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INTRODUCTION
Data analysis, predictive modeling, and data science: these 
terms are splashed across the news, in books, and online. 
They’re applications of a field of mathematics called statistics. 
Although the names of the applications are varied and diverse, 
the study and knowledge of statistics is at the core of these 
disciplines.

Statistics is the measuring of data and interpreting that 
data to prove or disprove a point. That’s it! Statisticians collect 
and work with large amounts of numbers and measurements. 
Then they calculate how the numbers relate to each other or 
how they affect each other.

If you know the basics of statistics—what the numbers tell 
you—and learn how to collect or obtain accurate, reliable, and 
good numbers-related facts, and if you further learn to use sta-
tistics to arrive at conclusions, then you are well on your way 
to developing a meaningful statistics-based analysis. This skill 
can be of great help to you at work, at school, or in your daily life.

This book is for you if you’re new to statistics. I’ll help you 
build your knowledge gradually. First, we’ll look at core con-
cepts, with each section covering a basic unit of knowledge of 
statistics. Each section is designed to stand alone, giving you 
the option of reading the book cover to cover for a comprehen-
sive study. Once you’ve grasped the basics (or if you already 
know them), you can jump to a section you’re interested in and 
read only the material you need to learn.
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The book can be used if you’re studying statistics in a high 
school or college course. It can also help you brush up if you’ve 
take a statistics class in the past, are now being exposed to 
statistics at work, and would like to know more without taking 
a full-length course on the subject.

Finally, there are some sections written for high school and 
college students on how to use statistics in school projects. 
These units are there to help you understand, design, and test 
what are called the quantitative research sections of assign-
ments, sections that require a statistical analysis.

Read through the book in the order of the sections provided 
or jump to the section you’d like to learn: either way, you’re well 
on your way to gaining a full grasp of what statistics is and how 
it’s used in business, scientific, and academic studies!
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THE BASICS OF STATISTICS
A Tool  of  Mea su r ing

The science of statistics is used to analyze large groups of numbers. 
It can be used with spreadsheet software to build simple programs—
these programs are called predictive models, and they can help do 
just that: use statistics to predict the most probable future outcomes 
of a set of circumstances. While predictive models, data analysis, and 
data science are different, they all use the same related statistical 
tools. With them, you’ll be able to get data and then provide a testing 
method to answer a variety of questions. Fundamentally, most statis-
tical studies and models want to know how the numbers that make up 
the data relate to each other. What’s the average? How does the shape 
of the data look on a graph? And, possibly the most important in any 
study or research assignment: what does the data tell us?

S T U D I E S  U S E  S T A T I S T I C S

The desktop computer became a reality in the 1980s. People were 
encouraged to get a desktop computer and were told that it would 
release users from mundane tasks, giving them more personal time. 
Well, that didn’t happen. What did happen is that governments, 
companies, and individuals found that there was a great deal of data 
available to help these entities make decisions. Just like the classic 
question “What came first—the chicken or the egg?”, you can argue 
the issue as “What came first, the data or the question?” In other 
words, did the data show that there is a question to be answered or 
are there questions that require data collection?
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Unlike the chicken/egg conundrum, the answer to the data col-
lection/study question is that they are both right. With all the data 
that is available, people can sit at their desks, analyze the data, and 
pose questions implied by it or answer questions posed by someone 
else. Before the age of the desktop computer, that work was being 
done, but only by those who had access to larger computers and who 
could pay the bill for the very expensive computer time. (In those 
days, computers sometimes took up rooms or even, in some cases, 
entire buildings.)

Today, because powerful computers are accessible and easier to 
use, statistics have worked their way into the fabric of our daily lives. 
In today’s political campaigns, statistics are an essential tool used 
by candidates. How many people voted for your political party in the 
last election? How many of them are men, and how many are women? 
By what percentage did women support your party? What percent-
age of the men? Pollsters—a central part of campaign personnel—are 
experts in statistical analysis. You’ve no doubt seen a news report in 
which candidate X leads candidate Y by 5 percentage points (with a 
margin of error of  3 percent).

What’s the Question?

With any good study, the question at the study’s center must be clearly stated. 

From there you’ll know where to look for good information, and you’ll also know 

what kind of information will help you answer the question. After you’ve col-

lected the data, you can start using statistics to help find the answer.

Here is a typical question that data analysts use statistics to 
answer: how many people visiting your company’s social media 
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page are in turn visiting your company’s website? Once they’re 
there, what advertising blurbs led to the biggest sales?

There is an underlying question here: what’s the most effective 
advertising combination for the biggest sales? The question is 
embedded within the study.

Finding the right information and data is critical to a good study. 
Good statistics can be made into great statistics if you can use 
information and data that are most relevant to the question. In this 
example, if you successfully use the science of statistics to measure 
accurately the relation of the websites and advertisements as they 
relate to sales, you would also be able to build a predictive model that 
could tell you how the ads would work in the future.

What Is the Value of a Predictive Model?

A predictive model uses a study’s results and then builds a tool that gives a 

good chance of predicting the future with similar data. These models are used 

in marketing, finance, and medicine, among other fields.

S T A T I S T I C S  I N  S C I E N T I F I C  T E R M S

In more scientific terms, statistics measures the frequency, distri-
bution, randomness, and cause/effect relationship of data points in 
studies. Statistics is used to determine measures of center, spread, 
and relative frequency and to create models used for predicting 
outcomes in finance, marketing, manufacturing, and medicine. It is 
even used in sports. Michael Lewis wrote a book titled Moneyball: 
The Art of Winning an Unfair Game, which later became the movie 



12� S TAT I S T I C S  101

Moneyball, starring Brad Pitt. It describes how the general manager 
of the Oakland Athletics used sabermetrics (a branch of statistics 
that deals specifically with baseball) to help a small-market base-
ball team compete with teams that had more money to spend. Using 
statistics is becoming more prevalent in the sporting world, and not 
just baseball. Turn to your favorite Internet sports page, and you’ll 
see row after row of statistics about every sport being played around 
the world.

When you use statistics, you are looking at groups of numbers 
from surveys and studies and then measuring how the numbers 
are related to each other. Finally, statistics can be used to develop a 
predictive model, with specialized tools that can help determine the 
cause/effect relationship between inputs of data.

D A T A  I S  T H E  K E Y  T O  S T A T I S T I C S

There are a few basic steps to any statistical study, but they all 
revolve around numbers, measurements, opinion polls, sales figures, 
medical study outcomes, stock or other financial trading numbers, 
etc. The sources of the data can vary widely.

Here’s a typical example of the use of data in a study: an educa-
tor is trying to determine the optimal factors that prepare eleventh 
graders for the SATs. She measures high school course load, prior 
high school college prep grades, hours spent in school-sponsored 
SAT preparation courses, hours spent in SAT self-study, student 
hours spent in outside school employment activities, if either or both 
parents attended college, and number of semester hours and levels 
of math and English each student has had.
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The researcher asks the students and their parents to provide 
information on these points. This information, once it’s collected, is 
called the data. The researcher uses statistics to measure what can 
be attributed to most helping a student achieve the highest SAT 
scores. In other words, the researcher is trying to answer this ques-
tion: “What are the strongest influencers to my students achieving 
high SAT scores?”

The Uses of Statistics

Here’s a list of some fields in which extensive use is made of statistics tools:

•	 Stock trading

•	 Marketing

•	 Internet sales

•	 Weather prediction

•	 Professional sports

•	 Politics

•	 Medical research

•	 Government economic reports

•	 Advanced academic studies (research papers)

This example highlights the importance of having accurate data. 
If the answers the parents and students give are wrong—perhaps 
students exaggerate the number of hours they study for the SAT or 
parents lie about attending college—the conclusions the researcher 
draws will be wrong. On the other hand, if the data she’s working 
with is right, statistical analysis will give her the answers she needs.
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HOW STATISTICS ARE USED
Stat ist ics  Ter m s a nd T heir  Fu nc t ion

Before we get into the details of using statistics, you’ll need to learn 
a few specialized words and terms. Getting to know the technical 
words and what they mean can help you understand statistics. This 
section will introduce how statistics are used and some of the key 
words that you’ll need to know going forward.

S O M E  K E Y  W O R D S

When describing the world we use simple and complex words. While 
simple words are usually easier to understand, they are actually 
more difficult to understand when used in the context of statistics. 
Why is this? Because the complex technical terms that are used to 
describe statistics can also be used as a sort of shorthand to get at 
big ideas. By using one or two technical terms, researchers can make 
complex ideas seem simpler.

For example, words such as data imply large amounts of numeri-
cal results—most often obtained from a survey or other research. 
Other words, such as study, refer to an entire start-to-finish statistics 
project. Observations relates to the data: how it is collected, how 
questions in a survey are formulated, and so forth.



H o w  S tatistics        A r e  U s e d � 15

STATISTICS TERMS TO KNOW

TERM DEFINITION

Data Individual bits of numerical observations

Population The group containing all possible entities of concern

Sample A part of the population from whom data is collected

Observation Each separate collection of one bit of data

Study Collecting data and using statistics to make an inference about it

Inference An educated, statistically supported “guess” about a group of data

Descriptive statistics Values that describe (e.g., center, spread, shape) data sets

Inferential statistics Making educated guesses, testing theories, modeling observations’ 
relationships, and predicting outcomes with data analysis

Descriptive 
observations

Data that describes qualities rather than amounts (such as hair color, 
eye color, etc.)

Random variables Numerical or descriptive observations that happen by chance

Data set A group of collected or observed data bits (or data points)

Quantitative data Data that is numerical 

Qualitative data Data that is not numerical

C O L L E C T I N G  D A T A  I S  T H E  F I R S T   S T E P

The first step in all statistics is determining a design for collecting 
the data. In order to crunch the numbers, you’ll need good, reliable 
data. In fact, the collection of the data for any study can be the most 
critical factor in finding valid results. It is often unfeasible, if not 
impossible, to have every element in the population give input to 
the collection. Therefore, the process for collecting data requires that 
enough data points be collected without any bias. Asking the ques-
tion “Who is going to win the World Series?” only in Boston holds 
great potential for a biased response (because in Boston the Red Sox 
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are always going to win the World Series). Ignoring gender, political 
affiliation, economic status, and other demographic considerations 
can certainly lead to data that is unreliable.

A critical factor in the accumulation of data is the issue of random-
ness. One of the methods used in the design of how data is collected 
to help ensure that the data is not biased is some form of random 
selection. When conducting a telephone survey, for instance, those 
conducting the survey use random number generators to determine 
which telephone numbers from a given region they’ll call. High 
school students, in an attempt to determine how the student body 
feels about an issue, might ask every third student who enters the 
cafeteria to complete a questionnaire.

Once the collection process has been designed, you can get a 
statistically valid sample of, say, one hundred or two hundred data 
points, which will give the same basic information as one hundred 
thousand data points. This process is called sampling a population. 
Sample is the word for the one or two hundred (the small group), 
and population is the word for the one hundred thousand (the entire 
group).

Sampling is a key tool in polling. When pollsters say that 72 
percent of the population approves of an action by a politician, they 
don’t mean that they asked every person in the country what they 
thought of the action of Senator Smith. Rather, they developed a 
representative sample of the state population—representative in 
terms of race, gender, age, income level, and so on. That’s the sample 
they polled, and they extrapolated from there. If 72 percent of their 
sample approves of the job Senator Smith is doing, and if the sample 
is typical of the entire state’s population, it’s a fair assumption that 
approximately 72 percent of the voting population agrees that 
Senator Smith is doing a good job. Of course, such a statistic is only 
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approximate—there’s room for error, called the margin of error. In 
later sections we’ll discuss how big or small this error might be and 
how to determine it.

S T A T I S T I C S  D E S C R I B E  D A T A

From the sample set you will be able to use statistics to character-
ize the data collected. You will be able to describe the smallest, the 
largest, the middle, and the most common number in the group. You 
will also be able to describe how close most of the data points are 
to the middle. Why is this important? Because you might need to 
know more than just the average. You may need to know how often 
an observation (or event, or test, or bit of data) happens, and when it 
does happen, what the chances are of it happening near its average.

This is a classic example of descriptive statistics. It can go a long 
way in helping you use statistics to see how often something will 
occur.

H O W  D E S C R I P T I V E  S T A T I S T I C S  A R E   U S E D

Let’s say a TV station is trying to predict the weather during a snow-
storm. The staff at the TV station would like to know the average 
snowfall on the date in question; they’d also like to know the average 
snowfall during snowstorms that last more than twenty-four hours. By 
accessing US weather databases, they’ll be able see thousands of mea-
surements of snowfall across the nation for the past sixty-plus years. 
But we’re talking thousands and thousands of numbers—beyond the 
ability of the staff to analyze in their very limited time frame.
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Because the grouping of data is too large to investigate, the TV 
station takes a sample of the data: they pull one snowfall report for 
every fifty recorded. The result is a sampling of the entire database 
over the past sixty years, even though the staff has only looked at 
one out of every fifty reports. No matter; this is a statistically valid 
sample.

The TV station then uses statistical methods to see (with a high 
percentage of accuracy) how much snow will fall after this twenty-
four-hour snowfall. From this, the TV station can further break down 
the data and predict how much snow will fall every hour.
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KEY POINTS OF STATISTICAL 
ANALYTICS
Using Stat ist ics  to  Descr ibe ,  I nter pret ,  a nd Model

The object of statistical analytics after the collection and interpreta-
tion of the data is to interpret this data. In this respect, the size of 
the data set doesn’t really matter, whether it’s a sample drawn from a 
much larger body of information or if the study itself had only a few 
observations and, therefore, a smaller data set. Either way, after the 
data is collected it can then be analyzed. This section will discuss 
the two types of data analysis: descriptive statistical analysis and 
inferential statistical analysis.

D E S C R I P T I V E  A N A L Y T I C S

Descriptive analytics is the measuring, sorting, and study of data 
and the process of describing it. When you first look at a set of data, 
you can tell a lot: the largest number, the smallest number, the aver-
age number, and so on. You can also tell how close around the aver-
age number in the middle the set of data is grouped. In other words, 
you can tell not only the average, but also what percentage of the 
numbers in your study are close to the average and how close.

This is important in helping you find out how often something 
happens. In a medical study, you might need to see not only by how 
much the new medicine lowers a fever, but you might also need to 
know how frequently it has that result. With descriptive statistics, 
you can tell not only the average number of degrees by which a 
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fever was reduced but also the range of temperatures the fever was 
reduced by, say, in more than half of cases. In this example, you 
would be using descriptive statistics to find not only an average, but 
also a frequency.

Descriptive or Inferential?

How do you know if you are talking about descriptive or inferential statistics? If 

you are describing the data with measures of center, spread, or shape, then it’s 

descriptive statistics. If you draw conclusions from the data to predict center, 

spread, or shape, then it is inferential statistics.

I N F E R E N T I A L  A N A L Y T I C S

A second way that statistics are used is called inferential statistics. 
Inferential statistics help you make inferences, or educated guesses, 
about the information contained in a data set. You draw conclusions, 
although possibly tentative ones, on how pieces of data relate to one 
another. This is important in creating models that are used to predict 
future outcomes.

How is this done? First, you use statistics to measure the quality 
of the data you’ve collected. You do this to determine if any infer-
ences or educated guesses you made are accurate.

Let’s say you want to know what kinds of car maintenance can lead 
to the highest increase in a car’s fuel efficiency, measured in miles per 
gallon (mpg). If you’ve made a guess, you’ll want to know how accu-
rate it was. You take measurements (called observations), and then 
you use statistical tools to determine which of the inputs—say, tire 
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pressure, oil changes, quality of gasoline, and outside temperature— 
had the most effect on the car’s fuel consumption. At the same time, 
those tools will tell you what factors or inputs you observed didn’t 
have any effect at all on the car’s mpg. With statistics, the goal is 
usually 95 percent accuracy before a researcher can assume that the 
guess is correct. With inferential analytics, you can tell (ideally with 
95 percent accuracy) what kinds of car maintenance (the data inputs 
in the study) lead to the greatest increase in the car’s mpg.

With this information you’re now ready for theory testing. This is 
one of the reasons that statistical studies are done in the first place.

More Vocabulary

The three biggest items that statisticians concern themselves with are the 

measures of center, spread, and relative frequency. When these items measure 

a population, they are called parameters. If they are measures of a sample, they 

are called statistics.

A car company suspects that tire air pressure and frequent tune-
ups lead to the highest level of mpg improvement over time. They 
also suspect that changing the oil more often affects mpg, but they’re 
unsure by how much. After conducting a study, the car company can 
apply an analysis of variance (ANOVA) to see that, indeed, keeping 
tires properly inflated relates directly to higher mpg. In fact, they 
know this with 95 percent certainty. However, more frequent tune-
ups directly result in higher mpg with only 75 percent certainty, and 
more frequent oil changes are down to a 50 percent certainty. With 
this new information, the car company can now take the experiment 
one step further: they can measure how much tire pressure results 
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in the greatest increase in mpg and stop the tune-up and oil change 
part of the study. This is an excellent example of the inference part 
of statistics. (We’ll discuss ANOVA in more detail later in the book.)

M O D E L I N G

The last, and perhaps the most interesting, part of statistics is model-
ing. Using software such as Microsoft Excel and other (sometimes 
more complex) software, the car company is able to take the informa-
tion they’ve found about tire pressure and its relationship to mpg 
and build a predictive model.

The goal of the predictive model is to use the past to predict the 
future. How is this done? In the tire problem, all the tested tire pres-
sures are measured against the resulting increase in the car’s mpg. 
From this, a computer calculates the predicted mpg of a car if the tire 
pressure is x.

The Need for Speed

The kind of tire pressure/mpg/speed measurements we’ve been talking about 

in this section are done at the Daytona 500, Indy 500, etc. Each race team’s pit 

crew inputs such data as track temperature, air temperature, weather, driver 

weight, and so forth to find the optimal mix of race car adjustments. In effect, 

they’re saying, “There are things we can’t change on race day, such as the 

weather and temperature. What do we control on the car to make it as fast as 

possible?”
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MIXING UP THE TEST
R a ndom ness a nd R a ndom Sa mple Sets

As we’ve seen, when available data is impractically large for pur-
poses of analysis, you can test a smaller part of the whole. This is 
called a random sample set.

This smaller sampling technique works just fine, if you follow 
certain rules. The main rule is to maintain a random sample of the 
larger population. Randomness is the key to sampling.

D I F F E R E N T  W A Y S  T O  R A N D O M L Y   T E S T

There are several different ways to make sure that your smaller sam-
ple set represents a true example of the larger sample set. Systematic 
sampling means that you test one out of every specified number of 
samples, regardless of what order they are in. For instance, if you 
were testing coffee drinkers at a café, you could test every hundredth 
customer who came into the store. This sample set would be random, 
because, all other things being equal, you would have no way of 
knowing who was going to walk through the door next.

The second way is stratified sampling. To make your sample set 
even more random, you separate the chosen number into categories—
say, men and women. In the case of the coffee shop, you survey every 
hundredth man and every hundredth woman. You then combine the 
results, offering an even greater level of diversification and random-
ness in your sample set.

You can obtain additional levels of randomness by cluster 
sampling, which in this case means sampling coffee customers at 
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randomly chosen locations. Finally, there is convenience sampling. 
Here you’d only address questions to coffee customers when and 
where you buy your own coffee, with no set pattern and no set times 
but strictly at your own convenience. (This last method is the least 
random.)

M I S L E A D I N G  R A N D O M  S A M P L E  S E T S

Random sampling is widely used when the entire population of 
the study is large. This is typically the case in presidential election 
polling. However, there are times when such polling can be highly 
misleading. A classic example of this was in 1936, when Republican 
candidate Alf Landon and Democratic candidate Franklin Roosevelt 
were running for the presidency. A popular magazine, The Literary 
Digest, was commissioned to perform the largest-ever presidential 
election poll. In this poll, the magazine sent out 10 million question-
naires, asking readers whom would they vote for. The magazine 
received 2.1 million ballots; these showed that Landon would get 57 
percent of the votes and would win the election.

Of course, anyone who’s read history knows Roosevelt won the 
election. What went wrong with this sample set? Surely its huge size 
should have led to accurate testing.

The problem wasn’t with the size of the sample but rather the fact 
that it wasn’t random enough. The magazine sent out the poll ques-
tions to magazine subscribers, owners of autos, and those who had a 
telephone in the home. This created an immediate bias: remember, in 
1936 the United States was in the middle of a deep economic depres-
sion, and those who subscribed to magazines, owned cars, and had 
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phones in the home were typically better off financially than those 
who didn’t. In fact, these more affluent people were almost exactly 
the profile of voters who would vote Republican in the next election. 
Because of this inherent bias in the polling methods, the sample 
itself was biased, and the results were false!

Sometimes, even statistics aren’t enough to predict an accu-
rate outcome. In the 2016 US presidential election, polls showed 
Democrat Hillary Clinton with a comfortable lead for much of the 
campaign. Even toward the end, when the race between Clinton and 
Republican Donald Trump narrowed significantly, Clinton’s cam-
paign advisers clung to their belief in the polls (and polls in 2016 
were certainly much more sophisticated than those in 1936).

Kennedy’s Polling

The first US presidential campaign to make use of a private poll was that of 

John F. Kennedy in his 1960 run against former vice president Richard Nixon. 

Since then, virtually all serious presidential, senatorial, and congressional cam-

paigns have made extensive use of private polling services.

As we all know, Clinton lost the election, and Trump was elected 
president. What happened? Pundits are still debating, but it seems 
clear that two factors influenced the election. First was the revela-
tion by the FBI that it was investigating certain of Clinton’s emails, 
focusing (or rather, refocusing, since this issue had come up earlier) 
the public’s attention on her use of a private email server while she 
was secretary of state. Second, her campaign made a decision to 
campaign minimally in what turned out to be battleground states. 
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Trump’s campaign won these states and, subsequently, the electoral 
college. For all of the sophisticated polling methods used, both cam-
paigns were surprised at the outcome.
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KNOWING THE QUALITY OF 
YOUR DATA
Is  You r I n for m ation Good?

The starting point of any statistical study is the collection of data. 
The data can be sourced from government, financial, or medical 
databases. The information can also come from online surveys, per-
sonal interviews, or mailed questionnaires.

SurveyMonkey

One of the best ways to perform electronic interviews is to set up your ques-

tionnaire through the survey company SurveyMonkey (www.surveymonkey 

.com). The company helps you build your surveys and then sends them out to 

its subscriber list.

After you’ve gotten your survey ready, sent it out, and received 
your responses, the next thing to do is see how good your responses are.

T H E  Q U A L I T Y  O F  Y O U R  D A T A

One of the best ways to determine the quality of your data is to 
first measure how many responses you’ve received. This is going 
to depend on how large your entire population is. Ideally, if you’re 
sending out a questionnaire or taking an online survey, you’d like 
to get a response from a minimum of 2 to 5 percent of the target 
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population. Of course, the higher the response rate, the better the 
quality of the data.

Second, look at the range of responses you’re getting. Are the 
responders from diversified backgrounds? This might refer to fac-
tors of geography, economic status, political opinions, age, or edu-
cational background. A diversity of responders is a contributor to 
good data.

Remember, you’ll most likely never get a 100 percent response 
rate, so your sample set must be a good cross representation of the 
entire population. Testing the quality of the sample set means hav-
ing some qualifying, nonrelated questions in your questionnaire. 
These questions could be test questions to see if the person taking 
the survey is somehow biased or otherwise not good for the poll. This 
may be the case if the person works in an industry that is too closely 
tied to the study or is politically, socially, or economically biased in 
a way that would throw off your results. If this were the case, these 
people’s answers wouldn’t be included in the study.

You’ll need to think of the best ways to ask the blind questions 
to have them work properly in your surveys. Ask yourself, “What 
are the factors that could throw off my results?” After working with 
statistical analysis for a while you’ll develop a good idea of what can 
go wrong with data.

It might be that you’re collecting data on whether people prefer 
to use over-the-counter cold medicine or if they get flu shots during 
flu season. You start by listing all the things that could skew your 
results:

•	 Over-the-counter cold medicine or flu shots
•	 Younger age or senior citizen
•	 Climate of responder (snowy regions or sunny regions)
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•	 Income bracket
•	 Easy access to flu shots at clinics
•	 Insurance with low deductibles

How would these skew the results? Younger age and senior citi-
zen patients are generally targeted to get flu shots, people in snowy 
regions might be more favorable to flu shots (since they stand a bet-
ter chance of getting the flu), higher-income people could more eas-
ily afford the flu shot, people with free flu shot access would be more 
inclined to get flu shots, and people with low insurance deductibles 
would be more able to afford flu shots. Remember, you are measur-
ing those with no undue advantage versus the others in the study. 
Responders should be close to being equals in demographics.

After getting the surveys back, you look at the qualifiers to see 
if the quality of the data is being skewed—that is, has one subgroup 
responded substantially more than others? If, of course, there isn’t a 
factor that stands out, the quality of your data is much better.

Remember, if you are designing a study, keep track of all your 
questions, blind questions, response rate percentage, and any blind 
question qualifiers. If you are writing a report of your study, then this 
information goes into a section called “The Research and Question-
naire Design.”
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MODELING RISK, MEASURING 
SAMPLES, AND PREDICTING
Mea su r ing Good a nd B ad O utcomes

In order to use statistics properly, you must conduct fact-finding mis-
sions to discover the data you will use in your study. Perhaps you 
send out a questionnaire, then record all the answers that are sent 
back to you. You can also collect data from databases. Many surveys 
have been done on various topics, and these databases are usually 
from governmental, financial, or other reliable third-party sources. 
If you want to know about people and how they behave, the US Census 
Bureau is a great source of data (www.census.gov/data.html). If you’re 
looking for financial data, consult Yahoo! Finance (https://finance​
.yahoo.com/) and BigCharts (http://bigcharts.marketwatch.com/). 
All of these are free to use. Other research sites offer vast databases 
but are subscription based, some even with a one-time use charge. 
(We’ll discuss this more in a later section.)

Once you’ve collected the numbers and the data that you need 
for your study, the next thing you need to do is measure how random 
it is. The tighter around a center the data is grouped, the better its 
quality, and the more predictable the outcomes will be when you use 
it to forecast the future.

For example: if you are measuring how many points a National 
Basketball Association (NBA) team will score after scoring more 
than 90 points, you might discover that the scores you found in 
your study are much more meaningful if most of them hover closely 
around the same average. For instance, you might find that 68 
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percent of the time NBA teams scored more than 10 additional points 
after they had scored more than 90 points. If, however, you find that 
99 percent of the teams score more than 10 points, you’ll reason that 
the relationship between the two is more predictable. It might not be 
100 percent accurate to say they are directly related, but you can say 
that the data you’ve collected is tightly centered around the average 
score. In other words, you have a 99 percent certainty that teams 
score at least 10 points after they have put up more than 90 points. 
Ninety-nine percent certainty is excellent and is considered near 
perfect.

R I S K

Risk, on the other hand, is the opposite of certainty. In this case, the 
risk is that the team will score less than 10 points after the first 90, or 
possibly 0 points after the first 90. If you’ve done the same research 
as you’ve done for the good outcome, then you can figure out the bad 
outcome: what’s the risk that the team will not score at least 10 more 
points? In this case, based on the data you’ve collected, it’s negli-
gible. How does this figure?

Look at it this way: there is a 100 percent chance something will 
happen. We don’t know what will happen, but something will. There 
is a 99 percent chance (as our database shows) that the team will 
score 10 points or more after scoring 90 points. So, if there is a 100 
percent chance something will happen, and a 99 percent chance the 
team will score 10 or more points, then that leaves only a 1 percent 
chance that the team will score something other than 10 points or 
more. This means the risk is 1 percent.
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I N D E P E N D E N C E  A N D  D E P E N D E N C E

Risk, like success, is a measure of outcomes. Not all measures of 
risk are measures of negative outcomes. One classic example of a 
measure of risk is a couple who wants to have two children but wants 
to have only two girls. What is the measure of outcome that they will 
have only two girls when having only two children? 

The probability that the second child born is a girl knowing that 
the first child born is a girl is 50 percent. Because the probability 
that the second born is a girl is not affected by the gender of the first 
child, the two events “gender of the first child” and “gender of the 
second child” are independent of each other.

Pick a Card, Any Card

A second example of independence is drawing two cards from a traditional 

deck of cards. Pick a card from the deck, look at it, put it back in the deck, 

shuffle the deck, and pick a second card. The probability that the second 

card drawn is an ace does not depend on the first card drawn. The chances 

of it being an ace are 4 in 52. However, if the first card is not returned to the 

deck, then the chances that the second card is an ace depend on the first 

card selected. If the first card is an ace, the probability that the second card is 

an ace is 3 in 53, while if the first card was not an ace, the probability that the 

second card is an ace is 4 in 53.

The first child will have a 50/50 chance of being a boy or a girl. 
So, the possibility of the first child being a girl is 50 percent. What 
then are the chances of having a boy or a girl with the next baby? 
50/50. So, the first chance of a girl is 50 percent, the second chance 
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of a girl is 50 percent, and the chance of having two girls is 50 per-
cent of 50 percent, or 25 percent. Therefore, there is a 25 percent 
chance of having two girls when having only two children. A third 
girl when having only three children would have even less risk of 
happening: 50 percent for the first child, 50 percent for the second 
child, and 50 percent for the third child. So, 50 percent of 50 percent 
of 50 percent, or a 12.5 percent chance (50 divided by 2, divided by 2 
again), is the probability of having three girls. Each subsequent birth 
splits the overall chances by a factor of 50 percent. In this way, you 
are measuring the risk of outcome of three births/three girls. This is 
also known as the probability of the three births/three girls outcome. 
As you see, a measure of risk can also be a measure of probability of 
an outcome: it’s a measure of the chances of that event happening.
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FREQUENCY DISTRIBUTIONS
How Fre quent ly  Obser vat ion s Occu r

By its nature, statistics is concerned with large amounts of data. 
Sometimes this data is collected with in-person observations, some-
times the data comes from professional or commercial databases, 
and other times the data comes from government databases. In this 
section we will talk about the organization of this data into groups, 
called frequency distributions.

Data that is collected needs to be organized in such a way that 
it can then be used in the actual statistical tests. Large bodies of 
information you’ve collected need to be organized into groups so 
that the tests can be made and, more importantly, so you’ll be able to 
understand the results of those tests you run. Data that is collected 
is meaningless unless it has been organized. This data from the data 
collection part of your study can be broken down into two groups:

1.	 Categorical distributions
2.	 Numerical blocks of information, or frequency distributions

C A T E G O R I C A L  D I S T R I B U T I O N S

Any study starts with the collection of data. This data comes from 
observations, and these observations tell a story about what you are 
studying. Sometimes the story is told with words and sometimes 
with numbers. Let’s say you’re analyzing the hair color of college 
freshmen and whether it affects their grades. (This seems like an odd 
correlation, but bear with us.) In this case, you (or your data collector) 
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could ask college freshmen what their grade point average is and, 
while they are answering, make a notation of their hair color. For 
purposes of the study, you break down hair color as either red, brown, 
black, or blonde. These four colors of hair are different, yet they are 
not quantitative—that is, none of them are numerical.

Qualitative Data

It is a universal truth that three is larger than two. Numbers are structured to be 

compared. However, is red hair “greater” than blonde hair? That’s a question 

about personal preference, not a question that can be universally agreed upon. 

Other qualitative characteristics along these lines include marital status, eye 

color, and level of education (indicated by the highest degree earned).

When could you quantify hair color? The answer is simple: in 
either a marketing campaign or a big sales advertising rollout for 
a hair-coloring product, you might need to know if some people 
thought one color of hair was better or more appealing than the 
other color. Why? Well, if you know the preferred hair color, you can 
feature it in your TV ads more dominantly. If blondes have more fun, 
you’ll want to concentrate your advertising on people who want their 
hair to be blonde.

You can then refine this. Perhaps, as a result of the study, you 
learn that ash blonde is the least popular in your target market and 
that platinum blonde is the most popular. Therefore, models with 
platinum blonde hair color get more time in the filming of TV spots 
that are used to advertise the hair coloring product.

In this case, could you use a number to quantify hair colors? In a 
survey, you probably could. For instance, you could phrase a question 
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that said, “Rate the following hair colors from 1 to 5: Raven Black (1), 
Chestnut (2), Mousy (3), Ash Blonde (4), Platinum Blonde (5).” Keep 
in mind, the assignment of numbers could just as easily have been 
reversed: Platinum Blonde (1), Ash Blonde (2), Mousy (3), Chestnut 
(4), Raven Black (5). People will respond to the survey. Those reading 
the results may select just the top preference, or they may rank the 
preferences from top to bottom. Are the numbers associated with 
each color important? Not really. The responders could have written 
their responses, but data entry with numbers is more convenient. 
(Consider how much time responders want to spend writing down 
their responses.)

A frequency chart may be created to examine the results. You 
could make a bar chart or pie graph to display the outcome. The data 
being collected is hair color. The summary gives the frequency of 
responses for this qualitative characteristic.

PREFERRED HAIR COLOR 

HAIR COLOR FREQUENCY

Platinum Blonde 34

Chestnut 56

Ash Blonde 43

Raven Black 12

Mousy 6

Quantitative versus Qualitative

Drill into your mind this distinction; it’s important. Quantitative refers to numbers-

based data. Qualitative refers to words-based data. If you remember this, you’ll 

have mastered an important point in statistics theory.
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Q U A N T I T A T I V E  F R E Q U E N C I E S

Quantitative frequencies are tables of data that are numbers based. 
For instance, suppose you’re concerned with the problem of wear and 
tear on a section of highway. You’re studying how many cars with 
four tires pass through a tollbooth each hour of the day, measured 
over a seven-day period. You want to compare this with how many 
semitrucks with eighteen tires pass through the tollbooth. Your 
hypothesis could be as follows:

•	 More semitrucks pass through the tollbooths in the late evening 
hours, and more cars pass during rush hour times.

•	 These numbers give you a number of tires on the road per hour, 
because that number of tires on the road is tied to the damage 
done to the surface of the highway.

•	 There is a sequence to the hours also—late in the afternoon is dif-
ferent than early in the morning. (This could be used to restrict 
which lanes trucks may use so that the congestion of rush hour 
traffic can be managed more efficiently.)

Do Red Cars Get Stopped More Often?

There is a persistent belief that red cars are stopped more frequently by the 

police for speeding. The police deny this is the case, and in 1990 a reporter 

for the St. Petersburg Times in Florida conducted his own statistical study. He 

found that not only are red cars not stopped out of proportion to their pres-

ence in the overall car population, but gray cars seem to be the ones that get 

stopped more frequently than they should. Statistics busts another myth!
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This is all quantitative data; it can be measured in numbers. If the 
data is reported in a frequency table, the data is numerical.

Keep in mind that if you were, for whatever reason, to observe 
the colors of the cars passing through the tollbooth, this would be 
qualitative information.

F I N D I N G  T H E  R E L A T I V E 

F R E Q U E N C Y   D I S T R I B U T I O N

In either type of data, qualitative or quantitative, the results are 
similar. You will be left with a list of the frequency of each thing hap-
pening. While red/blonde/black/brown hair can’t be quantified (in 
the sense of saying that one color is better than another), the number 
of times it shows up in your total study can be measured. The same 
is true with the trucks and cars. Finding the relative frequency dis-
tribution is simple: take the number of observations of that item and 
divide by the total number of observations.

FREQUENCY DISTRIBUTIONS OF VEHICLES

VEHICLE FREQUENCY FREQUENCY DISTRIBUTION

Ford 350 12 12/183  0.07

Toyota Camry 70 70/183  0.38

Honda Accord 65 65/183  0.36

Chevrolet Colorado 15 15/183  0.08

Toyota Tundra 21 21/183  0.11

Total 183  183/183  1.00
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This table shows the type of vehicle and the total number of times 
each vehicle was observed. The last column shows the frequency 
for each vehicle divided by the total number of observations, which 
gives the relative frequency distribution of each vehicle. Notice that 
the relative frequency distributions add up to 1. This is the same 
calculation that would be used to find the frequency distribution of 
quantitative, or numbers-based, observations.

D I S C R E T E  V E R S U S  C O N T I N U O U S   D A T A

You are a math teacher (don’t get nervous, there are a lot of us), and 
you’ve just given an exam to the two sections of Algebra I that you 
teach. You want to see how your students did, so you tally the scores 
to see how many students scored in the 90s, the 80s, the 70s, etc. 
You can create a chart with intervals 90–100 (we’ll include those who 
scored 100 because they earned an A on the exam), 80–89, 70–79, 
60–69, 50–59, and so on to ensure there is an interval for every 
exam graded. Since most grades are integer values (if half points 
are awarded on the exam, the grades can be rounded to the nearest 
integer), we need not concern ourselves with decimal values. These 
integer values are discrete data. We can then look at the results to 
assess the level of difficulty of the exam. We’ll be able to determine 
where the center of the data is located as well as the spread of the 
data. Should we choose, we can make a graph of the outcomes. 
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A sample frequency chart might look like this:

FREQUENCY DISTRIBUTIONS OF TEST SCORES

SCORE FREQUENCY

90–100 17

80–89 19

70–79 21

60–69 10

50–59 2

In a different scenario, you are the quality control manager for a 
manufacturer of a company that makes ball bearings. You order the 
staff to randomly select 250 ball bearings from the latest manufac-
turing process and measure the diameters of the ball bearings with 
accuracy to the nearest tenth of a centimeter. If the ball bearings 
are designed to have a diameter of 2.0 cm, your intervals might be 
2.0–2.1, 2.1–2.2, 2.2–2.3, etc., for the measurements that exceed the 
specified value of 2.0 cm. “Wait!” you say. “What do I do if the mea-
surement is 2.1 cm?” In situations like this, the first interval really 
is 2.0  diameter < 2.1, 2.1  diameter < 2.2. In this way, if the 
diameter measures 2.11 cm, which is larger than 2.1 cm, we have a 
clear definition for which interval the item should be included in.

FREQUENCY DISTRIBUTIONS OF DIAMETERS OF THE BALL BEARINGS

DIAMETER FREQUENCY

1.7–1.8 2

1.8–1.9 1

1.9–2.0 10

2.0–2.1 210

2.1–2.2 27
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DOT PLOTS, BAR CHARTS, 
HISTOGRAMS, FREQUENCY 
POLYGONS
T he Data Tel ls  a  Stor y

Sometimes it’s best to look at the data in a statistical problem with more 
than just numbers: sometimes you need to look at it with shapes, charts, 
and graphs. This section will cover introductory graph types used in 
statistics—dot plots, bar charts, histograms, and frequency polygons.

D O T  P L O T S

A dot plot is a type of chart that has one row of information across 
the bottom and another row of information along the side of the 
chart. This information shows the different observations along the 
bottom, with the frequency or number of times that event happened 
indicated by dots stacked along the chart.

Observations

In statistics, when an event happens it is called an observation.

Each observation is measured in units across bottom of the dot 
plot, and the number of times each separate type of observation hap-
pened is shown in dots stacked up from the bottom. One dot usually 
signifies each time that type of event was observed or happened.
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S A L E S  C A L L S

Let’s consider a study that observes how many times a sales team 
makes cold calls to potential clients and how many of these calling pat-
terns result in an appointment for a presentation in the client’s office. 

NUMBER OF CALLS NUMBER OF SALES LEADS

2 1

4 3

6 5

8 6

10 1

12 0

14 1

16 1

18 0

20 1

The sales team has made cold calls from 4 to 20 times to each 
potential customer in the hopes of gaining an agreement for an 
in-office presentation. With 2 calls, an average of 1 appointment is 
made. If the sales rep makes 4 calls, the result is 3 appointments. 
With 8 calls, 6 appointments are made. However, at this point some-
thing strange starts to happen. Fourteen, 16, and 20 calls resulted in 
only 1 appointment each. From these observations, and by plotting 
the data on a dot plot chart, what would a sales manager conclude 
about the effectiveness of cold-calling potential customers?

A dot plot of this sales call chart would show that most appoint-
ments are made when the rep makes between 4 and 8 calls to the 
potential client. It also would show that only 2 calls are not that 
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effective at gaining appointments, nor are additional calls beyond 
8 calls. Based on this, the sales manager tells his sales team to cold-
call their potential clients a minimum of 4 times, but if the appoint-
ment isn’t made by the eighth call, to abandon the lead, since there 
is a statistically significant chance that the prospect will never set 
up an appointment and therefore will never become an actual client.

Dot Plots As Foundation

Dot plots are the most basic of the statistics graphs—from this graph you can 

construct a bar chart, a histogram, and a frequency polygon. This can easily be 

done with chart and statistics software by toggling among the four chart types.

B A R  C H A R T S

A bar chart uses the same concept as the point chart, except the data 
is presented in the chart in solid, vertical bars. In the case of the cold 
calling sales chart, the chart shows only the totals of the data. A bar 
chart in the case of the cold calling has the exact same shape as a dot 
plot, but instead of more dots being used to show more appointments 
made, a bar is drawn taller for each appointment made.

A bar chart is a good way to display the data of a study that 
involves the comparative changes in things that are numbers based 
(i.e., when the observations are not qualitative, such as color, shape, 
taste, or other similar data). A bar chart works if you are measuring 
the number of people who wear different shoe sizes but not the num-
ber of shoe sizes that are different colors. Shoe sizes are qualitative 
(that is, numbers based), while the different colors of the shoes are 
not numbers based but are qualitative in nature.
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Bar Graphs versus Histograms

Bar graphs are used to display the frequency of a distinct entity, and thus each 

bar is separate from the others (as in a chart showing shoe sizes—there are 

no sizes between an 8 and an 8½), while a histogram shows an interval in a 

continuum of data (such as test scores), and thus the bars are connected.

H I S T O G R A M S

A histogram is a bar chart in which each bar touches another to form 
a solid mass of bars. The shape provided by the histogram gives a 
visual representation of the shape of all the data that was collected in 
the study. Knowing the shape of the data can help show where most 
of the data is centered. Histograms are great ways to see the shape of 
the data in a simplified format, without the need for complex chart-
ing methods. The histogram indicates where the center of the data 
can be found, indicates whether the distribution is balanced about 
a center or skewed to one side or the other, and gives a sense of the 
spread of the data.
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F R E Q U E N C Y  P O L Y G O N

After you’ve made a bar chart and then made a histogram, draw a 
dot at the top of each bar center and then connect these dots with a 
line. The shape of the line with its up-and-down peaks and valleys 
is called a frequency polygon. This tool can be used to provide an 
estimate of the shape of the histogram. The line shows the peaks 
and the valleys of the histogram, which in turn shows the shape of 
the chart. These lines provide a level of detail that occupies a space 
between the histogram—the simplest—to the bell curve, which is 
more complex. The bell curve also helps show where most of the data 
is centered. Looking at where the data is centered can help give a 
visual estimate of the data’s average.

Scale

Two crews in a manufacturing process give presentations to the plant manager 

about the outcome of a project. The frequency polygon for one group shows 

variation in their day-to-day outcomes, evidenced by the polygon rising and 

falling from one day to the next, while the polygon for the second team is 

almost linear. An immediate reaction might be that the second team’s per-

formance was fairly consistent. However, the plant manager notices that the 

vertical scale for the second team is 10 times greater than that of the first team. 

Consequently, a dip of 5 units is more evident on the graph of the first team 

than the second team. Pay attention to scale when reading graphs. It is easy 

to be fooled.
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MORE WAYS TO SEE NUMBERS-
BASED DATA
Stem a nd L ea f  Plots ,  Time Ser ies  Graph s ,  P ie  Graph s

The importance of choosing the appropriate graphical representa-
tion for data is that, like a still photograph, it can give the reader a 
great deal of information in a short time. The graphic may convey 
information taken over time, may compare one element to another, 
or may show the shape of the distribution without losing the data val-
ues themselves. This section will cover these three statistical charts 
and graphs: stem and leaf plots, time series graphs, and pie graphs.

S T E M  A N D  L E A F  P L O T S

A stem and leaf plot shows data broken down into sections of stems 
and leaves. By using a stem and leaf plot, you can illustrate the center 
and spread of the data without losing the data itself. The stem can be 
either the hundreds or the tens of the numbers, and the leaves can be 
either the tens or the ones digits of the numbers. In other words, if the 
number was 113, the stem can be either 1 (if you’re using hundreds as 
the stem) and the leaf 13, represented as (1,13), or the stem can be 11 
(if you’re using tens as the stem) and the leaf 3, represented as (11,3).

The following table lists the seating capacity, rounded to the near-
est hundred people, for the teams in the National Football League 
(NFL). (Please note that there are only 31 data values because the 
New York Giants and the New York Jets both play in the same 
stadium.)
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STADIUM

SEATING 
CAPACITY 
(IN THOUSANDS) TEAM

Arrowhead Stadium 76.4 Kansas City Chiefs

AT&T Stadium 80.0 Dallas Cowboys

Bank of America Stadium 75.4 Carolina Panthers

CenturyLink Field 68.0 Seattle Seahawks

FedEx Field 82.0 Washington Redskins

FirstEnergy Stadium 67.9 Cleveland Browns

Ford Field 65.0 Detroit Lions

Gillette Stadium 66.8 New England Patriots

Hard Rock Stadium 65.3 Miami Dolphins

Heinz Field 68.4 Pittsburgh Steelers

Lambeau Field 81.4 Green Bay Packers

Levi’s Stadium 68.5 San Francisco 49ers

Lincoln Financial Field 69.6 Philadelphia Eagles

Los Angeles Memorial Coliseum 77.5 Los Angeles Rams

Lucas Oil Stadium 67.0 Indianapolis Colts

M&T Bank Stadium 71.0 Baltimore Ravens

Mercedes-Benz Stadium 71.0 Atlanta Falcons

Mercedes-Benz Superdome 73.2 New Orleans Saints

MetLife Stadium 82.5 New York Giants, New York Jets

New Era Field 71.6 Buffalo Bills

Nissan Stadium 69.1 Tennessee Titans

NRG Stadium 72.2 Houston Texans

Oakland–Alameda County Coliseum 53.3 Oakland Raiders

Paul Brown Stadium 65.5 Cincinnati Bengals

Raymond James Stadium 65.9 Tampa Bay Buccaneers

Soldier Field 61.5 Chicago Bears

Sports Authority Field at Mile High 76.1 Denver Broncos

StubHub Center 27.0 Los Angeles Chargers
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STADIUM

SEATING 
CAPACITY 
(IN THOUSANDS) TEAM

TIAA Bank Field 67.2 Jacksonville Jaguars

US Bank Stadium 66.7 Minnesota Vikings

University of Phoenix Stadium 63.4 Arizona Cardinals

Source: “List of Current National Football League Stadiums.” Wikipedia. https://en.wikipedia.org/
wiki/List_of_current_National_Football_League_stadiums.

Look at a stem and leaf chart for the following data: 78, 79, 112, 
115, 153. This is a stem and leaf chart that uses the hundreds and tens 
as stems and units as leaves:

7|8	 9
11|2	 5
15|3

This is a stem and leaf chart that uses the hundreds as stems and 
the tens and units as leaves:

0|78	 79
1|12	 15	 53

Let’s look at the stem and leaf chart for the seating capacity of 
NFL stadiums. We include a legend so that the reader can interpret 
the data. Legend: 7|64  76.4 thousand people. Note the stem, 7, is 
written to the left of the vertical line while the leaf, 64, is written to 
the right of the vertical line. Next, examine the data and determine 
the minimum and maximum stems—in this case, 2 and 9. Write these 
stems vertically on your paper with the vertical lines (the trunk, if 
you will) next to them.
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2|
3|
4|
5|
6|
7|
8|
9|

Work through the data from top to bottom and fill in the leaves. 
Notice that you do not have to sort the data from least to most ahead 
of time.

2| 70
3|
4|
5| 33
6| 80 79 50 84 85 96 70 91 55 59 15 72 67 34
7| 46 54 10 10 32 16 22 61
8| 00 20 14 25
9| 36

Turn your book 90 degrees counterclockwise to see the histo-
gram for the data.

Stem and leaf charts are used when you’re looking at numbers 
that can be rounded to two or three significant digits and you’d like 
to simplify your study. These charts allow you to have a simple way 
to look at numbers in a more streamlined fashion, and they are used 
if the study you are conducting doesn’t need a very critical accuracy 
level or if you have a reasonably sized set of data. For instance, if 
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the data consisted of the salaries of the two thousand players who 
received paychecks for playing in the NFL in 2017, stem and leaf 
would not be a wise choice for displaying data.

T I M E  S E R I E S  G R A P H S

If a group of data is collected over time, you can use a time series graph 
to display the information. Time series graphs use time across the 
bottom of the graph and show how many times the event happened 
(how often an event happens is called the frequency) along the vertical 
side of the chart. The time series can be in seconds, minutes, hours, or 
longer and is spaced out to match the time scale of the study. That is to 
say, the scale used on the horizontal axis can agree with the intervals 
when the measurements are taken. The frequency scale on the side 
of the time series graph should match the number of times the event 
happened. The graph then lines up a point on the chart by drawing 
an imaginary line up from the time across to the number of times the 
event happened. At that intersection, you plot a dot on the graph. After 
this is done each time, you connect the dots to draw a graph with the 
peaks and valleys of the graph. This completes the time series graph.

Time series graphs can be very useful when your study shows the 
progress of observations as they are spread out over time.

An Example of a Time Series Graph
Imagine that an auto manufacturer wants to measure the tem-

perature of an engine as it warms up during a normal operating cycle 
and then measure how many times the emissions sensor on the car 
turns on. These types of studies are very common with auto manu-
facturers as a way of finding out if the emissions sensors within the 
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car’s computers work properly. Car manufacturers know that these 
sensors must measure the fuel/air mix to work properly, yet the car’s 
computer won’t turn on unless the operating temperature warms up.

With this study, the manufacturer wants to know, “How many 
times does the emissions sensor work when the car is warming up—
up to the point where the car is fully warmed up?”

Analytic Software

Software is often designed especially for an industry. In the car industry, a car’s 

onboard computers measure the frequency of on/off cycles during different 

driving conditions. The data is stored in the memory on the car’s computer. 

This data is then analyzed by an auto tech with analytic software to see if the 

car is running properly under all speeds and temperatures.

The data is collected with the memory of the onboard comput-
ers of the car, downloaded to software, and then displayed in a time 
series graph. Time of operating (getting the car to warm up) goes 
across the bottom, and the vertical side data points represent the 
number of times (in scale) the computer turned on the emission sen-
sor. Based on this data, the manufacturer can adjust the sensors for 
maximum efficiency.

P I E  C H A R T S  A N D  P I E  G R A P H S

A pie chart/pie graph can be an effective tool if the data that was 
collected in the study has a cumulative value of 100 percent. Since 
all the data fits in the circle, all the data adds up to 100 percent.
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An Example of a Pie Chart
There are ninety-five students in the school district’s fifth grade. 

A school administrator wants to see how many of these students are 
in five levels of the school’s reading program, with each level pro-
gressively more difficult than the next.

NUMBER OF FIFTH GRADERS IN EACH READING LEVEL

READING LEVEL NUMBER OF STUDENTS

Level 1 8

Level 2 16

Level 3 32

Level 4 23

Level 5 16

Total Fifth Graders 95 

Each level of the school’s reading program has a separate number 
of students, but they all are included in the total number of students 
in the school’s fifth grade (ninety-five students). Because of this, they 
all fit in a circle.

Florence Nightingale

Florence Nightingale (1820–1910), the nineteenth-century nurse and statisti-

cian, used pie charts during the Crimean War to illustrate the death rates of her 

patients. She is also credited with creating the polar area diagram, a variation 

of the pie graph.

Labeled, each section within the entire 100 percent circle would 
look like a pie. The pie is represented by the entire circle and is 
divided into slices, which each show the number of students reading 
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at a particular level. The chart shows within each slice both the raw 
number of students and the percentage of the total that represents. 
The pie effect of all the sections gives a clear visual representation of 
how each reading level compares with the others.
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THE MEAN, THE MEDIAN, AND 
THE MODE
How to Descr ibe t he Center  of  t he Data

As you progress in your study and analysis of data and how to pres-
ent it in the form of a graph or a chart, there often seems to be a 
center, or a middle, number where the data groups or concentrates 
with a high frequency. This central mass of the numbers can be easy 
enough to estimate when the data is on a graph.

This section will deal with how to determine the center of the data 
pool and explain why that’s important. More specifically we’ll look 
at what is the middle value of the data. Middle values come in two 
types, the mean and the median.

N U M B E R S  A N D  D A T A  N E A R  T H E   M I D D L E

Remember, statistics are used to mathematically help answer a 
question. Because statistics and data science can be such powerful 
tools in their ability to crunch the numbers, you can use the power of 
statistics to more accurately find the middle of your group of obser-
vations. You can also see how far away from the middle each separate 
observation or data point is.
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T H E  M E A N

Imagine you’re going to use statistics to help you find information 
about a stock you’d like to trade with your online brokerage account. 
One of the things you are trying to figure out is the average price of 
the stock when the overall stock market (measured by the S&P 500 
index) is up or down by more than 1 percent. You’ve determined that 
this is a good experiment to run to help you answer the most impor-
tant question you have: how does this stock react when the S&P 500 
makes a large move up or down? For data you collect the past 100 
gains and losses of the stock when the US stock market moved up or 
down by 1 percent or more.

More Is Better

When collecting data points or collecting bits of information related to 

answering the question of a study, the more data collected the better! Most 

professional researchers state that the minimum number of each data sec-

tion is 100 data points. In other words, for each measurement in the study 

experiment there should be at least 100 data points collected from at least 100 

observations.

The observations of the percentage gains and losses of the stock 
will be skewed: that is, they’ll show a generalized random order. In 
other words, the stock’s gains and losses will range from low to high.

This isn’t quite enough information: what you really need to know 
is on average how much the stock moves when the S&P 500 gains 
more than 1 percent, and on average how much the stock moves 
when the S&P 500 loses more than 1 percent.
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By determining the mean, you will be able to measure the middle 
of the data, or the average, of the frequency of both gaining and los-
ing stock prices. By knowing the mean, or the average, gain of the 
stock on winning days and the average loss of the stock on losing 
days, you’re well on your way to finding the answer to your study’s 
question. In fact, having made this small statistical experiment, you 
may want to take things further and ask more complex questions 
about your stock’s performance.

Calculating the Mean

Calculating the mean of a group of observations is simple: add up all the 

amounts in the data points in the set, then divide by the number of data points 

in that set. This will be the mean and is shown by “x-bar,” or x.

T H E  M E D I A N  O F  D A T A  P O I N T S  I N  A  G R O U P

The median of a group of data points is the point that lies in the 
middle of the data after the data has been sorted from lowest to high-
est (or vice versa). For example, if the data points are 12, 14, 17, 21, 23, 
24, and 29, the median will be 21 because there are three data points 
less than 21 and three data points higher than 21. “But,” you say, 
“what if the data points were 12, 14, 17, 21, 23, 24, 29, and 35?” The 
data points can be formed into two groups, each having the same 
number of elements. In this case, the median is the mean of the two 
data points in the middle of the set. That is, the median would be set 

at 21  23
2

 22.
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T H E  M O D E  O F  D A T A  P O I N T S  I N  A   G R O U P

The mode of a group of data points is simply the number that occurs 
the most frequently in the data. While the mean shows the average 
of the numbers in the observations, the mode shows the data point 
in the observations that is the most frequently observed. In the stock 
gain/loss study, the mode is the percentage gain of the stock that 
shows up the most often. If you discover that gain percentages of 
both 0.4 percent and 0.75 percent are the most frequently observed, 
then the entire list of gains of the stock is said to be bimodal; that is, 
having two modes in the group.

D A M N E D  L I E S  A N D  S T A T I S T I C S

British prime minister Benjamin Disraeli reportedly said, “There are 
three kinds of lies: lies, damned lies, and statistics.” That is to say, 
it’s possible to use statistics to support statements that may not be 
accurate.

Let’s look at an example of this from the NBA players’ salaries 
from 2017 (source: www.espn.com/nba/salaries). For the purpose of 
making this example a little easier to understand, all salaries for the 
434 players paid that year are rounded to the nearest million dollars. 
The mean of the data is $7.1 million, the median is $3.4 million, and 
the mode is $1 million.

After a group of fans in a bar hear this, a friendly argument breaks 
out about how well the NBA players are paid. One person claims that 
they are paid very well, as the average salary is $7.1 million. The next 
person argues that they really aren’t paid all that well because the 
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average salary is only $1 million. The third person argues that the 
salaries are fair since the average salary is $3.4 million. Who is tell-
ing the truth? They all are. People tend to use the word “average” to 
indicate the mean (it’s tempting to say, “It means the mean,” but that 
confuses the issue), but all three measures—the mean, median, and 
mode—are measures of central, or average, tendency.

Of the three measures of central tendency, the median is actually 
the best stand-alone measure because it is not affected by the mag-
nitude of the data (as is the mean). The mode is unreliable because 
of the possibility that there is no one data point that occurs more 
frequently than any other or that there are multiple data points that 
occur with highest frequency. For example, suppose that some super-
star is signed to a $100 million NBA contract. The mean rises to $7.4 
million, the median stays at $3.4 million, and the mode remains at 
$1 million. (If you wish to argue that the mode did not change in 
this example, you would certainly be correct. However, if you look 
at the original data set in which the salaries were not rounded to the 
nearest million dollars, you will see that the data set has no mode.)

Of course, some of this depends on who’s looking at the data. The 
player who’s making $100 million a year probably thinks he’s pretty 
well paid; the player who’s making $1 million, perhaps not so much. 
Again, both viewpoints are valid.

All of this is to say that you have to exercise caution when looking 
at statistics. They can be deceptive.
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THE RANGE AND 
INTERQUARTILE RANGE
Descr ibing How Wide t he Data Is  Spread

Once data is collected, we look at its spread. A data grouping’s spread 
is a description of how small its smallest number is and how large its 
largest number is. Once you know a group’s range, you will be able 
to figure out more statistical information.

A  N U M B E R  G R O U P ’ S  R A N G E

Let’s look at a simple example of finding the range of a number set. 
After taking a survey, you’ve collected the following bits of data: –12, 
–10, –9, –5, –1, 2, 5, 8, 9, 10.

To find the range of the numbers, you first figure out how many 
places away the largest number is from the smallest number. In this 
case, –12 is 22 numbers away from the largest number, 10. 10  (–12) 
 range of 22 units.

Observations

Remember, in a survey each bit of data collected comes from one individual 

observation. Each observation can be a question on a survey, a stock price 

when collecting financial data, or an actual observation from an interpersonal 

study.
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Here is another example with numbers that are not closely 
arranged around zero:

740; 750; 777; 821; 872; 975; 1,020; 1,040

In this case the range is 1,040  740  300 units.
What if the same group of numbers also included a much smaller 

or much larger number within the group? For example, what if the 
data group looked like the following?

13; 740; 750; 777; 821; 872; 975; 1,020; 1,040

In this case, the range would be 1,040  13  1,027

T H E  P R O B L E M S  U S I N G  O N L Y  R A N G E

What is the problem with this example? Well, for one thing, in the 
first example, the range is 300 units, whereas in the second example, 
with the addition of only a single number to the data, the range is 
much larger: it’s jumped all the way to 1,027. Although the numbers 
in both sets are nearly identical, the second set has one far smaller 
number: 13. In the second set, 13 is so far away in value from the other 
numbers that it is almost unrelated to them.

Remember, we are imagining that this is a group of data from 
a survey and that each separate number in the list is from one 
observation.

In both sets of numbers, most of the numbers are closely grouped 
together. Because the 13 is very far away from the other numbers, 
it appears to be a one-time event. When you have a large group of 
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numbers that are loosely centered and one of the data points is far 
away from the main group, the far-away number is called an outlier. 
Outliers can throw off the range of a group of numbers; because of 
this you’ll need to look at the interquartile range.

T H E  I N T E R Q U A R T I L E  R A N G E

A group of numbers’ interquartile range (IQR) is the middle 50 per-
cent of the range. In this way, you are measuring a tighter grouping 
of numbers and therefore are better able to see the true range, since 
it doesn’t include any outliers.

Percentiles

Statisticians regularly rank data. One of the methods of describing the data is 

to divide it into different sections and identify the section in which the data is 

located. One of the classic divisions is percentiles. Like percentage, percentiles 

means to divide the data into one hundred sections. When a doctor tells new 

parents that their child’s weight is in the 48th percentile, she is saying that their 

child’s weight is equal to or greater than the weights of 48 percent of children 

the same age whose weights have been measured over years by the medical 

profession.

How do you do this? By measuring the middle 50 percent range. 
First, arrange the numbers in order from smallest to largest. Mark 
the median number. Next, in the first 50 percent, find that group’s 
median number and mark it. This point is called the first quartile. 
Then do the same with the second 50 percent. This point is called the 
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third quartile. The IQR is the difference between the third quartile 
and the first quartile.

For example, consider the set of numbers:

25, 28, 30, 32, 37, 40, 42, 45, 46, 47, 100

There are 11 pieces of data so the median for the data is the sixth 
data value, 40. Examine the values that are less than 40 (25, 28, 30, 
32, 37). Of these, 28 is the number in the middle, so 28 represents 
the first quartile. When you examine the data values larger than 40 
(42, 45, 46, 47, 100), the middle of these numbers is 46, so 46 is the 
third quartile. The IQR for this data set is 46  28  18. As you can 
see, the IQR shows only the middle numbers and naturally excludes 
any outliers.

If a group of numbers is closely centered but has one number 
far removed, it can throw off the calculated range of that group of 
numbers. A rule of thumb to help determine whether a piece of data 
is an outlier is this: the data point is an outlier if it is more than 1.5 
times the IQR from the minimum (if the data value is much smaller 
than the rest of the data) or from the maximum (if the data point is 
much larger than the rest of the data).

The data values—the minimum, the first quartile, the median, the 
third quartile, and the maximum—are called the five-number sum-
mary, and statisticians use them to create a graph called the box and 
whisker plot. The box and whisker plot give a nice visualization of 
the distribution of the data. The following box plot shows the scores 
for the SAT exam at a small high school:
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The minimum, first quartile, median, third quartile, and maxi-
mum can be easily read from the graph.

Outliers can change the shape of a distribution. The box and 
whisker plot will show outliers as separate dots from the whiskers 
of the plot. For example, if 1,600 is added to the data, the box and 
whisker plot will look like this:
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MEAN DEVIATIONS AND 
VARIATIONS
More Way s to  Mea su re t he Sh ape of  Data

Descriptive statistics can be used to explain and describe large 
groups of numbers that you might have collected from a study, sur-
vey, or other information gathered from a database. You can use a 
number group’s variance and deviation to measure how widely the 
number group is spread out. In other words, variance and deviation 
tell us how much of the data is spread around the mean and, there-
fore, how tightly the group of numbers is arranged.

W H A T  V A R I A N C E  T E L L S  Y O U 

A B O U T   T H E   D A T A

The mean amount of a soft drink dispensed by a particular brand of 
machine is 12 ounces. Does that mean each machine will dispense 
12 ounces of soft drink every time it is used? No, it does not. The 
mean amount of liquid dispensed is 12 ounces. The question now 
becomes: “If the mean is 12 ounces, how many ounces different than 
12 are dispensed, and how important is this difference?” One of the 
measures of the difference is called variance. In essence, variance is 
the sum of the square of the value of the data points and the mean 
of the data points, divided by the number of data points. (That is, 
the variance is the mean of the square of the difference of each data 
point from the mean.) The symbol for the variance of a data set is 
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s2 if the data is a sample of the population, and the square of the 
lowercase Greek letter sigma, σ2, if the data is the population.

Data: 13, 15, 16, 21, 25

Mean: µ  13  15  16  21  25
5

 90
5

 18

Variance:  σ2 

(13   18)2  (15  18)2  (16  18)2  (21  18)2  (25  18)2

5

 25  9  4  9  49
5

 96
5

 19.2

We need to make a slight adjustment about the variance. When 
computing the variance of the population, the sum of the squares is 
divided by the number of pieces of data, n. However, when comput-
ing the variances for a sample, the sum of the squares is divided by 
n  1. We do this because of certain desirable properties that make it 
appropriate for statistical inference. (More will be said about statisti-
cal inference later in the book.)

A large group of numbers can be described by how tightly the 
numbers are gathered around the mean, or average, of the numbers. 
It’s easy to think about: if there are 100 numbers and 80 of those 
numbers are within 10 percent, either higher or lower, of the aver-
age, then it’s easy to see that most of the data is centered around the 
mean. This leaves only 20 percent of the data occupying the remain-
ing 90 percent of the range.
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S T A N D A R D  D E V I A T I O N  I S  R E L A T E D 

T O   V A R I A N C E

The standard deviation of a group of numbers is a way of describing 
the variance of the group of numbers, but it removes any negative 
numbers, outliers, or numbers larger or smaller than the average. It 
is a purer form of describing the number set and can be useful when 
you need a quicker, though still accurate, way of doing so. In this way, 
it acts like a smoothing effect, as it takes away some of the extreme 
outliers from the bell curve.

The standard deviation is calculated by determining the square 
root of the variance. How does it help to know the standard devia-
tion? Standard deviation can tell the same information as a number 
group’s variance, but it tells it in simpler terms. This doesn’t act as 
a distortion, but rather puts all the information in common terms, 
so when you go to compare them, you are now comparing apples to 
apples. For example, if the units associated with the data points are 
inches, the units of the variance are square inches, while the units 
of the standard deviation are inches. The symbols for the standard 
deviation are s and σ, depending on whether the data is a sample or 
the entire population.

The standard deviation for the set of data 13, 15, 16, 21, 25 is
σ  

√
19.2  4.38.

Standard Deviation

While there is a little bit more to the standard deviation than this, it is worth 

your while to think of the standard deviation as being the average difference 

between the data values and the mean of the data.
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In this way, when you are looking at a large group of numbers 
spread out far along the bell curve, and these numbers are spread 
near and far away from the center of the curve, knowing the number 
group or data group’s standard deviation can be very helpful. Why is 
this so? Mainly because by looking at the standard deviation of the 
group, you are looking at how far the data is placed from the center. 
Working with the standard deviation is especially useful when you 
are comparing data sets to each other: each data set’s deviation is on 
an equal footing.
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THE LAW OF LARGE NUMBERS
P robabi l it y  Mea su re d w it h M a ny Tests

In order to get information from statistics, you need to measure a 
group of data points. If you have a small set of data, the accuracy of 
some tests will be thrown off—in fact the results can be so far off that 
they are misleading. The way to combat this problem is to build your 
tests with very large groups of data. The law of large numbers states 
that statistical tests are best done with large groups. The best tests 
are done with groups of 100 or more.

T O O  F E W  N U M B E R S

Much of statistics is a system for testing a set of data. You’ve learned 
that the tests measure averages: how far the data lies from the center. 
Keep in mind that when you use statistics to determine the averages, 
you can also know how close to the average the data occur most of 
the time by looking at the shape of the data distribution. If the aver-
age happens more frequently, it’s considered centered around the 
mean, and the measurements will be considered to be better quality. 
Why is this important? For one thing, by studying this you will be 
able to know what happens most of the time.

Basic Probability

Probability is essentially relative frequency—that is, it is the ratio of the number 

of times something happens to the number of possible outcomes.
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This is why having a large group of data points is important. For 
example, let’s say you are doing market research for a large coffee-
house chain that offers its customers gourmet coffee and premium 
drinks such as cappuccinos and caramel macchiatos; it also offers 
free Wi-Fi and premium lunches. One marketing question that the 
chain’s owners may have is “How many of our customers who come 
in for a regular (relatively inexpensive) coffee could be potential cus-
tomers for our premium drinks (which can cost up to twice as much 
as a regular coffee drink)?”

To answer this question, the chain hires your marketing com-
pany to survey its customers. You build a questionnaire to ask the 
customers as they come into the restaurant. You could ask a question 
with a yes/no answer: “Would you like to try a caramel macchiato 
today instead of your regular coffee drink order?”

Take a Large Sample for the Study
Because the chain has a worldwide presence, with hundreds of 

thousands of customers, it is impractical to question every customer 
who comes in the doors in every location. In this example, the total of 
all of the chain’s customers is called the population. From this popu-
lation, you’ll need to take a sample set—say 1 out of 100 customers, or 
1 out of 1,000 customers. The number of customers you need to ask 
needs to be only large enough to get an accurate reading of the entire 
population. This is called the sample set.

Remember, the sample set needs to be at least 100 samples to 
make a good and accurate test of the question. While it may be true 
that the chain has many stores all over the United States, Europe, and 
Asia, you will get accurate results by surveying approximately 1,000 
people from a variety of countries. With simple, binomial surveys, 
the question can be asked fifty times of random people at twenty 
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different locations. The randomness of the survey can be further 
enhanced by varying the time of day the question is asked, as well as 
surveying both foot traffic and drive-through traffic.

All this is important because if the group that takes the survey 
is too much the same, it will skew your answers. Also, if the group is 
all from the same area, it might skew your answers culturally, since 
people from that area may drink only one kind of drink. Finally, if 
you don’t ask enough people you won’t get a wide enough sample of 
what the customers really think: ten, twenty, or fifty people could be 
random, but there still is a high chance that the sample set will be off 
and the numbers won’t read as true.
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EMPIRICAL PROBABILITY AND 
SUBJECTIVE PROBABILITY
P robabi l it y  w it h Mu lt iple  Sets

Probability is the measure of whether and how frequently something 
will happen. This section will show how statisticians calculate the 
probability that things will happen with multiple sets, as well as 
cover some of the basic laws of probability.

P R O B A B I L I T Y  B A S E D  O N  P A S T 

E X P E R I E N C E S

Subjective probability refers to a situation when you are thinking, 
“What are the chances something will happen?” and you base your 
answer on what you’ve experienced in the past. Let’s imagine you 
are shopping at your favorite antiques store. You’re an avid antiques 
collector, and you’ve shopped the antique malls of your hometown 
for years. You also know that the antique mall booth owners fill up 
their booths with fresh antiques every Sunday, when the shops are 
closed. Because of this information, and your past experiences, you 
know that the best times to find good deals are Monday mornings.

While you’ve not collected data or made a survey, you do have 
years of experience behind you, and you can therefore make a state-
ment: “There is a high probability that I will find good antiques at the 
antique malls on Monday morning.” Subjective probability is char-
acterized by loosely based statements and few to no hard numbers.
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When you are using subjective probability, you are using your 
experiences to make an educated guess about expected outcomes. 
This contrasts with another form of probability that measures prob-
able outcomes using numbers and statistical measurements. This is 
called empirical probability.

E M P I R I C A L  P R O B A B I L I T Y

We’ve learned that the probability of an event happening can be 
measured by a survey or a sampling of the entire population. Statisti-
cal analysis of probability is governed by the following rules:

Rules of Probability
•	 The chance of an event happening must be between 0 percent 

and 100 percent (between 0 and 1).
•	 If the chance that an event happening is x, then the chance that 

it doesn’t happen is 1  x. If the probability that it will rain today 
is 40 percent, then the probability it will not rain today is 60 
percent.

•	 If the chance of an event happening is 1, then it will happen 100 
percent of the time. The probability that the sun will rise in the 
east tomorrow is 1.

•	 If the chance of an event happening is 0, then it will never hap-
pen. The probability that the sun will rise in the west tomorrow 
is 0.

•	 In a group, each event probability must add up to 1 (100 percent). 
When rolling a fair die (singular of dice), the outcome can be 1, 
2, 3, 4, 5, or 6. The probability of getting a 1 is written P(1). P(1)  
P(2)  P(3)  P(4)  P(5)  P(6)  1.
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•	 If there are two separate events that can happen together, this is 
called a compound event. When drawing a card from a well-shuffled 
deck of bridge cards, drawing the ace of spades can be considered 
a compound event because it is both an ace and a spade.

•	 If there is an event that happens in either/or two separate groups, 
this is called a union of events. For example: there is a sale today 
at either antique store A, antique store B, or both antique stores 
A and B.

•	 If an event happens in both A and B it is called an intersection 
of events. For example, both antique store A and antique store B 
have antique pocket watches for sale.

•	 If an event is either A or B but not both, it is called a mutually exclu-
sive event. For instance, a registered voter is either a Democrat or a 
Republican. No one can be registered in two parties simultaneously.

•	 An event that is outside all that is contained in set A is called a 
complement of an event. An example is sales that occur at antique 
stores or non-antique stores. Those that occur at non-antique 
stores are a complement of an event.

C O N D I T I O N A L  P R O B A B I L I T Y

There is another way to measure probability. This one involves 
answering the question “What are the chances that something will 
happen if something else has already happened?” It assumes that 
event A is dependent upon event B. This more complex form of prob-
ability is called conditional probability. It can become very compli-
cated to figure out, since many events can trigger a second event. 
For example, pick a card from a well-shuffled deck of bridge cards, 
look at it, put it back in the deck, and draw a second card. What is the 



74� S TAT I S T I C S  101

probability the second card is an ace? The answer is 1/13 (there are 
four aces in the 52-card deck). The drawing of the first card had no 
impact on the selection of the second card. Repeat the experiment, 
but this time don’t put the first card back. What is the probability now 
that the second card is an ace? This time it depends on whether or 
not the first card was an ace. If it was, the probability that the second 
card is an ace is 3/51 (one of the four aces has been removed from the 
deck), but if the first card was not an ace, the probability the second 
card is an ace is 4/51.

Independent Events

Two events are said to be independent of each other if the occurrence of one 

event has no impact on the probability the second event will occur.

Let’s take another example: the results of a survey completed by 
782 people are displayed in the accompanying Venn diagram.
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The three key characteristics of the diagram are gender, political 
affiliation, and education.

•	 Region I represents women who are neither college educated nor 
see themselves as Democrats.

•	 Region II represents men who are not college educated and see 
themselves as Democrats.

•	 Region III represents college-educated men who do not see them-
selves as Democrats.

•	 Region IV represents college-educated women who do not see 
themselves as Democrats.

•	 Region V represents non-college-educated women who see them-
selves as Democrats.

•	 Region VI represents college-educated men who see themselves 
as Democrats.

•	 Region VII represents college-educated women who see them-
selves as Democrats.

•	 Region VIII represents non-college-educated men who do not see 
themselves as Democrats.

Before we ask questions about probability based on these survey 
results, let’s take a moment to analyze the eight regions in the Venn 
diagram.
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You have to be careful when reading a Venn diagram. Entries that 
are not contained inside the circle labeled “Women” are men—there 
is no other choice. Entries outside the circle labeled “Democrats” can 
have any of a number of political affiliations—Republican, Indepen-
dent, Green Party, Socialists, etc. Outside of the “College Educated” 
circle are those people who did not attend college. Did they attend 
but not finish college? Or did they never attend at all? We don’t know. 
Did they finish high school? Again, we don’t know. All we do know is 
that they classified themselves as not college educated.

Here are some questions for us to consider to help with reading 
the Venn diagram.

If a person from this survey is selected at random, what is the 
probability that:

1.	 The person is a woman? Of the 782 people surveyed, 343 (109 
 61  128  45) are women, so the probability is 343/782.
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2.	 The person is a college-educated woman? Of the respondents, 
189 (61  128) are women with a college education, so the prob-
ability is 189/782.

3.	 The person is a woman or is college educated? There are 343 
women, plus 262 (117  145) men who claim to be college edu-
cated, so the probability is 605/782.

4.	 The person is college educated given that the person is a 
woman? “Given that the person is a woman” tells us to con-
centrate only on the 343 women in the survey (all contained 
in the circle called “Women.” Of these women, 189 are college 
educated, so the probability is 189/343.

5.	 The person is a woman given that the person is college educated? 
This time we limit our discussion to the 451 college-educated 
people from the survey. We just showed that there are 189 women 
with a college education, so the probability is 189/451.

6.	 The person is a Democrat given that the person is a college-
educated woman? Of the 189 college-educated women, 128 
claim to be Democrats, so the probability is 128/189.

Probability in the Financial Industry
Probability is commonly used in financial applications. Hun-

dreds or thousands of events can trigger changes in the price 
of stocks, gold, or other commodities. They can affect economic 
announcements, binomial stock events, etc. To examine all the 
triggers, sophisticated computer models are used to analyze vast 
amounts of data. This builds the probability model. From there, com-
plex mathematical formulas can give the data analyst answers. The 
questions may be as simple as “What will be the direction of the S&P 
500 index in the next one minute? Up or down?”
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YES OR NO
Binom ia l  (or  B er nou l l i)  Dist r ibut ion s

The seventeenth and eighteenth centuries were a fertile period of 
mathematical discoveries. Breakthroughs in the understanding of 
probability, calculus, and geometry occurred in England and on 
mainland Europe. The animosity that was so prevalent during that 
era (and is still alive today) among the various governments also 
existed among the scientific and mathematical communities. Most 
popular among these is Gottfried Leibniz’s (1646–1716) publication 
of the principles of calculus before Isaac Newton (1642–1727) was 
able to publish his Philosophiae Naturalis Principia Mathematica (in 
which Newton published his work on mathematics and physics). One 
of the major players in this battle was Jacob Bernoulli (1654–1705), 
a Swiss mathematician who studied under Leibniz. Among his many 
accomplishments, Bernoulli developed the process of the binomial 
(or Bernoulli) distribution.

Y E S  O R  N O  O B S E R V A T I O N S

Most of the time when you are conducting or building a survey, col-
lecting data from the Internet, or researching data from external 
sources, there are many, many different variations in the quantity 
and range of numbers (data) in the information you’ve collected. 
However, sometimes you are making observations of data regarding 
questions that can only be answered with a yes or a no answer.

Additionally, most of the time each yes/no question has no 
relation to the other yes/no questions asked in the survey. In other 
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words, they are independent of each other. If you answer question 1 
with yes, then you can still answer question 2 with yes or no—it’s not 
dependent upon how question 1 was answered.

Because they are independent of each other, the answers can be 
recorded as only yes or no. Also, each different time the question is 
asked again, it can be answered without any connection to any other 
time it was previously answered. This is a simple way to explain 
binomials.

For example, prior to the interview for determining a donor’s 
health history, the donor is asked to read some educational mate-
rial. The first question on the health history is “Are you feeling well 
today?” and the second question is “Did you read the educational 
material?” The donor may answer yes to both questions during one 
donation and then no and yes on the next donation. The questions 
and the events are independent of each other.

Moriarty and the Binomial Theorem

Binomials were given lasting fame by Arthur Conan Doyle (1859–1930). In 

his story “The Adventure of the Final Problem,” the great detective Sherlock 

Holmes is giving Dr. Watson a vivid sketch of his archenemy, Professor James 

Moriarty. Moriarty is, Holmes tells the good doctor, “endowed by nature with a 

phenomenal mathematical faculty. At the age of twenty-one he wrote a treatise 

upon the binomial theorem, which has had a European vogue.” To be fair, in 

the pastiche The Seven-Per-Cent Solution, by Nicholas Meyer (1945–), Watson 

asks Moriarty (who in this version is no criminal but merely Holmes’s old math-

ematics tutor) if he’s written anything on the binomial theorem. “Certainly not,” 

Moriarty exclaims. “Who has anything new to say about the Binomial Theorem 

at this late date?”
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How are these used? Suppose a woman is hired to work at a 
new company or start-up and is offered a salary plus stock options. 
These stock options are often binomial in nature. The contract 
states that if the new employee works for a certain number of years 
at the new company, she will receive a flat monthly salary. In addi-
tion to this salary over the years, there will be an equity option. The 
equity option is to the effect that if the employee is still employed 
within five years of hiring, and if the equity stock of the company 
exceeds a certain dollar amount, then the employee will have the 
“option” of exercising her right to own a certain number of shares 
at that price.

With this type of contract, the employee is better off if she stays 
for the full five years, and she is also motivated to work hard and help 
the company earn as much as it can, so that its stock value meets or 
exceeds the value of the exercise price of her stock options.

You can see from this description that the contract is binomial: 
in five years, exercising the options can be formulated as a yes or no 
choice: yes, if the price of the stock exceeds the contract option price, 
or no, if the price of the stock never got high enough for the employee 
to exchange her options for real stock.

Because the contract is yes/no, it can be worth only one of two 
values: a preset amount or $0. In other words, the contract is either 
yes (the full dollar amount of the contract) or no (worth $0).

Each contract that is written for each employee is usually written 
at a different exercise price and a different amount of stock options 
for each employee. The CEO generally gets the best deals; other 
employees get contracts that would require that the stock price rise 
to a higher value before the options were worth anything.
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B U I L D I N G  M O D E L S  W I T H  B I N O M I A L S

When building a spreadsheet of the data you’ve collected for your 
statistical study, normally you record each type of data or each ques-
tion asked in your discovery; each one goes in a separate column 
on a spreadsheet. Each observation point (person surveyed, trading 
day, classroom time observed, etc.) is in the horizontal row of the 
spreadsheet. In that way, each observation point has all the separate 
points (questions, data points, measurements, etc.) in columns along 
the same row. You’ll want to keep the numbers of these in the same 
scale, to make it easy when you compare the numbers later.

In the case of a question in your observations that requires a 
yes or no answer rather than a number, let’s convert the yes or no 
answers into numbers. This makes it easier to compare like data. 
In this case the yes answers are converted to 1, and the no answers 
are converted to 0. Changing the answers to ones and zeroes also 
helps when performing other, higher-level statistical analysis—for 
instance, multiple regression analysis. We’ll discuss this kind of 
analysis in a later section.

B I N O M I A L  D I S T R I B U T I O N

Imagine taking a test consisting of twenty true or false questions 
and answers. Having not studied for the test, you have to guess at 
every question. If the passing grade is 65 percent, what is the prob-
ability that you pass the test? In other words, what is the probability 
of getting at least 13 questions correct?

Using some of the language from probability and statistics, we 
need to collect twenty observations in which the probability of a 
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correct response for each observation is 50 percent and each event 
is independent of every other event. This constitutes the essence of 
a binomial experiment. There are three conditions that must be met 
in a binomial (Bernoulli) experiment:

•	 There can be only two outcomes per trial—call them success and 
failure

•	 There must be n repeated, independent trials
•	 The probability of success in each trial must be constant

In our example, there are two outcomes per trial—true or false. 
There are twenty repeated independent trials. The probability of a 
correct answer in each trial is 50 percent (since you did not study 
and are presumably guessing on each question). The Microsoft Excel 
function BINOMDIST is designed to compute binomial probabili-
ties. Entering the pertinent information for this problem, you will 
discover there is only a 13 percent chance of passing the test. Our 
advice is that you study for the test.

Jacob Bernoulli

Jacob Bernoulli (1655–1705) was one of four members of his family who stud-

ied mathematics, physics, and engineering during the seventeenth and eigh-

teenth centuries. The other three are renowned in their own right.

Is rolling a die an example of a binomial distribution? Is selecting 
a card from a well-shuffled deck? The answer is simple: no and yes. 
Let’s look at the problem of rolling a fair die. For the sake of argu-
ment, you want to see how many times you get a 6 when you roll the 
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die 100 times. First roll: did you get a 6? Here is the critical step. If 
your answer is “No, I got a 3,” then your experiment is not binomial. 
If your answer is “No, I did not get a 6,” then you do have a binomial 
experiment. Remember: there can be only two outcomes per trial. 
Success—you got a 6. Failure—you did not get a 6. (In the binomial 
version of the experiment, there is no need to know what number the 
die displayed if it was not a 6.)

A similar argument can be made for drawing a card from a well-
shuffled deck. Did you get a spade? Yes or no. But there is also a sec-
ond issue: did you put the card back in the deck before drawing the 
next card? If you did, you have a binomial experiment because the 
probabilities remain the same as the first trial. If you did not, then 
you do not have a binomial experiment because you’ve changed the 
probability that the next card drawn can be a spade.

C E N T E R  A N D  S P R E A D

The distribution of the number of successes for n independent tri-
als has a center and a spread that are both measureable. If the prob-
ability of success on any one trial is p, the mean of the distribution 
of successes is the product np, and the standard deviation for the 
distribution is

√
np(1  p) . The mean is also called the expected 

value, so we get the notation  µx  E(x)  np, while the standard 
deviation has the notation ox2. For example, if a company who makes 
cold calls claims a probability of making a sale on any call is 0.05, 
then an employee who makes 500 cold calls in a day is expected to 
make (0.05)(500)  25 sales with a standard deviation of√

500(0.05)(0.95)  4.87.
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B I N O M I A L  V E R S U S  N O R M A L  D I S T R I B U T I O N

Technically speaking, these are two very different situations. The 
binomial distribution uses a discrete variable. We count the number 
of successes gained from the n trials. The normal distribution uses 
continuous variables. We measure the thickness of the washers. 
However, when we look at the distribution of the probabilities of x 
successes in 20 trials of a process for which the probability of suc-
cess on any one trial is 0.5, the distribution has a very familiar shape:

When the probability of success is 0.4, we can see a little bit of 
skewing to the left:
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Is there a relationship between the two that can be used? Most 
definitely. As we saw, when the probability of success is different 
from 0.5, there will be some skewing of the symmetry of the distribu-
tion. Research has shown that if n is sufficiently large, the skewing 
can be offset. What is sufficiently large? If the values np and np(1  p) 
are each larger than 5, the sample size is sufficiently large.

But what about the discrete versus continuous variable issue? 
The probability of n  4 with a continuous random variable is 0. 
If we have a binomial experiment and we are seeking to determine 
the probability of 4 successes with a normal approximation, we set 
the bounds of the normal distribution from 3.5 to 4.5 (which clearly 
includes 4 and no other possible discrete outcomes).

An extension of the binomial distribution is the Poisson distribu-
tion. In a Poisson distribution, we seek to determine the probability 
for a discrete number of successes, but we also include a continu-
ous interval. Some examples of a Poisson distribution include the 
number of calls received per hour, the number of cars served at a 
tollbooth per day, and the number of customers who enter a bank 
per hour.
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BASICS OF PROBABILITY 
DISTRIBUTIONS
W h at A re t he Ch a nces?

As we’ve seen, statistics can help you answer the question “What 
are the chances?”—that is, how frequently is something going to 
happen? This is a good question to ask and answer if you are try-
ing to predict an outcome or if you are trying to measure how often 
something will happen. Probability is one of the key ideas in modern 
statistics, especially in the realm of statistical finance. This section 
will discuss how to determine “What are the chances?”

T H E  R A N D O M N E S S  O F  T H I N G S

While it seems in life that many things are boring, mundane, and 
predictable, the truth is that much of life must deal with things that 
are random. The traffic jam that you encounter going to work, the 
spring thunderstorm that soaks you while walking to the train, the 
event in overseas news that pushes the stock market lower today, 
and the numbers that come up in the lottery that make your $2 lot-
tery ticket worthless—all of these are examples of randomness.

We usually think of positive things as predictable and mundane, 
and we think of things as random when they turn negative or against 
our best hopes. The facts are, most individual events in life have a 
large element of randomness attached to them. Can you predict with 
100 percent certainty that you will make it into work on time, that 
the same people will be your clients, that you will take the same way 
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home at night, or that the same people will be at the coffee shop for 
your afternoon break? You can make a very reasonable assumption, 
based on probability, that all will be the same, but there will be excep-
tions: for instance, an unexpected accident on your route to work that 
blocks traffic for half an hour and makes you late to the office. The 
point here is not to anticipate all possible individual outcomes; it’s to 
find the most accurate and efficient means of determining the prob-
able outcome.

The Irrationality of Observations

Just because something is improbable doesn’t mean we don’t somehow 

expect it to happen. The outstanding example of this is the lottery. You know 

that you’ve played the Powerball lottery every Saturday night for the past ten 

years. You play only one ticket, for $2. You’ve collected data that includes 520 

observations (10 years × 52 Saturdays a year), and you’ve seen that your lot-

tery tickets have never won the lottery. In fact, you also know from comments 

in the newspapers and online that the true chances of winning the lottery are 

close to 1 in 290 million. But every Saturday you still go to the store to pick up 

your lottery ticket. Why? Because some part of your mind believes that you can 

be an outlier and beat the odds.

The entire industry of gambling and the city of Las Vegas have been built 

on the foundation of this irrationality.

Every day you do just that: make predictions based upon past 
observations. You know that all summer, Thursdays are pretty much 
the same: get to the office, do your work, meet with clients—right 
down to your same afternoon coffee at the same coffee shop and the 
same family trip to the baseball diamond with your children. Because 
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this same sequence has happened every Thursday all summer, when 
a new Thursday comes, you’re going to make a reasonable assump-
tion that all will be the same as previous times. Why? Because you 
are using statistical methods to say to yourself, “The average things 
that happen to me on Thursdays are this, this, and this.…I’ve made 
this observation many times (each Thursday this summer), and 
therefore, things that happen on Thursdays won’t stray far from the 
mean (i.e., everyone and everything act pretty much the same as 
every average Thursday).”

As you can see, chances can be very strong that something will 
happen the same way each time, or they can be equally strong that 
an event will never happen. While this may be true, there is still an 
element of uncertainty, because as we know from our discussion of 
bell curves, there are always outliers. Let’s look at what could happen 
differently:

WHAT ARE THE CHANCES THIS THURSDAY ISN’T THE SAME AS LAST THURSDAY?

Chance of rain in July 4 days out of 31 

Chance of traffic jam in LA 102 hours/year/typical driver in traffic jams

Chance of you becoming sick Approximately 1 day every 3 months as a sick day

Chance of power failure 1 hour/year

Chance of police chase on the freeway 1 day every 5 years

T H E  C H A N C E S  A R E — T H E  O D D S  A R E …

You can see from the chart that the chances of the five different 
things on each Thursday not happening have different odds. Even 
though you know from experience that the chances of this Thursday 
being pretty much the same as the last Thursdays are very high, you 
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see here that each one of the day’s elements has a chance of not hap-
pening properly. In other words, the odds must be “beaten” on each 
element every time for the day to have a different event. You have to 
have no rain (and therefore no canceled baseball games), you also 
have to beat the odds of a traffic jam (so you have time to get your 
coffee before the game starts), then you have to beat the odds of not 
having to take a sick day (and therefore not going to work in the first 
place), and so on. To find the odds of the day happening in the same 
way as other Thursdays, you have to consider everything that could 
go wrong (or differently) and take this into consideration!

This is statistically what your mind is thinking when you say to 
your child, “Be ready at 5:30 tonight for the baseball game. I’ll be 
home to pick you up and we’ll go from there.”



90� S TAT I S T I C S  101

ANALYZING PROBABILITY 
DISTRIBUTIONS
T he Tr ut h about  Odd s

When you are predicting how your workday will play out, you are 
using your past knowledge of how workdays have gone in the past. 
You know that in the morning, there is the commute and your usual 
stop for a coffee and a roll at the same corner donut shop, you know 
that most of the time you’ll have a full tank of gas (because you usu-
ally fill up every Saturday morning), and you also know what will 
happen during work (especially if you’ve been working there for a 
long time). You may also know what happens on the way home since 
you make the same commute as always: the kids, dinner, taking the 
kids to their baseball or soccer games, a quiet evening, and bed. You 
also know the same thing will most likely happen tomorrow.

How do you know this? Because your mind is making small, edu-
cated calculations of what will most likely happen. These are statisti-
cal assumptions based upon many years of observed data.

W H A T  I S  R E A L L Y  G O I N G  O N ?

Statistically what is really going on behind the scenes is that almost 
every time this type of day starts, the same types of things happen. 
In other words, you make (subconsciously) the same observations. It 
is as if your mind is taking a statistical survey of what will happen: 
each event during the day is a bit of data in the survey; each time it 
happens (the same or differently) is an observation.
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Since most of the time the same things are happening day in and 
day out, your observations form an imaginary data set of an aver-
age day. You’ve learned that when you make many observations in a 
study and you put all the observations under a bell curve, the center 
of the bell curve will be the average thing that will happen. There-
fore, the average day that has happened in the past is the center of 
the bell curve. Anything else that has happened that is substantially 
different will be located away from the center; the less often an event 
occurs, the farther away from the center it will be. Most of the times 
the average day happens, most of the data will be in the center of the 
curve, so it will form a tall bell curve. This is because there is so much 
data around the middle and so little away from the middle. From this, 
you can draw some conclusions as to the probability distribution.

A tall bell curve says that most of the time the average will hap-
pen. You can then say, “The probability of some odd, weird thing 
happening today is very small, because my bell curve says that 
the probability distribution is very centered around the mean.” If it 
rained and you were late for work, those events would be a small 
amount away from the average day. Suppose you went for your morn-
ing coffee and roll, and the shop was out of baked goods. That event 
doesn’t happen too often, and it wouldn’t be typical. If everything 
was average during your workday, but you came home and the coach 
had canceled your child’s soccer game, that would also not be typi-
cal. But it’s not so far off the typical and is still very close to an aver-
age day.

From the shape of the curve, you would be able to say that the 
probability of the same day happening is high: the probability dis-
tribution is closely centered around the mean, or closely centered 
around the average, typical day.
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R A N D O M N E S S  I N  S T A T I S T I C A L   T E R M S

When we are discussing events that are random, the classic way to 
explain them is with a coin toss. The experiment is simple: toss a 
heads/tails coin four times. What are the different ways the group of 
coin tosses come up?

COIN TOSS

Toss 1 Heads Tails

Toss 2 Heads Tails

Toss 3 Heads Tails

Toss 4 Heads Tails

As you can see, with each coin toss there are two possible out-
comes: either heads or tails. There is a 50/50 chance of each hap-
pening with the first coin toss. What are the chances of four heads 
in a row coming up if the coin is tossed four times? The chance of 
the heads in the first toss is 50 percent, and then the chance of the 
next toss is also 50 percent. This means that half of the first time 
and half of the next time the coin will come up heads, or 50 percent 
× 50 percent  25 percent. You could say with certainty that the 
chances of two heads in a row of two tosses are 1 in 4, or 25 percent. 
To continue your winning trend of flipping heads, you would have to 
up the odds to 50 percent for the first toss, 50 percent for the second 
toss, and 50 percent for the third toss: 50 percent × 50 percent × 50 
percent  12.5 percent, or a 1 in 8 chance that you will win your three 
heads in a row coin toss. As you can see, your odds are getting worse 
as the number of coin tosses increases.

Who uses this information in real life? Casinos, for one. They can 
figure out the odds of a number coming up at the roulette table. If the 
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odds of the number are 50:1, then they know, on average, the gam-
bler will lose his bet fifty times for every one win. This is an average 
and is compiled over many games over many weeks, months, and 
years. If the odds are 1 in 50 that the casino will have to pay out, then 
the casino will make the payout on that number less than 50 times 
the bet. This way, no matter how many times the game is played,  
the casino will earn the differential of the two bets. If they pay out  
10 times and they earn 50 times, then the casino will earn a steady 
40 times per bet. Make sense? Think of it this way: the casino runs 
the table so that when they pay out, which they almost never do, they 
pay out way less than they take in (which they do​ almost all the time). 
In the casinos, the house never loses!

Measuring the risk of going to the tables in a casino is the same 
as measuring the probabilities of the outcome that something will 
happen.
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THE ROLL OF THE DICE
Stat ist ica l  Way s of  Show ing Ch a nce

The basic way to figure out how often something will happen is the 
same as finding out its probability. Probabilities are best figured out 
mathematically by watching how many times something happens 
during a test run of random events. This section will show you how 
to use statistics and math shorthand to show the chances of things 
happening during a random test sample.

T H E  S E C R E T  T O  T H E  D I C E

The toss of a die is an excellent way of learning how to statistically 
analyze probability. This is important, since probability is used in 
many aspects of modern medicine, finance, and marketing. When 
a new cancer drug is being tested, the drug undergoes an extensive 
testing procedure. This procedure is designed to measure how often 
the drug will have effects upon people who take it. At the same time, 
in marketing studies, surveys are taken to find out how often people 
will use a website to buy a product. In this case a study is made show-
ing the website to a large group of people. Software is installed that 
follows the click-through path that the shopper takes through the 
site and ultimately keeps track of how many times the customers buy 
something from the site. In finance, the probability that stock prices 
will go up when bonds go down is often measured. This data is used 
when professional portfolio managers invest.
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Dice have six sides. If the dice are normal, there is an equal 
chance that any number 1 through 6 will be rolled. There is a 1 in 6 
chance that a 1 will show up for every die thrown.

A C C U R A T E L Y  M E A S U R I N G  P R O B A B I L I T Y

If you throw a die and you get a 1, your chances are 1 in 6. If you 
throw the die two more times, the chance of getting a 1 a second time 
(that is, two times out of three) is small, but there is a chance this will 
happen. If indeed you rolled a 1 twice out of three rolls, you might 
assume (by the initial look of the facts) that the chances of rolling a 1 
twice in three rolls is 2 out of 3.

The Probability of Compound Events

The probability of rolling a 1 with a single die is 1/6. The probability that the 

second roll of the die results in an outcome of 1 is also 1/6 because the two 

events are independent of each other. Therefore, the probability that the first 

two rolls each result with a 1 is 1/6 × 1/6  1/36.

Why is this misleading? Because you’ve only rolled the die three 
times! The chance of rolling the die and getting 1 two times out of 
three rolls is small—about 1 in 200, to be exact. The only realistic 
conclusion that you can make is that you’ve beaten the odds with 
your three rolls.

Rolling the die only three times doesn’t really tell you much. In 
fact, it doesn’t really help you at all when it comes to proving your 
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theory that you have a 1 in 6 chance of rolling a 1 when you roll the 
die.

How can you overcome this huge error? Well, first you’ll need to 
increase the number of times you roll the die and record the number 
of times a 1 comes up. In fact, to get accurate measurements of how 
often you’ll get a 1, you’ll need to roll the die a minimum of 100 times. 
Most professional researchers know that running a random test 100 
times is the bare minimum to get any results that matter. It would be 
better to run the “roll the die” test 500 or 1,000 times and record how 
often a 1 came up. It’s only after you run a very large number of tests 
that you can draw a conclusion of “What are the chances” or “What 
is the probability” that the 1 will happen.

T H E  S A M P L E  S E T  A N D  T H E  O B S E R V A T I O N S

In the example of rolling the die, there are two main factors that are 
used to statistically describe the probability of getting a 1. Let’s say 
you’ve rolled the die 1,000 times and seen the 1 come up 166 times. 
The 1,000 rolls are equivalent to the number of times you’ve tested 
your theory of the 1 in 6 outcomes. These 1,000 rolls are called the 
sample set. In statistics, the sample set is the big picture, the entire 
group in your test or in your study. If you are measuring the effec-
tiveness of a new cold medicine, you might decide to test 1,000 stu-
dents on a college campus. If it’s a large public college, there might 
be too many students to test every student. This certainly would be 
the case for some very large universities. In this case you could take 
a sample of the students at random and test how well the cold medi-
cine is working. You could randomly sample students in the hallways 
to find a well-diversified study group: this is called the sample set. 
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You would then ask if they took the cold medicine and how well it was 
working. Your test would be somewhat scientific and random enough 
to be effective.

The Beginning of Probability

The correspondence between Blaise Pascal (1623–1662) and Pierre de Fermat 

(1601–1665) concerning a problem posed by Antoine Gombaud, Chevalier 

de Méré (1607–1684) in 1654 laid the fundamental groundwork of probability 

theory.

In the case of the die roll, the 1,000 rolls would be your sample 
set. Surely you wouldn’t be able to observe every roll of every die in 
the world forever, but with 1,000 rolls at random you’ll get a good 
sampling of the typical die roll. With both the cold medicine and the 
die roll sample set, what are seen are called the observations.
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NORMAL DISTRIBUTION
A rea u nder t he B el l  Cu r ve

Up to this point, we have looked at probability for discrete events. 
We now take a look at a very special case for probabilities of con-
tinuous data, the normal distribution (also known as the Gaussian or 
Laplace–Gauss distribution). The graph of the normal distribution is 
the bell curve. The mean, median, and mode of a normal distribution 
are all the same point, and the bell curve is symmetric about this 
point. The standard normal distribution has a mean equal to 0 and a 
standard deviation equal to 1.

P R O P E R T I E S  O F  T H E  B E L L  C U R V E

It can be shown, using calculus, that the total area under the bell 
curve is 1. While the reality is that few distributions are actually 
normally distributed, many distributions approximate the normal 
distribution. The fact that the total area is equal to 1 enables the 
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distribution to be used as a probability model for applications. In the 
next section, we will look at the central limit theorem, which makes 
the use of the normal distribution all that more practical.

The histogram shown below is the relative frequency distribu-
tion for the thickness of 1,500 washers used in a commercial process. 
Observe how the histogram looks like the bell curve.

The table displays the relative frequencies for each of the 
intervals.

RELATIVE FREQUENCIES FOR THICKNESS (IN CM) OF 1,500 WASHERS

INTERVAL FREQUENCY RELATIVE FREQUENCY (%)

0.0057–0.0077 4 0.2

0.0077–0.0097 9 0.6

0.0097–0.0117 39 2.6

0.0117–0.0137 88 5.9

0.0137–0.0157 166 11.1

0.0157–0.0177 250 16.7

0.0177–0.0197 268 17.9
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RELATIVE FREQUENCIES FOR THICKNESS (IN CM) OF 1,500 WASHERS

INTERVAL FREQUENCY RELATIVE FREQUENCY (%)

0.0197–0.0217 268 17.9

0.0217–0.0237 205 13.7

0.0237–0.0257 134 8.9

0.0257–0.0277 44 2.9

0.0277–0.0297 16 1.1

0.0297–0.0317 7 0.1

0.0317–0.0337 2 0.4

If a washer from this manufacturing process is selected at 
random, we can state that the probability that the thickness of the 
washer is between 0.0217 cm and 0.0237 cm is approximately 13.7 
percent.

E M P I R I C A L  R U L E

There are certain relationships that are true for the area under the 
bell curve.

•	 The area to the right of the mean is 50 percent
•	 The area within 1 standard deviation of the mean  

(that is, μ  σ < x < μ  σ) is approximately 68 percent
•	 The area within 2 standard deviations of the mean  

(that is, μ  2σ < x < μ  2σ) is approximately 95 percent
•	 The area within 3 standard deviations of the mean  

(that is, μ  3σ < x < μ  3σ) is approximately 99.5 percent
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(The first item should be obvious, and the last three can be shown 
with calculus.)

For example, suppose the thickness of the washers highlighted in 
the last section is normally distributed with a mean of 0.2 cm and a 
standard deviation of 0.015 cm. What is the probability that a washer 
selected at random will have a thickness between 0.185 and 0.215 
cm? The answer is 68 percent because this is the interval within 
one standard deviation of the mean. Between 0.17 and 0.23 cm? The 
answer is 95 percent because this is the interval within two standard 
deviations of the mean. Between 0.155 and 0.245 cm? The answer is 
99.5 percent because this is the interval within three standard devia-
tions of the mean.

What if the thickness of the randomly selected washer is between 
0.17 and 0.215 cm? This is a bit trickier. The interval from 0.17 cm to 
0.2 cm is 47.5 percent of the data (that is, half of 95 percent), while 
the interval from 0.2 cm to 2.15 cm is 34 percent (half of 68 percent). 
Therefore, the result is 81.5 percent.

And if the washer’s thickness is greater than 0.215 cm? We know 
that the probability that the thickness is greater than 0.2 cm is 0.5 
and that the probability that the thickness is between 0.2 and 0.215 
is 0.34. The probability that the thickness is greater than 0.215 must 
be 0.5  0.34  0.16.

What about between 0.18 and 0.22 cm? The empirical rule does 
not help with this problem. The correct probability (81.76 percent) 
can be found with the use of appropriate technology.
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Chebyshev’s Theorem

While the empirical rule applies to data that are normally distributed, Pafnuty 

Chebyshev (18211894) showed that for any distribution, at least 1  
1
k2

of 

the data will lie within k standard deviations of the mean. For example, 

at least 3
4

of the data will lie within 2 standard deviations of the mean.

S T A N D A R D I Z E D  S C O R E S  ( A K A  Z - S C O R E S )

In the days before technology, one used a table to compute probabilities 
from a normal distribution. Since there are an infinite number of possi-
ble distributions with different means and standard deviations, the 
standardized normal distribution was designed to measure the number 
of standard deviations a raw score was from the mean. If x represents a 

raw score, then the z-score is computed by the formula z  x  μ
σ

(for 

populations) or z  x  x—
s

(for samples). Examine these two problems:

1.	 The heights of the students at Central High School are nor-
mally distributed with a mean of 68 inches and a standard 
deviation of 2.4 inches. What is the probability that the height 
of a student chosen at random from the student body at Central 
High School is between 64.4 and 74 inches?

2.	 The weights of the chassis for the G style automobile made by a 
high-end manufacturer are normally distributed with a mean of 
1,000 pounds and a standard deviation of 12 pounds. If a chas-
sis for the G style automobile is randomly selected from the 
production line, what is the probability that the chassis weighs 
between 982 and 1,030 pounds?
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The answers to these questions are the same because they both 
represent the intervals from 1.5 standard deviations below the mean 
to 2.5 standard deviations above the mean.

(z  64.4  68
2.4

 −1.5; z  982  1000
12

 −1.5; 

z  74  68
2.4

 2; z  1030  1000
12

 2)

Fortunately, the built-in functions in modern technology allow us 
to enter the raw data values to compute the probabilities.

N O R M A L  S H A P E S  O F  B E L L  C U R V E S

As you can see from the table for the thickness of washers, most of the 
time data comes within one or two standard deviations from the mean. 
In some very rare cases (a 1 in 333 chance), a bit of data will fall beyond 
three standard deviations. How does this apply in the real world?

Let’s take the stock market, where professional traders and money 
managers pick investments such as stocks, commodities, gold, and 
bonds after making careful studies of how these investments have 
reacted in the past to varying market conditions. These profession-
als work to build a basket of investments (called a portfolio) that are 
designed to achieve one goal: to earn the greatest amount of return 
with the minimum of risk. They use statistics to build models of how 
different combinations of investments react under different condi-
tions (good and bad markets). They then take out and add different 
stocks, commodities, bonds, etc., to try to get the highest return they 
can. They know that when some investments go down, others trend 
up. If they build the right model with statistics, they can build the 
right portfolio of the best blend of assets.
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They look at past historical data of how different investments 
have done under different up and down economic and stock market 
conditions. From a statistical analysis of this data, they build a model 
of the most likely way the investments will react in the future. In this 
way they are using the empirical rule: they know 95 percent of the 
time, the investment’s price will be within two standard deviations 
from the average. Because of this they can pretty much predict where 
the stock or bond will be in the future.

The problem with this theory is the very small chance that the 
stock will act unusually. In fact, there is only a 0.3 percent chance 
the stock’s price will be farther than three standard deviations from 
the average price of the stock. Professionals know the chances of this 
happening are so small that they act as if it will never happen—but 
in fact it does. Investment portfolio modelers were caught off guard 
by the rapid fall of the stock market (and their investors’ portfolios) 
during the 2007–2008 worldwide financial crisis.

The investment models didn’t fail; it is just that the 0.3 percent 
chance event happened.
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THE CENTRAL LIMIT THEOREM
Sa mpl ing Dist r ibut ion s of  t he Mea n

As we discussed in the previous section, there are many distributions 
that approximate the normal distribution. We begin with sampling 
from populations that are normally distributed and then look at distri-
butions that are not normally distributed. In this section, we discuss 
what might very well be the most important theorem in all of statistics: 
the central limit theorem. It is this theorem that allows us to make edu-
cated guesses about population means and population proportions.

S A M P L I N G  F R O M  N O R M A L  P O P U L A T I O N S

Suppose we have a population that we know is normally distributed 
with a mean equal to μ and a standard deviation equal to σ and that 
we draw unlimited samples of size n from the population. (This 
means we can draw a sample of size n and then “put all the pieces 
back” before we draw the next sample.) We create a new set of data 
by computing the mean for each sample drawn. What is the mean, 
μx

_, and standard deviation, σx
_, for this distribution of sample means? 

The mean of the distribution of sample means will be exactly the 
same as the mean of the population. That is, μx

_  μ . The standard 
deviation for the distribution of sample means, called the standard 

error of the mean, has the formula σx
_  

σ

 
√

n . An immediate impact 

is to see that the values of n get larger the standard error of the mean 
gets smaller. Graphically, this will cause the bell curve to become 
much narrower and taller.



106� S TAT I S T I C S  101

As an example, suppose a manufacturer ships goods in a box so 
that the weights of the boxes are normally distributed with a mean 
weight of 25 pounds with a standard deviation of 4 pounds.

1. What is the probability that a box picked at random will have a 
weight between 24 and 27 pounds?
We’ll leave the answer in terms of z-scores for the purpose of making 

a point. The z-score for 24 pounds is (z  24  25
4

 -0.25 and the 

z-score of 27 pounds is z  27  25
4

 -0.5. So we are looking for the 

probability P(-.25 < z < 0.5).

2. What is the probability that the mean weight of a sample of 25 
boxes will be between 24 and 27 pounds?

The z-scores for these values are now z 
24  25

4
 
√

25

 -1.25 and 

z  
27  25

4
 
√

25

 -2.5. Even without being able to compute the actual 

probability, you can see that P(-1.25 < z < 2.5) will be significantly 
larger than P(-.25 < z < 0.5).

3. What is the probability that the mean weight of a sample of 50 
boxes will be between 24 and 27 pounds?

The z-scores for these values are now z 
24  25

4
 
√

25

 -1.25 and  

z  
27  25

4
 
√

25

 -2.5. 
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Can you see that by taking larger sample sizes, you can be assured 
that the probability of getting the correct sample mean is increased?

T H E  C E N T R A L  L I M I T   T H E O R E M

The normal distribution is a powerful tool to compute probabilities for 
continuous random data—but not all continuous random data neces-
sarily follow a normal distribution. Then again, we aren’t too often as 
concerned about a single piece of random data as we are about the mean 
of this data. Pafnuty Chebyshev (1821–1894) and a number of other 
Russian mathematicians from the Saint Petersburg Imperial University 
observed a powerful behavior of data that takes advantage of the normal 
distribution. It is called the central limit theorem. The theorem states 
that as the size of each sample gets large enough, the sampling distri-
bution of the mean can be approximated by the normal distribution no 
matter what the distribution of the individual data might be. With this 
theorem, statisticians are able to gain more information about popula-
tions. Consider the population of 2,000 randomly selected integers 
between 0 and 100,000 whose distribution is displayed in this graph:
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One thousand random samples are taken from this population. 
First the size of each sample is 10 elements. Then the size of each 
sample is increased to 25, then 30, 100, and 500. The mean of each 
sample is computed and stored. The distribution of the sample 
means is shown. (Please observe that the scale of the window needs 
to be changed as the sample sizes get large.)

For a sample size of 10, the distribution looks like this:

For 25, it looks like this:
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For 30:

For 100:
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And finally, for 500:

S A M P L I N G  D I S T R I B U T I O N S  O F 

T H E   P R O P O R T I O N

There are times when the parameter (the population value rather 
than the statistic of the sample) of interest is the proportion of the 
population rather than the mean. Once such instance is the percent 
of the population who prefer candidate X for the presidency. Lower 
case p is used to represent the sample statistic, while the lower case 
Greek letter rho, ρ, represents the population parameter, and σρ rep-
resents the standard error for the proportion.

σρ  

√ 
p( 1  p)

n

 
When can we apply the normal distribution to the sampling of 

the proportion? Given a sample size n and a proportion of the sample 
p, we require that np and n(1  p) each be larger than 5.
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Here is an example applying the sample distribution of the pro-
portion. A car dealership manager has determined that 30 percent 
of the customers who purchased or leased a new car from her store 
are repeat customers. She draws a random sample of 150 customers 
who have purchased or leased a new car from her dealership. What 
is the probability that between 30 percent and 35 percent of these 
customers is a repeat customer?

Can we apply the normal distribution to this problem? Yes, because 
(0.30)(150)  45 and (0.70)(150)  105. The z-score for 30 percent is 

0, while the z-score of 35 percent is z 
.35  .30

 
√

(.30)(.70)
150


.05

 
√ 

.21
150

 

1.336. All we need to do is apply our technology to determine P(0 < z < 
1.336)  0.4092.
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OUTLIERS ON THE BELL CURVE
Fat  Ta i ls  a nd W h a le Ta i ls

As we learned earlier, when looking at a bell curve, there are one, two, 
and three standard deviations. With normal events, it’s pretty safe 
to assume that 95 percent of the time an event or observation will 
take place within the range of two standard deviations away from 
the average.

Standard deviations give a sort of assurance, a loose-fitting guar-
antee that things are predictable and that they most likely happen 
how they are expected to occur. While this is true most of the time, 
occasionally something happens that isn’t normal. These events are 
beyond the norm and sometimes can be very disruptive to otherwise 
very well–laid plans.

P A Y I N G  T H E  P R I C E  F O R  P R E D I C T A B I L I T Y

In many cases, statistics can provide a very nice comfort level 
about what is most likely to happen. Occasionally, though, they can 
mislead. One of the most famous recent cases of this is the 2008 
recession and stock market crisis. Before this event, many profes-
sional money managers were using statistics to build well–thought-
out investment portfolios. The methods they were using went back 
to concepts that had been around for more than fifty years. The 
concepts of diversification, “Don’t put all your eggs in one basket,” 
and portfolio insurance were based on layer upon layer of statistical 
theory. This information told the money managers that their money 
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was safe; it was invested properly; and if all else failed, the idea of 
diversification would save the day—and their portfolios.

The statistics they were using showed that most of the time, 
stocks, bonds, and other investments acted a certain way (going 
up or down) depending on market conditions. They did historical 
research and built statistical models to support their strategy. They 
knew, through their data collection, sample sets, and observations, 
that investments followed the laws of statistics: 95 percent of the 
time things would happen as predicted. If the 95 percent happened 
within a range of up/down make money/lose money, they could buf-
fer against the losses. Such investments were called “good.”

T H E  O T H E R  5  P E R C E N T

The money managers knew that statistics worked. These were 
mathematical laws that were proven. The only problem was that the 
economic conditions in the United States, Europe, and Asia were 
anomalous: the 5 percent events started to happen. Most important, 
the housing bubble in the United States abruptly burst. Housing 
prices plummeted, and homeowners were stuck with houses that 
were worth less than they owed the banks. Banks, some of which 
had been selling toxic mortgages to people who couldn’t afford them, 
suddenly discovered they were holding worthless paper.

The stock market reeled. Stocks that had in the past moved only 
$2–$5 up or down on a given day began moving $10–$20 up or 
down. Violent shifts shook the markets. The Dow Jones Industrial 
Average plunged almost a thousand points. Then it began to steadily 
drop, with sudden short upward spurts. As one commentator put it, 
“The Dow is falling with an occasional bounce off a window sill.”
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Things got so bad and so many of the 5 percent things happened 
that a new term was coined: a black swan event. The thought was, the 
stock market events were so rare, that they had the same chances of 
happening as a black swan being born. These “far away from the aver-
age” events began happening 15 percent, 20 percent, or even 30 per-
cent of the time. Financial chaos, for a time, became the new normal.

Black Swan Events

The statistician and investment analyst Nassim Nicholas Taleb (1960–) devel-

oped a metaphor called the black swan theory that seeks to explain how 

extremely rare anomalies occur and why we have a hard time predicting them 

and often try to rationalize them in hindsight. His argument is essentially that 

we’re blinded by psychological prejudices that always lead us to expect things 

will perform in a usual way. When they don’t, we often argue that we could have 

foreseen the black swan event, but for one reason or another, sufficient data 

wasn’t available to us.

Another term that came into being to describe anomalous data 
is whale tail. This is the shape of the bell curve when the outliers 
begin to dominate. Now, rather than being shaped like a bell, it has 
the head and tail of a whale, with large amounts of data points at the 
very extreme ends of the scale.

O U T L I E R S  O N  T H E  B E L L  C U R V E

While there always is a chance an extreme event will happen, these 
events are usually infrequent: about 5 percent of the time. It’s a 
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statistical fact that in normal circumstances 5 percent of the time 
a stock price will be far away from its average. How much is “far 
away”? Well, it’s different for each stock. For some, far is $10. For 
others, it’s $1. It depends how that stock has moved in the past. If the 
money managers researched the price of the stock going back years 
and discovered that the stock drops $10 or more only 5 percent of 
the time, then they will build their models with these facts. If they’ve 
built the model to follow statistical law, then most of the time it will 
be a reliable tool. But during the years of the 2008 crisis, conditions 
were not normal. The outliers became the new norm.
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LIMITED AND UNLIMITED DATA
Discrete R a ndom Va r iables

When the number of data observations is limited, or controlled 
within only a certain, preset range, the observations are called dis-
crete random variables. This section will introduce and describe how 
discrete random variables are used in statistics.

S A M P L E  S E T S — D I S C R E T E L Y  S I Z E D

The size of data sets varies. The number of observations can be very 
large, numbering in the thousands, hundreds of thousands, or even 
millions. To help make the process of looking at the data set easier, 
an analyst can take a sample of the bigger set. This sample set should 
be taken at random to get the most effective widespread numbers 
and thus the most realistic reflection of the entire population of the 
group.

If the data collected in the sample set can only be within a range 
of numbers, it is called discrete data. For example, say a marketing 
firm conducts a survey concerning used car dealerships such as Car-
Max. CarMax sells used cars of all makes. The company knows that 
at any time they will have customers wanting different types and 
brands of cars. A certain percentage of the shoppers will be truck 
buyers, and of these a smaller group will only be Ford truck buyers. 
CarMax would like to know, “What is the average number of Ford 
trucks on our lots at any given time?”

CarMax knows that certain cars sell the most, and because they 
track this, they can try to keep these cars in stock. When they take 
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the survey of what percentage of cars on the lots are Ford trucks, they 
take an inventory with all their lots throughout the United States. If 
they know that 30 percent of their customers want trucks, and half 
of these prefer to buy a Ford, they will try to stock 15 percent of their 
inventory with Ford trucks.

Discrete and Continuous Data Sets

The usage of the terms in the context of the size of the data sets is different 

from the context of whether the data is counted or measured.

The total number of trucks that they could possibly have is equal 
to the total number of spaces in their lots. If they have 1,000 lots, 
with 250 spaces for vehicles per lot, they can have a maximum of 
250,000 Ford trucks (i.e., every space in every lot would be filled by 
a Ford truck). The minimum number of trucks is 0 (i.e., there would 
be no Ford trucks at all in any lot). Thus, the possible number of Ford 
trucks in the CarMax lots has clear high and low limits, which will be 
reflected in the data set that CarMax analyzes. This is an excellent 
example of discrete random variables.

C O N T I N U O U S  R A N D O M  V A R I A B L E S

On the other hand, while the number of trucks that could possibly be 
on the lot can only range from 0—250,000, the number of customers 
coming into the car dealership and asking for a Ford pickup truck 
can vary from 0 to the size of the population who can buy a truck (i.e., 
of legal age with a license and insurance). On one end, there could 
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be no customers asking for Ford trucks during the period when data 
is being collected. On the other end, there is an unknown maximum 
of how many people can come into the dealers across the country 
to ask for the trucks. Here, CarMax may have to rely on its experi-
ence to estimate how many people come into the dealer every week 
looking for Ford trucks. There is really no way to control how many 
people come into the dealership. Theoretically, the number could 
be in the millions (if the dealer offered an incentive, such as free 
carnival rides, hot dogs, balloons, coffee, handout gifts, etc.). The 
largest number of visitors to the dealership is unknown and not in a 
set range. Therefore, this set is called a continuous random variable.

Again, these are examples of variables that are measured. 
Because a discrete data set is finite, it has definite maximum and 
minimum values that can be included in your model. On the other 
hand, remember that observations that can be very elastic or have a 
very large range are called continuous random variables. These are 
terms that are good to know when you are thinking of what you are 
measuring.
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VARIANCE AS A MEASURE 
OF RISK
Sta nd a rd De v iat ion a nd Va r ia nce of  Discrete 
R a ndom Va r iables

The shape of a bell curve tells you a lot about what is being studied. 
In this section, you’ll learn about how bell curves can be narrow, 
wide, or in between. Each one of these shapes tells a different story, 
and sometimes this story is about risk.

L O O K  A T  T H E  S H A P E

Bell curves, as we said earlier, are made from collecting data and 
plotting that data around the average. First, you plot each bit of data 
and find the average: values higher than the average go on the right 
side of the center, and values lower than the average are on the left 
side of the center. It is normal for bell curves to have most of the data 
near the average, simply because that’s the average!

There can be many different shapes to the bell curve, ranging 
from very tall and narrow to very flat and wide. The shape of the 
graph is directly tied to how close the bulk of the data lies to the aver-
age. This shape is called the spread of the bell curve, or the spread of 
the data. By studying the shape, you can learn about the variance of 
the data.

The variance of discrete random variables is the average spread 
of each data point around the mean (the average) of the group. The 
variance tells about how far from the average observances can vary. 
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In other words, if you are looking at two identical subjects (like invest-
ment performance of two different stocks) and each one returned 10 
percent on average per year, you might assume that each stock is 
equivalent in performance. Looking deeper, you would use statistics 
to find the variance of each stock’s price over the year. If one stock 
returned 10 percent on your investment, but its daily price went up 
and down –5 percent to +5 percent, and the other stock returned 
10 percent in a year, but its daily price went up and down –2 percent 
to +2 percent, then the 2 percent stock had less variance. To earn the 
10 percent return on the first stock, you have to tolerate a 10 percent 
daily swing (–5 percent to +5 percent), but the second stock can earn 
the 10 percent yearly return with only a 4 percent daily swing. The 
second stock offers the same 10 percent performance but with con-
siderably less risk. In statistical terms, its variance is much smaller.

The variance in this example measures how much of the daily stock 
price can be expected to move away from the average each time. If we 
were to plot the performance of the second stock on a bell curve, the 
curve would be high and narrow, showing a tight spread. Most of the 
time, the stock’s price (the data) is tightly centered around the mean.

The Limits of Statistics

Many investors argue that statistical analysis of the stock market has signifi-

cant limits. This is partly because the market has so many moving parts and 

because many of these parts are fundamentally irrational. The 2007–2008 

financial crisis, for example, was partly sparked by the fact that homeown-

ers and lending institutions suddenly realized that many homes simply weren’t 

worth what they were currently valued at. No amount of statistical analysis 

could have predicted that. According to many investors, statistics can tell you 

quite a bit about the past but relatively little about the future.
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S T A N D A R D  D E V I A T I O N S

You’ve learned that a group can be arranged in a bell curve. You’ve 
also learned that the bell curve can have many shapes, and that a 
bell curve that is high and narrow means that the variance of the 
data is small and closely set around the average. Also, you’ve learned 
that if the bell curve is low and widely set, this means that the vari-
ance of the data is large and far set around the mean. If you know the 
variance of a group of data, then you can also get a better picture of 
the risk. In the stock example, we saw two stocks with two different 
variances.

If you are comparing large amounts of variances from a large 
number of bell curves, then looking at the standard deviation will 
show all the numbers on an even keel. This can be an effective tool 
when comparing large groups of bell curves. With stock picking, you 
can measure which stock offers the greatest return with the mini-
mum risk.

How would you do this? You’d arrange the stocks by standard 
deviation, with the lowest standard deviation at the top of the list. At 
the same time you’d look for the stock that historically had offered 
the greatest return. If your goal was a 10 percent return, you would 
look for the 10 percent return with the lowest standard deviation. 
Since these numbers are a measure of the stock’s price swing dur-
ing the year, a stock with the lower price swing but the same return 
would be considered to be a safer stock and therefore be a better 
choice for risk/return payoff.
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SIZE MATTERS
Sa mples ,  Sa mple Si ze ,  a nd Sa mpl ing Dist r ibut ion s

As we’ve said, when creating a representative sample from a larger 
body of data, the sample size should be larger rather than smaller. 
Statisticians usually aim for more than 100 observations, but the 
rule of thumb is the more the better. With this in mind, is it okay to 
study a group of less than 100? The answer is yes, but the sample is 
less random and therefore less reliable.

Gertrude Cox

One of the most well-known figures in modern statistical theory is Gertrude Cox 

(1900–1978). She studied experimental statistics and founded a department of 

that name at North Carolina State University. She was the first woman elected to 

the International Statistical Institute, and in 1956 she was elected president of the 

American Statistical Association. Some refer to her as the First Lady of Statistics.

When deciding what type of sampling method to use, it is best to 
keep in mind that the sample must reflect how the entire population 
of data looks. If the sample isn’t random, there is the chance that the 
information will be skewed, not reliable, or not true.

S A M P L I N G  D I S T R I B U T I O N

When you’ve created a sampling distribution and collected data, 
your first task is to take the data and plot it in a bell curve. Then 
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you measure the distribution. Whereas a distribution tells you about 
the individual data points, sampling distribution gives information 
about the samples seen as a whole. With this method you can gain 
the same information, but it has the effect of information smoothing. 
Because the samples are randomly chosen from the larger popula-
tion, the information and data have become smoothed (smoothed 
meaning more generalized and therefore easier to interpret) through 
being randomly chosen. While a properly performed population 
sampling will be varied, diverse, and random, there is still the effect 
of the result having a rounding, generalization, or smoothing effect. 
Because of this, the sampling distribution, too, will be smoothed. 
This smoothing can add to the quality of the picture of the curve, 
much like a standard deviation uses only the positive square root of 
the variance.
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MEASURING DISTRIBUTION
W h at I f  T here ’s  No Pat ter n?

Up to now, we’ve been assuming that once you determine the form 
of your analysis, collect data, determine that it’s good, and plot it, 
you can study its shape and learn from it. But what if it has no shape?

If the data looks like it has no pattern (especially on the scatter-
plot graph), then the question you’re trying to answer can’t be found 
by collecting this type of data. There is no statistically significant 
pattern to the observations you’ve collected.

This can be discouraging. When it happens, either the question-
naire or the data set is bad, and you need to rerun the tests with 
changes. You’ll do this by changing the database, looking for other 
factors to test, or by changing the questions in the questionnaire.

Remember, your data plot should form a bell curve. This is 
because most of the information is just that: it’s “most of the informa-
tion” and is therefore average in nature.

An Inverted Bell

Sometimes, when you’re plotting your data, you’ll find yourself looking at an 

inverted bell curve. The data seems to divide into two extremes, both of which 

pull the edges away from the center. Many teachers experience this in their 

grading: large parts of the class get high grades (As and Bs), while equally 

high parts get Ds or Fs. There are relatively few Cs to prop up the middle of the 

curve. Even though it’s not necessarily the pattern you want to see, it’s still a 

pattern, and you can analyze it.
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G O O D  D A T A  H E L P S  P R E D I C T 

F U T U R E   O U T C O M E S

The Excel charting function is one of the best tools to help you deter-
mine the quality of your data. The scatterplot chart and the bar chart 
can show the distribution of the data. All of these are steps on the 
way to the bell curve, which is what you are looking for. If the chart 
has no shape, then your data is off. If a bell curve isn’t perfect, or a 
curve is somewhat a bell but is lopsided to one side: that’s okay too! 
Even a bell curve with fat tails, i.e., a bell curve that has a high center 
as well as somewhat higher ends is okay. The problem arises when 
the data is all over the place with no pattern.

Remember, you’ve got a question that you’re trying to answer 
with statistics. If you can’t find a pattern in your answer, then some-
thing’s wrong, either with the question, the data, or your plotting and 
analysis. Why? Well, in part because we are looking for a repeatable 
study. If there is a pattern to the data observations, you will be able to 
take this repeatable pattern to the next level and build a model that 
would help you predict outcome in the future. That’s what modern 
statistics, data analysis, and data modeling are all about: using past 
data to help predict future outcomes.
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WHAT ARE CONFIDENCE 
INTERVALS?
Fu r t her Tests  of  Q ua l it y

Confidence intervals are used to get an estimate for a population 
parameter—usually the mean or population proportion. Measuring 
the quality of your data can be broken down further into point inter-
vals and confidence intervals. A point interval is simply the statistic 
you get from a sample. While it is true that you might get lucky and 
the sample mean (or proportion) is exactly the same as that for the 
population, that result is highly unlikely. Rather, we try to create an 
interval estimate for the value of the population parameter. We take 
advantage of the normal distribution in doing so because we know 
that if we take a large enough sample, the central limit theorem guar-
antees us that the distribution of the sample statistic will be normally 
distributed, and the empirical rule tells us that 99.5 percent of the 
data (in this case, the sample mean/proportion) will lie within three 
standard deviations of the mean/proportion. Since the mean of the 
sample means is the same as the population mean, we get a decent 
estimate for the population mean/proportion. (For ease of reading, 
we’ll use either the mean or proportion in our discussion, but please 
note that the process applies to both parameters.)

M E A S U R E S  O F  Q U A L I T Y  O F  P O L L S

It is common for news stations and newspapers to report the news as 
what they’ve learned from polls. They might report news such as “67 
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percent of New Yorkers hate the subways” or “73 percent of Chica-
goans never take a summer vacation.” While such headlines can be 
true, and while the stories that accompany them can be newsworthy 
or even entertaining, there is an element missing. These stories need 
to include the confidence interval that the polls were taken with. 
Confidence intervals can be expressed in the polls as “73 percent of 
Chicagoans never take a summer vacation (with a 5 percent margin 
of error).” The margin of error refers to the confidence interval of the 
poll.

How is the confidence interval determined? Let’s work with a 
5 percent margin of error. We are claiming that we are 95 percent 
certain that our answer is correct (or we are allowing for a 5 percent 
error).

How large is that confidence interval? Is a 5 percent margin of 
error good enough? Is it necessary for the sake of accuracy to have 
a 2 percent margin of error instead? Or even a 1 percent margin of 
error? What if there was a 10 percent margin of error? Would this tell 
you the data collected in the poll was good? How can you determine 
the quality of the data collected in a survey or poll? Easy! You look at 
the confidence interval.

How is the confidence interval determined? Let’s work with a 
5 percent margin of error. We are claiming that we are 95 percent 
certain that our answer is correct (or we are allowing for a 5 percent 
error). We look for the values left and right of the sample proportion 
so that 95 percent of the area under the graph lies between these two 
values.
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Associated z-Scores

The associated z-scores for computing margins of errors are: 10 percent  1.65;  

5 percent  1.96; 1 percent 2.58.

The confidence interval is then computed as p  ME  p  pzσρ   

p  z  
√ 

p( 1  p)
n

. In the case of the Chicagoans who never take a 

vacation, let’s assume for the sake of this exercise, that 1,000 people

are surveyed. The confidence interval for their result is .73  1.96 

 
√ 

.73(.27)
1,000

 giving the interval from 70.25 percent to 75.75 percent.

T H E  9 0 – 9 5 – 9 9  F A C T O R

In the real world, confidence intervals of any measure are broken 
down into 90 percent, 95 percent, and 99 percent confidence inter-
vals. Other percentages are considered, but these three are the 
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key ones to look at: others are used in casual studies such as news 
reports, but they aren’t considered to be scientific in nature.

What do 90 percent, 95 percent, and 99 percent confidence inter-
vals mean? Keep in mind that two standard deviations of data under 
a bell curve represents 95 percent of the observations of that data. 
Ninety-five percent of the observed data will fall within two standard 
deviations, and 99 percent of the data will fall within three standard 
deviations under the bell curve. This is where the “5 percent margin 
of error” or the “1 percent margin of error” comes into play. (This 
margin of error is easy to find using statistics software, such as R, 
Python, or Microsoft Excel.)

If you’ve collected the data and run the numbers in statistical 
software, and the confidence interval comes back as 5 percent, then 
you know 95 percent of the time you can be assured that your sample 
is within 5 percent of the true proportion in the full population of 
the study. Remember, the newspapers are performing a study with 
a smaller sampling of the entire population. The entire populations 
of New York and Chicago are too large to test comprehensively, so a 
smaller sample of New Yorkers or Chicagoans was used for the study. 
Next, pollsters need to see if the quality of their sample corresponds 
to the makeup of the entire population. Finally, they will calculate 
the confidence interval. If it’s within 95 percent, they’re good: 95 
percent of the sample set matches the larger full population.

M A R G I N  O F  E R R O R

When the newspapers are stating a margin of error, what they are 
reporting is the confidence interval in reverse. When they run the 
numbers, and the confidence interval comes back at 98 percent, then 
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the newspaper will report a 2 percent margin of error. The next thing 
to ask is, “Is this confidence interval too far away from 100 percent 
and therefore significant?” Well, the answer is “It depends.” If the 
poll is about vacation takers in Chicago, then a 5 percent margin of 
error is just fine.
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MEASURING CONFIDENCE 
INTERVALS
Ca lcu lat ing Sa mple Si zes for  Accu rac y

When you are conducting a sample test of an entire population, you 
can either calculate the confidence interval of the test, or you can 
find how big your sample set needs to be to get to the level of con-
fidence interval or margin of error you’d like for your study. Using 
statistical software, you can easily find the needed size of the study 
or the size of the sample can easily be found.

A N  E X A M P L E  O F  M E A S U R I N G 

C O N F I D E N C E   I N T E R V A L S

It is good to know how accurate a sample set of a group is—especially 
if the sample set is a larger group of 100 or more observations. This 
type of question comes into play if you’ve administered a survey. 
Suppose you are trying to find out how many freshmen on a large 
university campus are 100 percent sure of their college majors. You 
know that many college freshmen come to school with a specific end 
goal in mind: a career, a degree, or enough credits to transfer to a 
more competitive school. You also know that on your campus there 
are 2,000 freshmen. You’d like to know what proportion of them are 
solid in the college majors that they’ve selected, but it would be too 
costly and time-consuming to ask every single one of them. Instead, 
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you set up a random sampling of 100 students from each corner of 
the campus. You give them a survey and record the answers.

Your finding is that out of 100 students surveyed, 77 like and 
feel confident in their majors: that is to say, 77 percent of students 
polled answer positively to the question “Do you know and like your 
college major?” But the poll included only 100 students. Now you 
must ask yourself, “What is the quality of my survey?” or “What is 
the confidence interval of the survey?”

With statistics software such as Excel or R you can convert the 
77 percent of 100 to x percent of 2,000. How is this done? The soft-
ware will perform complex algebra internally to compute that with 
this survey, you could have a 90 percent confidence interval that 
the range between 70 percent and 84 percent of the population of 
the entire student body of freshmen would answer that they were 
decided and were satisfied with their majors.

Colleges commission studies like this all the time: they know 
that while signing up, the students act as if they know their majors 
in order to be able to get into classes next semester. But what the 
administration really wants to know is “How many of these students 
are happy with their majors/know their majors at this time?” That 
is, they want to know how many students are likely to switch majors.

The secret of knowing about confidence intervals is not just the 
math behind the numbers: even the simplest handheld scientific 
calculator can figure the number quickly and accurately. As with 
much of statistics, it’s not crunching the numbers that tells you what 
you need to know. Rather, it is knowing how to interpret the informa-
tion that is generated. Doing the math and finding the numbers is 
one thing. Getting to the point where you know what those numbers 
mean is totally different. Once you have the numbers, or the shape of 
a graph, it is up to you to know how to interpret them.
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Once you’ve collected the information from your sample survey 
set, you’ll need to ask yourself what confidence interval you’d like the 
range of the test to be set at. Ninety percent? Ninety-five? Ninety-
nine? Of course, there are other levels of confidence intervals, but 
these three are favored by most studies.

G E T T I N G  T O  9 9  P E R C E N T  A C C U R A C Y

To get a higher level of confidence, you may need to change your 
sample population, your survey questions, or both. Suppose the col-
lege administration tells you it wants the test to have a 95 percent 
confidence level. Your previous sample size of 100 students gave 
you only a 90 percent confidence level.

After analysis, you determine you must have a sample of 367 to 
get to this level of accuracy. Try it for yourself!

Helpful Website

Here is a great site that has a few built-in statistical software packages in very 

easy-to-use formats: www.calculator.net/sample-size-calculator.html. Enter all 

the information you have—95 percent confidence level, 5 percent margin of 

error, population of 2,000 students, then let the software crunch the numbers.

Here’s another one to try with the www.calculator.net/sample-size- 

calculator.html site. You’ve used the same survey, but your goal is results with 

a 10 percent margin of error, with a 90 percent confidence interval. The student 

population in this instance is 6,000. The answer shows a needed sample size 

that is much smaller than the 367 for the 95 percent confidence interval for the 

larger freshman class.
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THE BASICS OF HYPOTHESIS 
TESTING
Posit ive a nd Negat ive P roofs

To decide what type of statistical data you need to collect, you’ll need 
to circle back to the question you’re studying. This question, what 
you are trying to prove or disprove, is called your hypothesis.

This hypothesis needs to be tested. A hypothesis comes in two 
forms: positive and negative.

The first is called the null hypothesis. The null hypothesis is a 
statement about the entire test population and about a quality of 
the population. If a statistical analysis is performed, and the data 
contradict this statement, then the statement is deemed false and 
is disproven. If the statement cannot be proven false then we fail to 
reject the null hypothesis.

This procedure is exactly like our legal system. The guiding 
premise is that the defendant is innocent until proven guilty beyond 
a reasonable doubt. If reasonable doubt is not shown, the defendant 
is deemed not guilty. The only time a defendant is deemed innocent 
is when the true perpetrator of the crime is found (and since this is 
not a television show, it rarely happens).

In the case of statistics, the null hypothesis is related to the qual-
ity of the test population because if you can’t use the data to accept 
the null hypothesis, then the data might not have been meaningful in 
the first place. All you are saying is that the data either is enough to 
reject or not. If you fail to reject the null hypothesis, you are in effect 
saying the data was good enough to get you to that point. At the same 
time, you can’t definitely say the other about a rejection of the null 
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hypothesis. You can only say that this data isn’t good enough—many 
people continue testing or redesign the test at this point.

It is best to keep in mind that the reverse of logic is being used 
here. Never in a study is it assumed that you accept the null hypoth-
esis. Quite the opposite is true: you do not reject the null hypothesis. 
This is a subtle difference but an important one.

Null and Alternative Hypotheses

Keep in mind that the null hypothesis is a claim that you are testing. The alter-

native hypothesis is the complete opposite of the null hypothesis.

To accept the null hypothesis you are saying you are 100 percent 
certain that your predetermined ideas of how the study will turn out 
are true. You’ve asked a question, created a probable answer about 
how the question will be answered, set up the data, and then done the 
statistical tests. After all this, you need to 100 percent totally prove 
that the answer you discovered (the one you guessed in the first 
place) is true. You’ve accepted the null hypothesis. On the other hand, 
if you run all the tests but have yet to find that your hypothesis is not 
right, then you would not reject the null hypothesis. You simply don’t 
have any evidence to say it isn’t true. Therefore, you would be safe to 
state that the null hypothesis was accepted. Why is that important? 
Why is the wording of this acceptance/rejection important?

W H Y  U S E  R E V E R S E  L O G I C ?

With statistical testing, you collect data from smaller sample groups. 
If you were to measure entire populations, you would get 100 percent 
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accurate results of the number of observations. This is often not 
possible, so you take a smaller sample set. When you administer a 
survey (or any other test) to this smaller sample set, you measure 
its level of significance. Look back at the graph of the confidence 
interval. The area outside that region is the level of significance. A 
bit about notation: the region designated as the level of significance 
is referred to as α, while the level of confidence is 1  α.

One Tail or Two?

The null hypothesis can be one-tailed or two-tailed. A right-tailed test is 

designed for only positive acceptance, and a left-tailed test is designed for 

only negative acceptance. A two-tailed test is designed for both positive and 

negative outcomes. One-tailed tests are used in studies when a precise idea 

of rejection is important to only one end of the bell curve; for example, new 

medicine test rejection rates. In these cases, extreme acceptance rates to the 

medicine aren’t as important as extreme rejection rates.

Five Steps to Hypothesis Testing

1.	 Find the question you want to study.
2.	 State the assumed answer to the question (called the null 

hypothesis).
3.	 State what the answer to the question is if the null hypothesis is 

proved wrong (alternative hypothesis).
4.	 Find the statistical test that you will use.
5.	 Determine the rules that would make the null hypothesis 

rejected or called wrong.
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D E C I S I O N  R E S U L T S

Let’s continue to look at the legal system to help with our understand-
ing of hypothesis testing. We have a defendant accused of a crime. 
Our legal system operates under the premise that the defendant is 
innocent until proven guilty. Consequently, our null hypothesis is 
that the defendant is innocent, which makes our alternative hypoth-
esis that the defendant is guilty. The trial proceeds, all witnesses are 
sworn in and give their testimony, all evidence and closing arguments 
are presented, and the judge sends the jury to deliberate. Excluding 
the notion of a hung jury, there are four possible outcomes to this trial:

1.	 The defendant is innocent, and the jury delivers a verdict of 
not guilty.

2.	 The defendant is innocent, and the jury delivers a verdict of 
guilty.

3.	 The defendant is guilty, and the jury delivers a verdict of not 
guilty.

4.	 The defendant is guilty, and the jury delivers a verdict of guilty.

Clearly, in scenarios 1 and 4, the jury made the right decision, 
but in the other two cases the jury made a mistake. Here is the big 
question: which of the two incorrect decisions is worse? Scenario 2 
violates the innocent until proven guilty tenet of our legal system.

From the world of hypothesis testing, this is the error we try to 
guard against, and we call the probability of making this error the 
level of significance. Depending on the nature of the hypothesis 
being tested, working with a level of significance of 5 percent or so 
could be fine, but there are issues, especially medical issues, where 
the level of significance must be much smaller.
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TAKING IT TO THE NEXT LEVEL
T he Q ua l it y  of  La rge Sa mple Popu lat ion s

If you are testing a sample of a set because the population is too 
large, it is often good to know if the values of that sample portion 
equal a constant or a repeatable number in the test.

In the test we talked about earlier that involved learning whether 
freshmen college students were happy with their majors, the experi-
ment was based on a random sampling of the students. This was 
done by asking a sample of 367 students from all ends of the campus. 
To get more random results, the surveys were taken at three different 
times: 8 a.m., noon, and 2 p.m. In theory, if the test were repeated, it 
would show roughly the same results. In this experiment, the answer 
is binomial; the interviewer asks college freshmen, “Are you happy 
with your major so far this year?” The college freshmen can answer 
the question with only a yes or a no.

In this test you are testing for a specific confidence level and a 
specific margin of error.

Software

Statistical software can take much of the math burden off the user. In the old 

days, the math behind statistics was an arcane-seeming series of Greek letters 

and algebra, square root functions, etc. Nowadays, all you need to do is use 

the input boxes, and the software will crunch the numbers for you. Getting the 

right software is easy. Knowing the theory behind it is the hard part.
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One of the bits of information you would need is which parameters 
you have determined in order to reject the null hypothesis. Remem-
ber, before taking the poll, you need to come up with a hypothesis. 
This hypothesis is your best guess of what you think the answer will 
be, and this is what you are attempting to not reject. By conduct-
ing the polls and analyzing the data, you know the percentage of 
your sample set that said yes. If you’ve gone to the software (such as 
www.calculator.net/sample-size-calculator.html) and you’ve found 
out how large your sample size should be to get your test to your 
required margin of error, and you’ve tested that many students, you 
can compare your average to your null hypothesis.

Try to break it down: the question is “Are the freshmen happy 
with their majors?” You assume the answer will be that 80 percent of 
freshmen are happy with their majors. This is your null hypothesis. 
Take the following steps:

1.	 Decide what level of confidence or what margin of error your 
test needs to be.

2.	 Use the software to find out how large your sample set needs 
to be.

3.	 Design a very random, repeatable testing of the entire population—
but only the sample set.

4.	 Match your percentage of yes answers to the null hypothesis.
5.	 If the percentage of the yes answers is higher than your null 

hypothesis, do not reject the null hypothesis.

After you’ve run the test at the 90 percent confidence interval, 
and you are testing with a 10 percent margin of error, you will either 
end the test by rejecting the null hypothesis (which would mean the 
average number of students happy with their majors is below your 
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original guess), or you would not reject the null hypothesis (which 
would mean your test sample came in with a higher percentage of 
yes answers than your original estimate).

You then have a choice: you can either stop the experiment there, 
call it good, and write up your findings, or you can take the test to the 
next level of confidence level. Why would you do this? In some sci-
entific studies, taking it to the next level shows a completeness and 
an attention to detail that will be looked on favorably by those who 
read it. Some statistical studies can be done at the 90 percent level, 
while others must be done at the 95 percent or even the 99 percent 
levels or higher. In the case of medicine and testing new medicines, 
the statistical part of the studies is done at quite high levels, since it 
deals with health and well-being.

Taking it to the next level means going back to the software to 
find how large your next sample set needs to be. Use the software, 
find the number of people you need to test, and use the exact same 
testing procedures. Test a larger pool with the same questions, man-
ner, time of day, and locations on campus: you are trying to repeat the 
experiment with a higher level of precision, not change it.
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MEASURING LARGE SAMPLE 
POPULATION PROPORTIONS
W hen Data Gat her ing Ru n s Hay w ire

Suppose you run the experiment referred to in the previous section, 
the one about the percentage of students at a college who are happy 
with their majors. You run the experiment with a binomial structure 
at a 90 percent confidence level and then at a 95 percent confidence 
level. You change the number of students you ask, but you don’t alter 
the questions, times the survey is administered, or the locations 
where you survey. You’re just polling different-sized sample sets of 
students. What would you assume if the two polls showed a huge 
difference in their results? Even if both tests resulted in answers of 
yes at a high enough level for you to not reject the null hypothesis, 
but the percentages were vastly different, what would this mean?

The differences could be because both experiments were done 
with a random sample set; this means there’s a degree of randomness 
through the experiment. Your different results may be the result of 
chance.

If that’s the case, it means you could easily get an answer of 60 
percent one time and 70 percent the next time. If your margin of 
error was 10 percent, you’re still within it—that is to say, the percent-
age difference between the two tests is 10 percent or less. Remember, 
confidence interval is the reverse of margin of error. You can say that 
this is the possible swing in answers that could come about when you 
move from one size sample to another.
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T H E  A V E R A G E S  O F  T H E  T E S T S

There may be times in a statistical test that the variance you get 
between samples is greater even than the margin of error. Rather 
than 10 percent, the numbers differ by, say, 20 percent.

What would you do to correct your experiment?
First of all, look for an outlier, which may be throwing off the per-

centages. Remember, an outlier is an event that doesn’t happen very 
often and is far away from the mean. If you see such an outlier, you 
can discard it and recalculate the variance.

If you can’t find something that’s causing the problem, you are 
by no means finished with your experiment. You’d need to repeat it 
with exacting standards: same location, same time of day, even with 
the same pollster, if need be. Remember, a key element to statistical 
studies is that they need to be repeatable. It is very common for con-
temporaries to rerun experiments you’ve done, first to see if they can 
be replicated, and second to see if you are reliable in your write-ups. 
Once you gain a reputation for your tests being repeatable, you are 
well on your way to being known as a reliable statistical tester, one 
who performs well-thought-out experiments.

The Importance of a Good Write-Up

The write-up of all the procedures that you’ve taken in the setup of the  

experiment—including the repeating of the polls, the statistical method of 

smoothing the data, and your conclusion—is one of the most critical areas of 

the presentation of your results. This is the section that your peers will look at 

the hardest and try to debunk the most. This is the section of your write-up 

that needs to be of the highest quality and the highest ethical standard.
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If your data has gone haywire, and you’ve found that at the second 
test your numbers are way off, you’ll need to repeat the test multiple 
times and then take an average. Just like the bell curve has a center 
around the mean, you can take an average of your tests to smooth 
out any outliers. Once you’ve taken a series of repeated tests, you can 
rule out any test that has results that are far from the average. You 
can then take only the center of the averages to eliminate the outliers 
entirely. In effect, you’ve taken a sample of samples.
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THE HYPOTHESIS TEST
How A re t he De cision s M ade?

We know the four possible outcomes for making the decision about 
the validity of the hypothesis—that is, whether we reject or do not 
reject the null hypothesis. But we still have not addressed the criteria 
under which the decision is made. There are ways in which this can 
be done: comparing the sample data results with the hypothesized 
values or comparing probabilities. Let’s look at the sample data pro-
cess first.

C R I T I C A L  P O I N T S

The key concept in the creation of a confidence interval or in the test 
of a hypothesis is the distribution. We never expect that our sample 
statistic will match exactly with the population parameter and 
accept that there will be a difference, within reason. Within reason is 
a subjective concept, but the usual application is that the results are 
within a certain range of the tested parameter.

Six Sigma

Six Sigma is a data-driven process that strives to eliminate defects in produc-

tion and processes. The goal is that all manufacturing outcomes will lie within 

three standard deviations of the specified mean. CEO Jack Welch (1935–) 

applied this concept to General Electric in 1995. The name “Six Sigma” comes 

from statistical terminology used to study manufacturing processes.
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How does this work?

1.	 Someone makes a statistical claim, e.g., the mean thickness of 
the washers we produce is 0.2 cm.

2.	 A random sample of washers is collected, and the mean thick-
ness of the washers is computed. For the sake of argument, let’s 
say the results of the sample of 500 washers are that the mean 
thickness of the sampled washers is 0.23 cm with a standard 
deviation of 0.04 cm.

3.	 “Is there something wrong with our production process?” the 
quality control manager asks. “Bring in the statisticians.”

4.	 The null hypothesis is that the mean thickness is 0.2 cm, and 
the alternative hypothesis is that the mean thickness is actu-
ally larger.

The criterion is established that the company wants to be 95 
percent sure that it is right. In other words, they are willing to accept 
a 5 percent chance they are wrong (the level of significance). They 
must now find the point that defines the maximum reasonable devia-
tion from the mean. To do so, they look at the normal distribution 
with mean of 0.2 cm and a standard deviation of 0.04 cm. (Why the 
sample standard deviation? Because it is the only measure we cur-
rently have.) They determine the point at which 5 percent of the area 
lies to the right.
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Technology is used to determine that the value of the critical 
point is 0.203.

Is the sample mean significantly large enough that the manu-
facturing process is deemed to be functioning improperly? Yes. The 
sample mean is outside the interval that has been determined as an 
acceptable deviation from the projected mean.



T h e  H y p ot h e sis    T e st  � 147

If the sample mean had been 2.01 cm, the graph would have 
looked like:

and the proper decision would be to claim the process is 
malfunctioning.

P - V A L U E S

With any study you are examining a null hypothesis and determin-
ing whether it should be rejected or not rejected. The P-distribution, 
or the P-value, is another method that can be used to help you deter-
mine the quality of your testing. The problem with the P-value is that 
the math behind the calculation is very complex and can best be 
done only with statistical software. This P-value is a measure of how 
small the significance level needs to be to make you reject the null 
hypothesis; that is, the P-value is the probability of an observed (or 
larger) result assuming the null hypothesis is true.
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If you do not reject the null hypothesis, it is considered good at 
that point—until evidence comes along that shows it isn’t good. With 
the P-value test, the statistical software through which you are run-
ning your tests will help you find what the smallest confidence level 
is to force you to reject the null hypothesis.

The P-value calculates this number the other way around. The 
P-value of the test will tell you at which confidence interval the null 
hypothesis must be rejected. In other words, your software might cal-
culate the P-value to be at the 2 percent level of significance before 
the null hypothesis will be rejected.

O T H E R  M E A N I N G S  O F  T H E  P - V A L U E

The actual number of the P-value has a strong correlation to the qual-
ity of the tests. P-values usually come in set ranges—this table will 
show how you can interpret the numbers in the P-values.

P-VALUES AND THEIR MEANINGS

REPORTED P-VALUE MEANING OF THE NUMBERS

P-value  0.1 P-value points to nothing against the null hypothesis

0.05  P-value  0.1 P-value has some evidence to reject the null hypothesis

0.01  P-value  0.05 P-value has good evidence to reject the null hypothesis

0.001  P-value  0.01 P-value has excellent evidence to reject the null hypothesis

P-value  0.001 P-value provides the highest evidence to reject the null hypothesis

But in this case, you are telling the software what the level of sig-
nificance is, and the software is telling you the level of significance 
needed to be at these levels of rejection. Using this chart, you can look 
at the reported P-values and determine if you are able to not reject 
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or to reject the null hypothesis. Thus, you can see that the P-value is 
a very handy way to measure the quality of your tests and the qual-
ity of the data that you’ve collected. The P-value is telling you the 
confidence levels you need to be at to get to the point where you can 
reject the null hypothesis. It’s like flipping the numbers around. You 
are asking the software to tell you what you need to get to before you 
can reject.

For example, let’s go back to the case of the thickness of the wash-
ers. With the sample mean equal to 0.23 cm, the P-value is 21.3 × 
10–63. This tells us that there is almost no chance that the sample 
mean can be larger than 0.23 cm if the true mean is 0.2 cm.

Using the P-value won’t change how you set up the study; every-
thing will be the same. There is the same collection of data and the 
required number of data points. You’ll still examine the data to see 
that the bulk of it gathers around the mean, though there will be a 
few outliers. Finally, keep in mind that if you perform a test and the 
numbers seem to be way off, and you’ve taken it to a smaller level 
of confidence interval (80–90 percent), then you’ll need to retest a 
larger group. This would mean retesting another sample of wash-
ers. When you’ve done this, you’ll measure the average, or the mean, 
using the P-test, and then you would decide to reject or not reject the 
null hypothesis.

Finding the P-values with statistical software can be an easy-to-
use method of finding out if your tests can lead you to a conclusion 
in a quick, clean, and noncomplex manner. P-values are an accepted 
form of evidence in a statistical write-up, so they should be included 
in your executive summary, as well as the section in which you write 
about the procedures you used to test your data.
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PATTERNS IN DATA
Bu nches ,  St ra ight  L ines ,  a nd O t hers

Once you have gathered all your data, you can then plot the up/
down and across data on a chart. After you’ve done this, often you’ll 
notice a telltale association within that data, how some of it bunches 
together. This section will show you how to recognize these associa-
tions and how you can interpret what they mean.

P L O T  T H E  D A T A  O N  A  G R A P H

Once you’ve collected the data from your studies, if it is bivariate 
(meaning it has two variables, such as children’s height/weight rela-
tionship studies) you can start to fill out a chart.

Bivariate Data

Bivariate data is just another way of saying the numbers have an x-axis and 

y-axis. Such data can be plotted on a chart that has one set of values (quantity, 

time, age, stock return, etc.) along the bottom of the chart and has the other 

set of values along the side of the chart.

Bivariate data is typical if you’ve collected data with which you’re 
trying to find the relationship between two sets of information. For 
instance, let’s say you took a poll, the object of which is to find out 
how many people take public transportation to work when there is a 
snowfall. On one side of the chart, you plot how many people took the 
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train and bus, while at the bottom of the chart you show how many 
inches of snow have fallen.

In this example, each measure of snowfall inches is one observa-
tion of data. You might decide to scale the survey by 0.25 inches of 
snow, going from 0 inches to 16 inches of snow (a blizzard in some 
cities!). With this information, you plot the inches of snow on the bot-
tom and match it up with the number of people on trains and buses 
on the side. After all the information is collected, you would probably 
notice that the data points (or each separate observation from each 
level of snowfall) form a line generally sloping upward.

What would this tell you? Well, from one or two or even three 
snowfall/public transport measurements, you couldn’t really tell a 
whole lot. But after gathering many snowfall/public transportation 
observations and graphing them, you would be able to see a clear, 
ever-increasing amount of people using public transportation as 
the snow gets deeper. You might find that fewer people take public 
transportation to work when there is less snow, with the number of 
people increasing steadily as the snowfall gets bigger. (It’s possible, 
of course, that in this graph you’d find a certain point where there’d 
be a sharp drop-off of people using public transportation, since if 
the snow gets too deep, people would not go to work and would stay 
home, out of the bad weather.)

How is this of practical value? Well, this method is exactly what 
major cities use during a storm to determine how many cars to add 
to trains, how many extra buses to run, how many extra drivers/con-
ductors are needed to work: all depend upon the predicted snowfall 
in the city.
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L O O K  F O R  A S S O C I A T I O N S  I N  T H E  D A T A

In the snowfall/public transportation example, the evidence will 
probably indicate that as the snowfall gets deeper, more and more 
people take trains and buses to work. This is logical, because the 
trains and buses are safer and more reliable than driving on an 
expressway in a snowstorm. The fact that the deeper the snow, the 
more people take trains and buses is referred to as a positive associa-
tion. More snow  more people on buses and trains. This positive 
association comes in two forms: perfectly positive association and 
very strong positive association. If the data were perfectly associ-
ated, then for each unit of snowfall, there would be an exact increase 
in riders on trains and buses. This exact increase would be the same 
for each unit of increased snowfall, moving together in lockstep. 
Since data in the real world usually doesn’t happen this perfectly, 
there is the second association: very strong positive association. This 
manifests as a very tight, but not exact, correlation of the results.

Pearson Correlation Coefficient

The Pearson correlation coefficient, r, measures the strength of the relation 

between two variables. The range of r is between –1 and 1. A value of 0 indi-

cates no correlation between the variables, while a negative value of r indicates 

that as one variable increases, the other decreases. A positive correlation coef-

ficient indicates that as one variable increases, so does the other variable. As 

a rule of thumb, if |r| > 0.7, there is a strong correlation between the variables.

The opposite of this, of course, is a negative association—for 
example, if the data plot showed that fewer and fewer people ride the 
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train and buses as the snow gets deeper and deeper. Just as with pos-
itive association, this comes in perfectly negative and very strong 
negative associations. Here’s what these associations look like:

Strong Negative

Weak Negative

Strong Positive
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Weak Positive

The scatterplot of a relationship with strong correlation will be very 
tight, as the display shows. The more spread out the scatterplot, the 
weaker is the correlation. It is not reasonable to be able to determine 
a weak correlation from no correlation from a visual perspectivethe 
correlation coefficient will need to be computed and a statistical test 
done on it to determine if there is a correlation between the variables. 
Finally, if you’ve done all your surveys and made many, many observa-
tions of train and bus ridership with many different levels of snowfalls; 
if you’ve plotted all the data on the graph; and if there is no obvious 
shape to the gathering of data, then you have no association in your 
study of snowfall/public transportation.

No Relationship
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Why? Because the data plots are too random: the bus and train 
ridership doesn’t seem to change in a predictable pattern with 
changing snowfalls.

S I M P L E  L I N E A R  R E G R E S S I O N

If there appears to be a strong relationship between the two vari-
ables, you can attempt to determine if there is a predictable relation-
ship between the variables using a process called regression. To keep 
the explanation simple, we’ll take a look at a scenario where there 
appears to be a linear relationship between the variables (although 
we could also look at an exponential relationship, a power function 
relationship, or a logarithmic relationship in a similar manner).

A student of nutrition is looking at the size of the sandwiches 
served at a popular restaurant and the number of calories in each 
sandwich. The data collected is:

MENU ITEM SERVING SIZE CALORIES
1⁄3 lb Original Thickburger 343 g 770
1⁄3 lb Cheeseburger 240 g 620
1⁄3 lb Mushroom & Swiss Thickburger 259 g 650
1⁄3 lb Bacon Cheese Thickburger 320 g 850
1⁄3 lb Low-Carb Thickburger 245 g 420
2 ⁄3 lb Double Thickburger 445 g 1,150
2 ⁄3 lb Double Bacon Cheese Thickburger 436 g 1,200
2 ⁄3 lb Monster Thickburger 386 g 1,320

Six Dollar Thickburger 383 g 930

Little Thickburger 220 g 570

Little Thick Cheeseburger 167 g 450
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MENU ITEM SERVING SIZE CALORIES

Charbroiled Chicken Club Sandwich 306 g 630

BBQ Chicken Sandwich 271 g 400

Low-Carb Charbroiled Chicken Club Sandwich 250 g 360

Big Chicken Fillet Sandwich 319 g 710

Spicy Chicken Sandwich 153 g 440

Regular Roast Beef 128 g 310

Big Roast Beef 171 g 400

Hot Ham ’N Cheese 131 g 280

Big Hot Ham ’N Cheese 232 g 460

Fish Supreme Sandwich 225 g 630

Jumbo Chili Dog 145 g 400

Double Cheeseburger 208 g 530

Small Cheeseburger 139 g 350

Small Hamburger 126 g 310

Source: “Fast Food.” Nutrition Sheet. www.nutritionsheet.com/facts/restaurants/fast-food.

The student makes a scatterplot for the data:

She uses technology with the data to determine the regression 
line that relates the size of the sandwich with the number of calories: 
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calories  2.7 × size  70, with a correlation coefficient of 0.903. 
This is fairly strong evidence that the number of calories in a sand-
wich from the restaurant is tied to the size of the sandwich. (Not that 
anyone is really surprised by this, but the data seems to support our 
assumption.) Is this absolutely correct? There are statistical pro-
cesses that you can perform, such as a hypothesis test, on the valid-
ity of the slope of the regression line to verify the findings. Once 
done, this equation can be used to predict the number of calories that 
will be in one of the restaurant’s sandwiches. However, the size of the 
sandwich must be in the range of the data used. Since the smallest 
sandwich has 126 grams and the largest 445 grams, it would be fine 
to predict the number of calories in a sandwich with 325 grams but 
not in a sandwich with 610 grams. That is, we can use the regression 
equation to make a prediction with interpolation (within the range) 
of the data but not extrapolation (outside the rage).
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PREDICTING THE FUTURE
Mu lt iple  R eg ression A n a ly sis  a nd Data Points

We use multiple regression analysis as the statistical tool to measure 
the cause-and-effect relationship among several variables and to see 
how they relate to a separate variable. If you have an experiment 
that measures how two or three observations affect a separate fac-
tor, you’ll be able to use a little data crunching to find out how they 
interact with one another.

A N  E D U C A T I O N  R E S E A R C H  E X A M P L E

Let’s imagine you’re conducting a study about what types of high 
school test-taking environments most affect the overall test scores 
of students. You might measure such factors as room lighting, room 
temperature, how many hours before or after lunch the test was 
given, whether or not the test questions were reviewed in class the 
day before, and if the test was online (multiple question/true/false 
questions) or on paper (multiple question/true/false/essay ques-
tions). You know that some factors affect student performance more 
than others. With multiple regression analysis, you can determine 
through a mathematical relationship which one affects students the 
most. You might find that room temperature affects the scores some-
what, but negligibly, while the time of day of the test and whether 
the test was reviewed affect the students’ test scores a great deal. In 
fact, you might find that a two-hour review made the average score 
go from C to B, while the time of day the test was administered 
(say, after lunch when everyone was well fed and not hungry) added 
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an average of 7 percentage points to the students’ typical test score. 
With this information, you could review longer for every exam and 
only schedule them in the afternoons, as close to after lunch as pos-
sible: you would have mathematical, observable proof that you were 
ensuring the highest test scores for your students.

The Process
Regression is a process of taking each point of data and plotting 

it on a graph. The data points are spread over the graph, not in a ran-
dom way, but with the up and across parts of the graph representing 
the relationship between the two data points. One of these is the time 
spent on review, the other is the scores on the tests.

For instance, let’s say one data point is a 70 percent class aver-
age test score tied to a 20-minute in-class review period. The next 
data point, from a different class, might be an 82 percent class aver-
age test score tied to a 75-minute in-class review period, and so on. 
Once all the data points are recorded, you should be able to make an 
estimate of how sensitive the class average test score is to each addi-
tional minute of in-class review period. This relationship is what you 
discover by the regression analysis. This seems complex, but you 
can do it pretty easily with any good statistical software program. 
These programs plot the points and determine the level of sensitiv-
ity of each cause/effect you are measuring.

A  W A L L  S T R E E T  E X A M P L E

Let’s look at another example: a Wall Street trader is devising a 
program to automatically trade stocks in the US stock market. In 
order to do this, he has to accurately predict what might affect the 
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up-and-down motion of the S&P 500, since this is an important 
stock market indicator. He might have an intuition that bonds; the 
European stock markets; the Asian stock markets; gold; the stock 
market’s mood and temper; and foreign currencies such as the euro, 
the Japanese yen, and the British pound all affect the daily perfor-
mance of the US stock market.

His goal is to find which of these parts of the world financial mar-
kets are most related to the up-and-down action of the US stock mar-
ket. In order to do this, the researcher must find the past historical 
values of all of these world financial market components. By comb-
ing back through several years of databases, the researcher is able 
to obtain information on how each variable (bonds, currency, etc.) 
performed on each day they were traded. He then uploads that data 
into a software program. He makes sure that he has the data on at 
least 100 days of past trading, giving him a statistically valid sample.

Accurate Data Is Crucial to Building a Model

Because this trader is looking to map a financial plan, it is essential that he gets 

accurate data from a significant time frame and multiple sources.

Using the statistical method of multiple regression analysis, the 
researcher/trader can use this group of data sets (called the indepen-
dent variables) and measure if and by how much the daily up-and-
down change of these variables affects the US stock market’s daily 
up-and-down change (called the dependent variable). The result will 
be a very powerful analytical tool that precisely measures how all 
those other world market factors affect the outcome of the US stock 
market.
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How Is the Data Found?
The first step in the analysis is to find great data points. The 

trader could find his historical data easily on financial websites 
such as Google Finance or Yahoo! Finance. Using these sites, he 
can download the data directly onto a spreadsheet, including the 
dates of the trades as well as the values of the indicators. Of course, 
knowing which financial indicators to use is also key. (It might take 
some experimenting to get the best financial indicators that are 
robust enough to make hearty and accurate directional predictions 
possible.)

The same is true if you’re conducting a marketing, medical, social 
media, or academic study—any study, in fact, that seeks an accurate 
prediction of how a group of factors affect another, single factor. With 
these studies, knowledge of what indicators to use as independent 
variables is a must, and sometimes a little bit of experimenting with 
the data sets is required to get a good, strong result.



162� S TAT I S T I C S  101

THE T-DISTRIBUTION
Con f idence I nter va ls  a nd Tests  for  Single Popu lat ion

In this section you will learn how to test confidence intervals 
for sample sets that are smaller than thirty samples. You’ll also 
learn the standard deviation of small samples, which is called the 
t-distribution.

In most cases, the sample set you test will consist of more than 100 
samples. In many cases, it may be much larger. Sometimes, though, it 
may be as small as 30. If the sample set is smaller than 30, then a differ-
ent set of rules apply. Why? It is thought that 30 samples offers too few 
to get an accurate read, mainly because the group isn’t large enough 
to have sufficient randomness, and the results may be biased.

The normal bell curve still applies, but in cases of sample sets 
being smaller than 30 you don’t use the normal distribution. Instead, 
you use what is called the t-distribution.

The t-distribution has some characteristics of the normal distri-
bution and some special ones.

Parts of the t-distribution are the same as the normal distribution:

•	 It has a bell curve shape.
•	 The bulk of the data is centered around the mean.
•	 Its median, average, and mode are all equal to zero.

However, the t-distribution differs from the normal distribution 
in certain important respects:

•	 The variance of the bell curve is always greater than 1.
•	 The t-distribution uses a concept called degrees of freedom.
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D E G R E E S  O F  F R E E D O M

The concept of degrees of freedom is similar to the concept of outli-
ers. In a normal distribution curve, the bulk of the data is within one 
or two standard deviations, with up to 95 percent of the data being 
under that part of the curve. In normal distribution data sets, only 
5 percent of the data is in the very far reaches of the curve. In other 
words, only 2.5 percent of the data will be at the extreme high and 
extreme low of the information gathered.

Student t -Test

William Gosset (1876–1937) was an employee of the Guinness brewing com-

pany. He developed the t-test as a method for assessing the quality of the 

Guinness product. When he was refused permission to publish his findings, he 

did so anyway under the pseudonym “Student.”

With degrees of freedom, a certain number of data points can be 
outliers, too; this helps you decide the quality of the data and how 
accurate the bell curve is. However, these degrees of freedom can 
exist much more frequently than a normal outlier in a normal distri-
bution. Degrees of freedom are used to help you determine how close 
to a normal bell curve you can get.

What’s the difference? If your curve was standard, you would 
have three standard deviations. If, on the other hand, your bell curve 
is based on a small sample of 30 or fewer data points, and therefore 
you are using the t-distribution, you could calculate using four or five 
standard deviations. Because the sample is small, you can expect 
there to be more outliers.
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B E W A R E  O F  S M A L L  S A M P L E S

All of this said, it makes sense that the larger your sample set, the 
more accurate your test will be. Remember also that experts recom-
mend a sample set of at least 100, if not more, to ensure a nonbiased, 
more accurate read on the entire population that you are studying.

What happens when the largest sample set that you can obtain 
is smaller than 30? The first thing to do is evaluate your study. If 
you’ve established a hypothesis and designed an appropriate way to 
collect samples, in theory you shouldn’t have any issues collecting 
enough data. But sometimes it happens that your study just doesn’t 
give you enough data points: you’ve conducted your survey and you 
come back with fewer than 30 answers. What to do then?

One choice is to work with the data you have. If you are conduct-
ing a study for school or a work project, perhaps the margin of error 
generated by the small sample set can be overlooked. The other 
alternative is to use the t-distribution we discussed earlier in this 
section.

However, if you are conducting a test that can be modified, it may 
be possible to widen the parameters of your search. If your sample 
set is extremely small, then the test may have to expand to include a 
wider range of possible data hits.

For example, let’s say you’re trying to measure the stock returns 
on exchange-traded funds (ETFs) that are invested only in oil 
futures. You would like to prove that oil future ETFs move opposite 
to the direction of the stock market in general. Your boss wants you 
to do this study to see if he should be trading ETFs when the stock 
market sinks in value.

As you are collecting your data from your terminal, you discover 
there are only sixteen traded oil derivative ETFs that measure the 
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price of crude oil. You could conduct a statistical study, but you know 
your boss’s money is on the line. You know sixteen data points is a 
very small sample set of the entire worldwide oil market, and you 
don’t want to risk getting bad data.

You decide to expand your search of ETFs. You then look at 
oil futures ETFs, as well as all the worldwide traded individual oil 
company ETFs—you go one step further and include the commonly 
traded oil company ETFs such as the ETF “XLE”—the value of which 
is based upon a basket of oil company stocks. Your expanded search 
of data now gives you a sample set of 107—enough for you to have 
a normal bell curve and therefore better data to use when building 
your statistical model.
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GROUPS OF DATA
Independent Tests and Dependent Confidence Inter vals

This section will introduce the concept of testing for a relationship 
between groups of data. The t-test, which we discussed earlier, is a 
test that can be used to measure descriptive statistics for like, yet 
separate, groups or descriptive statistics for same groups, both to 
measure differences.

This independent samples t-test could be used in the following 
example. Two teams from the same athletic conference are keeping 
track of how many touchdowns they make in each game.

TEAM NAME GAMES PLAYED GOALS

Eagles 25 70

Wildcats 20 74

The question that you’d like to solve is this: “Did each team per-
form relatively the same, or did one team perform better than the 
other and thus can lay claim to having a more prolific offense?” 
(You’re not, of course, determining which is the overall better team; 
that would require a statistical analysis of the defensive performance 
as well as offense.) The null hypothesis is to assume that the average 
offensive performance for each game is the same.

Because you are using a margin of error of 5 percent, you are look-
ing for events that happen only 5 percent of the time. If you look at a 
bell curve, 95 percent of the time the data will be covered, but what 
you would like to see are the two tails, each extreme end of the bell 
curve of the average or mean of the data (under the curve) that would 
happen 2.5 percent of the time at the smallest and 2.5 percent of the 
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time at the largest ends of the bell curve (or the times the events were 
observed—in this case each time a game was played).

If an event came up in the 2.5 percent range on each side of the 
curve, you would consider it a rare event, and it would be beyond the 
95 percent (and into the 5 percent margin of error).

Calculating and running the actual t-test involves very complex 
math and is best done with software.

Software’s Triumph

In the past, complex statistical calculations were performed with pencil and 

paper. In a university class today, the algebraic functions of math calculations 

are still taught, but in the real world these calculations are done with software 

(like many of the calculations in this book). In fact, knowledge of the higher 

levels of math is falling to the wayside as a prerequisite to getting good jobs in 

data analysis and statistics. The higher-level math functions are being replaced 

with a deeper knowledge of how to use the software that, when programmed 

correctly, will crunch the numbers for you. However, you’ll still need to know 

what a t-test is and how to use it.

After you’ve run the t-test, you can compare it to your margin of 
error numbers to decide if you can accept or reject the null hypoth-
esis. In this case the null hypothesis is that the teams performed 
the same. In this example you conclude that if t was calculated to be 
smaller than –2 or greater than 2, you would automatically reject the 
null hypothesis. Running the t-test with software, you discover that 
t is 0.7. Because t is between the limits of –2 and 2, you accept the 
null hypothesis and state that yes, each team performed the same 
offensively per game, for the number of games each played.
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D E P E N D E N T  S A M P L E S  T E S T I N G

If you have one group of test subjects, and you are testing them on 
if something affected them (for example, by how much it affected 
them), you can use dependent samples t-testing to measure the out-
come of the tests. First, you’d come up with a null hypothesis. Let’s 
consider the following example:

You’re researching whether a school breakfast increases grade 
point average in grade school children. Your null hypothesis is that 
yes, the grade point average is not changed (the difference is 0), and 
the alternative hypothesis is the grade is increased (difference is 
greater than 0). You’ve tested ten children, and you’ve given them 
a simple math quiz. Using the same 5 percent margin of error, you 
use computer software to find that the range of the t-test must be 
between -2.25 and 2.25. If you use software to calculate the t of the 
group using the t-test and it is smaller than -2.25 or greater than 
2.25, you can scientifically reject the null hypothesis and say that no, 
breakfast does not affect grade school children’s scores on exams.

The first step is to administer the quiz to the ten students without 
the breakfast and record the grades. The second step is to give the 
students breakfast, and then after they’ve eaten, give them a quiz 
on the same subject and of the same difficulty and record these  
grades. 

Subtracting the no-breakfast scores from the breakfast scores, 
you would come up with a new score per student, called the differ-
ence score. This difference score represents the change from one test 
to another (and this is what you’ll measure to see if breakfast made a 
difference or not).
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These new numbers are the ones that you’ll use for your t-test. In 
this case, your software calculated t to be 3.6. Because t turned out 
to be out of the range of the t-test to accept the null hypothesis, and 
is at 3.6, well beyond 2.25, you can reject the null hypothesis and say 
that yes, breakfast did in fact affect the exam scores of school-aged 
children.
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TESTS FOR TWO POPULATIONS
Sm a l l  Sa mple Con f idence I nter va ls

This section will explain how to test the confidence intervals for two 
separate population tests when both are less than thirty. As we’ve 
seen, when you’re using small sample sizes, you can’t use normal dis-
tribution, and therefore the normal standard deviations aren’t used 
either. This section will help you learn how to estimate the standard 
deviations of smaller sample sets.

Sample sets that measure more than 100 pieces of data are con-
sidered normal and use the normal distribution curve. The normal 
distribution curve has the bulk of the data (95 percent) contained 
under two standard deviations under the bell curve. While this is 
very helpful to predict where the next data group or sample set would 
measure at, it doesn’t help for small sample sets. Why is this true? 
Because with sample sets of fewer than thirty observations, you’ll 
run the risk of not getting an accurate read of the entire population’s 
true values. Remember, a sample set is a measure of the entire popu-
lation: you are attempting to statistically analyze a very large group 
by testing a smaller group. You also know that the sample group 
must be random and large enough to be a good measure. A small 
set can be very misleading—there just isn’t enough data to measure.

It can be very difficult to get a smaller sample set to center around 
the mean. If the data set is small enough, there may be no pattern to 
the data at all (making it useless). On the other hand, if a pattern 
forms in a typical bell shape, there may be so many outliers that the 
data is measured to more than three standard deviations. This is the 
problem: how do you measure the true standard deviations of such 
small samples?
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S M O O T H I N G  S T A N D A R D  D E V I A T I O N S  I N 

S M A L L  S A M P L E S

Keep in mind that when a normal, large-sized sample set is created, 
the goal is for the tests and results to be repeatable. The tests should 
be done using a random sample, but at the same time, they should 
follow the statistical rules so that the results you’ve drawn from the 
data can be repeated by others. Occasionally if someone performs a 
similar test to yours, it might result in a substantially different result, 
but most of the time the data will have very similar variances, and 
therefore the tester will come to the same statistical conclusions.

What happens when your data set or your sample set is so small 
that it is inherently possible that there will be many outliers?

You can cope with this situation by smoothing. In this case, if 
you’ve done a sample test and reached a conclusion, you come out 
with your version of the standard deviations, however many you 
need. Next, the other tester runs the same tests and comes up with 
her standard deviations. To smooth them, and get a more identical 
result, first take the square of your first test standard deviation, then 
take the square of the new test standard deviation, and add these two 
together. Calculate the square root of the sum of these two numbers. 
This has the effect of smoothing the data you and the other tester 
generated; the result is a more accurate average number that other 
researchers can use for comparison.
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Pooled Variance for the Difference of Two Means

If s1 is the standard deviation for the first sample with size n1 and s2 is the 

standard deviation for the second sample with size n2, use the pooled variance

s2
p 

(n1  1)s2
1  (n2  1)s2

2

(n1  1)  (n2  1)
 with the t-test statistic (x1  x2)  (μ1  μ2)

 
√  

s2
p

 1
n1

  1
n2


.

The more samples you can take, the better the smoothing effect 
will work. Remember, small samples have multiple outliers, and this 
data smoothing technique can go a long way in helping you interpret 
the information. If you are taking the samples yourself, run multiple 
tests with multiple small batches. Each one is then squared and 
added together, and the square root is calculated.

Keep in mind that statistics is not an exact science. Its goal is to 
find meaning in data. The data must be of good quality, and some-
times this data needs to be “cleaned” in order to get more meaning-
ful results. Giving data a good cleaning sometimes means removing 
the effects of occasionally weird outlier data. This can be done with 
averaging, but sometimes a more complex squaring/square root 
smoothing method works better.


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STATISTICS IN ACADEMIC 
RESEARCH
Desig n t he Q ua nt it y  A rou nd t he Q uest ion

Statistical research never stands alone. Most statistical tests are 
done as part of larger overall studies. These can be part of business 
or political applications, but other times statistical studies are done 
for academic purposes.

For some bachelor’s, master’s, or doctorate degrees, a final project 
sums up all the work that you’ve done toward that degree. This paper 
is often called the dissertation, the thesis, or the senior project.

These papers often have a data component, referred to as the 
quantitative part. This term quantitative means the section contains 
numbers, and the conclusions of the paper depend on these num-
bers. This is the section of the senior project or the thesis that is often 
the most difficult for students to master.

If you’re writing a thesis or dissertation, the first step you’ll need 
to take in setting up the quantitative section of your paper is to 
decide on a question that you’d like to answer with the paper. Once 
you’ve done this, it is much, much easier to build a scientific gather-
ing of data, design a statistical test, and then analyze the data to see 
if it fits your null hypothesis.

D E S I G N I N G  T H E  Q U A N T

The first place to start in any quantitative experiment is in the library. 
If you’re not sure what to write on, but you know the basic direction 
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you’d like to go in with the paper, then read up on the subject. If you 
read other academic papers, pay especially close attention to the 
summary at the beginning of the paper, as this section will tell you 
what question that paper is asking. This section will also explain a 
bit about the data collection methods, as well as the method of statis-
tical analysis used and the conclusion.

If your paper is to replicate someone else’s study, you can use 
her or his paper as a guide. If your study is on a new subject, other 
papers will help you see where researchers have gone before with 
their studies on that subject.

Once you’ve read up on the subject, your next step is to formulate 
your own question. This question will shape the entire direction of 
the quantitative study.

After you’ve asked the question, the next step is to come to an 
idea of how you think the question will be answered. This question 
will be answered with the null hypothesis. Collecting data is the next 
step. Designing a survey, collecting data off databases—either way, 
you’ll need to have a good representation of the entire population 
that you are studying. If need be, you can look at a sample population.

D A T A  F O R  A  S A M P L E  P O P U L A T I O N

Sample populations can offer you a good cross section of how the 
entire population looks, but the key is to gather enough of the sample 
to ensure that you have a wide breadth and that the sample has been 
taken randomly. Random samples can be done in a variety of ways.

•	 Secondary information: This means you’re collecting data from 
other studies or from other precollected databases. Since there 
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are a wide number of professional, financial, educational, medi-
cal, and social databases available online, there’s no lack of mate-
rial for you to analyze.

•	 Primary information: If you are collecting data yourself, this is 
called primary data. Primary data is an absolute must with some 
subject matters, while with others secondary data is the normal 
type of data and is more acceptable. Either way, the data is col-
lected with enough data points that you can run a statistical 
study.

Next, you’ll need to decide on the level of accuracy, or the degree 
of error, you’d like to run the experiment with. Using software, you 
can input the size of the total population, then enter what degree of 
error you want, and the program will then tell you how large your 
sample set needs to be.

The next steps are to measure the sample or make observations 
and then run your statistical tests. From there you can determine if 
you are to reject or not reject the null hypothesis.

If the sample set looks to be way off from your null hypothesis 
number, you can rerun the sample set with the same degree of error 
and from there smooth the results. If your answer is to not reject the 
null hypothesis, you can either stop—you’ve had a good test and 
achieved your desired results—or you can rerun the test with a new 
randomly obtained sample set, but this time with a lower degree of 
error.

Either way, you stop, retest, and smooth or retest at a higher 
quality; then the statistical part of the test is done, and you’re ready 
to write the part of the paper that describes all your steps and 
conclusions.
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GETTING GOOD DATA
Sou rces ,  Q ua nt it y,  a nd Q ua l it y  Data Points

Conducting a multiple regression experiment is best done with qual-
ity information, and lots of it. The source of the information and what 
data is collected ties directly to the question you’re studying and, 
more importantly, to your null hypothesis. With multiple regression 
analysis there are multiple null hypotheses—one each for each test 
of each independent variable. You’re testing each one with multiple 
regression analysis, so the sources and the amount of data are key to 
reliable conclusions of the tests.

A multiple regression experiment is done to test the relationship 
between one fact and other facts, to determine how they affect it. 
Another way to look at it is to ask yourself the question “What ele-
ments can I observe that affect the outcome to this element? What 
can I add to or subtract from my study that I can also test to see how 
it affects the outcomes?” A second way to set up the question is this: 
“What factors of the experiment that are changing affect this single 
factor that might affect the outcome that I’d like to see also change?” 
A more scientific way of formulating this is: “What are the indepen-
dent variables that might change (and by how much) the dependent 
variable?”

The scientific way of stating the question is easier to understand, 
especially if you know that the independent variables are the part 
of the experiment that are changing and you’re measuring how 
much they affect the part you want to measure. This may seem like 
a roundabout way to explain multiple regression analysis, but these 
wordy, roundabout ways can help you visualize what is being done 
and what the question of the statistical experiment is trying to prove.
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For example, you might have a good idea of what variable affects 
what, but you’re not sure, so you’ll need to run the statistical experi-
ment a few times to see what is actually going on. Remember, a test 
that has no results doesn’t mean you have to stop there: you can keep 
testing different things. Eventually you’ll get to the point where you 
can say, “Now I see it. This affects that, and by this much.” For exam-
ple, a small business has a budget for advertising in newspapers, on 
the radio, on television, and online. Adjusting the amount paid to 
each medium will help in determining the best return (measured in 
sales) based on the distribution of advertising funds. So the business 
does a statistical analysis of how many new customers each kind of 
advertising brings in, and based on that study, it allocates its adver-
tising dollars for the following year.

If you are looking to find out what independent variables affect 
the dependent variable, you’ll need a deep, wide database to collect 
your information from. Knowing where to look is easy: here are links 
to some of the more well-known databases:

•	 https://fhssrsc.byu.edu/Pages/Data.aspx. This is a list of links 
to some public access databases that can be used for a variety of 
subjects.

•	 Financial databases include BigCharts (http://bigcharts.market 
watch.com/) and Yahoo! Finance (https://finance.yahoo.com/).

•	 Bloomberg also offers a free demo: www.bloomberg.com/ 
professional/request-demo/. While temporary, it offers a great 
depth of information for a finance statistical study.

Download the data to Excel or other software.
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S E L E C T  Y O U R  I N F O R M A T I O N

In every one of these databases, you’ll need to navigate to the place 
containing the information you need for the test. If you’re doing a 
multiple regression analysis, you can choose up to eight different 
factors to measure that could influence your target. What are the 
factors to measure? Again, this is where you’ll have to come back to 
the question of the study and, more importantly, the null hypothesis. 
Remember the issue we discussed earlier concerning stock market 
returns? The null hypothesis is all the elements you think might 
affect stock prices: stock volatility, gold prices, currency prices, other 
world stock indices, etc. Remember, if you’ve crafted your question 
of study well, and you’ve crafted your hypothesis of the study, then 
you’ll know exactly what data elements you are trying to measure.

Y O U ’ V E  F O U N D  Y O U R  D A T A — N O W  W H A T ?

Once you’ve found your database, the next step is to find the infor-
mation for each independent variable. Each variable you are testing 
needs its own data collection; if you are measuring five different 
elements to see how each one affects the target, then you’ll need to 
perform and collect that information on each of the five elements.

For each element there should be a way to reference it—a date, 
reference number, or other relational way to tie that factor to the 
independent variable. In other words, you’re attempting to measure 
how factor A affects factor B, so what was the relationship of factor A 
to factor B, measured in time, proximity, or some other way? This is 
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a key element to the regression test. With our examination of stock 
prices, you look at the price each day. That’s your structure for the 
analysis.

Finally, you import the data you’ve accumulated into Excel (or R, 
if you are using that statistical program). Your software can run the 
regression analysis and crunch the numbers.

The quality of the data depends on the database you are using. 
If you are using a reliable source, then your data will generally be 
reliable. Remember, trusting your source is key to building a test that 
can be replicated. Collecting data, running a regression test, and 
drawing conclusions is one of the key skill sets in statistics.

Multiple regression analysis is a powerful tool that can lead to 
the next step of statistics: predictive modeling. To build useable, reli-
able, and worthwhile predictive models, using this form of testing—a 
form of back testing (because you are using “back data,” or historical 
data), you need reliable sources of information: governmental, com-
mercial, or paid-for databases are the best. They are tried and true, 
exist to be used, and have the data cleaned often. Your test will have 
an extra layer of professionalism and acceptance if the data has been 
collected from a well-known source. The source is most likely used 
by other statisticians, and therefore the errors in the raw data have 
been worked out.

If you are building a test of multiple regression from a private 
database (from work or from your own studies), then the methods 
of random testing and large data sample sets come into play. Know 
your software and use it when it comes time to choose how large a 
sample data set to use—the larger the set, the better. Use smooth-
ing techniques if the tests are from independent, private databases 
or if you’ve collected smaller amounts of data to test. Finally, know 
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your null hypothesis, and don’t be afraid to rerun the tests if none 
of the variables tell a story of affecting your target. If you’ve made a 
hypothesis, and you’re now rejecting all or most of it, then rerun the 
regression analysis with new factors to test your conclusions. These 
tests, while time-consuming, are not difficult, because the software 
does the number crunching for you.
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A REGRESSION EXAMPLE
Ele c t r icit y  Use in t he Subu rbs

Assume that you would like to know what factors affect the electric-
ity usage in a suburban area. Your hypothesis is that such factors 
include rain and snowstorms (since people stay in their houses 
more); holidays (as people stay in their homes and cook more); and 
nights of music, movie, and TV award ceremonies (because people 
have watching parties at their homes and stay in).

Your first step is to determine the amount of electricity usage 
every day for the past ten years. This gives you the base, or the depen-
dent variable, you are testing against. This data can be found on your 
electric company’s website. You upload it into a spreadsheet with the 
dates attached. Next, you have to find the dates of each event that 
you are testing as an independent variable. You need to find the past 
ten years’ dates of rain and snowstorms, possibly from Weather.com. 
You’ll also need to find the holiday schedule for the past ten years, 
and you’ll need to find when various award shows were broadcast 
on TV for the past ten years. You upload all this data into a statistics 
program, with each factor in a column on the spreadsheet, and each 
date’s information on the same row on the same sheet.

I’ll describe the next step as if you are going do the regression in 
Excel, but you’d take similar steps if you were using other statistical 
software such as R or Python. If you know the commands, it doesn’t 
matter what software you are using: the results will be the same.

Next, highlight all the information on the spreadsheets and then 
go to the Excel function called “regression.” Depending upon your 
version of Excel, you can look online for the exact place on the toolbar 
to find these commands (or if you need to, download an extra Excel 
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tool pack, which is usually free). The regression tool on Excel will 
ask for the independent variables and the dependent variables. After 
entering this information, click the run button, and your computer 
will crunch the numbers. In this example, it will tell you the amount 
that each factor affects electricity use.

You might notice that while the weather report information is 
reported in inches of rain or snow, it is done every day regardless 
of the weather. This is good and leads to accurate information. On 
the other hand, the information about TV specials shows that there 
are specials once a month or so. This isn’t enough information to get 
results. Neither is the holiday information. You’ll have to go back and 
rethink your data gathering to reflect something that you can gather 
more data on. You might want to change the TV and the holiday 
schedule to one entry: days of the week. You can upload the days of 
the week to Excel and test for that.

How would this be done? Remember, Excel does regression tests 
for numerical and quantitative information. Sunday through Saturday 
is hardly quantitative, and one day’s value isn’t higher than the next. 
Because of this, what you could do is change your study even further 
and measure the electricity usage on weekends. You set up Excel to 
list the days of the week for the past ten years, and then tell the pro-
gram to convert Mondays through Fridays to be 1 and the weekends 
(Saturday and Sunday) to be 0. With this function, you’ve converted 
nonnumerical data to a binomial function of a weekend or a weekday.

Once this is done, you can rerun the regression analysis with the 
new, modified data and the new null hypothesis. The software will 
tell you what factors affected the electric usage the most: the rainfall/
snowfall and/or the weekends, and by how much usage was affected. 
The program will tell you with mathematical certainty by what factor 
of 1.0 the electricity usage was affected. If the experiment was run 
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in Excel, and the regression showed that rain had a factor of 0.25 
and day of the week had a factor of .72, then you would know that 
each inch of rain or snow increased the electricity demand by a fac-
tor of 25 percent, and each weekend day increased the electricity 
demand by a factor of 72 percent. (Other software programs would 
give you this information as well, but in somewhat different forms.)

Nate Silver

One statistician who rose to fame during the 2012 US presidential election 

is Nate Silver (1978–). He correctly predicted the election’s outcome in forty-

nine of the fifty US states, gaining a reputation for infallibility. This was shaken 

in 2016, when his website FiveThirtyEight gave Hillary Clinton a 71 percent 

chance of defeating Donald Trump in the race for president. Like most statisti-

cians analyzing the race, Silver was wrong, but he continues to have a reputa-

tion for careful and usually correct statistical analysis.

From this the electric company can build a model: it can enter 
the expected rainfall, then add what day of the week it is, and come 
up with the expected amount of extra electricity demand for the day.

This is another example of how multiple regression statistics 
is done in real life. There may be other factors, but the inputs are 
constantly modified to get the study to the point where you can find 
data on it. You are building a model, and if your model is changed 
by changing the independent variables, that’s fine. In this way you 
again are using the smoothing effect that is the norm in statistics. 
Remember: statistics isn’t a pure science. It is the art of using math 
to interpret and predict outcomes.
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WHAT REGRESSION DATA 
TABLES TELL US
Using Data to  Bu i ld P re d ic t ive Models

Computer software will show you a lot of information from a typical 
multiple regression analysis, a method of finding the relationships 
between how events or observations affect one another. But keep in 
mind that while much information is given, only some of it may be 
required to get you to the point where you can accept or reject your 
null hypothesis. Even less of it may be necessary to build an efficient, 
simple predictive model.

Here is some of the data that comes from running a regression 
test.

R  S Q U A R E D

This tells you what percentages of the dependent variables that are 
centered around the mean are affected by the independent variables. 
If you got a 90 percent here, that means that 90 percent of the data 
is affected by the independent data.

R2

The coefficient of determination, R 2, tells you what percentage of the output 

variable is explained by the input variable.
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A D J U S T E D  R  S Q U A R E D

This number is used if there is more than one regression model. 
If you ran a multiple regression test, with multiple independent 
variables all at the same time, then this number would be your test 
number. It would act for each variable as the R squared would work 
for one variable.

S T A N D A R D  E R R O R  O F  T H E  R E G R E S S I O N

This measurement tells how much error was allowed for in the 
overall test. It measures the precision of the regression. What you’re 
testing for determines what level of error you’re willing to accept. 
If you are to use your regression as a first step in building a model, 
then you will need to pay very close attention to this number. If you 
ran a regression of multiple variables and a few of them had a large 
error (meaning those variables tested with a very low precision 
level), then you would disregard these when building your model. 
For instance, if you’re running a regression test in order to build a 
financial model—possibly the market level predictor test we looked 
at earlier—if you run ten tests and the standard of error on three of 
the ten is unacceptable, you should disregard these in building your 
predictive model.

We can’t stress enough how important error levels and precision 
levels are. Your margin of error must be within acceptable limits if 
the predictive model you’re building is going to work.
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O B S E R V A T I O N S

This gives the data of the raw number of observations in the test.
These second parts of the output from an Excel or R regression 

analysis aren’t used that often, and you most likely wouldn’t use 
them in model building, but they can be useful for a deeper and more 
complex statistical analysis.

S U M  O F  S Q U A R E S  ( S S )

•	 Regression mean square regression (MSR). This gives the regres-
sion sum of squares/regression degrees of freedom, whereas 
regression Mean Squares is defined as regression mean square 
error.

•	 Residual regression mean square error (MSE). This gives the 
residual sum of squares/residual freedom.

•	 Significance F. This gives the significance level. Critical point for 

the F distribution is defined as F  MSR
MSE

.

F Distribution

An F statistic is a value you get when you run an ANOVA test or a regression 

analysis to find out if the means between two populations are significantly dif-

ferent. It’s similar to a t from a t-test. A t-test will tell you if a single variable 

is statistically significant, and an F test will tell you if a group of variables are 

jointly significant.
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Here’s how you determine whether to accept or reject the null 
hypothesis with your regression analysis.

Use the t-statistic to perform a two-tailed test of hypotheses to 
test the difference between the null hypothesis and the alternative 
hypothesis for each of the slopes in the multiple regression equation. 
You could also determine a confidence interval for estimating each 
of the regression equation’s coefficients.
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DETERMINING THE CAUSES
G et t ing t he Deta i ls

We’ve talked about the steps required to run a multiple regression 
analysis. This section will help you further with the interpretation of 
the numbers that you will see when you have done such an analysis.

The first thing you’ll need to do is perform the regression properly. 
Depending upon what piece of software you have, you’ll need to find 
the regression command either in the data section or in another section 
of the software’s tool bar, such as formulas. (You can use the software’s 
help section to locate it.) Next, follow along with the prompts of the 
regression box, and once you run the regression an information page 
will appear in your worksheet. Of all the results that the software will 
produce, the main thing that you are looking for is how good the regres-
sion was. Does the information you were testing for make sense? Better 
yet, now that you’ve run the regression, can you use any of it to help 
you answer your question (or did it help you in your study question)?

This is key, because remember, you are using regression to 
measure a sample set of a population. And with any sample set, it is 
important to make sure the sample reflects the data as a whole.

To work the best, the sample set needs to be random. A regression 
analysis will tell you how good the quality of the sample set is, along 
with which of the factors in the sample set affect one another.

H O W  T O  I N T E R P R E T  T H E  N U M B E R S

The first thing you’ll want to look at is if the overall test results are 
based upon chance. In other words, when your computer software ran 



D e t e r mi  n i n g  t h e  C aus   e s � 189

the regression, you’d like to see that you got results that were based 
upon quality, and that you’re not just jumping to conclusions about the 
data. If the software says there is a high degree of chance, then in addi-
tional tests another researcher won’t get the same results. So, the first 
thing you will look at is how much chance there is in the regression 
experiment. To do this, you will look at the R squared number that we 
mentioned in the previous section. The R squared number tells you 
the percent quality of the “guess” that the software made. Eighty-five 
percent or higher is a good score since it indicates that 85 percent of 
the output variable is explained by the input variable. If you have 
many independent variables (more than four), then you should look 
at the adjusted R squared numbers. Remember, we said this number 
is for multiple independent variables. It will give basically the same 
information as the R squared number, but the adjusted R squared is 
a more conservative estimate of quality of the regression and takes 
a larger regression analysis more into account. With an adjusted R 
squared a score of 80 percent or greater is considered good.

The next information to look at from the regression tables is the 
significance of F (also discussed in a previous section). This number 
will tell you each separate part of the regression’s quality. Remem-
ber, the R squared and the adjusted R squared refer to the overall 
model, but the significance of F is for each part separately. In the 
case of this number, the smaller the better. Any significance of F that 
shows up smaller than 0.02 is good. There might be a variable that 
has a very large F number. You use only the smallest numbers in a 
model. Only the factors that the software tested under 0.02 should 
be used with a predictive model. If the significance of F in the analy-
sis measures larger than 0.05, the data being analyzed should not be 
used in your predictive model, because the computer regression has 
shown they’re not of quality.
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The last thing you’ll need to test is the data group. Go to the 
“Residual Output” section of the regression output screen. High-
light the “Residuals” section, go to the “Insert Graph” section of 
your software package, and use the residuals information that you 
highlighted to create a scatterplot chart from this data.

Once you create the scatterplot chart, you will look for two things: 
the data should be centered around the center (centered around the 
mean) and it should have a general, slight bell curve shape. If you 
find that’s the case, the quality of the data is confirmed, and you can 
use it to build your predictive model.
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CHI-SQUARE DISTRIBUTION
Mea su r ing t he Good ness of  Fit

Chi-square distributions are used to test if a distribution has good-
ness of fit, that is, if the sample sets you’re using closely resemble 
the entire population in their bell shape. It is often used for data that 
is not fully randomized and favors one end of the bell curve. The 
chi-square distribution can also be used to test the variance of a 
population.

Sometimes when a group of sample sets are taken and the data 
is plotted on a bell curve, the curve has a long tail to the right and a 
very short tail to the left. As we’ve discussed, the group of the sample 
sets under the bell curve is called the distribution. A normal distribu-
tion occurs when an equal amount of data points falls under each 
end of the bell curve and the bulk of the data is clustered around the 
middle. As we said earlier, normal bell curves also have one, two, and 
three standard deviations of data.

With the chi-square distribution, the distribution is skewed to the 
right for smaller numbers of degrees of freedom and becomes more 
symmetric with larger numbers of degrees of freedom.

Image of bell curve with more data to the right
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The term goodness of fit is used to compare the observed sample 
distribution of a categorical variable with the expected probability 
distribution. The chi-square goodness-of-fit test determines how well 
the theoretical distribution (such as normal, binomial, or Poisson) 
fits the empirical distribution. In the chi-square goodness-of-fit test, 
sample data is divided into intervals. Then the numbers of points 
that fall into the interval are compared, with the expected numbers 
of points in each interval.

The process assumes that in the null hypothesis there is no sig-
nificant difference between the observed and the expected value. 
The alternative hypothesis assumes that there is a significant differ-
ence between the observed and the expected value.

Use the Chi-Square Goodness-of-Fit Test

The chi-square goodness-of-fit test is appropriate when the following condi-

tions are met:

•	 The sampling method is simple random sampling.

•	 The variable under study is categorical.

•	 The expected value of the number of sample observations in each level of 

the variable is at least 5.

Based on this information, you can run your other tests: the 
mean, the mode, or even a multiple regression analysis. This is pos-
sible because you’ve used chi-square to measure the quality of the 
sample set. If the quality is good, then you know the sample set is a 
good representation of the entire population.
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H O W  Q U A L I T Y  O F  S A M P L E  S E T  R E L A T E S 

T O  T H E  N U L L  H Y P O T H E S I S

If your initial test of the quality of the data is good, the next thing 
you can do is take a more scientific test of the quality to see if you 
can accept or reject your null hypothesis. You can use all of the other 
statistics tests to help you with the null hypothesis.

Chi-square distributions are a bit different than normal distribu-
tions. The distribution becomes more symmetric as the number of 
degrees of freedom increases.

In attempting to use the chi-square distribution to test the vari-
ance of a distribution, you need to know that the data is normally 
distributed. That should not be an issue because the central limit 
theorem assures us that the distribution of sample means will be 
normally, or at least approximately normally, distributed. The test 

statistic for the test of hypotheses is Χ2  (n  1)s2

σ 2
where s2 and σ2 

are the sample and population variances and n  1 is the number of 
degrees of freedom from a sample of size n.

G O O D N E S S  O F  F I T

All tests of hypotheses consist of four steps:

1.	 State the hypotheses
2.	 Formulate an analysis plan
3.	 Analyze sample data
4.	 Interpret the results
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We have a random sample of 500 US adults who are questioned 
regarding their political affiliation and opinion on how well Congress 
is performing. We will test if the political affiliation and their opinion 
on Congress are dependent at the 5 percent level of significance.

POLITICAL AFFILIATION AND OPINION ON CONGRESS PERFORMANCE 

POLITICAL 
AFFILIATION

RESPONSE

Favor Neutral Opposed Total

Democrat 30 20 150 200

Republican 80 40 130 250

Independent 10 15 25 50

Total 120 75 305 500

State the Hypotheses
The null hypothesis is that the variables “political affiliation” and 

“opinion on how Congress is performing” are independent, while the alter-
native hypothesis is that there is a dependency between these variables.

EXPECTED COUNTS

POLITICAL 
AFFILIATION

RESPONSE

Favor Neutral Opposed Total

Democrat 200 × 120
500

 48 200 × 75
500

 30 200 × 305
500

 122 200

Republican 250 × 120
500

 60 250 × 75
500

 37.5 200 × 305
500

 152.5 250

Independent   50 × 120
500

 12   50 × 75
500

 7.5   50 × 305
500

 30.5 50

Total 230 45 225 500

The degrees of freedom (df) is equal to (number of columns  1) 
(number of rows  1)  (3  1) × (3  1)  4.
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Test Statistic
The test statistic is a chi-square random variable (Χ2) computed 

by finding the sum of the squared difference between the observed 

count and expected count. That is, Χ2 Σ
(Oi  Ei)2

Ei
. In this case, the 

calculation will be:

first row: (30  48)2

48


(20  30)2

30


(150  122)2

122
 16.5609

second row: (70  60)2

60


(37.5  30)2

37.5


(152.5  150)2

152.5
 3.2077

third row: (12  10)2

12


(7.5  15)2

7.5


(30.5  25)2

30.5
 8.8251 

You can see why you’ll let the technological tool do this work for you.

The value of Χ2  16.5609  3.2077  8.8251  28.5424.
The critical point for a 5 percent level of significance and 4 

degrees of freedom is 9.488. Our test statistic is greater than the 
critical point, so we have to reject the null hypothesis. The data sup-
ports the claim that there is a relationship between one’s political 
affiliation and how one feels about how well Congress is performing.

T E S T I N G  V A R I A N C E

Another aspect of the chi-square distribution is that it allows for test-
ing the variance of a normally distributed variable.

Here’s an example of how the test is used:
A manufacturer believes that the diameters of the 2-cm ball bearings 

they make are normally distributed with a mean of 2.00 cm with a stan-
dard deviation of 0.005 cm. A sample of 25 bearings is taken, and the 
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standard deviation is 0.007 cm. Is this an indication that the production 
process is not working properly? Use a 5 percent level of significance.

The null hypothesis for this test is that the standard deviation 
is less than or equal to 0.005 cm (we include “less than” as part of 
the hypothesis because the manufacturer will be comfortable with a 
smaller spread of deviations from the mean but not a larger spread). 
The alternative hypothesis is that the standard deviation is greater 
than the stated value of 0.005 cm.

The statistic for this test is Χ2  24(0.007)2

0.0052
 47.04. The critical 

value for a 5 percent level of significance and 24 degrees of freedom 
(found from a table of values in a statistics book or with technology) 
is 36.415. The manufacturer has to look at the production process 
because it is not working properly.
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ANOVA BASICS
A n a ly sis  of  Va r ia nce Tests

It is frequently the case that one might be interested in comparing 
differences in results among several groups. For example, a tire 
manufacturer would like to know how its best tire handles on differ-
ent types of vehicles. To do so, the manufacturer would perform an 
analysis of variance (ANOVA) on the data collected. ANOVA is a 
method of analyzing four or more separate chi-square tests. If these 
four or other small sample sets have related data—for example, if they 
are all from the same questionnaire, from the same study, or answer 
the same questions in the same test—then the data is related. The 
data of the tests might be so related that you would say they overlap. 
This might be because several small group samples were taken with 
the same end in mind: to measure the same variables.

This would come into play if you were running an experiment 
with similar yet different target groups. In this way, you would 
run the chi-square tests on each group each time, and then run an 
ANOVA test to further smooth the data that you received from all 
four or five chi-square results. This ANOVA testing acts as a data 
smoothing technique, as it is intended to give reports as to the aver-
ages of means of four or five separate tests.

Keep in mind that statistics is not a hard science, and that there 
is a lot of leeway to use smoothing techniques when data is sparse. 
Also, keep in mind that with smaller groups of test data, or small 
sample sets, the data from each test will be very irregular. This is 
because the test data has numbers as small as 40–50 or even smaller. 
You’ve learned that sample set testing works best when the sample 
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set has 100 data points or more. A larger size leads to more random 
results, which also leads to fewer irregular observations.

If you’ve run a small sample set test in your study, and although 
the numbers look good you’d like to reinforce your conclusions with 
further tests, then use the ANOVA tests on the data.

ANOVA versus t -Test

You use a t-test to compare the means of two populations and ANOVA to 

compare the means of multiple populations.

Running an ANOVA test is simple on most statistical software. 
It’s a great test to use if you’re stuck with smaller sample sets, and 
you’d like to run those tests multiple times. You do this to test any 
imperfections in the data that are too irregular. A good way to use 
this is to run the small sample set four or five times, each one sepa-
rately with chi-square, and then use the overlapping technique of the 
ANOVA testing. This has the effect of finding averages of means, 
softening the effects of outliers, etc., all done through a layering 
effect.

When deciding upon which tests to use, it’s best to ask yourself 
what the end goal is with your test. You’ll learn very little by running 
ANOVA tests with no data. The best way to learn is to have a use for 
it: if you need to strengthen your results before you draw a conclu-
sion on your data, then use it. If you need to gather information, test 
it statistically, and then use the results to either accept or reject your 
null hypothesis, then this test can help you be more confident in your 
results.
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Remember, any statistical test uses data and methods that can be 
repeated by other parties. You don’t want to make a conclusion about 
a population by running a small sample set, only to find that when 
others make the same tests, they come up with entirely different 
results. There is an art to analyzing data and drawing conclusions, 
but this art must be backed by sound science as much as possible. In 
this way, consider using ANOVA testing when you run into smaller 
sample set testing. It will strengthen your results, and you will feel 
more confident in your conclusions.
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ANOVA AT WORK
One -Way A n a ly sis  of  Va r ia nce

One of the more common tests of ANOVA is the testing of a hypoth-
esis about the mean of a group of tests. ANOVA can be used to test a 
question such as “Are the averages of these groups the same?” This 
section will show an example of ANOVA at work, as well as comment 
on upper-level, complex calculations in today’s modern statistics.

Let’s use a rainfall example for our test. In this example, a large 
commercial corn and soybean farm of 200,000 acres would like to 
conduct a survey of average rainfalls during each month. They’d like 
to do the research going back tens of years, but for practical pur-
poses they’ll measure the rainfall in this year alone, for each grow-
ing month, and for each of the counties of the states that their farms 
operate in. Since there are hundreds of acres of land, they will select 
only thirty days out of each month this year to measure, and they 
have only twenty counties to measure, so it can be said that they are 
looking at a small sample set. How so? Measuring thirty days per 
month for twenty sites constitutes a small sample.

This test is called a one-sided ANOVA test because they’re test-
ing only one thing: either the county had rain, or it didn’t; there can’t 
be negative rainfall. Also, they have 200,000 acres in the popula-
tion, but they’ll be measuring the rainfall at only twenty sites.

The company would like to know how much fertilizer they need 
to order, so they’ll need to know the average rainfall over the year (to 
order the fertilizer for next year).

They collect the data: twenty sets of data with only thirty days of 
possible rainfall out of each month.
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Using one-way ANOVA, they can use its smoothing effect to find 
out if the averages for each of the twenty sites where they are mea-
suring rainfall are the same. In other words, they have an average 
rainfall for each of the twenty sites: they’ve measured it throughout 
the season, and they think the average rainfall is four inches of rain—
this is their hypothesis. ANOVA is used to determine if all the sites 
have the same mean number of inches of rain. This would be the null 
hypothesis. The alternative hypothesis is that at least one site has 
an average rainfall that is different from the others. The company’s 
analysis found the averages at each of the twenty county sites; now 
they need to see if those averages meet their guess of four inches of 
rain.

This study meets all the requirements of a good study: there are 
more than four small sample sets to average, and there is a one-way 
direction to the data: positive only. (As we said, there can’t be nega-
tive rainfall.)

In this case, ANOVA is being used to prove or disprove a hypoth-
esis. The null hypothesis is “The average rain on each of our farms 
is four inches per month or greater.” They’ve found the average of 
twenty locations they farm in, and they’ve used ANOVA to find the 
average of these averages to come up with the rainfall. They can then 
say, “The average rainfall for our farm sites is four inches a month.”

Since one-way analysis of variance is very complex mathemati-
cally and is best done with software, you will need to take the time to 
learn how to analyze the results of the test. That is well beyond the 
scope of this book.
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QUANTITATIVE RESEARCH 
DESIGN
Set t ing Up a n E x per iment T h at  Work s

Now you’re at the point where you’re ready to do a statistical analysis 
of a problem. Knowing about statistics is good, making them work 
for you is better, and finding a real-life application for them is best. 
If you get a chance to work on a quantitative research project, it will 
look something like what’s covered in this section.

Quantitative research design incorporates all of the tools of sta-
tistics, but with an emphasis on the results to be used for academic, 
business, financial, educational, or medical research. We’ve been 
talking in this book about the tools that are designed to help you 
analyze large groups of data in such a study.

The first step is deciding upon the basis for the research: the ques-
tion that your research will be attempting to answer. When deciding 
upon a question, keep in mind that it must broad enough to be able to 
find enough researchable data. Statistics is a data-rich science, and 
if you’ve chosen a narrow subject, one that is too specialized, then 
there won’t be enough data. Asking a broad, researchable question is 
the key to successful quantitative research design.

If you’ve decided upon a question, then think about a possible 
answer to that question. Let’s look at a medical study:
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A N  E X A M P L E  O F  A  R E S E A R C H  S T U D Y

You’ve decided to measure the comfort and pain-relieving effects 
of two competitive brands of over-the-counter pain relievers. They 
have nearly the same price, and they are both sold at one of the larg-
est pharmacy chains in the country. Also, the ingredients in both 
medicines are the same active ingredients given in clinics and hos-
pitals across the country.

You want to find out which of the two medications gives the most 
comfort and pain relief to users. You will be testing only those individu-
als whose pain is at a level for which these two types of medication will 
work, not a pain level for which a prescription painkiller is required.

Next, you’ll need to come up with a possible answer. From your 
personal and nonscientific observations, your answer is, “Medica-
tion A has a 75 percent higher rating for pain relief than medication 
B.” This answer is your null hypothesis.

You now have the question and the answer that you are testing 
for. The many people across the country who are using the pain 
medication constitute the population of the study.

S E T T I N G  U P  T H E  E X P E R I M E N T

After making some calls to the marketing department of the drug-
store, you discover that 60,000 units of the medications combined 
are sold yearly. Using computer software you determine that to have 
a 95 percent confidence level you’ll need to create a sample popu-
lation of 400 people. With these 400, you’ll be able to adequately 
measure what medication works best.



204� S TAT I S T I C S  101

With this sort of study, you’ve decided to send out online sur-
veys. You build a questionnaire that includes blind questions (that 
is, questions that help you rule out if the answer is biased because of 
preknowledge—for instance, if those taking the survey are medical 
professionals). The questionnaires go out, and the responses come 
back over the next few weeks.

Levels of Significance

Whether one uses a level of significance of 10 percent, 5 percent, 1 percent, 

or some other value is dictated by the consequences of being wrong. This is 

what the level of significance means. You can never be 100 percent correct 

unless you can get observations from 100 percent of the population. This is just 

not possible because of financial issues or possibly the fate of using all of the 

material being tested. (For example, one cannot use 100 percent of the vaccine 

being tested—if the vaccine works, it’s all been used and you have nothing to 

see. If it doesn’t, well, that’s too dreadful to think about.)

You next take the responses you’ve received and determine with 
statistical analysis that after trying both medications, 82 percent of 
the responders report that medication A works better on their pain. 
You’ve done your data gathering in a random method. You’ve also 
determined that the number of responses exceeds the required 400, 
so you know the sample set is large enough to offer you a 5 percent 
degree of error that you do not reject your null hypothesis that 75 
percent of over-the-counter pain medication buyers have their aches 
and pains treated more effectively by medication A.
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Here are the steps for a quantitative research analysis:

•	 Ask the question
•	 Come up with a possible answer: this is your null hypothesis
•	 Estimate the population size
•	 Discover the ideal sample size
•	 Collect the data in a random manner
•	 Use statistics to match the results to your null hypothesis
•	 Reject or do not reject your null hypothesis
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QUALITY OF THE DATA
Q uest ion s a nd A n s wers of  Data Col le c t ion

In this section you will learn the importance of quality data. You 
will also learn the importance of the elements of quality in the data 
collection part of your study. These elements include obtaining a 
randomly generated, repeatable sample set that is large enough to 
give you the margin of error you require for the study.

In any statistical study the quality of the data is key. Remember, 
you are looking at a sample of a large population. In most studies, 
the population is too large for you to observe each one separately 
and record what you see. In fact, some populations are so large that 
even the most sophisticated software wouldn’t be able to handle it. 
Therefore, you use samples of the population. Samples can do the 
trick with statistics—with the right sample, you can use statistics to 
draw a conclusion as to whether your hypothesis is correct or not. 
In fact, the whole study of statistics amounts to learning how to use 
sample data and make an inference about that data.

Q U A L I T Y  A N D  R A N D O M N E S S  A R E  K E Y 

T O   D A T A  C O L L E C T I O N

The most important things about data are the quality and the random-
ness. Data that is collected in place of an entire population must be 
very random. It wouldn’t do you any good to test only a concentrated 
part of the entire group. Why? Because this would skew the results of 
the test. If you conduct a survey using nonrandom information, you 
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run the risk of observing a group that may have a bias. If the group 
is concentrated in one area or one sector of the entire population, 
they’ll probably have similar answers in your survey.

How do you avoid this? By making the sample set as random as 
possible. Keep in mind that the sources of the data, the times, and 
other factors could inadvertently group the sample such that all 
respondents carry the same bias. The randomness of the sample set 
gives you the quality of the data. You’ll also need to refer to the ques-
tion and the null hypothesis to help you see if there is a weakness in 
your data collection. This is best done with questions that are put 
into the study that would show a bias.

For example, in a survey of a voter’s opinion about specific gov-
ernment issues, one of the early questions might be “Do you agree 
with the president on his agenda?” This could easily bias responders’ 
answers to the question, which align with their feelings about the 
president in general.

Statistics, while math and software based, still requires a hands-
on approach. You’ll need to fine-tune the questions, the data collec-
tion, the sample size, and the confidence interval. In a perfect world, 
you would measure and test every single possible combination and 
every single observable fact in the entire test population. That’s the 
perfect world, and most of the time it can’t be done. This is where 
statistics will allow you to shine: you’ll be able to reach conclusions 
from smaller, easier, more affordable (in terms of time, money, and 
effort!) tests, and you can use math to back up these conclusions. If 
done properly and with quality data, you can draw a conclusion that 
can be duplicated; this is the key to any study.
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Surveys

With the increased demand for quality statistics, the creation and assessment 

of the fairness of surveys and questionnaires is a full-time job.

Quality data can come from many sources. Getting the data into 
a numbers-based, quantitative format can be easy too, by converting 
yes/no to an “on/off,” “1/0” format, numbering your questions into 
values from 1–5 (strongly disagree, agree, no opinion, agree, strongly 
agree), etc. All the data you collect must be put into a format that 
software can read. If it is just words, the software won’t know what 
to make of it. If, on the other hand, you say, “I liked it” from 1–5, the 
software will know that someone who answered 5 liked it more than 
someone who answered 2. The same for yes/no. A no is basically 0 
because it didn’t happen, while a 1 means it did happen.

Q U A L I T Y  I S S U E S

You can see if your data has quality issues by putting it into a chart. If 
you use a scatterplot and the scatters have no pattern, then you may 
be running into a problem with the quality. Why? Because there is 
no pattern, there is no average, and therefore the data is not measur-
able. A regression analysis will show this quickly, as the indicators 
will show that the variable is inconclusive in a relationship. In other 
words, your regression will show that one variable has no effect on 
the other. These variables are then not included in the modeling. 
This is done because after plotting the points on a graph with a scat-
terplot, you can’t draw a line estimate to calculate an accurate slope 
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of the relationship of how one affects the other. This means the data 
was just too random to have a mathematically based strong relation-
ship that shows how A affects B.

Remember, your data should be randomly collected, but you are 
looking for one event affecting the other; you are looking for a rela-
tionship between the two. The first step, therefore, is collecting the 
random data so it’s not biased. Next you look for how one variable 
affects the other. This is important, because with this information 
you’ll be able to reject the null hypothesis or not reject it.

This is a great point in a study: to accept or reject the null hypoth-
esis mathematically is quite an achievement. This is particularly the 
case when setting up a study, designing the survey or data collec-
tion, and running the statistical tests has taken weeks or months. If 
a study such as this ends with a definite “accept” or “reject” that can 
be proven statistically, the study is a success.

Especially because of this, the quality of the data is important. 
This is because with any study, you want accuracy to the degree of 
the margin of error at which you’re testing, and this can be achieved 
only with a randomly generated sample set of a big enough size.
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QUANTITY AND SOURCING OF 
THE DATA
K now ing W here to  Look

There are two forms of data collection for any study: qualitative and 
quantitative. Qualitative data is soft information. This is the infor-
mation you get from the library or through accessing material on 
websites. With qualitative studies you are looking at the words. This 
information is fact, but it’s presented in words; it’s not numbers based.

Qualitative studies are often an integral part of higher educa-
tional studies, marketing studies, and sales-related studies. They are 
often also part of a graduate degree final paper, both at the master’s 
level and at the doctorate level.

The Level of Your Study

The quality of your data is dependent upon the level of your study. If you’re 

running a quick test that serves as a generalization, then it’s okay to get data 

from less reliable sources. Of course, if you are doing a more complex or more 

critical study, then only use the highest-quality sources of databases.

In the quantitative section of a study, you’ll need to have access 
to numbers-based information. This can come from three sources, 
in order of quality. The first type of data is collected from other stud-
ies that came before you. It is totally feasible to conduct a statistical 
study using data that has already been gathered by other research-
ers in the field.
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For instance, let’s say you’re conducting research on whether a 
certain type of investment product, which is very popular among 
financial advisers, is in fact a good deal for investors. The same sub-
ject has been studied by professional researchers, and the results 
have been published. The first step is to go to the library and famil-
iarize yourself with all that the experts are saying on the subject, 
where they got their information, and what statistical tests they ran 
to come to their conclusions.

You copy the information sources and use the same statisti-
cal procedures that the experts used. In effect, you’re redoing the 
experiment. You may not come to different conclusions—in fact you 
probably won’t—but you can reinforce the conclusions others have 
already drawn. You use the experts’ past work as a baseline, a place 
from which to launch your new study.

The next type of data is that obtained from trusted sources. 
There are many highly respected databases that are available at a 
cost; these include www.lexisnexis.com/en-us/gateway.page or www 
.bloomberg.com/professional/. These sites cost quite a bit, so you’ll 
need to see if your school or library has access to them. Often, you 
can use your local public library card to open an account at a library 
in a major metropolitan area and use those databases remotely. 
Other helpful databases include the following:

•	 Chicago Public Library: www.chipublib.org/
•	 New York Public Library: www.nypl.org/
•	 The British Library: www.bl.uk/
•	 US Library of Congress: https://loc.gov/
•	 World Bank open database: https://data.worldbank.org/
•	 International Monetary Fund database portal: www.imf.org/en/

Data
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•	 Bank for International Settlements statistics portal: www.bis.org/
statistics/

•	 World central banks guide website listing: www.centralbanksguide 
.com/centralbankslist/

•	 US Census Bureau database: www.census.gov/

The last type of quantitative data is primary data. This is data 
that you’ve collected from your own observations, from your own 
direct experiments, or from sending out your own questionnaires.

Professional Databases

As far as databases go, some can be quite expensive, such as www.IBISworld 

.com. Some of these can be easily replaced with governmental databases. 

Keep in mind that data collection is a business in itself, and paid-for profes-

sional databases, while more expensive, are often easier to use than the gov-

ernmental databases.

H O W  M U C H  D O  Y O U  N E E D ?

You must have enough data to get the numbers right. As we said 
earlier, if you’re working with a sample set smaller than 100, you’re 
running the risk of having a data set that is biased in nature. This is 
because a sample set that is less than 100 observations has difficul-
ties with randomness.
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APPROPRIATE SURVEY DESIGN
I ncrea sing t he Ef f icienc y of  Q uest ion n a ires

As a rule, the questionnaire should be kept short—no more than fif-
teen or twenty questions. If it gets any longer, then you run the risk 
of people not finishing, or worse, not responding at all. This is true in 
face-to-face interviews or phone interviews; people can get irritated 
by long question sessions. Remember, you are looking for accurate, 
complete answers to your questions. If your questionnaire is too 
long and irritates or frustrates those who are taking it, then you will 
have a lot of unfinished and unusable questionnaires. Worse, if the 
people start to get frustrated with the length of the questions, they 
will answer without thinking to finish quickly, or they may answer 
questions negatively as a reflection of their current mood and not as 
a true indication of how they feel on the subject.

The only type of questions that should be asked are objec-
tive ones. Avoid open-ended questions on the survey and refrain 
from asking fill-in-the-blank questions. These are bad for two rea-
sons. First, people tend to avoid these types of questions. Second, 
responses can be very difficult to score or convert into a numbers-
based system required for mathematics-based statistics. They also 
add time to grading and scoring.

You should build into each question a negative-to-positive or an 
infrequent-to-frequent response with at least seven levels. Seven 
levels of response will give the test taker enough leeway to answer 
how he or she would like. Also, seven levels will offer you enough 
data to run a statistical test of the sample set—and it will provide 
enough variation to have meaning with a regression analysis, etc. 
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The item might read, “I’ve had success with using over-the-counter 
cold medications” from 1 (least true)–7 (most true).

Paying for Surveys

Should you pay people to take your surveys? Yes and no: you might need to 

incentivize the people to take the survey, but at the same time it could create 

bias in the sample. Why? Because the payment may attract a positive bias to 

the questions. You’ll need to think of ways to incentivize survey takers without 

biasing them.

In these types of studies, it’s most common to run a multiple regres-
sion analysis after the descriptive statistics tests are done, i.e., the mean 
and the mode have been determined, and you know the shape of the bell 
curve. Now the real work begins with inferential statistics and build-
ing a predictive model—and the workhorses of these are the regression 
analyses and the models that can be made after they are done.

Regression is best done with lots of data, and a variation of 7 to 9 
data points per question will allow for a good read with it. This will 
allow enough data to draw a good conclusion of how the independent 
variables (the questions) affect the dependent elements.

The questions should be set up in clear formats.
It is good to remember that your questions, while looking for soft 

or qualitative answers, should be built in a way that you can convert 
the data easily to numbers—a range of answers to a question is best, 
as this can then be converted to the next step of a statistical study: 
the numbers-based analysis. For example, “Do you buy your grocer-
ies at more than one store? Why?” “Better quality” (1  less true—7  

more true); “Lower cost” (1  less true—7  more true), etc.
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THE ETHICS OF STATISTICS
B end ing t he Tr ut h

Because statistics usually do not stand in a vacuum; because most 
statistical studies are done in order to prove or disprove something; 
and because statistics, while math based, rely heavily on interpreta-
tion, there is always the chance that people will use statistics to bend 
the truth.

Data-based sciences that take data, analyze it, and then make 
predictions based on it are always subject to controversy. We’ve 
already mentioned Disraeli’s famous dictum about lies, damned lies, 
and statistics. Numbers can be bent or their interpretation twisted. 
After all, the numbers may be objective, but their interpretation is in 
the hands of humans, who are sometimes tempted to get the model 
to fit the desired outcome.

Do the Right Thing

Ethics questions are easy to answer when you’re not personally involved. At 

the same time, such questions can be very difficult for some people when it 

involves their work, their reputation, their income, or their status in their com-

munity. You hope you’d do the right thing, but keep in mind, people do struggle 

with this subject when it actually happens to them.

Keep in mind that interpretative sciences are much like an art, 
and statistical studies and their makers are like art critics. Is art 
good? Does it have beauty? Sometimes you can even ask the ques-
tion, “What does it matters if the art is good? That painting sold for 
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one million dollars!” If it’s good, pretty, or accurate doesn’t matter: 
the artist somehow convinced the buyer that it was good and worth 
the one million dollars. Such decisions are often highly subjective 
(which is why painters often go in and out of fashion). We like or 
dislike a piece of art often in large part based on prevailing cultural 
norms. In the same way, we interpret statistics based often on pre-
vailing prejudices.

This is what you must think of when you are doing your statistical 
studies. Or better yet, this is what you must think of when you are 
looking at someone else’s statistical studies. There is always a temp-
tation to try to get the right numbers, to prove your hypothesis was 
correct. Sometimes it’s unconscious. There is a lot of wiggle room in 
statistics. The margin of error may be too large to make realistic con-
clusions, yet the test is called “good” by the testers, and the results 
are published.

This wiggle room in statistics usually comes in three ways: the 
collection of the data, the exclusion of outliers, and the overzealous 
use of wide-parameter margins of error.

Ethics

Ethics are taught more in some subjects than others. Some studies never 

touch on the subject. Sometimes people who aren’t trained in ethics don’t 

even know there is an ethical issue involved. They might not even know they 

aren’t doing the normal, right thing. This often happens when someone is new, 

or hasn’t seen how ethics can affect themselves and others. They might be too 

young, too inexperienced, or too new to the study.
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Collecting the data can cause ethical problems if the sample set 
is known to be tainted, known to be not random enough, or biased. 
You may be tempted to oversmooth the data. Smoothing techniques 
allow you to look at larger groups that show irregularities, but mul-
tiple smoothing techniques can destroy the integrity of the data, 
eliminate the markings of outliers, and make impossible an accurate 
interpretation of data. A statistical analysis with all the rough edges 
sanded off and the data smoothed to the point of uniformity may 
look pleasing, but it’s also probably inaccurate.

Finally, the margin of error may be too large. Saying, “The 
weather next Wednesday will be cold and snowy with a 50 percent 
margin of error” is meaningless. You’re just as likely to be wrong as 
you are to be right. In this book, we’ve learned the general guidelines 
for an acceptable margin of error.

T W O  P E O P L E ,  D I F F E R E N T 

I N T E R P R E T A T I O N S

Two people can look at the same data and come to different conclu-
sions. This happens often with regression analysis, where multiple 
variables are tested for how they affect another. After a regression is 
made, the statistician has to interpret what variables affect the other. 
The software won’t tell you this. You have to use your own judgment 
as to what affects the variable. This can come down to an issue of 
unconscious bias. You interpret the data in a particular way because 
you were predisposed to do so—even if you didn’t know it.

Looking clearly and objectively at data is a challenge. You are 
the one to judge the outcomes of the studies you are performing, and 
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you are the one who will be embarrassed if you’ve done something 
wrong (or wasted time with an expensive study that went nowhere). 
On the other hand, you may profit (in fame, financially, or otherwise) 
from your conclusions. All you can do is be as objective and truthful 
as possible.

This brings us to the subject of false conclusions. Sometimes, 
tests are made, and there seems to be a strong direct tie between 
one thing affecting the other. Without thinking it through, you could 
draw a conclusion that one affected the other. A good example of this 
is that in the past twenty years, violent crime in the United States has 
decreased, while personal computer usage has increased. Someone 
looking only at those two statistics might draw the conclusion that 
computer usage affected crime. This is probably not the case (there 
are all sorts of other factors to be taken into account, including pov-
erty, cultural norms, and so on), but if you weren’t careful, you could 
make this type of false cause/effect assumption.
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BIG DATA, SUPERCOMPUTERS, 
AND ARTIFICIAL INTELLIGENCE
T he Fut u re of  Stat ist ics  a nd Data A n a ly t ics

When statisticians get together over drinks, one of the issues that 
comes up is whether statistics will move from measuring sample 
sets to measuring large populations. This is called big data. Big data 
refers to data sets that have hundreds of millions or even billions 
of data points, rather than the hundreds or even thousands of data 
points we consider now. Big data, because of its huge size, requires 
specialized computer memory. After the problem of data storage is 
taken care of, there comes the problem of running the statistical cal-
culations with a large enough sample set. Remember, with a popula-
tion in the thousands, an appropriate sample size is in the hundreds. 
With that in mind, you can imagine an appropriate sample size for a 
population that is in the billions!

Big Data in the Headlines

Big data and analytics can be a touchy subject. In 2018, Mark Zuckerberg 

(1984–), the CEO and founder of the social media site Facebook, had to go 

before a US Senate hearing committee to discuss his company’s data collec-

tion methods. The way in which companies collect and store data about their 

customers continues to be big news: data collection and the selling of the data 

to third parties is highly controversial.
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Running a statistical model with that much data takes a lot of 
time and a very powerful computer. Fortunately, researchers and 
technicians today are building supercomputers. One of the most 
famous of these companies is Cray (www.cray.com/), which builds 
computers with the ability to crunch millions of numbers in a frac-
tion of a second. Computing speed and power have big implications 
for the future of statistics because of this move toward big data. It 
only makes sense that now that the data is there, companies are will-
ing to invest in human, time, and money capital to use this data for 
outcomes.

That raises the question: what is all this big data being used for? 
Today, business is one of the largest users of this information. Gov-
ernment is another. The National Security Agency, the electronic 
wing of the intelligence community, collects trillions (if not quadril-
lions) of bits of electronic data, which must be stored and analyzed.

The Popularity of Big Data

What’s making data collection so popular? What’s making big data possible? 

It’s the advance of speedier computers coupled with cheaper and larger 

amounts of digital storage. Both are needed for large project data analysis, and 

in the past few years both have increased in effectiveness while decreasing in 

investment costs.

What do they use it for? Statistics hasn’t really changed: statisti-
cians take sample sets of larger populations and use this information 
to try to predict the future. That’s about all they are really doing: 
collecting data, crunching numbers with supercomputers, applying 
statistics, and attempting to predict the future. Some try to predict 
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consumer trends, some try to predict the direction of the stock mar-
ket, some try to predict the outcomes of elections.

Knowing what your customer will ask for at the market and being 
there first with it can give you the competitive edge, and with this 
information you can (in theory) make more money. Knowing what 
issues resound with the electorate means you can fine-tune your 
candidate’s speeches to hit those points and increase your chances 
of winning an election.

Big data is the wave of the future. In turn, this leads to the devel-
opment of new computer languages to statistically crunch numbers 
in multiple sequence. These languages allow the numbers to crunch 
at an even faster pace than sequential crunching.

Another influence on statistics today is in the field of chaos the-
ory. Chaos theory is a separate division of mathematics and physics 
that deals with extreme randomness. It has significant applications 
in the area of quantum mechanics, the far reaches of theoretical 
physics.

In the field of statistics, ever-growing computer power is the 
future. Where this will eventually lead is anyone’s guess.



Statistics are an essential part of the work of stock traders and analysts. They look at 
the movement of groups of stocks within the market and determine the frequency with 
which that movement occurs and in what direction. Based on this, they can predict 
which stocks to buy and which to sell.

Photo Credit © Getty Images/phongphan5922

A branch of statistics, sabermetrics, is devoted to the study of baseball statistics. These 
statistics are used both by teams to decide which players they should try to acquire and 
by bookmakers in Las Vegas and elsewhere, who use the statistics to calculate the odds 
(shown here) of teams winning individual games, the playoffs, and the World Series.

Photo Credit © Getty Images/sb-borg



Towns and cities often use statistics to figure out hours and funding for municipal 
institutions. For instance, a library might poll a representative selection of users to 
decide what hours it should be open and which parts of the library patrons use the most.

Photo Credit © Getty Images/kali9



Some statistical surveys 
use multiple-choice 
questions, offering survey 
takers a variety of possible 
answers. Once analysts go 
over the answers, they can 
use them to build a model 
that predicts outcomes. 
This is the whole object 
of statistics: to be able to 
predict things.

Photo Credit © Getty Images/atakan

Weather forecasters have vast amounts of data to analyze, but they don’t have 
sufficient time to do so before making a forecast. Instead, they must select a 
smaller sample that accurately reflects the larger population of data. Forecasters 
examine previous weather patterns and, based on a statistical analysis, can predict 
the probability of weather-related events.

Photo Credit © National Weather Service/Public Domain



In addition to her ground- 
breaking nursing work during 
the Crimean War, Florence 
Nightingale (1820–1910), a 
gifted mathematician, made 
several innovations in the field 
of statistics. She popularized 
the use of the pie chart and 
other visual aids to show 
statistical conclusions.

Photo Credit © Getty Images/RichLegg

City and state governments often commission statistical studies of traffic patterns. Such 
surveys are a useful measure of the wear and tear on the highways, given the average 
number of cars, small trucks, and semitrailers that pass a section of road in a given time.

Photo Credit © Getty Images/Art Wager



A pie chart shows the proportions of a statistical population that are made up of 
subgroups. The population percentages add up to 100 percent. Pie charts are used 
when you want to show the relationship of data points to one another. In this one, which 
shows the budget allocation for a marketing program, marketers can tell at a glance 
what proportions of the program are intended for which activities.

Photo Credit © Simon & Schuster/Katrina Machado

Marketing Budget

Advertising: 14%

Communication: 50%

Promotions: 3%

Public Relations: 6%

Events: 13%

Research: 14%



In a bell curve, the majority of the data is gathered in the center. The number of data 
points gets smaller the farther you get from the center. There may be some outlying 
data points that are on the extreme edges of the bell curve. This arrangement of the 
data is called its distribution.

Photo Credit © Getty Images/lamnee

Janet L. Norwood (1923–2015) was the 
first woman to head the US Bureau of 
Labor Statistics, the department that 
gathers data on economics and labor and 
provides it to the government. She was 
also a leading member of the American 
Statistical Institute and the International 
Statistical Institute.

Photo Credit © AmstatNews



Sir Ronald Fisher (1890–1962) has 
been described as the father of modern 
statistical science. Among other things, 
he is credited with the development 
of the t-distribution, which is used to 
analyze the distribution of probabilities 
(that is, where data is likely to fall on 
a bell curve) within a small population. 
You would use a t-distribution, for 
instance, if you were looking at the 
probable distribution of redheads in a 
group of thirty or fewer people.

Photo Credit © The University of Adelaide, via Wikimedia 
Commons

Nate Silver (1978– ) is one of 
the best-known statisticians 
today because he correctly 
predicted the outcome of the 
2012 US presidential election 
in forty-nine of the fifty states. 
His website FiveThirtyEight 
(referring to the total number 
of electoral votes cast in the 
election) is looked on as one of 
the most authoritative places 
for statistics about political 
races.

Photo Credit © randy stewart from Seattle, WA, 
USA, via Wikimedia Commons



The world is passing into an age of “big data,” when enormous amounts of information 
will require statistical analysis by supercomputers such as the one seen here. Such 
computers are capable of reviewing trillions of data points in an extremely short time. 
However, the continued growth of data will require such computers to become even 
more sophisticated in the future.

Photo Credit © Getty Images/baranozdemir
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