
This, the first volume in Randall Hyde’s Write Great
Code series, dives into machine organization without
the extra overhead of learning assembly language
programming. Written for C/C++, VB, Pascal, Java,
and other high-level language programmers, Volume I,
“Understanding the Machine,” fills in the low-level
details of machine organization that are often left out
of computer science and engineering courses. Learn:

• How the machine represents numbers, strings, and
high-level data structures, so you’ll know the inherent
cost of using them.

• How to organize your data, so the machine can
access it efficiently.

• How the CPU operates, so you can write code that
works the way the machine does.

• How I/O devices operate, so you can maximize your
application’s performance when accessing those
devices.

• How to best use the memory hierarchy to produce the
fastest possible programs.

Great code is efficient code. But before you can write
truly efficient code, you must understand how computer
systems execute programs and how abstractions in
programming languages map to the machine’s low-level
hardware. After all, compilers don’t write the best
machine code; programmers do. The information in this
first volume of the Write Great Code series gives you
the foundation upon which all great software is built.

A B O U T T H E A U T H O R

Randall Hyde is the author of The Art of Assembly
Language (No Starch Press), one of the most highly
recommended resources on assembly. He is also the
co-author of The Waite Group's MASM 6.0 Bible. He
has written for Dr. Dobb’s Journal, Byte, as well as
professional journals.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

SH
EL

VE
 IN

:
PR

OG
RA

M
M

IN
G/

GE
NE

RA
L

$39.95 ($55.95 CAN)

H
Y

D
E

W
R

ITE
 G

R
E

A
T C

O
D

E
W

R
ITE

 G
R

E
A

T C
O

D
E

V
O

L
U

M
E

 1
:

 U
N

D
E

R
S

T
A

N
D

I
N

G

T
H

E
 M

A
C

H
I

N
E

R a n d a l l H y d e

V O L U M E 1 :

U N D E R S T A N D I N G
T H E M A C H I N E

WRITE GRE AT CODEWRITE GRE AT CODE

MACHINE

ARCHITECTURE

FOR MERE MORTALS

MACHINE

ARCHITECTURE

FOR MERE MORTALS

WRITE GREAT
CODE

V o l u m e I :
U n d e r s t a n d in g t h e M a c h in e

by Randal l Hyde

San Francisco

WRITE GREAT CODE. Copyright © 2004 by Randall Hyde.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

 Printed on recycled paper in the United States of America

1 2 3 4 5 6 7 8 9 10 – 07 06 05 04

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock
Managing Editor: Karol Jurado
Cover and Interior Design: Octopod Studios
Developmental Editor: Hillel Heinstein
Technical Reviewer: Mark de Wever
Copyeditor: Andy Carroll
Compositor: Riley Hoffman
Proofreader: Stephanie Provines

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415-863-9900; fax: 415-863-9950; info@nostarch.com; http://www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Library of Congress Cataloguing-in-Publication Data

Hyde, Randall.

Write great code : understanding the machine / Randall Hyde.

p. cm.

ISBN 1-59327-003-8

1. Computer programming. 2. Computer architecture. I. Title.

QA76.6.H94 2004

005.1--dc22

2003017502

No Starch Press, Copyright © 2004 by Randall Hyde

B R I E F C O N T E N T S

Chapter 1
What You Need to Know to

Write Great Code
1

Chapter 2
Numeric Representation

9

Chapter 3
Binary Arithmetic

and Bit Operations
39

Chapter 4
Floating-Point
Representation

65

Chapter 5
Character Representation

103

Chapter 6
Memory Organization

and Access
133

Chapter 7
Composite Data Types
and Memory Objects

161

Chapter 8
Boolean Logic

and Digital Design
191

Chapter 9
CPU Architecture

225

Chapter 10
Instruction Set Architecture

259

No Starch Press, Copyright © 2004 by Randall Hyde

vi Brie f Conten t s

Chapter 11
Memory Architecture

and Organization
295

Chapter 12
Input and Output (I/O)

329

Thinking Low-Level,
Writing High-Level

405

Appendix A
ASCII Character Set

407

Index
411

No Starch Press, Copyright © 2004 by Randall Hyde

C O N T E N T S I N D E T A I L

1
WHAT YOU NEED TO KNOW TO WRITE GREAT CODE

1.1 The Write Great Code Series ..1
1.2 What This Volume Covers...3
1.3 Assumptions This Volume Makes..5
1.4 Characteristics of Great Code ...6
1.5 The Environment for This Volume ...7
1.6 For More Information ...7

2
NUMERIC REPRESENTATION

2.1 What Is a Number? ...10
2.2 Numbering Systems ...11

2.2.1 The Decimal Positional Numbering System..11
2.2.2 Radix (Base) ...12
2.2.3 The Binary Numbering System ..13
2.2.4 The Hexadecimal Numbering System ...15
2.2.5 The Octal (Base-8) Numbering System ...18

2.3 Numeric/String Conversions ...19
2.4 Internal Numeric Representation ..21

2.4.1 Bits ..21
2.4.2 Bit Strings ...22

2.5 Signed and Unsigned Numbers...24
2.6 Some Useful Properties of Binary Numbers ...25
2.7 Sign Extension, Zero Extension, and Contraction ...27
2.8 Saturation...30
2.9 Binary-Coded Decimal (BCD) Representation...31
2.10 Fixed-Point Representation ..33
2.11 Scaled Numeric Formats...35
2.12 Rational Representation ..38
2.13 For More Information ...38

3
BINARY ARITHMETIC AND BIT OPERATIONS

3.1 Arithmetic Operations on Binary and Hexadecimal Numbers39
3.1.1 Adding Binary Values ..40
3.1.2 Subtracting Binary Values ...41
3.1.3 Multiplying Binary Values ...42
3.1.4 Dividing Binary Values ...43

No Starch Press, Copyright © 2004 by Randall Hyde

viii Content s i n De ta i l

3.2 Logical Operations on Bits.. 46
3.3 Logical Operations on Binary Numbers and Bit Strings .. 47
3.4 Useful Bit Operations ... 48

3.4.1 Testing Bits in a Bit String Using AND.. 48
3.4.2 Testing a Set of Bits for Zero/Not Zero Using AND 49
3.4.3 Comparing a Set of Bits Within a Binary String................................... 49
3.4.4 Creating Modulo-n Counters Using AND.. 51

3.5 Shifts and Rotates .. 52
3.6 Bit Fields and Packed Data ... 55
3.7 Packing and Unpacking Data ... 60
3.8 For More Information... 64

4
FLOATING-POINT REPRESENTATION

4.1 Introduction to Floating-Point Arithmetic .. 66
4.2 IEEE Floating-Point Formats ... 71

4.2.1 Single-Precision Floating-Point Format .. 72
4.2.2 Double-Precision Floating-Point Format ... 74
4.2.3 Extended-Precision Floating-Point Format .. 74

4.3 Normalization and Denormalized Values ... 75
4.4 Rounding ... 77
4.5 Special Floating-Point Values .. 78
4.6 Floating-Point Exceptions .. 79
4.7 Floating-Point Operations ... 80

4.7.1 Floating-Point Representation .. 80
4.7.2 Floating-Point Addition and Subtraction.. 81
4.7.3 Floating-Point Multiplication and Division ... 92

4.8 For More Information... 100

5
CHARACTER REPRESENTATION

5.1 Character Data ... 104
5.1.1 The ASCII Character Set .. 104
5.1.2 The EBCDIC Character Set ... 107
5.1.3 Double-Byte Character Sets .. 108
5.1.4 The Unicode Character Set... 109

5.2 Character Strings .. 110
5.2.1 Character String Formats.. 111
5.2.2 Types of Strings: Static, Pseudo-Dynamic, and Dynamic 116
5.2.3 Reference Counting for Strings .. 117
5.2.4 Delphi/Kylix Strings .. 118
5.2.5 Creating Your Own String Formats .. 119

5.3 Character Sets .. 119
5.3.1 Powerset Representation of Character Sets 120
5.3.2 List Representation of Character Sets.. 120

No Starch Press, Copyright © 2004 by Randall Hyde

Conten t s in Deta i l ix

5.4 Designing Your Own Character Set ...121
5.4.1 Designing an Efficient Character Set ..122
5.4.2 Grouping the Character Codes for Numeric Digits.............................124
5.4.3 Grouping Alphabetic Characters ...124
5.4.4 Comparing Alphabetic Characters...126
5.4.5 Other Character Groupings ..128

5.5 For More Information ...131

6
MEMORY ORGANIZATION AND ACCESS

6.1 The Basic System Components ..134
6.1.1 The System Bus..134
6.1.2 The Address Bus ..135
6.1.3 The Control Bus ...136

6.2 Physical Organization of Memory ...137
6.2.1 8-Bit Data Buses ..139
6.2.2 16-Bit Data Buses ..140
6.2.3 32-Bit Data Buses ..142
6.2.4 64-Bit Buses ..143
6.2.5 Small Accesses on Non-80x86 Processors ..143

6.3 Big Endian Versus Little Endian Organization ..144
6.4 The System Clock ..149

6.4.1 Memory Access and the System Clock ...151
6.4.2 Wait States...152
6.4.3 Cache Memory ...153

6.5 CPU Memory Access..157
6.5.1 The Direct Memory Addressing Mode ..158
6.5.2 The Indirect Addressing Mode...158
6.5.3 The Indexed Addressing Mode..159
6.5.4 The Scaled Indexed Addressing Modes..160

6.6 For More Information ...160

7
COMPOSITE DATA TYPES AND MEMORY OBJECTS

7.1 Pointer Types ..162
7.1.1 Pointer Implementation ...163
7.1.2 Pointers and Dynamic Memory Allocation...164
7.1.3 Pointer Operations and Pointer Arithmetic...164

7.2 Arrays..169
7.2.1 Array Declarations...169
7.2.2 Array Representation in Memory ...172
7.2.3 Accessing Elements of an Array...173
7.2.4 Multidimensional Arrays ...174

No Starch Press, Copyright © 2004 by Randall Hyde

x Content s i n De ta i l

7.3 Records/Structures .. 181
7.3.1 Records in Pascal/Delphi ... 181
7.3.2 Records in C/C++ .. 182
7.3.3 Records in HLA ... 182
7.3.4 Memory Storage of Records ... 183

7.4 Discriminant Unions... 185
7.4.1 Unions in C/C++ .. 186
7.4.2 Unions in Pascal/Delphi/Kylix .. 186
7.4.3 Unions in HLA... 187
7.4.4 Memory Storage of Unions... 187
7.4.5 Other Uses of Unions... 188

7.5 For More Information... 189

8
BOOLEAN LOGIC AND DIGITAL DESIGN

8.1 Boolean Algebra... 192
8.1.1 The Boolean Operators .. 192
8.1.2 Boolean Postulates... 192
8.1.3 Boolean Operator Precedence .. 194

8.2 Boolean Functions and Truth Tables ... 194
8.3 Function Numbers ... 197
8.4 Algebraic Manipulation of Boolean Expressions.. 198
8.5 Canonical Forms ... 199

8.5.1 Sum of Minterms Canonical Form and Truth Tables 200
8.5.2 Deriving the Sum of Minterms Canonical Form Algebraically 202
8.5.3 Product of Maxterms Canonical Form .. 203

8.6 Simplification of Boolean Functions.. 204
8.7 What Does This Have to Do with Computers, Anyway? 212

8.7.1 Correspondence Between Electronic Circuits and Boolean Functions.... 213
8.7.2 Combinatorial Circuits ... 214
8.7.3 Sequential and Clocked Logic... 220

8.8 For More Information... 224

9
CPU ARCHITECTURE

9.1 Basic CPU Design ... 225
9.2 Decoding and Executing Instructions: Random Logic Versus Microcode................ 228
9.3 Executing Instructions, Step by Step ... 229

9.3.1 The mov Instruction .. 230
9.3.2 The add Instruction .. 232
9.3.3 The jnz Instruction ... 234
9.3.4 The loop Instruction ... 234

9.4 Parallelism — The Key to Faster Processing .. 235
9.4.1 The Prefetch Queue ... 238
9.4.2 Conditions That Hinder the Performance of the Prefetch Queue 242
9.4.3 Pipelining — Overlapping the Execution of Multiple Instructions 243
9.4.4 Instruction Caches — Providing Multiple Paths to Memory 247

No Starch Press, Copyright © 2004 by Randall Hyde

Conten t s in Deta i l xi

9.4.5 Pipeline Hazards ...249
9.4.6 Superscalar Operation — Executing Instructions in Parallel251
9.4.7 Out-of-Order Execution...253
9.4.8 Register Renaming ...253
9.4.9 Very Long Instruction Word (VLIW) Architecture255
9.4.10 Parallel Processing ...255
9.4.11 Multiprocessing ...257

9.5 For More Information ...258

10
INSTRUCTION SET ARCHITECTURE

10.1 The Importance of the Design of the Instruction Set...260
10.2 Basic Instruction Design Goals...261

10.2.1 Choosing Opcode Length ...263
10.2.2 Planning for the Future ...265
10.2.3 Choosing Instructions ...266
10.2.4 Assigning Opcodes to Instructions ...266

10.3 The Y86 Hypothetical Processor ..267
10.3.1 Y86 Limitations..268
10.3.2 Y86 Instructions...268
10.3.3 Addressing Modes on the Y86 ..270
10.3.4 Encoding Y86 Instructions...271
10.3.5 Examples of Encoding Y86 Instructions...274
10.3.6 Extending the Y86 Instruction Set...278

10.4 Encoding 80x86 Instructions ...279
10.4.1 Encoding Instruction Operands..281
10.4.2 Encoding the add Instruction — Some Examples..............................287
10.4.3 Encoding Immediate Operands ...291
10.4.4 Encoding 8-, 16-, and 32-Bit Operands..292
10.4.5 Alternate Encodings for Instructions ..292

10.5 Implications of Instruction Set Design to the Programmer...................................293
10.6 For More Information ...293

11
MEMORY ARCHITECTURE AND ORGANIZATION

11.1 The Memory Hierarchy...295
11.2 How the Memory Hierarchy Operates..298
11.3 Relative Performance of Memory Subsystems ..300
11.4 Cache Architecture ..302

11.4.1 Direct-Mapped Cache ..303
11.4.2 Fully Associative Cache..304
11.4.3 n-Way Set Associative Cache ...304
11.4.4 Matching the Caching Scheme to the Type of Data Access305
11.4.5 Cache Line Replacement Policies ...306
11.4.6 Writing Data to Memory ..307
11.4.7 Cache Use and Software..308

No Starch Press, Copyright © 2004 by Randall Hyde

xii Conten t s in Detai l

11.5 Virtual Memory, Protection, and Paging ... 309
11.6 Thrashing ... 312
11.7 NUMA and Peripheral Devices ... 313
11.8 Writing Software That Is Cognizant of the Memory Hierarchy........................... 314
11.9 Run-Time Memory Organization.. 316

11.9.1 Static and Dynamic Objects, Binding, and Lifetime.......................... 317
11.9.2 The Code, Read-Only, and Constant Sections 319
11.9.3 The Static Variables Section.. 319
11.9.4 The Uninitialized Storage (BSS) Section.. 319
11.9.5 The Stack Section .. 320
11.9.6 The Heap Section and Dynamic Memory Allocation 321

11.10 For More Information... 328

12
INPUT AND OUTPUT (I/O)

12.1 Connecting a CPU to the Outside World.. 330
12.2 Other Ways to Connect Ports to the System .. 333
12.3 I/O Mechanisms... 334

12.3.1 Memory-Mapped I/O.. 334
12.3.2 I/O and the Cache ... 335
12.3.3 I/O-Mapped Input/Output ... 335
12.3.4 Direct Memory Access (DMA) ... 336

12.4 I/O Speed Hierarchy .. 337
12.5 System Buses and Data Transfer Rates ... 338

12.5.1 Performance of the PCI Bus... 339
12.5.2 Performance of the ISA Bus... 340
12.5.3 The AGP Bus .. 341

12.6 Buffering .. 341
12.7 Handshaking .. 342
12.8 Time-outs on an I/O Port .. 343
12.9 Interrupts and Polled I/O.. 344
12.10 Protected Mode Operation and Device Drivers ... 345

12.10.1 Device Drivers .. 346
12.10.2 Communicating with Device Drivers and “Files” 347

12.11 Exploring Specific PC Peripheral Devices ... 347
12.12 The Keyboard ... 348
12.13 The Standard PC Parallel Port ... 349
12.14 Serial Ports ... 351
12.15 Disk Drives ... 352

12.15.1 Floppy Drives.. 352
12.15.2 Hard Drives .. 352
12.15.3 RAID Systems.. 358
12.15.4 Zip and Other Floptical Drives .. 359
12.15.5 Optical Drives... 359
12.15.6 CD-ROM, CD-R, CR-R/W, DVD, DVD-R, DVD-RAM,

and DVD-R/W Drives ... 360
12.16 Tape Drives .. 362
12.17 Flash Storage.. 363
12.18 RAM Disks and Semiconductor Disks ... 365

No Starch Press, Copyright © 2004 by Randall Hyde

Content s i n De ta i l xiii

12.19 SCSI Devices and Controllers ..367
12.20 The IDE/ATA Interface ...372
12.21 File Systems on Mass Storage Devices..374

12.21.1 Maintaining Files Using a Free-Space Bitmap................................377
12.21.2 File Allocation Tables ...378
12.21.3 List-of-Blocks File Organization ..381

12.22 Writing Software That Manipulates Data on a Mass Storage Device................385
12.22.1 File Access Performance ...386
12.22.2 Synchronous and Asynchronous I/O..387
12.22.3 The Implications of I/O Type...388
12.22.4 Memory-Mapped Files ...389

12.23 The Universal Serial Bus (USB) ..390
12.23.1 USB Design ..390
12.23.2 USB Performance...392
12.23.3 Types of USB Transmissions ..393
12.23.4 USB Device Drivers ..395

12.24 Mice, Trackpads, and Other Pointing Devices ...396
12.25 Joysticks and Game Controllers ...397
12.26 Sound Cards...399

12.26.1 How Audio Interface Peripherals Produce Sound400
12.26.2 The Audio and MIDI File Formats...401
12.26.3 Programming Audio Devices ...403

12.27 For More Information ...403

THINKING LOW-LEVEL, WRITING HIGH-LEVEL

405

A
ASCII CHARACTER SET

407

INDEX

411

No Starch Press, Copyright © 2004 by Randall Hyde

No Starch Press, Copyright © 2004 by Randall Hyde

A C K N O W L E D G M E N T S

A book such as the one you are now holding is rarely the work of one person,
even if only one name appears on the cover. Producing this book has been a
team effort, and I would like to take this opportunity to acknowledge the other
individuals who have contributed greatly to its quality.

Mary Philips, a wonderful friend who helped proofread several of the
earlier chapters.

Bill Pollock, who read and offered suggestions for Chapters 1 through 6.

Karol Jurado, my editor, who shepherded this project from conception
to production.

Hillel Heinstein, the developmental editor, who kept this book on the right
track and helped clean up the writing.

Andy Carroll, the copyeditor, who also helped improve my writing.

Mark de Wever, the technical reviewer, who caught a large number of little
typos and technical problems to help ensure the accuracy of the material.

Riley Hoffman, who handled the page layout chores and helped ensure that
the book (including the listings) was readable.

No Starch Press, Copyright © 2004 by Randall Hyde

xvi Acknowledgments

Stephanie Provines, whose proofreading caught several typographical
and layout errors.

Leigh Sacks, who has done a great job of marketing this book and my
earlier book, The Art of Assembly Language.

And of course, all the great people at No Starch Press who’ve been suppor-
tive of this project from the very beginning.

Last, but not least, I would like to thank my wife, Mandy, who allowed
me to get away with not spending as much time working around the house
as I should have, so that I could get this book out the door.

Thanks to all of you,
Randall Hyde

No Starch Press, Copyright © 2004 by Randall Hyde

1
W H A T Y O U N E E D T O K N O W T O

W R I T E G R E A T C O D E

Write Great Code will teach you how to write
code you can be proud of, code that will

impress other programmers, code that will
satisfy customers and prove popular with

users, and code that people (customers, your boss, and so
on) won’t mind paying top dollar to obtain. In general,
the volumes in the Write Great Code series will discuss
how to write software that achieves legendary status,
eliciting the awe of other programmers.

1.1 The Write Great Code Series

Write Great Code: Understanding the Machine is the first of four volumes in the Write
Great Code series. Writing great code requires a combination of knowledge,
experience, and skill that programmers usually obtain only after years of mistakes

No Starch Press, Copyright © 2004 by Randall Hyde

2 Chapter 1

and discoveries. The purpose of this series is to share with both new and
experienced programmers a few decade’s worth of observations and
experience. I hope that these books will help shorten the time and reduce
the frustration that it takes to learn things “the hard way.”

This first volume, Understanding the Machine, is intended to fill in the low-
level details that are often skimmed over in a typical computer science or
engineering curriculum. The information in this volume is the foundation
upon which great software is built. You cannot write efficient code without
this information, and the solutions to many problems require a thorough
grounding in this subject. Though I’m attempting to keep each volume as
independent as possible of the others, Understanding the Machine might be
considered a prerequisite for all the following volumes.

The second volume, Thinking Low-Level, Writing High-Level, will immedi-
ately apply the knowledge gained in this first volume. Thinking Low-Level,
Writing High-Level will teach you how to analyze code written in a high-level
language to determine the quality of the machine code that a compiler
would generate for that code. Armed with this knowledge, you will be able
to write high-level language programs that are nearly as efficient as programs
handwritten in assembly language. High-level language programmers often
get the mistaken impression that optimizing compilers will always generate
the best machine code possible, regardless of the source code the pro-
grammer gives them. This simply isn’t true. The statements and data
structures you choose in your source files can have a big impact on the
efficiency of the machine code a compiler generates. By teaching you how
to analyze the machine code your compiler generates, Thinking Low-Level,
Writing High-Level will teach you how to write efficient code without resorting
to assembly language.

There are many other attributes of great code besides efficiency, and the
third volume in this series, Engineering Software, will cover some of those.
Engineering Software will discuss how to create source code that is easily read
and maintained by other individuals and how to improve your productivity
without burdening you with the “busy work” that many software engineering
books discuss. Engineering Software will teach you how to write code that other
programmers will be happy to work with, rather than code that causes them
to use some choice words about your capabilities behind your back.

Great code works. Therefore, I would be remiss not to include a volume
on testing, debugging, and quality assurance. Whether you view software
testing with fear or with disgust, or you feel it’s something that only junior
engineers should get stuck doing, an almost universal truth is that few pro-
grammers properly test their code. This generally isn’t because programmers
actually find testing boring or beneath them, but because they simply don’t
know how to test their programs, eradicate defects, and ensure the quality
of their code. As a result, few applications receive high-quality testing, which
has led the world at large to have a very low opinion of the software engi-
neering profession. To help overcome this problem, the fourth volume in

No Starch Press, Copyright © 2004 by Randall Hyde

What You Need to Know to Wr i te Great Code 3

this series, Testing, Debugging, and Quality Assurance, will describe how to
efficiently test your applications without all the drudgery engineers normally
associate with this task.

1.2 What This Volume Covers

In order to write great code, you need to know how to write efficient code,
and to write efficient code, you must understand how computer systems
execute programs and how abstractions found in programming languages
map to the low-level hardware capabilities of the machine. This first volume
teaches you the details of the underlying machine so you’ll know how
to write software that best uses the available hardware resources. While
efficiency is not the only attribute great code possesses, inefficient code
is never great. So if you’re not writing efficient code, you’re not writing
great code.

In the past, learning great coding techniques has required learning
assembly language. While this is not a bad approach, it is overkill. Learning
assembly language involves learning two related subjects: (1) machine
organization and (2) programming in assembly language. While learning
assembly language programming helps, the real benefits of learning
assembly language come from learning machine organization at the same
time. Few books have taught machine organization without also teaching
assembly language programming. To rectify this problem, this book teaches
machine organization independently of assembly language so you can learn
to write great code without the excessive overhead of learning assembly
language.

“So what is machine organization?” you’re probably wondering. Well,
machine organization is a subset of computer architecture, and this book
concentrates on those parts of computer architecture and machine organi-
zation that are visible to the programmer or are helpful for understanding
why system architects chose a particular system design. The goal of learning
machine organization is not to enable you to design your own CPU or
computer system, but to teach you how to make the most efficient use of
existing computer designs.

“Okay, so what is machine organization?” you’re probably still asking.
Well, a quick glance at the table of contents will give you an idea of what this
subject is all about. Let’s do a quick run-through of the book.

Chapters 2, 4, and 5 deal with basic computer data representation —
how computers represent signed and unsigned integer values, characters,
strings, character sets, real values, fractional values, and other numeric and
nonnumeric quantities. If you do not have a solid understanding of how
computers represent these various data types internally, it’s difficult to
understand why some operations that use these data types are so inefficient.
And if you don’t realize they’re inefficient, you’ll likely use them in an
inappropriate fashion and the resulting code will not be great.

No Starch Press, Copyright © 2004 by Randall Hyde

4 Chapter 1

Chapter 3 discusses binary arithmetic and bit operations used by most
modern computer systems. Because these operations are generally available
in programming languages, Chapter 3 also offers several insights into how
you can write better code by using arithmetic and logical operations in ways
not normally taught in beginning programming courses. Learning standard
“tricks” such as these is part of how you become a great programmer.

Chapter 6 begins a discussion of one of the more important topics in
this book: memory organization and access. Memory access is a common
performance bottleneck in modern computer applications. Chapter 6
provides an introduction to memory, discussing how the computer accesses
its memory, and describing the performance characteristics of memory.
This chapter also describes various machine code addressing modes that
CPUs use to access different types of data structures in memory. In modern
applications, poor performance often occurs because the programmer does
not understand the ramifications of memory access in their programs, and
Chapter 6 addresses many of these ramifications.

Chapter 7 returns to the discussion of data types and representation by
covering composite data types and memory objects. Unlike the earlier chap-
ters, Chapter 7 discusses higher-level data types like pointers, arrays, records,
structures, and unions. All too often programmers use large composite data
structures without even considering the memory and performance issues of
doing so. The low-level description of these high-level composite data types
will make clear their inherent costs enabling you to use them in your pro-
grams sparingly and wisely.

Chapter 8 discusses Boolean logic and digital design. This chapter pro-
vides the mathematical and logical background you’ll need to understand
the design of CPUs and other computer system components. Although this
particular chapter is more hardware oriented than the previous chapters,
there are still some good ideas that you can incorporate into really great code.
In particular, this chapter discusses how to optimize Boolean expressions,
such as those found in common high-level programming language state-
ments like if, while, and so on.

Continuing the hardware discussion begun in Chapter 8, Chapter 9
discusses CPU architecture. Although the goal of this book is not to teach
you how to design your own CPU, a basic understanding of CPU design and
operation is absolutely necessary if you want to write great code. By writing
your code in a manner consistent with the way a CPU will execute that code,
you’ll get much better performance using fewer system resources. By writing
your applications at odds with the way CPUs execute code, you’ll wind up
with slower, resource-hogging programs.

Chapter 10 discusses CPU instruction set architecture. Machine instruc-
tions are the primitive units of execution on any CPU, and the time spent
during program execution is directly determined by the number and type
of machine instructions the CPU executes. Understanding how computer
architects design machine instructions can provide valuable insight into why

No Starch Press, Copyright © 2004 by Randall Hyde

What You Need to Know to Wr i te Great Code 5

certain operations take longer to execute than others. Once you understand
the limitations of machine instructions and how the CPU interprets them,
you can use this information to turn mediocre code sequences into great
code sequences.

Chapter 11 returns to the subject of memory, covering memory archi-
tecture and organization. This chapter will probably be one of the most
important to the individual wanting to write fast code. It describes the
memory hierarchy and how to maximize the use of cache and other fast
memory components. Great code avoids thrashing, a common source of
performance problems in modern applications. By reading this chapter
you will learn about thrashing and how to avoid low-performance memory
access in your applications.

Chapter 12, “Input and Output,” describes how computer systems
communicate with the outside world. Many peripheral (input/output)
devices operate at much lower speeds than the CPU and memory. You can
write the fastest executing sequence of instructions possible, and still have
your application run slowly because you don’t understand the limitations of
the I/O devices in your system. Chapter 12 presents a discussion of generic
I/O ports, system buses, buffering, handshaking, polling, and interrupts. It
also discusses how to effectively use many popular PC peripheral devices,
including keyboards, parallel (printer) ports, serial ports, disk drives, tape
drives, flash storage, SCSI, IDE/ATA, USB, and sound cards. Understanding
the impact of these devices on your applications can help you write great,
efficient code.

1.3 Assumptions This Volume Makes

For the purposes of this book, you should be reasonably competent in at
least one imperative (procedural) programming language. This includes
C and C++, Pascal, BASIC, and assembly, as well as languages like Ada,
Modula-2, FORTRAN, and the like. You should be capable, on your own,
of taking a small problem description and working through the design and
implementation of a software solution for that problem. A typical semester
or quarter course at a college or university (or several months’ experience
on your own) should be sufficient background for this book.

At the same time, this book is not language specific; its concepts
transcend whatever programming language(s) you’re using. To help make
the examples more accessible to readers, the programming examples in this
book will rotate among several languages (such as C/C++, Pascal, BASIC, and
assembly). Furthermore, this book does not assume that you use or know any
particular language. When presenting examples, this book explains exactly
how the code operates so that even if you are unfamiliar with the specific
programming language, you will be able to understand its operation by
reading the accompanying description.

No Starch Press, Copyright © 2004 by Randall Hyde

6 Chapter 1

This book uses the following languages and compilers in various
examples:

� C/C++: GCC, Microsoft’s Visual C++, Borland C++

� Pascal: Borland’s Delphi/Kylix

� Assembly language: Microsoft’s MASM, HLA (the High Level
Assembler), Gas (on the PowerPC)

� BASIC: Microsoft’s Visual Basic

You certainly don’t need to know all these languages or have all these
compilers to read and understand the examples in this book. Often, the
examples appear in multiple languages, so it’s usually safe to ignore a
specific example if you don’t completely understand the syntax of the
language the example uses.

1.4 Characteristics of Great Code

What do we mean by great code? Different programmers will have different
definitions for great code, so it is impossible to provide an all-encompassing
definition that will satisfy everyone. However, there are certain attributes of
great code that nearly everyone will agree upon, and we’ll use some of these
common characteristics to form our definition. For our purposes, here are
some attributes of great code:

� Uses the CPU efficiently (which means the code is fast)

� Uses memory efficiently (which means the code is small)

� Uses system resources efficiently

� Is easy to read and maintain

� Follows a consistent set of style guidelines

� Uses an explicit design that follows established software engineering
conventions

� Is easy to enhance

� Is well-tested and robust (meaning that it works)

� Is well-documented

We could easily add dozens of items to this list. Some programmers, for
example, may feel that great code must be portable, that it must follow a
given set of programming style guidelines, or that it must be written in a
certain language (or that it must not be written in a certain language).
Some may feel that great code must be written as simply as possible, while
others may feel that great code is written quickly. Still others may feel that
great code is created on time and under budget. You can probably think of
additional characteristics.

No Starch Press, Copyright © 2004 by Randall Hyde

What You Need to Know to Wr i te Great Code 7

So what is great code? Here is a reasonable definition:

Great code is software that is written using a consistent and
prioritized set of good software characteristics. In particular,
great code follows a set of rules that guide the decisions a
programmer makes when implementing an algorithm as
source code.

Two different programs do not have to follow the same set of rules (that is,
they need not possess the same set of characteristics) in order for both to be
great programs. As long as they each consistently obey their particular set of
rules, they can both be examples of great code. In one environment, a great
program may be one that is portable across different CPUs and operating
systems. In a different environment, efficiency (speed) may be the primary
goal, and portability may not be an issue. Both could be shining examples
of great code, even though their goals might be mutually exclusive. Clearly,
neither program would be an example of great code when examined
according to the rules of the other program; but as long as the software
consistently follows the guidelines established for that particular program,
you can argue that it is an example of great code.

1.5 The Environment for This Volume

Although this book presents generic information, parts of the discussion will
necessarily be specific to a particular system. Because the Intel Architecture
PCs are, by far, the most common in use today, this book will use that
platform when discussing specific system-dependent concepts. However,
those concepts will still apply to other systems and CPUs (for example, the
PowerPC CPU in the Power Macintosh or some other RISC CPU in a Unix
box) though you may well need to research the solution for your specific
platform when an example does not explicitly apply to your system.

Most examples appearing in this book run under both Windows and
Linux. This book attempts to stick with standard library interfaces to the
operating system (OS) wherever possible, and it makes OS-specific calls only
when the alternative is to write “less than great” code.

Most of the specific examples in this book run on a late-model Intel
Architecture (including AMD) CPU under Windows or Linux, with a
reasonable amount of RAM and other system peripherals normally found
on a late-model PC. The concepts, if not the software itself, will apply to
Macs, Unix boxes, embedded systems, and even mainframes.

1.6 For More Information

No single book can completely cover everything about machine organization
that you need to know in order to write great code. This book, therefore,
concentrates on those aspects of machine organization that are most

No Starch Press, Copyright © 2004 by Randall Hyde

8 Chapter 1

pertinent for writing great software, providing the 90 percent solution for
those who are interested in writing the best possible code. To learn that last
10 percent of machine organization, you’re going to need additional
resources.

� Learn assembly language. Fluency in at least one assembly language will
fill in many missing details that you just won’t get by learning machine
organization alone. Unless you plan on using assembly language in your
software systems, you don’t necessarily have to learn assembly language
on the platform(s) to which you’re targeting your software. Probably
your best bet, then, is to learn 80x86 assembly language on a PC. The
Intel Architecture isn’t the best, but there are lots of great software tools
for learning assembly language (for example, the High Level Assembler)
that simply don’t exist on other platforms. The point of learning assem-
bly language here is not so you can write assembly code, but rather to
learn the assembly paradigm. If you know 80x86 assembly language,
you’ll have a good idea of how other CPUs (such as the PowerPC or the
IA-64 family) operate. Of course, if you need to write assembly code, you
should learn the assembly language for the CPU you’ll be using. An
excellent choice for learning assembly language is another book of
mine, The Art of Assembly Language, available from No Starch Press.

� Study advanced computer architecture. Machine organization is a subset
of the study of computer architecture, but space limitations prevent cov-
ering machine organization and computer architecture in complete
detail within this book. While you may not need to know how to design
your own CPUs, studying computer architecture may teach you some-
thing you’ve missed in the presentation of machine organization in this
book. Computer Architecture: A Quantitative Approach by Hennessy and
Patterson is a well-respected textbook that covers this subject matter.

No Starch Press, Copyright © 2004 by Randall Hyde

2
N U M E R I C R E P R E S E N T A T I O N

High-level languages shield programmers
from the pain of dealing with low-level
numeric representation. Writing great code,

however, requires a complete understanding
of how computers represent numbers. Once

you understand internal numeric representation, you’ll
discover efficient ways to implement many algorithms
and see the pitfalls associated with many common pro-
gramming practices. Therefore, this chapter looks at
numeric representation to ensure you completely under-
stand what your computer languages and systems are
doing with your data.

No Starch Press, Copyright © 2004 by Randall Hyde

10 Chapter 2

2.1 What Is a Number?

Having taught assembly language programming for many years, I’ve dis-
covered that most people don’t understand the fundamental difference
between a number and the representation of that number. Most of the
time this confusion is harmless. However, many algorithms depend upon
the internal and external representations we use for numbers to operate
correctly and efficiently. If you do not understand the difference between
the abstract concept of a number and the representation of that number,
you’ll have trouble understanding, using, or creating such algorithms. Fully
understanding this difference could take you from creating some mediocre
code to creating great code.

A number is an intangible, abstract, concept. It is an intellectual device
that we use to denote quantity. Let’s say I were to tell you that “some book
has one hundred pages.” You could touch the pages — they are tangible. You
could even count those pages to verify that there are one hundred of them.
However, “one hundred” is simply an abstraction that I would be applying to
the book as a way of describing its size.

The important thing to realize is that the following is not one hundred:

100
This is nothing more than ink on paper forming certain lines and curves.
You might recognize this sequence of symbols as a representation of
one hundred, but this is not the actual value 100. It’s just three symbols
appearing on this page. It isn’t even the only representation for one
hundred — consider the following, which are all different representations
of the value one hundred:

The representation of a number is (generally) some sequence of symbols.
For example, the common representation of the value one hundred, “100,”
is really a sequence of three numeric digits: the digit 1 followed by the digit 0
followed by a second 0 digit. Each of these digits has some specific meaning,
but we could have just as easily used the sequence “64” to represent the value
one hundred. Even the individual digits that comprise this representation
of 100 are not numbers. They are numeric digits, tools we use to represent
numbers, but they are not numbers themselves.

Now you may be wondering why we should even care whether a
sequence of symbols like “100” is the actual value one hundred or just the
representation of this value. The reason for this distinction is that you’ll

100 decimal representation

C Roman numeral representation

6416 base 16/hexadecimal representation

11001002 base two/binary representation

1448 base eight/octal representation

one hundred English representation

No Starch Press, Copyright © 2004 by Randall Hyde

Numer ic Represen ta t ion 11

encounter several different sequences of symbols in a computer program
that look like numbers (meaning that they look like “100”), and you don’t
want to confuse them with actual numeric values. Conversely, there are
many different representations for the value one hundred that a computer
could use, and it’s important for you to realize that they are equivalent.

2.2 Numbering Systems

A numbering system is a mechanism we use to represent numeric values. In
today’s society, people most often use the decimal numbering system (base 10)
and most computer systems use binary representation. Confusion between
the two can lead to poor coding practices. So to write great code, you must
eliminate this confusion.

To appreciate the difference between numbers and their represen-
tations, let’s start with a concrete discussion of the decimal numbering
system. The Arabs developed the decimal numbering system we commonly
use today (indeed, the ten decimal digits are known as Arabic numerals).
The Arabic system uses a positional notation system to represent values with a
relatively small number of different symbols. That is, the Arabic represen-
tation takes into consideration not only the symbol itself, but the position
of the symbol in a sequence of symbols, a scheme that is far superior to
other, nonpositional, representations. To appreciate the difference
between a positional system and a nonpositional system, consider the
tally-slash representation of the number 25 in Figure 2-1.

Figure 2-1: Tally-slash representation of 25

The tally-slash representation uses a sequence of n marks to represent the
value n. To make the values easier to read, most people arrange the tally
marks in groups of five, as in Figure 2-1. The advantage of the tally-slash
numbering system is that it is easy to use when counting objects. The
disadvantages include the fact that the notation is bulky, and arithmetic
operations are difficult. However, without question, the biggest problem
with the tally-slash representation is the amount of physical space this repre-
sentation consumes. To represent the value n requires some amount of space
that is proportional to n. Therefore, for large values of n, the tally-slash
notation becomes unusable.

2.2.1 The Decimal Positional Numbering System
The decimal positional notation (base 10) represents numbers using strings
of Arabic numerals. The symbol immediately to the left of the decimal point
in the sequence represents some value between zero and nine. If there are
at least two digits, then the second symbol to the left of the decimal point
represents some value between zero and nine times ten. In the decimal

No Starch Press, Copyright © 2004 by Randall Hyde

12 Chapter 2

positional numbering system each digit appearing to the left of the decimal
point represents a value between zero and nine times an increasing power
of ten (see Figure 2-2).

Figure 2-2: A positional numbering system

When you see a numeric sequence like “123.45,” you don’t think about the
value 123.45; rather, you generate a mental image of this quantity. In reality,
123.45 represents:

1 × 102 + 2 × 101 + 3 × 100 + 4 × 10-1 + 5 × 10-2

or

100 + 20 + 3 + 0.4 + 0.05

To get a clear picture of how powerful this notation is, consider the following
facts:

� The positional numbering system, using base 10, can represent the value
ten in one-third the space of the tally-slash system.

� The base-10 positional numbering system can represent the value one
hundred in about 3 percent of the space of the tally-slash system.

� The base-10 positional numbering system can represent the value one
thousand in about 0.3 percent of the space of the tally-slash system.

As the numbers grow larger, the disparity becomes even greater. Because of
the compact and easy-to-recognize notation, positional numbering systems
are quite popular.

2.2.2 Radix (Base)
Human beings developed the decimal numbering system because it corre-
sponds to the number of fingers (“digits”) on their hands. However, the
decimal numbering system isn’t the only positional numbering system
possible. In fact, for most computer-based applications, the decimal num-
bering system isn’t even the best numbering system available. Again, our goal
of writing great code requires that we learn to “think like the machine,” and
that means we need to understand different ways to represent numbers on
our machines. So let’s take a look at how we represent values in other bases.

1 2 3 4 5

102 10 1 10 0 10-1 10 -2

The magnitude associated with each digit is relative
to its distance from the decimal point.

No Starch Press, Copyright © 2004 by Randall Hyde

Numer ic Represen ta t ion 13

The decimal positional numbering system uses powers of ten and ten
unique symbols for each digit position. Because decimal numbers use powers
of ten, we call such numbers “base-10” numbers. By substituting a different
set of numeric digits and multiplying those digits by powers of some base
other than 10, we can devise a different numbering system to represent our
numbers. The base, or radix, is the value that we raise to successive powers for
each digit to the left of the radix point (note that the term decimal point only
applies to decimal numbers).

As an example, we can create a base-8 numbering system using eight
symbols (0–7) and powers of eight (base 8, or octal, was actually a common
representation on early binary computer systems). The base-8 system uses
successive powers of eight to represent values. Consider the octal number
1238 (the subscript denotes the base using standard mathematical notation),
which is equivalent to 8310:

1 × 82 + 2 × 81 + 3 × 80

or

64 + 16 + 3

To create a base-n numbering system, you need n unique digits. The smallest
possible radix is two (for this scheme). For bases two through ten, the con-
vention is to use the Arabic digits zero through n − 1 (for a base-n system).
For bases greater than ten, the convention is to use the alphabetic digits a..z1

or A..Z (ignoring case) for digits greater than nine. This scheme supports
numbering systems through base 36 (10 numeric digits and 26 alphabetic
digits). No agreed-upon convention exists for symbols beyond the 10 Arabic
numeric digits and the 26 alphabetic digits. Throughout this book, we’ll deal
with base-2, base-8, and base-16 values because base 2 (binary) is the native
representation most computers use, and base 16 is more compact than
base 2. Base 8 deserves a short discussion because it was a popular numeric
representation on older computer systems. You’ll find many programs that
use these three different bases, so you’ll want to be familiar with them.

2.2.3 The Binary Numbering System
If you’re reading this book, chances are pretty good that you’re already
familiar with the base-2, or binary, numbering system; nevertheless, a quick
review is in order. The binary numbering system works just like the decimal
numbering system, with two exceptions: binary only uses the digits 0 and 1
(rather than 0–9), and binary uses powers of two rather than powers of ten.

Why even worry about binary? After all, almost every computer language
available allows programmers to use decimal notation (automatically
converting decimal representation to the internal binary representation).

1 The “..” notation, taken from Pascal and other programming languages, denotes a range of
values. For example, “a..z” denotes all the lowercase alphabetic characters between a and z.

No Starch Press, Copyright © 2004 by Randall Hyde

14 Chapter 2

Despite computer languages being able to convert decimal notation, most
modern computer systems talk to I/O devices using binary, and their arith-
metic circuitry operates on binary data. For this reason, many algorithms
depend upon binary representation for correct operation. Therefore, a
complete understanding of binary representation is necessary if you want
to write great code.

2.2.3.1 Converting Between Decimal and Binary Representation

In order to allow human beings to work with decimal representation, the
computer has to convert between the decimal notation that humans use and
the binary format that computers use. To appreciate what the computer does
for you, it’s useful to learn how to do these conversions manually.

To convert a binary value to decimal, we add 2i for each “1” in the binary
string, where i is the zero-based position of the binary digit. For example, the
binary value 110010102 represents:

1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

or

128 + 64 + 8 + 2

or

20210

To convert decimal to binary is almost as easy. Here’s an algorithm that
converts decimal representation to the corresponding binary representation:

1. If the number is even, emit a zero. If the number is odd, emit a one.

2. Divide the number by two and throw away any fractional component or
remainder.

3. If the quotient is zero, the algorithm is complete.
4. If the quotient is not zero and the number is odd, insert a one before the

current string. If the quotient is not zero and the number is even, prefix
your binary string with zero.

5. Go back to step 2 and repeat.

2.2.3.2 Making Binary Numbers Easier to Read

As you can tell by the equivalent representations, 20210 and 110010102,
binary representation is not as compact as decimal representation. Because
binary representation is bulky, we need some way to make the digits, or bits,
in binary numbers easier to read.

In the United States, most people separate every three digits with a
comma to make larger numbers easier to read. For example, 1,023,435,208 is
much easier to read and comprehend than 1023435208. We’ll adopt a

No Starch Press, Copyright © 2004 by Randall Hyde

Numer ic Represen ta t ion 15

similar convention in this book for binary numbers. We will separate each
group of four binary bits with an underscore. For example, we will write the
binary value 10101111101100102 as 1010_1111_1011_00102.

2.2.3.3 Binary Representation in Programming Languages

This chapter has been using the subscript notation embraced by mathema-
ticians to denote binary values (the lack of a subscript indicates the decimal
base). While this works great in word processing systems, most program text
editors do not provide the ability to specify a numeric base using a subscript.
Even if a particular editor does support this feature, very few programming
language compilers would recognize the subscript. Therefore, we need some
way to represent various bases within a standard ASCII text file.

Generally, only assembly language compilers (“assemblers”) allow the
use of literal binary constants in a program. Because there is a wide variety
of assemblers out there, it should come as no surprise that there are many
different ways to represent binary literal constants in an assembly language
program. Because this text presents examples using MASM and HLA, it
makes sense to adopt the conventions these two assemblers use.

MASM treats any sequence of binary digits (zero and one) that ends with
a “b” or “B” as a binary value. The “b” suffix differentiates binary values like
“1001” and the decimal value of the same form (one thousand and one).
Therefore, the binary representation for nine would be “1001b” in a MASM
source file.

HLA prefixes binary values with the percent symbol (%). To make binary
numbers more readable, HLA also allows you to insert underscores within
binary strings:

%11_1011_0010_1101

2.2.4 The Hexadecimal Numbering System
Binary number representation is verbose. Because reading and writing
binary values is awkward, programmers often avoid binary representation in
program source files, preferring hexadecimal notation. Hexadecimal
representation offers two great features: it’s very compact, and it’s easy to
convert between binary and hexadecimal. Therefore, software engineers
generally use hexadecimal representation rather than binary to make their
programs more readable.

Because hexadecimal representation is base 16, each digit to the left of
the hexadecimal point represents some value times a successive power of 16.
For example, the number 123416 is equal to:

1 × 163 + 2 × 162 + 3 × 161 + 4 × 160

or

No Starch Press, Copyright © 2004 by Randall Hyde

16 Chapter 2

4096 + 512 + 48 + 4

or

466010

Hexadecimal representation uses the letters A through F for the additional
six digits it requires (above and beyond the ten standard decimal digits, 0–9).
The following are all examples of valid hexadecimal numbers:

23416 DEAD16 BEEF16 0AFB16 FEED16 DEAF16

2.2.4.1 Hexadecimal Representation in Programming Languages

One problem with hexadecimal representation is that it is difficult to
differentiate hexadecimal values like “dead” from standard program
identifiers. Therefore, most programming languages use a special prefix or
suffix character to denote the hexadecimal radix for constants appearing in
your source files. Here’s how you specify literal hexadecimal constants in
several popular languages:

� The C, C++, C#, Java, and other C-derivative programming languages use
the prefix “0x” to denote a hexadecimal value. Therefore, you’d use the
character sequence “0xdead” for the hexadecimal value DEAD16.

� The MASM assembler uses an “h” or “H” suffix to denote a hexadecimal
value. This doesn’t completely resolve the ambiguity between certain
identifiers and literal hexadecimal constants; “deadh” still looks like an
identifier to MASM. Therefore, MASM also requires that a hexadecimal
value begin with a numeric digit. So for hexadecimal values that don’t
already begin with a numeric digit, you would add “0” to the beginning
of the value (adding a zero to the beginning of any numeric representa-
tion does not alter the value of that representation). For example, use
“0deadh” to unambiguously represent the hexadecimal value DEAD16.

� Visual Basic uses the “&H” or “&h” prefix to denote a hexadecimal value.
Continuing with our current example (DEAD16), you’d use “&Hdead” to
represent this hexadecimal value in Visual Basic.

� Pascal (Delphi/Kylix) uses the symbol $ as a prefix for hexadecimal
values. So you’d use “$dead” to represent our current example in
Delphi/Kylix.

� HLA similarly uses the symbol $ as a prefix for hexadecimal values. So
you’d also use “$dead” to represent DEAD16 with HLA. HLA allows you
to insert underscores into the middle of a hexadecimal number to make
it easier to read, for example “$FDEC_A012.”

No Starch Press, Copyright © 2004 by Randall Hyde

Numer ic Represen ta t ion 17

In general, this text will use the HLA/Delphi/Kylix notation for hexa-
decimal numbers except in examples specific to some other programming
language. Because there are several C/C++ examples in this book, you’ll
frequently see the C/C++ notation, as well.

2.2.4.2 Converting Between Hexadecimal and Binary Representations

On top of being a compact way to represent values in code, hexadecimal
notation is also popular because it is easy to convert between the binary and
hexadecimal representations. By memorizing a few simple rules, you can
mentally convert between these two representations. Consider Table 2-1.

To convert the hexadecimal representation of a number into binary, sub-
stitute the corresponding four binary bits for each hexadecimal digit. For
example, to convert $ABCD into the binary form %1010_1011_1100_1101,
convert each hexadecimal digit according to the values in Table 2-1:

To convert the binary representation of a number into hexadecimal is almost
as easy. The first step is to pad the binary number with zeros to make sure
it is a multiple of four bits long. For example, given the binary number
1011001010, the first step would be to add two zero bits to the left of the
number so that it contains 12 bits without changing its value. The result is

Table 2-1: Binary/Hexadecimal Conversion Chart

Binary Hexadecimal

%0000 $0

%0001 $1

%0010 $2

%0011 $3

%0100 $4

%0101 $5

%0110 $6

%0111 $7

%1000 $8

%1001 $9

%1010 $A

%1011 $B

%1100 $C

%1101 $D

%1110 $E

%1111 $F

A B C D Hexadecimal

1010 1011 1100 1101 Binary

No Starch Press, Copyright © 2004 by Randall Hyde

18 Chapter 2

001011001010. The next step is to separate the binary value into groups of
four bits: 0010_1100_1010. Finally, look up these binary values in Table 2-1
and substitute the appropriate hexadecimal digits, which are $2CA. Contrast
this with the difficulty of converting between decimal and binary or decimal
and hexadecimal!

2.2.5 The Octal (Base-8) Numbering System
Octal (base-8) representation was common in early computer systems. As a
result, you may still see people use the octal representation now and then.
Octal is great for 12-bit and 36-bit computer systems (or any other size that is
a multiple of three). However, it’s not particularly great for computer
systems whose bit size is some power of two (8-bit, 16-bit, 32-bit, and 64-bit
computer systems). As a result, octal has fallen out of favor over the past
several decades. Nevertheless, some programming languages provide the
ability to specify numeric values in octal notation, and you can still find some
older Unix applications that use octal, so octal is worth discussing here.

2.2.5.1 Octal Representation in Programming Languages

The C programming language (and derivatives like C++ and Java), Visual
Basic, and MASM support octal representation. You should be aware of the
notation various programming languages use for octal numbers in case you
come across it in programs written in these languages.

� In C, you specify the octal base by prefixing a numeric string with a zero.
For example, “0123” is equivalent to the decimal value 8310 and is defi-
nitely not equivalent to the decimal value 12310.

� MASM uses a “Q” or “q” suffix to denote an octal number
(Microsoft/Intel probably chose “Q” because it looks like an “O” and
they didn’t want to use “O” or “o” because of the possible confusion with
zero).

� Visual Basic uses the “&O” (that’s the letter O, not a zero) prefix to
denote an octal value. For example, you’d use “&O123” to represent the
decimal value 8310.

2.2.5.2 Converting Between Octal and Binary Representation

Converting between binary and octal is similar to converting between binary
and hexadecimal, except that you work in groups of three bits rather than
four. See Table 2-2 for the list of binary and octal equivalent representations.

To convert octal into binary, replace each octal digit in the number with
the corresponding three bits from Table 2-2. For example, when converting
123q into a binary value the final result is %0_0101_0011:

1 2 3

001 010 011

No Starch Press, Copyright © 2004 by Randall Hyde

Numer ic Represen ta t ion 19

To convert a binary number into octal, you break up the binary string into
groups of three bits (padding with zeros, as necessary), and then you look
up each triad in Table 2-2 and substitute the corresponding octal digit.

If you’ve got an octal value and you’d like to convert it to hexadecimal
notation, convert the octal number to binary and then convert the binary
value to hexadecimal.

2.3 Numeric/String Conversions

Because most programming languages (or their libraries) provide automatic
numeric/string conversions, beginning programmers are often unaware that
this conversion is even taking place. In this section we’ll consider two
conversions: from string to numeric form and from numeric form to string.

Consider how easy it is to convert a string to numeric form in various
languages. In each of the following statements, the variable i can hold some
integer number. The input from the user’s console, however, is a string of
characters. The programming language’s run-time library is responsible for
converting that string of characters to the internal binary form the CPU
requires.

cin >> i; // C++

readln(i); // Pascal

input i // BASIC

stdin.get(i); // HLA

Because these statements are so easy to use, most programmers don’t
consider the cost of using such statements in their programs. Unfortunately,
if you have no idea of the cost of these statements, you’ll not realize how
they can impact your program when performance is critical. The reason
for exploring these conversion algorithms here is to make you aware of the
work involved so you will not make frivolous use of these conversions.

Table 2-2: Binary/Octal Conversion Chart

Binary Octal

%000 0

%001 1

%010 2

%011 3

%100 4

%101 5

%110 6

%111 7

No Starch Press, Copyright © 2004 by Randall Hyde

20 Chapter 2

To simplify things, we’ll discuss unsigned integer values and ignore
the possibility of illegal characters and numeric overflow. Therefore, the
following algorithms actually understate the actual work involved (by a
small amount).

Use this algorithm to convert a string of decimal digits to an integer
value:

1. Initialize a variable with zero; this will hold the final value.

2. If there are no more digits in the string, then the algorithm is complete,
and the variable holds the numeric value.

3. Fetch the next digit (going from left to right) from the string.

4. Multiply the variable by ten, and then add in the digit fetched in step 3.

5. Go to step 2 and repeat.

Converting an integer value to a string of characters takes even more effort.
The algorithm for the conversion is the following:

1. Initialize a string to the empty string.

2. If the integer value is zero, then output a 0, and the algorithm is
complete.

3. Divide the current integer value by ten, computing the remainder and
quotient.

4. Convert the remainder (always in the range 0..9) to a character, and
concatenate the character to the end of the string.

5. If the quotient is not zero, make it the new value and repeat steps 3–5.

6. Output the characters in the reverse order they were placed into the
string.

The particulars of these algorithms are not important. What is important to
note is that these steps execute once for each output character and division is
very slow. So a simple statement like one of the following can hide a fair
amount of work from the programmer:

printf("%d", i); // C

cout << i; // C++

print i // BASIC

write(i); // Pascal

stdout.put(i); // HLA

To write great code you don’t need to eschew the use of numeric/string
conversions. They are an important part of computation, and great code will
need to do these conversions. However, a great programmer will be careful
about the use of numeric/string conversions and only use them as necessary.

No Starch Press, Copyright © 2004 by Randall Hyde

Numer ic Represen ta t ion 21

Note that these algorithms are only valid for unsigned integers. Signed
integers require a little more effort to process (though the extra work is
almost negligible). Floating-point values, however, are far more difficult to
convert between string and numeric form. That’s something to keep in mind
when writing code that uses floating-point arithmetic.

2.4 Internal Numeric Representation

Most modern computer systems are binary computer systems and, therefore,
use an internal binary format to represent values and other objects. However,
most systems cannot represent just any binary value. Instead, they are only
capable of efficiently representing binary values of a given size. If you want to
write great code, you need to make sure that your programs use data objects
that the machine can represent efficiently. The following sections describe
how computers physically represent values.

2.4.1 Bits
The smallest unit of data on a binary computer is a single bit. Because a bit
can represent only two different values (typically zero or one) you may get
the impression that there are a very small number of items you can represent
with a single bit. Not true! There are an infinite number of two-item combi-
nations you can represent with a single bit. Here are some examples (with
arbitrary binary encodings I’ve created):

� Zero (0) or one (1)

� False (0) or true (1)

� Off (0) or on (1)

� Male(0) or female (1)

� Wrong (0) or right (1)

You are not limited to representing binary data types (that is, those objects
that have only two distinct values). You could use a single bit to represent any
two distinct items:

� The numbers 723 (0) and 1,245 (1)

� The colors red (0) and blue (1)

You could even represent two unrelated objects with a single bit. For
example, you could use the bit value zero to represent the color red and
the bit value one to represent the number 3,256. You can represent any
two different values with a single bit. However, you can represent only two
different values with a single bit. As such, individual bits aren’t sufficient
for most computational needs. To overcome the limitations of a single bit,
we create bit strings from a sequence of multiple bits.

No Starch Press, Copyright © 2004 by Randall Hyde

22 Chapter 2

2.4.2 Bit Strings
As you’ve already seen in this chapter, by combining bits into a sequence, we
can form binary representations that are equivalent to other representations
of numbers (like hexadecimal and octal). Most computer systems, however,
do not let you collect together an arbitrary number of bits. Instead, you have
to work with strings of bits that have certain fixed lengths. In this section
we’ll discuss some of the more common bit string lengths and the names
computer engineers have given them.

A nibble is a collection of four bits. Most computer systems do not provide
efficient access to nibbles in memory. However, nibbles are interesting to us
because it takes exactly one nibble to represent a single hexadecimal digit.

A byte is eight bits and it is the smallest addressable data item on many
CPUs. That is, the CPU can efficiently retrieve data on an 8-bit boundary
from memory. For this reason, the smallest data type that many languages
support consumes one byte of memory (regardless of the actual number of
bits the data type requires).

Because the byte is the smallest unit of storage on most machines, and
many languages use bytes to represent objects that require fewer than eight
bits, we need some way of denoting individual bits within a byte. To describe
the bits within a byte, we’ll use bit numbers. Normally, we’ll number the bits in
a byte, as Figure 2-3 shows. Bit 0 is the low-order (LO) bit or least significant bit,
and bit 7 is the high-order (HO) bit or most significant bit of the byte. We’ll refer
to all other bits by their number.

Figure 2-3: Bit numbering in a byte

The term word has a different meaning depending on the CPU. On some
CPUs a word is a 16-bit object. On others a word is a 32-bit or 64-bit object.
In this text, we’ll adopt the 80x86 terminology and define a word to be a
16-bit quantity. Like bytes, we’ll number the bits in a word starting with bit
number zero for the LO bit and work our way up to the HO bit (bit 15),
as in Figure 2-4. When referencing the other bits in a word, use their bit
position number.

Figure 2-4: Bit numbers in a word

Notice that a word contains exactly two bytes. Bits 0 through 7 form the
LO byte, bits 8 through 15 form the HO byte (see Figure 2-5).

7 6 5 4 3 2 1 0

15 14 13 12 11 10 7 6 5 4 3 2 1 09 8

No Starch Press, Copyright © 2004 by Randall Hyde

Numer ic Represen ta t ion 23

Figure 2-5: The two bytes in a word

A double word is exactly what its name implies, a pair of words (sometimes you
will see “double word” abbreviated as “dword”). Therefore, a double-word
quantity is 32 bits long, as shown in Figure 2-6.

Figure 2-6: Bit layout in a double word

A double word contains a pair of words and a set of four bytes, as Figure 2-7
shows.

Figure 2-7: Bytes and words in a double word

Most CPUs efficiently handle objects up to a certain size (typically 32 or 64
bits on contemporary systems). That does not mean you can’t work with
larger objects — it simply becomes less efficient to do so. For that reason,
you typically won’t see programs handling numeric objects much larger
than about 128 or 256 bits. Because 64-bit integers are available in some
programming languages, and most languages support 64-bit floating-point
values, it does make sense to describe a 64-bit data type; we’ll call these quad
words. Just for the fun of it, we’ll use the term long word for 128-bit values. Few
languages today support 128 bit values,2 but this does give us some room to
grow.

Of course, we can break quad words down into 2 double words, 4 words,
8 bytes, or 16 nibbles. Likewise, we can break long words down into 2 quad
words, 4 double words, 8 words, or 16 bytes.

On Intel 80x86 platforms there is also an 80-bit type that Intel calls a tbyte
(for 10-byte) object. The 80x86 CPU family uses tbyte variables to hold
extended precision floating-point values and certain binary-coded decimal
(BCD) values.

2 HLA, for example, supports 128-bit values.

15 14 13 12 11 10 7 6 5 4 3 2 1 09 8

HO byte LO byte

31 23 15 7 0

31 23 15 7 0

Byte #1Byte #2HO byte LO byte

31 23

HO word LO word

15 7 0

No Starch Press, Copyright © 2004 by Randall Hyde

24 Chapter 2

In general, with an n-bit string you can represent up to 2n different
values. Table 2-3 shows the number of possible objects you can represent
with nibbles, bytes, words, double words, quad words, and long words.

2.5 Signed and Unsigned Numbers

The binary number 0…000003 represents zero, 0…00001 represents one,
0…00010 represents two, and so on towards infinity. But what about negative
numbers? To represent signed values, most computer systems use the two’s
complement numbering system. The representation of signed numbers
places some fundamental restrictions on those numbers, so it is important to
understand the difference in representation between signed and unsigned
numbers in a computer system to use them efficiently.

With n bits we can only represent 2n different objects. As negative
values are objects in their own right, we’ll have to divide these 2n combi-
nations between negative and non-negative values. So, for example, a
byte can represent the negative values −128..−1 and the non-negative
values 0..127. With a 16-bit word we can represent signed values in the
range −32,768..+32,767. With a 32-bit double word we can represent values
in the range −2,147,483,648..+2,147,483,647. In general, with n bits we can
represent the signed values in the range −2n−1 to +2n−1−1.

The two’s complement system uses the HO bit as a sign bit. If the HO bit
is zero, the number is non-negative; if the HO bit is one, the number is
negative. Here are some examples using 16-bit numbers:

$8000 (%1000_0000_0000_0000) is negative because the HO bit is one

$100 (%0000_0001_0000_0000) is non-negative because the HO bit is zero

$7FFF (%0111_1111_1111_1111) is non-negative

$FFFF (%1111_1111_1111_1111) is negative

$FFF (%0000_1111_1111_1111) is non-negative

Table 2-3: Number of Values Representable with Bit Strings

Size of Bit String
(in Bits) Number of Possible Combinations (2n)

4 16

8 256

16 65,536

32 4,294,967,296

64 18,446,744,073,709,551,616

128 340,282,366,920,938,463,463,374,607,431,768,211,456

3 The ellipses (“…”) have the standard mathematical meaning: repeat a string of zeros an
indefinite number of times.

No Starch Press, Copyright © 2004 by Randall Hyde

Numer ic Represen ta t ion 25

To negate a two’s complement number, you can use the following algorithm:

1. Invert all the bits in the number, that is, change all the zeros to ones and
all the ones to zeros.

2. Add one to the inverted result (ignoring any overflow).

For example, these are the steps to compute the 8-bit equivalent of the
decimal value −5:

%0000_0101 Five (in binary)

%1111_1010 Invert all the bits

%1111_1011 Add one to obtain −5 (in two's complement form)

If we take −5 and negate it, the result is 5 (%0000_0101), just as we expect:

%1111_1011 Two's complement for −5
%0000_0100 Invert all the bits

%0000_0101 Add one to obtain 5 (in binary)

Here are some 16-bit examples and their negations:
First, negate 32,767 ($7fff):

$7FFF: %0111_1111_1111_1111 +32,767, the largest 16-bit positive number.

%1000_0000_0000_0000 Invert all the bits (8000h)

%1000_0000_0000_0001 Add one (8001h or −32,767)

First, negate 16,384 ($4000):

$4000: %0100_0000_0000_0000 16,384

%1011_1111_1111_1111 Invert all the bits ($BFFF)

%1100_0000_0000_0000 Add one ($C000 or −16,384)

And now negate −32,768 ($8000):

$8000: %1000_0000_0000_0000 −32,768, the smallest 16-bit negative number.
%0111_1111_1111_1111 Invert all the bits ($7FFF)

%1000_0000_0000_0000 Add one ($8000 or −32768)

$8000 inverted becomes $7FFF, and after adding one we obtain $8000!
Wait, what’s going on here? −(−32,768) is −32,768? Of course not. However,
the 16-bit two’s complement numbering system cannot represent the value
+32,768. In general, you cannot negate the smallest negative value in the
two’s complement numbering system.

2.6 Some Useful Properties of Binary Numbers

It’s worth learning a few interesting facts about binary values that you might
find useful in your programs. Here are some useful properties:

No Starch Press, Copyright © 2004 by Randall Hyde

26 Chapter 2

1. If bit position zero of a binary (integer) value contains one, the number
is an odd number; if this bit contains zero, then the number is even.

2. If the LO n bits of a binary number all contain zero, then the number is
evenly divisible by 2n.

3. If a binary value contains a one in bit position n, and zeros everywhere
else, then that number is equal to 2n.

4. If a binary value contains all ones from bit position zero up to (but not
including) bit position n, and all other bits are zero, then that value is
equal to 2n−1.

5. Shifting all the bits in a number to the left by one position multiplies the
binary value by two.

6. Shifting all the bits of an unsigned binary number to the right by one
position effectively divides that number by two (this does not apply to
signed integer values). Odd numbers are rounded down.

7. Multiplying two n-bit binary values together may require as many as 2*n
bits to hold the result.

8. Adding or subtracting two n-bit binary values never requires more than
n+1 bits to hold the result.

9. Inverting all the bits in a binary number (that is, changing all the zeros
to ones and all the ones to zeros) is the same thing as negating (chang-
ing the sign) of the value and then subtracting one from the result.

10. Incrementing (adding one to) the largest unsigned binary value for a
given number of bits always produces a value of zero.

11. Decrementing (subtracting one from) zero always produces the largest
unsigned binary value for a given number of bits.

12. An n-bit value provides 2n unique combinations of those bits.
13. The value 2n−1 contains n bits, each containing the value one.

You should probably memorize all the powers of two from 20 through 216, as
these values come up in programs all the time. Table 2-4 lists their values.

Table 2-4: Powers of Two

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

No Starch Press, Copyright © 2004 by Randall Hyde

Numer ic Represen ta t ion 27

2.7 Sign Extension, Zero Extension, and Contraction

Many modern high-level programming languages allow you to use
expressions involving integer objects with differing sizes. So what happens
when your two operands in an expression are of different sizes? Some
languages will report an error, other languages will automatically convert
the operands to a common format. This conversion, however, is not free, so
if you don’t want your compiler going behind your back and automatically
inserting conversions into your otherwise great code, you should be aware
of how compilers deal with such expressions.

With the two’s complement system, a single negative value will have
different representations depending on size of the representation. You
cannot arbitrarily use an 8-bit signed value in an expression involving a
16-bit number; a conversion will be necessary. This conversion, and its
converse (converting a 16-bit value to 8 bits) are the sign extension and
contraction operations.

Consider the value −64. The 8-bit two’s complement value for this num-
ber is $C0. The 16-bit equivalent of this number is $FFC0. Clearly, these are
not the same bit pattern. Now consider the value +64. The 8- and 16-bit
versions of this value are $40 and $0040, respectively. It should be obvious
that extending the size of negative values is done differently than extending
the size of non-negative values.

To sign extend a value from some number of bits to a greater number of
bits is easy — just copy the sign bit into the additional HO bits in the new
format. For example, to sign extend an 8-bit number to a 16-bit number,
simply copy bit seven of the 8-bit number into bits 8..15 of the 16-bit number.
To sign extend a 16-bit number to a double word, simply copy bit 15 into bits
16..31 of the double word.

You must use sign extension when manipulating signed values of varying
lengths. For example, when adding a byte quantity to a word quantity, you
will need to sign extend the byte to 16 bits before adding the two numbers.
Other operations may require a sign extension to 32 bits.

9 512

10 1,024

11 2,048

12 4,096

13 8,192

14 16,384

15 32,768

16 65,536

Table 2-4: Powers of Two (continued)

n 2n

No Starch Press, Copyright © 2004 by Randall Hyde

28 Chapter 2

When processing unsigned binary numbers, zero extension lets you convert
small unsigned values to larger unsigned values. Zero extension is very
easy — just store a zero in the HO byte(s) of the larger operand. For
example, to zero extend the 8-bit value $82 to 16 bits you just insert a zero
for the HO byte yielding $0082.

Many high-level language compilers automatically handle sign and zero
extension. The following examples in C demonstrate how this works:

signed char sbyte; // Chars in C are byte values.

short int sword; // Short integers in C are *usually* 16-bit values.

long int sdword; // Long integers in C are *usually* 32-bit values.

. . .

sword = sbyte; // Automatically sign extends the 8-bit value to 16 bits.

sdword = sbyte; // Automatically sign extends the 8-bit value to 32 bits.

sdword = sword; // Automatically sign extends the 16-bit value to 32 bits.

Some languages (such as Ada) may require an explicit cast from a smaller
size to a larger size. You’ll have to check the language reference manual for
your particular language to see if this is necessary. The advantage of a
language that requires you to provide an explicit conversion is that the
compiler never does anything behind your back. If you fail to provide the
conversion yourself, the compiler emits a diagnostic message so you’ll be
made aware that your program will need to do additional work.

Table 2-5: Sign Extension Examples

8 Bits 16 Bits 32 Bits Binary (Two’s Complement)

$80 $FF80 $FFFF_FF80 %1111_1111_1111_1111_1111_1111_1000_0000

$28 $0028 $0000_0028 %0000_0000_0000_0000_0000_0000_0010_1000

$9A $FF9A $FFFF_FF9A %1111_1111_1111_1111_1111_1111_1001_1010

$7F $007F $0000_007F %0000_0000_0000_0000_0000_0000_0111_1111

n/a $1020 $0000_1020 %0000_0000_0000_0000_0001_0000_0010_0000

n/a $8086 $FFFF_8086 %1111_1111_1111_1111_1000_0000_1000_0110

Table 2-6: Zero Extension Examples

8 Bits 16 Bits 32 Bits Binary

$80 $0080 $0000_0080 %0000_0000_0000_0000_0000_0000_1000_0000

$28 $0028 $0000_0028 %0000_0000_0000_0000_0000_0000_0010_1000

$9A $009A $0000_009A %0000_0000_0000_0000_0000_0000_1001_1010

$7F $007F $0000_007F %0000_0000_0000_0000_0000_0000_0111_1111

n/a $1020 $0000_1020 %0000_0000_0000_0000_0001_0000_0010_0000

n/a $8086 $0000_8086 %0000_0000_0000_0000_1000_0000_1000_0110

No Starch Press, Copyright © 2004 by Randall Hyde

Numer ic Represen ta t ion 29

The important thing to realize about sign and zero extension is that they
aren’t always free. Assigning a smaller integer to a larger integer may require
more machine instructions (taking longer to execute) than moving data
between two like-sized integer variables. Therefore, you should be careful
about mixing variables of different sizes within the same arithmetic
expression or assignment statement.

Sign contraction, converting a value with some number of bits to the
same value with a fewer number of bits, is a little more troublesome. Sign
extension never fails. Given an m-bit signed value you can always convert it
to an n-bit number (where n > m) using sign extension. Unfortunately, given
an n-bit number, you cannot always convert it to an m-bit number if m < n.
For example, consider the value −448. As a 16-bit hexadecimal number, its
representation is $FE40. Unfortunately, the magnitude of this number is too
large to fit into eight bits, so you cannot sign contract it to eight bits.

To properly sign contract one value to another, you must look at the HO
byte(s) that you want to discard. First, the HO bytes must all contain either
zero or $FF. If you encounter any other values, you cannot sign contract the
value. Second, the HO bit of your resulting value must match every bit you’ve
removed from the number. Here are some examples of converting 16-bit
values to 8-bit values:

$FF80 (%1111_1111_1000_0000) can be sign contracted to $80 (%1000_0000).

$0040 (%0000_0000_0100_0000) can be sign contracted to $40 (%0100_0000).

$FE40 (%1111_1110_0100_0000) cannot be sign contracted to 8 bits.

$0100 (%0000_0001_0000_0000) cannot be sign contracted to 8 bits.

Contraction is somewhat difficult in a high-level language. Some languages,
like C, will simply store the LO portion of the expression into a smaller
variable and throw away the HO component (at best, the C compiler may
give you a warning during compilation about the loss of precision that may
occur). You can often quiet the compiler, but it still doesn’t check for invalid
values. Typically, you’d use code like the following to sign contract a value
in C:

signed char sbyte; // Chars in C are byte values.

short int sword; // Short integers in C are *usually* 16-bit values.

long int sdword; // Long integers in C are *usually* 32-bit values.

. . .

sbyte = (signed char) sword;

sbyte = (signed char) sdword;

sword = (short int) sdword;

The only safe solution in C is to compare the result of the expression to an
upper and lower bounds value before attempting to store the value into a
smaller variable. Unfortunately, such code tends to get unwieldy if you need
to do this often. Here’s what the preceding code might look like with these
checks:

No Starch Press, Copyright © 2004 by Randall Hyde

30 Chapter 2

if(sword >= −128 && sword <= 127)
{

sbyte = (signed char) sword;

}

else

{

// Report appropriate error.

}

// Another way, using assertions:

assert(sdword >= −128 && sdword <= 127)
sbyte = (signed char) sword;

assert(sdword >= −32768 && sdword <= 32767)
sword = (short int) sword;

As you can plainly see, this code gets pretty ugly. In C/C++, you’d probably
want to turn this into a macro (#define) or a function so your code would
be a bit more readable.

Some high-level languages (such as Pascal and Delphi/Kylix) will
automatically sign contract values for you and check the value to ensure
it properly fits in the destination operation.4 Such languages will raise
some sort of exception (or stop the program) if a range violation occurs.
Of course, if you want to take corrective action, you’ll either need to write
some exception handling code or resort to using an if statement sequence
similar to the one in the C example just given.

2.8 Saturation

Saturation is another way to reduce the size of an integer value. Saturation is
useful when you want to convert a larger object to a smaller object and you’re
willing to live with possible loss of precision. If the value of the larger object
is not outside the range of the smaller object, you can convert the value via
saturation by copying the LO bits of the larger value into the smaller object.
If the larger value is outside the smaller object’s range, then you clip the
larger value by setting it to the largest (or smallest) value within the range
of the smaller data type.

When converting a 16-bit signed integer to an 8-bit signed integer, if the
16-bit value is in the range −128..+127 you simply copy the LO byte into the
8-bit object. If the 16-bit signed value is greater than +127, then you clip the
value to +127 and store +127 into the 8-bit object. Likewise, if the value is less
than −128, you clip the final 8-bit object to −128. Saturation works the same

4 Borland’s compilers require the use of a special compiler directive to activate this check. By
default, the compiler does not do the bounds check.

No Starch Press, Copyright © 2004 by Randall Hyde

Numer ic Represen ta t ion 31

way when clipping 32-bit values to smaller values. If the larger value is outside
the range of the smaller value, then you simply clip the value to the closest
value that you can represent with the smaller data type.

If the larger value is outside the range of the smaller value, there will be
a loss of precision during the conversion. While clipping the value is never
desirable, sometimes this is better than raising an exception or otherwise
rejecting the calculation. For many applications, such as audio or video, the
clipped result is still recognizable to the end user, so this is a reasonable
conversion scheme in such situations.

As a result, many CPUs support saturation arithmetic in their special
“multimedia extension” instruction sets. On the Intel 80x86 processor family,
for example, the MMX instruction extensions provide saturation capabilities.
Most CPUs’ standard instruction sets, as well as most high-level languages, do
not provide direct support for saturation, but saturation is not difficult.
Consider the following Pascal/Delphi/Kylix code that uses saturation to
convert a 32-bit integer to a 16-bit integer:

var

li :longint;

si :smallint;

. . .

if(li > 32767) then

si := 32767;

else if(li < -32768) then

si := -32768;

else

si := li;

2.9 Binary-Coded Decimal (BCD) Representation

The binary-coded decimal (BCD) format, as its name suggests, encodes decimal
values using a binary representation. The 80x86 CPU family provides several
machine instructions that convert between BCD and pure binary formats.
Common general-purpose high-level languages (like C/C++, Pascal, and
Java) rarely support decimal values. However, business-oriented pro-
gramming languages (like COBOL and many database languages) support
this data type. So if you’re writing code that interfaces with a database or
some language that supports decimal arithmetic, you may need to deal with
BCD representation.

BCD values consist of a sequence of nibbles, with each nibble repre-
senting a value in the range 0..9. Of course, you can represent values in the
range 0..15 using a nibble; the BCD format, however, uses only 10 of the

No Starch Press, Copyright © 2004 by Randall Hyde

32 Chapter 2

possible 16 values. Each nibble represents a single decimal digit in a BCD
value, so with a single byte we can represent values containing two decimal
digits (0..99), as shown in Figure 2-8. With a word, we can represent values
having four decimal digits (0..9999). Likewise, a double word can represent
up to eight decimal digits.

Figure 2-8: BCD data representation in a byte

As you can see, BCD storage isn’t particularly efficient. An 8-bit BCD variable
can represent values in the range 0..99 while that same eight bits, holding a
binary value, could represent values in the range 0..255. Likewise, a 16-bit
binary value can represent values in the range 0..65535 while a 16-bit BCD
value can only represent about a sixth of those values (0..9999). Inefficient
storage isn’t the only problem with BCD, though. BCD calculations also tend
to be slower than binary calculations.

At this point, you’re probably wondering why anyone would ever use the
BCD format. The BCD format does have two saving graces: it’s very easy to
convert BCD values between the internal numeric representation and their
decimal string representations, and it’s also very easy to encode multidigit
decimal values in hardware when using BCD — for example, when using a
set of dials with each dial representing a single digit. For these reasons,
you’re likely to see people using BCD in embedded systems (such as toaster
ovens and alarm clocks) but rarely in general-purpose computer software.

A few decades ago people mistakenly thought that calculations involving
BCD (or just decimal) arithmetic were more accurate than binary calcu-
lations. Therefore, they would often perform important calculations, like
those involving dollars and cents (or other monetary units) using decimal-
based arithmetic. While it is true that certain calculations can produce more
accurate results in BCD, this statement is not true in general. Indeed, for
most calculations the binary representation is more accurate. For this reason,
most modern computer programs represent all values (including decimal
values) in a binary form. For example, the Intel 80x86 floating-point unit
(FPU) supports a pair of instructions for loading and storing BCD values.
Internally, however, the FPU converts these BCD values to binary. It only uses
BCD as an external data format (external to the FPU, that is). This generally
produces more accurate results.

7 6 5 4 3 2 1 0

HO nibble
(HO digit)

LO nibble
(LO digit)

0..9 0..9

No Starch Press, Copyright © 2004 by Randall Hyde

Numer ic Represen ta t ion 33

2.10 Fixed-Point Representation

One thing you may have noticed by now is that this discussion has dealt
mainly with integer values. A reasonable question to ask is how one rep-
resents fractional values. There are two ways computer systems commonly
represent numbers with fractional components: fixed-point representation
and floating-point representation.

Back in the days when CPUs didn’t support floating-point arithmetic in
hardware, fixed-point arithmetic was very popular with programmers writing
high-performance software that dealt with fractional values. The software
overhead necessary to support fractional values in a fixed-point format is less
than that needed to do the same calculation using a software-based floating-
point computation. However, as the CPU manufacturers added floating-
point units (FPUs) to their CPUs to support floating-point in hardware, the
advantages of fixed-point arithmetic waned considerably. Today, it’s fairly
rare to see someone attempt fixed-point arithmetic on a general-purpose
CPU that supports floating-point arithmetic. It’s usually more cost effective
to use the CPU’s native floating-point format.

Although CPU manufacturers have worked hard at optimizing the
floating-point arithmetic on their systems, reducing the advantages of fixed-
point arithmetic, carefully written assembly language programs can make
effective use of fixed-point calculations in certain circumstances and the
code will run faster than the equivalent floating-point code. Certain 3D
gaming applications, for example, may produce faster computations using
a 16:16 (16-bit integer, 16-bit fractional) format rather than a 32-bit
floating-point format. Because there are some very good uses for fixed-
point arithmetic, this section discusses fixed-point representation and
fractional values using the fixed-point format (Chapter 4 will discuss the
floating-point format).

Fractional values fall between zero and one, and positional numbering
systems represent fractional values by placing digits to the right of the radix
point. In the binary numbering system, each bit to the right of the binary
point represents the value zero or one multiplied by some successive negative
power of two. Therefore, when representing values with a fractional compo-
nent in binary, we represent that fractional component using sums of binary
fractions. For example, to represent the value 5.25 in binary, we would use
the following binary value:

101.01

The conversion to decimal yields:

1 × 22 + 1 × 20 + 1 × 2-2 = 4 + 1 + 0.25 = 5.25

No Starch Press, Copyright © 2004 by Randall Hyde

34 Chapter 2

When using a fixed-point binary format you choose a particular bit in the
binary representation and implicitly place the binary point before that bit.
For a 32-bit fixed-point format you could place the binary point before (or
after) any of the 32 bits. You choose the position of the binary point based on
the number of significant bits you require in the fractional portion of the
number. For example, if your values’ integer components can range from 0
to 999, you’ll need at least 10 bits to the left of the binary point to represent
this range of values. If you require signed values, you’ll need an extra bit for
the sign. In a 32-bit fixed-point format, this leaves either 21 or 22 bits for the
fractional part, depending on whether your value is signed.

Fixed-point numbers are a small subset of the real numbers. Because
there are an infinite number of values between any two integer values,
fixed-point values cannot exactly represent every value between two integers
(doing so would require an infinite number of bits). With fixed-point repre-
sentation, we have to approximate most of the real numbers. Consider the
8-bit fixed-point format that uses six bits for the integer portion and two bits
for the fractional component. The integer component can represent values
in the range 0..63 (or any other 64 values, including signed values in the
range −32..+31). The fractional component can only represent four different
values, typically 0.0, 0.25, 0.5, and 0.75. You cannot exactly represent 1.3
with this format; the best you can do is approximate 1.3 by choosing the
value closest to 1.3 (which is 1.25). Obviously, this introduces error. You can
reduce this error by adding additional bits to the right of the binary point
in your fixed-point format (at the expense of reducing the range of the inte-
ger component or adding additional bits to your fixed-point format). For
example, if you move to a 16-bit fixed-point format using an 8-bit integer
and an 8-bit fractional component, then you can approximate 1.3 using the
following binary value:

1.01001101

The decimal equivalent is as follows:

1 + 0.25 + 0.03125 + 0.15625 + 0.00390625 = 1.30078125

As you can see, adding more bits to the fractional component of your fixed-
point number will give you a more accurate approximation of this value (the
error is only 0.00078125 using this format compared to 0.05 in the previous
format).

However, when using a fixed-point binary numbering system, there are
certain values you can never accurately represent regardless of how many bits
you add to the fractional part of your fixed-point representation (1.3 just
happens to be such a value). This is probably the main reason why people
(mistakenly) feel that decimal arithmetic is more accurate than binary
arithmetic (particularly when working with decimal fractions like 0.1, 0.2,
0.3, and so on).

No Starch Press, Copyright © 2004 by Randall Hyde

Numer ic Represen ta t ion 35

To contrast the comparative accuracy of the two systems, let’s consider a
fixed-point decimal system (using BCD representation). If we choose a 16-bit
format with eight bits for the integer portion and eight bits for the fractional
portion, we can represent decimal values in the range 0.0 to 99.99 with two
decimal digits of precision to the right of the decimal point. We can exactly
represent values like 1.3 in this BCD notation using a hex value like $0130
(the implicit decimal point appears between the second and third digits in
this number). As long as you only use the fractional values 0.00..0.99 in your
computations, this BCD representation is, indeed, more accurate than the
binary fixed-point representation (using an 8-bit fractional component). In
general, however, the binary format is more accurate.

The binary format lets you exactly represent 256 different fractional
values, whereas the BCD format only lets you represent 100 different frac-
tional values. If you pick an arbitrary fractional value, it’s likely the binary
fixed-point representation provides a better approximation than the decimal
format (because there are over two and a half times as many binary versus
decimal fractional values). The only time the decimal fixed-point format
has an advantage is when you commonly work with the fractional values
that it can exactly represent. In the United States, monetary computations
commonly produce these fractional values, so programmers figured the
decimal format is better for monetary computations. However, given the
accuracy most financial computations require (generally four digits to the
right of the decimal point is the minimum precision serious financial trans-
actions require), it’s usually better to use a binary format.

For example, with a 16-bit fractional component, the decimal/BCD
fixed-point format gives you exactly four digits of precision; the binary
format, on the other hand, offers over six times the resolution (65,536
different fractional values rather than 10,000 fractional values). Although
the binary format cannot exactly represent some of the values that you can
exactly represent in decimal form, the binary format does exactly represent
better than six times as many values. Once you round the result down to
cents (two digits to the right of the decimal point), you’re definitely going
to get better results using the binary format.

If you absolutely, positively, need to exactly represent the fractional
values between 0.00 and 0.99 with at least two digits of precision, the binary
fixed-point format is not a viable solution. Fortunately, you don’t have to use
a decimal format; there are other binary formats that will let you exactly
represent these values. The next couple of sections describe such formats.

2.11 Scaled Numeric Formats

Because the decimal (BCD) formats can exactly represent some important
values that you cannot exactly represent in binary, many programmers have
chosen to use decimal arithmetic in their programs despite the better
precision and performance of the binary format. However, there is a better
numeric representation that offers the advantages of both schemes: the exact

No Starch Press, Copyright © 2004 by Randall Hyde

36 Chapter 2

representation of certain decimal fractions combined with the precision of
the binary format. This numeric format is also efficient to use and doesn’t
require any special hardware. What’s this wonderful format? It’s the scaled
numeric format.

One advantage of the scaled numeric format is that you can choose any
base, not just decimal, for your format. For example, if you’re working with
ternary (base-3) fractions, you can multiply your original input value by three
(or some power of three) and exactly represent values like 1/3, 2/3, 4/9, 7/27, and
so on. You cannot exactly represent any of these values in either the binary or
decimal numbering systems.

The scaled numeric format uses fast, compact integer arithmetic. To
represent fractional values, you simply multiply your original value by some
value that converts the fractional component to a whole number. For
example, if you want to maintain two decimal digits of precision to the right
of the decimal point, simply multiply your values by 100 upon input. This
translates values like 1.3 to 130, which we can exactly represent using an
integer value. Assuming you do this calculation with all your fractional values
(and they have the same two digits of precision to the right of the decimal
point), you can manipulate your values using standard integer arithmetic
operations. For example, if you have the values 1.5 and 1.3, their integer
conversion produces 150 and 130. If you add these two values you get 280
(which corresponds to 2.8). When you need to output these values, you
simply divide them by 100 and emit the quotient as the integer portion of
the value and the remainder (zero extended to two digits, if necessary) as
the fractional component. Other than the need to write specialized input
and output routines that handle the multiplication and division by 100 (as
well as dealing with the decimal point), this scaled numeric scheme is almost
as easy as doing regular integer calculations.

Of course, do keep in mind that if you scale your values as described
here, you’ve limited the maximum range of the integer portion of your
numbers by a like amount. For example, if you need two decimal digits of
precision to the right of your decimal point (meaning you multiply the
original value by 100), then you may only represent (unsigned) values in
the range 0..42,949,672 rather than the normal range of 0..4,294,967,296.

When doing addition or subtraction with a scaled format, you must
ensure that both operands have the same scaling factor. That is, if you’ve
multiplied the left operand of an addition operator by 100, you must have
multiplied the right operand by 100 as well. Ditto for subtraction. For
example, if you’ve scaled the variable i10 by ten and you’ve scaled the
variable j100 by 100, you need to either multiply i10 by ten (to scale it by 100)
or divide j100 by ten (to scale it down to ten) before attempting to add or
subtract these two numbers. When using the addition and subtraction
operators, you ensure that both operands have the radix point in the same
position (and note that this applies to literal constants as well as variables).

No Starch Press, Copyright © 2004 by Randall Hyde

Numer ic Represen ta t ion 37

When using the multiplication and division operators, the operands do
not require the same scaling factor prior to the operation. However, once
the operation is complete, you may need to adjust the result. Suppose you
have two values you’ve scaled by 100 to produce two digits of precision after
the decimal point and those values are i = 25 (0.25) and j = 1 (0.01). If you
compute k = i * j using standard integer arithmetic, the result you’ll get is
25 (25 × 1 = 25). Note that the actual value should be 0.0025, yet the result
appearing in i seems to be 0.25. The computation is actually correct; the
problem is understanding how the multiplication operator works. Consider
what we’re actually computing:

(0.25 × (100)) × (0.01 × (100))
=

0.25 × 0.01 × (100 × 100) // commutative laws allow this
=

0.0025 × (10,000)
=

25

The problem is that the final result actually gets scaled by 10,000. This is
because both i and j have been multiplied by 100 and when you multiply
their values, you wind up with a value multiplied by 10,000 (100 × 100) rather
than 100. To solve this problem, you should divide the result by the scaling
factor once the computation is complete. For example, k = i ∗ j/100.
The division operation suffers from a similar (though not the exact same)
problem. Suppose we have the values m = 500 (5.0) and n = 250 (2.5) and we
want to compute k = m/n. We would normally expect to get the result 200
(2.0, which is 5.0/2.5). However, here’s what we’re actually computing:

(5 × 100) / (2.5 × 100)
=

500/250

=

2

At first blush this may look correct, but don’t forget that the result is really
0.02 after you factor in the scaling operation. The result we really need is 200
(2.0). The problem here, of course, is that the division by the scaling factor
eliminates the scaling factor in the final result. Therefore, to properly
compute the result, we actually need to compute k = 100 * m/n so that the
result is correct.

Multiplication and division place a limit on the precision you have
available. If you have to premultiply the dividend by 100, then the dividend
must be at least 100 times smaller than the largest possible integer value or
an overflow will occur (producing an incorrect result). Likewise, when
multiplying two scaled values, the final result must be 100 times less than the

No Starch Press, Copyright © 2004 by Randall Hyde

38 Chapter 2

maximum integer value or an overflow will occur. Because of these issues,
you may need to set aside additional bits or work with small numbers when
using scaled numeric representation.

2.12 Rational Representation

One big problem with the fractional representations we’ve seen is that
they are not exact; that is, they provide a close approximation of real
values, but they cannot provide an exact representation for all rational
values.5 For example, in binary or decimal you cannot exactly represent
the value 1/3. You could switch to a ternary (base-3) numbering system and
exactly represent 1/3, but then you wouldn’t be able to exactly represent
fractional values like 1/2 or 1/10. What we need is a numbering system that
can represent any reasonable fractional value. Rational representation is a
possibility in such situations.

Rational representation uses pairs of integers to represent fractional
values. One integer represents the numerator (n) of a fraction, and the
other represents the denominator (d). The actual value is equal to n/d.
As long as n and d are “relatively prime” with respect to one another (that is,
they are not both evenly divisible by the same value) this scheme provides a
good representation for fractional values within the bounds of the integer
representation you’re using for n and d. In theory, arithmetic is quite easy;
you use the same algorithms to add, subtract, multiply, and divide fractional
values that you learned in grade school when dealing with fractions. The only
problem is that certain operations may produce really large numerators or
denominators (to the point where you get integer overflow in these values).
Other than this problem, however, you can represent a wide range of
fractional values using this scheme.

2.13 For More Information

Donald Knuth’s The Art of Computer Programming, Volume Two: Seminumerical
Algorithms is probably the seminal text on number systems and arithmetic.
For more information on binary, decimal, fixed-point, rational, and floating-
point arithmetic, you’ll want to take a look at that text.

5 It is not possible to provide an exact computer representation of an irrational number, so we
won’t even try.

No Starch Press, Copyright © 2004 by Randall Hyde

3
B I N A R Y A R I T H M E T I C

A N D B I T O P E R A T I O N S

Understanding how computers represent
data in binary is a prerequisite to writing

software that works well on those computers.
Of equal importance, of course, is under-

standing how computers operate on binary data.
Exploring arithmetic, logical, and bit operations on
binary data is the purpose of this chapter.

3.1 Arithmetic Operations on Binary and Hexadecimal
Numbers

Because computers use binary representation, programmers who write great
code often have to work with binary (and hexadecimal) values. Often, when
writing code, you may need to manually operate on two binary values in order
to use the result in your source code. Although calculators are available
to compute such results, you should be able to perform simple arithmetic
operations on binary operands by hand.

No Starch Press, Copyright © 2004 by Randall Hyde

40 Chapter 3

Hexadecimal arithmetic is sufficiently painful that a hexadecimal
calculator belongs on every programmer’s desk (or, at the very least, use a
software-based calculator that supports hexadecimal operations, such as the
Windows calculator). Arithmetic operations on binary values, however, are
actually easier than decimal arithmetic. Knowing how to manually compute
binary arithmetic results is essential because several important algorithms
use these operations (or variants of them). Therefore, the next several
subsections describe how to manually add, subtract, multiply, and divide
binary values, and how to perform various logical operations on them.

3.1.1 Adding Binary Values
Adding two binary values is easy; there are only eight rules to learn. (If this
sounds like a lot, just realize that you had to memorize approximately 200
rules for decimal addition!) Here are the rules for binary addition:

� 0 + 0 = 0

� 0 + 1 = 1

� 1 + 0 = 1

� 1 + 1 = 0 with carry

� Carry + 0 + 0 = 1

� Carry + 0 + 1 = 0 with carry

� Carry + 1 + 0 = 0 with carry

� Carry + 1 + 1 = 1 with carry

Once you know these eight rules you can add any two binary values together.
Here are some complete examples of binary addition:

0101

+ 0011

Step 1: Add the LO bits (1 + 1 = 0 + carry).

c

0101

+ 0011

0

Step 2: Add the carry plus the bits in bit position one (carry + 0 + 1 = 0 +

carry).

c

0101

+ 0011

00

No Starch Press, Copyright © 2004 by Randall Hyde

Bina ry A ri thmet ic and Bi t Operat ions 41

Step 3: Add the carry plus the bits in bit position two (carry + 1 + 0 = 0 +

carry).

c

0101

+ 0011

000

Step 4: Add the carry plus the bits in bit position three (carry + 0 + 0 = 1).

0101

+ 0011

1000

Here are some more examples:

1100_1101 1001_1111 0111_0111

+ 0011_1011 + 0001_0001 + 0000_1001

----------- ----------- -----------

1_0000_1000 1011_0000 1000_0000

3.1.2 Subtracting Binary Values
Binary subtraction is also easy; like addition, binary subtraction has eight
rules:

� 0 − 0 = 0

� 0 − 1 = 1 with a borrow

� 1 − 0 = 1

� 1 − 1 = 0

� 0 − 0 − borrow = 1 with a borrow

� 0 − 1 − borrow = 0 with a borrow

� 1 − 0 − borrow = 0

� 1 − 1 − borrow = 1 with a borrow

Here are some complete examples of binary subtraction:

0101

− 0011

Step 1: Subtract the LO bits (1 − 1 = 0).

0101

− 0011

0

No Starch Press, Copyright © 2004 by Randall Hyde

42 Chapter 3

Step 2: Subtract the bits in bit position one (0 − 1 = 1 + borrow).

0101

− 0011
b

10

Step 3: Subtract the borrow and the bits in bit position two (1 − 0 − b = 0).

0101

− 0011

010

Step 4: Subtract the bits in bit position three (0 − 0 = 0).

0101

− 0011

0010

Here are some more examples:

1100_1101 1001_1111 0111_0111

− 0011_1011 − 0001_0001 − 0000_1001
----------- ----------- -----------

1001_0010 1000_1110 0110_1110

3.1.3 Multiplying Binary Values

Multiplication of binary numbers is also very easy. It’s just like decimal multi-
plication involving only zeros and ones (which is trivial). Here are the rules
you need to know for binary multiplication:

� 0 × 0 = 0

� 0 × 1 = 0

� 1 × 0 = 0

� 1 × 1 = 1

Using these four rules, multiplication is done the same way you’d do decimal
multiplication (in fact, if you just follow the rules for decimal multiplication
on your binary values you’ll actually get the correct results, because the rules
for decimal multiplication involving the zero and one digits are identical).
Here are some examples of binary multiplication:

No Starch Press, Copyright © 2004 by Randall Hyde

Bina ry A ri thmet ic and Bi t Operat ions 43

1010

× 0101

Step 1: Multiply the LO bit of the multiplier times the multiplicand.

1010

× 0101

1010 (1 × 1010)

Step 2: Multiply bit one of the multiplier times the multiplicand.

1010

× 0101

1010 (1 × 1010)
0000 (0 × 1010)

01010 (partial sum)

Step 3: Multiply bit two of the multiplier times the multiplicand.

1010

× 0101

001010 (previous partial sum)

1010 (1 × 1010)

110010 (partial sum)

Step 4: Multiply bit three of the multiplier times the multiplicand.

1010

× 0101

110010 (previous partial sum)

0000 (0 × 1010)

0110010 (product)

3.1.4 Dividing Binary Values
Like multiplication of binary numbers, binary division is actually easier than
decimal division. You use the same (longhand) division algorithm, but
binary division is easier because you can trivially determine whether the
divisor goes into the dividend during each step of the longhand division
algorithm. Figure 3-1 on the next page shows the steps in a decimal division
problem.

No Starch Press, Copyright © 2004 by Randall Hyde

44 Chapter 3

Figure 3-1: Decimal division (3456/12)

This algorithm is actually easier in binary because at each step you do not
have to guess how many times 12 goes into the remainder nor do you have to
multiply 12 by your guess to obtain the amount to subtract. At each step in
the binary algorithm, the divisor goes into the remainder exactly zero or one
times. As an example, consider the division of 27 (11011) by three (11) as
shown in Figure 3-2.

12 3456
24

(1) 12 goes into 34
 two times.

(3) 12 goes into 105
 eight times.

12 3456
24

105
96

28

12 3456
24

105

2
(2) Subtract 24 from 34
 and drop down the 105.

12 3456
24

105
96

28

96

(4) Subtract 96 from 105
 and drop down the 96.

12 3456
24

105
96

288

96
96

(5) 12 goes into 96
 exactly eight times.

12 3456
24

105
96

288

96
96

(6) Therefore, 12 goes into
 3456 exactly 288 times.

2

11 11011
 11

11 goes into 11 one time.

1

11 11011
 11
 00

Subtract out the 11 and bring down the zero.

1

11 11011
 11
 00
 00

11 goes into 00 zero times.

10

No Starch Press, Copyright © 2004 by Randall Hyde

Bina ry A ri thmet ic and Bi t Operat ions 45

Figure 3-2: Longhand division in binary

11 11011
 11
 00
 00
 01

Subtract out the zero and bring down the one.

10

11 11011
 11
 00
 00
 01
 00

11 goes into 01 zero times.

100

11 11011
 11
 00
 00
 01
 00
 11

Subtract out the zero and bring down the one.

100

11 11011
 11
 00
 00
 01
 00
 11
 11

11 goes into 11 one time.

1001

11 11011
 11
 00
 00
 01
 00
 11
 11
 00

This produces the final result
of 1001.

1001

No Starch Press, Copyright © 2004 by Randall Hyde

46 Chapter 3

3.2 Logical Operations on Bits

There are four main logical operations we’ll need to perform on hexa-
decimal and binary numbers: AND, OR, XOR (exclusive-or), and NOT.
Unlike the arithmetic operations, a hexadecimal calculator isn’t necessary
to perform these operations.

The logical AND, OR, and XOR operations accept two single-bit
operands and compute the following results:

AND:

0 and 0 = 0

0 and 1 = 0

1 and 0 = 0

1 and 1 = 1

OR:

0 or 0 = 0

0 or 1 = 1

1 or 0 = 1

1 or 1 = 1

XOR:

0 xor 0 = 0

0 xor 1 = 1

1 xor 0 = 1

1 xor 1 = 0

Table 3-1, Table 3-2, and Table 3-3 show the truth tables for the AND, OR,
and XOR operations. A truth table is just like the multiplication tables you
encountered in elementary school. The values in the left column correspond
to the left operand of the operation. The values in the top row correspond to
the right operand of the operation. The value located at the intersection of
the row and column (for a particular pair of input values) is the result.

Table 3-1: AND truth table

AND 0 1

0 0 0

1 0 1

Table 3-2: OR truth table

OR 0 1

0 0 1

1 1 1

No Starch Press, Copyright © 2004 by Randall Hyde

Bina ry A ri thmet ic and Bi t Operat ions 47

In plain English, the logical AND operation translates as, “If the first operand
is one and the second operand is one, the result is one; otherwise the result is
zero.” We could also state this as “If either or both operands are zero, the
result is zero.” The logical AND operation is useful for forcing a zero result.
If one of the operands is zero, the result is always zero regardless of the value
of the other operand. If one of the operands contains one, then the result is
the value of the other operand.

Colloquially, the logical OR operation is, “If the first operand or the
second operand (or both) is one, the result is one; otherwise the result is
zero.” This is also known as the inclusive-OR operation. If one of the operands
to the logical-OR operation is one, the result is always one. If an operand is
zero, the result is always the value of the other operand.

In English, the logical XOR operation is, “If the first or second operand,
but not both, is one, the result is one; otherwise the result is zero.” If one of
the operands is a one, the result is always the inverse of the other operand.

The logical NOT operation is unary (meaning it accepts only one
operand). The truth table for the NOT operation appears in Table 3-4.
This operator simply inverts (reverses) the value of its operand.

3.3 Logical Operations on Binary Numbers and Bit Strings

The logical functions work on single-bit operands. Because most pro-
gramming languages manipulate groups of 8, 16, or 32 bits, we need to
extend the definition of these logical operations beyond single-bit operands.
We can easily extend logical functions to operate on a bit-by-bit (or bitwise)
basis. Given two values, a bitwise logical function operates on bit zero of
both operands producing bit zero of the result; it operates on bit one of
both operands producing bit one of the result, and so on. For example,
if you want to compute the bitwise logical AND of two 8-bit numbers, you
would logically AND each pair of bits in the two numbers:

%1011_0101

%1110_1110

%1010_0100

Table 3-3: XOR truth table

XOR 0 1

0 0 1

1 1 0

Table 3-4: NOT truth table

NOT 0 1

1 0

No Starch Press, Copyright © 2004 by Randall Hyde

48 Chapter 3

This bit-by-bit execution also applies to the other logical operations, as well.
The ability to force bits to zero or one using the logical AND and OR
operations, and the ability to invert bits using the logical XOR operation, is
very important when working with strings of bits (such as binary numbers).
These operations let you selectively manipulate certain bits within a value
while leaving other bits unaffected. For example, if you have an 8-bit binary
value X and you want to guarantee that bits four through seven contain
zeros, you could logically AND the value X with the binary value
%0000_1111. This bitwise logical AND operation would force the HO four
bits of X to zero and leave the LO four bits of X unchanged. Likewise, you
could force the LO bit of X to one and invert bit number two of X by logically
ORing X with %0000_0001 and then logically exclusive ORing (XORing) X
with %0000_0100. Using the logical AND, OR, and XOR operations to
manipulate bit strings in this fashion is known as masking bit strings. We use
the term masking because we can use certain values (one for AND, zero for
OR and XOR) to “mask out” or “mask in” certain bits in an operand while
forcing other bits to zero, one, or their inverse.

Several languages provide operators that let you compute the bitwise
AND, OR, XOR, and NOT of their operands. The C/C++/Java language
family uses the ampersand (&) operator for bitwise AND, the pipe (|) oper-
ator for bitwise OR, the caret (^) operator for bitwise XOR, and the tilde (~)
operator for bitwise NOT. The Visual Basic and Delphi/Kylix languages let
you use the and, or, xor, and not operators with integer operands. From 80x86
assembly language, you can use the AND, OR, NOT, and XOR instructions
to do these bitwise operations.

// Here's a C/C++ example:

i = j & k; // Bitwise AND

i = j | k; // Bitwise OR

i = j ^ k; // Bitwise XOR

i = ~j; // Bitwise NOT

3.4 Useful Bit Operations

Although bit operations may seem a bit abstract, they are quite useful for
many non-obvious purposes. The following subsections describe some of
their useful properties of using the logical operations in various languages.

3.4.1 Testing Bits in a Bit String Using AND
You can use the bitwise AND operator to test individual bits in a bit string to
see if they are zero or one. If you logically AND a value with a bit string that
contains a one in a certain bit position, the result of the logical AND will be
zero if the corresponding bit contains a zero, and the result will be nonzero

No Starch Press, Copyright © 2004 by Randall Hyde

Bina ry A ri thmet ic and Bi t Operat ions 49

if that bit position contains one. Consider the following C/C++ code that
checks an integer value to see if it is odd or even by testing if bit zero of the
integer:

IsOdd = (ValueToTest & 1) != 0;

In binary form, here’s what this bitwise AND operation is doing:

xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx // Assuming ValueToTest is 32 bits

0000_0000_0000_0000_0000_0000_0000_0001 // Bitwise AND with the value one

0000_0000_0000_0000_0000_0000_0000_000x // Result of bitwise AND

The result is zero if the LO bit of ValueToTest contains a zero in bit position
zero. The result is one if ValueToTest contains a one in bit position one. This
calculation ignores all other bits in ValueToTest.

3.4.2 Testing a Set of Bits for Zero/Not Zero Using AND

You can also use the bitwise AND operator to check a set of bits to see if they
are all zero. For example, one way to check to see if a number is evenly
divisible by 16 is to see if the LO four bits of the value are all zeros. The
following Delphi/Kylix statement uses the bitwise AND operator to
accomplish this:

IsDivisibleBy16 := (ValueToTest and $f) = 0;

In binary form, here’s what this bitwise AND operation is doing:

xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx // Assuming ValueToTest is 32 bits

0000_0000_0000_0000_0000_0000_0000_1111 // Bitwise AND with $F

0000_0000_0000_0000_0000_0000_0000_xxxx // Result of bitwise AND

The result is zero if and only if the LO four bits of ValueToTest are all zero,
because ValueToTest is evenly divisible by 16 only if its LO four bits all contain
zero.

3.4.3 Comparing a Set of Bits Within a Binary String

The AND and OR operations are particularly useful if you need to compare a
subset of the bits in a binary value against some other value. For example,
you might want to compare two 6-bit values found in bits 0, 1, 10, 16, 24, and
31 of a pair of 32-bit values. The trick is to set all the uninteresting bits to
zero and then compare the two results.1

1 It’s also possible to set all the uninteresting bits to ones via the OR operation, but the AND
operator is often more convenient.

No Starch Press, Copyright © 2004 by Randall Hyde

50 Chapter 3

Consider the following three binary values; the “x” bits denote bits whose
values we don’t care about:

%1xxxxxx0xxxxxxx1xxxxx0xxxxxxxx10

%1xxxxxx0xxxxxxx1xxxxx0xxxxxxxx10

%1xxxxxx1xxxxxxx1xxxxx1xxxxxxxx11

If we compare the first and second binary values (assuming we’re only
interested in bits 31, 16, 10, 1, and 0), we should find that the two values are
equal. If we compare either of the first two values against the third value,
we’ll find that they are not equal. Furthermore, if we compare either of the
first two values against the third, we should discover that the third value is
greater than the first two. In C/C++ and assembly, this is how we could
compare these values:

// C/C++ example

if((value1 & 0x81010403) == (value2 & 0x81010403))

{

// Do something if bits 31, 24, 16, 10, 1, and 0 of

// value1 and value2 are equal

}

if((value1 & 0x81010403) != (value3 & 0x81010403))

{

// Do something if bits 31, 24, 16, 10, 1, and 0 of

// value1 and value3 are not equal

}

// HLA/x86 assembly example:

mov(value1, eax); // EAX = value1

and($8101_0403, eax); // Mask out unwanted bits in EAX

mov(value2, edx); // EDX = value2

and($8101_0403, edx); // Mask out the same set of unwanted bits in EDX

if(eax = edx) then // See if the remaining bits match

// Do something if bits 31, 24, 16, 10, 1, and 0 of

// value1 and value2 are equal

endif;

mov(value1, eax); // EAX = value1

and($8101_0403, eax); // Mask out unwanted bits in EAX

mov(value3, edx); // EDX = value2

and($8101_0403, edx); // Mask out the same set of unwanted bits in EDX

No Starch Press, Copyright © 2004 by Randall Hyde

Bina ry A ri thmet ic and Bi t Operat ions 51

if(eax <> edx) then // See if the remaining bits do not match

// Do something if bits 31, 24, 16, 10, 1, and 0 of

// value1 and value3 are not equal

endif;

3.4.4 Creating Modulo-n Counters Using AND
The AND operation lets you create efficient modulo-n counters. A modulo-n
counter counts from zero2 to some maximum value and then resets to zero.
Modulo-n counters are great for creating repeating sequences of numbers
such as 0, 1, 2, 3, 4, 5, . . . n−1, 0, 1, 2, 3, 4, 5, . . . n−1, 0, 1, You can use
such sequences to create circular queues and other objects that reuse array
elements upon encountering the end of the data structure. The normal way
to create a modulo-n counter is to add one to the counter, divide the result
by n, and then keep the remainder. The following code examples demon-
strate the implementation of a modulo-n counter in C/ C++, Pascal, and
Visual Basic:

cntr = (cntr + 1) % n; // C/C++

cntr := (cntr + 1) mod n; // Pascal/Delphi/Kylix

cntr = (cntr + 1) Mod n ` Visual Basic

The problem with this particular implementation is that division is an
expensive operation, requiring far more time to execute than operations
such as addition. In general, you’ll find it more efficient to implement
modulo-n counters using a comparison rather than the remainder operator.
Here’s a Pascal example:

cntr := cntr + 1; // Pascal example

if(cntr >= n) then

cntr := 0;

For certain special cases, however, you can increment a modulo-n counter
more efficiently and conveniently using the AND operation. You can use the
AND operator to create a modulo-n counter when n is a power of two. To
create such a modulo-n counter, increment your counter and then logically
AND it with the value n = 2m−1 (2m−1 contains ones in bit positions 0..m−1
and zeros everywhere else). Because the AND operation is usually much
faster than a division, AND-driven modulo-n counters are much more
efficient than those using the remainder operator. Indeed, on most CPUs,
using the AND operator is quite a bit faster than using an if statement. The
following examples show how to implement a modulo-n counter for n = 32
using the AND operation:

2 Actually, they could count down to zero as well, but usually they count up.

No Starch Press, Copyright © 2004 by Randall Hyde

52 Chapter 3

//Note: 0x3f = 31 = 25 − 1, so n = 32 and m = 5

cntr = (cntr + 1) & 0x3f; // C/C++ example

cntr := (cntr + 1) and $3f; // Pascal/Delphi/Kylix example

cntr = (cntr + 1) And &h3f ` Visual Basic example

The assembly language code is especially efficient:

inc(eax); // Compute (eax + 1) mod 32

and($3f, eax);

3.5 Shifts and Rotates

Another set of logical operations on bit strings are the shift and rotate oper-
ations. These functions can be further broken down into shift lefts, rotate lefts,
shift rights, and rotate rights. These operations turn out to be very useful in
many programs.

The shift left operation moves each bit in a bit string one position to the
left, as shown in Figure 3-3. Bit zero moves into bit position one, the previous
value in bit position one moves into bit position two, and so on.

Figure 3-3: Shift left operation (on a byte)

There are two questions that arise: “What goes into bit zero?” and “Where
does the HO bit wind up?” We’ll shift a zero into bit zero, and the previous
value of the HO bit will be the carry out of this operation.

Several high-level languages (such as C/C++/C#, Java, and
Delphi/Kylix) provide a shift left operator. In the C language family, this
operator is <<. In Delphi/Kylix, you use the shl operator. Here are some
examples:

// C:

cLang = d << 1; // Assigns d shifted left one position to

// variable "cLang"

// Delphi:

Delphi := d shl 1; // Assigns d shifted left one position to

// variable "Delphi"

Shifting the binary representation of a number one position to the left is
equivalent to multiplying that value by two. Therefore, if you’re using a
programming language that doesn’t provide an explicit shift left operator,

7 6 5 4 3 2 1 0

No Starch Press, Copyright © 2004 by Randall Hyde

Bina ry A ri thmet ic and Bi t Operat ions 53

you can usually simulate this by multiplying a binary integer value by two.
Although the multiplication operation is usually slower than the shift left
operation, most compilers are smart enough to translate a multiplication by
a constant power of two into a shift left operation. Therefore, you could write
code like the following in Visual Basic to do a shift left:

vb = d * 2

A shift right operation is similar to a shift left, except we’re moving the data
in the opposite direction. Bit seven moves into bit six; bit six moves into bit
five; bit five moves into bit four; and so on. During a shift right, we’ll move
a zero into bit seven, and bit zero will be the carry out of the operation
(see Figure 3-4). C, C++, C#, and Java use the >> operator for a shift right
operation. Delphi/Kylix uses the shr operator. Most assembly languages also
provide a shift right instruction (shr on the 80x86).

Figure 3-4: The shift right operation (on a byte)

Shifting an unsigned binary value right divides that value by two. For
example, if you shift the unsigned representation of 254 ($FE) one place to
the right, you get 127 ($7F), exactly as you would expect. However, if you
shift the 8-bit two’s complement binary representation of −2 ($FE) one
position to the right, you get 127 ($7F), which is not correct. To divide a
signed number by two using a shift, we must define a third shift operation:
arithmetic shift right. An arithmetic shift right operation does not modify the
value of the HO bit. Figure 3-5 shows the arithmetic shift right operation for
an 8-bit operand.

Figure 3-5: Arithmetic shift right operation (on a byte)

This generally produces the result you expect for two’s complement signed
operands. For example, if you perform the arithmetic shift right operation
on −2 ($FE), you get −1 ($FF). Note, however, that this operation always
rounds the numbers to the closest integer that is less than or equal to the actual
result. If you arithmetically shift right −1 ($FF), the result is −1, not zero.
Because −1 is less than zero, the arithmetic shift right operation rounds
towards −1. This is not a “bug” in the arithmetic shift right operation; it just
uses a different (though valid) definition of integer division. The bottom
line, however, is that you probably won’t be able to use a signed division

0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

No Starch Press, Copyright © 2004 by Randall Hyde

54 Chapter 3

operator as a substitute for arithmetic shift right in languages that don’t
support arithmetic shift right, because most integer division operators round
towards zero.

One problem with the shift right operation in high-level languages is
that it’s rare for a high-level language to support both the logical shift right
and the arithmetic shift right. Worse still, the specifications for certain
languages leave it up to the compiler’s implementer to decide whether to use
an arithmetic shift right or a logical shift right operation. Therefore, it’s only
safe to use the shift right operator on values whose HO bit will cause both
forms of the shift right operation to produce the same result. If you need to
guarantee that a shift right is a logical shift right or an arithmetic shift right
operation, then you’ll either have to drop down into assembly language or
you’ll have to handle the HO bit manually. Obviously, the high-level code
gets ugly really fast, so a quick in-line assembly statement might be a better
solution if your program doesn’t need to be portable across different CPUs.
The following code demonstrates how to simulate a 32-bit logical shift right
and arithmetic shift right in languages that don’t guarantee the type of shift
they use:

// Written in C/C++, assuming 32-bit integers, logical shift right:

// Compute bit 30.

Bit30 = ((ShiftThisValue & 0x800000000) != 0) ? 0x40000000 : 0;

// Shifts bits 0..30.

ShiftThisValue = (ShiftThisValue & 0x7fffffff) >> 1;

// Merge in Bit #30.

ShiftThisValue = ShiftThisValue | Bit30;

// Arithmetic shift right operation

Bits3031 = ((ShiftThisValue & 0x800000000) != 0) ? 0xC0000000 : 0;

// Shifts bits 0..30.

ShiftThisValue = (ShiftThisValue & 0x7fffffff) >> 1;

// Merge bits 30/31.

ShiftThisValue = ShiftThisValue | Bits3031;

Many assembly languages also provide various rotate instructions that recir-
culate bits through an operand by taking the bits shifted out of one end of
the operation and shifting them into the other end of the operand. Few
high-level languages provide this operation; fortunately, you won’t need
it very often. If you do, you can synthesize this operation using the shift
operators available in your high-level language:

// Pascal/Delphi/Kylix Rotate Left, 32-bit example:

// Puts bit 31 into bit 0, clears other bits.

CarryOut := (ValueToRotate shr 31);

ValueToRotate := (ValueToRotate shl 1) or CarryOut;

No Starch Press, Copyright © 2004 by Randall Hyde

Bina ry A ri thmet ic and Bi t Operat ions 55

Assembly language programmers typically have access to a wide variety
of shift and rotate instructions. For more information on the type of shift
and rotate operations that are possible, consult my assembly language
programming book, The Art of Assembly Language (No Starch Press).

3.6 Bit Fields and Packed Data

CPUs generally operate most efficiently on byte, word, and double-word data
types;3 but occasionally you’ll need to work with a data type whose size is
something other than 8, 16, or 32 bits. In such cases, you may be able to save
some memory by packing different strings of bits together as compactly as
possible, without wasting any bits to align a particular data field on a byte or
other boundary.

Consider a date of the form “04/02/01.” It takes three numeric values
to represent this date: month, day, and year values. Months, of course, use
the values 1..12. It will require at least four bits (a maximum of 16 different
values) to represent the month. Days use the range 1..31. Therefore, it will
take five bits (a maximum of 32 different values) to represent the day entry.
The year value, assuming that we’re working with values in the range 0..99,
requires seven bits (representing up to 128 different values). Four plus five
plus seven is 16 bits, or two bytes. In other words, we can pack our date data
into two bytes rather than the three that would be required if we used a
separate byte for each of the month, day, and year values. This saves one byte
of memory for each date stored, which could be a substantial saving if you
need to store many dates. You might arrange the bits as shown in Figure 3-6.

Figure 3-6: Short packed date format (16 bits)

MMMM represents the four bits making up the month value, DDDDD represents the
five bits making up the day, and YYYYYYY is the seven bits that hold the year.
Each collection of bits representing a data item is a bit field. We could
represent April 2, 2001, with $4101:

0100 00010 0000001 = %0100_0001_0000_0001 or $4101

04 02 01

Although packed values are space efficient (that is, they use little memory),
they are computationally inefficient (slow!). The reason? It takes extra
instructions to unpack the data from the various bit fields. These extra
instructions take time to execute (and additional bytes to hold the
instructions); hence, you must carefully consider whether packed data

3 Some RISC CPUs only operate efficiently on double-word values, so the concept of bit fields
and packed data may apply to any object less than 32 bits in size on such CPUs.

Y Y Y Y Y Y Y

15 14 13 12 11 10 7 6 5 4 3 2 1 09 8

M M M M D D D D D

No Starch Press, Copyright © 2004 by Randall Hyde

56 Chapter 3

fields will save you anything. The following sample HLA/x86 code
demonstrates the effort that must go into packing and unpacking this
16-bit date format.

program dateDemo;

#include("stdlib.hhf")

static

 day: uns8;

 month: uns8;

 year: uns8;

 packedDate: word;

begin dateDemo;

 stdout.put("Enter the current month, day, and year: ");

 stdin.get(month, day, year);

 // Pack the data into the following bits:

 //

 // 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 // m m m m d d d d d y y y y y y y

 mov(0, ax);

 mov(ax, packedDate); //Just in case there is an error.

 if(month > 12) then

 stdout.put("Month value is too large", nl);

 elseif(month = 0) then

 stdout.put("Month value must be in the range 1..12", nl);

 elseif(day > 31) then

 stdout.put("Day value is too large", nl);

 elseif(day = 0) then

 stdout.put("Day value must be in the range 1..31", nl);

 elseif(year > 99) then

 stdout.put("Year value must be in the range 0..99", nl);

No Starch Press, Copyright © 2004 by Randall Hyde

Bina ry A ri thmet ic and Bi t Operat ions 57

 else

 mov(month, al);

 shl(5, ax);

 or(day, al);

 shl(7, ax);

 or(year, al);

 mov(ax, packedDate);

 endif;

 // Okay, display the packed value:

 stdout.put("Packed data = $", packedDate, nl);

 // Unpack the date:

 mov(packedDate, ax);

 and($7f, al); // Retrieve the year value.

 mov(al, year);

 mov(packedDate, ax); // Retrieve the day value.

 shr(7, ax);

 and(%1_1111, al);

 mov(al, day);

 mov(packedDate, ax); // Retrieve the month value.

 rol(4, ax);

 and(%1111, al);

 mov(al, month);

 stdout.put("The date is ", month, "/", day, "/", year, nl);

end dateDemo;

Keeping in mind the Y2K4 problem, adopting a date format that only
supports a two-digit year is rather foolish. So consider a better date format,
shown in Figure 3-7.

Figure 3-7: Long packed date format (32 bits)

4 Year 2000, a software engineering disaster that occurred because programmers in the 1900s
encoded dates using only two digits and then discovered they couldn’t differentiate 1900 and
2000 when the year 2000 came along.

151631 8 7 0

Month (1-12)Year (0-65535) Day (1-31)

No Starch Press, Copyright © 2004 by Randall Hyde

58 Chapter 3

Because there are more bits in a 32-bit variable than are needed to hold the
date, even accounting for years in the range 0–65,535, this format allots a
full byte for the month and day fields. Because these two fields are bytes,
an application can easily manipulate them as byte objects, reducing the
overhead to pack and unpack these fields on those processors that support
byte access. This leaves fewer bits for the year, but 65,536 years is probably
sufficient (you can probably assume that your software will not be in use
63,000 years from now).

Of course, you could argue that this is no longer a packed date format.
After all, we needed three numeric values, two of which fit just nicely into
one byte each and one that should probably have at least two bytes. Because
this “packed” date format consumes the same four bytes as the unpacked
version, what is so special about this format? Well, in this example packed
effectively means packaged or encapsulated. This particular packed format does
not use as few bits as possible; by packing the data into a double-word
variable the program can treat the date value as a single data value rather
than as three separate variables. This generally means that it requires only a
single machine instruction to operate on this data rather than three separate
instructions.

Another difference you will note between this long packed date format
and the short date format appearing in Figure 3-6 is the fact that this long
date format rearranges the Year, Month, and Day fields. This is important
because it allows you to easily compare two dates using an unsigned integer
comparison. Consider the following HLA/assembly code:

mov(Date1, eax); // Assume Date1 and Date2 are double-word variables

if(eax > Date2) then // using the Long Packed Date format.

<< do something if Date1 > Date2 >>

endif;

Had you kept the different date fields in separate variables, or organized the
fields differently, you would not have been able to compare Date1 and Date2 in
such a straightforward fashion. This example demonstrates another reason
for packing data, even if you don’t realize any space savings — it can make
certain computations more convenient or even more efficient (contrary to
what normally happens when you pack data).

Some high-level languages provide built-in support for packed data. For
example, in C you can define structures like the following:

No Starch Press, Copyright © 2004 by Randall Hyde

Bina ry A ri thmet ic and Bi t Operat ions 59

struct

{

unsigned bits0_3 :4;

unsigned bits4_11 :8;

unsigned bits12_15 :4;

unsigned bits16_23 :8;

unsigned bits24_31 :8;

} packedData;

This structure specifies that each field is an unsigned object that holds four,
eight, four, eight, and eight bits, respectively. The “:n” item appearing after
each declaration specifies the minimum number of bits the compiler will
allocate for the given field.

Unfortunately, it is not possible to provide a diagram that shows how
a C/C++ compiler will allocate the values from a 32-bit double word among
the fields. No (single) diagram is possible because C/C++ compiler imple-
menters are free to implement these bit fields any way they see fit. The
arrangement of the bits within the bit string is arbitrary (for example,
the compiler could allocate the bits0_3 field in bits 28..31 of the ultimate
object). The compiler can also inject extra bits between fields as it sees fit.
The compiler can use a larger number of bits for each field if it so desires
(this is actually the same thing as injecting extra padding bits between
fields). Most C compilers attempt to minimize the injection of extraneous
padding, but different C compilers (especially on different CPUs) do have
their differences. Therefore, any use of C/C++ struct bit field declarations
is almost guaranteed to be nonportable, and you can’t really count on what
the compiler is going to do with those fields.

The advantage of using the compiler’s built-in data-packing capabilities
is that the compiler automatically handles packing and unpacking the data
for you. For example, you could write the following C/C++ code, and the
compiler would automatically emit the necessary machine instructions to
store and retrieve the individual bit fields for you:

struct

{

unsigned year :7;

unsigned month :4;

unsigned day :5;

} ShortDate;

. . .

ShortDate.day = 28;

ShortDate.month = 2;

ShortDate.year = 3; // 2003

No Starch Press, Copyright © 2004 by Randall Hyde

60 Chapter 3

3.7 Packing and Unpacking Data

The advantage of packed data types is efficient memory use. Consider the
Social Security identification number in use in the United States. This is a
nine-digit code that normally takes the following form (each “X” represents
a single decimal digit):

XXX–XX–XXXX

If we encode a Social Security number using three separate (32-bit) integers,
it will take 12 bytes to represent this value. That’s actually more than the 11
bytes needed to represent the number using an array of characters. A better
solution is to encode each field using short (16-bit) integers. Now it takes
only 6 bytes to represent the Social Security number. Because the middle
field in the Social Security number is always between 0 and 99, we can
actually shave one more byte off the size of this structure by encoding
the middle field with a single byte. Here’s a sample Delphi/Kylix record
structure that defines this data structure:

SSN :record

FirstField: smallint; // smallints are 16 bits in Delphi/Kylix

SecondField: byte;

ThirdField: smallint;

end;

If we drop the hyphens in the Social Security number, you’ll notice that the
result is a nine-digit number. Because we can exactly represent all values
between 0 and 999,999,999 (nine digits) using 30 bits, it should be clear that
we could actually encode any legal Social Security number using a 32-bit
integer. The problem is that some software that manipulates Social Security
numbers may need to operate on the individual fields. This means that you
have to use expensive division, modulo, and multiplication operators in
order to extract fields from a Social Security number you’ve encoded in a
32-bit integer format. Furthermore, it’s a bit more painful to convert Social
Security numbers to and from strings when using the 32-bit format. The
advantage of using bit fields to hold a value is that it’s relatively easy to insert
and extract individual bit fields using fast machine instructions, and it’s also
less work to create a standard string representation (including the hyphens)
of one of these fields. Figure 3-8 provides a straightforward implementation
of the Social Security number packed data type using a separate string of bits
for each field (note that this format uses 31 bits and ignores the HO bit).

No Starch Press, Copyright © 2004 by Randall Hyde

Bina ry A ri thmet ic and Bi t Operat ions 61

Figure 3-8: Social Security number packed fields encoding

As you’ll soon see, fields that begin at bit position zero in a packed data
object are the ones you can most efficiently access. So it’s generally a good
idea to arrange the fields in your packed data type so that the field you access
most often begins at bit zero. Of course, you’ll have to determine which field
you access most often on an application-by-application basis. If you have no
idea which field you’ll access most often, you should try to assign the fields
so they begin on a byte boundary. If there are unused bits in your packed
type, you should attempt to spread them throughout the structure so that
individual fields begin on a byte boundary and have those fields consume
multiples of eight bits.

We’ve only got one unused bit in the Social Security example shown in
Figure 3-8, but it turns out that we can use this extra bit to align two fields on
a byte boundary and ensure that one of those fields occupies a bit string
whose length is a multiple of eight bits. Consider Figure 3-9, which shows a
rearranged version of our Social Security number data type.

Figure 3-9: A (possibly) improved encoding of the Social Security number

One problem with the data format shown in Figure 3-9 is that we can’t sort
Social Security numbers in an intuitive fashion by simply comparing 32-bit
unsigned integers.5 Therefore, if you intend to do a lot of sorting based on
the entire Social Security number, the format in Figure 3-8 is probably a
better format.

If this type of sorting isn’t important to you, the format in Figure 3-9
has some advantages. This packed type actually uses eight bits (rather than
seven) to represent SecondField (along with moving SecondField down to
bit position zero); the extra bit will always contain zero. This means that
SecondField consumes bits 0..7 (a whole byte) and ThirdField begins on a
byte boundary (bit position eight). ThirdField doesn’t consume a multiple
of eight bits, and FirstField doesn’t begin on a nice byte boundary, but
we’ve done fairly well with this encoding, considering we only had one
extra bit to play around with.

5 “Intuitive” meaning that the first field is the most significant portion of the value, the second
field is the next most significant, and the third field is the least significant component of the
number.

Third field
0000-9999

Second field
00-99

First field
000-999

31 20 012

31 21

Third field
0000-9999

Second field
00-99

First field
000-999

07

No Starch Press, Copyright © 2004 by Randall Hyde

62 Chapter 3

The next question is, “How do we access the fields of this packed type?”
There are two separate activities here. We need the ability to retrieve, or
extract, the packed fields, and we need to be able to insert data into these
fields. The AND, OR, and SHIFT operations provide the tools for this.

When actually operating on these fields, it’s convenient to work with
three separate variables rather than working directly with the packed data.
For our Social Security number example, we can create the three variables
FirstField, SecondField, and ThirdField. We can then extract the actual data
from the packed value into these three variables, operate on these variables,
and then insert the data from these three variables back into their fields
when we’re done.

Extracting the SecondField data from the packed format shown in Figure
3-9 is easy (remember, the field aligned to bit zero in our packed data is the
easiest one to access). All you have to do is copy the data from the packed
representation to the SecondField variable and then mask out all but the
SecondField bits using the AND operation. Because SecondField is a 7-bit value,
we can create the mask as an integer containing all one bits in positions zero
through six and zeros everywhere else. The following C/C++ code demon-
strates how to extract this field into the SecondField variable (assuming
packedValue is a variable holding the 32-bit packed Social Security number):

SecondField = packedValue & 0x7f; // 0x7f = %0111_1111

Extracting fields that are not aligned at bit zero takes a little more work.
Consider the ThirdField entry in Figure 3-9. We can mask out all the bits
associated with the first and second fields by logically ANDing the packed
value with %_11_1111_1111_1111_0000_0000 ($3F_FF00). However, this
leaves the ThirdField value sitting in bits 8 through 21, which is not con-
venient for various arithmetic operations. The solution is to shift the masked
value down eight bits so that it’s aligned at bit zero in our working variable.
The following Pascal/Delphi/Kylix code shows how one might do this:

SecondField := (packedValue and $3fff00) shr 8;

As it turns out, you can also do the shift first and then do the logical AND
operation (though this requires a different mask, $11_1111_1111_1111
or $3FFF). Here’s the C/C++ code that extracts SecondField using that
technique:

SecondField = (packedValue >> 8) & 0x3FFF;

Extracting a field that is aligned against the HO bit, as the first field is in
our Social Security packed data type is almost as easy as accessing the data
aligned at bit zero. All you have to do is shift the HO field down so that it’s
aligned at bit zero. The logical shift right operation automatically fills in
the HO bits of the result with zeros, so no explicit masking is necessary.
The following Pascal/Delphi code demonstrates this:

No Starch Press, Copyright © 2004 by Randall Hyde

Bina ry A ri thmet ic and Bi t Operat ions 63

FirstField := packedValue shr 18; // Delphi's shift right is a logical

// shift right.

In HLA/x86 assembly language, it’s actually quite easy to access the second
and third fields of the packed data format in Figure 3-9. This is because we
can easily access data at any arbitrary byte boundary in memory. That allows
us to treat both the second and third fields as though they both are aligned
at bit zero in the data structure. In addition, because the SecondField value is
an 8-bit value (with the HO bit always containing zero), it only takes a single
machine instruction to unpack the data, as shown here:

movzx((type byte packedValue), eax);

This instruction fetches the first byte of packedValue (which is the LO 8 bits
of packedValue on the 80x86), and it zero extends this value to 32 bits in EAX
(movzx stands for “move with zero extension”). The EAX register, therefore,
contains the SecondField value after this instruction executes.

Extracting the ThirdField value from our packed format isn’t quite as
easy, because this field isn’t an even multiple of eight bits long. Therefore,
we’ll still need a masking operation to clear the unused bits from the 32-bit
result we produce. However, because ThirdField is aligned on a byte (8-bit)
boundary in our packed structure, we’ll be able to avoid the shift operation
that was necessary in the high-level code. Here’s the HLA/x86 assembly code
that extracts the third field from our packedValue object:

mov((type word packedValue[1]), ax); // Extracts bytes 1 & 2

// from packedValue.

and($3FFF, eax); // Clears all the undesired bits.

Extracting FirstField from the packedValue object in HLA/x86 assembly code
is identical to the high-level code; we’ll simply shift the upper ten bits (which
comprise FirstField) down to bit zero:

mov(packedValue, eax);

shr(21, eax);

Inserting a field into a packed structure is only a little more complicated
than extracting a field. Assuming the data you want to insert appears in
some variable and contains zeros in the unused bits, inserting a field into
a packed object requires three operations. First, if necessary, you shift the
field’s data to the left so its alignment matches the corresponding field in
the packed object. The second step is to clear the corresponding bits in
the packed structure. The final step is to logically OR the shifted field into
the packed object. Figure 3-10 on the next page displays the details of this
operation.

No Starch Press, Copyright © 2004 by Randall Hyde

64 Chapter 3

Figure 3-10: Inserting ThirdField into the Social Security packed type

Here’s the C/C++ code that accomplishes the operation shown in
Figure 3-10:

packedValue = (packedValue & 0xFFc000FF) | (ThirdField << 8);

You’ll note that $FFC000FF is the hexadecimal value that corresponds
to all zeros in bit positions 8 through 21 and ones everywhere else.

3.8 For More Information

My book, The Art of Assembly Language, provides additional information on bit
processing, including several algorithms for counting bits, reversing the bits
in an object, merging two bit strings, coalescing sets of bits, and spreading
bits out across some value. Please see that text for more details on these low-
level bit operations. Donald Knuth’s The Art of Computer Programming, Volume
Two: Seminumerical Algorithms provides a discussion of various arithmetic
operations (addition, subtraction, multiplication, and division) that you may
find of interest.

F F T T T T

Step 1: Need to align the bits in the ThirdField variable to bit position eight

F F T T T T T T T T T T S S S S S S S S

t t t t t t t t t t t t t t

F FFF F F

Step 2: Need to mask out the corresponding bits in the packed structure

t t t tt t t t t tt t t t

F T T T TF F T T T T T T T T T T S S S S S S S SF F F F FF F

F F F F F F F F F F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S S S S S S S S

t t t t t t t t t t t t t t

Step 3: Need to logically OR the two values to produce the final result

F F F F F F F F F F S S S S S S S St t t t t t t t t t t t t t

Final Result

No Starch Press, Copyright © 2004 by Randall Hyde

4
F L O A T I N G - P O I N T

R E P R E S E N T A T I O N

Floating-point arithmetic is an approx-
imation of real arithmetic that solves the

major problem with integer data types —
the inability to represernt fractional values.

Although floating-point arithmetic is often slower
than integer arithmetic, modern CPUs incorporate
well-designed floating-point units, thus reducing the
performance difference between integer and floating-
point arithmetic.

For this reason, the stigma surrounding floating-point arithmetic has dimin-
ished since the days when floating-point results were computed using software
(rather than hardware). One unfortunate aspect of floating-point’s increasing
popularity is that many programmers do not understand the inherent limitations
of the floating-point format. Floating-point arithmetic is but an approximation
of real arithmetic. The inaccuracies present in this approximation can lead to

No Starch Press, Copyright © 2004 by Randall Hyde

66 Chapter 4

serious defects in application software if an engineer is not aware of the
problems associated with these approximations. In order to write great
software that produces correct results when using floating-point arithmetic,
programmers must be aware of the machine’s underlying numeric repre-
sentation and of how floating-point arithmetic approximates real arithmetic.

4.1 Introduction to Floating-Point Arithmetic

Floating-point numbers provide only an approximation of real numbers.
This is because there is an infinite number of possible real values, while
floating-point representation uses a finite number of bits (and, therefore,
can only represent a finite number of different values). When a given
floating-point format cannot exactly represent some real value, the floating-
point number must instead use the closest value that it can exactly represent.
This section describes how the floating-point format works so you can better
understand the problems with these approximations.

Consider a couple of problems with integer and fixed-point formats.
Integers, of course, cannot represent any fractional values. Another problem
with most integer representations is that they can only represent values in the
range 0..2n−1 or -2n−1..2n−1−1. Fixed-point formats provide the ability to
represent fractional values, but at the expense of the range of integer values
you can represent. This problem, which the floating-point format solves, is
the issue of dynamic range.

Consider a simple 16-bit unsigned fixed-point format that uses 8 bits
for fractional component and 8 bits for the integer component of the
number. The integer component can represent values in the range 0..255,
and the fractional component can represent the values zero and fractions
between 2−8 and 1 (with a resolution of about 2−8). Suppose, now, that for
a string of calculations you only need two bits to represent the fractional
values 0.0, 0.25, 0.5, and 0.75. Unfortunately, the extra six bits in the frac-
tional part of the number go to waste. Wouldn’t it be nice if we could utilize
those bits in the integer portion of the number to extend its range from
0..255 to 0..16,383? Well, that’s the basic concept behind the floating-point
representation. In a floating-point value, the radix point (binary point) can
freely float between digits in the number as needed. So if in a 16-bit binary
number you only need two bits of precision for the fractional component of
the number, the binary point can float down between bits 1 and 2 in the
number, allowing the format to utilize bits 2 through 15 for the integer
portion. In order to support a floating-point format, the numeric represen-
tation needs one additional field — a field that specifies the position of the
radix point within the number. This extra field is equivalent to the exponent
present when using scientific notation.

To represent real numbers, most floating-point formats use some
number of bits to represent a mantissa and a smaller number of bits to
represent an exponent. The mantissa is a base value, that usually falls within

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 67

a limited range (for example, between zero and one). The exponent is a
multiplier that when applied to the mantissa produces values outside this
range. The result of separating the number into these two parts is that
floating-point numbers can only represent numbers with a specific number
of significant digits. As you will soon see, if the difference between the small-
est and largest exponent is greater than the number of significant digits in
the mantissa (and it usually is), then the floating-point representation
cannot exactly represent all the integers between the smallest and largest
values the floating-point format can represent.

To easily see the impact of limited-precision arithmetic, we will adopt a
simplified decimal floating-point format for our examples. Our floating-point
format will provide a mantissa with three significant digits and a decimal
exponent with two digits. The mantissa and exponents are both signed
values, as shown in Figure 4-1.

Figure 4-1: Simple floating-point format

Note that this particular floating-point representation can approximate all
the values between 0.00 and 9.99 × 1099. However, this format certainly
cannot exactly represent all values in this range (that would take 100 digits
of precision!). To represent a value like 9,876,543,210, the floating-point
format in Figure 4-1 would have to approximate this value with 9.88 × 109 (or
9.88e + 9 in programming language notation, which this book will generally
use from this point forward).

The big advantage of the mantissa/exponent configuration is that a
floating-point format can represent values across a wide range. There is a
subtle disadvantage to this scheme, however: you cannot exactly represent as
many different values with a floating-point format as you can with an integer
format. This is because the floating-point format can provide multiple
representations (that is, different bit patterns) for the same value. In the
simplified decimal floating-point format shown in Figure 4-1, for example,
1.00e + 1 and 0.10e + 2 are different representations of the same value. As
there are a finite number of different representations possible (given a finite
number of bits or digits), whenever a single value has two possible
representations, that’s one less different value the format can represent.

Furthermore, the floating-point format, a form of scientific notation,
complicates arithmetic somewhat. When adding and subtracting two
numbers in scientific notation, you must adjust the two values so that their
exponents are the same. For example, when adding 1.23e1 and 4.56e0, you
could convert 4.56e0 to 0.456e1 and then add them. This produces 1.686e1.
Unfortunately, the result does not fit into the three significant digits of our
current format, so we must either round or truncate the result to three
significant digits. Rounding generally produces the most accurate result, so

e ±±

No Starch Press, Copyright © 2004 by Randall Hyde

68 Chapter 4

let’s round the result to obtain 1.69e1. As you can see, the lack of precision
(the number of digits or bits maintained in a computation) affects the
accuracy (the correctness of the computation).

In the previous example, we were able to round the result because we
maintained four significant digits during the calculation. If our floating-point
calculation were limited to three significant digits during computation, we
would have had to truncate the last digit of the smaller number, obtaining
1.68e1, which is even less correct. Therefore, to improve the accuracy of
floating-point calculations, it is necessary to use extra digits during the
calculation. These extra digits are known as guard digits (or guard bits in the
case of a binary format). They greatly enhance accuracy during a long chain
of computations.

The accuracy lost during a single computation usually isn’t bad unless
you are greatly concerned about the accuracy of your computations. How-
ever, if you compute a value that is the result of a sequence of floating-point
operations, the error can accumulate and greatly affect the computation itself.
For example, suppose we add 1.23e3 and 1.00e0. Adjusting the numbers so
their exponents are the same before the addition produces 1.23e3 + 0.001e3.
The sum of these two values, even after rounding, is 1.23e3. This might seem
perfectly reasonable to you; after all, if we can only maintain three significant
digits, adding in a small value shouldn’t affect the result. However, suppose
we were to add 1.00e0 to 1.23e3 ten times. The first time we add 1.00e0 to
1.23e3 we get 1.23e3. Likewise, we get this same result the second, third,
fourth . . . and tenth time we add 1.00e0 to 1.23e3. On the other hand, had
we added 1.00e0 to itself ten times, then added the result (1.00e1) to 1.23e3,
we would obtain a different result, 1.24e3. This is an important thing to know
about limited-precision arithmetic:

The order of evaluation can affect the accuracy of the result.

Your results will be better when adding or subtracting numbers if their
relative magnitudes (that is, the sizes of the exponents) are similar. If you
are performing a chain calculation involving addition and subtraction, you
should attempt to group the operations so that you can add or subtract
values whose magnitudes are close to one another before adding or sub-
tracting values whose magnitudes are not as close.

Another problem with addition and subtraction is that you can wind up
with false precision. Consider the computation 1.23e0 − 1.22e0. This produces
0.01e0. Although this is mathematically equivalent to 1.00e − 2, this latter
form suggests that the last two digits are both exactly zero. Unfortunately,
we only have a single significant digit after this computation, which is in the
hundredths place. Indeed, some FPUs or floating-point software packages
might actually insert random digits (or bits) into the LO positions. This
brings up a second important rule concerning limited-precision arithmetic:

Whenever subtracting two numbers with the same signs or adding two numbers
with different signs, the accuracy of the result may be less than the precision avail-
able in the floating-point format.

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 69

Multiplication and division do not suffer from these same problems because
you do not have to adjust the exponents before the operation; all you need
to do is add the exponents and multiply the mantissas (or subtract the
exponents and divide the mantissas). By themselves, multiplication and
division do not produce particularly poor results. However, they tend to
exacerbate any accuracy error that already exists in a value. For example, if
you multiply 1.23e0 by 2, when you should be multiplying 1.24e0 by 2, the
result is even less accurate than it was. This brings up a third important rule
when working with limited-precision arithmetic:

When performing a chain of calculations involving addition, subtraction,
multiplication, and division, try to perform the multiplication and division
operations first.

Often, by applying normal algebraic transformations, you can arrange a
calculation so the multiplication and division operations occur first. For
example, suppose you want to compute the following:

x × (y + z)

Normally you would add y and z together and multiply their sum by x.
However, you will get a little more accuracy if you first transform the
previous equation to get the following:

x × y + x × z

This way you can compute the result by performing the multiplications first.1

Multiplication and division have other problems, as well. When multi-
plying two very large or very small numbers, it is quite possible for overflow or
underflow to occur. The same situation occurs when dividing a small number
by a large number, or when dividing a large number by a small number. This
brings up a fourth rule you should attempt to follow when multiplying or
dividing values:

When multiplying and dividing sets of numbers, try to multiply and divide num-
bers that have the same relative magnitudes.

Comparing floating-point numbers is very dangerous. Given the inaccuracies
present in any computation (including converting an input string to a
floating-point value), you should never compare two floating-point values to
see if they are equal. In a binary floating-point format, different compu-
tations that produce the same (mathematical) result may differ in their least
significant bits. For example, adding 1.31e0 + 1.69e0 should produce 3.00e0.
Likewise, adding 1.50e0 + 1.50e0 should produce 3.00e0. However, were you
to compare (1.31e0 + 1.69e0) against (1.50e0 + 1.50e0) you might find that
these sums are not equal to one another. The test for equality succeeds if and

1 Of course, the drawback is that you must now perform two multiplications rather than one, so
the result may be slower.

No Starch Press, Copyright © 2004 by Randall Hyde

70 Chapter 4

only if all bits (or digits) in the two operands are the same. Because it is not
necessarily true that two seemingly equivalent floating-point computations
will produce exactly equal results, a straight comparison for equality may fail
when, algebraically, such a comparison should succeed.

The standard way to test for equality between floating-point numbers is
to determine how much error (or tolerance) you will allow in a comparison,
and then check to see if one value is within this error range of the other. The
straightforward way to do this is to use a test like the following:

if((Value1 >= (Value2 − error)) and (Value1 <= (Value2 + error)) then . . .

A more efficient way to handle this is to use a statement of the form:

if(abs(Value1 − Value2) <= error) then . . .

You must exercise care when choosing the value for error. This should be a
value slightly greater than the largest amount of error that will creep into
your computations. The exact value will depend upon the particular floating-
point format you use and the magnitudes of the values you are comparing.
So the final rule is this:

When comparing two floating-point numbers for equality, always compare the val-
ues to see if the difference between two values is less than some small error value.

Checking two floating-point numbers for equality is a very famous problem,
and almost every introductory programming text discusses this issue. Perhaps
less well known is the fact that comparing for less than or greater than
creates the same problems. Suppose that a sequence of floating-point
calculations produces a result that is only accurate to within plus or minus
error, even though the floating-point representation provides better accuracy
than error suggests. If you compare such a result against some other calcu-
lation computed with less accumulated error, and those two values are very
close to one other, then comparing them for less than or greater than may
produce incorrect results.

For example, suppose that some chain of calculations in our simplified
decimal representation produces the result 1.25, which is only accurate to
plus or minus 0.05 (that is, the real value could be somewhere between 1.20
and 1.30). Also assume that a second chain of calculations produces the
result 1.27, which is accurate to the full precision of our floating-point result
(that is, the actual value, before rounding, is somewhere between 1.265 and
1.275). Now, if we compare the result of the first calculation (1.25) against
the value of the second calculation (1.27), we will find that the first
calculation is less than the result of the second. Unfortunately, given the
inaccuracy present in the first calculation this might not be true. If the
correct result of the first computation happens to be in the range 1.27 to
1.30 (exclusive), then reporting that the first calculation is less than the
second is false. About the only reasonable test is to see if the two values are

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 71

within the error tolerance of one another. If so, treat the values as equal
(so one wouldn’t be considered less than or greater than the other). If you
determine that the values are not equal to one another within the desired
error tolerance, then you can compare them to see if one value is less than
or greater than the other. This is known as a miserly approach to comparing
for less than or greater than (that is, we try to find as few values that are less
than or greater than as possible).

The other possibility is to use an eager approach to the comparison. An
eager approach attempts to make the result of the comparison true as often
as possible. Given two values that you want to compare, and an error toler-
ance you’re interested in achieving, here’s how you’d eagerly compare the
two values for less than or greater than:

if(A < (B + error)) then Eager_A_lessthan_B;

if(A > (B − error)) then Eager_A_greaterthan_B;

Don’t forget that calculations like (B + error) are subject to their own inaccu-
racies, depending on the relative magnitudes of the values B and error, and
the inaccuracy of this calculation may very well affect the final result that you
achieve in the comparison.

There are other problems that can occur when using floating-point
values. This book can only point out some of the major problems and
make you aware that you cannot treat floating-point arithmetic like real
arithmetic — the inaccuracies present in limited-precision arithmetic can
get you into trouble if you are not careful. A good text on numerical analysis
or even scientific computing can help fill in the details that are beyond
the scope of this book. If you are going to be working with floating-point
arithmetic, in any language, you should take the time to study the effects of
limited-precision arithmetic on your computations.

4.2 IEEE Floating-Point Formats

When Intel’s 80x86 designers planned to introduce a floating-point unit
(FPU) for its original 8086 microprocessor, they were smart enough to
realize that the electrical engineers and solid-state physicists who design
chips probably didn’t have the necessary numerical analysis background to
design a good floating-point representation. So Intel went out and hired the
best numerical analyst it could find to design a floating-point format for its
8087 FPU. That person then hired two other experts in the field, and the
three of them (Kahn, Coonan, and Stone) designed Intel’s floating-point
format. They did such a good job designing the KCS Floating-Point Standard
that the IEEE organization used this format as the basis for the IEEE floating-
point format.

To handle a wide range of performance and accuracy requirements,
Intel actually introduced three floating-point formats: single precision, double
precision, and extended precision. The single- and double-precision formats

No Starch Press, Copyright © 2004 by Randall Hyde

72 Chapter 4

corresponded to C’s float and double types or FORTRAN’s real and double-
precision types. Intel intended to use extended precision for long chains of
computations. Extended precision contains 16 extra bits that the calculations
can use as guard bits before rounding down to a double-precision value
when storing the result.

4.2.1 Single-Precision Floating-Point Format

The single-precision format uses a 24-bit mantissa and an 8-bit exponent.
The mantissa usually represents a value between 1.0 and just less than 2.0.
The HO bit of the mantissa is always assumed to be one and represents a
value just to the left of the binary point. The remaining 23 mantissa bits
appear to the right of the binary point and represent the value:

1.mmmmmmm mmmmmmmm mmmmmmmm

The presence of the implied one bit is why the mantissa is always greater than
or equal to one. Even if the other mantissa bits are all zero, the implied one
bit always gives us the value one. Each position to the right of the binary
point represents a value (zero or one) times a successive negative power of
two, but even if we had an almost infinite number of one bits after the binary
point, they still would not add up to two. So the mantissa can represent
values in the range 1.0 to just less than 2.0.

Some examples would probably be useful here. Consider the decimal
value 1.7997. Here are the steps we could go though to compute the binary
mantissa for this value:

� Subtract 20 from 1.7997 to produce 0.7997 and
%1.00000000000000000000000.

� Subtract 2−1 (1/2) from 0.7997 to produce 0.2997 and
%1.10000000000000000000000.

� Subtract 2−2 (1/4) from 0.2997 to produce 0.0497 and
%1.11000000000000000000000.

� Subtract 2−5 (1/32) from 0.0497 to produce 0.0185 and
%1.11001000000000000000000.

� Subtract 2−6 (1/64) from 0.0185 to produce 0.00284 and
%1.11001100000000000000000.

� Subtract 2−9 (1/512) from 0.00284 to produce 0.000871 and
%1.11001100100000000000000.

� Subtract 2−10 (1/1,024) from 0.000871 to (approximately) produce
zero and %1.11001100110000000000000.

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 73

Although there is an infinite number of values between one and two, we can
only represent eight million (223) of them because we use a 23-bit mantissa
(the 24th bit is always one). This is the reason for inaccuracy in floating-point
arithmetic — we only have 23 bits of precision in computations involving
single-precision floating-point values.

The mantissa uses a one’s complement format rather than two’s comple-
ment. This means that the 24-bit value of the mantissa is simply an unsigned
binary number, and the sign bit, in bit position 31, determines whether that
value is positive or negative. One’s complement numbers have the unusual
property that there are two representations for zero (with the sign bit set or
clear). Generally, this is important only to the person designing the floating-
point software or hardware system. We will assume that the value zero always
has the sign bit clear. The single-precision floating-point format takes the
form shown in Figure 4-2.

Figure 4-2: Single-precision (32-bit) floating-point format

To represent values outside the range 1.0 to just under 2.0, the exponent
portion of the floating-point format comes into play. The floating-point
format raises two to the power specified by the exponent and then multiplies
the mantissa by this value. The exponent is eight bits and uses an excess-127
format (sometimes called bias-127 exponents). In excess-127 format, the
exponent 20 is represented by the value 127 ($7f). Therefore, to convert an
exponent to excess-127 format, simply add 127 to the exponent value. For
example, the single precision representation for 1.0 is $3f800000. The
mantissa is 1.0 (including the implied bit) and the exponent is 20, or 127
($7f) when you add in the excess-127 exponent value.

The use of excess-127 format for the exponent makes it easier to
compare floating-point values. As it turns out, if we handle the sign bit (bit
31) separately, we can easily compare two floating-point numbers for less
than or greater than by simply comparing them as though they were
unsigned integers. To handle the sign bit, we simply note the signs of the two
values. If the signs are not equal, then the positive value (the one with bit 31
set to zero) will be greater than the number that has the HO bit set to one.2

If the sign bits are both zero, then we can use a straight unsigned binary
comparison. If the signs are both one, then we do an unsigned comparison
but invert the result (so if the sign bits are set, we treat less than as greater

2 Actually, there are a couple of exceptions. As you’ll see momentarily, the floating-point format
has two representations for zero — one with the sign bit set and one with the sign bit clear; a
floating-point comparison should treat these two values as equal. Likewise, there are a couple of
special floating-point values that are incomparable, the comparison operation must consider
those values as well.

Mantissa bitsExponent bitsSign
bit

1

The 24th mantissa bit is implied and is always one

31 23 15 7 0

No Starch Press, Copyright © 2004 by Randall Hyde

74 Chapter 4

than and vice versa). On some CPUs a 32-bit unsigned comparison is much
faster than a 32-bit floating-point comparison. In such situations, it’s
probably worthwhile to do the comparison using integer arithmetic rather
than floating-point arithmetic.

With a 24-bit mantissa, you will get approximately 6 1/2 decimal digits of
precision (one half digit of precision means that the first six digits can all be
in the range 0..9 but the seventh digit can only be in the range 0..x where
x < 9 and is generally close to 5). With an 8-bit excess-127 exponent, the
dynamic range of single-precision floating-point numbers is approximately
2±128 or about 10±38.

Although single-precision floating-point numbers are perfectly suitable
for many applications, the dynamic range is somewhat limited and is unsuit-
able for many financial, scientific, and other applications. Furthermore,
during long chains of computations, the limited accuracy of the single
precision format may introduce serious error. For serious calculations,
a floating-point format with more precision is necessary.

4.2.2 Double-Precision Floating-Point Format

The double-precision format helps overcome the problems of the single-
precision floating-point. Using twice the space, the double-precision format
has an 11-bit excess-1,023 exponent and a 53-bit mantissa (including an
implied HO bit of one) plus a sign bit. This provides a dynamic range
of about 10±308 and 14 1/2 digits of precision, which is sufficient for most
applications. Double-precision floating-point values take the form shown
in Figure 4-3.

Figure 4-3: Double-precision (64-bit) floating-point format

4.2.3 Extended-Precision Floating-Point Format

In order to help ensure accuracy during long chains of computations
involving double-precision floating-point numbers, Intel designed the
extended-precision format. The extended-precision format uses 80 bits.
Twelve of the additional 16 bits are appended to the mantissa, and 4 of
the additional bits are appended to the exponent. Unlike the single- and
double-precision values, the extended-precision format’s mantissa does
not have an implied HO bit that is always one. Therefore, the extended-
precision format provides a 64-bit mantissa, a 15-bit excess-16,383 exponent,
and a 1-bit sign. The format for the extended-precision floating-point value
appears in Figure 4-4.

Mantissa bitsExponent bitsSign
bit

1

The 53rd mantissa bit is implied and is always one

63 0753
... ...

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 75

Figure 4-4: Extended-precision (80-bit) floating-point format

On the 80x86 FPUs, all computations are done using the extended-precision
form. Whenever you load a single- or double-precision value, the FPU auto-
matically converts it to an extended-precision value. Likewise, when you store
a single or double precision value to memory, the FPU automatically rounds
the value down to the appropriate size before storing it. By always working
with the extended-precision format, Intel guarantees a large number of
guard bits are present to ensure the accuracy of your computations. By
performing all computations using 80 bits, Intel helps ensure (but not
guarantee) that you will get full 32- or 64-bit accuracy in your computations.
Because the FPUs do not provide a large number of guard bits in 80-bit
computations, some error will inevitably creep into the LO bits of an
extended-precision computation. However, if your computation is correct
to 64 bits, the 80-bit computation will generally provide at least 64 accurate
bits. Most of the time you will get even more. While you cannot assume that
you get an accurate 80-bit computation, you can usually do better than 64
bits when using the extended-precision format.

Non-Intel CPUs that support floating-point arithmetic generally provide
only the 32-bit and 64-bit formats. As such, calculations on those CPUs may
produce less accurate results than the equivalent string of calculations on the
80x86 using 80-bit calculations.

4.3 Normalization and Denormalized Values

To maintain maximum precision during floating-point computations, most
computations use normalized values. A normalized floating-point value is one
whose HO mantissa bit contains one. Keeping floating-point numbers
normalized is beneficial because it maintains the maximum number of bits
of precision in a computation. If several HO bits of the mantissa are all zero,
the mantissa has that many fewer bits of precision available for computation.
Therefore, a floating-point computation will be more accurate if it involves
only normalized values.

Almost any unnormalized value can be normalized by shifting the man-
tissa bits to the left and decrementing the exponent until a one appears in
the HO bit of the mantissa.3 Remember, the exponent is a binary exponent.
Each time you increment the exponent, you multiply the floating-point value
by two. Likewise, whenever you decrement the exponent, you divide the
floating-point value by two. By the same token, shifting the mantissa to the

79 0764

Mantissa bitsExponent bitsSign
bit

... ...

3 In the rare case where you wind up with more than one bit to the left of the binary point, you
can normalize the mantissa by shifting its bits to the right one position and incrementing the
exponent.

No Starch Press, Copyright © 2004 by Randall Hyde

76 Chapter 4

left one bit position multiplies the floating-point value by two, and shifting
the mantissa to the right divides the floating-point value by two. Therefore,
shifting the mantissa to the left one position and decrementing the exponent
does not change the value of the floating-point number (this is why, as you
saw earlier, there are multiple representations for certain numbers in the
floating-point format).

Here’s an example of an unnormalized value:

0.100000 × 21

Shift the mantissa to the left one position and decrement the exponent to
normalize it:

1.000000 × 20

There are two important cases in which a floating-point number cannot
be normalized. Zero is one of these special cases. Obviously it cannot be
normalized because the floating-point representation for zero contains no
one bits. This, however, is not a problem because we can exactly represent
the value zero with only a single bit. The IEEE floating-point formats use all
zero bits in the exponent and mantissa fields to denote the value zero. Note
that the IEEE floating-point format supports both +0 and −0 (depending on
the value of the sign bit). Arithmetic calculations and comparisons treat
positive and negative zero as equivalent, and software operating on floating-
point values that represent zero can use the sign bit as a flag to indicate
different things. For example, you could use the sign bit to indicate that the
value is exactly zero (with the sign bit clear) or to indicate that it is actually
nonzero but too small to represent with the current format (by setting the
sign bit). Intel recommends using the sign bit to indicate that zero was
produced via underflow of a negative value (with the sign bit set) or
underflow of a positive number (with the sign bit clear). Presumably, their
FPUs set the sign bit according to their recommendations when the FPUs
produce a zero result. However, for the purposes of calculation, the floating-
point formats ignore the sign bit when dealing with the value zero.

The second case in which we cannot normalize a floating-point number
is when we have some HO bits in the mantissa that are zero but the biased
exponent4 is also zero (and we cannot decrement it to normalize the man-
tissa). Rather than disallow certain small values, whose HO mantissa bits and
biased exponent are zero (the most negative exponent possible), the IEEE
standard allows special denormalized values to represent these smaller values.5

Although the use of denormalized values allows IEEE floating-point compu-
tations to produce better results than if underflow occurred, keep in mind
that denormalized values offer fewer bits of precision.

4 “Biased” means to add an offset to the value, e.g., an excess-127 exponent has a bias of 127.
5 The alternative would be to underflow the values to zero.

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 77

4.4 Rounding

During a calculation, as you have seen, floating-point arithmetic functions
may produce a result with greater precision than the floating-point format
supports (the guard bits in the calculation maintain this extra precision).
When the calculation is complete and the code needs to store the result back
into a floating-point variable, something must be done about those extra bits
of precision. How the system uses with those extra guard bits to affect the bits
it does maintain is known as rounding, and how it is done can affect the
accuracy of the computation. Traditionally, floating-point software and
hardware use one of four different ways to round values: truncation,
rounding up, rounding down, or rounding to nearest.

Truncation is easy, but it generates the least accurate results in a chain
of computations. Few modern floating-point systems use truncation except
as a means for converting floating-point values to integers (truncation is the
standard conversion when coercing a floating-point value to an integer).

Rounding up is another function that is useful on occasion. Rounding
up leaves the value alone if the guard bits are all zero, but if the current
mantissa does not exactly fit into the destination bits, then rounding up sets
the result to the smallest possible larger value in the floating-point format.
Like truncation, this is not a normal rounding mode. It is, however, useful
for implementing functions like ceil (which rounds a floating-point value to
the smallest possible larger integer).

Rounding down is just like rounding up, except it rounds the result to
the largest possible smaller value. This may sound like truncation, but there
is a subtle difference between truncation and rounding down. Truncation
always rounds towards zero. For positive numbers, truncation and rounding
down do the same thing. However, for negative numbers, truncation simply
uses the existing bits in the mantissa, whereas rounding down will actually
add a one bit to the LO position if the result was negative. Like truncation,
this is not a normal rounding mode. It is, however, useful for implementing
functions like floor (which rounds a floating-point value to the largest
possible smaller integer).

Rounding to nearest is probably the most intuitive way to process the
guard bits. If the value of the guard bits is less than half the value of the LO
bit of the mantissa, then rounding to nearest truncates the result to the
largest possible smaller value (ignoring the sign). If the guard bits represent
some value that is greater than half of the value of the LO mantissa bit, then
rounding to nearest rounds the mantissa to the smallest possible greater
value (ignoring the sign). If the guard bits represent a value that is exactly
half the value of the LO bit of the mantissa, then the IEEE floating-point
standard says that half the time it should round up and half the time it
should round down. You do this by rounding the mantissa to the value that
has a zero in the LO bit position. That is, if the current mantissa already has
a zero in its LO bit, you use the current mantissa value; if the current man-
tissa value has a one in the LO mantissa position, then you add one to the

No Starch Press, Copyright © 2004 by Randall Hyde

78 Chapter 4

mantissa to round it up to the smallest possible larger value with a zero in
the LO bit. This scheme, mandated by the IEEE floating-point standard,
produces the best possible result when loss of precision occurs.

Here are some examples of rounding, using 24-bit mantissas, with 4
guard bits (that is, these examples round 28-bit numbers to 24 -bit numbers
using the rounding to nearest algorithm):

1.000_0100_1010_0100_1001_0101_0001 -> 1.000_0100_1010_0100_1001_0101

1.000_0100_1010_0100_1001_0101_1100 -> 1.000_0100_1010_0100_1001_0110

1.000_0100_1010_0100_1001_0101_1000 -> 1.000_0100_1010_0100_1001_0110

1.000_0100_1010_0100_1001_0100_0001 -> 1.000_0100_1010_0100_1001_0100

1.000_0100_1010_0100_1001_0100_1100 -> 1.000_0100_1010_0100_1001_0101

1.000_0100_1010_0100_1001_0100_1000 -> 1.000_0100_1010_0100_1001_0100

4.5 Special Floating-Point Values

The IEEE floating-point format provides a special encoding for several
special values. In this section we’ll look these special values, their purpose
and meaning, and their representation in the floating-point format.

Under normal circumstances, the exponent bits of a floating-point
number do not contain all zeros or all ones. An exponent containing all
one or zero bits indicates a special value.

If the exponent contains all ones and the mantissa is nonzero (discount-
ing the implied bit), then the HO bit of the mantissa (again discounting
the implied bit) determines whether the value represents a quiet not-a-number
(QNaN) or a signaling not-a-number (SNaN) (see Table 4-1). These not-a-
number (NaN) results tell the system that some serious miscalculation has
taken place and that the result of the calculation is completely undefined.
QNaNs represent indeterminate results, while SNaNs specify that an invalid
operation has taken place. Any calculation involving a NaN produces an NaN
result, regardless of the values of any other operand(s). Note that the sign bit
is irrelevant for NaNs. The binary representations of NaNs are shown in
Table 4-1.

Table 4-1: Binary Representations for NaN

NaN FP Format Value

SNaN 32 bits %s_11111111_0xxxx...xx
(The value of s value is irrelevant — at least one of
the x bits must be nonzero.)

SNaN 64 bits %s_1111111111_0xxxxx...x
(The value of s is irrelevant — at least one of the x
bits must be nonzero.)

SNaN 80 bits %s_1111111111_0xxxxx...x
(The value of s is irrelevant — at least one of the x
bits must be nonzero.)

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 79

Two other special values are represented when the exponent contains all
one bits, and the mantissa contains all zeros. In such a case, the sign bit
determines whether the result is the representation for +infinity or −infinity.
Whenever a calculation involves infinity as one of the operands, the
arithmetic operation will produce one of the (well-defined) values found
in Table 4-2.

Finally, if the exponent bits are all zero, the sign bit indicates which of the
two special values, −0 or +0, the floating-point number represents. Because
the floating-point format uses a one’s complement notation, there are two
separate representations for zero. Note that with respect to comparisons,
arithmetic, and other operations, +0 is equal to −0.

4.6 Floating-Point Exceptions

The IEEE floating-point standard defines certain degenerate conditions
under which the floating-point processor (or software-implemented floating-
point code) should possibly notify the application software. These excep-
tional conditions include the following:

� Invalid operation

� Division by zero

� Denormalized operand

QNaN 32 bits %s_11111111_1xxxx...xx
(The value of s is irrelevant.)

QNaN 64 bits %s_1111111111_1xxxxx...x
(The value of s is irrelevant.)

QNaN 80 bits %s_1111111111_1xxxxx...x
(The value of s is irrelevant.)

Table 4-2: Operations Involving Infinity

Operation Result

n / ±infinity 0
±infinity × ±infinity ±infinity
±nonzero / 0 ±infinity
infinity + infinity infinity
n + infinity infinity
n − infinity −infinity
±0 / ±0 NaN
infinity − infinity NaN
±infinity / ±infinity NaN
±infinity × 0 NaN

Table 4-1: Binary Representations for NaN (continued)

NaN FP Format Value

No Starch Press, Copyright © 2004 by Randall Hyde

80 Chapter 4

� Numeric overflow

� Numeric underflow

� Inexact result

Of these, inexact result is the least serious, because most floating calculations
will produce an inexact result. A denormalized operand also isn’t too serious
(though this exception indicates that your calculation may be less accurate as
a result of less available precision). The other exceptions indicate a more
serious problem, and you shouldn’t ignore them.

How the computer system notifies your application of these exceptions
depends on the CPU/FPU, operating system, and programming language,
so we can’t really go into how one might handle these exceptions. Generally,
though, you can use the exception-handling facilities in your programming
language to trap these conditions as they occur in your particular environ-
ment. Note that most computer systems require that you explicitly tell them
to generate a notification for these exceptional conditions; otherwise, the
system will not notify you when one of the exceptional conditions exist.

4.7 Floating-Point Operations

Although most modern CPUs support a floating-point unit (FPU) that does
floating-point arithmetic in hardware, it’s worthwhile to actually develop
a set of software floating-point arithmetic routines to get a solid feel for
what’s involved in floating-point arithmetic. Generally, when designing a
software-based floating-point package, you would use assembly language
to write the math functions because speed is a primary design goal for
a floating-point package. However, in this chapter we’re only writing
this floating-point package to get a clearer picture of what’s involved in
floating-point arithmetic, so we’ll opt for code that is easy to write, read,
and understand. As it turns out, floating-point addition and subtraction are
easy to do in a high-level language like C/C++ or Pascal, so we’ll implement
these functions in these languages. Floating-point multiplication and division
actually turn out to be easier to do in assembly language than in a high-level
language, so this book will write the floating-point multiplication and
division routines using HLA.

4.7.1 Floating-Point Representation
For the purposes of the floating-point functions we’re about to develop, this
section will use the IEEE 32-bit single-precision floating-point format (shown
earlier in Figure 4-2), which uses a one’s complement representation for
signed values. This means that the sign bit (bit 31) contains a one if the
number is negative and a zero if the number is positive. The exponent is an
8-bit excess-127 exponent sitting in bits 23..30, and the mantissa is a 24-bit
value with an implied HO bit of one. Because of the implied HO bit, this
format does not support denormalized values.

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 81

4.7.2 Floating-Point Addition and Subtraction

Because the IEEE floating-point format supports signed real values, it turns
out that addition and subtraction use essentially the same code. After all,
computing X − Y is equivalent to computing X + (−Y). So if we can add a
negative number with some other value, then we can also perform sub-
traction by first negating some number and then adding them. And because
the IEEE floating-point format uses the one’s complement representation,
negating a value is trivial — we just invert the sign bit.

Because we’re using the standard IEEE 32-bit single-precision floating-
point format, we could theoretically get away with using the C/C++ float
data type (assuming the underlying C/C++ compiler also uses this format,
as most do on modern machines). However, you’ll soon see that when doing
floating-point calculations in software, we need to manipulate various fields
within the floating-point format as bit strings and integer values. Therefore,
it’s more convenient to use a 32-bit unsigned integer type to hold the bit
representation for our floating-point values. To avoid confusing our real
values with actual integer values in a program, we’ll define the following
real data type (which assumes that unsigned longs are 32-bit values in your
implementation of C/C++) and declare all our real variables using this type:

typedef long unsigned real;

One advantage of using the same floating-point format that C/C++ uses for
float values is that we can assign floating-point literal constants to our real
variables, and we can do other floating-point operations such as input and
output using existing library routines. However, one potential problem is
that C/C++ will attempt to automatically convert between integer and
floating-point formats if we use a real variable in a floating-point expression
(remember, as far as C/C++ is concerned, real is just a long unsigned integer
value). This means that we need to tell the compiler to treat the bit patterns
found in our real variables as though they were float objects.

A simple type coercion like (float) realVariable will not work. The
C/C++ compiler will emit code to convert the integer it believes realVariable
to contain into the equivalent floating-point value. However, the bit pattern
in realVariable is a floating-point value, so no conversion is required. We
want the C/C++ compiler to treat the bit pattern it finds in realVariable as a
float without doing any conversion. The following C/C++ macro is a sneaky
way to do this:

#define asreal(x) (*((float *) &x))

Note that this macro requires a single parameter that must be a real variable.
The result of this macro is a variable that the compiler believes is a float
variable.

No Starch Press, Copyright © 2004 by Randall Hyde

82 Chapter 4

Now that we have our float variable, we’ll develop two C/C++ functions
to compute floating-point addition and subtraction: fpadd and fpsub. These
two functions will each take three parameters: the left and right operands of
the operator and a pointer to a destination where these functions will store
their result. The prototypes for these functions are the following:

void fpadd(real left, real right, real *dest);

void fpsub(real left, real right, real *dest);

The fpsub function is almost trivial. All it has to do is negate the right
operand and call the fpadd function to do the real work. Here’s the code
for the fpsub function:

void fpsub(real left, real right, real *dest)

{

right = right ^ 0x80000000; // Invert the sign bit of the right operand.

fpadd(left, right, dest); // Let fpadd do the real work.

}

The fpadd function is where all the real work is done. To make fpadd a little
easier to understand and maintain, we’ll decompose the function into
several different functions that help with various activities that take place.
In an actual software floating-point library routine, you’d probably not
do this decomposition because the extra subroutine calls would be a little
slower; however, we’re developing fpadd for educational purposes, not for
actual use as part of a software floating-point library, and readability is a
bit more important than performance in this particular instance. Besides,
if you need high-performance floating-point addition, you’ll probably use
a hardware FPU rather than a software implementation.

The IEEE floating-point formats are good examples of packed data
types. As you’ve seen in previous chapters, packed data types are great for
reducing storage requirements for a data type, but they’re not the best
format when you need to use the packed fields in actual calculations.
Therefore, one of the first things our floating-point functions will do is
unpack the sign, exponent, and mantissa fields from the floating-point
representation. The following C/C++ functions handle these simple tasks.

The first unpacking function is the extractSign function. This function
extracts the sign bit (bit 31) from our packed floating-point representation
and returns the value zero (for positive numbers) or one (for negative
numbers).

inline int extractSign(real from)

{

 return(from >> 31);

}

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 83

This code could have also extracted the sign bit using this (possibly more
efficient) expression:

(from & 0x80000000) != 0

However, shifting bit 31 down to bit 0 is, arguably, easier to understand.
The next utility function we’ll look at unpacks the exponent from bits

23..30 in the packed real format. It does this by shifting the real value to the
right by 23 bits, and then it masks out the sign bit. One other thing that this
function will do is convert the excess-127 exponent to a two’s complement
format (this is easily achieved by subtracting 127 from the excess-127 expo-
nent we extract). Here’s the function that does this:

inline int extractExponent(real from)

{

 return ((from >> 23) & 0xff) − 127;
}

Extracting the mantissa is easy. All we have to do is mask out the exponent
and sign bits and then insert the implied HO bit of one. The only catch is
that we must return zero if the entire value is zero. Here’s the function that
extracts the mantissa from the real value:

inline int extractMantissa(real from)

{

 if((from & 0x7fffffff) == 0) return 0;

 return ((from & 0x7FFFFF) | 0x800000);

}

As you learned earlier, whenever adding or subtracting two values using
scientific notation (and the IEEE floating-point format uses scientific
notation), you must first adjust the two values so that they have the same
exponent. For example, consider the addition of the following two decimal
(base-10) numbers: 1.2345e3 + 8.7654e1.

To add these two numbers together, we must first adjust one or the other
so that their exponents are the same. We can reduce the exponent of the
first number by shifting the decimal point to the right. For example, the
following values are all equivalent to 1.2345e3:

12.345e2 123.45e1 1234.5 12345e−1

Likewise, we can increase the value of an exponent by shifting the decimal
point to the left. The following values are all equal to 8.7654e1:

0.87654e2 0.087654e3 0.0087654e4

No Starch Press, Copyright © 2004 by Randall Hyde

84 Chapter 4

For floating-point addition and subtraction involving binary numbers, we
can make the binary exponents the same by shifting the mantissa one
position to the left and decrementing the exponent, or by shifting the
mantissa one position to the right and incrementing the exponent.

A problem with adjusting the exponent of one operand so that it
matches the exponent of the other operand is that we only have so many
bits to use to represent the mantissa. Shifting the mantissa bits to the right
means that we reduce the precision of our number (because the bits wind
up going off the LO end of the mantissa). To preserve as much accuracy
as possible in our calculations, we shouldn’t truncate the bits we shift out
of the mantissa. As noted earlier, we should round the result to the nearest
value we can represent with the remaining mantissa bits. These are the IEEE
rules for rounding, in the following order:

� Truncate the result if the last bit shifted out was a zero.

� Bump the mantissa up by one if the last bit shifted out was a one and
there was at least one bit set to one in all the other bits that were shifted
out.6

� If the last we shifted out was a one, and all the other bits were zeros, then
round the resulting mantissa up by one if the mantissa’s LO bit contains
a one.

Shifting the mantissa and rounding it is a relatively complex operation, and
it will occur a couple of times in the floating-point addition code. Therefore,
it’s another candidate for a utility function. Here’s the C/C++ code that
implements this functionality:

// shiftAndRound:

//

// Shifts a mantissa to the right the number of bits specified.

// Rounds the result according to the IEEE rules for rounding,

// which are:

//

// If the bits we shift out are a value that is greater than one-half the

// value of the LO bit we are left with, then we need

// to round the value up by adding one to the LO bit position.

// If the bits we shift out are a value that is less than one-half the value

// of the LO bit we are left with (after denormalization), then we need

// to round the value down (i.e., just leave the value alone).

// If the bits we shift out are exactly one-half the value of the LO bit

// we are left with, then we need to round the value to the next larger

// number that has a zero in the LO bit (round up if there's currently a one,

// or leave the value unchanged if the LO bit contains a zero).

void shiftAndRound(int *valToShift, int bitsToShift)

6 If the algorithm only shifts out a single bit, then you assume that “all the other bits” are zeros.

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 85

{

 // Masks is used to mask out bits to check for a "sticky" bit.

 static unsigned masks[24] =

 {

 0, 1, 3, 7, 0xf, 0x1f, 0x3f, 0x7f,

 0xff, 0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff,

 0xffff, 0x1ffff, 0x3ffff, 0x7ffff, 0xfffff, 0x1fffff, 0x3fffff,

0x7fffff

 };

 // HOmasks: Masks out the HO bit of the value masked by the masks entry.

 static unsigned HOmasks[24] =

 {

 0,

 1, 2, 4, 0x8, 0x10, 0x20, 0x40, 0x80,

 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000,

 0x10000, 0x20000, 0x40000, 0x80000, 0x100000, 0x200000, 0x400000

 };

 // shiftedOut: Holds the value that will be shifted out of a mantissa

 // during the denormalization operation (used to round a denormalized

// value).

 int shiftedOut;

 assert(bitsToShift <= 23);

 // Okay, first grab the bits we're going to shift out (so we can determine

 // how to round this value after the shift).

 shiftedOut = *valToShift & masks[bitsToShift];

 // Shift the value to the right the specified number of bits.

 // Note: bit 31 is always zero, so it doesn't matter if the C

 // compiler does a logical shift right or an arithmetic shift right.

 *valToShift = *valToShift >> bitsToShift;

 // If necessary, round the value:

 if((shiftedOut > HOmasks[bitsToShift])

 {

 // If the bits we shifted out are greater than 1/2 the LO bit, then

 // round the value up by one.

No Starch Press, Copyright © 2004 by Randall Hyde

86 Chapter 4

 *valToShift = *valToShift + 1;

 }

 else if(shiftedOut == HOmasks[bitsToShift])

 {

 // If the bits we shifted out are exactly 1/2 of the LO bit's value,

 // then round the value to the nearest number whose LO bit is zero.

 *valToShift = *valToShift + (*valToShift & 1);

 }

// else

// We round the value down to the previous value. The current

// value is already truncated (rounded down), so we don't have to do

// anything.

}

The “trick” in this code is that it uses a couple of lookup tables, masks and
HOmasks, to extract those bits that the mantissa will use from the shift right
operation. The masks table entries contain one bits (set bits) in the positions
that will be lost during the shift. The HOmasks table entries contain a single
set bit in the position specified by the index into the table; that is, the entry
at index zero contains a one in bit position zero, the entry at index one
contains a one in bit position one, and so on. This code selects an entry from
each of these tables based on the number of mantissa bits it needs to shift to
the right.

If the original mantissa value, logically ANDed with the appropriate
entry in masks, is greater than the corresponding entry in HOmasks, then the
shiftAndRound function rounds the shifted mantissa to the next greater value.
If the ANDed mantissa value is equal to the corresponding HOmasks element,
this code rounds the shifted mantissa value according to its LO bit (note that
the expression (*valToShift & 1) produces one if the mantissa’s LO bit is one,
and it produces zero otherwise). Finally, if the ANDed mantissa value is less
than the entry from the HOmasks table, then this code doesn’t have to do
anything because the mantissa is already rounded down.

Once we’ve adjusted one of the values so that the exponents of both
operands are the same, the next step in the addition algorithm is to compare
the signs of the values. If the signs of the two operands are both the same, we
can simply add their mantissas (using a standard integer add operation). If
the signs of the operands are different, we have to subtract, rather than add,
the mantissas. Because floating-point values use one’s complement represen-
tation, and standard integer arithmetic uses two’s complement, we cannot
simply subtract the negative value from the positive value. Instead, we have
to subtract the smaller value from the larger value and determine the sign
of the result based on the signs and magnitudes of the original operands.
Table 4-3 describes how to accomplish this.

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 87

Whenever adding or subtracting two 24-bit numbers, it is possible to produce
a result that requires 25 bits (this, in fact, is a common result when dealing
with normalized values). Immediately after an addition or subtraction, the
floating-point code has to check the result for overflow. If this has happened,
it needs to shift the mantissa right by one bit, round the result, and then
increment the exponent. After completing this step, all that remains is to
pack the resulting sign, exponent, and mantissa fields into the packed 32-bit
IEEE floating-point format and the addition (or subtraction) is complete.
The following packFP function is responsible for packing the sign, exponent,
and mantissa fields into the 32-bit floating-point format:

// packFP:

//

// Packs the sign, exponent, and mantissa fields into a

// 32-bit "real" value. Works for normalized values, denormalized

// values, and zero, but does not work for NaNs and infinities.

inline real packFP(int sign, int exponent, int mantissa)

{

 return

 (real)

 (

 (sign << 31)

 | ((exponent + 127) << 23)

 | (mantissa & 0x7fffff)

);

}

With the utility routines out of the way, it’s time to take a look at the fpadd
function, which adds two floating-point values, producting a 32-bit real
result:

// fpadd:

//

// Computes:

// dest = left + right

// where all three operands are "real" values (32-bit floats).

Table 4-3: Dealing with Operands That Have Different Signs

Left
Sign

Right
Sign

Left Mantissa >
Right Mantissa? Compute Mantissa As Result

Sign Is

− + Yes LeftMantissa − RightMantissa −
+ − Yes LeftMantissa − RightMantissa +
− + No RightMantissa − LeftMantissa +
+ − No RightMantissa − LeftMantissa −

No Starch Press, Copyright © 2004 by Randall Hyde

88 Chapter 4

void fpadd(real left, real right, real *dest)

{

 // The following variables hold the fields associated with the

// left operand:

 int Lexponent;

 long unsigned Lmantissa;

 int Lsign;

 // The following variables hold the fields associated with the

// right operand:

 int Rexponent;

 long unsigned Rmantissa;

 int Rsign;

 // The following variables hold the separate fields of the result:

 int Dexponent;

 long unsigned Dmantissa;

 int Dsign;

 // Extract the fields so that they're easy to work with:

 Lexponent = extractExponent(left);

 Lmantissa = extractMantissa(left);

 Lsign = extractSign(left);

 Rexponent = extractExponent(right);

 Rmantissa = extractMantissa(right);

 Rsign = extractSign(right);

 // Code to handle special operands (infinity and NaNs):

 if(Lexponent == 127)

 {

 if(Lmantissa == 0)

 {

 // If the left operand is infinity, then the result

 // depends upon the value of the right operand.

 if(Rexponent == 127)

 {

 // If the exponent is all one bits (127 after unbiasing)

 // then the mantissa determines if we have an infinity value

 // (zero mantissa), a QNaN (mantissa = 0x800000) or a SNaN

 // (nonzero mantissa not equal to 0x800000).

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 89

 if(Rmantissa == 0) // Do we have infinity?

 {

 // infinity + infinity = infinity

 // −infinity − infinity = −infinity
 // −infinity + infinity = NaN
 // infinity − infinity = NaN

 if(Lsign == Rsign)

 {

 *dest = right;

 }

 else

 {

 *dest = 0x7fC00000; // +QNaN

 }

 }

 else // Rmantissa is nonzero, so it's a NaN

 {

 *dest = right; // Right is a NaN, propagate it.

 }

 }

 }

 else // Lmantissa is nonzero, Lexponent is all ones.

 {

 // If the left operand is some NaN, then the result will

 // also be the same NaN.

 *dest = left;

 }

 // We've already calculated the result, so just return.

 return;

 }

 else if(Rexponent == 127)

 {

 // Two case: right is either a NaN (in which case we need to

 // propagate the NaN regardless of left's value) or it is

 // +/− infinity. Because left is a "normal" number, we'll also
 // wind up propagating the infinity because any normal number

 // plus infinity is infinity.

 *dest = right; // Right is a NaN, propagate it.

 return;

 }

No Starch Press, Copyright © 2004 by Randall Hyde

90 Chapter 4

// Okay, we've got two actual floating-point values. Let's add them

// together. First, we have to "denormalize" one of the operands if

// their exponents aren't the same (when adding or subtracting values,

// the exponents must be the same).

//

// Algorithm: choose the value with the smaller exponent. Shift its

// mantissa to the right the number of bits specified by the difference

// between the two exponents.

 Dexponent = Rexponent;

 if(Rexponent > Lexponent)

 {

 shiftAndRound(&Lmantissa, (Rexponent − Lexponent));
 }

 else if(Rexponent < Lexponent)

 {

 shiftAndRound(&Rmantissa, (Lexponent − Rexponent));
 Dexponent = Lexponent;

 }

 // Okay, add the mantissas. There is one catch: if the signs are opposite

 // then we've actually got to subtract one value from the other (because

 // the FP format is one's complement, we'll subtract the larger mantissa

 // from the smaller and set the destination sign according to a

 // combination of the original sign values and the largest mantissa).

 if(Rsign ^ Lsign)

 {

 // Signs are different, must subtract one value from the other.

 if(Lmantissa > Rmantissa)

 {

 // The left value is greater, so the result inherits the

 // sign of the left operand.

 Dmantissa = Lmantissa − Rmantissa;
 Dsign = Lsign;

 }

 else

 {

 // The right value is greater, so the result inherits the

 // sign of the right operand.

 Dmantissa = Rmantissa − Lmantissa;
 Dsign = Rsign;

 }

 }

 else

 {

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 91

 // Signs are the same, so add the values:

 Dsign = Lsign;

 Dmantissa = Lmantissa + Rmantissa;

 }

 // Normalize the result here.

 //

 // Note that during addition/subtraction, overflow of one bit is possible.

 // deal with that possibility here (if overflow occurred, shift the

 // mantissa to the right one position and adjust for this by incrementing

 // the exponent). Note that this code returns infinity if overflow occurs

 // when incrementing the exponent (infinity is a value with an exponent

// of $FF);

 if(Dmantissa >= 0x1000000)

 {

 // Never more than one extra bit when doing addition/subtraction.

 // Note that by virtue of the floating-point format we're using,

 // the maximum value we can produce via addition or subtraction is

 // a mantissa value of 0x1fffffe. Therefore, when we round this

 // value it will not produce an overflow into the 25th bit.

 shiftAndRound(&Dmantissa, 1); // Move result into 24 bits.

 ++Dexponent; // Shift operation did a div by two,

 // this counteracts the effect of

 // the shift (incrementing exponent

 // multiplies the value by two).

 }

 else

 {

 // If the HO bit is clear, normalize the result

 // by shifting bits up and simultaneously decrementing

 // the exponent. We will treat zero as a special case

 // because it's a common enough result.

 if(Dmantissa != 0)

 {

 // The while loop multiplies the mantissa by two (via a shift

 // left) and then divides the whole number by two (by

 // decrementing the exponent. This continues until the HO bit of

 // Dmantissa is set or the exponent becomes −127 (zero in the
 // biased-127 form). If Dexponent drops down to −128, then we've
 // got a denormalized number and we can stop.

 while((Dmantissa < 0x800000) && (Dexponent > −127))
 {

 Dmantissa = Dmantissa << 1;

 --Dexponent;

No Starch Press, Copyright © 2004 by Randall Hyde

92 Chapter 4

 }

 }

 else

 {

 // If the mantissa went to zero, clear everything else, too.

 Dsign = 0;

 Dexponent = 0;

 }

 }

 // Reconstruct the result and store it away:

 *dest = packFP(Dsign, Dexponent, Dmantissa);

}

To conclude this discussion of the software implementation of the fpadd and
fsub functions, here’s a C main function that demonstrates the use of these
functions:

// A simple main program that does some trivial tests on fpadd and fpsub.

int main(int argc, char **argv)

{

 real l, r, d;

 asreal(l) = 1.0;

 asreal(r) = 2.0;

 fpadd(l, r, &d);

 printf("dest = %x\n", d);

 printf("dest = %12E\n", asreal(d));

 l = d;

 asreal(r) = 4.0;

 fpsub(l, r, &d);

 printf("dest2 = %x\n", d);

 printf("dest2 = %12E\n", asreal(d));

}

4.7.3 Floating-Point Multiplication and Division
Most software floating-point libraries are actually written in hand-optimized
assembly language, not in a high-level language. As the previous section
shows, it’s perfectly possible to write floating-point routines in a high-level
language and, particularly in the case of single-precision floating-point

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 93

addition and subtraction, you could actually write the code efficiently.
Given the right library routines, it’s also possible to write the floating-point
multiplication and division routines in a high-level language. This section
presents an HLA implementation of the single-precision floating-point
multiplication and division algorithms, however, because it turns out that
their implementation is actually easier in assembly language than in a high-
level language like C/C++.

The HLA code in this section implements two functions, fpmul and fpdiv,
that have the following prototypes:

procedure fpmul(left:real32; right:real32); @returns("eax");

procedure fpdiv(left:real32; right:real32); @returns("eax");

Beyond the fact that this code is written in assembly language rather than C,
there are two main differences you should note between the code in this
section and the code in the previous section. First, the HLA code uses the
built-in real32 data type rather than creating a new data type for our real
values. This code can do that because we can easily coerce any 32-bit memory
object to real32 or dword in assembly language. Therefore, there is no reason
to play games with the data types. The second thing you’ll notice about these
prototypes is that they only support two parameters; there is no destination
parameter. These functions simply return the real32 result in the EAX
register.7

4.7.3.1 Floating-Point Multiplication

Whenever you multiply two values in scientific notation, you compute the
result sign, exponent, and mantissa as follows:

� The result sign is the exclusive-OR of the operand signs. That is, the
result is positive if both operand signs were the same, and the result sign
is negative if the operand signs were different.

� The result exponent is the sum of the operands’ exponents.

� The result mantissa is the integer (fixed-point) product of the two oper-
and mantissas.

Beyond these rules, there are a few additional rules that affect the floating-
point multiplication algorithm that are a direct result of the IEEE floating-
point format:

� If either, or both, of the operands are zero, the result is zero (this is a
special case because the representation for zero is special).

� If either operand is infinity, the result is infinity.

� If either operand is a NaN, the result is that same NaN.

7 Those who know a little 80x86 assembly language may wonder if it’s legal to return a floating-
point value in an integer register. Of course it is! EAX can hold any 32-bit value, not just
integers. Presumably, if you’re writing a software-based floating-point package, you don’t have
floating-point hardware available and, therefore, you can’t pass floating-point values around in
the floating-point registers.

No Starch Press, Copyright © 2004 by Randall Hyde

94 Chapter 4

The fpmul procedure begins by checking the operands to see if either of
them is zero. If so, the function immediately returns a 0.0 result to the caller.
Next, the fpmul code checks for NaN or infinity values in the left and right
operands. If it finds one of these values, the fpmul procedure returns that
same value to the caller.

If both of the fpmul operands are reasonable floating-point values, then
the fpmul code extracts the sign, exponent, and mantissa fields of the packed
floating-point value. Actually, “extract” isn’t the correct term for fpmul; isolate
is probably a better description of what this code does to the sign and expon-
ent fields. Look at the code that isolates the sign bits of the two operands and
computes the result sign:

mov((type dword left), ebx); // Result sign is the XOR of the

xor((type dword right), ebx); // operand signs.

and($8000_0000, ebx); // Keep only the sign bit.

This code exclusive-ORs the HO bits of the two operands (as well as all the
other bits) and then masks out bits 0..30, leaving only the result sign value in
bit 31 of the EBX register. This procedure doesn’t bother moving the sign bit
down to bit 0 (as you’d normally do when unpacking data) because it would
just have to move this bit back to bit 31 when it repacks the floating-point
value later.

The fpmul procedure uses the same trick when processing the exponent.
It simply isolates bits 23..30 and operates on the exponent in place. When
multiplying two values using scientific notation, you must add the values of
the exponents together. Note, however, that the floating-point exponents
use an excess-127 format; simply adding the exponents together creates a
problem because the bias winds up being added twice. Therefore, the
exponent-processing code must subtract 127 from the exponent’s sum first.
The following code isolates the exponent bits, adjusts for the extra bias, and
adds the exponents together:

mov((type dword left), ecx); // Exponent goes into bits 23..30

and($7f80_0000, ecx); // of ECX; mask these bits.

sub(126 << 23, ecx); // Eliminate the bias of 127.

mov((type dword right), eax);

and($7f80_0000, eax);

// For multiplication, we need to add the exponents:

add(eax, ecx); // Exponent value is now in bits

// 23..30 of ECX.

First, you’ll notice that this code subtracts 126 rather than 127 (the value
you’d normally expect to have to subtract in order to eliminate the extra
bias). The reason for this is that later on we will need to double the result

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 95

of the multiplication of the mantissas. Subtracting 126 rather than 127 does
this multiplication by two implicitly for us (saving an instruction later on).

If the sum of the exponents with add(eax, ecx), above, is too large to fit
into eight bits, there will be a carry out of bit 30 into bit 31 of ECX, which will
set the 80x86 overflow flag. If overflow occurs on a multiplication, our code
will return infinity as the result.

If overflow does not occur, then the fpmul procedure needs to set the
implied HO bit of the two mantissa values. The following code handles this
chore, as well as stripping out all the exponent and sign bits from the
mantissas. This code also left justifies the mantissa bits up against bit position
31 in EAX and EDX.

mov((type dword left), eax);

mov((type dword right), edx);

// If we don't have a zero value then set the implied HO bit of the mantissa:

if(eax <> 0) then

or($80_0000, eax); // Set the implied bit to one.

endif;

shl(8, eax); // Moves mantissa to bits 8..31 and removes sign/exp.

// Repeat this for the right operand.

if(edx <> 0) then

or($80_0000, edx);

endif;

shl(8, edx);

Once this code shifts the mantissas to bit 31 in EAX and EDX, it does the
multiplication by using the 80x86 mul instruction:

mul(edx);

This instruction computes the 64-bit product of EAX and EDX, leaving the
product in EDX:EAX (the HO double word is in EDX, and the LO double
word is in EAX). Note that the product of any two n -bit integers produces a
number that could require as many as 2*n bits. That’s why the mul instruction
computes EDX:EAX = EAX*EDX. Left justifying the mantissas in EAX and
EDX before doing the multiplication is what ensures the mantissa of the
product winds up in bits 7..30 of EDX (it would have been nice to have them
wind up in bit positions 8..31 of EDX, but fixed-point multiplication winds
up shifting the value down one bit in this case; that’s why this code only
subtracted 126 when adjusting for the excess-127 value). As these numbers

No Starch Press, Copyright © 2004 by Randall Hyde

96 Chapter 4

were normalized prior to the multiplication, bit 30 of EDX will contain a one
after the multiplication unless the result is zero. Note that the 32-bit IEEE
real format does not support denormalized values, so we don’t have to worry
about this case when using 32-bit floating-point values.

Because the mantissas were actually 24 bits each, the product of the man-
tissas that the mul instruction produces could have as many as 48 significant
bits. However, our result mantissa can only hold 24 bits, so we need to round
the value to produce a 24-bit result (using, of course, the IEEE rounding
algorithm — see Section 4.4, “Rounding”). Here’s the code that rounds the
value in EDX to 24 significant bits (in positions 8..31):

test($80, edx); // Clears zero flag if bit seven of EDX = 1.

if(@nz) then

add($FFFF_FFFF, eax); // Sets carry if EAX <> 0.

adc($7f, dl); // Sets carry if DL:EAX > $80_0000_0000.

if(@c) then

// If DL:EAX > $80_0000_0000 then round the mantissa

// up by adding one to bit position eight:

add(1 << 8, edx);

else // DL:EAX = $80_0000_0000

// We need to round to the value that has a zero

// in bit position zero of the mantissa (bit #8 of EDX):

test(8, edx); // Clears zero flag if bit #8 contains a one.

if(@nz) then

add(1 << 8, edx); // Adds a one starting at bit position eight.

// If there was an overflow, renormalize:

if(@c) then

rcr(1, edx); // Shift overflow (in carry) back into EDX.

inc(ecx); // Shift did a divide by two. Fix that.

endif;

endif;

endif;

endif;

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 97

An interesting thing to note about this rounding code is that it may need to
renormalize the number after rounding. If the mantissa contains all one bits
and needs to be rounded up, this will produce an overflow out of the HO bit
of the mantissa. The rcr and inc instructions at the end of this code sequence
put the overflow bit back into the mantissa if overflow occurs.

The only thing left for fpmul to do after this is pack the destination sign,
exponent, and mantissa into the 32-bit EAX register. The following code
does this:

shr(8, edx); // Move mantissa into bits 0..23.

and($7f_ffff, edx); // Clear the implied bit.

lea(eax, [edx+ecx]); // Merge mantissa and exponent into EAX.

or(ebx, eax); // Merge in the sign.

The only tricky thing in this code is the use of the lea (load effective address)
instruction to compute the sum of EDX (the mantissa) and ECX (the
exponent) and move the result to EAX all with a single instruction.

4.7.3.2 Floating-Point Division

Floating-point division is a little bit more involved than multiplication
because the IEEE floating-point standard says many things about degenerate
conditions that can occur during division. We’re not going to discuss all the
code that handles those conditions here. Instead, see the discussion of the
conditions for fpmul earlier, and check out the complete code listing for fdiv
later in this section.

Assuming we have reasonable numbers to divide, the division algorithm
first computes the result sign using the same algorithm (and code) as for
multiplying. When dividing two values using scientific notation, we have to
subtract their exponents. Unlike the multiplication algorithm, it’s going to
be more convenient to truly unpack the exponents for the two division
operands and convert them from excess-127 to two’s complement form.
Here’s the code that does this:

mov((type dword left), ecx); // Exponent comes from bits 23..30.

shr(23, ecx);

and($ff, ecx); // Mask out the sign bit (in bit 8).

mov((type dword right), eax);

shr(23, eax);

and($ff, eax);

// Eliminate the bias from the exponents:

sub(127, ecx);

sub(127, eax);

No Starch Press, Copyright © 2004 by Randall Hyde

98 Chapter 4

// For division, we need to subtract the exponents:

sub(eax, ecx); // Leaves result exponent in ECX.

The 80x86 div instruction absolutely, positively requires the quotient to fit
into 32 bits. If this condition is not true, the CPU may abort the operation
with a divide exception. As long as the HO bit of the divisor contains a one
and the HO two bits of the dividend contain %01, we will not get a division
error. Here’s the code the prepares the operands prior to the division
operation:

mov (type dword left), edx);

if(edx <> 0) then

or($80_0000, edx); // Set the implied bit to one in the left operand.

shl(8, edx);

endif;

mov((type dword right), edi);

if(edi <> 0) then

or($80_0000); // Set the implied bit to one in the right operand.

shl(8, edi);

else

// Division by zero error, here.

endif;

The next step is to actually do the division. As noted earlier, in order to
prevent a division error, we have to shift the dividend one bit to the right
(to set the HO two bits to %01). The code that does this shift and then the
division is as follows:

xor(eax, eax); // EAX := 0;

shr(1, edx); // Shift EDX:EAX to the right one bit to

rcr(1, eax); // prevent a division error.

div(edi); // Compute EAX = EDX:EAX / EDI.

Once the div instruction executes, the quotient is sitting in the HO 24 bits
of EAX, and the remainder is in AL:EDX. We now need to normalize and
round the result. Rounding is a little easier because AL:EDX contains the
remainder after the division; it will contain a value less than $80:0000_0000
(that is, the 80x86 AL register contains $80 and EDX contains zero) if we
need to round down, it will contain a value greater than $80:0000_0000 if
we need to round up, and it will contain exactly $80:0000_0000 if we need
to round to the nearest value.

No Starch Press, Copyright © 2004 by Randall Hyde

Floa ti ng -Poin t Represen ta t ion 99

Here’s the code that does this:

test($80, al); // See if the bit just below the LO bit of the

if(@nz) then // mantissa contains a zero or one.

// Okay, the bit just below the LO bit of our mantissa contains a one.

// If all other bits below the mantissa and this bit contain zeros,

// we have to round to the nearest mantissa value whose LO bit is zero.

test($7f, al); // Clears zero flag if bits 0..6 <> 0.

if(@nz || edx <> 0) then // If bits 0..6 in AL are zero and EDX

// is zero.

// We need to round up:

add($100, eax); // Mantissa starts in bit #8);

if(@c) then // Carry set if mantissa overflows.

// If there was an overflow, renormalize.

rcr(1, eax);

inc(ecx);

endif;

else

// The bits below the mantissa are exactly 1/2 the value

// of the LO mantissa bit. So we need to round to the value

// that has a LO mantissa bit of zero:

test($100, eax);

if(@nz) then

add($100, eax);

if(@c) then

// If there was an overflow, renormalize.

rcr(1, eax); // Put overflow bit back into EAX.

inc(ecx); // Adjust exponent accordingly.

endif;

endif;

endif;

endif;

No Starch Press, Copyright © 2004 by Randall Hyde

100 Chap te r 4

The last step in fpdiv is to add the bias back into the exponent (and verify
that overflow doesn’t occur) and then pack the quotient’s sign, exponent,
and mantissa fields into the 32-bit floating-point format. Here’s the code that
does this:

if((type int32 ecx) > 127) then

mov($ff−127, ecx); // Set exponent value for infinity

xor(eax, eax); // because we just had overflow.

elseif((type int32 ecx) < −128) then

mov(−127, ecx); // Return zero for underflow (note that

xor(eax, eax); // next we add 127 to ECX).

endif;

add(127, ecx); // Add the bias back in.

shl(23, ecx); // Move the exponent to bits 23..30.

// Okay, assemble the final real32 value:

shr(8, eax); // Move mantissa into bits 0..23.

and($7f_ffff, eax); // Clear the implied bit.

or(ecx, eax); // Merge mantissa & exponent into EAX.

or(ebx, eax); // Merge in the sign.

Whew! This has been a lot of code. However, it’s worthwhile to go through
all this just to see how floating-point operations work (so you can gain an
appreciation of exactly what an FPU is doing for you).

4.8 For More Information

Donald Knuth’s The Art of Computer Programming, Volume Two: Seminumerical
Algorithms, provides an in-depth discussion of floating-point arithmetic and
floating-point formats. This book is required reading for someone who
wants to fully understand how floating-point arithmetic operates. Also,
Intel’s documentation on its Pentium processors explains its floating-point
formats, exceptional conditions, and other issues related to the use of its
FPU. Likewise, the manufacturer’s literature for any CPU that supports
floating-point arithmetic will explain the specifics for the use of that CPU’s
floating-point unit.

Those interested in trapping floating-point exceptions from a high-
level language will need to check their language vendor’s documentation
to determine how this is done. Unfortunately, there are few standards
around, so most compiler vendors use a proprietary scheme or a CPU- or

No Starch Press, Copyright © 2004 by Randall Hyde

F loat ing -Point Rep resenta ti on 101

OS-dependent scheme to trap these exceptions. For general information
about the effects of precision and accuracy in floating-point calculations, a
good textbook on numerical analysis would be a reasonable place to start.

Finally, The Art of Assembly Language (No Starch Press) contains lots of
additional information related to floating-point arithmetic including the
implementation of various transcendental and other functions. The UCR
Standard Library for 80x86 Assembly Language Programmers (a software
package I’ve developed that is available at http://webster.cs.ucr.edu; check
out the “Assembler Tools” link and look under MASM) contains a full
software-based floating-point package in 16-bit 8086 assembly language.
The HLA Standard Library includes source code for several FPU support
routines, including floating-point I/O and conversion. Check out the
Webster website for more details (look under “HLA” when following the
“Assembler Tools” link).

No Starch Press, Copyright © 2004 by Randall Hyde

No Starch Press, Copyright © 2004 by Randall Hyde

5
C H A R A C T E R R E P R E S E N T A T I O N

Although computers are famous for their
“number-crunching” capabilities, the truth
is that most computer systems process char-

acter data far more often than numbers.
Given the importance of character manip-

ulation in modern software, a thorough understanding
of character and string data is necessary if you’re going
to write great code.

The term character refers to a human or machine-readable symbol that is
typically a nonnumeric entity. In general, a character is any symbol that you
can type on a keyboard or display on a video display. Note that in addition to
alphabetic characters, character data includes punctuation symbols, numeric
digits, spaces, tabs, carriage returns (the ENTER key), other control characters,
and other special symbols.

This chapter looks at how we represent characters, strings, and character sets
within a computer system. This chapter also discusses various operations on these
data types.

No Starch Press, Copyright © 2004 by Randall Hyde

104 Chap te r 5

5.1 Character Data

Most computer systems use a 1- or 2-byte binary sequence to encode the
various characters. Windows and Linux certainly fall into this category,
using the ASCII or Unicode character sets, whose members can all be
represented using 1- or 2-byte binary sequences. The EBCDIC character
set, in use on IBM mainframes and minicomputers, is another example
of a single-byte character code.

I will discuss all three of these character sets, and their internal repre-
sentations, in this chapter. I will also describe how to create your own custom
character sets later in this chapter.

5.1.1 The ASCII Character Set
The ASCII (American Standard Code for Information Interchange)
character set maps 128 characters to the unsigned integer values 0..127
($0..$7F). Although the exact mapping of characters to numeric values is
arbitrary and unimportant, a standardized mapping allows you to commu-
nicate between programs and peripheral devices. The standard ASCII codes
are useful because nearly everyone uses them. Therefore, if you use the
ASCII code 65 to represent the character A, then you know that some
peripheral device (such as a printer) will correctly interpret this value as
the character A.

Because the ASCII character set provides only 128 different characters,
an interesting question arises: “What do we do with the additional 128 values
($80..$FF) that we can represent with a byte?” One answer is to ignore those
extra values. That will be the primary approach of this book. Another possi-
bility is to extend the ASCII character set by an additional 128 characters. Of
course, unless you can get everyone to agree upon one particular extension
of the character set,1 the whole purpose of having a standardized character
set will be defeated. And getting everyone to agree is a difficult task.

Despite some major shortcomings, ASCII data is the standard for data
interchange across computer systems and programs. Most programs can
accept ASCII data, and most programs can produce ASCII data. Because you
will probably be dealing with ASCII characters in your programs, it would be
wise to study the layout of the character set and memorize a few key ASCII
codes (such as those for 0, A, a, and so on). Table A-1 in Appendix A lists all
the characters in the standard ASCII character set.

The ASCII character set is divided into four groups of 32 characters.
The first 32 characters, ASCII codes $0 through $1F (0 through 31), form
a special set of nonprinting characters called the control characters. We call
them control characters because they perform various printer and display
control operations rather than displaying actual symbols. Examples of
control characters include carriage return, which positions the cursor at the

1 Back before Windows became popular, IBM supported an extended 256-element character
set on its text displays. Though this character set is “standard” even on modern PCs, few
applications or peripheral devices continue to use the extended characters.

No Starch Press, Copyright © 2004 by Randall Hyde

Charac te r Rep resenta ti on 105

beginning of the current line of characters;2 line feed, which moves the
cursor down one line on the output device; and backspace, which moves
the cursor back one position to the left. Unfortunately, different control
characters perform different operations on different output devices. There
is very little standardization among output devices. To find out exactly how
a particular control character affects a particular device, you will need to
consult its manual.

The second group of 32 ASCII character codes comprises various
punctuation symbols, special characters, and the numeric digits. The most
notable characters in this group include the space character (ASCII code
$20) and the numeric digits (ASCII codes $30..$39).

The third group of 32 ASCII characters contains the uppercase alpha-
betic characters. The ASCII codes for the characters A through Z lie in the
range $41..$5A. Because there are only 26 different alphabetic characters,
the remaining six codes hold various special symbols.

The fourth and final group of 32 ASCII character codes represents the
lowercase alphabetic symbols, five additional special symbols, and another
control character (delete). Note that the lowercase character symbols use the
ASCII codes $61..$7A. If you convert the codes for the upper- and lowercase
characters to binary, you will notice that the uppercase symbols differ from
their lowercase equivalents in exactly one bit position. For example, consider
the character codes for E and e appearing in Figure 5-1.

Figure 5-1: ASCII codes for E and e

The only place these two codes differ is in bit five. Uppercase alphabetic
characters always contain a zero in bit five; lowercase alphabetic characters
always contain a one in bit five. You can use this fact to quickly convert an
alphabetic character between upper- and lowercase by simply inverting bit
five. If you have an uppercase character, you can force it to lowercase by
setting bit five to one. If you have a lowercase character and you wish to force
it to uppercase, you can do so by setting bit five to zero.

Bits five and six determine the character’s group (see Table 5-1). There-
fore, you can convert any upper- or lowercase (or special) character to its
corresponding control character by setting bits five and six to zero.

2 Historically, carriage return refers to the paper carriage used on typewriters. A carriage return
consisted of physically moving the carriage all the way to the right so that the next character
typed would appear at the left-hand side of the paper.

7 6 5 4 3 2

E

e

1 0

0 1 0 0 0 1 0 1

7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 1

No Starch Press, Copyright © 2004 by Randall Hyde

106 Chap te r 5

Consider, for a moment, the ASCII codes of the numeric digit characters in
Table 5-2. The decimal representations of these ASCII codes are not very
enlightening. However, the hexadecimal representation of these ASCII
codes reveals something very important — the LO nibble of the ASCII code
is the binary equivalent of the represented number. By stripping away
(setting to zero) the HO nibble of the ASCII code, you obtain the binary
representation of that digit. Conversely, you can convert a binary value in the
range 0..9 to its ASCII character representation by simply setting the HO
nibble to %0011, or the decimal value 3. Note that you can use the logical
AND operation to force the HO bits to zero; likewise, you can use the logical
OR operation to force the HO bits to %0011 (decimal 3). For more infor-
mation on string-to-numeric conversions, see Chapter 2.

Despite the fact that it is a “standard,” simply encoding your data using ASCII
characters does not guarantee compatibility across systems. While it’s true
that an A on one machine is most likely an A on another system, there is very
little standardization across machines with respect to the use of the control
characters. Indeed, of the 32 control codes in the first group of ASCII codes,
plus the delete code in the last group, there are only 4 control codes
commonly supported by most devices and applications — backspace (BS),
tab, carriage return (CR), and line feed (LF). Worse still, different machines
often use these “supported” control codes in different ways. End-of-line is a
particularly troublesome example. Windows, MS-DOS, CP/M, and other

Table 5-1: ASCII Character Groups Determined by Bits Five and Six

Bit 6 Bit 5 Group

0 0 Control characters

0 1 Digits and punctuation

1 0 Uppercase and special

1 1 Lowercase and special

Table 5-2: ASCII Codes for the Numeric Digits

Character Decimal Hexadecimal

0 48 $30

1 49 $31

2 50 $32

3 51 $33

4 52 $34

5 53 $35

6 54 $36

7 55 $37

8 56 $38

9 57 $39

No Starch Press, Copyright © 2004 by Randall Hyde

Charac te r Rep resenta ti on 107

systems mark end-of-line by the two-character sequence CR/LF. The Apple
Macintosh, and many other systems, mark end-of-line by a single CR
character. Linux, BeOS, and other Unix systems mark end-of-line with a
single LF character.

Attempting to exchange simple text files between such different systems
can be an experience in frustration. Even if you use standard ASCII char-
acters in all your files on these systems, you will still need to convert the
data when exchanging files between them. Fortunately, such conversions
are rather simple, and many text editors automatically handle files with
different line endings (there are also many available freeware utilities that
will do this conversion for you). Even if you have to do this in your own
software, all that the conversion involves is copying all characters except the
end-of-line sequence from one file to another, and then emitting the new
end-of-line sequence whenever you encounter an old end-of-line sequence
in the input file.

5.1.2 The EBCDIC Character Set

Although the ASCII character set is, unquestionably, the most popular
character representation, it is certainly not the only format available. For
example, IBM uses the EBCDIC code on many of its mainframe and mini-
computer lines. Because EBCDIC appears mainly on IBM’s big iron and
you’ll rarely encounter it on personal computer systems, we’ll only consider
it briefly in this book.

EBCDIC (pronounced EB-suh-dic) is an acronym that stands for Extended
Binary Coded Decimal Interchange Code. If you’re wondering if there was an
unextended version of this character code, the answer is yes. Earlier IBM
systems and keypunch machines used a character set known as BCDIC
(Binary Coded Decimal Interchange Code). This was a character set based on
punched cards and decimal representation (for IBM’s older decimal
machines).

The first thing to note about EBCDIC is that it is not a single character
set; rather, it is a family of character sets. While the EBCDIC character sets
have a common core (for example, the encodings for the alphabetic
characters are usually the same), different versions of EBCDIC (known as
code pages) have different encodings for punctuation and special characters.
Because there are a limited number of encodings available in a single byte,
different code pages reuse some of the character encodings for their own
special set of characters. So, if you’re given a file that contains EBCDIC
characters and someone asks you to translate it to ASCII, you’ll quickly
discover that this is not a trivial task.

Before you ever look at the EBCDIC character set, you should first
realize that the forerunner of EBCDIC (BCDIC) was in existence long
before modern digital computers. BCDIC was born on old-fashioned IBM
keypunches and tabulator machines. EBCDIC was simply an extension of
that encoding to provide an extended character set for IBM’s computers.

No Starch Press, Copyright © 2004 by Randall Hyde

108 Chap te r 5

However, EBCDIC inherited several peculiarities from BCDIC that seem
strange in the context of modern computers. For example, the encodings of
the alphabetic characters are not contiguous. This is probably a direct result
of the fact that the original character encodings really did use a decimal
(BCD) encoding. Originally (in BCD/decimal), the alphabetic characters
probably did have a sequential encoding. However, when IBM expanded the
character set, they used some of the binary combinations that are not present
in the BCD format (values like %1010..%1111). Such binary values appear
between two otherwise sequential BCD values, which explains why certain
character sequences (such as the alphabetic characters) do not use sequen-
tial binary codes in the EBCDIC encoding.

Unfortunately, because of the weirdness of the EBCDIC character set,
many common algorithms that work well on ASCII characters simply don’t
work with EBCDIC. This chapter will not consider EBCDIC beyond a token
mention here or there. However, keep in mind that EBCDIC functional
equivalents exist for most ASCII characters. Check out the IBM literature for
more details.

5.1.3 Double-Byte Character Sets

Because of the encoding limitations of an 8-bit byte (which has a maximum
of 256 characters) and the need to represent more than 256 characters,
some computer systems use special codes to indicate that a particular
character consumes two bytes rather than a single byte. Such double-byte
character sets (DBCSs) do not encode every character using 16 bits —
instead, they use a single byte for most character encodings and use two-
byte codes only for certain characters.

A typical double-byte character set utilizes the standard ASCII character
set along with several additional characters in the range $80..$FF. Certain
values in this range are extension codes that tell the software that a second
byte immediately follows. Each extension byte allows the DBCS to support
another 256 different character codes. With three extension values, for
example, the DBCS can support up to 1,021 different characters. You get
256 characters with each of the extension bytes, and you get 253 (256 – 3)
characters in the standard single-byte set (minus three because the three
extension byte values each consume one of the 256 combinations, and they
don’t count as characters).

Back in the days when terminals and computers used memory-mapped
character displays, double-byte character sets weren’t very practical. Hard-
ware character generators really want each character to be the same size, and
they want to process a limited number of characters. However, as bitmapped
displays with software character generators became prevalent (Windows,
Macintosh, and Unix/XWindows machines), it became possible to process
DBCSs.

No Starch Press, Copyright © 2004 by Randall Hyde

Charac te r Rep resenta ti on 109

Although DBCSs can compactly represent a large number of characters,
they demand more computing resources in order to process text in a DBCS
format. For example, if you have a zero-terminated string containing DBCS
characters (typical in the C/C++ languages), then determining the number
of characters in the string can be considerable work. The problem is that
some characters in the string consume two bytes while most others consume
only one byte. A string length function has to scan byte-by-byte through
each character of the string to locate any extension values that indicate
that a single character consumes two bytes. This extra comparison more
than doubles the time a high-performance string length function takes to
execute. Worse still, many common algorithms that people use to manip-
ulate string data fail when they apply them to DBCSs. For example, a
common C/C++ trick to step through characters in a string is to either incre-
ment or decrement a pointer to the string using expressions like ++ptrChar
or --ptrChar. Unfortunately, these tricks don’t work with DBCSs. While some-
one using a DBCS probably has a set of standard C library routines available
that work properly on DBCSs, it’s also quite likely that other useful character
functions they’ve written (or that others have written) don’t work properly
with the extended characters in a DBCS. For this and other reasons, you’re
far better off using the Unicode character set if you need a standardized
character set that supports more than 256 characters. For all the details,
keep reading.

5.1.4 The Unicode Character Set
A while back, engineers at Apple Computer and Xerox realized that their
new computer systems with bitmapped displays and user-selectable fonts
could display far more than 256 different characters at one time. Although
DBCSs were a possibility, those engineers quickly discovered the compat-
ibility problems associated with double-byte character sets and sought a
different route. The solution they came up with was the Unicode character
set. Unicode has since become an international standard adopted and
supported by nearly every major computer manufacturer and operating
system provider (Mac OS, Windows, Linux, Unix, and many other operating
systems support Unicode).

Unicode uses a 16-bit word to represent each character. Therefore,
Unicode supports up to 65,536 different character codes. This is obviously a
huge advance over the 256 possible codes we can represent with an 8-bit byte.
Furthermore, Unicode is upward compatible from ASCII; if the HO 9 bits3 of
a Unicode character’s binary representation contain zero, then the LO 7 bits
use the standard ASCII code. If the HO 9 bits contain some nonzero value,
then the 16 bits form an extended character code (extended from ASCII,
that is). If you’re wondering why so many different character codes are
necessary, simply note that certain Asian character sets contain 4,096

3 ASCII is a 7-bit code. If the HO 9 bits of a 16-bit Unicode value are all zero, the remaining
7 bits are an ASCII encoding for a character.

No Starch Press, Copyright © 2004 by Randall Hyde

110 Chap te r 5

characters (at least, in their Unicode character subset). The Unicode char-
acter set even provides a set of codes you can use to create an application-
defined character set. At the time of this writing, approximately half of the
65,536 possible character codes have been defined; the remaining character
encodings are reserved for future expansion.

Today, many operating systems and language libraries provide excellent
support for Unicode. Microsoft Windows, for example, uses Unicode inter-
nally.4 So operating system calls will actually run faster if you pass them
Unicode strings rather than ASCII strings. (When you pass an ASCII string
to a modern version of Windows, the OS first converts the string from ASCII
to Unicode and then proceeds with the OS API function.) Likewise, when-
ever Windows returns a string to an application, that string is in Unicode
form; if the application needs it in ASCII form, then Windows must convert
the string from Unicode to ASCII before returning.

There are two big disadvantages to Unicode, however. First, Unicode
character data requires twice as much memory to represent as ASCII or other
single-byte encodings do. Although machines have far more memory today
(both in RAM and on disk where text files usually reside), doubling the size
of text files, databases, and in-memory strings (such as those for a text editor
or word processor) can have a significant impact on the system. Worse,
because strings are now twice as long, it takes almost twice as many instruc-
tions to process a Unicode string as it does to process a string encoded with
single-byte characters. This means that string functions may run at half the
speed of those functions that process byte-sized character data.5 The second
disadvantage to Unicode is that most of the world’s data files out there are in
ASCII or EBCDIC form, so if you use Unicode within an application, you
wind up spending considerable time converting between Unicode and those
other character sets.

Although Unicode is a widely accepted standard, it still is not seeing
widespread use (though it is becoming more popular every day). Quite soon,
Unicode will hit “critical mass” and really take off. However, that point is still
in the future, so most of the examples in this text will continue to use ASCII
characters. Still, at some point in the not-too-distant future, it wouldn’t be
unreasonable to emphasize Unicode rather than ASCII in a book like this.

5.2 Character Strings

After integers, character strings are probably the most common type in
use in modern programs. In general, a character string is a sequence of
characters that possesses two main attributes: a length and the character data.

4 The Windows CE variant only supports Unicode. You don’t even have the option of passing
ASCII strings to a Win CE function.
5 Some might argue that it shouldn’t take any longer to process a Unicode string using
instructions that process words versus processing byte strings using machine instructions that
manipulate bytes. However, high-performance string functions tend to process double words
(or more) at one time. Such string functions can process half as many Unicode characters at
one time, so they’ll require twice as many machine instructions to do the same amount of work.

No Starch Press, Copyright © 2004 by Randall Hyde

Charac te r Rep resenta ti on 111

Character strings may also possess other attributes, such as the maximum
length allowable for that particular variable or a reference count that specifies
how many different string variables refer to the same character string.
We’ll look at these attributes and how programs can use them in the
following sections, which describe various string formats and some of
the possible string operations.

5.2.1 Character String Formats

Different languages use different data structures to represent strings. Some
string formats use less memory, others allow faster processing, some are
more convenient to use, and some provide additional functionality for the
programmer and operating system. To better understand the reasoning
behind the design of character strings, it is instructive to look at some
common string representations popularized by various high-level languages.

5.2.1.1 Zero-Terminated Strings

Without question, zero-terminated strings are probably the most common
string representation in use today, because this is the native string format
for C, C++, Java, and several other languages. In addition, you’ll find zero-
terminated strings in use in programs written in languages that don’t have
a specific native string format, such as assembly language.

A zero-terminated ASCII string is a sequence containing zero or more
8-bit character codes ending with a byte containing zero (or, in the case of
Unicode, a sequence containing zero or more 16-bit character codes ending
with a 16-bit word containing zero). For example, in C/C++, the ASCII string
“abc” requires four bytes: one byte for each of the three characters a, b, and c,
followed by a zero byte.

Zero-terminated strings have a couple of advantages over other string
formats:

� Zero-terminated strings can represent strings of any practical length
with only one byte of overhead (two bytes in Unicode).

� Given the popularity of the C/C++ programming languages, high-
performance string processing libraries are available that work well
with zero-terminated strings.

� Zero-terminated strings are easy to implement. Indeed, except for deal-
ing with string literal constants, the C/C++ programming languages
don’t provide native string support. As far as the C and C++ languages
are concerned, strings are just arrays of characters. That’s probably why
C’s designers chose this format in the first place — so they wouldn’t have
to clutter up the language with string operators.

� This format allows you to easily represent zero-terminated strings in any
language that provides the ability to create an array of characters.

No Starch Press, Copyright © 2004 by Randall Hyde

112 Chap te r 5

However, despite these advantages, zero-terminated strings also have
disadvantages — they are not always the best choice for representing
character string data. These disadvantages are as follows:

� String functions often aren’t very efficient when operating on zero-
terminated strings. Many string operations need to know the length
of the string before working on the string data. The only reasonable
way to compute the length of a zero-terminated string is to scan the
string from the beginning to the end. The longer your strings are,
the slower this function runs. Therefore, the zero-terminated string
format isn’t the best choice if you need to process long strings.

� Though this is a minor problem, with the zero-terminated string format
you cannot easily represent any character whose character code is zero
(such as the ASCII NUL character).

� With zero-terminated strings there is no information contained within
the string data itself that tells you how long a string can grow beyond the
terminating zero byte. Therefore, some string functions, like concatena-
tion, can only extend the length of an existing string variable and check
for overflow if the caller explicitly passes in the maximum length.

5.2.1.2 Length-Prefixed Strings

A second string format, length-prefixed strings, overcomes some of the
problems with zero-terminated strings. Length-prefixed strings are common
in languages like Pascal; they generally consist of a single byte that specifies
the length of the string, followed by zero or more 8-bit character codes.
In a length-prefixed scheme, the string “abc” would consist of four bytes:
the length byte ($03), followed by a, b, and c.

Length-prefixed strings solve two of the problems associated with zero-
terminated strings. First, it is possible to represent the NUL character in a
length-prefixed string, and second, string operations are more efficient.
Another advantage to length-prefixed strings is that the length is usually
sitting at position zero in the string (when viewing the string as an array of
characters), so the first character of the string begins at index one in the
array representation of the string. For many string functions, having a one-
based index into the character data is much more convenient than a zero-
based index (which zero-terminated strings use).

Length-prefixed strings do suffer from their own drawbacks, the prin-
cipal drawback being that they are limited to a maximum of 255 characters
in length (assuming a 1-byte length prefix). One can remove this limitation
by using a 2- or 4-byte length value, but doing so increases the amount of
overhead data from one to two or four bytes.

No Starch Press, Copyright © 2004 by Randall Hyde

Charac te r Rep resenta ti on 113

5.2.1.3 Seven-Bit Strings

An interesting string format that works for 7-bit codes like ASCII involves
using the HO bit to indicate the end of the string. All but the last character
code in the string would have their HO bit clear (or set, your choice) and the
last character in the string would have its HO bit set (or clear, if all the other
HO bits are set).

This 7-bit string format has several disadvantages:

� You have to scan the entire string in order to determine the length
of the string.

� You cannot have zero-length strings in this format.

� Few languages provide literal string constants for 7-bit strings.

� You are limited to a maximum of 128 character codes, though this is
fine when using plain ASCII.

However, the big advantage of 7-bit strings is that they don’t require any
overhead bytes to encode the length. Assembly language (using a macro to
create literal string constants) is probably the best language to use when
dealing with 7-bit strings — because the advantage of 7-bit strings is their
compactness, and assembly language programmers tend to be the ones who
worry most about compactness, this is a good match. Here’s an HLA macro
that will convert a literal string constant to a 7-bit string:

#macro sbs(s);

// Grab all but the last character of the string:

(@substr(s, 0, @length(s) − 1) +

// Concatenate the last character with its HO bit set:

char(uns8(char(@substr(s, @length(s) − 1, 1))) | $80))

#endmacro

. . .

byte sbs("Hello World");

5.2.1.4 HLA Strings

As long as you’re not too concerned about a few extra bytes of overhead
per string, it’s quite possible to create a string format that combines the
advantages of both length-prefixed and zero-terminated strings without
their disadvantages. The HLA language has done this with its native string
format.6

6 Note that HLA is an assembly language, so it’s perfectly possible, and easy in fact, to support
any reasonable string format. HLA’s native string format is the one it uses for literal string
constants, and this is the format that most of the routines in the HLA standard library support.

No Starch Press, Copyright © 2004 by Randall Hyde

114 Chap te r 5

The biggest drawback to the HLA character string format is the amount
of overhead required for each string (which can be significant, percentage-
wise, if you’re in a memory-constrained environment and you process
many small strings). HLA strings contain both a length prefix and a zero-
terminating byte, as well as some other information, that costs nine bytes
of overhead per string.7

The HLA string format uses a 4-byte length prefix, allowing character
strings to be just over four billion characters long (obviously, this is far more
than any practical application will use). HLA also sticks a zero byte at the
end of the character string data, so HLA strings are upward compatible
with string functions that reference (but do not change the length of) zero-
terminated strings. The additional four bytes of overhead in an HLA string
contain the maximum legal length for that string. Having this extra field
allows HLA string functions to check for string overflow, if necessary. In
memory, HLA strings take the form shown in Figure 5-2.

The four bytes immediately before the first character of the string
contain the current string length. The four bytes preceding the current
string length contain the maximum string length. Immediately following the
character data is a zero byte. Finally, HLA always ensures that the string data
structure’s length is a multiple of four bytes long (for performance reasons),
so there may be up to three additional bytes of padding at the end of the
object in memory (note that the string appearing in Figure 5-2 requires only
one byte of padding to ensure that the data structure is a multiple of four
bytes in length).

Figure 5-2: HLA string format

HLA string variables are actually pointers that contain the byte address of the
first character in the string. To access the length fields, you would load the
value of the string pointer into a 32-bit register. You’d access the Length field
at offset −4 from the base register and the MaxLength field at offset −8 from the
base register. Here’s an example:

static

s :string := "Hello World";

. . .

mov(s, esi); // Move the address of 'H' in "Hello World"

// into esi.

mov([esi-4], ecx); // Puts length of string (11 for "Hello World")

// into ECX.

. . .

7 Actually, because of memory alignment restrictions, there can be up to 12 bytes of overhead,
depending on the string.

MaxLength Length S t r i n g #0

No Starch Press, Copyright © 2004 by Randall Hyde

Charac te r Rep resenta ti on 115

mov(s, esi);

cmp(eax, [esi-8]); // See if value in EAX exceeds the maximum

// string length.

ja StringOverflow;

One nice thing about HLA string variables is that (as read-only objects) HLA
strings are compatible with zero-terminated strings. For example, if you have
a function written in C or some other language that’s expecting you to pass it
a zero-terminated string, you can call that function and pass it an HLA string
variable, like this:

someCFunc(hlaStringVar);

The only catch is that the C function must not make any changes to the
string that would affect its length (because the C code won’t update the
Length field of the HLA string). Of course, you can always call a C strlen
function upon returning to update the length field yourself, but generally,
it’s best not to pass HLA strings to a function that modifies zero-terminated
strings.

5.2.1.5 Descriptor-Based Strings

The string formats we’ve considered up to this point have kept the attribute
information (the lengths and terminating bytes) for a string in memory
along with the character data. Perhaps a slightly more flexible scheme is to
maintain information like the maximum and current lengths of a string in a
record structure that also contains a pointer to the character data. We call
such records descriptors. Consider the following Pascal/Delphi/Kylix data
structure:

type

dString :record

curLength :integer;

strData :^char;

end;

Note that this data structure does not hold the actual character data. Instead,
the strData pointer contains the address of the first character of the string.
The curLength field specifies the current length of the string. Of course, you
could add any other fields you like to this record, like a maximum length
field, though a maximum length isn’t usually necessary because most string
formats employing a descriptor are dynamic (as will be discussed in the next
section). Most string formats employing a descriptor just maintain the length
field.

An interesting attribute of a descriptor-based string system is that the
actual character data associated with a string could be part of a larger string.
Because there are no length or terminating bytes within the actual character
data, it is possible to have the character data for two strings overlap. For

No Starch Press, Copyright © 2004 by Randall Hyde

116 Chap te r 5

example, take a look at Figure 5-3. In this example, there are two strings: one
representing the string “Hello World” and the second representing “World.”
Notice that the two strings overlap. This can save memory and make certain
functions (like substring) very efficient. Of course, when strings overlap as
these ones do, you cannot modify the string data because that could wipe out
part of some other string.

Figure 5-3: Overlapping strings using descriptors

5.2.2 Types of Strings: Static, Pseudo-Dynamic, and Dynamic
Based on the various string formats covered thus far, we can now define
three string types according to when the system allocates storage for the
string. There are static strings, pseudo-dynamic strings, and dynamic strings.

5.2.2.1 Static Strings

Pure static strings are those whose maximum size a programmer chooses
when writing the program. Pascal (and Delphi “short” strings) fall into this
category. Arrays of characters that you will use to hold zero-terminated
strings in C/C++ also fall into this category. Consider the following
declaration in Pascal:

(* Pascal static string example *)

var pascalString :string(255); // Max length will always be 255 characters.

And here’s an example in C/C++:

// C/C++ static string example:

char cString[256]; // Max length will always be 255 characters

// (plus zero byte).

While the program is running, there is no way to increase the maximum
sizes of these static strings. Nor is there any way to reduce the storage they
will use. These string objects will consume 256 bytes at run time, period.
One advantage to pure static strings is that the compiler can determine
their maximum length at compile time and implicitly pass this information
to a string function so it can test for bounds violations at run time.

H e l l o W o r l d

11 5

Descriptor #1 Descriptor #2

No Starch Press, Copyright © 2004 by Randall Hyde

Charac te r Rep resenta ti on 117

5.2.2.2 Pseudo-Dynamic Strings

Pseudo-dynamic strings are those whose length the system sets at run time
by calling a memory-management function like malloc to allocate storage
for the string. However, once the system allocates storage for the string, the
maximum length of the string is fixed. HLA strings generally operate in this
manner.8 An HLA programmer would typically call the stralloc function
to allocate storage for a string variable. Once created via stralloc, however,
that particular string object has a fixed length that cannot change.9

5.2.2.3 Dynamic Strings

Dynamic string systems, which typically use a descriptor-based format, will
automatically allocate sufficient storage for a string object whenever you
create a new string or otherwise do something that affects an existing string.
Operations like string assignment and substring are relatively trivial in dyna-
mic string systems — generally they only copy the string descriptor data, so
such operations are fast. However, as the section on descriptor strings notes,
when using strings this way, one cannot store data back into a string object,
because it could modify data that is part of other string objects in the system.

The solution to this problem is to use a technique known as copy on write.
Whenever a string function needs to change some characters in a dynamic
string, the function first makes a copy of the string and then makes whatever
modifications are necessary to the copy of the data. Research with typical
programs suggests that copy-on-write semantics can improve the perfor-
mance of many applications because operations like string assignment and
substring are far more common than the modification of character data
within strings. The only drawback to this mechanism is that after several
modifications to string data in memory, there may be sections of the string
heap area that contain character data that are no longer in use. To avoid a
memory leak, dynamic string systems employing copy-on-write usually provide
garbage collection code that scans through the string area looking for stale char-
acter data in order to recover that memory for other purposes. Unfortu-
nately, depending on the algorithms in use, garbage collection can be slow.

5.2.3 Reference Counting for Strings
Consider the case where you have two string descriptors (or just pointers)
pointing at the same string data in memory. Clearly, you cannot deallocate
(that is, reuse for a different purpose) the storage associated with one of
these pointers while the program is still using the other pointer to access
the same data. One (alas, common) solution is to make the programmer
responsible for keeping track of such details. Unfortunately, as applications
become more complex, relying on the programmer to keep track of such

8 Though, being assembly language, of course it’s possible to create static strings and pure
dynamic strings in HLA, as well.
9 Actually, you could call strrealloc to change the size of an HLA string, but dynamic string
systems generally do this automatically, something that the existing HLA string functions will
not do for you if they detect a string overflow.

No Starch Press, Copyright © 2004 by Randall Hyde

118 Chap te r 5

details often leads to dangling pointers, memory leaks, and other pointer-
related problems in the software. A better solution is to allow the pro-
grammer to deallocate the storage for the character data in the string, and
to have the deallocation process hold off on the actual deallocation until
the programmer releases the last pointer referencing the character data
for the string. To accomplish this, a string system can use reference counters
to track the pointers and their associated data.

A reference counter is an integer that counts the number of pointers that
reference a string’s character data in memory. Every time you assign the
address of the string to some pointer, you increment the reference counter
by one. Likewise, whenever you wish to deallocate the storage associated
with the character data for the string, you decrement the reference counter.
Deallocation of the storage for the actual character data doesn’t happen
until the reference counter decrements to zero.

Reference counting works great when the language handles the details
of string assignment automatically for you. If you try to implement reference
counting manually, the only difficulty is ensuring that you always increment
the reference counter when you assign a string pointer to some other pointer
variable. The best way to do this is to never assign pointers directly but to
handle all string assignments via some function (or macro) call that updates
the reference counters in addition to copying the pointer data. If your code
fails to update the reference counter properly, you’ll wind up with dangling
pointers or memory leaks.

5.2.4 Delphi/Kylix Strings
Although Delphi and Kylix provide a “short string” format that is compatible
with the length-prefixed strings in earlier versions of Delphi, later versions
of Delphi (4.0 and later) and Kylix use dynamic strings for their string data.
Although this string format is unpublished (and, therefore, subject to
change), experiments with Delphi at the time of this writing indicate that
Delphi’s string format is very similar to HLA’s. Delphi uses a zero-terminated
sequence of characters with a leading string length and a reference counter
(rather than a maximum length as HLA uses). Figure 5-4 shows the layout
of a Delphi string in memory.

Figure 5-4: Delphi/Kylix string data format

Just like HLA, Delphi/Kylix string variables are pointers that point to the
first character of the actual string data. To access the length and reference-
counter fields, the Delphi/Kylix string routines use a negative offset of −4
and −8 from the character data’s base address. However, because this string
format is not published, applications should never access the length or
reference counter fields directly. Delphi/Kylix provides a length function
that extracts the string length for you, and there really is no need for your

Ref Count Length S t r i n g #0

No Starch Press, Copyright © 2004 by Randall Hyde

Charac te r Rep resenta ti on 119

applications to access the reference counter field because the Delphi/Kylix
string functions maintain this field automatically.

5.2.5 Creating Your Own String Formats
Typically, you will use the string format your language provides, unless you
have special requirements. When you do have such requirements, you will
find that most languages provide user-defined data-structuring capabilities
that allow you to create your own custom string formats.

About the only problem you’ll run into is that the language will probably
insist on a single string format for literal string constants. However, you can
usually write a short conversion function that will translate the literal strings
in your language to whatever format you choose.

5.3 Character Sets

Like strings, character sets are another composite data type built upon
the character data type. A character set is a mathematical set of characters.
Membership in a set is a binary relation. A character is either in the set or
it is not in the set; you cannot have multiple copies of the same character
in a character set. Furthermore, the concept of sequence (whether one
character comes before another, as in a string) is foreign to a character set.
If two characters are members of a set, their order in the set is irrelevant.

Table 5-3 lists some of the more common character set functions to give
you an idea of the types of operations applications typically perform on
character sets.

Table 5-3: Common Character Set Functions

Function/Operator Description

Membership (IN) Checks to see if a character is a member of a character set
(returns true/false).

Intersection Returns the intersection of two character sets (that is, the set of
characters that are members of both sets).

Union Returns the union of two character sets (that is, all the
characters that are members of either set or both sets).

Difference Returns the difference of two sets (that is, those characters
in one set that are not in the other).

Extraction Extracts a single character from a set.

Subset Returns true if one character set is a subset of another.

Proper subset Returns true if one character set is a proper subset of another.

Superset Returns true if one character set is a superset of another.

Proper superset Returns true if one character set is a proper superset
of another.

Equality Returns true if one character set is equal to another.

Inequality Returns true if one character set is not equal to another.

No Starch Press, Copyright © 2004 by Randall Hyde

120 Chap te r 5

5.3.1 Powerset Representation of Character Sets
There are many different ways to represent character sets. Several languages
implement character sets using an array of Boolean values (one Boolean
value for each possible character code). Each Boolean value determines
whether its corresponding character is or is not a member of the character
set: true indicates that the specified character is a member of the set; false
indicates that the corresponding character is not a member of the set. To
conserve memory, most character set implementations allocate only a single
bit for each character in the set; therefore, such character sets consume 16
bytes (128 bits) of memory when supporting 128 characters, or 32 bytes (256
bits) when supporting up to 256 possible characters. This representation of a
character set is known as a powerset.

The HLA language uses an array of 16 bytes to represent the 128 possible
ASCII characters. This array of 128 bits is organized in memory, as shown in
Figure 5-5.

Figure 5-5: HLA character set representation

Bit zero of byte zero corresponds to ASCII code zero (the NUL character).
If this bit is one, then the character set contains the NUL character; if this bit
is zero, then the character set does not contain the NUL character. Likewise,
bit one of byte eight corresponds to ASCII code 65, an uppercase A. Bit 65
will contain a one if A is a current member of the character set, it will contain
zero if A is not a member of the set.

Pascal (for example, Delphi/Kylix) uses a similar scheme to represent
character sets. Delphi allows up to 256 characters in a character set, so
Delphi/Kylix character sets consume 256 bits (or 32 bytes) of memory.

While there are other possible ways to implement character sets, this
bit vector (array) implementation has the advantage that it is very easy to
implement set operations like union, intersection, difference comparison,
and membership tests.

5.3.2 List Representation of Character Sets
Sometimes a powerset bitmap just isn’t the right representation for a
character set. For example, if your sets are always very small (no more than
three or four members), using 16 or 32 bytes to represent such a set can be
overkill. For very small sets, using a character string to represent a list of
characters is probably the best way to go.10 If you rarely have more than

10 Though it is up to you to ensure that the character string maintains set semantics. That is, you
never allow duplicate characters in such a string.

. . .

7 6 5 4 3 2 1127 126 125 124 123 122 121 120 0

Byte 0Byte 15

No Starch Press, Copyright © 2004 by Randall Hyde

Charac te r Rep resenta ti on 121

a few characters in a set, scanning through a string to locate a particular
character is probably efficient enough for most applications.

On the other hand, if your character set has a large number of possible
characters, then the powerset representation for the character set could
become quite large (for example, Unicode character sets would require
8,192 bytes of memory to implement them as powersets). For these reasons
(and more), the powerset representation isn’t always the best. A list or char-
acter string representation could be more appropriate in such situations.

5.4 Designing Your Own Character Set

There is very little that is sacred about the ASCII, EBCDIC, and Unicode
character sets. Their primary advantage is that they are international
standards to which many systems adhere. If you stick with one of these
standards, chances are good you’ll be able to exchange information with
other people. That is the whole purpose of these standardized codes.

However, these codes were not designed to make various character
computations easy. ASCII and EBCDIC were designed with now-antiquated
hardware in mind. In particular, the ASCII character set was designed to
correspond to the mechanical teletypewriters’ keyboards, and EBCDIC was
designed with old punched-card systems in mind. Given that such equipment
is mainly found in museums today, the layout of the codes in these character
sets has almost no benefit in modern computer systems. If we could design
our own character sets today, they’d probably be considerably different
from ASCII or EBCDIC. They’d probably be based on modern keyboards
(so they’d include codes for common keys, like LEFT ARROW, RIGHT ARROW,
PGUP, and PGDN). The codes would also be laid out to make various
common computations a whole lot easier.

Although the ASCII and EBCDIC character sets are not going away
any time soon, there is nothing stopping you from defining your own
application-specific character set. Of course, an application-specific char-
acter set is, well, application-specific, and you won’t be able to share text
files containing characters encoded in your custom character set with appli-
cations that are ignorant of your private encoding. But it is fairly easy to
translate between different character sets using a lookup table, so you can
convert between your application’s internal character set and an external
character set (like ASCII) when performing I/O operations. Assuming you
pick a reasonable encoding that makes your programs more efficient overall,
the loss of efficiency during I/O can be worthwhile. But how do you choose
an encoding for your character set?

The first question you have to ask yourself is, “How many characters
do you want to support in your character set?” Obviously, the number of
characters you choose will directly affect the size of your character data. An
easy choice is 256 possible characters, because bytes are the most common
primitive data type that software uses to represent character data. Keep in
mind, however, that if you don’t really need 256 characters, you probably

No Starch Press, Copyright © 2004 by Randall Hyde

122 Chap te r 5

shouldn’t try to define that many characters in your character set. For
example, if you can get by with 128 characters or even 64 characters in your
custom character set, then “text files” you create with such character sets will
compress better. Likewise, data transmissions using your custom character
set will be faster if you only have to transmit six or seven bits for each
character instead of eight. If you need more than 256 characters, you’ll have
to weigh the advantages and disadvantages of using multiple code pages,
double-byte character sets, or 16-bit characters. And keep in mind that
Unicode provides for user-defined characters. So if you need more than 256
characters in your character set, you might consider using Unicode and the
user-defined points (character sets) to remain “somewhat standard” with the
rest of the world.

However, in this section, we’ll define a character set containing 128
characters using an 8-bit byte. For the most part, we’re going to simply
rearrange the codes in the ASCII character set to make them more con-
venient for several calculations, and we’re going to rename a few of the
control codes so they make sense on modern systems instead of the old
mainframes and teletypes for which they were created. However, we will
add a few new characters beyond those defined by the ASCII standard.
Again, the main purpose of this exercise is to make various computations
more efficient, not create new characters. We’ll call this character set the
HyCode character set.

NOTE The development of HyCode in this chapter is not an attempt to create some new
character set standard. HyCode is simply a demonstration of how you can create
a custom, application-specific, character set to improve your programs.

5.4.1 Designing an Efficient Character Set

We should think about several things when designing a new character set.
For example, do we need to be able to represent strings of characters using
an existing string format? This can have a bearing on the encoding of our
strings. For example, if you want to be able to use function libraries that
operate on zero-terminated strings, then you need to reserve encoding zero
in your custom character set for use as an end-of-string marker. Do keep in
mind, however, that a fair number of string functions won’t work with your
new character set, no matter what you do. For example, functions like stricmp
only work if you use the same representation for alphabetic characters as
ASCII (or some other common character set). Therefore, you shouldn’t feel
hampered by the requirements of some particular string representation,
because you’re going to have to write many of your own string functions to
process your custom characters. The HyCode character set doesn’t reserve
code zero for an end-of-string marker, and that’s okay because, as we’ve seen,
zero-terminated strings are not very efficient.

No Starch Press, Copyright © 2004 by Randall Hyde

Charac te r Rep resenta ti on 123

If you look at programs that make use of character functions, you’ll see
that certain functions occur frequently, such as these:

� Check a character to see if it is a digit.

� Convert a digit character to its numeric equivalent.

� Convert a numeric digit to its character equivalent.

� Check a character to see if it is alphabetic.

� Check a character to see if it is a lowercase character.

� Check a character to see if it is an uppercase character.

� Compare two characters (or strings) using a case-insensitive comparison.

� Sort a set of alphabetic strings (case-sensitive and case-insensitive
sorting).

� Check a character to see if it is alphanumeric.

� Check a character to see if it is legal in an identifier.

� Check a character to see if it is a common arithmetic or logical operator.

� Check a character to see if it is a bracketing character (that is, one of (,),
[,], {, }, <, or >).

� Check a character to see if it is a punctuation character.

� Check a character to see if it is a whitespace character (such as a space,
tab, or newline).

� Check a character to see if it is a cursor control character.

� Check a character to see if it is a scroll control key (such as PGUP, PGDN,
HOME, and END).

� Check a character to see if it is a function key.

We’ll design the HyCode character set to make these types of operations as
efficient and as easy as possible. A huge improvement we can make over the
ASCII character set is to assign contiguous character codes to characters
belonging to the same type, such as alphabetic characters and control
characters. This will allow us to do any of the tests above by using a pair of
comparisons. For example, it would be nice if we could determine that a
particular character is some sort of punctuation character by comparing
against two values that represent upper and lower bounds of the entire range
of such characters. While it’s not possible to satisfy every conceivable range
comparison this way, we can design our character set to accommodate the
most common tests with as few comparisons as possible. Although ASCII
does organize some of the character sequences in a reasonable fashion, we
can do much better. For example, in ASCII, it is not possible to check for a
punctuation character with a pair of comparisons because the punctuation
characters are spread throughout the character set.

No Starch Press, Copyright © 2004 by Randall Hyde

124 Chap te r 5

5.4.2 Grouping the Character Codes for Numeric Digits
Consider the first three functions in the previous list — we can achieve
all three of these goals by reserving the character codes zero through nine
for the characters 0 through 9. First, by using a single unsigned comparison
to check if a character code is less than or equal to nine, we can see if a
character is a digit. Next, converting between characters and their numeric
representations is trivial, because the character code and the numeric
representation are one and the same.

5.4.3 Grouping Alphabetic Characters
Dealing with alphabetic characters is another common character/string
problem. The ASCII character set, though nowhere near as bad as EBCDIC,
just isn’t well designed for dealing with alphabetic character tests and oper-
ations. Here are some problems with ASCII that we’ll solve with HyCode:

� The alphabetic characters lie in two disjoint ranges. Tests for an alpha-
betic character, for example, require four comparisons.

� The lowercase characters have ASCII codes that are greater than the
uppercase characters. For comparison purposes, if we’re going to do a
case-sensitive comparison, it’s more intuitive to treat lowercase charac-
ters as being less than uppercase characters.

� All lowercase characters have a greater value than any individual upper-
case character. This leads to counterintuitive results such as a being
greater than B even though any school child who has learned their ABCs
knows that this isn’t the case.

HyCode solves these problems in a couple of interesting ways. First, HyCode
uses encodings $4C through $7F to represent the 52 alphabetic characters.
Because HyCode only uses 128 character codes ($00..$7F), the alphabetic
codes consume the last 52 character codes. This means that if we want to test
a character to see if it is alphabetic, we only need to compare whether the
code is greater than or equal to $4C. In a high-level language, you’d write the
comparison like this:

if(c >= 76) . . .

Or if your compiler supports the HyCode character set, like this:

if(c >= 'a') . . .

In assembly language, you could use a pair of instructions like the following:

cmp(al, 76);

jnae NotAlphabetic;

No Starch Press, Copyright © 2004 by Randall Hyde

Charac te r Rep resenta ti on 125

// Execute these statements if it's alphabetic

NotAlphabetic:

Another advantage of HyCode (and another big difference from other
character sets) is that HyCode interleaves the lowercase and uppercase char-
acters (that is, the sequential encodings are for the characters a, A, b, B, c, C,
and so on). This makes sorting and comparing strings very easy, regardless
of whether you’re doing a case-sensitive or case-insensitive search. The inter-
leaving uses the LO bit of the character code to determine whether the
character code is lowercase (LO bit is zero) or uppercase (LO bit is one).
HyCode uses the following encodings for alphabetic characters:

a:76, A:77, b:78, B:79, c:80, C:81, . . . y:124, Y:125, z:126, Z:127

Checking for an uppercase or lowercase alphabetic using HyCode is a little
more work than checking whether a character is alphabetic, but when
working in assembly it’s still less work than you’ll need for the equivalent
ASCII comparison. To test a character to see if it’s a member of a single case,
you effectively need two comparisons; the first test is to see if it’s alphabetic,
and then you determine its case. In C/C++ you’d probably use statements
like the following:

if((c >= 76) && (c & 1))

{

// execute this code if it's an uppercase character

}

if((c >= 76) && !(c & 1))

{

// execute this code if it's a lowercase character

}

Note that the subexpression (c & 1) evaluates true (1) if the LO bit of c is
one, meaning we have an uppercase character if c is alphabetic. Likewise,
!(c & 1) evaluates true if the LO bit of c is zero, meaning we have a lowercase
character. If you’re working in 80x86 assembly language, you can actually test
a character to see if it is uppercase or lowercase by using three machine
instructions:

// Note: ROR(1, AL) maps lowercase to the range $26..$3F (38..63)

// and uppercase to $A6..$BF (166..191). Note that all other characters

// get mapped to smaller values within these ranges.

ror(1, al);

cmp(al, $26);

No Starch Press, Copyright © 2004 by Randall Hyde

126 Chap te r 5

jnae NotLower; // Note: must be an unsigned branch!

// Code that deals with a lowercase character.

NotLower:

// For uppercase, note that the ROR creates codes in the range $A8..$BF which

// are negative (8-bit) values. They also happen to be the *most* negative

// numbers that ROR will produce from the HyCode character set.

ror(1, al);

cmp(al, $a6);

jge NotUpper; // Note: must be a signed branch!

// Code that deals with an uppercase character.

NotUpper:

Unfortunately, very few languages provide the equivalent of an ror operation,
and only a few languages allow you to (easily) treat character values as signed
and unsigned within the same code sequence. Therefore, this sequence is
probably limited to assembly language programs.

5.4.4 Comparing Alphabetic Characters
The HyCode grouping of alphabetic characters means that lexicographical
ordering (i.e., “dictionary ordering”) is almost free, no matter what language
you’re using. As long as you can live with the fact that lowercase characters
are less than the corresponding uppercase characters, sorting your strings by
comparing the HyCode character values will give you lexicographical order.
This is because, unlike ASCII, HyCode defines the following relations on the
alphabetic characters:

a < A < b < B < c < C < d < D < . . . < w < W < x < X < y < Y < z < Z

This is exactly the relationship you want for lexicographical ordering, and
it’s also the intuitive relationship most people would expect.

Case-insensitive comparisons only involve a tiny bit more work than
straight case-sensitive comparisons (and far less work than doing case-
insensitive comparisons using a character set like ASCII). When comparing
two alphabetic characters, you simply mask out their LO bits (or force them
both to one) and you automatically get a case-insensitive comparison.

To see the benefit of the HyCode character set when doing case-
insensitive comparisons, let’s first take a look at what the standard case-
insensitive character comparison would look like in C/C++ for two ASCII
characters:

if(toupper(c) == toupper(d))

{

No Starch Press, Copyright © 2004 by Randall Hyde

Charac te r Rep resenta ti on 127

// do code that handles c==d using a case-insensitive comparison.

}

This code doesn’t look too bad, but consider what the toupper function (or,
usually, macro) expands to:11

#define toupper(ch) ((ch >= 'a' && ch <= 'z') ? ch & 0x5f : ch)

With this macro, you wind up with the following once the C preprocessor
expands the former if statement:

if

(

((c >= 'a' && c <= 'z') ? c & 0x5f : c)

== ((d >= 'a' && d <= 'z') ? d & 0x5f : d)

)

{

// do code that handles c==d using a case-insensitive comparison.

}

This example expands to 80x86 code similar to this:

// assume c is in cl and d is in dl.

cmp(cl, 'a'); // See if c is in the range 'a'..'z'

jb NotLower;

cmp(cl, 'z');

ja NotLower;

and($5f, cl); // Convert lowercase char in cl to uppercase.

NotLower:

cmp(dl, 'a'); // See if d is in the range 'a'..'z'

jb NotLower2;

cmp(dl, 'z');

ja NotLower2;

and($5f, dl); // Convert lowercase char in dl to uppercase.

NotLower2:

cmp(cl, dl); // Compare the (now uppercase if alphabetic)

// chars.

jne NotEqual; // Skip the code that handles c==d if they're

// not equal.

// do code that handles c==d using a case-insensitive comparison.

NotEqual:

11 Actually, it’s worse than this because most C standard libraries use lookup tables to map
ranges of characters, but we’ll ignore that issue here.

No Starch Press, Copyright © 2004 by Randall Hyde

128 Chap te r 5

When using HyCode, case-insensitive comparisons are much simpler. Here’s
what the HLA assembly code would look like:

// Check to see if CL is alphabetic. No need to check DL as the comparison

// will always fail if DL is non-alphabetic.

cmp(cl, 76); // If CL < 76 ('a') then it's not alphabetic

jb TestEqual; // and there is no way the two chars are equal

// (even ignoring case).

or(1, cl); // CL is alpha, force it to uppercase.

or(1, dl); // DL may or may not be alpha. Force to

// uppercase if it is.

TestEqual:

cmp(cl, dl); // Compare the uppercase versions of the chars.

jne NotEqual; // Bail out if they're not equal.

TheyreEqual:

// do code that handles c==d using a case-insensitive comparison.

NotEqual:

As you can see, the HyCode sequence uses half the instructions for a case-
insensitive comparison of two characters.

5.4.5 Other Character Groupings
Because alphabetic characters are at one end of the character-code range
and numeric characters are at the other, it takes two comparisons to check
a character to see if it’s alphanumeric (which is still better than the four
comparisons necessary when using ASCII). Here’s the Pascal/Delphi/Kylix
code you’d use to see if a character is alphanumeric:

if(ch < chr(10) or ch >= chr(76)) then . . .

Several programs (beyond compilers) need to efficiently process strings
of characters that represent program identifiers. Most languages allow
alphanumeric characters in identifiers, and, as you just saw, we can check
a character to see if it’s alphanumeric using only two comparisons.

Many languages also allow underscores within identifiers, and some
languages, such as MASM and TASM, allow other characters like the at
character (@) and dollar sign ($) to appear within identifiers. Therefore,
by assigning the underscore character the value 75, and by assigning the $
and @ characters the codes 73 and 74, we can still test for an identifier
character using only two comparisons.

For similar reasons, the HyCode character set groups several other
classes of characters into contiguous character-code ranges. For example,
HyCode groups the cursor control keys together, the whitespace characters,
the bracketing characters (parentheses, brackets, braces, and angle

No Starch Press, Copyright © 2004 by Randall Hyde

Charac te r Rep resenta ti on 129

brackets), the arithmetic operators, the punctuation characters, and so on.
Table 5-4 lists the complete HyCode character set. If you study the numeric
codes assigned to each of these characters, you’ll discover that their code
assignments allow efficient computation of most of the character operations
described earlier.

Table 5-4: The HyCode Character Set

Binary Hex Decimal Character Binary Hex Decimal Character

0000_0000 00 0 0 0001_1110 1E 30 End

0000_0001 01 1 1 0001_1111 1F 31 Home

0000_0010 02 2 2 0010_0000 20 32 PgDn

0000_0011 03 3 3 0010_0001 21 33 PgUp

0000_0100 04 4 4 0010_0010 22 34 left

0000_0101 05 5 5 0010_0011 23 35 right

0000_0110 06 6 6 0010_0100 24 36 up

0000_0111 07 7 7 0010_0101 25 37 down/
linefeed

0000_1000 08 8 8 0010_0110 26 38 nonbreaking
space

0000_1001 09 9 9 0010_0111 27 39 paragraph

0000_1010 0A 10 keypad 0010_1000 28 40 carriage
return

0000_1011 0B 11 cursor 0010_1001 29 41 newline/enter

0000_1100 0C 12 function 0010_1010 2A 42 tab

0000_1101 0D 13 alt 0010_1011 2B 43 space

0000_1110 0E 14 control 0010_1100 2C 44 (

0000_1111 0F 15 command 0010_1101 2D 45)

0001_0000 10 16 len 0010_1110 2E 46 [

0001_0001 11 17 len128 0010_1111 2F 47]

0001_0010 12 18 bin128 0011_0000 30 48 {

0001_0011 13 19 EOS 0011_0001 31 49 }

0001_0100 14 20 EOF 0011_0010 32 50 <

0001_0101 15 21 sentinel 0011_0011 33 51 >

0001_0110 16 22 break/
interrupt

0011_0100 34 52 =

0001_0111 17 23 escape/
cancel

0011_0101 35 53 ^

0001_1000 18 24 pause 0011_0110 36 54 |

0001_1001 19 25 bell 0011_0111 37 55 &

0001_1010 1A 26 back tab 0011_1000 38 56 -

0001_1011 1B 27 backspace 0011_1001 39 57 +

0001_1100 1C 28 delete

0001_1101 1D 29 Insert (continued on the next page)

No Starch Press, Copyright © 2004 by Randall Hyde

130 Chap te r 5

0011_1010 3A 58 * 0101_1101 5D 93 I

0011_1011 3B 59 / 0101_1110 5E 94 j

0011_1100 3C 60 % 0101_1111 5F 95 J

0011_1101 3D 61 ~ 0110_0000 60 96 k

0011_1110 3E 62 ! 0110_0001 61 97 K

0011_1111 3F 63 ? 0110_0010 62 98 l

0100_0000 40 64 , 0110_0011 63 99 L

0100_0001 41 65 . 0110_0100 64 100 m

0100_0010 42 66 : 0110_0101 65 101 M

0100_0011 43 67 ; 0110_0110 66 102 n

0100_0100 44 68 “ 0110_0111 67 103 N

0100_0101 45 69 ’ 0110_1000 68 104 o

0100_0110 46 70 ‘ 0110_1001 69 105 O

0100_0111 47 71 \ 0110_1010 6A 106 p

0100_1000 48 72 # 0110_1011 6B 107 P

0100_1001 49 73 $ 0110_1100 6C 108 q

0100_1010 4A 74 @ 0110_1101 6D 109 Q

0100_1011 4B 75 _ 0110_1110 6E 110 r

0100_1100 4C 76 a 0110_1111 6F 111 R

0100_1101 4D 77 A 0111_0000 70 112 s

0100_1110 4E 78 b 0111_0001 71 113 S

0100_1111 4F 79 B 0111_0010 72 114 t

0101_0000 50 80 c 0111_0011 73 115 T

0101_0001 51 81 C 0111_0100 74 116 u

0101_0010 52 82 d 0111_0101 75 117 U

0101_0011 53 83 D 0111_0110 76 118 v

0101_0100 54 84 e 0111_0111 77 119 V

0101_0101 55 85 E 0111_1000 78 120 w

0101_0110 56 86 f 0111_1001 79 121 W

0101_0111 57 87 F 0111_1010 7A 122 x

0101_1000 58 88 g 0111_1011 7B 123 X

0101_1001 59 89 G 0111_1100 7C 124 y

0101_1010 5A 90 h 0111_1101 7D 125 Y

0101_1011 5B 91 H 0111_1110 7E 126 z

0101_1100 5C 92 i 0111_1111 7F 127 Z

Table 5-4: The HyCode Character Set (continued)

Binary Hex Decimal Character Binary Hex Decimal Character

No Starch Press, Copyright © 2004 by Randall Hyde

Charac te r Rep resenta ti on 131

5.5 For More Information

ASCII, EBCDIC, and Unicode are all international standards. You can find
out more about the EBCDIC character set families on IBM’s website
(http://www.ibm.com). ASCII and Unicode are both ISO standards, and
ISO provides reports for both character sets. Generally, those reports cost
money, but you can also find out lots of information about the ASCII and
Unicode character sets by searching for them by name on the Internet. You
can also read about UNICODE at http://www.unicode.org.

Those who are interested in more information about character, string,
and character set functions should consider reading references on the
following languages:

� The Awk programming language

� The Perl programming language

� The SNOBOL4 programming language

� The Icon programming language

� The SETL programming language

� The High Level Assembly (HLA) language

In particular, the HLA programming language provides a wide set
of character, string, character set, and pattern matching functions.
Check out the HLA Standard Library Reference Manual, usually
found at http://webster.cs.ucr.edu, for more details.

No Starch Press, Copyright © 2004 by Randall Hyde

No Starch Press, Copyright © 2004 by Randall Hyde

6
M E M O R Y O R G A N I Z A T I O N

A N D A C C E S S

This chapter describes the basic compo-
nents that make up a computer system: the

CPU, memory, I/O, and the bus that connects
them. Although you can write software with-

out this knowledge, writing great, high-performance code
requires an understanding of this material.

This chapter begins by discussing bus organization and memory organiza-
tion. These two hardware components may have as large a performance impact
on your software as the CPU’s speed. Knowing about memory performance char-
acteristics, data locality, and cache operation can help you design software that
runs as fast as possible. Writing great code requires a strong knowledge of the
computer’s architecture.

No Starch Press, Copyright © 2004 by Randall Hyde

134 Chap te r 6

6.1 The Basic System Components

The basic operational design of a computer system is called its architecture.
John von Neumann, a pioneer in computer design, is given credit for the
principal architecture in use today. For example, the 80x86 family uses the
von Neumann architecture (VNA). A typical von Neumann system has three
major components: the central processing unit (CPU), memory, and input/output
(I/O), as shown in Figure 6-1.

Figure 6-1: Typical von Neumann machine

In VNA machines, like the 80x86, the CPU is where all the action takes place.
All computations occur within the CPU. Data and machine instructions
reside in memory until the CPU requires them, at which point the system
transfers the data into the CPU. To the CPU, most I/O devices look like
memory; the major difference between memory and I/O devices is the fact
that the latter are generally located in the outside world, whereas the former
is located within the same machine.

6.1.1 The System Bus
The system bus connects the various components of a VNA machine. Most
CPUs have three major buses: the address bus, the data bus, and the control
bus. A bus is a collection of wires on which electrical signals pass between
components of the system. These buses vary from processor to processor, but
each bus carries comparable information on most processors. For example,
the data buses on the Pentium and 80386 may have different implemen-
tations, but both variants carry data between the processor, I/O, and
memory.

CPU

Memory

I/O devices

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Organizat ion and Access 135

6.1.1.1 The Data Bus

CPUs use the data bus to shuffle data between the various components in a
computer system. The size of this bus varies widely among CPUs. Indeed, bus
size is one of the main attributes that defines the “size” of the processor.

Most modern, general-purpose CPUs employ a 32-bit-wide or 64-bit-wide
data bus. Some processors use 8-bit or 16-bit data buses, there may well be
some CPUs with 128-bit buses by the time you read this. For the most part,
however, the CPUs in personal computers tend to use 32-bit or 64-bit data
buses (and 64-bit data buses are the most prevalent).

You’ll often hear a processor called an 8-, 16-, 32-, or 64-bit processor.
The smaller of the number of data lines on the processor and the size of
the largest general-purpose integer register determines the processor size.
For example, modern Intel 80x86 CPUs all have 64-bit buses, but only pro-
vide 32-bit general-purpose integer registers, so we’ll classify these devices
as 32-bit processors. The AMD x86-64 processors support 64-bit integer
registers and a 64-bit bus, so they’re 64-bit processors.

Although the 80x86 family members with 8-, 16-, 32-, and 64-bit data
buses can process data blocks up to the bit width of the bus, they can also
access smaller memory units of 8, 16, or 32 bits. Therefore, anything you can
do with a small data bus can be done with a larger data bus as well; the larger
data bus, however, may access memory faster and can access larger chunks of
data in one memory operation. You’ll read about the exact nature of these
memory accesses a little later in this chapter.

6.1.2 The Address Bus
The data bus on an 80x86 family processor transfers information between a
particular memory location or I/O device and the CPU. The only question
is, “Which memory location or I/O device?” The address bus answers that
question. To uniquely identify each memory location and I/O device, the
system designer assigns a unique memory address to each. When the software
wants to access a particular memory location or I/O device, it places the
corresponding address on the address bus. Circuitry within the device checks
this address and transfers data if there is an address match. All other memory
locations ignore the request on the address bus.

With a single address bus line, a processor could access exactly two
unique addresses: zero and one. With n address lines, the processor can
access 2n unique addresses (because there are 2n unique values in an n-bit
binary number). Therefore, the number of bits on the address bus will
determine the maximum number of addressable memory and I/O locations.
Early 80x86 processors, for example, provided only 20 lines on the address
bus. Therefore, they could only access up to 1,048,576 (or 220) memory
locations. Larger address buses can access more memory (see Table 6-1 on
the next page).

No Starch Press, Copyright © 2004 by Randall Hyde

136 Chap te r 6

Newer processors will support 40-, 48-, and 64-bit address buses. The time is
coming when most programmers will consider 4 GB (gigabytes) of storage to
be too small, just as we consider 1 MB (megabyte) insufficient today. (There
was a time when 1 MB was considered far more than anyone would ever
need!) Many other processors (such as SPARC and IA-64) already provide
much larger addresses buses and, in fact, support addresses up to 64 bits in
the software.

A 64-bit address range is truly infinite as far as memory is concerned.
No one will ever put 264 bytes of memory into a computer system and feel
that they need more. Of course, people have made claims like this in the
past. A few years ago, no one ever thought a computer would need 1 GB
of memory, but computers with a gigabyte of memory or more are very
common today. However, 264 really is infinity for one simple reason — it’s
physically impossible to build that much memory based on estimates of the
current size of the universe (which estimate about 256 different elementary
particles in the universe). Unless you can attach one byte of memory to every
elementary particle in the known universe, you’re not even going to come
close to approaching 264 bytes of memory on a given computer system. Then
again, maybe we really will use whole planets as computer systems one day,
as Douglas Adams predicts in The Hitchhiker’s Guide to the Galaxy. Who knows?

6.1.3 The Control Bus
The control bus is an eclectic collection of signals that control how the
processor communicates with the rest of the system. To illustrate its
importance, consider the data bus for a moment. The CPU uses the data bus
to move data between itself and memory. This prompts the question, “How
does the system know whether it is sending or receiving data?” Well, the
system uses two lines on the control bus, read and write, to determine the data
flow direction (CPU to memory, or memory to CPU). So when the CPU
wants to write data to memory, it asserts (places a signal on) the write control
line. When the CPU wants to read data from memory, it asserts the read
control line.

Although the exact composition of the control bus varies among pro-
cessors, some control lines are common to all processors and are worth a
brief mention. Among these are the system clock lines, interrupt lines, byte
enable lines, and status lines.

Table 6-1: 80x86 Addressing Capabilities

Processor Address Bus Size Maximum Addressable Memory

8088, 8086, 80186, 80188 20 1,048,576 (1 megabyte)

80286, 80386sx 24 16,777,216 (16 megabytes)

80386dx 32 4,294,976,296 (4 gigabytes)

80486, Pentium 32 4,294,976,296 (4 gigabytes)

Pentium Pro, II, III, IV 36 68,719,476,736 (64 gigabytes)

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Organizat ion and Access 137

The byte enable lines appear on the control bus of some CPUs that support
byte-addressable memory. These control lines allow 16-, 32-, and 64-bit pro-
cessors to deal with smaller chunks of data by communicating the size of the
accompanying data. Additional details appear later in the sections on 16-bit
and 32-bit buses.

The control bus also contains a signal that helps distinguish between
address spaces on the 80x86 family of processors. The 80x86 family, unlike
many other processors, provides two distinct address spaces: one for memory
and one for I/O. However, it does not have two separate physical address
buses (for I/O and memory). Instead, the system shares the address bus for
both I/O and memory addresses. Additional control lines decide whether
the address is intended for memory or I/O. When such signals are active,
the I/O devices use the address on the LO 16 bits of the address bus. When
inactive, the I/O devices ignore the signals on the address bus, and the
memory subsystem takes over at that point.

6.2 Physical Organization of Memory

A typical CPU addresses a maximum of 2n different memory locations,
where n is the number of bits on the address bus (most computer systems
built around 80x86 family CPUs do not include the maximum addressable
amount of memory). Of course, the first question you should ask is, “What
exactly is a memory location?” The 80x86, as an example, supports byte-
addressable memory. Therefore, the basic memory unit is a byte. With address
buses containing 20, 24, 32, or 36 address lines, the 80x86 processors can
address 1 MB, 16 MB, 4 GB, or 64 GB of memory, respectively. Some CPU
families do not provide byte-addressable memory (commonly, they only
address memory in double-word or even quad-word chunks). However,
because of the vast amount of software written that assumes memory is
byte-addressable (such as all those C/C++ programs out there), even CPUs
that don’t support byte-addressable memory in hardware still use byte
addresses and simulate byte addressing in software. We’ll return to this
issue shortly.

Think of memory as an array of bytes. The address of the first byte is
zero and the address of the last byte is 2n−1. For a CPU with a 20-bit address
bus, the following pseudo-Pascal array declaration is a good approximation
of memory:

Memory: array [0..1048575] of byte; // One-megabyte address space (20 bits)

To execute the equivalent of the Pascal statement Memory [125] := 0; the
CPU places the value zero on the data bus, the address 125 on the address
bus, and asserts the write line on the control bus, as in Figure 6-2 on the next
page.

No Starch Press, Copyright © 2004 by Randall Hyde

138 Chap te r 6

Figure 6-2: Memory write operation

To execute the equivalent of CPU := Memory [125]; the CPU places the address
125 on the address bus, asserts the read line on the control bus, and then
reads the resulting data from the data bus (see Figure 6-3).

Figure 6-3: Memory read operation

This discussion applies only when accessing a single byte in memory. What
happens when the processor accesses a word or a double word? Because
memory consists of an array of bytes, how can we possibly deal with values
larger than eight bits?

Different computer systems have different solutions to this problem.
The 80x86 family stores the LO byte of a word at the address specified and
the HO byte at the next location. Therefore, a word consumes two consec-
utive memory addresses (as you would expect, because a word consists of
two bytes). Similarly, a double word consumes four consecutive memory
locations.

The address for a word or a double word is the address of its LO byte.
The remaining bytes follow this LO byte, with the HO byte appearing at the
address of the word plus one or the address of the double word plus three
(see Figure 6-4). Note that it is quite possible for byte, word, and double-
word values to overlap in memory. For example, in Figure 6-4, you could
have a word variable beginning at address 193, a byte variable at address 194,

CPU

MemoryAddress = 125

Data = 0

Write = asserted

Location
 125

CPU

Memory
Address = 125

Data = Memory[125]

Read = asserted

Location
 125

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Organizat ion and Access 139

and a double-word value beginning at address 192. Bytes, words, and double
words may begin at any valid address in memory. We will soon see, however,
that starting larger objects at an arbitrary address is not a good idea.

Figure 6-4: Byte, word, and double-word storage in memory (on an 80x86)

6.2.1 8-Bit Data Buses
A processor with an 8-bit bus (like the old 8088 CPU) can transfer 8 bits of
data at a time. Because each memory address corresponds to an 8-bit byte,
an 8-bit bus turns out to be the most convenient architecture (from the
hardware perspective), as Figure 6-5 shows.

Figure 6-5: 8-bit CPU <-> memory interface

195

194

193

192

191

190

189

188

187

186

Double word
at address
192

Word at
address 188

Byte at
address 186

Address

CPU

Address

Data

Data comes from memory
eight bits at a time

No Starch Press, Copyright © 2004 by Randall Hyde

140 Chap te r 6

The term byte-addressable memory array means that the CPU can address
memory in chunks as small as a single byte. It also means that this is the
smallest unit of memory you can access at once with the processor. That is,
if the processor wants to access a 4-bit value, it must read eight bits and
then ignore the extra four bits.

It is also important to realize that byte addressability does not imply that
the CPU can access eight bits starting at any arbitrary bit boundary. When
you specify address 125 in memory, you get the entire eight bits at that
address — nothing less, nothing more. Addresses are integers; you cannot
specify, for example, address 125.5 to fetch fewer than eight bits or to fetch
a byte straddling 2-byte addresses.

Although CPUs with an 8-bit data bus conveniently manipulate byte
values, they can also manipulate word and double-word values. However,
this requires multiple memory operations because these processors can only
move eight bits of data at once. To load a word requires two memory opera-
tions; to load a double word requires four memory operations.

6.2.2 16-Bit Data Buses
Some CPUs (such as the 8086, the 80286, and variants of the ARM/
StrongARM processor family) have a 16-bit data bus. This allows these
processors to access twice as much memory in the same amount of time
as their 8-bit counterparts. These processors organize memory into two
banks: an “even” bank and an “odd” bank (see Figure 6-6).

Figure 6-6: Byte addressing in word memory

Figure 6-7 illustrates the data bus connection to the CPU. In this figure, the
data bus lines D0 through D7 transfer the LO byte of the word, while bus
lines D8 through D15 transfer the HO byte of the word.

The 16-bit members of the 80x86 family can load a word from any arbi-
trary address. As mentioned earlier, the processor fetches the LO byte of
the value from the address specified and the HO byte from the next consec-
utive address. However, this creates a subtle problem if you look closely at
Figure 6-7. What happens when you access a word that begins on an odd
address? Suppose you want to read a word from location 125. The LO byte of
the word comes from location 125 and the HO byte of the word comes from
location 126. It turns out that there are two problems with this approach.

0 1

2 3

4 5

6 7Word 3

Word 2

Word 1

Word 0

Numbers in cells

represent the

byte addresses

Even Odd

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Organizat ion and Access 141

Figure 6-7: 16-bit processor memory organization (e.g., 80286)

As you can see in Figure 6-7, data bus lines 8 through 15 (the HO byte)
connect to the odd bank, and data bus lines 0 through 7 (the LO byte)
connect to the even bank. Accessing memory location 125 will transfer data
to the CPU on lines D8 through D15 of the data bus, placing the data in the
HO byte; yet we need this in the LO byte! Fortunately, the 80x86 CPUs
automatically recognize and handle this situation.

The second problem is even more obscure. When accessing words, we’re
really accessing two separate bytes, each of which has a separate byte address.
So the question arises, “What address appears on the address bus?” The
16-bit 80x86 CPUs always place even addresses on the bus. Bytes at even
addresses always appear on data lines D0 through D7, and the bytes at odd
addresses always appear on data lines D8 through D15. If you access a word
at an even address, the CPU can bring in the entire 16-bit chunk in one
memory operation. Likewise, if you access a single byte, the CPU activates
the appropriate bank (using a byte-enable control line) and transfers that byte
on the appropriate data lines for its address.

So, what happens when the CPU accesses a word at an odd address, like
the example given earlier? The CPU cannot place the address 125 on the
address bus and read the 16 bits from memory. There are no odd addresses
coming out of a 16-bit 80x86 CPU — the addresses are always even. There-
fore, if you try to put 125 on the address bus, 124 will actually appear on the
bus. Were you to read the 16 bits at this address, you would get the word
at addresses 124 (LO byte) and 125 (HO byte) — not what you’d expect.
Accessing a word at an odd address requires two memory operations. First,
the CPU must read the byte at address 125, and then it needs to read the
byte at address 126. Finally, it needs to swap the positions of these bytes
internally because both entered the CPU on the wrong half of the data bus.

CPU

Address

Data

D0–D7

D8–D15

Even Odd

No Starch Press, Copyright © 2004 by Randall Hyde

142 Chap te r 6

Fortunately, the 16-bit 80x86 CPUs hide these details from you. Your
programs can access words at any address and the CPU will properly access
and swap (if necessary) the data in memory. However, accessing a word at an
odd address will require two memory operations (just as with the 8-bit bus on
the 8088/80188), so accessing words at odd addresses on a 16-bit processor is
slower than accessing words at even addresses. By carefully arranging how you
use memory, you can improve the speed of your programs on these CPUs.

6.2.3 32-Bit Data Buses

Accessing 32-bit quantities always takes at least two memory operations on
the 16-bit processors. If you access a 32-bit quantity at an odd address, a 16-bit
processor may require three memory operations to access the data.

The 80x86 processors with a 32-bit data bus (such as the 80386 and
80486) use four banks of memory connected to the 32-bit data bus (see
Figure 6-8).

Figure 6-8: 32-bit processor memory interface

With a 32-bit memory interface, the 80x86 CPU can access any single byte
with one memory operation. With a 16-bit memory interface the address
placed on the address bus is always an even number, and similarly with a 32-
bit memory interface, the address placed on the address bus is always some
multiple of four. Using various byte-enable control lines, the CPU can select
which of the four bytes at that address the software wants to access. As with
the 16-bit processor, the CPU will automatically rearrange bytes as necessary.

A 32-bit CPU can also access a word at most memory addresses using
a single memory operation, though word accesses at certain addresses will
take two memory operations (see Figure 6-9). This is the same problem

CPU

Address

Data

D0–D7

D8–D15

D16–D23

D24–D31

Byte 0 1 2 3

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Organizat ion and Access 143

encountered with the 16-bit processor attempting to retrieve a word with an
odd LO byte address, except it occurs half as often — only when the LO byte
address divided by four leaves a remainder of three.

Figure 6-9: Accessing a word on a 32-bit processor at (address mod 4) = 3

A 32-bit CPU can access a double word in a single memory operation only if
the address of that value is evenly divisible by four. If not, the CPU may
require two memory operations.

Once again, the 80x86 CPU handles all this automatically. However,
there is a performance benefit to proper data alignment. Generally, the LO
byte of word values should always be placed at even addresses, and the LO
byte of double-word values should always be placed at addresses that are
evenly divisible by four.

6.2.4 64-Bit Buses
The Pentium and later processors provide a 64-bit data bus and special
cache memory that reduces the impact of nonaligned data access. Although
there may still be a penalty for accessing data at an inappropriate address,
modern x86 CPUs suffer from the problem less frequently than the earlier
CPUs. The discussion in Section 6.4.3, “Cache Memory,” will look at the
details.

6.2.5 Small Accesses on Non-80x86 Processors
Although the 80x86 processor is not the only processor around that will let
you access a byte, word, or double-word object at an arbitrary byte address,
most processors created in the past 30 years do not allow this. For example,
the 68000 processor found in the original Apple Macintosh system will allow
you to access a byte at any address, but will raise an exception if you attempt
to access a word at an odd address.1 Many processors require that you access
an object at an address that is an even multiple of the object’s size or the
CPU will raise an exception.

Most RISC processors, including those found in modern Power
Macintosh systems, do not allow you to access byte and word objects at all.
Most RISC CPUs require that all data accesses be the same size as the data
bus (or general-purpose integer register size, whichever is smaller). This is
generally a double-word (32-bit) access. If you want to access a byte or a word
on such a machine, you have to treat bytes and words as packed fields and

1 680x0 series processors starting with the 68020, found in later Macintosh systems, corrected
this and allowed data access of words and double words at arbitrary addresses.

HO byte (2nd access)

LO byte (1st access)

No Starch Press, Copyright © 2004 by Randall Hyde

144 Chap te r 6

use the shift and mask techniques to extract or insert byte and word data in
a double word. Although it is nearly impossible to avoid byte accesses in
software that does any character and string processing, if you expect your
software to run on various modern RISC CPUs, you should avoid word data
types in favor of double words if you don’t want to pay a performance penalty
for the word accesses.

6.3 Big Endian Versus Little Endian Organization

Earlier, you read that the 80x86 CPU family stores the LO byte of a word or
double-word value at a particular address in memory and the successive HO
bytes at successively higher addresses. There was also a vague statement to
the effect that “different processors handle this in different ways.” Well, now
is the time to learn how different processors store multi-byte objects in byte-
addressable memory.

Almost every CPU you’ll use whose “bit size” is some power of two (8, 16,
32, 64, and so on) will number the bits and nibbles as shown in the previous
chapters. There are some exceptions, but they are rare, and most of the time
they represent a notational change, not a functional change (meaning you
can safely ignore the difference). Once you start dealing with objects larger
than eight bits, however, life becomes more complicated. Different CPUs
organize the bytes in a multibyte object differently.

Consider the layout of the bytes in a double word on an 80x86 CPU (see
Figure 6-10). The LO byte, which contributes the smallest component of a
binary number, sits in bit positions zero through seven and appears at the
lowest address in memory. It seems reasonable that the bits that contribute
the least would be located at the lowest address in memory.

Figure 6-10: Byte layout in a double word on the 80x86 processor

Unfortunately, this is not the only organization that is possible. Some CPUs,
for example, reverse the memory addresses of all the bytes in a double word,
using the organization shown in Figure 6-11.

Figure 6-11: Alternate byte layout in a double word

Base address + 3 Base address + 2 Base address + 1 Base address

31 23 15 7 0

HO byte Byte #2 Byte #1 LO byte

Base address Base address + 1 Base address + 2 Base address + 3

31 23 15 7 0

HO byte Byte #2 Byte #1 LO byte

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Organizat ion and Access 145

The Apple Macintosh and most non-80x86 Unix boxes use the data organi-
zation appearing in Figure 6-11. Therefore, this isn’t some rare and esoteric
convention; it’s quite common. Furthermore, even on 80x86 systems, certain
protocols (such as network transmissions) specify the data organization for
double words as shown in Figure 6-11. So this isn’t something you can ignore
if you work on PCs.

The byte organization that Intel uses is whimsically known as the little
endian byte organization. The alternate form is known as big endian byte organi-
zation. If you’re wondering, these terms come from Jonathan Swift’s Gulliver’s
Travels; the Lilliputians were arguing over whether one should open an egg
by cracking it on the little end or the big end, a parody of the arguments the
Catholics and Protestants were having over their respective doctrines when
Swift was writing.

The time for arguing over which format is better was back before there
were several different CPUs created using different byte genders. (Many pro-
grammers refer to this as byte sex. Byte gender is a little less offensive, hence
the use of that term in this book.) Today, we have to deal with the fact that
different CPUs sport different byte genders, and we have to take care when
writing software if we want that software to run on both types of processors.
Arguing over whether one format is better than another is irrelevant at this
point; regardless of which format is better or worse, we may have to put extra
code in our programs to deal with both formats (including the worse of the
two, whichever that is).

The big endian versus little endian problem occurs when we try to pass
binary data between two computers. For example, the double-word binary
representation of 256 on a little endian machine has the following byte
values:

LO byte: 0

Byte #1: 1

Byte #2: 0

HO byte: 0

If you assemble these four bytes on a little endian machine, their layout takes
this form:

Byte: 3 2 1 0

256: 0 0 1 0 (each digit represents an 8-bit value)

On a big endian machine, however, the layout takes the following form:

Byte: 3 2 1 0

256: 0 1 0 0 (each digit represents an 8-bit value)

This means that if you take a 32-bit value from one of these machines and
attempt to use it on the other machine (whose byte gender is not the same),
you won’t get correct results. For example, if you take a big endian version

No Starch Press, Copyright © 2004 by Randall Hyde

146 Chap te r 6

of the value 256, you’ll discover that it has the bit value one in bit position
16 in the little endian format. If you try to use this value on a little endian
machine, that machine will think that the value is actually 65,536 (that is,
%1_0000_0000_0000_0000). Therefore, when exchanging data between
two different machines, the best solution is to convert your values to some
canonical form and then, if necessary, convert the canonical form back to
the local format if the local and canonical formats are not the same. Exactly
what constitutes a “canonical” format depends, usually, on the transmission
medium. For example, when transmitting data across networks, the can-
onical form is usually big endian because TCP/IP and some other network
protocols use the big endian format. This does not suggest that big endian is
always the canonical form. For example, when transmitting data across the
Universal Serial Bus (USB), the canonical format is little endian. Of course,
if you control the software on both ends, the choice of canonical form is
arbitrary; still, you should attempt to use the appropriate form for the
transmission medium to avoid confusion down the road.

To convert between the endian forms, you must do a mirror-image swap
of the bytes in the object. To cause a mirror-image swap, you must swap
the bytes at opposite ends of the binary number, and then work your way
towards the middle of the object swapping pairs of bytes as you go along.
For example, to convert between the big endian and little endian format
within a double word, you’d first swap bytes zero and three, then you’d
swap bytes one and two (see Figure 6-12).

Figure 6-12: Endian conversion in a double word

For word values, all you need to do is swap the HO and LO bytes to change
the byte gender. For quad-word values, you need to swap bytes zero and
seven, one and six, two and five, and three and four. Because very little
software deals with 128-bit integers, you’ll probably not need to worry about
long-word gender conversion, but the concept is the same if you do.

Note that the byte gender conversion process is reflexive. That is, the
same algorithm that converts big endian to little endian also converts little
endian to big endian. If you run the algorithm twice, you wind up with the
data in the original format.

Even if you’re not writing software that exchanges data between two
computers, the issue of byte gender may arise. To illustrate this point,

HO byte Byte #2 Byte #1 LO byte

31 23 15 7 0

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Organizat ion and Access 147

consider that some programs assemble larger objects from discrete bytes
by assigning those bytes to specific positions within the larger value. If the
software puts the LO byte into bit positions zero through seven (little endian
format) on a big endian machine, the program will not produce correct
results. Therefore, if the software needs to run on different CPUs that have
different byte organizations, the software will have to determine the byte
gender of the machine it’s running on and adjust how it assembles larger
objects from bytes accordingly.

To illustrate how to build larger objects from discrete bytes, perhaps the
best place to start is with a short example that first demonstrates how one
could assemble a 32-bit object from four individual bytes. The most common
way to do this is to create a discriminant union structure that contains a
32-bit object and a 4-byte array:

NOTE Many languages, but not all, support the discriminant union data type. For example,
in Pascal, you would instead use a case variant record. See your language reference
manual for details.

For those who are not familiar with unions, they are a data structure similar
to records or structs except the compiler allocates the storage for each field
of the union at the same address in memory. Consider the following two
declarations from the C programming language:

struct

{

short unsigned i; // Assume shorts require 16 bits.

short unsigned u;

long unsigned r; // Assume longs require 32 bits.

} RECORDvar;

union

{

short unsigned i;

short unsigned u;

long unsigned r;

} UNIONvar;

As Figure 6-13 on the next page shows, the RECORDvar object consumes eight
bytes in memory, and the fields do not share their memory with any other
fields (that is, each field starts at a different offset from the base address of
the record). The UNIONvar variable, on the other hand, overlays all the fields
in the union in the same memory locations. Therefore, writing a value to the
i field of the union also overwrites the value of the u field as well as two bytes
of the r field (whether they are the LO or HO bytes depends entirely on the
byte gender of the CPU).

No Starch Press, Copyright © 2004 by Randall Hyde

148 Chap te r 6

Figure 6-13: Layout of a union versus a record (struct) in memory

In the C programming language, you can use this behavior of a union to gain
access to the individual bytes of a 32-bit object. Consider the following union
declaration in C:

union

{

unsigned long bits32; /* This assumes that C uses 32 bits for

unsigned long */

unsigned char bytes[4];

} theValue;

This creates the data type shown in Figure 6-14 on a little endian machine
and the structure shown in Figure 6-15 on a big endian machine.

Figure 6-14: A C union on a little endian machine

Figure 6-15: A C union on a big endian machine

To assemble a 32-bit object from four discrete bytes on a little endian
machine, you’d use code like the following:

theValue.bytes[0] = byte0;

theValue.bytes[1] = byte1;

theValue.bytes[2] = byte2;

theValue.bytes[3] = byte3;

i u r

r

i, u

Base + 0 Base + 4 Base + 8

UNIONvar

RECORDvar

bytes[0]bytes[1]bytes[2]bytes[3]

bits32
31 23 15 7 0

bytes[3]bytes[2]bytes[1]bytes[0]

bits32

31 23 15 7 0

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Organizat ion and Access 149

This code functions properly because C allocates the first byte of an array
at the lowest address in memory (corresponding to bits 0..7 in the
theValue.bits32 object on a little endian machine), the second byte of
the array follows (bits 8..15), then the third (bits 16..23), and finally the
HO byte (occupying the highest address in memory, corresponding to bits
24..31).

However, on a big endian machine, this code won’t work properly
because theValue.bytes[0] corresponds to bits 24..31 of the 32-bit value rather
than bits 0..7. To assemble this 32-bit value properly on a big endian system,
you’d need to use code like the following:

theValue.bytes[0] = byte3;

theValue.bytes[1] = byte2;

theValue.bytes[2] = byte1;

theValue.bytes[3] = byte0;

The only question remaining is, “How do you determine if your code is
running on a little endian or big endian machine?” This is actually an easy
task to accomplish. Consider the following C code:

theValue.bytes[0] = 0;

theValue.bytes[1] = 1;

theValue.bytes[2] = 0;

theValue.bytes[3] = 0;

isLittleEndian = theValue.bits32 == 256;

On a big endian machine, this code sequence will store the value one into bit
16, producing a 32-bit value that is definitely not equal to 256, whereas on a
little endian machine this code will store the value one into bit 8, producing
a 32-bit value equal to 256. Therefore, you can test the isLittleEndian variable
to determine whether the current machine is little endian (true) or big
endian (false).

6.4 The System Clock

Although modern computers are quite fast and getting faster all the time,
they still require a finite amount of time to accomplish even the smallest
tasks. On von Neumann machines, most operations are serialized, which
means that the computer executes commands in a prescribed order. It
wouldn’t do, in the following code sequence for example, to execute the
Pascal statement I := I * 5 + 2; before the statement I := J; finishes:

I := J;

I := I * 5 + 2;

On real computer systems, operations do not occur instantaneously. Moving
a copy of J into I takes a certain amount of time. Likewise, multiplying I
by five and then adding two and storing the result back into I takes time.

No Starch Press, Copyright © 2004 by Randall Hyde

150 Chap te r 6

A natural question to ask is, “How does the processor execute statements in
the proper order?” The answer is, “The system clock.”

The system clock serves as the timing standard within the system, so to
understand why certain operations take longer than others, you must first
understand the function of the system clock.

The system clock is an electrical signal on the control bus that alternates
between zero and one at a periodic rate (see Figure 6-16). All activity within
the CPU is synchronized with the edges (rising or falling) of this clock signal.

Figure 6-16: The system clock

The frequency with which the system clock alternates between zero and one
is the system clock frequency and the time it takes for the system clock to switch
from zero to one and back to zero is the clock period. One full period is also
called a clock cycle. On most modern systems, the system clock switches
between zero and one at rates exceeding several billion times per second.
A typical Pentium IV chip, circa 2004, runs at speeds of three billion cycles
per second or faster. Hertz (Hz) is the unit corresponding to one cycle per
second, so the aforementioned Pentium chip runs at between 3,000 and
4,000 million hertz, or 3,000–4,000 megahertz (MHz), also known as 3–4
gigahertz (GHz). Typical frequencies for 80x86 parts range from 5 MHz up
to several gigahertz and beyond.

As you may have noticed, the clock period is the reciprocal of the clock
frequency. For example, a 1-MHz clock would have a clock period of one
microsecond (one millionth of a second). A CPU running at 1 GHz would
have a clock period of one nanosecond (ns), or one billionth of a second.
We usually express clock periods in millionths or billionths of a second.

To ensure synchronization, most CPUs start an operation on either the
falling edge (when the clock goes from one to zero) or the rising edge (when
the clock goes from zero to one). The system clock spends most of its time at
either zero or one and very little time switching between the two. Therefore,
a clock edge is the perfect synchronization point.

Because all CPU operations are synchronized with the clock, the CPU
cannot perform tasks any faster than the clock runs. However, just because
a CPU is running at some clock frequency doesn’t mean that it executes
that many operations each second. Many operations take multiple clock
cycles to complete, so the CPU often performs operations at a significantly
slower rate.

1

0

Time

One clock “period”

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Organizat ion and Access 151

6.4.1 Memory Access and the System Clock
Memory access is an operation that is synchronized with the system clock.
That is, memory access occurs no more often than once every clock cycle.
Indeed, on some older processors, it takes several clock cycles to access a
memory location. The memory access time is the number of clock cycles
between a memory request (read or write) and when the memory operation
completes. This is an important value, because longer memory access times
result in lower performance.

Modern CPUs are much faster than memory devices, so systems built
around these CPUs often use a second clock, the bus clock, which is some
fraction of the CPU speed. For example, typical processors in the 100-MHz-
to-4-GHz range can use 800-MHz, 500-MHz, 400-MHz, 133-MHz, 100-MHz,
or 66-MHz bus clocks (a given CPU generally supports several different bus
speeds, and the exact range the CPU supports depends upon that CPU).

When reading from memory, the memory access time is the time
between when the CPU places an address on the address bus and the time
when the CPU takes the data off the data bus. On typical 80x86 CPUs with
a one cycle memory access time, the timing of a read operation looks some-
thing like that shown in Figure 6-17. The timing of writing data to memory
is similar (see Figure 6-18).

Figure 6-17: A typical memory read cycle

Figure 6-18: A typical memory write cycle

the address on
the address bus
during this time
period The memory system must

decode the address and
place the data on the data
bus during this time period

data from the data
bus during this time
period

The CPU places
The CPU reads the

the address and
data onto the bus
at this time

Sometime before the end
of the clock period the
memory subsystem must
grab and store the specified
value

The CPU places

No Starch Press, Copyright © 2004 by Randall Hyde

152 Chap te r 6

Note that the CPU doesn’t wait for memory. The access time is specified by
the bus clock frequency. If the memory subsystem doesn’t work fast enough
to keep up with the CPU’s expected access time, the CPU will read garbage
data on a memory read operation and will not properly store the data on a
memory write. This will surely cause the system to fail.

Memory devices have various ratings, but the two major ones are capacity
and speed. Typical dynamic RAM (random access memory) devices have
capacities of 512 MB (or more) and speeds of 0.25–100 ns. A typical 3-GHz
Pentium system uses 2.0-ns (500-MHz) memory devices.

Wait just a second here! Earlier we saw that the memory speed must
match the bus speed or the system would fail. At 3 GHz the clock period is
roughly 0.33 ns. How can a system designer get away with using 2.0 ns
memory? The answer is wait states.

6.4.2 Wait States
A wait state is an extra clock cycle that gives a device additional time to
respond to the CPU. For example, a 100-MHz Pentium system has a 10-ns
clock period, implying that you need 10-ns memory. In fact, the implication
is that you need even faster memory devices because in most computer
systems there is additional decoding and buffering logic between the CPU
and memory. This circuitry introduces its own delays. In Figure 6-19, you can
see that buffering and decoding costs the system an additional 10 ns. If the
CPU needs the data back in 10 ns, the memory must respond in 0 ns (which
is impossible).

Figure 6-19: Decoding and buffer delays

If cost-effective memory won’t work with a fast processor, how do companies
manage to sell fast PCs? One part of the answer is the wait state. For example,
if you have a 100-MHz processor with a memory cycle time of 10 ns and you

CPU

Address

Data

5-ns delay
through
decoder

5-ns delay
through buffer

Buffer

D
ecoder

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Organizat ion and Access 153

lose 2 ns to buffering and decoding, you’ll need 8-ns memory. What if your
system can only support 20-ns memory, though? By adding wait states to
extend the memory cycle to 20 ns, you can solve this problem.

Almost every general-purpose CPU in existence provides a pin (whose
signal appears on the control bus) that allows the insertion of wait states.
If necessary, the memory address decoding circuitry asserts this signal to give
the memory sufficient access time (see Figure 6-20).

Figure 6-20: Inserting a wait state into a memory read operation

Needless to say, from the system-performance point of view, wait states are
not a good thing. While the CPU is waiting for data from memory, it cannot
operate on that data. Adding a wait state typically doubles the amount of time
required to access memory. Running with a wait state on every memory
access is almost like cutting the processor clock frequency in half. You’re
going to get less work done in the same amount of time.

However, we’re not doomed to slow execution because of added wait
states. There are several tricks hardware designers can employ to achieve
zero wait states most of the time. The most common of these is the use of
cache (pronounced “cash”) memory.

6.4.3 Cache Memory

If you look at a typical program, you’ll discover that it tends to access
the same memory locations repeatedly. Furthermore, you’ll also discover
that a program often accesses adjacent memory locations. The technical
names given to these phenomena are temporal locality of reference and
spatial locality of reference. When exhibiting spatial locality, a program
accesses neighboring memory locations within a short period after the
initial memory access.

the address on
the address bus
during this time
period

The memory system must
decode the address and
place the data on the data
bus during this time period,
since one clock cycle is insufficient,
the system adds a second clock cycle,
a wait state

data from the data
bus during this time
periodThe CPU places

The CPU reads the

No Starch Press, Copyright © 2004 by Randall Hyde

154 Chap te r 6

When displaying temporal locality of reference, a program accesses the same
memory location repeatedly during a short time. Both forms of locality occur
in the following Pascal code segment:

for i := 0 to 10 do

A [i] := 0;

There are two occurrences each of spatial and temporal locality of reference
within this loop. Let’s consider the obvious ones first.

In this Pascal code, the program references the variable i several times.
The for loop compares i against 10 to see if the loop is complete. It also
increments i by one at the bottom of the loop. The assignment statement
also uses i as an array index. This shows temporal locality of reference in
action because the CPU accesses i at three points in a short time period.

This program also exhibits spatial locality of reference. The loop itself
zeros out the elements of array A by writing a zero to the first location in A,
then to the second location in A, and so on. Because Pascal stores the
elements of A in consecutive memory locations, each loop iteration accesses
adjacent memory locations.

There is an additional example of temporal and spatial locality of refer-
ence in this Pascal example. Machine instructions also reside in memory, and
the CPU fetches these instructions sequentially from memory and executes
these instructions repeatedly, once for each loop iteration.

If you look at the execution profile of a typical program, you’ll discover
that the program typically executes less than half the statements. Generally,
a program might only use 10 to 20 percent of the memory allotted to it. At
any one given time, a 1-MB program might only access 4–8 KB of data and
code. So if you paid an outrageous sum of money for expensive zero-wait-
state RAM, you would only be using a tiny fraction of it at any one given
time. Wouldn’t it be nice if you could buy a small amount of fast RAM and
dynamically reassign its addresses as the program executes?

This is exactly what cache memory does for you. Cache memory sits
between the CPU and main memory. It is a small amount of very fast
memory. Unlike normal memory, the bytes appearing within a cache do
not have fixed addresses. Instead, cache memory can dynamically reassign
addresses. This allows the system to keep recently accessed values in the
cache. Addresses that the CPU has never accessed or hasn’t accessed in
some time remain in main (slow) memory. Because most memory accesses
are to recently accessed variables (or to locations near a recently accessed
location), the data generally appears in cache memory.

A cache hit occurs whenever the CPU accesses memory and finds the
data in the cache. In such a case, the CPU can usually access data with zero
wait states. A cache miss occurs if the data cannot be found in the cache.
In that case, the CPU has to read the data from main memory, incurring a
performance loss. To take advantage of temporal locality of reference, the
CPU copies data into the cache whenever it accesses an address not present

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Organizat ion and Access 155

in the cache. Because it is likely the system will access that same location
shortly, the system will save wait states on future accesses by having that data
in the cache.

Cache memory does not eliminate the need for wait states. Although a
program may spend considerable time executing code in one area of mem-
ory, eventually it will call a procedure or wander off to some section of code
outside cache memory. When that happens, the CPU has to go to main
memory to fetch the data. Because main memory is slow, this will require the
insertion of wait states. However, once the CPU accesses the data, it is now
available in the cache for future use.

We’ve discussed how cache memory handles the temporal aspects of
memory access, but not the spatial aspects. Caching memory locations when
you access them won’t speed up the program if you constantly access consec-
utive locations that you’ve never before accessed. To solve this problem,
when a cache miss occurs most caching systems will read several consecutive
bytes of main memory (engineers call this block of data a cache line). 80x86
CPUs, for example, read between 16 and 64 bytes upon a cache miss. But this
brings up an important question. If you read 16 bytes, why read the bytes in
blocks rather than as you need them? As it turns out, most memory chips
available today have special modes that let you quickly access several consec-
utive memory locations on the chip. The cache exploits this capability to
reduce the average number of wait states needed to access sequential mem-
ory locations. Although reading 16 bytes on each cache miss is expensive if
you only access a few bytes in the corresponding cache line, cache memory
systems work quite well in the average case.

It should come as no surprise that the ratio of cache hits to misses
increases with the size (in bytes) of the cache memory subsystem. The 80486
CPU, for example, has 8,192 bytes of on-chip cache. Intel claims to get an
80–95 percent hit rate with this cache (meaning 80–95 percent of the time
the CPU finds the data in the cache). This sounds very impressive. However,
if you play around with the numbers a little bit, you’ll discover it’s not all
that impressive. Suppose we pick the 80 percent figure. This means that one
out of every five memory accesses, on the average, will not be in the cache.
If you have a 50-MHz processor and a 90-ns memory access time, four out
of five memory accesses require only one clock cycle (because they are in
the cache) and the fifth will require about ten wait states. Ten wait states
were computed as follows: five clock cycles to read the first four bytes (10 +
20 + 20 + 20 + 20 = 90). However, the cache always reads 16 consecutive bytes.
Most 80486-era memory subsystems let you read consecutive addresses in
about 40 ns after accessing the first location. Therefore, the 80486 will
require an additional 6 clock cycles to read the remaining three double
words. The total is 11 clock cycles or 10 wait states.

Altogether, the system will require 15 clock cycles to access five memory
locations, or 3 clock cycles per access, on the average. That’s equivalent to
two wait states added to every memory access. Doesn’t sound so impressive,

No Starch Press, Copyright © 2004 by Randall Hyde

156 Chap te r 6

does it? It gets even worse as you move up to faster processors and the
difference in speed between the CPU and memory increases.

There are a couple of ways to improve the situation. First, you can add
more cache memory. Alas, you can’t pull an 80486 chip apart and solder
more cache onto the chip. However, modern Pentium CPUs have a signifi-
cantly larger cache than the 80486 and operate with fewer average wait states.
This improves the cache hit ratio, reducing the number of wait states. For
example, increasing the hit ratio from 80 percent to 90 percent lets you
access 10 memory locations in 20 cycles. This reduces the average number of
wait states per memory access to one wait state, a substantial improvement.

Another way to improve performance is to build a two-level caching
system. Many Pentium systems work in this fashion. The first level is the on-
chip 8,192-byte cache. The next level, between the on-chip cache and main
memory, is a secondary cache often built on the computer system circuit
board (see Figure 6-21). However, on newer processors, the first- and second-
level caches generally appear in the same packaging as the CPU. This allows
the CPU designers to build a higher performance CPU/memory interface,
allowing the CPU to move data between caches and the CPU (as well as main
memory) much more rapidly.

Figure 6-21: A two-level caching system

A typical secondary cache contains anywhere from 32,768 bytes to over 1 MB
of memory. Common sizes on PC subsystems are 256 KB, 512 KB, and 1,024
KB (1 MB) of cache.

You might ask, “Why bother with a two-level cache? Why not use a
262,144-byte cache to begin with?” It turns out that the secondary cache
generally does not operate at zero wait states. The circuitry to support
262,144 bytes of fast memory would be very expensive, so most system
designers use slower memory, which requires one or two wait states. This
is still much faster than main memory. Combined with the existing on-chip
level-one cache, you can get better performance from the system with a
two-level caching system.

CPU

On-chip (primary)
cache Secondary cache

Main
memory

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Organizat ion and Access 157

Today, you’ll find that some systems incorporate an off-CPU third-level
cache. Though the performance improvement afforded by a third-level cache
is nowhere near what you get with a first- or second-level cache subsystem,
third-level cache subsystems can be quite large (usually several megabytes)
and work well for large systems with gigabytes of main memory. For pro-
grams that manipulate considerable data, yet exhibit locality of reference,
a third-level caching subsystem can be very effective.

6.5 CPU Memory Access

Most CPUs have two or three different ways to access memory. The most
common memory addressing modes modern CPUs support are direct, indirect,
and indexed. A few CPUs (like the 80x86) support additional addressing
modes like scaled indexed, while some RISC CPUs only support indirect access
to memory. Having additional memory addressing modes makes memory
access more flexible. Sometimes a particular addressing mode can allow
you to access data in a complex data structure with a single instruction,
where two or more instructions would be required on a CPU without that
addressing mode. Therefore, having a wide variety of ways to access memory
is generally good as these complex addressing modes allow you to use fewer
instructions.

It would seem that the 80x86 processor family (with many different
types of memory addressing modes) would be more efficient than a RISC
processor that only supports a small number of addressing modes. In many
respects, this is absolutely true; those RISC processors can often take three
to five instructions to do what a single 80x86 instruction does. However, this
does not mean that an 80x86 program will run three to five times faster.
Don’t forget that access to memory is very slow, usually requiring wait states.
Whereas the 80x86 frequently accesses memory, RISC processors rarely do.
Therefore, that RISC processor can probably execute the first four instruc-
tions, which do not access memory at all, while the single 80x86 instruction,
which accesses memory, is spinning on some wait states. In the fifth instruc-
tion the RISC CPU might access memory and will incur wait states of its own.
If both processors execute an average of one instruction per clock cycle and
have to insert 30 wait states for a main memory access, we’re talking about a
difference of 31 clock cycles (80x86) versus 35 clock cycles (RISC), only
about a 12 percent difference.

If an application must access slow memory, then choosing an appro-
priate addressing mode will often allow that application to compute the
same result with fewer instructions and with fewer memory accesses, thus
improving performance. Therefore, understanding how an application can
use the different addressing modes a CPU provides is important if you want
to write fast and compact code.

No Starch Press, Copyright © 2004 by Randall Hyde

158 Chap te r 6

6.5.1 The Direct Memory Addressing Mode
The direct addressing mode encodes a variable’s memory address as part of
the actual machine instruction that accesses the variable. On the 80x86 for
example, direct addresses are 32-bit values appended to the instruction’s
encoding. Generally, a program uses the direct addressing mode to access
global static variables. Here’s an example of the direct addressing mode in
HLA assembly language:

static

i:dword;

. . .

mov(eax, i); // Store EAX's value into the i variable.

When accessing variables whose memory address is known prior to the
execution of the program, the direct addressing mode is ideal. With a single
instruction you can reference the memory location associated with the
variable. On those CPUs that don’t support a direct addressing mode, you
may need an extra instruction (or more) to load a register with the variable’s
memory address prior to accessing that variable.

6.5.2 The Indirect Addressing Mode
The indirect addressing mode typically uses a register to hold a memory
address (there are a few CPUs that use memory locations to hold the indirect
address, but this form of indirect addressing is rare in modern CPUs).

There are a couple of advantages of the indirect addressing mode over
the direct addressing mode. First, you can modify the value of an indirect
address (the value being held in a register) at run time. Second, encoding
which register specifies the indirect address takes far fewer bits than encod-
ing a 32-bit (or 64-bit) direct address, so the instructions are smaller. One
disadvantage of the indirect addressing mode is that it may take one or more
instructions to load a register with an address before you can access that
address.

Here is a typical example of a sequence in HLA assembly language that
uses an 80x86 indirect addressing mode (brackets around the register name
denote the use of indirect addressing):

static

byteArray: byte[16];

. . .

lea(ebx, byteArray); // Loads EBX register with the address

// of byteArray.

mov([ebx], al); // Loads byteArray[0] into AL.

inc(ebx); // Point EBX at the next byte in memory

// (byteArray[1]).

mov([ebx], ah); // Loads byteArray[1] into AH.

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Organizat ion and Access 159

The indirect addressing mode is useful for many operations, such as
accessing objects referenced by a pointer variable.

6.5.3 The Indexed Addressing Mode
The indexed addressing mode combines the direct and indirect addressing
modes into a single addressing mode. Specifically, the machine instructions
using this addressing mode encode both an offset (direct address) and a
register in the bits that make up the instruction. At run time, the CPU
computes the sum of these two address components to create an effective
address. This addressing mode is great for accessing array elements and
for indirect access to objects like structures and records. Though the
instruction encoding is usually larger than for the indirect addressing
mode, the indexed addressing mode offers the advantage that you can
specify an address directly within an instruction without having to use a
separate instruction to load the address into a register.

Here is a typical example of a sequence in HLA that uses an 80x86
indexed addressing mode:

static

byteArray: byte[16];

. . .

mov(0, ebx); // Initialize an index into the array.

while(ebx < 16) do

mov(0, byteArray[ebx]); // Zeros out byteArray[ebx].

inc(ebx); // EBX := EBX +1, move on to the

// next array element.

endwhile;

The byteArray[ebx] instruction in this short program demonstrates the
indexed addressing mode. The effective address is the address of the
byteArray variable plus the current value in the EBX register.

To avoid wasting space encoding a 32-bit or 64 -bit address into every
instruction that uses an indexed addressing mode, many CPUs provide a
shorter form that encodes an 8-bit or 16-bit offset as part of the instruction.
When using this smaller form, the register provides the base address of the
object in memory, and the offset provides a fixed displacement into that data
structure in memory. This is useful, for example, when accessing fields of a
record or structure in memory via a pointer to that structure. The earlier
HLA example encodes the address of byteArray using a 4 -byte address.
Compare this with the following use of the indexed addressing mode:

lea(ebx, byteArray); // Loads the address of byteArray into EBX.

. . .

mov(al, [ebx+2]); // Stores al into byteArray[2]

No Starch Press, Copyright © 2004 by Randall Hyde

160 Chap te r 6

This last instruction encodes the displacement value using a single byte
(rather than four bytes), hence the instruction is shorter and more efficient.

6.5.4 The Scaled Indexed Addressing Modes
The scaled indexed addressing mode, available on several CPUs, provides
two facilities above and beyond the indexed addressing mode:

� The ability to use two registers (plus an offset) to compute the effective
address

� The ability to multiply one of those two registers’ values by a common
constant (typically 1, 2, 4, or 8) prior to computing the effective address.

This addressing mode is especially useful for accessing elements of arrays
whose element sizes match one of the scaling constants (see the discussion of
arrays in the next chapter for the reasons).

The 80x86 provides a scaled index addressing mode that takes one of
several forms, as shown in the following HLA statements:

mov([ebx+ecx*1], al); // EBX is base address, ecx is index.

mov(wordArray[ecx*2], ax); // wordArray is base address, ecx is index.

mov(dwordArray[ebx+ecx*4], eax); // Effective address is combination

// of offset(dwordArray)+ebx+(ecx*4).

6.6 For More Information

This chapter has spent considerable time discussing how the CPU organizes
memory and how the CPU accesses memory. There are a couple of good
sources of additional information on this subject.

My book The Art of Assembly Language (No Starch Press), or nearly any
other textbook on assembly language programming, will provide additional
information about CPU addressing modes, allocating and accessing local
(automatic) variables, and manipulating parameters at the machine code
level. Any decent textbook on programming language design or compiler
design will have lots to say about the run-time organization of memory for
typical compiled languages.

A good computer architecture textbook is another place you’ll find
information on system organization. Patterson and Hennessy’s architecture
books Computer Organization & Design: The Hardware/Software Interface and
Computer Architecture: A Quantitative Approach are well-regarded textbooks you
might consider reading to gain a more in-depth perspective on CPU and
system design.

Chapter 11 in this book also provides additional information about
cache memory and memory architecture.

No Starch Press, Copyright © 2004 by Randall Hyde

7
C O M P O S I T E D A T A T Y P E S

A N D M E M O R Y O B J E C T S

Composite data types are types that are
composed of other, more primitive, types.

Examples of composite data types commonly
found in applications include pointers,

arrays, records or structures, and unions. Many high-
level languages provide syntactical abstractions for these
composite data types that make them easy to declare and
use, all the time hiding their underlying complexities.

Though the cost of using these composite data types is not terrible, it is very
easy for a programmer to introduce inefficiencies into an application by using
these data types without understanding the underlying costs. Great program-
mers, therefore, are cognizant of the costs associated with using composite data
types so they can use them in an appropriate manner. This chapter discusses the
costs associated with these composite data types to better enable you to write
great code.

No Starch Press, Copyright © 2004 by Randall Hyde

162 Chap te r 7

7.1 Pointer Types

A pointer is a variable whose value refers to some other object. Now you’ve
probably experienced pointers firsthand in Pascal, C/C++, or some other
programming language, and you may be feeling a little anxious right now.
Well, fear not! Pointers are actually easy to deal with.

Probably the best place to start is with the definition of a pointer. High-
level languages like Pascal and C/C++ hide the simplicity of pointers behind
a wall of abstraction. This added complexity tends to frighten programmers
because they don’t understand what’s going on behind the scenes. However, a little
knowledge can erase all your fears of pointers.

Let’s just ignore pointers for a moment and work with something that’s
easier to understand: an array. Consider the following array declaration in
Pascal:

M: array [0..1023] of integer;

Even if you don’t know Pascal, the concept here is easy to understand. M is
an array with 1,024 integers in it, indexed from M[0] to M[1023]. Each one of
these array elements can hold an integer value that is independent of the
others. In other words, this array gives you 1,024 different integer variables
each of which you access via an array index rather than by name.

If you have a program with the statement M[0]:=100; it probably wouldn’t
take you any time to figure out what this statement is doing. It stores the
value 100 into the first element of the array M. Now consider the following
two statements:

i := 0; (* assume i is an integer variable *)

M [i] := 100;

You should agree, without too much hesitation, that these two statements do
the same thing as M[0]:=100;. Indeed, you’re probably willing to agree that
you can use any integer expression in the range 0..1,023 as an index of this
array. The following statements still perform the same operation as our
earlier statement:

i := 5; (* assume all variables are integers*)

j := 10;

k := 50;

m [i * j - k] := 100;

Okay, how about the following:

M [1] := 0;

M [M [1]] := 100;

No Starch Press, Copyright © 2004 by Randall Hyde

Composi te Data Types and Memory Object s 163

Whoa! Now that takes a few moments to digest. However, if you take it slowly,
it makes sense and you’ll discover that these two instructions perform the
same operation as before. The first statement stores zero into array element
M[1]. The second statement fetches the value of M[1], which is zero, and uses
that value to determine where it stores the value 100.

If you’re willing to accept this example as reasonable — perhaps bizarre,
but usable nonetheless — then you’ll have no problems with pointers, because
M[1] is a pointer! Well, not really, but if you were to change “M” to “memory”
and treat each element of this array as a separate memory location, then this
is the definition of a pointer: a pointer is a memory variable whose value is
the address of some other memory object.

7.1.1 Pointer Implementation

Although most languages implement pointers using memory addresses, a
pointer is actually an abstraction of a memory address, and therefore a
language could define a pointer using any mechanism that maps the value
of the pointer to the address of some object in memory. Some implemen-
tations of Pascal, for example, use offsets from some fixed memory address
as pointer values. Some languages (such as dynamic languages like LISP)
might actually implement pointers by using double indirection. That is, the
pointer object contains the address of some memory variable whose value is
the address of the object to be accessed. This double indirection may seem
somewhat convoluted, but it does offer certain advantages when using a
complex memory management system. However, this chapter will assume
that a pointer is a variable whose value is the address of some other object
in memory.

As you’ve seen in examples from previous chapters, you can indirectly
access an object using a pointer with two 80x86 machine instructions (or
with a similar sequence on other CPUs), as follows:

mov(PointerVariable, ebx); // Load the pointer variable into a register.

mov([ebx], eax); // Use register indirect mode to access data.

Now consider the double-indirect pointer implementation described earlier.
Access to data via double indirection is less efficient than the straight pointer
implementation because it takes an extra machine instruction to fetch the
data from memory. This isn’t obvious in a high-level language like C/C++ or
Pascal, where you’d use double indirection as follows (it looks very similar to
single indirection):

i = **cDblPtr; // C/C++

i := ^^pDblPtr; (* Pascal *)

No Starch Press, Copyright © 2004 by Randall Hyde

164 Chap te r 7

In assembly language, however, you’ll see the extra work involved:

mov(hDblPtr, ebx); // Get the pointer to a pointer.

mov([ebx], ebx); // Get the pointer to the value.

mov([ebx], eax); // Get the value.

Contrast this with the two assembly instructions (shown earlier) needed
to access an object using single indirection. Because double indirection
requires 50 percent more code than single indirection, you can see why
many languages implement pointers using single indirection.

7.1.2 Pointers and Dynamic Memory Allocation
Pointers typically reference anonymous variables that you allocate on the
heap (a region in memory reserved for dynamic storage allocation) using
memory allocation/deallocation functions in different languages like
malloc/free (C), new/dispose (Pascal), and new/delete (C++). Objects you
allocate on the heap are known as anonymous variables because you refer
to them by their address, and you do not associate a name with them. And
because the allocation functions return the address of an object on the heap,
you would typically store the function’s return result into a pointer variable.
True, the pointer variable may have a name, but that name applies to the
pointer’s data (an address), not the name of the object referenced by this
address.

7.1.3 Pointer Operations and Pointer Arithmetic
Most languages that provide the pointer data type let you assign addresses
to pointer variables, compare pointer values for equality or inequality, and
indirectly reference an object via a pointer. Some languages allow additional
operations; we’re going to look at the possibilities in this section.

Many languages provide the ability to do limited arithmetic with
pointers. At the very least, these languages will provide the ability to add an
integer constant to a pointer, or subtract an integer constant from a pointer.
To understand the purpose of these two arithmetic operations, note the
syntax of the malloc function in the C standard library:

ptrVar = malloc(bytes_to_allocate);

The parameter you pass malloc specifies the number of bytes of storage to
allocate. A good C programmer will generally supply an expression like
sizeof(int) as the parameter to malloc. The sizeof function returns the
number of bytes needed by its single parameter. Therefore, sizeof(int) tells
malloc to allocate at least enough storage for an int variable. Now consider
the following call to malloc:

ptrVar = malloc(sizeof(int) * 8);

No Starch Press, Copyright © 2004 by Randall Hyde

Composi te Data Types and Memory Object s 165

If the size of an integer is 4 bytes, this call to malloc will allocate storage for
32 bytes. The malloc function allocates these 32 bytes at consecutive addresses
in memory (see Figure 7-1).

Figure 7-1: Memory allocation with malloc(sizeof(int) * 8)

The pointer that malloc returns contains the address of the first integer in
this set, so the C program will only be able to directly access the very first of
these eight integers. To access the individual addresses of the other seven
integers, you will need to add an integer offset to the base address. On
machines that support byte-addressable memory (such as the 80x86), the
address of each successive integer in memory is the address of the previous
integer plus the size of an integer. For example, if a call to the C standard
library malloc routine returns the memory address $0300_1000, then the
eight 4-byte integers that malloc allocates will lie at the following memory
addresses:

7.1.3.1 Adding an Integer to a Pointer

Because these integers described in the preceding section are exactly four
bytes apart, we need only add four to the address of the first integer to obtain
the address of the second integer; likewise, the address of the third integer is
the address of the second integer plus four, and so on. In assembly language,
we could access these eight integers using code like the following:

malloc(@size(int32) * 8); // Returns storage for eight int32 objects.

// EAX points at this storage.

mov(0, ecx);

mov(ecx, [eax]); // Zero out the 32 bytes (four bytes

mov(ecx, [eax+4]); // at a time).

Integer Memory Addresses

0 $0300_1000..$0300_1003

1 $0300_1004..$0300_1007

2 $0300_1008..$0300_100b

3 $0300_100c..$0300_100f

4 $0300_1010..$0300_1013

5 $0300_1014..$0300_1017

6 $0300_1018..$0300_101b

7 $0300_101c..$0300_101f

Low heap
addresses

High heap
addresses

Pointer (address) that malloc(sizeof(int) * 8) returns

32 bytes (eight ints)

No Starch Press, Copyright © 2004 by Randall Hyde

166 Chap te r 7

mov(ecx, [eax+8]);

mov(ecx, [eax+12]);

mov(ecx, [eax+16]);

mov(ecx, [eax+20]);

mov(ecx, [eax+24]);

mov(ecx, [eax+28]);

Notice the use of the 80x86 indexed addressing mode to access the eight
integers that malloc allocates. The EAX register maintains the base address
(first address) of the eight integers that this code allocates, and the constant
appearing in the addressing mode of the mov instructions selects the offset of
the specific integer from this base address.

Most CPUs use byte addresses for memory objects. Therefore, when allo-
cating multiple copies of some n-byte object in memory, the objects will not
begin at consecutive memory addresses; instead, they will appear in memory
at addresses that are n bytes apart. Some machines, however, do not allow a
program to access memory at an arbitrary address in memory; they require
that applications access data on address boundaries that are a multiple of a
word, a double word, or even a quad word. Any attempt to access memory on
some other boundary will raise an exception and (possibly) halt the appli-
cation. If a high-level language supports pointer arithmetic, it must take this
fact into consideration and provide a generic pointer arithmetic scheme that
is portable across many different CPU architectures. The most common solu-
tion that high-level languages use when adding an integer offset to a pointer
is to multiply that offset by the size of the object that the pointer references.
That is, if you’ve got a pointer p to a 16-byte object in memory, then p + 1
points 16 bytes beyond where p points. Likewise, p + 2 points 32 bytes beyond
the address contained in the pointer p. As long as the size of the data object
is a multiple of the required alignment size (which the compiler can enforce
by adding padding bytes, if necessary), this scheme avoids problems on those
architectures that require aligned data access.

An important thing to realize is that the addition operator only makes
sense between a pointer and an integer value. For example, in the C/C++
language you can indirectly access objects in memory using an expression
like *(p + i) (where p is a pointer to an object and i is an integer value). It
doesn’t make any sense to add two pointers together. Similarly, it isn’t
reasonable to add other data types with a pointer. For example, adding a
floating-point value to a pointer makes no sense. What would it mean to
reference the data at some base address plus 1.5612? Operations on pointers
involving strings, characters, and other data types don’t make much sense,
either. Integers (signed and unsigned) are the only reasonable values to add
to a pointer.

On the other hand, not only can you add an integer to a pointer, you
can also add a pointer to an integer and the result is still pointer (both p + i
and i + p are legal). This is because addition is commutative.

No Starch Press, Copyright © 2004 by Randall Hyde

Composi te Data Types and Memory Object s 167

7.1.3.2 Subtracting an Integer from a Pointer

Another reasonable pointer arithmetic operation is subtraction. Subtracting
an integer from a pointer references a memory location immediately before
the address held in the pointer. However, subtraction is not commutative
and subtracting a pointer from an integer is not a legal operation (p − i is
legal, but i − p is not).

In C/C++ *(p − i) accesses the ith object immediately before the object
at which p points. In 80x86 assembly language, as in assembly on many
processors, you can also specify a negative constant offset when using an
indexed addressing mode, e.g.,

mov([ebx−4], eax);

Keep in mind, that 80x86 assembly language uses byte offsets, not object
offsets (as C/C++ does). Therefore, this statement loads into EAX the double
word in memory immediately preceding the memory address in EBX.

7.1.3.3 Subtracting a Pointer from a Pointer

Unlike addition, it actually makes sense to subtract the value of one pointer
variable from another. Consider the following C/C++ code that marches
through a string of characters looking for the first e character that follows the
first a that it finds:

int distance;

char *aPtr;

char *ePtr;

. . .

aPtr = someString; // Get ptr to start of string in aPtr.

// While we're not at the end of the string and the current

// char isn't 'a':

while(*aPtr != '\0' && *aPtr != 'a')

{

aPtr = aPtr + 1; // Move on to the next character pointed

// at by aPtr.

}

// While we're not at the end of the string and the current

// character isn't 'e':

ePtr = aPtr; // Start at the 'a' char (or end of string

// if no 'a').

while(*ePtr != '\0' && *ePtr != 'a')

{

ePtr = ePtr + 1; // Move on to the next character pointed at by aPtr.

}

No Starch Press, Copyright © 2004 by Randall Hyde

168 Chap te r 7

// Now compute the number of characters between the 'a' and the 'e'

// (counting the 'a' but not counting the 'e'):

distance = (ePtr - aPtr);

The subtraction of these two pointers produces the number of data objects
that exist between the two pointers (in this case, ePtr and aPtr point at
characters, so the subtraction result produces the number of characters, or
bytes, between the two pointers).

The subtraction of two pointer values only makes sense if the two
pointers reference the same data structure in memory (for example,
pointing at characters within the same string, as in this C/C++ example).
Although C/C++ (and certainly assembly language) will allow you to subtract
two pointers that point at completely different objects in memory, their
difference will probably have very little meaning.

When using pointer subtraction in C/C++, the base types of the two
pointers must be identical (that is, the two pointers must contain the
addresses of two objects whose types are identical). This restriction exists
because pointer subtraction in C/C++ produces the number of objects
between the two pointers, not the number of bytes. It wouldn’t make any
sense to compute the number of objects between a byte in memory and a
double word in memory; would you be counting the number of bytes or the
number of double words in this case? Of course, in assembly language you
can get away with this (and the result is always the number of bytes between
the two pointers), but it still doesn’t make much sense semantically.

Note that the subtraction of two pointers could return a negative
number if the left pointer operand is at a lower memory address than the
right pointer operand. Depending on your language and its implementation,
you may need to take the absolute value of the result if you’re only interested
in the distance between the two pointers and you don’t care which pointer
contains the greater address.

7.1.3.4 Comparing Pointers

Comparisons are another set of operations that make sense for pointers.
Almost every language that supports pointers will let you compare two
pointers to see if they are equal or not equal. Such a comparison will tell you
whether the pointers reference the same object in memory. Some languages
(such as assembly and C/C++) will also let you compare two pointers to see if
one pointer is less than or greater than another. This only makes sense,
however, if the pointers have the same base type and both pointers contain
the address of some object within the same data structure (such as an array,
string, or record). If the comparison of two pointers suggests that the value
of one pointer is less than the other, then this tells you that the first pointer
references an object within the data structure appearing before the object
referenced by the second pointer. The converse is equally true for the
greater than comparison.

No Starch Press, Copyright © 2004 by Randall Hyde

Composi te Data Types and Memory Object s 169

7.2 Arrays

After strings, arrays are probably the most common composite data type (a
complex data type built up from smaller data objects). Yet few beginning
programmers fully understand how arrays operate and know about their
efficiency trade-offs. It’s surprising how many novice programmers view
arrays from a completely different perspective once they understand how
arrays operate at the machine level.

Abstractly, an array is an aggregate data type whose members (elements)
are all of the same type. A member is selected from the array by specifying
the member’s array index with an integer (or with some value whose under-
lying representation is an integer, such as character, enumerated, and
Boolean types). This chapter assumes that all of the integer indexes of an
array are numerically contiguous (though this is not required). That is,
if both x and y are valid indexes of the array, and if x < y, then all i such
that x < i < y are also valid indexes. In this book, we will assume that
array elements occupy contiguous locations in memory. An array with five
elements will appear in memory as shown in Figure 7-2.

Figure 7-2: Array layout in memory

The base address of an array is the address of the first element of the array and
is at the lowest memory location. The second array element directly follows
the first in memory, the third element follows the second, and so on. Note
that there is no requirement that the indexes start at zero. They may start
with any number as long as they are contiguous. However, for the purposes
of this discussion, it’s easier to discuss array access if the first index is zero.
We’ll generally begin most arrays at index zero unless there is a good reason
to do otherwise.

Whenever you apply the indexing operator to an array, the result is the
unique array element specified by that index. For example, A[i] chooses the
ith element from array A.

7.2.1 Array Declarations
Array declarations are very similar across many high-level languages. We’ll
look at some examples in many of these languages within this section.

C, C++, and Java all let you declare an array by specifying the total num-
ber of elements in an array. The syntax for an array declaration in these
languages is as follows:

data_type array_name [number_of_elements];

Low memory
addresses

High memory
addressesBase address of A

A[0] A[2]A[1] A[3] A[4]

No Starch Press, Copyright © 2004 by Randall Hyde

170 Chap te r 7

Here are some sample C/C++ array declarations:

char CharArray[128];

int intArray[8];

unsigned char ByteArray[10];

int *PtrArray[4];

If these arrays are declared as automatic variables, then C/C++ “initializes”
them with whatever bit patterns happen to be present in memory. If, on the
other hand, you declare these arrays as static objects, then C/C++ zeros out
each array element. If you want to initialize an array yourself, then you can
use the following C/C++ syntax:

data_type array_name[number_of_elements] = {element_list};

Here’s a typical example:

int intArray[8] = {0,1,2,3,4,5,6,7};

HLA’s array declaration syntax takes the following form, which is
semantically equivalent to the C/C++ declaration:

array_name : data_type [number_of_elements];

Here are some examples of HLA array declarations, which all allocate
storage for uninitialized arrays (the second example assumes that you have
defined the integer data type in a type section of the HLA program):

static

CharArray: char[128]; // Character array with elements

// 0..127.

IntArray: integer[8]; // Integer array with elements 0..7.

ByteArray: byte[10]; // Byte array with elements 0..9.

PtrArray: dword[4]; // Double-word array with elements 0..3.

You can also initialize the array elements using declarations like the
following:

RealArray: real32[8] := [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0];

IntegerAry: integer[8] := [8, 9, 10, 11, 12, 13, 14, 15];

Both of these definitions create arrays with eight elements. The first
definition initializes each 4-byte real32 array element with one of the values
in the range 0.0..7.0. The second declaration initializes each integer array
element with one of the values in the range 8..15.

No Starch Press, Copyright © 2004 by Randall Hyde

Composi te Data Types and Memory Object s 171

Pascal/Delphi/Kylix uses the following syntax to declare an array:

array_name : array[lower_bound..upper_bound] of data_type;

As in the previous examples, array_name is the identifier and data_type is
the type of each element in this array. Unlike C/C++, Java, and HLA, in
Pascal/Delphi/Kylix you specify the upper and lower bounds of the array
rather than the array’s size. The following are typical array declarations
in Pascal:

type

ptrToChar = ^char;

var

CharArray: array[0..127] of char; // 128 elements

IntArray: array[0..7] of integer; // 8 elements

ByteArray: array[0..9] of char; // 10 elements

PtrArray: array[0..3] of ptrToChar; // 4 elements

Although these Pascal examples start their indexes at zero, Pascal does not
require a starting index of zero. The following is a perfectly valid array
declaration in Pascal:

var

ProfitsByYear : array[1998..2009] of real; // 12 elements

The program that declares this array would use indexes 1998 through 2009
when accessing elements of this array, not 0 through 11.

Many Pascal compilers provide an extra feature to help you locate
defects in your programs. Whenever you access an element of an array,
these compilers will automatically insert code that will verify that the array
index is within the bounds specified by the declaration. This extra code
will stop the program if the index is out of range. For example, if an index
into ProfitsByYear is outside the range 1998..2009, the program would abort
with an error. This is a very useful feature that helps verify the correctness of
your program.1

Generally, array indexes are integer values, though some languages allow
other ordinal types (those data types that use an underlying integer represen-
tation). For example, Pascal allows char and boolean array indexes. In Pascal,
it’s perfectly reasonable and useful to declare an array as follows:

alphaCnt : array['A'..'Z'] of integer;

1 Many Pascal compilers provide an option to turn off this array index range checking once your
program is fully tested. Turning off the bounds checking improves the efficiency of the resulting
program.

No Starch Press, Copyright © 2004 by Randall Hyde

172 Chap te r 7

You access elements of alphaCnt using a character expression as the array
index. For example, consider the following Pascal code that initializes each
element of alphaCnt to zero:

for ch := 'A' to 'Z' do

alphaCnt[ch] := 0;

Assembly language and C/C++ treat most ordinal values as special instances
of integer values, so they are certainly legal array indexes. Most implemen-
tations of BASIC will allow a floating-point number as an array index, though
BASIC always truncates the value to an integer before using it as an index.2

7.2.2 Array Representation in Memory
Abstractly, an array is a collection of variables that you access using an index.
Semantically, we can define an array any way we please as long as it maps
distinct indexes to distinct objects in memory and always maps the same
index to the same object. In practice, however, most languages utilize a few
common algorithms that provide efficient access to the array data.

The number of bytes of storage an array will consume is the product of
the number of elements multiplied by the number of bytes per element in
the array. Many languages also add a few additional bytes of padding at the
end of the array so that the total length of the array is an even multiple of a
nice value like four (on a 32-bit machine, a compiler may add bytes to the
end of the array in order to extend its length to some multiple of four bytes).
However, a program must not access these extra padding bytes because they
may or may not be present. Some compilers will put them in, some will not,
and some will only put them in depending on the type of object that
immediately follows the array in memory.

Many optimizing compilers will attempt to place an array starting at a
memory address that is an even multiple of some common size like two, four,
or eight bytes. This effectively adds padding bytes before the beginning of
the array or, if you prefer to think of it this way, it adds padding bytes to the
end of the previous object in memory (see Figure 7-3).

Figure 7-3: Adding padding bytes before an array

2 BASIC allows you to use floating-point values as array indexes because the original BASIC
language did not provide support for integer expressions; it only provided real values and string
values.

Array of eight double-word objects in memory

Single-byte object at an address that is an even multiple of four in memory

Three bytes of padding the compiler adds to make sure
the array is aligned on a double-word boundary

}

No Starch Press, Copyright © 2004 by Randall Hyde

Composi te Data Types and Memory Object s 173

On those machines that do not support byte-addressable memory, those
compilers that attempt to place the first element of an array on an easily
accessed boundary will allocate storage for an array on whatever boundary
the machine supports. If the size of each array element is less than the
minimum size memory object the CPU supports, the compiler implementer
has two options:

� Allocate the smallest accessible memory object for each element of
the array

� Pack multiple array elements into a single memory cell

The first option has the advantage of being fast, but it wastes memory
because each array element carries along some extra storage that it doesn’t
need. The second option is compact, but it requires extra instructions to
pack and unpack data when accessing array elements, which means that
accessing elements is slower. Compilers on such machines often provide an
option that lets you specify whether you want the data packed or unpacked
so you can make the choice between space and speed.

If you’re working on a byte-addressable machine (like the 80x86) then
you probably don’t have to worry about this issue. However, if you’re using
a high-level language and your code might wind up running on a different
machine at some point in the future, you should choose an array organi-
zation that is efficient on all machines.

7.2.3 Accessing Elements of an Array

If you allocate all the storage for an array in contiguous memory locations,
and the first index of the array is zero, then accessing an element of a one-
dimensional array is simple. You can compute the address of any given
element of an array using the following formula:

Element_Address = Base_Address + index * Element_Size

The Element_Size item is the number of bytes that each array element
occupies. Thus, if the array contains elements of type byte, the Element_Size

field is one and the computation is very simple. If each element of the array
is a word (or another two-byte type) then Element_Size is two. And so on.

Consider the following Pascal array declaration:

var SixteenInts : array[0..15] of integer;

To access an element of the SixteenInts on a byte-addressable machine,
assuming 4-byte integers, you’d use this calculation:

Element_Address = AddressOf(SixteenInts) + index*4

No Starch Press, Copyright © 2004 by Randall Hyde

174 Chap te r 7

In assembly language (where you would actually have to do this calculation
manually rather than having the compiler do the work for you), you’d use
code like the following to access array element SixteenInts[index]:

mov(index, ebx);

mov(SixteenInts[ebx*4], eax);

7.2.4 Multidimensional Arrays

Most CPUs can easily handle one-dimensional arrays. Unfortunately, there
is no magic addressing mode that lets you easily access elements of multi-
dimensional arrays. That’s going to take some work and several machine
instructions.

Before discussing how to declare or access multidimensional arrays, it
would be a good idea to look at how to implement them in memory. The first
problem is to figure out how to store a multidimensional object in a one-
dimensional memory space.

Consider for a moment a Pascal array of the following form:

A:array[0..3,0..3] of char;

This array contains 16 bytes organized as four rows of four characters.
Somehow you have to draw a correspondence between each of the 16 bytes
in this array and each of the 16 contiguous bytes in main memory. Figure 7-4
shows one way to do this.

Figure 7-4: Mapping a 4x4 array to sequential memory locations

0

1

2

3

Memory

0 1 2 3

No Starch Press, Copyright © 2004 by Randall Hyde

Composi te Data Types and Memory Object s 175

The actual mapping is not important as long as two things occur:

� No two entries in the array occupy the same memory location(s)

� Each element in the array always maps to the same memory location

Therefore, what you really need is a function with two input parameters —
one for a row and one for a column value — that produces an offset into a
contiguous block of 16 memory locations.

Any old function that satisfies these two constraints will work fine. How-
ever, what you really want is a mapping function that is efficient to compute
at run time and that works for arrays with any number of dimensions and
any bounds on those dimensions. While there are a large number of possible
functions that fit this bill, there are two functions that most high-level lan-
guages use: row-major ordering and column-major ordering.

7.2.4.1 Row-Major Ordering

Row-major ordering assigns array elements to successive memory locations by
moving across the rows and then down the columns. Figure 7-5 demonstrates
this mapping.

Figure 7-5: Row-major array element ordering

Row-major ordering is the method employed by most high-level pro-
gramming languages including Pascal, C/C++, Java, Ada, and Modula-2.
It is very easy to implement and is easy to use in machine language. The
conversion from a two-dimensional structure to a linear sequence is very
intuitive. Figure 7-6 on the next page provides another view of the ordering
of a 4×4 array.

0

1

2

3

Memory

15 A[3,3]
14 A[3,2]
13 A[3,1]
12 A[3,0]
11 A[2,3]
10 A[2,2]
9 A[2,1]
8 A[2,0]
7 A[1,3]
6 A[1,2]
5 A[1,1]
4 A[1,0]
3 A[0,3]
2 A[0,2]
1 A[0,1]
0 A[0,0]

A:array [0..3,0..3] of char;

0 1 2 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

No Starch Press, Copyright © 2004 by Randall Hyde

176 Chap te r 7

Figure 7-6: Another view of row-major ordering for a 4×4 array

The actual function that converts the set of multidimensional array indexes
into a single offset is a slight modification of the formula for computing the
address of an element of a one-dimensional array. The formula to compute
the offset for a 4×4 two-dimensional row-major ordered array given an access
of this form:

A[colindex][rowindex]

. . . is as follows:

Element_Address = Base_Address + (colindex * row_size + rowindex) * Element_Size

As usual, Base_Address is the address of the first element of the array (A[0][0]
in this case) and Element_Size is the size of an individual element of the array,
in bytes. Row_size is the number of elements in one row of the array (four, in
this case, because each row has four elements). Assuming Element_Size is one,
this formula computes the following offsets from the base address:

Column Index Row Index Offset into Array

0 0 0

0 1 1

0 2 2

0 3 3

1 0 4

1 1 5

1 2 6

1 3 7

2 0 8

2 1 9

2 2 10

2 3 11

(continued)

Low addresses High addresses

0 1 2 3

0 1 2 3

4 5 6 7

4 5 6 7

8 9 10 11

8 9 10 11

12 13 14 15

12 13 14 15

No Starch Press, Copyright © 2004 by Randall Hyde

Composi te Data Types and Memory Object s 177

For a three-dimensional array, the formula to compute the offset into
memory is only slightly more complex. Consider a C/C++ array declaration
given as follows:

someType A[depth_size][col_size][row_size];

If you have an array access similar to A[depth_index][col_index][row_index]
then the computation that yields the offset into memory is the following:

Address =

Base + ((depth_index * col_size + col_index)*row_size + row_index) * Element_Size

Element_size is the size, in bytes, of a single array element.

For a four-dimensional array, declared in C/C++ as:

type A[bounds0][bounds1][bounds2][bounds3];

. . . the formula for computing the address of an array element when
accessing element A[i][j][k][m] is as follows:

Address =

Base + (((i * bounds1 + j) * bounds2 + k) * bounds3 + m) * Element_Size

If you’ve got an n -dimensional array declared in C/C++ as follows:

dataType A[bn-1][bn-2]...[b0];

. . . and you wish to access the following element of this array:

A[an-1][an-2]...[a1][a0]

. . . then you can compute the address of a particular array element using the
following algorithm:

Address := an-1
for i := n-2 downto 0 do

Address := Address * bi + ai
Address := Base_Address + Address*Element_Size

3 0 12

3 1 13

3 2 14

3 3 15

Column Index Row Index Offset into Array

No Starch Press, Copyright © 2004 by Randall Hyde

178 Chap te r 7

7.2.4.2 Column-Major Ordering

Column-major ordering is the other common array element address
function. FORTRAN and various dialects of BASIC (such as older versions
of Microsoft BASIC) use this scheme to index arrays. Pictorially, a column-
major ordered array is organized as shown in Figure 7-7.

Figure 7-7: Column-major array element ordering

The formula for computing the address of an array element when using
column-major ordering is very similar to that for row-major ordering. The
difference is that you reverse the order of the index and size variables in
the computation. That is, rather than working from the leftmost index to
the rightmost, you operate on the indexes from the rightmost towards the
leftmost.

For a two-dimensional column-major array, the formula is as follows:

Element_Address =

Base_Address + (rowindex * col_size + colindex) * Element_Size

The formula for a three-dimensional column-major array is the following:

Element_Address =

Base_Address +

((rowindex*col_size+colindex) * depth_size + depthindex) * Element_Size

And so on. Other than using these new formulas, accessing elements of an
array using column-major ordering is identical to accessing arrays using row-
major ordering.

0

1

2

3

Memory

15 A[3,3]
14 A[2,3]
13 A[1,3]
12 A[0,3]
11 A[3,2]
10 A[2,2]
9 A[1,2]
8 A[0,2]
7 A[3,1]
6 A[2,1]
5 A[1,1]
4 A[0,1]
3 A[3,0]
2 A[2,0]
1 A[1,0]
0 A[0,0]

A:array [0..3,0..3] of char;

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3

No Starch Press, Copyright © 2004 by Randall Hyde

Composi te Data Types and Memory Object s 179

7.2.4.3 Declaring Multidimensional Arrays

If you have an m × n array, it will have m × n elements and will require
m × n × Element_Size bytes of storage. To allocate storage for an array
you must reserve this amount of memory. With one-dimensional arrays,
the syntax that the different high-level languages employ is very similar.
However, their syntax starts to diverge when you consider multidimensional
arrays.

In C, C++, and Java, you use the following syntax to declare a multi-
dimensional array:

data_type array_name [dim1][dim2] . . . [dimn];

Here is a concrete example of a three-dimensional array declaration in
C/C++:

int threeDInts[4][2][8];

This example creates an array with 64 elements organized with a depth of
four by two rows by eight columns. Assuming each int object requires 4 bytes,
this array consumes 256 bytes of storage.

Pascal’s syntax actually supports two equivalent ways of declaring multi-
dimensional arrays. The following example demonstrates both of these
forms:

var

threeDInts : array[0..3] of array[0..1] of array[0..7] of integer;

threeDInts2 : array[0..3, 0..1, 0..7] of integer;

Semantically, there are only two major differences that exist among different
languages. The first difference is whether the array declaration specifies the
overall size of each array dimension or whether it specifies the upper and
lower bounds. The second difference is whether the starting index is zero,
one, or a user-specified value.

7.2.4.4 Accessing Elements of a Multidimensional Array

Accessing an element of a multidimensional array in a high-level language
is so easy that a typical programmer will do so without considering the asso-
ciated cost. In this section, we’ll look at some of the assembly language
sequences you’ll need to access elements of a multidimension array to give
you a clearer picture of these costs.

Consider again, the C/C++ declaration of the ThreeDInts array from the
previous section:

int ThreeDInts[4][2][8];

No Starch Press, Copyright © 2004 by Randall Hyde

180 Chap te r 7

In C/C++, if you wanted to set element [i][j][k] of this array to the value of
n, you’d probably use a statement similar to the following:

ThreeDInts[i][j][k] = n;

This statement, however, hides a great deal of complexity. Recall the formula
needed to access an element of a three-dimensional array:

Element_Address =

Base_Address +

((rowindex * col_size + colindex) * depth_size + depthindex) *

Element_Size

The ThreeDInts example does not avoid this calculation, it only hides it from
you. The machine code that the C/C++ compiler generates is similar to the
following:

intmul(2, i, ebx); // EBX = 2 * i

add(j, ebx); // EBX = 2 * i + j

intmul(8, ebx); // EBX = (2 * i + j) * 8

add(k, ebx); // EBX = (2 * i + j) * 8 + k

mov(n, eax);

mov(eax, ThreeDInts[ebx*4]); // ThreeDInts[i][j][k] = n

Actually, ThreeDInts is special. The sizes of all the array dimensions are nice
powers of two. This means that the CPU can use shifts instead of multipli-
cation instructions to multiply EBX by two and by four in this example.
Because shifts are often faster than multiplication, a decent C/C++ compiler
will generate the following code:

mov(i, ebx);

shl(1, ebx); // EBX = 2 * i

add(j, ebx); // EBX = 2 * i + j

shl(3, ebx); // EBX = (2 * i + j) * 8

add(k, ebx); // EBX = (2 * i + j) * 8 + k

mov(n, eax);

mov(eax, ThreeDInts[ebx*4]); // ThreeDInts[i][j][k] = n

Note that a compiler can only use this faster code if an array dimension is a
power of two. This is the reason many programmers attempt to declare arrays
whose dimension sizes are some power of two. Of course, if you must declare
extra elements in the array to achieve this goal, you may wind up wasting
space (especially with higher-dimensional arrays) to achieve a small increase
in speed.

For example, if you need a 10×10 array and you’re using row-major
ordering, you could create a 10×16 array to allow the use of a shift (by four)
instruction rather than a multiply (by 10) instruction. When using column-
major ordering, you’d probably want to declare a 16×10 array to achieve the

No Starch Press, Copyright © 2004 by Randall Hyde

Composi te Data Types and Memory Object s 181

same effect, since row-major calculation doesn’t use the size of the first
dimension when calculating an offset into an array, and column-major
calculation doesn't use the size of the second dimension when calculating an
offset. In either case, however, the array would wind up having 160 elements
instead of 100 elements. Only you can decide if this extra space is worth the
small increase in speed you’ll gain.

7.3 Records/Structures

Another major composite data structure is the Pascal record or C/C++
structure. The Pascal terminology is probably better, as it avoids confusion
with the term data structure. Therefore, we’ll adopt the term record here.

An array is homogeneous, meaning that its elements are all of the same
type. A record, on the other hand, is heterogeneous and its elements can
have differing types. The purpose of a record is to let you encapsulate
logically related values into a single object.

Arrays let you select a particular element via an integer index. With
records, you must select an element, known as a field, by the field’s name.
Each of the field names within the record must be unique. That is, the same
field name may not appear two or more times in the same record. However,
all field names are local to their record, and you may reuse those names
elsewhere in the program.

7.3.1 Records in Pascal/Delphi

Here’s a typical record declaration for a Student data type in Pascal/Delphi:

type

Student =

record

Name: string [64];

Major: smallint; // 2-byte integer in Delphi

SSN: string[11];

Mid1: smallint;

Midt: smallint;

Final: smallint;

Homework: smallint;

Projects: smallint;

end;

Many Pascal compilers allocate all of the fields in contiguous memory
locations. This means that Pascal will reserve the first 65 bytes for the name,3

the next 2 bytes hold the major code, the next 12 bytes the Social Security
number, and so on.

3 Pascal strings usually require an extra byte, in addition to all the characters in the string, to
encode the length.

No Starch Press, Copyright © 2004 by Randall Hyde

182 Chap te r 7

7.3.2 Records in C/C++
Here’s the same declaration in C/C++:

typedef

struct

{

char Name[65]; // Room for a 64-character zero-terminated string.

short Major; // Typically a 2-byte integer in C/C++

char SSN[12]; // Room for an 11-character zero-terminated string.

short Mid1;

short Mid2;

short Final;

short Homework;

short Projects

} Student;

7.3.3 Records in HLA

In HLA, you can also create structure types using the record/endrecord
declaration. In HLA, you would encode the record from the previous
sections as follows:

type

Student:

record

Name: char[65]; // Room for a 64-character

// zero-terminated string.

Major: int16;

SSN: char[12]; // Room for an 11-character

// zero-terminated string.

Mid1: int16;

Mid2: int16;

Final: int16;

Homework: int16;

Projects: int16;

endrecord;

As you can see, the HLA declaration is very similar to the Pascal declaration.
Note that to stay consistent with the Pascal declaration, this example uses
character arrays rather than strings for the Name and SSN (Social Security
number) fields. In a typical HLA record declaration, you’d probably use a
string type for at least the Name field (keeping in mind that a string variable
is a four-byte pointer).

No Starch Press, Copyright © 2004 by Randall Hyde

Composi te Data Types and Memory Object s 183

7.3.4 Memory Storage of Records
The following Pascal example demonstrates a typical Student variable
declaration:

var

John: Student;

Given the earlier declaration for the Pascal Student data type, this allocates
81 bytes of storage laid out in memory as shown in Figure 7-8.

Figure 7-8: Student data structure storage in memory

If the label John corresponds to the base address of this record, then the Name
field is at offset John + 0, the Major field is at offset John + 65, the SSN field is at
offset John + 67, and so on.

Most programming languages let you refer to a record field by its name
rather than by its numeric offset into the record. The typical syntax for field
access uses the dot operator to select a field from a record variable. Given the
variable John from the previous example, here’s how you could access various
fields in this record:

John.Mid1 = 80; // C/C++ example

John.Final := 93; (* Pascal Example *)

mov(75, John.Projects); // HLA example

Figure 7-8 suggests that all fields of a record appear in memory in the order
of their declaration. In theory, a compiler can freely place the fields
anywhere in memory that it chooses. In practice, though, almost every
compiler places the fields in memory in the same order they appear within
the record declaration. The first field usually appears at the lowest address
in the record, the second field appears at the next highest address, the third
field follows the second field in memory, and so on.

Figure 7-8 also suggests that compilers pack the fields into adjacent
memory locations with no gaps between the fields. While this is true for many
languages, this certainly isn’t the most common memory organization for a
record. For performance reasons, most compilers will actually align the fields
of a record on appropriate memory boundaries. The exact details vary by

Name
(65 bytes)

Major
(2 bytes)

SSN
(12 bytes)

Mid 1
(2 bytes)

Final
(2 bytes)

Homework
(2 bytes)

Projects
(2 bytes)

John

Mid 2
(2 bytes)

No Starch Press, Copyright © 2004 by Randall Hyde

184 Chap te r 7

language, compiler implementation, and CPU, but a typical compiler will
place fields at an offset within the record’s storage area that is “natural” for
that particular field’s data type. On the 80x86, for example, compilers that
follow the Intel ABI (application binary interface) will allocate one-byte
objects at any offset within the record, words only at even offsets, and double-
word or larger objects on double-word boundaries. Although not all 80x86
compilers support the Intel ABI, most do, which allows records to be shared
among functions and procedures written in different languages on the
80x86. Other CPU manufacturers provide their own ABI for their processors
and programs that adhere to an ABI can share binary data at run time with
other programs that adhere to the same ABI.

In addition to aligning the fields of a record at reasonable offset
boundaries, most compilers will also ensure that the length of the entire
record is a multiple of two, four, or eight bytes. They accomplish this by
adding padding bytes at the end of the record to fill out the record’s size.
The reason that compilers pad the size of a record is to ensure that the
record’s length is an even multiple of the size of the largest scalar (non-
composite data type) object in the record or the CPU’s optimal alignment
size, whichever is smaller. For example, if a record has fields whose lengths
are one, two, four, eight, and ten bytes long, then an 80x86 compiler will
generally pad the record’s length so that it is an even multiple of eight. This
allows you to create an array of records and be assured that each record in
the array starts at a reasonable address in memory.

Although some CPUs don’t allow access to objects in memory at
misaligned addresses, many compilers allow you to disable the automatic
alignment of fields within a record. Generally, the compiler will have an
option you can use to globally disable this feature. Many of these compilers
also provide a pragma or a packed keyword of some sort that lets you turn off
field alignment on a record-by-record basis. Disabling the automatic field
alignment feature may allow you to save some memory by eliminating the
padding bytes between the fields (and at the end of the record), provided
that field misalignment is acceptable on your CPU. The cost, of course, is
that the program may run a little bit slower when it needs to access
misaligned values in memory.

One reason to use a packed record is to gain manual control over the
alignment of the fields within the record. For example, suppose you have
a couple of functions written in two different languages and both of these
functions need to access some data in a record. Further, suppose that the two
compilers for these functions do not use the same field alignment algorithm.
A record declaration like the following (in Pascal) may not be compatible
with the way both functions access the record data:

type

aRecord: record

bField : byte; (* assume Pascal compiler supports a byte type *)

wField : word; (* assume Pascal compiler supports a word type *)

No Starch Press, Copyright © 2004 by Randall Hyde

Composi te Data Types and Memory Object s 185

dField : dword; (* assume Pascal compiler supports a double-word type *)

end; (* record *)

The problem here is that the first compiler could use the offsets zero, two,
and four for the bField, wField, and dField fields, respectively, while the
second compiler might use offsets zero, four, and eight.

Suppose however, that the first compiler allows you to specify the packed
keyword before the record keyword, causing the compiler to store each field
immediately following the previous one. Although using the packed keyword
will not make the records compatible with both functions, it will allow you to
manually add padding fields to the record declaration, as follows:

type

aRecord: packed record

bField :byte;

padding0 :array[0..2] of byte; (* add padding to dword align wField *)

wField :word;

padding1 :word; (* add padding to dword align dField *)

dField :dword;

end; (* record *)

Maintaining code where you’ve handled the padding in a manual fashion
can be a real chore. However, if incompatible compilers need to share data,
this is a trick worth knowing because it can make data sharing possible. For
the exact details concerning packed records, you’ll have to consult your
language’s reference manual.

7.4 Discriminant Unions

A discriminant union (or just union) is very similar to a record. Like records,
unions have fields and you access those fields using dot notation. In fact, in
many languages, about the only syntactical difference between records and
unions is the use of the keyword union rather than record. Semantically,
however, there is a big difference between a record and a union. In a record,
each field has its own offset from the base address of the record, and the
fields do not overlap. In a union, however, all fields have the same offset,
zero, and all the fields of the union overlap. As a result, the size of a record
is the sum of the sizes of all the fields (plus, possibly, some padding bytes),
whereas a union’s size is the size of its largest field (plus, possibly, some
padding bytes at the end).

Because the fields of a union overlap, you might think that a union
has little use in a real-world program. After all, if the fields all overlap,
then changing the value of one field changes the values of all the other
fields as well. This generally means that the use of a union’s field is mutually
exclusive — that is, you can only use one field at any given time. This obser-
vation is generally correct, but although this means that unions aren’t as
generally applicable as records, they still have many uses.

No Starch Press, Copyright © 2004 by Randall Hyde

186 Chap te r 7

7.4.1 Unions in C/C++

Here’s an example of a union declaration in C/C++:

typedef union

{

unsigned int i;

float r;

unsigned char c[4];

} unionType;

Assuming the C/C++ compiler in use allocates four bytes for unsigned
integers, the size of a unionType object will be four bytes (because all three
fields are 4-byte objects).

7.4.2 Unions in Pascal/Delphi/Kylix

Pascal/Delphi/Kylix use case variant records to create a discriminant union.
The syntax for a case variant record is the following:

type

typeName =

record

<<non-variant/union record fields go here>>

case tag of

const1:(field_declaration);

const2:(field_declaration);

.

.

.

constn:(field_declaration) (* no semicolon follows

the last field *)

end;

In this example, tag is either a type identifier (such as Boolean, char, or some
user-defined type) or it can be a field declaration of the form identifier:type.
If the tag item takes this latter form, then identifier becomes another field of
the record (and not a member of the variant section — those declarations
following the case) and has the specified type. When using this second form,
the Pascal compiler could generate code that raises an exception whenever
the application attempts to access any of the variant fields except the one
specified by the value of the tag field. In practice, though, almost no Pascal
compilers do this. Still, keep in mind that the Pascal language standard
suggests that compilers should do this, so some compilers out there might
actually do this check.

No Starch Press, Copyright © 2004 by Randall Hyde

Composi te Data Types and Memory Object s 187

Here’s an example of two different case variant record declarations in
Pascal:

type

noTagRecord=

record

someField: integer;

case boolean of

true:(i:integer);

false:(b:array[0..3] of char)

end; (* record *)

hasTagRecord=

record

case which:(0..2) of

0:(i:integer);

1:(r:real);

2:(c:array[0..3] of char)

end; (* record *)

As you can see in the hasTagRecord union, a Pascal case-variant record does
not require any normal record fields. This is true even if you do not have a
tag field.

7.4.3 Unions in HLA
HLA supports unions as well. Here’s a typical union declaration in HLA:

type

unionType:

union

i: int32;

r: real32;

c: char[4];

endunion;

7.4.4 Memory Storage of Unions
The big difference between a union and a record is the fact that records
allocate storage for each field at different offsets, whereas unions overlay
each of the fields at the same offset in memory. For example, consider the
following HLA record and union declarations:

type

numericRec:

record

i: int32;

u: uns32;

r: real64;

endrecord;

No Starch Press, Copyright © 2004 by Randall Hyde

188 Chap te r 7

numericUnion:

union

i: int32;

u: uns32;

r: real64;

endunion;

If you declare a variable, n, of type numericRec, you access the fields as n.i,
n.u, and n.r, exactly as though you had declared the n variable to be type
numericUnion. However, the size of a numericRec object is 16 bytes because the
record contains two double-word fields and a quad-word (real64) field. The
size of a numericUnion variable, however, is eight bytes. Figure 7-9 shows the
memory arrangement of the i, u, and r fields in both the record and union.

Figure 7-9: Layout of a union versus a record variable

7.4.5 Other Uses of Unions
In addition to conserving memory, programmers often use unions to create
aliases in their code. As you may recall, an alias is a second name for some
memory object. Although aliases are often a source of confusion in a
program, and should be used sparingly, using an alias can sometimes be
convenient. For example, in some section of your program you might need
to constantly use type coercion to refer to a particular object. One way to
avoid this is to use a union variable with each field representing one of the
different types you want to use for the object. As an example, consider the
following HLA code fragment:

type

CharOrUns:

union

c:char;

u:uns32;

endunion;

static

v:CharOrUns;

i u r

r

i, u

Base + 0 Base + 8 Base + 16

numericUnion variable

numericRec variable

No Starch Press, Copyright © 2004 by Randall Hyde

Composi te Data Types and Memory Object s 189

With a declaration like this one, you can manipulate an uns32 object by
accessing v.u. If, at some point, you need to treat the LO byte of this uns32
variable as a character, you can do so by simply accessing the v.c variable,
as follows:

mov(eax, v.u);

stdout.put("v, as a character, is '", v.c, "'" nl);

Another common practice is to use unions to disassemble a larger object into
its constituent bytes. Consider the following C/C++ code fragment:

typedef union

{

unsigned int u;

unsigned char bytes[4];

} asBytes;

asBytes composite;

.

.

.

composite.u = 1234576890;

printf

(

"HO byte of composite.u is %u, LO byte is %u\n",

composite.u[3],

composite.u[0]

);

Although composing and decomposing data types using unions is a useful
trick every now and then, be aware that this code is not portable. Remember,
the HO and LO bytes of a multibyte object appear at different addresses on
big endian versus little endian machines. This code fragment works fine on
little endian machines, but fails to display the right bytes on big endian
CPUs. Any time you use unions to decompose larger objects, you should be
aware that the code might not be portable across different machines. Still,
disassembling larger values into the corresponding bytes, or assembling a
larger value from bytes, is usually much more efficient than using shift lefts,
shift rights, and AND operations. Therefore, you’ll see this trick used quite
a bit.

7.5 For More Information

This chapter has dealt with the low-level implementation of common data
structures you’ll find in various languages. For more information on data
types, you can head off in two directions at this point — lower or higher.

No Starch Press, Copyright © 2004 by Randall Hyde

190 Chap te r 7

To learn more about the low-level implementation of various data types,
you’ll probably want to start learning and mastering assembly language.
My book The Art of Assembly Language (No Starch Press) is a good place to
begin that journey.

Higher-level data-structure information is available in just about any
decent college textbook on data structures and algorithm design. There are
literally hundreds of these books available covering a wide range of subjects.

For those interested in a combination of low-level and high-level con-
cepts, a good choice is Donald Knuth’s The Art of Computer Programming,
Volume I: Fundamental Algorithms. This text is available in nearly every book-
store that carries technical books.

No Starch Press, Copyright © 2004 by Randall Hyde

8
B O O L E A N L O G I C

A N D D I G I T A L D E S I G N

Boolean logic is the basis of computation
in modern computer systems. You can

represent any algorithm, or any electronic
computer circuit, using a system of Boolean

equations. To fully understand how software operates
you need to understand basic Boolean logic and digital
design.

This material is especially important to those who want to design electronic
circuits or write software that controls electronic circuits. Even if you never plan
to do this, you can use your knowledge of Boolean logic to optimize your
software. However, there is one other reason for studying Boolean functions,
even if you never intend to do either of these two things. Many high-level
languages process Boolean expressions, such as those that control an if
statement or while loop. By optimizing your Boolean expressions, it is often
possible to improve the performance of high-level language code. Therefore,

No Starch Press, Copyright © 2004 by Randall Hyde

192 Chap te r 8

studying Boolean functions is important even if you never intend to design
an electronic circuit. It can help you write better code in a traditional
programming language.

8.1 Boolean Algebra

Boolean algebra is a deductive mathematical system. A binary operator “°”
accepts a pair of Boolean inputs and produces a single Boolean value. For
example, the Boolean AND operator accepts two Boolean inputs and
produces a single Boolean output (the logical AND of the two inputs).

8.1.1 The Boolean Operators
For our purposes, we will base Boolean algebra on the following set of
operators and values:

� The two possible values in the Boolean system are zero and one. Often
we will call these values false and true, respectively.

� The symbol “•” represents the logical AND operation. For example,
A • B is the result of logically ANDing the Boolean values A and B.
When using single letter variable names, this text will drop the “•”
symbol; therefore, AB also represents the logical AND of the variables
A and B, which we will also call the product of A and B.

� The symbol “+” represents the logical OR operation. For example, A + B
is the result of logically ORing the Boolean values A and B. We will also
call this the sum of A and B.

� Logical complement, logical negation, and NOT, are all names for the
same unary operator. This chapter will use the (') symbol to denote logi-
cal negation. For example, A' denotes the logical NOT of A.

8.1.2 Boolean Postulates
Every algebraic system follows a certain set of initial assumptions, or pos-
tulates. You can deduce additional rules, theorems, and other properties
of the system from this basic set of postulates. Boolean algebra systems are
no different, and usually employ the following postulates:

� Closure. A Boolean system is closed with respect to a particular binary
operator if, for every pair of Boolean values, it only produces a Boolean
result.

� Commutativity. A binary operator “°” is said to be commutative if
A ° B = B ° A for all possible Boolean values A and B.

� Associativity. A binary operator “°” is said to be associative if
(A ° B) ° C = A ° (B ° C) for all Boolean values A, B, and C.

� Distribution. Two binary operators “°” and “%” are distributive if
A ° (B % C) = (A ° B) % (A ° C) for all Boolean values A, B, and C.

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 193

� Identity. A Boolean value I is said to be the identity element with respect to
some binary operator “°” if A ° I = A for all Boolean values A.

� Inverse. A Boolean value I is said to be the inverse element with respect to
some binary operator “°” if A ° I = B and B ≠ A (i.e., B is the opposite
value of A in a Boolean system) for all Boolean values A and B.

When applied to the Boolean operators, the preceding postulates produce
the following set of Boolean postulates:

� P1: Boolean algebra is closed under the AND, OR, and NOT operations.

� P2: The identity element of AND (•) is one, and the identity element
of OR (+) is zero. There is no identity element with respect to logical
NOT (').

� P3: The • and + operators are commutative.

� P4: • and + are distributive with respect to one another. That is,
A • (B + C) = (A • B) + (A • C) and A + (B • C) = (A + B) • (A + C).

� P5: • and + are both associative. That is, (A • B) • C = A • (B • C) and
(A + B) + C = A + (B + C).

� P6: For every value A there exists a value A' such that A • A' = 0 and
A + A' = 1. This value is the logical complement (or NOT) of A.

You can prove all other theorems in Boolean algebra using this set of
Boolean postulates. This chapter will not go into the formal proofs of the
following theorems, but familiarity with some important theorems in
Boolean algebra will be useful. Here are some of the important theorems:

Th1: A + A = A

Th2: A • A = A

Th3: A + 0 = A

Th4: A • 1 = A

Th5: A • 0 = 0

Th6: A + 1 = 1

Th7: (A + B)' = A' • B'

Th8: (A • B)' = A' + B'

Th9: A + A • B = A

Th10: A • (A + B) = A

Th11: A + A'B = A + B

Th12: A' • (A + B') = A'B'

Th13: AB + AB' = A

Th14: (A' + B') • (A' + B) = A'

Th15: A + A' = 1

Th16: A • A' = 0

No Starch Press, Copyright © 2004 by Randall Hyde

194 Chap te r 8

NOTE Theorems seven and eight are called DeMorgan’s Theorems after the mathematician
who discovered them.

An important principle in the Boolean algebra system is that of duality.
Each pair, theorems 1 and 2, theorems 3 and 4, and so on, forms a dual.
Any valid expression you can create using the postulates and theorems of
Boolean algebra remains valid if you interchange the operators and con-
stants appearing in the expression. Specifically, if you exchange the • and
+ operators and swap the 0 and 1 values in an expression, the resulting
expression will obey all the rules of Boolean algebra. This does not mean the
dual expression computes the same values; it only means that both expressions
are legal in the Boolean algebra system.

8.1.3 Boolean Operator Precedence

If several different Boolean operators appear within a single Boolean
expression, the result of the expression depends on the precedence of the
operators. The following Boolean operators are ordered from highest
precedence to lowest:

� parentheses

� logical NOT

� logical AND

� logical OR

The logical AND and OR operators are left associative. This means that if two
operators with the same precedence appear between three operands, you
must evaluate the expressions from left to right. The logical NOT operation
is right associative, although it would produce the same result using either
left or right associativity because it is a unary operator having only a single
operand.

8.2 Boolean Functions and Truth Tables

A Boolean expression is a sequence of zeros, ones, and literals separated by
Boolean operators. A Boolean literal is a primed (negated) or unprimed
variable name, and all variable names will be a single alphabetic character.
A Boolean function is a specific Boolean expression; we will generally give
Boolean functions the name F with a possible subscript. For example,
consider the following Boolean function:

F0 = AB + C

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 195

This function computes the logical AND of A and B and then logically ORs
this result with C. If A = 1, B = 0, and C = 1, then F0 returns the value one
(1 • 0 + 1 = 1).

You can also represent a Boolean function with a truth table. The truth
tables for the logical AND and OR functions are shown in Table 8-1 and
Table 8-2.

For binary operators and two input variables, this form of a truth table is very
natural and convenient. However, for functions involving more than two
variables, these truth-table forms don’t work well.

Table 8-3 shows another way to represent truth tables. This form has
several advantages — it is easier to fill in the table, it supports three or more
variables, and it provides a compact representation for two or more func-
tions. The example in Table 8-3 demonstrates how to create a truth table for
three different functions of three input variables.

Although you can create an infinite variety of Boolean functions, they are
not all unique. For example, F = A and F = AA are two different functions. By
theorem two, however, it is easy to show that these two functions produce

Table 8-1: AND truth table

AND 0 1

0 0 0

1 0 1

Table 8-2: OR truth table

OR 0 1

0 0 1

1 1 1

Table 8-3: Truth Table Format for a Function of Three Variables

C B A F = ABC F = AB + C F = A+BC

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 0 0

0 1 1 0 1 1

1 0 0 0 1 0

1 0 1 0 1 1

1 1 0 0 1 1

1 1 1 1 1 1

No Starch Press, Copyright © 2004 by Randall Hyde

196 Chap te r 8

exactly the same result no matter what input value you supply for A. As it
turns out, if you fix the number of input variables you’re going to allow,
there are a finite number of unique Boolean functions possible. For
example, there are only 16 unique Boolean functions with two input
variables and there are only 256 possible Boolean functions with three
input variables. Given n input variables, there are unique Boolean
functions (two raised to two raised to the nth power). With two input
variables there are or 16 different functions. With three input
variables there are or 256 possible functions. Four input variables
have or , or 65,536 unique Boolean functions.

When working with only 16 Boolean functions (two input variables),
we can name each unique function. Table 8-4 lists common names for these
functions.

Table 8-4: Common Names for Boolean Functions of Two Variables

Function
Number1

1 See the discussion of function numbers in the next section.

Function Name Description

0 Zero (clear) Always returns zero regardless of A and B input
values

1 Logical NOR (NOT (A OR B)) = (A + B)′

2 Inhibition (AB′) Inhibition = AB′ (A AND not B). Also equivalent to
A > B or B < A

3 NOT B Ignores A and returns B′

4 Inhibition (BA′) Inhibition = BA′ (B AND not A). Also equivalent to B
> A or A < B

5 NOT A Returns A′ and ignores B

6 Exclusive-or (XOR) A ⊕ B. Also equivalent to A ≠ B
7 Logical NAND (NOT (A AND B)) = (A • B)′

8 Logical AND A • B = (A AND B)

9 Equivalence
(exclusive-NOR)

(A = B). Also known as exclusive-NOR (not
exclusive-OR)

10 A Copy A. Returns the value of A and ignores B’s
value

11 Implication, B
implies A

A + B′. (If B then A). Also equivalent to B ≥ A

12 B Copy B. Returns the value of B and ignores A’s
value

13 Implication, A
implies B

B + A′. (If A then B). Also equivalent to A ≥ B

14 Logical OR A + B. Returns A OR B

15 One (set) Always returns one regardless of A and B input
values

22n

2
22

2
4

=

2
23

2
8

=

2
24

216

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 197

8.3 Function Numbers

Beyond two input variables, there are too many functions to provide a
specific name for each. Therefore, even when we are referring to functions
with two input variables, we will refer to the function’s number rather than
the function’s name. For example, F8 denotes the logical AND of A and B for
a two-input function and F14 denotes the logical OR operation. Of course,
for functions with more than two input variables, the question is, “How do
we determine a function’s number?” For example, what is the corresponding
function number for the function F = AB + C? Computing the answer is easily
done by looking at the truth table for the function. If we treat the values for
A, B, and C as bits in a binary number with C being the HO bit and A being
the LO bit, they produce the binary strings that correspond to numbers in
the range zero through seven. Associated with each of these binary strings
is the function result, either zero or one. If we construct a binary number
by placing the function result of each combination of the A, B, and C input
values into the bit position specified by the binary string of the A, B, and
C bits, the resulting binary number will be the corresponding function
number. If this doesn’t make sense, an example will help clear it up.
Consider the truth table for F = AB + C (see Table 8-5).

Note how the input variables C, B, and A combine to form binary number
sequences in the range %000..%111 (0..7). If we use these values to denote
bit numbers in an 8-bit value (CBA = %111 specifies bit seven, CBA = %110
specifies bit six, and so on), we can determine the function number by
placing at each of these bit positions the result of F = AB + C, for the corre-
sponding combination of C, B, and A values:

CBA: 7 6 5 4 3 2 1 0

F = AB + C: 1 1 1 1 1 0 0 0

Table 8-5: Truth table for F = AB + C

C B A F = AB + C

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

No Starch Press, Copyright © 2004 by Randall Hyde

198 Chap te r 8

Now, if we treat this bit string as a binary number, it produces the function
number $F8 or 248. We will usually denote function numbers in decimal.
This also provides insight into why there are different functions given n
input variables: if you have n input variables, there are 2n different variable
value combinations, and thus 2n bits in the function’s binary number. If
you have m bits, there are 2m different possible arrangements of those bits.
Therefore, for n input variables there are m = 2n possible bits and 2m or
possible functions.

8.4 Algebraic Manipulation of Boolean Expressions

You can transform one Boolean expression into an equivalent expression by
applying the postulates and theorems of Boolean algebra. This is important
if you want to convert a given expression to a canonical form (a standardized
form) or if you want to minimize the number of literals or terms in an
expression. (A literal is a primed or unprimed variable, and a term is a variable
or a product [logical AND] of several different literals.) Minimizing the
number of literals and terms can be important because electrical circuits
often consist of individual components that implement each literal or term.
Minimizing the number of literals and terms in an expression allows a circuit
designer to use fewer electrical components and, therefore, to reduce the
monetary cost of the system.

Unfortunately, there are no fixed rules you can apply to optimize a given
expression. Much like constructing mathematical proofs, an individual’s
ability to easily do these transformations is usually a function of experience.
Nevertheless, a few examples can show the possibilities:

ab + ab' + a'b = a(b + b') + a'b By P4

= a • 1 + a'b By P5

= a + a'b By Th4

= a + b By Th11

(a'b + a'b' + b')` = (a'(b + b') + b')' By P4

= (a'• 1 + b')' By P5

= (a' + b') By Th4

= ((ab)')' By Th8

= ab By definition of not

b(a + c) + ab' + bc' + c = ba + bc + ab' + bc' + c By P4

= a(b + b') + b(c + c') + c By P4

= a • 1 + b • 1 + c By P5

= a + b + c By Th4

22n

22n

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 199

8.5 Canonical Forms

Because there is a finite number of unique Boolean functions with n input
variables, yet an infinite number of possible logic expressions you can con-
struct from a finite number of functions, there is an infinite number of
equivalent logic expressions. To help eliminate confusion, logic designers
generally specify a Boolean function using a canonical, or standardized, form.
For each different Boolean function, we can choose a single canonical repre-
sentation of that function.

There are several possible ways to define a set of canonical represen-
tations for all the possible Boolean functions of n variables. Within each
canonical set, there is a single expression that describes each Boolean
function in the system, so as long as you only utilize functions from a single
canonical set, all of the functions in the set will be unique. We will discuss
only two canonical systems in this chapter and employ only the first of the
two. The first is the so-called sum of minterms and the second is the product of
maxterms. Using the duality principle we can convert between these two.

As mentioned earlier, a term is either a single literal or a product (logical
AND) of several different literals. For example, if you have two variables,
A and B, there are eight possible terms: A, B, A', B', A'B', A'B, AB', and AB.
For three variables we have 26 different terms: A, B, C, A', B', C', A'B', A'B,
AB', AB, A'C', A', AC', AC, B'C', B'C, BC', BC, A'B'C', AB'C', ABC', ABC',
A'B'C, AB'C, A'BC, and ABC. As you can see, as the number of variables
increases, the number of terms increases dramatically. A minterm is a product
containing exactly n literals, where n is the number of input variables. For
example, the minterms for the two variables A and B are A'B', AB', A'B, and
AB. Likewise, the minterms for three variables A, B, and C are A'B'C', AB'C',
A'BC', ABC', A'B'C, AB'C, A'BC, and ABC. In general, there are 2n minterms
for n variables. The set of possible minterms is very easy to generate because
they correspond to the sequence of binary numbers (see Table 8-6).

Table 8-6: Generating Minterms from Binary Numbers

Binary Equivalent (CBA) Minterm

000 A′B′C′

001 AB′C′
010 A′BC′

011 ABC′
100 A′B′C

101 AB′C
110 A′BC

111 ABC

No Starch Press, Copyright © 2004 by Randall Hyde

200 Chap te r 8

We can derive the canonical form for any Boolean function using a sum
(logical OR) of minterms. Given F248 = AB + C the equivalent canonical form
is ABC + A'BC + AB'C + A'B'C + ABC'. Algebraically, we can show that the
canonical form is equivalent to AB + C as follows:

ABC + A'BC + AB'C + A'B'C + ABC' = BC(A + A') + B'C(A + A') + ABC' By P4

= BC • 1 + B'C • 1 + ABC' By Th15

= C(B + B') + ABC' By P4

= C + ABC' By Th15 & Th4

= C + AB By Th11

Obviously, the canonical form is not the optimal form. On the other hand,
there is a big advantage to using the sum of minterms canonical form: it is
very easy to generate the truth table for a function from this canonical form.
It is also very easy to generate the sum of minterms canonical form equation
from the truth table.

8.5.1 Sum of Minterms Canonical Form and Truth Tables

To build the truth table from the sum of minterms canonical form, follow
these steps:

1. Convert minterms to binary equivalents by substituting a 1 for unprimed
variables and a 0 for primed variables:

2. Place the number 1 in the function column for the appropriate
minterm entries:

3. Finally, place the number 0 in the function column for the remaining
entries:

F248 = CBA + CBA' + CB'A + CB'A' + C'BA

= 111 + 110 + 101 + 100 + 011

C B A F = AB + C

0 0 0

0 0 1

0 1 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 201

Going in the other direction, generating a logic function from a truth table,
is almost as easy. Follow these steps:

1. Locate all the entries in the truth table with a function result of one.
In this table, these are the last five entries. The number of table entries
containing ones determines the number of minterms in the canonical
equation.

2. Generate the individual minterms by substituting A, B, or C for ones and
A', B', or C' for zeros. In this example, the result of F248 is one when CBA
equals 111, 110, 101, 100, or 011. Therefore, F248 = CBA + CBA' + CB'A +
CB'A' + C'AB. The last entry in the table contains all ones, so we generate
the minterm CBA. The second-to-last entry contains 110, so we generate
the minterm CBA'. Likewise, 101 produces CB'A, 100 produces CB'A',
and 011 produces C'BA.

3. The logical OR and logical AND operations are both commutative, so we
can rearrange the terms within the minterms as we please, and we can
rearrange the minterms within the overall function as we see fit.

This process works equally well for any number of variables, as with the
truth table in Table 8-7 for the function F53,504 = ABCD + A'BCD + A'B'CD +
A'B'C'D.

C B A F = AB + C

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Table 8-7: Truth table for F53,504

D C B A F = ABCD + A'BCD + A'B'CD + A'B'C'D

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

(continued on the next page)

No Starch Press, Copyright © 2004 by Randall Hyde

202 Chap te r 8

Perhaps the easiest way to generate the canonical form of a Boolean function
is to first generate the truth table for that function and then build the
canonical form from the truth table. In fact, we’ll use this technique when
converting between the two canonical forms.

8.5.2 Deriving the Sum of Minterms Canonical Form Algebraically
It is also a simple matter to generate the sum of minterms canonical form
algebraically. Using the distributive law and theorem 15 (A + A' = 1) makes
this task easy. Consider F248 = AB + C. This function contains two terms, AB
and C, but they are not minterms. We can convert the first term to a sum of
minterms as follows:

AB = AB • 1 By Th4

= AB • (C + C') By Th 15

= ABC + ABC' By distributive law

= CBA + C'BA By associative law

Similarly, we can convert the second term in F248 to a sum of minterms as
follows:

C = C • 1 By Th4

= C • (A + A') By Th15

= CA + CA' By distributive law

= CA • 1 + CA' • 1 By Th4

= CA • (B + B') + CA' • (B + B') By Th15

= CAB + CAB' + CA'B + CA'B' By distributive law

= CBA + CBA' + CB'A + CB'A' By associative law

The last step (rearranging the terms) in these two conversions is optional. To
obtain the final canonical form for F248 we need only sum the results from
these two conversions:

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

Table 8-7: Truth table for F53,504 (continued)

D C B A F = ABCD + A'BCD + A'B'CD + A'B'C'D

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 203

F248 = (CBA + C'BA) + (CBA + CBA' + CB'A + CB'A')

= CBA + CBA' + CB'A + CB'A' + C'BA

8.5.3 Product of Maxterms Canonical Form

Another canonical form is the products of maxterms. A maxterm is the sum
(logical OR) of all input variables, primed or unprimed. For example,
consider the following logic function G of three variables in products of
maxterms form:

G = (A + B + C) • (A' + B + C) • (A + B' + C)

Like the sum of minterms form, there is exactly one product of maxterms for
each possible logic function. Of course, for every product of maxterms form,
there is an equivalent sum of minterms form. In fact, the function G in this
example is equivalent to the earlier sum of minterms form of F248:

F248 = CBA + CBA' + CB'A + CB'A' + C'BA = AB + C

Generating a truth table from the product of maxterms is no more difficult
than building it from the sum of minterms. You use the duality principle to
accomplish this. Remember, the duality principle says to swap AND for OR
and zeros for ones (and vice versa). Therefore, to build the truth table, you
would first swap primed and non-primed literals. In G, this would yield:

G= (A' + B' + C') • (A + B' + C') • (A' + B + C')

The next step is to swap the logical OR and logical AND operators. This
produces the following:

G = A'B'C' + AB'C' + A'BC'

Finally, you need to swap all zeros and ones. This means that for each of the
maxterms listed above, you need to store zeros into the function column of
the truth table, and then fill in the rest of the truth table’s function column
with ones. This will place a zero in rows zero, one, and two in the truth table.
Filling the remaining entries with ones produces F248.

You can easily convert between these two canonical forms by generating
the truth table for one form and working backward from the truth table to
produce the other form. Consider the function of two variables, F7 = A + B.
The sum of minterms form is F7 = A'B + AB' + AB. The truth table takes the
form shown in Table 8-8.

No Starch Press, Copyright © 2004 by Randall Hyde

204 Chap te r 8

.

Working backward to get the product of maxterms, we first locate all entries
in the truth table that have a zero result. The entry with A and B both equal
to zero is the only entry with a zero result. This gives us the first step of G = A'
B'. However, we still need to invert all the variables to obtain G = AB. By the
duality principle, we also need to swap the logical OR and logical AND
operators, obtaining G = A + B. This is the canonical product of maxterms form.

8.6 Simplification of Boolean Functions

Because there is an infinite variety of Boolean functions of n variables, but
only a finite number of them are unique, you might wonder if there is some
method that will simplify a given Boolean function to produce the optimal
form. Of course, you can always use algebraic transformations to attempt to
produce this optimal form, but you are not guaranteed to arrive at the best
result. On the other hand, there are two methods that will always reduce a
given Boolean function to its optimal form: the map method and the prime
implicants method. In this book, we will only cover the map method.

Because an optimal form must exist for any logic function, you may
wonder why we don’t use the optimal form for the canonical form. There are
two reasons. First, although it is easy to convert between the truth table forms
and the canonical form, it is not as easy to generate the optimal form from a
truth table. Second, there may be several optimal forms for a single function.

Using the map method to manually optimize Boolean functions is
practical only for functions of two, three, or four variables. With care, you
can use it for functions of five or six variables, but the map method is
cumbersome to use at that point. For more than six variables, attempting
map simplifications by hand would not be wise although it’s probably quite
reasonable to write a program that uses the map method for seven or more
variables.

The first step in using the map method is to build a special two-
dimensional truth table for the function (see Figure 8-1). Take a careful look
at these truth tables. They do not use the same forms appearing earlier in this
chapter. In particular, the progression of the 2-bit values is 00, 01, 11, 10, not
00, 01, 10, 11. This is very important! If you organize the truth tables in a
binary sequence, the mapping optimization method will not work properly.
We will call this a truth map to distinguish it from the standard truth table.

Table 8-8: OR truth table for two variables

A B F7

0 0 0

1 0 1

0 1 1

1 1 1

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 205

Figure 8-1: Two-, three-, and four-variable truth maps

Assuming your Boolean function is already in sum of minterms canonical
form, insert ones for each of the truth map cells corresponding to one of
the minterms in the function. Place zeros everywhere else. For example,
consider the function of three variables F = C'B'A + C'BA' + C'BA + CB'A' +
CB'A + CBA' + CBA. Figure 8-2 shows the truth map for this function.

Figure 8-2: A truth map for F = C'B'A + C'BA' + C'BA + CB'A' + CB'A + CBA' + CBA

B'A'

B

A

0 1

0

1 BA'

B'A

BA

C
0

1

BA

00 01 1011

C'B'A' C'B'A C'BA'C'AB

CB'A' CB'A CBA'CAB

Three-variable truth map

DC

00

01

BA

00 01 1011

D'C'B'A' D'C'B'A D'C'BA'D'C'AB

D'CB'A' D'CB'A D'CBA'D'CAB

DC'B'A' DC'B'A DC'BA'DC'AB

DCB'A' DCB'A DCBA'DCAB

10

11

Four-variable truth map

Two-variable truth map

C

0

1

BA

00 01 11 10

0 1 1 1

1 1 1 1

No Starch Press, Copyright © 2004 by Randall Hyde

206 Chap te r 8

The next step is to draw outlines around rectangular groups of ones. The
rectangles you enclose must have sides whose lengths are powers of two. For
functions with three variables, the rectangles can have sides whose lengths
are one, two, and four. The set of rectangles you draw must surround all cells
containing ones in the truth map. The trick is to draw all possible rectangles
unless a rectangle would be completely enclosed within another, but at the
same time to draw the fewest number of rectangles. Note that the rectangles
may overlap as long as one rectangle does not completely enclose the other.
In the truth map in Figure 8-3, there are three such rectangles.

Figure 8-3: Surrounding rectangular groups of ones in a truth map

Each rectangle represents a term in the simplified Boolean function.
Therefore, the simplified Boolean function will contain only three terms.
You build each term using the process of elimination — eliminate any
variables whose primed and unprimed forms both appear within the
rectangle. Consider the long skinny rectangle in Figure 8-3 that is sitting in
the row where C = 1. This rectangle contains both A and B in primed and
unprimed forms. Therefore, we can eliminate both A and B from the term.
Because the rectangle sits in the C = 1 region, this rectangle represents the
single literal C.

Now consider the light gray square in Figure 8-3. This rectangle includes
C, C', B, B', and A. Therefore, it represents the single term A. Likewise, the
dark gray square in Figure 8-3 contains C, C', A, A', and B. Therefore, it
represents the single term B.

The final, optimal, function is the sum (logical OR) of the terms
represented by the three squares, or F = A + B + C. You do not have to
consider the remaining squares containing zeros.

When enclosing groups of ones in the truth map, you must consider the
fact that a truth map forms a torus (a doughnut shape). The right edge of
the map wraps around to the left edge (and vice versa). Likewise, the top
edge wraps around to the bottom edge. This introduces additional possi-
bilities when drawing rectangles around groups of ones in a map. Consider
the Boolean function F = C'B'A' + C'BA' + CB'A' + CBA'. Figure 8-4 shows the
truth map for this function.

C

0

1

BA

00 01 11 10

0 1 1 1

1 1 1 1

Three possible rectangles whose lengths
and widths are powers of two

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 207

Figure 8-4: Truth map for F = C'B'A' + C'BA' + CB'A + CBA'

At first glance, you would think that the minimum number of rectangles is
two, as shown in Figure 8-5.

Figure 8-5: First attempt at surrounding rectangles formed by ones

However, because the truth map is a continuous object with the right side
and left sides connected, we can actually form a single, square rectangle, as
Figure 8-6 shows.

Figure 8-6: Correct rectangle for the function

Why do we care if we have one rectangle or two in the truth map? The answer
is that the larger the rectangles are, the more terms they will eliminate. The
fewer rectangles that we have, the fewer terms will appear in the final
Boolean function.

The example in Figure 8-5 with two rectangles generates a function with
two terms. The rectangle on the left eliminates the C variable, leaving A'B' as
its term. The rectangle on the right also eliminates the C variable, leaving the
term BA'. Therefore, this truth map would produce the equation F = A'B' +
A'B. We know this is not optimal (see theorem 13).

C

0

1

BA

00 01 11 10

1 0 0 1

1 0 0 1

C

0

1

BA

0
0

0
1

1
1

1
0

1 0 0 1

1 0 0 1

C

0

1

BA
00 01 11 10

1 0 0 1

1 0 0 1

No Starch Press, Copyright © 2004 by Randall Hyde

208 Chap te r 8

Now consider the truth map in Figure 8-6. Here we have a single
rectangle, so our Boolean function will only have a single term. Obviously,
this is better than an equation with two terms. Because this rectangle
includes both C and C', and also B and B', the only term left is A'. This
Boolean function, therefore, reduces to F = A'.

There are only two types of truth maps that the map method cannot
handle properly: a truth map that contains all zeros or a truth map that
contains all ones. These two cases correspond to the Boolean functions F = 0
and F = 1 (that is, the function number is zero or 2n − 1). When you see
either of these truth maps, you will know how to optimally represent the
function.

An important thing to remember when optimizing Boolean functions
using the mapping method is that you always want to pick the largest
rectangles whose sides’ lengths are powers of two. You must do this even for
overlapping rectangles (unless one rectangle encloses another). Consider
the Boolean function F = C'B'A' + C'BA' + CB'A' + C'AB + CBA' + CBA. This
produces the truth map appearing in Figure 8-7.

Figure 8-7: Truth map for F = C'B'A' + C'BA' + CB'A' + C'AB + CBA' + CBA

The initial temptation is to create one of the sets of rectangles found in
Figure 8-8. However, the correct mapping appears in Figure 8-9.

Figure 8-8: Obvious choices for rectangles

C

0

1

BA

00 01 11 10

1 0 1 1

1 0 1 1

C
0

1

BA
00 01 11 10

1 0 1 1

1 0 1 1

C
0

1

BA
00 01 11 10

1 0 1 1

1 0 1 1

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 209

Figure 8-9: Correct set of rectangles for F = C'B'A' + C'BA' + CB'A' +
C'AB + CBA' + CBA

All three mappings will produce a Boolean function with two terms. How-
ever, the first two will produce the expressions F = B + A'B' and F = AB + A'.
The third form produces F = B + A'. Obviously, this last form is the optimized
one (see theorems 11 and 12).

For functions of three variables, the size of the rectangle determines the
number of terms it represents:

� A rectangle enclosing a single square represents a minterm. The associ-
ated term will have three literals.

� A rectangle surrounding two squares containing ones represents a term
containing two literals.

� A rectangle surrounding four squares containing ones represents a term
containing a single literal.

� A rectangle surrounding eight squares represents the function F = 1.

Truth maps you create for functions of four variables are even trickier. This
is because there are many places rectangles can hide from you along the
edges. Figure 8-10 shows some possible places rectangles can hide.

This list of patterns doesn’t even begin to cover all of them! For
example, the diagrams in Figure 8-10 show none of the 1×2 rectangles. You
must exercise care when working with four variable maps to ensure you
select the largest possible rectangles, especially when overlap occurs. This is
particularly important when you have a rectangle next to an edge of the
truth map.

As with functions of three variables, the size of the rectangle in a four-
variable truth map controls the number of terms it represents.

� A rectangle enclosing a single square represents a minterm. The associ-
ated term will have four literals.

� A rectangle surrounding two squares containing ones represents a term
containing three literals.

� A rectangle surrounding four squares containing ones represents a term
containing two literals.

� A rectangle surrounding eight squares containing ones represents a
term containing a single literal.

� A rectangle surrounding 16 squares represents the function F = 1.

C
0

1

BA
00 01 11 10

1 0 1 1

1 0 1 1

No Starch Press, Copyright © 2004 by Randall Hyde

210 Chap te r 8

Figure 8-10: Partial pattern list for a 4×4 truth map

One final example will demonstrate the optimization of a function
containing four variables. The function is F = D'C'B'A' + D'C'B'A + D'C'BA +
D'C'BA' + D'CB'A + D'CBA + DCB'A + DCBA + DC'B'A' + DC'BA', and the truth
map appears in Figure 8-11.

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 211

Figure 8-11: Truth map for F = D'C'B'A' + D'C'B'A + D'C'BA + D'C'BA' + D'CB'A +
D'CBA + DCB'A + DCBA + DC'B'A' + DC'BA'

Here are two possible sets of maximal rectangles for this function, each
producing three terms (see Figure 8-12). Both functions are equivalent; both
are optimal (remember, there is no guarantee that there is a unique optimal
solution). Either will suffice for our purposes.

Figure 8-12: Two combinations yielding three terms

First, let’s consider the term represented by the rectangle formed by the four
corners. This rectangle contains B, B', D, and D', so we can eliminate those
terms. The remaining terms contained within these rectangles are C' and A',
so this rectangle represents the term C'A'.

The second rectangle, common to both maps in Figure 8-12, is the
rectangle formed by the middle four squares. This rectangle includes the
terms A, B, B', C, D, and D'. Eliminating B, B', D, and D', we obtain CA as the
term for this rectangle.

The uppermost of the two combinations in Figure 8-12 has a third term
represented by the top row. This term includes the variables A, A', B, B', C'
and D'. Because it contains A, A', B, and B', we can eliminate these terms.

00

01

00 01 1011

10

11

= 1

= 0

BA

DC

Combination 1:

Combination 2:

No Starch Press, Copyright © 2004 by Randall Hyde

212 Chap te r 8

This leaves the term C'D'. Therefore, the function represented by the upper
truth map is F = C'A' + CA + C'D'.

The lower of the two combinations in Figure 8-12 has a third term
represented by the top/middle four squares. This rectangle subsumes the
variables A, B, B', C, C', and D'. We can eliminate B, B', C, and C' leaving
the term AD. Therefore, the function represented by the lower truth map
is F = C'A' + CA + AD'.

8.7 What Does This Have to Do with Computers, Anyway?
Although the connection between computer systems and Boolean logic in
programming languages like C or Pascal may seem tenuous, it is actually
much stronger than it first appears. There is a one-to-one relationship
between the set of all Boolean functions and the set of all electronic circuits.
Electrical engineers, who design CPUs and other computer-related circuits,
have to be intimately familiar with this stuff.

Although the implementation of an algorithm in hardware is well
beyond the scope of this book, one important point must be made with
respect to such circuitry: Any algorithm you can implement in software, you
can also implement directly in hardware. This means that any program you
can write, you can also specify as a sequence of Boolean equations.

 Of course, it is much easier to specify a solution to a programming
problem using languages like Pascal, C, or even assembly language than it is
to specify the solution using Boolean equations. Therefore, it is unlikely that
you would ever implement an entire program using a set of state machines
and other logic circuitry. Nevertheless, there are times when a hardware
implementation is better. A hardware solution can be one, two, three, or
more orders of magnitude faster than an equivalent software solution.
Therefore, some time-critical operations may require a hardware solution.

 A more interesting fact is that it is also possible to implement all
hardware functions in software. This is important because many operations
you would normally implement in hardware are much cheaper to implement
using software on a microprocessor. Indeed, one of the primary uses of
assembly language on modern systems is to inexpensively replace a complex
electronic circuit. It is often possible to replace many tens or hundreds of
dollars of electronic components with a single $5 microcomputer chip. The
whole field of embedded systems deals with this very problem. Embedded
systems are computer systems embedded in other products. For example,
most microwave ovens, TV sets, video games, CD players, and other con-
sumer devices contain one or more complete computer systems whose sole
purpose is to replace a complex hardware design. Engineers use computers
for this purpose because they are less expensive and easier to design with
than traditional electronic circuitry.

 You can easily design software that reads switches (input variables) and
turns on motors, LEDs, or lights, or that locks or unlocks a door. To write
such software, you will need an understanding of Boolean functions and of
how to implement such functions in software.

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 213

8.7.1 Correspondence Between Electronic Circuits and Boolean Functions

For any Boolean function, you can design an equivalent electronic circuit
and vice versa. Because Boolean functions only use the AND, OR, and NOT
Boolean operators (these are the only operators that appear within
canonical forms), we can construct any electronic circuit using only these
three operations. The Boolean AND, OR, and NOT functions correspond to
the AND, OR, and inverter (NOT) electronic circuit gates (see Figure 8-13).
These symbols are standard electronic symbols appearing in schematic
diagrams. (interested readers wanted to learn more about electronic
schematic diagrams should check out any book on electronic design).

The lines to the left of each item in Figure 8-13, with the A and B labels,
correspond to a logic function input; the line leaving each diagram corre-
sponds to the function’s output.

Figure 8-13: AND, OR, and inverter (NOT) gates

However, you actually need only a single gate type to implement any elec-
tronic circuit. This gate is the NAND (not AND) gate, shown in Figure 8-14.
The NAND gate tests its two inputs (A and B) and presents a false on the
output pin if both inputs are true, it places true on the output pin if both
inputs are not true.

Figure 8-14: The NAND gate

To prove that we can construct any Boolean function using only NAND
gates, we must show how to build an inverter (NOT), an AND gate, and an
OR gate. Building an inverter is easy; just connect the two inputs together
(see Figure 8-15).

Figure 8-15: Inverter built from a NAND gate

Once we can build an inverter, building an AND gate is easy — just invert the
output of a NAND gate. After all, NOT (NOT (A AND B)) is equivalent to A
AND B (see Figure 8-16). Of course, this takes two NAND gates to construct a
single AND gate, but no one said that circuits constructed only with NAND
gates would be optimal, only that they would be possible.

A A'
A

B
A and B A

B
A or B

A

B
not (A and B)

A A'

No Starch Press, Copyright © 2004 by Randall Hyde

214 Chap te r 8

Figure 8-16: Constructing an AND gate from two NAND gates

The remaining gate we need to synthesize is the logical-OR gate. We can
easily construct an OR gate from NAND gates by applying DeMorgan’s
Theorems.

(A or B)' = A' and B' DeMorgan's Theorem.

A or B = (A' and B')' Invert both sides of the equation.

A or B = A' nand B' Definition of NAND operation.

By applying these transformations, you get the circuit in Figure 8-17.

Figure 8-17: Constructing an OR gate from NAND gates

You might be wondering why we would even bother with this. After all, why
not just use logical AND, OR, and inverter gates directly? There are two
reasons. First, NAND gates are generally less expensive to build than other
gates. Second, it is also much easier to build up complex integrated circuits
from the same basic building blocks than it is to construct an integrated
circuit using different basic gates.

8.7.2 Combinatorial Circuits
A computer’s CPU is built from combinatorial circuits. A combinatorial circuit
is a system containing basic Boolean operations (AND, OR, NOT), some
inputs, and a set of outputs. A combinatorial circuit often implements several
different Boolean functions, with each output corresponding to an indi-
vidual logic function. It is very important that you remember that each output
represents a different Boolean function.

8.7.2.1 Addition Circuits

You can implement addition using Boolean functions. Suppose you have two
1-bit numbers, A and B. You can produce the 1-bit sum and the 1-bit carry of
this addition using these two Boolean functions:

A

B
A and B

A

B

A or B

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 215

S = AB' + A'B Sum of A and B.

C = AB Carry from addition of A and B.

These two Boolean functions implement a half adder. Electrical engineers call
it a half adder because it adds two bits together but cannot add in a carry
from a previous operation. A full adder adds three 1-bit inputs (two bits plus a
carry from a previous addition) and produces two outputs: the sum and the
carry. These are the two logic equations for a full adder:

S = A'B'Cin + A'BCin' + AB'Cin' + ABCin

Cout = AB + ACin + BCin

Although these equations only produce a single bit result (plus a carry), it is
easy to construct an n -bit sum by combining adder circuits (see Figure 8-18).

Figure 8-18: Building an n-bit adder using half and full adders

8.7.2.2 Seven-Segment LED Decoders

Another common combinatorial circuit is the seven-segment decoder. Decoder
circuits are among the more important circuits in computer system design —
they provide the ability to recognize (or decode) a string of bits.

The seven-segment decoder circuit accepts an input of four bits and
determines which segments to illuminate on a seven-segment LED display.
Because a seven-segment display contains seven output values (one for each
segment), there will be seven logic functions associated with it (segments
zero through six). See Figure 8-19 for the segment assignments. Figure 8-20
shows the active segments for each of the ten decimal values.

A0
B0

S0

Carry

A1
B1

S1

Carry

A2
B2

S2

Half
adder

Full
adder

Full
adder Carry

.

.

.

No Starch Press, Copyright © 2004 by Randall Hyde

216 Chap te r 8

Figure 8-19: Seven-segment display

Figure 8-20: Seven-segment values for “0” through “9”

The four inputs to each of these seven Boolean functions are the four
bits from a binary number in the range 0..9. Let D be the HO bit of
this number and A be the LO bit. Each segment’s logic function should
produce a one (segment on) for all binary number inputs that have that
segment illuminated in Figure 8-20. For example, S4 (segment four) should
be illuminated for numbers zero, two, six, and eight, which correspond to
the binary values 0000, 0010, 0110, and 1000. For each of the binary values
that illuminates a segment, you will have one minterm in the logic equation:

S4 = D'C'B'A' + D'C'BA' + D'CBA' + DC'B'A'

S0 (segment zero), as a second example, is on for the numbers zero, two, three,
five, six, seven, eight, and nine, which correspond to the binary values 0000,
0010, 0011, 0101, 0110, 0111, 1000, and 1001. Therefore, the logic function
for S0 is as follows:

S0 = D'C'B'A' + D'C'BA' + D'C'BA + D'CB'A + D'CBA' + D'CBA + DC'B'A' + DC'B'A

8.7.2.3 Decoding Memory Addresses

A decoder is also commonly used in memory expansion. For example,
suppose a system designer wishes to install four (identical) 256-MB memory
modules in a system to bring the total to 1 GB of RAM. Each of these 256-MB
memory modules has 28 address lines (A0..A27), assuming each memory
module is eight bits wide (228 × 8 bits is 256 MB).1

1 Actually, most memory modules are wider than eight bits, so a real 256-MB memory module
will have fewer than 28 address lines, but we will ignore this technicality in this example.

S0

S1 S3S2

S5
S4 S6

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 217

Unfortunately, if the system designer hooked up those four memory
modules to the CPU’s address bus, each of the modules would respond to
the same addresses on the bus. Pandemonium would result. To correct this
problem, each memory module needs to respond to a different set of
addresses appearing on the address bus. By adding a chip-select line to each
of the memory modules, and using a two-input, four-output decoder circuit,
we can easily do this. See Figure 8-21 for the details.

Figure 8-21: Adding four 256-MB memory modules to a system

The two-line–to–four-line decoder circuit in Figure 8-21 actually incor-
porates four different logic functions: one function for each of the outputs.
Assuming the inputs are A and B (A = A28 and B = A29), then the four output
functions are as follows:

Q0 = A'B'

Q1 = AB'

Q2 = A'B

Q3 = AB

Following standard electronic circuit notation, these equations use Q to
denote an output. Also note that most circuit designers use active low logic for
decoders and chip enables. This means that they enable a circuit when a low-
input value (zero) is supplied and disable the circuit when a high-input value
(one) is supplied. In a similar fashion, all the output lines of a decoder chip
are normally high, and when the input values A and B select one particular
output line, that line goes low. This means that these equations really need
to be inverted for real-world examples. We have ignored this issue here and
have used positive (or active high) logic.

8.7.2.4 Decoding Machine Instructions

Decoding circuits are also used to decode machine instructions. We’ll cover
this subject in much greater depth in Chapters 9 and 10, but a simple
example is in order here.

Address lines
A0 ..A27

A28
A29

Chip-select lines

Two-input–
to–four-output
decoder

No Starch Press, Copyright © 2004 by Randall Hyde

218 Chap te r 8

Most modern computer systems represent machine instructions using
binary values in memory. To execute an instruction, the CPU fetches the
instruction’s binary value from memory, decodes that value using decoder
circuitry, and then does the appropriate work. To see how this is done, let’s
create a very simple CPU with a very simple instruction set. Figure 8-22
provides the instruction format (all the numeric codes that correspond to
the various instructions) for our simple CPU.

WARNING Do not conclude that the instruction format used in this example applies to any
particular CPU’s instruction set. The instruction format here is highly simplified
to demonstrate instruction decoding.

Figure 8-22: Instruction (opcode) format for a very simple CPU

To determine the 8-bit operation code (opcode) for a given instruction, the
first thing you do is choose the instruction you want to encode. Let’s pick
mov(eax,ebx); as our simple example. To convert this instruction to its
numeric equivalent, we follow these steps:

1. Look up the value for mov in the iii table in Figure 8-22. The correspond-
ing value is 000, so we must substitute 000 for iii in the opcode byte.

2. Look up our source operand. The source operand is EAX, whose encod-
ing in the source operand table (ss & dd) is 00. Therefore, we substitute
00 for ss in the instruction opcode.

3. Convert the destination operand to its numeric equivalent. The destina-
tion is in EBX, so we look up the value for this operand in the ss & dd

table. Its value is 01, and we substitute 01 for dd in our opcode byte.
4. Assemble these three fields into the opcode byte (a packed data type),

to obtain the bit value: %00000001.

Therefore, the numeric value $1 is the value for the mov(eax, ebx);
instruction (see Figure 8-23).

0 i i i s s d d

iii

000 = MOV
001 = ADD
010 = SUB
011 = MUL
100 = DIV
101 = AND
110 = OR
111 = XOR

ss & dd

00 = EAX
01 = EBX
10 = ECX
11 = EDX

7 6 5 4 3 2 1 0Bit:

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 219

Figure 8-23: Encoding the MOV(EAX, EBX); instruction

Of course, in this example we were actually encoding the instructions.
However, the real purpose of this exercise is to discover how the CPU can use
a decoder circuit to decode the binary values for machine instructions and
execute them at run time. A typical decoder circuit for this example appears
in Figure 8-24.

Figure 8-24: Decoding simple machine instructions

0 0 0 0 0 0 0 1

iii

000 = MOV
 .
 .
 .

ss & dd

00 = EAX
01 = EBX
10 = ECX
11 = EDX

0 0 0 0 0 0 0 1

3-line–
to–
8-line
decoder

Circuitry to do a MOV
Circuitry to do an ADD
Circuitry to do a SUB
Circuitry to do a MUL
Circuitry to do a DIV
Circuitry to do an AND
Circuitry to do an OR
Circuitry to do an XOR

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

A
B
C

2-line–
to–
4-line
decoder

A
B

Q0
Q1
Q2
Q3

EAX
EBX
ECX
EDX

The circuitry attached to the
destination register bits is
identical to the circuitry for
the source register bits.

No Starch Press, Copyright © 2004 by Randall Hyde

220 Chap te r 8

Notice how the circuit in Figure 8-24 uses three separate decoders to decode
the individual fields of the opcode. This is much less complex than creating
a single 7-line–to–128-line decoder to decode the entire opcode. Of course,
all that the circuit in Figure 8-24 will do is tell you which instruction and
what operands a given opcode specifies. To actually execute this instruction,
you must supply additional circuitry to select the source and destination
operands from an array of registers and act accordingly upon those
operands. Such circuitry is beyond the scope of this chapter, so we’ll save
the juicy details for later.

8.7.3 Sequential and Clocked Logic
One major problem with combinatorial logic is that it is memoryless. In theory,
all logic function outputs depend only on the current inputs. Any change
in the input values immediately appears on the outputs.2 Unfortunately,
computers need the ability to remember the results of past computations.
This is the domain of sequential, or clocked, logic.

8.7.3.1 The Set/Reset Flip-Flop

A memory cell is an electronic circuit that remembers an input value after the
removal of that input value. The most basic memory unit is the set/reset flip-
flop (S/R flip-flop). You can construct an S/R flip-flop memory cell using two
NAND gates, as shown in Figure 8-25. In this diagram, you’ll notice that the
outputs of the two NAND gates are recirculated back to one of the inputs of
the other NAND gate.

Figure 8-25: Set/reset flip flop constructed from NAND gates

The S and R inputs are normally high, or one. If you toggle the S input by
temporarily setting its value to zero and then bringing it back to one, the Q
output is set to one. Likewise, if you toggle the R input from one to zero and
back to one, this sets the Q output to zero.

Notice that if both S and R are one, then the Q output depends upon the
original value of Q itself. That is, whatever Q happens to be, the top NAND
gate continues to output that same value. If Q was originally one, then the
bottom NAND gate receives two inputs of one (both Q and R), and the

2 In practice, there is a short propagation delay between a change in the inputs and the
corresponding outputs in any electronic implementation of a Boolean function.

Q

Q'

S

R

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 221

bottom NAND gate produces an output of zero (Q'). As a result, the two
inputs to the top NAND gate are zero and one, and the top NAND gate
produces an output of one, matching the original value for Q.

On the other hand, if the original value of Q was zero, then the inputs to
the bottom NAND gate are Q = 0 and R = 1, and the output of this bottom
NAND gate is one. As a result, the inputs to the top NAND gate are S = 1 and
Q' = 1. This produces a zero output, the original value of Q.

Now suppose Q is zero, S is zero, and R is one. This sets the two inputs to
the top NAND gate to one and zero, forcing the output (Q) to one. Return-
ing S to the high state does not change the output at all, because the value of
Q' is one. You will obtain this same result if Q is one, S is zero, and R is one.
Again, this produces a Q output value of one, and again this value remains
one even when S switches from zero to one. To overcome this and produce a
Q output of one, you must toggle the S input. The same idea applies to the R
input, except that toggling it forces the Q output to zero rather than to one.

There is one catch to this circuit. It does not operate properly if you set
both the S and R inputs to zero simultaneously. This forces both the Q and
Q' outputs to one (which is logically inconsistent). Whichever input remains
zero the longest determines the final state of the flip-flop. A flip-flop oper-
ating in this mode is said to be unstable.

Table 8-9 lists all the output configurations for an S/R flip-flop based on
the current inputs and the previous output values.

8.7.3.2 The D Flip-Flop

The only problem with the S/R flip-flop is that to be able to remember either
a zero or a one value, you must have two different inputs. A memory cell
would be more valuable to us if we could specify the data value to remember
with one input value and supply a second clock input value to latch the data
input value.3 This type of flip-flop, the D flip-flop (D stands for data) uses the
circuit in Figure 8-26.

Table 8-9: S/R Flip-Flop Output States Based on Current Inputs and Previous Outputs

Previous
Q

Previous
Q’

S
Input

R
Input

Q
Output

Q’
Output

x1

1 x = don’t care, implying that the value may be zero or one and it won’t affect the outputs.

x 0 (1 → 0 → 1) 1 1 0

x x 1 0 (1 → 0 → 1) 0 1

x x 0 0 1 12

2 This is an unstable configuration and will change once S or R are set to one.

0 1 1 1 0 1

1 0 1 1 1 0

3 “Latch” simply means to remember the value. That is, a D flip-flop is the basic memory element
because it can remember one data bit appearing on its D input.

No Starch Press, Copyright © 2004 by Randall Hyde

222 Chap te r 8

Figure 8-26: Implementing a D flip-flop with NAND gates

Assuming you fix the Q and Q' outputs to either 0/1 or 1/0, sending a clock
pulse that goes from zero to one and back to zero will copy the D input to the
Q output (and set Q' to the inverse of Q). To see how this works, just note
that the right half of the circuit diagram in Figure 8-26 is an S/R flip-flop. If
the data input is one while the clock line is high, this places a zero on the S
input of the S/R flip-flop (and a one on the R input). Conversely, if the data
input is zero while the clock line is high, this places a zero on the R input
(and a one on the S input) of the S/R flip-flop, thus clearing the S/R flip-
flop’s output. Whenever the clock input is low, both the S and R input are
high, and the outputs of the S/R flip-flop do not change.

Although remembering a single bit is often important, in most computer
systems you will want to remember a group of bits. You can do this by
combining several D flip-flops in parallel. Concatenating flip-flops to store an
n-bit value forms a register. The electronic schematic in Figure 8-27 shows how
to build an 8-bit register from a set of D flip-flops.

Figure 8-27: An 8-bit register implemented with eight D flip-flops

Note that the eight D flip-flops in Figure 8-27 use a common clock line. This
diagram does not show the Q' outputs on the flip-flops because they are
rarely required in a register.

D flip-flops are useful for building many sequential circuits beyond
simple registers. For example, you can build a shift register that shifts the bits
one position to the left on each clock pulse. A 4-bit shift register appears in
Figure 8-28.

Clk

D

Q

Q'

D0

Q0

D1 D2

Q2

D3

Q3

D4

Q4

D5

Q5

D6 D7

Q7

Clk

Q1 Q6

No Starch Press, Copyright © 2004 by Randall Hyde

Boolean Logic and Dig i tal Des ign 223

Figure 8-28: A 4-bit shift register built from D flip-flops

You can even build a counter that counts the number of times the clock
toggles from one to zero and back to one using flip-flops. The circuit in
Figure 8-29 implements a four bit counter using D flip-flops.

Figure 8-29: A 4-bit counter built from D flip-flops

Surprisingly, you can build an entire CPU with combinatorial circuits and
only a few additional sequential circuits. For example, you can build a simple
state machine known as a sequencer by combining a counter and a decoder,
as shown in Figure 8-30.

Figure 8-30: A simple 16-state sequencer

For each cycle of the clock in Figure 8-30, this sequencer activates one of
its output lines. Those lines, in turn, may control other circuits. By “firing”
those other circuits on each of the 16 output lines of the decoder, we can
control the order in which the circuits accomplish their tasks. This is

Q0 Q1 Q2 Q3

Clk

Data In

D D D D

Q'

Clk Clk Clk Clk

Q Q Q Q

Clk

D Clk D Clk D Clk
Q1' Q2' Q3'

D Clk

Q0'

Q0' Q1' Q2' Q3'

Clk

Q2

4-bit
counter

Q0
Q1

Q3

C

A

B

D

Q2

Q0

Q1

Q3
.
.
.

Q14

Q15

4-line–
to–
16-line
decoder

State 0

State 1

State 2

State 3

State 14

State 15

No Starch Press, Copyright © 2004 by Randall Hyde

224 Chap te r 8

essential in a CPU, as we often need to control the sequence of various
operations. For example, it wouldn’t be a good thing if the add(eax,ebx);
instruction stored the result into EBX before fetching the source operand
from EAX (or EBX). A simple sequencer such as this one can tell the CPU
when to fetch the first operand, when to fetch the second operand, when
to add them together, and when to store the result away. However, we’re
getting a little ahead of ourselves; we’ll discuss this in detail in the next two
chapters.

8.8 For More Information

A good understanding of Boolean algebra and digital design is necessary for
anyone who wants to understand the internal operation of a CPU. As an
added bonus, programmers who understand digital design can write better
programs. Although a detailed knowledge of Boolean algebra and digital
circuit design isn’t necessary if you simply want to write typical programs,
this knowledge will help explain why CPU manufacturers have chosen to
implement instructions in certain ways. These questions will undoubtedly
arise as we begin to look at the low-level implementation of the CPU.

This chapter is not, by any means, a complete treatment of this subject.
If you’re interested in learning more about Boolean algebra and digital
circuit design, there are dozens and dozens of books on this subject.

No Starch Press, Copyright © 2004 by Randall Hyde

9
C P U A R C H I T E C T U R E

Great code is aware of the underlying
hardware on which it executes. Without
question, the design of the central pro-

cessing unit (CPU) has the greatest impact
on the performance of your software. This

chapter, and the next, discuss the design of CPUs and
their instruction sets — information that is absolutely
crucial for writing high-performance software.

9.1 Basic CPU Design

A CPU is capable of executing a set of commands (or machine instructions),
each of which accomplishes some small task. To execute a particular instruction,
a CPU requires a certain amount of electronic circuitry specific to that
instruction. Therefore, as you increase the number of instructions the CPU
can support, you also increase the complexity of the CPU and you increase the
amount of circuitry (logic gates) needed to support those instructions. To keep

No Starch Press, Copyright © 2004 by Randall Hyde

226 Chap te r 9

the number of logic gates on the CPU reasonably small (thus lowering
the CPU’s cost), CPU designers must restrict the number and complexity
of the instructions that the CPU is capable of executing. This small set of
instructions is the CPU’s instruction set.

Programs in early computer systems were often “hardwired” into the
circuitry. That is, the computer’s wiring determined exactly what algorithm
the computer would execute. One had to rewire the computer in order to
use the computer to solve a different problem. This was a difficult task,
something that only electrical engineers were able to do. The next advance
in computer design was the programmable computer system, one that
allowed a computer operator to easily “rewire” the computer system using
sockets and plug wires (a patch board system). A computer program consisted
of rows of sockets, with each row representing one operation during the
execution of the program. The programmer could determine which of
several instructions would be executed by plugging a wire into the particular
socket for the desired instruction (see Figure 9-1).

Figure 9-1: Patch board programming

Of course, a major problem with this scheme was that the number of possible
instructions was severely limited by the number of sockets one could
physically place on each row. CPU designers quickly discovered that with a
small amount of additional logic circuitry, they could reduce the number of
sockets required for specifying n different instructions from n sockets to
log2(n) sockets. They did this by assigning a unique numeric code to each
instruction and then representing each code as a binary number (for
example, Figure 9-2 shows how to represent eight instructions using only
three bits).

The example in Figure 9-2 requires eight logic functions to decode the
A, B, and C bits on the patch board, but the extra circuitry (a single three-
line–to–eight-line decoder) is worth the cost because it reduces the total
number of sockets from eight to three for each instruction.

Of course, many CPU instructions do not stand alone. For example,
a move instruction is a command that moves data from one location in
the computer to another, such as from one register to another. The move

Instr #1

Instr #2

Instr #3
 .
 .
 .

m
ov

e

ad
d

su
bt

ra
ct

m
ul

tip
ly

di
vi

de

an
d

or xo
r

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 227

instruction requires two operands: a source operand and a destination
operand. The CPU’s designer usually encodes the source and destination
operands as part of the machine instruction, with certain sockets corres-
ponding to the source and certain sockets corresponding to the destination.

Figure 9-2: Encoding instructions

Figure 9-3 shows one possible combination of sockets that would handle this.
The move instruction would move data from the source register to the
destination register, the add instruction would add the value of the source
register to the destination register, and so on. This scheme allows the
encoding of 128 different instructions with just seven sockets per instruction.

Figure 9-3: Encoding instructions with source and destination fields

One of the primary advances in computer design was the invention of the
stored program computer. A big problem with patch-board programming was
that the number of machine instructions in a program was limited by the
number of rows of sockets available on the machine. Early computer
designers recognized a relationship between the sockets on the patch board

Instr #1

Instr #2

Instr #3
 .
 .
 .

C B A CBA Instruction
000 move
001 add
010 subtract
011 multiply
100 divide
101 and
110 or
111 xor

Instr #1

Instr #2

Instr #3
 .
 .
 .

C B A

CBA Instruction
000 move
001 add
010 subtract
011 multiply
100 divide
101 and
110 or
111 xor

DD SS

 Register

00
01 BX
10 CX
11 DX

AX

DD -or- SS

No Starch Press, Copyright © 2004 by Randall Hyde

228 Chap te r 9

and bits in memory. They figured they could store the numeric equivalent of
a machine instruction in main memory, fetch the instruction’s numeric
equivalent from memory when the CPU wanted to execute the instruction,
and then load that binary number into a special register to decode the
instruction.

The trick was to add additional circuitry, called the control unit (CU),
to the CPU. The control unit uses a special register, the instruction pointer,
that holds the address of an instruction’s numeric code (also known as an
operation code or opcode). The control unit fetches this instruction’s opcode
from memory and places it in the instruction decoding register for execu-
tion. After executing the instruction, the control unit increments the
instruction pointer and fetches the next instruction from memory for
execution. This process repeats for each instruction the program executes.

The goal of the CPU’s designer is to assign an appropriate number of
bits to the opcode’s instruction field and to its operand fields. Choosing
more bits for the instruction field lets the opcode encode more instructions,
just as choosing more bits for the operand fields lets the opcode specify a
larger number of operands (often memory locations or registers). However,
some instructions have only one operand, while others don’t have any
operands at all. Rather than waste the bits associated with these operand
fields for instructions that don’t have the maximum number of operands,
the CPU designers often reuse these fields to encode additional opcodes,
once again with some additional circuitry. The Intel 80x86 CPU family is a
good example of this, with machine instructions ranging from 1 to almost 15
bytes long.1

9.2 Decoding and Executing Instructions: Random Logic
Versus Microcode

Once the control unit fetches an instruction from memory, you may wonder,
“Exactly how does the CPU execute this instruction?” In traditional CPU
design there have been two common approaches used: hardwired logic and
emulation (microcode). The 80x86 family, for example, uses both of these
techniques.

A hardwired, or random logic,2 approach uses decoders, latches, counters,
and other hardware logic devices to operate on the opcode data. The micro-
code approach involves a very fast but simple internal processor that uses
the CPU’s opcodes as indexes into a table of operations called the microcode,
and then executes a sequence of microinstructions that do the work of the
macroinstruction they are emulating.

1 Though this is, by no means, the most complex instruction set. The VAX, for example,
has instructions up to 150 bytes long!
2 There is actually nothing random about this logic at all. This design technique gets its
name from the fact that if you view a photomicrograph of a CPU die that uses microcode,
the microcode section looks very regular; the same photograph of a CPU that utilizes
random logic contains no such easily discernible patterns.

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 229

The random-logic approach has the advantage of decreasing the amount
of time it takes to execute an opcode’s instruction, provided that typical CPU
speeds are faster than memory speeds, a situation that has been true for
quite some time. The drawback to the random-logic approach is that it is
difficult to design the necessary circuitry for CPUs with large and complex
instruction sets. The hardware logic that executes the instructions winds up
requiring a large percentage of the chip’s real estate, and it becomes difficult
to properly lay out the logic so that related circuits are close to one another
in the two-dimensional space of the chip.

CPUs based on microcode contain a small, very fast execution unit
(circuitry in the CPU that is responsible for executing a particular function)
that uses the binary opcode to select a set of instructions from the microcode
bank. This microcode executes one microinstruction per clock cycle, and the
sequence of microinstructions executes all the steps to do whatever
calculations are necessary for that instruction.

The microcode approach may appear to be substantially slower than the
random-logic approach because of all the steps involved. But this isn’t neces-
sarily true. Keep in mind that with a random-logic approach to instruction
execution, a sequencer that steps through several states (one state per clock
cycle) often makes up part of the random logic. Whether you use up clock
cycles executing microinstructions or stepping through a random-logic state
machine, you’re still burning up time.

However, microcode does suffer from one disadvantage compared to
random logic: the speed at which the processor runs can be limited by the
speed of the internal microcode execution unit. Although this micro-engine
itself is usually quite fast, the micro-engine must fetch its instructions from
the microcode ROM (read-only memory). Therefore, if memory technology
is slower than the execution logic, the system will have to introduce wait
states into the microcode ROM access, thus slowing the micro-engine down.
However, micro-engines generally don’t support the use of wait states, so this
means that the micro-engine must run at the same speed as the microcode
ROM, which effectively limits the speed at which the micro-engine, and
therefore the CPU, can run.

Which approach is better for CPU design? That depends entirely on the
current state of memory technology. If memory technology is faster than
CPU technology, the microcode approach tends to make more sense. If
memory technology is slower than CPU technology, random logic tends to
produce faster execution of machine instructions.

9.3 Executing Instructions, Step by Step

To be able to write great code, you need to understand how a CPU executes
individual machine instructions. To that end, let’s consider four represen-
tative 80x86 instructions: mov, add, loop, and jnz (jump if not zero). By under-
standing these four instructions, you can get a good feel for how a CPU
executes all the instructions in the instruction set.

No Starch Press, Copyright © 2004 by Randall Hyde

230 Chap te r 9

The mov instruction copies the data from the source operand to the
destination operand. The add instruction adds the value of its source operand
to its destination operand. The loop and jnz instructions are conditional-jump
instructions — they test some condition and then jump to some other
instruction in memory if the condition is true, or continue with the next
instruction if the condition is false. The jnz instruction tests a Boolean
variable within the CPU known as the zero flag and either transfers control to
the target instruction if the zero flag contains zero, or continues with the
next instruction if the zero flag contains one. The program specifies the
address of the target instruction (the instruction to jump to) by specifying
the distance, in bytes, from the jnz instruction to the target instruction in
memory.

The loop instruction decrements the value of the ECX register and
transfers control to a target instruction if ECX does not contain zero (after
the decrement). This is a good example of a Complex Instruction Set Computer
(CISC) instruction because it does multiple operations:

1. It subtracts one from ECX.

2. It does a conditional jump if ECX does not contain zero.

That is, loop is roughly equivalent to the following instruction sequence:

sub(1, ecx); // On the 80x86, the sub instruction sets the zero flag

jnz SomeLabel; // the result of the subtraction is zero.

To execute the mov, add, jnz, and loop instructions, the CPU has to execute a
number of different steps. Although each 80x86 CPU is different and doesn't
necessarily execute the exact same steps, these CPUs do execute a similar
sequence of operations. Each operation requires a finite amount of time to
execute, and the time required to execute the entire instruction generally
amounts to one clock cycle per operation or stage (as we usually refer to each
of these steps) that the CPU executes. Obviously, the more steps needed for
an instruction, the slower it will run. Complex instructions generally run
slower than simple instructions, because complex instructions usually have
many execution stages.

9.3.1 The mov Instruction
Although each CPU is different and may run different steps when executing
instructions, the 80x86 mov(srcReg,destReg); instruction could use the fol-
lowing execution steps:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP (extended instruction pointer) register with the address
of the byte following the opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 231

4. Fetch the data from the source register (srcReg).
5. Store the fetched value into the destination register (destReg).

The mov(srcReg,destMem); instruction could use the following execution steps:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the byte following the
opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.
4. Fetch the displacement associated with the memory operand from the

memory location immediately following the opcode.

5. Update EIP to point at the first byte beyond the operand that follows the
opcode.

6. If the mov instruction uses a complex addressing mode (for example, the
indexed addressing mode), compute the effective address of the destina-
tion memory location.

7. Fetch the data from srcReg.
8. Store the fetched value into the destination memory location.

Note that a mov(srcMem,destReg); instruction is very similar, simply swapping
the register access for the memory access in these steps.

The mov(constant,destReg); instruction could use the following execution
steps:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the byte following the
opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.
4. Fetch the constant associated with the source operand from the memory

location immediately following the opcode.

5. Update EIP to point at the first byte beyond the constant that follows the
opcode.

6. Store the constant value into the destination register.

Assuming each step requires one clock cycle for execution, this sequence will
require six clock cycles to execute.

The mov(constant,destMem); instruction could use the following execution
steps:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the byte following the
opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.

No Starch Press, Copyright © 2004 by Randall Hyde

232 Chap te r 9

4. Fetch the displacement associated with the memory operand from the
memory location immediately following the opcode.

5. Update EIP to point at the first byte beyond the operand that follows the
opcode.

6. Fetch the constant operand’s value from the memory location immedi-
ately following the displacement associated with the memory operand.

7. Update EIP to point at the first byte beyond the constant.

8. If the mov instruction uses a complex addressing mode (for example, the
indexed addressing mode), compute the effective address of the destina-
tion memory location.

9. Store the constant value into the destination memory location.

9.3.2 The add Instruction
The add instruction is a little more complex. Here’s a typical set of operations
that the add(srcReg,destReg); instruction must complete:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the byte following the
opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.
4. Fetch the value of the source register and send it to the arithmetic logi-

cal unit (ALU), which handles arithmetic on the CPU.

5. Fetch the value of the destination register operand and send it to the
ALU.

6. Instruct the ALU to add the values.
7. Store the result back into the destination register operand.

8. Update the flags register with the result of the addition operation.

NOTE The flags register, also known as the condition-codes register or program-status word, is
an array of Boolean variables in the CPU that tracks whether the previous instruction
produced an overflow, a zero result, a negative result, or other such condition.

If the source operand is a memory location instead of a register, and the add
instruction takes the form add(srcMem,destReg); then the operation is slightly
more complicated:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the byte following the
opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.
4. Fetch the displacement associated with the memory operand from the

memory location immediately following the opcode.

5. Update EIP to point at the first byte beyond the operand that follows the
opcode.

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 233

6. If the add instruction uses a complex addressing mode (for example, the
indexed addressing mode), compute the effective address of the source
memory location.

7. Fetch the source operand’s data from memory and send it to the ALU.

8. Fetch the value of the destination register operand and send it to the
ALU.

9. Instruct the ALU to add the values.

10. Store the result back into the destination register operand.
11. Update the flags register with the result of the addition operation.

If the source operand is a constant and the destination operand is a register,
the add instruction takes the form add(constant,destReg); and here is how the
CPU might deal with it:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the byte following the
opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.
4. Fetch the constant operand that immediately follows the opcode in

memory and send it to the ALU.

5. Update EIP to point at the first byte beyond the constant that follows the
opcode.

6. Fetch the value of the destination register operand and send it to the
ALU.

7. Instruct the ALU to add the values.
8. Store the result back into the destination register operand.

9. Update the flags register with the result of the addition operation.

This instruction sequence requires nine cycles to complete.
If the source operand is a constant, and the destination operand is a

memory location, then the add instruction takes the form add(constant,
destMem); and the operation is slightly more complicated:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the byte following the
opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.

4. Fetch the displacement associated with the memory operand from mem-
ory immediately following the opcode.

5. Update EIP to point at the first byte beyond the operand that follows the
opcode.

6. If the add instruction uses a complex addressing mode (for example, the
indexed addressing mode), compute the effective address of the destina-
tion memory location.

No Starch Press, Copyright © 2004 by Randall Hyde

234 Chap te r 9

7. Fetch the constant operand that immediately follows the memory oper-
and’s displacement value and send it to the ALU.

8. Fetch the destination operand’s data from memory and send it to the
ALU.

9. Update EIP to point at the first byte beyond the constant that follows the
memory operand.

10. Instruct the ALU to add the values.

11. Store the result back into the destination memory operand.
12. Update the flags register with the result of the addition operation.

This instruction sequence requires 11 or 12 cycles to complete, depending
on whether the effective address computation is necessary.

9.3.3 The jnz Instruction

Because the 80x86 jnz instruction does not allow different types of operands,
there is only one sequence of steps needed for this instruction. The jnz
label; instruction might use the following sequence of steps:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the displacement value fol-
lowing the instruction.

3. Decode the opcode to see what instruction it specifies.
4. Fetch the displacement value (the jump distance) and send it to the

ALU.

5. Update the EIP register to hold the address of the instruction following
the displacement operand.

6. Test the zero flag to see if it is clear (that is, if it contains zero).

7. If the zero flag was clear, copy the value in EIP to the ALU.
8. If the zero flag was clear, instruct the ALU to add the displacement and

EIP values.

9. If the zero flag was clear, copy the result of the addition back to the EIP.

Notice how the jnz instruction requires fewer steps, and thus runs in fewer
clock cycles, if the jump is not taken. This is very typical for conditional-jump
instructions.

9.3.4 The loop Instruction

Because the 80x86 loop instruction does not allow different types of
operands, there is only one sequence of steps needed for this instruction.
The 80x86 loop instruction might use an execution sequence like the
following:

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 235

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the displacement operand
following the opcode.

3. Decode the opcode to see what instruction it specifies.
4. Fetch the value of the ECX register and send it to the ALU.

5. Instruct the ALU to decrement this value.
6. Send the result back to the ECX register. Set a special internal flag if this

result is nonzero.

7. Fetch the displacement value (the jump distance) following the opcode
in memory and send it to the ALU.

8. Update the EIP register with the address of the instruction following the
displacement operand.

9. Test the special internal flag to see if ECX was nonzero.
10. If the flag was set (that is, it contains one), copy the value in EIP to the

ALU.

11. If the flag was set, instruct the ALU to add the displacement and EIP
values.

12. If the flag was set, copy the result of the addition back to the EIP register.

As with the jnz instruction, you’ll note that the loop instruction executes
more rapidly if the branch is not taken and the CPU continues execution
with the instruction that immediately follows the loop instruction.

9.4 Parallelism — The Key to Faster Processing

If we can reduce the amount of time it takes for a CPU to execute the
individual instructions appearing in that CPU’s instruction set, it should be
fairly clear that an application containing a sequence of those instructions
will also run faster (compared with executing that sequence on a CPU whose
individual instructions have not been sped up). Though the steps associated
with a particular instruction’s execution are usually beyond the control of a
software engineer, understanding those steps and why the CPU designer
chose an particular implementation for an instruction can help you pick
more appropriate instruction sequences that execute faster.

An early goal of the Reduced Instruction Set Computer (RISC) processors
was to execute one instruction per clock cycle, on the average. However,
even if a RISC instruction is simplified, the actual execution of the
instruction still requires multiple steps. So how could they achieve the goal?
The answer is parallelism.

Consider the following steps for a mov(srcReg,destReg); instruction:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the byte following the
opcode.

No Starch Press, Copyright © 2004 by Randall Hyde

236 Chap te r 9

3. Decode the instruction’s opcode to see what instruction it specifies.
4. Fetch the data from srcReg.

5. Store the fetched value into the destination register (destReg).

There are five stages in the execution of this instruction, with certain
dependencies existing between most of the stages. For example, the CPU
must fetch the instruction’s opcode from memory before it updates the
EIP register instruction with the address of the byte beyond the opcode.
Likewise, the CPU won’t know that it needs to fetch the value of the source
register until it decodes the instruction’s opcode. Finally, the CPU must fetch
the value of the source register before it can store the fetched value in the
destination register.

All but one of the stages in the execution of this mov instruction are serial.
That is, the CPU must execute one stage before proceeding to the next. The
one exception is step 2, updating the EIP register. Although this stage must
follow the first stage, none of the following stages in the instruction depend
upon this step. Therefore, this could be the third, forth, or fifth step in the
calculation and it wouldn’t affect the outcome of the instruction. Further, we
could execute this step concurrently with any of the other steps, and it
wouldn’t affect the operation of the mov instruction. By doing two of the
stages in parallel, we can reduce the execution time of this instruction by one
clock cycle. The following list of steps illustrates one possible concurrent
execution:

1. Fetch the instruction’s opcode from memory.

2. Decode the instruction’s opcode to see what instruction it specifies.
3. Fetch the data from srcReg and update the EIP register with the address

of the byte following the opcode.

4. Store the fetched value into the destination register (destReg).

Although the remaining stages in the mov(reg,reg); instruction must remain
serialized, other forms of the mov instruction offer similar opportunities to
save cycles by overlapping stages of their execution. For example, consider
the 80x86 mov([ebx+disp],eax); instruction:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the byte following the
opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.

4. Fetch the displacement value for use in calculating the effective address
of the source operand.

5. Update EIP to point at the first byte after the displacement value in
memory.

6. Compute the effective address of the source operand.

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 237

7. Fetch the value of the source operand’s data from memory.
8. Store the result into the destination register operand.

Once again, there is the opportunity to overlap the execution of several
stages in this instruction. In the following example, we reduce the number of
execution steps from eight to six by overlapping both updates of EIP with two
other operations:

1. Fetch the instruction’s opcode from memory.

2. Decode the instruction’s opcode to see what instruction it specifies, and
update the EIP register with the address of the byte following the
opcode.

3. Fetch the displacement value for use in calculating the effective address
of the source operand.

4. Compute the effective address of the source operand, and update EIP to
point at the first byte after the displacement value in memory.

5. Fetch the value of the source operand’s data from memory.

6. Store the result into the destination register operand.

As a last example, consider the add(constant,[ebx+disp]); instruction (the
instruction with the largest number of steps we’ve considered thus far). It’s
non-overlapped execution looks like this:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the byte following the
opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.

4. Fetch the displacement value from the memory location immediately
following the opcode.

5. Update EIP to point at the first byte beyond the displacement operand
that follows the opcode.

6. Compute the effective address of the second operand.
7. Fetch the constant operand that immediately follows the displacement

value in memory and send it to the ALU.

8. Fetch the destination operand’s data from memory and send it to the
ALU.

9. Update EIP to point at the first byte beyond the constant that follows the
displacement operand.

10. Instruct the ALU to add the values.
11. Store the result back into the destination (second) operand.
12. Update the flags register with the result of the addition operation.

We can overlap several steps in this instruction by noting that certain stages
don’t depend on the result of their immediate predecessor:

No Starch Press, Copyright © 2004 by Randall Hyde

238 Chap te r 9

1. Fetch the instruction’s opcode from memory.

2. Decode the instruction’s opcode to see what instruction it specifies and
update the EIP register with the address of the byte following the
opcode.

3. Fetch the displacement value from the memory location immediately fol-
lowing the opcode.

4. Update EIP to point at the first byte beyond the displacement operand
that follows the opcode and compute the effective address of the mem-
ory operand (EBX+disp).

5. Fetch the constant operand that immediately follows the displacement
value and send it to the ALU.

6. Fetch the destination operand’s data from memory and send it to the
ALU.

7. Instruct the ALU to add the values and update EIP to point at the first
byte beyond the constant value

8. Store the result back into the second operand and update the flags regis-
ter with the result of the addition operation.

Although it might seem possible to fetch the constant and the memory
operand in the same step because their values do not depend upon one
another, the CPU can’t actually do this (yet!) because it has only a single data
bus, and both values are coming from memory. However, in the next section
you’ll see how we can overcome this problem.

By overlapping various stages in the execution of these instructions,
we’ve been able to substantially reduce the number of steps, and conse-
quently the number of clock cycles, that the instructions need to complete
execution. This process of executing various steps of the instruction in
parallel with other steps is a major key to improving CPU performance
without cranking up the clock speed on the chip. However, there’s only
so much to be gained from this approach alone, because instruction
execution is still serialized. Starting with the next section we’ll start to
see how to overlap the execution of adjacent instructions in order to save
additional cycles.

9.4.1 The Prefetch Queue
The key to improving the speed of a processor is to perform operations in
parallel. If we were able to do two operations on each clock cycle, the CPU
would execute instructions twice as fast when running at the same clock
speed. However, simply deciding to execute two operations per clock cycle
doesn’t make accomplishing it easy.

As you have seen, the steps of the add instruction that involve adding two
values and then storing their sum cannot be done concurrently, because you
cannot store the sum until after you’ve computed it. Furthermore, there are
some resources that the CPU cannot share between steps in an instruction.

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 239

There is only one data bus, and the CPU cannot fetch an instruction's
opcode while it is trying to store some data to memory. In addition, many of
the steps that make up the execution of an instruction share functional units
in the CPU. Functional units are groups of logic that perform a common
operation, such as the arithmetic logical unit (ALU) and the control unit (CU).
A functional unit is only capable of one operation at a time. You cannot do
two operations concurrently that use the same functional unit. To design a
CPU that executes several steps in parallel, one must arrange those steps to
reduce potential conflicts, or add additional logic so the two (or more)
operations can occur simultaneously by executing in different functional
units.

Consider again the steps a mov(srcMem, destReg); instruction might
require:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register to hold the address of the displacement value
following the opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.
4. Fetch the displacement value from memory to compute the source

operand’s effective address.

5. Update the EIP register to hold the address of the byte beyond the dis-
placement value.

6. Compute the effective address of the source operand.

7. Fetch the value of the source operand.
8. Store the fetched value into the destination register.

The first operation uses the value of the EIP register, so we cannot overlap it
with the subsequent step, which adjusts the value in EIP. In addition, the first
operation uses the bus to fetch the instruction opcode from memory, and
because every step that follows this one depends upon this opcode, it is
unlikely we will be able to overlap this first step with any other.

The second and third operations do not share any functional units, and
the third operation doesn’t depend upon the value of the EIP register, which
is modified in the second step. Therefore, we can easily modify the control
unit so that it combines these steps, adjusting the EIP register at the same
time that it decodes the instruction. This will shave one cycle off the execu-
tion of the mov instruction.

The third and fourth steps, which decode the instruction’s opcode and
fetch the displacement value, do not look like they can be done in parallel
because you must decode the instruction’s opcode to determine whether the
CPU needs to fetch a displacement operand from memory. However, we can
design the CPU to go ahead and fetch the displacement anyway, so that it’s
available if we need it.

Of course, there is no way to overlap the execution of steps 7 and 8 in the
mov instruction because it must surely fetch the value before storing it away.

No Starch Press, Copyright © 2004 by Randall Hyde

240 Chap te r 9

By combining all the steps that are possible, we might obtain the following
for a mov instruction:

1. Fetch the instruction’s opcode from memory.

2. Decode the instruction’s opcode to see what instruction it specifies, and
update the EIP register to hold the address of the displacement value fol-
lowing the opcode.

3. Fetch the displacement value from memory to compute the source oper-
and’s effective address, and update the EIP register to hold the address
of the byte beyond the displacement value.

4. Compute the effective address of the source operand.
5. Fetch the value of the source operand from memory.

6. Store the fetched value into the destination register.

By adding a small amount of logic to the CPU, we’ve shaved one or two cycles
off the execution of the mov instruction. This simple optimization works with
most of the other instructions as well.

9.4.1.1 Saving Fetched Bytes

Now that we’ve looked at some simple optimization techniques, consider
what happens when the mov instruction executes on a CPU with a 32-bit data
bus. If the mov instruction fetches an 8-bit displacement value from memory,
the CPU may actually wind up fetching an additional three bytes along with
the displacement value (the 32-bit data bus lets us fetch four bytes in a single
bus cycle). The second byte on the data bus is actually the opcode of the next
instruction. If we could save this opcode until the execution of the next
instruction, we could shave a cycle off its execution time because it would not
have to fetch the same opcode byte again.

9.4.1.2 Using Unused Bus Cycles

Can we make any more improvements? The answer is yes. Note that during
the execution of the mov instruction, the CPU is not accessing memory on
every clock cycle. For example, while storing the data into the destination
register, the bus is idle. When the bus is idle, we can prefetch and save the
instruction opcode and operands of the next instruction.

The hardware that does this is the prefetch queue. Figure 9-4 shows the
internal organization of a CPU with a prefetch queue. The Bus Interface
Unit (BIU), as its name implies, is responsible for controlling access to the
address and data buses. The BIU acts as a “traffic cop” and handles simul-
taneous requests for bus access by different modules, such as the execution
unit and the prefetch queue. Whenever some component inside the CPU
wishes to access main memory, it sends this request to the BIU.

Whenever the execution unit is not using the BIU, the BIU can fetch
additional bytes from the memory that holds the machine instructions and
store them in the prefetch queue. Then, whenever the CPU needs an

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 241

instruction opcode or operand value, it grabs the next available byte from the
prefetch queue. Because the BIU grabs multiple bytes at a time from
memory, and because, per clock cycle, it generally consumes fewer bytes
from the prefetch queue than are in the queue, instructions will normally be
sitting in the prefetch queue for the CPU’s use.

Figure 9-4: CPU design with a prefetch queue

Note, however, that we’re not guaranteed that all instructions and operands
will be sitting in the prefetch queue when we need them. For example,
consider the 80x86 jnz Label; instruction. If the 2-byte form of the
instruction appears at locations 400 and 401 in memory, the prefetch queue
may contain the bytes at addresses 402, 403, 404, 405, 406, 407, and so on.
Now consider what happens if jnz transfers control to Label. If the target
address of the jnz instruction is 480, the bytes at addresses 402, 403, 404, and
so on, won’t be of any use to the CPU. The system will have to pause for a
moment to fetch the data at address 480 before it can go on. Most of the time
the CPU fetches sequential values from memory, though, so having the data
in the prefetch queue saves time.

9.4.1.3 Overlapping Instructions

Another improvement we can make is to overlap decoding of the next
instruction’s opcode with the execution of the last step of the previous
instruction. After the CPU processes the operand, the next available byte in
the prefetch queue is an opcode, and the CPU can decode it in anticipation
of its execution, because the instruction decoder is idle while the CPU
executes the steps of the current instruction. Of course, if the current
instruction modifies the EIP register, any time spent decoding the next
instruction goes to waste, but as this decoding of the next instruction occurs
in parallel with other operations of the current instruction, it does not slow
down the system (though it does require extra circuitry to do this).

CPU

A
L
U

Control
unit

Prefetch
queue

Data

Address

Execution
unit

Registers

Bus
Interface

Unit
(BIU)

No Starch Press, Copyright © 2004 by Randall Hyde

242 Chap te r 9

9.4.1.4 Summary of Background Prefetch Events

Our instruction execution sequence now assumes that the following CPU
prefetch events are occurring in the background (and concurrently):

� If the prefetch queue is not full (generally it can hold between 8 and 32
bytes, depending on the processor) and the BIU is idle on the current
clock cycle, fetch the next double word located at the address found in
the EIP register at the beginning of the clock cycle.

� If the instruction decoder is idle and the current instruction does not
require an instruction operand, the CPU should begin decoding the
opcode at the front of the prefetch queue. If the current instruction
requires an instruction operand, then the CPU begins decoding the byte
just beyond that operand in the prefetch queue.

Now let’s reconsider our mov(srcreg,destreg); instruction from Section 9.4,
“Parallelism — The Key to Faster Processing.” Because we’ve added the
prefetch queue and the BIU, fetching and decoding opcode bytes and
updating the EIP register takes place in parallel with the execution of
specific stages of the previous instruction. Without the BIU and the prefetch
queue, the mov(reg,reg); instruction would require the following steps:

1. Fetch the instruction’s opcode from memory.

2. Decode the instruction’s opcode to see what instruction it specifies.
3. Fetch the source register and update the EIP register with the address of

the next instruction.

4. Store the fetched value into the destination register.

However, now that we can overlap the fetch and decode stages of this
instruction with specific stages of the previous instruction, we get the
following steps:

1. Fetch and decode the instruction — this is overlapped with the previous
instruction.

2. Fetch the source register and update the EIP register with the address of
the next instruction.

3. Store the fetched value into the destination register.

The instruction execution timings in this last example make a couple of
optimistic assumptions — namely that the opcode is already present in the
prefetch queue and that the CPU has already decoded it. If either is not true,
additional cycles will be necessary to fetch the opcode from memory and
decode the instruction.

9.4.2 Conditions That Hinder the Performance of the Prefetch Queue
Because they invalidate the prefetch queue, jump and conditional-jump
instructions are slower than other instructions when the jump instructions
actually transfer control to the target location. The CPU cannot overlap

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 243

fetching and decoding of the opcode for the next instruction with the
execution of a jump instruction that transfers control. Therefore, it may take
several cycles after the execution of one of these jump instructions for the
prefetch queue to recover. If you want to write fast code, avoid jumping around in
your program as much as possible.

Note that the conditional-jump instructions only invalidate the prefetch
queue if they actually transfer control to the target location. If the jump
condition is false, then execution continues with the next instruction and the
values in the prefetch queue remain valid. Therefore, if you can determine,
while writing the program, which jump condition occurs most frequently,
you should arrange your program so that the most common condition causes
the program to continue with the next instruction rather than jump to a
separate location.

In addition, instruction size in bytes can affect the performance of the
prefetch queue. The larger the instruction, the faster the CPU will empty the
prefetch queue. Instructions involving constants and memory operands tend
to be the largest. If you execute a sequence of these instructions in a row, the
CPU may wind up having to wait because it is removing instructions from the
prefetch queue faster than the BIU is copying data to the prefetch queue.
Therefore, you should attempt to use shorter instructions whenever possible
because they will improve the performance of the prefetch queue.

Finally, prefetch queues work best when you have a wide data bus. The
16-bit 8086 processor runs much faster than the 8-bit 8088 because it can
keep the prefetch queue full with fewer bus accesses. Don’t forget, the CPU
needs to use the bus for other purposes. Instructions that access memory
compete with the prefetch queue for access to the bus. If you have a
sequence of instructions that all access memory, the prefetch queue may
quickly become empty if there are only a few bus cycles available for filling
the prefetch queue during the execution of these instructions. Of course,
once the prefetch queue is empty, the CPU must wait for the BIU to fetch
new opcodes from memory before it can continue executing instructions.

9.4.3 Pipelining — Overlapping the Execution of Multiple Instructions

Executing instructions in parallel using a BIU and an execution unit is a
special case of pipelining. Most modern processors incorporate pipelining to
improve performance. With just a few exceptions, we’ll see that pipelining
allows us to execute one instruction per clock cycle.

The advantage of the prefetch queue is that it lets the CPU overlap
fetching and decoding the instruction opcode with the execution of other
instructions. That is, while one instruction is executing, the BIU is fetching
and decoding the next instruction. Assuming you’re willing to add hardware,
you can execute almost all operations in parallel. That is the idea behind
pipelining.

Pipelined operation improves the average performance of an applica-
tion by executing several instructions concurrently. However, as you saw with

No Starch Press, Copyright © 2004 by Randall Hyde

244 Chap te r 9

the prefetch queue, certain instructions and certain combinations of instruc-
tions fare better than others in a pipelined system. By understanding how
pipelined operation works, you can organize your applications to run faster.

9.4.3.1 A Typical Pipeline

Consider the steps necessary to do a generic operation:

1. Fetch the instruction's opcode from memory.

2. Decode the opcode and, if required, prefetch a displacement operand, a
constant operand, or both.

3. If required, compute the effective address for a memory operand (e.g.,
[ebx+disp]).

4. If required, fetch the value of any memory operand and/or register.
5. Compute the result.

6. Store the result into the destination register.

Each of the steps in this sequence uses a separate tick of the system clock
(Time = 1, Time = 2, Time = 3, and so on, represent consecutive ticks of the
clock).

Assuming you’re willing to pay for some extra silicon, you can build a
little miniprocessor to handle each of these steps. The organization would look
something like Figure 9-5.

Figure 9-5: A pipelined implementation of instruction execution

Note the stages we’ve combined. For example, in stage 4 of Figure 9-5 the
CPU fetches both the source and destination operands in the same step. You
can do this by putting multiple data paths inside the CPU (such as from the
registers to the ALU) and ensuring that no two operands ever compete for
simultaneous use of the data bus (that is, there are no memory-to-memory
operations).

If you design a separate piece of hardware for each stage in the pipeline
in Figure 9-5, almost all these steps can take place in parallel. Of course,
you cannot fetch and decode the opcode for more than one instruction at
the same time, but you can fetch the opcode of the next instruction while
decoding the current instruction’s opcode. If you have an n-stage pipeline,
you will usually have n instructions executing concurrently. Figure 9-6 shows
pipelining in operation. T1, T2, T3, and so on, represent consecutive “ticks”
(Time = 1, Time = 2, and so on) of the system clock.

Fetch
opcode

Decode

prefetch
operand

Compute
effective
address

Fetch
source and
destination
values

Compute
result

Store
resultopcode &

1 2 3 4 5 6Stage

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 245

Figure 9-6: Instruction execution in a pipeline

At time T = T1, the CPU fetches the opcode byte for the first instruction. At
T = T2, the CPU begins decoding the opcode for the first instruction, and, in
parallel, it fetches a block of bytes from the prefetch queue in the event that
the first instruction has an operand. Also in parallel with the decoding of the
first instruction, the CPU instructs the BIU to fetch the opcode of the second
instruction because the first instruction no longer needs that circuitry. Note
that there is a minor conflict here. The CPU is attempting to fetch the next
byte from the prefetch queue for use as an operand; at the same time it is
fetching operand data from the prefetch queue for use as an opcode. How
can it do both at once? You’ll see the solution shortly.

At time T = T3, the CPU computes the address of any memory operand if
the first instruction accesses memory. If the first instruction does not use an
addressing mode requiring such computation, the CPU does nothing.
During T3, the CPU also decodes the opcode of the second instruction and
fetches any operands the second instruction has. Finally, the CPU also
fetches the opcode for the third instruction. With each advancing tick of the
clock, another step in the execution of each instruction in the pipeline
completes, and the CPU fetches the opcode of yet another instruction from
memory.

This process continues until at T = T6 the CPU completes the execution
of the first instruction, computes the result for the second, and fetches the
opcode for the sixth instruction in the pipeline. The important thing to see
is that after T = T5, the CPU completes an instruction on every clock cycle.
Once the CPU fills the pipeline, it completes one instruction on each cycle.
This is true even if there are complex addressing modes to be computed,
memory operands to fetch, or other operations that consume cycles on a
nonpipelined processor. All you need to do is add more stages to the pipe-
line, and you can still effectively process each instruction in one clock cycle.

Now back to the small conflict in the pipeline organization I mentioned
earlier. At T = T2, for example, the CPU attempts to prefetch a block of bytes
containing any operands of the first instruction, and at the same time it
fetches the opcode of the second instruction. Until the CPU decodes the first
instruction, it doesn’t know how many operands the instruction requires nor
does it know their length. Moreover, the CPU doesn't know what byte to
fetch as the opcode of the second instruction until it determines the length
of any operands the first instruction requires. So how can the pipeline fetch
the opcode of the next instruction in parallel with any address operands of
the current instruction?

T1 T2 T3 T4 T5 T6 T7 T8 T9...

Opcode

Opcode

Opcode

Opcode

Instruction #1

Instruction #2

Instruction #3

Decode Address Values Compute Store

Decode Address Values Compute Store

Decode Address Values Compute Store

Decode Address Values Compute Store

No Starch Press, Copyright © 2004 by Randall Hyde

246 Chap te r 9

One solution is to disallow this simultaneous operation in order to avoid
the potential data hazard (more about data hazards later). If an instruction
has an address or constant operand, we can simply delay the start of the next
instruction. Unfortunately, many instructions have these additional
operands, so this approach will have a substantial negative impact on the
execution speed of the CPU.

The second solution is to throw a lot more hardware at the problem.
Operand and constant sizes usually come in 1-, 2-, and 4-byte lengths.
Therefore, if we actually fetch the bytes in memory that are located at offsets
one, three, and five bytes beyond the current opcode we are decoding, one
of these three bytes will probably contain the opcode of the next instruction.
Once we are through decoding the current instruction, we know how many
bytes it consumes, and, therefore, we know the offset of the next opcode. We
can use a simple data selector circuit to choose which of the three candidate
opcode bytes we want to use.

In practice, we actually have to select the next opcode byte from more
than three candidates because 80x86 instructions come in many different
lengths. For example, a mov instruction that copies a 32-bit constant to a
memory location can be 10 or more bytes long. Moreover, instructions vary
in length from 1 to 15 bytes. And some opcodes on the 80x86 are longer
than 1 byte, so the CPU may have to fetch multiple bytes in order to properly
decode the current instruction. However, by throwing more hardware at the
problem we can decode the current opcode at the same time we’re fetching
the next.

9.4.3.2 Stalls in a Pipeline

Unfortunately, the scenario presented in the previous section is a little
too simplistic. There are two problems that our simple pipeline ignores:
competition between instructions for access to the bus (known as bus
contention), and nonsequential instruction execution. Both problems may
increase the average execution time of the instructions in the pipeline. By
understanding how the pipeline works, you can write your software to avoid
problems in the pipeline and improve the performance of your applications.

Bus contention can occur whenever an instruction needs to access an
item in memory. For example, if a mov(reg,mem); instruction needs to store
data in memory and a mov(mem,reg); instruction is reading data from memory,
contention for the address and data bus may develop because the CPU will
be trying to fetch data from memory and write data to memory
simultaneously.

One simplistic way to handle bus contention is through a pipeline stall.
The CPU, when faced with contention for the bus, gives priority to the
instruction farthest along in the pipeline. This causes the later instruction in
the pipeline to stall, and it takes two cycles to execute that instruction (see
Figure 9-7).

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 247

Figure 9-7: A pipeline stall

There are many other cases of bus contention. For example, fetching
operands for an instruction requires access to the prefetch queue at the
same time that the CPU needs to access the queue to fetch the opcode of
the next instruction. Given the simple pipelining scheme that we’ve outlined
so far, it’s unlikely that most instructions would execute at one clock (cycle)
per instruction (CPI).

As another example of a pipeline stall, consider what happens when
an instruction modifies the value in the EIP register? For example, the jnz
instruction might change the value in the EIP register if it conditionally
transfers control to its target label. This, of course, implies that the next set
of instructions to be executed does not immediately follow the instruction
that modifies EIP. By the time the instruction jnz label; completes execution
(assuming the zero flag is clear, so that the branch is taken), we’ve already
started five other instructions and we’re only one clock cycle away from the
completion of the first of these. Obviously, the CPU must not execute those
instructions, or it will compute improper results.

The only reasonable solution is to flush the entire pipeline and begin
fetching opcodes anew. However, doing so causes a severe execution-time
penalty. It will take the length of the pipeline (six cycles in our example)
before the next instruction completes execution. The longer the pipeline
is, the more you can accomplish per cycle in the system, but the slower a
program will run if it jumps around quite a bit. Unfortunately, you cannot
control the number of stages in the pipeline,3 but you can control the
number of transfer instructions that appear in your programs. Obviously,
you should keep these to a minimum in a pipelined system.

9.4.4 Instruction Caches — Providing Multiple Paths to Memory

System designers can resolve many problems with bus contention through
the intelligent use of the prefetch queue and the cache memory subsystem.
As you have seen, they can design the prefetch queue to buffer data from the
instruction stream. However, they can also use a separate instruction cache

T1 T2 T3 T4 T5 T6 T7 T8 T9...

Opcode

Opcode

Opcode

Instruction #1

Instruction #2

Decode Address Values Compute Store

Decode Address Values Compute Store

Decode Address Values Compute Store

Pipeline stall occurs here because Instruction #1
is attempting to store a value to memory at the
same time Instruction #2 is attempting to read
a value from memory.

Instruction #3 appears
to take two clock cycles
to execute because of
the pipeline stall.

3 Note, by the way, that the number of stages in an instruction pipeline varies among CPUs.

No Starch Press, Copyright © 2004 by Randall Hyde

248 Chap te r 9

(apart from the data cache) to hold machine instructions. Though, as a
programmer, you have no control over the cache organization of your CPU,
knowing how the instruction cache operates on your particular CPU may
allow you to use certain instruction sequences that would otherwise create
stalls.

Suppose, for a moment, that the CPU has two separate memory spaces,
one for instructions and one for data, each with its own bus. This is called the
Harvard architecture because the first such machine was built at Harvard. On a
Harvard machine there would be no contention for the bus. The BIU could
continue to fetch opcodes on the instruction bus while accessing memory on
the data/memory bus (see Figure 9-8).

Figure 9-8: A typical Harvard machine

In the real world, there are very few true Harvard machines. The extra pins
needed on the processor to support two physically separate buses increase
the cost of the processor and introduce many other engineering problems.
However, microprocessor designers have discovered that they can obtain
many benefits of the Harvard architecture with few of the disadvantages by
using separate on-chip caches for data and instructions. Advanced CPUs use
an internal Harvard architecture and an external von Neumann archi-
tecture. Figure 9-9 shows the structure of the 80x86 with separate data
and instruction caches.

Each path between the sections inside the CPU represents an
independent bus, and data can flow on all paths concurrently. This means
that the prefetch queue can be pulling instruction opcodes from the
instruction cache while the execution unit is writing data to the data cache.
However, it is not always possible, even with a cache, to avoid bus contention.

CPU

I/O subsystem

Data memory

Instruction memory

Data/memory bus

Instruction bus

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 249

In the arrangement with two separate caches, the BIU still has to use the
data/address bus to fetch opcodes from memory whenever they are not
located in the instruction cache. Likewise, the data cache still has to buffer
data from memory occasionally.

Figure 9-9: Using separate code and data caches

Although you cannot control the presence, size, or type of cache on a CPU,
you must be aware of how the cache operates in order to write the best
programs. On-chip level-one instruction caches are generally quite
small (between 4 KB and 64 KB on typical CPUs) compared to the size of
main memory. Therefore, the shorter your instructions, the more of them
will fit in the cache (getting tired of “shorter instructions” yet?). The more
instructions you have in the cache, the less often bus contention will occur.
Likewise, using registers to hold temporary results places less strain on the
data cache, so it doesn’t need to flush data to memory or retrieve data from
memory quite so often.

9.4.5 Pipeline Hazards
There is another problem with using a pipeline: hazards. There are two
types of hazards: control hazards and data hazards. We’ve actually discussed
control hazards already, although we did not refer to them by that name. A
control hazard occurs whenever the CPU branches to some new location in
memory and consequently has to flush from the pipeline the instructions
that are in various stages of execution. The system resources used to begin
the execution of the instructions the CPU flushes from the pipeline could
have been put to more productive use, had the programmer organized

Data
cache BIU

Instruction
cache

Prefetch
queue

Data/address
busesExecution unit

No Starch Press, Copyright © 2004 by Randall Hyde

250 Chap te r 9

the application to minimize the number of these instructions. So by
understanding the effects of hazards on your code, you can write faster
applications.

Let’s take a look at data hazards using the execution profile for the
following instruction sequence:

mov(SomeVar, ebx);

mov([ebx], eax);

When these two instructions execute, the pipeline will look something like
what is shown in Figure 9-10.

Figure 9-10: A data hazard

These two instructions attempt to fetch the 32-bit value whose address is held
in the SomeVar pointer variable. However, this sequence of instructions won’t work
properly! Unfortunately, the second instruction has already accessed the value
in EBX before the first instruction copies the address of memory location
SomeVar into EBX (T5 and T6 in Figure 9-10).

CISC processors, like the 80x86, handle hazards automatically. (Some
RISC chips do not, and if you tried this sequence on certain RISC chips you
would store an incorrect value in EAX.) In order to handle the data hazard
in this example, CISC processors stall the pipeline to synchronize the two
instructions. The actual execution would look something like what is shown
in Figure 9-11.

Figure 9-11: How a CISC CPU handles a data hazard

By delaying the second instruction by two clock cycles, the CPU guarantees
that the load instruction will load EAX with the value at the proper address.
Unfortunately, the mov([ebx],eax); instruction now executes in three clock
cycles rather than one. However, requiring two extra clock cycles is better
than producing incorrect results.

into ebx

T1 T2 T3 T4 T5 T6 T7 ...

Operand Address StoreOpcode

Operand Load Load StoreOpcode

&SomeVar ***

ebx [ebx] into eax

from SomeVar

Load Compute

Address

mov(SomeVar, ebx);

mov([ebx], eax);

into ebx

T3 T4 T5 T6 T7 ...

Address Store mov (SomeVar, ebx);

mov ([ebx], eax);Operand Load Load Store

ebx [ebx] into eax

from
SomeVar

Load Compute

Address Delay Delay

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 251

Fortunately, you (or your compiler) can reduce the impact that hazards
have on program execution speed within your software. Note that a data
hazard occurs when the source operand of one instruction was a destination
operand of a previous instruction. There is nothing wrong with loading EBX
from SomeVar and then loading EAX from [EBX]] (that is, the double-word
memory location pointed at by EBX), as long as they don’t occur one right after
the other. Suppose the code sequence had been:

mov(2000, ecx);

mov(SomeVar, ebx);

mov([ebx], eax);

We could reduce the effect of the hazard in this code sequence by simply
rearranging the instructions. Let’s do that to obtain the following:

mov(SomeVar, ebx);

mov(2000, ecx);

mov([ebx], eax);

Now the mov([ebx],eax); instruction requires only one additional clock
cycle rather than two. By inserting yet another instruction between the
mov(SomeVar,ebx); and the mov([ebx],eax); instructions, you can eliminate
the effects of the hazard altogether (of course, the inserted instruction
must not modify the values in the EAX and EBX registers).

On a pipelined processor, the order of instructions in a program
may dramatically affect the performance of that program. If you are
writing assembly code, always look for possible hazards in your instruction
sequences. Eliminate them wherever possible by rearranging the instruc-
tions. If you are using a compiler, choose a good compiler that properly
handles instruction ordering.

9.4.6 Superscalar Operation — Executing Instructions in Parallel
With the pipelined architecture shown so far, we could achieve, at best,
execution times of one CPI (clock per instruction). Is it possible to execute
instructions faster than this? At first glance you might think, “Of course not,
we can do at most one operation per clock cycle. So there is no way we can
execute more than one instruction per clock cycle.” Keep in mind, however,
that a single instruction is not a single operation. In the examples presented
earlier, each instruction has taken between six and eight operations to
complete. By adding seven or eight separate units to the CPU, we could
effectively execute these eight operations in one clock cycle, yielding one
CPI. If we add more hardware and execute, say, 16 operations at once, can
we achieve 0.5 CPI? The answer is a qualified yes. A CPU that includes this
additional hardware is a superscalar CPU, and it can execute more than one
instruction during a single clock cycle. The 80x86 family began supporting
superscalar execution with the introduction of the Pentium processor.

No Starch Press, Copyright © 2004 by Randall Hyde

252 Chap te r 9

A superscalar CPU has several execution units (see Figure 9-12). If it
encounters in the prefetch queue two or more instructions that can execute
independently, it will do so.

Figure 9-12: A CPU that supports superscalar operation

There are a couple of advantages to going superscalar. Suppose you have the
following instructions in the instruction stream:

mov(1000, eax);

mov(2000, ebx);

If there are no other problems or hazards in the surrounding code, and all
six bytes for these two instructions are currently in the prefetch queue, there
is no reason why the CPU cannot fetch and execute both instructions in
parallel. All it takes is extra silicon on the CPU chip to implement two
execution units.

Besides speeding up independent instructions, a superscalar CPU can
also speed up program sequences that have hazards. One limitation of
normal CPUs is that once a hazard occurs, the offending instruction will
completely stall the pipeline. Every instruction that follows the stalled
instruction will also have to wait for the CPU to synchronize the execution of
the offending instructions. With a superscalar CPU, however, instructions
following the hazard may continue execution through the pipeline as long as
they don’t have hazards of their own. This alleviates (though it does not
eliminate) some of the need for careful instruction scheduling.

The way you write software for a superscalar CPU can dramatically affect
its performance. First and foremost is that rule you’re probably sick of by
now: use short instructions. The shorter your instructions are, the more

Data/address
buses

Instruction
cache

Prefetch
queue

Execution unit 2

Execution unit 1

D
ata

cache BIU

Superscalar CPU

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 253

instructions the CPU can fetch in a single operation and, therefore, the
more likely the CPU will execute faster than one CPI. Most superscalar CPUs
do not completely duplicate the execution unit. There might be multiple
ALUs, floating-point units, and so on, which means that certain instruction
sequences can execute very quickly, while others won’t. You have to study
the exact composition of your CPU to decide which instruction sequences
produce the best performance.

9.4.7 Out-of-Order Execution
In a standard superscalar CPU, it is the programmer’s (or compiler’s)
responsibility to schedule (arrange) the instructions to avoid hazards and
pipeline stalls. Fancier CPUs can actually remove some of this burden and
improve performance by automatically rescheduling instructions while the
program executes. To understand how this is possible, consider the following
instruction sequence:

mov(SomeVar, ebx);

mov([ebx], eax);

mov(2000, ecx);

A data hazard exists between the first and second instructions. The second
instruction must delay until the first instruction completes execution. This
introduces a pipeline stall and increases the running time of the program.
Typically, the stall affects every instruction that follows. However, note that
the third instruction’s execution does not depend on the result from either
of the first two instructions. Therefore, there is no reason to stall the exe-
cution of the mov(2000,ecx); instruction. It may continue executing while the
second instruction waits for the first to complete. This technique is called out-
of-order execution because the CPU can execute instructions prior to the
completion of instructions appearing previously in the code stream.

Clearly, the CPU may only execute instructions out of sequence if doing
so produces exactly the same results as in-order execution. While there are
many little technical issues that make this problem more difficult than it
seems, it is possible to implement this feature with enough engineering
effort.

9.4.8 Register Renaming
One problem that hampers the effectiveness of superscalar operation on
the 80x86 CPU is the 80x86’s limited number of general-purpose registers.
Suppose, for example, that the CPU had four different pipelines and,
therefore, was capable of executing four instructions simultaneously.
Presuming no conflicts existed among these instructions and they could
all execute simultaneously, it would still be very difficult to actually achieve
four instructions per clock cycle because most instructions operate on two
register operands. For four instructions to execute concurrently, you’d need
eight different registers: four destination registers and four source registers

No Starch Press, Copyright © 2004 by Randall Hyde

254 Chap te r 9

(none of the destination registers could double as source registers of other
instructions). CPUs that have lots of registers can handle this task quite
easily, but the limited register set of the 80x86 makes this difficult. Fortu-
nately, there is a way to alleviate part of the problem through register
renaming.

Register renaming is a sneaky way to give a CPU more registers than it
actually has. Programmers will not have direct access to these extra registers,
but the CPU can use them to prevent hazards in certain cases. For example,
consider the following short instruction sequence:

mov(0, eax);

mov(eax, i);

mov(50, eax);

mov(eax, j);

Clearly, a data hazard exists between the first and second instructions and,
likewise, a data hazard exists between the third and fourth instructions. Out-
of-order execution in a superscalar CPU would normally allow the first and
third instructions to execute concurrently, and then the second and fourth
instructions could execute concurrently. However, a data hazard of sorts also
exists between the first and third instructions because they use the same
register. The programmer could have easily solved this problem by using a
different register (say, EBX) for the third and fourth instructions. However,
let’s assume that the programmer was unable to do this because all the other
registers were all holding important values. Is this sequence doomed to
executing in four cycles on a superscalar CPU that should only require two?

One advanced trick a CPU can employ is to create a bank of registers
for each of the general-purpose registers on the CPU. That is, rather than
having a single EAX register, the CPU could support an array of EAX regi-
sters; let’s call these registers EAX[0], EAX[1], EAX[2], and so on. Similarly,
you could have an array of each of the other registers, so we could also have
EBX[0]..EBX[n], ECX[0]..ECX[n], and so on. The instruction set does
not give the programmer the ability to select one of these specific register
array elements for a given instruction, but the CPU can automatically choose
among the register array elements if doing so would not change the overall
computation and could speed up the execution of the program. For
example, consider the following sequence (with register array elements
automatically chosen by the CPU):

mov(0, eax[0]);

mov(eax[0], i);

mov(50, eax[1]);

mov(eax[1], j);

Because EAX[0] and EAX[1] are different registers, the CPU can execute
the first and third instructions concurrently. Likewise, the CPU can execute
the second and fourth instructions concurrently.

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 255

This code provides an example of register renaming. Although this is a
simple example, and different CPUs implement register renaming in many
different ways, this example does demonstrate how the CPU can improve
performance in certain instances using this technique.

9.4.9 Very Long Instruction Word (VLIW) Architecture
Superscalar operation attempts to schedule, in hardware, the execution of
multiple instructions simultaneously. Another technique, which Intel is using
in its IA-64 architecture, involves very long instruction words, or VLIW. In
a VLIW computer system, the CPU fetches a large block of bytes (41 bits in
the case of the IA-64 Itanium CPU) and decodes and executes this block all
at once. This block of bytes usually contains two or more instructions (three
in the case of the IA-64). VLIW computing requires the programmer or
compiler to properly schedule the instructions in each block so that there
are no hazards or other conflicts, but if properly scheduled, the CPU can
execute three or more instructions per clock cycle.

The Intel IA-64 architecture is not the only computer system to employ a
VLIW architecture. Transmeta’s Crusoe processor family also uses a VLIW
architecture. The Crusoe processor is different from the IA-64 architecture,
insofar as it does not support native execution of IA-32 instructions. Instead,
the Crusoe processor dynamically translates 80x86 instructions to Crusoe’s
VLIW instructions. This “code morphing” technology results in code
running about 50 percent slower than native code, though the Crusoe
processor has other advantages.

We will not consider VLIW computing any further here because the
technology is just becoming available (and it’s difficult to predict how it will
impact system designs). Nevertheless, Intel and some other semiconductor
manufacturers feel that it’s the wave of the future, so keep your eye on it.

9.4.10 Parallel Processing
Most techniques for improving CPU performance via architectural advances
involve the parallel execution of instructions. The techniques up to this
point in this chapter can be treated as if they were transparent to the
programmer. That is, the programmer does not have to do anything special
to take minimal advantage of pipeline and superscalar operation. As you
have seen, if programmers are aware of the underlying architecture, they can
write code that runs faster, but these architectural advances often improve
performance significantly even if programmers do not write special code to
take advantage of them.

The only problem with ignoring the underlying architecture is that there
is only so much the hardware can do to parallelize a program that requires
sequential execution for proper operation. To truly produce a parallel
program, the programmer must specifically write parallel code, though, of
course, this does require architectural support from the CPU. This section
and the next touch on the types of support a CPU can provide.

No Starch Press, Copyright © 2004 by Randall Hyde

256 Chap te r 9

Common CPUs use what is known as the Single Instruction, Single Data
(SISD) model. This means that the CPU executes one instruction at a time,
and that instruction operates on a single piece of data.4 Two common
parallel models are the so-called Single Instruction, Multiple Data (SIMD) and
Multiple Instruction, Multiple Data (MIMD) models. As it turns out, many
modern CPUs, including the 80x86, also include limited support for these
latter two parallel-execution models, providing a hybrid SISD/SIMD/MIMD
architecture.

In the SIMD model, the CPU executes a single instruction stream, just
like the pure SISD model. However, in the SIMD model, the CPU operates
on multiple pieces of data concurrently rather than on a single data object.
For example, consider the 80x86 add instruction. This is a SISD instruction
that operates on (that is, produces) a single piece of data. True, the
instruction fetches values from two source operands, but the end result is
that the add instruction will store a sum into only a single destination
operand. An SIMD version of add, on the other hand, would compute the
sum of several values simultaneously. The Pentium III’s MMX and SIMD
instruction extensions, and the PowerPC’s AltaVec instructions, operate in
exactly this fashion. With the paddb MMX instruction, for example, you can
add up to eight separate pairs of values with the execution of a single
instruction. Here’s an example of this instruction:

paddb(mm0, mm1);

Although this instruction appears to have only two operands (like a typical
SISD add instruction on the 80x86), the MMX registers (MM0 and MM1)
actually hold eight independent byte values (the MMX registers are 64 bits
wide but are treated as eight 8-bit values rather than as a single 64-bit value).

Note that SIMD instructions are only useful in specialized situations.
Unless you have an algorithm that can take advantage of SIMD instructions,
they’re not that useful. Fortunately, high-speed 3-D graphics and multimedia
applications benefit greatly from these SIMD (and MMX) instructions, so
their inclusion in the 80x86 CPU offers a huge performance boost for these
important applications.

The MIMD model uses multiple instructions, operating on multiple
pieces of data (usually with one instruction per data object, though one of
these instructions could also operate on multiple data items). These multiple
instructions execute independently of one another, so it’s very rare that a
single program (or, more specifically, a single thread of execution) would
use the MIMD model. However, if you have a multiprogramming environ-
ment with multiple programs attempting to execute concurrently, the MIMD
model does allow each of those programs to execute their own code stream
simultaneously. This type of parallel system is called a multiprocessor system.

4 We will ignore the parallelism provided by pipelining and superscalar operation in this
discussion.

No Starch Press, Copyright © 2004 by Randall Hyde

CPU Arch i tec ture 257

9.4.11 Multiprocessing
Pipelining, superscalar operation, out-of-order execution, and VLIW designs
are techniques that CPU designers use in order to execute several operations
in parallel. These techniques support fine-grained parallelism and are useful
for speeding up adjacent instructions in a computer system. If adding more
functional units increases parallelism, you might wonder what would happen
if you added another CPU to the system. This technique, known as multi-
processing, can improve system performance, though not as uniformly as
other techniques.

Multiprocessing doesn’t help a program’s performance unless that
program is specifically written for use on a multiprocessor system. If you
build a system with two CPUs, those CPUs cannot trade off executing
alternate instructions within a single program. In fact, it is very expensive,
time-wise, to switch the execution of a program’s instructions from one
processor to another. Therefore, multiprocessor systems are only effective
with an operating system that executes multiple processes or threads
concurrently. To differentiate this type of parallelism from that afforded
by pipelining and superscalar operation, we’ll call this kind of parallelism
coarse-grained parallelism.

Adding multiple processors to a system is not as simple as wiring two or
more processors to the motherboard. To understand why this is so, consider
two separate programs running on separate processors in a multiprocessor
system. Suppose also that these two processors communicate with one
another by writing to a block of shared physical memory. Unfortunately,
when CPU 1 attempts to writes to this block of memory it caches the data
(locally on the CPU) and might not actually write the data to physical
memory for some time. If CPU 2 attempts to simultaneously read this block
of shared memory, it winds up reading the old data out of main memory (or
its local cache) rather than reading the updated data that CPU 1 wrote to its
local cache. This is known as the cache-coherency problem. In order for these
two functions to operate properly, the two CPUs must notify each other
whenever they make changes to shared objects, so the other CPU can update
its local, cached copy.

One area where the RISC CPUs have a big advantage over Intel’s CPUs is
in the support for multiple processors in a system. While Intel 80x86 systems
reach a point of diminishing returns at around 16 processors, Sun SPARC
and other RISC processors easily support 64-CPU systems (with more
arriving, it seems, every day). This is why large databases and large Web
server systems tend to use expensive Unix-based RISC systems rather than
80x86 systems.

Newer versions of the Pentium IV and Xeon processors support a hybrid
form of multiprocessing known as hyperthreading. The idea behind hyper-
threading is deceptively simple — in a typical superscalar processor it is rare
for an instruction sequence to utilize all the CPU’s functional units on each
clock cycle. Rather than allow those functional units to go unused, the CPU

No Starch Press, Copyright © 2004 by Randall Hyde

258 Chap te r 9

can run two separate threads of execution concurrently and keep all the
CPU’s functional units occupied. This allows a single CPU to, effectively,
do the work of 1.5 CPUs in a typical multiprocessor system.

9.5 For More Information

The in-depth study of computer architecture could very well be considered
a “follow-on course” to the material this chapter presents. There are many
college and professional texts on computer architecture available today.
Patterson and Hennessy’s Computer Architecture: A Quantitative Approach is
one of the better regarded texts on this subject (though it is a bit heavily
biased towards RISC architectures).

One subject missing from this chapter is the design of the CPU’s actual
instruction set. That is the subject of the next chapter in this book.

No Starch Press, Copyright © 2004 by Randall Hyde

10
I N S T R U C T I O N S E T A R C H I T E C T U R E

This chapter discusses the implementation
of a CPU’s instruction set. Although the
choice of a given instruction set (for exam-

ple, the 80x86 instruction set) is usually
beyond the control of a software engineer,

understanding the choices a hardware design engineer
has to make when designing a CPU’s instruction set can
definitely help you write better code.

CPU instruction sets contain several trade-offs based on assumptions that
computer architects make concerning the way software engineers write code. If
the machine instructions you choose match the assumptions the CPU’s designers
have made, then your code will probably run faster and require fewer machine
resources. Conversely, if your code violates the assumptions the hardware engi-
neers have made, chances are pretty good it will not perform as well as it other-
wise could.

No Starch Press, Copyright © 2004 by Randall Hyde

260 Chap te r 10

Although studying the instruction set may seem like a task suited only
to assembly language programmers, even high-level language programmers
should understand the design of their CPU’s instruction set. After all, every
high-level language statement maps to some sequence of machine instruc-
tions. Indeed, studying generic instruction set design is probably more
important to high-level language programmers than it is to assembly pro-
grammers (who should study the specific instruction set they are using),
as the general concepts are portable across architectures. Therefore, even
if you don’t ever intend to write software using assembly language, it’s
important to understand how the underlying machine instructions work
and how they were designed in the first place.

10.1 The Importance of the Design of the Instruction Set

The design of the CPU’s instruction set is one of the most interesting and
important aspects of CPU design. The instruction set architecture (ISA) is
something that a designer must get correct from the start of the design cycle.
Features like caches, pipelining, superscalar implementation, and so on, can
all be grafted on o a CPU long after the original design is obsolete. However,
it is very difficult to change the instruction set once a CPU is in production
and people are writing software using those instructions. Therefore,
instruction set design requires very careful consideration.

You might be tempted to think that the kitchen sink approach to instruc-
tion set design (as in “everything, including the kitchen sink”), in which you
include every instruction you can dream up, is best. This approach fails for
several reasons, as you’ll soon see. Instruction set design is the epitome of
compromise management. Good instruction set design involves selecting
what to throw out rather than what to keep. It’s easy enough to say, “Let’s
include everything.” The hard part is deciding what to leave out once it
becomes clear that you can’t have every instruction on the chip. Why can’t
we have it all? Well, in the real world some nasty realities prevent this:

Nasty reality 1: Silicon real estate The first problem with “putting it all
on the chip” is that each feature requires some number of transistors on
the CPU’s silicon die (chip). CPU designers work with a “silicon budget”
and are given a finite number of transistors to work with. This means
that there aren’t enough transistors to support “putting every possible
feature” on a CPU. The original 8086 processor, for example, had a tran-
sistor budget of fewer than 30 thousand transistors. The Pentium III pro-
cessor had a budget of over 8 million transistors. These two budgets
reflect the differences in semiconductor technology in 1978 versus 1998.

Nasty reality 2: Cost Although it is possible to use millions of transistors
on a CPU today, the more transistors that are used the more expensive
the CPU becomes. For example, at the beginning of 2004, Pentium IV
processors using millions of transistors cost hundreds of dollars. Con-
temporary CPUs with 30,000 transistors cost only a few dollars.

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 261

Nasty reality 3: Expandability One problem with the kitchen sink
approach is that it’s very difficult to anticipate all the features people will
want. For example, Intel’s MMX and SIMD instruction enhancements
were added to make multimedia programming more practical on the
Pentium processor. Back in 1978, when Intel created the first 8086 pro-
cessor, very few people could have possibly anticipated the need for
these instructions. Therefore, a CPU designer needs to allow for making
extensions to the instruction set in future members of the CPU family to
handle unanticipated needs.

Nasty reality 4: Legacy support This is almost the opposite of expand-
ability. Often, an instruction that the CPU designer feels is important
turns out to be less useful than anticipated. For example, the loop
instruction on the 80x86 CPU sees very little use in modern high-perfor-
mance programs. The 80x86 enter instruction is another good example.
When designing a CPU using the kitchen sink approach, it is common to
discover that most programs never use some of the instructions. Unfortu-
nately, removing instructions from later versions of a processor will
break existing programs that use those instructions. Generally, once an
instruction is added to the instruction set, it will have to be supported in
all future members of the processor. Unless very few programs use the
instruction, and CPU designers are willing to let them break, removing
instructions is a difficult thing to do.

Nasty reality 5: Complexity The popularity of a new processor is easily
measured by how much software people write for that processor. Most
CPU designs die a quick death because no one writes software specific to
that CPU. Therefore, a CPU designer must consider the assembly pro-
grammers and compiler writers who will be using the chip upon intro-
duction. While a kitchen sink approach might seem to appeal to such
programmers, the truth is that no one wants to learn an overly complex
system. A CPU that does everything under the sun appeals mostly to
someone who is already familiar with the CPU. However, pity the poor
soul who doesn’t know the chip and has to learn it all at once.

These problems with the kitchen sink approach all have a common solution:
design a simple instruction set for the first version of the CPU, and leave
room for later expansion. This is one of the main reasons the 80x86 has
proven to be so popular and long-lived. Intel started with a relatively simple
CPU and figured out how to extend the instruction set over the years to
accommodate new features.

10.2 Basic Instruction Design Goals

The efficiency of your programs largely depends upon the instructions
that they use. Short instructions use very little memory and often execute
rapidly — nice attributes to have when writing great code. On the other

No Starch Press, Copyright © 2004 by Randall Hyde

262 Chap te r 10

hand, larger instructions can often handle more complex tasks, with a
single instruction often doing the work of several less-complex instructions.
To enable software engineers to write the best possible code, computer
architects must strike a careful compromise between overly simplistic
instructions (which are short and efficient, but don’t do very much work)
and overly complex instructions that consume excessive memory or require
too many machine cycles to execute.

In a typical CPU, the computer encodes instructions as numeric values
(operation codes or opcodes) and stores them in memory. The encoding of
these instructions is one of the major tasks in instruction set design,
requiring careful thought. Each instruction must have a unique opcode
(clearly, two different instructions cannot share the same opcode or the CPU
will not be able to differentiate them). With an n-bit number, there are 2n

different possible opcodes, so to encode m instructions requires at least
log2(m) bits. The main point to keep in mind is that the size of individual
CPU instructions is dependent on the total number of instructions that the
CPU supports.

Encoding opcodes is a little more involved than assigning a unique
numeric value to each instruction. Remember, decoding each instruction
and executing the specified task requires actual circuitry. Suppose we have a
7-bit opcode. With an opcode of this size, we could encode 128 different
instructions. To decode each of these 128 instructions requires a 7-line to
128-line decoder — an expensive piece of circuitry. However, assuming that
the instruction opcodes contain certain (binary) patterns, a single large
decoder can often be replaced by several smaller, less expensive decoders.

If an instruction set contains 128 unrelated instructions, there’s little one
can do other than decode the entire bit string for each instruction. However,
in most architectures the instructions fall into related groups. On the 80x86
CPUs, for example, the mov(eax,ebx); and mov(ecx,edx); instructions have
different opcodes because the instructions are different. However, these
two instructions are obviously related in that they both move data from one
register to another. The only differences between the two are their source
and destination operands. This suggests that CPU designers could encode
instructions like mov with a sub-opcode, and then they could encode the
instruction’s operands using other bit fields within the opcode.

For example, given an instruction set with only eight instructions,
each with two operands, and each operand having only one of four
possible values, the instructions could be encoded using three packed
fields containing three, two, and two bits, respectively (see Figure 10-1).
This encoding only needs three simple decoders to determine what the
CPU should do. While this is a simple case, it does demonstrate one very
important facet of instruction set design — it is important to make opcodes
easy to decode and the easiest way to do this is to construct the opcode using
several different bit fields. The smaller these bit fields are, the easier it will be
for the hardware to decode and execute the instruction.

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 263

Figure 10-1: Separating an opcode into several fields to ease decoding

It would seem that when encoding 2n different instructions using n bits,
there would be very little leeway in choosing the size of the instruction. It’s
going to take n bits to encode those 2n instructions; you can’t do it with any
fewer. It is possible, however, to use more than n bits; and believe it or not,
that’s the secret to reducing the average instruction size.

10.2.1 Choosing Opcode Length

Before discussing how it is possible to use larger instructions to generate
shorter programs, a quick digression is necessary. The first thing to know is
that the opcode length isn’t arbitrary. Assuming that a CPU is capable of
reading bytes from memory, the opcode will probably have to be some even
multiple of eight bits long. If the CPU is not capable of reading bytes from
memory (most RISC CPUs read memory only in 32- or 64-bit chunks), then

0 0 0 0 0 0 0 1

3-line–
to–
8-line
decoder

Circuitry to do a MOV
Circuitry to do an ADD
Circuitry to do a SUB
Circuitry to do a MUL
Circuitry to do a DIV
Circuitry to do an AND
Circuitry to do an OR
Circuitry to do an XOR

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

A

B

C

2-line–
to–
4-line
decoder

A

B

Q0
Q1
Q2
Q3

EAX
EBX
ECX
EDX

The circuitry attached to the
destination register bits is
identical to the circuitry for
the source register bits.

No Starch Press, Copyright © 2004 by Randall Hyde

264 Chap te r 10

the opcode is going to be the same size as the smallest object the CPU can
read from memory at one time. Any attempt to shrink the opcode size below
this limit is futile. In this chapter, we’ll work with opcodes that must have a
length that is a multiple of eight bits.

Another point to consider here is the size of an instruction’s operands.
Some CPU designers include all operands in their opcode. Other CPU
designers do not count operands like immediate constants or address
displacements as part of the opcode. We will take the latter approach here
and not count either of these as part of the actual opcode.

An 8-bit opcode can encode only 256 different instructions. Even if we
don’t count instruction operands as part of the opcode, having only 256
different instructions is a stringent limit. Though CPUs with 8-bit opcodes
exist, modern processors tend to have far more than 256 different instruc-
tions. Because opcodes must have a length that is a multiple of 8 bits, the
next smallest possible opcode size is 16 bits. A 2-byte opcode can encode up
to 65,536 different instructions, though the opcode size has doubled from
8 to 16 bits (meaning that the instructions will be larger).

When reducing instruction size is an important design goal, CPU
designers often employ data compression theory to reduce the average
instruction size. The first step is to analyze programs written for a typical
CPU and count the number of occurrences of each instruction over a large
number of applications. The second step is to create a list of these instruc-
tions, sorted by their frequency of use. Next, the most frequently used
instructions are assigned 1-byte opcodes; 2-byte opcodes are assigned to the
next most frequently used instructions, and opcodes of three or more bytes
are assigned to the rarely used instructions. Although this scheme requires
opcodes with a maximum size of three or more bytes, most of the actual
instructions appearing in a program will use one or two byte opcodes. The
average opcode length will be somewhere between one and two bytes (let’s
call it 1.5 bytes), and a typical program will be shorter than had all instruc-
tions employed a 2-byte opcode (see Figure 10-2).

Although using variable-length instructions allows one to create smaller
programs, it comes at a price. First, decoding variable-length instructions is a
bit more complicated than decoding fixed-length instructions. Before decod-
ing a particular instruction field, the CPU must first decode the instruction’s
size. This extra step consumes time and may affect the overall performance
of the CPU by introducing delays in the decoding step and, thereby, limiting
the maximum clock speed of the CPU (because those delays stretch out a
single clock period, thus reducing the CPU’s clock frequency). Another
problem with having variable-length instructions is that it makes decoding
multiple instructions in a pipeline difficult, because the CPU cannot easily
determine the instruction boundaries in the prefetch queue.

These reasons, along with some others, explain why most popular RISC
architectures avoid variable-length instructions. However, in this chapter,
we’ll study a variable-length approach because saving memory is an
admirable goal.

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 265

Figure 10-2: Encoding instructions using a variable-length opcode

10.2.2 Planning for the Future
Before actually choosing the instructions to implement in a CPU, designers
must plan for the future. The need for new instructions will undoubtedly
appear after the initial design, so reserving some opcodes specifically for

0 1 X X X X X X

us encode 64 1-byte instructions. Because there are a total of three

1-byte instructions.

1 0 X X X X X X

1 1 X X X X X X

X X X X X X X X

0 0 1 X X X X X

0 0 0 X X X X X

X X X X X X X X

X X X X X X X X

If the HO two bits of the first opcode byte are not both zero, then
the whole opcode is one byte long, and the remaining six bits let

opcode bytes of this form, we can encode up to 192 different

If the HO three bits of our first opcode byte contain %001, then the
opcode is two bytes long, and the remaining 13 bits let us encode
8,192 different instructions.

If the HO three bits of our first opcode byte contain all zeros, then the
opcode is three bytes long, and the remaining 21 bits let us encode two
million (2) different instructions.21

No Starch Press, Copyright © 2004 by Randall Hyde

266 Chap te r 10

expansion purposes is a good idea. Given the instruction opcode format
appearing in Figure 10-2, it might not be a bad idea to reserve one block of
64 1-byte opcodes, half (4,096) of the 2-byte opcodes, and half (1,048,576)
of the 3-byte opcodes for future use. Giving up 64 of the very valuable 1-byte
opcodes may seem extravagant, but history suggests that such foresight is
rewarded.

10.2.3 Choosing Instructions

The next step is to choose the instructions to implement. Even if nearly half
the instructions have been reserved for future expansion, that doesn’t mean
that all the remaining opcodes must be used to implement instructions. A
designer can leave a good number of these instructions unimplemented,
effectively reserving them for the future as well. The right approach is not to
use up the opcodes as quickly as possible, but rather to produce a consistent
and complete instruction set given the design compromises. The main point
to keep in mind here is that it’s much easier to add an instruction later than
it is to remove an instruction later. So, for the first go-around, it’s generally
better to go with a simpler design rather than a more complex design.

The first step is to choose some generic instruction types. Early in the
design process it is important to limit the choice to very common instruc-
tions. Instruction sets of other processors are probably the best place to
look for suggestions when choosing these instructions. For example, most
processors will have instructions like the following:

� Data movement instructions (such as mov)

� Arithmetic and logical instructions (such as add, sub, and, or, not)

� Comparison instructions

� A set of conditional jump instructions (generally used after the compari-
son instructions)

� Input/output instructions

� Other miscellaneous instructions

The designer of the CPU’s initial instruction set should have the goal of
choosing a reasonable set of instructions that will allow programmers to write
efficient programs without adding so many instructions that the instruction
set design exceeds the silicon budget or violates other design constraints.
This requires strategic decisions, which CPU designers should make based
on careful research, experimentation, and simulation.

10.2.4 Assigning Opcodes to Instructions

Once the initial instructions have been chosen, the next step is to assign
opcodes to them. The first step is to group the instructions into sets
according to the characteristics they share. For example, an add instruction

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 267

is probably going to support the exact same set of operands as the sub
instruction. Therefore, it makes sense to put these two instructions into
the same group. On the other hand, the not instruction generally requires
only a single operand, as does a neg instruction. Therefore, it makes sense
to put these two instructions in the same group, but in a different group
from the one with add and sub.

Once all the instructions are grouped, the next step is to encode them. A
typical encoding scheme will use some bits to select the group the instruction
falls into, some bits to select a particular instruction from that group, and
some bits to encode the operand types (such as registers, memory locations,
and constants). The number of bits needed to encode all this information
can have a direct impact on the instruction’s size, regardless of the instruc-
tion’s usage frequency. For example, suppose two bits are needed to select
an instruction’s group, four bits to select the instruction within that group,
and six bits to specify the instruction’s operand types. In this case, the
instructions are not going to fit into an 8-bit opcode. On the other hand,
if all that’s needed is to push one of eight different registers onto the stack,
four bits will be enough to specify the push instruction group, and three bits
will be enough to specify the register.

Encoding instruction operands with a minimal amount of space is always
a problem, because many instructions allow a large number of operands.
For example, the generic 80x86 mov instruction allows two operands and
requires a 2-byte opcode.1 However, Intel noticed that the mov(disp,eax);
and mov(eax,disp); instructions occur frequently in programs. Therefore,
they created a special 1-byte version of these instructions to reduce their
size and, consequently, the size of programs that use these instructions.
Note that Intel did not remove the 2-byte versions of these instructions.
There are two different instructions that will store EAX into memory and
two different instructions that will load EAX from memory. A compiler or
assembler would always emit the shorter versions of each of these pairs of
instructions.

Notice an important trade-off Intel made with the mov instruction: it gave
up an extra opcode in order to provide a shorter version of one variant of each instruc-
tion. Actually, Intel uses this trick all over the place to create shorter and
easier-to-decode instructions. Back in 1978, creating redundant instructions
to reduce program size was a good compromise given the cost of memory.
Today, however, a CPU designer would probably use those redundant
opcodes for different purposes.

10.3 The Y86 Hypothetical Processor

Because of enhancements made to the 80x86 processor family over the years,
Intel’s design goals in 1978, and advances in computer architecture over the
years, the encoding of 80x86 instructions is very complex and somewhat

1 Actually, Intel claims it’s a 1-byte opcode plus a 1-byte mod-reg-r/m byte. For our purposes, we’ll
treat the mod-reg-r/m byte as part of the opcode.

No Starch Press, Copyright © 2004 by Randall Hyde

268 Chap te r 10

illogical. The 80x86 is not a good example to use when introducing the
design of an instruction set. Therefore, to further our discussion, we will
discuss instruction set design in two stages: first, we will develop a simple
(trivial) instruction set for a hypothetical processor that is a small subset
of the 80x86, and then we will expand our discussion to the full 80x86
instruction set. Our hypothetical processor is not a true 80x86 CPU, so we
will call it the Y86 processor to avoid any accidental association with the
Intel x86 family.

10.3.1 Y86 Limitations
The hypothetical Y86 processor is a very stripped down version of the 80x86
CPUs. Before we begin, let’s lay out the restrictions we’ve placed on our Y86
instruction set design:

� The Y86 only supports one operand size — 16 bits. This simplification
frees us from having to encode the size of the operand as part of the
opcode (thereby reducing the total number of opcodes we will need).

� The Y86 processor only supports four 16-bit registers: AX, BX, CX, and
DX. This lets us encode register operands with only two bits (versus the
three bits the 80x86 family requires to encode eight registers).

� The Y86 only supports a 16-bit address bus with a maximum of 65,536
bytes of addressable memory.

These simplifications, plus a very limited instruction set, will allow us
to encode all Y86 instructions using a one-byte opcode and a 2-byte
displacement/offset when applicable.

10.3.2 Y86 Instructions
Including both forms of the mov instruction, the Y86 CPU still provides only
18 basic instructions. Seven of these instructions have two operands, eight of
these instructions have one operand, and five instructions have no operands
at all. The instructions are mov (two forms), add, sub, cmp, and, or, not, je, jne, jb,
jbe, ja, jae, jmp, get, put, and halt.

10.3.2.1 The mov Instruction

The mov instruction is actually two instructions merged into the same
instruction class. These are the two forms of the mov instruction:

mov(reg/memory/constant, reg);

mov(reg, memory);

In these forms, reg is either AX, BX, CX, or DX; constant is a numeric
constant using hexadecimal notation, and memory is an operand specifying
a memory location. The reg/memory/constant operand tells you that this
particular operand may be either a register, a memory location, or a
constant.

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 269

10.3.2.2 Arithmetic and Logical Instructions

The arithmetic and logical instructions take the following forms:

add(reg/memory/constant, reg);

sub(reg/memory/constant, reg);

cmp(reg/memory/constant, reg);

and(reg/memory/constant, reg);

or(reg/memory/constant, reg);

not(reg/memory);

The add instruction adds the value of the first operand to the value of the
second operand, storing the sum in the second operand. The sub instruction
subtracts the value of the first operand from the value of the second, storing
the difference in the second operand. The cmp instruction compares the
value of the first operand against the value of the second and saves the result
of the comparison for use by the conditional jump instructions (described
in the next section). The and and or instructions compute bitwise logical
operations between their two operands and store the result of the operation
in the second operand. The not instruction appears separately because it only
supports a single operand. not is the bitwise logical operation that inverts the
bits of its single memory or register operand.

10.3.2.3 Control Transfer Instructions

The control transfer instructions interrupt the execution of instructions stored
in sequential memory locations and transfer control to instructions stored
at some other point in memory. They do this either unconditionally, or
conditionally, using the result from a cmp instruction. These are the control
transfer instructions:

ja dest; // Jump if above (i.e., greater than)

jae dest; // Jump if above or equal (i.e., greater than or equal to)

jb dest; // Jump if below (i.e., less than)

jbe dest; // Jump if below or equal (i.e., less than or equal to)

je dest; // Jump if equal

jne dest; // Jump if not equal

jmp dest; // Unconditional jump

The first six instructions (ja, jae, jb, jbe, je, and jne) let you check the result
of the previous cmp instruction, that is the result of the comparison of that
instruction’s first and second operands.2 For example, if you compare the
AX and BX registers with a cmp(ax,bx); instruction and execute the ja
instruction, the Y86 CPU will jump to the specified destination location if AX
is greater than BX. If AX is not greater than BX, control will fall through to
the next instruction in the program. In contrast to the first six instructions,

2 The Y86 processor only performs unsigned comparisons.

No Starch Press, Copyright © 2004 by Randall Hyde

270 Chap te r 10

the jmp instruction unconditionally transfers control to the instruction at the
destination address.

10.3.2.4 Miscellaneous Instructions

The Y86 supports four instructions that do not have any operands. The get
and put instructions let you read and write integer values: get will stop and
prompt the user for a hexadecimal value and then store that value into the
AX register; put displays the value of the AX register in hexadecimal format.
The halt instruction terminates program execution.

10.3.3 Addressing Modes on the Y86
Before assigning opcodes, we have to take a look at the operands these
instructions support. As you’ve seen, the 18 Y86 instructions use five different
operand types: registers, constants, and three memory-addressing modes
(the indirect addressing mode, the indexed addressing mode, and the direct
addressing mode). The following paragraphs explain these operand types.

Register operands are the easiest to understand. Consider the following
forms of the mov instruction:

mov(ax, ax);

mov(bx, ax);

mov(cx, ax);

mov(dx, ax);

The first instruction accomplishes absolutely nothing. It copies the value
from the AX register back into the AX register. The remaining three
instructions copy the values of BX, CX, and DX into AX. Note that these
instructions leave BX, CX, and DX unchanged. The second operand, the
destination operand, is not limited to AX; you can move values to and from
any of these registers.

Constants are also easy to understand. The following instructions load
their respective registers with the specified constant (all numeric constants
in Y86 assembly language are given in hexadecimal, so the “$” prefix is not
necessary):

mov(25, ax);

mov(195, bx);

mov(2056, cx);

mov(1000, dx);

As mentioned, the Y86 instruction set uses three addressing modes to access
data in memory. The following instructions demonstrate the use of these
three addressing modes:

mov([1000], ax);

mov([bx], ax);

mov([1000+bx], ax);

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 271

The first instruction uses the direct addressing mode to load AX with the 16-bit
value stored in memory starting at location $1000.

The mov([bx],ax); instruction loads AX with the value at the memory
location specified by the contents of the BX register, rather than simply
storing BX’s value into AX. This is the indirect addressing mode. Note that
mov([1000],ax); is equivalent to the following two instructions:

mov(1000, bx);

mov([bx], ax);

The third of the addressing mode examples above, mov([1000+bx], ax);,
provides an example of the indexed addressing mode. This instruction adds
the value of the BX register with the value $1000 and uses this sum as the
effective memory address. Then it loads the value at this effective memory
address into the AX register. This instruction is useful for accessing elements
of arrays, records, and other data structures.

10.3.4 Encoding Y86 Instructions

Because a real CPU uses logic circuitry to decode the opcodes and act
appropriately on them, we have seen that it is not a very good idea to
arbitrarily assign opcodes to machine instructions. A typical CPU opcode
uses a certain number of bits in the opcode to denote the instruction class
(such as mov, add, sub), and a certain number of bits to encode each of the
operands.

A typical Y86 instruction takes the form shown in Figure 10-3. The basic
instruction is either one or three bytes long, and the instruction opcode
consists of a single byte that contains three fields. The first field, consisting of
the HO three bits, defines the instruction, and these three bits provide eight
possible combinations. As there are 18 different Y86 instructions, we’ll have
to pull some tricks to handle the remaining 10 instructions.

Figure 10-3: Basic Y86 instruction encoding

i i i

000 =
001 =
010 =
011 = cmp
100 =
101 =
110 =
111 =

r r

00 =
01 = BX
10 = CX
11 = DX

mmm

0 0 0 =
0 0 1 = BX
0 1 0 = CX
0 1 1 = DX
1 0 0 =
1 0 1 =
1 1 0 =
1 1 1 =

[BX]

AX

[xxxx+BX]
[xxxx]
constant

AX

mov(mem/reg/const, reg)
mov(reg, mem)

special
or
and

sub
add

i i i r r m m m

This 16-bit field is present
only if the instruction is a
jump instruction or one of
the operands is a memory-
addressing mode of one of
these forms: [xxxx+bx],
[xxxxx], or a constant.

No Starch Press, Copyright © 2004 by Randall Hyde

272 Chap te r 10

10.3.4.1 Eight Generic Y86 Instructions

As you can see in Figure 10-3, seven of the eight basic opcodes encode the
or, and, cmp, sub, and add instructions, as well as both versions of the mov
instruction. The eighth basic opcode is a special expansion opcode. This special
instruction class provides a mechanism that allows us to expand the number
of available instruction classes, which we will return to shortly.

To determine the full opcode for a particular instruction, you need only
select the appropriate bits for the iii, rr, and mmm fields (identified in Figure
10-3). The rr field contains the destination register (except for the version of
the mov instruction whose iii field is %111), and the mmm field encodes the
source operand. For example, to encode the mov(bx,ax); instruction you
would select iii = 110 (mov(reg,reg);), rr = 00 (AX), and mmm = 001 (BX).
This produces the 1-byte instruction %11000001 or $C0.

Some Y86 instructions are larger than one byte. To illustrate why this is
necessary, take, for example, the instruction mov([1000],ax);, which loads the
AX register with the value stored at memory location $1000. The encoding
for the opcode is %11000110 or $C6. However, the encoding for the
mov([2000],ax); instruction is also $C6. Clearly these two instructions do
different things: one loads the AX register from memory location $1000,
while the other loads the AX register from memory location $2000.

In order to differentiate between instructions that encode an address
using the [xxxx] or [xxxx+bx] addressing modes, or to encode a constant
using the immediate addressing mode, you must append the 16-bit address
or constant after the instruction’s opcode. Within this 16-bit address or
constant, the LO byte must follow the opcode in memory and the HO byte
must follow the LO byte. So, the three byte encoding for mov([1000],ax);
would be $C6, $00, $10, and the three byte encoding for mov([2000],ax);
would be $C6, $00, $20.

10.3.4.2 Using the Special Expansion Opcode

The special opcode in Figure 10-3 allows the Y86 CPU to expand the set of
available instructions that can be encoded using a single byte. This opcode
handles several zero- and one-operand instructions, as shown in Figures 10-4
and 10-5.

Figure 10-4: Single-operand instruction encodings (iii = %000)

rr

00 = zero operand instructions
01 = jump instructions
10 = not
11 = illegal (reserved)

000 =
001 =
010 =
011 =
100 =
101 =
110 =
111 =

BX
CX
DX
[BX]

AX

[xxxx+BX]
[xxxx]
constant

mmm (if rr = 10)

0 0 0 r r m m m

This 16-bit field is present
only if the instruction is a
jump instruction or one of
the operands is a memory-
addressing mode of one of
these forms: [xxxx+bx],
[xxxxx], or a constant.

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 273

Figure 10-5: Zero-operand instruction encodings (iii = %000 and rr = %00)

There are four one-operand instruction classes whose encodings are shown
in Figure 10-4. The first 2-bit encoding for the rr field, %00, further expands
the instruction set by providing a way to encode the zero-operand
instructions shown Figure 10-5. Five of these instructions are illegal
instruction opcodes; the three valid opcodes are the halt instruction,
which terminates program execution, the get instruction, which reads a
hexadecimal value from the user and stores this value in the AX register,
and the put instruction, which outputs the value in the AX register.

The second 2-bit encoding for the rr field, %01, is also part of an expan-
sion opcode that provides all the Y86 jump instructions (see Figure 10-6).
The third rr field encoding, %10, is for the not instruction. The fourth rr
field encoding is currently unassigned. Any attempt to execute an opcode
with an iii field encoding of %000 and an rr field encoding of %11 will halt
the processor with an illegal instruction error. CPU designers often reserve
unassigned opcodes like this one to allow themselves to extend the instruc-
tion set at a future date (as Intel did when moving from the 80286 processor
to the 80386).

Figure 10-6: Jump instruction encodings

As shown in Figure 10-6, there are seven jump instructions in the Y86
instruction set and they all take the following form: jxx address;. The jmp
instruction copies the 16-bit address value that follows the opcode into the
instruction pointer register, causing the CPU to fetch the next instruction
from the target address of the jmp.

mmm

000 = illegal
001 = illegal
010 = illegal
011 = brk
100 = iret
101 = halt
110 = get
111 = put

0 0 000 m m m

000 = je
001 = jne
010 = jb
011 = jbe
100 = ja
101 = jae
110 = jmp
111 = illegal

mmm (if rr = 01) This 16-bit field is present
only if the instruction is a
jump instruction or one of
the operands is a memory-
addressing mode of one of
these forms: [xxxx+bx],
[xxxxx], or a constant.

0 0 0 0 1 m m m

No Starch Press, Copyright © 2004 by Randall Hyde

274 Chap te r 10

The jmp instruction is an example of an unconditional jump instruction.
It always transfers control to the target address. The remaining six instruc-
tions — ja, jae, jb, jbe, je, and jne — are conditional jump instructions.
They test some condition and only jump to the instruction’s destination
address if the condition is true; if the condition is false, these six instructions
fall through to the next program instruction in memory. You would normally
execute these conditional jump instructions immediately after a cmp instruc-
tion, as the cmp instruction sets the less than and equality flags that the
conditional jump instructions test. Note that there are eight possible
jump opcodes, but the Y86 uses only seven of them. The eighth opcode,
%00001111, is another illegal opcode.

10.3.5 Examples of Encoding Y86 Instructions
Keep in mind that the Y86 processor fetches instructions as bit patterns from
memory. It then decodes and executes those bit patterns. The processor
does not execute instructions as strings of characters that are readable by
humans, such as mov(ax,bx);. Instead, it executes the bit pattern $C1 in
memory. Instructions like mov(ax,bx); and add(5,cx); are human-readable
representations of instructions that must first be converted into binary
representation, or machine code. In this section, we will explore this
conversion.

10.3.5.1 The add Instruction

The first step in converting instructions to machine code is to choose an
instruction to convert. We’ll start with a very simple example, the add(cx,dx);
instruction. Once you’ve chosen the instruction, you look up the instruction
in one of the opcode figures from the previous section. The add instruction is
in the first group (see Figure 10-3) and has an iii field of %101. The source
operand is CX, so the mmm field is %010 and the destination operand is DX
so the rr field is %11. Merging these bits produces the opcode %10111010 or
$BA (see Figure 10-7).

Figure 10-7: Encoding the add(cx, dx); instruction

Now consider the add(5,ax); instruction. Because this instruction has an
immediate source operand (a constant), the mmm field will be %111
(see Figure 10-3). The destination register operand is AX (%00), and the
instruction class field is %101, so the full opcode becomes $10100111 or $A7.
However, this does not complete the encoding of the instruction. We also
have to include the 16-bit constant $0005 as part of the instruction. The
binary encoding of the constant must immediately follow the opcode in

i i i
101 = add

r r mmm This 16-bit field is not present,
because no numeric operand
is required by this instruction.

1 0 1 1 1 0 1 0

11 = DX 010 = CX

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 275

memory, with the LO byte of the constant following the opcode, and
the HO byte of the constant following its LO byte, because the bytes are
arranged in little endian order. So the sequence of bytes in memory, from
lowest address to highest address, is $A7, $05, $00 (see Figure 10-8).

Figure 10-8: Encoding the add(5, ax); instruction

The add([2ff+bx],cx); instruction also contains a 16-bit constant that is the
displacement portion of the indexed addressing mode. To encode this
instruction, we use the following field values: iii = %101, rr = %10, and mmm =
%101. This produces the opcode byte %10110101 or $B5. The complete
instruction also requires the constant $2FF so the full instruction is the 3-byte
sequence $B5, $FF, $02 (see Figure 10-9).

Figure 10-9: Encoding the add([$2ff+bx], cx); instruction

Now consider the add([1000],ax); instruction. This instruction adds the
16-bit contents of memory locations $1000 and $1001 to the value in the
AX register. Once again, iii = %101 for the add instruction. The destination
register is AX so rr = %00. Finally, the addressing mode is the displacement-
only addressing mode, so mmm = %110. This forms the opcode %10100110,
or $A6. The complete instruction is three bytes long because it must also
encode the displacement (address) of the memory location in the two bytes
following the opcode. Therefore, the complete 3-byte sequence is $A6, $00,
$10 (see Figure 10-10).

Figure 10-10: Encoding the add ([1000], ax); instruction

The last addressing mode to consider is the register indirect addressing
mode, [bx]. The add([bx],bx); instruction uses the following encoded values:
mmm = %101, rr = %01 (bx), and mmm = %100 ([bx]). Because the value in
the BX register completely specifies the memory address, there is no need
to attach a displacement field to the instruction’s encoding. Hence, this
instruction is only one byte long (see Figure 10-11).

i i i

101 = add

r r

00 = AX

mmm

111 = constant

51 0 1 0 0 1 1 1

This 16-bit field holds the
binary equivalent of the
constant (5).

i i i

101 = add

r r mmm

101 = [$2ff+bx]

1 0 1 0 01 1 1

This 16-bit field holds the
binary equivalent of the
displacement ($2FF).

$2FF

10 = CX

i i i

101 = add

r r

00 = AX

mmm

110 = [$1000]

This 16-bit field holds the
binary equivalent of the
displacement ($1000).

$10001 0 1 0 0 1 1 0

No Starch Press, Copyright © 2004 by Randall Hyde

276 Chap te r 10

Figure 10-11: Encoding the add ([bx], bx); instruction

You use a similar approach to encode the sub, cmp, and, and or instructions.
The only difference between encoding these instructions and the add
instruction is the value you use for the iii field in the opcode.

10.3.5.2 The mov Instruction

The Y86 mov instruction is special, because it comes in two forms. The only
difference between the encoding of the add instruction and the encoding of
the mov instruction’s first form (iii = %110) is the iii field. This first form of
mov copies either a constant or data from the register or memory address
specified by the mmm field into the destination register specified by the rr
field.

The second form of the mov instruction (iii = %111) copies data from the
source register specified by the rr field to a destination memory location that
the mmm field specifies. In this second form of the mov instruction, the source
and destination meanings of the rr and mmm fields are reversed so that rr
is the source field and mmm is the destination field. Another difference
between the two forms of mov is that in its second form, the mmm field may
only contain the values %100 ([bx]), %101 ([disp+bx]), and %110 ([disp]).
The destination values cannot be any of the registers encoded by mmm field
values in the range %000..%011 or a constant encoded by an mmm field of
%111. These encodings are illegal because the first form of the mov handles
cases with a register destination, and because storing data into a constant
doesn’t make any sense.

10.3.5.3 The not Instruction

The not instruction is the only instruction with a single memory/register
operand that the Y86 processor supports. The not instruction has the
following syntax:

not(reg);

or

not(address);

. . . where address represents one of the memory addressing modes ([bx],
[disp+bx], or [disp]). You may not specify a constant operand for the not
instruction.

i i i
101 = add

r r
01 = BX

mmm
100 = [bx]

1 0 1 0 01 1 0

Because there isn’t a displacement
or constant associated with this
instruction, this 16-bit field is not
present in the instruction.

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 277

Because the not instruction has only a single operand, it needs only
the mmm field to encode this operand. An iii field of %000 along with an
rr field of %10 identifies the not instruction. In fact, whenever the iii field
contains zero, the CPU knows that decoding beyond the iii field is necessary
to identify the instruction. In this case, the rr field specifies whether we
have encoded the not instruction or one of the other specially encoded
instructions.

To encode an instruction like not(ax);, you would simply specify %000
for the iii field and %10 for the rr field. Then you would encode the mmm
field the same way you would encode it for the add instruction. Because
mmm = %000 for AX, the encoding of not(ax); would be %00010000 or $10
(see Figure 10-12).

Figure 10-12: Encoding the not(AX); instruction

The not instruction does not allow an immediate, or constant, operand, so
the opcode %00010111 ($17) is an illegal opcode.

10.3.5.4 The Jump Instructions

The Y86 jump instructions also use the special encoding, meaning that the
iii field for jump instructions is always %000. These instructions are always
three bytes long. The first byte, the opcode, specifies which jump instruction
to execute and the next two bytes specify the address in memory to which the
CPU transfers control (if the condition is met, in the case of the conditional
jumps). There are seven different Y86 jump instructions, six conditional
jumps, and one unconditional jump, jmp. All seven of these instructions set
iii = %000 and rr = %01, and therefore only differ according to their mmm
fields. The eighth possible opcode, with an mmm field value of %111, is an
illegal opcode (see Figure 10-6).

Encoding these instructions is relatively straightforward. Picking the
instruction you want to encode completely determines the opcode. The
opcode values fall in the range $08..$0E ($0F is the illegal opcode).

The only field that requires some thought is the 16-bit operand that
follows the opcode. This field holds the address of the target instruction
to which the unconditional jump always transfers, and to which the
conditional jumps transfer if the transfer condition is true. To properly
encode this 16-bit operand you must know the address of the opcode byte
of the target instruction. If you’ve already converted the target instruction
to binary form and stored it into memory, you’re all set — just specify the
target instruction’s address as the sole operand of the jump instruction.
On the other hand, if you haven’t yet written, converted, and placed the

i i i
000 = special

r r
10 = NOT

mmm
000 = AX

0 0 0 0 0 0 01

Because there isn’t a displacement
or constant associated with this
instruction, this 16-bit field is not
present in the instruction.

No Starch Press, Copyright © 2004 by Randall Hyde

278 Chap te r 10

target instruction into memory, knowing its address would seem to require
a bit of divination. Fortunately, you can figure out the target address by
computing the lengths of all the instructions between the current jump
instruction you’re encoding and the target instruction. Unfortunately, this
is an arduous task.

The best way to go about calculating the distance is to write all your
instructions down on paper, compute their lengths (which is easy, because
all instructions are either one or three bytes long depending on whether
they have a 16-bit operand), and then assign an appropriate address to each
instruction. Once you’ve done this, you’ll know the starting address for each
instruction, and you can put target address operands into your jump instruc-
tions as you encode them.

10.3.5.5 The Zero-Operand Instructions

The remaining instructions, the zero-operand instructions, are the easiest to
encode. Because they have no operands they are always one byte long. These
instructions always have iii = %000 and rr = %00, and mmm specifies the par-
ticular instruction opcode (see Figure 10-5). Note that the Y86 CPU leaves
five of these instructions undefined (so we can use these opcodes for future
expansion).

10.3.6 Extending the Y86 Instruction Set
The Y86 CPU is a trivial CPU, suitable only for demonstrating how to encode
machine instructions. However, like any good CPU, the Y86 design does
provide the capability for expansion. Therefore, if you wanted to improve
the CPU by adding new instructions, the Y86’s instruction set will allow you
to do it.

You can increase the number of instructions in a CPU’s instruction set by
using either undefined or illegal opcodes on the CPU. Because the Y86 CPU
has several illegal and undefined opcodes, we can use them to expand the
instruction set.

Using undefined opcodes to define new instructions works best when
there are undefined bit patterns within an opcode group, and the new
instruction you want to add falls into that same group. For example, the
opcode %00011mmm falls into the same group as the not instruction, which
also has an iii field value of %000. If you decided that you really needed a neg
(negate) instruction, using the %00011mmm opcode makes sense because
you’d probably expect the neg instruction to use the same syntax as the not
instruction. Likewise, if you want to add a zero-operand instruction to the
instruction set, there are five undefined zero-operand instructions in the
Y86 instruction set for you to choose from (%0000000..%00000100, see
Figure 10-5). You’d just appropriate one of these opcodes and assign your
instruction to it.

Unfortunately, the Y86 CPU doesn’t have many illegal opcodes available.
For example, if you wanted to add the shl (shift left), shr (shift right),
rol (rotate left), and ror (rotate right) instructions as single-operand

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 279

instructions, there is insufficient space within the group of single-operand
instruction opcodes to add these instructions (only %00011mmm is currently
open). Likewise, there are no two-operand opcodes open, so if you wanted
to add an xor (exclusive OR) instruction or some other two-operand instruc-
tion, you’d be out of luck.

A common way to handle this dilemma, and one the Intel designers have
employed, is to use one of the undefined opcodes as a prefix opcode byte.
For example, the opcode $FF is illegal (it corresponds to a mov(dx,const);
instruction), but we can use this byte as a special prefix byte to further
expand the instruction set (see Figure 10-13).3

Figure 10-13: Using a prefix byte to extend the instruction set

Whenever the CPU encounters a prefix byte in memory, it reads and decodes
the next byte in memory as the actual opcode. However, it does not treat
the second byte as it would a standard opcode that did not come after a
prefix byte. Instead, it allows the CPU designer to create a completely
new opcode scheme, independent of the original instruction set. A single-
expansion opcode byte allows the CPU designer to add up to 256 additional
instructions to the instruction set. If the CPU designer wishes to add even
more instructions, that designer can use additional illegal opcode bytes (in
the original instruction set) to add yet more expansion opcodes, each with
their own independent instruction sets, or the CPU designer can follow the
opcode expansion prefix byte with a 2-byte opcode (yielding up to 65,536
new instructions) or any other scheme the CPU designer can dream up.

Of course, one big drawback to this opcode expansion scheme is that it
increases the size of the new instructions by one byte, because each instruc-
tion now requires the prefix byte as part of the opcode. This also increases
the cost of the circuitry (decoding prefix bytes and multiple instruction sets
is fairly complex), so you don’t want to use this scheme for the basic instruc-
tion set. Nevertheless, it does provide a good mechanism for expanding the
instruction set when you’ve run out of opcodes.

10.4 Encoding 80x86 Instructions

The Y86 processor is simple to understand; it is easy to encode instructions
by hand for this processor, and it is a great vehicle for learning how to assign
opcodes. It’s also a purely hypothetical device intended only as a teaching

3 We could also have used values $F7, $EF, and $E7 as they also correspond to an attempt to
store a register into a constant. However, $FF is easier to decode. On the other hand, if you need
even more prefix bytes for instruction expansion, you can use these three values as well.

Opcode expansion prefix byte ($FF) Instruction opcode byte
(you have to define this)

Any additional
operand bytes
as defined by
your instructions

1 1 1 1 1 1 1 1

No Starch Press, Copyright © 2004 by Randall Hyde

280 Chap te r 10

tool. It’s time to take a look at the machine instruction format for a real
CPU — the 80x86. After all, the programs you’re going to write will run
on a real CPU, like the 80x86, so to fully appreciate what your compilers
are doing with your code (so you can choose the best statements and data
structures when writing that code), you need to understand how real
instructions are encoded. Even if you’re using a different CPU, studying
the 80x86 instruction encoding is a good exercise, because it is one of the
more complex instruction sets in common use today and will provide a
good insight into the operation of other real-world CPUs.

They don’t call the 80x86 a Complex Instruction Set Computer (CISC)
chip for nothing. Although more complex instruction encodings do exist,
no one is going to challenge the assertion that the 80x86 has a complex
instruction encoding. The generic 80x86 instruction takes the form shown
in Figure 10-14. Although this diagram seems to imply that instructions can
be up to 16 bytes long, instructions cannot actually be greater than 15 bytes
in length.

Figure 10-14: 80x86 instruction encoding

The prefix bytes are not the same as the opcode expansion prefix byte that
we discussed in the previous section. Instead, the 80x86 prefix bytes modify
the behavior of existing instructions. An instruction may have a maximum of
four prefix bytes attached to it, but the 80x86 certainly supports more than
four different prefix values. Also note that the behaviors of many prefix bytes
are mutually exclusive, and the instruction’s results will be undefined if you
put a pair of mutually exclusive prefix bytes in front of an instruction. We’ll
take a look at a couple of these prefix bytes in a moment.

The 80x86 supports two basic opcode sizes: a standard 1-byte opcode
and a 2-byte opcode consisting of a $0F opcode expansion prefix byte and
a second byte specifying the actual instruction. One way to think of this
opcode expansion prefix byte is as an 8-bit extension of the iii field in the
Y86 encoding. This enables the encoding of up to 512 different instruction

1- or 2-byte instruction opcode
(two bytes if the special $0F
opcode expansion prefix is
present)

Optional scaled indexed byte
(if the instruction uses a scaled
indexed memory addressing mode)

Constant data (this is a 0-,
1-, 2-, or 4-byte constant
value if the instruction has
an immediate operand)

Prefix bytes
(zero to four special
prefix values that
affect the operation
of the instruction)

“mod-reg-r/m” byte that
specifies the addressing
mode and instruction
operand size (this byte
is only required if the
instruction supports register
or memory operands)

Displacement (this is a 0-, 1-, 2-,
or 4-byte value that specifies a
memory address displacement
for the instruction)

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 281

classes, although the 80x86 does not yet use them all. In reality, various
instruction classes use certain bits in this opcode expansion prefix byte for
decidedly non-instruction-class purposes. For example, consider the add
instruction opcode. It takes the form shown in Figure 10-15.

Figure 10-15: 80x86 add opcode

Bit 1 (d) specifies the direction of the transfer. If this bit is zero, then the
destination operand is a memory location, such as in add(al,[ebx]);. If this
bit is one, the destination operand is a register, as in add([ebx],al);.

Note that bit 0 (s) specifies the size of the operands the add instruction
operates upon. There is a problem here, however. The 80x86 family supports
up to three different operand sizes: 8-bit operands, 16-bit operands, and 32-
bit operands. With a single size bit, the instruction can only encode two of
these three different sizes. In modern (32-bit) operating systems, the vast
majority of operands are either 8 bits or 32 bits, so the 80x86 CPU uses the
size bit in the opcode to encode 8-bit or 32-bit sizes. For 16-bit operands,
which occur less frequently than 8-bit or 32-bit operands, Intel uses a special
opcode prefix byte to specify the size. As long as instructions that have 16-bit
operands occur less than one out of every eight instructions (and this is
generally true), this is more compact than adding another bit to the instruc-
tion’s size. Using a size prefix byte allowed Intel’s designers to extend the
number of operand sizes without having to change the instruction encoding
inherited from the original 16-bit processors in this CPU family.

10.4.1 Encoding Instruction Operands

The mod-reg-r/m byte (see Figure 10-14) provides the encoding for instruction
operands by specifying the base addressing mode used to access the
operands and the instruction operand size. This byte contains the fields
shown in Figure 10-16.

Figure 10-16: mod-reg-r/m byte

add opcode

d = 0 if adding from register to memory
d = 1 if adding from memory to register

s = 0 if adding 8-bit operands
s = 1 if adding 16-bit or 32-bit operands

00 00 0 0 d s

7 6 5 4 3 2 1 0

mod reg r/m

No Starch Press, Copyright © 2004 by Randall Hyde

282 Chap te r 10

The reg field almost always specifies an 80x86 register. However, depending
on the instruction, the register specified by reg can be either the source or
the destination operand. To distinguish between the two possibilities, many
instructions have the d (direction) field in their opcode that contains a value
of zero when reg is the source and a value of one when reg is the destination
operand.

This field uses the 3-bit register encodings found in Table 10-1. As you
just learned, the size bit in the instruction’s opcode specifies whether the reg
field specifies an 8- or 32-bit register (when operating under a modern, 32-bit
operating system). To make the reg field specify a 16-bit register requires
setting the size bit in the opcode to one, as well as adding an additional
prefix byte.

With the d bit in the opcode of a two-operand instruction determining
whether the reg field contains the source operand or the destination
operand, the mod and r/m fields combine to specify the other of the two
operands. In the case of a single-operand instruction like not or neg, the reg
field will contain an opcode extension and mod and r/m will combine to
specify the only operand. The mod and r/m fields together specify the
operand addressing modes listed in Tables 10-2 and 10-3.

Table 10-1: reg Field Encodings

reg Value Register If Data
Size Is 8 Bits

Register If Data
Size Is 16 Bits

Register If Data
Size Is 32 Bits

%000 al ax eax
%001 cl cx ecx
%010 dl dx edx
%011 bl bx ebx
%100 ah sp esp
%101 ch bp ebp
%110 dh si esi
%111 bh di edi

Table 10-2: mod Field Encodings

mod Description

%00 Specifies register indirect addressing mode (with two exceptions: scaled
indexed [sib] addressing modes with no displacement operand when
r/m = %100; and displacement-only addressing mode when r/m = %101).

%01 Specifies that a 1-byte signed displacement follows the addressing mode
byte(s).

%10 Specifies that a 1-byte signed displacement follows the addressing mode
byte(s).

%11 Specifies direct register access.

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 283

There are a couple of interesting things to note about Tables 10-2 and 10-3.
First, there are two different forms of the [reg+disp] addressing modes: one
form with an 8-bit displacement and one form with a 32-bit displacement.
Addressing modes whose displacement falls in the range −128..+127 require
only a single byte after the opcode to encode the displacement. Instructions
with a displacement that falls within this range will be shorter and sometimes
faster than instructions whose displacement values are not within this range
and thus require the addition of four bytes after the opcode.

Table 10-3: mod-r/m Encodings

mod r/m Addressing Mode

%00 %000 [eax]
%01 %000 [eax+disp8]

%10 %000 [eax+disp32]

%11 %000 al, ax, or eax
%00 %001 [ecx]
%01 %001 [ecx+disp8]

%10 %001 [ecx+disp32]

%11 %001 cl, cx, or ecx
%00 %010 [edx]
%01 %010 [edx+disp8]

%10 %010 [edx+disp32]

%11 %010 dl, dx, or edx
%00 %011 [ebx]
%01 %011 [ebx+disp8]

%10 %011 [ebx+disp32]

%11 %011 bl, bx, or ebx
%00 %100 Scaled indexed (sib) mode
%01 %100 sib + disp8 mode

%10 %100 sib + disp32 mode

%11 %100 ah, sp, or esp
%00 %101 Displacement-only mode (32-bit displacement)
%01 %101 [ebp+disp8]

%10 %101 [ebp+disp32]

%11 %101 ch, bp, or ebp
%00 %110 [esi]
%01 %110 [esi+disp8]

%10 %110 [esi+disp32]

%11 %110 dh, si, or esi
%00 %111 [edi]
%01 %111 [edi+disp8]

%10 %111 [edi+disp32]

%11 %111 bh, di, or edi

No Starch Press, Copyright © 2004 by Randall Hyde

284 Chap te r 10

The second thing to note is that there is no [ebp] addressing mode. If
you look in Table 10-3 where this addressing mode logically belongs (where
r/m is %101 and mod is %00), you’ll find that its slot is occupied by the 32-bit
displacement-only addressing mode. The basic encoding scheme for address-
ing modes didn’t allow for a displacement-only addressing mode, so Intel
“stole” the encoding for [ebp] and used that for the displacement-only
mode. Fortunately, anything you can do with the [ebp] addressing mode
you can also do with the [ebp+disp8] addressing mode by setting the 8-bit
displacement to zero. True, such an instruction is a little bit longer than
it would otherwise need to be if the [ebp] addressing mode existed, but
the same capabilities are still there. Intel wisely chose to replace this
particular register indirect addressing mode because they anticipated that
programmers would use it less often than they would use the other register
indirect addressing modes.

Another thing you’ll notice missing from this table are addressing modes
of the form [esp], [esp+disp8], and [esp+disp32]. Intel’s designers borrowed
the encodings for these three addressing modes to support the scaled indexed
addressing modes they added to their 32-bit processors in the 80x86 family.

If r/m = %100 and mod = %00, then this specifies an addressing mode of
the form [reg132+reg232*n]. This scaled index addressing mode computes the
final address in memory as the sum of reg2 multiplied by n (n = 1, 2, 4, or 8)
and reg1. Programs most often use this addressing mode when reg1 is a
pointer holding the base address of an array of bytes (n = 1), words (n = 2),
double words (n = 4), or quad words (n = 8) and reg2 holds the index into
that array.

If r/m = %100 and mod = %01, then this specifies an addressing mode
of the form [reg132+reg232*n + disp8]. This scaled index addressing mode
computes the final address in memory as the sum of reg2 multiplied by n
(n = 1, 2, 4, or 8), reg1, and the 8-bit signed displacement (sign extended
to 32 bits). Programs most often use this addressing mode when reg1 is a
pointer holding the base address of an array of records, reg2 holding the
index into that array, and disp8 providing the offset to a desired field in
the record.

If r/m = %100 and mod = %10, then this specifies an addressing mode
of the form [reg132+reg232*n + disp32]. This scaled index addressing mode
computes the final address in memory as the sum of reg2 multiplied by n
(n = 1, 2, 4, or 8), reg1, and the 32-bit signed displacement. Programs most
often use this addressing mode to index into static arrays of bytes, words,
double words, or quad words.

If values corresponding to one of the sib modes appear in the mod and
r/m fields, then the addressing mode is a scaled indexed addressing mode
with a second byte (the sib) following the mod-reg-r/m byte, though don’t
forget that the mod field still specifies a displacement size of zero, one, or
four bytes. Figure 10-17 shows the layout of this extra sib, and Table 10-4,
Table 10-5, and Table 10-6 explain the values for each of the sib fields.

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 285

Figure 10-17: The sib (scaled index byte) layout

The mod-reg-r/m and sib bytes are complex and convoluted, no question about
that. The reason these addressing mode bytes are so convoluted is that Intel
reused its 16-bit addressing circuitry when it switched to the 32-bit format
rather than simply abandoning the 16-bit circuitry at that point. There were
good hardware reasons for doing this, but the result is a complex scheme for
specifying addressing modes.

Table 10-4: Scale Values

Scale Value Index*Scale Value

%00 Index*1
%01 Index*2
%10 Index*4
%11 Index*8

Table 10-5: Register Values for sib Encoding

Index Value Register

%000 EAX
%001 ECX
%010 EDX
%011 EBX
%100 Illegal
%101 EBP
%110 ESI
%111 EDI

Table 10-6: Base Register Values for sib Encoding

Base Value Register

%000 EAX
%001 ECX
%010 EDX
%011 EBX
%100 ESP
%101 Displacement only if mod = %00, EBP if mod = %01 or %10
%110 ESI
%111 EDI

7 6 5 4 3 2 1 0

Scale Index Base

No Starch Press, Copyright © 2004 by Randall Hyde

286 Chap te r 10

Note that if the r/m field of the mod-reg-r/m byte contains %100 and mod
does not contain %11 the addressing mode is a sib mode rather than the
expected [esp], [esp+disp8], or [ESP+disp32] mode. In this case the compiler
or assembler will emit an extra sib byte immediately following the mod-reg-r/m
byte. Table 10-7 lists the various combinations of legal scaled indexed
addressing modes on the 80x86.

Table 10-7: The Scaled Indexed Addressing Modes

mod Index Legal Scaled Indexed Addressing Modes1

%00
Base ≠ %101

%000 [base32+eax*n]

%001 [base32+ecx*n]

%010 [base32+edx*n]

%011 [base32+ebx*n]

%100 n/a2

%101 [base32+ebp*n]

%110 [base32+esi*n]

%111 [base32+edi*n]

%00

Base = %1013
%000 [disp32+eax*n]

%001 [disp32+ecx*n]

%010 [disp32+edx*n]

%011 [disp32+ebx*n]

%100 n/a
%101 [disp32+ebp*n]

%110 [disp32+esi*n]

%111 [disp32+edi*n]

%01 %000 [disp8+base32+eax*n]

%001 [disp8+base32+ecx*n]

%010 [disp8+base32+edx*n]

%011 [disp8+base32+ebx*n]

%100 n/a
%101 [disp8+base32+ebp*n]

%110 [disp8+base32+esi*n]

%111 [disp8+base32+edi*n]

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 287

In each of the addressing modes appearing in Table 10-7, the mod field of the
mod-reg-r/m byte specifies the size of the displacement (zero, one, or four
bytes). The base and index fields of the sib specify the base and index
registers, respectively. Note that this addressing mode does not allow the use
of the ESP register as an index register. Presumably, Intel left this particular
mode undefined to provide the ability to extend the addressing modes to
three bytes in a future version of the CPU, although doing so seems a bit
extreme.

Just as the mod-reg-r/m encoding replaced the [ebp] addressing mode
with a displacement only mode, the sib addressing format replaces the
[EBP+index*scale] mode with a displacement plus index mode (that is, no
base register). If it turns out that you really need to use the [EBP+index*scale]
addressing mode, you will have to use the [disp8+EBP+index*scale] mode
instead, specifying a one-byte displacement value of zero.

10.4.2 Encoding the add Instruction — Some Examples
To figure out how to encode an instruction using this complex scheme, some
examples may prove useful. Therefore, let’s look at how to encode the 80x86
add instruction using various addressing modes. The add opcode is either
$00, $01, $02, or $03, depending on the direction and size bits in the opcode
(see Figure 10-15). Figures 10-18 through 10-25 on the next three pages show
how to encode various forms of the add instruction using different addressing
modes.

%10 %000 [disp32+base32+eax*n]

%001 [disp32+base32+ecx*n]

%010 [disp32+base32+edx*n]

%011 [disp32+base32+ebx*n]

%100 n/a
%101 [disp32+base32+ebp*n]

%110 [disp32+base32+esi*n]

%111 [disp32+base32+edi*n]

1 The base32 register can be any of the 80x86 32-bit general-purpose registers, as specified by the
base field.
2 The 80x86 does not allow a program to use the ESP as an index register.
3 The 80x86 doesn’t support a [base32+ebp*n] addressing mode, but you can achieve the same
effective address using [base32+ebp*n+disp8] with an 8-bit displacement value of zero.

Table 10-7: The Scaled Indexed Addressing Modes (continued)

mod Index Legal Scaled Indexed Addressing Modes1

No Starch Press, Copyright © 2004 by Randall Hyde

288 Chap te r 10

Figure 10-18: Encoding the add(al, cl); instruction

There is an interesting side effect of the mod-reg-r/m organization and
resulting from how the direction bit works: some instructions have two
different legal opcodes. For example, we could also encode the add(al,cl);
instruction shown in Figure 10-18 as $02, $C8 by reversing the positions of
the AL and CL registers in the reg and r/m fields and then setting the d bit
(bit 1) in the opcode to one. This applies to all instructions with two register
operands and a direction bit, such as the add(eax,ecx); instruction in Figure
10-19, which can also be encoded as $03, $C8.

Figure 10-19: Encoding the add(eax, ecx); instruction

Zero indicates that we are
adding 8-bit values together.

0 0 0 0 0 0 0 0

%11 indicates
that the r/m field
is a register.

0 0 0 0 01 1 1

%000000 indicates that
this is an add instruction.

Zero indicates that we are adding
the reg field to the r/m field.

This field, along with the d bit
in the opcode, indicates that
the source field is the AL register.

add(al, cl) = $00, $C1

This field, along
with the d bit
in the opcode,
indicates that the
destination field
is the CL register.

add(eax, ecx) = $01, $C1

One indicates that we are
adding 32-bit values together.

%11 indicates
that the r/m field
is a register.

This field, along
with the d bit
in the opcode,
indicates that the
destination field
is the ECX register.

0 0 0 0 0 0 0 1

%000000 indicates that
this is an add instruction.

0 0 0 0 01 1 1

This field, along with the d bit
in the opcode, indicates that the
source field is the EAX register.

Zero indicates that we are adding
the reg field to the r/m field.

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 289

Figure 10-20: Encoding the add(disp, edx); instruction

Figure 10-21: Encoding the add([ebx], edi); instruction

Figure 10-22: Encoding the add([esi+disp8], eax); instruction

Disp32

32-bit
displacement
follows the
instruction.

add(disp, edx) = $03, $1D, $ww, $xx, $yy, $zz

Note: $ww, $xx, $yy, $zz represent the four displacement byte
values, with $ww being the LO byte and $zz being the HO byte.

0 0 0 0 0 0 1 1 0 0 0 011 1 1

%000000 indicates that
this is an add instruction.

One indicates that we are
adding 32-bit values together.

One indicates that we are adding
the r/m field to the reg field.

The combination of mod = %00 and
r/m = %101 indicates that this is the
displacement-only addressing mode.

This field, along with the d bit
in the opcode, indicates that the
destination field is the EDX register.

add([ebx], edi) = $03, $3B

One indicates that we are
adding 32-bit values together.
One indicates that we are
adding 32-bit values together.

0 0 0 0 0 0 1 1

%000000 indicates that
this is an add instruction.

One indicates that we are adding
the r/m field to the reg field.
One indicates that we are adding
the r/m field to the reg field.

%00 indicates
a zero-byte
displacement.

%011 indicates
the use of the [EBX]
addressing mode.

0 0 01 1 1 1 1

This field, along with the
d bit in the opcode, indicates
that the destination field is
the EDI register.

Disp8

8-bit
displacement
follows the
mod-reg-r/m
byte.

add([esi + disp], eax) = $03, $46, $xx8

%110 indicates the use of
the [ESI] addressing mode.
%110 indicates the use of
the [ESI] addressing mode.

%01 indicates
a one-byte
displacement.

%01 indicates
a one-byte
displacement.

One indicates that we are
adding 32-bit values together.
One indicates that we are
adding 32-bit values together.

0 0 0 0 0 0 1 1 0 0 0 0 01 1 1

%000000 indicates that
this is an add instruction. This field, along with the

d bit in the opcode, indicates
that the destination field is
the EAX register.

This field, along with the
d bit in the opcode, indicates
that the destination field is
the EAX register.

One indicates that we are adding
the r/m field to the reg field.
One indicates that we are adding
the r/m field to the reg field.

No Starch Press, Copyright © 2004 by Randall Hyde

290 Chap te r 10

Figure 10-23: Encoding the add([ebp+disp32], ebx); instruction

Figure 10-24: Encoding the add([disp32+eax*1], ebp); instruction

Figure 10-25: Encoding the add([ebx+edi*4], ecx); instruction

Disp32

32-bit
displacement
follows the
instruction.

add([ebp + disp], ebx) = $03, $9D, $ww, $xx, $yy, $zz32

Note: $ww, $xx, $yy, $zz represent the four displacement byte
values, with $ww being the LO byte and $zz being the HO byte.

One indicates that we are
adding 32-bit values together.
One indicates that we are
adding 32-bit values together.

0 0 0 0 0 0 1 1

%000000 indicates that
this is an add instruction.

One indicates that we are adding
the r/m field to the reg field.
One indicates that we are adding
the r/m field to the reg field.

r/m = %101
is [ebp]

0 0 01 1 1 1 1

This field, along with the
d bit in the opcode, indicates
that the destination field is
the EBX register.

This field, along with the
d bit in the opcode, indicates
that the destination field is
the EBX register.

mod = %10 indicates
the use of a 32-bit
displacement.

10000 10100000 Disp32101

add([disp + eax*1], ebp) = $03, $2C, $05, $ww, $xx, $yy, $zz32

%000000 indicates that
this is an add instruction.

One indicates that we are
adding 32-bit values together.
One indicates that we are
adding 32-bit values together.

One indicates that we are adding
the r/m field to the reg field.
One indicates that we are adding
the r/m field to the reg field.

EBP is the
destination
register.

00 0 0 0 0 11

These two fields select the
EAX*1 scaled index mode.

mod = %00 and
r/m = %100
specifies the
disp +reg*1 mode.

32

Note: $ww, $xx, $yy, $zz represent the four displacement byte
values, with $ww being the LO byte and $zz being the HO byte.

Base = %101 means
displacement-only
addressing mode.

add([ebx + edi*4], ecx) = $03, $0C, $BB

%000000 indicates that
this is an add instruction.

One indicates that we are
adding 32-bit values together.
One indicates that we are
adding 32-bit values together.

One indicates that we are adding
the r/m field to the reg field.
One indicates that we are adding
the r/m field to the reg field.

ECX is the
destination
register.

mod = %00 and
r/m = %100
specifies the sib mode.

mod = %00 and
r/m = %100
specifies the sib mode. Base = %011 = EBX

These two fields select the
EDI*4 scaled index mode.

011111101000010000 0 0 0 0 11

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 291

10.4.3 Encoding Immediate Operands
You may have noticed that the mod-reg-r/m and sib bytes don’t contain any
bit combinations you can use to specify that an instruction contains an
immediate operand. The 80x86 uses a completely different opcode to
specify an immediate operand. Figure 10-26 shows the basic encoding for
an add immediate instruction.

Figure 10-26: Encoding an add immediate instruction

There are three major differences between the encoding of the add
immediate instruction and the standard add instruction. First, and most
important, the opcode has a one in the HO bit position. This tells the CPU
that the instruction has an immediate constant. This one change alone,
however, does not tell the CPU that it must execute an add instruction, as
you’ll see shortly.

The second difference is that there is no direction bit in the opcode.
This makes sense because you cannot specify a constant as a destination
operand. Therefore, the destination operand is always the location specified
by the mod and r/m bits in the mod-reg-r/m field.

In place of the direction bit, the opcode has a sign extension (x) bit.
For 8-bit operands, the CPU ignores the sign extension bit. For 16-bit and 32-
bit operands, the sign-extension bit specifies the size of the constant follow-
ing the add instruction. If the sign extension bit contains zero, the constant
is already the same size as the operand (either 16 or 32 bits). If the sign-
extension bit contains one, the constant is a signed 8-bit value, and the
CPU sign extends this value to the appropriate size before adding it to the
operand. This little trick often makes programs quite a bit shorter because
one commonly adds small constants to 16- or 32-bit destination operands.

The third difference between the add immediate and the standard add
instruction is the meaning of the reg field in the mod-reg-r/m byte. Because
the instruction implies that the source operand is a constant and the mod-r/m
fields specify the destination operand, the instruction does not need to use

0 indicates that the constant
is the same size as specified
by the s field.

s = 0: 8-bit operands
s = 1: 32-bit operands

A value of 1 indicates that
the constant is a 1-byte operand
that is sign extended to the size
of the destination operand.

These fields have the usual
mod-reg-r/m meaning and
specify the destination operand.

Optional 1-
or 2-byte
displacement
(as specified
by mod-r/m).

An 8-, 16-,
or 32-bit
constant
follows the
instruction.

Opcode extension,
000 for add immediate.

%100000 indicates
that this is an immediate
mode instruction.

0 0 0 0 0 01 1 Constants1 0 0 0 0 0 x

No Starch Press, Copyright © 2004 by Randall Hyde

292 Chap te r 10

the reg field to specify an operand. Instead, the 80x86 CPU uses these three
bits as an opcode extension. For the add immediate instruction, these three
bits must contain zero, and another bit pattern would correspond to a differ-
ent instruction.

Note that when adding a constant to a memory location, any displace-
ment associated with the memory location immediately precedes the
constant data in the instruction sequence.

10.4.4 Encoding 8-, 16-, and 32-Bit Operands
When Intel designed the 8086, they used one opcode bit (s) to specify
whether the operand sizes were 8 or 16 bits. Later, when they extended the
80x86 architecture to 32 bits with the introduction of the 80386, they had a
problem: with this single operand size bit they could only encode two sizes,
but they needed to encode three (8, 16, and 32 bits). To solve this problem,
they used an operand-size prefix byte.

Intel studied its instruction set and came to the conclusion that in a 32-
bit environment, programs were likely to use 8-bit and 32-bit operands far
more often than 16-bit operands. Therefore, Intel decided to let the size
bit (s) in the opcode select between 8- and 32-bit operands, as the previous
sections describe. Although modern 32-bit programs don’t use 16-bit oper-
ands very often, they do need them now and then. To allow for 16-bit oper-
ands, Intel lets you prefix a 32-bit instruction with the operand size prefix
byte, whose value is $66. This prefix byte tells the CPU that the operands
contain 16-bit data rather than 32-bit data.

You do not have to explicitly put an operand-size prefix byte in front of
your 16-bit instructions; the assembler or compiler will take care of this auto-
matically for you. However, do keep in mind that whenever you use a 16-bit
object in a 32-bit program, the instruction is one byte longer because of the
prefix value. Therefore, you should be careful about using 16-bit instructions
if size, and, to a lesser extent, speed are important.

10.4.5 Alternate Encodings for Instructions
As noted earlier in this chapter, one of Intel’s primary design goals for the
80x86 was to create an instruction set to allow programmers to write very
short programs in order to save memory, which was precious at the time.
One way they did this was to create alternative encodings of some very
commonly used instructions. These alternative instructions were shorter
than their standard counterparts, and Intel hoped that programmers would
make extensive use of the shorter versions, thus creating shorter programs.

A good example of these alternative instructions are the
add(constant,accumulator); instructions, where the accumulator is AL, AX,
or EAX. The 80x86 provides 1-byte opcodes for add(constant,al); and
add(constant,eax);, which are $04 and $05, respectively. With a 1-byte
opcode and no mod-reg-r/m byte, these instructions are one byte shorter
than their standard add immediate counterparts. The add(constant,ax);

No Starch Press, Copyright © 2004 by Randall Hyde

I n s tr uc ti on Set A rch i tec ture 293

instruction requires an operand size prefix, so its opcode is effectively two
bytes if you count the prefix byte. This, however, is still one byte shorter
than the corresponding standard add immediate.

You do not have to specify anything special to use these instructions. Any
decent assembler or compiler will automatically choose the shortest possible
instruction it can use when translating your source code into machine code.
However, you should note that Intel only provides alternative encodings for
the accumulator registers. Therefore, if you have a choice of several
instructions to use and the accumulator registers are among these choices,
the AL, AX, and EAX registers are often your best bet. However, this option
is usually only available to assembly language programmers.

10.5 Implications of Instruction Set Design
to the Programmer

Upon initial inspection, it would seem that instruction set design is of little
interest to programmers who simply want to write great code, rather than
design their own instruction sets. However, only by knowing the computer’s
architecture and, in particular, how the CPU encodes machine instructions,
can a programmer make the most efficient use of the machine’s instructions.
By studying instruction set design, a programmer can gain a clear
understanding of the following:

� Why some instructions are shorter than others

� Why some instructions are faster than others

� Which constant values the CPU can handle efficiently

� Whether constants are more efficient than memory locations

� Why certain arithmetic and logical operations are more efficient than
others

� Which types of arithmetic expressions are more easily translated into
machine code than other types

� Why code is less efficient if it transfers control over a large distance in
the object code

. . . and so on.
By studying instruction set design, a programmer becomes more aware

of the implications of the code they write (even in a high-level language)
with respect to efficient operation on the CPU. Armed with this knowledge,
the programmer can write great code.

10.6 For More Information

Like the previous chapter, this chapter deals with issues of computer
architecture. There are many college and professional texts on computer
architecture available that will provide additional information about

No Starch Press, Copyright © 2004 by Randall Hyde

294 Chap te r 10

instruction set design and the choices and trade-offs one must make when
designing an instruction set. Patterson and Hennessy’s Computer Architecture:
A Quantitative Approach is one of the better regarded texts on this subject
(though it is a bit heavily biased towards RISC architectures). The data books
for your particular CPU will discuss the instruction encoding for that CPU
and detail the operation of each machine instruction the CPU supports. A
good text on assembly language programming may also prove helpful when
learning more about instruction set design (such as my text for Intel 80x86
users, The Art of Assembly Language). For details on the design of the 80x86
instruction set, you’ll want to check out Intel’s Pentium manuals, available
online at http://www.intel.com. Of course, similar information is available at
just about every CPU manufacturer’s website.

No Starch Press, Copyright © 2004 by Randall Hyde

11
M E M O R Y A R C H I T E C T U R E

A N D O R G A N I Z A T I O N

This chapter discusses the memory hier-
archy — the different types and performance

levels of memory found in computer systems.
Although programmers often treat all forms

of memory as though they were equivalent, using memory
improperly can have a negative impact on performance.
This chapter discusses how to make the best use of the
memory hierarchy within your programs.

11.1 The Memory Hierarchy

Most modern programs benefit by having a large amount of very fast memory.
Unfortunately, as a memory device gets larger, it tends to be slower. For
example, cache memories are very fast, but they are also small and expensive.

No Starch Press, Copyright © 2004 by Randall Hyde

296 Chap te r 11

Main memory is inexpensive and large, but is slow, requiring wait states.
The memory hierarchy provides a way to compare the cost and performance
of memory. Figure 11-1 diagrams one variant of the memory hierarchy.

Figure 11-1: The memory hierarchy

At the top level of the memory hierarchy are the CPU’s general-purpose
registers. The registers provide the fastest access to data possible on the CPU.
The register file is also the smallest memory object in the hierarchy (for
example, the 80x86 has just eight general-purpose registers). Because it is
impossible to add more registers to a CPU, registers are also the most
expensive memory locations. Even if we count the FPU, MMX/AltaVec,
SSE/SIMD, and other CPU registers in this portion of the memory
hierarchy, this does not change the fact that CPUs have a very limited
number of registers, and the cost per byte of register memory is quite high.

Working our way down, the level-one cache system is the next highest
performance subsystem in the memory hierarchy. As with registers, the CPU
manufacturer usually provides the level-one (L1) cache on the chip, and you
cannot expand it. The size is usually small, typically between 4 KB and 32 KB,
though this is much larger than the register memory available on the CPU
chip. Although the L1 cache size is fixed on the CPU, the cost per cache byte
is much lower than the cost per register byte because the cache contains
more storage than is available in all the combined registers, and the system
designer’s cost of both memory types is the price of the CPU.

Level-two cache is present on some CPUs, but not all. For example, most
Pentium II, III, and IV CPUs have a level-two (L2) cache as part of the CPU
package, but some of Intel’s Celeron chips do not. The L2 cache is generally
much larger than the L1 cache (for example, 256 KB to 1 MB as compared
with 4 KB to 32 KB). On CPUs with a built-in L2 cache, the cache is not
expandable. It is still lower in cost than the L1 cache because we amortize
the cost of the CPU across all the bytes in the two caches, and the L2 cache
is larger.

Registers

Level-one cache

Level-two cache

Main memory

NUMA

Virtual memory

Near-line storage

Offline storage

Hard copy

File storage

Network storage

Increasing
cost,
increasing
speed,
decreasing
size.

Decreasing
cost,
decreasing
speed,
increasing
size.

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 297

The main-memory subsystem comes below the L2 cache system in the
memory hierarchy.1 Main memory is the general-purpose, relatively low-
cost memory found in most computer systems. Typically, this memory is
DRAM or some similarly inexpensive memory. However, there are many
differences in main memory technology that result in differences in speed.
The main memory types include standard DRAM, synchronous DRAM
(SDRAM), double data rate DRAM (DDRAM), and Rambus DRAM
(RDRAM). Generally, though, you won’t find a mixture of these tech-
nologies in the same computer system.

Below main memory is the NUMA memory subsystem. NUMA, which
stands for Non-Uniform Memory Access, is a bit of a misnomer. The term
NUMA implies that different types of memory have different access times,
and so it is descriptive of the entire memory hierarchy. In Figure 11-1,
however, the term NUMA is used to describe blocks of memory that are
electronically similar to main memory but, for one reason or another,
operate significantly slower than main memory. A good example of
NUMA memory is the memory on a video display card. Another example
is flash memory, which has significantly slower access and transfer times
than standard semiconductor RAM. Other peripheral devices that provide
a block of memory to be shared between the CPU and the peripheral usually
have slow access times, as well.

Most modern computer systems implement a virtual memory scheme that
simulates main memory using a mass storage disk drive. A virtual memory
subsystem is responsible for transparently copying data between the disk and
main memory as needed by programs. While disks are significantly slower
than main memory, the cost per bit is also three orders of magnitude lower
for disks. Therefore, it is far less expensive to keep data on magnetic storage
than in main memory.

File storage also uses disk media to store program data. However, whereas
the virtual memory subsystem is responsible for handling data transfer
between disk and main memory as programs require, it is the program’s
responsibility to store and retrieve file-storage data. In many instances, it
is a bit slower to use file-storage memory than it is to use virtual memory,
hence the lower position of file-storage memory in the memory hierarchy.2

Next comes network storage. At this level in the memory hierarchy,
programs keep data on a different memory system that connects to the
computer system via a network. Network storage can be virtual memory,
file-storage memory, or a memory system known as distributed shared memory
(DSM), where processes running on different computer systems share data
stored in a common block of memory and communicate changes to that
block across the network.

1 Actually, some systems now offer an external level-three cache. External level-three caches are
present on some systems where the L1 and L2 caches are part of the CPU package and the
system implementor wants to add more cache to the system.
2 Note, however, that in some degenerate cases virtual memory can be much slower than file
access.

No Starch Press, Copyright © 2004 by Randall Hyde

298 Chap te r 11

Virtual memory, file storage, and network storage are examples of so-
called online memory subsystems. Memory access within these memory
subsystems is slower than accessing the main-memory subsystem. However,
when a program requests data from one of these three memory subsystems,
the memory device will respond to the request as quickly as its hardware
allows. This is not true for the remaining levels in the memory hierarchy.

The near-line and offline storage subsystems may not be ready to respond to
a program’s request for data immediately. An offline storage system keeps its
data in electronic form (usually magnetic or optical), but on storage media
that are not necessarily connected to the computer system that needs the
data. Examples of offline storage include magnetic tapes, disk cartridges,
optical disks, and floppy diskettes. Tapes and removable media are among
the most inexpensive electronic data storage formats available. Hence, these
media are great for storing large amounts of data for long periods. When a
program needs data from an offline medium, the program must stop and
wait for someone or something to mount the appropriate media on the
computer system. This delay can be quite long (perhaps the computer
operator decided to take a coffee break?).

Near-line storage uses the same types of media as offline storage, but
rather than requiring an external source to mount the media before its data
is available for access, the near-line storage system holds the media in a
special robotic jukebox device that can automatically mount the desired
media when a program requests it.

Hard-copy storage is simply a printout, in one form or another, of data.
If a program requests some data, and that data is present only in hard-copy
form, someone will have to manually enter the data into the computer.
Paper, or other hard-copy media, is probably the least expensive form of
memory, at least for certain data types.

11.2 How the Memory Hierarchy Operates

The whole point of having the memory hierarchy is to allow reasonably
fast access to a large amount of memory. If only a little memory were
necessary, we’d use fast static RAM (the circuitry that cache memory uses)
for everything. If speed wasn’t an issue, we’d use virtual memory for
everything. The whole point of having a memory hierarchy is to enable us
to take advantage of the principles of spatial locality of reference and temporality
of reference to move often-referenced data into fast memory and leave less-
often-used data in slower memory. Unfortunately, during the course of a
program’s execution, the sets of oft-used and seldom-used data change.
We cannot simply distribute our data throughout the various levels of the
memory hierarchy when the program starts and then leave the data alone
as the program executes. Instead, the different memory subsystems need to
be able to adjust for changes in spatial locality or temporality of reference
during the program’s execution by dynamically moving data between
subsystems.

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 299

Moving data between the registers and memory is strictly a program
function. The program loads data into registers and stores register data into
memory using machine instructions like mov. It is strictly the programmer’s
or compiler’s responsibility to keep heavily referenced data in the registers
as long as possible, the CPU will not automatically place data in general-
purpose registers in order to achieve higher performance.

Programs are largely unaware of the memory hierarchy between the
register level and main memory. In fact, programs only explicitly control
access to registers, main memory, and those memory-hierarchy subsystems
at the file-storage level and below. In particular, cache access and virtual
memory operations are generally transparent to the program. That is, access
to these levels of the memory hierarchy usually occurs without any inter-
vention on a program’s part. Programs simply access main memory, and the
hardware and operating system take care of the rest.

Of course, if every memory access that a program makes is to main
memory, then the program will run slowly because modern DRAM main-
memory subsystems are much slower than the CPU. The job of the cache
memory subsystems and of the CPU’s cache controller is to move data
between main memory and the L1 and L2 caches so that the CPU can
quickly access oft-requested data. Likewise, it is the virtual memory sub-
system’s responsibility to move oft-requested data from hard disk to main
memory (if even faster access is needed, the caching subsystem will then
move the data from main memory to cache).

With few exceptions, most memory subsystem accesses take place trans-
parently between one level of the memory hierarchy and the level imme-
diately below or above it. For example, the CPU rarely accesses main memory
directly. Instead, when the CPU requests data from memory, the L1 cache
subsystem takes over. If the requested data is in the cache, then the L1 cache
subsystem returns the data to the CPU, and that concludes the memory
access. If the requested data is not present in the L1 cache, then the L1 cache
subsystem passes the request on down to the L2 cache subsystem. If the L2
cache subsystem has the data, it returns this data to the L1 cache, which then
returns the data to the CPU. Note that requests for the same data in the near
future will be fulfilled by the L1 cache rather than the L2 cache because the
L1 cache now has a copy of the data.

If neither the L1 nor the L2 cache subsystems have a copy of the data,
then the request goes to main memory. If the data is found in main memory,
then the main-memory subsystem passes this data to the L2 cache, which
then passes it to the L1 cache, which then passes it to the CPU. Once again,
the data is now in the L1 cache, so any requests for this data in the near
future will be fulfilled by the L1 cache.

If the data is not present in main memory, but is present in virtual
memory on some storage device, the operating system takes over, reads the
data from disk or some other device (such as a network storage server), and
passes the data to the main-memory subsystem. Main memory then passes
the data through the caches to the CPU in the manner that we’ve seen.

No Starch Press, Copyright © 2004 by Randall Hyde

300 Chap te r 11

Because of spatial locality and temporality, the largest percentage of
memory accesses take place in the L1 cache subsystem. The next largest
percentage of accesses takes place in the L2 cache subsystem. The most
infrequent accesses take place in virtual memory.

11.3 Relative Performance of Memory Subsystems

If you take another look at Figure 11-1, you’ll notice that the speed of the
various memory hierarchy levels increases as you go up. Exactly how much
faster is each successive level in the memory hierarchy? To summarize the
answer here, the speed gradient is not uniform. The speed difference
between any two contiguous levels ranges from “almost no difference” to
“four orders of magnitude.”

Registers are, unquestionably, the best place to store data you need to
access quickly. Accessing a register never requires any extra time, and most
machine instructions that access data can access register data. Furthermore,
instructions that access memory often require extra bytes (displacement
bytes) as part of the instruction encoding. This makes instructions longer
and, often, slower.

If you read Intel’s instruction timing tables for the 80x86, you’ll see that
they claim that an instruction like mov(someVar,ecx); is supposed to run as fast
as an instruction of the form mov(ebx,ecx);. However, if you read the fine
print, you’ll find that they make this claim based on several assumptions
about the former instruction. First, they assume that someVar’s value is present
in the L1 cache memory. If it is not, then the cache controller needs to look
in the L2 cache, in main memory, or worse, on disk in the virtual memory
subsystem. All of a sudden, an instruction that should execute in one nano-
second on a 1-GHz processor (that is, in one clock cycle) requires several
milliseconds to execute. That’s a difference of over six orders of magnitude.
It is true that future accesses of this variable will take place in just one clock
cycle because it will subsequently be stored in the L1 cache. But even if you
access someVar’s value one million times while it is still in the cache, the aver-
age time of each access will still be about two cycles because of the large
amount of time needed to access someVar the very first time.

Granted, the likelihood that some variable will be located on disk in the
virtual memory subsystem is quite low. However, there is still a difference in
performance of three orders of magnitude between the L1 cache subsystem
and the main memory subsystem. Therefore, if the program has to bring the
data from main memory, 999 memory accesses later you’re still paying an
average cost of two clock cycles to access the data that Intel’s documentation
claims should happen in one cycle.

The difference in speed between the L1 and L2 cache systems is not so
dramatic unless the secondary cache is not packaged together on the CPU.
On a 1-GHz processor the L1 cache must respond within one nanosecond if
the cache operates with zero wait states (some processors actually introduce
wait states in L1 cache accesses, but CPU designers try to avoid this).

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 301

Accessing data in the L2 cache is always slower than in the L1 cache, and
there is always the equivalent of at least one wait state, and up to eight, when
accessing data in the L2 cache.

There are several reasons why L2 cache accesses are slower than L1
accesses. First, it takes the CPU time to determine that the data it is seeking is
not in the L1 cache. By the time it determines that the data is not present in
the L1 cache, the memory-access cycle is nearly complete, and there is no
time to access the data in the L2 cache. Secondly, the circuitry of the L2
cache may be slower than the circuitry of the L1 cache in order to make the
L2 cache less expensive. Third, L2 caches are usually 16 to 64 times larger
than L1 caches, and larger memory subsystems tend to be slower than
smaller ones. All this adds up to additional wait states when accessing data in
the L2 cache. As noted earlier, the L2 cache can be as much as one order of
magnitude slower than the L1 cache.

The L1 and L2 caches also differ in the amount of data the system
fetches when there is a cache miss (see Chapter 6). When the CPU fetches
data from or writes data to the L1 cache, it generally fetches or writes only
the data requested. If you execute a mov(al,memory); instruction, the
CPU writes only a single byte to the cache. Likewise, if you execute the
mov(mem32,eax); instruction, the CPU reads exactly 32 bits from the L1 cache.
However, access to memory subsystems below the L1 cache does not work in
small chunks like this. Usually, memory subsystems move blocks of data, or
cache lines, whenever accessing lower levels of the memory hierarchy. For
example, if you execute the mov(mem32,eax); instruction, and mem32’s value
is not in the L1 cache, the cache controller doesn’t simply read mem32’s 32
bits from the L2 cache, assuming that it’s present there. Instead, the cache
controller will actually read a whole block of bytes (generally 16, 32, or 64
bytes, depending on the particular processor) from the L2 cache. The hope
is that the program exhibits spatial locality and therefore that reading a
block of bytes will speed up future accesses to adjacent objects in memory.
The bad news, however, is that the mov(mem32,eax); instruction doesn’t
complete until the L1 cache reads the entire cache line from the L2 cache.
This excess time is known as latency. If the program does not access memory
objects adjacent to mem32 in the future, this latency is lost time.

A similar performance gulf separates the L2 cache and main memory.
Main memory is typically one order of magnitude slower than the L2 cache.
To speed up access to adjacent memory objects, the L2 cache reads data
from main memory in blocks (cache lines) to speed up access to adjacent
memory elements.

Standard DRAM is three to four orders of magnitude faster than disk
storage. To overcome this difference, there is usually a difference of two to
three orders of magnitude in size between the L2 cache and the main mem-
ory so that the difference in speed between disk and main memory matches
the difference in speed between the main memory and the L2 cache. (Hav-
ing balanced performance characteristics is an attribute to strive for in the
memory hierarchy in order to effectively use the different memory levels.)

No Starch Press, Copyright © 2004 by Randall Hyde

302 Chap te r 11

We will not consider the performance of the other memory-hierarchy
subsystems in this chapter, as they are more or less under programmer
control. Because their access is not automatic, very little can be said about
how frequently a program will access them. However, in Chapter 12 we’ll
take another look at issues regarding these storage devices.

11.4 Cache Architecture

Up to this point, we have treated the cache as a magical place that automat-
ically stores data when we need it, perhaps fetching new data as the CPU
requires it. But how exactly does the cache do this? And what happens when
the cache is full and the CPU is requesting additional data not in the cache?
In this section, we’ll look at the internal cache organization and try to answer
these questions, along with a few others.

Because programs only access a small amount of data at a given time, a
cache that is the same size as the typical amount of data that programs access
can provide very high-speed data access. Unfortunately, the data that pro-
grams want rarely sits in contiguous memory locations. Usually the data is
spread out all over the address space. Therefore, cache design has to accom-
modate the fact that the cache must map data objects at widely varying
addresses in memory.

As noted in the previous section, cache memory is not organized in a
single group of bytes. Instead, cache memory is usually organized in blocks of
cache lines, with each line containing some number of bytes (typically a small
power of two like 16, 32, or 64), as shown in Figure 11-2.

Figure 11-2: Possible organization of an 8-KB cache

Because of this 512×16-byte cache organization found in Figure 11-2, we can
attach a different noncontiguous address to each of the cache lines. Cache
line 0 might correspond to addresses $10000..$1000F and cache line 1 might
correspond to addresses $21400..$2140F. Generally, if a cache line is n bytes
long, that cache line will hold n bytes from main memory that fall on an n-
byte boundary. In the example in Figure 11-2, the cache lines are 16 bytes
long, so a cache line holds blocks of 16 bytes whose addresses fall on 16-byte
boundaries in main memory (in other words, the LO four bits of the address
of the first byte in the cache line are always zero).

8 KB (512 cache lines)

An 8-KB cache is often organized as
a set of 512 lines of 16 bytes each. 16-byte

cache line

...

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 303

When the cache controller reads a cache line from a lower level in the
memory hierarchy, where does the data go in the cache? The answer is
determined by the caching scheme in use. There are three different cache
schemes: direct-mapped cache, fully associative cache, and n-way set associative
cache.

11.4.1 Direct-Mapped Cache
In a direct-mapped cache (also known as the one-way set associative cache), a block
of main memory is always loaded into the exact same cache line. Generally,
a small number of bits in the data’s memory address determines which cache
line will hold the data. For example, Figure 11-3 shows how the cache con-
troller could select the appropriate cache line for an 8-KB cache with 512
16-byte cache lines and a 32-bit main-memory address. Because there are
512 cache lines, it requires 9 bits to select one of the cache lines (29 = 512).
This example uses bits 4 through 12 to determine which cache line to use
(assuming we number the cache lines from 0 to 511), while bits 0 through
3 of the original memory address determine the particular byte within the
16-byte cache line.

Figure 11-3: Selecting a cache line in a direct-mapped cache

The direct-mapped cache scheme is very easy to implement. Extracting nine
(or some other number of) bits from the memory address and using the
result as an index into the array of cache lines is trivial and fast. However,
direct-mapped caches suffer from a few problems.

Perhaps the biggest problem with a direct-mapped cache is that it may
not make effective use of all the cache memory. For example, the cache
scheme in Figure 11-3 maps address zero to cache line 0. It also maps
addresses $2000 (8 KB), $4000 (16 KB), $6000 (24 KB), and $8000 (32 KB)
to cache line 0. In fact, it maps every address that is an even multiple of eight
kilobytes to cache line 0. This means that if a program is constantly accessing
data at addresses that are even multiples of 8 KB and not accessing any other
locations, the system will only use cache line 0, leaving all the other cache

034121331

An 8-KB cache that
is organized as a
set of 512 lines of
16 bytes each.

Nine bits (bits 4..12)
of the physical memory
address provide an
index to select one
of the 512 different
cache lines in the cache.

32-bit physical
memory address

...

No Starch Press, Copyright © 2004 by Randall Hyde

304 Chap te r 11

lines unused. Each time the CPU requests data at an address that is mapped
to cache line 0, but whose corresponding data is not present in cache line 0
(an address that is not an even multiple of 8 KB), the CPU will have to go
down to a lower level in the memory hierarchy to access the data. In this
extreme case, the cache is effectively limited to the size of one cache line.

11.4.2 Fully Associative Cache
The most flexible cache system is the fully associative cache. In a fully asso-
ciative cache subsystem, the caching controller can place a block of bytes
in any one of the cache lines present in the cache memory. While this is a
very flexible system, the flexibility required is not without cost. The extra
circuitry to achieve full associativity is expensive and, worse, can slow down
the memory subsystem. Most L1 and L2 caches are not fully associative for
this reason.

11.4.3 n-Way Set Associative Cache
If a fully associative cache organization is too complex, too slow, and too
expensive to implement, but a direct-mapped cache organization isn’t as
good as we’d like, one might ask if there is a compromise that doesn’t have
the drawbacks of a direct-mapped approach or the complexity of a fully
associative cache. The answer is yes; we can create an n-way set associative
cache that is a compromise between these two extremes. In an n-way set
associative cache, the cache is broken up into sets of cache lines. The CPU
determines the particular set to use based on some subset of the memory
address bits, just as in the direct-mapping scheme. Within each cache line
set, there are n cache lines. The caching controller uses a fully associative
mapping algorithm to determine which one of the n cache lines within the
set to use.

For example, an 8-KB two-way set associative cache subsystem with 16-
byte cache lines organizes the cache into 256 cache-line sets with two cache
lines each. (“Two-way” means that each set contains two cache lines.) Eight
bits from the memory address determine which one of these 256 different
sets holds the cache line that will contain the data. Once the cache-line set is
determined, the cache controller then maps the block of bytes to one of the
two cache lines within the set (see Figure 11-4).

The advantage of a two-way set associative cache over a direct-mapped
cache is that two different memory addresses located on 8-KB boundaries
(addresses having the same value in bits 4 through 11) can both appear
simultaneously in the cache. However, a conflict will occur if you attempt
to access a third memory location at an address that is an even multiple
of 8 KB.

A two-way set associative cache is much better than a direct-mapped
cache and it is considerably less complex than a fully associative cache.
However, if you’re still getting too many conflicts, you might consider using a
four-way set associative cache, which puts four associative cache lines in each

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 305

cache-line set. In an 8-KB cache like the one in Figure 11-4, a four-way set
associative cache scheme would have 128 cache-line sets with four cache lines
each. This would allow the cache to maintain up to four different blocks of
data without a conflict, each of which would map to the same cache line in a
direct-mapped cache.

Figure 11-4: A two-way set associative cache

The more cache lines we have in each cache-line set, the closer we come
to creating a fully associative cache, with all the attendant problems of
complexity and speed. Most cache designs are direct-mapped, two-way set
associative, or four-way set associative. The various members of the 80x86
family make use of all three.

11.4.4 Matching the Caching Scheme to the Type of Data Access
Although this chapter has made the direct-mapped cache look bad, it is,
in fact, very effective for many types of data. In particular, the direct-
mapped cache is very good for data that you access in a sequential rather
than random fashion. Because the CPU typically executes instructions in
a sequential fashion, instruction bytes can be stored very effectively in a
direct-mapped cache. However, because programs tend to access data more
randomly than code, a two-way or four-way set associative cache usually
makes a better choice for data accesses than a direct-mapped cache.

Because data and machine instruction bytes usually have different access
patterns, many CPU designers use separate caches for each. For example,
a CPU designer could choose to implement an 8-KB instruction cache and
an 8-KB data cache rather than a single 16-KB unified cache. The advantage
of dividing the cache size in this way is that the CPU designer could use a
caching scheme more appropriate to the particular values that will be stored
in each cache. The drawback is that the two caches are now each half the
size of a unified cache, which may cause more cache misses than would occur

034111231 32-bit physical
memory address

A cache-line
set consisting
of two cache
lines. Each set
is given an
index between
0 and 255.

A 512-KB two-way set associative cache
containing 256 sets of two cache lines each.

The cache
controller
chooses one
of the two
different cache
lines within
the set.

Eight bits (bits 4..11)
provide an index to
select one of the 256
different sets of cache
lines in the cache.

No Starch Press, Copyright © 2004 by Randall Hyde

306 Chap te r 11

with a unified cache. The choice of an appropriate cache organization is a
difficult one and can only be made after analyzing many running programs
on the target processor. How to choose an appropriate cache format is
beyond the scope of this book, but be aware that it’s not a choice you can
make just by reading a textbook.

11.4.5 Cache Line Replacement Policies
Thus far, we’ve answered the question, “Where do we put a block of data in
the cache?” An equally important question we’ve ignored until now is, “What
happens if a cache line isn’t available when we want to put a block of data in
that cache line?”

For a direct-mapped cache architecture, the answer is trivial. The cache
controller simply replaces whatever data was formerly in the cache line with
the new data. Any subsequent reference to the old data will result in a cache
miss, and the cache controller will then have to bring that old data back into
the cache by replacing whatever data is in the appropriate cache line at that
time.

For a two-way set associative cache, the replacement algorithm is a bit
more complex. Whenever the CPU references a memory location, the cache
controller uses some subset of the address’ bits to determine the cache-line
set that should be used to store the data. Using some fancy circuitry, the
caching controller determines whether the data is already present in one of
the two cache lines in the destination set. If the data is not present, the CPU
has to bring the data in from memory. Because the main memory data can
go into either cache line, the controller has to pick one of the two lines to
use. If either or both of the cache lines are currently unused, the controller
simply picks an unused line. However, if both cache lines are currently in
use, then the cache controller must pick one of the cache lines and replace
its data with the new data.

How does the controller choose which of the two cache lines to replace?
Ideally, we’d like to keep the cache line whose data will be referenced first
and replace the other cache line. Unfortunately, neither the cache con-
troller nor the CPU is omniscient — they cannot predict which of the lines
is the best one to replace.

To understand how the cache controller makes this decision, remember
the principle of temporality: if a memory location has been referenced
recently, it is likely to be referenced again in the very near future. This
implies the following corollary: if a memory location has not been accessed in a
while, it is likely to be a long time before the CPU accesses it again. Therefore, a good
replacement policy that many caching controllers use is the least recently used
(LRU) algorithm. An LRU policy is easy to implement in a two-way set
associative cache system. All you need is to reserve a single bit for each set of
two cache lines. Whenever the CPU accesses one of the two cache lines this
bit is set to zero, and whenever the CPU accesses the other cache line, this bit

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 307

is set to one. Then, when a replacement is necessary, this bit will indicate
which cache line to replace, as it tracks the last cache line the program has
accessed (and, because there are only two cache lines in the set, the inverse
of this bit also tracks the cache line that was least recently used).

For four-way (and greater) set associative caches, maintaining the LRU
information is a bit more difficult, which is one of the reasons the circuitry
for such caches is more complex. Because of the complications that LRU
can introduce on these associative caches, other replacement policies are
sometimes used. Two of these other policies are first-in, first-out (FIFO) and
random. These are easier to implement than LRU, but they have their own
problems, which are beyond the scope of this book, but which a text on
computer architecture or operating systems will discuss.

11.4.6 Writing Data to Memory
What happens when the CPU writes data to memory? The simple answer,
and the one that results in the quickest operation, is that the CPU writes the
data to the cache. However, what happens when the cache line containing
this data is subsequently replaced by data that is read from memory? If the
modified contents of the cache line are not written to main memory prior to
this replacement, then the data that was written to the cache line will be lost.
The next time the CPU attempts to access that data it will reload the cache
line with the old data that was never updated after the write operation.

Clearly any data written to the cache must ultimately be written to main
memory as well. There are two common write policies that caches use: write-
back and write-through. Interestingly enough, it is sometimes possible to set the
write policy in software, as the write policy isn’t always hardwired into the
cache controller. However, don’t get your hopes up. Generally the CPU only
allows the BIOS or operating system to set the cache write policy, so unless
you’re the one writing the operating system, you won’t be able to control the
write policy.

The write-through policy states that any time data is written to the cache,
the cache immediately turns around and writes a copy of that cache line to
main memory. An important point to notice is that the CPU does not have
to halt while the cache controller writes the data from cache to main mem-
ory. So unless the CPU needs to access main memory shortly after the write
occurs, this writing takes place in parallel with the execution of the program.
Furthermore, because the write-through policy updates main memory with
the new value as rapidly as possible, it is a better policy to use when two
different CPUs are communicating through shared memory.

Still, writing a cache line to memory takes some time, and it is likely that
the CPU (or some CPU in a multiprocessor system) will want to access main
memory during the write operation, so the write-through policy may not
be a high-performance solution to the problem. Worse, suppose the CPU
reads from and writes to the memory location several times in succession.

No Starch Press, Copyright © 2004 by Randall Hyde

308 Chap te r 11

With a write-through policy in place, the CPU will saturate the bus with
cache-line writes, and this will have a very negative impact on the program’s
performance.

The second common cache write policy is the write-back policy. In this
mode, writes to the cache are not immediately written to main memory;
instead, the cache controller updates main memory at a later time. This
scheme tends to be higher performance because several writes to the same
cache line within a short time period do not generate multiple writes to main
memory.

Of course, at some point the cache controller must write the data in
cache to memory. To determine which cache lines must be written back to
main memory, the cache controller usually maintains a dirty bit within each
cache line. The cache system sets this bit whenever it writes data to the cache.
At some later time, the cache controller checks this dirty bit to determine if it
must write the cache line to memory. For example, whenever the cache con-
troller replaces a cache line with other data from memory, it must first check
the dirty bit, and if that bit is set, the controller must write that cache line to
memory before going through with the cache-line replacement. Note that
this increases the latency time when replacing a cache line. If the cache con-
troller were able to write dirty cache lines to main memory while no other
bus access was occurring, the system could reduce this latency during cache
line replacement. Some systems actually provide this functionality, and
others do not for economic reasons.

11.4.7 Cache Use and Software

A cache subsystem is not a panacea for slow memory access. In order for a
cache system to be effective, software must exhibit locality of reference
(either spatial or temporal). Fortunately, real-world programs tend to exhibit
locality of reference, so most programs will benefit from the presence of a
cache in the memory subsystem. But while programs do exhibit locality of
reference, this is often accidental; programmers rarely consider the memory-
access patterns of their software when designing and coding. Unfortunately,
application programmers who work under the assumption that the cache
will magically improve the performance of their applications are missing
one important point — a cache can actually hurt the performance of an
application.

Suppose that an application accesses data at several different addresses
that the caching controller would map to the exact same cache line. With
each access, the caching controller must read in a new cache line (possibly
flushing the old cache line back to memory if it is dirty). As a result, each
memory access incurs the latency cost of bringing in a cache line from
main memory. This degenerate case, known as thrashing, can slow down
the program by one to two orders of magnitude, depending on the speed
of main memory and the size of a cache line. Great code is written with
the behavior of the cache in mind. A great programmer attempts to place

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 309

oft-used variables in adjacent memory cells so those variables tend to fall into
the same cache lines. A great programmer carefully chooses data structures
(and access patterns to those data structures) to avoid thrashing. We’ll take
another look at thrashing a little later in this chapter.

Another benefit of the cache subsystem on modern 80x86 CPUs is that it
automatically handles many misaligned data references. As you may recall,
there is a penalty for accessing words or double-word objects at an address
that is not an even multiple of that object’s size. As it turns out, by providing
some fancy logic, Intel’s designers have eliminated this penalty as long as the
data object is located completely within a cache line. However, if the object
crosses a cache line, there will be a performance penalty for the memory
access.

11.5 Virtual Memory, Protection, and Paging

In a modern operating system such as Mac OS, Linux, or Windows, it is very
common to have several different programs running concurrently in
memory. This presents several problems.

� How do you keep the programs from interfering with each other’s
memory?

� If one program expects to load a value into memory at address $1000,
and a second program also expects to load a value into memory at
address $1000, how can you load both values and execute both programs
at the same time?

� What happens if the computer has 64 MB of memory, and we decide
to load and execute three different applications, two of which require
32 MB and one that requires 16 MB (not to mention the memory that
the operating system requires for its own purposes)?

The answers to all these questions lie in the virtual memory subsystem that
modern processors support.

Virtual memory on CPUs such as the 80x86 gives each process its own
32-bit address space.3 This means that address $1000 in one program is
physically different from address $1000 in a separate program. The CPU
achieves this sleight of hand by mapping the virtual addresses used by
programs to different physical addresses in actual memory. The virtual address
and the physical address don’t have to be the same, and usually they aren’t.
For example, program 1’s virtual address $1000 might actually correspond to
physical address $215000, while program 2’s virtual address $1000 might
correspond to physical memory address $300000. How can the CPU do this?
Easy, by using paging.

3 Strictly speaking, you actually get a 36-bit address space on Pentium Pro and later processors,
but Windows and Linux limit you to 32 bits, so we’ll use that limitation here.

No Starch Press, Copyright © 2004 by Randall Hyde

310 Chap te r 11

The concept behind paging is quite simple. First, you break up memory
into blocks of bytes called pages. A page in main memory is comparable to a
cache line in a cache subsystem, although pages are usually much larger than
cache lines. For example, the 80x86 CPUs use a page size of 4,096 bytes.

After breaking up memory into pages, you use a lookup table to map the
HO bits of a virtual address to the HO bits of the physical address in memory,
and you use the LO bits of the virtual address as an index into that page. For
example, with a 4,096-byte page, you’d use the LO 12 bits of the virtual
address as the offset (0..4095) within the page, and the upper 20 bits as an
index into a lookup table that returns the actual upper 20 bits of the physical
address (see Figure 11-5).

Figure 11-5: Translating a virtual address to a physical address

Of course, a 20-bit index into the page table would require over one million
entries in the page table. If each of the over one million entries is a 32-bit
value, then the page table would be 4 MB long. This would be larger than
most of the programs that would run in memory! However, by using what
is known as a multilevel page table, it is very easy to create a page table for
most small programs that is only 8 KB long. The details are unimportant
here. Just rest assured that you don’t need a 4 -MB page table unless your
program consumes the entire 4 GB address space.

If you study Figure 11-5 for a few moments, you’ll probably discover one
problem with using a page table — it requires two separate memory accesses
in order to retrieve the data stored at a single physical address in memory:
one to fetch a value from the page table, and one to read from or write to the
desired memory location. To prevent cluttering the data or instruction cache
with page-table entries, which increases the number of cache misses for data
and instruction requests, the page table uses its own cache, known as the
translation lookaside buffer (TLB). This cache typically has 32 entries on a

0111231

32-bit virtual address

...

...

32-bit physical address

11 0

Bits 12..31
form an index
into the page
table. The entry
in the page
table provides
bits 12..31
of the physical
address.

Bits 0..11 are copied
directly to bits 0..11
in the physical address.

Page
table

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 311

Pentium family processor — enough to handle 128 KB of memory, or 32
pages, without a miss. Because a program typically works with less data than
this at any given time, most page-table accesses come from the cache rather
than main memory.

As noted, each entry in the page table contains 32 bits, even though the
system really only needs 20 bits to remap each virtual address to a physical
address. Intel, on the 80x86, uses some of the remaining 12 bits to provide
some memory-protection information:

� One bit marks whether a page is read/write or read-only.

� One bit determines whether you can execute code on that page.

� A number of bits determine whether the application can access that page
or if only the operating system can do so.

� A number of bits determine if the CPU has written to the page, but
hasn’t yet written to the physical memory address corresponding to the
page entry (that is, whether the page is “dirty” or not, and whether the
CPU has accessed the page recently).

� One bit determines whether the page is actually present in physical
memory or if it’s stored on secondary storage somewhere.

Note that your applications do not have access to the page table (reading
and writing the page table is the operating system’s responsibility), and
therefore they cannot modify these bits. However, operating systems like
Windows may provide some functions you can call if you want to change
certain bits in the page table (for example, Windows will allow you to set a
page to read-only if you want to do so).

Beyond remapping memory so multiple programs can coexist in main
memory, paging also provides a mechanism whereby the operating system
can move infrequently used pages to secondary storage. Just as locality of
reference applies to cache lines, it applies to pages in main memory as well.
At any given time, a program will only access a small percentage of the pages
in main memory that contain data and instruction bytes and this set of pages
is known as the working set. Although this working set of pages varies slowly
over time, for small periods of time the working set remains constant.
Therefore, there is little need for the remainder of the program to consume
valuable main memory storage that some other process could be using. If the
operating system can save the currently unused pages to disk, the main
memory they consume would be available for other programs that need it.

Of course, the problem with moving data out of main memory is that
eventually the program might actually need that data. If you attempt to
access a page of memory, and the page-table bit tells the memory manage-
ment unit (MMU) that the page is not present in main memory, the
CPU interrupts the program and passes control to the operating system.
The operating system then analyzes the memory-access request and reads
the corresponding page of data from the disk drive and copies it to some
available page in main memory. This process is nearly identical to the

No Starch Press, Copyright © 2004 by Randall Hyde

312 Chap te r 11

process used by a fully associative cache subsystem, except that accessing
the disk is much slower than accessing main memory. In fact, you can think
of main memory as a fully associative write-back cache with 4,096-byte cache
lines, which caches the data that is stored on the disk drive. Placement and
replacement policies and other issues are very similar for caches and main
memory.

However, that’s as far as we’ll go in exploring how the virtual memory
subsystem works. If you’re interested in further information, any decent
textbook on operating system design will explain how the virtual memory
subsystem swaps pages between main memory and the disk. Our main goal
here is to realize that this process takes place in operating systems like Mac
OS, Linux, and Windows, and that accessing the disk is very slow.

One important issue resulting from the fact that each program has a
separate page table, and the fact that programs themselves don’t have access
to the page tables, is that programs cannot interfere with the operation of
other programs. That is, a program cannot change its page tables in order to
access data found in another process’s address space. If your program crashes
by overwriting itself, it cannot crash other programs at the same time. This is
a big benefit of a paging memory system.

If two programs want to cooperate and share data, they can do so by
placing such data in a memory area that is shared by the two processes. All
they have to do is tell the operating system that they want to share some
pages of memory. The operating system returns a pointer to each process
that points at a segment of memory whose physical address is the same for
both processes. Under Windows, you can achieve this by using memory-mapped
files; see the operating system documentation for more details. Mac OS and
Linux also support memory-mapped files as well as some special shared-
memory operations; again, see the OS documentation for more details.

Although this discussion applies specifically to the 80x86 CPU, multi-
level paging systems are common on other CPUs as well. Page sizes tend to
vary from about 1 KB to 64 KB, depending on the CPU. For CPUs that
support an address space larger than 4 GB, some CPUs use an inverted page
table or a three-level page table. Although the details are beyond the scope of this
chapter, rest assured that the basic principle remains the same — the CPU
moves data between main memory and the disk in order to keep oft-accessed
data in main memory as much of the time as possible. These other page-table
schemes are good at reducing the size of the page table when an application
uses only a fraction of the available memory space.

11.6 Thrashing

Thrashing is a degenerate case that can cause the overall performance of the
system to drop to the speed of a lower level in the memory hierarchy, like
main memory or, worse yet, the disk drive. There are two primary causes of
thrashing:

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 313

� Insufficient memory at a given level in the memory hierarchy to properly
contain the program working sets of cache lines or pages

� A program that does not exhibit locality of reference

If there is insufficient memory to hold a working set of pages or cache lines,
the memory system will constantly be replacing one block of data in the
cache or main memory with another block of data from main memory or the
disk. As a result, the system winds up operating at the speed of the slower
memory in the memory hierarchy. A common example of thrashing occurs
with virtual memory. A user may have several applications running at the
same time, and the sum total of the memory required by these programs’
working sets is greater than all of the physical memory available to the
programs. As a result, when the operating system switches between the
applications it has to copy each application’s data, and possibly program
instructions, to and from disk. Because switching between programs is often
much faster than retrieving data from the disk, this slows the programs down
by a tremendous factor.

We have already seen in this chapter that if the program does not exhibit
locality of reference and the lower memory subsystems are not fully associ-
ative, then thrashing can occur even if there is free memory at the current
level in the memory hierarchy. To take our earlier example, suppose an 8-KB
L1 caching system uses a direct-mapped cache with 512 16-byte cache lines. If
a program references data objects 8 KB apart on every access, then the system
will have to replace the same line in the cache over and over again with the
data from main memory. This occurs even though the other 511 cache lines
are currently unused.

When insufficient memory is the problem, you can add memory to
reduce thrashing. Or, if you can’t add more memory, you can try to run
fewer processes concurrently or modify your program so that it references
less memory over a given period. To reduce thrashing when locality of
reference is causing the problem, you should restructure your program
and its data structures to make its memory references physically near one
another.

11.7 NUMA and Peripheral Devices

Although most of the RAM in a system is based on high-speed DRAM
interfaced directly with the processor’s bus, not all memory is connected
to the CPU in this manner. Sometimes a large block of RAM is part of a
peripheral device, and you communicate with that device by writing data
to its RAM. Video display cards are probably the most common example of
such a peripheral, but some network interface cards, USB controllers, and
other peripherals also work this way. Unfortunately, the access time to the
RAM on these peripheral devices is often much slower than the access time

No Starch Press, Copyright © 2004 by Randall Hyde

314 Chap te r 11

to main memory. In this section, we’ll use the video card as an example,
although NUMA performance applies to other devices and memory tech-
nologies as well.

A typical video card interfaces with a CPU via an AGP or PCI bus inside
the computer system. The PCI bus typically runs at 33 MHz and is capable of
transferring four bytes per bus cycle. Therefore, in burst mode, a video con-
troller card is capable of transferring 132 MB per second, though few would
ever come close to achieving this for technical reasons. Now compare this
with main-memory access time. Main memory usually connects directly to the
CPU’s bus, and modern CPUs have an 800-MHz 64 -bit-wide bus. If memory
were fast enough, the CPU’s bus could theoretically transfer 6.4 GB per
second between memory and the CPU. This is about 48 times faster than the
speed of transferring data across the PCI bus. Game programmers long ago
discovered that it’s much faster to manipulate a copy of the screen data in
main memory and only copy that data to the video display memory whenever
a vertical retrace occurs (about 60 times per second). This mechanism is
much faster than writing directly to the video card memory every time you
want to make a change.

Caches and the virtual memory subsystem operate in a transparent fash-
ion, but NUMA memory does not, so programs that write to NUMA devices
must minimize the number of accesses whenever possible (for example,
by using an off-screen bitmap to hold temporary results). If you’re actually
storing and retrieving data on a NUMA device, like a flash memory card,
you must explicitly cache the data yourself.

11.8 Writing Software That Is Cognizant of the Memory
Hierarchy

Although the memory hierarchy is usually transparent to application
programmers, software that is aware of memory performance behavior can
run much faster than software that is ignorant of the memory hierarchy.
Although a system’s caching and paging facilities may perform reasonably
well for typical programs, it is easy to write software that would run faster if
the caching system were not present. The best software is written to allow it
to take maximum advantage of the memory hierarchy.

A classic example of a bad design is the following loop that initializes a
two-dimensional array of integer values:

int array[256][256];

. . .

for(i=0; i<256; ++i)

for(j=0; j<256; ++j)

array[j][i] = i*j;

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 315

Believe it or not, this code runs much slower on a modern CPU than the
following sequence:

int array[256][256];

. . .

for(i=0; i<256; ++i)

for(j=0; j<256; ++j)

array[i][j] = i*j;

If you look closely, you’ll notice that the only difference between the two
code sequences is that the i and j indexes are swapped when accessing
elements of the array. This small modification can be responsible for an
order of magnitude (or two) difference in the run time of these two code
sequences! To understand why, first recall that the C programming language
uses row-major ordering for two-dimensional arrays in memory. The second
code sequence here, therefore, accesses sequential locations in memory,
exhibiting spatial locality of reference. The first code sequence does not
access sequential memory locations. It accesses array elements in the
following order:

array[0][0]

array[1][0]

array[2][0]

array[3][0]

. . .

array[254][0]

array[255][0]

array[0][1]

array[1][1]

array[2][1]

. . .

If integers are four bytes each, then this sequence will access the double-word
values at offsets 0; 1,024; 2,048; 3,072; and so on, from the base address of the
array. Most likely, this code is going to load only n integers into an n-way set
associative cache and then immediately cause thrashing thereafter as each
subsequent array element has to be copied from the cache into main
memory to prevent that data from being overwritten.

The second code sequence does not exhibit thrashing. Assuming 64-byte
cache lines, the second code sequence will store 16 integer values into the
same cache line before having to load another cache line from main mem-
ory, replacing an existing cache line. As a result, this second code sequence
spreads out the cost of bringing the cache line in from memory over 16
memory accesses rather than over a single access, as occurs with the first
code sequence. For this, and several other reasons, the second example
runs much faster.

No Starch Press, Copyright © 2004 by Randall Hyde

316 Chap te r 11

There are also several variable declaration tricks you can employ to
maximize the performance of the memory hierarchy. First, try to declare
together all variables you use within a common code sequence. In most
languages, this will allow the language translator to allocate storage for the
variables in physically adjacent memory locations, thus supporting spatial
locality as well as temporal locality. Second, you should attempt to allocate
local variables within a procedure, because most languages allocate local
storage on the stack and, as the system references the stack frequently,
variables on the stack tend to be in the cache. Third, declare your scalar
variables together, and separate from your array and record variables.
Access to any one of several adjacent scalar variables generally forces the
system to load all of the adjacent objects into the cache. As such, whenever
you access one variable, the system usually loads the adjacent variables into
the cache as well.

When writing great code, you’ll want to study the memory access
patterns your program exhibits and adjust your application accordingly.
You can toil away for hours trying to achieve a 10 percent performance
improvement by rewriting your code in hand-optimized assembly language,
but if you modify the way your program accesses memory, it’s not unheard
of to see an order of magnitude improvement in performance.

11.9 Run-Time Memory Organization

An operating system like Mac OS, Linux, or Windows puts different types
of data into different areas (sections or segments) of main memory. Although
it is possible to control the memory organization by running a linker and
specifying various parameters, by default Windows loads a typical program
into memory using the organization shown in Figure 11-6 (Linux is similar,
though it rearranges some of the sections).

Figure 11-6: Typical Windows run-time memory organization

High addresses

Stack

Heap

Code (program instructions)

Read-only data

Static variables

Constants (not user accessible)

Storage (uninitialized) variables

Reserved by OS (typically 128 KB)Adrs = $0

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 317

The operating system reserves the lowest memory addresses. Generally, your
application cannot access data (or execute instructions) at the lowest
addresses in memory. One reason the OS reserves this space is to help detect
NULL pointer references. Programmers often initialize pointers with NULL
(zero) to indicate that the pointer is not valid. Should you attempt to access
memory location zero under such OSes, the OS will generate a “general
protection fault” to indicate that you’ve accessed a memory location that
doesn’t contain valid data.

The remaining seven areas in the memory map hold different types of
data associated with your program. These sections of memory include:

� The code section, which holds the program’s machine instructions.

� The constant section, which holds compiler-generated read-only data.

� The read-only data section, that holds user-defined data that can only be
read, never written.

� The static section, which holds user-defined, initialized, static variables.

� The storage section, or BSS section, that holds user-defined uninitialized
variables.

� The stack section, where the program keeps local variables and other
temporary data.

� The heap section, where the program maintains dynamic variables.

Often, a compiler will combine the code, constant, and read-only data
sections because all three sections contain read-only data.

Most of the time, a given application can live with the default layouts
chosen for these sections by the compiler and linker/loader. In some cases,
however, knowing the memory layout can allow you to develop shorter
programs. For example, as the code section is usually read-only, it may be
possible to combine the code, constants, and read-only data sections into a
single section, thus saving any padding space that the compiler/linker may
place between these sections. Although these savings are probably insig-
nificant for large applications, they can have a big impact on the size of
a small program.

The following sections discuss each of these memory areas in detail.

11.9.1 Static and Dynamic Objects, Binding, and Lifetime
To understand the memory organization of a typical program, we’ve first got
to define a few terms that will prove useful in our discussion. These terms are
binding, lifetime, static, and dynamic.

Binding is the process of associating an attribute with an object. For
example, when you assign a value to a variable, we say that the value is bound
to that variable at the point of the assignment. The value remains bound to
the variable until you bind some other value to it (via another assignment
operation). Likewise, if you allocate memory for a variable while the program

No Starch Press, Copyright © 2004 by Randall Hyde

318 Chap te r 11

is running, we say that the variable is bound to the address at that point. The
variable and address are bound until you associate a different address with
the variable. Binding needn’t occur at run time. For example, values are
bound to constant objects during compilation, and such bindings cannot
change while the program is running.

The lifetime of an attribute extends from the point when you first bind
that attribute to an object to the point when you break that bond, perhaps by
binding a different attribute to the object. For example, the lifetime of a
variable is from the time you first associate memory with the variable to the
moment you deallocate that variable’s storage.

Static objects are those that have an attribute bound to them prior to the
execution of the application. Constants are good examples of static objects;
they have the same value bound to them throughout the execution of the
application. Global (program-level) variables in programming languages like
Pascal, C/C++, and Ada are also examples of static objects in that they have
the same address bound to them throughout the program’s lifetime. The
lifetime of a static object, therefore, extends from the point at which the
program first begins execution to the point when the application terminates.
The system binds attributes to a static object before the program begins
execution (usually during compilation or during the linking phase, though
it is possible to bind values even earlier).

The notion of identifier scope is also associated with static binding.
The scope of an identifier is that section of the program where the iden-
tifier’s name is bound to the object. As names exist only during compilation,
scope is definitely a static attribute in compiled languages. (In interpretive
languages, where the interpreter maintains the identifier names during
program execution, scope can be a nonstatic attribute.) The scope of a
local variable is generally limited to the procedure or function in which
you declare it (or to any nested procedure or function declarations in block
structured languages like Pascal or Ada), and the name is not visible outside
the subroutine. In fact, it is possible to reuse an identifier’s name in a differ-
ent scope (that is, in a different function or procedure). In such a case as
this, the second occurrence of the identifier will be bound to a different
object than the first use of the identifier.

Dynamic objects are those that have some attribute assigned to them
while the program is running. The program may choose to change that
attribute (dynamically) while the program is running. The lifetime of that
attribute begins when the application associates the attribute with the object
and ends when the program breaks that association. If the program associ-
ates some attribute with an object and then never breaks that bond, the
lifetime of the attribute is from the point of association to the point the
program terminates. The system binds dynamic attributes to an object at
run time, after the application begins execution.

Note that an object may have a combination of static and dynamic attri-
butes. For example, a static variable will have an address bound to it for the
entire execution time of the program. However, that same variable could

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 319

have different values bound to it throughout the program’s lifetime. For any
given attribute, however, the attribute is either static or dynamic; it cannot
be both.

11.9.2 The Code, Read-Only, and Constant Sections

The code section in memory contains the machine instructions for a
program. Your compiler translates each statement you write into a sequence
of one or more byte values. The CPU interprets these byte values as machine
instructions during program execution.

Most compilers also attach a program’s read-only data to the code
section because, like the code instructions, the read-only data is already
write-protected. However, it is perfectly possible under Windows, Linux, and
many other operating systems to create a separate section in the executable
file and mark it as read-only. As a result, some compilers do support a
separate read-only data section. Such sections contain initialized data, tables,
and other objects that the program should not change during program
execution.

The constant section found in Figure 11-6 typically contains data that the
compiler generates (as opposed to a read-only section that contains user-
defined read-only data). Most compilers actually emit this data directly to the
code section. Therefore, in most executable files, you’ll find a single section
that combines the code, read-only data, and constant data sections.

11.9.3 The Static Variables Section

Many languages provide the ability to initialize a global variable during the
compilation phase. For example, in C/C++ you could use statements like the
following to provide initial values for these static objects:

static int i = 10;

static char ch[] = ('a', 'b', 'c', 'd' };

In C/C++ and other languages, the compiler will place these initial values in
the executable file. When you execute the application, the operating system
will load the portion of the executable file that contains these static variables
into memory so that the values appear at the addresses associated with them.
Therefore, when the program first begins execution, these static variables
will magically have these values bound to them.

11.9.4 The Uninitialized Storage (BSS) Section

Most operating systems will zero out memory prior to program execution.
Therefore, if an initial value of zero is suitable and your operating system
supports this feature, you don’t need to waste any disk space with the static
object’s initial value. Generally, however, compilers treat uninitialized

No Starch Press, Copyright © 2004 by Randall Hyde

320 Chap te r 11

variables in a static section as though you’ve initialized them with zero, thus
consuming disk space. Some operating systems provide a separate section,
the BSS section, to avoid this waste of disk space.

The BSS section is where compilers typically put static objects that don’t
have an explicit value associated with them. BSS stands for block started by a
symbol, which is an old assembly language term describing a pseudo-opcode
one would use to allocate storage for an uninitialized static array. In modern
OSes like Windows and Linux, the OS allows the compiler/linker to put all
uninitialized variables into a BSS section that simply contains information
that tells the OS how many bytes to set aside for the section. When the
operating system loads the program into memory, it reserves sufficient
memory for all the objects in the BSS section and fills this memory with
zeros. It is important to note that the BSS section in the executable file
doesn’t actually contain any data. Because the BSS section does not require
the executable file to consume space for uninitialized zeros, programs that
declare large uninitialized static arrays will consume less disk space.

However, not all compilers actually use a BSS section. Many Microsoft
languages and linkers, for example, simply place the uninitialized objects in
the static data section and explicitly give them an initial value of zero.
Although Microsoft claims that this scheme is faster, it certainly makes
executable files larger if your code has large, uninitialized arrays (because
each byte of the array winds up in the executable file — something that
would not happen if the compiler were to place the array in a BSS section).

11.9.5 The Stack Section

The stack is a data structure that expands and contracts in response to
procedure invocations and the return to calling routines, among other
things. At run time, the system places all automatic variables (nonstatic local
variables), subroutine parameters, temporary values, and other objects in the
stack section of memory in a special data structure we call the activation record
(which is aptly named because the system creates an activation record when a
subroutine first begins execution, and it deallocates the activation record
when the subroutine returns to its caller). Therefore, the stack section in
memory is very busy.

Most CPUs implement the stack using a register called the stack pointer.
Some CPUs, however, don’t provide an explicit stack pointer and, instead,
use a general-purpose register for this purpose. If a CPU provides an explicit
stack-pointer register, we say that the CPU supports a hardware stack; if only
a general-purpose register is available, then we say that the CPU uses a
software-implemented stack. The 80x86 is a good example of a CPU that
provides a hardware stack; the MIPS Rx000 family is a good example of a
CPU family that implements the stack in software. Systems that provide
hardware stacks can generally manipulate data on the stack using fewer

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 321

instructions than those systems that implement the stack in software. On the
other hand, RISC CPU designers who’ve chosen to use a software-stack
implementation feel that the presence of a hardware stack actually slows
down all instructions the CPU executes. In theory, one could make an
argument that the RISC designers are right; in practice, though, the 80x86
CPU is one of the fastest CPUs around, providing ample proof that having a
hardware stack doesn’t necessarily mean you’ll wind up with a slow CPU.

11.9.6 The Heap Section and Dynamic Memory Allocation
Although simple programs may only need static and automatic variables,
sophisticated programs need the ability to allocate and deallocate storage
dynamically (at run time) under program control. In the C and HLA lan-
guages, you would use the malloc and free functions for this purpose, C++
provides the new and delete operators, Pascal uses new and dispose, and other
languages provide comparable routines. These memory-allocation routines
have a few things in common: they let the programmer request how many
bytes of storage to allocate, they return a pointer to the newly allocated
storage (that is, the address of that storage), and they provide a facility for
returning the storage space to the system once it is no longer needed, so the
system can reuse it in a future allocation call. Dynamic memory allocation
takes place in a section of memory known as the heap.

Generally, an application refers to data on the heap using pointer
variables (either implicitly or explicitly; some languages, like Java, implicitly
use pointers behind the programmer’s back). As such, we’ll usually refer to
objects in heap memory as anonymous variables because we refer to them by
their memory address (via pointers) rather than by a name.

The OS and application create the heap section in memory after the
program begins execution; the heap is never a part of the executable file.
Generally, the OS and language run-time libraries maintain the heap for
an application. Despite the variations in memory management implemen-
tations, it’s still a good idea for you to have a basic idea of how heap
allocation and deallocation operate, because an inappropriate use of
the heap management facilities will have a very negative impact on the
performance of your applications.

11.9.6.1 Memory Allocation

An extremely simple (and fast) memory allocation scheme would maintain
a single variable that forms a pointer into the heap region of memory.
Whenever a memory allocation request comes along, the system makes a
copy of this heap pointer and returns it to the application; then the heap
management routines add the size of the memory request to the address
held in the pointer variable and verify that the memory request doesn’t
try to use more memory than is available in the heap region (some memory

No Starch Press, Copyright © 2004 by Randall Hyde

322 Chap te r 11

managers return an error indication, like a NULL pointer, when the memory
request is too great, and others raise an exception). The problem with
this simple memory management scheme is that it wastes memory, because
there is no mechanism to allow the application to free the memory that
anonymous variables no longer require so that the application can reuse
that memory later. One of the main purposes of a heap-management system
is to perform garbage collection, that is, reclaim unused memory when an
application finishes using the memory.

The only catch is that supporting garbage collection requires some
overhead. The memory management code will need to be more sophisti-
cated, will take longer to execute, and will require some additional memory
to maintain the internal data structures the heap-management system uses.
Let’s consider an easy implementation of a heap manager that supports
garbage collection. This simple system maintains a (linked) list of free mem-
ory blocks. Each free memory block in the list will require two double-word
values: one double-word value specifies the size of the free block, and the
other double word contains a link to the next free block in the list (that is,
a pointer), see Figure 11-7.

Figure 11-7: Heap management using a list of free memory blocks

The system initializes the heap with a NULL link pointer, and the size field
contains the size of the entire free space. When a memory request comes
along, the heap manager first determines if there is a sufficiently large block

L
I
N
K

S
I
Z
E

Free/unused memory

Memory in use

Free memory list

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 323

available for the allocation request. To do this, the heap manager has to
search through the list to find a free block with enough memory to satisfy the
request.

One of the defining characteristics of a heap manager is how it searches
through the list of free blocks to satisfy the request. Some common search
algorithms are first-fit and best-fit. The first-fit search, as its name suggests,
scans through the list of blocks until it finds the first block of memory large
enough to satisfy the allocation request. The best-fit algorithm scans through
the entire list and finds the smallest block large enough to satisfy the request.
The advantage of the best-fit algorithm is that it tends to preserve larger
blocks better than the first-fit algorithm, thereby allowing the system to
handle larger subsequent allocation requests when they arrive. The first-fit
algorithm, on the other hand, just grabs the first sufficiently large block it
finds, even if there is a smaller block that would satisfy the request; as a
result, the first-fit algorithm may reduce the number of large free blocks in
the system that could satisfy large memory requests.

The first-fit algorithm does have a couple of advantages over the best-fit
algorithm, though. The most obvious advantage is that the first-fit algorithm
is usually faster. The best-fit algorithm has to scan through every block in the
free block list in order to find the smallest block large enough to satisfy the
allocation request (unless, of course, it finds a perfectly sized block along the
way). The first-fit algorithm, on the other hand, can stop once it finds a block
large enough to satisfy the request.

Another advantage to the first-fit algorithm is that it tends to suffer
less from a degenerate condition known as external fragmentation. Frag-
mentation occurs after a long sequence of allocation and deallocation
requests. Remember, when the heap manager satisfies a memory allocation
request, it usually creates two blocks of memory — one in-use block for
the request and one free block that contains the remaining bytes in the
original block after the request is filled (assuming the heap manager did
not find an exact fit). After operating for a while, the best-fit algorithm
may wind up producing lots of smaller, leftover blocks of memory that
are too small to satisfy an average memory request (because the best-fit
algorithm also produces the smallest leftover blocks as a result of its
behavior). As a result, the heap manager will probably never allocate
these small blocks (fragments), so they are effectively unusable. Although
each individual fragment may be small, as multiple fragments accumulate
throughout the heap, they can wind up consuming a fair amount of memory.
This can lead to a situation where the heap doesn’t have a sufficiently large
block to satisfy a memory allocation request even though there is enough
free memory available (spread throughout the heap). See Figure 11-8 on the
next page for an example of this condition.

No Starch Press, Copyright © 2004 by Randall Hyde

324 Chap te r 11

Figure 11-8: Memory fragmentation

In addition to the first-fit and best-fit algorithms, there are other memory
allocation strategies. Some execute faster, some have less (memory)
overhead, some are easy to understand (and some are very complex), some
produce less fragmentation, and some have the ability to combine and use
noncontiguous blocks of free memory. Memory/heap management is one
of the more heavily studied subjects in computer science; there is consid-
erable literature extolling the benefits of one scheme over another. For
more information on memory allocation strategies, check out a good book
on OS design.

11.9.6.2 Garbage Collection

Memory allocation is only half of the story. In addition to a memory allo-
cation routine, the heap manager has to provide a call that allows an appli-
cation to return memory it no longer needs for future reuse. In C and HLA,
for example, an application accomplishes this by calling the free function.

At first blush, it might seem that free would be a very simple function to
write. All it looks like one has to do is append the previously allocated and
now unused block onto the end of the free list. The problem with this trivial
implementation of free is that it almost guarantees that the heap becomes
fragmented to the point of being unusable in very short order. Consider the
situation in Figure 11-9.

Figure 11-9: Freeing a memory block

If a trivial implementation of free simply takes the block to be freed and
appends it to the free list, the memory organization in Figure 11-9 produces
three free blocks. However, because these three blocks are all contiguous,
the heap manager should really coalesce these three blocks into a single free
block; doing so allows the heap manager to satisfy a larger request. Unfor-
tunately, from an overhead perspective, this coalescing operation requires
our simple heap manager to scan through the free block list in order to
determine whether there are any free blocks adjacent to the block the system
is freeing. While it’s possible to come up with a data structure that reduces

Free/unused memory

Memory in use
Desired allocation size

Free/unused memory

Memory in useBlock to be freed

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 325

the effort needed to coalesce adjacent free blocks, such schemes generally
involve the use of additional overhead bytes (usually eight or more) for each
block on the heap. Whether or not this is a reasonable trade-off depends
on the average size of a memory allocation. If the applications that use the
heap manager tend to allocate small objects, the extra overhead for each
memory block could wind up consuming a large percentage of the heap
space. However, if the most allocations are large, then the few bytes of
overhead will be of little consequence.

11.9.6.3 The OS and Memory Allocation

The performance of the algorithms and data structures the heap manager
uses are only a part of the performance problem. Ultimately, the heap
manager needs to request blocks of memory from the operating system.
In one possible implementation, the operating system handles all memory
allocation requests. Another possibility is that the heap manager is a run-time
library routine that links with your application; the heap manager requests
large blocks of memory from the operating system and then doles out pieces
of this block as memory requests arrive from the application.

The problem with making direct memory allocation requests to the OS
is that OS API calls are often very slow. If an application calls the operating
system for every memory request it makes, the performance of the appli-
cation will probably suffer if the application makes several memory allo-
cation and deallocation calls. OS API calls are very slow, because they
generally involve switching between kernel mode and user mode on the
CPU (which is not fast). Therefore, a heap manager that the operating
system implements directly will not perform well if your application makes
frequent calls to the memory allocation and deallocation routines.

Because of the high overhead of an operating system call, most lan-
guages implement their own version of malloc and free (or whatever they
call them) within the language’s run-time library. On the very first memory
allocation, the malloc routine will request a large block of memory from the
operating system, and then the application’s malloc and free routines will
manage this block of memory themselves. If an allocation request comes
along that the malloc function cannot fulfill in the block it originally created,
then malloc will request another large block (generally much larger than the
request) from the operating system, and add that block to the end of its free
list. Because the calls to the application’s malloc and free routines only call
the operating system on an occasional basis, this dramatically reduces the
overhead associated with OS calls.

However, you should keep in mind that the procedure illustrated in
the previous paragraph is very implementation and language specific; so
it’s dangerous for you to assume that malloc and free are relatively efficient
when writing software that requires high-performance components. The
only portable way to ensure a high-performance heap manager is to develop
an application-specific set of routines yourself.

No Starch Press, Copyright © 2004 by Randall Hyde

326 Chap te r 11

Most standard heap management functions perform reasonably for a
typical program. For your specific application, however, it may be possible to
write a specialized set of functions that are much faster or have less memory
overhead. If your application’s allocation routines are written by someone
who has a good understanding of the program’s memory allocation patterns,
the allocation and deallocation functions may be able to handle the appli-
cation’s requests in a more efficient manner. Writing such routines is beyond
the scope of this book (please see an OS textbook for more details), but you
should be aware of this possibility.

11.9.6.4 Heap Memory Overhead

A heap manager often exhibits two types of overhead: performance (speed)
and memory (space). Until now, the discussion has mainly dealt with the
performance characteristics of a heap manager; now it’s time to turn our
attention to the memory overhead associated with the heap manager.

Each block the system allocates is going to require some amount of
overhead above and beyond the storage the application requests. At the very
least, each block the heap manager allocates requires a few bytes to keep
track of the block’s size. Fancier (higher-performance) schemes may require
additional bytes, but a typical number of overhead bytes will be between 4
and 16. The heap manager can keep this information in a separate internal
table, or it can attach the block size and any other memory-management
information directly to the blocks it allocates.

Saving this information in an internal table has a couple of advantages.
First, it is difficult for the application to accidentally overwrite the informa-
tion stored there; attaching the data to the heap memory blocks themselves
doesn’t protect as well against the application wiping out this control infor-
mation with buffer overruns or underruns (thus corrupting the memory
manager’s data structures). Second, putting memory-management informa-
tion in an internal data structure allows the memory manager to determine
whether a given pointer is valid (whether it points at some block of memory
that the heap manager believes it has allocated).

The advantage of attaching the control information to each block the
heap manager allocates is that it is very easy to locate this information,
because the memory manager typically places this information immediately
before the allocated block. When the heap manager maintains this informa-
tion in an internal table, it may require a search operation of some sort in
order to locate the information.

Another issue that affects the overhead associated with the heap
manager is the allocation granularity. Although most heap managers will
allow you to allocate storage in blocks as small as one byte, most memory
managers will actually allocate some minimum number of bytes greater than
one. This minimum amount is the allocation granularity the memory manager
supports. Generally, the engineer designing the memory-allocation functions
chooses a granularity that will guarantee that any object allocated on the
heap will begin at a reasonably aligned memory address for that object.

No Starch Press, Copyright © 2004 by Randall Hyde

Memory Archi tecture and Organiza tion 327

As such, most heap managers allocate memory blocks on a 4 -, 8-, or 16 -byte
boundary. For performance reasons, many heap managers begin each allo-
cation on a typical cache-line boundary, usually 16, 32, or 64 bytes.

Whatever the granularity, if the application requests some number of
bytes that is less than the heap manager’s granularity, or that is not a mul-
tiple of the granularity value, the heap manager will allocate extra bytes of
storage so that the complete allocation is an even multiple of the granularity
value. Therefore, there may be a few unrequested bytes tacked on to each
allocation request to fill out the minimum-sized block the heap manager
allocates. Of course, this amount varies by heap manager (and possibly even
by version of a specific heap manager), so an application should never
assume that it has more memory available than it requests; doing so would
be silly, anyway, because the application could simply have requested more
memory in the initial allocation call if it needed more.

The extra memory the heap manager allocates to ensure that the request
is a multiple of the granularity size results in another form of fragmentation
called internal fragmentation. Like external fragmentation, internal fragmen-
tation results in the loss of small amounts of memory throughout the system
that cannot satisfy future allocation requests. Assuming random sized mem-
ory allocations, the average amount of internal fragmentation that will occur
on each allocation is half the granularity size. Fortunately, the granularity
size is quite small for most memory managers (typically 16 bytes or fewer),
so after thousands and thousands of memory allocations you’ll only lose a
couple dozen or so kilobytes to internal fragmentation.

Between the costs associated with allocation granularity and the memory
control information, a typical memory request may require between 4 and 16
bytes, plus whatever the application requests. If you are making large mem-
ory allocation requests (hundreds or thousands of bytes), the overhead bytes
won’t consume a large percentage of memory on the heap. However, if you
allocate lots of small objects, the memory consumed by internal fragmen-
tation and control information may represent a significant portion of your
heap area. For example, consider a simple memory manager that always
allocates blocks of data on 4-byte boundaries and requires a single 4-byte
length value that it attaches to each allocation request for control purposes.
This means that the minimum amount of storage the heap manager will
require for each allocation is eight bytes. If you make a series of malloc calls
to allocate a single byte, the application will not be able to use almost 88
percent of the memory it allocates. Even if you allocate 4-byte values on each
allocation request, the heap manager consumes 67 percent of the memory
for overhead purposes. However, if your average allocation is a block of 256
bytes, the overhead only requires about 2 percent of the total memory allo-
cation. Moral of the story: The larger your allocation request, the less impact
the control information and internal fragmentation will have on your heap.

Computer science journals contain lots of examples of software engi-
neering studies where the authors determined that memory allocation and
deallocation requests caused a significant loss of performance in their

No Starch Press, Copyright © 2004 by Randall Hyde

328 Chap te r 11

systems. In such studies, the authors often obtained performance improve-
ments of 100 percent or better by simply implementing their own simplified,
application-specific, memory-management algorithms rather than calling the
standard run-time library or OS kernel memory allocation code. Let’s hope
this section has made you aware of this potential problem in your own code.

11.10 For More Information

Like the previous couple of chapters, this chapter deals with computer archi-
tecture issues. Almost any decent college textbook on computer architecture
will go into considerable depth discussing caches and the memory hierarchy.
Patterson and Hennessy’s Computer Architecture: A Quantitative Approach is one
of the better-regarded texts on this subject. For information about virtual
memory management, a good operating systems textbook will be useful as
well. For information about the specific paging mechanism and support
for virtual memory that your particular CPU provides, see the CPU manu-
facturer’s data books for the CPU.

No Starch Press, Copyright © 2004 by Randall Hyde

12
I N P U T A N D O U T P U T (I / O)

A typical program has three basic tasks:
input, computation, and output. This book
has so far concentrated on the computa-

tional aspects of the computer system, but
now it is time to discuss input and output.

This chapter will focus on the primitive input and output activities of the
CPU, rather than on the abstract file or character input/output (I/O) that high-
level applications usually employ. It will discuss how the CPU transfers bytes of
data to and from the outside world, paying special attention to the performance
issues behind I/O operations. As all high-level I/O activities are eventually
routed through the low-level I/O systems, you must understand how low-level
input and output works on a computer system if you want to write programs that
communicate efficiently with the outside world.

No Starch Press, Copyright © 2004 by Randall Hyde

330 Chap te r 12

12.1 Connecting a CPU to the Outside World

The first thing to learn about the I/O subsystem is that I/O in a typical
computer system is radically different from I/O in a typical high-level
programming language. At the primitive I/O levels of a computer system,
you will rarely find machine instructions that behave like Pascal’s writeln,
C++’s cout, C’s printf, or even like the HLA stdin and stdout statements.
In fact, most I/O machine instructions behave exactly like the 80x86’s mov
instruction. To send data to an output device, the CPU simply moves that
data to a special memory location, and to read data from an input device,
the CPU moves data from the device’s address into the CPU. I/O operations
behave much like memory read and write operations, except that there are
usually more wait states associated with I/O operations.

We can classify I/O ports into five categories based on the CPU’s ability
to read and write data at a given port address. These five categories of ports
are read-only, write-only, read/write, dual I/O, and bidirectional.

A read-only port is obviously an input port. If the CPU can only read the
data from the port, then the data must come from some source external to
the computer system. The hardware typically ignores any attempt to write
data to a read-only port, but it’s never a good idea to write to a read-only port
because some devices may fail if you do so. A good example of a read-only
port is the status port on a PC’s parallel printer interface. Data from this port
specifies the current status of the printer, while the hardware ignores any
data written to this port.

A write-only port is always an output port. Writing data to such a port
presents the data for use by an external device. Attempting to read data from
a write-only port generally returns whatever garbage value happens to be on
the data bus. You generally cannot depend on the meaning of any value read
from a write-only port. An output port typically uses a latch device to hold
data to be sent to the outside world. When a CPU writes to a port address
associated with an output latch, the latch stores the data and makes it avail-
able on an external set of signal lines (see Figure 12-1).

Figure 12-1: A typical output port

A perfect example of an output port is a parallel printer port. The CPU
typically writes an ASCII character to a byte-wide output port that connects to
the DB-25F connector on the back of the computer’s case. A cable transmits
this data to the printer, where it arrives on the printer’s input port (from the
printer’s perspective, it is reading the data from the computer system).

CPU write control line

Address decode line

W

En

Data Data to outside worldData bus from CPU

L
A
T
C
H

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 331

A processor inside the printer typically converts this ASCII character to a
sequence of dots that it prints on the paper.

Note that output ports can be write-only or read/write. The port in
Figure 12-1, for example, is a write-only port. Because the outputs on the
latch do not loop back to the CPU’s data bus, the CPU cannot read the data
the latch contains. Both the address decode line (En) and the write control
line (W) must be active for the latch to operate. If the CPU tries to read the
data located at the latch’s address the address decode line is active but the
write control line is not, so the latch does not respond to the read request.

A read/write port is an output port as far as the outside world is concerned.
However, the CPU can read as well as write data to such a port. Whenever the
CPU reads data from a read/write port, it reads the data that was last written
to the port allowing a programmer to retrieve that value. The act of reading
data from the port does not affect the data presented to the external
peripheral device.1

Figure 12-2 shows how to create a port that you can both read from and
write to. The data written to the output port loops back to a second latch.
Placing the address of these two latches on the address bus asserts the address
decode lines on both latches. Therefore, to select between the two latches, the
CPU must also assert either the read line or the write line. Asserting the read
line (as will happen during a read operation) will enable the lower latch.
This places the data previously written to the output port on the CPU’s data
bus, allowing the CPU to read that data.

Figure 12-2: An output port that supports read/write access

Note that the port in Figure 12-2 is not an input port — true input ports
read data from external pins. Although the CPU can read data from this
latch, the organization of this circuit simply allows the CPU to read the data

1 Historically, “peripheral” meant any device external to the computer system itself. This book
will use the modern form of this term to simply imply any device that is not part of the CPU or
memory.

CPU write control line

Address decode line

W

En

Data

CPU read control line

Address decode line

R

En

Data

Data bus from CPU

L
A
T
C
H

L
A
T
C
H

Data bus to CPU

Data to outside world

No Starch Press, Copyright © 2004 by Randall Hyde

332 Chap te r 12

it previously wrote to the port, thus saving the program from maintaining
this value in a separate variable if the application needs to know what was
written to the port. The data appearing on the external connector is output
only, and one cannot connect real-world input devices to these signal pins.

A dual I/O port is also a read/write port, but when you read a dual I/O
port, you read data from an external input device rather than the last data
written to the output side of the port’s address. Writing data to a dual I/O
port transmits data to some external output device, just as writing to a write-
only port does. Figure 12-3 shows how you could interface a dual I/O port
with the system.

Figure 12-3: An input port and output device that share the same address (a dual I/O port)

Note that a dual I/O port is actually created using two ports — a read-only
port and a write-only port — that share the same port address. Reading from
the address accesses the read-only port, and writing to the address accesses
the write-only port. Essentially, this port arrangement uses the read and write
(R/W) control lines to provide an extra address bit that specifies which of
the two ports to use.

A bidirectional port allows the CPU to both read and write data to an
external device. To function properly, a bidirectional port must pass various
control lines, such as read and write enable, to the peripheral device so that
the device can change the direction of data transfer based on the CPU’s
read/write request. In effect, a bidirectional port is an extension of the
CPU’s bus through a bidirectional latch or buffer.

Generally, a given peripheral device will utilize multiple I/O ports. The
original PC parallel printer interface, for example, uses three port addresses:
a read/write I/O port, a read-only input port, and a write-only output port.
The read/write port is the data port on which the CPU can read the last
ASCII character written through that port. The input port returns control
signals from the printer, which indicate whether the printer is ready to

CPU write control line

Address decode line

W

En

Data

CPU read control line

Address decode line

R

En

Data

Data to the
outside world

Data from the
outside world

Data bus

Data bus to CPU

Data bus from CPU

L
A
T
C
H

L
A
T
C
H

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 333

accept another character, is offline, is out of paper, and so on. The output
port transmits control information to the printer. Later model PCs substi-
tuted a bidirectional port for the data port, allowing data transfer from and
to a device through the parallel port. The bidirectional data port improved
performance for various devices such as disk and tape drives connected to
the PC’s parallel port.

12.2 Other Ways to Connect Ports to the System

The examples given thus far may leave you with the impression that the CPU
always reads and writes peripheral data using the data bus. However, while
the CPU generally transfers the data it has read from input ports across the
data bus, it does not always use the data bus when writing data to output
ports. In fact, a very common output method is to simply access a port’s
address directly without writing any data to it. Figure 12-4 illustrates a very
simple example of this technique using a set/reset (S/R) flip-flop. In this
circuit, an address decoder decodes two separate addresses. Any read or
write access to the first address sets the output line high; any read or write
access to the second address clears the output line. This circuit ignores the
data on the CPU’s data lines, and it also ignores the status of the read and
write lines. The only thing that matters is that the CPU accesses one of these
two addresses.

Figure 12-4: Outputting data to a port by simply accessing that port

Another possible way to connect an output port to a system is to connect the
read/write status lines to the data input of a D flip-flop. Figure 12-5 shows
how you could design such a device. In this diagram, any read of the port sets
the output bit to zero, while any write to this port sets the output bit to one.

Figure 12-5: Outputting data using the read/write control as the data to output

Address decode line 1 S

R

S/R
flip-flop

Q

Address decode line 2

Single-bit
output to
the outside
world

Address decode line 1 Clk

D

D
flip-flop

Q

Read control line
(active low)

Single-bit
output to
the outside
world

No Starch Press, Copyright © 2004 by Randall Hyde

334 Chap te r 12

These examples of connecting peripheral devices directly to the CPU are
only two of an amazing number of different designs that engineers have
devised to avoid using the data bus. However, unless otherwise noted, the
remaining examples in this chapter presume that the CPU reads and writes
data to an external device using the data bus.

12.3 I/O Mechanisms

There are three basic I/O mechanisms that computer systems can use to
communicate with peripheral devices: memory-mapped input/output,
I/O-mapped input/output, and direct memory access (DMA). Memory-
mapped I/O uses ordinary locations within the CPU’s memory address
space to communicate with peripheral devices. I/O-mapped input/output
uses an address space separate from memory, and it uses special machine
instructions to transfer data between that special I/O address space and
the outside world. DMA is a special form of memory-mapped I/O where
the peripheral device reads and writes data located in memory without
CPU intervention. Each I/O mechanism has its own set of advantages
and disadvantages, which we will discuss in the following sections.

How a device connects to a computer system is usually determined by the
hardware system engineer at design time, and programmers have little con-
trol over this choice. While some devices may present two different interfaces
to the system, software engineers generally have to live with whatever inter-
face the hardware designers provide. Nevertheless, by paying attention to the
costs and benefits of the I/O mechanism used for communication between
the CPU and the peripheral device, you can choose different code sequences
that will maximize the performance of I/O within your applications.

12.3.1 Memory-Mapped I/O

A memory-mapped peripheral device is connected to the CPU’s address and
data lines exactly like regular memory, so whenever the CPU writes to or
reads from the address associated with the peripheral device, the CPU
transfers data to or from the device. This mechanism has several benefits
and only a few disadvantages.

The principle advantage of a memory-mapped I/O subsystem is that the
CPU can use any instruction that accesses memory, such as mov, to transfer
data between the CPU and a peripheral. For example, if you are trying to
access a read/write or bidirectional port, you can use an 80x86 read/modify/
write instruction, like add, to read the port, manipulate the value, and then
write data back to the port, all with a single instruction. Of course, if the port
is read-only or write-only, an instruction that reads from the port address,
modifies the value, and then writes the modified value back to the port will
be of little use.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 335

The big disadvantage of memory-mapped I/O devices is that they
consume addresses in the CPU’s memory map. Every byte of address space
that a peripheral device consumes is one less byte available for installing
actual memory. Generally, the minimum amount of space you can allocate to
a peripheral (or block of related peripherals) is a page of memory (4,096
bytes on an 80x86). Fortunately, a typical PC has only a couple dozen such
devices, so this usually isn’t much of a problem. However, it can become a
problem with some peripheral devices, like video cards, that consume a large
chunk of the address space. Some video cards have 32 MB of on-board
memory that they map into the memory address space and this means that
the 32 MB address range consumed by the card is not available to the system
for use as regular RAM memory.

12.3.2 I/O and the Cache
It goes without saying that the CPU cannot cache values intended for
memory-mapped I/O ports. Caching data from an input port would mean
that subsequent reads of the input port would access the value in the cache
rather than the data at the input port, which could be different. Similarly,
with a write-back cache mechanism, some writes might never reach an output
port because the CPU might save up several writes in the cache before
sending the last write to the actual I/O port. In order to avoid these potential
problems, there must be some mechanism to tell the CPU not to cache
accesses to certain memory locations.

The solution is found in the virtual memory subsystem of the CPU. The
80x86’s page table entries, for example, contain information that the CPU
can use to determine whether it is okay to map data from a page in memory
to cache. If this flag is set one way, the cache operates normally; if the flag is
set the other way, the CPU does not cache up accesses to that page.

12.3.3 I/O-Mapped Input/Output
I/O-mapped input/output differs from memory-mapped I/O, insofar as it
uses a special I/O address space separate from the normal memory space,
and it uses special machine instructions to access device addresses. For
example, the 80x86 CPUs provide the in and out instructions specifically for
this purpose. These 80x86 instructions behave somewhat like the mov
instruction except that they transmit their data to and from the special I/O
address space rather than the normal memory address space. Although the
80x86 processors (and other processors that provide I/O-mapped input/
output capabilities, most notably various embedded microcontrollers) use
the same physical address bus to transfer both memory addresses and I/O
device addresses, additional control lines differentiate between addresses
that belong to the normal memory space and those that belong to the special
I/O address space. This means that the presence of an I/O-mapped input/
output system on a CPU does not preclude the use of memory-mapped I/O

No Starch Press, Copyright © 2004 by Randall Hyde

336 Chap te r 12

in the system. Therefore, if there is an insufficient number of I/O-mapped
locations in the CPU’s address space, a hardware designer can always use
memory-mapped I/O instead (as a video card does on a typical PC).

In modern 80x86 PC systems that utilize the PCI bus (or later variants),
special peripheral chips on the system’s motherboard remap the I/O address
space into the main memory space, allowing programs to access I/O-mapped
devices using either memory-mapped or I/O-mapped input/output. By
placing the peripheral port addresses in the standard memory space, high-
level languages can control those I/O devices even though those languages
might not provide special statements to reference the I/O address space. As
almost all high-level languages provide the ability to access memory, but most
do not allow access to the I/O space, having the PCI bus remap the I/O
address space into the memory address space provides I/O access to those
high-level languages.

12.3.4 Direct Memory Access (DMA)

Memory-mapped I/O subsystems and I/O-mapped subsystems both require
the CPU to move data between the peripheral device and memory. For this
reason, we often call these two forms of I/O programmed I/O. For example,
to store into memory a sequence of ten bytes taken from an input port, the
CPU must read each value from the input port and store it into memory.

For very high-speed I/O devices the CPU may be too slow to process this
data one byte (or one word or double word) at a time. Such devices generally
have an interface to the CPU’s bus so they can directly read and write mem-
ory, which is known as direct memory access because the peripheral device
accesses memory directly, without using the CPU as an intermediary. This
often allows the I/O operation to proceed in parallel with other CPU
operations, thereby increasing the overall speed of the system. Note, how-
ever, that the CPU and the DMA device cannot both use the address and
data buses at the same time. Therefore, concurrent processing only occurs
if the bus is free for use by the I/O device, which happens when the CPU has
a cache and is accessing code and data in the cache. Nevertheless, even if the
CPU must halt and wait for the DMA operation to complete before begin-
ning a different operation, the DMA approach is still much faster because
many of the bus operations that occur during I/O-mapped input/output or
memory-mapped I/O consist of instruction fetches or I/O port accesses that
are not present during DMA operations.

A typical DMA controller consists of a pair of counters and other
circuitry that interfaces with memory and the peripheral device. One of the
counters serves as an address register, and this counter supplies an address
on the address bus for each transfer. The second counter specifies the
number of data transfers. Each time the peripheral device wants to transfer
data to or from memory, it sends a signal to the DMA controller, which
places the value of the address counter on the address bus. In coordination
with the DMA controller, the peripheral device places data on the data bus to

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 337

write to memory during an input operation, or it reads data from the data
bus, taken from memory, during an output operation.2 After a successful
data transfer, the DMA controller increments its address register and
decrements the transfer counter. This process repeats until the transfer
counter decrements to zero.

12.4 I/O Speed Hierarchy

Different peripheral devices have different data transfer rates. Some devices,
like keyboards, are extremely slow when compared to CPU speeds. Other
devices, like disk drives, can actually transfer data faster than the CPU can
process it. The appropriate programming technique for data transfer
depends strongly on the transfer speed of the peripheral device involved in
the I/O operation. Therefore, in order to understand how to write the most
appropriate code, it first makes sense to invent some terminology to describe
the different transfer rates of peripheral devices.

Low-speed devices Devices that produce or consume data at a rate
much slower than the CPU is capable of processing. For the purposes of
discussion, we’ll assume that low-speed devices operate at speeds that are
two or more orders of magnitude slower than the CPU.

Medium-speed devices Devices that transfer data at approximately the
same rate as, or up to two orders of magnitude slower than, the CPU.

High-speed devices Devices that transfer data faster than the CPU is
capable of handling using programmed I/O.

The speed of the peripheral device will determine the type of I/O
mechanism used for the I/O operation. Clearly, high-speed devices must
use DMA because programmed I/O is too slow. Medium- and low-speed
devices may use any of the three I/O mechanisms for data transfer (though
low-speed devices rarely use DMA because of the cost of the extra hardware
involved).

With typical bus architectures, personal computer systems are capable of
one transfer per microsecond or better. Therefore, high-speed devices are
those that transfer data more rapidly than once per microsecond. Medium-
speed transfers are those that involve a data transfer every 1 to 100 micro-
seconds. Low-speed devices usually transfer data less often than once every
100 microseconds. Of course, these definitions for the speed of low-, med-
ium-, and high-speed devices are system dependent. Faster CPUs with faster
buses allow faster medium-speed operations.

Note that one transfer per microsecond is not the same thing as a 1-MB-
per-second transfer rate. A peripheral device can actually transfer more than
one byte per data transfer operation. For example, when using the 80x86

2 Don’t forget that “input” and “output” are from the perspective of the computer system, not
the device. Hence, the device writes data during an input operation and reads data during an
output operation.

No Starch Press, Copyright © 2004 by Randall Hyde

338 Chap te r 12

in(dx, eax); instruction, the peripheral device can transfer four bytes in
one transfer. Therefore, if the device is reaching one transfer per micro-
second, the device can transfer 4 MB per second using this instruction.

12.5 System Buses and Data Transfer Rates

Earlier in this book, you saw that the CPU communicates with memory and
I/O devices using the system bus. If you’ve ever opened up a computer and
looked inside or read the specifications for a system, you’ve probably seen
terms like PCI, ISA, EISA, or even NuBus mentioned when discussing the
computer’s system bus. In this section, we’ll discuss the relationship between
the CPU’s bus and these different system buses, and describe how these
different computer system buses affect the performance of a system.

Although the choice of the hardware bus is made by hardware engineers,
not software engineers, many computer systems will actually employ multiple
buses in the same system. Therefore, software engineers can choose which
peripheral devices they use based upon the bus connections of those
peripherals. Furthermore, maximizing performance for a particular bus may
require different programming techniques than for other buses. Finally,
although a software engineer may not be able to choose the buses available
in a particular computer system, that engineer can choose which system to
write their software for, based on the buses available in the system they
ultimately choose.

Computer system buses like PCI (Peripheral Component Interconnect)
and ISA (Industry Standard Architecture) are definitions for physical
connectors inside a computer system. These definitions describe the set of
signals, physical dimensions (i.e., connector layouts and distances from one
another), and a data transfer protocol for connecting different electronic
devices. These buses are related to the CPU’s local bus, which consists of the
address, data, and control lines, because many of the signals on the periph-
eral buses are identical to signals that appear on the CPU’s bus.

However, peripheral buses do not necessarily mirror the CPU’s bus —
they often contain several lines that are not present on the CPU’s bus. These
additional lines let peripheral devices communicate with one another with-
out having to go through the CPU or memory. For example, most peripheral
buses provide a common set of interrupt control signals that let I/O devices
communicate directly with the system’s interrupt controller, which is also a
peripheral device. Nor do the peripheral buses include all the signals found
on the CPU’s bus. For example, the ISA bus only supports 24 address lines
compared with the Pentium IV’s 36 address lines.

Different peripheral devices are designed to use different peripheral
buses. Figure 12-6 shows the organization of the PCI and ISA buses in a
typical computer system.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 339

Figure 12-6: Connection of the PCI and ISA buses in a typical PC

Notice how the CPU’s address and data buses connect to a PCI bus con-
troller peripheral device, but not to the PCI bus itself. The PCI bus controller
contains two sets of pins, providing a bridge between the CPU’s local bus and
the PCI bus. The signal lines on the local bus are not connected directly to
the corresponding lines on the PCI bus; instead, the PCI bus controller acts
as an intermediary, rerouting all data transfer requests between the CPU and
the PCI bus.

Another interesting thing to note is that the ISA bus controller is not
directly connected to the CPU. Instead, it is usually connected to the PCI bus
controller. There is no logical reason why the ISA controller couldn’t be
connected directly to the CPU’s local bus. However, in most modern PCs,
the ISA and PCI controllers appear on the same chip, and the manufacturer
of this chip has chosen to interface the ISA bus through the PCI controller
for cost or performance reasons.

The CPU’s local bus usually runs at some submultiple of the CPU’s fre-
quency. Typical local bus frequencies are currently 66 MHz, 100 MHz, 133
MHz, 400 MHz, 533 MHz, and 800 MHz, but they may become even faster.
Usually, only memory and a few selected peripherals like the PCI bus con-
troller sit on the CPU’s bus and operate at this high frequency.

Because a typical CPU’s bus is 64 bits wide and because it is theoretically
possible to achieve one data transfer per clock cycle, the CPU’s bus has a
maximum possible data transfer rate of eight bytes times the clock frequency,
or 800 MB per second for a 100-MHz bus. In practice, CPUs rarely achieve
the maximum data transfer rate, but they do achieve some percentage of it,
so the faster the bus, the more data can move in and out of the CPU (and
caches) in a given amount of time.

12.5.1 Performance of the PCI Bus
The PCI bus comes in several configurations. The base configuration has
a 32-bit-wide data bus operating at 33 MHz. Like the CPU’s local bus, the
PCI bus is theoretically capable of transferring data on each clock cycle.

CPU Address and
data buses

PCI bus
controller

ISA bus
controller

PCI slots
(connectors)

ISA slots
(connectors)

No Starch Press, Copyright © 2004 by Randall Hyde

340 Chap te r 12

This means that the bus has a theoretical maximum data transfer rate
of 4 bytes times 33 MHz, or 132 MB per second. In practice, though, the
PCI bus doesn’t come anywhere near this level of performance except in
short bursts.

Whenever the CPU wishes to access a peripheral on the PCI bus, it must
negotiate with other peripheral devices for the right to use the bus. This
negotiation can take several clock cycles before the PCI controller grants the
CPU access to the bus. If a CPU writes a sequence of values to a peripheral
device at a rate of a double word per bus transfer, you can see that the
negotiation time actually causes the transfer rate to drop dramatically. The
only way to achieve anywhere near the maximum theoretical bandwidth on
the bus is to use a DMA controller and move blocks of data in burst mode. In
this burst mode, the DMA controller negotiates just once for the bus and
then makes a large number of transfers without giving up the bus between
each one.

There are a couple of enhancements to the PCI bus that improve per-
formance. Some PCI buses support a 64-bit wide data path. This, obviously,
doubles the maximum theoretical data transfer rate from four bytes per
transfer to eight bytes per transfer. Another enhancement is running the
bus at 66 MHz, which also doubles the throughput. With a 64-bit-wide
66-MHz bus you would quadruple the data transfer rate over the perfor-
mance of the baseline configuration. These optional enhancements to the
PCI bus allow it to grow with the CPU as CPUs increase their performance.
As this is being written, a high-performance version of the PCI bus, PCI-X, is
starting to appear with expected bus speeds beginning at 133 MHz and other
enhancements to improve performance.

12.5.2 Performance of the ISA Bus

The ISA bus is a carry-over from the original PC/AT computer system. This
bus is 16 bits wide and operates at 8 MHz. It requires four clock cycles for
each bus cycle. For this and other reasons, the ISA bus is capable of about
only one data transmission per microsecond. With a 16-bit-wide bus, data
transfer is limited to about 2 MB per second. This is much slower than the
speed at which both the CPU’s local bus and the PCI bus operate. Generally,
you would only attach low-speed devices, like an RS-232 communications
device, a modem, or a parallel printer interface, to the ISA bus. Most other
devices, like disks, scanners, and network cards, are too fast for the ISA bus.
The ISA bus is really only capable of supporting low-speed and medium-
speed devices.

Note that accessing the ISA bus on most systems involves first negotiating
for the PCI bus. The PCI bus is so much faster than the ISA bus that the
negotiation time has very little impact on the performance of peripherals on
the ISA bus. Therefore, there is very little difference to be gained by connec-
ting the ISA controller directly to the CPU’s local bus.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 341

12.5.3 The AGP Bus
Video display cards are very special peripherals that need maximum bus
performance to ensure quick screen updates and fast graphic operations.
Unfortunately, if the CPU has to constantly negotiate with other peripherals
for the use of the PCI bus, graphics performance can suffer. To overcome
this problem, video card designers created the AGP (Accelerated Graphics Port)
interface between the CPU’s local bus and the video display card, which
provides various control lines and bus protocols specifically designed for
video display cards.

The AGP connection lets the CPU quickly move data to and from the
video display RAM (see Figure 12-7). Because there is only one AGP port per
system, only one card can use the AGP slot at a time. The upside of this is
that the system never has to negotiate for access to the AGP bus.

Figure 12-7: The AGP bus interface

12.6 Buffering

If a particular I/O device produces or consumes data faster than the system
is capable of transferring data to or from that device, the system designer has
two choices: provide a faster connection between the CPU and the device, or
slow down the rate of transfer between the two.

If the peripheral device is connected to a slow bus like ISA, a faster
connection can be created by using a different, faster bus. Another way to
increase the connection speed is by switching to a wider bus like the 64-bit
PCI bus, a bus with a higher frequency, or a higher performance bus like
PCI-X. System designers can also sometimes create a faster interface to the
bus as they have done with the AGP connection. However, once you exhaust
these possibilities for improving performance, it can be very expensive to
create a faster connection between peripherals and the system.

The other alternative available when a peripheral device is capable of
transferring data faster than the system is capable of processing it, is to slow
down the transfer rate between the peripheral and the computer system.
This isn’t always as bad an option as it might seem. Most high-speed devices
don’t transfer data at a constant rate to the system. Instead, devices typically

CPU

Video display card

AGP interface

Address and
data buses

PCI bus
controller

No Starch Press, Copyright © 2004 by Randall Hyde

342 Chap te r 12

transfer a block of data rapidly and then sit idle for some length of time.
Although the burst rate is high and is faster than what the CPU or memory
can handle, the average data transfer rate is usually lower than this. If you
could average out the high-bandwidth peaks and transfer some of the data
when the peripheral was inactive, you could easily move data between the
peripheral and the computer system without resorting to an expensive, high-
bandwidth bus or connection.

The trick is to use memory on the peripheral side to buffer the data. The
peripheral can rapidly fill this buffer with data during an input operation,
and it can rapidly extract data from the buffer during an output operation.
Once the peripheral device is inactive, the system can proceed at a sustain-
able rate either to empty or refill the buffer, depending on whether the
buffer is full or empty at the time. As long as the average data transfer rate of
the peripheral device is below the maximum bandwidth the system supports,
and the buffer is large enough to hold bursts of data going to and from the
peripheral, this scheme lets the peripheral communicate with the system at a
lower average data transfer rate.

Often, to save costs, the buffering takes place in the CPU’s address space
rather than in memory local to the peripheral device. In this case, it is often
the software engineer’s responsibility to initialize the buffer for a peripheral
device. Therefore, this buffering isn’t always transparent to the software
engineer. In some cases, neither the peripheral device nor the OS provide
a buffer for the peripheral’s data and it becomes the application’s responsi-
bility to buffer up this data in order to maintain maximum performance
and avoid loss of data. In other cases, the device or OS may provide a small
buffer, but the application itself might not process the data often enough to
avoid data overruns — in such situations, an application can create a larger
buffer that is local to the application to avoid the data overruns.

12.7 Handshaking

Many I/O devices cannot accept data at just any rate. For example, a
Pentium-based PC is capable of sending several hundred million characters
per second to a printer, but printers are incapable of printing that many
characters each second. Likewise, an input device such as a keyboard will
never transmit several million keystrokes per second to the system (because it
operates at human speeds, not computer speeds). Because of the difference
in capabilities between the CPU and many of the system peripherals, the
CPU needs some mechanism to coordinate data transfer between the
computer system and its peripheral devices.

One common way to coordinate data transfers is to send and receive
status bits on a port separate from the data port. For example, a single bit
sent by a printer could tell the system whether it is ready to accept more
data. Likewise, a single status bit in a different port could specify whether a

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 343

keystroke is available at the keyboard data port. The CPU can test these
bits prior to writing a character to the printer, or reading a key from the
keyboard.

Using status bits to indicate that a device is ready to accept or transmit
data is known as handshaking. It gets this name because the protocol is similar
to two people agreeing on some method of transfer by a handshake.

To demonstrate how handshaking works, consider the following short
80x86 assembly language program segment. This code fragment will contin-
uously loop while the HO bit of the printer status register (at input port
$379) contains zero and will exit once the HO bit is set (indicating that the
printer is ready to accept data):

mov($379, dx); // Initialize DX with the address of the status port.

repeat

in(dx, al); // Get the parallel port status into the AL register.

and($80, al); // Clear Z flag if the HO bit is set.

until(@nz); // Repeat until the HO bit contains a one.

// Okay to write another byte to the printer data port here.

12.8 Time-outs on an I/O Port

One problem with the repeat..until loop in the previous section is that it
could spin indefinitely as it waits for the printer to become ready to accept
additional input. If someone turns the printer off, or if the printer cable
becomes disconnected, the program could freeze up, forever waiting for the
printer to become available. Usually, it’s a better idea to inform the user
when something goes wrong rather than allowing the system to hang.
Typically, great programmers handle this problem by including a time-out
period in the loop, which once exceeded causes the program to alert the
user that something is wrong with the peripheral device.

You can expect some sort of response from most peripheral devices
within a reasonable amount of time. For example, even in the worst case,
most printers will be ready to accept additional character data within a few
seconds of the last transmission. Therefore, something is probably wrong
if 30 seconds or more have passed without the printer accepting a new
character. If the program is written to detect this kind of problem, it can
pause, asking the user to check the printer and tell the program to resume
printing once the problem is resolved.

Choosing a good time-out period is not an easy task. In doing so, you
must carefully balance the irritation of possibly having the program incor-
rectly claim that something is wrong, with the pain of having the program
lock up for long periods when there actually is something wrong. Both
situations are equally annoying to the end user.

No Starch Press, Copyright © 2004 by Randall Hyde

344 Chap te r 12

An easy way to create a time-out period is to count the number of times
the program loops while waiting for a handshake signal from a peripheral.
Consider the following modification to the repeat..until loop of the previous
section:

mov($379, dx); // Initialize DX with the address of the status port.

mov(30_000_000, ecx); // Time-out period of approximately 30 seconds,

// assuming port access time is about 1 microsecond.

HandshakeLoop:

in(dx, al); // Get the parallel port status into the AL register.

and($80, al); // Clear Z flag if the HO bit is set.

loopz HandshakeLoop; // Decrement ECX and loop while ECX <> 0 and

// the HO bit of AL contains a zero.

if(ecx <> 0) then

// Okay to write another byte to the printer data port here.

else

// We had a time-out condition if we get here.

endif;

This code will exit once the printer is ready to accept data or when approx-
imately 30 seconds have expired. You might question the 30-second figure,
after all, a software-based loop (counting down ECX to zero) should run at
different speeds on different processors. However, don’t miss the fact that
there is an in instruction inside this loop. The in instruction reads a port
on the ISA bus and that means this instruction will take approximately
one microsecond to execute (about the fastest operation on the ISA bus).
Hence, one million times through the loop will take about a second (plus
or minus 50 percent, but close enough for our purposes). This is true almost
regardless of the CPU frequency.

12.9 Interrupts and Polled I/O

Polling is the process of constantly testing a port to see if data is available.
The handshaking loops of the previous sections provide good examples of
polling — the CPU waits in a short loop, testing the printer port’s status
value until the printer is ready to accept more data, and then the CPU can
transfer more data to the printer. Polled I/O is inherently inefficient. If the
printer in this example takes ten seconds to accept another byte of data, the
CPU spins doing nothing productive for those ten seconds.

In early personal computer systems, this is exactly how a program would
behave. When a program wanted to read a key from the keyboard, it would

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 345

poll the keyboard status port until a key was available. These early computers
could not do other processing while waiting for the keyboard.

The solution to this problem is to use what is called an interrupt mech-
anism. An interrupt is triggered by an external hardware event, such as the
printer becoming ready to accept another character, that causes the CPU to
interrupt its current instruction sequence and call a special interrupt service
routine (ISR). Typically, an interrupt service routine runs through the
following sequence of events:

1. It preserves the current values of all machine registers and flags so that
the computation that is interrupted can be continued later.

2. It does whatever operation is necessary to service the interrupt.
3. It restores the registers and flags to the values they had before the

interrupt.

4. It resumes execution of the code that was interrupted.

In most computer systems, typical I/O devices generate an interrupt
whenever they make data available to the CPU, or when they become
able to accept data from the CPU. The ISR quickly processes the interrupt
request in the background, allowing some other computation to proceed
normally in the foreground.

Though interrupt service routines are usually written by OS designers
or peripheral device manufacturers, most OSes provide the ability to pass
an interrupt to an application via signals or some similar mechanism. This
allows you to include interrupt service routines directly within an applica-
tion. You could use this facility, for example, to have a peripheral device
notify your application when its internal buffer is full and the application
needs to copy data from the peripheral’s buffer to an application buffer to
prevent data loss.

12.10 Protected Mode Operation and Device Drivers

If you’re working on Windows 95 or 98, you can write assembly code to access
I/O ports directly. The assembly code shown earlier as an example of hand-
shaking is a good example of this. However, recent versions of Windows and
all versions of Linux employ a protected mode of operation. In this mode,
direct access to devices is restricted to the OS and certain privileged
programs. Standard applications, even those written in assembly language,
are not so privileged. If you write a simple program that attempts to send
data to an I/O port, the system will generate an illegal access exception and
halt your program.

Linux does not allow just any program to access I/O ports as it pleases.
Only programs with “super-user” (root) privileges may do so. For limited I/O
access, it is possible to use the Linux ioperm system call to make certain I/O
ports accessible from user applications. For more details, Linux users should
read the “man” page on “ioperm.”

No Starch Press, Copyright © 2004 by Randall Hyde

346 Chap te r 12

12.10.1 Device Drivers

If Linux and Windows don’t allow direct access to peripheral devices, how
does a program communicate with these devices? Clearly, this can be done,
because applications interact with real-world devices all the time. It turns out
that specially written modules, known as device drivers, are able to access I/O
ports by special permission from the OS. A complete discussion of writing
device drivers is well beyond the scope of this book, but an understanding of
how device drivers work may help you understand the possibilities and
limitations of I/O under a protected-mode OS.

A device driver is a special type of program that links with the OS. A
device driver must follow some special protocols, and it must make some
special calls to the OS that are not available to standard applications. Fur-
thermore, in order to install a device driver in your system, you must have
administrator privileges, because device drivers create all kinds of security
and resource allocation problems, and you can’t have every hacker in the
world taking advantage of rogue device drivers running on your system.
Therefore, “whipping out a device driver” is not a trivial process and appli-
cation programs cannot load and unload drivers at will.

Fortunately, there are only a limited number of devices found on a
typical PC, so you only need a limited number of device drivers. You would
typically install a device driver in the OS at the same time you install the
device, or, if the device is built into the PC, at the same time you install the
OS. About the only time you’d really need to write your own device driver is
when building your own device, or in special cases when you need to take
advantage of some device’s capabilities that standard device drivers don’t
handle.

The device driver model works well with low-speed devices, where the
OS and device driver can respond to the device much more quickly than
the device requires. The model is also great for use with medium- and high-
speed devices where the system transmits large blocks of data to and from
the device. However, the device driver model does have a few drawbacks, and
one is that it does not support medium- and high-speed data transfers that
require a high degree of interaction between the device and the application.

The problem is that calling the OS is an expensive process. Whenever
an application makes a call to the OS to transmit data to the device, it can
potentially take hundreds of microseconds, if not milliseconds, before the
device driver actually sees the application’s data. If the interaction between
the device and the application requires a constant flurry of bytes moving
back and forth, there will be a big delay if each transfer has to go through
the OS. The important point to note is that for applications of this sort, you
will need to write a special device driver that can handle the transactions
itself rather than continually returning to the application.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 347

12.10.2 Communicating with Device Drivers and “Files”
For the most part, communicating with a peripheral device under a modern
OS is exactly like writing data to a file or reading data from a file. In most
OSes, you open a “file” using a special file name like COM1 (the serial port)
or LPT1 (the parallel port) and the OS automatically creates a connection to
the specified device. When you are finished using the device, you “close” the
associated file, which tells the OS that the application is done with the device
so other applications can use it.

Of course, most devices do not support the same semantics that do disk
files do. Some devices, like printers or modems, can accept a long stream of
unformatted data, but other devices may require that you preformat the data
into blocks and write the blocks to the device with a single write operation.
The exact semantics depend upon the particular device. Nevertheless, the
typical way to send data to a peripheral is to use an OS “write” function to
which you pass a buffer containing some data, and the way to read data from
a device is to call an OS “read” function to which you pass the address of
some buffer into which the OS will place the data it reads.

Of course, not all devices conform to the stream-I/O data semantics of file
I/O. Therefore, most OSes provide a device-control API that lets you pass infor-
mation directly to the peripheral’s device driver to handle the cases where a
stream-I/O model fails.

Because it varies by OS, the exact details concerning the OS API inter-
face are a bit beyond the scope of this book. Though most OSes use a similar
scheme, they are different enough to make it impossible to describe them in
a generic fashion. For more details, consult the programmer’s reference for
your particular OS.

12.11 Exploring Specific PC Peripheral Devices

This chapter has so far introduced I/O in a very general sense, without
spending too much time discussing the particular peripheral devices present
in a typical PC. It some respects, it’s dangerous to discuss real devices on
modern PCs because the traditional (“legacy”) devices that are easy to
understand are slowly disappearing from PC designs. As manufacturers
introduce new PCs, they are removing many of the legacy peripherals like
parallel and serial ports that are easy to program, and they are replacing
these devices with complex peripherals like USB and FireWire. Although
a detailed discussion on programming these newer peripheral devices is
beyond the scope of this book, you need to understand their behavior in
order to write great code that accesses these devices.

Because of the nature of the peripheral devices appearing in the rest of
this chapter, the information presented applies only to IBM-compatible PCs.
There simply isn’t enough space in this book to cover how particular I/O

No Starch Press, Copyright © 2004 by Randall Hyde

348 Chap te r 12

devices behave on different systems. Other systems support similar I/O
devices, but their hardware interfaces may be different from what’s pre-
sented here. Nevertheless, the general principles still apply.

12.12 The Keyboard

The PC’s keyboard is a computer system in its own right. Buried inside the
keyboard’s case is an 8042 microcontroller chip that constantly scans the
switches on the keyboard to see if any keys are held down. This processing
occurs in parallel with the normal activities of the PC, and even though the
PC’s 80x86 is busy with other things, the keyboard never misses a keystroke.

A typical keystroke starts with the user pressing a key on the keyboard.
This closes an electrical contact in a switch, which the keyboard’s micro-
controller can sense. Unfortunately, mechanical switches do not always close
perfectly clean. Often, the contacts bounce off one another several times
before coming to rest with a solid connection. To a microcontroller chip that
is reading the switch constantly, these bouncing contacts will look like a very
quick series of keypresses and releases. If the microcontroller registers these
as multiple keystrokes, a phenomenon known as keybounce may result, a
problem common to many cheap and old keyboards. Even on the most
expensive and newest keyboards, keybounce can be a problem if you look
at the switch a million times a second, because mechanical switches simply
cannot settle down that quickly. A typical inexpensive key will settle down
within five milliseconds, so if the keyboard scanning software polls the key
less often than this, the controller will effectively miss the keybounce. The
practice of limiting how often one scans the keyboard in order to eliminate
keybounce is known as debouncing.

The keyboard controller must not generate a new key code sequence
every time it scans the keyboard and finds a key held down. The user may
hold a key down for many tens or hundreds of milliseconds before releasing
it, and we don’t want this to register as multiple keystrokes. Instead, the
keyboard controller should generate a single key code value when the key
goes from the up position to the down position (a down key operation). In
addition to this, modern keyboards provide an autorepeat capability that
engages once the user has held down a key for a given time period (usually
about half a second), and it treats the held key as a sequence of keystrokes
as long as the user continues to hold the key down. However, even these
autorepeat keystrokes are regulated to allow only about ten keystrokes per
second rather than the number of times per second the keyboard controller
scans all the switches on the keyboard.

Upon detecting a down keystroke, the microcontroller sends a keyboard
scan code to the PC. The scan code is not related to the ASCII code for that
key; it is an arbitrary value IBM chose when the PC’s keyboard was first
developed. The PC keyboard actually generates two scan codes for every key
you press. It generates a down code when you press a key down and an up code
when you release the key. Should you hold the key down long enough for the

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 349

autorepeat operation to begin, the keyboard controller will send a sequence
of down codes until you release the key, at which time the keyboard
controller will send a single up code.

The 8042 microcontroller chip transmits these scan codes to the PC,
where they are processed by an interrupt service routine for the keyboard.
Having separate up and down codes is important because certain keys (like
SHIFT, CTRL, and ALT) are only meaningful when held down. By generating
up codes for all the keys, the keyboard ensures that the keyboard ISR knows
which keys are pressed while the user is holding down one of these modifier
keys. Exactly what the system does with these scan codes depends on the
OS, but usually the OS’s keyboard device driver will translate the scan code
sequence into an appropriate ASCII code or some other notation that appli-
cations can work with.

12.13 The Standard PC Parallel Port

The original IBM PC design provided support for three parallel printer ports
that IBM designated LPT1:, LPT2:, and LPT3:. With laser and ink jet printers
still a few years in the future, IBM probably envisioned machines that could
support a standard dot matrix printer, a daisy wheel printer, and maybe
some other auxiliary type of printer for different purposes. Surely, IBM did
not anticipate the general use that parallel ports have received or they would
probably have designed them differently. Today, the PC’s parallel port
controls keyboards, disk drives, tape drives, SCSI adapters, Ethernet (and
other network) adapters, joystick adapters, auxiliary keypad devices, other
miscellaneous devices, and, oh yes, printers.

The current trend is to eliminate the parallel port from systems because
of connector size and performance problems. Nevertheless, the parallel port
remains an interesting device. It’s one of the few interfaces that hobbyists can
use to connect the PC to simple devices they’ve built themselves. Therefore,
learning to program the parallel port is a task many hardware enthusiasts
take upon themselves.

In a unidirectional parallel communication system, there are two distin-
guished sites: the transmitting site and the receiving site. The transmitting
site places its data on the data lines and informs the receiving site that data is
available; the receiving site then reads the data lines and informs the trans-
mitting site that it has taken the data. Note how the two sites synchronize
their access to the data lines — the receiving site does not read the data lines
until the transmitting site tells it to, and the transmitting site does not place a
new value on the data lines until the receiving site removes the data and tells
the transmitting site that it has the data. In other words, this form of parallel
communications between the printer and computer system relies on hand-
shaking to coordinate the data transfer.

The PC’s parallel port implements handshaking using three control
signals in addition to the eight data lines. The transmitting site uses the strobe
(or data strobe) line to tell the receiving site that data is available. The

No Starch Press, Copyright © 2004 by Randall Hyde

350 Chap te r 12

receiving site uses the acknowledge line to tell the transmitting site that it has
taken the data. A third handshaking line, busy, tells the transmitting site that
the receiving site is busy and that the transmitting site should not attempt to
send data. The busy signal differs from the acknowledge signal, insofar as
acknowledge tells the system that the receiving site has accepted the data just
sent and processed it. The busy line tells the system that the receiving site
cannot accept any new data just yet; the busy line does not imply that the last
character sent has been processed (or even that a character was sent).

From the perspective of the transmitting site, a typical data transmission
session looks something like the following:

1. The transmitting site checks the busy line to see if the receiving site is
busy. If the busy line is active, the transmitter waits in a loop until the
busy line becomes inactive.

2. The transmitting site places its data on the data lines.

3. The transmitting site activates the strobe line.
4. The transmitting site waits in a loop for the acknowledge line to become

active.

5. The transmitting site sets the strobe inactive.
6. The transmitting site waits in a loop for the receiving site to set the

acknowledge line inactive, indicating that it recognizes that the strobe
line is now inactive.

7. The transmitting site repeats steps 1–6 for each byte it must transmit.

From the perspective of the receiving site, a typical data transmission session
looks something like the following:

1. The receiving site sets the busy line inactive when it is ready to accept
data.

2. The receiving site waits in a loop until the strobe line becomes active.
3. The receiving site reads the data from the data lines.
4. The receiving site activates the acknowledge line.

5. The receiving site waits in a loop until the strobe line goes inactive.
6. The receiving site (optionally) sets the busy line active.

7. The receiving site sets the acknowledge line inactive.
8. The receiving site processes the data.

9. The receiving site sets the busy line inactive (optional).
10. The receiving site repeats steps 2–9 for each additional byte it receives.

By carefully following these steps, the receiving and transmitting sites
coordinate their actions so that the transmitting site doesn’t attempt
to put several bytes on the data lines before the receiving site consumes

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 351

them, and so the receiving site doesn’t attempt to read data that the
transmitting site has not sent.

12.14 Serial Ports

The RS-232 serial communication standard is probably the most popular
serial communication scheme in the world. Although it suffers from many
drawbacks, speed being the primary one, its use is widespread, and there
are thousands of devices you can connect to a PC using an RS-232 serial
interface. Though the use of the serial port is rapidly being eclipsed by
USB use, many devices still use the RS-232 standard.

The original PC system design supports concurrent use of up to four RS-
232 compatible devices connected through the COM1:, COM2:, COM3:, and
COM4: ports. For those who need to connect additional serial devices, you
can buy interface cards that let you add 16 or more serial ports to the PC.

In the early days of the PC, DOS programmers had to directly access the
8250 Serial Communications Chip (SCC) to implement RS-232 communi-
cations in their applications. A typical serial communications program would
have a serial port ISR that read incoming data from the SCC and wrote out-
going data to the chip, as well as code to initialize the chip and to buffer
incoming and outgoing data. Though the serial chip is very simple compared
to modern peripheral interfaces, the 8250 is sufficiently complex that many
programmers would have difficulty getting their serial communications soft-
ware working properly. Furthermore, because serial communications was
rarely the main purpose of the application being written, few programmers
added anything beyond the basic serial communications features needed for
their applications.

Fortunately, today’s application programmers rarely program the SCC
directly. Instead, OSes such as Windows or Linux provide sophisticated serial
communications device drivers that application programmers can call. These
drivers provide a consistent feature set that all applications can use, and this
reduces the learning curve needed to provide serial communication func-
tionality. Another advantage to the OS device driver approach is that it
removes the dependency on the 8250 SCC. Applications that use an OS
device driver will automatically work with different serial communication
chips. In contrast, an application that programs the 8250 directly will not
work on a system that uses a USB to RS-232 converter cable. However, if the
manufacturer of that USB to RS-232 converter cable provides an appropriate
device driver for an OS, applications that do serial communications via that
OS will automatically work with the USB/serial device.

An in-depth examination of RS-232 serial communications is beyond the
scope of this book. For more information on this topic, consult your OS pro-
grammer’s guide or pick up one of the many excellent texts devoted specifi-
cally to this subject.

No Starch Press, Copyright © 2004 by Randall Hyde

352 Chap te r 12

12.15 Disk Drives

Almost all modern computer systems include some sort of disk drive unit
to provide online mass storage. At one time, certain workstation vendors
produced diskless workstations, but the relentless drop in price and increasing
storage space of fixed (aka “hard”) disk units has all but obliterated the
diskless computer system. Disk drives are so ubiquitous in modern systems
that most people take them for granted. However, for a programmer to take
a disk drive for granted is a dangerous thing. Software constantly interacts
with the disk drive as a medium for application file storage, so a good under-
standing of how disk drives operate is very important if you want to write
efficient code.

12.15.1 Floppy Drives

Floppy disks are rapidly disappearing from today’s PCs. Their limited storage
capacity (typically 1.44 MB) is far too small for modern applications and the
data those applications produce. It is hard to believe that barely 25 years
ago a 143 KB (that’s kilobytes, not megabytes or gigabytes) floppy drive was
considered a high-ticket item. However, except for floptical drives (discussed
in Section 12.15.4, “Zip and Other Floptical Drives”), floppy disk drives have
failed to keep up with technological advances in the computer industry.
Therefore, we’ll not consider these devices in this chapter.

12.15.2 Hard Drives

The fixed disk drive, more commonly known as the hard disk, is without
question the most common mass storage device in use today. The modern
hard drive is truly an engineering marvel. Between 1982 and 2004, the
capacity of a single drive unit has increased over 50,000-fold, from 5 MB
to over 250 GB. At the same time, the minimum price for a new unit has
dropped from $2,500 (U.S.) to below $50. No other component in the
computer system has enjoyed such a radical increase in capacity and per-
formance along with a comparable drop in price. (Semiconductor RAM
probably comes in second, and paying the 1982 price today would get you
about 4,000 times the capacity.)

While hard drives were decreasing in price and increasing in capacity,
they were also becoming faster. In the early 1980s, a hard drive subsystem
was doing well to transfer 1 MB per second between the drive and the CPU’s
memory; modern hard drives transfer more than 50 MB per second. While
this increase in performance isn’t as great as the increase in performance
of memory or CPUs, keep in mind that disk drives are mechanical units on
which the laws of physics place greater limitations. In some cases, the drop-
ping costs of hard drives has allowed system designers to improve their
performance by using disk arrays (see Section 15.12.3, “RAID Systems,” for

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 353

details). By using certain hard disk subsystems like disk arrays, it is possible
to achieve 320-MB-per-second transfer rates, though it’s not especially cheap
to do so.

“Hard” drives are so named because their data is stored on a small, rigid
disk that is usually made out of aluminum or glass and is coated with a
magnetic material. The name “hard” differentiates these disks from floppy
disks, which store their information on a thin piece of flexible Mylar plastic.

In disk drive terminology, the small aluminum or glass disk is known as
a platter. Each platter has two surfaces, front and back (or top and bottom),
and both sides contain the magnetic coating. During operation, the hard
drive unit spins this platter at a particular speed, which these days is usually
3,600; 5,400; 7,200; 10,000; or 15,000 revolutions per minute (RPM). Gener-
ally, though not always, the faster you spin the platter, the faster you can read
data from the disk and the higher the data transfer rate between the disk and
the system. The smaller disk drives that find their way into laptop computers
typically spin at much slower speeds, like 2,000 or 4,000 RPM, to conserve
battery life and generate less heat.

A hard disk subsystem contains two main active components: the disk
platter(s) and the read/write head. The read/write head, when held
stationary, floats above concentric circles, or tracks, on the disk surface (see
Figure 12-8). Each track is broken up into a sequence of sections known as
sectors or blocks. The actual number of sectors varies by drive design, but a
typical hard drive might have between 32 and 128 sectors per track (again,
see Figure 12-8). Each sector typically holds between 256 and 4,096 bytes of
data, and many disk drive units let the OS choose between several different
sector sizes, the most common choices being 512 bytes and 4,096 bytes.

Figure 12-8: Tracks and sectors on a hard disk platter

Sectors on a track

Platter

Tracks

No Starch Press, Copyright © 2004 by Randall Hyde

354 Chap te r 12

The disk drive records data when the read/write head sends a series of
electrical pulses to the platter, which translates those electrical pulses into
magnetic pulses that the platter’s magnetic surface retains. The frequency at
which the disk controller can record these pulses is limited by the quality of
the electronics, the read/write head design, and the quality of the magnetic
surface.

The magnetic medium is capable of recording two adjacent bits on its
disk surface and then differentiating between those two bits during a later
read operation. However, as you record bits closer and closer together, it
becomes harder and harder to differentiate between them in the magnetic
domain. Bit density is a measure of how closely a particular hard disk can pack
data into its tracks — the higher the bit density, the more data you can
squeeze onto a single track. However, to recover densely packed data
requires faster and more expensive electronics.

The bit density has a big impact on the performance of the drive. If the
drive’s platters are rotating at a fixed number of revolutions per minute,
then the higher bit density, the more bits will rotate underneath the read/
write head during a fixed amount of time. Larger disk drives tend to be faster
than smaller disk drives because they often employ a higher bit density.

By moving the disk’s read/write head in a roughly linear path from the
center of the disk platter to the outside edge, the system can position a single
read/write head over any one of several thousand tracks. Yet the use of only
one read/write head means that it will take a fair amount of time to move the
head among the disk’s many tracks. Indeed, two of the most often quoted
hard disk performance parameters are the read/write head’s average seek time
and track-to-track seek time.

A typical high-performance disk drive will have an average seek time
between five and ten milliseconds, which is half the amount of time it takes
to move the read/write head from the edge of the disk to the center, or vice
versa. Its track-to-track seek time, on the other hand, is on the order of one
or two milliseconds. From these numbers, you can see that the acceleration
and deceleration of the read/write head consumes a much greater percen-
tage of the track-to-track seek time than it consumes of the average seek time.
It only takes 20 times longer to traverse 1,000 tracks than it does to move to
the next track. And because moving the read/write heads from one track to
the next is usually the most common operation, the track-to-track seek time
is probably a better indication of the disk’s performance. Regardless of which
metric you use, however, keep in mind that moving the disk’s read/write
head is one of the most expensive operations you can do on a disk drive so
it’s something you want to minimize.

Because most hard drive subsystems record data on both sides of a disk
platter, there are two read/write heads associated with each platter — one
for the top of the platter and one for the bottom. And because most hard
drives incorporate multiple platters in their disk assembly in order to
increase storage capacity (see Figure 12-9), a typical drive will have multiple
read/write heads (two heads for each platter).

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 355

Figure 12-9: Multiple platter hard disk assembly

The various read/write heads are physically connected to the same actuator.
Therefore, each head sits above the same track on its respective platter, and
all the heads move across the disk surfaces as a unit. The set of all tracks over
which the read/write heads are currently sitting is known as a cylinder (see
Figure 12-10).

Figure 12-10: A hard disk cylinder

Although using multiple heads and platters increases the cost of a hard disk
drive, it also increases the performance. The performance boost occurs when
data that the system needs is not located on the current track. In a hard disk
subsystem with only one platter, the read/write head would need to move to
another track to locate the data. But in a disk subsystem with multiple
platters, the next block of data to read is usually located within the same
cylinder. And because the hard disk controller can quickly switch between
read/write heads electronically, doubling the number of platters in a disk
subsystem nearly doubles the track seek performance of the disk unit
because it winds up doing half the number of seek operations. Of course,
increasing the number of platters also increases the capacity of the unit,
which is another reason why high-capacity drives are often higher-
performance drives as well.

Disk platters

A cylinder is
the set of the
same tracks
across all
platters.

No Starch Press, Copyright © 2004 by Randall Hyde

356 Chap te r 12

With older disk drives, when the system wants to read a particular sector
from a particular track on one of the platters, it commands the disk to
position the read/write heads over the appropriate track, and the disk drive
then waits for the desired sector to rotate underneath. But by the time the
head settles down, there’s a chance that the desired sector has just passed
under the head, meaning the disk will have to wait for almost one complete
rotation before it can read the data. On the average, the desired sector
appears halfway across the disk. If the disk is rotating at 7,200 RPM (120
revolutions per second), it requires 8.333 milliseconds for one complete
rotation of the platter, and, if on average the desired sector is halfway across
the disk, 4.2 milliseconds will pass before the sector rotates underneath the
head. This delay is known as the average rotational latency of the drive, and it is
usually equivalent to the time needed for one rotation, divided by two.

To see how this can be a problem, consider that an OS usually manipu-
lates disk data in sector-sized chunks. For example, when reading data from
a disk file, the OS will typically request that the disk subsystem read a sector
of data and return that data. Once the OS receives the data, it processes the
data and then very likely makes a request for additional data from the disk.
But what happens when this second request is for data that is located on the
next sector of the current track? Unfortunately, while the OS is processing
the first sector’s data, the disk platters are still moving underneath the read/
write heads. If the OS wants to read the next sector on the disk’s surface
and it doesn’t notify the drive immediately after reading the first sector,
the second sector will rotate underneath the read/write head. When this
happens, the OS will have to wait for almost a complete disk rotation before
it can read the desired sector. This is known as blowing revs (revolutions). If
the OS (or application) is constantly blowing revs when reading data from
a file, file system performance suffers dramatically. In early “single-tasking”
OSes running on slower machines, blowing revs was an unpleasant fact. If a
track had 64 sectors, it would often take 64 revolutions of the disk in order to
read all the data on a single track.

To combat this problem, the disk-formatting routines for older drives
allow the user to interleave sectors. Interleaving sectors is the process of
spreading out sectors within a track so that logically adjacent sectors are
not physically adjacent on the disk surface (see Figure 12-11).

The advantage of interleaving sectors is that once the OS reads a sector,
it will take a full sector’s rotation time before the logically adjacent sector
moves under the read/write head. This gives the OS time to do some pro-
cessing and to issue a new disk I/O request before the desired sector moves
underneath the head. However, in modern multitasking OSes, it’s difficult
to guarantee that an application will gain control of the CPU so that it can
respond before the next logical sector moves under the head. Therefore,
interleaving isn’t very effective in such multitasking OSes.

To solve this problem, as well as improve disk performance in general,
most modern disk drives include memory on the disk controller that allows
the controller to read data from an entire track. By avoiding interleaving the

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 357

controller can read an entire track into memory in one disk revolution, and
once the track data is cached in the controller’s memory, the controller can
communicate disk read/write operations at RAM speed rather than at disk
rotation speeds, which can dramatically improve performance. Reading the
first sector from a track still exhibits rotational latency problems, but once
the disk controller reads the entire track, the latency is all but eliminated for
that track.

Figure 12-11: Interleaving sectors

A typical track may have 64 sectors of 512 bytes each, for a total of 32 KB per
track. Because newer disks usually have between 512 KB and 8 MB of on-
controller memory, the controller can buffer as many as 100 or so tracks in
its memory. Therefore, the disk-controller cache not only improves the
performance of disk read/write operations on a single track, it also improves
overall disk performance. And the disk-controller cache not only speeds up
read operations, but write operations as well. For example, the CPU can
often write data to the disk controller’s cache memory within a few micro-
seconds and then return to normal data processing while the disk controller
moves the disk read/write heads into position. When the disk heads are
finally in position at the appropriate track, the controller can write the data
from the cache to the disk surface.

From an application designer’s perspective, advances in disk subsystem
design have attempted to reduce the need to understand how disk drive
geometries (track and sector layouts) and disk-controller hardware affect the
application’s performance. Despite these attempts to make the hardware
transparent to the application, though, software engineers wanting to write
great code must always remain cognizant of the underlying operation of the
disk drive. For example, sequential file operations are usually much faster
than random-access operations because sequential operations require fewer

1

2

3

4

5

6

7

8

9

10

11
12

13

14

2:1 Sector interleaving

No Starch Press, Copyright © 2004 by Randall Hyde

358 Chap te r 12

head seeks. Also, if you know that a disk controller has an on-board cache,
you can write file data in smaller blocks, doing other processing between the
block operations, to give the hardware time to write the data to the disk
surface. Though the techniques early programmers used to maximize disk
performance don’t apply to modern hardware, by understanding how disks
operate and how they store their data, you can avoid various pitfalls that
produce slow code.

12.15.3 RAID Systems
Because a modern disk drive typically has between 8 and 16 heads, you might
wonder if it is possible to improve performance by simultaneously reading or
writing data on multiple heads. While this is certainly possible, few disk drives
utilize this technique. The reason is cost. The read/write electronics are
among the most expensive, bulky, and sensitive circuitry on the disk drive
controller. Requiring up to 16 sets of the read/write electronics would be
prohibitively expensive and would require a much larger disk-controller
circuit board. Also, you would need to run up to 16 sets of cables between the
read/write heads and the electronics. Because cables are bulky and add mass
to the disk head assembly, adding so many cables would affect track seek
time. However, the basic concept of improving performance by operating
in parallel is sound. Fortunately, there is another way to improve disk drive
performance using parallel read and write operations: the redundant array of
inexpensive disks (RAID) configuration.

The RAID concept is quite simple: you connect multiple hard disk drives
to a special host controller card, and that adapter card simultaneously reads
and writes the various disk drives. By hooking up two disk drives to a RAID
controller card, you can read and write data about twice as fast as you could
with a single disk drive. By hooking up four disk drives, you can almost
improve average performance by a factor of four.

RAID controllers support different configurations depending on the
purpose of the disk subsystem. So-called Level 0 RAID subsystems use multiple
disk drives simply to increase the data transfer rate. If you connect two 150-
GB disk drives to a RAID controller, you’ll produce the equivalent of a 300-
GB disk subsystem with double the data transfer rate. This is a typical
configuration for personal RAID systems — those systems that are not
installed on a file server.

Many high-end file server systems use Level 1 RAID subsystems (and other
higher-numbered RAID configurations) to store multiple copies of the data
across the multiple disk drives, rather than to increase the data transfer rate
between the system and the disk drive. In such a system, should one disk fail,
a copy of the data is still available on another disk drive. Some even higher-
level RAID subsystems combine four or more disk drives to increase the data
transfer rate and provide redundant data storage. This type of configuration
usually appears on high-end, high-availability file server systems.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 359

RAID systems provide a way to dramatically increase disk subsystem
performance without having to purchase exotic and expensive mass storage
solutions. Though a software engineer cannot assume that every computer
system in the world has a fast RAID subsystem available, certain applications
that could not otherwise be written can be created using RAID. When writing
great code, you shouldn’t specify a fast disk subsystem like RAID from the
beginning, but it’s nice to know you can always fall back to its specification if
you’ve optimized your code as much as possible and you still cannot get the
data transfer rates your application requires.

12.15.4 Zip and Other Floptical Drives

One special form of floppy disk is the floptical disk. By using a laser to etch
marks on the floppy disk’s magnetic surface, floptical manufacturers are
able to produce disks with 100 to 1,000 times the storage of normal floppy
disk drives. Storage capacities of 100 MB, 250 MB, 750 MB, and more,
are possible with the floptical devices. The Zip drive from Iomega is a good
example of this type of media. These floptical devices interface with the PC
using the same connections as regular hard drives (IDE, SCSI, and USB), so
they look just like a hard drive to software. Other than their reduced speed
and storage capacity, software can interact with these devices as it does with
hard drives.

12.15.5 Optical Drives

An optical drive is one that uses a laser beam and a special photosensitive
medium to record and play back digital data. Optical drives have a couple of
advantages over hard disk subsystems that use magnetic media:

� They are more shock resistant, so banging the disk drive around during
operation won’t destroy the drive unit as easily as a hard disk.

� The media is usually removable, allowing you to maintain an almost
unlimited amount of offline or near-line storage.

� The capacity of an individual optical disk is fairly high compared to
other removable storage solutions, such as floptical drives or cartridge
hard disks.

At one time, optical storage systems appeared to be the wave of the future
because they offered very high storage capacity in a small space. Unfortu-
nately, they have fallen out of favor in all but a few niche markets because
they also have several drawbacks:

� While their read performance is okay, their write speed is very slow: an
order of magnitude slower than a hard drive and only a few times faster
than a floptical drive.

No Starch Press, Copyright © 2004 by Randall Hyde

360 Chap te r 12

� Although the optical medium is far more robust than the magnetic
medium, the magnetic medium in a hard drive is usually sealed away
from dirt, humidity, and abrasion. In contrast, optical media is easily
accessible to someone who really wants to do damage to the disk’s
surface.

� Seek times for optical disk subsystems are much slower than for magnetic
disks.

� Optical disks have limited storage capacity, currently less than a couple
gigabytes.

One area where optical disk subsystems still find use is in near-line storage
subsystems. An optical near-line storage subsystem typically uses a robotic
jukebox to manage hundreds or thousands of optical disks. Although one
could argue that a rack of high-capacity hard disk drives would provide a
more space efficient storage solution, such a hard disk solution would
consume far more power, generate far more heat, and require a more
sophisticated interface. An optical jukebox, on the other hand, usually has
only a single optical drive unit and a robotic disk selection mechanism. For
archival storage, where the server system rarely needs access to any particular
piece of data in the storage subsystem, a jukebox system is a very cost-
effective solution.

If you wind up writing software that manipulates files on an optical drive
subsystem, the most important thing to remember is that read access is much
faster than write access. You should try to use the optical system as a “read-
mostly” device and avoid writing data as much as possible to the device. You
should also avoid random access on an optical disk’s surface, as the seek
times are very slow.

12.15.6 CD-ROM, CD-R, CR-R/W, DVD, DVD-R, DVD-RAM,
and DVD-R/W Drives
CD and DVD drives are also optical drives. However, their widespread
use and their sufficiently different organization and performance when
compared with standard optical drives means that they warrant a separate
discussion.

CD-ROM was the first optical drive subsystem to achieve wide acceptance
in the personal computer market. CD-ROM disks were based on the audio
CD digital recording standard, and they provided a large amount of storage
(650 MB) when compared to hard disk drive storage capacities at the time
(typically 100 MB). As time passed, of course, this relationship reversed. Still,
CD-ROMs became the preferred distribution vehicle for most commercial
applications, completely replacing the floppy disk medium for this purpose.
Although a few of the newer applications contain so much data that it is
inconvenient to ship them on one or two CD-ROM disks, the vast majority
of applications can be delivered just fine on CD-ROM, so this will probably
remain the preferred software distribution medium for most applications.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 361

Although the CD-ROM format is a very inexpensive distribution medium
in large quantities, often only costing a few cents per disk, it is not an
appropriate distribution medium for small production runs. The problem is
that it typically costs several hundreds or thousands of dollars to produce a
disk master (from which the run of CD-ROMs are made), meaning that CD-
ROM is usually only a cost-effective distribution medium when the quantity
of disks being produced is at least in the thousands.

The solution was to invent a new CD medium, CD-Recordable (CD-R),
which allowed the production of one-off CD-ROMs. CD-R uses a write-once
optical disk technology, known euphemistically as WORM (write-once, read-
many). When first introduced, CD-R disks cost about $10–$15. However,
once the drives reached critical mass and media manufacturers began pro-
ducing blank CD-R disks in huge quantities, the bulk retail price of CD-Rs
fell to about $0.25. As a result, CD-R made it possible to distribute a fair
amount of data in small quantities.

One obvious drawback to CD-R is the “write-once” limitation. To
overcome this limitation, the CD-Rewriteable (CD-RW) drive and medium
were created. CD-RW, as its name suggests, supports both reading and
writing. Unlike optical disks, however, you cannot simply rewrite a single
sector on CD-RW. Instead, to rewrite the data on a CD-RW disk you must first
erase the whole disk.

Although the 650 MB of storage on a CD seemed like a gargantuan
amount when CDs were first introduced, the old maxim that data and
programs expand to fill up all available space certainly held true. Though
CDs were ultimately expanded from 650 MB to 700 MB, various games (with
embedded video), large databases, developer documentation, programmer
development systems, clip art, stock photographs, and even regular applica-
tions reached the point where a single CD was woefully inadequate. The
DVD-ROM (and later, DVD-R, DVD-RW, DVD+RW, and DVD-RAM) disk
reduced this problem by offering between 3 GB and 17 GB of storage on a
single disk. Except for the DVD-RAM format, one can view the DVD formats
as faster, higher-capacity versions of the CD formats. There are some clear
technical differences between the two formats, but most of them are
transparent to the software.

The CD and DVD formats were created for reading data in a continuous
stream from the storage medium, called streaming data. The track-to-track
head movement time required when reading data stored on a hard disk,
creates a big gap in the streaming sequence that is unacceptable for audio
and video applications. Therefore, CDs and DVDs record information on a
single, very long track that forms a spiral across the surface of the whole disk.
This allows the CD or DVD player to continuously read a stream of data by
simply moving the laser beam along the disk’s single spiral track at a
continuous rate.

Although having a single track is great for streaming data, it does make
it a bit more difficult to locate a specific sector on the disk. The CD or DVD
drive can only approximate a sector’s position by mechanically repositioning

No Starch Press, Copyright © 2004 by Randall Hyde

362 Chap te r 12

the laser beam to some point on the disk. Once the drive approximates the
position, it must actually read data from the disk surface to determine where
the laser is positioned, and then do some fine-tuning adjustments of the laser
position in order to find the desired sector. As a result, searching for a speci-
fic sector on a CD or DVD disk can take an order of magnitude longer than
searching for a specific sector on a hard disk.

From the programmer’s perspective, the most important thing to
remember when writing code that interacts with CD or DVD media is that
random-access is verboten. These media were designed for sequential
streaming access, and seeking for data on such media will have a negative
impact on application performance. If you are using these disks to deliver
your application and its data to the end user, you should have the user copy
the data to a hard disk before use if high-performance random access is
necessary.

12.16 Tape Drives

Tape drives are also popular mass storage devices. Traditionally, personal
computer owners have used tape drives to back up data stored on hard disk
drives. For many years, tape storage was far more cost-effective than hard disk
storage on a cost-per-megabyte basis. Indeed, at one time there was an order
of magnitude difference in cost per megabyte between tape storage and
magnetic disk storage. And because tape drives held more data than most
hard disk drives, they were more space-efficient too.

However, because of competition and technological advances in the
hard disk drive marketplace, tapes have lost these advantages. Hard disk
drives are now exceeding 250 GB in storage, and the optimum price point
for hard disks is about $0.50 per gigabyte. Tape storage today costs far more
per megabyte than hard disk storage. Plus, only a few tape technologies allow
one to store 250 GB on a single tape, and those that do (such as Digital
Linear Tape, or DLT) are extremely expensive. It’s not surprising that tape
drives are seeing less and less use these days in home PCs and are typically
found only in larger file server machines.

Back in the days of mainframes, application programs interacted with
tape drives in much the same way that today’s applications interact with hard
disk drives. A tape drive, however, is not an efficient random access device.
That is, although software can read a random set of blocks from a tape, it
cannot do so with acceptable performance. Of course, in the days when most
applications ran on mainframes, applications generally were not interactive,
and the CPUs were much slower. As such, the standard for “acceptable
performance” was different.

In a tape drive, the read/write head is fixed, and the tape transport
mechanism moves the tape past the read/write head linearly, from the
beginning of the tape to the end of the tape, or vice versa. If the beginning
of the tape is currently positioned over the read/write head and you want

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 363

to read data at the end of the tape, you have to move the entire tape past
the read/write head to get to the desired data. This can be very slow,
requiring tens or even hundreds of seconds, depending on the length and
format of the tape. Compare this with the tens of milliseconds it takes to
reposition a hard disk’s read/write head. Therefore, to perform well on
a tape drive, software has to be written with special awareness of the limita-
tions of a sequential access device. In particular, data should be read or
written sequentially on a tape to produce the highest performance.

Originally, data was written to tapes in blocks (much like sectors on a
hard disk), and the drives were designed to allow quasi-random access to the
tape’s blocks. If you’ve ever seen an old science fiction movie with the old-
style reel-to-reel drives, with the reels constantly stopping, starting, stopping,
reversing, stopping, and continuing, you were seeing “random access” in
action. Such tape drives were very expensive because they required powerful
motors, finely tooled tape-path mechanisms, and so on. As hard drives
became larger and less expensive, applications stopped using tape as a data
manipulation medium and used tape only for offline storage. Using a tape
drive was simply too slow for normal application work. As a result, most
systems started using tape drives only in sequential mode for backing up data
from hard disks.

Because sequential data access on tape does not require the heavy-duty
mechanics of the original tape drives, the tape drive manufactures sought to
make a lower-cost product suitable for sequential access only. Their solution
was the streaming tape drive, which was designed to keep the data constantly
moving from the CPU to the tape, or vice versa. For example, while backing
up the data from a hard disk to tape, a streaming tape drive treats the data
like a video or audio recording and just lets the tape run, constantly writing
the data from the hard disk to the tape. Because of the way streaming tape
drives work, very few applications deal directly with the tape unit. Today, it’s
very rare for anything other than a tape backup utility program, run by the
system administrator, to access the tape hardware.

12.17 Flash Storage

An interesting storage medium that has recently become popular because of
its compact form factor3 is flash storage media. The flash medium is actually
a semiconductor device, based on the electrically erasable programmable
read-only memory (EEPROM) technology, which, despite its name, is both
readable and writable. Unlike regular semiconductor memory, flash storage
is non-volatile, meaning that it maintains its data even in the absence of
power. Like other semiconductor technologies, flash storage is purely
electronic and doesn’t require any motors or other electro-mechanical
devices for proper operation. Therefore, flash storage devices are more
reliable and shock resistant, and they use far less power than mechanical

3 In this context, “form factor” means shape and size.

No Starch Press, Copyright © 2004 by Randall Hyde

364 Chap te r 12

storage solutions such as disk drives. This makes flash storage solutions
especially valuable in portable battery-powered devices like PDAs, electronic
cameras, MP3 playback devices, and portable recorders.

Flash storage modules now provide between 2 MB and several gigabytes
of storage, and their optimal price point is at about $0.25 per megabyte. This
makes them far more expensive per bit than hard disk storage, which means
that their use as a storage medium is diminished.

Flash devices are sold in many different form factors. OEMs (original
equipment manufacturers) can buy flash storage devices that look like other
semiconductor chips and then mount these devices directly on their circuit
boards. However, most flash memory devices sold today are built into one
of several standard forms including PC Cards, CompactFlash cards, smart
memory modules, memory sticks, or USB/flash modules. For example, a
digital camera user might remove a CompactFlash card from their camera,
insert it into a special CompactFlash card reader on their PC, and access
their photographs just as they would files on a disk drive.

Memory in a flash storage module is organized in blocks of bytes, not
unlike sectors on a hard disk. Unlike regular semiconductor memory, or
RAM, you cannot write individual bytes in a flash storage module. Although
you can generally read an individual byte from a flash storage device, to write
to a particular byte you must first erase the entire block on which it resides.
The block size varies by device, but most OSes will treat these flash blocks like
a disk sector for the purposes of reading and writing. Although the basic
flash storage device itself could connect directly to the CPU’s memory bus,
most common flash storage packages (such as Compact Flash cards and
Memory Sticks) contain electronics that simulate a hard disk interface, and
you access the flash device just as you would a hard disk drive.

One interesting aspect to flash memory devices, and EEPROM devices in
general, is that they have a limited write lifetime. That is, you may only write
to a particular memory cell in a flash memory module a certain number of
times before that cell begins to have problems retaining the information.
In early EEPROM/flash devices, this was a big concern because the average
number of write cycles before failures would begin occurring was around
10,000. That is, if some software wrote to the same memory block 10,000
times in a row, the EEPROM/flash device would probably develop a bad
memory cell in that block, effectively rendering the entire chip useless. On
the other hand, if the software wrote just once to 10,000 separate blocks, the
device could still take 9,999 additional writes to each memory cell. There-
fore, the OSes of these early devices would try to spread out write operations
across the entire device to minimize damage. Although modern flash devices
still exhibit this problem, technological advances have reduced it almost to
the point where we can ignore it. A modern flash memory cell supports an
average of about a million write cycles before it will go bad. Furthermore,
today’s OSes simply mark bad flash blocks, the same way they mark bad
sectors on a disk, and will skip a block once they determine that it has
gone bad.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 365

Being electronic, flash devices do not exhibit rotational latency times at
all, and they don’t exhibit much in the way of seek times. There is a tiny
amount of time needed to write an address to a flash memory module, but it
is nothing compared to the head seek times on a hard disk. Despite this, flash
memory is generally nowhere near as fast as typical RAM. Reading data from
a flash device itself usually takes microseconds (rather than nanoseconds),
and the interface between the flash memory device and the system may
require additional time to set up a data transfer. Worse still, it is common
to interface a flash storage module to a PC using a USB flash reader device,
and this often reduces the average read time per byte to hundreds of micro-
seconds.

Write performance is even worse. To write a block of data to flash, you
must write the data, read it back, compare it to the original data, and rewrite
it if they don’t match. Writing a block of data to flash can take several tens or
even hundreds of milliseconds.

As a result, flash memory modules are generally quite a bit slower than
high-performance hard disk subsystems. Technological advances are
improving their performance, a process that is mainly being driven by high-
end digital camera users who want to be able to snap as many pictures as
possible in a short time. Though flash memory performance will probably
not catch up with hard disk performance any time soon, it should steadily
improve as time passes.

12.18 RAM Disks and Semiconductor Disks

Another pair of interesting mass storage devices you’ll find are the RAM and
semiconductor disks. A RAM disk is just an application that treats a large
block of the computer system’s memory as though it were a disk drive,
simulating blocks and sectors using memory arrays. A semiconductor disk is a
device consisting of RAM memory and a controller that interfaces with the
system using a traditional disk interface. Semiconductor disks usually have
their own power supply (including a battery backup system) so that they
maintain memory integrity when you turn off the PC. The use of a standard
disk interface and a separate, uninterruptible, power supply are what
differentiate true semiconductor disks from software-based RAM disks.

The advantage of memory-based disks is that they are very high perfor-
mance. RAM disks and semiconductor disks do not exhibit the time delays
associated with head seek time and rotational latency that you find on hard,
optical, and floppy drives. Their interface to the CPU is also much faster,
so data transfer times are very high, often running at the maximum bus
speed. It is hard to imagine a faster storage technology than a RAM or
semiconductor disk.

RAM and semiconductor disks, however, have two disadvantages: cost
and volatility. The cost per byte of storage in a semiconductor disk system is
very high. Indeed, byte-for-byte, semiconductor storage is as much as 1,000

No Starch Press, Copyright © 2004 by Randall Hyde

366 Chap te r 12

times more expensive than magnetic hard disk storage. Because of the high
cost of semiconductor storage, semiconductor disks usually have low storage
capacities, typically no more than a couple of gigabytes. And, semiconductor
disks are volatile — they lose their memory unless they are powered at all
times. A battery-backed, uninterruptible power supply can help prevent
memory loss during power failures, but you cannot disconnect a semicon-
ductor disk from the power line for an extended period of time and expect
the data to persist. This generally means that semiconductor disks are great
for storing temporary files and files you’ll copy back to some permanent
storage device before shutting down the system. Because of their low-latency,
high data transfer rates, and relatively low storage capacity, semiconductor
disks are excellent for use as swap storage for a virtual memory subsystem.
They are not particularly well suited for maintaining important information
over long periods of time.

The popularity of semiconductor disks tends to rise and fall with mother-
board and CPU designs. Semiconductor disks tend to be more popular when
it is physically impossible to extend the amount of memory in a given compu-
ter system. Semiconductor disks tend to be less popular when a computer
system allows memory expansion. The reason for this is simple: It is far less
expensive to increase the RAM in a typical computer system and use a soft-
ware-based RAM disk than it is to add a semiconductor disk to the system. A
software-based RAM disk is usually faster than a semiconductor disk because
the system can access the RAM disk at memory bus speeds rather than at disk
controller speeds. In fact, there are only two disadvantages to RAM disks:
their memory is volatile, and every byte you allocate to a RAM disk is one less
byte available for your applications. In a few systems, these two disadvantages
prevent the use of RAM disks. For most uses, however, if there is a little extra
unused RAM in the system, and the user is careful to copy important data
from the RAM disk to nonvolatile storage before shutting off the system, a
software-based RAM disk can be a very cost-effective solution.

The problems with software-based RAM disk solutions begin when you
have added all the RAM your system can support, and your applications
require most of the memory in the system. Back when CPUs had a 16-bit
address space, users quickly reached the point where they had installed as
much as 64 KB of memory on their machines (216 bytes is 64 KB). When
the 8088/8086 rolled around with a 20-bit address bus, it wasn’t long before
users had installed the maximum amount of memory in those machines too.
Ditto for CPUs with a 24-bit address bus, allowing a maximum of 16 MB of
memory. Once CPUs started supporting 32-bit address buses, it seemed like
the amount of memory one could install in the system had hit infinity, but
today we’re once again bumping up against that limit. It’s not uncommon
now to find machines with the maximum amount of memory already
installed, particularly since motherboards often limit the amount of RAM
that can be installed on a system even though the system CPU can address
a much larger amount of RAM.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 367

Semiconductor disks become practical when you’ve installed the maxi-
mum amount of RAM in your system and the applications or OS are making
use of that memory, so that there isn’t a large block of memory lying around
that you can use for a RAM disk. Because the semiconductor disk’s memory
exists outside the CPU’s address space, it does not impact the memory limits
that apply to motherboard designs.

12.19 SCSI Devices and Controllers

The Small Computer System Interface (SCSI, pronounced “scuzzy”) is a
peripheral interconnection bus used to connect high-speed peripheral
devices to personal computer systems. Designed in the early 1980s, the SCSI
bus was popularized by its introduction on the Apple Macintosh computer
system in the middle 1980s. The original SCSI interface supported an 8-bit
bidirectional data bus and was capable of transferring 5 MB of data per
second, which was considered “high-performance” for hard disk subsystems
of that era. Although the performance of that early SCSI interface is quite
slow by modern standards, SCSI has gone through several revisions over the
years and remains a high-performance peripheral interconnection system.
Today’s SCSI devices are capable of transferring 320 MB per second.

Although the SCSI interconnection system is most commonly used for
disk drive subsystems, SCSI was designed to support a whole host of PC
peripherals using a cable connection. Indeed, as SCSI became popular
during the late 1980s and into the 1990s, you could find printers, scanners,
imaging machines, phototypesetters, network, and display adapters, and
many other devices interfacing with the SCSI bus. However, the popularity of
the SCSI bus as a general-purpose peripheral bus has diminished since the
appearance of the USB and FireWire peripheral connection systems. Except
for very high performance disk drive subsystems and some very specialized
peripheral devices, few new peripherals use the SCSI interface.

To understand why SCSI’s popularity is waning, one must consider the
problems SCSI users have faced over the years. When SCSI was first intro-
duced, the SCSI bus supported concurrent connection of the SCSI adapter
card and up to seven actual peripheral devices. To connect multiple devices,
one first ran a cable from the host controller card to the first peripheral
device. To connect a second device, one ran a cable from a second connec-
tor on the first device to the second device. To connect a third device, one
ran a cable from a separate connector on the second device to the third
device, and so on. At the end of this “daisy chain” of devices, one attached a
special terminating device to the last connector of the last peripheral device.
Without the special “terminator” at the end of the SCSI chain, many SCSI
systems would work unreliably, if at all.

As a “convenience” to their customers, many peripheral manufacturers
built the terminating circuitry into their devices. Unfortunately, connecting
multiple terminators in the middle of the SCSI chain was just as bad as not

No Starch Press, Copyright © 2004 by Randall Hyde

368 Chap te r 12

having a terminator in the SCSI system. Though most manufacturers who
designed the terminating circuitry into their peripherals often provided an
option to disable the terminator, some did not. Ensuring that those devices
with the active terminator circuitry were at the end of the SCSI chain was
often cumbersome, and even if a device provided an option to enable or
disable the terminator, knowing the appropriate “dip-switch” settings was a
problem if the documentation wasn’t handy. As a result, many computer
owners had problems with a chain of SCSI devices not working properly in
their system.

On the original SCSI bus, the computer system owner had to assign each
device one of eight numeric “addresses” from zero to seven, with address
seven generally reserved for the host controller card. If two devices in the
SCSI chain had the same address, they wouldn’t operate properly. This made
moving SCSI peripherals from one computer system to another somewhat
difficult, because the address of the device being moved was usually already
taken by another device on the new system.

The original SCSI bus had other limitations as well. First, it only
supported seven peripheral devices. When SCSI was first designed, this
wasn’t usually a problem because common SCSI peripherals like hard drives
and scanners were very expensive, costing thousands of dollars each.
Connecting more than seven devices wasn’t something your average
computer owner would have done back then. But, as the price of hard drives
and other SCSI peripherals came down, the seven-peripheral limit became
burdensome. Second, SCSI was not, and still is not, hot swappable. That is, you
cannot unplug a peripheral device while power is applied to the system, nor
may you connect a new peripheral to the SCSI bus while the power is on.
Doing so could cause electrical damage to the SCSI controller, the periph-
eral, or even some other peripheral on the SCSI bus. As SCSI peripherals
came down in price and people began connecting multiple devices to their
computer systems, the desire to unplug a device from one system and plug it
into another grew, but SCSI did not support this mode of operation.

Despite all these bad features, SCSI’s popularity grew. To maintain that
popularity, SCSI was modified over time to improve its functionality. SCSI-2,
the first modification, doubled the speed from 5 MHz to 10 MHz, thus doub-
ling the data transfer rate on the bus. This was necessary because the speed
of high-performance devices like disk drives increased so much that the
original SCSI interface was actually slowing them down. The next improve-
ment was to increase the size of the bidirectional SCSI data bus from 8 bits to
16 bits. This not only doubled the data transfer rate from 10 MB per second
to 20 MB per second, it also increased the number of peripherals one could
place on the bus from 7 to 15. Variations of SCSI-2 were known as Fast SCSI
(10 MHz), Wide SCSI (16 bits), and Fast and Wide SCSI (16 bits at 10 MHz).

It should come as no surprise that SCSI-3 followed SCSI-2. SCSI-3 offers
a veritable smorgasbord of different connection options while maintaining
compatibility with the older standards. Although SCSI-3 (using names like
Ultra, Ultra Wide, Ultra2, Wide Ultra2, Ultra3, and Ultra320) still operates

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 369

as a 16-bit bus in the parallel cable mode, and it still supports a maximum of
15 peripherals, it is vastly improved. SCSI-3 increased the operating speed of
the bus and the maximum permissible physical distance across which SCSI
peripherals could be chained. To make a long story short, SCSI-3 operates at
speeds of up to 160 MHz, allowing the SCSI bus to transfer data in bursts up
to 320 MB per second (that is, faster than many PCI bus interconnects!).

SCSI was originally a parallel interface. Today, SCSI supports three
different interconnection standards: SCSI Parallel Interface (SPI), Serial
SCSI across FireWire, and Fibre Channel Arbitrated Loop. The SPI is the
original definition that most people associate with the SCSI interface. SCSI
parallel cables contain either 8 or 16 data lines, depending on the type of
SCSI interface in use. This makes SCSI cables bulky, heavy, and expensive.
The parallel SCSI interface also limits the maximum length of the SCSI
chain in the system to just a few meters. These concerns, especially the
economic ones, are why modern computer systems only use SCSI peripherals
when extremely high performance is necessary.

An important fact to note about SCSI is that it is not a master/slave
interconnection system. That is, the computer system does not own the bus
and doesn’t necessarily direct the traffic between various peripherals on the
bus. SCSI is a true peer-to-peer bus, and any two peripherals on the bus may
communicate with one another. Indeed, it’s possible (though unusual) for
two computer systems to share the same SCSI bus. This peer-to-peer oper-
ation can improve the performance of the overall system tremendously. To
illustrate this point, consider a tape backup system. In practice, most tape
backup programs read a block of data from a disk drive into the computer’s
memory and then write that block of data from the computer’s memory to
the tape drive. On the SCSI bus (in theory, at least), it is possible to have
the tape and disk drives communicate directly with one another. The tape
backup software would send two commands, one to the disk drive and one to
the tape drive, telling the disk drive to transfer the block of data directly to
the tape drive rather than going through the computer system. Not only does
this reduce the number of transfers across the SCSI bus by half, speeding up
the transfer, but it also frees up the computer’s CPU to do other things. In
reality, few tape backup systems work this way, but there are many examples
where two peripherals communicate with one another across the SCSI bus
without using the computer as an intermediary. Software that programs SCSI
peripherals to operate this way (rather than running the data through the
computer’s memory) is a good example of great programming.

SCSI is interesting insofar as it is not only an electrical interconnection,
but a protocol as well. One does not communicate with a SCSI peripheral
device by writing some data to a couple of registers on the SCSI interface
card, causing that data to travel down the SCSI cable to the peripheral
device. Although SCSI is a parallel interface like the parallel printer port, it
doesn’t communicate with SCSI peripheral devices like the parallel port
communicates with printer devices. To use SCSI, you build up a data
structure in memory containing a SCSI command, command parameters,

No Starch Press, Copyright © 2004 by Randall Hyde

370 Chap te r 12

any data you may want to send to the SCSI peripheral, and possibly a pointer
with the memory address where the SCSI controller should store any data the
peripheral device returns. Once you construct this data structure, you
normally provide the SCSI controller with the data structure’s address, and
the SCSI controller then fetches the command from system memory and
sends it to the appropriate peripheral device on the SCSI bus.

As SCSI hardware has evolved over the years, so has the SCSI protocol,
the SCSI command set. SCSI was never intended to serve as just a hard disk
interface, and the breadth of peripherals that SCSI supports has steadily
increased over the years along with the advent of new types of computer
peripherals. To accommodate these new and unanticipated uses for the SCSI
bus, SCSI’s designers created a device-independent command protocol that
could be easily extended as new devices were invented. Contrast this with
certain device interfaces such as the original Integrated Disk Electronics
(IDE) interface, which was suitable only for disk drives.

The SCSI protocol transmits a packet containing the peripheral’s
address, the command, and the command’s data. The SCSI-3 standard has
roughly grouped these commands into the following classes:

� Controller commands for RAID arrays (SCC)

� Enclosure services commands (SES)

� Graphics commands for printers (SGC)

� Hard disk interface commands (the SCSI block commands, or SBC)

� Management server commands (MSC)

� Multimedia commands for devices such as DVD drives (MMC)

� Object-based storage commands (OSD)

� Primary commands (SPC)

� Reduced block commands for simplified hard drive subsystems (RBC)

� Stream commands for tape drives (SSC)

What do these commands look like? Unlike traditional interfaces such as
serial and parallel, one does not necessarily write SCSI “commands” to
registers on the SCSI controller chip. Indeed, SCSI commands are generally
intended for devices on the SCSI bus, not for the SCSI host controller (which
is often called the SCSI host adapter). The job of the host controller, from the
programmer’s perspective, is to place SCSI commands onto the SCSI bus for
use by other peripherals and to fetch commands and data from the SCSI bus
intended for the host system. Although the SCSI commands themselves are
standardized, the actual interface to the SCSI host controller is not. Different
host controller manufacturers use different hardware to connect their SCSI
controller chips to the host computer system, so how you talk to a SCSI
controller chip is different, depending on the particular host controller
device. Because SCSI controllers are very complex and difficult to program,

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 371

and because there is no “standard” SCSI interface chip, programmers are
faced with having to write several different variants of their software to
control SCSI devices.

To correct this situation, SCSI host controller manufacturers like
Adaptec have created specialized device driver modules that provide a uni-
form interface to their devices. Rather than writing data directly to a SCSI
chip, a programmer creates an in-memory data structure with SCSI com-
mands to be placed on the SCSI bus, calls the device driver software, and
lets the device driver transfer the SCSI commands to the SCSI bus. There
are several nice things about this approach:

� It frees the programmer from having to learn the complexities of each
particular host controller.

� It allows different manufacturers to provide a compatible interface to
their SCSI controller devices.

� It allows manufacturers to create a single optimized driver that properly
supports the capabilities of their device, rather than allowing individual
programmers to write possibly mediocre code for the device.

� It allows manufacturers to change the hardware of future versions of
their device without destroying compatibility with existing software.

This concept was carried forward into modern OSes. Today, SCSI host
controller manufacturers write SCSI miniport drivers for OSes like Windows.
These miniport drivers provide a hardware-independent interface to the host
controller so that the OS can simply say, “Here is a SCSI command. Put it on
the SCSI bus.”

One big advantage of the SCSI interface is that it provides parallel
processing of SCSI commands. That is, a host system can place several
different SCSI commands on the bus, and different peripheral devices can
process those commands simultaneously. Some devices, like disk drives, can
even accept multiple commands at once and process those commands in the
order that is most efficient. As an example, suppose that a disk drive is
currently near block 1,000. If the system sends block read requests for blocks
5,000; 4,560; 3,000; and 8,000; the disk controller can rearrange these
requests and satisfy them in the most efficient order (probably 3,000; 4,560;
5,000; and then 8,000) as it moves the read/write head across the surface of
the disk. This results in a big performance improvement on multitasking
OSes that process requests for disk I/O from several different applications
simultaneously.

SCSI is also a great interface for RAID systems because SCSI is one of the
few disk controller interfaces that supports a large number of drives on the
same interface. Indeed, because no modern hard drive is capable of equaling
SCSI data transfer rates, the only way to achieve SCSI’s 320-MB-per-second
transfer rate is with a RAID subsystem. Very high performance drives are
capable of sustaining only about 80-MB-per-second data transfer rates, and

No Starch Press, Copyright © 2004 by Randall Hyde

372 Chap te r 12

that’s only in burst mode. In an ideal world where the SCSI protocol did
not consume any overhead, you would have to connect four such drives to
a RAID/SCSI controller to achieve the theoretical maximum data transfer
rate on the SCSI bus.4 A very high performance RAID controller would sit
between the SCSI bus and the actual hard drives. Lower-cost RAID systems
can be created by connecting the disks directly to the SCSI bus and using
special software to send disk I/O operations to different disks on the SCSI
bus. Such systems don’t require special hardware, but they don’t achieve
the maximum throughput that is possible on SCSI either; not that they run
particularly slowly, mind you.

The SCSI command set is very powerful, and it is designed for high-
performance applications. It is sufficiently large and complex that space
limitations prevent its inclusion here. Readers interested in a deeper look
at SCSI programming should refer to The Book of SCSI (by Gary Field,
Peter M. Ridge, et al., published by No Starch Press). The complete SCSI
specifications appear at various sites on the Web. A quick search for “SCSI
specifications” on AltaVista, Google, or any other decent Web search engine
should turn up several copies of the specifications.

12.20 The IDE/ATA Interface

Although the SCSI interface is very high performance, it is also expensive. A
SCSI device requires a sophisticated and fast processor in order to handle all
the operations that are possible on the SCSI bus. Furthermore, because SCSI
devices can operate on a peer-to-peer basis (that is, one peripheral may talk
to another without intervention from a host computer system), each SCSI
device must carry around a considerable amount of sophisticated software in
ROM on the device’s controller board. Adding all the extra functionality
needed to support full SCSI when all you want to do is to attach a single hard
disk to a personal computer system is a bit of overkill. During the middle to
late 1980’s, several computer and disk manufacturers got together to discuss
a less expensive, though standardized, interface that would let them connect
inexpensive disk drives to personal computers. The result of this initiative
was the IDE (Integrated Drive Electronics) interface.

The point behind SCSI was to off load as much work as was reasonably
possible to the device controller, freeing up the host computer to do other
activities. But all this extra complexity and cost to improve system perfor-
mance was going to waste because in typical personal computer systems the
host computer was usually waiting for the data transfer to complete. So the
computer was sitting idle while the SCSI disk drive was busy processing the
SCSI command. The idea behind the IDE interface was to lower the cost
of the disk drive by using the host computer’s CPU to do the processing.
Because the CPU was usually idle (during SCSI transfers) anyway, this

4 In reality, of course, there is some overhead consumed by the SCSI protocol itself. Hence, the
SCSI bus would actually be saturated with fewer than 20 high-performance drives.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 373

seemed like a good use of resources. IDE drives, because they were often
hundreds of dollars less than SCSI drives, became incredibly popular on
personal computer systems.

The original IDE drive specification was very limited compared to the
SCSI interface. First, it supported only two drives chained together (modern
systems provide two IDE interfaces, a primary channel and a secondary
channel, that support up to four devices). Second, the IDE specification was
created only for disk drives; it was not a general-purpose peripheral interface
bus like SCSI. And third, cable lengths for the IDE interface effectively
limited IDE devices to residing in the same case as the CPU. Nevertheless,
the much lower cost of the IDE interface and of IDE drives ensured its
popularity.

Soon after the introduction of the IDE interface, peripheral manufac-
turers discovered that there were other devices that they’d like to connect
to the IDE interface. Though the IDE interface was designed specifically for
mass storage devices, and wouldn’t work well with non-storage devices like
scanners and printers, there were many types of storage devices other than
hard disks (such as CD-ROMs, tape drives, and Zip drives) for which the IDE
interface represented a cheap alternative to SCSI. Furthermore, because
most PCs were being shipped with IDE interfaces, manufacturers of non-
hard-disk mass storage devices were drooling over the possibility of connec-
ting to an interface found on all new personal computer systems. Because
the original IDE specification was geared specifically to hard disk drives
and was not particularly well suited for other types of storage devices, the
committee that designed the IDE interface went back to work and developed
the AT Attachment with Packet Interface (IDE/ATAPI), which is usually shor-
tened to ATA (Advanced Technology Attachment). Like SCSI, the ATA standard
has gone through several revisions and improvements over the years.

Originally, IDE was designed to work on a 33-MHz PCI bus and was
theoretically capable of transferring 33 MB per second. Later revisions of the
ATA standard (ATA-66, ATA-100, and ATA-133) were capable of transferring
data at 66 MB, 100 MB, and 133 MB per second. One might think that with
these speeds (which far outstrip the speed of the physical disk drives) the
ATA interface would be comparable to SCSI in performance. However, there
are two reasons why the ATA interface is still slower than SCSI. First, the host
processor is still involved in many of the operations, and it may take several
host computer operations across the IDE/ATA interface to accomplish what
a SCSI device could do on its own. Second, SCSI supports RAID much better
than the ATA interface does. For the average home user, though, the
modern IDE/ATA interface provides very good performance. One easy way
to compare ATA and SCSI is to note that the most recent ATA specification
tends to have performance equal to the previous SCSI generation.

The ATAPI specification (in its sixth version as of December 2001)
extends the IDE specification to support a wide range of mass storage
devices, including tape drives, Zip drives, CD-ROMs, DVDs, removable
cartridge drives, and more. In order to extend the IDE interface to support

No Starch Press, Copyright © 2004 by Randall Hyde

374 Chap te r 12

all these different storage devices, the designers of the ATAPI specification
adopted a packet command format that is very similar to, and in some cases
is identical to, the SCSI packet command format. One big difference
between SCSI and ATA is the fact that the hardware interface for ATA is far
more standardized. This allows, for example, a single BIOS routine to boot
from an IDE device regardless of who manufactured the interface chip.
Indeed, the major differences between various IDE/ATAPI interface chips
are simply the particular ATAPI specification to which the chip adheres:
ATAPI-2, ATAPI-3, ATAPI-4, ATAPI-5, or ATAPI-6. So, in theory at least, it’s
possible for application programmers to communicate directly with the
IDE/ATAPI interface and control the mass storage device directly.

In modern protected-mode OSes like Windows or Linux, however, an
application programmer is never allowed to talk directly to the hardware. In
theory, it would be possible to write a miniport driver for IDE to simulate the
way the SCSI interface works. In practice, however, the OS vendor generally
supplies a software library that provides an API (application programming
interface) to the IDE/ATAPI devices. The application programmer can then
make function calls to the API, passing appropriate parameters, and the
underlying library routines take care of the remaining tasks associated with
actually talking to the hardware.

Programming ATAPI devices in a modern system is quite similar to
programming SCSI devices. You load up a memory-based data structure with
a command code and a set of parameters, and then pass the memory
structure to a driver library function that passes the data across the ATAPI
interface to the target storage device. If such a low-level library is not
available, and your OS allows it, you can program the ATAPI interface device
to grab this data (generally using DMA on modern systems). The full ATAPI-
6 specification is almost 500 pages long; obviously, we do not have sufficient
space to cover the specification in any kind of detail. If you are interested in
a more detailed look at the IDE/ATAPI specifications, search for “ATAPI
specifications” with your favorite Internet search engine.

Modern machines use a serial ATA (SATA) controller. This is a high-
performance serial version of the venerable IDE/ATAPI parallel interface.
However, to the programmer, SATA looks exactly like ATAPI.

12.21 File Systems on Mass Storage Devices

Very few applications access mass storage devices directly. That is, appli-
cations do not generally read and write tracks, sectors, or blocks on a
mass storage device. Instead, most applications open, read, write, and
otherwise manipulate files on the mass storage device. The OS’s file
manager is responsible for abstracting away the physical configuration of
the underlying storage device and providing a convenient storage facility
for multiple independent files on a single device.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 375

On the earliest computer systems, application software was responsible
for tracking the physical position of data on a mass storage device because
there was no file manager available to handle this function for them. Such
applications were able to maximize their performance by carefully consid-
ering the layout of data on the disk. For example, software could manually
interleave data across various sectors on a track to give the CPU time to
process data between reading and writing those sectors on the track. Such
software was often many times faster than comparable software using a
generic file manager. Later, when file managers were commonly available,
some application authors still managed their files on a storage device for
performance reasons. This was especially true back in the days of floppy
disks, when low-level software written to manipulate data at the track and
sector level often ran ten times faster than the same application using a file
manager system.

In theory, today’s software could benefit from this as well, but you rarely
see such low-level disk access in modern software for several reasons. First,
writing software that manipulates a mass storage device at such a low level
locks you into using that one particular device. That is, if your software
manipulates a disk with 48 sectors per track, 12 tracks per cylinder, and 768
cylinders per drive, that same software will not work optimally (if at all) on
a drive with a different sector, track, and cylinder layout. Second, accessing
the drive at a low level makes it difficult to share the device among different
applications, something that can be especially costly on a multitasking system
that may have multiple applications sharing the device at once. For example,
if you’ve laid out your data on various sectors on a track to coordinate com-
putation time with sector access, your work is lost when the OS interrupts
your program and gives some other application its timeslice, thus consuming
the time you were counting on to do any computations prior to the next data
sector rotating under the read/write head. Third, some of the features of
modern mass storage devices, such as on-board caching controllers and SCSI
interfaces that present a storage device as a sequence of blocks rather than as
something with a given track and sector geometry, eliminate any advantage
such low-level software might have had at one time. Fourth, modern OSes
typically contain file buffering and block caching algorithms that provide
good file system performance, obviating the need to operate at such a low
level. Finally, low-level disk access is very complex and writing such software
is difficult.

The earliest file manager systems stored files sequentially on the disk’s
surface. That is, if each sector/block on the disk held 512 bytes and a file was
32 KB long, that file would consume 64 consecutive sectors/blocks on the
disk’s surface. In order to access that file at some future time, the file man-
ager only needed to know the file’s starting block number and the number
of blocks it occupied. Because the file system had to maintain these two
pieces of information somewhere in nonvolatile storage, the obvious place

No Starch Press, Copyright © 2004 by Randall Hyde

376 Chap te r 12

was on the storage media itself, in a data structure known as the directory. A
disk directory is an array of values starting at a specific location on the disk
that the OS can reference when an application requests a specific file. The
file manager can search through the directory for the file’s name and extract
its starting block and length. With this information, the file system can pro-
vide the application with access to the file’s data.

One advantage of the sequential file system is that it is very fast. The OS
can read or write a single file’s data very rapidly if the file is stored in sequen-
tial blocks on the disk’s surface. But a sequential file organization has some
big problems, too. The biggest and most obvious drawback is that you cannot
extend the size of a file once the file manager places another file at the next
block on the disk. Disk fragmentation is another big problem. As applica-
tions create and delete many small and medium-sized files, the disk fills up
with small sequences of unused sectors that, individually, are too small for
most files. It was common on sequential file systems to find disks that had
sufficient free space to hold some data, but that couldn’t use that free space
because it was spread all over the disk’s surface in small pieces. To solve this
problem, users had to run disk compaction programs to coalesce all the free
sectors and move them to the end of the disk by physically rearranging files
on the disk’s surface. Another solution was to copy files from one full disk to
another empty disk, thereby collecting the many small, unused sectors
together. Obviously, this was extra work that the user had to do, work that
the OS should be doing.

The sequential-file storage scheme really falls apart when used with
multitasking OSes. If two applications attempt to write file data to the disk
concurrently, the file system must place the starting block of the second
application’s file beyond the last block required by the first application’s file.
As the OS has no way of determining how large the files can grow, each
application has to tell the OS the maximum length of the file when the
application first opens the file. Unfortunately, many applications cannot
determine, beforehand, how much space they will need for their files. So the
applications have to guess the file size when opening a file. If the estimated
file size is too small, either the program will have to abort with a “file full”
error, or the application will have to create a larger file, copy the old data
from the “full” file to the new file, and then delete the old file. As you can
imagine this is horribly inefficient, and definitely not great code.

To avoid such performance problems, many applications grossly over-
estimate the amount of space they need for their files. As a result, they wind
up wasting disk space when the files don’t actually use all the data allocated
to them, a form of internal fragmentation. Furthermore, if applications trun-
cate their files when closing them, the resulting free sections returned to
the OS tend to fragment the disk into small, unusable blocks of free space,
a problem known as external fragmentation. For these reasons, sequential
storage on the disk was replaced by more sophisticated storage-management
schemes in modern OSes.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 377

Most modern file-allocation strategies allow files to be stored across
arbitrary blocks on the disk. Because the file system can now place bytes of
the file in any free block on the disk, the problems of external fragmentation
and the limitation on file size are all but eliminated. As long as there is at
least one free block on the disk, you can expand the size of any file. However,
along with this flexibility comes some extra complexity. In a sequential file
system, it was easy to locate free space on the disk — by noting the starting
block numbers and sizes of the files in a directory, it was possible to easily
locate a free block large enough to satisfy the current disk allocation request,
if such a block was available. But with a file system that stores files across
arbitrary blocks, scanning the directory and noting which blocks a file uses is
far too expensive to compute, so the file system has to keep track of the free
and used blocks. Most modern OSes use one of three data structures — a set,
a table (array), or a list — to keep track of which sectors are free and which
are not. Each of these schemes has its advantages and disadvantages, and
you’ll find all three schemes in use in modern OSes.

12.21.1 Maintaining Files Using a Free-Space Bitmap

The free-space bitmap scheme uses a set data structure to maintain a set of
free blocks on the disk drive. If a block is a member of the free-block set, the
file manager can remove that block from the set whenever it needs another
block for a file. Because set membership is a Boolean relationship (you’re
either in the set or you’re not), it takes exactly one bit to specify the set
membership of each block.

Typically, a file manager will reserve a certain section of the disk to hold
a bitmap that specifies which blocks on the disk are free. The bitmap will
consume some integral number of blocks on the disk, with each block
consumed being able to represent a specific number of other blocks on the
disk, which can be calculated by multiplying the block size (in bytes) by 8
(bits per byte). For example, if the OS uses 4,096-byte blocks on the disk, a
bit map consisting of a single block can track up to 32,768 other blocks on
the disk. To handle larger disks, you need a larger bitmap. The disadvantage
of the bitmap scheme is that as disks get large, so does the bitmap. For
example, on a 120-gigabyte drive with 4,096-byte blocks, the bitmap will be
almost four megabytes long. While this is a small percentage of the total disk
capacity, accessing a single bit in a bitmap this large can be clumsy. To find
a free block, the OS has to do a linear search through this four-megabyte
bitmap. Even if you keep the bitmap in system memory (which is a bit expen-
sive, considering that you have to do it for each drive), searching through
the bitmap every time you need a free sector is an expensive proposition.
As a result, you don’t see this scheme used much on larger disk drives.

One advantage (and also a disadvantage) of the bitmap scheme is that
the file manager only uses it to keep track of the free space on the disk, but it
does not use this data to track which sectors belong to a given file. As a result,

No Starch Press, Copyright © 2004 by Randall Hyde

378 Chap te r 12

if the free sector bitmap is damaged somehow, nothing is permanently lost.
It’s easy to reconstruct the free-space bitmap by searching through all the
directories on the disk and computing which sectors are in use by the files
in those directories (with the remaining sectors, obviously, being the free
ones). Although such a computation is somewhat time consuming, it’s nice
to have this ability when disaster strikes.

12.21.2 File Allocation Tables
Another way to track disk sector usage is with a table of sector pointers. In
fact, this scheme is the most common one in use today because it is the
scheme employed by MS-DOS and various versions of Microsoft Windows. An
interesting facet of the file allocation table (FAT) scheme is that it combines
both free-space management and file-sector allocation management into the
same data structure, ultimately saving space when compared to the bitmap
scheme, which uses separate data structures for free-space management and
file-sector allocation. Furthermore, unlike the bitmap scheme, FAT doesn’t
require an inefficient linear search to find the next available free sector.

The FAT is really nothing more than an array of self-relative pointers
(or indexes, if you prefer) into itself, setting aside one pointer for each
sector/block on the storage device. When a disk is first initialized, the first
several blocks on the disk’s surface are reserved for objects like the root
directory and the FAT itself, and then the remaining blocks on the disk are
the free space. Somewhere in the root directory is a free-space pointer that
specifies the next available free block on the disk. Assuming the free-space
pointer initially contains the value 64, implying that the next free block is
block 64, the FAT entries at indexes 64, 65, 65, and so on, would contain
the following values, assuming there are n blocks on the disk, numbered
from zero to n − 1:

The entry at block 64 tells you the next available free block on the disk,
65. Moving on to entry 65, you’ll find the value of the next available free
block on the disk, 66. The last entry in the FAT contains a zero (block
zero contains meta-information for the entire disk partition and is never
available).

FAT Index FAT Entry Value

.
64 65
65 66
66 67
67 68
.
n – 2 n – 1
n – 1 0

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 379

Whenever an application needs one or more blocks to hold some new
data on the disk’s surface, the file manager grabs the free-space pointer value
and then continues going through the FAT entries for however many blocks
are required to store the new data. For example, if each block is 4,096 bytes
long and the current application is attempting to write 8,000 bytes to a file,
the file manager will need to remove two blocks from the free-block list. To
do so, the file manager needs to go through the following steps:

1. Get the value of the free-space pointer.

2. Save the value of the free-space pointer so that the file manager will
know the first free sector it can use.

3. Continue going through the FAT entries for the number of blocks
required to store the application’s data.

4. Extract the FAT entry value of the last block where the application needs
to store its data, and set the free-space pointer to this value.

5. Store a zero over the FAT entry value of the last block that the applica-
tion uses, thus marking the end to the list of blocks that the application
needs.

6. Return the original value of the free-space pointer (as it was prior to
these steps) into the FAT as the pointer to the list of blocks in the FAT
that are now allocated for the application.

After the block allocation scheme in our earlier example, the application has
blocks 64 and 65 at its disposal, the free-space pointer contains 66, and the
FAT looks like this:

Don’t get the impression that entries in the FAT always contain the index of
the next entry in the table. As the file manager allocates and deallocates
storage for files on the disk, these numbers tend to become scrambled. For
example, if an application winds up returning block 64 to the free list but
holds on to block 65, the free-space pointer would contain the value 64, and
the FAT would wind up having the following values:

FAT Index FAT Entry Value

.
64 65
65 0
66 67
67 68
.
n – 2 n – 1
n – 1 0

No Starch Press, Copyright © 2004 by Randall Hyde

380 Chap te r 12

As noted earlier, one advantage of the FAT data structure is that it combines
both the free-space management and the file block lists into a single data
structure. This means that each file doesn’t have to carry around a list of the
blocks its data occupies. Instead, a file’s directory entry needs to have only a
single pointer value that specifies an index into the FAT where the first block
of the file’s data can be found. The remaining blocks that the file’s data
consumes can be found by simply stepping through the FAT. One important
advantage that the FAT scheme has over the set (bitmap) scheme is that
once the disk using a FAT file system is full, no blocks on the disk are used to
maintain information about which blocks are free. Even when there are no
free blocks available, the bitmap scheme still consumes space on the disk to
track the free space. But the FAT scheme replaces the entries originally used
to track free blocks with the file-block pointers. When the disk is full, none of
the values that originally maintained the free-block list are consuming space
on the disk because all of those values are now tracking blocks in files. In that
case, the free-space pointer would contain zero (to denote an empty free
space list) and all the entries in the FAT would contain chains of block
indexes for file data.

However, the FAT scheme does have a couple of disadvantages. First,
unlike the bitmap in a set scheme file system, the table in a FAT file system
represents a single point of failure. If the FAT is somehow destroyed, it can
be very difficult to repair the disk and recover files; losing some free space on
a disk is a problem, but losing track of where one’s files are on the disk is a
major problem. Furthermore, because the disk head tends to spend more
time in the FAT area of a storage device than in any other single area on the
disk, the FAT is the most likely part of a hard disk to be damaged by a head
crash, or the most likely part of a floppy or optical drive to exhibit excessive
wear. This has been a sufficiently big concern that some FAT file systems
provide an option to maintain an extra copy of the file allocation table on
the disk.

Another problem with the FAT is that it’s usually located at a fixed place
on the disk, usually at some low block number. In order to determine which
block or blocks to read for a particular file, the disk heads must move to the
FAT, and if the FAT is at the beginning of the disk, the disk heads will con-
stantly be seeking to and from the FAT across large distances. This massive

FAT Index FAT Entry Value

.
64 66
65 0
66 67
67 68
.
n – 2 n – 1
n – 1 0

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 381

head movement is slow, and, in fact, tends to wear out the mechanical parts
of the disk drive sooner. In newer versions of Microsoft OSes, the FAT-32
scheme eliminates part of this problem by allowing the FAT to be located
somewhere other than the beginning of the disk, though still at a fixed
location. Application file I/O performance can be quite low with a FAT file
system unless the OS caches the FAT in main memory, which can be danger-
ous if the system crashes, because you could lose track of all file data whose
FAT entries have not been written to disk.

The FAT scheme is also inefficient when doing random access on a file.
To read from offset m to offset n in a file, the file manager must divide n by
the block size to obtain the block offset into the file containing the byte at
offset n, divide m by the block size to obtain its block offset, and then sequen-
tially search through the FAT chain between these two blocks to find the
sector(s) containing the desired data. This linear search can be expensive
if the file is a large database with many thousands of blocks between the
current block position and the desired block position.

Yet another problem with the FAT file system, though this one is rather
esoteric, is that it doesn’t support sparse files. That is, you cannot write to
byte 0 and byte 1,000,000 of a file without also allocating every byte of data in
between the two points on the disk surface. Some non-FAT file managers will
only allocate the blocks where an application has written data. For example,
if an application only writes data to bytes 0 and 1,000,000 of a file, the file
manager would only allocate two blocks for the file. If the application
attempts to read a block that has not been previously allocated (for example,
if the application in the current example attempts to read the byte at byte
offset 500,000 without first writing to that location), the file manager will
simply return zeros for the read operation without actually using any space
on the disk. The way a FAT is organized, it is not possible to create sparse
files on the disk.

12.21.3 List-of-Blocks File Organization

To overcome the limitations of the FAT file system, advanced OSes such
as Windows NT/2000/XP and various flavors of Unix use a list-of-blocks
scheme rather than a FAT. Indeed, the list scheme enjoys all the advantages
of a FAT system (such as efficient, nonlinear free-block location, and
efficient storage of the free-block list), and it solves many of FAT’s problems.

The list scheme begins by setting aside several blocks on the disk for the
purpose of keeping (generally) 32-bit pointers to each of the free blocks on
the disk. If each block on the disk holds 4,096 bytes, a block can hold 1,024
pointers. Dividing the number of blocks on the disk by 1,024 determines the
number of blocks the free-block list will initially consume. As you’ll soon see,
the system can actually use these blocks to store data once the disk fills up,
so there is no storage overhead associated with the blocks consumed by the
free-block list.

No Starch Press, Copyright © 2004 by Randall Hyde

382 Chap te r 12

If a block in the free-block list contains 1,024 pointers, then the first
1,023 pointers contain the block numbers of free blocks on the disk. The file
manager maintains two pointers on the disk: one that holds the block
number of the current block containing free-block pointers, and one that
holds an index into that current block. Whenever the file system needs a free
block, it obtains the index for one from the free list block by using these two
pointers. Then the file manager increments the index into the free-block list
to the next available entry in the list. When the index increments to 1,023
(the 1,024th item in the free-block list), the OS does not use the pointer
entry value at index 1,023 to locate a free block. Instead, the file manager
uses this pointer as the address of the next block containing a list of free-
block pointers on the disk, and it uses the current block, containing a now-
empty list of block pointers, as the free block. This is how the file manager
reuses the blocks originally designated to hold the free-block list. Unlike the
FAT, the file manager does not reuse the pointers in the free-block list to
keep track of the blocks belonging to a given file. Once the file manager uses
up all the free-block pointers in a given block, the file manager uses that
block for actual file data.

Unlike the FAT, the list scheme does not merge the free-block list and
the file list into the same data structure. Instead, a separate data structure for
each file holds the list of blocks associated with that file. Under typical Unix
and Linux file systems, the directory entry for the file actually holds the first 8
to 16 entries in the list (see Figure 12-12). This allows the OS to track short
files (up to 32 KB or 64 KB) without having to allocate any extra space on
the disk.

Figure 12-12: Block list for small files

The directory entry typically
holds between 8 and 16
pointers to the first data
blocks of the file.

Directory
entry

4,096-byte blocks,
each containing 1,024
free-space pointers

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 383

OS research on various flavors of Unix suggests that the vast majority of files
are small, and embedding several pointers into the directory entry provides
an efficient way to access small files. Of course, as time passes, the average file
size seems to increase. But as it turns out, block sizes tend to increase as well.
When this average file size research was first done, the typical block size was
512 bytes, but today a typical block size is 4,096 bytes. During that time, then,
average file sizes could have increased by a factor of eight without, on
average, requiring any extra space in the directory entries.

For medium sized files up to about 4 MB, the OS will allocate a single
block with 1,024 pointers to the blocks that store the file’s data. The OS
continues to use the pointers found in the directory entry for the first few
blocks of the file, and then it uses a block on the disk to hold the next group
of block pointers. Generally, the last pointer in the directory entry holds the
location of this block (see Figure 12-13).

Figure 12-13: Block list for medium-sized files

Directory
entry

Single-level
block list
in a block
containing
1,024
4-byte
pointers

A set of eight 4,096-byte blocks, each
containing 1,024 free-space pointers

No Starch Press, Copyright © 2004 by Randall Hyde

384 Chap te r 12

For files larger than about 4 MB, the file system switches to a three-tiered
block scheme, which works for file sizes up to 4 GB. In this scheme, the last
pointer in the directory entry stores the location of a block of 1,024 pointers,
and each of the pointers in this block holds the location of an additional
block of 1,024 pointers, with each pointer in this block storing the location
of a block that contains actual file data. See Figure 12-14 for the details.

Figure 12-14: Three-level block list for large files (up to 4 GB)

Directory
entry 4,096-byte data blocks

One of up to 1,024
third-level pointer lists

A 4,096-byte
middle-level
block list
containing
1,024 4-byte
pointers, each
(possibly)
pointing at
a block
containing
a third-level
pointer list

Each third-level
pointer list can
accommodate
1,024 blocks,
producing
4 MB of data,
multiplied by
1,024 different
third-level pointer
lists for a total
of 4 GB of data.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 385

One advantage to this tree structure is that it readily supports sparse files.
That is, an application can write to block 0 and block 100 of a file without
having to allocate data blocks for every block in between those two points.
By placing a special block pointer value (typically zero) in the intervening
entries in the block list, the OS can determine whether a block is not present
in the file. Should an application attempt to read such a missing block in the
file, the OS can simply return all zeros for the empty block. Of course, once
the application writes data to a block that hadn’t been previously allocated,
the OS must copy the data to the disk and fill in the appropriate block
pointer in the block list.

As disks became larger, the 4 GB file limit imposed by this scheme began
to create some problems for certain applications, such as video editors, large
database applications, and Web servers. One could easily extend this scheme
1,000 times — to 4 terabytes (TB) — by adding another level to the block-list
tree. The only problem with this approach is that the more levels of indi-
rection you have, the slower random file access becomes, because the OS
may have to read several blocks from the disk in order to get a single block of
data. (When it has one level, it is practical to cache the block-pointer list in
memory, but with two and three levels, it is impractical to do this for every
file). Another way to extend the maximum value size 4 GB at a time is to use
multiple pointers to second-tier file blocks (for example, take the original 8
to 16 pointers in the directory and have all or most of them point at second-
tier block list entries rather than directly at file data blocks). Although there
is no current standard way to extend beyond three levels, rest assured that as
the need arises, OS designers will develop schemes they can use to access
large files in an efficient manner.

12.22 Writing Software That Manipulates Data on a Mass
Storage Device

Understanding how different mass storage devices behave is important if
you want to write high-performance software that manipulates files on these
devices. Although modern OSes attempt to isolate applications from the
physical realities of mass storage, an OS can only do so much for you. Fur-
thermore, an OS cannot predict how your particular application will access
files on a mass storage device, so the OS cannot optimize access for your
specific application; instead, the OS optimizes file access for applications that
exhibit typical file-access patterns. The less typical your application’s file I/O
is, the less likely you’ll get the best performance out of the system. In this
section, we’ll look at how you can coordinate your file access activities with
the OS to achieve the best performance.

No Starch Press, Copyright © 2004 by Randall Hyde

386 Chap te r 12

12.22.1 File Access Performance

Although disk drives and most other mass storage devices are often thought
of as “random access” devices, the fact is that mass storage access is usually
more efficient when done in a sequential fashion. Sequential access on a disk
drive is relatively efficient because the OS can move the read/write head one
track at a time (assuming the file appears in sequential blocks on the disk).
This is much faster than accessing one block on the disk, moving the read/
write head to some other track, accessing another block, moving the head
again, and so on. Therefore, you should avoid random file access in an
application if it is possible to do so.

You should also attempt to read or write large blocks of data on each file
access rather than reading or writing small amounts more frequently. There
are two reasons for this. First, OS calls are not fast, so if you make half as
many calls by reading or writing twice as much data on each access, the
application will often run twice as fast. Second, the OS must read or write
whole disk blocks. If your block size is 4,096 bytes, but you just write 2,000
bytes to some block and then seek to some other position in the file outside
that block, the OS will actually have to read the entire 4,096-byte block from
the disk, merge in the 2000 bytes, and then finally write the entire 4,096 bytes
back to the disk. This happens because the OS must read and write entire
blocks; it cannot transfer partial blocks between the disk and memory.
Contrast this with a write operation that writes a full 4,096 bytes — in this
case, the OS wouldn’t have to read the data from the disk first; it would only
have to write the block. Writing full blocks improves disk access performance
by a factor of two because writing partial blocks requires the OS to first read
the block, merge the data, and then write the block; by writing whole blocks
the read operation is unnecessary. Even if your application doesn’t write data
in increments that are even multiples of the disk’s block size, writing large
blocks improves performance. If you write 16,000 bytes to a file in one write
operation, the OS will still have to write the last block of those 16,000 bytes
using a read-merge-write operation, but it will write the first three blocks
using only write operations.

If you start with a relatively empty disk, the OS will generally attempt to
write the data for new files in sequential blocks. This organization is probably
most efficient for future file access. However, as the system’s users create and
delete files on the disk, the blocks of data for individual files may start to be
spread out in a nonsequential fashion. In a very bad case, the OS may wind
up allocating a few blocks here and a few blocks there all across the disk’s
surface. As a result, even sequential file access can behave like slow random
file access. This situation, known as file fragmentation, can dramatically
decrease file system performance. Unfortunately, there is no way for an
application to determine if its file data is fragmented across the disk surface
and, even if it could, there would be little that it could do about the situation.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 387

Although utilities exist to defragment the blocks on the disk’s surface, an appli-
cation generally cannot request the execution of these utilities. Furthermore,
“defragger” utilities are generally quite slow.

Although applications rarely get the opportunity to defragment their
data files during normal program execution, there are some rules you can
follow to reduce the probability that your data files will become fragmented.
The best advice you can follow is to always write file data in large chunks.
Indeed, if you can write the whole file in a single write operation, do so. In
addition to speeding up access to the OS, writing large amounts of data tends
to cause sequential blocks to be allocated for the data. When you write small
blocks of data to the disk, other applications in a multitasking environment
could also be writing to the disk concurrently. In such a case, the OS may
interleave the block allocation requests for the files being written by several
different applications making it unlikely that a particular file’s data will be
written in sequential blocks on the disk’s surface. It is important to try to
write a file’s data in sequential blocks, even if you plan to access portions
of that data randomly, since searching for random records in a file that is
written to contiguous blocks generally requires far less head movement than
searching for random records in a file whose blocks are scattered all over
the place.

If you’re going to create a file and then access its blocks of data
repeatedly, whether randomly or sequentially, it’s probably a good idea to
preallocate the blocks on the disk if you have an idea about how large the
file will grow. If you know, for example, that your file’s data will not exceed
one megabyte, you could write a block of one million zeros to the disk before
your application starts manipulating the file. By doing so, you help ensure
that the OS will write your file to sequential blocks on the disk. Though you
pay a price to write all those zeros to begin with (an operation you wouldn’t
normally do, presumably), the savings in read/write head-seek times could
easily make up for the time spent preallocating the file. This scheme is
especially useful if an application is reading or writing two or more files
concurrently (which would almost guarantee the interleaving of the blocks
for the various files).

12.22.2 Synchronous and Asynchronous I/O
Because most mass storage devices are mechanical, and, therefore, subject to
mechanical delays, applications that make extensive use of such devices are
going to have to wait for them to complete read/write operations. Most disk
I/O operations are synchronous, meaning that an application that makes a
call to the OS will wait until that I/O request is complete before continuing
subsequent operations.

However, most modern OSes also provide an asynchronous I/O capability,
in which the OS begins the application’s request and then returns control to
the application without waiting for the I/O operation to complete. While the

No Starch Press, Copyright © 2004 by Randall Hyde

388 Chap te r 12

I/O operation proceeds, the application promises not to do anything with
the data buffer specified for the I/O request. Then, when the I/O operation
completes, the OS somehow notifies the application. This allows the applica-
tion to do additional computation while waiting for the I/O operation to
complete, and it also allows the application to schedule additional I/O oper-
ations while waiting for the first operation to complete. This is especially
useful when accessing files on multiple disk drives in the system, which is
usually only possible with SCSI and other high-end drives.

12.22.3 The Implications of I/O Type
Another important consideration when writing software that manipulates
mass storage devices is the type of I/O you’re performing. Binary I/O is
usually faster than formatted text I/O. The difference between the two has to
do with the format of the data written to disk. For example, suppose you have
an array of 16 integer values that you want to write to a file. To achieve this,
you could use either of the following two C/C++ code sequences:

FILE *f;

int array[16];

. . .

// Sequence #1:

fwrite(f, array, 16 * sizeof(int));

. . .

// Sequence #2:

for(i=0; i < 16; ++i)

fprintf(f, "%d ", array[i]);

The second sequence looks like it would run slower than the first because it
uses a loop to step through each element of the array, rather than a single
call. But although the extra execution overhead of the loop does have a
small negative impact on the execution time of the write operation, this effi-
ciency loss is minor compared to the real problem with the second sequence.
Whereas the first code sequence writes out a 64-byte memory image con-
sisting of 16 32-bit integers to the disk, the second code sequence converts
each of the 16 integers to a string of characters and then writes each of
those strings to the disk. This integer-to-string conversion is relatively slow
and will greatly impact the performance of the code. Furthermore, the
fprintf function has to interpret the format string ("%d") at run time,
thus incurring an additional delay.

The advantage of formatted I/O is that the resulting file is both human
readable and easily read by other applications. However, if you’re using a file
to hold data that is only of interest to your application, you can improve the
efficiency of your software by writing data as a memory image, rather than
first converting it to human-readable text.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 389

12.22.4 Memory-Mapped Files
Some OSes allow you to use what are known as memory-mapped files. Memory-
mapped files use the OS’s virtual memory capabilities to map memory
addresses in the application space directly to blocks on the disk. Because
modern OSes have highly optimized virtual memory subsystems, piggy-
backing file I/O on top of the virtual memory subsystem can produce very
efficient file access. Furthermore, memory-mapped file access is very easy.
When you open a memory-mapped file, the OS returns a memory pointer to
some block of memory. By simply accessing the memory locations referenced
by this pointer, just as you would any other in-memory data structure, you
can access the file’s data. This makes file access almost trivial, while often
improving file-manipulation performance, especially when file access is
random.

One of the reasons that memory-mapped files are so much more effi-
cient than regular files is that the OS only reads the list of blocks belonging
to memory-mapped files once. It then sets up the system’s memory-manage-
ment tables to point at each of the blocks belonging to the file. After
opening the file, the OS rarely has to read any file metadata from the
disk. This greatly reduces superfluous disk access during random file access.
It also improves sequential file access, though to a lesser degree. Memory-
mapped file access is very efficient because the OS doesn’t constantly have to
copy data between the disk, internal OS buffers, and application data buffers.

Memory-mapped file access does have some disadvantages. First, you
cannot map gigantic files entirely into memory, at least on contemporary PCs
that have a 32-bit address bus and set aside a maximum of 4 GB per applica-
tion. Generally, it is not practical to use a memory-mapped access scheme for
files larger than 256 MB, though this will change as more CPUs with 64-bit
addressing capabilities become available. It is also not a good idea to use
memory-mapped files when an application already uses an amount of mem-
ory that approaches the amount of RAM physically present in the system.
Fortunately, these two situations are not typical, so they don’t limit the use
of memory-mapped files much.

However, there is another problem with memory-mapped files that is
rather significant. When you first create a memory-mapped file, you have to
tell the OS the maximum size of that file. If it is impossible to determine the
file’s final size, you’ll have to overestimate it and then truncate the file when
you close it. Unfortunately, this wastes system memory while the file is open.
Memory-mapped files work well when you’re manipulating files in read-only
fashion or you’re simply reading and writing data within an existing file
without extending the file’s size. Fortunately, you can always create a file
using traditional file-access mechanisms and then use memory-mapped file
I/O to access the file later.

Finally, almost every OS does memory-mapped file access differently,
and there is little chance that memory-mapped file I/O code will be portable
between OSes. Nevertheless, the code to open and close memory-mapped

No Starch Press, Copyright © 2004 by Randall Hyde

390 Chap te r 12

files is quite short, and it’s easy enough to provide multiple copies of the
code for the various OSes you need to support. Of course, actually accessing
the file’s data consists of simple memory accesses, and that’s independent of
the OS. For more information on memory-mapped files, consult your OS’s
API reference. Given the convenience and performance of memory-mapped
files, you should seriously consider using them whenever possible in your
applications.

12.23 The Universal Serial Bus (USB)

The Universal Serial Bus (USB) is not a peripheral port in the traditional
sense (like an RS-2323 serial communications controller). Rather than using
it to connect your computer to some peripheral device, USB is a mechanism
that allows you to use a single interface to connect a wide variety of different
peripheral devices to a PC, similar to SCSI. The USB supports hot-pluggable
devices, meaning that you can plug and unplug devices without shutting down
the power or rebooting your machine, and it supports plug-and-play devices,
meaning that the OS will automatically load a device driver, if available, once
you plug in a device. This flexibility comes at a cost, however. Programming
devices on the USB is considerably more complex than programming a serial
or parallel port. You cannot communicate with USB peripherals by reading
or writing a few device registers.

12.23.1 USB Design

To understand the motivation behind USB, consider the situation PC users
faced when Windows 95 first arrived, nearly 14 years after the introduction of
the IBM PC. The IBM PC’s designers provided the PC with a variety of
peripheral interconnects that were common on personal computers and
minicomputers in the late 1970s. However, they did not anticipate, nor did
they particularly allow for, the wide variety of peripheral devices that people
would invent to attach to PCs in the following decades. They also did not
count on any individual PC owners connecting more than a few different
peripheral devices to their machines. Certainly three parallel ports, four
serial ports, and a single hard disk drive should have been sufficient!

By the time Windows 95 was introduced, people were connecting their
PCs to all kinds of crazy devices, including sound cards, video digitizers,
digital cameras, advanced gaming devices, scanners, telephones, mice,
digitizing tablets, SCSI devices, and literally hundreds of other devices the
original PC’s designers hadn’t dreamed of. The creators of these devices
interfaced their hardware to the PC using peripheral I/O port addresses,
interrupts, and DMA channels that were originally intended for other
devices. The problem with this approach was that there were a limited
number of port addresses, interrupts, and DMA channels, and there were
a large number of devices that competed for these resources. In an attempt
to alleviate conflicts between devices, the device manufacturers added

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 391

“jumpers” to their cards that would allow the purchaser to select from a
small set of different port addresses, interrupts, and DMA channels, so as
not to conflict with other devices. Creating a conflict-free system was a
complex process, and it was impossible to achieve with some combinations
of peripherals. In fact, one of the big selling points of the Apple Macintosh
during this period was that you could easily connect multiple peripheral
devices without worrying about device conflicts. What was needed was a
new peripheral connection system that supported a large number of devices
without conflicts. USB was the answer.

USB allows the connection of up to 127 devices simultaneously by
using a 7-bit address. USB reserves the 128th slot, address zero, for auto-
configuration purposes. In real life, it’s doubtful that one would ever
successfully connect so many devices to a single PC, but it’s good to know
that USB has a fair amount of potential for growth, unlike the original
PC’s design.

Despite the name, USB isn’t a true “bus” in the sense of allowing several
devices to communicate with one another. The USB is a master-slave connec-
tion, with the PC always acting as master and the peripherals acting as slaves.
This means, for example, that a camera cannot talk directly to a printer
across the USB. To transmit information from a digital camera to a printer,
both of which are connected to a PC, the camera must first send its data to
the PC before the PC can pass the data along to the printer. The PCI, ISA,
and FireWire (IEEE 1394) buses allow two devices to communicate with one
another in a peer-to-peer fashion, independent of the host’s CPU, but USB
wasn’t designed to allow this method of communication (to keep down the
cost of peripherals and the USB interface chips in those peripheral devices).5

USB also keeps peripheral costs down by moving as much complexity as
possible to the host (PC) side of the connection. The thinking here is that
the PC’s CPU will offer much higher performance than the low-cost micro-
controllers found in most USB peripheral devices. This means that writing
software to be embedded in a USB peripheral isn’t much more work than
using another interface. On the other hand, writing USB software on the
host (PC) side is very complex. So complex, in fact, that it isn’t realistic to
expect programmers to write software that directly communicates over the
USB. Instead, the OS supplier must provide a USB host controller stack that
enables communication with USB devices and most application program-
mers talk to those devices using the OS’s device driver interface. Even those
programmers who need to write custom USB device drivers for their partic-
ular device don’t talk directly to the USB hardware. Instead, they make OS
calls to the USB host controller stack with requests for their particular device.
Because a typical USB host controller stack is generally around 20,000 to
50,000 lines of C code and requires several years of development, there is

5 Recently, the USB Interface Group (or USB-IF) has defined an extension to the USB known
as USB On-The-Go that allows a limited amount of pseudo-peer-to-peer operation. However,
this scheme doesn’t truly support peer-to-peer operation; what it really does is allow different
peripherals to take turns being the master on the USB.

No Starch Press, Copyright © 2004 by Randall Hyde

392 Chap te r 12

little chance of programming USB devices on a system that does not provide
a native USB stack (such as MS-DOS).

12.23.2 USB Performance
The initial USB design supported two different types of peripherals — slow
and fast. Slow devices could transfer up to 1.5 Mbps (megabits per sec) across
the USB, while fast devices were capable of transferring up to 12 Mbps. The
reason for supporting two speeds was cost. Cost-sensitive devices could be
built inexpensively as low-speed devices. Non–cost-sensitive devices could use
the 12 Mbps data rate. The USB 2.0 specifications added a high-speed mode
supporting up to 480 Mbps data transfer rates, at considerable extra
complexity and cost.

USB will not dedicate the entire 1.5 Mbps, 12 Mbps, or 480 Mbps avail-
able bandwidth to one peripheral. Instead, the host controller stack multi-
plexes the data on the USB, effectively giving each peripheral a “time slice”
of the bus. The USB operates with a one-millisecond clock. At the start of
each millisecond period, the USB host controller begins a new USB frame,
and during a frame, each peripheral may transmit or receive a packet of
data. Packets vary in size, depending on the speed of the device and the
transmission time, but a typical packet size contains between 4 and 64 bytes
of data. If you’re transferring data between four peripherals at an equal rate,
you’d typically expect the USB stack to transmit one packet of data between
the host and each peripheral in a round-robin fashion, taking care of the first
peripheral first, the second peripheral second, and so on. Like time slicing in
a multitasking OS, this data transfer mechanism gives the appearance of
transferring data concurrently between the host and every USB peripheral,
even though there can be only one transmission on the USB at a time.

Although USB provides a very flexible and expandable system, keep in
mind that as you add more peripherals to the bus, you reduce the maximum
amount of bandwidth available to each device. For example, if you connect
two disk drives to the USB and access both drives simultaneously, the two
drives must share the available bandwidth on the USB. For USB 1.x devices,
this produces a noticeable speed degradation. For USB 2.x devices, the avail-
able bandwidth is sufficiently high (typically higher than what two disk
drivers can sustain) that you will not notice the performance degradation.
Theoretically, you could use multiple host controllers to provide multiple
USB buses in a system (with full bandwidth available on each bus). But this
addresses only part of the performance problem.

 Another performance consideration is the overhead of the USB host
controller stack. Although the USB 1.x hardware may be capable of 12 Mbps
bandwidth, there is some “dead” time during which no transmission takes
place on the USB because the host controller stack consumes a fair amount
of time setting up data transfers. In some USB systems, achieving half the
theoretical USB bandwidth is the best you can hope for, because the host
controller stack uses so much of the available CPU time setting up the

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 393

transfer and moving data around. On some embedded systems using slower
processors (such as 486, StrongArm, or MIPS) running an embedded USB
1.x host controller device, this can be a real problem. Fortunately, on
modern PCs with USB 2.x controllers, the host controller only consumes
a small percentage of the USB bandwidth.

If a particular host controller stack is incapable of maintaining the full
USB bandwidth, it usually means that the CPU can’t process USB informa-
tion as fast as the USB produces it. This generally implies that the CPU’s
processing capabilities are saturated, and no time is available for other com-
putations, either. Remember, USB leaves all the complex computations for
the host controller on the USB, and executing code in the USB stack on the
host requires CPU cycles. It is quite possible for the host controller to get so
involved processing USB traffic that overall system performance for non-USB
traffic suffers.

12.23.3 Types of USB Transmissions
The USB supports four different types of data transmissions: control, bulk,
interrupt, and isochronous. Note that it is the peripheral manufacturer, not
the application programmer, that determines the data transfer mechanism
between the host and a given peripheral device. That is, if a device uses
the isochronous data transfer mode to communicate with the host PC,
a programmer cannot decide to use bulk transfers instead. Indeed, the
application program may not even be aware of the underlying transmission
scheme, as long as the software can handle the rate at which the device
produces or consumes the data.

USB generally uses control transmissions to initialize a peripheral device.
In theory, you could use control transmissions to pass data between the
peripheral and the host, but very few devices use control transmissions for
that purpose. USB guarantees correct delivery of control transmissions and
also guarantees that at least 10 percent of the USB bandwidth is available
for control transmissions to prevent starvation, a situation where a particular
transmission never occurs because some higher-priority transmission is
always taking place. USB control transmissions are generally used to read
and write data from and to a peripheral’s registers. For example, if you have
a USB-to-serial converter device, you would typically use control transfers to
set the baud rate, number of data bits, parity, number of stop bits, and so on,
just as you would store data into the 8250 SCC’s register set.

As the name implies, USB bulk transmissions are used to transmit large
blocks of data between the host and a peripheral device. Bulk transmissions
are available only on full-speed (12 Mbps) and high-speed (480 Mbps)
devices, not on low-speed ones. On full-speed devices, a bulk transmission
generally carries between 4 and 64 bytes of data per packet; on high-speed
devices you can transmit up to 1,023 bytes per packet. USB guarantees
correct delivery of a bulk packet between the host and the peripheral device,
but it does not guarantee timely delivery. If the USB is handling a large

No Starch Press, Copyright © 2004 by Randall Hyde

394 Chap te r 12

number of other transmissions, it may take a while for a bulk transmission to
complete. In fact, theoretically, a bulk transmission might never occur if the
USB is sufficiently busy with the right combination of isochronous, interrupt,
and control transmissions. In practice, however, most USB stacks do set aside
a small amount of guaranteed bandwidth for bulk transmissions (generally
about 2 to 2.5 percent) so that starvation doesn’t occur.

USB intends bulk transmissions to be used by devices that transmit a fair
amount of data that must transfer correctly yet doesn’t necessarily need to be
transferred quickly. For example, when transferring data to a printer or
between a computer and a disk drive, correct transfer is far more important
than is a timely transfer. Sure, it may be annoying to wait what seems like
forever to save a file to a USB disk drive, but operating slowly is much better
than operating quickly and writing incorrect data to the disk file.

Some devices require both correct data transmission and a timely deliv-
ery of the data. The interrupt transfer type provides this capability. Despite
the name, interrupt transfers do not involve interrupts on the computer
system. In fact, with only two exceptions (initial connection and power-up
notification), peripheral devices never communicate with the host across
USB unless the host explicitly requests information from the device. The
host polls all devices on the USB — the devices do not interrupt the host
when they have data available. A peripheral device may request how often
the host polls it, choosing an interval from 1 to 255 milliseconds, but the host
may legally poll the device more often than the device requests.

In order to guarantee correct and timely delivery of interrupt trans-
missions between a host and a peripheral device, the USB host controller
stack must reserve a portion of the USB bandwidth whenever an application
opens a device for interrupt transmission. For example, if a particular device
wants to be serviced every millisecond and needs to transmit 16 bytes per
packet, the USB host controller stack must reserve a little bit more than 128
Kbps (kilobits per second) of bandwidth (16 bytes × 8 bits per byte × 1,000
packets per second) from the total bandwidth available. You need to reserve
a little bit more than this because there is some protocol overhead on the bus
as well. We’ll not worry about the actual figure here other than to suggest
that the overhead is probably at least 10 to 20 percent and could be more
depending upon how the USB stack is written.

Because there is a limited amount of bandwidth available on the USB,
and because interrupt transmissions consume a fixed amount of that
bandwidth whenever you open a device for use, it is clearly not possible to
have an arbitrary number of interrupt transmissions active at any one time.
Once the USB bandwidth (minus the 10 percent that USB reserves for
control transmissions) is consumed, the stack refuses to allow the activation
of any new interrupt transmissions.

Interrupt transmission packets are between 4 and 64 bytes long, though
most of the time they fall into the low end of this range. Many devices use
interrupt transmissions to notify the host CPU that some data is available,
and then the host can read the actual data from the device using a bulk

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 395

transmission. Of course, if the amount of data to be transmitted between
the host and the peripheral is small, then the peripheral may transmit the
data as part of the interrupt’s data payload to avoid a second transmission.
Keyboards, mice, joysticks, and similar devices are examples of peripherals
that typically transmit their data as part of the interrupt packet payload. Disk
drives, scanners, and other such devices are good examples of peripherals
that use interrupt transmissions to notify the host that data is available and
then use bulk transfers to actually move the data around.

Isochronous transfers are the fourth transfer type that USB supports.
Like interrupt transfers, isochronous transfers (or just iso transfers) require
a timely delivery. Like bulk transfers, iso transfers generally involve larger
data packets. However, unlike the other three transfer types, iso transfers
do not guarantee correct delivery between the host and the peripheral
device. Timely delivery is so important for iso transfers that if a packet
arrives late, it may as well not arrive at all. Peripheral devices such as audio
input (microphones) and output (speakers) and video cameras use iso-
chronous transmissions. If you lose a packet, or if a packet is transmitted
incorrectly between the peripheral and host, you’ll get a momentary glitch
on the video display or in the audio signal, but the results are not disastrous
as long as such problems don’t occur too frequently.

Like interrupt transfers, isochronous transfers consume USB bandwidth.
Whenever you open a connection to an isochronous USB peripheral device,
that device requests a certain amount of bandwidth. If the bandwidth is
available, the USB host controller stack reserves that amount of bandwidth
for the device until the application is finished with the device. If sufficient
bandwidth is not available, the USB stack notifies the application that it
cannot use the desired device until more bandwidth is available, and the
user will have to stop using other iso and interrupt devices to free up some
bandwidth.

12.23.4 USB Device Drivers
Most OSes that provide a USB stack support dynamic loading and unloading
of USB device drivers, also known as client drivers in USB terminology.
Whenever you attach a USB device to the USB, the host system gets a signal
that tells it that the bus topology has changed (that is, there is a new device
on the USB). The host controller scans for the new device, a process known
as enumeration, and then reads some configuration information from the
peripheral. Among other things, this configuration information tells the
USB stack the type of the device, the manufacturer, and model information.
The USB host stack uses this information to determine which device driver
to load into memory. If the USB stack cannot find a suitable driver, it will
generally open up a dialog box requesting help from the user; if the user
cannot provide the path to an appropriate driver, the system will simply
ignore the new device. Similarly, when the user unplugs a device, the USB
stack will unload the appropriate device driver from memory if it’s not also
being used for some other device.

No Starch Press, Copyright © 2004 by Randall Hyde

396 Chap te r 12

To simplify device-driver implementation for many common devices,
such as keyboards, disk drives, mice, and joysticks, the USB standard defines
certain device classes. Peripheral manufacturers who create devices that
adhere to one of these standardized device classes don’t have to supply
a device driver with their equipment. Instead, the class drivers that come
with the USB host controller stack provide the only interface necessary.
Examples of class drivers include HID (Human Interface Devices, such as
keyboards, mice, and joysticks), STORAGE (disk, CD, and tape drives),
COMMUNICATIONS (modems and serial converters), AUDIO (speakers,
microphones, and telephony equipment), and PRINTERS. A peripheral
manufacturer always has the option of supplying their own specialized
features that add several bells and whistles to their product, but a customer
can often get basic functionality with some existing class driver by simply
plugging in the device without installing a device driver specifically for the
new peripheral.

12.24 Mice, Trackpads, and Other Pointing Devices

Along with disk drives, keyboards, and display devices, pointing devices are
probably the most common peripherals you’ll find on modern personal
computers. Pointing devices are actually among the more simple peripheral
devices, providing a very simple data stream to the computer. Pointing
devices generally come in two categories: those that return the relative
position of the pointer and those that return the absolute position of the
pointing device. A relative position is simply the change in position since
the last time the system read the device; an absolute position is some set of
coordinate values within a fixed coordinate system. Mice, trackpads, and
trackballs are examples of devices that return relative coordinates; touch
screens, light pens, pressure-sensitive tablets, and joysticks are examples
of devices that return absolute coordinates. Generally, it’s easy to translate
an absolute coordinate system to a relative one, but a bit more problematic
to convert a relative coordinate system to an absolute one. This latter
conversion requires a constant reference point that may become mean-
ingless if, for example, someone lifts a mouse off the surface and sets it
down elsewhere. Fortunately, most windowing systems work with relative
coordinate values from pointing devices, so the limitations of pointing
devices that return relative coordinates are not a problem.

Early mice were typically opto-mechanical devices that rotated two
encoding wheels that were oriented along the X- and Y-axes of the mouse
body. Usually, both of these wheels were encoded to send 2-bit pulses
whenever they would move a certain distance. One bit told the system
that the wheel had moved a certain distance, and the other bit told the
system which direction the wheel had moved.6 By constantly tracking
the four bits (two bits for each axis) from the mouse, the computer system

6 Actually, this is a bit of a simplification, but we will ignore that fact here.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 397

could determine the mouse’s distance and direction traveled, and keep a
very accurate calculation of the mouse’s position in between application
requests for that position.

One problem with having the CPU track each mouse movement is that
when moved quickly, mice can generate a constant and high-speed stream of
data. If the system is busy with other computations, it might miss some of the
incoming mouse data and would therefore lose track of the mouse’s posi-
tion. Furthermore, using the host CPU to keep track of the mouse position
consumes CPU time that could be put to better use doing application
computations.

As a result, mouse manufacturers decided early on to incorporate a
simple microcontroller in the mouse package. This simple microcontroller
keeps track of the physical mouse movements and responds to system
requests for mouse coordinate updates, or at the very least generates
interrupts on a periodic basis when the mouse position changes. Most
modern mice connect to the system via the USB and respond with positional
updates to system requests that occur about every eight milliseconds.

Because of the wide acceptance of the mouse as a GUI pointing device,
computer manufacturers have created many other devices that serve the
same purpose. The motivation behind developing most of these devices has
been to increase portability — mice aren’t the most convenient pointing
devices to attach to a laptop computer system on the road. Trackballs, strain
gauges (the little “stick” you’ll find between the G and H keys on many
laptops), trackpads, trackpoints, and touch screens are all examples of
devices that manufacturers have attached to portable computers and PDAs
to create more portable pointing devices. Though these devices vary with
respect to their convenience to the end user, to the OS they can all look like
a mouse. So, from a software perspective, there is little difference between
these devices.

In modern OSes, the application rarely interfaces with a pointing device
directly. Instead, the OS is responsible for tracking the mouse position and
updating cursors and other mouse effects in the system. The OS typically
notifies an application when some sort of pointing device event occurs
that the application should consider. Though applications may query the
pointing device’s status, as a normal state of affairs they don’t manage the
pointing device’s position. In response to a query from an application, the
OS will return the position of the system cursor and the state of the buttons
on the pointing device. The OS may also notify the application whenever a
pointer device event, such as a button press, occurs.

12.25 Joysticks and Game Controllers

The analog game adapter created for the IBM PC allowed users to connect
up to four resistive potentiometers and four digital switch connections to
the PC. The design of the PC’s game adapter was obviously influenced by
the analog input capabilities of the Apple II computer, the most popular

No Starch Press, Copyright © 2004 by Randall Hyde

398 Chap te r 12

computer available at the time the PC was developed. IBM’s analog input
design, like Apple’s, was designed to be dirt-cheap. Accuracy and per-
formance were not a concern at all. In fact, you can purchase the electronic
parts to build your own version of the game adapter, at retail, for less
than three dollars. Unfortunately, IBM’s low-cost design in 1981 produces
some major performance problems for high-speed machines and high-
performance game software in the 2000s.

Few modern systems incorporate the original electronics of the IBM PC
game controller because of the inherent inefficiencies of reading them.
Rather, most modern game controllers contain the analog electronics that
convert physical position into a digital value directly inside the controller,
and then interface to the system via USB. Microsoft Windows and other
modern OSes provide a special game-controller device-driver interface that
allows applications to determine what facilities the game controller has and
also sends the data to those applications in a standardized form. This allows
game-controller manufacturers to provide many special features that were
not possible when using the original PC game-controller interface. Modern
applications read game-controller data just as though they were reading data
from a file or some other character-oriented device like a keyboard. This
vastly simplifies the programming of such devices while improving overall
system performance.

Microsoft Windows also provides a special game controller API that
provides a high-performance interface to various types of game controllers
on the system. Similar library modules exist for other OSes as well. Some
“old-time” game programmers feel that calling such code is inherently
inefficient and that great code always controls the hardware directly. This
concept is a bit outdated. First, most modern OSes don’t allow applications
direct access to hardware even if the programmer wants such access. Second,
software that talks directly to the hardware won’t work with as wide a variety
of devices as software that lets the OS handle the hardware for it. Back in the
days when there were a small number of standardized peripherals for the PC,
it was possible for a single application to directly program all the different
devices the program would access. In modern systems, however, there are far
too many devices for an individual program to deal with. This is just as true
for game-controller devices as it is for other types of devices. Finally, keep in
mind that most OS device drivers are probably going to be written more
efficiently by the manufacturer’s programmers or the OS developer’s
programmers than you could write them yourself.

Because newer game controllers are no longer constrained by the design
of the original IBM PC game-controller card, they provide a wide range of
capabilities. Refer to the relevant game controller and OS documentation
for information on how to program the API for the device.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 399

12.26 Sound Cards

The original IBM PC included a built-in speaker that the CPU could
program using an on board timer chip that could produce a single
frequency tone. To produce a wide range of sound effects required pro-
gramming a single bit connected directly to the speaker, something which
consumed nearly all available CPU time. Within a couple of years of the
PC’s arrival, various manufacturers like Creative Labs created a special
interface board that provided higher quality PC audio output that didn’t
consume anywhere near the CPU resources.

The first sound cards to appear for the PC didn’t follow any standards
because no such standards existed at the time. Creative Labs’ Sound Blaster
card became the defacto standard because it had reasonable capabilities and
sold in very high volumes. At the time, there was no such thing as a device
driver for sound cards, so most applications were programming the registers
directly on the sound card. Initially, the fact that so many applications were
written for the Sound Blaster card meant that anyone wanting to use most
audio applications also had to purchase Creative Labs’ sound card. However,
before too long this advantage was negated, as other sound card manufac-
turers quickly copied the Sound Blaster design. All of these manufacturers
became stuck with their designs, for they knew that any new features added
to their designs would not be supported by any of the available audio
software.

Sound card technology stagnated until Microsoft introduced multimedia
support into Windows. Once Windows fully supported audio cards in a
device-independent fashion, sound card technology improved dramatically.
The original audio cards were capable of mediocre music synthesis, suitable
only for cheesy video game sound effects. Some boards supported 8-bit
telephone-quality audio sampling, but the audio was definitely not high
fidelity. Once Windows provided a standardized interface for audio, the
sound card manufacturers began producing high-quality sound cards for the
PC. Immediately, “CD-quality” cards appeared that were capable of recor-
ding and playing back audio at 44.1 KHz and 16 bits. Higher-quality sound
cards began adding “wave table” synthesis hardware that produced realistic
synthesis of musical instruments. Synthesizer manufacturers like Roland and
Yamaha produced sound cards with the same electronics found in their high-
end synthesizers. Today, professional recording studios use PC-based digital
audio recording systems to record original music with 24-bit resolution at 96
KHz, arguably producing better results than all but the finest analog recor-
ding systems. Of course, such systems are not cheap, costing many thousands
of dollars. They’re definitely not your typical sound card that retails for
under $100.

No Starch Press, Copyright © 2004 by Randall Hyde

400 Chap te r 12

12.26.1 How Audio Interface Peripherals Produce Sound
Modern audio interface peripherals7 generally produce sound in one of
three different fashions: analog (FM synthesis), digital-wave-table synthesis,
or digital playback. The first two schemes produce musical tones and are the
basis for most computer-based synthesizers, while the third scheme is used to
play back audio that was digitally recorded.

The FM-synthesis scheme is an older, lower-cost, music-synthesis
mechanism that creates musical tones by controlling various oscillators and
other sound-producing circuits on the sound card. The sound produced by
such devices is usually very low quality, reminiscent of the types of sounds
associated with early video games; there is no mistaking such sound synthesis
for an actual musical instrument. While some very low-end sound cards still
use FM synthesis as their main sound-producing mechanism, few modern
audio peripherals continue to provide this form of synthesis for anything
other than producing “synthetic” sounds.

Modern sound cards that provide musical synthesis capabilities tend to
use what has become known as wave table synthesis. With wave-table synthesis,
the audio manufacturer will typically record and digitize several notes from
an actual musical instrument. They program these digital recordings into
read-only memory (ROM) that they assemble into the audio interface circuit.
When an application requests that the audio interface play some note on a
given musical instrument, the audio hardware will play back the recording
from ROM producing a very realistic sound. To someone who is not
intimately familiar with what the actual instrument sounds like, wave-table
synthesis can produce some extremely realistic sounds.

However, wave table synthesis is not simply a digital playback scheme.
To record over 100 different instruments, each with a several octave range,
would require a tremendous amount of ROM storage. Although ROM isn’t
outrageously expensive, providing hundreds of megabytes of ROM with an
audio synthesizer device for a PC would be prohibitively expensive. There-
fore, most manufacturers of such devices will actually resort to using software
embedded on the audio interface card to take a small number of digitized
waveforms stored in ROM and raise or lower them by some integral number
of octaves. This allows manufacturers to record and store only a single octave
(12 notes) for each instrument. In fact, it is theoretically possible to use
software to convert only a single recorded note into any other note, and
some synthesizers do exactly that to reduce costs. However, in practice, the
more notes the manufacturer records, the better the quality of the resulting
sound. Some of the higher-end audio boards will record several octaves on
complex musical instruments (like a piano) but record only a few notes on
some lesser-used, less-complex sound-producing objects. This is especially
true for sound effects like gunshots, explosions, crowd noise, and other less-
critical sounds.

7 The term “sound card” hardly applies anymore because many personal computers include the
audio controller directly on the motherboard, and many high-end audio interface systems
interface via USB or FireWire, or require multiples boxes and interface cards.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 401

Pure digital playback is used for two purposes: playing back arbitrary
audio recordings and performing very high-end musical synthesis, known as
sampling. A sampling synthesizer is, effectively, a RAM-based version of a
wave-table synthesizer. Rather than storing digitized instruments in ROM, a
sampling synthesizer stores them in system RAM. Whenever an application
wants to play a given note from a musical instrument, the system fetches the
recording for that note from system RAM and sends it to the audio circuitry
for playback. Like wave-table synthesis methods, a sampling synthesizer can
convert digitized notes up and down octaves, but because the system doesn’t
have the cost-per-byte constraints associated with ROM, the audio manufac-
turer can usually record a wider range of samples from real-world musical
instruments. Generally, sampling synthesizers provide a microphone input
to create your own samples. This allows you, for example, to play a song by
recording a barking dog and generating a couple octaves of “dog bark” notes
on the synthesizer. Third parties often sell “sound fonts” containing high-
quality samples of popular musical instruments.

The other use for pure digital playback is as a digital audio recorder.
Almost every modern sound card has an audio input that will theoretically
record “CD-quality” sound in stereo.8 This allows the user to record an
analog signal and play it back verbatim, like a tape recorder. With sufficient
outboard gear, it’s even possible to make your own musical recordings and
burn your own music CDs, though to do so you’d want something a little bit
fancier than a typical Sound Blaster card — something at least as advanced as
the DigiDesign Digi-001 or M-Audio system.

12.26.2 The Audio and MIDI File Formats
There are two standard mechanisms for playing back sound in a modern PC:
audio file playback and MIDI file playback. Audio files contain digitized
samples of the sound to play back. While there are many different audio file
formats (for example, WAV and AIF), the basic idea is the same — the file
contains some header information that specifies the recording format (such
as 16-bit 44.1 KHz, or 8-bit 22 KHz) and the number of samples, followed by
the actual sound samples. Some of the simpler file formats allow you to
dump the data directly to a typical sound card after proper initialization of
the card; other formats may require a minor data translation prior to having
the sound card process the data. In either case, the audio file format is
essentially a hardware-independent version of the data one would normally
feed to a generic sound card.

One problem with sound files is that they can grow rather large. One
minute of stereo CD-quality audio requires just less than 10 MB of storage.
A typical three- to four-minute song requires between 25 MB and 40 MB.
Not only would such a file take up an inordinate amount of RAM, but it

8 “CD quality” simply means that the board’s digitizing electronics are capable of capturing
44,100 16-bit samples every second. Usually the analog circuitry on the board does not have
sufficiently high quality to pass this audio quality through to the digitizing circuitry. Hence, very
few PC sound cards today are truly capable of “CD-quality” recording.

No Starch Press, Copyright © 2004 by Randall Hyde

402 Chap te r 12

consumes a fair amount of storage on the software’s distribution CD as well.
If you’re playing back a unique audio sequence that you’ve had to record,
you have no choice but to use this space to hold the sequence. However, if
you’re playing back an audio sequence that consists of a series of repeated
sounds, you can use the same technique that sampling synthesizers use and
store only one instance of each sound, then use some sort of index value to
indicate which sound you want to play. This can dramatically reduce the size
of a music file.

This is exactly the idea behind the MIDI (Musical Instrument Digital
Interface) file format. MIDI is a standard protocol for controlling music
synthesis and other equipment. Rather than holding audio samples, a MIDI
file simply specifies the musical notes to play, when to play them, how long
to play them, which instrument to play them on, and so on. Because it only
takes a few bytes to specify all this information, a MIDI file can represent an
entire song very compactly. High-quality MIDI files generally range from
about 20 KB to 100 KB for a typical three- to four-minute song. Contrast this
with the 20 MB to 45 MB an audio file of the same length would require.
Most sound cards today are capable of playing back General MIDI (GM) files
using an on-board wave-table synthesizer or FM synthesis. General MIDI is
a standard that most synthesizer manufacturers use to control their equip-
ment, so its use is very widespread and GM files are easy to obtain. If you want
to play back music that doesn’t contain vocals or other nonmusical elements,
MIDI can be very efficient.

One problem with MIDI is that the quality of the playback is dependent
upon the quality of the sound card the end user provides. Some of the more
expensive audio boards do a very good job of playing back MIDI files. Some
of the lower-cost boards, including, unfortunately, a large number of systems
that have the audio interface built on to the motherboard, produce cartoon-
ish sounding recordings. Therefore, you need to carefully consider using
MIDI in your applications. On the one hand, MIDI offers the advantages of
smaller files and faster processing. On the other hand, on some systems the
audio quality will be quite low, making your application sound bad. You have
to balance the pros and cons of these approaches for your particular
application.

Because most modern audio cards are capable of playing back “CD-
quality” recordings, you might wonder why the sound card manufacturers
don’t collect a bunch of samples and simulate one of these sampling syn-
thesizers. Well, they do. Roland, for example, provides a program it calls
the Virtual Sound Canvas that does a good simulation of its hardware Sound
Canvas module in software. These virtual synthesizers produce very high
quality output. However, that quality comes at a price — CPU cycles. Virtual
synthesizer programs consume a large percentage of the CPU’s capability,
thus leaving less power for your applications. If your applications don’t need
the full power of the CPU, these virtual synthesizers provide a very high-
quality, low-cost solution to this problem.

No Starch Press, Copyright © 2004 by Randall Hyde

Input and Outpu t (I/O) 403

Another solution is to connect an outboard synthesizer module to your
PC via a MIDI interface port and send the MIDI data to a synthesizer to play.
This solution is acceptable if you know your target audience will have such a
device, but few people outside of musicians would own one, so requiring the
hardware severely limits your customer base.

12.26.3 Programming Audio Devices
One of the best things about audio in modern applications is that there
has been a tremendous amount of standardization. File formats and audio
hardware interfaces are very easy to use in modern applications. Like most
other peripheral interface issues, few modern programs will control audio
hardware directly, because OSes like Windows and Linux provide device
drivers that handle this chore for you. To produce sound in a typical
Windows application requires little more than reading data from a file that
contains the sound information, and writing that data to another file that
transmits the data to the device driver that interfaces with the actual audio
hardware.

One other issue to consider when writing audio-based software is the
availability of multimedia extensions in the CPU you’re using. The Pentium
and later 80x86 CPUs provide the MMX instruction set. Other CPU families
provide comparable instruction set extensions (such as the AltaVec instruc-
tions on the PowerPC). Although the OS probably uses these extended
instructions in the device driver, it’s quite possible to employ these
multimedia instructions in your own applications as well. Unfortunately,
using these extended instructions usually involves assembly language
programming, because few high-level languages provide efficient access to
them. Therefore, if you’re going to be doing high-performance multimedia
programming, assembly language is probably something you want to learn.
See my book The Art of Assembly Language for additional details on the
Pentium’s MMX instruction set.

12.27 For More Information

To program a particular peripheral device, you will need to obtain the data
sheets for that device directly from its manufacturer. Most manufacturers
maintain their data sheets on the Web these days, so getting the information
is usually a simple matter of finding their Web page. Some manufacturers do
consider the interface to their devices to be proprietary and refuse to share
this information (this is particularly true of video card manufacturers), but
by and large it’s relatively easy to get the information you need.

Semiconductor manufacturers are especially generous with the infor-
mation they supply on their websites. Furthermore, common peripheral
devices like the 8250 serial communications chip have dozens of websites
dedicated to programming them. A quick search on the Net will turn up
considerable information for the more common interface devices.

No Starch Press, Copyright © 2004 by Randall Hyde

404 Chap te r 12

For USB, FireWire, and TCP/IP (network) protocol stacks, there
is considerable information available on the Net. For example,
http://www.usb.org contains all the technical specifications for the
USB protocol as well as programming information for various common
USB host controller chip sets. Similar information exists for FireWire.

You’ll be able to find considerable example code that controls most
peripheral devices on the Net as well. This even includes some complex
protocols such as USB, FireWire, and TCP/IP. For example, the open source
Linux OS provides complete TCP/IP and USB host controller stacks in
source form. This code is not easy reading and is tens of thousands of lines
long, but if you’re dead-set on creating this kind of code, the Linux (and
other open source) offerings make a good starting point.

No Starch Press, Copyright © 2004 by Randall Hyde

T H I N K I N G L O W - L E V E L ,
W R I T I N G H I G H - L E V E L

The goal of this volume, Understanding the
Machine, was to get you thinking at the level
of the machine. Of course, one way to force
yourself to write code at the machine level is

to write your applications in assembly language. When
you’ve got to write code statement by statement in
assembly language, you’re going to have a pretty good
idea of the cost associated with every statement.

Unfortunately, using assembly language isn’t a realistic solution for most
applications. The disadvantages of assembly language have been well publicized
(and blown out of proportion) over the past several decades, so most people are
quite familiar with the drawbacks, real or imagined. Assembly just isn’t an option
for most people.

No Starch Press, Copyright © 2004 by Randall Hyde

406 Th inking Low-Leve l, Writ i ng H igh- Level

Though writing code in assembly language forces you to think down at
the machine level, writing code in a high-level language does not force you
to think at a high level of abstraction. There is nothing preventing you from
thinking in low-level terms while writing high-level code. The goal of this
book was to provide you with the background knowledge you need to do
exactly that — think in low-level terms while writing high-level code. By
learning how the computer represents data, you’ve learned how high-level
language data types translate to the machine level. By learning how the CPU
executes machine instructions, you’ve learned the costs of various operations
in your high-level language applications. By learning about memory perfor-
mance, you’ve learned how to organize your high-level language variables
and other data to maximize cache and memory access. There’s only one
piece missing from this puzzle: “Exactly how does a particular compiler map
high-level language statements to the machine level?” Unfortunately, that
topic is sufficiently large that it deserves an entire book on its own. And that’s
the purpose of the next volume in the Write Great Code series: Thinking Low-
Level, Writing High-Level.

Write Great Code: Thinking Low-Level, Writing High-Level will pick up right
where this volume leaves off. Thinking Low-Level, Writing High-Level will teach
you how each statement in a typical high-level language maps to machine
code, how you can choose between two or more high-level sequences to
produce the best possible machine code, and how to analyze that machine
code to determine its quality and the quality of the high-level code that
produced it. And while doing all of this, it will give you a greater appreciation
of how compilers do their job and how you can assist them in doing their job
better.

Congratulations on your progress thus far towards knowing how to write
great code. See you in volume 2.

No Starch Press, Copyright © 2004 by Randall Hyde

A
A S C I I C H A R A C T E R S E T

Binary Hex Decimal Character

0000_0000 00 0 NULL

0000_0001 01 1 CTRL A

0000_0010 02 2 CTRL B

0000_0011 03 3 CTRL C

0000_0100 04 4 CTRL D

0000_0101 05 5 CTRL E

0000_0110 06 6 CTRL F

0000_0111 07 7 bell

0000_1000 08 8 backspace

0000_1001 09 9 TAB

0000_1010 0A 10 line feed

0000_1011 0B 11 CTRL K

0000_1100 0C 12 form feed

0000_1101 0D 13 RETURN

0000_1110 0E 14 CTRL N

0000_1111 0F 15 CTRL O

0001_0000 10 16 CTRL P

0001_0001 11 17 CTRL Q

0001_0010 12 18 CTRL R

0001_0011 13 19 CTRL S

No Starch Press, Copyright © 2004 by Randall Hyde

408 Appendix A

0001_0100 14 20 CTRL T

0001_0101 15 21 CTRL U

0001_0110 16 22 CTRL V

0001_0111 17 23 CTRL W

0001_1000 18 24 CTRL X

0001_1001 19 25 CTRL Y

0001_1010 1A 26 CTRL Z

0001_1011 1B 27 CTRL [

0001_1100 1C 28 CTRL \

0001_1101 1D 29 ESC

0001_1110 1E 30 CTRL ^

0001_1111 1F 31 CTRL _

0010_0000 20 32 space

0010_0001 21 33 !

0010_0010 22 34 "

0010_0011 23 35 #

0010_0100 24 36 $

0010_0101 25 37 %

0010_0110 26 38 &

0010_0111 27 39 '

0010_1000 28 40 (

0010_1001 29 41)

0010_1010 2A 42 *

0010_1011 2B 43 +

0010_1100 2C 44 ,

0010_1101 2D 45 -

0010_1110 2E 46 .

0010_1111 2F 47 /

0011_0000 30 48 0

0011_0001 31 49 1

0011_0010 32 50 2

0011_0011 33 51 3

0011_0100 34 52 4

0011_0101 35 53 5

0011_0110 36 54 6

0011_0111 37 55 7

Binary Hex Decimal Character

No Starch Press, Copyright © 2004 by Randall Hyde

ASCII Charac ter Set 409

0011_1000 38 56 8

0011_1001 39 57 9

0011_1010 3A 58 :

0011_1011 3B 59 ;

0011_1100 3C 60 <

0011_1101 3D 61 =

0011_1110 3E 62 >

0011_1111 3F 63 ?

0100_0000 40 64 @

0100_0001 41 65 A

0100_0010 42 66 B

0100_0011 43 67 C

0100_0100 44 68 D

0100_0101 45 69 E

0100_0110 46 70 F

0100_0111 47 71 G

0100_1000 48 72 H

0100_1001 49 73 I

0100_1010 4A 74 J

0100_1011 4B 75 K

0100_1100 4C 76 L

0100_1101 4D 77 M

0100_1110 4E 78 N

0100_1111 4F 79 O

0101_0000 50 80 P

0101_0001 51 81 Q

0101_0010 52 82 R

0101_0011 53 83 S

0101_0100 54 84 T

0101_0101 55 85 U

0101_0110 56 86 V

0101_0111 57 87 W

0101_1000 58 88 X

0101_1001 59 89 Y

0101_1010 5A 90 Z

0101_1011 5B 91 [

Binary Hex Decimal Character

No Starch Press, Copyright © 2004 by Randall Hyde

410 Appendix A

0101_1100 5C 92 \

0101_1101 5D 93]

0101_1110 5E 94 ^

0101_1111 5F 95 _

0110_0000 60 96 `

0110_0001 61 97 a

0110_0010 62 98 b

0110_0011 63 99 c

0110_0100 64 100 d

0110_0101 65 101 e

0110_0110 66 102 f

0110_0111 67 103 g

0110_1000 68 104 h

0110_1001 69 105 i

0110_1010 6A 106 j

0110_1011 6B 107 k

0110_1100 6C 108 l

0110_1101 6D 109 m

0110_1110 6E 110 n

0110_1111 6F 111 o

0111_0000 70 112 p

0111_0001 71 113 q

0111_0010 72 114 r

0111_0011 73 115 s

0111_0100 74 116 t

0111_0101 75 117 u

0111_0110 76 118 v

0111_0111 77 119 w

0111_1000 78 120 x

0111_1001 79 121 y

0111_1010 7A 122 z

0111_1011 7B 123 {

0111_1100 7C 124 |

0111_1101 7D 125 }

0111_1110 7E 126 ~

0111_1111 7F 127

Binary Hex Decimal Character

No Starch Press, Copyright © 2004 by Randall Hyde

I N D E X

Symbols
$, as prefix for hexadecimal values, 16

Numerics
“0” through “9”, seven-segment values

for, 216
3D gaming applications, 33
4 4 truth map, 210
4-bit

counter built from D flip-
flops, 223

nibbles, 22
shift register built from D flip-

flops, 223
7-bit strings, 113
8-bit

data bus, 139
register implemented with eight

D flip-flops, 222
8-KB cache, 302
16-bit

data bus, 140
objects, 22
processor memory, 141
short packed date format, 55

16-state sequencer, 223
32-bit

data bus, 142
floating-point format, single-

precision, 73
long packed date format, 57
processor, memory interface, 142

64-bit
buses, 143
data buses, 143

floating-point format, double-
precision, 74

integers, 23
80-bit floating-point format, 75
80x86

add opcode, 281
addressing capabilities, 136
assembly language bitwise

instructions, 48
instruction encoding, 280

direction (D) bit in, 282
reg field in, 282

mod-reg-r/m bytes, 281
prefix bytes on, 280

scaled indexed addressing
modes, 285

8042 microcontroller chip, 349
8250 Serial Communications Chip

(SCC), 351
68000 processor, 143

A
ABI (application binary

interface), 184
absolute coordinate pointing

devices, 396
abstract concept of number, 10
abstraction, numeric, 10
accelerated graphics port (AGP),

341, 386
access

16-bit bus data, 140
aligned data, 166
in byte-addressable memory,

word, 138
CPU memory, 157

No Starch Press, Copyright © 2004 by Randall Hyde

412 INDEX

access, continued
direct memory, 334
FORTRAN array, 178
latency (of a cache), 301
Linux port, 345
low-level disk, 375
memory, and the system

clock, 151
output port that supports

read/write, 331
RISC CPU memory, 144, 157
three-dimensional column-major

array, 178
Windows port, 345

accesses on non-80x86 processors, 143
accessing

array elements, 159
data with 16-bit bus, 140
double words in memory, 142
elements of an array, 173
elements of multidimensional

arrays, 177, 179
pointer variables, 159
a word in byte-addressable

memory, 138
a word on a 32-bit processor, 143
words at arbitrary memory

addresses, 140
words at odd addresses, 141

accumulation of error in a floating-
point computation, 68

acknowledge line, 350
activation records, 320
active

high logic, 217
low logic, 217

ADA programming language, 5
adapter, SCSI host, 370
add

instruction, 230, 232
instruction (Y86), 269, 274

add opcode, 80x86, 281
adders, half and full, 215
adding

four 256-MB memory modules
to a system, 217

an integer to a pointer, 165
integer values to a pointer, 166

addition
with pointers, integer, 165
rules for binary, 40

addition and subtraction, floating-
point, 81

addition circuits, 214
addition or subtraction with a scaled

format, 36
address

accessing words at odd, 141
bus, I/O, 134–38
effective, 159
physical, 309
record base, 183
space, I/O, 137, 312, 335
translating virtual to physical, 310
virtual, 309
words stored at odd, 141

addressable memory, 135
double word storage in byte, 138
maximum, 135
storing words in byte, 138
word access in byte, 138

addressing
capabilities, 80x86, 136
mode

direct, 271
direct memory, 158
indexed, 166
indexed versus scaled, 160
indirect, 158, 271
reg values, 285
scaled indexed, 160, 284–87
short displacements for

indexed, 159
words and dwords in memory, 138

addressing mode (Y86), 270
direct, 270–71
indexed, 270–71
indirect, 270–71

advanced technology attachment
(ATA), 373

aggregate data types, 169
AGP (accelerated graphics port),

314, 341
AIF files, 401
algebra

computers and, 212
theorems of Boolean, 192–93

algebraic manipulation of Boolean
expressions, 198

algorithm, hardware implementation
of, 212

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 413

aliases, 188
aligned data access, 166
aligning fields of a record, 184
allocating objects in contiguous

memory, 166
allocation

best-fit memory, 323
dynamic memory, 164, 321
first-fit memory, 323
granularity of memory, 326
heap section, 321
memory, 164, 321
operating system and

memory, 325
operator, 321
pointers and dynamic

memory, 164
tables, file, 378

alphabetic characters
comparing, 126
grouping, 124
lowercase, 105

alternate
byte layout in a double word, 144
encodings for instructions, 292

ALU (arithmetic logical unit), 239
AMD x86-64 processors, 135
anonymous variables, 164, 321
APIs, device-control, 347
application binary interface (ABI), 184
applications, 3D gaming, 33
approximation of real numbers, 66
Arabic number system, 11
arbitrary addresses in memory, 140
arbitrated loop, SCSI, 369
architecture, 134

computer, 134
CPU, 225
Harvard, 248
ISA (industry standard), 338
ISA (instruction set), 259–60
VLIW, 255
von Neumann, 134

arithmetic
binary and hexadecimal, 39
financial transactions and fixed-

point, 35
floating-point, 33, 65, 66

exceptions in, 79
IEEE rounding, 84
limitations of, 65

hexadecimal, 39
limited-precision, 67
and logical instructions (Y86),

266, 269
logical units, 239
pointer, 164
shift right operation, 53

array, 169
access, 159

column-major, 178
FORTRAN, 178

accessing elements of, 173
multidimensional, 177, 179

adding padding bytes before, 172
alignment in memory, 172
base address, 169
bounds checking, 171
column-major ordering, 175, 178
data, 173
declarations, 169

C/C++, 170
HLA, 170
multidimensional, 179

element, 169
accessing, 159
ordering, row-major, 175
organization, 169

index, 169, 171
bounds checking, 171
operator, 169

initializers, 170
layout in memory, 169
memory consumption, 172
multidimensional, 174–80
one-dimensional, 173
organization, 169
packed data, 173
padding bytes in, 172
Pascal declarations, 171, 179
representation in memory, 172
row-major ordering, 175
storage, 173
two-dimensional, 176

array in memory
declaring, 169
representing, 172

ASCII character set, 104
codes, 104–5
numeric digits, 105–6
punctuation symbols, 105
uppercase characters, 105

No Starch Press, Copyright © 2004 by Randall Hyde

414 INDEX

assembler directive, struct, 182
assembly language bitwise

instructions, 80x86, 48
associative Boolean operations, 193
associative cache

four-way set, 304
fully, 304
n-way set, 304
one-way set, 303
two-way set, 304–5

associative operators
left, 194
right, 194

associativity, 192
asynchronous I/O, 387
AT attachment with packet

interface, 373
ATA (advanced technology

attachment), 373
ATAPI, 373
audio

CD-quality, 401
devices, programming, 403
file formats, 401
input under USB, 395
output under USB, 395
recorders, digital, 401
sampling, 401
storage requirements on disk, 401

automatic variables, 170
autorepeat (keyboard), 348
AX (Y86 register), 275

B
background prefetch events, 242
backspace character, 105
bandwidth, reserving USB, 394
banks of memory, 140
base (numbering system, radix), 12
base 16, 15
base-8 numbering system, 13, 18
base-10 numbering system, 11–12
base address

of an allocated memory
region, 165

of an array, 169
of a record, 183

base register values for sib
encoding, 285

basic system components, 134
BCD (binary-coded decimal)

calculations, 32
data representation in a byte,

31–32
BCDIC (Binary Coded Decimal

Interchange Code), 107
best-fit memory allocation, 323
biased (excess) exponents, 73
bidirectional ports, 332
big endian and little endian data

mixing, 145
organization, 144

binary
data types, 21
division, 43
encoding, 226
formats, fixed-point, 34
to hexadecimal conversion, 17, 78
I/O (to disk files), 388
literal constants, 15
logical operations on, 47
longhand division in, 45
making easier to read, 14
minterms from, 199
operations, 47
operator, 192
properties, 25
subscript notation, 15
subtraction, 41

binary addition, 40
binary arithmetic, 39
Binary Coded Decimal Interchange

Code (BCDIC), 107
binary conversion

between decimal, 14
between hexadecimal, 17
between octal, 18–19

binary multiplication, 42
binary numbering system, 13
binary representation, 10–11, 15
binary string, 49
binary-coded decimal (BCD)

representation, 31
binding of attributes to objects, 317
bit

80x86 instruction encoding, 282
in binary string, comparing, 49
density (on a hard disk), 354
dirty, 308
floating-point number, 72

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 415

bit, continued
forcing, 48
guard, 77
high order (HO), 22
idioms, 48
inverting, 48
layout in a double word, 23
logical operations on, 46
low order (LO), 22
masking, 48
numbering, 22
operations, 46, 48
page table, 335
sign, 24
significance, 22
string masks, 48
testing, 49
two’s complement sign, 24
zero or one, 48
zero/not zero, 49

bit fields, 55
C, 58
extracting, 62
inserting data into, 62
instruction encoding, 262
packed data, 55

bit string, 22, 47
in C, packed, 58
logical operations on binary

numbers and, 47
manipulating bits in, 48
masking, 48
packing, 55
representable values, 24
U.S. Social Security numbers, 60

bit-by-bit operations, 47
bitmap, 377
bitwise instructions, 80x86

assembly, 48
bitwise operations, 47
bitwise operators, Visual Basic, 48
BIU (Bus Interface Unit), 240
block

on a disk, 353
freeing a memory, 324
heap management, 322
list

large files, 384
medium-sized files, 383
small files, 382

preallocation of file, 387

block caching, 375
block started by a symbol (BSS)

sections, 320
blowing revs, 356
Boolean

AND operation, 192
AND operator precedence, 194
associativity, 192–93
canonical form, 198, 199
circuits and, 213
closure, 192–93
combining rectangles, 206
commutativity, 192–93
decoders, 215–16
distribution, 192–93
full adder, 215
half adder, 215
identity element, 193
inverse element, 193
literals, 198, 199
logic, 4, 191
map simplification, 204
maxterms, 203
minterms, 199–200
NAND implementation, 213
negation, 192
NOT operation, 192
NOT operator precedence, 194
number of functions for n input

variables, 198
OR operation, 192

precedence, 194
rectangles in a truth map, 208–9
seven-segment decoder, 215

Boolean algebra, 192
and computers, 212
manipulation, 198
theorems, 193

Boolean complement, 192–93
Boolean expressions, 191, 194, 198

algebraic manipulation of, 198
logical AND, 194
logical NOT, 194
logical OR, 194

Boolean functions, 194
electronic circuits and, 213
map method for, 204
minterms, 200
names, 196
NAND, universal, 213
number of, 195

No Starch Press, Copyright © 2004 by Randall Hyde

416 INDEX

Boolean functions, continued
numbers, 197
optimization, 204
simplification, 204
truth tables, 194
unique, 195
variables, 195

Boolean operations, 46
associative, 193
distributive, 193
identity element for, 193
logical complement for, 193

Boolean operators, 192
associativity, 194
precedence, 194

Boolean postulates, 192–93
Boolean products, 198, 199, 203
Boolean sum, 203
Boolean term, 198–99
Boolean theorems, 193
Boolean truth maps, 204–12

combining rectangles in, 206
special cases in, 208

Boolean truth tables, 194
borrow, 41
bounds checking, 171
BSS section

block started by a symbol, 320
in a program, 319
uninitialized storage, 319

buffer, translation lookaside
(TLB), 310

buffering, peripheral device data, 341
bulk transmissions, USB, 393
burst mode, PCI bus, 340
bus

8-bit, 139
16-bit, 140
32-bit, 142
64-bit, 143
address, 135
AGP, 314, 341
burst mode on PCI, 340
clock frequencies, 151
connecting PCI and ISA, 339
contention for, 246
control, 134, 136
cycles, 240
data, 134, 135
data access, 16-bit, 140
EISA, 338

enumeration, USB, 395
high data transfer rates, 342
I/O address, 137
interface unit, 240
interrupt lines on, 136
ISA, 338

performance, 340
NuBus, 338
organization, 133
PCI, 314, 336, 338–40
PCI-X, 340, 341
performance of ISA, 340
peer-to-peer, 369
prefetch queues and wide, 243
read operations, 151
starvation on USB, 393
system, 134, 338
write operations, 151

bus interface, AGP, 341
busy line, 350
BX (Y86 register), 276
byte, 22

addressable memory, 137
accessing a word in, 138
array, 140
double word storage, 138, 144

BCD data representation in,
31–32

double word, 23, 144
enable lines, 137, 142
fetched, 240
gender, 145–46
high order (HO), 22
instruction set, 279
low order (LO), 22
in memory, 147
mod-reg-r/m, 281
opcode prefix, 279, 280
padding, 172, 184
sex, 145
shift left, 52
shift right, 53
in a word, 23

C
C programming language

bit fields, 58
packed bit strings in, 58
union on endian machines, 148

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 417

C++, delete memory deallocation
operator, 321

C/C++ programming languages, 5
double data type, 72
float data type, 72
records in, 182
sizeof function, 164
unions in, 186

C/C++/Java operators
bitwise, 48
shift left, 52

cache
access latency, 301
architecture, 302
associativity, 304
coherency, 257
control bit, 335
direct-mapped, 303
dirty bits, 308
disk controllers, 356
four-way set associative, 304
fully associative, 304
hits, 154–55
instruction, 247
I/O operations, 335
levels, 296

three, 157
line, 155, 301–3
line replacement

latency, 308
policies, 306

memory, 153
interface to system, 154

miss, 154
n-way set associative, 304
one-way set associative, 303
replacement policy for, 306

least recently used
(LRU), 306

random, 307
secondary, 156
subsystems, L2, 300
thrashing, 308
two-level, 156
two-way set associative, 304–5
usage optimization, 305
write policy

write-back, 307
write-through, 307

caching
file block, 375

scheme, 305
system, two-level, 156

calculations
accuracy of BCD, 32
floating point

error accumulation, 68
rounding after, 67

canonical
byte gender formats, 146
forms, 199

of Boolean expressions, 198
converting between, 203
maxterms, 203
minterms, 200–2
truth tables from, 200

capacity
hard disk drive, 352
memory, 152

cards
CompactFlash, 364
flash memory, PC, 364
sound, 399

carriage return character, 104
carry, 40
case characters, 105
case variant records, 186
casting types, 28
CD track seek times, 362
CD-recordable (CD-R) format, 361
CD-ROM, CD-R, and CD-R/W

drives, 360
CD-quality audio, 401
ceil function, 77
cells, memory, 220
central processing unit (CPU), 134
Channel Arbitrated Loop, Fibre, 369
character codes for numeric

digits, 124
character data, 104
character groupings, 128
character set, 119

ASCII, 104
numeric digits, 105
punctuation symbols, 105
uppercase characters, 105

designing, 121
double-byte (DBCSS), 108
EBCDIC, 107
HyCode, 122, 129
membership in, 119

No Starch Press, Copyright © 2004 by Randall Hyde

418 INDEX

character set, continued
representation

HLA, 120
list, 120
powersets, 120

Unicode, 109
characters

ASCII character set, 104
backspace, 105
carriage return, 104
comparing alphabetic, 126
control characters, 104
control codes, 106
descriptor-based strings, 115
differentiating upper- and

lowercase, 105
end-of-line, 106
grouping alphabetic, 124
HLA string format, 113
length-prefixed strings, 112
line feed, 105
lowercase alphabetic, 105
maximum length for strings, 111
NUL, 112
numeric digits, 105, 106
reference count for strings, 111
representation, 103
string formats, 110–15
Unicode, 109
uppercase, 105
zero-terminated strings, 111

charts
binary/hexadecimal

conversion, 17
binary/octal conversion, 19

chip
8042 microcontroller, 349
8250 serial communications, 351
serial communications, 351

circuit
addition, 214
combinatorial, 214
decoder, 216
instability, 221

CISC (Complex Instruction Set
Computer), 230

and data hazard, 250
clipping (saturation), 30
clock

cycle, 150
falling edge of a, 150

frequency, 150
lines, 136
memory access, 151
operation, 150
period, 150
rising edge of a, 150
system, 149, 150

clocked logic, 220
clocks per instruction (CPI), 251
closure, 192

for Boolean operators, 193
of an operator, 192

cmp instruction (Y86), 269, 276
coarse-grained parallelism, 257
code

characteristics of great, 6
data caches, 249
down key, 348
Extended Binary Coded Decimal

Interchange (EBCDIC), 107
keyboard, 348
machine, 274
morphing, 255
pages, 107
scan, 348
sections in a program, 319

coercion (real to integer), type, 81
column-major

array element ordering, 178
ordering, 178

column-major array access, 175, 178
COM ports, 351
combinatorial circuits, 214
command set, SCSI, 370
communications

with device drivers, 347
devices under USB, 396
RS-232 serial, 351
unidirectional parallel, 349

communications chips, serial, 351
commutativity, 192–93
CompactFlash cards, 364
comparing

alphabetic characters, 126
bits, 49
dates, 58
floating-point numbers, 69–71
pointers, 164, 168

comparison instructions, 266
complement sign bit, 24

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 419

Complex Instruction Set Computer
(CISC), 230, 280

components, 134
composite data types, 169
composition of a word, 22
computer architecture, 134
computers

Boolean algebra and, 212
reel-to-reel tape drives, 363
stored program, 227

concept of a number, abstract, 10
condition codes register, 232
conditional jumps, 277

instructions, 230, 266
Y86, 274

connecting
PCI and ISA buses, 339
ports, 333

connections
master-slave, 391
peer-to-peer, 391

constant sections in a program, 319
constants, binary literal, 15
constructing large objects from bytes

in memory, 147
contention (for the bus), 246
contiguous memory, 166
contraction (sign), 29
control

bit, 335
bus, 134, 136
characters, 104
line, 136, 141, 330–333
transfer instructions (Y86), 269
transmission, USB, 393
units (CU), 239

controller stack
host, 391
USB host, 391

controllers
joysticks and game, 397
SCSI, 367

conversion
between canonical forms, 203
between decimal and binary, 14
between hexadecimal and

binary, 17
between little and big endian

forms, 146
between octal and binary, 18
decimal digits to an integer, 20

in a double word, endian, 146
integer to a string of characters,

20
string to numeric, 19

conversion chart
binary/hexadecimal, 17
binary/octal, 19

copy storage in memory
hierarchy, 298

cost of CPU design, 260
counters

electronic implementation, 223
modulo-n, 51

CPI (clocks per instruction), 251
CPU (central processing unit), 134

ALU (arithmetic logical unit), 239
architecture, 225
arithmetic logical unit (ALU), 239
bus interface unit (BIU), 240
cache lines, 302

replacement policies, 306
complexity, 261
control units (CU), 239
CPI (clocks per instruction), 251
data hazards, 246, 250
definition, 225
design, 225

cost, 260
expandability, 261
prefetch queue, 241
random logic, 228

direct-mapped cache, 303
execution units, 229, 252
expandability, 261
flushing a pipeline, 247
four-way set associative

caches, 304
functional units, 239
grouping instructions, 267
Harvard architecture, 248
improving performance, 252
instruction

cache, 247
opcode format, 218
sets, 226, 259
size, 228
usage frequency, 267

instructions, 266
decoding, 228
encoding, 262
executing, 228, 229

No Starch Press, Copyright © 2004 by Randall Hyde

420 INDEX

CPU, continued
legacy support, 261
local bus for, 338
memory access, RISC, 144, 157
microcode, 228
microinstructions, 228
n-way set associative caches, 304
opcodes, 228, 262
out-of-order execution, 253
overlapping instruction

execution, 241
pipelining, 243

stages, 244
stalls, 246

prefetch queue, 238–43
random logic design in, 228
register renaming, 253
scaled indexed addressing

mode, 284
two-way set associative caches, 304
variable-length instructions, 264
superscalar, 251

Crusoe processor, 255
CU (control units), 239
CX (Y86 register), 275
cycle

memory, 151
unused bus, 240

cylinder, hard disk, 355

D
D (data) flip-flop, 221

4-bit counter built from, 223
4-bit shift register built from, 223
with NAND gates, 222
as output ports, 333

D bit, 282
data

access
16-bit bus, 140
aligned, 166
matching caching

scheme, 305
bus, 134, 135

8-bit, 139
16-bit, 140
32-bit, 142
64-bit, 143

caches, 249
hazards, 246, 250

on mass storage device, 385
mixing big and little endian, 145
movement instructions, 266
organization,

big endian, 144
little endian, 144

packed, 55
packing, 60
packing array, 173
parallel port

receiving, 350
transmission, 350

recording on CD and DVD, 361
representation, 3, 31–32
sections in program, 319
semantics, 347
streaming, 361
transfer rates, 338, 342
type

aggregate, 169
binary, 21
C/C++, 72
composite, 169
discriminant union, 147
encapsulated, 58
FORTRAN, 72
ordinal, 171
in programming language, 22

unpacking, 60
writing to memory, 307

date
comparison, 55, 58
format

16-bit, short packed, 55
32-bit, long packed, 57
representing, 55

DBCSs (double-byte character
sets), 108

DDRAM (double data rate
DRAM), 297

deallocation operator
C++, delete memory, 321
Pascal, dispose memory, 321

debouncing keyboards, 348
decimal

binary coded (BCD), 31
conversion

binary, 14
integer, 20

division, 44
floating-point format, 67

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 421

decimal, continued
numbering system, 11
positional

notation, 11. See also base-10
numbering system

numbering system, 11–13
declaring arrays, 169–70
decoder

seven-segment LED, 215
two-line–to–four-line, 217

decoder circuits, 216
decoding

buffer delays, 152
machine instructions, 217
memory addresses, 216
opcodes, 217, 263
random logic vs. microcode, 228
simple machine instructions, 219

defrag utilities, 387
delete memory allocation

function, 164
delete memory deallocation operator

(C++), 321
Delphi/Kylix

bitwise operator, 48
shift left operator, 52
“short” strings, 118
string data format, 118
unions in, 186

DeMorgan’s Theorems, 194, 214
denormalized

operand exception, 79
values, 75–76

descriptors, overlapping strings and,
115–16

design
cost of a CPU, 260
digital, 191
expandability of a CPU, 261
implications of an instruction

set, 293
of an instruction set, 260
random logic CPU, 228
silicon real estate and CPU, 260
USB, 390

designing your own character set, 121
device(s)

absolute coordinate pointing, 396
classes, USB, 396
control APIs, 347
and controllers, SCSI, 367

drivers, 345–46
communicating with, 347
protected mode, 345
USB, 395

high-speed I/O, 337
hot-pluggable, 390
hot-swappable, 368
Human Interface (HID), 396
I/O, 14, 337
mass storage, 374
NUMA and peripheral, 313
as output ports, 330
peripherals, 313, 347
plug-and-play, 390
pointing, 396
programming audio, 403
strain gauges, 397
timeouts, 343
trackpoint pointing, 397
USB

communications, 396
enumeration, 395
printer, 396
storage, 396

diagram symbols, schematic, 213
different signs, operands, 87
differentiating upper- and

lowercase, 105
DigiDesign Digi-001 sound system, 401
digit(s), 12

ASCII codes for numeric, 105–6
converting decimal to integer, 20
grouping character codes for

numeric, 124
guard, 68
significant, 67

digit representation, hexadecimal, 22
digital

audio recorders, 401
design, 191

Digital Linear Tape (DLT), 362
dimensional arrays, 177
direct addressing mode (Y86), 270
direct memory access (DMA),

334, 336
direct memory addressing mode, 158
direct-mapped cache, 303

problems with, 303
selecting cache line in, 303

direction (D) bit, 282
directive, struct assembler, 182

No Starch Press, Copyright © 2004 by Randall Hyde

422 INDEX

dirty bit, 311
discriminant unions, 147, 185
disk drive, 352

defragger utilities, 387
files

formatted I/O, 388
internal fragmentation, 376

jukebox storage systems
(optical), 360

optical, 298
platter, 353
price/performance, 366
RAID (redundant array of

inexpensive disks), 358
RAM, 365–66
read/write heads, 355
track-to-track seek time, 354

diskettes, floppy, 298
diskless workstations, 352
displacements for indexed addressing

modes, 159
display, seven-segment, 216
dispose

memory allocation function, 164
memory deallocation operator

(Pascal), 321
distributed shared memory

(DSM), 297
distributive Boolean operations, 193
distributive law, 192
dividing binary values, 43
division

floating-point, 97
fpdiv function, 93, 97
multiplication and, 92

longhand, 43, 45
shift right operation, 53
by zero (floating-point), 79

DLT (Digital Linear Tape), 362
DMA (direct memory access),

334, 336
dot operator, 183
double data rate DRAM

(DDRAM), 297
double data type (C/C++), 72
double precision

data type (FORTRAN), 72
floating-point format, 71, 74

double word
accessing in memory, 142
alternate byte layout in, 144

bytes and words in, 23
endian conversion, 146
storage in byte addressable

memory, 138
double-byte character sets

(DBCSs), 108
double-precision (64-bit), 74
down codes, 348
down key code, 348
DRAM, 297
drivers

communicating with, 347
miniport, 374
protected mode operation and

device, 345
SCSI miniport, 371
USB device, 395

drives
fixed, 352
floppy, 352
floptical, 359
hard, 352
optical, 359
tape, 362–63
Zip, 359

DSM (distributed shared
memory), 297

dual I/O ports, 332
duality, principle of, 194
DVD, DVD-R, DVD-RAM, and

DVD-R/W drives, 360–62
dword, 23

addressing in memory, 138
dynamic

objects, 318
range, 66
strings, 115–17

dynamic memory allocation, 164, 321
heap section and, 321
pointers and, 164

E
eager approach to comparing

floating-point numbers, 71
EAX, 289
EBCDIC character set, 107
EBP, 290
EBX, 290
ECX, 290

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 423

edge of a clock
falling, 150
rising, 150

EDI, 289
EEPROM, 364
effective addresses, 159
efficiency, 6

of packed data, 55
of positional numbering

system, 12
of string functions, 112

EISA bus, 338
electronic circuits and Boolean

functions, 213
electronic implementation

counters, 223
registers, 222

element
of array, 159, 169
identity, 193
inverse, 193
multidimensional array, 179
ordering, 175

embedded systems, 212
encapsulated data types, 58
encoding

8-, 16-, and 32-bit operands, 292
80x86 instruction, 279–80
add instruction, 287

add(5, ax), 275
add(al, cl), 288
add(cx, dx), 274
add(disp, edx), 289
add(eax, ecx), 288
immediate instruction, 291

direction (D) bit, 282
immediate operands, 291
indexed addressing modes, 159
instruction, 219, 227, 262, 292

operands, 281
source and destination

fields, 227
variable-length opcode, 265

jump instruction, 273
machine instructions, 274
mod field, 282
mod-r/m, 283
mov(eax, ebx), 219
not(ax), 277
reducing instruction size, 226

reg field, 282
register values for sib, 285
sib base register values, 285
Social Security number packed

fields, 61
Y86 instructions, 271, 274

endian
converting, 146
data organization

big, 144
little, 144

machine, 148
end-of-line character, 106
engineering software, 2
English representation of numeric

quantities, 10
ENTER key, 103
entries, page, 311
entry cache control bit, 335
enumeration, 395
equality, 70
error accumulation, 68
evaluation, 68
even banks of memory, 140
events, 242
exceptions, 79
excess exponents, 73
excess-127 exponents, 73, 83
excess-1023 exponents, 74
excess-16383 exponents, 74
exclusive-or (XOR), 46

inverse via, 47
operation, 46, 196

execution
concurrent, 243
out-of-order, 253
overlapping, 241
in parallel, 251
pipeline, 245
step-by-step, 229
superscalar, 251

execution units, 229, 252
expandability of CPU design, 261
expansion opcodes (Y86), 272
exponent, 66

biased (excess), 73
excess-127, 73, 83
excess-1023, 74
excess-16383, 74

expressions, 191, 198

No Starch Press, Copyright © 2004 by Randall Hyde

424 INDEX

Extended Binary Coded Decimal
Interchange Code
(EBCDIC), 107

extended precision floating-point
format, 71, 74

extending instruction set with prefix
byte, 279

extension
sign, 27–29
zero, 27–29

external fragmentation
on a hard disk drive, 376
in a memory manager, 323

extracting bit fields, 62

F
falling edge of a clock, 150
false, 192
Fast and Wide SCSI, 368
faster processing, 235
FAT (file allocation table), 378

free-space management, 380
implementation, 378

fault, 317
fetched bytes, 240
Fibre Channel Arbitrated Loop

(FCAL) and SCSI, 369
field

aligning in record, 184
C bit, 58
encoding, 61, 282
extracting bit, 62
inserting data into bit, 62
in a record/structure, 181

file
access performance, 386
AIF, 401
block, 375, 382, 383, 387
formats, 401
formatted I/O to disk, 388
fragmentation, 376, 386
GM (general MIDI), 402
I/O performance, 386
managers, 374
memory-mapped, 312, 389
MIDI, 401
organization, 381
size, 383
sparse, 381, 385

storage in memory, 297
WAV, 401

file allocation table. See FAT
file system

free-space bitmaps in, 377
on mass storage devices, 374
operating system, 374
sequential, 376

financial transactions and fixed-point
arithmetic, 35

fine-grained parallelism, 257
FireWire, 367, 369
first-fit memory allocation, 323
first-in, first-out (FIFO) cache

replacement policy, 307
fixed drives, 352. See also disk drives
fixed-point

arithmetic, 35
binary formats, 34
representation, 33–34

flag
register, 232
zero, 230

flash memory device, 364
flash storage modules, 363
flip-flop, D (data), 221
flip-flop, S/R (set/reset), 220

latch, 221
as output port (S/R), 333
unstable, 221

float data type (C/C++), 72
floating-point

accuracy, 68
addition, 81–82
arithmetic, 33, 65, 66

exceptions in, 79
IEEE rounding, 84
limitations of, 65

calculation, 67
error accumulation, 68
order of evaluation, 68

comparisons, 69
denormalized values, 76
division, 92, 97

fpdiv function, 93, 97
by zero, 79

double-precision format
(IEEE), 74

dynamic range, 66
error accumulation, 68

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 425

floating-point, continued
exceptions, 79

inexact result, 80
invalid operation, 79
numeric overflow, 80
numeric underflow, 80

excess-127 exponent, 73
excess-1023 format, 74
excess-16383 exponent, 74
extended-precision format, 74
format

decimal, 67
double-precision, 71, 74
extended-precision, 74
IEEE, 71
simple, 67
single-precision, 72–73

guard bits, 68, 77
IEEE single-precision format, 72
implied bit, 72
mantissas, 66
multiplication, 92, 93
normalized values, 75
number, 72

comparing, 69, 71
dynamic range in, 66
truncation of, 77

operations, 80
order of evaluation, 68
representation, 80
rounding, 77
significant digits, 67
special values, 78
subtraction, 81–82
truncation, 67, 77
units, 65, 80

floor function, 77
floppy

diskettes, 298
drives, 352

floptical drives, 359
flushing a pipeline, 247
forcing bits, 48
formatted I/O, 388
forms, 146
FORTRAN programming language, 5

array access, 178
double-precision data type, 72
real data type, 72

four-way set associative caches, 304
fpadd function, 82

fpdiv function, 93
fpmul function, 93
fpsub function, 82
FPU (floating-point unit), 80
fractional

representation, 35
values, 33, 38

fragmentation
disk files, 376
file, 386
internal, 327
memory, 324
in memory manager, 323

frames in USB protocol, 392
free function, 325
free memory allocation function, 164
freeing a memory block, 324
free-space

bitmap in file system, 377
management, 380

frequency, system clock, 150
full adders, 215
fully associative cache, 304
function

C/C++, 164
ceil, 77
correct rectangle, 207
delete memory allocation, 164
dispose memory allocation, 164
floating-point addition (fpadd), 82
floating-point division (fpdiv),

93, 97
floating-point multiplication

(fpmul), 93
floating-point subtraction

(fpsub), 82
floor, 77
free, 164, 325
malloc, 164, 325
NAND, universal Boolean, 213
new memory allocation, 164

four-dimensional arrays, 177
functional units, 239
functions

Boolean
electronic circuits and, 213
names, 196
number, 195
optimizing, 204
simplifying, 204
unique, 195

No Starch Press, Copyright © 2004 by Randall Hyde

426 INDEX

functions, continued
efficiency of string, 112
numbers, 197
of three variables, 195

G
game controllers, 397
gaming applications, 3D, 33
garbage collection, 322, 324

for string data, 117
gate, 213–14, 220–22
gauges, 397
general MIDI files (GM), 402
general protection fault, 317
generic instruction types, 266
generic Y86 instructions, 272
geometry, hard disk drive, 357
get instruction (Y86), 270
gigahertz (GHz), 150
GM (general MIDI) files, 402
granularity, 326
great code

characteristics of, 6
definition, 7

grouping, 128
alphabetic characters, 124
character codes, 124
instructions, 267

guard bits, 77
guard digits, 68
Gulliver’s Travels (Swift), 145

H
half adder, 215
halt instruction (Y86), 270
handshaking, 342
handshaking, I/O, 342
hard copy storage in memory, 298
hard disk drive, 352

access, low-level, 375
arrays, 353, 358
assembly, 355
audio storage requirements, 401
blocks on, 353
cache, 356
capacities, 352
controllers, 356
cylinders, 355

directory, 376
external fragmentation, 376
geometries, 357
interleaving sectors, 356
platter

recording, 354
tracks and sectors, 353

random access, 386
read/write heads, 355
rotational latency, 356
rotational speed, 353
sectors, 353, 357
seek time, 354
sequential access, 386
tracks, 353, 357
track-to-track seek time, 354

hardware functions in software, 212
hardware implementation of

algorithms, 212
Harvard machine, 248
hazard, 249–51
heads, 355
heap

management, 322
memory

allocation, 164
overhead, 326

section in memory, 321
hertz (Hz), 150
hexadecimal

arithmetic, 39
to binary conversion, 17
digit representation, 22
numbers, 16
representation, 10, 15

C, C++, C#, and Java, 16
Delphi, 16
HLA, 16
Kylix, 16
MASM, 16
Pascal, 16
in programming

languages, 16
Visual Basic, 16

hexadecimal numbering system, 15
HID (Human Interface Devices), 396
hierarchy, 314

I/O speed, 337
memory, 295, 296, 298

file storage in, 297
hard copy storage in, 298

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 427

hierarchy, continued
memory, continued

network storage in, 297
registers in, 296

high data transfer rates on a bus, 342
high order (HO)

bit, 22
byte, 22

high-level I/O activities, 329
high-speed I/O devices, 337
HLA

character set representation, 120
hexadecimal representation, 16
records in, 182
strings, 113–15
unions, 187

host adapter, 370
host controller stacks, 391
hot-pluggable devices, 390
hot-swappable devices, 368
Human Interface Devices (HID), 396
HyCode character set, 122, 129
hyperthreading, 257
hypothetical processor (Y86), 267
Hz (hertz), 150

I
IA-64, Intel, 255
IDE (Integrated Disk Electronics)

interface, 370
IDE/ATA interface, 372
identifier, 318
identity element, 193
IEEE

floating-point formats, 71
rounding, 84

illegal opcodes, 278
imperative programming languages, 5
implementation

counters, 223
FAT, 378
pointer, 163
registers, 222

implied bit, 72
indexed addressing mode, 159, 166

scaled, 160, 284–85
short displacements for, 159

indexed addressing mode (Y86),
270–271

indexes, bounds checking, 171
indexes into an array, 171
indirect addressing mode, 158, 271
indirect addressing mode (Y86), 270
industry standard architecture

(ISA), 338
inexact result, 80
infinity, 79
inhibition, 196
initializers, 170
input, 329
input ports, 330
input under USB, audio, 395
input/output. See I/O
inserting

data into bit fields, 62
field into packed structure, 63
wait state into memory read

operation, 153
instability, flip-flop circuit, 221
instruction, 219, 274, 275, 276, 277,

288, 289, 290
80x86 assembly language

bitwise, 48
add, 232, 274
alternate encodings for, 292
assigning opcodes to, 266
cache, 247
choosing, 266
comparison, 266
conditional jump, 230, 266
control transfer, 269
decoding, 217
design goals, 261
encoding, 274

80x86, 280
direction (D) bit in

80x86, 282
jump, 273
reg field in, 80x86, 282
Y86, 271

execution
overlapping, 241
in a pipeline, 244, 245

grouping, 267
input/output, 266
jnz, 230, 234
jump, 277
legacy support, 261
loop, 230, 234
mov, 230, 268, 276

No Starch Press, Copyright © 2004 by Randall Hyde

428 INDEX

instruction, continued
not, 276
overlapping, 241
in parallel, superscalar, 251
pipelining, 243
program performance, 243
read/modify/write, 334
size, 264

reducing, 226
types, 266
usage frequency, 267
variable-length, 264
Y86, 268
zero-operand, 278

instruction (opcode) format for
simple CPU, 218

instruction (Y86), 268
cmp, 269, 276
get, 270
halt, 270
ja, 269
jae, 269
jb, 269
jbe, 269
je, 269
jmp, 269
jne, 269
jump, 277
mov, 268, 276
not, 269, 276
or, 269, 276
put, 270
sub, 269, 276

instruction pointer register, 228
instruction set, 226

architecture, 259–60
using prefix byte to extend, 279

instruments, l, 400
integer

64-bit, 23
adding to a pointer, 165
converting decimal digit to, 20
converting to characters, 20
signed, 24
subtracting from a pointer, 167
type coercion, 81
unsigned, 24

integrated disk electronics (IDE)
interface, 370

Intel IA-64, 255

interface
32-bit processor memory, 142
AGP bus, 341
application binary (ABI), 184
AT attachment with packet, 373
Human Interface Devices

(HID), 396
IDE/ATA, 372
IDE, 370
MIDI, 402
peripheral connection (PCI), 338
SATA (serial ATA), 374
SCSI Parallel (SPI), 369
Small Computer System

(SCSI), 367
interleaving sectors, 356–57
internal fragmentation, 327, 376
internal numeric representation,

10, 21
interrupt

lines, 136
mechanisms, 345
service routine, 345
transfers, USB, 394
transmission packets, USB, 394

interrupts, 344
and polled I/O, 344

invalid operation, 79
inverse element, 193
inverse via exclusive-or, 47
inverted page tables, 312
inverter built from a NAND gate, 213
inverting bits, 48
I/O, 134, 329

address bus, 137
address space, 335
asynchronous, 387
cache, 335
device, 14

high-speed, 337
low-speed, 337
medium-speed, 337
timeout periods, 343

to disk files, 388
formatted, 388
handshaking, 342
high-level, 329
improving file performance, 386
interrupts and polled, 344
locations, 135

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 429

I/O, continued
mechanisms, 334
memory-mapped, 334–35
polled, 344
port, 330

classification, 330
dual, 332
time-outs, 343

programmed, 336
protected mode, 345
speed hierarchy, 337
synchronous, 387
type, 388

ISA (instruction set architecture), 260
ISA bus, 338

connection, 339
performance, 340

isochronous transfers USB, 395
ISR (interrupt service routine), 345

J
ja instruction (Y86), 269
jae instruction (Y86), 269
jb instruction (Y86), 269
jbe instruction (Y86), 269
je instruction (Y86), 269
jmp instruction (Y86), 269
jne instruction (Y86), 269
jnz instruction, 230, 234
joysticks, 397
jukebox (optical storage), robotic, 360
jump instruction

conditional, 230, 266, 277
encodings, 273
program performance, 243
unconditional, 277
Y86, 277
Y86, conditional, 274

K
keyboard, 348

debouncing, 348
down codes, 348
modifiers, 349
scan code, 348
up codes, 348

keybounce, 348
keys, 349

L
L1 and L2 cache subsystems, 300
large files, 384
large objects, 147
latch, 221
latch devices as output ports, 330
latency

cache access, 301
disk drive, 356

law, distributive, 192
leaks, 117
least recently used (LRU) cache

replacement, 306
least significant bit, 22
LED decoders, 215
left associative, 194
left shift operation, 52
legacy support for old

instructions, 261
length

opcode, 263
string, 110

length-prefixed strings, 112
Level 0 RAID, 358
Level 1 RAID, 358
level-one (L1) cache, 296
level-three cache, 157
level-two (L2) cache, 296
lifetime of an object, 318
limited-precision arithmetic, 67
line

acknowledge, 350
parallel port

acknowledge, 350
busy, 350
strobe, 349

read control, 136
write control, 136

line feed character, 105
Linux port access, 345
list representation of character

sets, 120
list-of-blocks file organization, 381
literal constants, binary, 15
literals (Boolean), 199
little endian

data organization, 144
machine, 148
mixing big and little, 145

No Starch Press, Copyright © 2004 by Randall Hyde

430 INDEX

local bus, 338
locality, 154
locality of reference

spatial, 153, 298, 300
temporal, 153

logic
active high, 217
active low, 217
clocked, 220
memoryless, 220
sequential, 220

logic functions, 213
logic in CPUs, 228
logical

AND, 192
operation, 46
precedence in Boolean, 194

complement, 192–93
exclusive-or (XOR), 46, 196
inhibition, 196
NAND, 196
negation, 192
NOR, 196
NOT, 196

operation, 46, 47
precedence in Boolean, 194

operations on
binary numbers, 47
bits, 46–47

OR, 192
operation, 46
precedence in Boolean, 194

XOR, 46, 196
long packed date format (32 bits), 57
longhand division, 43–45
loop instruction, 230, 234
low order (LO)

bit, 22
byte, 22

lowercase alphabetic characters, 105
low-level disk access, 375
low-speed I/O devices, 337
LRU (least recently used) cache

replacement policy, 306

M
machine

C union on a big endian, 148
C union on a little endian, 148

code, 274
instruction decoding, 217
organization, 3
von Neumann, 134

macroinstructions, 228
magnetic tape, 298
maintaining files, 377
major ordering

column, 175, 178
row, 175

malloc function, 164, 325
managers

file, 374
operating system file, 374

manipulation
of bits, 48
of Boolean expressions, 198

mantissa, 66
map method for Boolean function

simplification, 204
mapped input/output

I/O, 334, 335
memory, 334

maps, truth, 204
masking, 48

in bits, 48
out bits, 48

MASM, 15
binary literal constants, 15
hexadecimal representation, 16

mass storage device, 374
writing software to manipulate

data on, 385
master-slave connections, 391
maximum addressable memory, 135
maxterms

canonical form, 203
representation, 199

mechanisms
interrupt, 345
I/O, 334

medium-speed I/O devices, 337
megahertz (MHz), 150
membership in a chracter set, 119
memory

access, 133, 151, 157
big endian organization, 144
canonical format, 146
capacity, 152
cells, 220

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 431

memory, continued
CISC versus RISC access, 157
CPU and, 157
deallocation operator (C++), 321
deallocation operator

(Pascal), 321
declaring arrays in, 169
direct addressing mode, 157
direct-mapped cache, 303
double words, 138, 142
DSM (distributed shared), 297
dynamic memory allocation, 321
even banks, 140
four-way set associative

caches, 304
free function, 325
garbage collection, 322, 324
heap overhead, 326
heap section in, 321
improving performance

by aligning data, 142, 143
with memory hierarchy, 314

indexed addressing mode, 157
indirect addressing mode,

157, 158
instruction caches, 247
little endian organization, 144
locations, 137
main-memory subsystem, 297
malloc function, 325
maximum addressable, 135
mixing little and big endian

data, 145
multilevel page tables, 310
NUMA (Non-Uniform Memory

Access), 297
n-way set associative caches, 304
odd banks, 140
one-way set associative cache, 303
operation, 138, 153
overhead, heap, 326
PC cards (flash), 364
physical organization, 137
pointer variables, 159
protected, 309
protection, 309
read operations, 151
reading from, 138
scaled indexed addressing

modes, 160

secondary cache, 156
smallest unit of, 140
spatial locality of reference, 153,

298, 300
speed rating, 152
stack section in, 320
starting address, 139
storage

records, 183
unions, 187
words, 138

subsystem performance, 300
subsystems, 298, 300
synchronization with system

clock, 151
and system clock, 151
temporal locality, 153–54, 298
temporality, 300
third-level cache, 157
thrashing, 308, 312
time and, 151
transparency, 299
two-level caching systems, 156
two-way set associative caches, 304
virtual, 297, 309
wait states, 152
word access

in byte-addressable, 138
at odd addresses, 143

words, 140–41
write

cycle, 151
operation, 138, 151

writing data to, 307
writing to, 137, 307

memory addressing, 135
modes, 4, 157–58
words and dwords, 138

memory allocation, 164, 166, 321
best-fit, 323
dynamic, 164, 321
first-fit, 323
granularity, 326
heap, 164
with malloc, 165
operator (C++ or Pascal), 321
pointers and dynamic, 164

memory array, 137, 173
memory banks, 140
memory block, 322, 324

No Starch Press, Copyright © 2004 by Randall Hyde

432 INDEX

memory byte
addressable, 137
enable lines, 142
gender, 145–46
sex, 145

memory cache, 153
architecture, 302
hits, 154–55
interface, 154
line, 155, 301, 302, 306
miss, 154

memory cycle, 151
memory decoding delays, 152
memory fragmentation, 323–24, 327
memory hierarchy, 295, 296, 298

file storage, 297
hard copy storage, 298
network storage, 297
registers, 296

memory interface, 32-bit
processor, 142

memory latency, 301
memory leaks, 117
memory management, 324
memory management unit

(MMU), 311
memory modules, 217
memory organization, 133, 137, 316
memory paging, 309
memory subsystem, 366
memoryless logic, 220
memory-mapped

files, 312, 334, 389
I/O, 334

MHz (megahertz), 150
mice, 396
microcode, 228–29
microcontroller chip, 8042, 349
microengines, 229
microinstructions, 228
MIDI (Musical Instrument Digital

Interface), 402
files, 401–2

MIMD (Multiple Instruction,
Multiple Data), 256

miniport drivers, 371, 374
minterms, 199

from binary numbers,
generating, 199

representation, sum of, 199
sum of canonical form, 200

miserly approach to comparing
floating-point numbers, 71

mixing big endian and little endian
data, 145

MMU (memory management
unit), 311

mod field encodings, 282
mode

addressing, 4, 157
direct addressing, 270–71
direct memory addressing, 158
indexed addressing, 159, 166,

270–71
indexed versus scaled indexed

addressing, 160
indirect addressing, 158, 270–71
I/O and protected, 345
PCI bus burst, 340
scaled indexed addressing, 160,

284–86
short displacements for indexed

addressing, 159
modifiers, keyboard, 349
mod-reg-r/m byte, 281
mod-reg-r/m bytes (80x86), 281
mod-r/m encodings, 283
Modula-2 programming language, 5
modules

flash storage, 363
outboard synthesizer, 403
USB/flash, 364

modulo-n counters, 51
in C/C++, Pascal, and

Visual Basic, 51
using and creating, 51

mov instruction (Y86), 230, 268, 276
multidimensional arrays, 174, 179
multilevel page tables, 310
multiple command processing under

SCSI, 371
multiple instructions (pipelining), 243
multiple paths to memory, 247
multiple platter hard disk

assembly, 355
multiplication, floating-point, 92–93
multiplying binary values, 42
multiprocessing, 257
Musical Instrument Digital Interface

(MIDI), 402
musical instruments, synthesizing,

400

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 433

N
NaN (not-a-number), 78–79
NAND

logical, 196
universal Boolean function, 213

NAND gate, 213
constructing an AND gate, 214
constructing an OR gate, 214
implementation of any Boolean

function, 213
implementing a D flip-flop

with, 222
inverter built from a, 213
set/reset flip-flop constructed

from, 220
NAND operation, 196

AND logic functions, 213
constructing logic functions

using, 213
nanoseconds, 150
n-bit adder, 215
nearest floating-point operation, 77
near-line storage subsystems, 298, 360
negation, logical, 192
negation algorithm, 25
network storage, 297
Neumann, John von, 134
new memory allocation

function, 164
operator (C++ or Pascal), 321

nibble, 22
non-80x86 processors, 143
Non-Uniform Memory Access, 297.

See also NUMA
non-volatile storage, 363
NOR

logical, 196
operation, 196

normalized values, 75
NOT

instruction (Y86), 269, 276
logical, 196
operation, 46, 47, 192, 196
precedence in a Boolean

expression, logical, 194
truth table, 47

not-a-number (NaN)
quiet, 78
signaling, 78

notation, scientific, 66

notation system, 11
notification of interrupts, 345
NuBus, 338
NUL character, 112
null pointer references, 317
NUMA (Non-Uniform Memory

Access), 297
peripheral devices and, 313

number, 10
abstract concept of, 10
of Boolean functions, 195
packed fields encoding, 61
representation of, 10
of values representable with bit

strings, 24
number system

Arabic, 11
base-2, 13
base-8, 13
base-10, 11
binary, 13
decimal positional, 11–13
hexadecimal, 15
nonpositional, 11
octal, 18
positional, 11–12
radix (base), 12
two’s complement, 24

numbers
comparing, 69
defined, 10
dynamic range in floating-

point, 66
eager approach to comparing, 71
function, 197
generating minterms from

binary, 199
logical operations on binary, 47
miserly approach to

comparing, 71
odd, 26
properties of binary, 25
signed and unsigned, 24
truncation, 77

numerals
Arabic, 11
Roman, 10

numeric abstraction, 10
numeric digits

in ASCII character set, 105
ASCII codes for, 106

No Starch Press, Copyright © 2004 by Randall Hyde

434 INDEX

numeric digits, continued
grouping character codes for, 124

numeric formats, scaled, 35
numeric overflow, 80
numeric quantities, 10
numeric representation, 9, 10, 21

base-8, 18
external, 10
internal, 10, 21
octal, 18
tally/slash, 11

numeric underflow, 80
numeric values, 11
numeric to string conversions, 19
n-way set associative cache, 304

O
objects

16-bit, 22
allocating in contiguous

memory, 166
binding of attributes to, 317
constructing from bytes in

memory, 147
dynamic, 318
lifetime of, 318
static, 318

octal (base-8) numbering system,
13, 18

conversion, 18
representation, 10, 18

odd addresses, 141
odd banks of memory, 140
odd numbers, 26
offline storage subsystems, 298
old instructions, legacy support

for, 261
one-way set associative cache, 303
online memory subsystems, 298
opcode, 228, 262

80x86 add, 281
assigning to instructions, 266
expansion (Y86), 272
illegal, 278
length, 263
prefix bytes, 280
undefined, 278

operand signs, 87

operating system
file managers, 374
file systems, 374
and memory allocation, 325
protected-mode, 346
research and file size, 383

operation
bit-by-bit, 47
on bits, 46
bitwise, 47
codes, 228
floating-point, 80
inhibition, 196
involving infinity, 79
left shift, 52
logical

AND, 46
complement for Boolean, 193
exclusive-OR (XOR), 46
NOT, 46, 47
OR, 46
XOR, 46

memory read, 138
memory write, 138
NAND, 196
NOR, 196
NOT, 46, 47, 192, 196
OR, 46, 192
right shift, 53
rounding, 77
serialized, 149
shift left, 52
shift right, 53
superscalar, 251
system clock, 150
tape read/write, 362
two’s complement negation, 25
unstable flip-flop, 221
on the USB, polling, 394
XOR, 46

operator
Boolean, 192
delete memory deallocation, 321
dispose memory deallocation, 321
dot, 183
new memory allocation, 321
precedence of Boolean, 194
right associative, 194
Visual Basic bitwise, 48

optical disks, 298

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 435

optical drives, 359–60
optical storage, 360
optimizing

Boolean functions, 204
cache usage, 305

opto-mechanical mice, 396
OR, 46

gate from NAND gates, 214
instruction (Y86), 269, 276
operation, 46, 192
truth table, 46, 195, 204

order of evaluation in floating-point
computation, 68

ordering, 175, 178
ordinal data types, 171
organization

big endian versus little
endian, 144

machine, 3
memory, 133, 137, 316

outboard synthesizer modules, 403
out-of-order execution, 253
output, 329

under USB, 395
output port, 330, 331

D flip-flops as, 333
latch devices as, 330
S/R flip-flops as, 333
typical, 330
write-only, 331

overflow (floating-point
exception), 80

overlapping
instruction execution, 241
pipelining, 243
strings, 116

P
packed

array data, 173
bit strings, 55
data, 55, 60
date format

long (32 bits), 57
short (16 bits), 55

fields, 61
interface, 373
records, 184
structures, 63

type, 64
under USB, 394

packed bit strings in C, 58
packing and unpacking data, 60
padding bytes, 184

before an array, 172
in an array, 172

page table
dirty bit, 311
entries, 311
entry cache control bit, 335
inverted, 312
multilevel, 310, 312

paging, 309
parallel communications, 349
Parallel Interface, SCSI (SPI), 369
parallel port, 330, 349

acknowledge line, 350
busy line, 350
PC, 349
strobe line, 349
transmission of data, 350

parallel processing, 255
parallelism, 257
Pascal

dispose memory deallocation
operator, 321

hexadecimal representation, 16
new memory allocation

operator, 321
records in, 181
unions, 186

Pascal programming language, 5
patch board programming, 226
patch panel programming, 227
paths to memory, 247
PC cards (flash memory), 364
PCI (Peripheral Connection

Interface) bus, 314, 336, 338
burst mode on, 340
connection, 339
performance, 339

PCI-X bus, 340, 341
PDAs, 397
peer-to-peer

buses, 369
connections, 391

performance
file access, 386
improving file I/O, 386

No Starch Press, Copyright © 2004 by Randall Hyde

436 INDEX

performance, continued
ISA bus, 340
jump instructions and

program, 243
memory subsystems, 300
prefetch queue, 242
registers and program, 300
USB, 392

periods
I/O devices, 343
system clock, 150

Peripheral Connection Interface.
See PCI

peripheral devices, 313, 347
NUMA and, 313
time-outs on, 343

physical address, 309
physical organization of memory, 137
pipeline, 243, 244

flushing, 247
hazards, 249
instruction execution in, 245
stages in a CPU, 244
stall, 246–47

platter
hard disk assembly, 355
hard disk media, 353
recording on, 354
tracks and sectors, 353

plug-and-play devices, 390
pointer, 321

accessing, 159
addition, 165–66
anonymous variables, 164
arithmetic, 163–65
base addresses, 165
comparing, 164, 168
dynamic memory allocation, 164
functions

delete, 164
dispose, 164
free, 164
malloc, 164
new, 164
sizeof, 164

heap region, 164
implementation, 163
references, 317
register, 228, 320
restrictions, 168

subtraction, 167
types, 162

pointing devices, 396
coordinates, 396
strain gauges, 397
trackpoint, 397

polled I/O, 344
polling on USB, round-robin, 392
port, 330, 332

access
Linux, 345
Windows, 345

acknowledge line, parallel, 350
bidirectional, 332
busy line, parallel, 350
classification, I/O, 330
connecting to system, 333
D flip-flops as output, 333
data transmission via parallel, 350
dual I/O, 332
I/O, 330, 331
outputting data to, 330, 333
parallel printer, 330
PC parallel, 349
receiving data via parallel, 350
S/R flip-flops as output, 333
serial, 351
strobe line, parallel, 349
time-outs on an I/O, 343
write-only, 330–31

positional notation system, 11
positional numbering system, 12

decimal, 13
efficiency of, 12

postulates (Boolean), 192
powers of two, 26
powerset, 120
pragmas, 184
preallocation of file blocks, 387
precedence in Boolean expression

logical AND, 194
logical NOT, 194
logical OR, 194

precision floating-point formats,
extended, 71

prefetch
events, 242
queue, 238–42
and wide buses, 243

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 437

prefix byte, 279
on 80x86, 280
opcode, 279–80

price/performance of semiconductor
disks, 366

principle of duality, 194
printer

devices under USB, 396
ports, parallel, 330

procedural programming langauges, 5
process address space, 312
processing, parallel, 255
processor

68000, 143
Crusoe, 255
memory interface, 32-bit, 142
size, 135
small accesses on non-80x86, 143
x86-64, AMD, 135
Y86 hypothetical, 267

product of maxterms
canonical form, 203
representation, 199

program sections
BSS, 319
constant, 319
read-only, 319
static data, 319

program performance
jump instructions and, 243
registers and, 300

program status word, 232
programmed I/O, 336
programming

audio devices, 403
patch board, 226
patch panel, 227

programming language
ADA, 5
C/C++, 5
FORTRAN, 5
imperative, 5
Modula-2, 5
Pascal, 5
procedural, 5

properties of binary numbers, 25
protected memory, 309
protected mode

and I/O, 345

operating systems, 346
operation and device drivers, 345

protection, memory, 309
protection fault, general, 317
protocol,

SCSI, 369
USB, 392

pseudo-dynamic strings, 116, 117
punctuation symbols in ASCII, 105
put instruction (Y86), 270

Q
queue, 238, 243
quiet not-a-number (QNaN), 78

R
radix, 12–13
radix point, 13
RAID (redundant array of

inexpensive disks), 358
Level 0, 358
Level 1, 358
systems, 358

RAM disks, 365
semiconductor, 365
software-based, 366

RAMBUS DRAM (RDRAM), 297
random access on disk drive, 386
random cache replacement

policy, 307
random logic CPU design, 228
rates, 338
rational representation of fractional

values, 38
RDRAM (RAMBUS DRAM), 297
read control line, 136
read cycle, 151
read operation, 138, 151, 153
read/modify/write instructions, 334
read/write

heads, hard disk drive, 355
I/O ports, 331
operations, tape, 362
ports, 331

reading
from memory, 138
truth tables, 46

No Starch Press, Copyright © 2004 by Randall Hyde

438 INDEX

read-only
ports, 330
sections in a program, 319

real data type (FORTRAN), 72
real estate and CPU design, 260
receiving data via a parallel port, 350
record, 181

activation, 320
aligning fields, 184
application binary interface, 184
base address, 183
C/C++, 182
case variant, 147
difference between unions and

records/structs, 187
dot operator, 183
fields, 181
HLA, 182
length, 184
memory storage, 183
packed, 184
padding bytes, 184
Pascal

case variant record, 186
declarations, 181

Pascal/Delphi, 181
variant section, 186

recorders, digital audio, 401
recording on a hard disk drive, 354
records and structs

dot operator, 183
memory storage of, 183

rectangle, 208
in Boolean truth map, 206
formed by ones, 207

redundant array of inexpensive disks
(RAID), 358

reel-to-reel tape drives, 363
reference

locality of, 153, 300
NULL pointer, 317
spatial locality of, 153, 298, 300
temporal locality of, 153
temporality of, 298

reference counting for strings, 117
reg field

in 80x86 instruction
encoding, 282

encodings, 282
reg values for 80x86 scaled indexed

addressing modes, 285

register
condition codes, 232
electronic implementation, 222
flags, 232
instruction pointer, 228
in memory hierarchy, 296
program performance and, 300
shift, 222
stack pointer, 320

register built from D flip-flops, 4-bit
shift, 223

register implemented with eight
D flip-flops, 8-bit, 222

register renaming, 254
register values

for sib encoding, 285
for sib encoding, base, 285

relative coordinate pointing
devices, 396

relative performance of memory
subsystems, 300

replacement policy
LRU (least recently used)

cache, 306
random cache, 307

representation
arrays in memory, 172
base-8, 18
binary, 11
binary-coded decimal (BCD), 31
in a byte, BCD data, 31–32
of character sets, list, 120
of character sets, powerset, 120
converting

between decimal and
binary, 14

between hexadecimal and
binary, 17

between octal and binary, 18
dates, 55
English, of numeric quantities, 10
fixed-point, 33–34
floating-point, 80
of fractional values, rational, 38
hexadecimal, 10, 15
hexadecimal digit, 22
HLA character set, 120
HLA hexadecimal, 16
internal and external numeric, 10
internal numeric, 21
MASM hexadecimal, 16

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 439

representation, continued
numeric, 9, 10, 21
octal, 10
Pascal hexadecimal, 16
powersets, character set, 120
product of maxterms, 199
rational, 38
Roman numeral, 10
sum of minterms, 199
tally-slash numeric, 11
using scaled formats,

fractional, 35
Visual Basic hexadecimal, 16

right associative operators, 194
RISC CPU memory access, 144, 157
rising edge of a clock, 150
robotic jukebox (optical storage), 360
ROM, microcode, 229
Roman numeral representation, 10
rotational latency, 356
rotational speed, 353
round down floating-point

operation, 77
round up floating-point operation, 77
rounding, 77

after floating-point calculation, 67
floating-point arithmetic, IEEE, 84
floating-point results, 77
to nearest floating-point

operation, 77
round-robin polling on USB, 392
routine, interrupt service, 345
row-major ordering, 175–76
RPM (revolutions per minute), 353
RS-232 serial communications, 351
rules for binary addition, 40
run-time memory organization,

Windows, 316

S
sampling, audio, 401
SATA (serial ATA) interface, 374
saturation, 30
scale values, 285
scaled format

addition or subtraction with, 36
fractional representation and, 35

scaled index byte (sib) layout, 285

scaled indexed addressing modes,
160, 284, 286

reg values for 80x86, 285
scaling values for 80x86, 285

scaled representation
addition, 36
division, 37
formats, 35
multiplication, 37
subtraction, 36

scaling values, 285
scan code, 348
SCC (Serial Communications

Chip), 351
schematic symbols, 213
scientific notation, 66
scope of an identifier, 318
SCSI (Small Computer System

Interface), 367
command set, 370
controllers, 367
devices, 367
Fast, 368
Fast and Wide, 368
Fibre Channel Arbitrated Loop,

across, 369
FireWire, across, 369
host adapter, 370
miniport drivers, 371
multiple command

processing, 371
Parallel Interface (SPI), 369
problems, 367
protocol, 369
terminators, 367
ultra, 368
Wide, 368

SCSI-2, 368
SCSI-3, 368, 370
SDRAM (synchronous DRAM), 297
secondary cache, 156
section

block started by a symbol (BSS),
319–20

constant, 319
heap, 321
read-only, 319
stack, 320
static data, 319
uninitialized storage (BSS), 319

No Starch Press, Copyright © 2004 by Randall Hyde

440 INDEX

sector layout on disk drive, 357
sector on hard disk, 353

interleaving, 356–57
platter, 353

seek time
CD and DVD disks

track, 362
hard disk drive

average, 354
track-to-track, 354

selectively manipulating bits in a bit
string, 48

semiconductor
disk price/performance of, 366
RAM disks, 365

separate code and data caches, 249
separating opcode to ease

decoding, 263
sequencer, 223
sequential

and clocked logic, 220
file systems, 376
logic, 220
memory locations, 174

sequential access on hard disk
drive, 386

serial ATA interface (SATA), 374
serial communications

chip, 8250, 351
chip (SCC), 351
RS-232, 351

serial ports, 351
serial SCSI across FireWire, 369
serialized operations, 149
service routine, 345
set

ASCII character, 104
characters, 119

designing your own, 121
double-byte, 108
EBCDIC, 107
HyCode, 122, 129
list representation of, 120
membership in, 119
punctuation symbols in

ASCII, 105
Unicode, 109

designing, 122, 260
instruction, 226
numeric digits in ASCII

character, 105

powerset representation, 120
working, 311

set associative cache
four-way, 304
n-way, 304
one-way, 303
two-way, 304–5

set of bits
comparing, 49
testing, 49
zero/not zero, 49

set/reset (S/R) flip-flop, 220
seven-bit strings, 113
seven-segment

decoder, 215
display, 216
LED decoders, 215
values for “0” through “9”, 216

shared memory, distributed, 297
sharing address (dual I/O port), 332
shift operation

left, 52
right, 53

shift register, 222
built from D flip-flops, 223

short displacements for indexed
addressing modes, 159

short packed date format (16 bits), 55
short strings in Delphi, 116
sib (scaled index byte) layout, 285

encoding, register values for, 285
sign bit, two’s complement, 24
sign contraction, 29
sign extension, 27–29
signaling not-a-number (SNaN), 78
signals, 345
signed and unsigned numbers, 24
signed integer values, 24
significant bits, 22
significant digits, 67
signs, 87
silicon real estate and CPU

design, 260
SIMD (Single Instruction, Multiple

Data), 256
simplifying Boolean functions, 204
Single Instruction, Single Data (SISD)

execution model, 256
single-operand instruction

encodings, 272

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 441

single-precision floating-point
format, 71–73

SISD (Single Instruction, Single
Data), 256

size of
instruction, 264
processor, 135
typical file, 383

sizeof function (C/C++), 164
small accesses on non-80x86

processors, 143
Small Computer System Interface.

See SCSI
small files, block list for, 382
smallest

data type in a programming
language, 22

unit of memory, 140
unit of storage, 22

SNaN (signaling not-a-number), 78
Social Security numbers

packed fields, 60, 61
sorting, 61

software
implementing hardware

functions in, 212
signals, 345

software engineering, 2
software-based RAM disks, 366
sound, 400
sound cards, 399
sound system, DigiDesign

Digi-001, 401
space efficiency of packed data, 55
sparse files, 381, 385
spatial locality of reference, 153,

298, 300
special expansion opcode, 272
special floating-point values, 78
speed, hard disk drive rotational, 353
speed hierarchy, I/O, 337
speed rating for memory, 152
SPI (SCSI Parallel Interface), 369
S/R (set/reset) flip-flop, 220

as output port, 333
stack, USB host controller, 391
stack pointer register, 320
stack section, 320
stages in CPU pipeline, 244
stall, 246, 247

starvation, 393
static

data sections in program, 319
objects, 318
strings, 116
variables section, 319

status word, 232
storage

array, 173
devices

mass, 374
under USB, 396

flash, 363
in memory, 183
memory hierarchy

file, 297
hard copy, 298
network, 297

near-line, 360
non-volatile, 363
records, 183
requirements on disk, audio, 401
smallest unit of, 22
structs, 183
subsystems, 298
systems, 360
of unions, 187

stored at odd addresses, 141
stored program computers, 227
strain gauges, 397
stream-I/O data semantics, 347
streaming

data, 361
tape drives, 363

string, 110
7-bit, 113
of bits, 22
in C, packed bit, 58
character, 110, 111
comparing, 49
conversion, 19–20
data, 117
Delphi, short, 116
Delphi/Kylix, 118
descriptor-based, 115
dynamic, 115, 116, 117
format, 111

character, 111
creating, 119
HLA, 114

functions, 112

No Starch Press, Copyright © 2004 by Randall Hyde

442 INDEX

string, continued
HLA, 113
length, 110, 112
logical operations on, 47
manipulating, 48
masking bit, 48
objects, 115
packing bit, 55
pseudo-dynamic, 116, 117
reference counting, 117
seven-bit, 113
static, 116
using descriptors, 116
zero-terminated, 111

strobe line, parallel port, 349
struct, 181

aligning fields, 184
application binary interface, 184
assembler directive, 182
C/C++ declarations, 182
dot operator, 183
fields, 181
HLA declarations, 182
length, 184
memory storage, 183
padding bytes, 184
Pascal declarations, 181
unions vs. records/struct, 187

structure, 181
packed, 63
storage in memory, 183

student data structure storage in
memory, 183

style guidelines, 6
sub instruction (Y86), 269, 276
subsystem

L2 cache, 300
near-line storage, 298
offline storage, 298
online memory, 298
performance, 300
swap storage, 366

subtraction
binary values, 41
floating-point addition and, 81
fpsub function (floating-point), 82
integers from pointers, 167
pointers from pointers, 167
scaled format, 36

sum of minterms
canonical form, 200
representation, 199

superscalar CPUs, 251–52
surrounding rectangular groups of

ones, 206
sustaining high data transfer rates

on a bus, 342
swap storage, 366
switches, 348
symbols

ASCII character set, 105
schematic, 213

synchronization, 150
synchronous

DRAM (SDRAM), 297
I/O, 387

synthesis, wave table, 400
synthesizers, 402–3
synthesizing musical instruments, 400
system

bus data transfer rates, 134, 338
clock, 149

frequency, 150
lines, 136
memory access, 151
operation, 150
period, 150

components, 134
disk array, 358
embedded, 212
frequency, 150
numbering, 11
protected-mode operating, 346
RAID, 358
sequential file, 376
synchronization, 150
two-level caching, 156
two’s complement numbering, 24

T
table

file allocation, 378
inverted page, 312
NOT truth, 47
OR truth, 46, 195
three-level page, 312
truth, 46, 194
XOR truth, 47

tally-slash numeric representation, 11
tape

Digital Linear (DLT), 362
magnetic, 298

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 443

tape, continued
read/write operations, 362

tape drives, 362
reel-to-reel, 363
streaming, 363

TCP/IP, 146
temporal locality, 153–54
temporality, 298, 300
terminators, SCSI, 367
testing bits, 49

in a bit string using AND, 48
for zero or one, 48
for zero/not zero, 49

text I/O (formatted), 388
theorems

Boolean algebra, 193
DeMorgan’s, 194, 214

third-level cache, 157
thrashing, 308, 312
three-dimensional column-major

array, 178
three-level

block list for large files, 384
page tables, 312

time-out
I/O port, 343
on peripheral devices, 343

TLB (translation lookaside
buffer), 310

torus, 206
touch screens, 397
track

layouts on a disk drive, 353, 357
seek times on CD and DVD

disks, 362
trackpads, 396
trackpoint pointing devices, 397
tracks and sectors on hard disk

platter, 353
track-to-track seek time (for hard disk

drive), 354
transactions and fixed-point

arithmetic, financial, 35
transfer instructions (Y86), 269
transfer rates on a bus, 338, 342
transfers (USB)

interrupt, 394
isochronous, 395

translating virtual to physical
address, 310

translation lookaside buffer
(TLB), 310

Transmeta Crusoe processor, 255
transmission

parallel port, 350
USB, 393–94

transmission packets, 394
true, 192
truncation

after floating-point operation, 67
of floating-point numbers, 77

truth map, 204
combining rectangles in

Boolean, 206
constructing, 205
partial pattern list for a 4 4, 210
special cases in Boolean, 208
surrounding rectangular groups

of ones in, 206
truth table, 46, 194

canonical form, 200
NOT, 47
OR, 46, 195
reading, 46
sum of minterms, 200
three variable, 195
two variable, OR, 204
XOR, 47

two bytes in a word, 23
two NAND gates, 214
two-dimensional column-major

array, 178
two-level caching system, 156
two-line–to–four-line decoder, 217
two’s complement

negation operation, 25
numbering system, 24
sign bit, 24

two-way set associative cache, 304–5
type

aggregate data, 169
C/C++, double data, 72
C/C++, float data, 72
coercion (real to integer), 81
composite data, 169
discriminant union data, 147
encapsulated data, 58
FORTRAN, 72
generic instruction, 266
ordinal data, 171
pointer, 162

No Starch Press, Copyright © 2004 by Randall Hyde

444 INDEX

U
Ultra SCSI, 368
unconditional jumps, 277
undefined opcodes, 278
underflow, numeric, 80
Unicode, 109–10
unidirectional parallel

communications, 349
uninitialized storage (BSS)

section, 319
union, 147, 185

aliases, 188
on big endian machine, 148
C/C++ declarations, 186
data type, discriminant, 147
discriminant, 185
field offsets in a union, 185
HLA declarations, 187
on little endian machine, 148
memory storage, 187
object disassembly, 189
other uses, 188
in Pascal/Delphi/Kylix, 186
versus a record (struct), 148

unique Boolean functions, 195
universal Boolean function

(NAND), 213
Universal Serial Bus. See USB
unnormalized values, 76
unpacking data, 60
unsigned numbers, 24
unstable flip-flop operation, 221
unused bus cycles, 240
up codes on the keyboard, 348
uppercase characters, 105
usage frequency, 267
USB (Universal Serial Bus), 146,

351, 390
audio, 395
bandwidth, 394
client drivers, 395
communications devices, 396
control transmissions, 393
design, 390
device classes, 396
device drivers, 395
enumeration, 395
flash modules, 364
host controller stack, 391
interrupt transfers, 394

isochronous transfers, 395
performance, 392
polling operation on, 394
printer devices, 396
protocol, frames in, 392
round-robin polling on, 392
starvation on, 393
storage devices, 396
transmission types, 393

U.S. Social Security numbers, 60

V
values

adding binary, 40
adding integer to a pointer, 166
comparing pointer, 164
converting binary to decimal, 14
denormalized, 75
dividing binary, 43
fractional, 33
multiplying binary, 42
normalized, 75
numeric, 11
rational representation of

fractional, 38
representable with bit strings, 24
scale, 285
signed integer, 24
special floating-point, 78
subtracting binary, 41
unnormalized, 76
unsigned integer, 24

variable
accessing pointer, 159
anonymous, 164, 321
automatic, 170
OR truth table for two, 204
truth table format for function

of three, 195
variable section, static, 319
variable-length instructions, 264
variant records, 147
very long instruction word (VLIW)

architecture, 255
virtual address, 309
virtual memory, 297, 309

protection and paging, 309
subsystem, swap storage for a, 366

Virtual Sound Canvas, 402
virtual synthesizers, 402

No Starch Press, Copyright © 2004 by Randall Hyde

INDEX 445

Visual Basic
bitwise operators, 48
hexadecimal representation, 16

VLIW (very long instruction
word), 255

von Neumann, John, 134
von Neumann machine, 134

W
wait state, 152

average, 155
and memory read operation, 153

WAV files, 401
wave table synthesis, 400
wide buses, 243
Wide SCSI, 368
Windows port access, 345
Windows run-time memory, 316
word

alternate byte layout, 144
at arbitrary addresses, 140
in byte-addressable memory, 138
composition of, 22
endian conversion, 146
at odd addresses, accessing, 141
stored at odd addresses, 141
two bytes in, 23

working sets, 311
workstations, diskless, 352
WORM (write-once, read many), 361
write control line, 136
write cycle, 151
write lifetime, 364
write operation

on the bus, 151
memory, 138

write policy
write-back cache, 307
write-through cache, 307

write-only output ports, 331
write-only ports, 330
writing to memory, 137

X
x86-64 processors, AMD, 135
XOR

operation, 46
truth table, 47

Y
Y2K problem, 57
Y86

conditional jumps, 274
expansion opcodes, 272
hypothetical processor, 267
instructions, 268

cmp, 269, 276
control transfer, 269
encoding, 271
get, 270
halt, 270
ja, 269
jae, 269
jb, 269
jbe, 269
je, 269
jmp, 269
jne, 269
jump, 277
mov, 268, 276
not, 269, 276
or, 269, 276
put, 270
sub, 269, 276

instruction set, 278
limitations, 268
modes

addressing modes, 270
direct addressing mode, 270
indexed addressing, 270–71
indirect addressing, 270

Y86 hypothetical processor, 267

Z
zero

division by, 79
extension, 27–29
flag, 230
forcing bits to, 48
testing bits for, 48

zero/not zero, using and testing
for, 49

zero-operand
instruction encodings, 273
instructions, 278

zero-terminated string, 111
Zip drives, 359

No Starch Press, Copyright © 2004 by Randall Hyde

This, the first volume in Randall Hyde’s Write Great
Code series, dives into machine organization without
the extra overhead of learning assembly language
programming. Written for C/C++, VB, Pascal, Java,
and other high-level language programmers, Volume I,
“Understanding the Machine,” fills in the low-level
details of machine organization that are often left out
of computer science and engineering courses. Learn:

• How the machine represents numbers, strings, and
high-level data structures, so you’ll know the inherent
cost of using them.

• How to organize your data, so the machine can
access it efficiently.

• How the CPU operates, so you can write code that
works the way the machine does.

• How I/O devices operate, so you can maximize your
application’s performance when accessing those
devices.

• How to best use the memory hierarchy to produce the
fastest possible programs.

Great code is efficient code. But before you can write
truly efficient code, you must understand how computer
systems execute programs and how abstractions in
programming languages map to the machine’s low-level
hardware. After all, compilers don’t write the best
machine code; programmers do. The information in this
first volume of the Write Great Code series gives you
the foundation upon which all great software is built.

A B O U T T H E A U T H O R

Randall Hyde is the author of The Art of Assembly
Language (No Starch Press), one of the most highly
recommended resources on assembly. He is also the
co-author of The Waite Group's MASM 6.0 Bible. He
has written for Dr. Dobb’s Journal, Byte, as well as
professional journals.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

SH
EL

VE
 IN

:
PR

OG
RA

M
M

IN
G/

GE
NE

RA
L

$39.95 ($55.95 CAN)

H
Y

D
E

W
R

ITE
 G

R
E

A
T C

O
D

E
W

R
ITE

 G
R

E
A

T C
O

D
E

V
O

L
U

M
E

 1
:

 U
N

D
E

R
S

T
A

N
D

I
N

G

T
H

E
 M

A
C

H
I

N
E

R a n d a l l H y d e

V O L U M E 1 :

U N D E R S T A N D I N G
T H E M A C H I N E

WRITE GRE AT CODEWRITE GRE AT CODE

MACHINE

ARCHITECTURE

FOR MERE MORTALS

MACHINE

ARCHITECTURE

FOR MERE MORTALS

	Acknowledgments
	Part 1: What you Need to Know to Write Great Code
	1.1 The Write Great Code Series
	1.2 What This Volume Covers
	1.3 Assumptions This Volume Makes
	1.4 Characteristics of Great Code
	1.5 The Environment for This Volume
	1.6 For More Information

	Part 2: Numberic Representattion
	2.1 What Is a Number?
	2.2 Numbering Systems
	2.2.1 The Decimal Positional Numbering System
	2.2.2 Radix (Base)
	2.2.3 The Binary Numbering System
	2.2.3.1 Converting Between Decimal and Binary Representation
	2.2.3.2 Making Binary Numbers Easier to Read
	2.2.3.3 Binary Representation in Programming Languages

	2.2.4 The Hexadecimal Numbering System
	2.2.4.1 Hexadecimal Representation in Programming Languages
	2.2.4.2 Converting Between Hexadecimal and Binary Representations

	2.2.5 The Octal (Base-8) Numbering System
	2.2.5.1 Octal Representation in Programming Languages
	2.2.5.2 Converting Between Octal and Binary Representation

	2.3 Numeric/String Conversions
	2.4 Internal Numeric Representation
	2.4.1 Bits
	2.4.2 Bit Strings

	2.5 Signed and Unsigned Numbers
	2.6 Some Useful Properties of Binary Numbers
	2.7 Sign Extension, Zero Extension, and Contraction
	2.8 Saturation
	2.9 Binary-Coded Decimal (BCD) Representation
	2.10 Fixed-Point Representation
	2.11 Scaled Numeric Formats
	2.12 Rational Representation
	2.13 For More Information

	Part 3: Binary Arithmetic and Bit Operations
	3.1 Arithmetic Operations on Binary and HexadecimalNumbers
	3.1.1 Adding Binary Values
	3.1.2 Subtracting Binary Values
	3.1.3 Multiplying Binary Values
	3.1.4 Dividing Binary Values

	3.2 Logical Operations on Bits
	3.3 Logical Operations on Binary Numbers and Bit Strings
	3.4 Useful Bit Operations
	3.4.1 Testing Bits in a Bit String Using AND
	3.4.2 Testing a Set of Bits for Zero/Not Zero Using AND
	3.4.3 Comparing a Set of Bits Within a Binary String
	3.4.4 Creating Modulo-n Counters Using AND

	3.5 Shifts and Rotates
	3.6 Bit Fields and Packed Data
	3.7 Packing and Unpacking Data
	3.8 For More Information

	Part 4: Floating-Point Representation
	4.1 Introduction to Floating-Point Arithmetic
	4.2 IEEE Floating-Point Formats
	4.2.1 Single-Precision Floating-Point Format
	4.2.2 Double-Precision Floating-Point Format
	4.2.3 Extended-Precision Floating-Point Format

	4.3 Normalization and Denormalized Values
	4.4 Rounding
	4.5 Special Floating-Point Values
	4.6 Floating-Point Exceptions
	4.7 Floating-Point Operations
	4.7.1 Floating-Point Representation
	4.7.2 Floating-Point Addition and Subtraction
	4.7.3 Floating-Point Multiplication and Division
	4.7.3.1 Floating-Point Multiplication
	4.7.3.2 Floating-Point Division

	4.8 For More Information

	Part 5: Character Representation
	5.1 Character Data
	5.1.1 The ASCII Character Set
	5.1.2 The EBCDIC Character Set
	5.1.3 Double-Byte Character Sets
	5.1.4 The Unicode Character Set

	5.2 Character Strings
	5.2.1 Character String Formats
	5.2.1.1 Zero-Terminated Strings
	5.2.1.2 Length-Prefixed Strings
	5.2.1.3 Seven-Bit Strings
	5.2.1.4 HLA Strings
	5.2.1.5 Descriptor-Based Strings

	5.2.2 Types of Strings: Static, Pseudo-Dynamic, and Dynamic
	5.2.2.1 Static Strings
	5.2.2.2 Pseudo-Dynamic Strings
	5.2.2.3 Dynamic Strings

	5.2.3 Reference Counting for Strings
	5.2.4 Delphi/Kylix Strings
	5.2.5 Creating Your Own String Formats

	5.3 Character Sets
	5.3.1 Powerset Representation of Character Sets
	5.3.2 List Representation of Character Sets

	5.4 Designing Your Own Character Set
	5.4.1 Designing an Efficient Character Set
	5.4.2 Grouping the Character Codes for Numeric Digits
	5.4.3 Grouping Alphabetic Characters
	5.4.4 Comparing Alphabetic Characters
	5.4.5 Other Character Groupings

	5.5 For More Information

	Part 6: Memory and Organization and Access
	6.1 The Basic System Components
	6.1.1 The System Bus
	6.1.1.1 The Data Bus

	6.1.2 The Address Bus
	6.1.3 The Control Bus

	6.2 Physical Organization of Memory
	6.2.1 8-Bit Data Buses
	6.2.2 16-Bit Data Buses
	6.2.3 32-Bit Data Buses
	6.2.4 64-Bit Buses
	6.2.5 Small Accesses on Non-80x86 Processors

	6.3 Big Endian Versus Little Endian Organization
	6.4 The System Clock
	6.4.1 Memory Access and the System Clock
	6.4.2 Wait States
	6.4.3 Cache Memory

	6.5 CPU Memory Access
	6.5.1 The Direct Memory Addressing Mode
	6.5.2 The Indirect Addressing Mode
	6.5.3 The Indexed Addressing Mode
	6.5.4 The Scaled Indexed Addressing Modes

	6.6 For More Information

	Part 7: Composite Data Types and Memory Objects
	7.1 Pointer Types
	7.1.1 Pointer Implementation
	7.1.2 Pointers and Dynamic Memory Allocation
	7.1.3 Pointer Operations and Pointer Arithmetic
	7.1.3.1 Adding an Integer to a Pointer
	7.1.3.2 Subtracting an Integer from a Pointer
	7.1.3.3 Subtracting a Pointer from a Pointer
	7.1.3.4 Comparing Pointers

	7.2 Arrays
	7.2.1 Array Declarations
	7.2.2 Array Representation in Memory
	7.2.3 Accessing Elements of an Array
	7.2.4 Multidimensional Arrays
	7.2.4.1 Row-Major Ordering
	7.2.4.2 Column-Major Ordering
	7.2.4.3 Declaring Multidimensional Arrays
	7.2.4.4 Accessing Elements of a Multidimensional Array

	7.3 Records/Structures
	7.3.1 Records in Pascal/Delphi
	7.3.2 Records in C/C++
	7.3.3 Records in HLA
	7.3.4 Memory Storage of Records

	7.4 Discriminant Unions
	7.4.1 Unions in C/C++
	7.4.2 Unions in Pascal/Delphi/Kylix
	7.4.3 Unions in HLA
	7.4.4 Memory Storage of Unions
	7.4.5 Other Uses of Unions

	7.5 For More Information

	Part 8: Boolean Logic and Digital Design
	8.1 Boolean Algebra
	8.1.1 The Boolean Operators
	8.1.2 Boolean Postulates
	8.1.3 Boolean Operator Precedence

	8.2 Boolean Functions and Truth Tables
	8.3 Function Numbers
	8.4 Algebraic Manipulation of Boolean Expressions
	8.5 Canonical Forms
	8.5.1 Sum of Minterms Canonical Form and Truth Tables
	8.5.2 Deriving the Sum of Minterms Canonical Form Algebraically
	8.5.3 Product of Maxterms Canonical Form

	8.6 Simplification of Boolean Functions
	8.7 What Does This Have to Do with Computers, Anyway?
	8.7.1 Correspondence Between Electronic Circuits and Boolean Functions
	8.7.2 Combinatorial Circuits
	8.7.2.1 Addition Circuits
	8.7.2.2 Seven-Segment LED Decoders
	8.7.2.3 Decoding Memory Addresses
	8.7.2.4 Decoding Machine Instructions

	8.7.3 Sequential and Clocked Logic
	8.7.3.1 The Set/Reset Flip-Flop
	8.7.3.2 The D Flip-Flop

	8.8 For More Information

	Part 9: CPU Architecture
	9.1 Basic CPU Design
	9.2 Decoding and Executing Instructions: Random Logic Versus Microcode
	9.3 Executing Instructions, Step by Step
	9.3.1 The mov Instruction
	9.3.2 The add Instruction
	9.3.3 The jnz Instruction
	9.3.4 The loop Instruction

	9.4 Parallelism — The Key to Faster Processing
	9.4.1 The Prefetch Queue
	9.4.1.1 Saving Fetched Bytes
	9.4.1.2 Using Unused Bus Cycles
	9.4.1.3 Overlapping Instructions
	9.4.1.4 Summary of Background Prefetch Events

	9.4.2 Conditions That Hinder the Performance of the Prefetch Queue
	9.4.3 Pipelining — Overlapping the Execution of Multiple Instructions
	9.4.3.1 A Typical Pipeline
	9.4.3.2 Stalls in a Pipeline

	9.4.4 Instruction Caches — Providing Multiple Paths to Memory
	9.4.5 Pipeline Hazards
	9.4.6 Superscalar Operation — Executing Instructions in Parallel
	9.4.7 Out-of-Order Execution
	9.4.8 Register Renaming
	9.4.9 Very Long Instruction Word (VLIW) Architecture
	9.4.10 Parallel Processing
	9.4.11 Multiprocessing

	9.5 For More Information

	Part 10: Instruction Set Architecture
	10.1 The Importance of the Design of the Instruction Set
	10.2 Basic Instruction Design Goals
	10.2.1 Choosing Opcode Length
	10.2.2 Planning for the Future
	10.2.3 Choosing Instructions
	10.2.4 Assigning Opcodes to Instructions

	10.3 The Y86 Hypothetical Processor
	10.3.1 Y86 Limitations
	10.3.2 Y86 Instructions
	10.3.2.1 The mov Instruction
	10.3.2.2 Arithmetic and Logical Instructions
	10.3.2.3 Control Transfer Instructions
	10.3.2.4 Miscellaneous Instructions

	10.3.3 Addressing Modes on the Y86
	10.3.4 Encoding Y86 Instructions
	10.3.4.1 Eight Generic Y86 Instructions
	10.3.4.2 Using the Special Expansion Opcode

	10.3.5 Examples of Encoding Y86 Instructions
	10.3.5.1 The add Instruction
	10.3.5.2 The mov Instruction
	10.3.5.3 The not Instruction
	10.3.5.4 The Jump Instructions
	10.3.5.5 The Zero-Operand Instructions

	10.3.6 Extending the Y86 Instruction Set

	10.4 Encoding 80x86 Instructions
	10.4.1 Encoding Instruction Operands
	10.4.2 Encoding the add Instruction — Some Examples
	10.4.3 Encoding Immediate Operands
	10.4.4 Encoding 8-, 16-, and 32-Bit Operands
	10.4.5 Alternate Encodings for Instructions
	10.5 Implications of Instruction Set Design to the Programmer
	10.6 For More Information

	Part 11: Memory Architecture and Organization
	11.1 The Memory Hierarchy
	11.2 How the Memory Hierarchy Operates
	11.3 Relative Performance of Memory Subsystems
	11.4 Cache Architecture
	11.4.1 Direct-Mapped Cache
	11.4.2 Fully Associative Cache
	11.4.3 n-Way Set Associative Cache
	11.4.4 Matching the Caching Scheme to the Type of Data Access
	11.4.5 Cache Line Replacement Policies
	11.4.6 Writing Data to Memory
	11.4.7 Cache Use and Software

	11.5 Virtual Memory, Protection, and Paging
	11.6 Thrashing
	11.7 NUMA and Peripheral Devices
	11.8 Writing Software That Is Cognizant of the Memory Hierarchy
	11.9 Run-Time Memory Organization
	11.9.1 Static and Dynamic Objects, Binding, and Lifetime
	11.9.2 The Code, Read-Only, and Constant Sections
	11.9.3 The Static Variables Section
	11.9.4 The Uninitialized Storage (BSS) Section
	11.9.5 The Stack Section
	11.9.6 The Heap Section and Dynamic Memory Allocation
	11.9.6.1 Memory Allocation
	11.9.6.2 Garbage Collection
	11.9.6.3 The OS and Memory Allocation
	11.9.6.4 Heap Memory Overhead

	11.10 For More Information

	Part 12: Input and Output (I/O)
	12.1 Connecting a CPU to the Outside World
	12.2 Other Ways to Connect Ports to the System
	12.3 I/O Mechanisms
	12.3.1 Memory-Mapped I/O
	12.3.2 I/O and the Cache
	12.3.3 I/O-Mapped Input/Output
	12.3.4 Direct Memory Access (DMA)

	12.4 I/O Speed Hierarchy
	12.5 System Buses and Data Transfer Rates
	12.5.1 Performance of the PCI Bus
	12.5.2 Performance of the ISA Bus
	12.5.3 The AGP Bus

	12.6 Buffering
	12.7 Handshaking
	12.8 Time-outs on an I/O Port
	12.9 Interrupts and Polled I/O
	12.10 Protected Mode Operation and Device Drivers
	12.10.1 Device Drivers
	12.10.2 Communicating with Device Drivers and “Files”

	12.11 Exploring Specific PC Peripheral Devices
	12.12 The Keyboard
	12.13 The Standard PC Parallel Port
	12.14 Serial Ports
	12.15 Disk Drives
	12.15.1 Floppy Drives
	12.15.2 Hard Drives
	12.15.3 RAID Systems
	12.15.4 Zip and Other Floptical Drives
	12.15.5 Optical Drives
	12.15.6 CD-ROM, CD-R, CR-R/W, DVD, DVD-R, DVD-RAM, and DVD-R/W Drives

	12.16 Tape Drives
	12.17 Flash Storage
	12.18 RAM Disks and Semiconductor Disks
	12.19 SCSI Devices and Controllers
	12.20 The IDE/ATA Interface
	12.21 File Systems on Mass Storage Devices
	12.21.1 Maintaining Files Using a Free-Space Bitmap
	12.21.2 File Allocation Tables
	12.21.3 List-of-Blocks File Organization

	12.22 Writing Software That Manipulates Data on a Mass Storage Device
	12.22.1 File Access Performance
	12.22.2 Synchronous and Asynchronous I/O
	12.22.3 The Implications of I/O Type
	12.22.4 Memory-Mapped Files

	12.23 The Universal Serial Bus (USB)
	12.23.1 USB Design
	12.23.2 USB Performance
	12.23.3 Types of USB Transmissions
	12.23.4 USB Device Drivers

	12.24 Mice, Trackpads, and Other Pointing Devices
	12.25 Joysticks and Game Controllers
	12.26 Sound Cards
	12.26.1 How Audio Interface Peripherals Produce Sound
	12.26.2 The Audio and MIDI File Formats
	12.26.3 Programming Audio Devices

	12.27 For More Information

	Thinking Low-Level, Writing High-Level
	Appendix A: ASCII Character Set
	Index

