in a single
line of code (you may need to install the scikit-learn library first by running
pip install sklearn in your shell).

from sklearn.linear_model import LinearRegression
import numpy as np

Data (Apple stock prices)
apple = np.array([155, 156, 157])
n = len(apple)

Machine Learning 87

One-liner
model = LinearRegression().fit(np.arange(n).reshape((n,1)), apple)

Result & puzzle
print(model.predict([[3],[4]]))

Listing 4-1: A simple linear regression model

Can you already guess the output of this code snippet?

How It Works
This one-liner uses two Python libraries: NumPy and scikit-learn. The
former is the de facto standard library for numerical computations (like
matrix operations). The latter is the most comprehensive library for machine
learning and has implementations of hundreds of machine learning algo-
rithms and techniques.

You may ask: “Why are you using libraries in a Python one-liner? Isn’t
this cheating?” It’s a good question, and the answer is yes. Any Python
program—with or without libraries—uses high-level functionality built on
low-level operations. There’s not much point in reinventing the wheel when
you can reuse existing code bases (that is, stand on the shoulders of giants).
Aspiring coders often feel the urge to implement everything on their own,
but this reduces their coding productivity. In this book, we’re going to use,
not reject, the wide spectrum of powerful functionality implemented by
some of the world’s best Python coders and pioneers. Each of these libraries
took skilled coders years to develop, optimize, and tweak.

Let’s go through Listing 4-1 step by step. First, we create a simple data set
of three values and store its length in a separate variable n to make the code
more concise. Our data is three Apple stock prices for three consecutive days.
The variable apple holds this data set as a one-dimensional NumPy array.

Second, we build the model by calling LinearRegression(). But what are
the model parameters? To find them, we call the fit() function to train the
model. The fit() function takes two arguments: the input features of the
training data and the ideal outputs for these inputs. Our ideal outputs are
the real stock prices of the Apple stock. But for the input features, fit()
requires an array with the following format:

[<training_data_1>,
<training_data_2>,
--snip--
<training_data_n>]

where each training data value is a sequence of feature values:

<training_data> = [feature_1, feature_2, ..., feature_k]

88 Chapter 4

In our case, the input consists of only a single feature x (the current
day). Moreover, the prediction also consists of only a single value y (the cur-
rent stock price). To bring the input array into the correct shape, you need
to reshape it to this strange-looking matrix form:

[[0],
 [1],
 [2]]

A matrix with only one column is called a column vector. You use np.arange()
to create the sequence of increasing x values; then you use reshape((n, 1)) to
convert the one-dimensional NumPy array into a two-dimensional array
with one column and n rows (see Chapter 3). Note that scikit-learn allows
the output to be a one-dimensional array (otherwise, you would have to
reshape the apple data array as well).

Once it has the training data and the ideal outputs, fit() then does
error minimization: it finds the model parameters (that means line) so that
the difference between the predicted model values and the desired outputs
is minimal.

When fit() is satisfied with its model, it’ll return a model that you can
use to predict two new stock values by using the predict() function. The
predict() function has the same input requirements as fit(), so to satisfy
them, you’ll pass a one-column matrix with our two new values that you
want predictions for:

print(model.predict([[3],[4]]))

Because our error minimization was zero, you should get perfectly
linear outputs of 158 and 159. This fits well along the line of fit plotted in
Figure 4-5. But it’s often not possible to find such a perfectly fitting single
straight-line linear model. For example, if our stock prices are [157, 156,
159], and you run the same function and plot it, you should get the line in
Figure 4-6.

In this case, the fit() function finds the line that minimizes the squared
error between the training data and the predictions as described previously.

Let’s wrap this up. Linear regression is a machine learning technique
whereby your model learns coefficients as model parameters. The resulting
linear model (for example, a line in the two-dimensional space) directly
provides you with predictions on new input data. This problem of predict-
ing numerical values when given numerical input values belongs to the
class of regression problems. In the next section, you’ll learn about another
important area in machine learning called classification.

Machine Learning 89

Apple stock price

Figure 4-6: A linear regression model with an imperfect fit

Logistic Regression in One Line
Logistic regression is commonly used for classification problems, in which
you predict whether a sample belongs to a specific category (or class). This
contrasts with regression problems, where you’re given a sample and predict
a numerical value that falls into a continuous range. An example classifi-
cation problem is to divide Twitter users into the male and female, given
different input features such as their posting frequency or the number of tweet
replies. The logistic regression model belongs to one of the most fundamen-
tal machine learning models. Many concepts introduced in this section will
be the basis of more advanced machine learning techniques.

The Basics
To introduce logistic regression, let’s briefly review how linear regression
works: given the training data, you compute a line that fits this training
data and predicts the outcome for input x. In general, linear regression is
great for predicting a continuous output, whose value can take an infinite
number of values. The stock price predicted earlier, for example, could
conceivably have been any number of positive values.

90 Chapter 4

But what if the output is not continuous, but categorical, belonging to
a limited number of groups or categories? For example, let’s say you want
to predict the likelihood of lung cancer, given the number of cigarettes a
patient smokes. Each patient can either have lung cancer or not. In con-
trast to the stock price, here you have only these two possible outcomes.
Predicting the likelihood of categorical outcomes is the primary motivation
for logistic regression.

The Sigmoid Function

Whereas linear regression fits a line to the training data, logistic regression
fits an S-shaped curve, called the sigmoid function. The S-shaped curve helps
you make binary decisions (for example, yes/no). For most input values, the
sigmoid function will return a value that is either very close to 0 (one cate-
gory) or very close to 1 (the other category). It’s relatively unlikely that your
given input value generates an ambiguous output. Note that it is possible
to generate 0.5 probabilities for a given input value—but the shape of the
curve is designed in a way to minimize those in practical settings (for most
possible values on the horizontal axis, the probability value is either very
close to 0 or very close to 1). Figure 4-7 shows a logistic regression curve for
the lung cancer scenario.

Lung Cancer

No Cancer

Number of Cigare�es

Sigmoid func�on

Figure 4-7: A logistic regression curve that predicts cancer based on cigarette use

N O T E 	 You can apply logistic regression for multinomial classification to classify the data
into more than two classes. To accomplish this, you’ll use the generalization of the sig-
moid function, called the softmax function, which returns a tuple of probabilities,
one for each class. The sigmoid function transforms the input feature(s) into only a
single probability value. However, for clarity and readability, I’ll focus on binomial
classification and the sigmoid function in this section.

The sigmoid function in Figure 4-7 approximates the probability that
a patient has lung cancer, given the number of cigarettes they smoke. This

Machine Learning 91

probability helps you make a robust decision on the subject when the only
information you have is the number of cigarettes the patient smokes: does
the patient have lung cancer?

Have a look at the predictions in Figure 4-8, which shows two new
patients (in light gray at the bottom of the graph). You know nothing about
them but the number of cigarettes they smoke. You’ve trained our logistic
regression model (the sigmoid function) that returns a probability value
for any new input value x. If the probability given by the sigmoid function is
higher than 50 percent, the model predicts lung cancer positive ; otherwise, it
predicts lung cancer negative.

Lung Cancer

No Cancer

Number of Cigare�es

New pa�ents

() = 0.8

() = 0.1

Figure 4-8: Using logistic regression to estimate probabilities of a result

Finding the Maximum Likelihood Model

The main question for logistic regression is how to select the correct sig-
moid function that best fits the training data. The answer is in each model’s
likelihood: the probability that the model would generate the observed train-
ing data. You want to select the model with the maximum likelihood. Your
sense is that this model best approximates the real-world process that gen-
erated the training data.

To calculate the likelihood of a given model for a given set of training
data, you calculate the likelihood for each single training data point, and
then multiply those with each other to get the likelihood of the whole set
of training data. How to calculate the likelihood of a single training data
point? Simply apply this model’s sigmoid function to the training data
point; it’ll give you the data point’s probability under this model. To select
the maximum likelihood model for all data points, you repeat this same
likelihood computation for different sigmoid functions (shifting the sig-
moid function a little bit), as in Figure 4-9.

In the previous paragraph, I described how to determine the maximum
likelihood sigmoid function (model). This sigmoid function fits the data
best—so you can use it to predict new data points.

92 Chapter 4

Now that we’ve covered the theory, let’s look at how you’d implement
logistic regression as a Python one-liner.

Lung Cancer

No Cancer

Number of Cigare�es

Maximum Likelihood
Sigmoid Func�on

Figure 4-9: Testing several sigmoid functions to determine maximum likelihood

The Code
You’ve seen an example of using logistic regression for a health application
(correlating cigarette consumption with cancer probability). This “virtual
doc” application would be a great idea for a smartphone app, wouldn’t it?
Let’s program your first virtual doc using logistic regression, as shown in
Listing 4-2—in a single line of Python code!

from sklearn.linear_model import LogisticRegression
import numpy as np

Data (#cigarettes, cancer)
X = np.array([[0, "No"],
 [10, "No"],
 [60, "Yes"],
 [90, "Yes"]])

One-liner
model = LogisticRegression().fit(X[:,0].reshape(n,1), X[:,1])

Result & puzzle
print(model.predict([[2],[12],[13],[40],[90]]))

Listing 4-2: A logistic regression model

Take a guess: what’s the output of this code snippet?

Machine Learning 93

How It Works
The training data X consists of four patient records (the rows) with two
columns. The first column holds the number of cigarettes the patients
smoke (input feature), and the second column holds the class labels, which
say whether they ultimately suffered from lung cancer.

You create the model by calling the LogisticRegression() constructor. You
call the fit() function on this model; fit() takes two arguments, which are
the input (cigarette consumption) and the output class labels (cancer). The
fit() function expects a two-dimensional input array format with one row
per training data sample and one column per feature of this training data
sample. In this case, you have only a single feature value so you transform
the one-dimensional input into a two-dimensional NumPy array by using
the reshape() operation. The first argument to reshape() specifies the number
of rows, and the second specifies the number of columns. You care about
only the number of columns, which here is 1. You’ll pass -1 as the number of
desired rows, which is a special signal to NumPy to determine the number of
rows automatically.

The input training data will look as follows after reshaping (in essence,
you simply remove the class labels and keep the two-dimensional array
shape intact):

[[0],
 [10],
 [60],
 [90]]

Next, you predict whether a patient has lung cancer, given the number
of cigarettes they smoke: your input will be 2, 12, 13, 40, 90 cigarettes. That
gives an output as follows:

['No' 'No' 'Yes' 'Yes' 'Yes']

The model predicts that the first two patients are lung cancer negative,
while the latter three are lung cancer positive.

Let’s look in detail at the probabilities the sigmoid function came up
with that lead to this prediction! Simply run the following code snippet
after Listing 4-2:

for i in range(20):
 print("x=" + str(i) + " --> " + str(model.predict_proba([[i]])))

The predict_proba() function takes as input the number of cigarettes
and returns an array containing the probability of lung cancer negative (at
index 0) and the probability of lung cancer positive (index 1). When you
run this code, you should get the following output:

x=0 --> [[0.67240789 0.32759211]]
x=1 --> [[0.65961501 0.34038499]]
x=2 --> [[0.64658514 0.35341486]]

94 Chapter 4

x=3 --> [[0.63333374 0.36666626]]
x=4 --> [[0.61987758 0.38012242]]
x=5 --> [[0.60623463 0.39376537]]
x=6 --> [[0.59242397 0.40757603]]
x=7 --> [[0.57846573 0.42153427]]
x=8 --> [[0.56438097 0.43561903]]
x=9 --> [[0.55019154 0.44980846]]
x=10 --> [[0.53591997 0.46408003]]
x=11 --> [[0.52158933 0.47841067]]
x=12 --> [[0.50722306 0.49277694]]
x=13 --> [[0.49284485 0.50715515]]
x=14 --> [[0.47847846 0.52152154]]
x=15 --> [[0.46414759 0.53585241]]
x=16 --> [[0.44987569 0.55012431]]
x=17 --> [[0.43568582 0.56431418]]
x=18 --> [[0.42160051 0.57839949]]
x=19 --> [[0.40764163 0.59235837]]

If the probability of lung cancer being negative is higher than the prob-
ability of lung cancer being positive, the predicted outcome will be lung cancer
negative. This happens the last time for x=12. If the patient has smoked more
than 12 cigarettes, the algorithm will classify them as lung cancer positive.

In summary, you’ve learned how to classify problems easily with logistic
regression using the scikit-learn library. The idea of logistic regression is
to fit an S-shaped curve (the sigmoid function) to the data. This function
assigns a numerical value between 0 and 1 to every new data point and each
possible class. The numerical value models the probability of this data point
belonging to the given class. However, in practice, you often have training
data but no class label assigned to the training data. For example, you have
customer data (say, their age and their income) but you don’t know any
class label for each data point. To still extract useful insights from this kind
of data, you will learn about another category of machine learning next:
unsupervised learning. Specifically, you’ll learn about how to find similar
clusters of data points, an important subset of unsupervised learning.

K-Means Clustering in One Line
If there’s one clustering algorithm you need to know—whether you’re a
computer scientist, data scientist, or machine learning expert—it’s the
K-Means algorithm. In this section, you’ll learn the general idea and when
and how to use it in a single line of Python code.

The Basics
The previous sections covered supervised learning, in which the training
data is labeled. In other words, you know the output value of every input
value in the training data. But in practice, this isn’t always the case. Often,

Machine Learning 95

you’ll find yourself confronted with unlabeled data—especially in many
data analytics applications—where it’s not clear what “the optimal output”
means. In these situations, a prediction is impossible (because there is no
output to start with), but you can still distill useful knowledge from these
unlabeled data sets (for example, you can find clusters of similar unlabeled
data). Models that use unlabeled data fall under the category of unsuper-
vised learning.

As an example, suppose you’re working in a startup that serves different
target markets with various income levels and ages. Your boss tells you to
find a certain number of target personas that best fit your target markets.
You can use clustering methods to identify the average customer personas that
your company serves. Figure 4-10 shows an example.

Figure 4-10: Observed customer data in the two-dimensional space

Here, you can easily identify three types of personas with different
types of incomes and ages. But how to find those algorithmically? This is
the domain of clustering algorithms such as the widely popular K-Means
algorithm. Given the data sets and an integer k, the K-Means algorithm
finds k clusters of data such that the difference between the center of a
cluster (called the centroid) and the data in the cluster is minimal. In other
words, you can find the different personas by running the K-Means algo-
rithm on your data sets, as shown in Figure 4-11.

96 Chapter 4

Figure 4-11: Customer data with customer personas (cluster centroids) in the two-
dimensional space

The cluster centers (black dots) match the clustered customer data.
Every cluster center can be viewed as one customer persona. Thus, you have
three idealized personas: a 20-year-old earning $2000, a 25-year-old earn-
ing $3000, and a 40-year-old earning $4000. And the great thing is that the
K-Means algorithm finds those cluster centers even in high-dimensional
spaces (where it would be hard for humans to find the personas visually).

The K-Means algorithm requires “the number of cluster centers k” as an
input. In this case, you look at the data and “magically” define k = 3. More
advanced algorithms can find the number of cluster centers automatically
(for an example, look at the 2004 paper “Learning the k in K-Means” by
Greg Hamerly and Charles Elkan).

So how does the K-Means algorithm work? In a nutshell, it performs the
following procedure:

Initialize random cluster centers (centroids).
Repeat until convergence
 Assign every data point to its closest cluster center.
Recompute each cluster center as the centroid of all data points assigned to it.

Machine Learning 97

This results in multiple loop iterations: you first assign the data to the k
cluster centers, and then you recompute each cluster center as the centroid
of the data assigned to it.

Let’s implement it!
Consider the following problem: given two-dimensional salary data

(hours worked, salary earned), find two clusters of employees in the given data
set that work a similar number of hours and earn a similar salary.

The Code
How can you do all of this in a single line of code? Fortunately, the scikit-
learn library in Python already has an efficient implementation of the K-Means
algorithm. Listing 4-3 shows the one-liner code snippet that runs K-Means
clustering for you.

Dependencies
from sklearn.cluster import KMeans
import numpy as np

Data (Work (h) / Salary ($))
X = np.array([[35, 7000], [45, 6900], [70, 7100],
 [20, 2000], [25, 2200], [15, 1800]])

One-liner
kmeans = KMeans(n_clusters=2).fit(X)

Result & puzzle
cc = kmeans.cluster_centers_
print(cc)

Listing 4-3: K-Means clustering in one line

What’s the output of this code snippet? Try to guess a solution even if
you don’t understand every syntactical detail. This will open your knowl-
edge gap and prepare your brain to absorb the algorithm much better.

How It Works
In the first lines, you import the KMeans module from the sklearn.cluster pack-
age. This module takes care of the clustering itself. You also need to import
the NumPy library because the KMeans module works on NumPy arrays.

Our data is two-dimensional. It correlates the number of working hours
with the salary of some workers. Figure 4-12 shows the six data points in this
employee data set.

98 Chapter 4

Figure 4-12: Employee salary data

The goal is to find the two cluster centers that best fit this data:

One-liner
kmeans = KMeans(n_clusters=2).fit(X)

In the one-liner, you create a new KMeans object that handles the algo-
rithm for you. When you create the KMeans object, you define the number of
cluster centers by using the n_clusters function argument. Then you simply
call the instance method fit(X) to run the K-Means algorithm on the input
data X. The KMeans object now holds all the results. All that’s left is to retrieve
the results from its attributes:

cc = kmeans.cluster_centers_
print(cc)

Note that in the sklearn package, the convention is to use a trailing
underscore for some attribute names (for example, cluster_centers_) to
indicate that these attributes were created dynamically within the training
phase (the fit() function). Before the training phase, these attributes do
not exist yet. This is not general Python convention (trailing underscores
are usually used only to avoid naming conflicts with Python keywords—
variable list_ instead of list). However, if you get used to it, you appreci-
ate the consistent use of attributes in the sklearn package. So, what are the
cluster centers and what is the output of this code snippet? Take a look at
Figure 4-13.

Machine Learning 99

Figure 4-13: Employee salary data with cluster centers in the two-dimensional space

You can see that the two cluster centers are (20, 2000) and (50, 7000).
This is also the result of the Python one-liner. These clusters correspond
to two idealized employee personas: the first works for 20 hours a week
and earns $2000 per month, while the second works for 50 hours a week and
earns $7000 per month. Those two types of personas fit the data reasonably
well. Thus, the result of the one-liner code snippet is as follows:

Result & puzzle
cc = kmeans.cluster_centers_
print(cc)
'''
[[50. 7000.]
 [20. 2000.]]
'''

To summarize, this section introduced you to an important subtopic of
unsupervised learning: clustering. The K-Means algorithm is a simple, effi-
cient, and popular way of extracting k clusters from multidimensional data.
Behind the scenes, the algorithm iteratively recomputes cluster centers
and reassigns each data value to its closest cluster center until it finds the
optimal clusters. But clusters are not always ideal for finding similar data
items. Many data sets do not show a clustered behavior, but you’ll still want
to leverage the distance information for machine learning and prediction.
Let’s stay in the multidimensional space and explore another way to use the
distance of (Euclidean) data values: the K-Nearest Neighbors algorithm.

100 Chapter 4

K-Nearest Neighbors in One Line
The popular K-Nearest Neighbors (KNN) algorithm is used for regression
and classification in many applications such as recommender systems, image
classification, and financial data forecasting. It’s the basis of many advanced
machine learning techniques (for example, in information retrieval). There
is no doubt that understanding KNN is an important building block of your
proficient computer science education.

The Basics
The KNN algorithm is a robust, straightforward, and popular machine
learning method. It’s simple to implement but still a competitive and fast
machine learning technique. All other machine learning models we’ve
discussed so far use the training data to compute a representation of the
original data. You can use this representation to predict, classify, or cluster
new data. For example, the linear and logistic regression algorithms define
learning parameters, while the clustering algorithm calculates cluster cen-
ters based on the training data. However, the KNN algorithm is different.
In contrast to the other approaches, it does not compute a new model (or
representation) but uses the whole data set as a model.

Yes, you read that right. The machine learning model is nothing more
than a set of observations. Every single instance of your training data is one
part of your model. This has advantages and disadvantages. A disadvantage
is that the model can quickly blow up as the training data grows—which
may require sampling or filtering as a preprocessing step. A great advan-
tage, however, is the simplicity of the training phase (just add the new data
values to the model). Additionally, you can use the KNN algorithm for
prediction or classification. You execute the following strategy, given your
input vector x :

1.	 Find the k nearest neighbors of x (according to a predefined
distance metric).

2.	 Aggregate the k nearest neighbors into a single prediction or
classification value. You can use any aggregator function such as
average, mean, max, or min.

Let’s walk through an example. Your company sells homes for clients.
It has acquired a large database of customers and house prices (see
Figure 4-14). One day, your client asks how much they must expect to pay
for a house of 52 square meters. You query your KNN model, and it imme-
diately gives you the response $33,167. And indeed, your client finds a home
for $33,489 the same week. How did the KNN system come to this surpris-
ingly accurate prediction?

First, the KNN system simply calculates the k = 3 nearest neighbors to
the query D = 52 square meters using Euclidean distance. The three near-
est neighbors are A, B, and C with prices $34,000, $33,500, and $32,000,
respectively. Then, it aggregates the three nearest neighbors by calculat-
ing the simple average of their values. Because k = 3 in this example, you

Machine Learning 101

denote the model as 3NN. Of course, you can vary the similarity functions,
the parameter k, and the aggregation method to come up with more sophis-
ticated prediction models.

House Size (square meters)

)$(ecirP esuoH

3NN

A

C

B

D: (52 m2 , ?)

A: (50 m2, $34,000)

B: (55 m2, $33,500)

C: (45 m2, $32,000)

D: ,
$,

52
99 500

3

2m

52 33 1672m ,$,

Figure 4-14: Calculating the price of house D based on the three nearest neighbors
A, B, and C

Another advantage of KNN is that it can be easily adapted as new obser-
vations are made. This is not generally true for machine learning models. An
obvious weakness in this regard is that as the computational complexity of
finding the k nearest neighbors becomes harder and harder, the more points
you add. To accommodate for that, you can continuously remove stale values
from the model.

As I mentioned, you can also use KNN for classification problems. Instead
of averaging over the k nearest neighbors, you can use a voting mechanism:
each nearest neighbor votes for its class, and the class with the most votes wins.

The Code
Let’s dive into how to use KNN in Python—in a single line of code (see
Listing 4-4).

Dependencies
from sklearn.neighbors import KNeighborsRegressor
import numpy as np

Data (House Size (square meters) / House Price ($))
X = np.array([[35, 30000], [45, 45000], [40, 50000],
 [35, 35000], [25, 32500], [40, 40000]])

One-liner
KNN = KNeighborsRegressor(n_neighbors=3).fit(X[:,0].reshape(-1,1), X[:,1])

102 Chapter 4

Result & puzzle
res = KNN.predict([[30]])
print(res)

Listing 4-4: Running the KNN algorithm in one line of Python

Take a guess: what’s the output of this code snippet?

How It Works
To help you see the result, let’s plot the housing data from this code in
Figure 4-15.

Figure 4-15: Housing data in the two-dimensional space

Can you see the general trend? With the growing size of your house,
you can expect a linear growth of its market price. Double the square
meters, and the price will double too.

In the code (see Listing 4-4), the client requests your price prediction
for a house of 30 square meters. What does KNN with k = 3 (in short, 3NN)
predict? Take a look at Figure 4-16.

Beautiful, isn’t it? The KNN algorithm finds the three closest houses
with respect to house size and averages the predicted house price as the
average of the k=3 nearest neighbors. Thus, the result is $32,500.

If you are confused by the data conversions in the one-liner, let me
quickly explain what is happening here:

KNN = KNeighborsRegressor(n_neighbors=3).fit(X[:,0].reshape(-1,1), X[:,1])

Machine Learning 103

Figure 4-16: Housing data in the two-dimensional space with predicted house price for
a new data point (house size equals 30 square meters) using KNN

First, you create a new machine learning model called KNeighbors​Regressor.
If you wanted to use KNN for classification, you’d use KNeighborsClassifier.

Second, you train the model by using the fit() function with two
parameters. The first parameter defines the input (the house size), and the
second parameter defines the output (the house price). The shape of both
parameters must be an array-like data structure. For example, to use 30 as
an input, you’d have to pass it as [30]. The reason is that, in general, the
input can be multidimensional rather than one-dimensional. Therefore,
you reshape the input:

print(X[:,0])
"[35 45 40 35 25 40]"

print(X[:,0].reshape(-1,1))
"""
[[35]
 [45]
 [40]
 [35]
 [25]
 [40]]
"""

Notice that if you were to use this 1D NumPy array as an input to the
fit() function, the function wouldn’t work because it expects an array of
(array-like) observations, and not an array of integers.

104 Chapter 4

In summary, this one-liner taught you how to create your first KNN
regressor in a single line of code. If you have a lot of changing data and
model updates, KNN is your best friend! Let’s move on to a wildly popular
machine learning model these days: neural networks.

Neural Network Analysis in One Line
Neural networks have gained massive popularity in recent years. This is
in part because the algorithms and learning techniques in the field have
improved, but also because of the improved hardware and the rise of
general-purpose GPU (GPGPU) technology. In this section, you’ll learn
about the multilayer perceptron (MLP) which is one of the most popular
neural network representations. After reading this, you’ll be able to write
your own neural network in a single line of Python code!

The Basics
For this one-liner, I have prepared a special data set with fellow Python
colleagues on my email list. My goal was to create a relatable real-world
data set, so I asked my email subscribers to participate in a data-generation
experiment for this chapter.

The Data

If you’re reading this book, you’re interested in learning Python. To create
an interesting data set, I asked my email subscribers six anonymized ques-
tions about their Python expertise and income. The responses to these
questions will serve as training data for the simple neural network example
(as a Python one-liner).

The training data is based on the answers to the following six questions:

•	 How many hours have you looked at Python code in the last seven days?

•	 How many years ago did you start to learn about computer science?

•	 How many coding books are on your shelf?

•	 What percentage of your Python time do you spend working on real-
world projects?

•	 How much do you earn per month (round to $1000) from selling your
technical skills (in the widest sense)?

•	 What’s your approximate Finxter rating, rounded to 100 points?

The first five questions will be your input, and the sixth question will
be the output for the neural network analysis. In this one-liner section,
you’re examining neural network regression. In other words, you predict
a numerical value (your Python skills) based on numerical input features.
We’re not going to explore neural network classification in this book, which
is another great strength of neural networks.

Machine Learning 105

The sixth question approximates the skill level of a Python coder. Finxter
(https://finxter.com/) is our puzzle-based learning application that assigns
a rating value to any Python coder based on their performance in solving
Python puzzles. In this way, it helps you quantify your skill level in Python.

Let’s start with visualizing how each question influences the output (the
skill rating of a Python developer), as shown in Figure 4-17.

Figure 4-17: Relationship between questionnaire answers and the Python skill rating at Finxter

Note that these plots show only how each separate feature (question)
impacts the final Finxter rating, but they tell you nothing about the impact
of a combination of two or more features. Note also that some Pythonistas
didn’t answer all six questions; in those cases, I used the dummy value -1.

106 Chapter 4

What Is an Artificial Neural Network?

The idea of creating a theoretical model of the human brain (the biologi-
cal neural network) has been studied extensively in recent decades. But
the foundations of artificial neural networks were proposed as early as the
1940s and ’50s! Since then, the concept of artificial neural networks has
been refined and continually improved.

The basic idea is to break the big task of learning and inference into
multiple micro-tasks. These micro-tasks are not independent but interde-
pendent. The brain consists of billions of neurons that are connected with
trillions of synapses. In the simplified model, learning is merely adjusting
the strength of synapses (also called weights or parameters in artificial neural
networks). So how do you “create” a new synapse in the model? Simple—
you increase its weight from zero to a nonzero value.

Figure 4-18 shows a basic neural network with three layers (input, hid-
den, output). Each layer consists of multiple neurons that are connected
from the input layer via the hidden layer to the output layer.

Input layer Hidden layer Output layer

”CAT“

Figure 4-18: A simple neural network analysis for animal classification

In this example, the neural network is trained to detect animals in
images. In practice, you would use one input neuron per pixel of the image
as an input layer. This can result in millions of input neurons that are con-
nected with millions of hidden neurons. Often, each output neuron is
responsible for one bit of the overall output. For example, to detect two dif-
ferent animals (for example, cats and dogs), you’ll use only a single neuron
in the output layer that can model two different states (0=cat, 1=dog).

The idea is that each neuron can be activated, or “fired”, when a certain
input impulse arrives at the neuron. Each neuron decides independently,
based on the strength of the input impulse, whether to fire or not. This
way, you simulate the human brain, in which neurons activate each other
via impulses. The activation of the input neurons propagates through the
network until the output neurons are reached. Some output neurons will be
activated, and others won’t. The specific pattern of firing output neurons
forms your final output (or prediction) of the artificial neural network.
In your model, a firing output neuron could encode a 1, and a nonfiring

Machine Learning 107

output neuron could encode a 0. This way, you can train your neural net-
work to predict anything that can be encoded as a series of 0s and 1s (which
is everything a computer can represent).

Let’s have a detailed look at how neurons work mathematically, in
Figure 4-19.

x3 = w1x1 + w2x2 + w3x3

= 0.5 × 1 + 0.1 × 0 + 0.2 × 1
= 0.7

Σ

x1 = 1

x2 = 0

x3 = 1

x3

w3 = 0.2

w2 = 0.1

w1 = 0.5

Figure 4-19: Mathematical model of a single neuron: the output is a function of the
three inputs.

Each neuron is connected to other neurons, but not all connections are
equal. Instead, each connection has an associated weight. Formally, a firing
neuron propagates an impulse of 1 to the outgoing neighbors, while a non-
firing neuron propagates an impulse of 0. You can think of the weight as
indicating how much of the impulse of the firing input neuron is forwarded
to the neuron via the connection. Mathematically, you multiply the impulse
by the weight of the connection to calculate the input for the next neuron.
In our example, the neuron simply sums over all inputs to calculate its own
output. This is the activation function that describes how exactly the inputs
of a neuron generate an output. In our example, a neuron fires with higher
likelihood if its relevant input neurons fire too. This is how the impulses
propagate through the neural network.

What does the learning algorithm do? It uses the training data to select
the weights w of the neural network. Given a training input value x, different
weights w lead to different outputs. Hence, the learning algorithm gradually
changes the weights w—in many iterations—until the output layer produces
similar results as the training data. In other words, the training algorithm
gradually reduces the error of correctly predicting the training data.

There are many network structures, training algorithms, and activation
functions. This chapter shows you a hands-on approach of using the neu-
ral network now, within a single line of code. You can then learn the finer
details as you need to improve upon this (for example, you could start by
reading the “Neural Network” entry on Wikipedia, https://en.wikipedia.org​
/wiki/Neural_network).

https://en.wikipedia.org/wiki/Neural_network
https://en.wikipedia.org/wiki/Neural_network

108 Chapter 4

The Code
The goal is to create a neural network that predicts the Python skill level
(Finxter rating) by using the five input features (answers to the questions):

WEEK  How many hours have you been exposed to Python code in the
last seven days?

YEARS  How many years ago did you start to learn about computer
science?

BOOKS  How many coding books are on your shelf?

PROJECTS  What percentage of your Python time do you spend imple-
menting real-world projects?

EARN  How much do you earn per month (round to $1000) from selling
your technical skills (in the widest sense)?

Again, let’s stand on the shoulders of giants and use the scikit-learn
(sklearn) library for neural network regression, as in Listing 4-5.

Dependencies
from sklearn.neural_network import MLPRegressor
import numpy as np

Questionaire data (WEEK, YEARS, BOOKS, PROJECTS, EARN, RATING)
X = np.array(
 [[20, 11, 20, 30, 4000, 3000],
 [12, 4, 0, 0, 1000, 1500],
 [2, 0, 1, 10, 0, 1400],
 [35, 5, 10, 70, 6000, 3800],
 [30, 1, 4, 65, 0, 3900],
 [35, 1, 0, 0, 0, 100],
 [15, 1, 2, 25, 0, 3700],
 [40, 3, -1, 60, 1000, 2000],
 [40, 1, 2, 95, 0, 1000],
 [10, 0, 0, 0, 0, 1400],
 [30, 1, 0, 50, 0, 1700],
 [1, 0, 0, 45, 0, 1762],
 [10, 32, 10, 5, 0, 2400],
 [5, 35, 4, 0, 13000, 3900],
 [8, 9, 40, 30, 1000, 2625],
 [1, 0, 1, 0, 0, 1900],
 [1, 30, 10, 0, 1000, 1900],
 [7, 16, 5, 0, 0, 3000]])

One-liner
neural_net = MLPRegressor(max_iter=10000).fit(X[:,:-1], X[:,-1])

Result
res = neural_net.predict([[0, 0, 0, 0, 0]])
print(res)

Listing 4-5: Neural network analysis in a single line of code

Machine Learning 109

It’s impossible for a human to correctly figure out the output—but
would you like to try?

How It Works
In the first few lines, you create the data set. The machine learning algo-
rithms in the scikit-learn library use a similar input format. Each row is a
single observation with multiple features. The more rows, the more training
data exists; the more columns, the more features of each observation. In
this case, you have five features for the input and one feature for the output
value of each training data.

The one-liner creates a neural network by using the constructor of
the MLPRegressor class. I passed max_iter=10000 as an argument because the
training doesn’t converge when using the default number of iterations
(max_iter=200).

After that, you call the fit() function, which determines the parameters
of the neural network. After calling fit(), the neural network has been suc-
cessfully initialized. The fit() function takes a multidimensional input array
(one observation per row, one feature per column) and a one-dimensional
output array (size = number of observations).

The only thing left is calling the predict function on some input values:

Result
res = neural_net.predict([[0, 0, 0, 0, 0]])
print(res)
[94.94925927]

Note that the actual output may vary slightly because of the nondeter-
ministic nature of the function and the different convergence behavior.

In plain English: if . . .

•	 . . . you have trained 0 hours in the last week,

•	 . . . you started your computer science studies 0 years ago,

•	 . . . you have 0 coding books in your shelf,

•	 . . . you spend 0 percent of your time implementing real Python
projects, and

•	 . . . you earn $0 selling your coding skills,

the neural network estimates that your skill level is very low (a Finxter rat-
ing of 94 means you have difficulty understanding the Python program
print("hello, world")).

So let’s change this: what happens if you invest 20 hours a week learn-
ing and revisit the neural network after one week:

Result
res = neural_net.predict([[20, 0, 0, 0, 0]])
print(res)
[440.40167562]

110 Chapter 4

Not bad—your skills improve quite significantly! But you’re still not
happy with this rating number, are you? (An above-average Python coder
has at least a 1500–1700 rating on Finxter.)

No problem. Buy 10 Python books (only nine left after this one). Let’s
see what happens to your rating:

Result
res = neural_net.predict([[20, 0, 10, 0, 0]])
print(res)
[953.6317602]

Again, you make significant progress and double your rating number!
But buying Python books alone will not help you much. You need to study
them! Let’s do this for a year:

Result
res = neural_net.predict([[20, 1, 10, 0, 0]])
print(res)
[999.94308353]

Not much happens. This is where I don’t trust the neural network too
much. In my opinion, you should have reached a much better performance
of at least 1500. But this also shows that the neural network can be only as
good as its training data. You have very limited data, and the neural net-
work can’t really overcome this limitation: there’s just too little knowledge
in a handful of data points.

But you don’t give up, right? Next, you spend 50 percent of your Python
time selling your skills as a Python freelancer:

Result
res = neural_net.predict([[20, 1, 10, 50, 1000]])
print(res)
[1960.7595547]

Boom! Suddenly the neural network considers you to be an expert
Python coder. A wise prediction of the neural network, indeed! Learn Python
for at least a year and do practical projects, and you’ll become a great coder.

To sum up, you’ve learned about the basics of neural networks and how
to use them in a single line of Python code. Interestingly, the questionnaire
data indicates that starting out with practical projects—maybe even doing
freelance projects from the beginning—matters a lot to your learning suc-
cess. The neural network certainly knows that. If you want to learn my exact
strategy of becoming a freelancer, join the free webinar about state-of-the-
art Python freelancing at https://blog.finxter.com/webinar-freelancer/.

In the next section, you’ll dive deeper into another powerful model rep-
resentation: decision trees. While neural networks can be quite expensive
to train (they often need multiple machines and many hours, and some-
times even weeks, to train), decision trees are lightweight. Nevertheless,
they are a fast, effective way to extract patterns from your training data.

https://blog.finxter.com/webinar-freelancer/

Machine Learning 111

Decision-Tree Learning in One Line
Decision trees are powerful and intuitive tools in your machine learning tool-
belt. A big advantage of decision trees is that, unlike many other machine
learning techniques, they’re human-readable. You can easily train a deci-
sion tree and show it to your supervisors, who do not need to know anything
about machine learning in order to understand what your model does. This
is especially great for data scientists who often must defend and present
their results to management. In this section, I’ll show you how to use deci-
sion trees in a single line of Python code.

The Basics
Unlike many machine learning algorithms, the ideas behind decision trees
might be familiar from your own experience. They represent a structured
way of making decisions. Each decision opens new branches. By answering
a bunch of questions, you’ll finally land on the recommended outcome.
Figure 4-20 shows an example.

Do you like math?

Do you like language?

Do you love painting?

Study
computer
science!

Study
linguistics!

Study art! Study
history!

YES!

YES!

YES!

NO!

NO!

NO!

Figure 4-20: A simplified decision tree for recommending a study subject

Decision trees are used for classification problems such as “which
subject should I study, given my interests?” You start at the top. Now, you
repeatedly answer questions and select the choices that describe your fea-
tures best. Finally, you reach a leaf node of the tree, a node with no children.
This is the recommended class based on your feature selection.

Decision-tree learning has many nuances. In the preceding example,
the first question carries more weight than the last question. If you like
math, the decision tree will never recommend art or linguistics. This is use-
ful because some features may be much more important for the classifica-
tion decision than others. For example, a classification system that predicts
your current health may use your sex (feature) to practically rule out many
diseases (classes).

112 Chapter 4

Hence, the order of the decision nodes lends itself to performance opti-
mizations: place the features at the top that have a high impact on the final
classification. In decision-tree learning, you’ll then aggregate the questions
with little impact on the final classification, as shown in Figure 4-21.

Math?

CS CS

YES!

YES! NO!

Language?

NO!

Pruning

Ling. Hist.

YES!

Language?

NO!

Ling. Hist.

YES!

Language?

NO!

CS

Math?

YES! NO!

Figure 4-21: Pruning improves efficiency of decision-tree learning.

Suppose the full decision tree looks like the tree on the left. For any
combination of features, there’s a separate classification outcome (the tree
leaves). However, some features may not give you any additional information
with respect to the classification problem (for example, the first Language
decision node in the example). Decision-tree learning would effectively get
rid of these nodes for efficiency reasons, a process called pruning.

The Code
You can create your own decision tree in a single line of Python code.
Listing 4-6 shows you how.

Dependencies
from sklearn import tree
import numpy as np

Data: student scores in (math, language, creativity) --> study field
X = np.array([[9, 5, 6, "computer science"],
 [1, 8, 1, "linguistics"],
 [5, 7, 9, "art"]])

One-liner
Tree = tree.DecisionTreeClassifier().fit(X[:,:-1], X[:,-1])

Result & puzzle
student_0 = Tree.predict([[8, 6, 5]])
print(student_0)

student_1 = Tree.predict([[3, 7, 9]])
print(student_1)

Listing 4-6: Decision-tree classification in a single line of code

Guess the output of this code snippet!

Machine Learning 113

How It Works
The data in this code describes three students with their estimated skill
levels (a score from 1–10) in the three areas of math, language, and cre-
ativity. You also know the study subjects of these students. For example,
the first student is highly skilled in math and studies computer science.
The second student is skilled in language much more than in the other
two skills and studies linguistics. The third student is skilled in creativity
and studies art.

The one-liner creates a new decision-tree object and trains the model
by using the fit() function on the labeled training data (the last column
is the label). Internally, it creates three nodes, one for each feature: math,
language, and creativity. When predicting the class of student_0 (math = 8,
language = 6, creativity = 5), the decision tree returns computer science.
It has learned that this feature pattern (high, medium, medium) is an
indicator of the first class. On the other hand, when asked for (3, 7, 9),
the decision tree predicts art because it has learned that the score (low,
medium, high) hints to the third class.

Note that the algorithm is nondeterministic. In other words, when
executing the same code twice, different results may arise. This is common
for machine learning algorithms that work with random generators. In this
case, the order of the features is randomly organized, so the final decision
tree may have a different order of the features.

To summarize, decision trees are an intuitive way of creating human-
readable machine learning models. Every branch represents a choice based
on a single feature of a new sample. The leaves of the tree represent the
final prediction (classification or regression). Next, we’ll leave concrete
machine learning algorithms for a moment and explore a critical concept
in machine learning: variance.

Get Row with Minimal Variance in One Line
You may have read about the Vs in Big Data: volume, velocity, variety, verac-
ity, and value. Variance is yet another important V: it measures the expected
(squared) deviation of the data from its mean. In practice, variance is an
important measure with relevant application domains in financial services,
weather forecasting, and image processing.

The Basics
Variance measures how much data spreads around its average in the one-
dimensional or multidimensional space. You’ll see a graphical example
in a moment. In fact, variance is one of the most important properties in
machine learning. It captures the patterns of the data in a generalized
manner—and machine learning is all about pattern recognition.

Many machine learning algorithms rely on variance in one form or
another. For instance, the bias-variance trade-off is a well-known problem in
machine learning: sophisticated machine learning models risk overfitting

114 Chapter 4

the data (high variance) but represent the training data very accurately
(low bias). On the other hand, simple models often generalize well (low
variance) but do not represent the data accurately (high bias).

So what exactly is variance? It’s a simple statistical property that captures
how much the data set spreads from its mean. Figure 4-22 shows an example
plotting two data sets: one with low variance, and one with high variance.

Time

)$(ecirP kcotS

Tech Startup
(High Variance)

Food Company
(Low Variance) Average

Average

Figure 4-22: Variance comparison of two company stock prices

This example shows the stock prices of two companies. The stock price
of the tech startup fluctuates heavily around its average. The stock price of
the food company is quite stable and fluctuates only in minor ways around
the average. In other words, the tech startup has high variance, and the
food company has low variance.

In mathematical terms, you can calculate the variance var(X) of a set of
numerical values X by using the following formula:

var X x x
x X

� � � �� �
�
� 2

The value x is the average value of the data in X.

The Code
As they get older, many investors want to reduce the overall risk of their
investment portfolio. According to the dominant investment philosophy,
you should consider stocks with lower variance as less-risky investment
vehicles. Roughly speaking, you can lose less money investing in a stable,
predictable, and large company than in a small tech startup.

The goal of the one-liner in Listing 4-7 is to identify the stock in your
portfolio with minimal variance. By investing more money into this stock,
you can expect a lower overall variance of your portfolio.

Machine Learning 115

Dependencies
import numpy as np

Data (rows: stocks / cols: stock prices)
X = np.array([[25,27,29,30],
 [1,5,3,2],
 [12,11,8,3],
 [1,1,2,2],
 [2,6,2,2]])

One-liner
Find the stock with smallest variance
min_row = min([(i,np.var(X[i,:])) for i in range(len(X))], key=lambda x: x[1])

Result & puzzle
print("Row with minimum variance: " + str(min_row[0]))
print("Variance: " + str(min_row[1]))

Listing 4-7: Calculating minimum variance in a single line of code

What’s the output of this code snippet?

How It Works
As usual, you first define the data you want to run the one-liner on (see
the top of Listing 4-7). The NumPy array X contains five rows (one row per
stock in your portfolio) with four values per row (stock prices).

The goal is to find the ID and variance of the stock with minimal vari-
ance. Hence, the outermost function of the one-liner is the min() function.
You execute the min() function on a sequence of tuples (a,b), where the first
tuple value a is the row index (stock index), and the second tuple value b is
the variance of the row.

You may ask: what’s the minimal value of a sequence of tuples? Of
course, you need to properly define this operation before using it. To this
end, you use the key argument of the min() function. The key argument
takes a function that returns a comparable object value, given a sequence
value. Again, our sequence values are tuples, and you need to find the tuple
with minimal variance (the second tuple value). Because variance is the
second value, you’ll return x[1] as the basis for comparison. In other words,
the tuple with the minimal second tuple value wins.

Let’s look at how to create the sequence of tuple values. You use list
comprehension to create a tuple for any row index (stock). The first tuple
element is simply the index of row i. The second tuple element is the vari-
ance of this row. You use the NumPy var() function in combination with
slicing to calculate the row variance.

116 Chapter 4

The result of the one-liner is, therefore, as follows:

"""
Row with minimum variance: 3
Variance: 0.25
"""

I’d like to add that there’s an alternative way of solving this problem.
If this wasn’t a book about Python one-liners, I would prefer the following
solution instead of the one-liner:

var = np.var(X, axis=1)
min_row = (np.where(var==min(var)), min(var))

In the first line, you calculate the variance of the NumPy array X
along the columns (axis=1). In the second line, you create the tuple. The
first tuple value is the index of the minimum in the variance array. The
second tuple value is the minimum in the variance array. Note that multiple
rows may have the same (minimal) variance.

This solution is more readable. So clearly, there is a trade-off between
conciseness and readability. Just because you can cram everything into a
single line of code doesn’t mean you should. All things being equal, it’s
much better to write concise and readable code, instead of blowing up your
code with unnecessary definitions, comments, or intermediate steps.

After learning the basics of variance in this section, you’re now ready to
absorb how to calculate basic statistics.

Basic Statistics in One Line
As a data scientist and machine learning engineer, you need to know basic
statistics. Some machine learning algorithms are entirely based on statistics
(for example, Bayesian networks).

For example, extracting basic statistics from matrices (such as average,
variance, and standard deviation) is a critical component for analyzing a wide
range of data sets such as financial data, health data, or social media data.
With the rise of machine learning and data science, knowing about how to
use NumPy—which is at the heart of Python data science, statistics, and lin-
ear algebra—will become more and more valuable to the marketplace.

In this one-liner, you’ll learn how to calculate basic statistics with NumPy.

The Basics
This section explains how to calculate the average, the standard deviation,
and the variance along an axis. These three calculations are very similar; if
you understand one, you’ll understand all of them.

Here’s what you want to achieve: given a NumPy array of stock data with
rows indicating the different companies and columns indicating their daily
stock prices, the goal is to find the average and standard deviation of each
company’s stock price (see Figure 4-23).

Machine Learning 117

1 3 5
1 1 1
0 2 4A

xi
s

0

Average Along Axis 1
3
1
2

Axis 1

Variance Along Axis 1
2.66

0
2.66

Figure 4-23: Average and variance along axis 1

This example shows a two-dimensional NumPy array, but in practice,
the array can have much higher dimensionality.

Simple Average, Variance, Standard Deviation

Before examining how to accomplish this in NumPy, let’s slowly build the
background you need to know. Say you want to calculate the simple average,
the variance, or the standard deviation over all values in a NumPy array.
You’ve already seen examples of the average and the variance function in
this chapter. The standard deviation is simply the square root of the vari-
ance. You can achieve this easily with the following functions:

import numpy as np

X = np.array([[1, 3, 5],
 [1, 1, 1],
 [0, 2, 4]])

print(np.average(X))
2.0

print(np.var(X))
2.4444444444444446

print(np.std(X))
1.5634719199411433

You may have noted that you apply those functions on the two-dimensional
NumPy array X. But NumPy simply flattens the array and calculates the
functions on the flattened array. For example, the simple average of the
flattened NumPy array X is calculated as follows:

(1 + 3 + 5 + 1 + 1 + 1 + 0 + 2 + 4) / 9 = 18 / 9 = 2.0

Calculating Average, Variance, Standard Deviation Along an Axis

However, sometimes you want to calculate these functions along an axis.
You can do this by specifying the keyword axis as an argument to the

118 Chapter 4

average, variance, and standard deviation functions (see Chapter 3 for a
detailed introduction to the axis argument).

The Code
Listing 4-8 shows you exactly how to calculate the average, variance, and
standard deviation along an axis. Our goal is to calculate the averages, vari-
ances, and standard deviations of all stocks in a two-dimensional matrix
with rows representing stocks and columns representing daily prices.

Dependencies
import numpy as np

Stock Price Data: 5 companies
(row=[price_day_1, price_day_2, ...])
x = np.array([[8, 9, 11, 12],
 [1, 2, 2, 1],
 [2, 8, 9, 9],
 [9, 6, 6, 3],
 [3, 3, 3, 3]])

One-liner
avg, var, std = np.average(x, axis=1), np.var(x, axis=1), np.std(x, axis=1)

Result & puzzle
print("Averages: " + str(avg))
print("Variances: " + str(var))
print("Standard Deviations: " + str(std))

Listing 4-8: Calculating basic statistics along an axis

Guess the output of the puzzle!

How It Works
The one-liner uses the axis keyword to specify the axis along which to calculate
the average, variance, and standard deviation. For example, if you perform
these three functions along axis=1, each row is aggregated into a single value.
Hence, the resulting NumPy array has a reduced dimensionality of one.

The result of the puzzle is the following:

"""
Averages: [10. 1.5 7. 6. 3.]
Variances: [2.5 0.25 8.5 4.5 0.]
Standard Deviations: [1.58113883 0.5 2.91547595 2.12132034 0.]
"""

Before moving on to the next one-liner, I want to show you how to use
the same idea for an even higher-dimensional NumPy array.

Machine Learning 119

When averaging along an axis for high-dimensional NumPy arrays, you’ll
always aggregate the axis defined in the axis argument. Here’s an example:

import numpy as np

x = np.array([[[1,2], [1,1]],
 [[1,1], [2,1]],
 [[1,0], [0,0]]])

print(np.average(x, axis=2))
print(np.var(x, axis=2))
print(np.std(x, axis=2))

"""
[[1.5 1.]
 [1. 1.5]
 [0.5 0.]]
[[0.25 0.]
 [0. 0.25]
 [0.25 0.]]
[[0.5 0.]
 [0. 0.5]
 [0.5 0.]]
"""

There are three examples of computing the average, variance, and stan-
dard deviation along axis 2 (see Chapter 3; the innermost axis). In other
words, all values of axis 2 will be combined into a single value that results in
axis 2 being dropped from the resulting array. Dive into the three examples
and figure out how exactly axis 2 is collapsed into a single average, variance,
or standard deviation value.

To summarize, a wide range of data sets (including financial data,
health data, and social media data) requires you to be able to extract basic
insights from your data sets. This section gives you a deeper understanding
of how to use the powerful NumPy toolset to extract basic statistics quickly
and efficiently from multidimensional arrays. This is needed as a basic pre-
processing step for many machine learning algorithms.

Classification with Support-Vector Machines in One Line
Support-vector machines (SVMs) have gained massive popularity in recent
years because they have robust classification performance, even in high-
dimensional spaces. Surprisingly, SVMs work even if there are more dimen-
sions (features) than data items. This is unusual for classification algorithms
because of the curse of dimensionality: with increasing dimensionality, the data
becomes extremely sparse, which makes it hard for algorithms to find patterns
in the data set. Understanding the basic ideas of SVMs is a fundamental step
to becoming a sophisticated machine learning engineer.

120 Chapter 4

The Basics
How do classification algorithms work? They use the training data to find
a decision boundary that divides data in the one class from data in the
other class (in “Logistic Regression in One Line” on page 89, the deci-
sion boundary would be whether the probability of the sigmoid function is
below or above the 0.5 threshold).

A High-Level Look at Classification

Figure 4-24 shows an example of a general classifier.

cigoL
slliks

Crea�vity skills

Computer Scien�st
Ar�st

Decision
boundaries

Machine Learning Classifica�on

Figure 4-24: Diverse skill sets of computer scientists and artists

Suppose you want to build a recommendation system for aspiring uni-
versity students. The figure visualizes the training data consisting of users
classified according to their skills in two areas: logic and creativity. Some
people have high logic skills and relatively low creativity; others have high
creativity and relatively low logic skills. The first group is labeled as computer
scientists, and the second group is labeled as artists.

To classify new users, the machine learning model must find a decision
boundary that separates the computer scientists from the artists. Roughly
speaking, you’ll classify a user by where they fall with respect to the decision
boundary. In the example, you’ll classify users who fall into the left area as
computer scientists, and users who fall into the right area as artists.

In the two-dimensional space, the decision boundary is either a line or
a (higher-order) curve. The former is called a linear classifier, and the latter is
called a nonlinear classifier. In this section, we’ll explore only linear classifiers.

Figure 4-24 shows three decision boundaries that are all valid separa-
tors of the data. In our example, it’s impossible to quantify which of the
given decision boundaries is better; they all lead to perfect accuracy when
classifying the training data.

Machine Learning 121

But What Is the Best Decision Boundary?

Support-vector machines provide a unique and beautiful answer to this
question. Arguably, the best decision boundary provides a maximal margin
of safety. In other words, SVMs maximize the distance between the closest
data points and the decision boundary. The goal is to minimize the error of
new points that are close to the decision boundary.

Figure 4-25 shows an example.
cigoL

slliks

Crea�vity skills

Computer Scien�st
Ar�st

Decision
boundary

Support Vector Machine Classifica�on
Support vector

Figure 4-25: Support-vector machines maximize the error of margin.

The SVM classifier finds the respective support vectors so that the zone
between the support vectors is as thick as possible. Here, the support vec-
tors are the data points that lie on the two dotted lines parallel to the deci-
sion boundary. These lines are denoted as margins. The decision boundary
is the line in the middle with maximal distance to the margins. Because the
zone between the margins and the decision boundary is maximized, the
margin of error is expected to be maximal when classifying new data points.
This idea shows high classification accuracy for many practical problems.

The Code
Is it possible to create your own SVM in a single line of Python code? Take a
look at Listing 4-9.

Dependencies
from sklearn import svm
import numpy as np

Data: student scores in (math, language, creativity) --> study field
X = np.array([[9, 5, 6, "computer science"],
 [10, 1, 2, "computer science"],
 [1, 8, 1, "literature"],
 [4, 9, 3, "literature"],
 [0, 1, 10, "art"],
 [5, 7, 9, "art"]])

122 Chapter 4

One-liner
svm = svm.SVC().fit(X[:,:-1], X[:,-1])

Result & puzzle
student_0 = svm.predict([[3, 3, 6]])
print(student_0)

student_1 = svm.predict([[8, 1, 1]])
print(student_1)

Listing 4-9: SVM classification in a single line of code

Guess the output of this code.

How It Works
The code breaks down how you can use support-vector machines in Python
in the most basic form. The NumPy array holds the labeled training data
with one row per user and one column per feature (skill level in math, lan-
guage, and creativity). The last column is the label (the class).

Because you have three-dimensional data, the support-vector machine
separates the data by using two-dimensional planes (the linear separator)
rather than one-dimensional lines. As you can see, it’s also possible to sepa-
rate three classes rather than only two as shown in the preceding examples.

The one-liner itself is straightforward: you first create the model by
using the constructor of the svm.SVC class (SVC stands for support-vector classi-
fication). Then, you call the fit() function to perform the training based on
your labeled training data.

In the results part of the code snippet, you call the predict() function
on new observations. Because student_0 has skills indicated as math=3, lan-
guage=3, and creativity=6, the support-vector machine predicts that the
label art fits this student’s skills. Similarly, student_1 has skills indicated as
math=8, language=1, and creativity=1. Thus, the support-vector machine
predicts that the label computer science fits this student’s skills.

Here’s the final output of the one-liner:

Result & puzzle
student_0 = svm.predict([[3, 3, 6]])
print(student_0)
['art']

student_1 = svm.predict([[8, 1, 1]])
print(student_1)
['computer science']

Machine Learning 123

In summary, SVMs perform well even in high-dimensional spaces when
there are more features than training data vectors. The idea of maximizing
the margin of safety is intuitive and leads to robust performance when classi-
fying boundary cases—that is, vectors that fall within the margin of safety. In
the final section of this chapter, we’ll zoom one step back and have a look at
a meta-algorithm for classification: ensemble learning with random forests.

Classification with Random Forests in One Line
Let’s move on to an exciting machine learning technique: ensemble learning.
Here’s my quick-and-dirty tip if your prediction accuracy is lacking but you
need to meet the deadline at all costs: try this meta-learning approach that
combines the predictions (or classifications) of multiple machine learning
algorithms. In many cases, it will give you better last-minute results.

The Basics
In the previous sections, you’ve studied multiple machine learning algo-
rithms that you can use to get quick results. However, different algorithms
have different strengths. For example, neural network classifiers can gener-
ate excellent results for complex problems. However, they are also prone to
overfitting the data because of their powerful capacity to memorize fine-
grained patterns of the data. Ensemble learning for classification problems
partially overcomes the problem that you often don’t know in advance
which machine learning technique works best.

How does this work? You create a meta-classifier consisting of multiple
types or instances of basic machine learning algorithms. In other words,
you train multiple models. To classify a single observation, you ask all mod-
els to classify the input independently. Next, you return the class that was
returned most often, given your input, as a meta-prediction. This is the final
output of your ensemble learning algorithm.

Random forests are a special type of ensemble learning algorithms. They
focus on decision-tree learning. A forest consists of many trees. Similarly, a
random forest consists of many decision trees. Each decision tree is built by
injecting randomness in the tree-generation procedure during the training
phase (for example, which tree node to select first). This leads to various
decision trees—exactly what you want.

Figure 4-26 shows how the prediction works for a trained random forest
using the following scenario. Alice has high math and language skills. The
ensemble consists of three decision trees (building a random forest). To clas-
sify Alice, each decision tree is queried about Alice’s classification. Two of the
decision trees classify Alice as a computer scientist. Because this is the class
with the most votes, it’s returned as the final output for the classification.

124 Chapter 4

(Math=YES, Language=YES)

Random Forest

Decision Tree 1 Decision Tree 2 Decision Tree 3

CS CS Ling

Final Output: „CS“

CS Hist.

YES!

Language?

NO!

CS

Math?

YES! NO!

Ling. Hist.

YES!

Language?

NO!

CS

Math?

YES! NO!

Ling.

Language?

Math?

YES! NO!

CS Art

YES! NO!

Figure 4-26: Random forest classifier aggregating the output of three decision trees

The Code
Let’s stick to this example of classifying the study field based on a student’s
skill level in three areas (math, language, creativity). You may think that
implementing an ensemble learning method is complicated in Python. But
it’s not, thanks to the comprehensive scikit-learn library (see Listing 4-10).

Dependencies
import numpy as np
from sklearn.ensemble import RandomForestClassifier

Data: student scores in (math, language, creativity) --> study field
X = np.array([[9, 5, 6, "computer science"],
 [5, 1, 5, "computer science"],
 [8, 8, 8, "computer science"],
 [1, 10, 7, "literature"],
 [1, 8, 1, "literature"],
 [5, 7, 9, "art"],
 [1, 1, 6, "art"]])

One-liner
Forest = RandomForestClassifier(n_estimators=10).fit(X[:,:-1], X[:,-1])

Machine Learning 125

Result
students = Forest.predict([[8, 6, 5],
 [3, 7, 9],
 [2, 2, 1]])
print(students)

Listing 4-10: Ensemble learning with random forest classifiers

Take a guess: what’s the output of this code snippet?

How It Works
After initializing the labeled training data in Listing 4-10, the code creates
a random forest by using the constructor on the class RandomForestClassifier
with one parameter n_estimators that defines the number of trees in the for-
est. Next, you populate the model that results from the previous initialization
(an empty forest) by calling the function fit(). To this end, the input training
data consists of all but the last column of array X, while the labels of the train-
ing data are defined in the last column. As in the previous examples, you use
slicing to extract the respective columns from the data array X.

The classification part is slightly different in this code snippet. I wanted
to show you how to classify multiple observations instead of only one. You
can achieve this here by creating a multidimensional array with one row per
observation.

Here’s the output of the code snippet:

Result
students = Forest.predict([[8, 6, 5],
 [3, 7, 9],
 [2, 2, 1]])
print(students)
['computer science' 'art' 'art']

Note that the result is still nondeterministic (the result may be different
for different executions of the code) because the random forest algorithm
relies on the random number generator that returns different numbers at
different points in time. You can make this call deterministic by using the
integer argument random_state. For example, you can set random_state=1 when
calling the random forest constructor: RandomForestClassifier(n_estimators=10,
random_state=1). In this case, each time you create a new random forest classi-
fier, the same output results because the same random numbers are created:
they are all based on the seed integer 1.

In summary, this section introduced a meta-approach for classification:
using the output of various decision trees to reduce the variance of the clas-
sification error. This is one version of ensemble learning, which combines
multiple basic models into a single meta-model that’s able to leverage their
individual strengths.

126 Chapter 4

N O T E 	 Two different decision trees can lead to a high variance of the error: one generates good
results, while the other one doesn’t. By using random forests, you mitigate this effect.

Variations of this idea are common in machine learning—and if you
need to quickly improve your prediction accuracy, simply run multiple
machine learning models and evaluate their output to find the best one (a
quick-and-dirty secret of machine learning practitioners). In a way, ensemble
learning techniques automatically perform the task that’s often done by
experts in practical machine learning pipelines: selecting, comparing,
and combining the output of different machine learning models. The big
strength of ensemble learning is that this can be done individually for each
data value at runtime.

Summary
This chapter covered 10 basic machine learning algorithms that are fun-
damental to your success in the field. You’ve learned about regression
algorithms to predict values such as linear regression, KNNs, and neural
networks. You’ve learned about classification algorithms such as logistic
regression, decision-tree learning, SVMs, and random forests. Furthermore,
you’ve learned how to calculate basic statistics of multidimensional data
arrays, and to use the K-Means algorithm for unsupervised learning. These
algorithms and methods are among the most important algorithms in the
field of machine learning, and there are a lot more to study if you want
to start working as a machine learning engineer. That learning will pay
off—machine learning engineers usually earn six figures in the United
States (a simple web search should confirm this)! For students who want to
dive deeper into machine learning, I recommend the excellent (and free)
Coursera course from Andrew Ng. You can find the course material online
by asking your favorite search engine.

In the next chapter, you’ll study one of the most important (and most
undervalued) skills of highly efficient programmers: regular expressions.
While this chapter was a bit more on the conceptual side (you learned the
general ideas, but the scikit-learn library did the heavy lifting), the next
chapter will be highly technical. So, roll up your sleeves and read on!

5
R E G U L A R E X P R E S S I O N S

Are you an office worker, student, software
developer, manager, blogger, researcher,

author, copywriter, teacher, or self-employed
freelancer? Most likely, you’re spending many hours

in front of your computer, day after day. Improving
your daily productivity—only by a small fraction of a
percentage—will mean a gain of thousands, if not tens
of thousands, of dollars of productivity and hundreds of
hours of additional free time over the years.

This chapter shows you an undervalued technique that helps master
coders be more efficient when working with textual data: using regular
expressions. This chapter shows you 10 ways of using regular expressions to
solve everyday problems with less effort, time, and energy. Study this chap-
ter about regular expressions carefully—it’ll be worth your time!

128 Chapter 5

Finding Basic Textual Patterns in Strings
This section introduces regular expressions using the re module and
its important re.findall() function. I’ll start by explaining several basic
regular expressions.

The Basics
A regular expression (regex, for short) formally describes a search pattern that you
can use to match sections of text. The simple example in Figure 5-1 shows a
search of Shakespeare’s text Romeo and Juliet for the pattern Juliet.

Figure 5-1: Searching Shakespeare’s Romeo and Juliet for the pattern Juliet

Regular Expressions 129

Figure 5-1 shows that the most basic regular expression is a simple
string pattern. The string 'Juliet' is a perfectly valid regular expression.

Regular expressions are incredibly powerful, and can do much more
than regular text search, but they’re built using only a handful of basic
commands. Learn these basic commands and you’ll be able to understand
and write complex regular expressions. In this section, we’ll focus on the
three most important regex commands that extend the functionality of
simple search of string patterns in a given text.

The Dot Regex

First, you need to know how to match an arbitrary character by using the
dot regex, the . character. The dot regex matches any character (including
whitespace characters). You can use it to indicate that you don’t care which
character matches, as long as exactly one matches:

import re

text = '''A blockchain, originally block chain,
is a growing list of records, called blocks,
which are linked using cryptography.
'''

print(re.findall('b...k', text))
['block', 'block', 'block']

This example uses the findall() method of the re module. The first
argument is the regex itself: you search for any string pattern starting with
the character 'b', followed by three arbitrary characters, ... , followed
by the character 'k'. This regex b...k matches the word 'block' but also
'boook', 'b erk', and 'bloek'. The second parameter to findall() is the text
you’re searching. The string variable text contains three matching patterns,
as you can see in the output of the print statement.

The Asterisk Regex

Second, say you want to match text that begins and ends with the character
'y' and an arbitrary number of characters in between. How do you accom-
plish this? You can do by this using the asterisk regex, the * character. Unlike
the dot regex, the asterisk regex can’t stand on its own; it modifies the
meaning of another regex. Consider the following example:

print(re.findall('y.*y', text))
['yptography']

The asterisk operator applies to the regex immediately in front of it.
In this example, the regex pattern starts with the character 'y', followed by
an arbitrary number of characters, .*, followed by the character 'y'. As you
can see, the word 'cryptography' contains one such instance of this pattern:
'yptography'.

130 Chapter 5

You may wonder why this code doesn’t find the long substring between
'originally' and 'cryptography', which should also match the regex pattern
y.*y. The reason is simply that the dot operator matches any character except
the newline character. The string stored in the variable text is a multiline
string with three new lines. You can also use the asterisk operator in com-
bination with any other regex. For example, you can use the regex abc* to
match the strings 'ab', 'abc', 'abcc', and 'abccdc'.

The Zero-or-one Regex

Third, you need to know how to match zero or one characters by using the
zero-or-one regex, the ? character. Just like the asterisk operator, the question
mark modifies another regex, as you can see in the following example:

print(re.findall('blocks?', text))
['block', 'block', 'blocks']

The zero-or-one regex, ?, applies to the regex immediately in front of it.
In our case, this is the character s. The zero-or-one regex says that the pat-
tern it modifies is optional.

There is another use of the question mark in Python’s re package, but it
has nothing to do with the zero-or-one regex: the question mark can be com-
bined with the asterisk operator, *?, to allow for nongreedy pattern matching.
For example, if you use the regex .*?, Python searches for a minimal number
of arbitrary characters. In contrast, if you use the asterisk operator * without
the question mark, it greedily matches as many characters as possible.

Let’s look at an example. When searching the HTML string '<div>hello
world</div>' by using the regex <.*>, it matches the whole string '<div>hello
world</div>' rather than only the prefix '<div>'. If you want only the prefix,
you can use the nongreedy regex <.*?>:

txt = '<div>hello world</div>'

print(re.findall('<.*>', txt))
['<div>hello world</div>']

print(re.findall('<.*?>', txt))
['<div>', '</div>']

Equipped with these three tools—the dot regex ., the asterisk regex *,
and the zero-or-one regex ?—you’re now able to comprehend the next one-
liner solution.

The Code
Our input is a string, and our goal is to use a nongreedy approach to find
all patterns that start with the character 'p', end with the character 'r', and
have at least one occurrence of the character 'e' (and, possibly, an arbitrary
number of other characters) in between!

Regular Expressions 131

These types of text queries occur quite frequently—especially in com-
panies that focus on text processing, speech recognition, or machine trans-
lation (such as search engines, social networks, or video platforms). Take a
look at Listing 5-1.

Dependencies
import re

Data
text = 'peter piper picked a peck of pickled peppers'

One-Liner
result = re.findall('p.*?e.*?r', text)

Result
print(result)

Listing 5-1: One-liner solution to search for specific phrases (nongreedy)

This code prints a list of all matching phrases in the text. What are they?

How It Works
The regex search query is p.*?e.*?r. Let’s break this down. You’re looking
for a phrase that starts with the character 'p' and ends with the charac-
ter 'r'. Between those two characters, you require one occurrence of the
character 'e'. Apart from that, you allow an arbitrary number of characters
(whitespace or not). However, you match in a nongreedy manner by using
.*?, which means Python will search for a minimal number of arbitrary
characters. Here’s the solution:

Result
print(result)
['peter', 'piper', 'picked a peck of pickled pepper']

Compare this solution with the one you’d get when using the greedy
regex p.*e.*r:

result = re.findall('p.*e.*r', text)
print(result)
['peter piper picked a peck of pickled pepper']

The first greedy asterisk operator .* matches almost the whole string
before it terminates.

132 Chapter 5

Writing Your First Web Scraper with Regular Expressions
In the previous section, you learned about the most powerful way to find
arbitrary text patterns in strings: regular expressions. This section will fur-
ther motivate your use of regular expressions and develop your knowledge
with a practical example.

The Basics
Suppose you’re working as a freelance software developer. Your client is a
fintech startup that needs to stay updated about the latest developments in
cryptocurrency. They hire you to write a web scraper that regularly pulls
the HTML source code of news websites and searches it for words starting
with 'crypto' (for example, 'cryptocurrency', 'crypto-bot', 'crypto-crash', and
so on).

Your first attempt is the following code snippet:

import urllib.request

search_phrase = 'crypto'

with urllib.request.urlopen('https://www.wired.com/') as response:
 html = response.read().decode("utf8") # convert to string
 first_pos = html.find(search_phrase)
 print(html[first_pos-10:first_pos+10])

The method urlopen() (from the module urllib.request) pulls the
HTML source code from the specified URL. Because the result is a byte
array, you have to first convert it to a string by using the decode() method.
Then you use the string method find() to return the position of the first
occurrence of the searched string. With slicing (see Chapter 2), you carve
out a substring that returns the immediate environment of the position.
The result is the following string:

,r=window.crypto||wi

Aw. That looks bad. As it turns out, the search phrase is ambiguous—
most words containing 'crypto' are semantically unrelated to cryptocurrencies.
Your web scraper generates false positives (it finds string results that you
originally didn’t mean to find). So how can you fix it?

Luckily, you’ve just read this Python book, so the answer is obvious:
regular expressions! Your idea to remove false positives is to search for
occurrences in which the word 'crypto' is followed by up to 30 arbitrary
characters, followed by the word coin. Roughly speaking, the search query is
crypto + <up to 30 arbitrary characters> + coin. Consider the following two
examples:

•	 'crypto-bot that is trading Bitcoin'—yes

•	 'cryptographic encryption methods that can be cracked easily with quantum

computers'—no

Regular Expressions 133

So how to solve this problem of allowing up to 30 arbitrary characters
between two strings? This goes beyond a simple string search. You can’t enu-
merate every exact string pattern—a virtually infinite number of matches
is allowed. For example, the search pattern must match all of the following:
'cryptoxxxcoin', 'crypto coin', 'crypto bitcoin', 'crypto is a currency. Bitcoin',
and all other character combinations with up to 30 characters between the
two strings. Even if you had only 26 characters in the alphabet, the number
of strings that would theoretically match our requirement exceeds 2630 =
2,813,198,901,284,745,919,258,621,029,615,971,520,741,376. In the following,
you’ll learn how to search a text for a regex pattern that corresponds to a
large number of possible string patterns.

The Code
Here, given a string, you will find occurrences in which the string 'crypto' is
followed by up to 30 arbitrary characters, followed by the string 'coin'. Let’s
first look at Listing 5-2 before discussing how the code solves the problem.

Dependencies
import re

Data
text_1 = "crypto-bot that is trading Bitcoin and other currencies"
text_2 = "cryptographic encryption methods that can be cracked easily with quantum computers"

One-Liner
pattern = re.compile("crypto(.{1,30})coin")

Result
print(pattern.match(text_1))
print(pattern.match(text_2))

Listing 5-2: One-liner solution to find text snippets in the form crypto(some text)coin

This code searches two string variables, text_1 and text_2. Does the
search query (pattern) match them?

How It Works
First, you import the standard module for regular expressions in Python,
called re. The important stuff happens in the one-liner where you compile
the search query crypto(.{1,30})coin. This is the query that you can use to
search various strings. You use the following special regex characters. Read
them from top to bottom and you’ll understand the meaning of the pattern
in Listing 5-2:

•	 () matches whatever regex is inside.

•	 . matches an arbitrary character.

134 Chapter 5

•	 {1,30} matches between 1 and 30 occurrences of the previous regex.

•	 (.{1,30}) matches between 1 and 30 arbitrary characters.

•	 crypto(.{1,30})coin matches the regex consisting of three parts: the
word 'crypto', an arbitrary sequence with 1 to 30 chars, followed by
the word 'coin'.

We say that the pattern is compiled because Python creates a pattern
object that can be reused in multiple locations—much as a compiled pro-
gram can be executed multiple times. Now, you call the function match() on
our compiled pattern and the text to be searched. This leads to the follow-
ing result:

Result
print(pattern.match(text_1))
<re.Match object; span=(0, 34), match='crypto-bot that is trading Bitcoin'>

print(pattern.match(text_2))
None

The string variable text_1 matches the pattern (indicated by the
resulting match object), but text_2 doesn’t (indicated by the result None).
Although the textual representation of the first matching object doesn’t
look pretty, it gives a clear hint that the given string 'crypto-bot that is
trading Bitcoin' matches the regular expression.

Analyzing Hyperlinks of HTML Documents
In the preceding section, you learned how to search a string for a large
number of patterns by using the regex pattern .{x,y}. This section goes fur-
ther, introducing many more regular expressions.

The Basics
Knowing more regular expressions will help you solve real-world problems
quickly and concisely. So what are the most important regular expressions?
Study the following list carefully because we’ll use all of them in this chap-
ter. Just view the ones you’ve already seen as a small repetition exercise.

•	 The dot regex . matches an arbitrary character.

•	 The asterisk regex <pattern>* matches an arbitrary number of the regex
<pattern>. Note that this includes zero matching instances.

•	 The at-least-one regex <pattern>+ can match an arbitrary number of
<pattern> but must match at least one instance.

•	 The zero-or-one regex <pattern>? matches either zero or one instances
of <pattern>.

•	 The nongreedy asterisk regex *? matches as few arbitrary characters as
possible to match the overall regex.

Regular Expressions 135

•	 The regex <pattern>{m} matches exactly m copies of <pattern>.

•	 The regex <pattern>{m,n} matches between m and n copies of <pattern>.

•	 The regex <pattern_1>|<pattern_2> matches either <pattern_1>
or <pattern_2>.

•	 The regex <pattern_1><pattern_2> matches <pattern_1> and
then <pattern_2>.

•	 The regex (<pattern>) matches <pattern>. The parentheses group regu-
lar expressions so you can control the order of execution (for exam-
ple, (<pattern_1><pattern_2>)|<pattern_3> is different from <pattern_1>
(<pattern_2>|<pattern_3>). The parentheses regex also creates a match-
ing group, as you’ll see later in the section.

Let’s consider a short example. Say you create the regex b?(.a)*. Which
patterns will the regex match? The regex matches all patterns starting with
zero or one b and an arbitrary number of two-character-sequences ending
in the character 'a'. Hence, the strings 'bcacaca', 'cadaea', '' (the empty
string), and 'aaaaaa' would all match the regex.

Before diving into the next one-liner, let’s quickly discuss when to
use which regex function. The three most important regex functions are
re.match(), re.search(), and re.findall(). You’ve already seen two of them,
but let’s study them more thoroughly in this example:

import re

text = '''
"One can never have enough socks", said Dumbledore.
"Another Christmas has come and gone and I didn't
get a single pair. People will insist on giving me books."
Christmas Quote
'''

regex = 'Christ.*'

print(re.match(regex, text))
None

print(re.search(regex, text))
<re.Match object; span=(62, 102), match="Christmas has come and gone and I didn't">

print(re.findall(regex, text))
["Christmas has come and gone and I didn't", 'Christmas Quote']

All three functions take the regex and the string to be searched as an
input. The match() and search() functions return a match object (or None if
the regex did not match anything). The match object stores the position
of the match and more advanced meta-information. The function match()
does not find the regex in the string (it returns None). Why? Because the
function looks for the pattern only at the beginning of the string. The func-
tion search() searches for the first occurrence of the regex anywhere in the
string. Therefore, it finds the match "Christmas has come and gone and I didn't".

136 Chapter 5

The findall() function has the most intuitive output, but it’s also the
least useful for further processing. The result of findall() is a sequence of
strings rather than a match object—so it doesn’t give us information about
the precise location of the match. That said, findall() has its uses: in con-
trast to the match() and search() methods, the function findall() retrieves
all matched patterns, which is useful when you want to quantify how often
a word appears in a text (for example, the string 'Juliet' in the text 'Romeo
and Juliet' or the string 'crypto' in an article about cryptocurrency).

The Code
Say your company asks you to create a small web bot that crawls web pages
and checks whether they contain links to the domain finxter.com. They also
ask you to make sure the hyperlink descriptions contain the strings 'test' or
'puzzle'. In HTML, hyperlinks are enclosed in an <a> tag environment.
The hyperlink itself is defined as the value of the href attribute. So more pre-
cisely, the goal is to solve the following problem, depicted in Listing 5-3: given
a string, find all hyperlinks that point to the domain finxter.com and contain
the strings 'test' or 'puzzle' in the link description.

Dependencies
import re

Data
page = '''
<!DOCTYPE html>
<html>
<body>

<h1>My Programming Links</h1>
test your Python skills
Learn recursion
Great books from NoStarchPress
Solve more Python puzzles

</body>
</html>
'''

One-Liner
practice_tests = re.findall("(<a.*?finxter.*?(test|puzzle).*?>)", page)

Result
print(practice_tests)

Listing 5-3: One-liner solution to analyze web page links

This code finds two occurrences of the regular expression. Which ones?

Regular Expressions 137

How It Works
The data consists of a simple HTML web page (stored as a multiline string)
containing a list of hyperlinks (the tag environment link text).
The one-liner solution uses the function re.findall() to check the regular
expression (<a.*?finxter.*?(test|puzzle).*?>). This way, the regular expres-
sion returns all occurrences in the tag environment <a. . .> with the follow-
ing restrictions.

After the opening tag, you match an arbitrary number of characters
(nongreedily, to prevent the regex from “chewing up” multiple HTML tag
environments), followed by the string 'finxter'. Next, you match an arbi-
trary number of characters (nongreedily), followed by one occurrence of
either the string 'test' or the string 'puzzle'. Again, you match an arbitrary
number of characters (nongreedily), followed by the closing tag. This way,
you find all hyperlink tags that contain the respective strings. Note that this
regex also matches tags where the strings 'test' or 'puzzle' occur within
the link itself. Please also note that you use only nongreedy asterisk opera-
tors '.*?' to ensure that you always search for minimal matches rather than
matching—for example, a very long string enclosed in multiple nested tag
environments.

The result of the one-liner is the following:

Result
print(practice_tests)
[('test your Python skills', 'test'),
('Solve more Python puzzles', 'puzzle')]

Two hyperlinks match our regular expression: the result of the one-
liner is a list with two elements. However, each element is a tuple of strings
rather than a simple string. This is different from the results of findall(),
which we’ve discussed in previous code snippets. What’s the reason for this
behavior? The return type is a list of tuples—with one tuple value for each
matching group enclosed in (). For instance, the regex (test|puzzle) uses
the parentheses notation to create a matching group. If you use matching
groups in your regex, the function re.findall() will add one tuple value for
every matched group. The tuple value is the substring that matches this
particular group. For example, in our case, the substring 'puzzle' matches
the group (test|puzzle). Let’s dive more deeply into the topic of matching
groups to clarify this concept.

Extracting Dollars from a String
This one-liner shows you another practical application of regular expres-
sions. Here, you’re working as a financial analyst. As your company considers
acquiring another company, you’re assigned to read the other company’s
reports. You’re particularly interested in all dollar figures. Now, you could
scan the whole document manually, but the work is tedious, and you don’t
want to spend your best hours of the day doing tedious work. So you decide
to write a small Python script. But what’s the best way of doing it?

138 Chapter 5

The Basics
Fortunately, you’ve read this regex tutorial, so instead of wasting a lot of
time writing your own lengthy, error-prone Python parser, you go for the
clean solution with regular expressions—a wise choice. But before you dive
into the problem, let’s discuss three more regex concepts.

First, sooner or later you want to match a special character that’s also
used as a special character by the regex language. In this case, you need to
use the prefix \ to escape the meaning of the special character. For example,
to match the parenthesis character '(', which is normally used for regex
groups, you need to escape it with the regex \(. This way, the regex charac-
ter '(' loses its special meaning.

Second, the square bracket environment [] allows you to define a
range of specific characters to be matched. For example, the regex [0-9]
matches one of the following characters: '0', '1', '2', . . . , '9'. Another
example is the regex [a-e], which matches one of the following characters:
'a', 'b', 'c', 'd', 'e'.

Third, as we discussed in the previous one-liner section, the parentheses
regex (<pattern>) indicates a group. Every regex can have one or multiple
groups. When using the re.findall() function on a regex with groups,
only the matched groups are returned as a tuple of strings—one for each
group—rather than the whole matched string. For example, the regex
hello(world) called on the string 'helloworld' would match the whole string
but return only the matched group world. On the other hand, when using
two nested groups in the regex (hello(world)), the result of the re.findall()
function would be a tuple of all matched groups ('helloworld', 'world').
Study the following code to understand nested groups completely:

string = 'helloworld'

regex_1 = 'hello(world)'
regex_2 = '(hello(world))'

res_1 = re.findall(regex_1, string)
res_2 = re.findall(regex_2, string)

print(res_1)
['world']
print(res_2)
[('helloworld', 'world')]

Now, you know everything you need to know to understand the follow-
ing code snippet.

The Code
To recap, you want to investigate all monetary numbers from a given
company report. Specifically, your goal is to solve the following problem:
given a string, find a list of all occurrences of dollar amounts with optional

Regular Expressions 139

decimal values. The following example strings are valid matches: $10, $10.,
or $10.00021. How can you achieve this efficiently in a single line of code?
Take a look at Listing 5-4.

Dependencies
import re

Data
report = '''
If you invested $1 in the year 1801, you would have $18087791.41 today.
This is a 7.967% return on investment.
But if you invested only $0.25 in 1801, you would end up with $4521947.8525.
'''

One-Liner
dollars = [x[0] for x in re.findall('(\$[0-9]+(\.[0-9]*)?)', report)]

Result
print(dollars)

Listing 5-4: One-liner solution to find all dollar amounts in a text

Take a guess: what’s the output of this code snippet?

How It Works
The report contains four dollar values in various formats. The goal is to
develop a regex that matches all of them. You design the regex (\$[0-9]+​
(.[0-9]*)?) that matches the following patterns. First, it matches the dol-
lar sign $ (you escape it because it’s a special regex character). Second, it
matches a number with an arbitrary number of digits between 0 and 9 (but
at least one digit). Third, it matches an arbitrary number of decimal values
after the (escaped) dot character '.' (this last match is optional as indi-
cated by the zero-or-one regex ?).

On top of that, you use list comprehension to extract only the first
tuple value of all three resulting matches. Again, the default result of the
re.findall() function is a list of tuples, with one tuple for each successful
match and one tuple value for each group within the match:

[('$1', ''), ('$18087791.41', '.41'), ('$0.25', '.25'), ('$4521947.8525', '.8525')]

You’re interested in only the global group—the first value in the tuple.
You filter out the other values by using list comprehension and get the fol-
lowing result:

Result
print(dollars)
['$1 ', '$18087791.41', '$0.25', '$4521947.8525']

140 Chapter 5

It’s worth noting again that implementing even a simple parser with-
out the powerful capabilities of regular expressions would be difficult and
error-prone!

Finding Nonsecure HTTP URLs
This one-liner shows you how to solve one of those small, time-intensive
problems that web developers often run into. Say you own a programming
blog and you’ve just moved your website from the unsecure protocol http
to the (more) secure protocol https. However, your old articles still point to
the old URLs. How can you find all occurrences of the old URLs?

The Basics
In the preceding section, you learned how to use square bracket notation to
specify an arbitrary range of characters. For example, the regular expres-
sion [0-9] matches a single-digit number with a value from 0 to 9. However,
the square bracket notation is more powerful than that. You can use an
arbitrary combination of characters within the square brackets to specify
exactly which characters match—and which don’t. For example, the regular
expression [0-3a-c]+ matches the strings '01110' and '01c22a' but not the
strings '443' and '00cd'. You can also specify a fixed set of characters not to
match by using the symbol ^: the regular expression [^0-3a-c]+ matches the
strings '4444d' and 'Python' but not the strings '001' and '01c22a'.

The Code
Here our input is a (multiline) string, and our aim is to find all occurrences
of valid URLs that start with the prefix http://. However, don’t consider
invalid URLs without a top-level domain (there has to be at least one . in
the found URL). Take a look at Listing 5-5.

Dependencies
import re

Data
article = '''
The algorithm has important practical applications
http://blog.finxter.com/applications/
in many basic data structures such as sets, trees,
dictionaries, bags, bag trees, bag dictionaries,
hash sets, https://blog.finxter.com/sets-in-python/
hash tables, maps, and arrays. http://blog.finxter.com/
http://not-a-valid-url
http:/bla.ba.com
http://bo.bo.bo.bo.bo.bo/
http://bo.bo.bo.bo.bo.bo/333483--33343-/
'''

Regular Expressions 141

One-Liner
stale_links = re.findall('http://[a-z0-9_\-.]+\.[a-z0-9_\-/]+', article)

Results
print(stale_links)

Listing 5-5: One-liner solution to find valid http:// URLs

Again, try to come up with the output the code will produce before
looking up the correct output that follows.

How It Works
In the regular expression, you analyze a given multiline string (potentially
an old blog article) to find all URLs that start with the string prefix http://.
The regular expression expects a positive number of (lowercase) characters,
numbers, underscores, hyphens, or dots ([a-z0-9_\-\.]+). Note that you
need to escape the hyphen (\-) because it normally indicates a range within
the square brackets. Similarly, you need to escape the dot (\.) because you
actually want to match the dot and not an arbitrary character. This results
in the following output:

Results
print(stale_links)
['http://blog.finxter.com/applications/',
'http://blog.finxter.com/',
'http://bo.bo.bo.bo.bo.bo/',
'http://bo.bo.bo.bo.bo.bo/333483--33343-/']

Four valid URLs may need to be moved to the more secure HTTPS
protocol.

At this point, you’ve already mastered the most important features of
regular expressions. But there’s a level of deep understanding that you’ll
reach only by practicing and studying a lot of examples—and regular
expressions are no exception. Let’s study a few more practical examples of
how regular expressions can make your life easier.

Validating the Time Format of User Input, Part 1
Let’s learn to check the correctness of user-input formatting. Say you write
a web application that calculates health statistics based on the sleep dura-
tion of your users. Your users enter the time they went to bed and the time
they wake up. An example for a correct time format is 12:45, but because
web bots are spamming your user input fields, a lot of “dirty” data is causing
unnecessary processing overhead on your servers. To address this issue, you
write a time-format checker that determines whether the input is worth pro-
cessing further with your backend application. With regular expressions,
writing the code takes only a few minutes.

142 Chapter 5

The Basics
In the previous few sections, you’ve learned about the re.search(), re.match(),
and re.findall() functions. These are not the only regex functions. In this
section, you’ll use re.fullmatch(regex, string), which checks whether the
regex matches the full string as the name suggests.

Furthermore, you’ll use the regex syntax pattern{m,n} that matches
between m and n instances of the regex pattern, but no more and no less.
Note that it attempts to match the maximal number of occurrences of
pattern. Here’s an example:

import re

print(re.findall('x{3,5}y', 'xy'))
[]
print(re.findall('x{3,5}y', 'xxxy'))
['xxxy']
print(re.findall('x{3,5}y', 'xxxxxy'))
['xxxxxy']
print(re.findall('x{3,5}y', 'xxxxxxy'))
['xxxxxy']

Using the bracket notation, the code doesn’t match substrings with
fewer than three and more than five 'x' characters.

The Code
Our goal is to write a function input_ok that takes a string argument and
checks whether it has the (time) format XX:XX, where X is a number from
0 to 9; see Listing 5-6. Note that, for now, you accept semantically wrong
time formats such as 12:86, but the next one-liner section tackles this more
advanced problem.

Dependencies
import re

Data
inputs = ['18:29', '23:55', '123', 'ab:de', '18:299', '99:99']

One-Liner
input_ok = lambda x: re.fullmatch('[0-9]{2}:[0-9]{2}', x) != None

Result
for x in inputs:
 print(input_ok(x))

Listing 5-6: One-liner solution to check whether a given user input matches the general
time format XX:XX

Regular Expressions 143

Before you move on, try to determine the results of the six function
calls in this code.

How It Works
The data consists of six input strings as received by the frontend of your
web application. Are they correctly formatted? To check this, you create the
function input_ok by using a lambda expression with one input argument x
and a Boolean output. You use the function fullmatch(regex, x) and attempt
to match the input argument x by using our time-formatting regex. If you
couldn’t match it, the result takes the value None and the Boolean output
becomes False. Otherwise, the Boolean output is True.

The regex is simple: [0-9]{2}:[0-9]{2}. This pattern matches two leading
numbers from 0 to 9, followed by the colon:, followed by two trailing num-
bers from 0 to 9. Thus, the result of Listing 5-6 is the following:

Result
for x in inputs:
 print(input_ok(x))

'''
True
True
False
False
False
True
'''

The function input_ok correctly identifies the correct formats of the
time inputs. In this one-liner, you’ve learned how highly practical tasks—
that would otherwise take multiple lines of code and more effort—can be
finished successfully in a few seconds with the right tool set.

Validating Time Format of User Input, Part 2
In this section, you’ll dive deeper into validating the time format of user
inputs to solve the problem of the previous section: invalid time inputs such
as 99:99 should not be considered valid matches.

The Basics
A useful strategy to solve problems is to address them hierarchically. First,
strip down the problem to its core and solve the easier variant. Then, refine
the solution to match your specific (and more complicated) problem. This
section refines the previous solution in an important way: it doesn’t allow
invalid time inputs such as 99:99 or 28:66. Hence, the problem is more spe-
cific (and more complicated), but you can reuse parts of our old solution.

144 Chapter 5

The Code
Our goal is to write a function input_ok that takes a string argument and
checks whether it has the (time) format XX:XX, where X is a number between
0 and 9; see Listing 5-7. Additionally, the given time must be a valid time
format in the 24-hour time ranging from 00:00 to 23:59.

Dependencies
import re

Data
inputs = ['18:29', '23:55', '123', 'ab:de', '18:299', '99:99']

One-Liner
input_ok = lambda x: re.fullmatch('([01][0-9]|2[0-3]):[0-5][0-9]', x) != None

Result
for x in inputs:
 print(input_ok(x))

Listing 5-7: One-liner solution to check whether a given user input matches the general
time format XX:XX and is valid in the 24-hour time

This code prints six lines. What are they?

How It Works
As mentioned in the introduction of this section, you can reuse the solution of
the previous one-liner to solve this problem easily. The code stays the same—
you modified only the regular expression ([01][0-9]|2[0-3]):[0-5][0-9]. The
first part ([01][0-9]|2[0-3]) is a group that matches all possible hours of the
day. You use the or operator | to differentiate hours 00 to 19 on the one hand,
and hours 20 to 23 on the other hand. The second part [0-5][0-9] matches the
minutes of the day from 00 to 59. The result is, therefore, as follows:

Result
for x in inputs:
 print(input_ok(x))

'''
True
True
False
False
False
False
'''

Note that the sixth line of the output indicates that the time 99:99 is
no longer considered a valid user input. This one-liner shows how to use

Regular Expressions 145

regular expressions to check whether the user input matches the semantic
requirements of your application.

Duplicate Detection in Strings
This one-liner introduces an exciting capability of regular expressions:
reusing parts you’ve already matched later in the same regex. This power-
ful extension allows you to solve a new set of problems, including detecting
strings with duplicated characters.

The Basics
This time, you’re working as a computer linguistics researcher analyzing
how certain word usages change over time. You use published books to
classify and track word usage. Your professor asks you to analyze whether
there’s a trend toward a more frequent use of duplicate characters in words.
For example, the word 'hello' contains the duplicate character 'l', while
the word 'spoon' contains the duplicate character 'o'. However, the word
'mama' would not be counted as a word with a duplicate character 'a'.

The naive solution to this problem is to enumerate all possible dupli-
cate characters 'aa', 'bb', 'cc', 'dd', . . . , 'zz' and combine them in an
either-or regex. This solution is tedious and not easily generalized. What if
your professor changes their mind and asks you to check for repeat char-
acters with up to one character in between (for example, the string 'mama'
would now be a match)?

No problem: there’s a simple, clean, and effective solution if you know
the regex feature of named groups. You’ve already learned about groups
that are enclosed in parentheses (...). As the name suggests, a named group
is just a group with a name. For instance, you can define a named group
around the pattern ... with the name name by using the syntax (?P<name>...).
After you define a named group, you can use it anywhere in your regular
expression with the syntax (?P=name). Consider the following example:

import re

pattern = '(?P<quote>[\'"]).*(?P=quote)'
text = 'She said "hi"'
print(re.search(pattern, text))
<re.Match object; span=(9, 13), match='"hi"'>

In the code, you search for substrings that are enclosed in either single
or double quotes. To accomplish that, you first match the opening quote
by using the regex ['"] (you escape the single quote, \', to avoid Python
wrongly assuming that the single quote indicates the end of the string).
Then, you use the same group to match the closing quote of the same
character (either a single or double quote).

Before diving into the code, note that you can match arbitrary whitespaces
with the regex \s. Also, you can match characters that are not in a set Y by using
the syntax [^Y]. That’s everything you need to know to solve our problem.

146 Chapter 5

The Code
Consider the problem illustrated in Listing 5-8: given a text, find all words
that contain duplicate characters. A word in this case is defined as any
series of non-whitespace characters separated by an arbitrary number of
whitespace characters.

Dependencies
import re

Data
text = '''
It was a bright cold day in April, and the clocks were
striking thirteen. Winston Smith, his chin nuzzled into
his breast in an effort to escape the vile wind, slipped
quickly through the glass doors of Victory Mansions,
though not quickly enough to prevent a swirl of gritty
dust from entering along with him.
-- George Orwell, 1984
'''

One-Liner
duplicates = re.findall('([^\s]*(?P<x>[^\s])(?P=x)[^\s]*)', text)

Results
print(duplicates)

Listing 5-8: One-liner solution to find all duplicate characters

What are the words with duplicate characters found in this code?

How It Works
The regex (?P<x>[^\s]) defines a new group with the name x. The group
consists of only a single arbitrary character that is not the whitespace char-
acter. The regex (?P=x) immediately follows the named group x. It simply
matches the same character matched by the group x. You’ve found the
duplicate characters! However, the goal is not to find duplicate characters,
but words with duplicate characters. So you match an arbitrary number of
non-whitespace characters [^\s]* before and after the duplicate characters.

The output of Listing 5-8 is the following:

Results
print(duplicates)
'''
[('thirteen.', 'e'), ('nuzzled', 'z'), ('effort', 'f'),
('slipped', 'p'), ('glass', 's'), ('doors', 'o'),
('gritty', 't'), ('--', '-'), ('Orwell,', 'l')]
'''

Regular Expressions 147

The regex finds all words with duplicate characters in the text. Note
that there are two groups in the regex of Listing 5-8, so every element
returned by the re.findall() function consists of a tuple of matched groups.
You’ve already seen this behavior in previous sections.

In this section, you’ve enhanced your regex tool set with one power-
ful tool: named groups. In combination with two minor regex features of
matching arbitrary whitespace characters with \s and defining a set of char-
acters that are not matched with the operator [^...], you’ve made serious
progress toward Python regex proficiency.

Detecting Word Repetitions
In the preceding section, you learned about named groups. The goal of this
section is to show you more advanced ways of using this powerful feature.

The Basics
While working as a researcher over the last few years, I spent most of my time
writing, reading, and editing research papers. When editing my research
papers, a colleague used to complain that I was using the same words repeat-
edly (and too closely in the text). Wouldn’t it be useful to have a tool that
checks your writing programmatically?

The Code
You’re given a string consisting of lowercase, whitespace-separated words,
without special characters. Find a matching substring where the first and the
last word are the same (repetition) and in-between are at most 10 words. See
Listing 5-9.

Dependencies
import re

Data
text = 'if you use words too often words become used'

One-Liner
style_problems = re.search('\s(?P<x>[a-z]+)\s+([a-z]+\s+){0,10}(?P=x)\s', ' ' + text + ' ')

Results
print(style_problems)

Listing 5-9: One-liner solution to find word repetitions

Does this code find word repetitions?

148 Chapter 5

How It Works
Again, you assume that a given text consists of only whitespace-separated,
lowercase words. Now, you search the text by using a regular expression. It
might look complex at first, but let’s break it down piece by piece:

'u\s(?P<x>[a-z]+)\s+v([a-z]+\s+){0,10}w(?P=x)\s'

You start with a single whitespace character. This is important to ensure
that you start with a whole word (and not with a suffix of a word). Then,
you match a named group x that consists of a positive number of lowercase
characters from 'a' to 'z', followed by a positive number of whitespaces u.

You proceed with 0 to 10 words, where each word consists of a positive
number of lowercase characters from 'a' to 'z', followed by a positive num-
ber of whitespaces v.

You finish with the named group x, followed by a whitespace character to
ensure that the last match is a whole word (and not only a prefix of a word) w.

The following is the output of the code snippet:

Results
print(style_problems)
<re.Match object; span=(12, 35), match=' words too often words '>

You found a matching substring that may (or may not) be considered as
bad style.

In this one-liner, you stripped down the problem of finding duplicate
words to its core and solved this easier variant. Note that in practice, you’d
have to include more complicated cases such as special characters, a mix
of lowercase and uppercase characters, numbers, and so on. Alternatively,
you could do some preprocessing to bring the text into the desired form of
lowercase, whitespace-separated words, without special characters.

E X E RCISE 5-1

Write a Python script that allows for more special characters, such as charac-
ters to structure your sentences (period, colon, comma).

Modifying Regex Patterns in a Multiline String
In the final regex one-liner, you’ll learn how to modify a text rather than
matching only parts of it.

Regular Expressions 149

The Basics
To replace all occurrences of a certain regex pattern with a new string
replacement in a given text, use the regex function re.sub(regex, replacement,
text). This way, you can quickly edit large text bases without a lot of
manual labor.

In the previous sections, you learned how to match patterns that occur
in the text. But what if you don’t want to match a certain pattern if another
pattern occurs? The negative lookahead regex pattern A(?!X) matches a regex A
if the regex X does not match afterward. For example, the regex not (?!good)
would match the string 'this is not great' but would not match the string
'this is not good'.

The Code
Our data is a string, and our task is to replace all occurrences of Alice
Wonderland with 'Alice Doe', but not to replace occurrences of 'Alice
Wonderland' (enclosed in single quotes). See Listing 5-10.

Dependencies
import re

Data
text = '''
Alice Wonderland married John Doe.
The new name of former 'Alice Wonderland' is Alice Doe.
Alice Wonderland replaces her old name 'Wonderland' with her new name 'Doe'.
Alice's sister Jane Wonderland still keeps her old name.
'''

One-Liner
updated_text = re.sub("Alice Wonderland(?!')", 'Alice Doe', text)

Result
print(updated_text)

Listing 5-10: One-liner solution to replace patterns in a text

This code prints the updated text. What is it?

How It Works
You replace all occurrences of Alice Wonderland with Alice Doe, but not the
ones that end with the single quote '. You do this by using a negative look
ahead. Note that you check only whether the closing quote exists. For

150 Chapter 5

example, a string with an opening quote but without a closing quote would
match, and you’d simply replace it. This may not be desired in general, but
it leads to the desired behavior in our example string:

Result
print(updated_text)
'''
Alice Doe married John Doe.
The new name of former 'Alice Wonderland' is Alice Doe.
Alice Doe replaces her old name 'Wonderland' with her new name 'Doe'.
Alice's sister Jane Wonderland still keeps her old name.
'''

You can see that the original name of 'Alice Wonderland' is left unchanged
when enclosed in single quotes—which was the goal of this code snippet.

Summary
This chapter covered a lot of ground. You’ve learned about regular expres-
sions, which you can use to match patterns in a given string. In particular,
you’ve learned about the functions re.compile(), re.match(), re.search(),
re.findall(), and re.sub(). Together, they cover a high percentage of regular
expression use cases. You can pick up other functions as you apply regular
expressions in practice.

You’ve also learned about various basic regular expressions that you
can combine (and recombine) in order to create more advanced regular
expressions. You’ve learned about whitespaces, escaped characters, greedy/
nongreedy operators, character sets (and negative characters sets), group-
ing and named groups, and negative lookaheads. And finally, you’ve
learned that it’s often better to solve a simplified variant of the original
problem than trying to generalize too early.

The only thing left is to apply your new regex skill in practice. A
good way of getting used to regular expressions is to start using them in
your favorite text editor. Most advanced text and code editors (including
Notepad++) ship with powerful regular expression functionality. Also,
consider regular expressions when working with textual data (for example
when writing emails, blog articles, books, and code). Regular expressions
will make your life easier and save you many hours of tedious work.

In the next chapter, we’ll dive into the supreme discipline of coding:
algorithms.

6
A L G O R I T H M S

Algorithms are ancient concepts. An algo-
rithm is nothing more than a set of instruc-

tions, much like a cooking recipe. However,
the role algorithms play in society is increasing

drastically in importance: algorithms and algorithmic
decision-making are ubiquitous as computers become
a larger and larger part of our lives.

A 2018 study highlights that “Data, in the form of observations about
our world, permeate modern society. . . . This information can in turn
be used to make informed—and in some cases even fully automated—
decisions. . . . It seems likely that such algorithms will interface with
human decision-making, a development necessary to gain societal accep-
tance and thus wide-scale use.”

N O T E 	 For more information on this study, see “The Growing Ubiquity of Algorithms
in Society: Implications, Impacts, and Innovations” by S. C. Olhede and P. J.
Wolfe at https://royalsocietypublishing.org/doi/full/10.1098/rsta.2017​
.0364#d2696064e1.

https://royalsocietypublishing.org/doi/full/10.1098/rsta.2017.0364#d2696064e1
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2017.0364#d2696064e1

152 Chapter 6

As society undergoes major trends in automation, artificial intelligence,
and ubiquitous computing, the societal gap between those who understand
algorithms and those who don’t grows rapidly. For example, the logistics
sector undergoes a major trend toward automation—with self-driving cars
and trucks on the rise—and professional drivers face the fact that algo-
rithms take over their jobs.

The constantly shifting landscape of sought-after skills and jobs in the
21st century makes it imperative for young people to understand, control,
and manipulate basic algorithms. While the only constant is change, the
concepts and basics of algorithms and algorithmic theory form the basis
upon which much of the upcoming changes are built. Roughly speaking,
understand algorithms and you’ll be well equipped to thrive in the upcom-
ing decades.

This chapter aims to improve your understanding of algorithms, focus-
ing more on your intuition and a well-rounded understanding of concepts
and practical implementations than on theory. While algorithmic theory is
as important as practical implementations and conceptual understanding,
many great books focus on the theory part. After reading this chapter, you
will intuitively understand some of the most popular algorithms in com-
puter science—and improve your practical Python implementation skills.
This may provide you a strong foundation for the upcoming technological
breakthroughs.

N O T E 	 The book Introduction to Algorithms by Thomas Cormen et al. (MIT Press,
2009) is an excellent follow-up resource on algorithmic theory.

Let’s start with a small algorithm to solve a simple problem that is
relevant for programmers who want to find good jobs.

Finding Anagrams with Lambda Functions and Sorting
Anagrams are a popular topic in programming interviews to test your com-
puter science vocabulary and how good you are at developing your own
simple algorithms. In this section, you’ll learn about a simple algorithm to
find anagrams in Python.

The Basics
Two words are anagrams if they consist of the same characters and if every
character of the first word appears in the second word exactly once. This is
illustrated in Figure 6-1 and in the following examples:

•	 “listen” → “silent”

•	 “funeral ” → “real fun”

•	 “elvis” → “lives”

Algorithms 153

Figure 6-1: The word elvis is an anagram of the word lives.

We’ll now work on this problem and arrive at a concise Pythonic solu-
tion to figuring out whether two words are anagrams. Let’s start coding.

The Code
Our goal is to write a function is_anagram() that takes two strings x1 and
x2 and returns True if those are anagrams! Before you read on, pause for
a moment and think about the problem. How would you approach it in
Python? Listing 6-1 shows one solution.

One-Liner
u is_anagram = lambda x1, x2: sorted(x1) == sorted(x2)

Results
print(is_anagram("elvis", "lives"))
print(is_anagram("elvise", "livees"))
print(is_anagram("elvis", "dead"))

Listing 6-1: One-liner solution to check whether two strings are anagrams

This code prints three lines. What are they?

How It Works
Two strings are anagrams if they have the same sorted character sequence,
so our method is to sort both strings and then make an element-wise com-
parison. It’s that easy. There is no need for external dependencies. You sim-
ply create a function is_anagram() u by using the lambda function definition
(see Chapter 1) with two arguments x1 and x2. The function returns the
result of the expression sorted(x1) == sorted(x2), which is True if the sorted

154 Chapter 6

character sequences consist of the same characters. Here’s the output of the
two sorted character sequences:

print(sorted("elvis"))
['e', 'i', 'l', 's', 'v']

print(sorted("lives"))
['e', 'i', 'l', 's', 'v']

Both strings 'elvis' and 'lives' consist of the same characters, so the
sorted list representation is the same. The result of the three print state-
ments is the following:

Results
print(is_anagram("elvis", "lives")) # True
print(is_anagram("elvise", "livees")) # True
print(is_anagram("elvis", "dead")) # False

As a small side note for advanced coders: the runtime complexity of
sorting a sequence of n elements in Python grows asymptotically like the
function n log(n). That means our one-liner algorithm is more efficient
than the naive solution of checking whether every character exists in both
strings and removing the character if this is the case. The naive algorithm
grows asymptotically like the quadratic function n**2.

However, there’s another efficient way, called histogramming, whereby
you create a histogram for both strings that counts the number of occur-
rences of all characters in that string, and then compare the two histo-
grams. Assuming a constant-sized alphabet, the runtime complexity of
histogramming is linear; it grows asymptotically like the function n. Feel
free to implement this algorithm as a small exercise!

Finding Palindromes with Lambda Functions and
Negative Slicing

This section introduces another computer science term that’s popular in
interview questions: palindromes. You’ll use a one-liner to check whether
two words are palindromes of each other.

The Basics
First things first: what is a palindrome? A palindrome can be defined as a
sequence of elements (for example, a string or a list) that reads the same
backward as it does forward. Here are a few fun examples that are palin-
dromes if you take out the whitespace:

•	 “Mr Owl ate my metal worm”

•	 “Was it a car or a cat I saw?”

•	 “Go hang a salami, I’m a lasagna hog”

Algorithms 155

•	 “Rats live on no evil star”

•	 “Hannah”

•	 “Anna”

•	 “Bob”

Our one-liner solution will require your basic understanding of slicing.
As you know from Chapter 2, slicing is a Python-specific concept for carving
out a range of values from sequence types such as lists or strings. Slicing uses
the concise notation [start:stop:step] to slice a sequence starting at index
start (inclusive) and ending at index stop (exclusive). The third parameter
step allows you to define the step size, which is how many characters from the
original sequence your slice will skip before taking the next character (for
example, step=2 means that your slice will consist of only every other charac-
ter). When using a negative step size, the string is traversed in reverse order.

This is everything you need to know to come up with a short and con-
cise one-liner solution in Python.

The Code
When given a string, you want your code to check whether the reverse
sequence of characters equals the original sequence, to determine whether
the string is a palindrome. Listing 6-2 shows the solution.

One-Liner
is_palindrome = lambda phrase: phrase == phrase[::-1]

Result
print(is_palindrome("anna"))
print(is_palindrome("kdljfasjf"))
print(is_palindrome("rats live on no evil star"))

Listing 6-2: One-liner solution to check whether a phrase is a palindrome

How It Works
The simple one-liner solution does not depend on any external library. You
define a lambda function that takes a single argument phrase—the string
to be tested—and returns a Boolean value that says whether the sequence
of characters remains unchanged when reversed. To reverse the string, you
use slicing (see Chapter 2).

The result of the one-liner code snippet is the following:

Result
print(is_palindrome("anna")) # True
print(is_palindrome("kdljfasjf")) # False
print(is_palindrome("rats live on no evil star")) # True

The first and third strings are palindromes, but the second isn’t. Next
let’s dive into another popular computer science concept: permutations.

156 Chapter 6

Counting Permutations with Recursive Factorial Functions
This section explains a simple and effective way of computing the factorial
in a single line of code to figure out the maximum number of possible per-
mutations in a data set.

The Basics
Consider the following problem: England’s Premier League has 20 soccer
teams, each of which can reach any of the 20 ranks at the end of the season.
Given 20 fixed teams, you can calculate how many possible versions of these
rankings exist. Note that the question is not how many rankings a single
team can achieve (the answer would be 20) but how many total rankings
of all teams exist. Figure 6-2 shows just three possible rankings.

Manchester City

Manchester United

Liverpool

Chelsea

Tottenham Hotspur

Arsenal

Burnley

Leicester City

Everton

Watford

West Ham United

Crystal Palace

AFC Bournemouth

Huddersfield Town

Newcastle United

Brighton & Hove Albion

Southampton

Stoke City

West Bromwich Albion

Swansea City

Manchester United

Manchester City

Liverpool

Chelsea

Tottenham Hotspur

Arsenal

Burnley

Leicester City

Everton

Watford

West Ham United

Crystal Palace

AFC Bournemouth

Huddersfield Town

Newcastle United

Brighton & Hove Albion

Southampton

Stoke City

West Bromwich Albion

Swansea City

Manchester United

Liverpool

Manchester City

Chelsea

Tottenham Hotspur

Arsenal

Burnley

Leicester City

Everton

Watford

West Ham United

Crystal Palace

AFC Bournemouth

Huddersfield Town

Newcastle United

Brighton & Hove Albion

Southampton

Stoke City

West Bromwich Albion

Swansea City

Figure 6-2: Three possible rankings of the soccer teams in England’s Premier League

In computer science terminology, you would denote each ranking as a
permutation, defined as a specific order of set elements. Our goal is to find
the number of possible permutations of a given set. The number of those
permutations has important implications for programs involved in betting
applications, match prediction, and game analysis. For example, if each of
100 different rankings has the same initial probability, the probability of a

Algorithms 157

specific ranking is 1/100 = 1 percent. This can be used as a base probability
(a priori probability) for game-prediction algorithms. Under these assump-
tions, a randomly guessed ranking has a 1 percent probability of being the
correct outcome after one season.

To calculate the number of permutations of a given set of n elements,
you can use the factorial function n!. In the next few paragraphs, you’ll
learn why this is the case. The factorial is defined as follows:

n! = n × (n – 1) × (n – 2) × . . . × 1

For example:

1! = 1
3! = 3 × 2 × 1 = 6

10! = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 3,628,800
20! = 20 × 19 × 18 × . . . × 3 × 2 × 1 = 2,432,902,008,176,640,000

Let’s take a look at how this works. Say you have a set of 10 elements
S = {s0, s1, s2, . . . , s9} and 10 buckets B = {b0, b1, b2, . . . , b9}. You want to
place exactly one element from S into each bucket. In the soccer example,
the 20 teams are the elements, and the 20 table ranks are the buckets. To
get one specific permutation of S, you simply place all elements into all
buckets. The number of different ways of assigning elements to buckets is
the total number of permutations of elements in S.

The following algorithm determines the number of permutations for
a set with 10 elements (which need to be placed into 10 buckets):

1.	 Take the first element from the set S. There are 10 empty buckets so you
have 10 options for where you can place the element. You place one ele-
ment in a bucket.

2.	 Now one bucket is occupied. Take the second element from the set.
There now remain 9 empty buckets so you have 9 options.

3.	 Finally, take the 10th (last) element from the set. Nine buckets are now
occupied. There is only one empty bucket, so you have one option.

In total, you have 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 10! options. Each
potential placement of an element in a bucket represents one permutation
of the set elements. The number of permutations of a set with n elements is
therefore n!.

Recursively, the factorial function can also be defined as follows:

n! = n × (n – 1)!

The recursion base cases are defined as shown here:

1! = 0! = 1

The intuition behind these base cases is that a set with one element has
one permutation, and a set with zero elements has one permutation (there
is one way of assigning zero elements to zero buckets).

158 Chapter 6

The Code
The one-liner in Listing 6-3 will compute the number of permutations n! of
a set with n elements.

The Data
n = 5

The One-Liner
factorial = lambda n: n * factorial(n-1) if n > 1 else 1

The Result
print(factorial(n))

Listing 6-3: One-liner solution defining the factorial function recursively

Try figuring out what the output of this code would be.

How It Works
In the code, you use the recursive definition of the factorial. Let’s quickly
improve our intuitive understanding of recursion. Stephen Hawking came
up with a concise way to explain recursion: “To understand recursion, one
must first understand recursion.”

The Merriam-Webster dictionary defines recursion as “a computer pro-
gramming technique involving the use of a . . . function . . . that calls itself
one or more times until a specified condition is met, at which time the rest
of each repetition is processed from the last one called to the first.” At the
heart of this definition is the recursive function, which is simply a function
that calls itself. But if the function keeps calling itself, it would never stop.

For this reason, we set a certain base case. When the base case is met,
the last function call terminates and returns a solution to the second-to-
last function call. The second-to-last function call also returns the solution
to the third-to-last function call. This causes a chain reaction of propagat-
ing the results to the higher recursion level until the first function call
returns the final result. This may feel difficult to grasp in a few lines of
English text, but stay with me: we will discuss this with the aid of the given
one-liner example next.

In general, you create a recursive function f in four steps:

1.	 Break the original problem into smaller problem instances.

2.	 Take the smaller problem instances as the input of function f (which
will then break the smaller input into even smaller problem instances
and so on).

3.	 Define a base case, which is the smallest possible input that can be solved
directly without any further call of the function f.

4.	 Specify how you can recombine the obtained smaller solutions into the
larger solution.

Algorithms 159

You create a lambda function with one argument n and assign the
lambda function to the name factorial. Finally, you call the named func-
tion factorial(n-1) to calculate the result of the function call factorial(n).
The value n could be the number of soccer teams in the Premier League
(n=20) or any other value such as the one in Listing 6-3 (n=5).

Roughly speaking, you can use the simpler solution for factorial(n-1)
to construct the solution of the harder problem factorial(n) by multiplying
the former with the input argument n. As soon as you reach the recursion
base case n <= 1, you simply return the hardcoded solution factorial(1) =
factorial(0) = 1.

This algorithm shows how you can often find a simple, concise, and
efficient way of solving problems by thoroughly understanding the prob-
lem first. Choosing the simplest solution idea is one of the most important
things you can do when creating your own algorithms. Beginners often find
they write cluttered and unnecessarily complicated code.

In this case, the recursive (one-liner) definition of the factorial is shorter
than an iterative (one-liner) definition without recursion. As an exercise,
try rewriting this one-liner without using a recursive definition and without
external libraries—it’s not trivial and certainly not that concise!

Finding the Levenshtein Distance
In this section, you’ll learn about an important practical algorithm to cal-
culate the Levenshtein distance. Understanding this algorithm is more
complicated than previous algorithms, so you’ll also train yourself to think
through a problem clearly.

The Basics
The Levenshtein distance is a metric to calculate the distance between two
strings; in other words, it’s used to quantify the similarity of two strings. Its
alternate name, the edit distance, describes precisely what it measures: the
number of character edits (insertions, removals, or substitutions) needed
to transform one string into another. The smaller the Levenshtein distance,
the more similar the strings.

The Levenshtein distance has important applications in things like
the autocorrection functionality on your smartphone. If you type helo in
your WhatsApp messenger, your smartphone detects a word outside its
library and selects several high-probability words as potential replacements,
and then sorts them by Levenshtein distance. For example, the word with
minimal Levenshtein distance and, hence, maximal similarity is the string
'hello', so your phone may automatically correct helo to hello.

Let’s consider an example with the two less similar strings 'cat' and
'chello'. Knowing that the Levenshtein distance computes the minimal
number of edits required to reach the second string starting from the first
string, Table 6-1 shows the minimal sequence.

160 Chapter 6

Table 6-1: The Minimal Sequence Needed to Change 'cat' to 'chello'

Current word Edit made

cat —

cht Replace a with h

che Replace t with e

chel Insert l at position 3

chell Insert l at position 4

chello Insert o at position 5

Table 6-1 transforms the string 'cat' to the string 'chello' in five edit-
ing steps, meaning the Levenshtein distance is 5.

The Code
Now let’s write a Python one-liner that calculates the Levenshtein distance
of strings a and b, a and c, and b and c (see Listing 6-4).

The Data
a = "cat"
b = "chello"
c = "chess"

The One-Liner
ls = ulambda a, b: len(b) if not a else len(a) if not b else min(

 v ls(a[1:], b[1:])+(a[0] != b[0]),
 w ls(a[1:], b)+1,
 x ls(a, b[1:])+1)

The Result
print(ls(a,b))
print(ls(a,c))
print(ls(b,c))

Listing 6-4: Calculating the Levenshtein distance of two strings in one line

Based on what you know so far, try to calculate the output before run-
ning the program.

How It Works
Before diving into the code, let’s quickly explore an important Python trick
heavily used in this one-liner. In Python, every object has a truth value and
is either True or False. Most objects are in fact True and, intuitively, you can
probably guess the few objects that are False:

•	 The numerical value 0 is False.

•	 The empty string '' is False.

•	 The empty list [] is False.

Algorithms 161

•	 The empty set set() is False.

•	 The empty dictionary {} is False.

As a rule of thumb, Python objects are considered False if they are
empty or zero. Equipped with this information, let’s look at the first part
of the Levenshtein function: you create a lambda function that takes two
strings a and b and returns the number of edits required to transform string
a into string b u.

There are two trivial cases: if string a is empty, the minimal edit dis-
tance is len(b), since you would just need to insert each character of string b.
Similarly, if string b is empty, the minimal edit distance is len(a). That means
if either string is empty, you can directly return the correct edit distance.

Let’s say both strings are non-empty. You can simplify the problem
by calculating the Levenshtein distance of smaller suffixes of the original
strings a and b, as shown in Figure 6-3.

ls(cat, chello)

ls(t, ello)

ls(, llo)
3 + 1

ls(, ello) ls(t , llo)
4 + 1 3 + 1

ls(, lo)

2 + 1
ls(, llo) ls(t , lo)

3 + 1 2 + 1

min(. . .) = 3

min(. . .) = 4

. . .

5 + 0
ls(at, hello)

6 + 1
ls(at, chello)

5 + 1
ls(cat, hello)

min(. . .) = 5

Trivial case

Solve this problem . . .

. . . by solving these
three easier problems!

1) 2) 3)

Figure 6-3: Calculating the Levenshtein distance of the words 'cat' and 'chello'
recursively by solving the smaller problem instances first

To compute the Levenshtein distance between the strings 'cat'
and 'chello' in a recursive manner, you solve the easier problems first
(recursively):

1.	 You calculate the distance between the suffixes at and hello because
if you know how to transform at into hello, you can easily transform
cat into chello by modifying the first character (or by keeping the first
character if both strings start with the same character). Assuming this
distance is 5, you can now conclude that the distance between cat and
chello is also at most 5 because you can reuse the exact same sequence
of edits (both words begin with the character c and you don’t have to
edit this character).

2.	 You calculate the distance between at and chello. Assuming this dis-
tance is 6, you can now conclude that the distance between cat and

162 Chapter 6

chello is at most 6 + 1 = 7 because you can simply remove the character
c at the beginning of the first word (one additional operation). From
there, you can reuse the exact same solution to come from at to chello.

3.	 You calculate the distance between cat and hello. Assuming this dis-
tance is 5, you can now conclude that the distance between cat and
chello is at most 5 + 1 because you need to insert the character c at the
beginning of the second word (one additional operation).

As these are all possible cases of what you can do with the first charac-
ter (substitution, removal, insertion), the Levenshtein distance between cat
and chello is the minimum of the three cases 1, 2, and 3. Let’s now further
examine the three cases in Listing 6-4.

First, you calculate the edit distance from a[1:] to b[1:] in a recursive
manner v. If the leading characters a[0] and b[0] are different, you have
to fix it by replacing a[0] by b[0], so you increment the edit distance by one.
If the leading characters are the same, the solution of the simpler problem
ls(a[1:], b[1:]) is also a solution to the more complex problem ls(a, b), as
you’ve seen in Figure 6-3.

Second, you calculate the distance from a[1:] to b in a recursive man-
ner w. Say you know the result of this distance (going from a[1:] to b)—
how can you calculate the distance one step further from a to b? The answer
is to simply remove the first character a[0] from the beginning of a, which is
one additional operation. With this, you have reduced the more compli-
cated problem to the easier one.

Third, you calculate the distance from a to b[1:] in a recursive manner x.
Say you know the result of this distance (going from a to b[1:]). How can
you calculate the distance from a to b? In this case, you can simply go one
step further (from a to b[1:] to b) by inserting the character b[0] at the
beginning of the word b[1:], which would increment the distance by one.

Finally, you simply take the minimum edit distance of all three
results (replace the first character, remove the first character, insert
the first character).

This one-liner solution demonstrates once again the importance of
training your recursion skills. Recursion may not come naturally to you, but
rest assured that it will after studying many recursive problems like this one.

Calculating the Powerset by Using Functional Programming
In this section, you’ll learn about an important mathematical concept
known as the powerset: the set of all subsets. You’ll need powersets in statis-
tics, set theory, functional programming, probability theory, and algorith-
mic analysis.

The Basics
The powerset is the set of all subsets of the given set s. It includes the empty
set {}, the original set s, and all other possible subsets of the original set.
Here are a few examples.

Algorithms 163

Example 1:

•	 Given set: s = {1}

•	 Powerset: P = {{},{1}}

Example 2:

•	 Given set: s = {1, 2}

•	 Powerset: P = {{},{1},{2},{1,2}}

Example 3:

•	 Given set: s = {1, 2, 3}

•	 Powerset: P = {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}

To calculate a powerset Pn of a set s with n elements, you use the smaller
powerset Pn–1 of a subset of s with (n – 1) elements. Say you want to calculate
the powerset of set s = {1, 2, 3}.

1.	 Initialize the powerset P0 with zero elements as P0 = {{}}. In other words,
this is the powerset of the empty set. It contains only the empty set itself.

2.	 To create the powerset Pn with n elements from the powerset Pn–1 with
(n – 1) elements, you take one (arbitrary) element x from the set s and
incorporate all arising subsets into the larger powerset Pn by using the
following procedure:

3.	 Go over all sets p in Pn–1 and create a new subset that consists of the
union of x and p. This results in a new temporary set of sets T. For
example, if P2 = {{}, {1}, {2}, {1,2}}, you’ll create the temporary set of sets
T = {{3}, {1,3}, {2,3}, {1,2,3}} by adding the element x = 3 to all sets in P2.

4.	 Merge the new set of sets T with the powerset Pn–1 to obtain powerset
Pn. For example, you obtain powerset P3 by merging the temporary set
T with the powerset P2 as follows: P3 = T union P2.

5.	 Go to 2 until original set s is empty.

I’ll explain this strategy in more detail in the following section.

The reduce() Function

But first, you need to properly understand an important Python function
that you’ll use in the one-liner: the reduce() function. The reduce() function
is built into Python 2, but the developers decided it was used little enough
that they didn’t include it in Python 3, so you’ll need to import it first from
the functools library.

The reduce() function takes three arguments: reduce(function, iterable,
initializer). The function arguments define how two values x and y are
reduced to a single value (for example, lambda x, y: x + y). This way, you
can iteratively reduce two values of an iterable (the second argument) to a
single value—until only a single value is left in the iterable. The initializer

164 Chapter 6

argument is optional—if you don’t set it, Python assumes the first value of
the iterable as a default.

For example, calling reduce(lambda x, y: x + y, [0, 1, 2, 3]) performs
the following computation: (((0 + 1)+ 2)+ 3) = 6. In other words, you first
reduce the two values x=0 and y=1 to the sum x + y = 0 + 1 = 1. Then, you
use this result of the first call of the lambda function as input to the second
call of the lambda function: x=1 and y=2. The result is the sum x + y = 1 +
2 = 3. Finally, we use the result of this second call of the lambda function
as input to the third call of the lambda function by setting x=3 and y=3. The
result is the sum x + y = 3 + 3 = 6.

In the last example, you have seen that the value x always carries the
result of the previous (lambda) function. The argument x serves as the
accumulated value, while the argument y serves as the update value from
the iterable. This is the intended behavior to iteratively “reduce” all values
in the iterable argument to a single one. The optional third parameter
initializer specifies the initial input for x. This allows you to define a
sequence aggregator as shown in Listing 6-5.

List Arithmetic

Before diving into the one-liner, you need to understand two more list oper-
ators. The first is the list concatenation operator +, which glues together two
lists. For example, the result of the expression [1, 2] + [3, 4] is the new list
[1, 2, 3, 4]. The second is the union operator |, which performs a simple
union operation on two sets. For example, the result of the expression
{1, 2} | {3, 4} is the new set {1, 2, 3, 4}.

The Code
Listing 6-5 provides a one-liner solution that calculates the powerset of a
given set s.

Dependencies
from functools import reduce

The Data
s = {1, 2, 3}

The One-Liner
ps = lambda s: reduce(lambda P, x: uP + [subset | {x} for subset in P], s, v[set()])

The Result
print(ps(s))

Listing 6-5: One-liner solution to calculate the powerset of a given set

Guess the output of this code snippet!

Algorithms 165

How It Works
The idea of this one-liner is to start the powerset as an empty set v and
repeatedly add subsets to it u until no more subsets can be found.

Initially, the powerset contains only the empty set. In each step, you
take one element x out of the data set s and create new subsets that natu-
rally emerge by adding x to all subsets that are already in the powerset v.
As you’ve seen in the introduction of this section, the size of the powerset
therefore doubles each time you consider an additional element x from the
data set s. In this way, you can grow the powerset with n subsets one data set
element at a time (but by n subsets at a time). Note that the powerset grows
exponentially: for any new data set element x, you double the size of the
powerset. This is an inherent property of powersets: they quickly overwhelm
any storage capacity—even for relatively small data sets with only a few
dozen of elements.

You use the reduce() function to maintain the current powerset in the
variable P (which initially contains only the empty set). Using list compre-
hension, the reduce() function creates new subsets—one for each existing
subset—and adds them to the powerset P. In particular, it adds the value x
from the data set to each subset and thus doubles the size of the powerset
(containing the subsets with and without the data set element x). In this way,
the reduce() function repeatedly “merges” two elements: the powerset P and
an element x from the data set.

Hence, the result of the one-liner is the following:

The Result
print(ps(s))
[set(), {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}]

This one-liner nicely demonstrates how important it is that you have a
thorough understanding of lambda functions, list comprehension, and set
operations.

Caesar’s Cipher Encryption Using Advanced Indexing and
List Comprehension

In this section, you’ll learn about an ancient encryption technique called
Caesar’s cipher, used by Julius Caesar himself to obfuscate his private con-
versations. Unfortunately, Caesar’s cipher is extremely simple to crack and
offers no real protection, but it’s still used for fun and obfuscation of forum
content that should be protected from naive readers’ eyes.

The Basics
Caesar’s cipher is based on the idea of shifting characters to be encrypted
by a fixed number of positions in the alphabet. We’ll look at a particular
case of Caesar’s cipher called the ROT13 algorithm.

166 Chapter 6

The ROT13 algorithm is a simple encryption algorithm used in many
forums (for example, Reddit) to prevent spoilers or hide the semantics of
a conversation from newbies. The ROT13 algorithm is easy to decrypt—an
attacker can crack your code by running a probabilistic analysis on the dis-
tribution of the letters in your encrypted text—even if the attacker doesn’t
know by how many positions you shifted each character. You should never
rely on this algorithm to actually encrypt your messages! Still, there are
many light applications of the ROT13 algorithm:

•	 Obscure the result of puzzles in online forums.

•	 Obscure possible spoilers for movies or books.

•	 Make fun of other weak encryption algorithms: “56-bit DES is at least
stronger than ROT13.”

•	 Obscure email addresses on websites against 99.999 percent of email
spam bots.

So ROT13 is more of a popular running gag in internet culture and an
educational tool than a serious cipher.

The algorithm can be explained in one sentence: ROT13 = Rotate the
string to be encrypted by 13 positions (modulo 26) in the alphabet of 26 characters
(see Figure 6-4).

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

Original, non-obfuscated letters

ROT13 obfuscated letters

Figure 6-4: The table shows how each character in the alphabet is encrypted and
decrypted under the ROT13 algorithm.

In other words, you shift each character by 13 positions in the alphabet.
When shifting over the last character, z, you start over at the first position in
the alphabet, a.

The Code
Listing 6-6 creates a one-liner to encrypt the string s by using the ROT13
algorithm!

Data
abc = "abcdefghijklmnopqrstuvwxyz"
s = "xthexrussiansxarexcoming"

One-Liner
rt13 = lambda x: "".join([abc[(abc.find(c) + 13) % 26] for c in x])

Algorithms 167

Result
print(rt13(s))
print(rt13(rt13(s)))

Listing 6-6: One-liner solution encrypting string s with the ROT13 algorithm

Use Figure 6-4 to crack this code: what’s the output of this code snippet?

How It Works
The one-liner solution encrypts each character separately by moving it
13 positions to the right in the alphabet stored in abc, and then creates a
list of these encrypted characters and joins the elements in this list to get
the encrypted phrase x.

Let’s take a closer look at how to encrypt each character. You use list
comprehension (see Chapter 2) to create the list of encrypted characters by
replacing each character c with the character 13 positions to the right in the
alphabet. It’s crucial to prevent overshooting for all characters in the alpha-
bet with index >= 13. For instance, when shifting character z with index 25
by 13 positions, you obtain index 25 + 13 = 38, which is not a valid index of
the alphabet. To fix this, you use the modulo operator to ensure that when
shifting a character beyond the maximum index 25 for character z, you
restart our calculation of the final position of the character to be encrypted
with index == 0 (character a). Then, you proceed shifting to the right for the
remaining of the 13 positions that have not already been applied before the
restart (see Figure 6-5). For example, character z is shifted by 13 positions to
index 38 modulo 26 (in Python code: 38%26), which is index 12 or character m.

Character a b c . . . m . . . z
Index 0 1 2 . . . 12 . . . 25 +13 38

%26

Figure 6-5: Preventing overshooting by restarting the shift
operation at index 0, which results in the following shift
sequence: 25 > 0 > 1 > . . . > 12

Here’s the critical part of the code that shows exactly how each charac-
ter c is shifted by 13 positions:

abc[(abc.find(c) + 13) % 26]

First, you find character c’s index in the alphabet abc. Second, you shift
the index by adding the integer 13 to character c’s index in the alphabet abc
considering our modulo 26 trick (as explained in the previous paragraphs).

The result of the one-liner code snippet is the following:

168 Chapter 6

Result
print(rt13(s))
kgurkehffvnafknerkpbzvat

print(rt13(rt13(s)))
xthexrussiansxarexcoming

To summarize, you’ve learned the special variant of Caesar’s cipher,
the ROT13 algorithm, which shifts each character in a string by 13 posi-
tions in the alphabet. Shifting it twice by 13 + 13 = 26 index positions
results in the original character, meaning encryption and decryption
use the same algorithm.

Finding Prime Numbers with the Sieve of Eratosthenes
Finding prime numbers is of critical importance for practical applica-
tions such as cryptography. Many public-key methods are safe (from a
cryptographic point of view) only because computation of prime factors
of large numbers is generally inefficient and slow. We’ll make a one-liner
that uses an ancient algorithm to root out all prime numbers from a range
of numbers.

The Basics
A prime number n is an integer that’s not divisible without a remainder by
any other integer, except for i and n. In other words, for a prime number,
there are no two integers a>1 and b>1 whose product equals the prime num-
ber: ab=n.

Say you want to check whether your given number n is a prime
number. Let’s start with a naive algorithm to determine prime numbers
(see Listing 6-7).

def prime(n):
 u for i in range(2,n):
 v if n % i == 0:

 return False
 return True

print(prime(10))
False

print(prime(11))
True

print(prime(7919))
True

Listing 6-7: Naive implementation to check whether a given number n is prime

Algorithms 169

The algorithm checks all numbers between 2 and n-1 u to see whether
the number n will divide evenly into it with no remainders v. For example,
when determining whether number n = 10 is a prime number, the algorithm
quickly realizes that the expression n % i == 0 evaluates to True for i = 2. It has
found a number i that is a divisor of n, so n cannot be a prime number. In this
case, the algorithm aborts any further computation and returns False.

The time complexity for checking a single number is the same as the
input n: in the worst case, the algorithm needs n loop iterations to check
whether number n is a prime number.

Say you want to calculate all prime numbers from 2 to a certain maxi-
mal number m. You could simply repeat the prime test from Listing 6-7 m-1
times (see Listing 6-8). However, this comes at huge processing cost.

Find all prime numbers <= m
m = 20
primes = [n for n in range(2,m+1) if prime(n)]

print(primes)
[2, 3, 5, 7, 11, 13, 17, 19]

Listing 6-8: Finding all prime numbers up to a maximal number m

Here we use list comprehension (see Chapter 2) to create a list with all
prime numbers smaller than m. We introduce a for loop, meaning the algo-
rithm requires m function calls of is_prime(n) and so the time complexity is
bounded by m**2. The number of operations grows quadratically with the
input m. To find all prime numbers smaller than m = 100 takes up to m**2 =
10000 operations!

We’ll build a one-liner to drastically reduce this time cost.

The Code
With this one-liner, we’ll write an algorithm to find all prime numbers up
to a maximal integer number m that is more time efficient than our naive
implementation. The one-liner in Listing 6-9 is inspired by an ancient algo-
rithm called the Sieve of Eratosthenes, which I’ll explain in this section.

Dependencies
from functools import reduce

The Data
n=100

The One-Liner
primes = reduce(lambda r, x: r - set(range(x**2, n, x)) if x in r else r,
 range(2, int(n**0.5) + 1), set(range(2, n)))
The Result
print(primes)
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

Listing 6-9: One-liner solution implementing the Sieve of Eratosthenes

170 Chapter 6

You’ll likely need some additional background knowledge to under-
stand what happens here.

How It Works
To be frank, I was hesitant to include this one-liner in the book. It’s confus-
ing, complex, and unreadable. Still, this is the type of code you face in prac-
tice, and with this book, I want to ensure you’re able to understand every
single line of code—even if it takes some time. I stumbled upon a version of
this one-liner at StackOverflow. It is loosely based on an ancient algorithm
called the Sieve of Eratosthenes that was designed to calculate prime numbers.

N O T E 	 I modified the original StackOverflow one-liner for clarity. The original one-liner can
be found at https://stackoverflow.com/questions/10639861/python-prime​
-generator-in-one-line/ at the time of this writing.

The Sieve of Eratosthenes Algorithm

The algorithm creates (conceptually) a huge array of numbers from 2 to m,
the maximal integer number. All the numbers in the array are prime candi-
dates, which means that the algorithm considers them to be prime numbers
potentially (but not necessarily). During the algorithm, you sieve out the can-
didates that cannot be prime. Only the ones that remain after this filtering
process are the final prime numbers.

To accomplish this, the algorithm calculates and marks the numbers in
this array that are not prime numbers. At the end, all unmarked numbers
are prime numbers.

The algorithm repeats the following steps:

1. Start with the first number 2 and increment it in every step of the pro-
cess until you find a prime number x. You know that x is prime if it is
unmarked because the fact that x is unmarked means that no smaller
number than x is a divisor of x—the definition of a prime number.

2. Mark all multiples of number x because they are also not prime: num-
ber x is a divisor of all those numbers.

3. Perform simple optimization: start marking multiples from number x
× x instead of 2x because all numbers between 2x and x × x are already
marked. There is a simple mathematical argument for this that I will
describe later. For now, know that you can start marking from x × x.

https://stackoverflow.com/questions/10639861/python-prime-generator-in-one-line/
https://stackoverflow.com/questions/10639861/python-prime-generator-in-one-line/

Algorithms 171

Figures 6-6 to 6-11 explain this algorithm step-by-step.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Start

Figure 6-6: Initializing the Sieve of Eratosthenes algorithm

Initially, all numbers between 2 and m = 100 are unmarked (white cells).
The first unmarked number 2 is a prime number.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Is Prime Mark all multiples of 2

Figure 6-7: Mark all multiples of 2 because they are not prime.
Ignore the marked numbers for the rest of the algorithm.

172 Chapter 6

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Is Prime Mark all multiples of 3 (Start from 32)

Figure 6-8: Mark multiples of 3 as “non-prime.”

Increment to the next unmarked number, 3. Because it is unmarked
at this point, it is a prime number. Because you have marked all multiples
of numbers smaller than the current number 3, no smaller number is a
divisor of 3. By definition, number 3 must be prime. Mark all multiples of
3 because they are not prime. Start marking from number 3 × 3 because
all multiples of 3 between 3 and 3 × 3 = 9 are already marked.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Is Prime Mark all multiples of 5 (Start from 52)

Figure 6-9: Mark multiples of 5 as “non-prime.”

Go to the next unmarked number, 5 (which is a prime number). Mark
all multiples of 5. Start marking from number 5 × 5 because all multiples of
5 between 5 and 5 × 5 = 25 are already marked.

Algorithms 173

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Is PrimeMark all multiples of 7 (Start from 72)

Figure 6-10: Mark multiples of 7 as “non-prime.”

Increment to the next unmarked number, 7 (which is a prime number).
Mark all multiples of 7. Start marking from number 7 × 7 because all mul-
tiples of 7 between 7 and 7 × 7 = 49 are already marked.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Is Prime

Mark all multiples of 11 (Start from 112) � Done

Figure 6-11: Mark multiples of 11 as “non-prime.”

Increment to the next unmarked number, 11 (which is a prime num-
ber). Mark all multiples of 11. Because you would start marking from num-
ber 11 × 11=121, you realize that this is already larger than our maximal
number m = 100. This causes the algorithm to terminate. All remaining
unmarked numbers are not divisible by any number and are, therefore,
prime numbers.

The Sieve of Eratosthenes is much more efficient than the naive algo-
rithm because the naive algorithm checks each number independently,
ignoring all previous computations. The Sieve of Eratosthenes, on the other
hand, reuses results from previous computational steps—a common idea in

174 Chapter 6

many areas of algorithmic optimization. Each time we cross out multiples of
a prime number, we essentially save ourselves the tedious work of checking
whether this multiple is a prime number: we already know that it isn’t.

You may wonder why we start marking from the squared prime num-
ber instead of the prime number itself. For example, in the algorithm in
Figure 6-10, you just found prime number 7 and start marking from number
7 × 7 = 49. The reason is that you already marked all other multiples in previ-
ous iterations 7 × 2, 7 × 3, 7 × 4, 7 × 5, 7 × 6 because you marked all multiples
of numbers smaller than the current prime number 7: 2, 3, 4, 5, 6.

One-Liner Explained

Equipped with a thorough conceptual understanding of the algorithm, you
can now start investigating the one-liner solution:

The One-Liner
primes = reduce(lambda r, x: r - set(range(x**2, n, x)) if x in r else r,
 range(2, int(n**0.5) + 1), set(range(2, n)))

This one-liner uses the reduce() function to remove, one step at a time,
all marked numbers from the initial set of all numbers between 2 and n (in
the one-liner: set(range(2, n))).

You take this set as the initial value for the set of unmarked values r
because, initially, all values are unmarked. Now the one-liner goes over all
numbers x between 2 and the square root of n (in the one-liner: range(2,
int(n**0.5) + 1)) and removes the multiples of x from the set r (starting at
x**2)—but only if the number x is a prime number, known because it is not
removed from the set r at the current time.

Spend 5–15 minutes rereading this explanation and study the different
parts of the one-liner carefully. I promise you’ll find this exercise worth-
while, as it will significantly improve your Python code understanding skills.

Calculating the Fibonacci Series with the reduce() Function
The popular Italian mathematician Fibonacci (original name: Leonardo of
Pisa) introduced the Fibonacci numbers in the year 1202 with the surpris-
ing observation that these numbers have significance in fields as various
as math, art, and biology. This section will show you how to compute the
Fibonacci numbers in a single line of code.

The Basics
The Fibonacci series starts with the numbers 0 and 1, and then, each ele-
ment that follows is the sum of the two previous series elements. The
Fibonacci series has the algorithm built in!

Algorithms 175

The Code
Listing 6-10 calculates a list of the n first Fibonacci numbers starting with
the numbers 0 and 1.

Dependencies
from functools import reduce

The Data
n = 10

The One-Liner
fibs = reduce(lambda x, _: x + [x[-2] + x[-1]], [0] * (n-2), [0, 1])

The Result
print(fibs)

Listing 6-10: Calculating the Fibonacci series in one line of Python code

Study this code and take a guess at the output.

How It Works
You’ll again use the powerful reduce() function. In general, this function is
useful if you want to aggregate state information that’s computed on the fly;
for example, when you use the previous two Fibonacci numbers just com-
puted to compute the next Fibonacci number. This is difficult to achieve
with list comprehension (see Chapter 2), which can’t generally access the
values that have been newly created from the list comprehension.

You use the reduce() function with three arguments that correspond to
reduce(function, iterable, initializer) to consecutively add the new Fibonacci
number to an aggregator object that incorporates one value at a time from
the iterable object as specified by the function.

Here, you use a simple list as the aggregator object with the two initial
Fibonacci numbers [0, 1]. Remember that the aggregator object is handed
as the first argument to the function (in our example, x).

The second argument is the next element from the iterable. However,
you initialized the iterable with (n-2) dummy values in order to force the
reduce() function to execute function (n-2) times (the goal is to find the
first n Fibonacci numbers—but you already have the first two, 0 and 1)
You use the throwaway parameter _ to indicate that you are not interested
in the dummy values of the iterable. Instead, you simply append the new
Fibonacci number to the aggregator list x, calculated as the sum of the pre-
vious two Fibonacci numbers.

176 Chapter 6

A N A LT E R N AT I V E MULT IL INE SOLU T ION

Repeatedly summing two Fibonacci numbers was already the simple idea of
the one-liner in Listing 6-10. Listing 6-11 gives a beautiful alternative solution.

n = 10
x = [0,1]
fibs = x[0:2] + [x.append(x[-1] + x[-2]) or x[-1] for i in range(n-2)]
print(fibs)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Listing 6-11: One-liner solution to find the Fibonacci numbers in an iterative
manner

This code snippet was submitted by one of my email subscribers (feel free
to join us at https://blog.finxter.com/subscribe/) and uses list comprehension
with side effects: the variable x is updated n-2 times with the new Fibonacci
series element. Note that the append() function has no return value, but returns
None, which evaluates to False. Thus, the list comprehension statement gener-
ates a list of integers using the following idea:

print(0 or 10)
10

It doesn’t seem correct to perform the or operation on two integers, but
remember that the Boolean type is based on the integer type. Every integer
value other than 0 is interpreted as True. Thus, the or operation simply uses
the second integer value as a return value instead of converting it to an explicit
Boolean value of True. A fine piece of Python code!

In summary, you’ve improved your understanding of another important
pattern for Python one-liners: using the reduce() function to create a list
that dynamically uses the freshly updated or added list elements to compute
new list elements. You will find this useful pattern quite often in practice.

A Recursive Binary Search Algorithm
In this section, you’ll learn about a basic algorithm every computer scientist
must know: the binary search algorithm. Binary search has important prac-
tical applications in many implementations of basic data structures such as
sets, trees, dictionaries, hash sets, hash tables, maps, and arrays. You use
these data structures in every single nontrivial program.

https://blog.finxter.com/subscribe/

Algorithms 177

The Basics
In brief, the binary search algorithm searches a sorted sequence of values l for
a particular value x by repeatedly reducing the size of the sequence by half
until only a single value is left: either it’s the searched value or it doesn’t exist
in the sequence. In the following, you will examine this general idea in detail.

For example, say you want to search a sorted list for value 56. A naive
algorithm would start with the first list element, check whether it’s equal to
the value 56, and move on to the next list element until it has checked all
elements or found its value. In the worst case, the algorithm goes over every
list element. A sorted list with 10,000 elements would take approximately
10,000 operations to check each list element for equality with the searched
value. In algorithmic theory language, we say that the runtime complexity
is linear in the number of list elements. The algorithm does not leverage all
the available information to achieve the greatest efficiency.

The first piece of useful information is that the list is sorted! Using this
fact, you can create an algorithm that touches only a few elements in the list
and still knows with absolute certainty whether an element exists in the list.
The binary search algorithm traverses only log2(n) elements (logarithm
of base 2). You can search the same list of 10,000 elements by using only
log2(10,000) < 14 operations!

For a binary search, you assume the list is sorted in an ascending man-
ner. The algorithm starts by checking the middle element. If the middle
value is bigger than the value you want, you know that all elements between
the middle and the last list elements are larger than the value you want. The
value you want won’t exist in this half of the list, so you can immediately
reject half of the list elements with a single operation.

Similarly, if the searched value is larger than the middle element, you
can reject the first half of the list elements. You then simply repeat the pro-
cedure of halving the effective list size of elements to be checked in each
step of the algorithm. Figure 6-12 shows a visual example.

3 6 14 16 33 55 56 8956?

56 > 16? YES!

33 55 56 89

56 > 55? YES!

56 89

56 == 56 Done!

Figure 6-12: Example run of the binary search algorithm

If the sublist contains an even number of elements, there’s no
obvious middle element. In this case, you round down the index of
the middle element.

178 Chapter 6

You want to find the value 56 in the sorted list of eight integer values
while touching as few elements as possible. The binary search algorithm
checks middle element x (rounding down), then discards the half of the list
that 56 cannot possibly be in. There are three general results of this check:

•	 Element x is larger than 56. The algorithm ignores the right part of
the list.

•	 Element x is smaller than value 56. The algorithm ignores the left part
of the list.

•	 Element x is equal to value 56, as in the last line in Figure 6-12.
Congratulations—you have just found desired value!

Listing 6-12 shows a practical implementation of the binary search
algorithm.

def binary_search(lst, value):
 lo, hi = 0, len(lst)-1
 while lo <= hi:
 mid = (lo + hi) // 2
 if lst[mid] < value:
 lo = mid + 1
 elif value < lst[mid]:
 hi = mid - 1
 else:
 return mid
 return -1

l = [3, 6, 14, 16, 33, 55, 56, 89]
x = 56
print(binary_search(l,x))
6 (the index of the found element)

Listing 6-12: The binary search algorithm

This algorithm takes as arguments a list and a value to search for. It
then repeatedly halves the search space by using the two variables lo and hi,
which define the interval of possible list elements in which the desired value
could exist: lo defines the start index, and hi defines the end index of the
interval. You check which of the cases the mid element falls in and adapt
the interval of potential elements accordingly by modifying the lo and hi
values as described.

While this is a perfectly valid, readable, and efficient implementation of
the binary search algorithm, it’s not a one-liner solution, yet!

The Code
Now you’ll implement the binary search algorithm in a single line of code
(see Listing 6-13)!

Algorithms 179

The Data
l = [3, 6, 14, 16, 33, 55, 56, 89]
x = 33

The One-Liner
u bs = lambda l, x, lo, hi: -1 if lo>hi else \
 v (lo+hi)//2 if l[(lo+hi)//2] == x else \
 w bs(l, x, lo, (lo+hi)//2-1) if l[(lo+hi)//2] > x else \
 x bs(l, x, (lo+hi)//2+1, hi)

The Results
print(bs(l, x, 0, len(l)-1))

Listing 6-13: One-liner solution to implement binary search

Guess the output of this code snippet!

How It Works
Because binary search lends itself naturally to a recursive approach, studying
this one-liner will strengthen your intuitive understanding of this important
computer science concept. Note that I’ve broken this one-liner solution into
four lines for readability, though you can, of course, write it in a single line
of code. In this one-liner, I’ve used a recursive way of defining the binary
search algorithm.

You create a new function bs by using the lambda operator with four
arguments: l, x, lo, and hi u. The first two arguments l and x are variables
with the sorted list and the value to search for. The lo and hi arguments
define the minimal and the maximal index of the current sublist to be
searched for the value x. At each recursion level, the code checks a sublist
specified by the indices hi and lo, which becomes smaller and smaller by
increasing the index lo and decreasing the index hi. After a finite number
of steps, the condition lo>hi holds True. The searched sublist is empty—
and you haven’t found the value x. This is the base case of our recursion.
Because you haven’t found element x, you return -1, indicating that no such
element exists.

You use the calculation (lo+hi)//2 to find the middle element of the
sublist. If this happens to be your desired value, you return the index of
that mid element v. Note that you use integer division to round down to
the next integer value that can be used as a list index.

If the mid element is larger than the desired value, it means the elements
on the right are also larger, so you call the function recursively but adapt the
hi index to consider only list elements on the left of the mid element w.

Similarly, if the mid element is smaller than the desired value, there is
no need to search all elements on the left of the mid element, so you call
the function recursively but adapt the lo index to consider only list elements
on the right of the mid element x.

When searching for the value 33 in the list [3, 6, 14, 16, 33, 55, 56, 89],
the result is the index 4.

180 Chapter 6

This one-liner section has strengthened your general code understand-
ing regarding features such as conditional execution, basic keywords, and
arithmetic operations, as well as the important topic of programmatic
sequence indexing. More important, you’ve learned how to use recursion
to make complex problems easier.

A Recursive Quicksort Algorithm
Now you’ll build a one-liner to use the popular algorithm Quicksort, a sort-
ing algorithm that, as the name suggests, quickly sorts the data.

The Basics
Quicksort is both a popular question in many code interviews (asked by
Google, Facebook, and Amazon) and a practical sorting algorithm that’s
fast, concise, and readable. Because of its elegance, most introductory algo-
rithm classes cover Quicksort.

Quicksort sorts a list by recursively dividing the big problem into
smaller problems and combining the solutions from the smaller problems
in a way that it solves the big problem.

To solve each smaller problem, the same strategy is used recursively:
the smaller problems are divided into even smaller subproblems, solved
separately, and combined, placing Quicksort in the class of Divide and
Conquer algorithms.

Quicksort selects a pivot element and then places all elements that are
larger than the pivot to the right, and all elements that are smaller than or
equal to the pivot to the left. This divides the big problem of sorting the list
into two smaller subproblems: sorting two smaller lists. You then repeat this
procedure recursively until you obtain a list with zero elements that, being
sorted, causes the recursion to terminate.

Figure 6-13 shows the Quicksort algorithm in action.

Qsort(

Qsort(Qsort(

4 1 8 9 3 8 1 9 4

Pivot

1 3 1 4 8 9 8 94

Elements ≤ 4 Elements >4

1 1 3 4

3 4

8 8 9 9

9 9

Qsort(

1 1 3 4 4 8 8 9 9

≤1

≤3

≤8 >8
>1

>3 >9≤9

Qsort(

+ +

+ + + +

+ ++ +

1

2

3

4

)

)

)

))

Figure 6-13: Example run of the Quicksort algorithm

Algorithms 181

Figure 6-13 shows the Quicksort algorithm on a list of unsorted inte-
gers [4, 1, 8, 9, 3, 8, 1, 9, 4]. First, it selects 4 as the pivot element, splits up
the list into an unsorted sublist [1, 3, 1, 4] with all elements that are smaller
than or equal to the pivot, and an unsorted sublist [8, 9, 8, 9] with all ele-
ments that are larger than the pivot.

Next, the Quicksort algorithm is called recursively on the two unsorted
sublists to sort them. As soon as the sublists contain maximally one element,
they are sorted by definition, and the recursion ends.

At every recursion level, the three sublists (left, pivot, right) are concat-
enated before the resulting list is handed to the higher recursion level.

The Code
You’ll create a function q that implements the Quicksort algorithm in a
single line of Python and sorts any argument given as a list of integers
(see Listing 6-14).

The Data
unsorted = [33, 2, 3, 45, 6, 54, 33]

The One-Liner
q = lambda l: q([x for x in l[1:] if x <= l[0]]) + [l[0]] + q([x for x in l if x > l[0]]) if l else []

The Result
print(q(unsorted))

Listing 6-14: One-liner solution for the Quicksort algorithm using recursion

Now, can you guess—one last time—the output of the code?

How It Works
The one-liner directly resembles the algorithm we just discussed. First,
you create a new lambda function q that takes one list argument l to sort.
From a high-level perspective, the lambda function has the following
basic structure:

lambda l: q(left) + pivot + q(right) if l else []

In the recursion base case—that is, the case that the list is empty and,
therefore, trivially sorted—the lambda function returns the empty list [].

In any other case, the function selects the pivot element as the first
element of list l, and divides all elements into two sublists (left and right)
based on whether they are smaller or larger than the pivot. To achieve this,
you use simple list comprehension (see Chapter 2). As the two sublists are
not necessarily sorted, you recursively execute the Quicksort algorithm

182 Chapter 6

on them too. Finally, you combine all three lists and return the sorted list.
Therefore, the result is as follows:

The Result
print(q(unsorted))
[2, 3, 6, 33, 33, 45, 54]

Summary
In this chapter, you’ve learned important algorithms in computer science
addressing a wide range of topics including anagrams, palindromes, power-
sets, permutations, factorials, prime numbers, Fibonacci numbers, obfusca-
tion, searching, and sorting. Many of these form the basis of more advanced
algorithms and contain the seeds of a thorough algorithmic education.
Advancing your knowledge of algorithms and algorithmic theory is one of
the most effective ways to improve as a coder. I would even say that the lack
of algorithmic understanding is the number one reason most intermediate
coders feel stuck in their learning progress.

To help you get unstuck, I regularly explain new algorithms in my
“Coffee Break Python” email series for continuous improvement (visit
https://blog.finxter.com/subscribe/). I appreciate you spending your valuable
time and effort studying all the one-liner code snippets and explanations,
and I hope you can already see how your skills have improved. Based on
my experience teaching thousands of Python learners, more than half the
intermediate coders struggle with understanding basic Python one-liners.
With commitment and persistence, you have a good chance of leaving the
intermediate coders behind and becoming a Python master (or at least a
top 10 percent coder).

https://blog.finxter.com/subscribe/

A F T E R W O R D

Congratulations! You’ve worked through
this whole book and mastered the Python

one-liner like only a few people ever will. You
have built yourself a strong foundation that will

help you break through the ceiling of your Python
coding skills. By carefully working through all the
Python one-liners, you should be able to conquer any
single line of Python code you will ever face.

As with any superpower, you must use it wisely. Misuse of one-liners will
harm your code projects. In this book, I compressed all algorithms into a
single line of code with the purpose of pushing your code understanding
skills to the next level. But you should be careful not to overuse your skill
in your practical code projects. Don’t cram everything into a single line
of code just to show off your one-liner superpower.

184 Afterword

Instead, why not use it to make existing codebases more readable by
unraveling their most complex one-liners? Much like Superman uses his
superpowers to help normal people live their comfortable lives, you can
help normal coders maintain their comfortable programmer lives.

This book’s main promise was to make you a master of Python one-
liners. If you feel that the book delivered on this promise, please give it a
vote on your favorite book marketplace (such as Amazon) to help others
discover it. I also encourage you to leave me a note at chris@finxter.com if
you encountered any problem with the book, or wish to provide any positive
or negative feedback. We would love to improve the book continuously, con-
sidering your feedback in future editions, so I’ll give away a free copy of
my Coffee Break Python Slicing ebook to anyone who writes in with construc-
tive feedback.

Finally, if you seek continuous improvement of your own Python skills,
subscribe to my Python newsletter at https://blog.finxter.com/subscribe/, where
I release new educational computer science content such as Python cheat
sheets almost daily to offer you—and thousands of other ambitious coders—
a clear path to continuous improvement and, ultimately, mastery in Python.

Now that you’ve mastered the single line of code, you should consider
shifting your focus to larger code projects. Learn about object-oriented
programming and project management, and, most importantly, choose
your own practical code projects to constantly work on. This improves your
learning retention, is highly motivating and encouraging, creates value
in the real world, and is the most realistic form of training. Nothing can
replace practical experience in terms of learning efficiency.

I encourage my students to spend at least 70 percent of their learning
time working on practical projects. If you have 100 minutes each day for
learning, spend 70 minutes working on a practical code project and only
30 minutes reading books and working through courses and tutorials. This
seems obvious, but most people still do this wrong and so never feel quite
ready to start working on practical code projects.

It has been a pleasure to spend such a long time with you, and I highly
appreciate the time you invested in this training book. May your invest-
ment turn out to be a profitable one! I wish you all the best for your coding
career and hope that we’ll meet again.

Happy coding!
Chris

mailto:chris@finxter.com
https://blog.finxter.com/subscribe/

I N D E X

Symbols
* operator

asterisk regex, 129–130, 134
multiplication, 2, 43, 45, 50
replication, 34–35
unpacking, 38

** (power) operator, 2
*? (nongreedy asterisk) regex operator,

130–131, 134
\ (escape) prefix, 138, 139, 141, 145
\n (newline) character, 4, 22, 23, 130
\s (whitespace) character, 4, 145–148
\t (tab) character, 4
^ (not) regex operator, 140, 145–147
{} (instances) regex operator, 134,

135, 142
- operator

negation, 2
subtraction, 2, 43, 45

. (dot) regex operator, 129, 133–134
" (double quote), 4
""" (triple quote), 4
() (group) regex operator, 133–134,

135, 137, 138
% (modulo) operator, 2, 167
| operator

or regex, 135, 144
union, 164–165

+ operator
addition, 2, 43, 45
at-least-one regex, 134
concatenation, 164–165

? (zero-or-one) regex operator, 130,
134, 139

?! (negative lookahead) regex
operator, 149

?P (named group) regex operator,
145–147

' (single quote), 4
''' (triple quote), 4
/ (division) operator, 2, 43
// (integer division) operator, 2

[] operator
character class regex, 138, 140–141
indexing, 46
list creation, 6

_ (throwaway) parameter, 175
_ (trailing underscore) character, 98

A
abs() function, 2, 72
absolute values, 72
activation functions, 107
addition (+) operator, 2, 43, 45
advanced indexing, 56, 67
Air Quality Index (AQI) outliers

example, 53, 54–56
algorithms. See also classification

algorithms
anagram detection, 152–154
binary search, 176–180
clustering algorithms, 94–97
Fibonacci series, 174–176
Levenshtein distance, 159–162
linear regression, 83–89
obfuscation, 165–168
outlier detection, 70, 73–74
palindrome detection, 154–156
permutations calculation, 156–159
powerset creation, 162–165
prime number generation, 168–174
and programming mastery, 151–152
Quicksort, 180–182
recursive, 157–159
runtime complexity, 154, 169, 177

all() function, 76
anagram detection example, 152–154
and keyword, 3–4
any() function, 36–37
append() list method, 7, 9, 22–23, 176
arange() function, 88
argsort() function, 64–65, 66–67
arithmetic operations, 2
arrays. See NumPy arrays

186 Index

association analysis, 74–79
asterisk (*) regex operator,

129–130, 134
astype() function, 59, 69
at-least-one (+) regex operator, 134
autocorrection applications, 159
average() function, 44, 62–63, 117–119
axis argument, 61–63, 65–66, 73–74,

117–119

B
bestseller books filtering example,

68–69
bestseller bundle association example,

77–79
bias-variance trade-off, 113–114
binary search algorithm, 176–180
Boolean data

array operations, 54, 58–59,
72–73, 76

as NumPy array data type, 50
values and evaluation, 2–4, 56, 143,

160–161, 176
Boolean indexing, 57–59, 69
bounce rates, 70
boundary cases, 123
brackets ([])

character class regex operator,
138, 140–148

indexing operator, 46
list creation operator, 6

break keyword, 14
broadcasting

definition, 50
examples, 52–53, 54–56, 59, 61

C
Caesar’s cipher, 165
cardiac health cyclic data example,

33–35
categorical output, 90
centroids, 95
character class ([]) regex operator,

138, 140–141
character extraction example, 137–140
Christmas quote example, 135
classification algorithms

concepts, 120
and curse of dimensionality, 119
decision trees, 111–113

K-Nearest Neighbors, 100–104
logistic regression, 89–94
problem description, 89
support-vector machines, 119,

121–123
classifiers, 120
class labels, 93
close() (file) command, 23
cluster_centers_ attribute, 97–99
clustering algorithms, 94–97
coefficients, 83–86
collaborative filtering, 74–79
collection data types, 9–10
column vectors, 88
compilation, 133–134
compile() method, 133
concatenation

+ operator, 164–165
list, 7, 33–35, 164–165
string, 4

conditional execution, 13
container data structures, 6–12

dictionaries, 10–11
lists, 6–8
operations, 11–12
sets, 9–10
stacks, 8–9

context, in list comprehension,
12, 18–20, 24

continue statement, 14
control flow, 12

if, else, and elif, 13
loops, 13–14

convergence, 109
copurchases association examples,

74–79
corrupted list correction example, 31–33
cyclic data generation example, 33–35

D
database formatting example, 37–39
data cleaning example, 60–64
data structures. See container data

structures; data types;
NumPy arrays

data types
Boolean, 2–4
None keyword, 4, 5–6
numerical, 2
and NumPy arrays, 50–51, 53, 59
strings, 4–5

Index 187

dead code, 14
DecisionTreeClassifier module,

112–113
decision trees, 111–113, 123–126
def keyword, 14–15
dictionaries

data structure, 10–11
in employee data examples, 20,

36–37, 39
dimensionality

curse of, 119
and NumPy arrays, 42–43, 48–50

Divide and Conquer algorithms, 180
division (/) operator, 2, 43
dot (.) regex, 129, 133–134
double quote ("), 4
dtype property, 51, 53
duplicate character detection example,

145–147

E
edit distance, 159
element-wise operations, 43
elif keyword, 13
else keyword, 13
employee data examples

arithmetic, 45
clustering, 97–99
dictionary, 18, 20, 35–37

encryption, 165–166
endswith() string method, 5
ensemble learning, 123–126
error minimization, 85–86, 88
escape (\) prefix, 138, 139, 141, 145
expression, in list comprehension, 12,

18–20
extend() list method, 7

F
factorial calculation example, 156–159
false positives, 132
False value. See also Boolean data

of Python objects, 160–161
and while loops, 14

features and predictions, 82–83
Fibonacci series algorithm, 174–176
FIFO (first-in, first-out) structures, 8–9
file reading example, 22–24
filtering. See also association analysis,

68–69, 73–74

findall() function, 129–131, 135–137,
138, 142, 146–147

find() string method, 5, 28–29
Finxter ratings, 104–105, 109–110
fit() function

and decision trees, 112–113
and K-Nearest Neighbors (KNN)

algoritjm, 101–103
and linear regression, 87–88
and logistic regression, 92–93
and neural network analysis,

108–109
and random forests, 124–125
and support-vector machines, 122

float data type and operations, 2, 50
float() function, 2
for loops, 12, 13–14, 18–20
fullmatch() function, 142–143, 144
functions. See also lambda functions;

individual function names
defined, 14–15
throwaway parameter (_), 175

functools library, 163

G
generator expressions, 36–37
greedy pattern matching, 130–131
group (()) regex operator, 133–134,

135, 137, 138

H
Hadamard product, 45
hashable data types, 9–10, 12
hash() function, 9, 12
histogramming, 154
home price prediction example,

100–103
hyperlink analysis example, 136–137

I
if keyword, 12, 13, 19
income calculation example, 45–46
incrementor functions, 16
indexes

[] operator, 46
advanced indexing, 56, 67
and argsort() function, 64–65
as arguments, 27
and Boolean arrays, 57–59, 69

188 Index

index() list method, 8
inference phase, 83
initializer argument, 163–164
in keyword, 5, 11, 25
insert() list method, 7
Instagram influencer filtering

example, 57–59
instances ({}) regex operator, 134,

135, 142
integer data type and operations, 2, 50
integer division (//) operator, 2
int() function, 2
investment portfolio risk example,

114–116
is keyword, 6
items() dictionary method, 11, 20
iterable arguments, 34
iterable (reduce()) argument,

163–164, 175

J
join() string method, 5, 166

K
(key, value) pairs, 10–11
keys() function, 11
K-Means algorithm, 95–99
KMeans module, 97–99
K-Nearest Neighbors (KNN) algorithm,

100–104
KNeighborsClassifier module, 103
KNeighborsRegressor module, 101–103

L
labeled vs. unlabeled data, 94–95
lambda functions

defining, 15–16, 24–26
recursive, 158–159, 160–162

lambda keyword, 15
len() function, 6
len() string method, 5
Levenshtein distance algorithm,

159–162
linear classifiers, 120
linear regression, 83–89

coding, 86–89
concepts and formulas, 83–86

LinearRegression module, 87

list comprehension
examples, 22–24, 115, 139
formula, 12, 18–20
and generator expressions, 36
nested, 21–22
with slicing, 29–30

lists. See also list comprehension
concatenation, 7, 33–35, 162–165
defining, 6
membership testing, 11
vs. NumPy arrays, 42, 43
operations on, 6–8

logical_and() function, 72–74
logistic regression, 89–94
LogisticRegression module, 92–93
loops, 13–14
lower() string method, 4
lung cancer logistic regression

example, 90–94

M
machine learning

bias-variance trade-off, 113–114
classification concepts, 120
decision trees, 111–113
ensemble learning, 123–126
K-Means clustering algorithm,

94–99
K-Nearest Neighbors algorithm,

100–104
linear regression algorithm, 83–89
logistic regression algorithm,

89–94
model parameters, 83
neural network analysis, 104–110
overview, 81, 126
supervised, 82–83
support-vector machines, 119,

121–123
unsupervised, 94–95

machine learning models
decision trees, 111–113
K-Means clustering algorithm,

94–99
K-Nearest Neighbors algorithm,

100–104
linear regression function, 83–89
logistic regression function, 89–94
neural networks, 104–110
parameters, 83

Index 189

random forests, 123–126
support-vector machines, 119,

121–123
map() function, 25–26
margin of error, 121
margin of safety, 123
mark non-prime numbers example,

169–174
mark string example, 25–26
mask index arrays, 59
match() function, 133–134, 135–136
Matplotlib library, 34, 71–72
max() function, 44–45, 46, 79
maximum likelihood models, 91–92
max_iter() argument, 109
mean, 70–71, 73–74
mean() function, 73
meta-predictions, 123
min() function, 44, 115
minimum wage test example, 35–37
MLPRegressor module, 108–110
modulo (%) operator, 2, 167
multilayer perceptron (MLP), 104–110
multiline strings, 4, 130, 137, 140–141,

149–150
multinomial classification, 90
multiplication of arrays, 45, 50, 73
multiplication (*) operator, 2, 43, 45, 50
multiset data structures, 10
mutability, 6–7

N
named groups, 145–147
n_clusters argument, 98
ndim attribute, 48–49
negation (-) operator, 2
negative lookahead, 149–150
negative lookahead (?!) regex

operator, 149
n_estimators parameter, 124–125
neural network analysis

coding, 108–110
concepts of artificial, 106–107
example, 104–105

newline (\n) character, 4, 22, 23, 130
None keyword, 4, 5–6
nongreedy asterisk (*) regex operator,

130–131, 134
nongreedy pattern matching, 130–131,

134, 137
nonlinear classifiers, 120

nonsecure URL search example,
140–141

nonzero() function, 54–56
normal distribution data, 70–71
normal() function, 71
not keyword, 3–4
not (^) regex operator, 140, 145–147
null value. See None keyword
numerical data types and operations, 2
NumPy arrays

arithmetic operations on, 43–46, 72
axes and dimensionality, 48–50
axis argument, 61–63, 65–66, 76
Boolean operations, 54–56
broadcasting, 50, 52–53, 54–56
creating, 42–43
and data types, 50–51, 53, 59
filtering, 68–69
indexing, 46, 57–59
logical and operation, 72–73
minimum variance calculation,

114–116
reshaping, 61, 62–63
slice assignments, 60–61, 62–63
slicing, 46–48, 51–52, 58–59,

75–76, 78
sorting in, 64–67
statistics calculations, 116–119

NumPy library, 41, 43

O
obfuscation algorithm, 165–168
one-liners

resources, xxiii
use and misuse, 183–184
value of learning, xix–xxii

or keyword, 3–4
order of execution

in Boolean operations, 3–4
in regular expressions, 135

or (|) regex operator, 135, 144
outlier detection, 53–57, 70, 73–74

P
palindrome detection example, 154–156
pattern matching. See regular expressions
permutations calculation example,

156–159
Peters, Tim, The Zen of Python, xxi–xxii
pivot element, 180–183

190 Index

plot() function, 34–35
pop() list method, 9
power (**) operator, 2
powersets, 162–165
predict() function, 88, 108–110,

122, 125
predictions and features, 82–83
predict_proba() function, 93–94
prime numbers

detection example, 168–169
generator example, 169–174

probability, a priori, 157
programming skills

and algorithm mastery, 151–152
development and practice, xix–xxii,

116, 126, 183–184
problem solving strategies, 143
productivity, 39–40, 87, 127
in rating example, 104–105,

109–110
pruning, 112
Python

code readability, xxi–xxii, 24, 116
libraries, xix–xx, 26, 41, 71, 86,

87, 163
naming conventions, 98
object truth values, 160–161
resources, xxiii
skills rating example, 104–105,

109–110

Q
Quicksort algorithm, 180–182
quotes

in regex expressions, 145, 145–150
in strings, 4

R
RandomForestClassifier module, 124
random forests, 123–126
random module, 71
randomness in decision trees, 113,

125–126
random_state parameter, 125
range() function, 12, 18–20, 169, 174
reading files example, 22–24
recursion and recursive functions,

157–159, 160–162, 177–180,
180–182

reduce() function, 163–165, 169, 174,
175–176

regex. See regular expressions
regex characters, 128–131, 134–135,

138, 140–141
regex functions, 135, 137, 142–143, 149
regression problems

vs. classification problems, 89
and K-Nearest Neighbors

algorithm, 100–101
and linear regression algorithm, 83

regular expressions. See also regex
characters; regex functions

for character substitution, 149–150
compiled patterns, 133–134
for duplicate character detection,

145–147
false positives removal, 132–134
greedy and non-greedy pattern

matching, 130
groups and named groups, 138–

139, 145–146
negative lookahead, 149–150
special characters, 138
for user input validation, 141–145
for word repetition detection,

147–148
re module, 129–131
remove() list method, 7–8
replace() string method, 5
replication (*) operator, 34–35
reshape() function, 62–63, 88, 92–93,

101–103
return expressions, 15, 24–25
return keyword, 15
return values, 6, 24
reverse() list method, 8
ROT13 algorithm, 165–168

S
salary increase calculation example,

51–53
SAT score analysis example, 66–67
scikit-learn library, 86, 97–98
search() function, 135, 147
sequence aggregator examples,

164–165, 175
set comprehension, 12
sets

data structure, 9–10, 56
membership testing, 11–12
powerset construction example,

162–165

Index 191

shape attribute, 49–50, 76
Sieve of Eratosthenes, 169–174
sigmoid function, 90–92
single quote ('), 4
sklearn package, 98
slice assignments, 31–33, 60–61
slicing

with list comprehension, 29–30
multidimensional, 46–48
with negative step size, 66, 67,

155–156
syntax and examples, 26–29

softmax function, 90
sorted (Python) function, 65, 66,

153–154
sort() (NumPy) function, 64–66, 67
sorting, 64–67, 153–154, 180–182
sort() list method, 8
split() function, 21–22
Stack Overflow, 170
stacks, 8–9
standard deviation, 70–71, 73–74, 117
start argument, 27, 155
startswith() string method, 5
statistics calculations, 116–119
std() function, 73, 117–119
step argument, 27
stock price examples

calculations, 61–62
linear regression, 84–89

stop argument, 27, 155
strings. See also multiline strings;

regular expressions
data type, 4
selected methods, 4–5

strip() string method, 4, 22–24
str() string method, 4
sub() regex function, 149–150
subtraction (-) operator, 2, 43, 45
sum() function, 76, 77, 78
supervised machine learning, 82–83, 94
support-vector classification (SVC), 122
support-vector machines (SVMs), 119,

121–123
SVC module, 122

T
tab (\t) character, 4
team rankings example, 156–157
throwaway (_) parameter, 175

time format validation examples,
141–145

trailing underscore (_) character, 98
training data, 82–83, 100
tree module, 112–113
trees. See decision trees
triple quote ('''), 4
True value. See also Boolean data

of Python objects, 160–161
and while loops, 14

U
union (|) operator, 164–165
unlabeled vs. labeled data, 94–95
unpacking (*) operator, 38
unsupervised machine learning, 94–95
upper() string method, 5
urllib.request module, 132
urlopen() method, 132
URL search example, 140–141
user input validation examples, 141–145

V
values() function, 11, 36–37
van Rossum, Guido, 36
var() function, 115, 117–119
variance, 113–116, 126

W
web scraper example, 132–134
where() function, 116
while loops, 13–14
whitespace (\s) character, 4, 145–148
word repetition detection example,

147–148

X
xkcd() function, 71–72

Z
Zen of Python, The (Peters), xxi–xxii
zero-or-one (?) regex operator, 130,

134, 139
zip() function, 37–39

P Y T H O N ,
E L E V A T E D
P Y T H O N ,
E L E V A T E D
P Y T H O N ,
E L E V A T E D
P Y T H O N ,
E L E V A T E D

SHELVE IN:
PROGRAM

M
ING LANGUAGES/

PYTHON

$39.95 ($53.95 CDN)

Python One-Liners will teach you how to read and
write “one-liners”: concise statements of useful function-
ality packed into a single line of code. You’ll learn
how to systematically unpack and understand any
line of Python code, and write eloquent, powerfully
compressed Python like an expert.

The book’s five chapters cover tips and tricks, regular
expressions, machine learning, core data science
topics, and useful algorithms. Detailed explanations
of one-liners introduce key computer science concepts
and boost your coding and analytical skills.

You’ll learn about advanced Python features such as list
comprehension, slicing, lambda functions, regular expres-
sions, map and reduce functions, and slice assignments.

You’ll also learn how to:

• Leverage data structures to solve real-world problems,
like using Boolean indexing to find cities with
above-average pollution

• Use NumPy basics such as array, shape, axis, type,
broadcasting, advanced indexing, slicing, sorting,
searching, aggregating, and statistics

• Calculate basic statistics of multidimensional data
arrays and the K-Means algorithm for unsupervised
learning

• Create more advanced regular expressions using
grouping and named groups, negative lookaheads,
escaped characters, whitespaces, character sets (and
negative characters sets), and greedy/nongreedy
operators

• Understand a wide range of computer science
topics, including anagrams, palindromes, supersets,
permutations, factorials, prime numbers, Fibonacci
numbers, obfuscation, searching, and algorithmic
sorting

By the end of the book, you’ll know how to write Python
at its most refined, and create concise, beautiful pieces
of “Python art” in merely a single line.

A B O U T T H E A U T H O R

Christian Mayer has a PhD in computer science
and is the founder of the popular Python site Finxter
(https://blog.finxter.com/). Mayer is also the author of
the Coffee Break Python series.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Python One-Liner Example
	A Note on Readability
	Who Is This Book For?
	What Will You Learn?
	Online Resources

	Chapter 1: Python Refresher
	Basic Data Structures
	Numerical Data Types and Structures
	Booleans
	Strings
	The Keyword None

	Container Data Structures
	Lists
	Stacks
	Sets
	Dictionaries
	Membership
	List and Set Comprehension

	Control Flow
	if, else, and elif
	Loops

	Functions
	Lambdas
	Summary

	Chapter 2: Python Tricks
	Using List Comprehension to Find Top Earners
	The Basics
	The Code
	How It Works

	Using List Comprehension to Find Words with High Information Value
	The Basics
	The Code
	How It Works

	Reading a File
	The Basics
	The Code
	How It Works

	Using Lambda and Map Functions
	The Basics
	The Code
	How It Works

	Using Slicing to Extract Matching Substring Environments
	The Basics
	The Code
	How It Works

	Combining List Comprehension and Slicing
	The Basics
	The Code
	How It Works

	Using Slice Assignment to Correct Corrupted Lists
	The Basics
	The Code
	How It Works

	Analyzing Cardiac Health Data with List Concatenation
	The Basics
	The Code
	How It Works

	Using Generator Expressions to Find Companies That Pay Below Minimum Wage
	The Basics
	The Code
	How It Works

	Formatting Databases with the zip() Function
	The Basics
	The Code
	How It Works

	Summary

	Chapter 3: Data Science
	Basic Two-Dimensional Array Arithmetic
	The Basics
	The Code
	How It Works

	Working with NumPy Arrays: Slicing, Broadcasting, and Array Types
	The Basics
	The Code
	How It Works

	Conditional Array Search, Filtering, and Broadcasting to Detect Outliers
	The Basics
	The Code
	How It Works

	Boolean Indexing to Filter Two-Dimensional Arrays
	The Basics
	The Code
	How It Works

	Broadcasting, Slice Assignment, and Reshaping to Clean Every i-th Array Element
	The Basics
	The Code
	How It Works

	When to Use the sort() Function and When to Use the argsort() Function in NumPy
	The Basics
	The Code
	How It Works

	How to Use Lambda Functions and Boolean Indexing to Filter Arrays
	The Basics
	The Code
	How It Works

	How to Create Advanced Array Filters with Statistics, Math, and Logic
	The Basics
	The Code
	How It Works

	Simple Association Analysis: People Who Bought X Also Bought Y
	The Basics
	The Code
	How It Works

	Intermediate Association Analysis to Find Bestseller Bundles
	The Basics
	The Code
	How It Works

	Summary

	Chapter 4: Machine Learning
	The Basics of Supervised Machine Learning
	Training Phase
	Inference Phase

	Linear Regression
	The Basics
	The Code
	How It Works

	Logistic Regression in One Line
	The Basics
	The Code
	How It Works

	K-Means Clustering in One Line
	The Basics
	The Code
	How It Works

	K-Nearest Neighbors in One Line
	The Basics
	The Code
	How It Works

	Neural Network Analysis in One Line
	The Basics
	The Code
	How It Works

	Decision-Tree Learning in One Line
	The Basics
	The Code
	How It Works

	Get Row with Minimal Variance in One Line
	The Basics
	The Code
	How It Works

	Basic Statistics in One Line
	The Basics
	The Code
	How It Works

	Classification with Support-Vector Machines in One Line
	The Basics
	The Code
	How It Works

	Classification with Random Forests in One Line
	The Basics
	The Code
	How It Works

	Summary

	Chapter 5: Regular Expressions
	Finding Basic Textual Patterns in Strings
	The Basics
	The Code
	How It Works

	Writing Your First Web Scraper with Regular Expressions
	The Basics
	The Code
	How It Works

	Analyzing Hyperlinks of HTML Documents
	The Basics
	The Code
	How It Works

	Extracting Dollars from a String
	The Basics
	The Code
	How It Works

	Finding Nonsecure HTTP URLs
	The Basics
	The Code
	How It Works

	Validating the Time Format of User Input, Part 1
	The Basics
	The Code
	How It Works

	Validating Time Format of User Input, Part 2
	The Basics
	The Code
	How It Works

	Duplicate Detection in Strings
	The Basics
	The Code
	How It Works

	Detecting Word Repetitions
	The Basics
	The Code
	How It Works

	Modifying Regex Patterns in a Multiline String
	The Basics
	The Code
	How It Works

	Summary

	Chapter 6: Algorithms
	Finding Anagrams with Lambda Functions and Sorting
	The Basics
	The Code
	How It Works

	Finding Palindromes with Lambda Functions and Negative Slicing
	The Basics
	The Code
	How It Works

	Counting Permutations with Recursive Factorial Functions
	The Basics
	The Code
	How It Works

	Finding the Levenshtein Distance
	The Basics
	The Code
	How It Works

	Calculating the Powerset by Using Functional Programming
	The Basics
	The Code
	How It Works

	Caesar’s Cipher Encryption Using Advanced Indexing and List Comprehension
	The Basics
	The Code
	How It Works

	Finding Prime Numbers with the Sieve of Eratosthenes
	The Basics
	The Code
	How It Works

	Calculating the Fibonacci Series with the reduce() Function
	The Basics
	The Code
	How It Works

	A Recursive Binary Search Algorithm
	The Basics
	The Code
	How It Works

	A Recursive Quicksort Algorithm
	The Basics
	The Code
	How It Works

	Summary

	Afterword
	Index

