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With any given problem, traditional statistical analysis 
often just generates another pile of data. But how do 
you make real-world sense of these cold, hard numbers? 
Bayesian Statistics the Fun Way shows you how to make 
better probabilistic decisions using your natural intuition 
and some simple math. 

This accessible primer shows you how to apply Bayesian 
methods through clear explanations and fun examples. 
You’ll go UFO hunting to explore everyday reasoning, 
calculate whether Han Solo will survive an asteroid field 
using probability distributions, and quantify the probabil-
ity that you have a serious brain tumor and not just too 
much ear wax. 

These eclectic exercises will help you build a flexible and 
robust framework for working through a wide range of 
challenges, from truly grokking current events to handling 
the daily surprises of the business world. 

You‘ll learn how to:

• Calculate distributions to see the range of your beliefs

• Compare hypotheses and draw reliable conclusions 

• Calculate Bayes’ theorem and understand what it’s 
useful for

• Find the posterior, likelihood, and prior to check the 
accuracy of your conclusions

• Use the R programming language to perform data 
analysis

Make better choices with more confidence—and enjoy 
doing it! Crack open Bayesian Statistics the Fun Way to 
get the most value from your data.

A B O U T  T H E  A U T H O R

Will Kurt works as a data scientist at Wayfair, and has 
been using Bayesian statistics to solve real business prob-
lems for over half a decade. He frequently blogs about 
probability on his website, CountBayesie.com. Kurt is 
the author of Get Programming with Haskell (Manning 
Publications) and lives in Boston, Massachusetts.
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Virtually everything in life is, to some 
extent, uncertain. This may seem like a bit 

of an exaggeration, but to see the truth of 
it you can try a quick experiment. At the start 

of the day, write down something you think will hap-
pen in the next half-hour, hour, three hours, and six 
hours. Then see how many of these things happen 
exactly like you imagined. You’ll quickly realize that 
your day is full of uncertainties. Even something as 
predictable as “I will brush my teeth” or “I’ll have a 
cup of coffee” may not, for some reason or another, 
happen as you expect.

i n t R O D u c t i O n
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For most of the uncertainties in life, we’re able to get by quite well by 
planning our day. For example, even though traffic might make your morn-
ing commute longer than usual, you can make a pretty good estimate about 
what time you need to leave home in order to get to work on time. If you 
have a super-important morning meeting, you might leave earlier to allow 
for delays. We all have an innate sense of how to deal with uncertain situa-
tions and reason about uncertainty. When you think this way, you’re start-
ing to think probabilistically.

Why learn statistics?
The subject of this book, Bayesian statistics, helps us get better at reason-
ing about uncertainty, just as studying logic in school helps us to see the 
errors in everyday logical thinking. Given that virtually everyone deals with 
uncertainty in their daily life, as we just discussed, this makes the audience 
for this book pretty wide. Data scientists and researchers already using sta-
tistics will benefit from a deeper understanding and intuition for how these 
tools work. Engineers and programmers will learn a lot about how they 
can better quantify decisions they have to make (I’ve even used Bayesian 
analysis to identify causes of software bugs!). Marketers and salespeople can 
apply the ideas in this book when running A/B tests, trying to understand 
their audience, and better assessing the value of opportunities. Anyone 
making high-level decisions should have at least a basic sense of probability 
so they can make quick back-of-the-envelope estimates about the costs and 
benefits of uncertain decisions. I wanted this book to be something a CEO 
could study on a flight and develop a solid enough foundation by the time 
they land to better assess choices that involve probabilities and uncertainty. 

I honestly believe that everyone will benefit from thinking about prob-
lems in a Bayesian way. With Bayesian statistics, you can use mathematics to 
model that uncertainty so you can make better choices given limited infor-
mation. For example, suppose you need to be on time for work for a partic-
ularly important meeting and there are two different routes you could take. 
The first route is usually faster, but has pretty regular traffic back-ups that 
can cause huge delays. The second route takes longer in general but is less 
prone to traffic. Which route should you take? What type of information 
would you need to decide this? And how certain can you be in your choice? 
Even just a small amount of added complexity requires some extra thought 
and technique. 

Typically when people think of statistics, they think of scientists work-
ing on a new drug, economists following trends in the market, analysts 
predicting the next election, baseball managers trying to build the best team 
with fancy math, and so on. While all of these are certainly fascinating uses 
of statistics, understanding the basics of Bayesian reasoning can help you in 
far more areas in everyday life. If you’ve ever questioned some new finding 
reported in the news, stayed up late browsing the web wondering if you have 
a rare disease, or argued with a relative over their irrational beliefs about 
the world, learning Bayesian statistics will help you reason better.
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What is “bayesian” statistics?
You may be wondering what all this “Bayesian” stuff is. If you’ve ever taken a 
statistics class, it was likely based on frequentist statistics. Frequentist statistics 
is founded on the idea that probability represents the frequency with which 
something happens. If the probability of getting heads in a single coin toss 
is 0.5, that means after a single coin toss we can expect to get one-half of a 
head of a coin (with two tosses we can expect to get one head, which makes 
more sense). 

Bayesian statistics, on the other hand, is concerned with how probabili-
ties represent how uncertain we are about a piece of information. In Bayesian 
terms, if the probability of getting heads in a coin toss is 0.5, that means we 
are equally unsure about whether we’ll get heads or tails. For problems like 
coin tosses, both frequentist and Bayesian approaches seem reasonable, but 
when you’re quantifying your belief that your favorite candidate will win the 
next election, the Bayesian interpretation makes much more sense. After 
all, there’s only one election, so speaking about how frequently your favorite 
candidate will win doesn’t make much sense. When doing Bayesian statistics, 
we’re just trying to accurately describe what we believe about the world given 
the information we have.

One particularly nice thing about Bayesian statistics is that, because we 
can view it simply as reasoning about uncertain things, all of the tools and 
techniques of Bayesian statistics make intuitive sense.

Bayesian statistics is about looking at a problem you face, figuring out 
how you want to describe it mathematically, and then using reason to solve 
it. There are no mysterious tests that give results that you aren’t quite sure 
of, no distributions you have to memorize, and no traditional experiment 
designs you must perfectly replicate. Whether you want to figure out the 
probability that a new web page design will bring you more customers, if 
your favorite sports team will win the next game, or if we really are alone in 
the universe, Bayesian statistics will allow you to start reasoning about these 
things mathematically using just a few simple rules and a new way of look-
ing at problems.

What’s in this book
Here’s a quick breakdown of what you’ll find in this book.

Part I: Introduction to Probability
Chapter 1: Bayesian Thinking and Everyday Reasoning This first 
chapter introduces you to Bayesian thinking and shows you how similar 
it is to everyday methods of thinking critically about a situation. We’ll 
explore the probability that a bright light outside your window at night 
is a UFO based on what you already know and believe about the world. 
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Chapter 2: Measuring Uncertainty In this chapter you’ll use coin 
toss examples to assign actual values to your uncertainty in the form 
of probabilities: a number from 0 to 1 that represents how certain you 
are in your belief about something.

Chapter 3: The Logic of Uncertainty In logic we use AND, NOT, and 
OR operators to combine true or false facts. It turns out that probabil-
ity has similar notions of these operators. We’ll investigate how to rea-
son about the best mode of transport to get to an appointment, and the 
chances of you getting a traffic ticket. 

Chapter 4: Creating a Binomial Probability Distribution Using the 
rules of probability as logic, in this chapter, you’ll build your own prob-
ability distribution, the binomial distribution, which you can apply to 
many probability problems that share a similar structure. You’ll try to 
predict the probability of getting a specific famous statistician collect-
able card in a Gacha card game.

Chapter 5: The Beta Distribution Here you’ll learn about your first 
continuous probability distribution and get an introduction to what 
makes statistics different from probability. The practice of statistics 
involves trying to figure out what unknown probabilities might be based 
on data. In this chapter’s example, we’ll investigate a mysterious coin-
dispensing box and the chances of making more money than you lose. 

Part II: Bayesian Probability and Prior Probabilities 
Chapter 6: Conditional Probability In this chapter, you’ll condition 
probabilities based on your existing information. For example, know-
ing whether someone is male or female tells us how likely they are to be 
color blind. You’ll also be introduced to Bayes’ theorem, which allows 
us to reverse conditional probabilities.

Chapter 7: Bayes’ Theorem with LEGO Here you’ll gain a better 
intuition for Bayes’ theorem by reasoning about LEGO bricks! This 
chapter will give you a spatial sense of what Bayes’ theorem is doing 
mathematically.

Chapter 8: The Prior, Likelihood, and Posterior of Bayes’ Theorem  
Bayes’ theorem is typically broken into three parts, each of which per-
forms its own function in Bayesian reasoning. In this chapter, you’ll 
learn what they’re called and how to use them by investigating whether 
an apparent break-in was really a crime or just a series of coincidences.

Chapter 9: Bayesian Priors and Working with Probability Distributions  
This chapter explores how we can use Bayes’ theorem to better under-
stand the classic asteroid scene from Star Wars: The Empire Strikes Back, 
through which you’ll gain a stronger understanding of prior probabili-
ties in Bayesian statistics. You’ll also see how you can use entire distribu-
tions as your prior.
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Part III: Parameter Estimation
Chapter 10: Introduction to Averaging and Parameter Estimation  
Parameter estimation is the method we use to formulate a best guess 
for an uncertain value. The most basic tool in parameter estimation is 
to simply average your observations. In this chapter we’ll see why this 
works by analyzing snowfall levels.

Chapter 11: Measuring the Spread of Our Data Finding the mean 
is a useful first step in estimating parameters, but we also need a way 
to account for how spread out our observations are. Here you’ll be 
introduced to mean absolute deviation (MAD), variance, and standard 
deviation as ways to measure how spread out our observations are.

Chapter 12: The Normal Distribution By combining our mean and 
standard deviation, we get a very useful distribution for making esti-
mates: the normal distribution. In this chapter, you’ll learn how to use 
the normal distribution to not only estimate unknown values but also 
to know how certain you are in those estimates. You’ll use these new 
skills to time your escape during a bank heist. 

Chapter 13: Tools of Parameter Estimation: The PDF, CDF, and 
Quantile Function Here you’ll learn about the PDF, CDF, and quan-
tile function to better understand the parameter estimations you’re 
making. You’ll estimate email conversion rates using these tools and see 
what insights each provides.

Chapter 14: Parameter Estimation with Prior Probabilities  
The best way to improve our parameter estimates is to include a prior 
probability. In this chapter, you’ll see how adding prior information 
about the past success of email click-through rates can help us better 
estimate the true conversion rate for a new email.

Chapter 15: From Parameter Estimation to Hypothesis Testing: 
Building a Bayesian A/B Test Now that we can estimate uncertain 
values, we need a way to compare two uncertain values in order to test 
a hypothesis. You’ll create an A/B test to determine how confident you 
are in a new method of email marketing.

Part IV: Hypothesis Testing: The Heart of Statistics
Chapter 16: Introduction to the Bayes Factor and Posterior Odds: The 
Competition of Ideas Ever stay up late, browsing the web, wonder-
ing if you might have a super-rare disease? This chapter will introduce 
another approach to testing ideas that will help you determine how 
worried you should actually be!

Chapter 17: Bayesian Reasoning in The Twilight Zone How much do 
you believe in psychic powers? In this chapter, you’ll develop your own 
mind-reading skills by analyzing a situation from a classic episode of 
The Twilight Zone.
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Chapter 18: When Data Doesn’t Convince You Sometimes data 
doesn’t seem to be enough to change someone’s mind about a belief or 
help you win an argument. Learn how you can change a friend’s mind 
about something you disagree on and why it’s not worth your time to 
argue with your belligerent uncle!

Chapter 19: From Hypothesis Testing to Parameter Estimation  
Here we come full circle back to parameter estimation by looking at how 
to compare a range of hypotheses. You’ll derive your first example of sta-
tistics, the beta distribution, using the tools that we’ve covered for simple 
hypothesis tests to analyze the fairness of a particular fairground game.

Appendix A: A Quick Introduction to R This quick appendix will 
teach you the basics of the R programming language.

Appendix B: Enough Calculus to Get By Here we’ll cover just enough 
calculus to get you comfortable with the math used in the book.

Appendix C: Answers to the Exercises This appendix provides the 
answers to the exercises at the end of each chapter.

Background for Reading the Book
The only requirement of this book is basic high school algebra. If you flip 
forward, you’ll see a few instances of math, but nothing particularly oner-
ous. We’ll be using a bit of code written in the R programming language, 
which I’ll provide and talk through, so there’s no need to have learned R 
beforehand. We’ll also touch on calculus, but again no prior experience 
is required, and the appendixes will give you enough information to cover 
what you’ll need. 

In other words, this book aims to help you start thinking about problems 
in a mathematical way without requiring significant mathematical back-
ground. When you finish reading it, you may find yourself inadvertently writ-
ing down equations to describe problems you see in everyday life!

If you do happen to have a strong background in statistics (even 
Bayesian statistics), I believe you’ll still have a fun time reading through this 
book. I have always found that the best way to understand a field well is to 
revisit the fundamentals over and over again, each time in a different light. 
Even as the author of this book, I found plenty of things that surprised me 
just in the course of the writing process!

Now Off on Your Adventure!
As you’ll soon see, aside from being very useful, Bayesian statistics can be 
a lot of fun! To help you learn Bayesian reasoning we’ll be taking a look at 
LEGO bricks, The Twilight Zone, Star Wars, and more. You’ll find that once 
you begin thinking probabilistically about problems, you’ll start using 
Bayesian statistics all over the place. This book is designed to be a pretty 
quick and enjoyable read, so turn the page and let’s begin our adventure 
in Bayesian statistics!
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b a y e s i a n  t h i n k i n G  a n D 

e v e R y D a y  R e a s O n i n G

In this first chapter, I’ll give you an over-
view of Bayesian reasoning, the formal pro-

cess we use to update our beliefs about the 
world once we’ve observed some data. We’ll 

work through a scenario and explore how we can map 
our everyday experience to Bayesian reasoning. 

The good news is that you were already a Bayesian even before you 
picked up this book! Bayesian statistics is closely aligned with how people 
naturally use evidence to create new beliefs and reason about everyday 
problems; the tricky part is breaking down this natural thought process into 
a rigorous, mathematical one. 

In statistics, we use particular calculations and models to more 
accurately quantify probability. For now, though, we won’t use any math 
or models; we’ll just get you familiar with the basic concepts and use our 
intuition to determine probabilities. Then, in the next chapter, we’ll put 
exact numbers to probabilities. Throughout the rest of the book, you’ll 
learn how we can use rigorous mathematical techniques to formally model 
and reason about the concepts we’ll cover in this chapter. 
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Reasoning about strange experiences

One night you are suddenly awakened by a bright light at your 
window. You jump up from bed and look out to see a large object 
in the sky that can only be described as saucer shaped. You are 
generally a skeptic and have never believed in alien encounters, 
but, completely perplexed by the scene outside, you find yourself 
thinking, Could this be a UFO?!

Bayesian reasoning involves stepping through your thought process 
when you’re confronted with a situation to recognize when you’re making 
probabilistic assumptions, and then using those assumptions to update your 
beliefs about the world. In the UFO scenario, you’ve already gone through 
a full Bayesian analysis because you: 

1. Observed data

2. Formed a hypothesis

3. Updated your beliefs based on the data

This reasoning tends to happen so quickly that you don’t have any time 
to analyze your own thinking. You created a new belief without questioning 
it: whereas before you did not believe in the existence of UFOs, after the 
event you’ve updated your beliefs and now think you’ve seen a UFO. 

In this chapter, you’ll focus on structuring your beliefs and the process 
of creating them so you can examine it more formally, and we’ll look at 
quantifying this process in chapters to come.

Let’s look at each step of reasoning in turn, starting with observing data.

Observing Data
Founding your beliefs on data is a key component of Bayesian reasoning. Before 
you can draw any conclusions about the scene (such as claiming what you see is 
a UFO), you need to understand the data you’re observing, in this case:

•	 An extremely bright light outside your window

•	 A saucer-shaped object hovering in the air

Based on your past experience, you would describe what you saw out 
your window as “surprising.” In probabilistic terms, we could write this as:

P bright light outside window, saucer-shaped object in sky( )) = very low

where P denotes probability and the two pieces of data are listed inside the 
parentheses. You would read this equation as: “The probability of observ-
ing bright lights outside the window and a saucer-shaped object in the sky 
is very low.” In probability theory, we use a comma to separate events when 
we’re looking at the combined probability of multiple events. Note that this 
data does not contain anything specific about UFOs; it’s simply made up of 
your observations—this will be important later.
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We can also examine probabilities of single events, which would be 
written as:

P rain likely( ) =

This equation is read as: “The probability of rain is likely.” 
For our UFO scenario, we’re determining the probability of both events 

occurring together. The probability of one of these two events occurring on 
its own would be entirely different. For example, the bright lights alone 
could easily be a passing car, so on its own the probability of this event is 
more likely than its probability coupled with seeing a saucer-shaped object 
(and the saucer-shaped object would still be surprising even on its own).

So how are we determining this probability? Right now we’re using our 
intuition—that is, our general sense of the likelihood of perceiving these 
events. In the next chapter, we’ll see how we can come up with exact num-
bers for our probabilities.

Holding Prior Beliefs and Conditioning Probabilities
You are able to wake up in the morning, make your coffee, and drive to 
work without doing a lot of analysis because you hold prior beliefs about 
how the world works. Our prior beliefs are collections of beliefs we’ve built 
up over a lifetime of experiences (that is, of observing data). You believe 
that the sun will rise because the sun has risen every day since you were 
born. Likewise, you might have a prior belief that when the light is red 
for oncoming traffic at an intersection, and your light is green, it’s safe to 
drive through the intersection. Without prior beliefs, we would go to bed 
terrified each night that the sun might not rise tomorrow, and stop at every 
intersection to carefully inspect oncoming traffic.

Our prior beliefs say that seeing bright lights outside the window at the 
same time as seeing a saucer-shaped object is a rare occurrence on Earth. 
However, if you lived on a distant planet populated by vast numbers of fly-
ing saucers, with frequent interstellar visitors, the probability of seeing 
lights and saucer-shaped objects in the sky would be much higher. 

In a formula we enter prior beliefs after our data, separated with a | 
like so:

P
bright light outside window, saucer-shaped 

object in sky ||








 =experience on Earth

very low

We would read this equation as: “The probability of observing bright 
lights and a saucer-shaped object in the sky, given our experience on Earth, 
is very low.”

The probability outcome is called a conditional probability because we are 
conditioning the probability of one event occurring on the existence of some-
thing else. In this case, we’re conditioning the probability of our observa-
tion on our prior experience.



6   Chapter 1

In the same way we used P for probability, we typically use shorter vari-
able names for events and conditions. If you’re unfamiliar with reading 
equations, they can seem too terse at first. After a while, though, you’ll find 
that shorter variable names aid readability and help you to see how equa-
tions generalize to larger classes of problems. We’ll assign all of our data to 
a single variable, D :

D = bright light outside window, saucer-shaped object in sky

So from now on when we refer to the probability of set of data, we’ll 
simply say, P(D). 

Likewise, we use the variable X to represent our prior belief, like so:

X = experience on Earth

We can now write this equation as P(D | X). This is much easier to write 
and doesn’t change the meaning.

Conditioning on Multiple Beliefs

We can add more than one piece of prior knowledge, too, if more than 
one variable is going to significantly affect the probability. Suppose that it’s 
July 4th and you live in the United States. From prior experience you know 
that fireworks are common on the Fourth of July. Given your experience on 
Earth and the fact that it’s July 4th, the probability of seeing lights in the sky 
is less unlikely, and even the saucer-shaped object could be related to some 
fireworks display. You could rewrite this equation as:

P
bright light outside window, saucer-shaped 

object in sky ||








 =July 4th, experience on Earth

low

Taking both these experiences into account, our conditional probabil-
ity changed from “very low” to “low.” 

assuming Prior Beliefs in Practice

In statistics, we don’t usually explicitly include a condition for all of our 
existing experiences, because it can be assumed. For that reason, in this 
book we won’t include a separate variable for this condition. However, in 
Bayesian analysis, it’s essential to keep in mind that our understanding 
of the world is always conditioned on our prior experience in the world. 
For the rest of this chapter, we’ll keep the “experience on Earth” variable 
around to remind us of this. 

Forming a Hypothesis
So far we have our data, D (that we have seen a bright light and a saucer-
shaped object), and our prior experience, X. In order to explain what you 
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saw, you need to form some kind of hypothesis—a model about how the 
world works that makes a prediction. Hypotheses can come in many forms. 
All of our basic beliefs about the world are hypotheses: 

•	 If you believe the Earth rotates, you predict the sun will rise and set at 
certain times. 

•	 If you believe that your favorite baseball team is the best, you predict 
they will win more than the other teams.

•	 If you believe in astrology, you predict that the alignment of the stars 
will describe people and events.

Hypotheses can also be more formal or sophisticated:

•	 A scientist may hypothesize that a certain treatment will slow the 
growth of cancer.

•	 A quantitative analyst in finance may have a model of how the market 
will behave.

•	 A deep neural network may predict which images are animals and 
which ones are plants. 

All of these examples are hypotheses because they have some way of 
understanding the world and use that understanding to make a prediction 
about how the world will behave. When we think of hypotheses in Bayesian 
statistics, we are usually concerned with how well they predict the data 
we observe.

When you see the evidence and think A UFO!, you are forming a 
hypothesis. The UFO hypothesis is likely based on countless movies and 
television shows you’ve seen in your prior experience. We would define our 
first hypothesis as:

H1 = A UFO is in my back yard!

But what is this hypothesis predicting? If we think of this situation 
backward, we might ask, “If there was a UFO in your back yard, what would 
you expect to see?” And you might answer, “Bright lights and a saucer-
shaped object.” Because H1 predicts the data D, when we observe our data 
given our hypothesis, the probability of the data increases. Formally we 
write this as:

P D H X P D X,|( ) >> |( )1

This equation says: “The probability of seeing bright lights and a 
saucer-shaped object in the sky, given my belief that this is a UFO and my 
prior experience, is much higher [indicated by the double greater-than 
sign >>] than just seeing bright lights and a saucer-shaped object in the 
sky without explanation.” Here we’ve used the language of probability to 
demonstrate that our hypothesis explains the data. 
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Spotting Hypotheses in Everyday Speech
It’s easy to see a relationship between our everyday language and prob-
ability. Saying something is “surprising,” for example, might be the same 
as saying it has low-probability data based on our prior experiences. Saying 
something “makes sense” might indicate we have high-probability data 
based on our prior experiences. This may seem obvious once pointed out, 
but the key to probabilistic reasoning is to think carefully about how you 
interpret data, create hypotheses, and change your beliefs, even in an 
ordinary, everyday scenario. Without H1, you’d be in a state of confusion 
because you have no explanation for the data you observed.

gathering more evidence and updating your beliefs
Now you have your data and a hypothesis. However, given your prior experi-
ence as a skeptic, that hypothesis still seems pretty outlandish. In order to 
improve your state of knowledge and draw more reliable conclusions, you 
need to collect more data. This is the next step in statistical reasoning, as 
well as in your own intuitive thinking. 

To collect more data, we need to make more observations. In our sce-
nario, you look out your window to see what you can observe: 

As you look toward the bright light outside, you notice more 
lights in the area. You also see that the large saucer-shaped object 
is held up by wires, and notice a camera crew. You hear a loud 
clap and someone call out “Cut!”

You have, very likely, instantly changed your mind about what you think 
is happening in this scene. Your inference before was that you might be wit-
nessing a UFO. Now, with this new evidence, you realize it looks more like 
someone is shooting a movie nearby. 

With this thought process, your brain has once again performed some 
sophisticated Bayesian analysis in an instant! Let’s break down what hap-
pened in your head in order to reason about events more carefully.

You started with your initial hypothesis:

H1 = A UFO has landed!

In isolation, this hypothesis, given your experience, is extremely unlikely:

P H X1 |( ) = very, very low

However, it was the only useful explanation you could come up with 
given the data you had available. When you observed additional data, you 
immediately realized that there’s another possible hypothesis—that a movie 
is being filmed nearby:

H 2 = A film is being made outside your window
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In isolation, the probability of this hypothesis is also intuitively very low 
(unless you happen to live near a movie studio):

P H X2 |( ) = very low

Notice that we set the probability of H1 as “very, very low” and the prob-
ability of H2 as just “very low.” This corresponds to your intuition: if some-
one came up to you, without any data, and asked, “Which do you think is 
more likely, a UFO appearing at night in your neighborhood or a movie 
being filmed next door?” you would say the movie scenario is more likely 
than a UFO appearance.

Now we just need a way to take our new data into account when chang-
ing our beliefs.

comparing hypotheses
You first accepted the UFO hypothesis, despite it being unlikely, because 
you didn’t initially have any other explanation. Now, however, there’s 
another possible explanation—a movie being filmed—so you have formed 
an alternate hypothesis. Considering alternate hypotheses is the process of 
comparing multiple theories using the data you have.

When you see the wires, film crew, and additional lights, your data 
changes. Your updated data are:

Dupdated bright lights, saucer-shaped object, 

  wires, fil

=

mm crew, other lights, etc. . . .

On observing this extra data, you change your conclusion about what 
was happening. Let’s break this process down into Bayesian reasoning. Your 
first hypothesis, H1, gave you a way to explain your data and end your con-
fusion, but with your additional observations H1 no longer explains the data 
well. We can write this as:

P D H Xupdated very, very low|( ) =1,

You now have a new hypothesis, H2, which explains the data much bet-
ter, written as follows:

P D H X P D H Xupdated updated|( ) >> |( )2 1, ,

The key here is to understand that we’re comparing how well each of 
these hypotheses explains the observed data. When we say, “The prob-
ability of the data, given the second hypothesis, is much greater than the 
first,” we’re saying that what we observed is better explained by the second 
hypothesis. This brings us to the true heart of Bayesian analysis: the test of 
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your beliefs is how well they explain the world. We say that one belief is more 
accurate than another because it provides a better explanation of the world 
we observe.

Mathematically, we express this idea as the ratio of the two probabilities:

P D H X

P D H X

updated

updated

|( )
|( )

2

1

,

,

When this ratio is a large number, say 1,000, it means “H2 explains the 
data 1,000 times better than H1.” Because H2 explains the data many times 
better than another H1, we update our beliefs from H1 to H2. This is exactly 
what happened when you changed your mind about the likely explanation 
for what you observed. You now believe that what you’ve seen is a movie 
being made outside your window, because this is a more likely explanation 
of all the data you observed.

data informs belief; belief should not inform data
One final point worth stressing is that the only absolute in all these 
examples is your data. Your hypotheses change, and your experience in 
the world, X, may be different from someone else’s, but the data, D, is 
shared by all. 

Consider the following two formulas. The first is one we’ve used 
throughout this chapter:

P D H X|( ),

which we read as “The probability of the data given my hypotheses and 
experience in the world,” or more plainly, “How well my beliefs explain 
what I observe.”

But there is a reversal of this, common in everyday thinking, which is:

P H D X|( ),

We read this as “The probability of my beliefs given the data and my expe-
riences in the world,” or “How well what I observe supports what I believe.”

In the first case, we change our beliefs according to data we gather and 
observations we make about the world that describe it better. In the second 
case, we gather data to support our existing beliefs. Bayesian thinking is 
about changing your mind and updating how you understand the world. 
The data we observe is all that is real, so our beliefs ultimately need to shift 
until they align with the data.
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In life, too, your beliefs should always be mutable. 

As the film crew packs up, you notice that all the vans bear 
military insignia. The crew takes off their coats to reveal army 
fatigues and you overhear someone say, “Well, that should have 
fooled anyone who saw that . . . good thinking.” 

With this new evidence, your beliefs may shift again!

Wrapping Up
Let’s recap what you’ve learned. Your beliefs start with your existing experi-
ence of the world, X. When you observe data, D, it either aligns with your 
experience, P(D | X) = very high, or it surprises you, P(D | X) = very low. To 
understand the world, you rely on beliefs you have about what you observe, 
or hypotheses, H. Oftentimes a new hypothesis can help you explain the 
data that surprises you, P(D | H, X) >> P(D | X). When you gather new data or 
come up with new ideas, you can create more hypotheses, H1, H2, H3, . . . You 
update your beliefs when a new hypothesis explains your data much better 
than your old hypothesis:

P D H X

P D H X

|( )
|( )

=2

1

,

,
large number

Finally, you should be far more concerned with data changing your 
beliefs than with ensuring data supports your beliefs, P(H | D).

With these foundations set up, you’re ready to start adding numbers 
into the mix. In the rest of Part I, you’ll model your beliefs mathematically 
to precisely determine how and when you should change them. 

Exercises
Try answering the following questions to see how well you understand 
Bayesian reasoning. The solutions can be found in Appendix C.

1. Rewrite the following statements as equations using the mathematical 
notation you learned in this chapter:

• The probability of rain is low

• The probability of rain given that it is cloudy is high

• The probability of you having an umbrella given it is raining is 
much greater than the probability of you having an umbrella 
in general.
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2. Organize the data you observe in the following scenario into a math-
ematical notation, using the techniques we’ve covered in this chapter. 
Then come up with a hypothesis to explain this data:

You come home from work and notice that your front door is 
open and the side window is broken. As you walk inside, you 
immediately notice that your laptop is missing.

3. The following scenario adds data to the previous one. Demonstrate how 
this new information changes your beliefs and come up with a second 
hypothesis to explain the data, using the notation you’ve learned in 
this chapter.

A neighborhood child runs up to you and apologizes profusely for 
accidentally throwing a rock through your window. They claim 
that they saw the laptop and didn’t want it stolen so they opened 
the front door to grab it, and your laptop is safe at their house.



2
m e a s u R i n G  u n c e R t a i n t y

In Chapter 1 we looked at some basic rea-
soning tools we use intuitively to under-

stand how data informs our beliefs. We left a 
crucial issue unresolved: how can we quantify 

these tools? In probability theory, rather than describ-
ing beliefs with terms like very low and high, we need 
to assign real numbers to these beliefs. This allows 
us to create quantitative models of our understand-
ing of the world. With these models, we can see just 
how much the evidence changes our beliefs, decide 
when we should change our thinking, and gain a solid 
understanding of our current state of knowledge. In 
this chapter, we will apply this concept to quantify the 
probability of an event.
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What is a Probability?
The idea of probability is deeply ingrained in our everyday language. 
Whenever you say something such as “That seems unlikely!” or “I would be 
surprised if that’s not the case” or “I’m not sure about that,” you’re making 
a claim about probability. Probability is a measurement of how strongly we 
believe things about the world.

In the previous chapter we used abstract, qualitative terms to describe 
our beliefs. To really analyze how we develop and change beliefs, we need 
to define exactly what a probability is by more formally quantifying P(X )—
that is, how strongly we believe in X.

We can consider probability an extension of logic. In basic logic we 
have two values, true and false, which correspond to absolute beliefs. When 
we say something is true, it means that we are completely certain it is the 
case. While logic is useful for many problems, very rarely do we believe 
anything to be absolutely true or absolutely false; there is almost always 
some level of uncertainty in every decision we make. Probability allows us 
to extend logic to work with uncertain values between true and false.

Computers commonly represent true as 1 and false as 0, and we can use 
this model with probability as well. P(X ) = 0 is the same as saying that X = 
false, and P(X ) = 1 is the same as X = true. Between 0 and 1 we have an infi-
nite range of possible values. A value closer to 0 means we are more certain 
that something is false, and a value closer to 1 means we’re more certain 
something is true. It’s worth noting that a value of 0.5 means that we are 
completely unsure whether something is true or false.

Another important part of logic is negation. When we say “not true” we 
mean false. Likewise, saying “not false” means true. We want probability to 
work the same way, so we make sure that the probability of X and the nega-
tion of the probability of X sum to 1 (in other words, values are either X, or 
not X ). We can express this using the following equation:

P X P X( ) + ¬ ( ) = 1

n O t e  The ¬ symbol means “negation” or “not.” 

Using this logic, we can always find the negation of P(X ) by subtract-
ing it from 1. So, for example, if P(X ) = 1, then its negation, 1 – P(X ), must 
equal 0, conforming to our basic logic rules. And if P(X ) = 0, then its nega-
tion 1 – P(X ) = 1.

The next question is how to quantify that uncertainty. We could arbi-
trarily pick values: say 0.95 means very certain, and 0.05 means very uncer-
tain. However, this doesn’t help us determine probability much more than 
the abstract terms we’ve used before. Instead, we need to use formal meth-
ods to calculate our probabilities.
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calculating Probabilities by counting outcomes of events
The most common way to calculate probability is to count outcomes of 
events. We have two sets of outcomes that are important. The first is all 
possible outcomes of an event. For a coin toss, this would be “heads” or 
“tails.” The second is the count of the outcomes you’re interested in. If 
you’ve decided that heads means you win, the outcomes you care about 
are those involving heads (in the case of a single coin toss, just one event). 
The events you’re interested in can be anything: flipping a coin and getting 
heads, catching the flu, or a UFO landing outside your bedroom. Given 
these two sets of outcomes—ones you’re interested in and ones you’re not 
interested in—all we care about is the ratio of outcomes we’re interested in 
to the total number of possible outcomes.

We’ll use the simple example of a coin flip, where the only possible out-
comes are the coin landing on heads or landing on tails. The first step is to 
make a count of all the possible events, which in this case is only two: heads 
or tails. In probability theory, we use Ω (the capital Greek letter omega) to 
indicate the set of all events:

Ω = { }heads, tails

We want to know the probability of getting a heads in a single coin toss, 
written as P(heads). We therefore look at the number of outcomes we care 
about, 1, and divide that by the total number of possible outcomes, 2:

heads

heads, tails
{ }

{ }

For a single coin toss, we can see that there is one outcome we care 
about out of two possible outcomes. So the probability of heads is just:

P heads( ) = 1
2

Now let’s ask a trickier question: what is the probability of getting at 
least one heads when we toss two coins? Our list of possible events is more 
complicated; it’s not just {heads, tails} but rather all possible pairs of heads 
and tails:

Ω = ( ) ( ) ( )heads, heads heads, tails tails, tails tails, head, , , ss( ){ }

To figure out the probability of getting at least one heads, we look at 
how many of our pairs match our condition, which in this case is:

heads, heads heads, tails tails, heads( ) ( ) ( ){ }, ,
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As you can see, the set of events we care about has 3 elements, and 
there are 4 possible pairs we could get. This means that P(at least one 
heads) = 3/4.

These are simple examples, but if you can count the events you care 
about and the total possible events, you can come up with a quick and easy 
probability. As you can imagine, as examples get more complicated, manu-
ally counting each possible outcome becomes unfeasible. Solving harder 
probability problems of this nature often involves a field of mathematics 
called combinatorics. In Chapter 4 we’ll see how we can use combinatorics to 
solve a slightly more complex problem.

calculating Probabilities as Ratios of beliefs
Counting events is useful for physical objects, but it’s not so great for the 
vast majority of real-life probability questions we might have, such as:

•	 “What’s the probability it will rain tomorrow?” 

•	 “Do you think she’s the president of the company?”

•	 “Is that a UFO!?”

Nearly every day you make countless decisions based on probability, but 
if someone asked you to solve “How likely do think you are to make your 
train on time?” you couldn’t calculate it with the method just described.

This means we need another approach to probability that can be used 
to reason about these more abstract problems. As an example, suppose 
you’re chatting about random topics with a friend. Your friend asks if you’ve 
heard of the Mandela effect and, since you haven’t, proceeds to tell you: 
“It’s this weird thing where large groups of people misremember events. For 
example, many people recall Nelson Mandela dying in prison in the 80s. 
But the wild thing is that he was released from prison, became president of 
South Africa, and didn’t die until 2013!” Skeptically, you turn to your friend 
and say, “That sounds like internet pop psychology. I don’t think anyone 
seriously misremembered that; I bet there’s not even a Wikipedia entry on it!”

From this, you want to measure P(No Wikipedia article on Mandela 
effect). Let’s assume you are in an area with no cell phone reception, so you 
can’t quickly verify the answer. You have a high certainty of your belief that 
there is no such article, and therefore you want to assign a high probability 
for this belief, but you need to formalize that probability by assigning it a 
number from 0 to 1. Where do you start?

You decide to put your money where your mouth is, telling your friend: 
“There’s no way that’s real. How about this: you give me $5 if there is no article 
on the Mandela effect, and I’ll give you $100 if there is one!” Making bets is a 
practical way that we can express how strongly we hold our beliefs. You 
believe that the article’s existence is so unlikely that you’ll give your friend 
$100 if you are wrong and only get $5 from them if you are right. Because 
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we’re talking about quantitative values regarding our beliefs, we can start 
to figure out an exact probability for your belief that there is no Wikipedia 
article on the Mandela effect. 

Using Odds to Determine Probability
Your friend’s hypothesis is that there is an article about the Mandela effect: 
Harticle. And you have an alternate hypothesis: Hno article.

We don’t have concrete probabilities yet, but your bet expresses how 
strongly you believe in your hypothesis by giving the odds of the bet. Odds 
are a common way to represent beliefs as a ratio of how much you would 
be willing to pay if you were wrong about the outcome of an event to how 
much you’d want to receive for being correct. For example, say the odds 
of a horse winning a race are 12 to 1. That means if you pay $1 to take the 
bet, the track will pay you $12 if the horse wins. While odds are commonly 
expressed as “m to n” we can also view them as a simple ratio: m/n. There is 
a direct relationship between odds and probabilities. 

We can express your bet in terms of odds as “100 to 5.” So how can we 
turn this into probability? Your odds represent how many times more strongly 
you believe there isn’t an article than you believe there is an article. We can 
write this as the ratio of your belief in there being no article, P(Hno article), to 
your friend’s belief that there is one, P(Harticle), like so:

P H

P H
no article

article

( )
( )

= =
100

5
20

From the ratio of these two hypotheses, we can see that your belief in 
the hypothesis that there is no article is 20 times greater than your belief 
in your friend’s hypothesis. We can use this fact to work out the exact prob-
ability for your hypothesis using some high school algebra.

Solving for the Probabilities
We start writing our equation in terms of the probability of your hypothesis, 
since this is what we are interested in knowing:

P H P Hno article article( ) = × ( )20

We can read this equation as “The probability that there is no article is 
20 times greater than the probability there is an article.” 

There are only two possibilities: either there is a Wikipedia article on the 
Mandela effect or there isn’t. Because our two hypotheses cover all possibili-
ties, we know that the probability of an article is just 1 minus the probability 
of no article, so we can substitute P(Harticle) with its value in terms of 
P(Hno article) in our equation like so:

P H P Hno article no article( ) = × − ( )( )20 1
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Next we can expand 20 × (1 – P(Hno article)) by multiplying both parts in 
the parentheses by 20 and we get:

P H P Hno article no article( ) = − × ( )20 20

We can remove the P(Hno article) term from the right side of the equa-
tion by adding 20 × P(Hno article) to both sides to isolate P(Hno article) on the 
left side of the equation:

21 20× ( ) =P H no article

And we can divide both sides by 21, finally arriving at:

P H no article( ) = 20
21

Now you have a nice, clearly defined value between 0 and 1 to assign 
as a concrete, quantitative probability to your belief in the hypothesis that 
there is no article on the Mandela effect. We can generalize this process of 
converting odds to probability using the following equation:

P H
O H

O H
( ) = ( )

+ ( )1

Often in practice, when you’re confronted with assigning a probability 
to an abstract belief, it can be very helpful to think of how much you would 
bet on that belief. You would likely take a billion to 1 bet that the sun will 
rise tomorrow, but you might take much lower odds for your favorite base-
ball team winning. In either case, you can calculate an exact number for 
the probability of that belief using the steps we just went through.

Measuring Beliefs in a Coin Toss
We now have a method for determining the probability of abstract ideas 
using odds, but the real test of the robustness of this method is whether or 
not it still works with our coin toss, which we calculated by counting out-
comes. Rather than thinking about a coin toss as an event, we can rephrase 
the question as “How strongly do I believe the next coin toss will be heads?” 
Now we’re not talking about P(heads) but rather a hypothesis or belief 
about the coin toss, P(Hheads). 

Just like before, we need an alternate hypothesis to compare our 
belief with. We could say the alternate hypothesis is simply not getting 
heads H¬heads, but the option of getting tails Htails is closer to our every-
day language, so we’ll use that. At the end of the day what we care about 
most is making sense. However, it is important for this discussion to 
acknowledge that:

H H P H P Htails heads tails heads, and = ( ) = − ( )¬ 1
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We can look at how to model our beliefs as the ratio between these 
competing hypotheses:

P H

P H
heads

tails

?
( )
( )

=

Remember that we want to read this as “How many times greater do I 
believe that the outcome will be heads than I do that it will be tails?” As far 
as bets go, since each outcome is equally uncertain, the only fair odds are 
1 to 1. Of course, we can pick any odds as long as the two values are equal: 
2 to 2, 5 to 5, or 10 to 10. All of these have the same ratio:

P H

P H
heads

tails

( )
( )

= = = = =
10
10

5
5

2
2

1
1

1

Given that the ratio of these is always the same, we can simply repeat the 
process we used to calculate the probability of there being no Wikipedia 
article on the Mandela effect. We know that our probability of heads 
and probability of tails must sum to 1, and we know that the ratio of 
these two probabilities is also 1. So, we have two equations that describe 
our probabilities:

P H P H
P H

P Hheads tails
heads

tails

, and ( ) + ( ) = ( )
( )

=1 1

If you walk through the process we used when reasoning about the 
Mandela effect, solving in terms of P(Hheads) you should find the only pos-
sible solution to this problem is 1/2. This is exactly the same result we 
arrived at with our first approach to calculating probabilities of events, and 
it proves that our method for calculating the probability of a belief is robust 
enough to use for the probability of events! 

With these two methods in hand, it’s reasonable to ask which one you 
should use in which situation. The good news is, since we can see they are 
equivalent, you can use whichever method is easiest for a given problem.

Wrapping up
In this chapter we explored two different types of probabilities: those 
of events and those of beliefs. We define probability as the ratio of the 
outcome(s) we care about to the number of all possible outcomes. 

While this is the most common definition of probability, it is difficult 
to apply to beliefs because most practical, everyday probability prob-
lems do not have clear-cut outcomes and so aren’t intuitively assigned 
discrete numbers.

To calculate the probability of beliefs, then, we need to establish how 
many times more we believe in one hypothesis over another. One good test 
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of this is how much you would be willing to bet on your belief—for example, 
if you made a bet with a friend in which you’d give them $1,000 for proof that 
UFOs exist and would receive only $1 from them for proof that UFOs don’t 
exist. Here you are saying you believe UFOs do not exist 1,000 times more 
than you believe they do exist.

With these tools in hand, you can calculate the probability for a wide 
range of problems. In the next chapter you’ll learn how you can apply the 
basic operators of logic, AND and OR, to our probabilities. But before 
moving on, try using what you’ve learned in this chapter to complete the 
following exercises.

Exercises
Try answering the following questions to make sure you understand how we 
can assign real values between 0 and 1 to our beliefs. Solutions to the ques-
tions can be found in Appendix C.

1. What is the probability of rolling two six-sided dice and getting a value 
greater than 7?

2. What is the probability of rolling three six-sided dice and getting a 
value greater than 7?

3. The Yankees are playing the Red Sox. You’re a diehard Sox fan and bet 
your friend they’ll win the game. You’ll pay your friend $30 if the Sox 
lose and your friend will have to pay you only $5 if the Sox win. What is 
the probability you have intuitively assigned to the belief that the Red 
Sox will win?



3
t h e  L O G i c  O f  u n c e R t a i n t y

In Chapter 2, we discussed how probabili-
ties are an extension of the true and false 

values in logic and are expressed as values 
between 1 and 0. The power of probability is 

in the ability to express an infinite range of possible 
values between these extremes. In this chapter, we’ll 
discuss how the rules of logic, based on these logical 
operators, also apply to probability. In traditional 
logic, there are three important operators:

•	 AND

•	 OR

•	 NOT
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With these three simple operators we can reason about any argument in 
traditional logic. For example, consider this statement: If it is raining AND I 
am going outside, I will need an umbrella. This statement contains just one logi-
cal operator: AND. Because of this operator we know that if it’s true that it is 
raining, AND it is true that I am going outside, I’ll need an umbrella. 

We can also phrase this statement in terms of our other operators: If it 
is NOT raining OR if I am NOT going outside, I will NOT need an umbrella. In 
this case we are using basic logical operators and facts to make a decision 
about when we do and don’t need an umbrella. 

However, this type of logical reasoning works well only when our facts 
have absolute true or false values. This case is about deciding whether I 
need an umbrella right now, so we can know for certain if it’s currently rain-
ing and whether I’m going out, and therefore I can easily determine if I 
need an umbrella. Suppose instead we ask, “Will I need an umbrella tomor-
row?” In this case our facts become uncertain, because the weather fore-
cast gives me only a probability for rain tomorrow and I may be uncertain 
whether or not I need to go out. 

This chapter will explain how we can extend our three logical opera-
tors to work with probability, allowing us to reason about uncertain infor-
mation the same way we can with facts in traditional logic. We’ve already 
seen how we can define NOT for probabilistic reasoning:

¬ ( ) = − ( )P X P X1

In the rest of this chapter we’ll see how we can use the two remaining 
operators, AND and OR, to combine probabilities and give us more accu-
rate and useful data.

combining Probabilities with and
In statistics we use AND to talk about the probability of combined events. 
For example, the probability of:

•	 Rolling a 6 AND flipping a heads

•	 It raining AND you forgetting your umbrella

•	 Winning the lottery AND getting struck by lightning

To understand how we can define AND for probability, we’ll start with a 
simple example involving a coin and a six-sided die. 

Solving a Combination of Two Probabilities
Suppose we want to know the probability of getting a heads in a coin flip 
AND rolling a 6 on a die. We know that the probability of each of these 
events individually is:

P Pheads  six( ) = ( ) =1
2

1
6

,
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Now we want to know the probability of both of these things occurring, 
written as:

P heads, six ?( ) =

We can calculate this the same way we  
did in Chapter 2: we count the outcomes we 
care about and divide that by the total 
outcomes. 

For this example, let’s imagine these 
events happening in sequence. When we 
flip the coin we have two possible outcomes, 
heads and tails, as depicted in Figure 3-1. 

Now, for each possible coin flip there 
are six possible results for the roll of our 
die, as depicted in Figure 3-2.

Heads

Tails

Flip

One

Two

Three

Four

Five

Six

One

Two

Three

Four

Five

Six

Figure 3-2: Visualizing the possible  
outcomes from a coin toss and the roll  
of a die

Heads

Tails

Flip

Figure 3-1: Visualizing the two 
possible outcomes from a coin 
toss as distinct paths
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Using this visualization, we can just count our possible solutions. There 
are 12 possible outcomes of flipping a coin and rolling a die, and we care 
about only one of these outcomes, so:

P heads, six( ) = 1
12

Now we have a solution for this particular problem. However, what we 
really want is a general rule that will help us calculate this for any number 
of probability combinations. Let’s see how to expand our solution.

Applying the Product Rule of Probability
We’ll use the same problem for this example: what is the probability of flip-
ping a heads and rolling a 6? First we need to figure out the probability of 
flipping a heads. Looking at our branching paths, we can figure out how 
many paths split off given the probabilities. We care only about the paths that 
include heads. Because the probability of heads is 1/2, we eliminate half of 
our possibilities. Then, if we look only at the remaining branch of possibili-
ties for the heads, we can see that there is only a 1/6 chance of getting the 
result we want: rolling a 6 on a six-sided die. In Figure 3-3 we can visualize 
this reasoning and see that there is only one outcome we care about.

Heads

Tails

Flip

One

Two

Three

Four

Five

Six

One

Two

Three

Four

Five

Six

Figure 3-3: Visualizing the probability  
of both getting a heads and rolling a 6
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If we multiply these two probabilities, we can see that:

1
2

1
6

1
12

× =

This is exactly the answer we had before, but rather than counting all 
possible events, we counted only the probabilities of the events we care 
about by following along the branches. This is easy enough to do visually 
for such a simple problem, but the real value of showing you this is that it 
illustrates a general rule for combining probabilities with AND:

P A B P A P B,( ) = ( ) × ( )

Because we are multiplying our results, also called taking the product of 
these results, we refer to this as the product rule of probability.

This rule can then be expanded to include more probabilities. If we 
think of P(A,B) as a single probability, we can combine it with a third prob-
ability, P(C), by repeating this process:

P P A B C P A B P C P A P B P C, , ,( )( ) = ( ) × ( ) = ( ) × ( ) × ( )

So we can use our product rule to combine an unlimited number of 
events to get our final probability.

Example: Calculating the Probability of Being Late
Let’s look at an example of using the product rule for a slightly more com-
plex problem than rolling dice or flipping coins. Suppose you promised to 
meet a friend for coffee at 4:30 on the other side of town, and you plan to 
take public transportation. It’s currently 3:30. Thankfully the station you’re 
at has both a train and bus that can take you where you need to go:

•	 The next bus comes at 3:45 and takes 45 minutes to get you to the cof-
fee shop.

•	 The next train comes at 3:50, and will get you within a 10-minute walk 
in 30 minutes.

Both the train and the bus will get you there at 4:30 exactly. Because 
you’re cutting it so close, any delay will make you late. The good news is 
that, since the bus arrives before the train, if the bus is late and the train 
is not you’ll still be on time. If the bus is on time and the train is late, 
you’ll also be fine. The only situation that will make you late is if both the 
bus and the train are late to arrive. How can you figure out the probability 
of being late? 
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First, you need to establish the probability of both the train being 
late and the bus being late. Let’s assume the local transit authority pub-
lishes these numbers (later in the book, you’ll learn how to estimate this 
from data).

P

P

Late

Late
train

bus

( ) =
( ) =

0 15

0 2

.

.

The published data tells us that 15 percent of the time the train is late, 
and 20 percent of the time the bus is late. Since you’ll be late only if both the 
bus and the train are late, we can use the product rule to solve this problem:

P P PLate Late Latetrain bus( ) = ( ) × ( ) = × =0 15 0 2 0 03. . .

Even though there’s a pretty reasonable chance that either the bus or 
the train will be late, the probability that they will both be late is signifi-
cantly less, at only 0.03. We can also say there is a 3 percent chance that 
both will be late. With this calculation done, you can be a little less stressed 
about being late.

combining Probabilities with oR
The other essential rule of logic is combining probabilities with OR, some 
examples of which include:

•	 Catching the flu OR getting a cold

•	 Flipping a heads on a coin OR rolling a 6 on a die

•	 Getting a flat tire OR running out of gas

The probability of one event OR another event occurring is slightly 
more complicated because the events can either be mutually exclusive or 
not mutually exclusive. Events are mutually exclusive if one event happening 
implies the other possible events cannot happen. For example, the possible 
outcomes of rolling a die are mutually exclusive because a single roll cannot 
yield both a 1 and a 6. However, say a baseball game will be cancelled if it 
is either raining or the coach is sick; these events are not mutually exclusive 
because it is perfectly possible that the coach is sick and it rains.

Calculating OR for Mutually Exclusive Events
The process of combining two events with OR feels logically intuitive. If 
you’re asked, “What is the probability of getting heads or tails on a coin 
toss?” you would say, “1.” We know that:

P Pheads , tails( ) = ( ) =1
2

1
2
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Intuitively, we might just add the probability of these events together. 
We know this works because heads and tails are the only possible outcomes, 
and the probability of all possible outcomes must equal 1. If the probabili-
ties of all possible events did not equal 1, then we would have some outcome 
that was missing. So how do we know that there would need to be a missing 
outcome if the sum was less than 1? 

Suppose we know that the probability of heads is P(heads) = 1/2, but 
someone claimed that the probability of tails was P(tails) = 1/3. We also 
know from before that the probability of not getting heads must be:

NOT headsP ( ) = − =1
1
2

1
2

Since the probability of not getting heads is 1/2 and the claimed prob-
ability for tails is only 1/3, either there is a missing event or our probability 
for tails is incorrect.

From this we can see that, as long as events are mutually exclusive, we 
can simply add up all of the probabilities of each possible event to get the 
probability of either event happening to calculate the probability of one 
event OR the other. Another example of this is rolling a die. We know that 
the probability of rolling a 1 is 1/6, and the same is true for rolling a 2:

P Pone , two( ) = ( ) =1
6

1
6

So we can perform the same operation, adding the two probabilities, 
and see that the combined probability of rolling either a 1 OR a 2 is 2/6, 
or 1/3:

P Pone two( ) + ( ) = =
2
6

1
3

Again, this makes intuitive sense.
This addition rule applies only to combinations of mutually exclusive out-

comes. In probabilistic terms, mutually exclusive means that:

P A P B( ) ( ) = AND 0

That is, the probability of getting both A AND B together is 0. We see 
that this holds for our examples:

•	 It is impossible to flip one coin and get both heads and tails.

•	 It is impossible to roll both a 1 and a 2 on a single roll of a die.

To really understand combining probabilities with OR, we need to look 
at the case where events are not mutually exclusive.
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Using the Sum Rule for Non–Mutually Exclusive Events
Again using the example of rolling a die and flipping a coin, let’s look at 
the probability of either flipping heads OR rolling a 6. Many newcomers to 
probability may naively assume that adding probabilities will work in this 
case as well. Given that we know that P(heads) = 1/2 and P(six) = 1/6, it 
might initially seem plausible that the probability of either of these events 
is simply 4/6. It becomes obvious that this doesn’t work, however, when we 
consider the possibility of either flipping a heads or rolling a number less 
than 6. Because P(less than six) = 5/6, adding these probabilities together 
gives us 8/6, which is greater than 1! Since this violates the rule that prob-
abilities must be between 0 and 1, we must have made a mistake.

The trouble is that flipping a heads and rolling a 6 are not mutually 
exclusive. As we know from earlier in the chapter, P(heads, six) = 1/12. 
Because the probability of both events happening at the same time is not 0, 
we know they are, by definition, not mutually exclusive.

The reason that adding our probabilities doesn’t work for non–mutu-
ally exclusive events is that doing so doubles the counting of events where 
both things happen. As an example of overcounting, let’s look at all of the 
outcomes of our combined coin toss and die roll that contain heads:

Heads — 1

Heads — 2

Heads — 3

Heads — 4

Heads — 5

Heads — 6

These outcomes represent 6 out of the 12 possible outcomes, which we 
expect since P(heads) = 1/2. Now let’s look at all outcomes that include roll-
ing a 6:

Heads — 6

Tails — 6

These outcomes represent the 2 out of 12 possible outcomes that will 
result in us rolling a 6, which again we expect because P(six) = 1/6. Since 
there are six outcomes that satisfy the condition of flipping a heads and 
two that satisfy the condition of rolling a 6, we might be tempted to say that 
there are eight outcomes that represent getting either heads or rolling a 6. 
However, we would be double-counting because Heads — 6 appears in both 
lists. There are, in fact, only 7 out of 12 unique outcomes. If we naively add 
P(heads) and P(six), we end up overcounting. 
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To correct our probabilities, we must add up all of our probabilities and 
then subtract the probability of both events occurring. This leads us to the 
rule for combining non–mutually exclusive probabilities with OR, known as 
the sum rule of probability:

P A P B P A P B P A B( ) ( ) = ( ) + ( ) − ( ) OR ,

We add the probability of each event happening and then subtract the 
probability of both events happening, to ensure we are not counting these 
probabilities twice since they are a part of both P(A) and P(B). So, using 
our die roll and coin toss example, the probability of rolling a number less 
than 6 or flipping a heads is:

P P P P Pheads  OR six heads six heads, six( ) ( ) = ( ) + ( ) − ( ) = + −
1
2

1
6

1
12

==
7

12

Let’s take a look at a final OR example to really cement this idea.

Example: Calculating the Probability of Getting a Hefty Fine
Imagine a new scenario. You were just pulled over for speeding while on a 
road trip. You realize you haven’t been pulled over in a while and may have 
forgotten to put either your new registration or your new insurance card in 
the glove box. If either one of these is missing, you’ll get a more expensive 
ticket. Before you open the glove box, how can you assign a probability 
that you’ll have forgotten one or the other of your cards and you’ll get the 
higher ticket?

You’re pretty confident that you put your registration in the car, so 
you assign a 0.7 probability to your registration being in the car. However, 
you’re also pretty sure that you left your insurance card on the counter at 
home, so you assign only a 0.2 chance that your new insurance card is in the 
car. So we know that:

P

P

registration

insurance

( ) =
( ) =

0 7

0 2

.

.

However, these values are the probabilities that you do have these things 
in the glove box. You’re worried about whether either one is missing. To get 
the probabilities of missing items, we simply use negation:

P P

P P

Missing registration

Missing insura

reg

ins

( ) = − ( ) =
( ) = −

1 0 3

1

.

nnce( ) = 0 8.

If we try using our addition method, instead of the complete sum rule, 
to get the combined probability, we see that we have a probability greater 
than 1:

P PMissing Missingreg ins( ) + ( ) = 1 1.
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This is because these events are non–mutually exclusive: it’s entirely 
possible that you have forgotten both cards. Therefore, using this method 
we’re double-counting. That means we need to figure out the probability 
that you’re missing both cards so we can subtract it. We can do this with the 
product rule:

P Missing , Missingreg ins( ) = 0 24.

Now we can use the sum rule to determine the probability that either 
one of these cards is missing, just as we worked out the probability of a flip-
ping a heads or rolling a 6:

P P P PMissing Missing Missing Missing , Missinreg ins reg( ) = ( ) + ( ) − ggins( ) = 0 86.

With an 0.86 probability that one of these important pieces of paper is 
missing from your glove box, you should make sure to be extra nice when 
you greet the officer!

Wrapping up
In this chapter you developed a complete logic of uncertainty by adding rules 
for combining probabilities with AND and OR. Let’s review the logical rules 
we have covered so far.

In Chapter 2, you learned that probabilities are measured on a scale of 
0 to 1, 0 being false (definitely not going to happen), and 1 being true (defi-
nitely going to happen). The next important logical rule involves combin-
ing two probabilities with AND. We do this using the product rule, which 
simply states that to get the probability of two events occurring together, 
P(A) and P(B), we just multiply them together:

P A B P A P B,( ) = ( ) × ( )

The final rule involves combining probabilities with OR using the 
sum rule. The tricky part of the sum rule is that if we add non–mutually 
exclusive probabilities, we’ll end up overcounting for the case where they 
both occur, so we have to subtract the probability of both events occurring 
together. The sum rule uses the product rule to solve this (remember, for 
mutually exclusive events, P(A, B) = 0):

P A B P A P B P A B OR ( ) = ( ) + ( ) − ( ),

These rules, along with those covered in Chapter 2, allow us to express 
a very large range of problems. We’ll be using these as the foundation for 
our probabilistic reasoning throughout the rest of the book.
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Exercises
Try answering the following questions to make sure you understand the 
rules of logic as they apply to probability. The solutions can be found in 
Appendix C.

1. What is the probability of rolling a 20 three times in a row on a 20-sided die?

2. The weather report says there’s a 10 percent chance of rain tomor-
row, and you forget your umbrella half the time you go out. What is 
the probability that you’ll be caught in the rain without an umbrella 
tomorrow?

3. Raw eggs have a 1/20,000 probability of having salmonella. If you eat 
two raw eggs, what is the probability you ate a raw egg with salmonella?

4. What is the probability of either flipping two heads in two coin tosses or 
rolling three 6s in three six-sided dice rolls?





4
c R e a t i n G  a  b i n O m i a L 

P R O b a b i L i t y  D i s t R i b u t i O n

In Chapter 3, you learned some basic rules 
of probability corresponding to the common 

logical operators: AND, OR, and NOT. In this 
chapter we’re going to use these rules to build 

our first probability distribution, a way of describing all 
possible events and the probability of each one hap-
pening. Probability distributions are often visualized 
to make statistics more palatable to a wider audience. We’ll arrive at our 
probability distribution by defining a function that generalizes a particular 
group of probability problems, meaning we’ll create a distribution to cal-
culate the probabilities for a whole range of situations, not just one par-
ticular case. 

We generalize in this way by looking at the common elements of each 
problem and abstracting them out. Statisticians use this approach to make 
solving a wide range of problems much easier. This can be especially useful 
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when problems are very complex, or some of the necessary details may be 
unknown. In these cases, we can use well-understood probability distribu-
tions as estimates for real-world behavior that we don’t fully understand. 

Probability distributions are also very useful for asking questions about 
ranges of possible values. For example, we might use a probability distribu-
tion to determine the probability that a customer makes between $30,000 
and $45,000 a year, the probability of an adult being taller than 6' 10'', or 
the probability that between 25 percent and 35 percent of people who visit 
a web page will sign up for an account there. Many probability distribu-
tions involve very complex equations and can take some time to get used 
to. However, all the equations for probability distributions are derived from 
the basic rules of probability covered in the previous chapters.

structure of a binomial distribution
The distribution you’ll learn about here is the binomial distribution, used to 
calculate the probability of a certain number of successful outcomes, given 
a number of trials and the probability of the successful outcome. The “bi” 
in the term binomial refers to the two possible outcomes that we’re con-
cerned with: an event happening and an event not happening. If there are 
more than two outcomes, the distribution is called multinomial. Example 
problems that follow a binomial distribution include the probability of:

•	 Flipping two heads in three coin tosses

•	 Buying 1 million lottery tickets and winning at least once

•	 Rolling fewer than three 20s in 10 rolls of a 20-sided die

Each of these problems shares a similar structure. Indeed, all binomial dis-
tributions involve three parameters:

k The number of outcomes we care about

n The total number of trials

p The probability of the event happening

These parameters are the inputs to our distribution. So, for example, 
when we’re calculating the probability of flipping two heads in three 
coin tosses:

•	 k = 2, the number of events we care about, in this case flipping a heads 

•	 n = 3, the number times the coin is flipped

•	 p = 1/2, the probability of flipping a heads in a coin toss

We can build out a binomial distribution to generalize this kind of 
problem, so we can easily solve any problem involving these three param-
eters. The shorthand notation to express this distribution looks like this:

B k n p; ,( )



Creating a Binomial Probability Distribution   35

For the example of three coin tosses, we would write B(2; 3, 1/2). The 
B is short for binomial distribution. Notice that the k is separated from the 
other parameters by a semicolon. This is because when we are talking about 
a distribution of values, we usually care about all values of k for a fixed n 
and p. So B(k; n, p) denotes each value in our distribution, but the entire 
distribution is usually referred to by simply B(n, p). 

Let’s take a look at this more closely and see how we can build a func-
tion that allows us to generalize all of these problems into the binomial 
distribution. 

understanding and abstracting out the details of our Problem
One of the best ways to see how creating distributions can simplify your 
probabilities is to start with a concrete example and try to solve that, and 
then abstract out as many of the variables as you can. We’ll continue with 
the example of calculating the probability of flipping two heads in three 
coin tosses.

Since the number of possible outcomes is small, we can quickly figure 
out the results we care about with just pencil and paper. There are three 
possible outcomes with two heads in three tosses:

HHT, HTH, THH

Now it may be tempting to just solve this problem by enumerating all 
the other possible outcomes and dividing the number we care about by the 
total number of possible outcomes (in this case, 8). That would work fine 
for solving just this problem, but our aim here is to solve any problem that 
involves desiring a set of outcomes, from a number of trials, with a given 
probability that the event occurs. If we did not generalize and solved only 
this one instance of the problem, changing these parameters would mean 
we have to solve the new problem again. For example, just saying, “What is 
the probability of getting two heads in four coin tosses?” means we need to 
come up with yet another unique solution. Instead, we’ll use the rules of 
probability to reason about this problem.

To start generalizing, we’ll break this problem down into smaller pieces 
we can solve right now, and reduce those pieces into manageable equations. 
As we build up the equations, we’ll put them together to create a general-
ized function for the binomial distribution. 

The first thing to note is that each outcome we care about will have 
the same probability. Each outcome is just a permutation, or reordering, of 
the others: 

P P Pheads, heads, tails heads, tails, heads tails, { }( ) = { }( ) = hheads, heads{ }( )
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Since this is true, we’ll simply call it:

P Desired Outcome( )

There are three outcomes, but only one of them can possibly happen 
and we don’t care which. And because it’s only possible for one outcome to 
occur, we know that these are mutually exclusive, denoted as:

P heads, heads, tails heads, tails, heads tails, heads,{ } { }, ,   heads{ }( ) = 0

This makes using the sum rule of probability easy. Now we can summa-
rize this nicely as:

P heads, heads, tails  or heads, tails, heads  or tails, { } { } hheads, heads

Desired Outcome Desired Outcome D

{ }( ) =
( ) + ( ) +P P P eesired Outcome( )

Of course adding these three is just the same as:

3 × ( )P Desired Outcome

We’ve got a condensed way of referencing the outcomes we care about, 
but the trouble as far as generalizing goes is that the value 3 is specific to 
this problem. We can fix this by simply replacing 3 with a variable called 
Noutcomes. This leaves us with a pretty nice generalization:

B k n p N P; ,( ) = × ( )outcomes Desired Outcome

Now we have to figure out two subproblems: how to count the number 
of outcomes we care about, and how to determine the probability for a 
single outcome. Once we have these fleshed out, we’ll be all set!

counting our outcomes with the binomial coefficient
First we need to figure out how many outcomes there are for a given k (the 
outcomes we care about) and n (the number of trials). For small numbers 
we can simply count. If we were looking at four heads in five coin tosses, we 
know there are five outcomes we care about:

HHHHT, HTHHH, HHTHH, HHHTH, HHHHT

But it doesn’t take much for this to become too difficult to do by 
hand—for example, “What is the probability of rolling two 6s in three rolls 
of a six-sided die?” 
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This is still a binomial problem, because the only two possible outcomes 
are getting a 6 or not getting a 6, but there are far more events that count 
as “not getting a 6.” If we start enumerating we quickly see this gets tedious, 
even for a small problem involving just three rolls of a die:

6 - 6 - 1
6 - 6 - 2
6 - 6 - 3

. . .
4 - 6 - 6

. . .
5 - 6 - 6

. . .

Clearly, enumerating all of the possible solutions will not scale to even 
reasonably trivial problems. The solution is combinatorics.

Combinatorics: Advanced Counting with the Binomial Coefficient 
We can gain some insight into this problem if we take a look at a field of 
mathematics called combinatorics. This is simply the name for a kind of 
advanced counting.

There is a special operation in combinatorics, called the binomial coef-
ficient, that represents counting the number of ways we can select k from 
n—that is, selecting the outcomes we care about from the total number of 
trials. The notation for the binomial coefficient looks like this:

n

k









We read this expression as “n choose k.” So, for our example, we would 
represent “in three tosses choose two heads” as:

3

2









The definition of this operation is:

n

k
n

k n k







 = × −( )

!
! !

The ! means factorial, which is the product of all the numbers up to and 
including the number before the ! symbol, so 5! = (5 × 4 × 3 × 2 × 1).
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Most mathematical programming languages indicate the binomial 
coefficient using the choose() function. For example, with the mathematical 
language R, we would compute the binomial coefficient for the case of flip-
ping two heads in three tosses with the following call:

choose(3,2) 
>>3

With this general operation for calculating the number of outcomes we 
care about, we can update our generalized formula like so:

B k n p
n

k
P; ,( ) = 






 × ( )Desired Outcome

Recall that P(Desired Outcome) is the probability of any one of the 
combinations of getting two heads in three coin tosses. In the preceding 
equation, we use this value as a placeholder, but we don’t actually know 
how to calculate what this value is. The only missing piece of our puzzle is 
solving P(Single Outcome). After that, we’ll be able to easily generalize an 
entire class of problems!

Calculating the Probability of the Desired Outcome
All we have left to figure out is the P(Desired Outcome), which is the prob-
ability of any of the possible events we care about. So far we’ve been using 
P(Desired Outcome) as a variable to help organize our solution to this 
problem, but now we need to figure out exactly how to calculate this value. 
Let’s look at the probability of getting two heads in five tosses. We’ll focus 
on a single case of an outcome that meets this condition: HHTTT.

We know the probability of flipping a heads in a single toss is 1/2, but 
to generalize the problem we’ll work with it as P(heads) so we won’t be 
stuck with a fixed value for our probability. Using the product rule and 
negation from the previous chapter, we can describe this problem as:

P heads, heads, not heads, not heads, not heads( )

Or, more verbosely, as: “The probability of flipping heads, heads, not 
heads, not heads, and not heads.”

Negation tells us that we can represent “not heads” as 1 – P(heads). 
Then we can use the product rule to solve the rest:

P

P

heads, heads, not heads, not heads, not heads

heads

( ) =
( ) × PP P P Pheads heads heads heads( ) × − ( )( ) × − ( )( ) × − ( )( )1 1 1
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Let’s simplify the multiplication by using exponents:

P Pheads heads( ) × − ( )( )2 3
1

If we put this all together, we see that:

two heads in five tosses heads heads( ) = ( ) × − ( )( )P P2 3
1

You can see that the exponents for P(heads)2 and 1 – P(heads)3 are just 
the number of heads and the number of not heads in that scenario. These 
equate to k, the number of outcomes we care about, and n – k, the number 
of trials minus the outcomes we care about. We can put all of this together 
to create this much more general formula, which eliminates numbers spe-
cific to this case:

n

k
P Pk n k






 × ( ) × − ( )( ) −

heads heads1

Now let’s generalize it for any probability, not just heads, by replacing 
P(heads) with just p. This gives us a general solution for k, the number of 
outcomes we care about; n, the number of trials; and p, the probability of 
the individual outcome:

B k n p
n

k
p pk n k

; ,( ) = 





 × × −( ) −

1

Now that we have this equation, we can solve any problem related to 
outcomes of a coin toss. For example, we could calculate the probability of 
flipping exactly 12 heads in 24 coin tosses like so:

B 12 24
1
2

24

12
1
2

1
1
2

0 1612
12 24 12

; , 





 =









 × × −






 =

−

.

Before you learned about the binomial distribution, solving this prob-
lem would have been much trickier!

This formula, which is the basis of the binomial distribution, is called a 
Probability Mass Function (PMF). The mass part of the name comes from the 
fact that we can use it to calculate the amount of probability for any given k 
using a fixed n and p, so this is the mass of our probability.

For example, we can plug in all the possible values for k in 10 coin 
tosses into our PMF and visualize what the binomial distribution looks like 
for all possible values, as shown in Figure 4-1.
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Binomial Distribution for 10 Coin Flips
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Figure 4-1: Bar graph showing the probability of getting k in 10 coin flips

We can also look at the same distribution for the probability of getting 
a 6 when rolling a six-sided die 10 times, shown in Figure 4-2.

Binomial Distribution for 10 Rolls of a Six-Sided Die
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Figure 4-2: The probability of getting a 6 when rolling a six-sided die 10 times
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As you can see, a probability distribution is a way of generalizing an 
entire class of problems. Now that we have our distribution, we have a pow-
erful method to solve a wide range of problems. But always remember that 
we derived this distribution from our simple rules of probability. Let’s put it 
to the test.

example: gacha games
Gacha games are a genre of mobile games, particularly popular in Japan, in 
which players are able to purchase virtual cards with in-game currency. The 
catch is that all cards are given at random, so when players purchase cards 
they can’t choose which ones they receive. Since not all cards are equally 
desirable, players are encouraged to keep pulling cards from the stack until 
they hit the one they want, in a fashion similar to a slot machine. We’ll see 
how the binomial distribution can help us to decide to take a particular risk 
in an imaginary Gacha game. 

Here’s the scenario. You have a new mobile game, Bayesian Battlers. The 
current set of cards you can pull from is called a banner. The banner con-
tains some average cards and some featured cards that are more valuable. 
As you may suspect, all of the cards in Bayesian Battlers are famous probabi-
lists and statisticians. The top cards in this banner are as follows, each with 
its respective probability of being pulled:

•	 Thomas Bayes: 0.721%

•	 E. T. Jaynes: 0.720%

•	 Harold Jeffreys: 0.718%

•	 Andrew Gelman: 0.718%

•	 John Kruschke: 0.714%

These featured cards account for only 0.03591 of the total probability. 
Since probability must sum to 1, the chance of pulling the less desirable 
cards is the other 0.96409. Additionally, we treat the pile of cards that we 
pull from as effectively infinite, meaning that pulling a specific card does 
not change the probability of getting any other card—the card you pull 
here does not then disappear from the pile. This is different than if you 
were to pull a physical card from a single deck of cards without shuffling 
the card back in.

You really want the E. T. Jaynes card to complete your elite Bayesian 
team. Unfortunately, you have to purchase the in-game currency, Bayes 
Bucks, in order to pull cards. It costs one Bayes Buck to pull one card, but 
there’s a special on right now allowing you to purchase 100 Bayes Bucks for 
only $10. That’s the maximum you are willing to spend on this game, and 
only if you have at least an even chance of pulling the card you want. This 
means you’ll buy the Bayes Bucks only if the probability of getting that awe-
some E. T. Jaynes card is greater than or equal to 0.5.
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Of course we can plug our probability of getting the E. T. Jaynes card 
into our formula for the binomial distribution to see what we get:

100

1
0 00720 1 0 00720 0 3521 99







 × × −( ) =. . .

Our result is less than 0.5, so we should give up. But wait—we forgot 
something very important! In the preceding formula we calculated only the 
probability of getting exactly one E. T. Jaynes card. But we might pull two E. 
T. Jaynes cards, or even three! So what we really want to know is the prob-
ability of getting one or more. We could write this out as:

100

1
0 00720 1 0 00720

100

2
0 00720 1 01 99 2







 × × −( ) +









 × × −. . . .000720

100

3
0 00720 1 0 00720

98

3 97

( ) +









 × × −( ). . . . .

And so on, for the 100 cards you can pull with your Bayes Bucks, but 
this gets really tedious, so instead we use the special mathematical notation Σ 
(the capital Greek letter sigma):

100
0 00720 1 0 00720

1

100

kk

k n k







 × × −( )

=

−∑ . .

The Σ is the summation symbol; the number at the bottom represents 
the value we start with and the number at the top represents the value we 
end with. So the preceding equation is simply adding up the values for the 
binomial distribution for every value of k from 1 to n, for a p of 0.00720.

We’ve made writing this problem down much easier, but now we actu-
ally need to compute this value. Rather than pulling out your calculator to 
solve this problem, now is a great time to start using R. In R, we can use the 
pbinom() function to automatically sum up all these values for k in our PMF. 
Figure 4-3 shows how we use pbinom() to solve our specific problem.

pbinom(0,100,0.00720,lower.tail=FALSE)

When lower.tail is FALSE, we are looking at the sum of values
greater than our k argument. When it is TRUE (or left out), we
are looking at values less than or equal to k.

The second argument is
the number of trials, the n 
parameter in our Binomial
distribution.

The third argument is the
probability of our observation,
the p parameter in our Binomial
distribution.

Figure 4-3: Using the pbinom() function to solve our Bayesian  
Battlers problem
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The pbinom() function takes three required arguments and an optional 
fourth called lower.tail (which defaults to TRUE). When the fourth argument 
is TRUE, the first argument sums up all of the probabilities less than or equal to 
our argument. When lower.tail is set to FALSE, it sums up the probabilities 
strictly greater than the first argument. By setting the first argument to 0, we 
are looking at the probability of getting one or more E. T. Jaynes cards. We 
set lower.tail to FALSE because that means we want values greater than the 
first argument (by default, we get values less than the first argument). The 
next value represents n, the number of trials, and the third argument rep-
resents p, the probability of success.

If we plug in our numbers here and set lower.tail to FALSE as shown in 
Figure 4-3, R will calculate your probability of getting at least one E. T. Jaynes 
card for your 100 Bayes Bucks:

100
0 00720 1 0 515

1

100

k
p

k

k n k







 × × −( ) =

=

−∑ . .

Even though the probability of getting exactly one E. T. Jaynes card is 
only 0.352, the probability of getting at least one E. T. Jaynes card is high 
enough for you to risk it. So shell out that $10 and complete your set of 
elite Bayesians!

Wrapping Up
In this chapter we saw that we can use our rules of probability (combined 
with a trick from combinatorics) to create a general rule that solves an 
entire class of problems. Any problem that involves wanting to determine 
the probability of k outcomes in n trials, where the probability of the out-
comes is p, we can solve easily using the binomial distribution:

B k n p
n

k
p pk n k

; ,( ) = 





 × × −( ) −

1

Perhaps surprisingly, there is nothing more to this rule than counting 
and applying our rules of probability.

Exercises
Try answering the following questions to make sure you’ve grasped binomial 
distributions fully. The solutions can be found in Appendix C.

1. What are the parameters of the binomial distribution for the probability 
of rolling either a 1 or a 20 on a 20-sided die, if we roll the die 12 times?

2. There are four aces in a deck of 52 cards. If you pull a card, return the 
card, then reshuffle and pull a card again, how many ways can you pull 
just one ace in five pulls?
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3. For the example in question 2, what is the probability of pulling five 
aces in 10 pulls (remember the card is shuffled back in the deck when 
it is pulled)?

4. When you’re searching for a new job, it’s always helpful to have more 
than one offer on the table so you can use it in negotiations. If you 
have a 1/5 probability of receiving a job offer when you interview, and 
you interview with seven companies in a month, what is the probability 
you’ll have at least two competing offers by the end of that month?

5. You get a bunch of recruiter emails and find out you have 25 interviews 
lined up in the next month. Unfortunately, you know this will leave you 
exhausted, and the probability of getting an offer will drop to 1/10 if 
you’re tired. You really don’t want to go on this many interviews unless 
you are at least twice as likely to get at least two competing offers. Are you 
more likely to get at least two offers if you go for 25 interviews, or stick to 
just 7?



5
t h e  b e t a  D i s t R i b u t i O n

This chapter builds on the ideas behind 
the binomial distribution from the previous 

chapter to introduce another probability dis-
tribution, the beta distribution. You use the beta 

distribution to estimate the probability of an event for 
which you’ve already observed a number of trials and 
the number of successful outcomes. For example, you 
would use it to estimate the probability of flipping a 
heads when so far you have observed 100 tosses of 
a coin and 40 of those were heads. 

While exploring the beta distribution, we’ll also look at the differences 
between probability and statistics. Often in probability texts, we are given 
the probabilities for events explicitly. However, in real life, this is rarely the 
case. Instead, we are given data, which we use to come up with estimates for 
probabilities. This is where statistics comes in: it allows us to take data and 
make estimates about what probabilities we’re dealing with.
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a strange scenario: getting the data
Here’s the scenario for this chapter. One day you walk into a curiosity shop. 
The owner greets you and, after you browse for a bit, asks if there is any-
thing in particular you’re looking for. You respond that you’d love to see the 
strangest thing he has to show you. He smiles and pulls something out from 
behind the counter. You’re handed a black box, about the size of a Rubik’s 
Cube, that seems impossibly heavy. Intrigued, you ask, “What does it do?”

The owner points out a small slit on the top of the box and another on 
the bottom. “If you put a quarter in the top,” he tells you, “sometimes two 
come out the bottom!” Excited to try this out, you grab a quarter from your 
pocket and put it in. You wait and nothing happens. Then the shop owner 
says, “And sometimes it just eats your quarter. I’ve had this thing a while, 
and I’ve never seen it run out of quarters or get too full to take more!”

Perplexed by this but eager to make use of your newfound probability 
skills, you ask, “What’s the probability of getting two quarters?” The owner 
replies quizzically, “I have no idea. As you can see, it’s just a black box, and 
there are no instructions. All I know is how it behaves. Sometimes you get 
two quarters back, and sometimes it eats your quarter.”

Distinguishing Probability, Statistics, and Inference
While this is a somewhat unusual everyday problem, it’s actually an 
extremely common type of probability problem. In all of the examples so 
far, outside of the first chapter, we’ve known the probability of all the pos-
sible events, or at least how much we’d be willing to bet on them. In real 
life we are almost never sure what the exact probability of any event is; 
instead, we just have observations and data.

This is commonly considered the division between probability and sta-
tistics. In probability, we know exactly how probable all of our events are, 
and what we are concerned with is how likely certain observations are. For 
example, we might be told that there is 1/2 probability of getting heads in a 
fair coin toss and want to know the probability of getting exactly 7 heads in 
20 coin tosses.

In statistics, we would look at this problem backward: assuming you 
observe 7 heads in 20 coin tosses, what is the probability of getting heads in 
a single coin toss? As you can see, in this example we don’t know what the 
probability is. In a sense, statistics is probability in reverse. The task of figur-
ing out probabilities given data is called inference, and it is the foundation 
of statistics.

Collecting Data
The heart of statistical inference is data! So far we have only a single sample 
from the strange box: you put in a quarter and got nothing back. All we 
know at this point is that it’s possible to lose your money. The shopkeeper 
said you can win, but we don’t know that for sure yet.



The Beta Distribution   47

We want to estimate the probability that the mysterious box will deliver 
two quarters, and to do that, we first need to see how frequently you win 
after a few more tries. 

The shopkeeper informs you that he’s just as curious as you are and 
will gladly donate a roll of quarters—containing $10 worth of quarters, or 
40 quarters—provided you return any winnings to him. You put a quarter in, 
and happily, two more quarters pop out! Now we have two pieces of data: the 
mystical box does in fact pay out sometimes, and sometimes it eats the coin. 

Given our two observations, one where you lose the quarter and 
another where you win, you might guess naively that P(two quarters) = 1/2. 
Since our data is so limited, however, there is still a range of probabilities 
we might consider for the true rate at which this mysterious box returns two 
coins. To gather more data, you’ll use the rest of the quarters in the roll. In 
the end, including your first quarter, you get:

14 wins

27 losses

Without doing any further analysis, you might intuitively want to update 
your guess that P(two quarters) = 1/2 to P(two quarters) = 14/41. But what 
about your original guess—does your new data mean it’s impossible that 
1/2 is the real probability?

Calculating the Probability of Probabilities
To help solve this problem, let’s look at our two possible probabilities. 
These are just our hypotheses about the rate at which the magic box 
returns two quarters:

P Ptwo coins  vs. two coins( ) = ( ) =1
2

14
41

To simplify, we’ll assign each hypothesis a variable:

H P

H P

1

2

1
2
14
41

 is two coins

 is two coins

( ) =

( ) =

Intuitively, most people would say that H2 is more likely because this is 
exactly what we observed, but we need to demonstrate this mathematically 
to be sure. 

We can think of this problem in terms of how well each hypothesis 
explains what we saw, so in plain English: “How probable is what we observed 
if H1 were true versus if H2 were true?” As it turns out, we can easily calculate 
this using the binomial distribution from Chapter 4. In this case, we know 
that n = 41 and k = 14, and for now, we’ll assume that p = H1 or H2. We’ll use 
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D as a variable for our data. When we plug these numbers into the binomial 
distribution, we get the following results (recall that you can do this with 
the formula for the binomial distribution in Chapter 4):

P D B

P D B

H

H

|( ) = 





 ≈

|( ) = 





 ≈

1

2

14 41
1
2

0 016

14 41
14
41

0 1

; , .

; , . 330

In other words, if H1 were true and the probability of getting two coins 
was 1/2, then the probability of observing 14 occasions where we get two 
coins out of 41 trials would be about 0.016. However, if H2 were true and 
the real probability of getting two coins out of the box was 14/41, then the 
probability of observing the same outcomes would be about 0.130.

This shows us that, given the data (observing 14 cases of getting 
two coins out of 41 trials), H2 is almost 10 times more probable than H1! 
However, it also shows that neither hypothesis is impossible and that there 
are, of course, many other hypotheses we could make based on our data. 
For example, we might read our data as H3 P(two coins) = 15/42. If we 
wanted to look for a pattern, we could also pick every probability from 0.1 
to 0.9, incrementing by 0.1; calculate the probability of the observed data 
in each distribution; and develop our hypothesis from that. Figure 5-1 illus-
trates what each value looks like in the latter case.

Probability of different values for p given observation
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Figure 5-1: Visualization of different hypotheses about the rate of getting two quarters
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Even with all these hypotheses, there’s no way we could cover every pos-
sible eventuality because we’re not working with a finite number of hypoth-
eses. So let’s try to get more information by testing more distributions. If 
we repeat the last experiment, testing each possibility at certain increments 
starting with 0.01 and ending with 0.99, incrementing by only 0.01 would 
give us the results in Figure 5-2.
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Figure 5-2: We see a definite pattern emerging when we look at more hypotheses.

We may not be able to test every possible hypothesis, but it’s clear a 
pattern is emerging here: we see something that looks like a distribution 
representing what we believe is the behavior of the black box. 

This seems like valuable information; we can easily see where the 
probability is highest. Our goal, however, is to model our beliefs in all pos-
sible hypotheses (that is, the full probability distribution of our beliefs). 
There are still two problems with our approach. First, because there’s 
an infinite number of possible hypotheses, incrementing by smaller and 
smaller amounts doesn’t accurately represent the entire range of possibili-
ties—we’re always missing an infinite amount. In practice, this isn’t a huge 
problem because we often don’t care about the extremes like 0.000001 and 
0.0000011, but the data would be more useful if we could represent this infi-
nite range of possibilities a bit more accurately. 

Second, if you looked at the graph closely, you may have noticed a 
larger problem here: there are at least 10 dots above 0.1 right now, and we 
have an infinite number of points to add. This means that our probabilities 
don’t sum to 1! From the rules of probability, we know that the probabilities 
of all our possible hypotheses must sum to 1. If they don’t, it means that 
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some hypotheses are not covered. If they add up to more than 1, we would 
be violating the rule that probabilities must be between 0 and 1. Even 
though there are infinitely many possibilities here, we still need them all 
to sum to 1. This is where the beta distribution comes in. 

the beta distribution
To solve both of these problems, we’ll be using the beta distribution. Unlike 
the binomial distribution, which breaks up nicely into discrete values, the 
beta distribution represents a continuous range of values, which allows us to 
represent our infinite number of possible hypotheses. 

We define the beta distribution with a probability density function (PDF), 
which is very similar to the probability mass function we use in the binomial 
distribution, but is defined for continuous values. Here is the formula for 
the PDF of the beta distribution:

Beta
beta

p
p p

;α β
α β

α β

,( ) =
× −( )

,( )

− −1 1
1

Now this looks like a much more terrifying formula than the one for 
our binomial distribution! But it’s actually not that different. We won’t 
build this formula entirely from scratch like we did with the probability 
mass function, but let’s break down some of what’s happening here. 

Breaking Down the Probability Density Function 
Let’s first take a look at our parameters: p, α (lowercase Greek letter alpha), 
and β (lowercase Greek letter beta). 

p Represents the probability of an event. This corresponds to our dif-
ferent hypotheses for the possible probabilities for our black box. 

α Represents how many times we observe an event we care about, such 
as getting two quarters from the box. 

β Represents how many times the event we care about didn’t happen. 
For our example, this is the number of times that the black box ate the 
quarter. 

The total number of trials is α + β. This is different than the binomial 
distribution, where we have k observations we’re interested in and a finite 
number of n total trials.

The top part of the PDF function should look pretty familiar because it’s 
almost the same as the binomial distribution’s PMF, which looks like this:

B k n p
n

k
p pk n k

; ,( ) = 





 × × −( ) −

1
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In the PDF, rather than p pk n k
× −( ) −

1 , we have p pα β− −
× −( )1 1

1  where 
we subtract 1 from the exponent terms. We also have another function in 
the denominator of our equation: the beta function (note the lowercase) for 
which the beta distribution is named. We subtract 1 from the exponent and 
use the beta function to normalize our values—this is the part that ensures 
our distribution sums to 1. The beta function is the integral from 0 to 1 of 
p pα β− −

× −( )1 1
1 . We’ll talk about integrals more in the next section, but 

you can think of this as the sum of all the possible values of p pα β− −
× −( )1 1

1  
when p is every number between 0 and 1. A discussion of how subtracting 1 
from the exponents and dividing by the beta functions normalizes our val-
ues is beyond the scope of this chapter; for now, you just need to know that 
this allows our values to sum to 1, giving us a workable probability.

What we get in the end is a function that describes the probability of 
each possible hypothesis for our true belief in the probability of getting 
two heads from the box, given that we have observed α examples of one 
outcome and β examples of another. Remember that we arrived at the beta 
distribution by comparing how well different binomial distributions, each 
with its own probability p, described our data. In other words, the beta dis-
tribution represents how well all possible binomial distributions describe 
the data observed.

Applying the Probability Density Function to Our Problem
When we plug in our values for our black box data and visualize the beta 
distribution, shown in Figure 5-3, we see that it looks like a smooth version 
of the plot in Figure 5-2. This illustrates the PDF of Beta(14,27). 

Distribution for Beta(14,27)
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Figure 5-3: Visualizing the beta distribution for our data collected about the black box
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As you can see, most of the plot’s density is less than 0.5, as we would 
expect given that our data shows that fewer than half of the quarters placed 
in the black box returned two quarters. 

The plot also shows that it’s very unlikely the black box will return two 
quarters at least half the time, which is the point at which we break even if 
we continually put quarters in the box. We’ve figured out that we’re more 
likely to lose money than make money through the box, without sacrific-
ing too many quarters. While we can see the distribution of our beliefs by 
looking at a plot, we’d still like to be able to quantify exactly how strongly 
we believe that “the probability that the true rate at which the box returns 
two quarters is less than 0.5.” To do this, we need just a bit of calculus 
(and some R).

Quantifying Continuous Distributions with Integration
The beta distribution is fundamentally different from the binomial distribu-
tion in that with the latter, we are looking at the distribution of k, the number 
of outcomes we care about, which is always something we can count. For the 
beta distribution, however, we are looking at the distribution of p, for which 
we have an infinite number of possible values. This leads to an interesting 
problem that might be familiar if you’ve studied calculus before (but it’s okay 
if you haven’t!). For our example of α=14 and β=27, we want to know: what is 
the probability that the chance of getting two coins is 1/2? 

While it’s easy to ask the likelihood of an exact value with the binomial 
distribution thanks to its finite number of outcomes, this is a really tricky 
question for a continuous distribution. We know that the fundamental rule 
of probability is that the sum of all our values must be 1, but each of our 
individual values is infinitely small, meaning the probability of any specific 
value is in practice 0. 

This may seem strange if you aren’t familiar with continuous functions 
from calculus, so as a quick explanation: this is just the logical consequence 
of having something made up of an infinite number of pieces. Imagine, for 
example, you divide a 1-pound bar of chocolate (pretty big!) into two pieces. 
Each piece would then weigh 1/2 a pound. If you divided it into 10 pieces, 
each piece would weigh 1/10 a pound. As the number of pieces you divide 
the chocolate into grows, each piece becomes so small you can’t even see it. 
For the case where the number of pieces goes to infinity, eventually those 
pieces disappear!

Even though the individual pieces disappear, we can still talk about 
ranges. For example, even if we divided a 1-pound bar of chocolate into infi-
nitely many pieces, we can still add up the weight of the pieces in one half 
of the chocolate bar. Similarly, when talking about probability in continu-
ous distributions, we can sum up ranges of values. But if every specific value 
is 0, then isn’t the sum just 0 as well? 
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This is where calculus comes in: in calculus, there’s a special way of 
summing up infinitely small values called the integral. If we want to know 
whether the probability that the box will return a coin is less than 0.5 (that 
is, the value is somewhere between 0 and 0.5), we can sum it up like this:

p p14 1 27 1

0

0 5 1

14 27

− −
× −( )
( )∫ beta ,

.

If you’re rusty on calculus, the stretched-out S is the continuous func-
tion equivalent to ∑ for discrete functions. It’s just a way to express that we 
want to add up all the little bits of our function (see Appendix B for a quick 
overview of the basic principles of calculus). 

If this math is starting to look too scary, don’t worry! We’ll use R to cal-
culate this for us. R includes a function called dbeta() that is the PDF for the 
beta distribution. This function takes three arguments, corresponding to p, 
α, and β. We use this together with R’s integrate() function to perform this 
integration automatically. Here we calculate the probability that the chance 
of getting two coins from the box is less than or equal to 0.5, given the data:

> integrate(function(p) dbeta(p,14,27),0,0.5)

The result is as follows:

0.9807613 with absolute error < 5.9e-06

The “absolute error” message appears because computers can’t perfectly 
calculate integrals so there is always some error, though usually it is far too 
small for us to worry about. This result from R tells us that there is a 0.98 
probability that, given our evidence, the true probability of getting two coins 
out of the black box is less than 0.5. This means it would not be good idea to 
put any more quarters in the box, since you very likely won’t break even.

Reverse-Engineering the Gacha Game
In real-life situations, we almost never know the true probabilities for 
events. That’s why the beta distribution is one of our most powerful tools 
for understanding our data. In the Gacha game in Chapter 4, we knew the 
probability of each card we wanted to pull. In reality, the game developers 
are very unlikely to give players this information, for many reasons (such as 
not wanting players to calculate how unlikely they are to get the card they 
want). Now suppose we are playing a new Gacha game called Frequentist 
Fighters! and it also features famous statisticians. This time, we are pulling 
for the Bradley Efron card.

We don’t know the rates for the card, but we really want that card—and 
more than one if possible. We spend a ridiculous amount of money and find 
that from 1,200 cards pulled, we received only 5 Bradley Efron cards. Our 
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friend is thinking of spending money on the game but only wants to do it 
if there is a better than 0.7 probability that the chance of pulling a Bradley 
Efron is greater than 0.005. 

Our friend has asked us to figure out whether he should spend the 
money and pull. Our data tells us that of 1,200 cards pulled, only 5 were 
Bradley Efron, so we can visualize this as Beta(5,1195), shown in Figure 5-4 
(remember that the total cards pulled is α + β).

Pulling a Bradley Efron Card, Beta(5,1195)

p

D
en

sit
y

0.00500.0025 0.0075

200

100

50

0

150

0.0100

Figure 5-4: The beta distribution for getting a Bradley Efron card given our data

From our visualization we can see that nearly all the probability density 
is below 0.01. We need to know exactly how much is above 0.005, the value 
that our friend cares about. We can solve this by integrating over the beta 
distribution in R, as earlier:

integrate(function(x) dbeta(x,5,1195),0.005,1) 
0.29

This tells us the probability that the rate of pulling a Bradley Efron 
card is 0.005 or greater, given the evidence we have observed, is only 0.29. 
Our friend will pull for this card only if the probability is around 0.7 or 
greater, so based on the evidence from our data collection, our friend 
should not try his luck.
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Wrapping Up
In this chapter, you learned about the beta distribution, which is closely 
related to the binomial distribution but behaves quite differently. We built 
up to the beta distribution by observing how well an increasing number of 
possible binomial distributions explained our data. Because our number 
of possible hypotheses was infinite, we needed a continuous probability dis-
tribution that could describe all of them. The beta distribution allows us to 
represent how strongly we believe in all possible probabilities for the data 
we observed. This enables us to perform statistical inference on observed 
data by determining which probabilities we might assign to an event and 
how strongly we believe in each one: a probability of probabilities. 

The major difference between the beta distribution and the binomial 
distribution is that the beta distribution is a continuous probability distribu-
tion. Because there are an infinite number of values in the distribution, we 
cannot sum results the same way we do in a discrete probability distribu-
tion. Instead, we need to use calculus to sum ranges of values. Fortunately, 
we can use R instead of solving tricky integrals by hand.

Exercises
Try answering the following questions to make sure you understand how we 
can use the Beta distribution to estimate probabilities. The solutions can be 
found in Appendix C.

1. You want to use the beta distribution to determine whether or not a 
coin you have is a fair coin—meaning that the coin gives you heads 
and tails equally. You flip the coin 10 times and get 4 heads and 6 tails. 
Using the beta distribution, what is the probability that the coin will 
land on heads more than 60 percent of the time?

2. You flip the coin 10 more times and now have 9 heads and 11 tails total. 
What is the probability that the coin is fair, using our definition of fair, 
give or take 5 percent?

3. Data is the best way to become more confident in your assertions. You 
flip the coin 200 more times and end up with 109 heads and 111 tails. 
Now what is the probability that the coin is fair, give or take 5 percent?
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So far, we have dealt only with independent 
probabilities. Probabilities are independent 

when the outcome of one event does not 
affect the outcome of another. For example, 

flipping heads on a coin doesn’t impact whether or 
not a die will roll a 6. Calculating probabilities that 
are independent is much easier than calculating prob-
abilities that aren’t, but independent probabilities 
often don’t reflect real life. For example, the probabil-
ity that your alarm doesn’t go off and the probability 
that you’re late for work are not independent. If your 
alarm doesn’t go off, you are far more likely to be late 
for work than you would otherwise be. 
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In this chapter, you’ll learn how to reason about conditional probabilities, 
where probabilities are not independent but rather depend on the outcome 
of particular events. I’ll also introduce you to one of the most important 
applications of conditional probability: Bayes’ theorem.

introducing conditional Probability
In our first example of conditional probabilities, we’ll look at flu vaccines 
and possible complications of receiving them. When you get a flu vaccine, 
you’re typically handed a sheet of paper that informs you of the various 
risks associated with it. One example is an increased incidence of Guillain-
Barré syndrome (GBS), a very rare condition that causes the body’s 
immune system to attack the nervous system, leading to potentially life-
threatening complications. According to the Centers for Disease Control 
and Prevention (CDC), the probability of contracting GBS in a given year 
is 2 in 100,000. We can represent this probability as follows:

P GBS( ) = 2
100 000,

Normally the flu vaccine increases your probability of getting GBS 
only by a trivial amount. In 2010, however, there was an outbreak of swine 
flu, and the probability of getting GBS if you received the flu vaccine that 
year rose to 3/100,000. In this case, the probability of contracting GBS 
directly depended on whether or not you got the flu vaccine, and thus it 
is an example of a conditional probability. We express conditional probabil-
ities as P(A | B), or the probability of A given B. Mathematically, we can express 
the chance of getting GBS as:

P GBS flu vaccine|( ) = 3
100 000,

We read this expression in English as “The probability of having GBS, 
given that you got the flu vaccine, is 3 in 100,000.”

Why Conditional Probabilities Are Important
Conditional probabilities are an essential part of statistics because they 
allow us to demonstrate how information changes our beliefs. In the flu 
vaccine example, if you don’t know whether or not someone got the vaccine, 
you can say that their probability of getting GBS is 2/100,000 since this is 
the probability that any given person picked out of the population would 
have GBS that year. If the year is 2010 and a person tells you that they got 
the flu shot, you know that the true probability is 3/100,000. We can also 
look at this as a ratio of these two probabilities, like so:

P

P

GBS flu vaccine

GBS

|( )
( )

= 1 5.
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So if you had the flu shot in 2010, we have enough information to 
believe you’re 50 percent more likely to get GBS than a stranger picked at 
random. Fortunately, on an individual level, the probability of getting GBS 
is still very low. But if we’re looking at populations as a whole, we would 
expect 50 percent more people to have GBS in a population of people that 
had the flu vaccine than in the general population.

There are also other factors that can increase the probability of get-
ting GBS. For example, males and older adults are more likely to have GBS. 
Using conditional probabilities, we can add all of this information to better 
estimate the likelihood that an individual gets GBS.

Dependence and the Revised Rules of Probability
As a second example of conditional probabilities, we’ll use color blindness, 
a vision deficiency that makes it difficult for people to discern certain col-
ors. In the general population, about 4.25 percent of people are color blind. 
The vast majority of cases of color blindness are genetic. Color blindness is 
caused by a defective gene in the X chromosome. Because males have only 
a single X chromosome and females have two, men are about 16 times more 
likely to suffer adverse effects of a defective X chromosome and therefore 
to be color blind. So while the rate of color blindness for the entire popula-
tion is 4.25 percent, it is only 0.5 percent in females but 8 percent in males. 
For all of our calculations, we’ll be making the simplifying assumption that 
the male/female split of the population is exactly 50/50. Let’s represent 
these facts as conditional probabilities:

P

P

P

color blind

color blind female

color bli

( ) =
|( ) =

0 0425

0 005

.

.

nnd male|( ) = 0 08.

Given this information, if we pick a random person from the popula-
tion, what’s the probability that they are male and color blind?

In Chapter 3, we learned how we can combine probabilities with AND 
using the product rule. According to the product rule, we would expect the 
result of our question to be:

P P Pmale, color blind male color blind( ) = ( ) × ( ) = × =0 5 0 0425 0 0. . . 22125

But a problem arises when we use the product rule with conditional 
probabilities. The problem becomes clearer if we try to find the probability 
that a person is female and color blind:

P P Pfemale, color blind female color blind( ) = ( ) × ( ) = ×0 5 0 0425. . == 0 02125.

This can’t be right because the two probabilities are the same! We know 
that, while the probability of picking a male or a female is the same, if we 
pick a female, the probability that she is color blind should be much lower 
than for a male. Our formula should account for the fact that if we pick our 
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person at random, then the probability that they are color blind depends 
on whether they are male or female. The product rule given in Chapter 3 
works only when the probabilities are independent. Being male (or female) 
and color blind are dependent probabilities.

So the true probability of finding a male who is color blind is the prob-
ability of picking a male multiplied by the probability that he is color blind. 
Mathematically, we can write this as:

P P Pmale, color blind male color blind male( ) = ( ) × |( ) = × =0 5 0 08. . 00 04.

We can generalize this solution to rewrite our product rule as follows:

P A B P A P B A,( ) = ( ) × |( )

This definition works for independent probabilities as well, because for 
independent probabilities P(B) = P(B | A). This makes intuitive sense when 
you think about flipping heads and rolling a 6; because P(six) is 1/6 inde-
pendent of the coin toss, P(six | heads) is also 1/6.

We can also update our definition of the sum rule to account for this fact:

P A B P A P B P A P B A or ( ) = ( ) + ( ) − ( ) × |( )

Now we can still easily use our rules of probabilistic logic from Part I 
and handle conditional probabilities.

An important thing to note about conditional probabilities and depen-
dence is that, in practice, knowing how two events are related is often dif-
ficult. For example, we might ask about the probability of someone owning 
a pickup truck and having a work commute of over an hour. While we can 
come up with plenty of reasons one might be dependent on the other—
maybe people with pickup trucks tend to live in more rural areas and com-
mute less—we might not have the data to support this. Assuming that two 
events are independent (even when they likely aren’t) is a very common 
practice in statistics. But, as with our example for picking a color blind 
male, this assumption can sometimes give us very wrong results. While 
assuming independence is often a practical necessity, never forget how 
much of an impact dependence can have.

conditional Probabilities in Reverse and bayes’ theorem
One of the most amazing things we can do with conditional probabilities is 
reversing the condition to calculate the probability of the event we’re condi-
tioning on; that is, we can use P(A | B) to arrive at P(B | A). As an example, 
say you’re emailing a customer service rep at a company that sells color 
blindness–correcting glasses. The glasses are a little pricey, and you men-
tion to the rep that you’re worried they might not work. The rep replies, 
“I’m also color blind, and I have a pair myself—they work really well!”
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We want to figure out the probability that this rep is male. However, the 
rep provides no information except an ID number. So how can we figure 
out the probability that the rep is male?

We know that P(color blind | male) = 0.08 and that P(color blind | female) 
= 0.005, but how can we determine P(male | color blind)? Intuitively, we 
know that it is much more likely that the customer service rep is in fact 
male, but we need to quantify that to be sure.

Thankfully, we have all the information we need to solve this problem, 
and we know that we are solving for the probability that someone is male, 
given that they are color blind: 

P male color blind|( ) = ?

The heart of Bayesian statistics is data, and right now we have only one 
piece of data (other than our existing probabilities): we know that the cus-
tomer support rep is color blind. Our next step is to look at the portion of 
the total population that is color blind; then, we can figure out what por-
tion of that subset is male.

To help reason about this, let’s add a new variable N, which represents 
the total population of people. As stated before, we first need to calculate the 
total subset of the population that is color blind. We know P(color blind), so 
we can write this part of the equation like so:

P
P N

male color blind
color blind

|( ) =
( ) ×

?

Next we need to calculate the number of people who are male and color 
blind. This is easy to do since we know P(male) and P(color blind | male), 
and we have our revised product rule. So we can simply multiply this prob-
ability by the population:

P P Nmale color blind male( ) × |( ) ×

So the probability that the customer service rep is male, given that 
they’re color blind, is:

P
P P N

P
male color blind

male color blind male

color bl
|( ) = ( ) × |( ) ×

iind( ) ×N

Our population variable N is on both the top and the bottom of the 
fraction, so the Ns cancel out:

P
P P

P
male color blind

male color blind male

color blin
|( ) = ( ) × |( )

dd( )
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We can now solve our problem since we know each piece of information:

P
P P

P
male color blind

male color blind male

color blin
|( ) = ( ) × |( )

dd( )
=

×
=

0 5 0 08
0 0425

0 941
. .

.
.

Given the calculation, we know there is a 94.1 percent chance that the 
customer service rep is in fact male!

introducing bayes’ theorem
There is nothing actually specific to our case of color blindness in the pre-
ceding formula, so we should be able to generalize it to any given A and B 
probabilities. If we do this, we get the most foundational formula in this 
book, Bayes’ theorem:

P A B
P A P B A

P B
|( ) = ( ) |( )

( )

To understand why Bayes’ theorem is so important, let’s look at a gen-
eral form of this problem. Our beliefs describe the world we know, so when 
we observe something, its conditional probability represents the likelihood of 
what we’ve seen given what we believe, or:

P observed belief|( )

For example, suppose you believe in climate change, and therefore 
you expect that the area where you live will have more droughts than usual 
over a 10-year period. Your belief is that climate change is taking place, 
and your observation is the number of droughts in your area; let’s say there 
were 5 droughts in the last 10 years. Determining how likely it is that you’d 
see exactly 5 droughts in the past 10 years if there were climate change dur-
ing that period may be difficult. One way to do this would be to consult an 
expert in climate science and ask them the probability of droughts given 
that their model assumes climate change.

At this point, all you’ve done is ask, “What is the probability of what I’ve 
observed, given that I believe climate change is true?” But what you want is 
some way to quantify how strongly you believe climate change is really hap-
pening, given what you have observed. Bayes’ theorem allows you to reverse 
P(observed | belief), which you asked the climate scientist for, and solve for 
the likelihood of your beliefs given what you’ve observed, or:

P belief observed|( )
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In this example, Bayes’ theorem allows you to transform your obser-
vation of five droughts in a decade into a statement about how strongly 
you believe in climate change after you have observed these droughts. 
The only other pieces of information you need are the general prob-
ability of 5 droughts in 10 years (which could be estimated with histori-
cal data) and your initial certainty of your belief in climate change. And 
while most people would have a different initial probability for climate 
change, Bayes’ theorem allows you to quantify exactly how much the 
data changes any belief. 

For example, if the expert says that 5 droughts in 10 years is very likely 
if we assume that climate change is happening, most people will change 
their previous beliefs to favor climate change a little, whether they’re skepti-
cal of climate change or they’re Al Gore. 

However, suppose that the expert told you that in fact, 5 droughts in 
10 years was very unlikely given your assumption that climate change is 
happening. In that case, your prior belief in climate change would weaken 
slightly given the evidence. The key takeaway here is that Bayes’ theorem 
ultimately allows evidence to change the strength of our beliefs. 

Bayes’ theorem allows us to take our beliefs about the world, combine 
them with data, and then transform this combination into an estimate of 
the strength of our beliefs given the evidence we’ve observed. Very often 
our beliefs are just our initial certainty in an idea; this is the P(A) in Bayes’ 
theorem. We often debate topics such as whether gun control will reduce 
violence, whether increased testing increases student performance, or 
whether public health care will reduce overall health care costs. But we 
seldom think about how evidence should change our minds or the minds 
of those we’re debating. Bayes’ theorem allows us to observe evidence 
about these beliefs and quantify exactly how much this evidence changes 
our beliefs.

Later in this book, you’ll see how we can compare beliefs as well as 
cases where data can surprisingly fail to change beliefs (as anyone who has 
argued with relatives over dinner can attest!).

In the next chapter, we’re going to spend a bit more time with Bayes’ 
theorem. We’ll derive it once more, but this time with LEGO; that way, we 
can clearly visualize how it works. We’ll also explore how we can understand 
Bayes’ theorem in terms of more specifically modeling our existing beliefs 
and how data changes them.

Wrapping up
In this chapter, you learned about conditional probabilities, which are any 
probability of an event that depends on another event. Conditional prob-
abilities are more complicated to work with than independent probabili-
ties—we had to update our product rule to account for dependencies—but 
they lead us to Bayes’ theorem, which is fundamental to understanding how 
we can use data to update what we believe about the world.
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Exercises
Try answering the following questions to see how well you understand 
conditional probability and Bayes’ theorem. The solutions can be found 
in Appendix C.

•	 What piece of information would we need in order to use Bayes’ theo-
rem to determine the probability that someone in 2010 who had GBS 
also had the flu vaccine that year?

•	 What is the probability that a random person picked from the popula-
tion is female and is not color blind?

•	 What is the probability that a male who received the flu vaccine in 2010 
is either color blind or has GBS?



In the previous chapter, we covered 
conditional probability and arrived at 

a very important idea in probability, Bayes’ 
theorem, which states: 

P A B
P B A P A

P B
|( ) = |( ) ( )

( )

Notice that here we’ve made a very small change from Chapter 6, writ-
ing P(B | A)P(A) instead of P(A)P(B | A); the meaning is identical, but some-
times changing the terms around can help clarify different approaches 
to problems.

With Bayes’ theorem, we can reverse conditional probabilities—so 
when we know the probability P(B | A), we can work out P(A | B). Bayes’ 
theorem is foundational to statistics because it allows us to go from having 
the probability of an observation given a belief to determining the strength 
of that belief given the observation. For example, if we know the probability 

7
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of sneezing given that you have a cold, we can work backward to determine 
the probability that you have a cold given that you sneezed. In this way, we 
use evidence to update our beliefs about the world.

In this chapter, we’ll use LEGO to visualize Bayes’ theorem and help 
solidify the mathematics in your mind. To do this, let’s pull out some LEGO 
bricks and put some concrete questions to our equation. Figure 7-1 shows a 
6 × 10 area of LEGO bricks; that’s a 60-stud area (studs are the cylindrical 
bumps on LEGO bricks that connect them to each other). 

Figure 7-1: A 6 × 10-stud LEGO area to help  
us visualize the space of possible events

We can imagine this as the space of 60 possible, mutually exclusive 
events. For example, the blue studs could represent 40 students who passed 
an exam and the red studs 20 students who failed the exam in a class of 60. 
In the 60-stud area, there are 40 blue studs, so if we put our finger on a ran-
dom spot, the probably of touching a blue brick is defined like this: 

P blue( ) = =
40
60

2
3

We would represent the probability of touching a red brick as follows: 

P red( ) = =
20
60

1
3
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The probability of touching either a blue or a red brick, as you would 
expect, is 1:

P Pblue red( ) + ( ) = 1

This means that red and blue bricks alone can describe our entire set 
of possible events. 

Now let’s put a yellow brick on top of these two bricks to represent some 
other possibility—for example, the students that pulled an all-nighter study-
ing and didn’t sleep—so it looks like Figure 7-2. 

Figure 7-2: Placing a 2 × 3 LEGO brick  
on top of the 6 × 10-stud LEGO area

Now if we pick a stud at random, the probability of touching the yellow 
brick is:

P yellow( ) = =
6
60

1
10

But if we add P(yellow) to P(red) + P(blue), we’d get a result greater 
than 1, and that’s impossible! 

The issue, of course, is that our yellow studs all sit on top of the space of 
red and blue studs, so the probability of getting a yellow brick is conditional 
on whether we’re on a blue or red space. As we know from the previous 
chapter, we can express this conditional probability as P(yellow | red), or 
the probability of yellow given red. Given our example from earlier, this would 
be the probability that a student pulled an all-nighter, given that they had 
failed an exam.
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Working out conditional Probabilities visually
Let’s go back to our LEGO bricks and work out P(yellow | red). Figure 7-3 
gives us a bit of visual insight into the problem.

Figure 7-3: Visualizing P(yellow | red) 

Let’s walk through the process for determining P(yellow | red) by 
working with our physical representation:

1. Split the red section off from the blue.

2. Get the area of the entire red space; it’s a 2 × 10-stud area, so that’s 
20 studs.

3. Get the area of the yellow block on the red space, which is 4 studs.

4. Divide the area of the yellow block by the area of the red block.

This gives us P(yellow | red) = 4/20 = 1/5.
Great—we have arrived at the conditional probability of yellow given 

red! So far, so good. So what if we now reverse that conditional probability 
and ask what is P(red | yellow)? In plain English, if we know we are on a yel-
low space, what is the probability that it’s red underneath? Or, in our test 
example, what is the probability that a student failed the exam, given that 
they pulled an all-nighter?

Looking at Figure 7-3, you may have intuitively figured out P(red | yellow)
by reasoning, “There are 6 yellow studs, 4 of which are over red, so the prob-
ability of choosing a yellow that’s over a red block is 4/6.” If you did follow 
this line of thinking, then congratulations! You just independently discovered 
Bayes’ theorem. But let’s quantify that with math to make sure it’s right.
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Working through the math
Getting from our intuition to Bayes’ theorem will require a bit of work. 
Let’s begin formalizing our intuition by coming up with a way to calculate 
that there are 6 yellow studs. Our minds arrive at this conclusion through 
spatial reasoning, but we need to use a mathematical approach. To solve 
this, we just take the probability of being on a yellow stud multiplied by the 
total number of studs:

numberOfYellowStuds yellow totalStuds= ( ) × = × =P
1

10
60 6

The next part of our intuitive reasoning is that 4 of the yellow studs are 
over red, and this requires a bit more work to prove mathematically. First, 
we have to establish how many red studs there are; luckily, this is the same 
process as calculating yellow studs:

numberOfRedStuds red totalStuds= ( ) × = × =P
1
3

60 20

We’ve also already figured out the ratio of red studs covered by yellow 
as P(yellow | red). To make this a count—rather than a probability—we mul-
tiply it by the number of red studs that we just calculated:

numberOfRedStuds yellow red numberOfRedStuds= |( ) × = × =P
1
5

20 4

Finally, we get the ratio of the red studs covered by yellow to the total 
number of yellow: 

P red yellow
numberOfRedUnderYellow

numberOfYellowStuds
|( ) = =

4
6
==

2
3

This lines up with our intuitive analysis. However, it doesn’t quite look 
like a Bayes’ theorem equation, which should have the following structure:

P A B
P B A P A

P B
|( ) = |( ) ( )

( )

To get there we’ll have to go back and expand the terms in this equa-
tion, like so:

P
P

P
red yellow

yellow red numberOfRedStuds

yellow tota
|( ) =

|( ) ×
( ) × llStuds

We know that we calculate this as follows:

P
P P

P
red yellow

yellow red red totalStuds

yellow tota
|( ) =

|( ) ( ) ×
( ) × llStuds
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Finally, we just need to cancel out totalStuds from the equation, which 
gives us:

P
P P

P
red yellow

yellow red red

yellow
|( ) =

|( ) ( )
( )

From intuition, we have arrived back at Bayes’ theorem!

Wrapping Up
Conceptually, Bayes’ theorem follows from intuition, but that doesn’t mean 
that the formalization of Bayes’ theorem is obvious. The benefit of our 
mathematical work is that it extracts reason out of intuition. We’ve con-
firmed that our original, intuitive beliefs are consistent, and now we have 
a powerful new tool to deal with problems in probability that are more com-
plicated than LEGO bricks.

In the next chapter, we’ll take a look at how to use Bayes’ theorem to 
reason about and update our beliefs using data.

Exercises
Try answering the following questions to see if you have a solid understand-
ing of how we can use Bayes’ Theorem to reason about conditional prob-
abilities. The solutions can be found in Appendix C.

1. Kansas City, despite its name, sits on the border of two US states: 
Missouri and Kansas. The Kansas City metropolitan area consists of 
15 counties, 9 in Missouri and 6 in Kansas. The entire state of Kansas 
has 105 counties and Missouri has 114. Use Bayes’ theorem to calcu-
late the probability that a relative who just moved to a county in the 
Kansas City metropolitan area also lives in a county in Kansas. Make 
sure to show P(Kansas) (assuming your relative either lives in Kansas or 
Missouri), P(Kansas City metropolitan area), and P(Kansas City metro-
politan area | Kansas).

2. A deck of cards has 52 cards with suits that are either red or black. 
There are four aces in a deck of cards: two red and two black. You 
remove a red ace from the deck and shuffle the cards. Your friend 
pulls a black card. What is the probability that it is an ace?



8
t h e  P R i O R ,  L i k e L i h O O D,  a n D 

P O s t e R i O R  O f  b a y e s ’  t h e O R e m

Now that we’ve covered how to derive 
Bayes’ theorem using spatial reasoning, 

let’s examine how we can use Bayes’ theorem 
as a probability tool to logically reason about 

uncertainty. In this chapter, we’ll use it to calculate 
and quantify how likely our belief is, given our data. 
To do so, we’ll use the three parts of the theorem—
the posterior probability, likelihood, and prior prob-
ability—all of which will come up frequently in your 
adventures with Bayesian statistics and probability. 
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the three Parts
Bayes’ theorem allows us to quantify exactly how much our observed data 
changes our beliefs. In this case, what we want to know is: P(belief | data). 
In plain English, we want to quantify how strongly we hold our beliefs given 
the data we’ve observed. The technical term for this part of the formula 
is the posterior probability, and it’s what we’ll use Bayes’ theorem to solve for.

To solve for the posterior, we need the next part: the probability of the 
data given our beliefs about the data, or P(data | belief). This is known as 
the likelihood, because it tells us how likely the data is given our belief. 

Finally, we want to quantify how likely our initial belief is in the first 
place, or P(belief). This part of Bayes’ theorem is called the prior probability, 
or simply “the prior,” because it represents the strength of our belief before 
we see the data. The likelihood and the prior combine to produce a poste-
rior. Typically we need to use the probability of the data, P(data), in order 
to normalize our posterior so it accurately reflects a probability from 0 to 
1. However, in practice, we don’t always need P(data), so this value doesn’t 
have a special name.

As you know by now, we refer to our belief as a hypothesis, H, and 
we represent our data with the variable D. Figure 8-1 shows each part of 
Bayes’ theorem.

P
P P

P
belief data

data belief belief

data
|

|

Likelihood

Prior probabillity

Normalizes our probabilities

The posterior probability

Figure 8-1: The parts of Bayes’ theorem

In this chapter, we’ll investigate a crime, combining these pieces to 
reason about the situation.

investigating the scene of a crime
Let’s suppose you come home from work one day and find your window 
broken, your front door open, and your laptop missing. Your first thought is 
probably “I’ve been robbed!” But how did you come to this conclusion, and 
more importantly, how can you quantify this belief?

Your immediate hypothesis is that you have been robbed, so H = I’ve 
been robbed. We want a probability that describes how likely it is that 
you’ve been robbed, so the posterior we want to solve for given our data is:

P robbed broken window, open front door, missing laptop|( )

To solve this problem, we’ll fill in the missing pieces from Bayes’ theorem.
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Solving for the Likelihood
First, we need to solve for the likelihood, which in this case is the probability 
that the same evidence would have been observed if you were in fact robbed—
in other words, how closely the evidence lines up with the hypothesis:

P broken window, open front door, missing laptop robbed|( )

What we’re asking is, “If you were robbed, how likely is it that you would 
see the evidence you saw here?” You can imagine a wide range of scenarios 
where not all of this evidence was present at a robbery. For example, a 
clever thief might have picked the lock on your door, stolen your laptop, 
then locked the door behind them and not needed to break a window. 
Or they might have just smashed the window, taken the laptop, and then 
climbed right back out the window. The evidence we’ve seen seems intui-
tively like it would be pretty common at the scene of a robbery, so we’ll say 
there’s a 3/10 probability that if you were robbed, you would come home 
and find this evidence.  

It’s important to note that, even though we’re making a guess in this 
example, we could also do some research to get a better estimate. We could 
go to the local police department and ask for statistics about evidence at 
crime scenes involving robbery, or read through news reports of recent rob-
beries. This would give us a more accurate estimate for the likelihood that 
if you were robbed you would see this evidence. 

The incredible thing about Bayes’ theorem is that we can use it both for 
organizing our casual beliefs and for working with large data sets of very 
exact probabilities. Even if you don’t think 3/10 is a good estimate, you can 
always go back to the calculations—as we will do—and see how the value 
changes given a different assumption. For example, if you think that the 
probability of seeing this evidence given a robbery is just 3/100, you can 
easily go back and plug in those numbers instead. Bayesian statistics lets 
people disagree about beliefs in a measurable way. Because we are dealing 
with our beliefs in a quantitative way, you can recalculate everything we do 
in this chapter to see if this different probability has a substantial impact on 
any of the final outcomes. 

Calculating the Prior
Next, we need to determine the probability that you would get robbed at 
all. This is our prior. Priors are extremely important, because they allow 
us to use background information to adjust a likelihood. For example, sup-
pose the scene described earlier happened on a deserted island where you 
are the only inhabitant. In this case, it would be nearly impossible for you 
to get robbed (by a human, at least). In another example, if you owned a 
home in a neighborhood with a high crime rate, robberies might be a fre-
quent occurrence. For simplicity, let’s set our prior for being robbed as:

P robbed( ) = 1
1 000,
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Remember, we can always adjust these figures later given different or 
additional evidence. 

We have nearly everything we need to calculate the posterior; we just 
need to normalize the data. Before moving on, then, let’s look at the unnor-
malized posterior:

P Probbed
broken window, open front door, 

missing laptop
( ) ×

| rrobbed








 =

3
10 000,

This value is incredibly small, which is surprising since intuition tells 
us that the probability of your house being robbed given the evidence you 
observed seems very, very high. But we haven’t yet looked at the probability 
of observing our evidence.

Normalizing the Data
What’s missing from our equation is the probability of the data you observed 
whether or not you were robbed. In our example, this is the probability that 
you observe that your window is broken, the door is open, and your laptop 
is missing all at once, regardless of the cause. As of now, our equation looks 
like this:

P
robbed broken window, 

open front door, missing laptop

|







 =

×

( )

1
1 000

3
10,

P D

The reason the probability in the numerator is so low is that we haven’t 
normalized it with the probability that you would find this strange evidence. 

We can see how our posterior changes as we change our P(D) in 
Table 8-1.

table 8-1: How the P(D) Affects the Posterior

P(D) Posterior

0 .050 0 .006

0 .010 0 .030

0 .005 0 .060

0 .001 0 .300

As the probability of our data decreases, our posterior probability 
increases. This is because as the data we observe becomes increasingly 
unlikely, a typically unlikely explanation does a better job of explaining 
the event (see Figure 8-2).
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P(w,d,l)

P(robbed | window,door,laptop)

P(w,d,l)

P(robbed | window,door,laptop)

Figure 8-2: As the probability of the data decreases,  
the posterior probability increases.

Consider this extreme example: the only way your friend could become 
a millionaire is if they won the lottery or inherited money from some fam-
ily member they didn’t know existed. Your friend becoming a millionaire 
is therefore shockingly unlikely. However, you find out that your friend 
did become a millionaire. The possibility that your friend won the lottery 
then becomes much more likely, because it is one of the only two ways they 
could have become a millionaire.

Being robbed is, of course, only one possible explanation for what you 
observed, and there are many more explanations. However, if we don’t 
know the probability of the evidence, we can’t figure out how to normalize 
all these other possibilities. So what is our P(D)? That’s the tricky part.

The common problem with P(D) is that it’s very difficult to accurately 
calculate in many real-world cases. With every other part of the formula—
even though we just guessed at a value for this exercise—we can collect real 
data to provide a more concrete probability. For our prior, P(robbed), we 
might simply look at historical crime data and pin down a probability that 
a given house on your street would be robbed any given day. Likewise, we 
could, theoretically, investigate past robberies and come up with a more 
accurate likelihood for observing the evidence you did given a robbery. 
But how could we ever really even guess at P(broken window,open front 
door,missing laptop)? 

Instead of researching the probability of the data you observed, we 
could try to calculate the probabilities of all other possible events that could 
explain your observations. Since they must sum to 1, we could work back-
ward and find P(D). But for the case of this particular evidence, there’s a 
virtually limitless number of possibilities. 
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We’re a bit stuck without P(D). In Chapters 6 and 7, where we calcu-
lated the probability that a customer service rep was male and the probabil-
ity of choosing different colored LEGO studs, respectively, we had plenty 
of information about P(D). This allowed us to come up with an exact prob-
ability of our belief in our hypothesis given what we observed. Without P(D) 
we cannot come up with a value for P(robbed | broken window,open front 
door,missing laptop). However, we’re not completely lost.

The good news is that in some cases we don’t need to explicitly know 
P(D), because we often just want to compare hypotheses. In this example, 
we’ll compare how likely it is that you were robbed with another possible 
explanation. We can do this by looking at the ratio of our unnormalized 
posterior distributions. Because the P(D) would be a constant, we can safely 
remove it without changing our analysis. 

So, instead of calculating the P(D), for the remainder of this chapter 
we’ll develop an alternative hypothesis, calculate its posterior, and then 
compare it to the posterior from our original hypothesis. While this means 
we can’t come up with an exact probability of being robbed as the only 
possible explanation for the evidence you observed, we can still use Bayes’ 
theorem to play detective and investigate other possibilities.

considering alternative hypotheses
Let’s come up with another hypothesis to compare with our original one. 
Our new hypothesis consists of three events: 

1. A neighborhood kid hit a baseball through the front window.

1. You left your door unlocked.

2. You forgot that you brought your laptop to work and it’s still there.

We’ll refer to each of these explanations simply by its number in our 
list, and refer to them collectively as H2 so that P(H2) = P(1,2,3). Now we 
need to solve for the likelihood and prior of this data. 

The Likelihood for Our Alternative Hypothesis
Recall that, for our likelihood, we want to calculate the probability of 
what you observed given our hypothesis, or P(D | H2). Interestingly—and 
logically, as you’ll see—the likelihood for this explanation turns out to be 
1:  P(D | H2) = 1

If all the events in our hypothesis did happen, then your observations 
of a broken window, unlocked door, and missing laptop would be certain. 

The Prior for Our Alternative Hypothesis
Our prior represents the possibility of all three events happening. This 
means we need to first work out the probability of each of these events and 
then use the product rule to determine the prior. For this example, we’ll 
assume that each of these possible outcomes is conditionally independent.
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The first part of our hypothesis is that a neighborhood kid hit a base-
ball through the front window. While this is common in movies, I’ve per-
sonally never heard of it happening. I have known far more people who 
have been robbed, though, so let’s say that a baseball being hit through the 
window is half as likely as the probability of getting robbed we used earlier:

P 1
1

2 000
( ) =

,

The second part of our hypothesis is that you left the door unlocked. 
This is fairly common; let’s say this happens about once a month, so:

P 2
1

30
( ) =

Finally, let’s look at leaving your laptop at work. While bringing a laptop 
to work and leaving it there might be common, completely forgetting you 
took it in the first place is less common. Maybe this happens about once 
a year:

P 3
1

365
( ) =

Since we’ve given each of these pieces of H2 a probability, we can now 
calculate our prior probability by applying the product rule:

P H 2

1
2 000

1
30

1
365

1
21 900 000

( ) = × × =
, , ,

As you can see, the prior probability of all three events happening 
is extremely low. Now we need a posterior for each of our hypotheses 
to compare.

The Posterior for Our Alternative Hypothesis
We know that our likelihood, P(D | H2), equals 1, so if our second hypothe-
sis were to be true, we would be certain to see our evidence. Without a prior 
probability in our second hypothesis, it looks like the posterior probability 
for our new hypothesis will be much stronger than it is for our original 
hypothesis that you were robbed (since we aren’t as likely to see the data 
even if we were robbed). We can now see how the prior radically alters our 
unnormalized posterior probability:

P D H P H|( ) × ( ) = × =2 2 1
1

21 900 000
1

21 900 000, , , ,

Now we want to compare our posterior beliefs as well as the strength of 
our hypotheses with a ratio. You’ll see that we don’t need a P(D) to do this. 
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comparing our unnormalized Posteriors
First, we want to compare the ratio of the two posteriors. A ratio tells us 
how many times more likely one hypothesis is than the other. We’ll define 
our original hypothesis as H1, and the ratio looks like this:

P H D

P H D
1

2

|( )
|( )

Next let’s expand this using Bayes’ theorem for each of these. We’ll 
write Bayes’ theorem as P(H) × P(D | H) × 1/P(D) to make the formula 
easier to read in this context:

P H P D H
P D

P H P D H
P D

1 1

2 2

1

1

( ) × |( ) × ( )

( ) × |( ) × ( )

Notice that both the numerator and denominator contain 1/P(D), 
which means we can remove that and maintain the ratio. This is why P(D) 
doesn’t matter when we compare hypotheses. Now we have a ratio of the 
unnormalized posteriors. Because the posterior tells us how strong our 
belief is, this ratio of posteriors tells us how many times better H1 explains 
our data than H2 without knowing P(D). Let’s cancel out the P(D) and plug 
in our numbers:

P H P D H

P H P D H
1 1

2 2

3
10 000

1
21 900 000

6 570
( ) × |( )
( ) × |( )

= =,

, ,

,

What this means is that H1 explains what we observed 6,570 times better 
than H2. In other words, our analysis shows that our original hypothesis (H1) 
explains our data much, much better than our alternate hypothesis (H2). 
This also aligns well with our intuition—given the scene you observed, a 
robbery certainly sounds like a more likely assessment.

We’d like to express this property of the unnormalized posterior math-
ematically to be able to use it for comparison. For that, we use the following 
version of Bayes’ theorem, where the symbol  means “proportional to”:

P H D P H P D H|( ) ( ) × |( )∝

We can read this as: “The posterior—that is, the probability of the 
hypothesis given the data—is proportional to the prior probability of H multi-
plied by the probability of the data given H.”

This form of Bayes’ theorem is extremely useful whenever we want to 
compare the probability of two ideas but can’t easily calculate P(D). We 
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cannot come up with a meaningful value for the probability of our hypoth
esis in isolation, but we’re still using a version of Bayes’ theorem to compare 
hypotheses. Comparing hypotheses means that we can always see exactly how 
much stronger one explanation of what we’ve observed is than another. 

Wrapping Up
This chapter explored how Bayes’ theorem provides a framework for mod
eling our beliefs about the world, given data that we have observed. For 
Bayesian analysis, Bayes’ theorem consists of three major parts: the poste
rior probability, P(H | D); the prior probability, P(H); and the likelihood, 
P(D | H). 

The data itself, or P(D), is notably absent from this list, because we 
often won’t need it to perform our analysis if all we’re worried about is com
paring beliefs.

Exercises
Try answering the following questions to see if you have a solid understand
ing of the different parts of Bayes’ Theorem. The solutions can be found in 
Appendix C.

1. As mentioned, you might disagree with the original probability 
assigned to the likelihood:

P broken window, open front door, missing laptop robbed|( ) = 3
110

How much does this change our strength in believing H1 over H2?

2. How unlikely would you have to believe being robbed is—our prior 
for H1—in order for the ratio of H1 to H2 to be even?
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b a y e s i a n  P R i O R s  a n D 

W O R k i n G  W i t h  P R O b a b i L i t y 
D i s t R i b u t i O n s

Prior probabilities are the most contro-
versial aspect of Bayes’ theorem, because 

they’re frequently considered subjective. In 
practice, however, they often demonstrate how 

to apply vital background information to fully reason 
about an uncertain situation. 

In this chapter, we’ll look at how to use a prior to solve a problem, and 
at ways to use probability distributions to numerically describe our beliefs 
as a range of possible values rather than single values. Using probability dis-
tributions instead of single values is useful for two major reasons. 

First, in reality there is often a wide range of possible beliefs we might 
have and consider. Second, representing ranges of probabilities allows us 
to state our confidence in a set of hypotheses. We explored both of these 
examples when examining the mysterious black box in Chapter 5.
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c-3Po’s asteroid field doubts
As an example, we’ll use one of the most memorable errors in statistical 
analysis from a scene in Star Wars: The Empire Strikes Back. When Han Solo, 
attempting to evade enemy fighters, flies the Millennium Falcon into an aster-
oid field, the ever-knowledgeable C-3PO informs Han that probability isn’t 
on his side. C-3PO says, “Sir, the possibility of successfully navigating an 
asteroid field is approximately 3,720 to 1!”

“Never tell me the odds!” replies Han.
Superficially, this is just a fun movie dismissing “boring” data analysis, 

but there’s actually an interesting dilemma here. We the viewers know that 
Han can pull it off, but we probably also don’t disagree with C-3PO’s analy-
sis. Even Han believes it’s dangerous, saying, “They’d have to be crazy to 
follow us.” Plus, none of the pursuing TIE fighters make it through, which 
provides pretty strong evidence that C-3PO’s numbers aren’t totally off.

What C-3PO is missing in his calculations is that Han is a badass! 
C-3PO isn’t wrong, he’s just forgetting to add essential information. The 
question now is: can we find a way to avoid C-3PO’s error without dismissing 
probability entirely, as Han proposes? To answer this question, we need to 
model both how C-3PO thinks and what we believe about Han, then blend 
those models using Bayes’ theorem.

We’ll start with C-3PO’s reasoning in the next section, and then we’ll 
capture Han’s badassery. 

determining c-3Po’s beliefs
C-3PO isn’t just making up numbers. He’s fluent in over 6 million forms of 
communication, and that takes a lot of data to support, so we can assume 
that he has actual data to back up his claim of “approximately 3,720 to 1.” 
Because C-3PO provides the approximate odds of successfully navigating an 
asteroid field, we know that the data he has gives him only enough informa-
tion to suggest a range of possible rates of success. To represent that range, 
we need to look at a distribution of beliefs regarding the probability of suc-
cess, rather than a single value representing the probability.

To C-3PO, the only possible outcomes are successfully navigating the 
asteroid field or not. We’ll determine the various possible probabilities of 
success, given C-3PO’s data, using the beta distribution you learned about 
in Chapter 5. We’re using the beta distribution because it correctly models 
a range of possible probabilities for an event, given information we have on 
the rate of successes and failures. 

Recall that the beta distribution is parameterized with an α (number of 
observed successes) and a β (the number of observed failures):

P RateOfSuccess Successes and Failures Beta|( ) = ( )α β,
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This distribution tells us which rates of success are most likely given the 
data we have. 

To figure out C-3PO’s beliefs, we’ll make some assumptions about 
where his data comes from. Let’s say that C-3PO has records of 2 people 
surviving the asteroid field, and 7,440 people ending their trip in a glorious 
explosion! Figure 9-1 shows a plot of the probability density function that 
represents C-3PO’s belief in the true rate of success.

Distribution of C-3PO’s likelihood of surviving
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Figure 9-1: A beta distribution representing C-3PO’s belief that Han will survive

For any ordinary pilot entering an asteroid field, this looks bad. In 
Bayesian terms, C-3PO’s estimate of the true rate of success given observed 
data, 3,720:1, is the likelihood, which we discussed in Chapter 8. Next, we 
need to determine our prior.

accounting for han’s badassery
The problem with C-3PO’s analysis is that his data is on all pilots, but Han 
is far from your average pilot. If we can’t put a number to Han’s badassery, 
then our analysis is broken—not just because Han makes it through the 
asteroid field, but because we believe he’s going to. Statistics is a tool that 
aids and organizes our reasoning and beliefs about the world. If our statis-
tical analysis not only contradicts our reasoning and beliefs, but also fails to 
change them, then something is wrong with our analysis.
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We have a prior belief that Han will make it through the asteroid field, 
because Han has survived every improbable situation so far. What makes 
Han Solo legendary is that no matter how unlikely survival seems, he 
always succeeds! 

The prior probability is often very controversial for data analysts out-
side of Bayesian analysis. Many people feel that just “making up” a prior is 
not objective. But this scene is an object chapter in why dismissing our prior 
beliefs is even more absurd. Imagine watching Empire for the first time, get-
ting to this scene, and having a friend sincerely tell you, “Welp, Han is dead 
now.” There’s not a chance you’d think it was true. Remember that C-3PO isn’t 
entirely wrong about how unlikely survival is: if your friend said, “Welp, those 
TIE fighters are dead now,” you would likely chuckle in agreement.

Right now, we have many reasons for believing Han will survive, but no 
numbers to back up that belief. Let’s try to put something together.

We’ll start with some sort of upper bound on Han’s badassery. If we 
believed Han absolutely could not die, the movie would become predictable 
and boring. At the other end, our belief that Han will succeed is stronger 
than C-3PO’s belief that he won’t, so let’s say that our belief that Han will 
survive is 20,000 to 1. 

Figure 9-2 shows the distribution for our prior probability that Han 
will make it.

Distribution of our prior belief of Han Solo surviving
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Figure 9-2: The beta distribution representing the range of our prior belief  
in Han Solo’s survival
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This is another beta distribution, which we use for two reasons. First, 
our beliefs are very approximate, so we need to concede a variable rate 
of survival. Second, a beta distribution will make future calculations 
much easier.

Now, with our likelihood and prior in hand, we can calculate our 
posterior probability in the next section.

Creating Suspense with a Posterior
We have now established what C-3PO believes (the likelihood), and we’ve 
modeled our own beliefs in Han (the prior), but we need a way to combine 
these. By combining beliefs, we create our posterior distribution. In this case, 
the posterior models our sense of suspense upon learning the likelihood 
from C-3PO: the purpose of C-3PO’s analysis is in part to poke fun at his 
analytical thinking, but also to create a sense of real danger. Our prior 
alone would leave us completely unconcerned for Han, but when we adjust 
it based on C-3PO’s data, we develop a new belief that accounts for the 
real danger. 

The formula for the posterior is actually very simple and intuitive. Given 
that we have only a likelihood and a prior, we can use the proportional form 
of Bayes’ theorem that we discussed in the previous chapter:

Posterior Likelihood Prior∝ ×

Remember, using this proportional form of Bayes’ theorem means 
that our posterior distribution doesn’t necessarily sum to 1. But we’re lucky 
because there’s an easy way to combine beta distributions that will give 
us a normalized posterior when all we have is the likelihood and the prior. 
Combining our two beta distributions—one representing C-3PO’s data (the 
likelihood) and the other our prior belief in Han’s ability to survive any-
thing (our prior)—in this way is remarkably easy:

Beta Beta , posterior posterior likelihood prior likelα β α α β,( ) = + iihood prior+( )β

We just add the alphas for our prior and likelihood and the betas for 
our prior and likelihood, and we arrive at a normalized posterior. Because 
this is so simple, working with the beta distribution is very convenient for 
Bayesian statistics. To determine our posterior for Han making it through 
the asteroid field, we can perform this simple calculation:

Beta Beta , 20002 7401 2 20000 7400 1,( ) = + +( )

Now we can visualize our new distribution for our data. Figure 9-3 plots 
our final posterior belief.
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Distribution of our prior belief Beta(2+20000,7400+1)
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Figure 9-3: Combining our likelihood with our prior gives us a more intriguing posterior.

By combining the C-3PO belief with our Han-is-a-badass belief, we 
find that we have a far more reasonable position. Our posterior belief is a 
roughly 73 percent chance of survival, which means we still think Han has a 
good shot of making it, but we’re also still in suspense.

What’s really useful is that we don’t simply have a raw probability for 
how likely Han is to make it, but rather a full distribution of possible beliefs. 
For many examples in the book, we’ve stuck to simply using a single value 
for our probabilities, but in practice, using a full distribution helps us to be 
flexible with the strength of our beliefs.

Wrapping up
In this chapter, you learned how important background information is to 
analyzing the data in front of you. C-3PO’s data provided us with a likeli-
hood function that didn’t match up with our prior understanding of Han’s 
abilities. Rather than simply dismissing C-3PO, as Han famously does, we 
combine C-3PO’s likelihood with our prior to come up with an adjusted 
belief about the possibility of Han’s success. In Star Wars: The Empire Strikes 
Back, this uncertainty is vital for the tension the scene creates. If we com-
pletely believe C-3PO’s data or our own prior, we would either be nearly 
certain that Han would die or be nearly certain that he would survive 
without trouble.

You also saw that you can use probability distributions, rather than a 
single probability, to express a range of possible beliefs. In later chapters 
in this book, you’ll look at these distributions in more detail to explore the 
uncertainty of your beliefs in a more nuanced way.
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Exercises
Try answering the following questions to see if you understand how to 
combine prior probability and likelihood distributions to come up with an 
accurate posterior distribution; solutions to the questions can be found in 
Appendix C.

1. A friend finds a coin on the ground, flips it, and gets six heads in a row 
and then one tails. Give the beta distribution that describes this. Use 
integration to determine the probability that the true rate of flipping 
heads is between 0.4 and 0.6, reflecting that the coin is reasonably fair.

2. Come up with a prior probability that the coin is fair. Use a beta distri-
bution such that there is at least a 95 percent chance that the true rate 
of flipping heads is between 0.4 and 0.6.

3. Now see how many more heads (with no more tails) it would take to 
convince you that there is a reasonable chance that the coin is not fair. 
In this case, let’s say that this means that our belief in the rate of the 
coin being between 0.4 and 0.6 drops below 0.5.
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This chapter introduces you to parameter 
estimation, an essential part of statistical 

inference where we use our data to guess the 
value of an unknown variable. For example, 

we might want to estimate the probability of a visi-
tor on a web page making a purchase, the number of 
jelly beans in a jar at a carnival, or the location and 
momentum of a particle. In all of these cases, we have 
an unknown value we want to estimate, and we can 
use information we have observed to make a guess. 
We refer to these unknown values as parameters, and 
the process of making the best guess about these 
parameters as parameter estimation.
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We’ll focus on averaging, which is the most basic form of parameter 
estimation. Nearly everyone understands that taking an average of a set of 
observations is the best way to estimate a true value, but few people really 
stop to ask why this works—if it really does at all. We need to prove that we 
can trust averaging, because in later chapters, we build it into more com-
plex forms of parameter estimation.

estimating snowfall
Imagine there was a heavy snow last night and you’d like to figure out 
exactly how much snow fell, in inches, in your yard. Unfortunately, you 
don’t have a snow gauge that will give you an accurate measurement. 
Looking outside, you see that the wind has blown the snow around a bit 
overnight, meaning it isn’t uniformly smooth. You decide to use a ruler to 
measure the depth at seven roughly random locations in your yard. You 
come up with the following measurements (in inches):

6.2, 4.5, 5.7, 7.6, 5.3, 8.0, 6.9

The snow has clearly shifted around quite a bit and your yard isn’t 
perfectly level either, so your measurements are all pretty different. Given 
that, how can we use these measurements to make a good guess as to the 
actual snowfall?

This simple problem is a great example case for parameter estimation. 
The parameter we’re estimating is the actual depth of the snowfall from the 
previous night. Note that, since the wind has blown the snow around and 
you don’t have a snow gauge, we can never know the exact amount of snow 
that fell. Instead, we have a collection of data that we can combine using 
probability, to determine the contribution of each observation to our esti-
mate, in order to help us make the best possible guess. 

Averaging Measurements to Minimize Error
You first instinct is probably to average these measurements. In grade 
school, we learn to average elements by adding them up and dividing the 
sum by the total number of elements. So if there are n measurements, each 
labeled as mi where i is the ith measurement, we get:

average
 . . . 

=
+ +m m m m

n
n1 2 3

If we plug in our data, we get the following solution:

6 2 4 5 5 7 7 6 5 3 8 0 6 9

7
6 31

. . . . . . .
.

+ + + + + +( )
=

So, given our seven observations, our best guess is that about 6.31 
inches of snow fell.
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Averaging is a technique embedded in our minds from childhood, so 
its application to this problem seems obvious, but in actuality, it’s hard to 
reason about why it works and what it has to do with probability. After all, 
each of our measurements is different, and all of them are likely different 
from the true value of the snow that fell. For many centuries, even great 
mathematicians feared that averaging data compounds all of these errone-
ous measurements, making for a very inaccurate estimate.

When we estimate parameters, it’s vital that we understand why we’re 
making a decision; otherwise, we risk using an estimate that may be uninten-
tionally biased or otherwise wrong in a systematic way. One error commonly 
made in statistics is to blindly apply procedures without understanding 
them, which frequently leads to applying the wrong solution to a problem. 
Probability is our tool for reasoning about uncertainty, and parameter esti-
mation is perhaps the most common process for dealing with uncertainty. 
Let’s dive a little deeper into averaging to see if we can become more confi-
dent that it is the correct path.

Solving a Simplified Version of Our Problem
Let’s simplify our snowfall problem a bit: rather than imagining all possible 
depths of snow, imagine the snow falling into nice, uniform blocks so that 
your yard forms a simple two-dimensional grid. Figure 10-1 shows this per-
fectly even, 6-inch-deep snowfall, visualized from the side (rather than as a 
bird’s-eye view).

A simplified view of uniform snowfall
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Figure 10-1: Visualizing a perfectly uniform, discrete snowfall
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This is the perfect scenario. We don’t have an unlimited number of pos-
sible measurements; instead, we sample our six possible locations, and each 
location has only one possible measurement—6 inches. Obviously, averag-
ing works in this case, because no matter how we sample from this data, our 
answer will always be 6 inches.

Compare that to Figure 10-2, which illustrates the data when we include 
the windblown snow against the left side of your house.

Non-uniform snowfall
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Figure 10-2: Representing the snow shifted by the wind

Now, rather than having a nice, smooth surface, we’ve introduced 
some uncertainty into our problem. Of course, we’re cheating because we 
can easily count each block of snow and know exactly how much snow has 
fallen, but we can use this example to explore how we would reason about 
an uncertain situation. Let’s start investigating our problem by measuring 
each of the blocks in your yard:

8, 7, 6, 6, 5, 4

Next, we want to associate some probabilities with each value. Since 
we’re cheating and know the true value of the snowfall is 6 inches, we’ll also 
record the difference between the observation and the true value, known as 
the error value (see Table 10-1).
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table 10-1: Our Observations, and Their Frequencies and Differences from Truth

observation difference from truth Probability

8 2 1/6

7 1 1/6

6 0 2/6

5 –1 1/6

4 –2 1/6

Looking at the distance from the true measurement for each possible 
observation, we can see that the probability of overestimating by a certain 
value is balanced out by the probability of 
an undervalued measurement. For exam-
ple, there is a 1/6 probability of picking a 
measurement that is 2 inches higher than 
the true value, but there’s an equally prob-
able chance of picking a measurement that 
is 2 inches lower than the true measure-
ment. This leads us to our first key insight 
into why averaging works: errors in mea-
surement tend to cancel each other out.

Solving a More Extreme Case
With such a smooth distribution of errors, 
the previous scenario might not have con-
vinced you that errors cancel out in more 
complex situations. To demonstrate how 
this effect still holds in other cases, let’s 
look at a much more extreme example. 
Suppose the wind has blown 21 inches of 
snow to one of the six squares and left only 
3 inches at each of the remaining squares, 
as shown in Figure 10-3.

Now we have a very different distribu-
tion of snowfall. For starters, unlike the 
preceding example, none of the values 
we can sample from have the true level of 
snowfall. Also, our errors are no longer 
nicely distributed—we have a bunch of 
lower-than-anticipated measurements and 
one extremely high measurement. Table 
10-2 shows the possible measurements, the 
difference from the true value, and the 
probability of each measurement.

Extreme non-uniform snowfall

Place of measurement

Sn
ow

 d
ep

th
 (i

nc
he

s)

0 2 4 66
0

5

10

15

20

Figure 10-3: A more extreme case 
of wind shifting the snow 
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table 10-2: Observations, Differences, and Probabilities for Our Extreme Example

observation difference from truth Probability

21 15 1/6

3 –3 5/6

We obviously can’t just match up one observation’s error value with 
another’s and have them cancel out. However, we can use probability to 
show that even in this extreme distribution, our errors still cancel each 
other out. We can do this by thinking of each error measurement as a value 
that’s being voted on by our data. The probability of each error observed is 
how strongly we believe in that error. When we want to combine our obser-
vations, we can consider the probability of the observation as a value rep-
resenting the strength of its vote toward the final estimate. In this case, the 
error of –3 inches is five times more likely than the error of 15 inches, so –3 
gets weighted more heavily. So, if we were taking a vote, –3 would get five 
votes, whereas 15 would only get one vote. We combine all of the votes by 
multiplying each value by its probability and adding them together, giving 
us a weighted sum. In the extreme case where all the values are the same, we 
would just have 1 multiplied by the value observed and the result would just 
be that value. In our example, we get:

5
6

3
1
6

15 0× − + × =

The errors in each observation cancel out to 0! So, once again, we find 
that it doesn’t matter if none of the possible values is a true measurement or 
if the distribution of errors is uneven. When we weight our observations by 
our belief in that observation, the errors tend to cancel each other out.

Estimating the True Value with Weighted Probabilities
We are now fairly confident that errors from our true measurements cancel 
out. But we still have a problem: we’ve been working with the errors from the 
true observation, but to use these we need to know the true value. When we 
don’t know the true value, all we have to work with are our observations, so 
we need to see if the errors still cancel out when we have the weighted sum of 
our original observations.

To demonstrate that our method works, we need some “unknown” true 
values. Let’s start with the following errors:

2, 1, –1, –2

Since the true measurement is unknown, we’ll represent it with the 
variable t, then add the error. Now we can weight each of these observations 
by its probability:

1
4

2
1
4

1
1
4

1
1
4

2+( ) + +( ) + − +( ) + − +( )t t t t
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All we’ve done here is add our error to our constant value t, which rep-
resents our true measure, then weight each of the results by its probability. 
We’re doing this to see if we can still get our errors to cancel out and leave 
us with just the value t. If so, we can expect errors to cancel out even when 
we’re just averaging raw observations.

Our next step is to apply the probability weight to the values in our 
terms to get one long summation:

2
4

1
4

1
4

1
4

1
4

1
4

2
4

1
4

0+ + + +
−

+ +
−

+ = +t t t t t

Now if we reorder these terms so that all the errors are together, we can 
see that our errors will still cancel out, and the weighted t value sums up to 
just t, our unknown true value: 
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 + + + +






 = +t t t t t

This shows that even when we define our measurements as an unknown 
true value t and add some error value, the errors still cancel out! We are 
left with just the t in the end. Even when we don’t know what our true mea-
surement or true error is, when we average our values the errors tend to 
cancel out.

In practice, we typically can’t sample the entire space of possible mea-
surements, but the more samples we have, the more the errors are going to 
cancel out and, in general, the closer our estimate will be to the true value.

Defining Expectation, Mean, and Averaging
What we’ve arrived at here is formally called the expectation or mean of 
our data. It is simply the sum of each value weighted by its probability. 
If we denote each of our measurements as xi and the probability of each 
measurement as pi, we mathematically define the mean—which is generally 
represented by μ (the lowercase Greek letter mu)—as follows:

µ = ∑ p xi i

n

1

To be clear, this is the exact same calculation as the averaging we 
learned in grade school, just with notation to make the use of probabil-
ity more explicit. As an example, to average four numbers, in school we 
wrote it as:

x x x x1 2 3 4

4
+ + +
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which is identical to writing:

1
4

1
4

1
4

1
41 2 3 4x x x x+ + +

or we can just say pi = 1/4 and write it as:

µ = ∑ p xi i
1

4

So even though the mean is really just the average nearly everyone is 
familiar with, by building it up from the principles of probability, we see why 
averaging our data works. No matter how the errors are distributed, the prob-
ability of errors at one extreme is canceled out by probabilities at the other 
extreme. As we take more samples, the averages are more likely to cancel out 
and we start to approach the true measurement we’re looking for.

means for measurement vs. means for summary
We’ve been using our mean to estimate a true measurement from a distribu-
tion of observations with some added error. But the mean is often used as a 
way to summarize a set of data. For example, we might refer to things like:

•	 The mean height of a person

•	 The average price of a home

•	 The average age of a student

In all of these cases, we aren’t using mean as a parameter estimate for 
a single true measurement; instead, we’re summarizing the properties of a 
population. To be precise, we’re estimating a parameter of some abstract 
property of these populations that may not even be real. Even though mean 
is a very simple and well-known parameter estimate, it can be easily abused 
and lead to strange results. 

A fundamental question you should always ask yourself when averag-
ing data is: “What exactly am I trying to measure and what does this value 
really mean?” For our snowfall example, the answer is easy: we’re trying 
to estimate how much snow actually fell last night before the wind blew it 
around. However, when we’re measuring the “average height,” the answer is 
less clear. There is no such thing as an average person, and the differences 
in heights we observe aren’t errors—they’re truly different heights. A per-
son isn’t 5'5" because part of their height drifted onto a 6'3" person!

If you were building an amusement park and wanted to know what 
height restrictions to put on a roller coaster so that at least half of all visitors 
could ride it, then you have a real value you are trying to measure. However, 
in that case, the mean suddenly becomes less helpful. A better measure-
ment to estimate is the probability that someone entering your park will be 
taller than x, where x is the minimum height to ride a roller coaster.
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All of the claims I’ve made in this chapter assume we are talking about 
trying to measure a specific value and using the average to cancel the errors 
out. That is, we’re using averaging as a form of parameter estimation, where 
our parameter is an actual value that we simply can never know. While aver-
aging can also be useful to summarize large sets of data, we can no longer 
use the intuition of “errors canceling out” because the variation in the data 
is genuine, meaningful variation and not error in a measurement. 

Wrapping Up
In this chapter, you learned that you can trust your intuition about averag-
ing out your measurements in order to make a best estimate of an unknown 
value. This is true because errors tend to cancel out. We can formalize this 
notion of averaging into the idea of the expectation or mean. When we 
calculate the mean, we are weighting all of our observations by the prob-
ability of observing them. Finally, even though averaging is a simple tool to 
understand, we should always identify and understand what we’re trying to 
determine by averaging; otherwise, our results may end up being invalid.

Exercises
Try answering the following questions to see how well you understand 
averaging to estimate an unknown measurement. The solutions can be 
found in Appendix C.

1. It’s possible to get errors that don’t quite cancel out the way we want. In 
the Fahrenheit temperature scale, 98.6 degrees is the normal body tem-
perature and 100.4 degrees is the typical threshold for a fever. Say you 
are taking care of a child that feels warm and seems sick, but you take 
repeated readings from the thermometer and they all read between 
99.5 and 100.0 degrees: warm, but not quite a fever. You try the ther-
mometer yourself and get several readings between 97.5 and 98. What 
could be wrong with the thermometer?

2. Given that you feel healthy and have traditionally had a very consis-
tently normal temperature, how could you alter the measurements 100, 
99.5, 99.6, and 100.2 to estimate if the child has a fever? 
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In this chapter, you’ll learn three different 
methods—mean absolute deviation, 

variance, and standard deviation—for 
quantifying the spread, or the different 

extremes, of your observations. 
In the previous chapter, you learned that the mean is the best way to 

guess the value of an unknown measurement, and that the more spread 
out our observations, the more uncertain we are about our estimate of the 
mean. As an example, if we’re trying to figure out the location of a collision 
between two cars based only on the spread of the remaining debris after 
the cars have been towed away, then the more spread out the debris, the 
less sure we’d be of where precisely the two cars collided.

Because the spread of our observations is related to the uncertainty in 
the measurement, we need to be able to quantify it so we can make proba-
bilistic statements about our estimates (which you’ll learn how to do in the 
next chapter).
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dropping coins in a Well
Say you and a friend are wandering around the woods and stumble across 
a strange-looking old well. You peer inside and see that it seems to have no 
bottom. To test it, you pull a coin from your pocket and drop it in, and sure 
enough, after a few seconds you hear a splash. From this, you conclude that 
the well is deep, but not bottomless. 

With the supernatural discounted, you and your friend are now equally 
curious as to how deep the well actually is. To gather more data, you grab 
five more coins from your pocket and drop them in, getting the following 
measurements in seconds:

3.02, 2.95, 2.98, 3.08, 2.97

As expected, you find some variation in your results; this is primarily 
due to the challenge of making sure you drop the coin from the same 
height and time then record the splash correctly.

Next, your friend wants to try his hand at getting some measurements. 
Rather than picking five similarly sized coins, he grabs a wider assortment 
of objects, from small pebbles to twigs. Dropping them in the well, your 
friend gets the following measurements:

3.31, 2.16, 3.02, 3.71, 2.80

Both of these samples have a mean (μ) of about 3 seconds, but your 
measurements and your friend’s measurements are spread to different 
degrees. Our aim in this chapter is to come up with a way to quantify the 
difference between the spread of your measurements and the spread of 
your friend’s. We’ll use this result in the next chapter to determine the 
probability of certain ranges of values for our estimate.

For the rest of this chapter we’ll indicate when we’re talking about the 
first group of values (your observations) with the variable a and the second 
group (your friend’s observations) with the variable b. For each group, each 
observation is denoted with a subscript; for example, a2 is the second obser-
vation from group a.

finding the mean absolute deviation
We’ll begin by measuring the spread of each observation from the mean 
(μ). The mean for both a and b is 3. Since μ is our best estimate for the true 
value, it makes sense to start quantifying the difference in the two spreads 
by measuring the distance between the mean and each of the values. 
Table 11-1 displays each observation and its distance from the mean.
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table 11-1: Your and Your Friend’s Observations and  
Their Distances from the Mean 

observation difference from mean

group a

3 .02 0 .02

2 .95 –0 .05

2 .98 –0 .02

3 .08 0 .08

2 .97 –0 .03

group b

3 .31 0 .31

2 .16 –0 .84

3 .02 0 .02

3 .71 0 .71

2 .80 –0 .16

n O t e  The distance from the mean is different than the error value, which is the distance 
from the true value and is unknown in this case.

A first guess at how to quantify the difference between the two spreads 
might be to just sum up their differences from the mean. However, when we 
try this out, we find that the sum of the differences for both sets of observa-
tions is exactly the same, which is odd given the notable difference in the 
spread of the two data sets:

a
i

a1
1

5

0
=
∑ − =µ

      

b
i

b1
1

5

0
=
∑ − =µ

The reason we can’t simply sum the differences from the mean 
is related to why the mean works in the first place: as we know from 
Chapter 10, the errors tend to cancel each other out. What we need is 
a mathematical method that makes sure our differences don’t cancel 
out without affecting the validity of our measurements. 

The reason the differences cancel out is that some are negative and 
some are positive. So, if we convert all the differences to positives, we can 
eliminate this problem without invalidating the values. 

The most obvious way to do this is to take the absolute value of the dif-
ferences; this is the number’s distance from 0, so the absolute value of 4 is 
4, and the absolute value of –4 is also 4. This gives us the positive version 
of our negative numbers without actually changing them. To represent an 
absolute value, we enclose the value in vertical lines, as in  | –6 |  =  | 6 |  = 6. 
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If we take the absolute value of the differences in Table 11-1 and use 
those in our calculation instead, we get a result we can work with:

ai a− =∑ µ
1

5

0 2.
      

bi b− =∑ µ
1

5

2 08.

Try working this out by hand, and you should get the same results. This 
is a more useful approach for our particular situation, but it applies only 
when the two sample groups are the same size.

Imagine we had 40 more observations for group a—let’s say 20 observa-
tions of 2.9 and 20 of 3.1. Even with these additional observations, the data 
in group a seems less spread out than the data in group b, but the absolute 
sum of group a is now 85.19 simply because it has more observations! 

To correct for this, we can normalize our values by dividing by the total 
number of observations. Rather than dividing, though, we’ll just multiply by 1 
over the total, which is known as multiplying the reciprocal and looks like this:

1
5

0 04
1

5

× − =∑ ai aµ .
      

1
5

2 08
1

5

× − =∑ bi bµ .

Now we have a measurement of the spread that isn’t dependent on the 
sample size! The generalization of this approach is as follows:

MAD x
n

xi

n

( ) = × −∑1

1

µ

Here we’ve calculated the mean of the absolute differences between 
our observations and the mean. This means that for group a the average 
observation is 0.04 from the mean, and for group b it’s about 0.416 seconds 
from the mean. We call the result of this formula the mean absolute deviation 
(MAD). The MAD is a very useful and intuitive measure of how spread out 
your observations are. Given that group a has a MAD of 0.04 and group 
b around 0.4, we can now say that group b is about 10 times as spread out 
as group a. 

finding the variance
Another way to mathematically make all of our differences positive without 
invalidating the data is to square them: (xi – μ)2. This method has at least 
two benefits over using MAD. 

The first benefit is a bit academic: squaring values is much easier to 
work with mathematically than taking their absolute value. In this book, 
we won’t take advantage of this directly, but for mathematicians, the abso-
lute value function can be a bit annoying in practice. 
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The second, and more practical, reason is that squaring results in hav-
ing an exponential penalty, meaning measurements very far away from the 
mean are penalized much more. In other words, small differences aren’t 
nearly as important as big ones, as we would feel intuitively. If someone 
scheduled your meeting in the wrong room, for example, you wouldn’t be 
too upset if you ended up next door to the right room, but you’d almost cer-
tainly be upset if you were sent to an office on the other side of the country. 

If we substitute the absolute value for the squared difference, we get 
the following:

Var x
n

xi

n

( ) = × −( )∑1 2

1

µ

This formula, which has a very special place in the study of probability, 
is called the variance. Notice that the equation for variance is exactly the 
same as MAD except that the absolute value function in MAD has been 
replaced with squaring. Because it has nicer mathematical properties, vari-
ance is used much more frequently in the study of probability than MAD. 
We can see how different our results look when we calculate their variance:

Var(group a) = 0.002, Var(group b) = 0.269

Because we’re squaring, however, we no longer have an intuitive under-
standing of what the results of variance mean. MAD gave us an intuitive 
definition: this is the average distance from the mean. Variance, on the 
other hand, says: this is the average squared difference. Recall that when 
we used MAD, group b was about 10 times more spread out than group a, 
but in the case of variance, group b is now 100 times more spread out!

finding the standard deviation
While in theory variance has many properties that make it useful, in 
practice it can be hard to interpret the results. It’s difficult for humans to 
think about what a difference of 0.002 seconds squared means. As we’ve 
mentioned, the great thing about MAD is that the result maps quite well to 
our intuition. If the MAD of group b is 0.4, that means that the average dis-
tance between any given observation and the mean is literally 0.4 seconds. 
But averaging over squared differences doesn’t allow us to reason about a 
result as nicely. 

To fix this, we can take the square root of the variance in order to scale 
it back into a number that works with our intuition a bit better. The square 
root of a variance is called the standard deviation and is represented by the 
lowercase Greek letter sigma (σ). It is defined as follows:

σ µ= × −( )∑1 2

1n
xi

n
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The formula for standard deviation isn’t as scary as it might seem at 
first. Looking at all of the different parts, given that our goal is to numeri-
cally represent how spread out our data is, we can see that:

1. We want the difference between our data and the mean, xi – μ.

2. We need to convert negative numbers to positives, so we take the 
square, (xi – μ)2.

3. We need to add up all the differences:

xii

n
−( )∑ µ 2

4. We don’t want the sum to be affected by the number of observations, 
so we normalize it with 1/n.

5. Finally, we take the square root of everything so that the numbers are 
closer to what they would be if we used the more intuitive absolute 
distance.

If we look at the standard deviation for our two groups, we can see that 
it’s very similar to the MAD:

σ(group a) = 0.046, σ(group b) = 0.519

The standard deviation is a happy medium between the intuitive-
ness of MAD and the mathematical ease of variance. Notice that, just like 
with MAD, the difference in the spread between b and a is a factor of 10. 
The standard deviation is so useful and ubiquitous that, in most of the 
literature on probability and statistics, variance is defined simply as σ2, 
or sigma squared!

So we now have three different ways of measuring the spread of our 
data. We can see the results in Table 11-2.

table 11-2: Measurements of Spread by Method

method of measuring spread group a group b

Mean absolute deviations 0 .040 0 .416

Variance 0 .002 0 .269

Standard deviation 0 .046 0 .519

None of these methods for measuring spread is more correct than 
any other. By far the most commonly used value is the standard devia-
tion, because we can use it, together with the mean, to define a normal dis-
tribution, which in turn allows us to define explicit probabilities to possible 
true values of our measurements. In the next chapter, we’ll take a look at 
the normal distribution and see how it can help us understand our level of 
confidence in our measurements.
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Wrapping Up
In this chapter, you learned three methods for quantifying the spread of a 
group of observations. The most intuitive measurement of the spread of val-
ues is the mean absolute deviation (MAD), which is the average distance of 
each observation from the mean. While intuitive, MAD isn’t as useful math-
ematically as the other options. 

The mathematically preferred method is the variance, which is the 
squared difference of our observations. But when we calculate the variance, 
we lose the intuitive feel for what our calculation means. 

Our third option is to use the standard deviation, which is the square 
root of the variance. The standard deviation is mathematically useful and 
also gives us results that are reasonably intuitive.

Exercises
Try answering the following questions to see how well you understand these 
different methods of measuring the spread of data. The solutions can be 
found in Appendix C.

1. One of the benefits of variance is that squaring the differences makes 
the penalties exponential. Give some examples of when this would be 
a useful property.

2. Calculate the mean, variance, and standard deviation for the following 
values: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
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In the previous two chapters, you learned 
about two very important concepts: 

mean (μ), which allows us to estimate a 
measurement from various observations, and 

standard deviation (σ), which allows us to measure 
the spread of our observations.

On its own, each concept is useful, but together, they are even more 
powerful: we can use them as parameters for the most famous probability 
distribution of all, the normal distribution.

In this chapter you’ll learn how to use the normal distribution to deter-
mine an exact probability for your degree of certainty about one estimate 
proving true compared to others. The true goal of parameter estimation 
isn’t simply to estimate a value, but rather to assign a probability for a range 
of possible values. This allows us to perform more sophisticated reasoning 
with uncertain values.
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We established in the preceding chapter that the mean is a solid 
method of estimating an unknown value based on existing data, and that 
the standard deviation can be used to measure the spread of that data. By 
measuring the spread of our observations, we can determine how confi-
dently we believe in our mean. It makes sense that the more spread out our 
observations, the less sure we are in our mean. The normal distribution 
allows us to precisely quantify how certain we are in various beliefs when 
taking our observations into account.

measuring fuses for dastardly deeds
Imagine a mustachioed cartoon villain wants to set off a bomb to blow a 
hole in a bank vault. Unfortunately, he has only one bomb, and it’s rather 
large. He knows that if he gets 200 feet away from the bomb, he can escape 
to safety. It takes him 18 seconds to make it that far. If he’s any closer to the 
bomb, he risks death.

Although the villain has only one bomb, he has six fuses of equal size, 
so he decides to test out five of the six fuses, saving the last one for the 
bomb. The fuses are all the same size and should take the same amount 
of time to burn through. He sets off each fuse and measures how long it 
takes to burn through to make sure he has the 18 seconds he needs to get 
away. Of course, being in a rush leads to some inconsistent measurements. 
Here are the times he recorded (in seconds) for each fuse to burn through: 
19, 22, 20, 19, 23.

So far so good: none of the fuses takes less than 18 seconds to burn. 
Calculating the mean gives us µ = 20.6, and calculating the standard devia-
tion gives us σ = 1.62. 

But now we want to determine a concrete probability for how likely it is 
that, given the data we have observed, a fuse will go off in less than 18 sec-
onds. Since our villain values his life even more than the money, he wants 
to be 99.9 percent sure he’ll survive the blast, or he won’t attempt the heist.

In Chapter 10, you learned that the mean is a good estimate for the 
true value given a set of measurements, but we haven’t yet come up with any 
way to express how strongly we believe this value to be true. 

In Chapter 11, you learned that you can quantify how spread out your 
observations are by calculating the standard deviation. It seems rational 
that this might also help us figure out how likely the alternatives to our 
mean might be. For example, suppose you drop a glass on the floor and it 
shatters. When you’re cleaning up, you might search adjacent rooms based 
on how dispersed the pieces of glass are. If, as shown in Figure 12-1, the 
pieces are very close together, you would feel more confident that you don’t 
need to check for glass in the next room.



The Normal Distribution   113

Figure 12-1: When the broken pieces are closer  
together, you’re more sure of where to clean up.

However, if the glass pieces are widely dispersed, as in Figure 12-2, 
you’ll likely want to sweep around the entrance of the next room, even if 
you don’t immediately see broken glass there. Likewise, if the villain’s fuse 
timings are very spread out, even if he didn’t observe any fuses lasting less 
than 18 seconds, it’s possible that the real fuse could still burn through in 
less than 18 seconds.

Figure 12-2: When the pieces are spread out,  
you’re less sure of where they might be.

When observations are scattered visually, we intuitively feel that there 
might be other observations at the extreme limits of what we can see. We 
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are also less confident in exactly where the center is. In the glass example, 
it’s harder to be sure of where the glass fell if you weren’t there to witness 
the fall and the glass fragments are dispersed widely.

We can quantify this intuition with the most studied and well-known 
probability distribution: the normal distribution.

the normal distribution
The normal distribution is a continuous probability distribution (like 
the beta distribution in Chapter 5) that best describes the strength of 
possible beliefs in the value of an uncertain measurement, given a known 
mean and standard deviation. It takes µ and σ (the mean and standard 
deviation, respectively) as its only two parameters. A normal distribution 
with µ = 0 and σ = 1 has a bell shape, as shown in Figure 12-3.

The normal distribution with a mean of 0 and a standard deviation of 1
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The normal distribution with a mean of 0 and a standard deviation of 1
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Figure 12-3: A normal distribution with µ = 0 and σ = 1

As you can see, the center of the normal distribution is its mean. The 
width of a normal distribution is determined by its standard deviation. 
Figures 12-4 and 12-5 show normal distributions with µ = 0 and σ = 0.5 
and 2, respectively.
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Normal distribution with a standard deviation of 0.5
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Figure 12-4: A normal distribution with µ = 0 and σ = 0.5

Normal distribution with a standard deviation of 2
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Figure 12-5: A normal distribution with µ = 0 and σ = 2
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As the standard deviation shrinks, so does the width of the normal 
distribution.

The normal distribution, as we’ve discussed, reflects how strongly we 
believe in our mean. So, if our observations are more scattered, we believe 
in a wider range of possible values and have less confidence in the central 
mean. Conversely, if all of our observations are more or less the same 
(meaning a small σ), we believe our estimate is pretty accurate.

When the only thing we know about a problem is the mean and stan-
dard deviation of the data we have observed, the normal distribution is the 
most honest representation of our state of beliefs. 

Solving the Fuse Problem
Going back to our original problem, we have a normal distribution with  
µ = 20.6 and σ = 1.62. We don’t really know anything else about the proper-
ties of the fuses beyond the recorded burn times, so we can model the data 
with a normal distribution using the observed mean and standard deviation 
(see Figure 12-6).

Normal distribution representing our fuse measurements
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Figure 12-6: A normal distribution with µ = 20.6 and σ = 1.62

The question we want to answer is: what is the probability, given the data 
observed, that the fuse will run for 18 seconds or less? To solve this problem, 
we need to use the probability density function (PDF), a concept you first 
learned about in Chapter 5. The PDF for the normal distribution is:
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And to get the probability, we need to integrate this function over values 
less than 18:

N µ σ= =( )
−∞∫ 20 6 1 62
18

. , .

You can imagine integration as simply taking the area under the curve 
for the region you’re interested in, as shown in Figure 12-7. 

Area representing fuse lengths less than or equal to 18 seconds
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Area representing fuse lengths less than or equal to 18 seconds
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Figure 12-7: The area under the curve that we’re interested in

The area of the shaded region represents the probability of the fuse 
lasting 18 seconds or less given the observations. Notice that even though 
none of the observed values was less than 18, because of the spread of the 
observations, the normal distribution in Figure 12-6 shows that a value 
of 18 or less is still possible. By integrating over all values less than 18, we 
can calculate the probability that the fuse will not last as long as our villain 
needs it to. 

Integrating this function by hand is not an easy task. Thankfully, we 
have R to do the integration for us. 

Before we do this, though, we need to determine what number to start 
integrating from. The normal distribution is defined on the range of all 
possible values from negative infinity (−∞) to infinity (∞). So in theory what 
we want is:

P Nfuse time < 18( ) = ( )
−∞∫ µ σ,
18
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But obviously we cannot integrate our function from negative infinity 
on a computer! Luckily, as you can see in Figures 12-6 and 12-7, the prob-
ability density function becomes an incredibly small value very quickly. We 
can see that the line in the PDF is nearly flat at 10, meaning there is virtu-
ally no probability in this region, so we can just integrate from 10 to 18. We 
could also choose a lower value, like 0, but because there’s effectively no 
probability in this region, it won’t change our result in any meaningful way. 
In the next section, we’ll discuss a heuristic that makes choosing a lower or 
upper bound easier. 

We’ll integrate this function using R’s integrate() function and the 
dnorm() function (which is just R’s function for the normal distribution 
PDF), calculating the PDF of the normal distribution as follows:

integrate(function(x) dnorm(x,mean=20.6,sd=1.62),10,18)
0.05425369 with absolute error < 3e-11

Rounding the value, we can see that P(fuse time < 18) = 0.05, telling us 
there is a 5 percent chance that the fuse will last 18 seconds or less. Even vil-
lains value their own lives, and in this case our villain will attempt the bank 
robbery only if he is 99.9 percent sure that he can safely escape the blast. 
For today then, the bank is safe!

The power of the normal distribution is that we can reason probabilisti-
cally about a wide range of possible alternatives to our mean, giving us an 
idea of how realistic our mean is. We can use the normal distribution any 
time we want to reason about data for which we know only the mean and 
standard deviation.

 However, this is also the danger of the normal distribution. In practice, 
if you have information about your problem besides the mean and standard 
deviation, it is usually best to make use of that. We’ll see an example of this 
in a later section.

some tricks and intuitions
While R makes integrating the normal distribution significantly easier than 
trying to solve the integral by hand, there’s a very useful trick that can sim-
plify things even further when you’re working with the normal distribution. 
For any normal distribution with a known mean and standard deviation, 
you can estimate the area under the curve around μ in terms of σ.

For example, the area under the curve for the range from µ – σ (one 
standard deviation less than the mean) to µ + σ (one standard deviation 
greater than the mean) holds 68 percent of the mass of the distribution. 

This means that 68 percent of the possible values fall within ± one stan-
dard deviation of the mean, as shown in Figure 12-8.
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68% of the area under the curve is one standard deviation from the mean in either direction
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Figure 12-8: Sixty-eight percent of the probability density (area under the curve) lies 
between one standard deviation of the mean in either direction. 

We can continue by increasing our distance from the mean by multiples 
of σ. Table 12-1 gives probabilities for these other areas.

table 12-1: Areas Under the Curve for Different Means

distance from the mean Probability

σ 68 percent

2σ 95 percent

3σ 99 .7 percent

This little trick is very useful for quickly assessing the likelihood of a 
value given even a small sample. All you need is a calculator to easily figure 
out the μ and σ, which means you can do some pretty accurate estimations 
even in the middle of a meeting!

As an example, when measuring snowfall in Chapter 10 we had the 
following measurements: 6.2, 4.5, 5.7, 7.6, 5.3, 8.0, 6.9. For these measure-
ments, the mean is 6.31 and the standard deviation is 1.17. This means that 
we can be 95 percent sure that the true value of the snowfall was somewhere 
between 3.97 inches (6.31 – 2 × 1.17) and 8.65 inches (6.31 + 2 × 1.17). No 
need to manually calculate an integral or boot up a computer to use R!
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Even when we do want to use R to integrate, this trick can be useful for 
determining a minimum or maximum value to integrate from or to. For 
example, if we want to know the probability that the villain’s bomb fuse will 
last longer than 21 seconds, we don’t want to have to integrate from 21 to 
infinity. What can we use for our upper bound? We can integrate from 
21 to 25.46 (which is 20.6 + 3 × 1.62), which is 3 standard deviations from 
our mean. Being three standard deviations from the mean will account 
for 99.7 percent of our total probability. The remaining 0.3 percent lies on 
either side of the distribution, so only half of that, 0.15 percent of our prob-
ability density, lies in the region greater than 25.46. So if we integrate from 
21 to 25.46, we’ll only be missing a tiny amount of probability in our result. 
Clearly, we could easily use R to integrate from 21 to something really safe 
such as 30, but this trick allows us to figure out what “really safe” means.

“n sigma” events
You may have heard an event being described in terms of sigma events, such 
as “the fall of the stock price was an eight-sigma event.” What this expres-
sion means is that the observed data is eight standard deviations from the 
mean. We saw the progression of one, two, and three standard deviations 
from the mean in Table 12-1, which were values at 68, 95, and 99.7 percent, 
respectively. You can easily intuit from this that an eight-sigma event must 
be extremely unlikely. In fact, if you ever observe data that is five standard 
deviations from the mean, it’s likely a good sign that your normal distribu-
tion is not modeling the underlying data accurately.

To show the growing rarity of an event as it increases by n sigma, say 
you are looking at events you might observe on a given day. Some are very 
common, such as waking up to the sunrise. Others are less common, such 
as waking up and it being your birthday. Table 12-2 shows how many days it 
would take to expect the event to happen per one sigma increase.

table 12-2: Rarity of an Event as It Increases by n Sigma

(–/+) distance from the mean expected every . . .

σ 3 days

2σ 3 weeks

3σ 1 year

4σ 4 decades

5σ 5 millennia

6σ 1 .4 million years

So a three-sigma event is like waking up and realizing it’s your birthday, 
but a six-sigma event is like waking up and realizing that a giant asteroid is 
crashing toward earth!
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the beta distribution and the normal distribution
You may remember from Chapter 5 that the beta distribution allows us to 
estimate the true probability given that we have observed α desired out-
comes and β undesired outcomes, where the total number of outcomes is 
α + β. Based on that, you might take some issue with the notion that the 
normal distribution is truly the best method to model parameter estimation 
given that we know only the mean and standard deviation of any given data 
set. After all, we could describe a situation where α = 3 and β = 4 by simply 
observing three values of 1 and four values of 0. This would give us µ = 0.43 
and σ = 0.53. We can then compare the beta distribution with α = 3 and β = 4 
to a normal distribution with µ = 0.43 and σ = 0.53, as shown in Figure 12-9.
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Figure 12-9: Comparing the beta distribution to the normal distribution

It’s clear that these distributions are quite different. We can see that 
for both distributions the center of mass appears in roughly the same place, 
but the bounds for the normal distribution extend way beyond the limits 
of our graph. This demonstrates a key point: only when you know nothing 
about the data other than its mean and variance is it safe to assume a nor-
mal distribution.

For the beta distribution, we know that the value we’re looking for must 
lie in the range 0 to 1. The normal distribution is defined from −∞ to ∞, 
which often includes values that cannot possibly exist. However, in most 
cases this is not practically important because measurements out that far 
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are essentially impossible in probabilistic terms. But for our example of 
measuring the probability of an event happening, this missing information 
is important for modeling our problem.

So, while the normal distribution is a very powerful tool, it is no substi-
tute for having more information about a problem.

Wrapping Up
The normal distribution is an extension of using the mean for estimating 
a value from observations. The normal distribution combines the mean 
and the standard deviation to model how spread out our observations are 
from the mean. This is important because it allows us to reason about the 
error in our measurements in a probabilistic way. Not only can we use the 
mean to make our best guess, but we can also make probabilistic statements 
about ranges of possible values for our estimate. 

Exercises
Try answering the following questions to see how well you understand the 
normal distribution. The solutions can be found in Appendix C.

1. What is the probability of observing a value five sigma greater than the 
mean or more?

2. A fever is any temperature greater than 100.4 degrees Fahrenheit. 
Given the following measurements, what is the probability that the 
patient has a fever?

100.0, 99.8, 101.0, 100.5, 99.7

3. Suppose in Chapter 11 we tried to measure the depth of a well by tim-
ing coin drops and got the following values:

2.5, 3, 3.5, 4, 2

The distance an object falls can be calculated (in meters) with the 
following formula:

distance = 1/2 × G × time2

where G is 9.8 m/s/s. What is the probability that the well is over 
500 meters deep?

4. What is the probability there is no well (i.e., the well is really 0 meters 
deep)? You’ll notice that probability is higher than you might expect, 
given your observation that there is a well. There are two good explana-
tions for this probability being higher than it should. The first is that 
the normal distribution is a poor model for our measurements; the 
second is that, when making up numbers for an example, I chose values 
that you likely wouldn’t see in real life. Which is more likely to you?
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e s t i m a t i O n :  t h e  P D f,  c D f, 
a n D  Q u a n t i L e  f u n c t i O n

In this part so far, we’ve focused heavily on 
the building blocks of the normal distribu-

tion and its use in estimating parameters. 
In this chapter, we’ll dig in a bit more, explor-

ing some mathematical tools we can use to make 
better claims about our parameter estimates. We’ll 
walk through a real-world problem and see how to 
approach it in different ways using a variety of  
metrics, functions, and visualizations.

This chapter will cover more on the probability density function (PDF); 
introduce the cumulative distribution function (CDF), which helps us more 
easily determine the probability of ranges of values; and introduce quan-
tiles, which divide our probability distributions into parts with equal prob-
abilities. For example, a percentile is a 100-quantile, meaning it divides the 
probability distribution into 100 equal pieces.
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estimating the conversion Rate for an email signup list
Say you run a blog and want to know the probability that a visitor to your 
blog will subscribe to your email list. In marketing terms, getting a user 
to perform a desired event is referred to as the conversion event, or simply a 
conversion, and the probability that a user will subscribe is the conversion rate. 

As discussed in Chapter 5, we would use the beta distribution to esti-
mate p, the probability of subscribing, when we know k, the number of 
people subscribed, and n, the total number of visitors. The two parameters 
needed for the beta distribution are α, which in this case represents the 
total subscribed (k), and β, representing the total not subscribed (n – k). 

When the beta distribution was introduced, you learned only the basics 
of what it looked like and how it behaved. Now you’ll see how to use it as the 
foundation for parameter estimation. We want to not only make a single 
estimate for our conversion rate, but also come up with a range of possible 
values within which we can be very confident the real conversion rate lies.

the Probability density function
The first tool we’ll use is the probability density function. We’ve seen the 
PDF several times so far in this book: in Chapter 5 where we talked about 
the beta distribution; in Chapter 9 when we used PDFs to combine Bayesian 
priors; and once again in Chapter 12, when we talked about the normal 
distribution. The PDF is a function that takes a value and returns the prob-
ability of that value.

In the case of estimating the true conversion rate for your email list, 
let’s say for the first 40,000 visitors, you get 300 subscribers. The PDF for 
our problem is the beta distribution where α = 300 and β = 39,700:

Beta
beta

x
x x

; ,
,

300 39700
1

300 39700

300 1 39700 1

( ) = −( )
( )

− −

We’ve spent a lot of time talking about using the mean as a good esti-
mate for a measurement, given some uncertainty. Most PDFs have a mean, 
which we compute specifically for the beta distribution as follows:

µ
α

α βBeta = +

This formula is relatively intuitive: simply divide the number of out-
comes we care about (300) by the total number of outcomes (40,000). This 
is the same mean you’d get if you simply considered each email an observa-
tion of 1 and all the others an observation of 0 and then averaged them out.
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The mean is our first stab at estimating a parameter for the true conver-
sion rate. But we’d still like to know other possible values for our conversion 
rate. Let’s continue exploring the PDF to see what else we can learn.

Visualizing and Interpreting the PDF
The PDF is usually the go-to function for understanding a distribution of 
probabilities. Figure 13-1 illustrates the PDF for the blog conversion rate’s 
beta distribution.
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Figure 13-1: Visualizing the beta PDF for our beliefs in the true conversion rate

What does this PDF represent? From the data we know that the blog’s 
average conversion rate is simply 

subscribed
visited

= =
300

40 000
0 0075

,
.

, 

or the mean of our distribution. It seems unlikely that the conversion rate 
is exactly 0.0075 rather than, say, 0.00751. We know the total area under 
the curve of the PDF must add up to 1, since this PDF represents the prob-
ability of all possible estimates. We can estimate ranges of values for our 
true conversion rate by looking at the area under the curve for the ranges 
we care about. In calculus, this area under the curve is the integral, and it 
tells us how much of the total probability is in the region of the PDF we’re 
interested in. This is exactly like how we used integration with the normal 
distribution in the prior chapter. 
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Given that we have uncertainty in our measurement, and we have a 
mean, it could be useful to investigate how much more likely it is that the 
true conversion rate is 0.001 higher or lower than the mean of 0.0075 we 
observed. Doing so would give us an acceptable margin of error (that is, 
we’d be happy with any values in this range). To do this, we can calculate 
the probability of the actual rate being lower than 0.0065, and the prob-
ability of the actual rate being higher than 0.0085, and then compare them. 
The probability that our conversion rate is actually much lower than our 
observations is calculated like so:

P much lower Beta( ) = ( ) =∫ 300 39700 0 008
0

0 0065
, .

.

Remember that when we take the integral of a function, we are just 
summing all the little pieces of our function. So, if we take the integral 
from 0 to 0.0065 for the beta distribution with an α of 300 and a β of 39,700, 
we are adding up all the probabilities for the values in this range and deter-
mining the probability that our true conversion rate is somewhere between 
0 and 0.0065. 

We can ask questions about the other extreme as well, such as: how 
likely is it that we actually got an unusually bad sample and our true 
conversion rate is much higher, such as a value greater than, say, 0.0085 
(meaning a better conversion rate than we had hoped)?

P much higher Beta( ) = ( ) =∫ 300 397000 0 012
0 0085

1
, .

.

Here we are integrating from 0.0085 to the largest possible value, which 
is 1, to determine the probability that our true value lies somewhere in this 
range. So, in this example, the probability that our conversion rate is 0.001 
higher or more than we observed is actually more likely than the probabil-
ity that it is 0.001 less or worse than observed. This means that if we had to 
make a decision with the limited data we have, we could still calculate how 
much likelier one extreme is than the other:

P

P

much higher

much lower

Beta

Beta

( )
( )

=
( )∫ 300 397000

30

0 0085

1
,

.

00 39700

0 012
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1 5

0

0 0065
,

.

.
..

( )
= =

∫
Thus, it’s 50 percent more likely that our true conversion rate is greater 

than 0.0085 than that it’s lower than 0.0065.

Working with the PDF in R
In this book we’ve already used two R functions for working with PDFs, 
dnorm() and dbeta(). For most well-known probability distributions, R sup-
ports an equivalent dfunction() function for calculating the PDF. 
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Functions like dbeta() are also useful for approximating the continuous 
PDF—for example, when you want to quickly plot out values like these:

xs <- seq(0.005,0.01,by=0.00001)
xs.all <- seq(0,1,by=0.0001)
plot(xs,dbeta(xs,300,40000-300),type='l',lwd=3, 
     ylab="density",
     xlab="probability of subscription",
     main="PDF Beta(300,39700)")

n O t e  To understand the plotting code, see Appendix A.

In this example code, we’re creating a sequence of values that are each 
0.00001 apart—small, but not infinitely small, as they would be in a truly 
continuous distribution. Nonetheless, when we plot these values, we see 
something that looks close enough to a truly continuous distribution (as 
shown earlier in Figure 13-1).

introducing the cumulative distribution function
The most common mathematical use of the PDF is in integration, to 
solve for probabilities associated with various ranges, just as we did in the 
previous section. However, we can save ourselves a lot of effort with the 
cumulative distribution function (CDF), which sums all parts of our distribu-
tion, replacing a lot of calculus work. 

The CDF takes in a value and returns the probability of getting that 
value or lower. For example, the CDF for Beta(300,397000) when x = 0.0065 
is approximately 0.008. This means that the probability of the true conver-
sion rate being 0.0065 or less is 0.008.

The CDF gets this probability by taking the cumulative area under the 
curve for the PDF (for those comfortable with calculus, the CDF is the anti-
derivative of the PDF). We can summarize this process in two steps: (1) fig-
ure out the cumulative area under the curve for each value of the PDF, and 
(2) plot those values. That’s our CDF. The value of the curve at any given 
x-value is the probability of getting a value of x or lower. At 0.0065, the value 
of the curve would be 0.008, just as we calculated earlier.

To understand how this works, let’s break the PDF for our problem into 
chunks of 0.0005 and focus on the region of our PDF that has the most 
probability density: the region between 0.006 and 0.009. 

Figure 13-2 shows the cumulative area under the curve for the PDF 
of Beta(300,39700). As you can see, our cumulative area under the curve 
takes into account all of the area in the pieces to its left.
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Visualizing the cumulative area under the curve

Probability of subscription

D
en

sit
y

0.0070.006 0.008

500

250

0

750

0.009

0.008 0.122 0.508 0.876 0.988 0.999

Figure 13-2: Visualizing the cumulative area under the curve

Mathematically speaking, Figure 13-2 represents the following 
sequence of integrals:

Beta 300 397000
0

0 0065
,

.
( )∫

Beta Beta300 397000 300 397000
0

0 0065

0 0065

0 007
, ,

.

.

.
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0 0065

0 007
, ,

.

.

.
( ) + ( ) +∫ ∫ 3300 397000

0 007

0 0075
,

.

.
( )∫

(And so on)

Using this approach, as we move along the PDF, we take into account 
an increasingly higher probability until our total area is 1, or complete cer-
tainty. To turn this into the CDF, we can imagine a function that looks at 
only these areas under the curve. Figure 13-3 shows what happens if we plot 
the area under the curve for each of our points, which are 0.0005 apart. 

Now we have a way of visualizing just how the cumulative area under the 
curve changes as we move along the values for our PDF. Of course, the prob-
lem is that we’re using these discrete chunks. In reality, the CDF just uses infi-
nitely small pieces of the PDF, so we get a nice smooth line (see Figure 13-4).

In our example, we derived the CDF visually and intuitively. Deriving 
the CDF mathematically is much more difficult, and often leads to very 
complicated equations. Luckily, we typically use code to work with the CDF, 
as we’ll see in a few more sections.
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Visualizing just the cumulative probability
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Figure 13-3: Plotting just the cumulative probability from Figure 13-2

The cumulative distribution function
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Figure 13-4: The CDF for our problem
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Visualizing and Interpreting the CDF
The PDF is most useful visually for quickly estimating where the peak of a 
distribution is, and for getting a rough sense of the width (variance) and 
shape of a distribution. However, with the PDF it is very difficult to reason 
about the probability of various ranges visually. The CDF is a much better 
tool for this. For example, we can use the CDF in Figure 13-4 to visually 
reason about a much wider range of probabilistic estimates for our problem 
than we can using the PDF alone. Let’s go over a few visual examples of how 
we can use this amazing mathematical tool.

Finding the Median
The median is the point in the data at which half the values fall on one side 
and half on the other—it is the exact middle value of our data. In other words, 
the probability of a value being greater than the median and the probability 
of it being less than the median are both 0.5. The median is particularly use-
ful for summarizing the data in cases where it contains extreme values. 

Unlike the mean, computing the median can actually be pretty tricky. 
For small, discrete cases, it’s as simple as putting your observations in order 
and selecting the value in the middle. But for continuous distributions like 
our beta distribution, it’s a little more complicated. 

Thankfully, we can easily spot the median on a visualization of the 
CDF. We can simply draw a line from the point where the cumulative prob-
ability is 0.5, meaning 50 percent of the values are below this point and 50 
percent are above. As Figure 3-5 illustrates, the point where this line inter-
sects the x-axis gives us our median!
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Figure 13-5: Estimating the median visually using the CDF
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We can see that the median for our data is somewhere between 0.007 
and 0.008 (this happens to be very close the mean of 0.0075, meaning the 
data isn’t particularly skewed).

Approximating Integrals Visually
When working with ranges of probabilities, we’ll often want to know the 
probability that the true value lies somewhere between some value y and 
some value x. 

We can solve this kind of problem using integration, but even if R 
makes solving integrals easier, it’s very time-consuming to make sense of 
the data and to constantly rely on R to compute integrals. Since all we want 
is a rough estimate that the probability of a visitor subscribing to the blog 
falls within a particular range, we don’t need to use integration. The CDF 
makes it very easy to eyeball whether or not a certain range of values has a 
very high probability or a very low probability of occurring.

To estimate the probability that the conversion rate is between 0.0075 
and 0.0085, we can trace lines from the x-axis at these points, then see 
where they meet up with the y-axis. The distance between the two points 
is the approximate integral, as shown in Figure 13-6.

Estimating P(x > 0.0075 and x < 0.0085)
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Figure 13-6: Visually performing integration using the CDF

We can see that on the y-axis these values range from roughly 0.5 to 
0.99, meaning that there is approximately a 49 percent chance that our 
true conversion rate lies somewhere between these two values. The best 
part is we didn’t have to do any integration! This is, of course, because 
the CDF represents the integral from the minimum of our function to 
all possible values.
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So, since nearly all of the probabilistic questions about a parameter 
estimate involve knowing the probability associated with certain ranges of 
beliefs, the CDF is often a far more useful visual tool than the PDF.

Estimating Confidence Intervals
Looking at the probability of ranges of values leads us to a very impor-
tant concept in probability: the confidence interval. A confidence interval is 
a lower and upper bound of values, typically centered on the mean, describ-
ing a range of high probability, usually 95, 99, or 99.9 percent. When we 
say something like “The 95 percent confidence interval is from 12 to 20,” 
what we mean is that there is a 95 percent probability that our true mea-
surement is somewhere between 12 and 20. Confidence intervals provide 
a good method of describing the range of possibilities when we’re dealing 
with uncertain information. 

n O t e  In Bayesian statistics what we are calling a “confidence interval” can go by a few 
other names, such as “critical region” or “critical interval.” In some more traditional 
schools of statistics, “confidence interval” has a slightly different meaning, which is 
beyond the scope of this book. 

We can estimate confidence intervals using the CDF. Say we wanted 
to know the range that covers 80 percent of the possible values for the 
true conversion rate. We solve this problem by combining our previous 
approaches: we draw lines at the y-axis from 0.1 and 0.9 to cover 80 percent, 
and then simply see where on the x-axis these intersect with our CDF, as 
shown in Figure 13-7.

Estimating 80 percent confidence interval
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Figure 13-7: Estimating our confidence intervals visually using the CDF
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As you can see, the x-axis is intersected at roughly 0.007 and 0.008, 
which means that there’s an 80 percent chance that our true conversion 
rate falls somewhere between these two values.

Using the CDF in R
Just as nearly all major PDFs have a function starting with d, like dnorm(), 
CDF functions start with p, such as pnorm(). In R, to calculate the probability 
that Beta(300,39700) is less than 0.0065, we can simply call pbeta() like this:

pbeta(0.0065,300,39700)
> 0.007978686

And to calculate the true probability that the conversion rate is greater 
than 0.0085, we can do the following:

pbeta(1,300,39700) - pbeta(0.0085,300,39700)
> 0.01248151

The great thing about CDFs is that it doesn’t matter if your distribution 
is discrete or continuous. If we wanted to determine the probability of get-
ting three or fewer heads in five coin tosses, for example, we would use the 
CDF for the binomial distribution like this:

pbinom(3,5,0.5)
> 0.8125

the Quantile function
You might have noticed that the median and confidence intervals we took 
visually with the CDF are not easy to do mathematically. With the visualiza-
tions, we simply drew lines from the y-axis and used those to find a point on 
the x-axis.

Mathematically, the CDF is like any other function in that it takes an 
x value, often representing the value we’re trying to estimate, and gives us 
a y value, which represents the cumulative probability. But there is no obvi-
ous way to do this in reverse; that is, we can’t give the same function a y to 
get an x. As an example, imagine we have a function that squares values. We 
know that square(3) = 9, but we need an entirely new function—the square 
root function—to know that the square root of 9 is 3. 

However, reversing the function is exactly what we did in the previous sec-
tion to estimate the median: we looked at the y-axis for 0.5, then traced it 
back to the x-axis. What we’ve done visually is compute the inverse of the CDF. 
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While computing the inverse of the CDF visually is easy for estimates, 
we need a separate mathematical function to compute it for exact values. 
The inverse of the CDF is an incredibly common and useful tool called the 
quantile function. To compute an exact value for our median and confidence 
interval, we need to use the quantile function for the beta distribution. Just 
like the CDF, the quantile function is often very tricky to derive and use 
mathematically, so instead we rely on software to do the hard work for us.

Visualizing and Understanding the Quantile Function
Because the quantile function is simply the inverse of the CDF, it just looks 
like the CDF rotated 90 degrees, as shown in Figure 13-8.
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Figure 13-8: Visually, the quantile function is just a rotation of the CDF.

Whenever you hear phrases like:

“The top 10 percent of students . . . ”

“The bottom 20 percent of earners earn less than . . . ” 

“The top quartile has notably better performance than . . . ”

you’re talking about values that are found using the quantile function. To 
look up a quantile visually, just find the quantity you’re interested in on the 
x-axis and see where it meets the y-axis. The value on the y-axis is the value 
for that quantile. Keep in mind that if you’re talking about the “top 10 per-
cent,” you really want the 0.9 quantile.
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Calculating Quantiles in R
R also includes the function qnorm() for calculating quantiles. This function 
is very useful for quickly answering questions about what values are bounds 
of our probability distribution. For example, if we want to know the value 
that 99.9 percent of the distribution is less than, we can use qbeta() with the 
quantile we’re interested in calculating as the first argument, and the alpha 
and beta parameters of our beta distribution as the second and third argu-
ments, like so:

qbeta(0.999,300,39700)
> 0.008903462

The result is 0.0089, meaning we can be 99.9 percent certain that the 
true conversion rate for our emails is less than 0.0089. We can then use the 
quantile function to quickly calculate exact values for confidence intervals 
for our estimates. To find the 95 percent confidence interval, we can find 
the values greater than the 2.5 percent lower quantile and the values lower 
than the 97.5 percent upper quantile, and the interval between them is the 
95 percent confidence interval (the unaccounted region totals 5 percent of 
the probability density at both extremes). We can easily calculate these for 
our data with qbeta():

Our lower bound is qbeta(0.025,300,39700) = 0.0066781

Our upper bound is qbeta(0.975,300,39700) = 0.0083686

Now we can confidently say that we are 95 percent certain that the real 
conversion rate for blog visitors is somewhere between 0.67 percent and 
0.84 percent. 

We can, of course, increase or decrease these thresholds depending on 
how certain we want to be. Now that we have all of the tools of parameter 
estimation, we can easily pin down an exact range for the conversion rate. 
The great news is that we can also use this to predict ranges of values for 
future events.

Suppose an article on your blog goes viral and gets 100,000 visitors. 
Based on our calculations, we know that we should expect between 670 
and 840 new email subscribers.

Wrapping up
We’ve covered a lot of ground and touched on the interesting relationship 
between the probability density function (PDF), cumulative distribution 
function (CDF), and the quantile function. These tools form the basis of 
how we can estimate parameters and calculate our confidence in those 
estimations. That means we can not only make a good guess as to what an 
unknown value might be, but also determine confidence intervals that very 
strongly represent the possible values for a parameter. 
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Exercises
Try answering the following questions to see how well you understand 
the tools of parameter estimation. The solutions can be found in 
Appendix C.

1. Using the code example for plotting the PDF on page 127, plot the CDF 
and quantile functions.

2. Returning to the task of measuring snowfall from Chapter 10, say you 
have the following measurements (in inches) of snowfall:

7.8, 9.4, 10.0, 7.9, 9.4, 7.0, 7.0, 7.1, 8.9, 7.4

What is your 99.9 percent confidence interval for the true value 
of snowfall?

3. A child is going door to door selling candy bars. So far she has visited 
30 houses and sold 10 candy bars. She will visit 40 more houses today. 
What is the 95 percent confidence interval for how many candy bars she 
will sell the rest of the day? 
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P R i O R  P R O b a b i L i t i e s

In the previous chapter, we looked at 
using some important mathematical tools to 

estimate the conversion rate for blog visitors 
subscribing to an email list. However, we haven’t 

yet covered one of the most important parts of param-
eter estimation: using our existing beliefs about 
a problem. 

In this chapter, you’ll see how we can use our prior probabilities, com-
bined with observed data, to come up with a better estimate that blends 
existing knowledge with the data we’ve collected.
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Predicting email conversion Rates
To understand how the beta distribution changes as we gain information, 
let’s look at another conversion rate. In this example, we’ll try to figure out 
the rate at which your subscribers click a given link once they’ve opened 
an email from you. Most companies that provide email list management 
services tell you, in real time, how many people have opened an email and 
clicked the link.

Our data so far tells us that of the first five people that open an email, 
two of them click the link. Figure 14-1 shows our beta distribution for 
this data. 

Beta(2,3) likelihood for possible conversion rates
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Figure 14-1: The beta distribution for our observations so far

Figure 14-1 shows Beta(2,3). We used these numbers because two peo-
ple clicked and three did not click. Unlike in the previous chapter, where 
we had a pretty narrow spike in possible values, here we have a huge range 
of possible values for the true conversion rate because we have very little 
information to work with. Figure 14-2 shows the CDF for this data, to help 
us more easily reason about these probabilities.

The 95 percent confidence interval (i.e., a 95 percent chance that our 
true conversion rate is somewhere in that range) is marked to make it easier 
to see. At this point our data tells us that the true conversion rate could be 
anything between 0.05 and 0.8! This is a reflection of how little informa-
tion we’ve actually acquired so far. Given that we’ve had two conversions, 
we know the true rate can’t be 0, and since we’ve had three non-conver-
sions, we also know it can’t be 1. Almost everything else is fair game.
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CDF for Beta(2,3)
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Figure 14-2: CDF for our observation

taking in Wider context with Priors
But wait a second—you may be new to email lists, but an 80 percent click-
through rate sounds pretty unlikely. I subscribe to plenty of lists, but I defi-
nitely don’t click through to the content 80 percent of the time that I open 
the email. Taking that 80 percent rate at face value seems naive when I con-
sider my own behavior. 

As it turns out, your email service provider thinks it’s suspicious too. 
Let’s look at some wider context. For blogs listed in the same category as 
yours, the provider’s data claims that on average only 2.4 percent of people 
who open emails click through to the content.

In Chapter 9, you learned how we could use past information to modify 
our belief that Han Solo can successfully navigate an asteroid field. Our 
data tells us one thing, but our background information tells us another. 
As you know by now, in Bayesian terms the data we have observed is our 
likelihood, and the external context information—in this case from our per-
sonal experience and our email service—is our prior probability. Our chal-
lenge now is to figure out how to model our prior. Luckily, unlike the case 
with Han Solo, we actually have some data here to help us.

The conversion rate of 2.4 percent from your email provider gives us 
a starting point: now we know we want a beta distribution whose mean is 
roughly 0.024. (The mean of a beta distribution is α / (α + β).) However, 
this still leaves us with a range of possible options: Beta(1,41), Beta(2,80), 
Beta(5,200), Beta(24,976), and so on. So which should we use? Let’s plot 
some of these out and see what they look like (Figure 14-3).
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Possible priors for email conversion rates
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Figure 14-3: Comparing different possible prior probabilities

As you can see, the lower the combined α + β, the wider our distribution. 
The problem now is that even the most liberal option we have, Beta(1,41), 
seems a little too pessimistic, as it puts a lot of our probability density in very 
low values. We’ll stick with this distribution nonetheless, since it is based on 
the 2.4 percent conversion rate in the data from the email provider, and is 
the weakest of our priors. Being a “weak” prior means it will be more eas-
ily overridden by actual data as we collect more of it. A stronger prior, like 
Beta(5,200), would take more evidence to change (we’ll see how this hap-
pens next). Deciding whether or not to use a strong prior is a judgment 
call based on how well you expect the prior data to describe what you’re 
currently doing. As we’ll see, even a weak prior can help keep our estimates 
more realistic when we’re working with small amounts of data.

Remember that, when working with the beta distribution, we can 
calculate our posterior distribution (the combination of our likelihood 
and our prior) by simply adding together the parameters for the two 
beta distributions:

Beta Betaposterior posterior likelihood prior likeliα β α α β, ,( ) = + hhood prior+( )β
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Using this formula, we can compare our beliefs with and without priors, 
as shown in Figure 14-4.
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Figure 14-4: Comparing our likelihood (no prior) to our posterior (with prior)

Wow! That’s quite sobering. Even though we’re working with a relatively 
weak prior, we can see that it has made a huge impact on what we believe 
are realistic conversion rates. Notice that for the likelihood with no prior, 
we have some belief that our conversion rate could be as high as 80 percent. 
As mentioned, this is highly suspicious; any experienced email marketer 
would tell you than an 80 percent conversion rate is unheard of. Adding a 
prior to our likelihood adjusts our beliefs so that they become much more 
reasonable. But I still think our updated beliefs are a bit pessimistic. Maybe 
the email’s true conversion rate isn’t 40 percent, but it still might be better 
than this current posterior distribution suggests. 

How can we prove that our blog has a better conversion rate than the 
sites in the email provider’s data, which have a 2.4 percent conversion rate? 
The way any rational person does: with more data! We wait a few hours to 
gather more results and now find that out of 100 people who opened your 
email, 25 have clicked the link! Let’s look at the difference between our 
new posterior and likelihood, shown in Figure 14-5.
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Estimates of converstion rate after more observations with and without prior
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Figure 14-5: Updating our beliefs with more data

As we continue to collect data, we see that our posterior distribution 
using a prior is starting to shift toward the one without the prior. Our prior 
is still keeping our ego in check, giving us a more conservative estimate for 
the true conversion rate. However, as we add evidence to our likelihood, 
it starts to have a bigger impact on what our posterior beliefs look like. In 
other words, the additional observed data is doing what it should: slowly 
swaying our beliefs to align with what it suggests. So let’s wait overnight and 
come back with even more data!

In the morning we find that 300 subscribers have opened their email, 
and 86 of those have clicked through. Figure 14-6 shows our updated beliefs. 

What we’re witnessing here is the most important point about 
Bayesian statistics: the more data we gather, the more our prior beliefs 
become diminished by evidence. When we had almost no evidence, our 
likelihood proposed some rates we know are absurd (e.g., 80 percent click-
through), both intuitively and from personal experience. In light of little 
evidence, our prior beliefs squashed any data we had. 

But as we continue to gather data that disagrees with our prior, our 
posterior beliefs shift toward what our own collected data tells us and away 
from our original prior.

Another important takeaway is that we started with a pretty weak prior. 
Even then, after just a day of collecting a relatively small set of information, 
we were able to find a posterior that seems much, much more reasonable.
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Estimates converging with more data with and without prior
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Figure 14-6: Our posterior beliefs with even more data added

The prior probability distribution in this case helped tremendously 
with keeping our estimate much more realistic in the absence of data. This 
prior probability distribution was based on real data, so we could be fairly 
confident that it would help us get our estimate closer to reality. However, 
in many cases we simply don’t have any data to back up our prior. So what 
do we do then?

Prior as a means of Quantifying experience
Because we knew the idea of an 80 percent click-through rate for emails was 
laughable, we used data from our email provider to come up with a better 
estimate for our prior. However, even if we didn’t have data to help establish 
our prior, we could still ask someone with a marketing background to help 
us make a good estimate. A marketer might know from personal experience 
that you should expect about a 20 percent conversion rate, for example.

Given this information from an experienced professional, you might 
choose a relatively weak prior like Beta(2,8) to suggest that the expected 
conversion rate should be around 20 percent. This distribution is just a 
guess, but the important thing is that we can quantify this assumption. For 
nearly every business, experts can often provide powerful prior information 
based simply on previous experience and observation, even if they have no 
training in probability specifically. 
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By quantifying this experience, we can get more accurate estimates 
and see how they can change from expert to expert. For example, if a 
marketer is certain that the true conversion rate should be 20 percent, 
we might model this belief as Beta(200,800). As we gather data, we can 
compare models and create multiple confidence intervals that quantita-
tively model any expert beliefs. Additionally, as we gain more and more 
information, the difference due to these prior beliefs will decrease.

is there a fair Prior to use When We know nothing?
There are certain schools of statistics that teach that you should always add 
1 to both α and β when estimating parameters with no other prior. This cor-
responds to using a very weak prior that holds that each outcome is equally 
likely: Beta(1,1). The argument is that this is the “fairest” (i.e., weakest) prior 
we can come up with in the absence of information. The technical term for a 
fair prior is a noninformative prior. Beta(1,1) is illustrated in Figure 14-7.
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Figure 14-7: The noninformative prior Beta(1,1) 

As you can see, this is a perfectly straight line, so that all outcomes are 
then equally likely and the mean likelihood is 0.5. The idea of using a non-
informative prior is that we can add a prior to help smooth out our estimate, 
but that prior isn’t biased toward any particular outcome. However, while this 
may initially seem like the fairest way to approach the problem, even this very 
weak prior can lead to some strange results when we test it out.

Take, for example, the probability that the sun will rise tomorrow. 
Say you are 30 years old, and so you’ve experienced about 11,000 sunrises 
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in your lifetime. Now suppose someone asks the probability that the sun 
will rise tomorrow. You want to be fair and use a noninformative prior, 
Beta(1,1). The distribution that represents your belief that the sun will not 
rise tomorrow would be Beta(1,11001), based on your experiences. While 
this gives a very low probability for the sun not rising tomorrow, it also sug-
gests that we would expect to see the sun not rise at least once by the time 
you reach 60 years old. The so-called “noninformative” prior is providing a 
pretty strong opinion about how the world works!

You could argue that this is only a problem because we understand 
celestial mechanics, so we already have strong prior information we can’t 
forget. But the real problem is that we’ve never observed the case where the sun 
doesn’t rise. If we go back to our likelihood function without the noninfor-
mative prior, we get Beta(0,11000). 

However, when either α or β ≤ 0, the beta distribution is undefined, 
which means that the correct answer to “What is the probability that the 
sun will rise tomorrow?” is that the question doesn’t make sense because 
we’ve never seen a counterexample. 

As another example, suppose you found a portal that transported you 
and a friend to a new world. An alien creature appears before you and fires 
a strange-looking gun at you that just misses. Your friend asks you, “What’s 
the probability that the gun will misfire?” This is a completely alien world 
and the gun looks strange and organic, so you know nothing about its 
mechanics at all. 

This is, in theory, the ideal scenario for using a noninformative prior, 
since you have absolutely no prior information about this world. If you add 
your noninformative prior, you get a posterior Beta(1,2) probability that the 
gun will misfire (we observed α = 0 misfires and β = 1 successful fires). This 
distribution tells us the mean posterior probability of a misfire is 1/3, which 
seems astoundingly high given that you don’t even know if the strange gun 
can misfire. Again, even though Beta(0,1) is undefined, using it seems like 
the rational approach to this problem. In the absence of sufficient data 
and any prior information, your only honest option is to throw your hands 
in the air and tell your friend, “I have no clue how to even reason about 
that question!”

The best priors are backed by data, and there is never really a true 
“fair” prior when you have a total lack of data. Everyone brings to a problem 
their own experiences and perspective on the world. The value of Bayesian 
reasoning, even when you are subjectively assigning priors, is that you are 
quantifying your subjective belief. As we’ll see later in the book, this means 
you can compare your prior to other people’s and see how well it explains 
the world around you. A Beta(1,1) prior is sometimes used in practice, but 
you should use it only when you earnestly believe that the two possible out-
comes are, as far as you know, equally likely. Likewise, no amount of math-
ematics can make up for absolute ignorance. If you have no data and no 
prior understanding of a problem, the only honest answer is to say that you 
can’t conclude anything at all until you know more. 

All that said, it’s worth noting that this topic of whether to use Beta(1,1) 
or Beta(0,0) has a long history, with many great minds arguing various 
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positions. Thomas Bayes (namesake of Bayes’ theorem) hesitantly believed 
in Beta(1,1); the great mathematician Simon-Pierre Laplace was quite 
certain Beta(1,1) was correct; and the famous economist John Maynard 
Keynes thought using Beta(1,1) was so preposterous that it discredited all 
of Bayesian statistics!

Wrapping Up
In this chapter, you learned how to incorporate prior information about a 
problem to arrive at much more accurate estimates for unknown param-
eters. When we have only a little information about a problem, we can 
easily get probabilistic estimates that seem impossible. But we might have 
prior information that can help us make better inferences from that small 
amount of data. By adding this information to our estimates, we get much 
more realistic results. 

Whenever possible, it’s best to use a prior probability distribution based 
on actual data. However, often we won’t have data to support our problem, 
but we either have personal experience or can turn to experts who do. In 
these cases, it’s perfectly fine to estimate a probability distribution that cor-
responds to your intuition. Even if you’re wrong, you’ll be wrong in a way 
that is recorded quantitatively. Most important, even if your prior is wrong, 
it will eventually be overruled by data as you collect more observations. 

Exercises
Try answering the following questions to see how well you understand 
priors. The solutions can be found in Appendix C.

1. Suppose you’re playing air hockey with some friends and flip a coin to 
see who starts with the puck. After playing 12 times, you realize that 
the friend who brings the coin almost always seems to go first: 9 out 
of 12 times. Some of your other friends start to get suspicious. Define 
prior probability distributions for the following beliefs:

• One person who weakly believes that the friend is cheating and the 
true rate of coming up heads is closer to 70 percent.

• One person who very strongly trusts that the coin is fair and pro-
vided a 50 percent chance of coming up heads.

• One person who strongly believes the coin is biased to come up 
heads 70 percent of the time.

2. To test the coin, you flip it 20 more times and get 9 heads and 11 tails. 
Using the priors you calculated in the previous question, what are the 
updated posterior beliefs in the true rate of flipping a heads in terms 
of the 95 percent confidence interval?
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t O  h y P O t h e s i s  t e s t i n G : 
b u i L D i n G  a  b a y e s i a n  a / b  t e s t

In this chapter, we’re going to build our first 
hypothesis test, an A/B test. Companies often 

use A/B tests to try out product web pages, 
emails, and other marketing materials to deter-

mine which will work best for customers. In this chapter, 
we’ll test our belief that removing an image from an 
email will increase the click-through rate against the belief 
that removing it will hurt the click-through rate. 

Since we already know how to estimate a single unknown parameter, all 
we need to do for our test is estimate both parameters—that is, the conver-
sion rates of each email. Then we’ll use R to run a Monte Carlo simulation 
and determine which hypothesis is likely to perform better—in other words, 
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which variant, A or B, is superior. A/B tests can be performed using classical 
statistical techniques such as t-tests, but building our test the Bayesian way 
will help us understand each part of it intuitively and give us more useful 
results as well.

We’ve covered the basics of parameter estimation pretty well at this 
point. We’ve seen how to use the PDF, CDF, and quantile functions to learn 
the likelihood of certain values, and we’ve seen how to add a Bayesian 
prior to our estimate. Now we want to use our estimates to compare two 
unknown parameters.

setting up a bayesian a/b test
Keeping with our email example from the previous chapter, imagine 
we want to see whether adding an image helps or hurts the conversion 
rate for our blog. Previously, the weekly email has included some image. 
For our test we’re going to send one variant with images like usual, and 
another without images. The test is called an A/B test because we are 
comparing variant A (with image) and variant B (without) to determine 
which one performs better.

Let’s assume at this point we have 600 blog subscribers. Because we 
want to exploit the knowledge gained during this experiment, we’re only 
going to be running our test on 300 of them; that way, we can send the 
remaining 300 subscribers what we believe to be the most effective variant 
of the email. 

The 300 people we’re going to test will be split up into two groups, 
A and B. Group A will receive the usual email with a big picture at the 
top, and group B will receive an email with no picture. The hope is that a 
simpler email will feel less “spammy” and encourage users to click through 
to the content.

Finding Our Prior Probability
Next, we need to figure out what prior probability we’re going to use. We’ve 
run an email campaign every week, so from that data we have a reasonable 
expectation that the probability of clicking the link to the blog on any given 
email should be around 30 percent. To make things simple, we’ll use the 
same prior for both variants. We’ll also choose a pretty weak version of our 
prior distribution, meaning that it considers a wider range of conversion 
rates to be probable. We’re using a weak prior because we don’t really know 
how well we expect B to do, and this is a new email campaign, so other fac-
tors could cause a better or worse conversion. We’ll settle on Beta(3,7) for 
our prior probability distribution. This distribution allows us to represent a 
beta distribution where 0.3 is the mean, but a wide range of possible alter-
native rates are considered. We can see this distribution in Figure 15-1.
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Figure 15-1: Visualizing our prior probability distribution

All we need now is our likelihood, which means we need to collect data.

Collecting Data
We send out our emails and get the results in Table 15-1.

table 15-1: Email Click-through Rates

clicked not clicked observed 
conversion rate

Variant a 36 114 0 .24

Variant b 50 100 0 .33

We can treat each of these variants as a separate parameter we’re try-
ing to estimate. In order to arrive at a posterior distribution for each, we 
need to combine both their likelihood distribution and prior distribution. 
We’ve already decided that the prior for these distributions should be 
Beta(3,7), representing a relatively weak belief in what possible values we 
expect the conversion rate to be, given no additional information. We say 
this is a weak belief because we don’t believe very strongly in a particular 
range of values, and consider all possible rates with a reasonably high prob-
ability. For the likelihood of each, we’ll again use the beta distribution, 
making α the number of times the link was clicked through and β the num-
ber of times it was not.

Recall that:

Beta Beta , posterior posterior prior likelihood priorα β α α β,( ) = + ++( )βlikelihood
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Variant A will be represented by Beta(36+3,114+7) and variant B by 
Beta(50+3,100+7). Figure 15-2 shows the estimates for each parameter 
side by side.

Parameter estimation variants A and B
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Figure 15-2: Beta distributions for our estimates for both variants of our email

Clearly, our data suggests that variant B is superior, in that it garners a 
higher conversion rate. However, from our earlier discussion on parameter 
estimation, we know that the true conversion rate is one of a range of possible 
values. We can also see here that there’s an overlap between the possible true 
conversion rates for A and B. What if we were just unlucky in our A responses, 
and A’s true conversion rate is in fact much higher? What if we were also just 
lucky with B, and its conversion rate is in fact much lower? It’s easy to see a 
possible world in which A is actually the better variant, even though it did 
worse on our test. So the real question is: how sure can we be that B is the 
better variant? This is where the Monte Carlo simulation comes in.

monte carlo simulations
The accurate answer to which email variant generates a higher click-
through rate lies somewhere in the intersection of the distributions of A 
and B. Fortunately, we have a way to figure it out: a Monte Carlo simulation. 
A Monte Carlo simulation is any technique that makes use of random sam-
pling to solve a problem. In this case, we’re going to randomly sample from 
the two distributions, where each sample is chosen based on its probability 
in the distribution so that samples in a high-probability region will appear 
more frequently. For example, as we can see in Figure 15-2, a value greater 
than 0.2 is far more likely to be sampled from A than a value less than 0.2. 
However, a random sample from distribution B is nearly certain to be above 
0.2. In our random sampling, we might pick out a value of 0.2 for variant A 



From Parameter Estimation to Hypothesis Testing: Building a Bayesian A/B Test   153

and 0.35 for variant B. Each sample is random, and based on the relative 
probability of values in the A and B distributions. The values 0.2 for A and 
0.35 for B both could be the true conversion rate for each variant based on 
the evidence we’ve observed. This individual sampling from the two dis-
tributions confirms the belief that variant B is, in fact, superior to A, since 
0.35 is larger than 0.2. 

However, we could also sample 0.3 for variant A and 0.27 for variant 
B, both of which are reasonably likely to be sampled from their respective 
distributions. These are also both realistic possible values for the true con-
version rate of each variant, but in this case, they indicate that variant B is 
actually worse than variant A.

We can imagine that the posterior distribution represents all the worlds 
that could exist based on our current state of beliefs regarding each conver-
sion rate. Every time we sample from each distribution, we’re seeing what 
one possible world could look like. We can tell visually in Figure 15-1 that 
we should expect more worlds where B is truly the better variant. The more 
frequently we sample, the more precisely we can tell in exactly how many 
worlds, of all the worlds we’ve sampled from, B is the better variant. Once 
we have our samples, we can look at the ratio of worlds where B is the best 
to the total number of worlds we’ve looked at and get an exact probability 
that B is in fact greater than A.

In How Many Worlds Is B the Better Variant? 
Now we just have to write the code that will perform this sampling. R’s 
rbeta() function allows us to automatically sample from a beta distribu-
tion. We can consider each comparison of two samples a single trial. The 
more trials we run, the more precise our result will be, so we’ll start with 
100,000 trials by assigning this value to the variable n.trials:

n.trials <- 100000

Next we’ll put our prior alpha and beta values into variables:

prior.alpha <- 3

prior.beta <- 7

Then we need to collect samples from each variant. We’ll use rbeta() 
for this:

a.samples <- rbeta(n.trials,36+prior.alpha,114+prior.beta)
b.samples <- rbeta(n.trials,50+prior.alpha,100+prior.beta)

We’re saving the results of the rbeta() samples into variables, too, so we 
can access them more easily. For each variant, we input the number of peo-
ple who clicked through to the blog and the number of people who didn’t. 
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Finally, we compare how many times the b.samples are greater than the 
a.samples and divide that number by n.trials, which will give us the percent-
age of the total trials where variant B was greater than variant A: 

p.b_superior <- sum(b.samples > a.samples)/n.trials

The result we end up with is:

p.b_superior 
> 0.96

What we see here is that in 96 percent of the 100,000 trials, variant B 
was superior. We can imagine this as looking at 100,000 possible worlds. 
Based on the distribution of possible conversion rates for each variant, in 
96 percent of the worlds variant B was the better of the two. This result 
shows that, even with a relatively small number of observed samples, we 
have a pretty strong belief that B is the better variant. If you’ve ever done 
t-tests in classical statistics, this is roughly equivalent—if we used a Beta(1,1) 
prior—to getting a p -value of 0.04 from a single-tailed t-test (often consid-
ered “statistically significant”). However, the beauty of our approach is that 
we were able to build this test from scratch using just our knowledge of 
probability and a straightforward simulation.

How Much Better Is Each Variant B Than Each Variant A? 
Now we can say precisely how certain we are that B is the superior variant. 
However, if this email campaign were for a real business, simply saying “B is 
better” wouldn’t be a very satisfactory answer. Don’t you really want to know 
how much better?

This is the real power of our Monte Carlo simulation. We can take the 
exact results from our last simulation and test how much better variant B 
is likely to be by looking at how many times greater the B samples are than 
the A samples. In other words, we can look at this ratio: 

B samples
A samples

In R, if we take the a.samples and b.samples from before, we can compute 
b.samples/a.samples. This will give us a distribution of the relative improve-
ments from variant A to variant B. When we plot out this distribution as a 
histogram, as shown in Figure 15-3, we can see how much we expect variant 
B to improve our click-through rate.

From this histogram we can see that variant B will most likely be about 
a 40 percent improvement (ratio of 1.4) over A, although there is an entire 
range of possible values. As we discussed in Chapter 13, the cumulative 
distribution function (CDF) is much more useful than a histogram for 
reasoning about our results. Since we’re working with data rather than a 
mathematical function, we’ll compute the empirical cumulative distribution 
function with R’s ecdf() function. The eCDF is illustrated in Figure 15-4.
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Figure 15-3: A histogram of possible improvements we might see
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Figure 15-4: A distribution of possible improvements we might see

Now we can see our results more clearly. There is really just a small, 
small chance that A is better, and even if it is better, it’s not going to be by 
much. We can also see that there’s about a 25 percent chance that vari-
ant B is a 50 percent or more improvement over A, and even a reasonable 
chance it could be more than double the conversion rate! Now, in choos-
ing B over A, we can actually reason about our risk by saying, “The chance 
that B is 20 percent worse is roughly the same that it’s 100 percent better.” 
Sounds like a good bet to me, and a much better statement of our knowl-
edge than, “There is a statistically significant difference between B and A.”
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Wrapping Up
In this chapter we saw how parameter estimation naturally extends to a 
form of hypothesis testing. If the hypothesis we want to test is “variant B has 
a better conversion rate than variant A,” we can start by first doing param-
eter estimation for the possible conversion rates of each variant. Once we 
know those estimates, we can use the Monte Carlo simulation in order to 
sample from them. By comparing these samples, we can come up with a 
probability that our hypothesis is true. Finally, we can take our test one 
step further by seeing how well our new variant performs in these possible 
worlds, estimating not only whether the hypothesis is true, but also how 
much improvement we are likely to see.

Exercises
Try answering the following questions to see how well you understand run-
ning A/B tests. The solutions can be found in Appendix C.

1. Suppose a director of marketing with many years of experience tells you 
he believes very strongly that the variant without images (B) won’t per-
form any differently than the original variant. How could you account 
for this in our model? Implement this change and see how your final 
conclusions change as well.

2. The lead designer sees your results and insists that there’s no way that 
variant B should perform better with no images. She feels that you 
should assume the conversion rate for variant B is closer to 20 percent 
than 30 percent. Implement a solution for this and again review the 
results of our analysis.

3. Assume that being 95 percent certain means that you’re more or less 
“convinced” of a hypothesis. Also assume that there’s no longer any 
limit to the number of emails you can send in your test. If the true con-
version for A is 0.25 and for B is 0.3, explore how many samples it would 
take to convince the director of marketing that B was in fact superior. 
Explore the same for the lead designer. You can generate samples of 
conversions with the following snippet of R:

true.rate <- 0.25
number.of.samples <- 100
results <- runif(number.of.samples) <= true.rate
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f a c t O R  a n D  P O s t e R i O R  O D D s : 
t h e  c O m P e t i t i O n  O f  i D e a s

In the previous chapter, we saw that we can 
view a hypothesis test as an extension of 

parameter estimation. In this chapter, we’ll 
think about hypothesis tests instead as a way to 

compare ideas with an important mathematical tool 
called the Bayes factor. The Bayes factor is a formula 
that tests the plausibility of one hypothesis by compar-
ing it to another. The result tells us how many times 
more likely one hypothesis is than the other. 

We’ll then see how to combine the Bayes factor with our prior beliefs 
to come up with the posterior odds, which tells us how much stronger one 
belief is than the other at explaining our data.
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Revisiting bayes’ theorem
Chapter 6 introduced Bayes’ theorem, which takes the following form:

P H D
P H P D H

P D
|( ) = ( ) × |( )

( )

Recall that there are three parts of this formula that have special names:

•	 P(H | D) is the posterior probability, which tells us how strongly we should 
believe in our hypothesis, given our data.

•	 P(H) is the prior belief, or the probability of our hypothesis prior to 
looking at the data.

•	 P(D | H) is the likelihood of getting the existing data if our hypothesis 
were true.

The last piece, P(D), is the probability of the data observed indepen-
dent of the hypothesis. We need P(D) in order to make sure that our poste-
rior probability is correctly placed somewhere between 0 and 1. If we have 
all of these pieces of information, we can calculate exactly how strongly 
we should believe in our hypothesis given the data we’ve observed. But as I 
mentioned in Chapter 8, P(D) is often very hard to define. In many cases, 
it’s not obvious how we can figure out the probability of our data. P(D) 
is also totally unnecessary if all we care about is comparing the relative 
strength of two different hypotheses.

For these reasons, we often use the proportional form of Bayes’ theorem, 
which allows us to analyze the strength of our hypotheses without knowing 
P(D). It looks like this:

P H D P H P D H|( ) ( ) × |( )∝

In plain English, the proportional form of Bayes’ theorem says that the 
posterior probability of our hypothesis is proportional to the prior mul-
tiplied by the likelihood. We can use this to compare two hypotheses by 
examining the ratio of the prior belief multiplied by the likelihood for each 
hypothesis using the ratio of posteriors formula:

P H P D H

P H P D H
1 1

2 2

( ) × |( )
( ) × |( )

What we have now is a ratio of how well each of our hypotheses explains 
the data we’ve observed. That is, if the ratio is 2, then H1 explains the 
observed data twice as well as H2, and if the ratio is 1/2, then H2 explains 
the data twice as well as H1.
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building a hypothesis test using the Ratio of Posteriors
The ratio of posteriors formula gives us the posterior odds, which allows us to 
test hypotheses or beliefs we have about data. Even when we do know P(D), 
the posterior odds is a useful tool because it allows us to compare ideas. To 
better understand the posterior odds, we’ll break down the ratio of poste-
riors formula into two parts: the likelihood ratio, or the Bayes factor, and 
the ratio of prior probabilities. This is a standard, and very helpful, prac-
tice that makes it much easier to reason about the likelihood and the prior 
probability separately.

The Bayes Factor
Using the ratio of posteriors formula, let’s assume that P(H1) = P(H2)—that 
is, that our prior belief in each hypothesis is the same. In that case, the 
ratio of prior beliefs in the hypotheses is just 1, so all that’s left is:

P D H

P D H

|( )
|( )

1

2

This is the Bayes factor, the ratio between the likelihoods of two 
hypotheses.

Take a moment to really think about what this equation is saying. 
When we consider how we’re going to argue for our H1—that is, our belief 
about the world—we think about gathering evidence that supports our 
beliefs. A typical argument, therefore, involves building up a set of data, 
D1, that supports H1, and then arguing with a friend who has gathered a 
set of data, D2, that supports their hypothesis, H2. 

In Bayesian reasoning, though, we’re not gathering evidence to sup-
port our ideas; we’re looking to see how well our ideas explain the evidence 
in front of us. What this ratio tells us is the likelihood of what we’ve seen 
given what we believe to be true compared to what someone else believes to 
be true. Our hypothesis wins when it explains the world better than the 
competing hypothesis. 

If, however, the competing hypothesis explains the data much better 
than ours, it might be time to change our beliefs. The key here is that in 
Bayesian reasoning, we don’t worry about supporting our beliefs—we are 
focused on how well our beliefs support the data we observe. In the end, 
data can either confirm our ideas or lead us to change our minds.

Prior Odds
So far we have assumed that the prior probability of each hypothesis is the 
same. This is clearly not always the case: a hypothesis may explain the data 
well even if it is very unlikely. If you’ve lost your phone, for example, both 
the belief that you left it in the bathroom and the belief that aliens took it 
to examine human technology explain the data quite well. However, the 
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bathroom hypothesis is clearly much more likely. This is why we need to 
consider the ratio of prior probabilities:

P H

P H
1

2

( )
( )

This ratio compares the probability of two hypotheses before we look 
at the data. When used in relation to the Bayes factor, this ratio is called 
the prior odds in our H1 and written as O(H1). This representation is help-
ful because it lets us easily note how strongly (or weakly) we believe in the 
hypothesis we’re testing. When this number is greater than 1, it means 
the prior odds favor our hypothesis, and when it is a fraction less than 1, 
it means they’re against our hypothesis. For example, O(H1) = 100 means 
that, without any other information, we believe H1 is 100 times more likely 
than the alternative hypothesis. On the other hand, when O(H1) = 1/100, 
the alternative hypothesis is 100 times more likely than ours.

Posterior Odds
If we put together the Bayes factor and the prior odds, we get the 
posterior odds:

posterior odds = ( )
|( )
|( )

O H
P D H

P D H1
1

2

The posterior odds calculates how many times better our hypothesis 
explains the data than a competing hypothesis. 

Table 16-1 lists some guidelines for evaluating various posterior 
odds values.

table 16-1: Guidelines for Evaluating Posterior Odds

Posterior odds strength of evidence

1 to 3 Interesting, but nothing conclusive

3 to 20 Looks like we’re on to something

20 to 150 Strong evidence in favor of H1

> 150 Overwhelming evidence

We can look at the reciprocal of these odds to decide when to change 
our mind about an idea. 

While these values can serve as a useful guide, Bayesian reasoning is 
still a form of reasoning, which means you have to use some judgment. If 
you’re having a casual disagreement with a friend, a posterior odds of 2 
might be enough to make you feel confident. If you’re trying to figure out 
if you’re drinking poison, a posterior odds of 100 still might not cut it.
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Next, we’ll look at two examples in which we use the Bayes factor to 
determine the strength of our beliefs.

testing for a Loaded Die

We can use the Bayes factor and posterior odds as a form of hypothesis 
testing in which each test is a competition between two ideas. Suppose your 
friend has a bag with three six-sided dice in it, and one die is weighted so 
that it lands on 6 half the time. The other two are traditional dice whose 
probability of rolling a 6 is 1/6. Your friend pulls out a die and rolls 10 times, 
with the following results:

6, 1, 3, 6, 4, 5, 6, 1, 2, 6

We want to figure out if this is the loaded die or a regular die. We can 
call the loaded die H1 and the regular die H2.

Let’s start by working out the Bayes factor:  

P D H

P D H

|( )
|( )

1

2

The first step is calculating P(D | H), or the likelihood of H1 and H2 
given the data we’ve observed. In this example, your friend rolled four 6s 
and six non-6s. We know that if the die is loaded, the probability of rolling 
a 6 is 1/2 and the probability of rolling any non-6 is also 1/2. This means 
the likelihood of seeing this data given that we’ve used the loaded die is:

P D H|( ) = 





 × 






 =1

4 61
2

1
2

0 00098.

In the case of the fair die, the probability of rolling a 6 is 1/6, while the 
probability of rolling anything else is 5/6. This means our likelihood of see-
ing this data for H2, the hypothesis that the die is fair, is:

P D H|( ) = 





 × 






 =2

4 61
6

5
6

0 00026.

Now we can compute our Bayes factor, which will tell us how much 
better H1 is than H2 at explaining our data, assuming each hypothesis was 
equally probable in the first place (meaning that the prior odds ratio is 1):

P D H

P D H

|( )
|( )

= =1

2

0 00098
0 00026

3 77
.
.

.

This means that H1, the belief that the die is loaded, explains the data 
we observed almost four times better than H2. 
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However, this is true only if H1 and H2 are both just as likely to be true 
in the first place. But we know there are two fair dice in the bag and only 
one loaded die, which means that each hypothesis was not equally likely. 
Based on the distribution of the dice in the bag, we know that these are the 
prior probabilities for each hypothesis:

P H P H1 2

1
3

2
3

( ) = ( ) =;

From these, we can calculate the prior odds for H1:

prior odds = ( ) = ( )
( )

= =O H
P H

P H1
1

2

1
3
2
3

1
2

Because there is only one loaded die in the bag and two fair dice, we’re 
twice as likely to pull a fair die than a loaded one. With our prior odds for 
H1, we can now compute our full posterior odds:

posterior odds = ( ) ×
|( )
|( )

= × =O H
P D H

P D H1
1

2

1
2

3 77 1 89. .

While the initial likelihood ratio showed that H1 explained the data 
almost four times as well as H2, the posterior odds shows us that, because 
H1 is only half as likely as H2, H1 is actually only about twice as strong of an 
explanation as H2. 

From this, if you absolutely had to draw a conclusion about whether 
the die was loaded or not, your best bet would be to say that it is indeed 
loaded. However, a posterior odds of less than 2 is not particularly strong 
evidence in favor of H1. If you really wanted to know whether or not the die 
was loaded, you would need to roll it a few more times until the evidence 
in favor of one hypothesis or the other was great enough for you to make a 
stronger decision.

Now let’s look at a second example of using the Bayes factor to deter-
mine the strength of our beliefs.

Self-Diagnosing rare Diseases Online

Many people have made the mistake of looking up their symptoms and 
ailments online late at night, only to find themselves glued to the screen 
in terror, sure they are the victim of some strange and terrible disease! 
Unfortunately for them, their analysis almost always excludes Bayesian 
reasoning, which might help alleviate some unnecessary anxiety. In 
this example, let’s assume you’ve made the mistake of looking up your 
symptoms and have found two possible ailments that fit. Rather than 
panicking for no reason, you’ll use posterior odds to weigh the odds 
of each.
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Suppose you wake up one day with difficulty hearing and a ringing (tin-
nitus) in one ear. It annoys you all day, and when you get home from work, 
you decide it’s high time to search the web for potential causes of your 
symptoms. You become increasingly concerned, and finally come to two 
possible hypotheses:

Earwax impaction You have too much earwax in one ear. A quick visit 
to the doctor will clear up this condition.

Vestibular schwannoma You have a brain tumor growing on the 
myelin sheath of the vestibular nerve, causing irreversible hearing loss 
and possibly requiring brain surgery.

Of the two, the possibility of vestibular schwannoma is the most worry-
ing. Sure, it could be just earwax, but what if it’s not? What if you do have 
a brain tumor? Since you’re most worried about the possibility of a brain 
tumor, you decide to make this your H1. Your H2 is the hypothesis that you 
have too much earwax in one ear.

Let’s see if posterior odds can calm you down.
As in our last example, we’ll start our exploration by looking at the 

likelihood of observing these symptoms if each hypothesis were true, and 
compute the Bayes factor. This means we need to compute P(D | H). You’ve 
observed two symptoms: hearing loss and tinnitus.

For vestibular schwannoma, the probability of experiencing hearing 
loss is 94 percent, and the probability of experiencing tinnitus is 83 percent, 
which means the probability of having hearing loss and tinnitus if you have 
vestibular schwannoma is:

P D H|( ) = × =1 0 94 0 83 0 78. . .

Next, we’ll do the same for H2. For earwax impaction, the probability of 
experiencing hearing loss is 63 percent, and the probability of experiencing 
tinnitus is 55 percent. The likelihood of having your symptoms if you have 
impacted earwax is:

P D H|( ) = × =2 0 63 0 55 0 35. . .

Now we have enough information to look at our Bayes factor:

P D H

P D H

|( )
|( )

= =1

2

0 78
0 35

2 23
.
.

.

Yikes! Looking at just the Bayes factor doesn’t do much to help allevi-
ate your concerns of having a brain tumor. Taking only the likelihood ratio 
into account, it appears that you’re more than twice as likely to experience 
these symptoms if you have vestibular schwannoma than if you have earwax 
impaction! Luckily, we’re not done with our analysis yet.

The next step is to determine the prior odds of each hypothesis. 
Symptoms aside, how likely is it for someone to have one issue versus the 
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other? We can find epidemiological data for each of these diseases. It turns 
out that vestibular schwannoma is a rare condition. Only 11 in 1,000,000 
people contract it each year. The prior odds look like this:

P H1

11
1 000 000

( ) =
, ,

Unsurprisingly, earwax impaction is much, much more common, with 
37,000 cases per 1,000,000 people in a year:

P H 2

37 000
1 000 000

( ) = ,
, ,

To get the prior odds for H1, we need to look at the ratio of these two 
prior probabilities:

O H
P H

P H1
1

2

11
1 000 000

37 000
1 000 000

11
37 000

( ) = ( )
( )

= =, ,
,

, ,
,

Based on prior information alone, a given person is about 3,700 times 
more likely to have an earwax impaction than vestibular schwannoma. But 
before you can breathe easy, we need to compute the full posterior odds. 
This just means multiplying our Bayes factor by our prior odds:

O H
P D H

P D H1
1

2

11
37 000

2 23
223

370 000
( ) ×

|( )
|( )

= × =
,

.
,

This result shows that H2 is about 1,659 times more likely than H1. 
Finally, you can relax, knowing that a visit to the doctor in the morning for 
a simple ear cleaning will likely clear all this up!

In everyday reasoning, it’s easy to overestimate the probability of scary 
situations, but by using Bayesian reasoning, we can break down the real 
risks and see how likely they actually are.

Wrapping up
In this chapter, you learned how to use the Bayes factor and posterior odds 
to compare two hypotheses. Rather than focusing on providing data to sup-
port our beliefs, the Bayes factor tests how well our beliefs support the data 
we’ve observed. The result is a ratio that reflects how many times better one 
hypothesis explains the data than the other. We can use it to strengthen 
our prior beliefs when they explain the data better than alternative beliefs. 
On the other hand, when the result is a fraction, we might want to consider 
changing our minds. 
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Exercises
Try answering the following questions to see how well you understand 
the Bayes factor and posterior odds. The solutions can be found in 
Appendix C.

1. Returning to the dice problem, assume that your friend made a mistake 
and suddenly realized that there were, in fact, two loaded dice and only 
one fair die. How does this change the prior, and therefore the poste-
rior odds, for our problem? Are you more willing to believe that the die 
being rolled is the loaded die?

2. Returning to the rare diseases example, suppose you go to the doctor, 
and after having your ears cleaned you notice that your symptoms per-
sist. Even worse, you have a new symptom: vertigo. The doctor proposes 
another possible explanation, labyrinthitis, which is a viral infection 
of the inner ear in which 98 percent of cases involve vertigo. However, 
hearing loss and tinnitus are less common in this disease; hearing loss 
occurs only 30 percent of the time, and tinnitus occurs only 28 percent 
of the time. Vertigo is also a possible symptom of vestibular schwan-
noma, but occurs in only 49 percent of cases. In the general popula-
tion, 35 people per million contract labyrinthitis annually. What is the 
posterior odds when you compare the hypothesis that you have labyrin-
thitis against the hypothesis that you have vestibular schwannoma?
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b a y e s i a n  R e a s O n i n G  i n 

t h e  t W i L i G h t  Z O n e

In Chapter 16, we used the Bayes factor and 
posterior odds to find out how many times 

better one hypothesis was than a competing 
one. But these tools of Bayesian reasoning can 

do even more than just compare ideas. In this chapter, 
we’ll use the Bayes factor and posterior odds to quan-
tify how much evidence it should take to convince 
someone of a hypothesis. We’ll also see how to esti-
mate the strength of someone else’s prior belief in a 
certain hypothesis. We’ll do all of this using a famous 
episode of the classic TV series The Twilight Zone. 
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bayesian Reasoning in the twilight Zone
One of my favorite episodes of The Twilight Zone is called “The Nick of Time.” 
In this episode, a young, newly married couple, Don and Pat, wait in a small-
town diner while a mechanic repairs their car. In the diner, they come across 
a fortune-telling machine called the Mystic Seer that accepts yes or no ques-
tions and, for a penny, spits out cards with answers to each question. 

Don, who is very superstitious, asks the Mystic Seer a series of questions. 
When the machine answers correctly, he begins to believe in its supernatural 
powers. However, Pat remains skeptical of the machine’s powers, even as the 
Seer continues to provide correct answers. 

Although Don and Pat are looking at the same data, they come to dif-
ferent conclusions. How can we explain why they reason differently when 
given the same evidence? We can use the Bayes factor to get deeper insight 
into how these two characters are thinking about the data.

using the bayes factor to understand the mystic seer
In the episode, we are faced with two competing hypotheses. Let’s call them 
H and H (or “not H”), since one hypothesis is the negation of the other:

H The Mystic Seer truly can predict the future.

H The Mystic Seer just got lucky.

Our data, D, in this case is the sequence of n correct answers the Mystic 
Seer provides. The greater n is, the stronger the evidence in favor of H. The 
major assumption in the Twilight Zone episode is that the Mystic Seer is cor-
rect every time, so the question is: is this result supernatural, or is it merely 
a coincidence? For us, D, our data, always represents a sequence of n correct 
answers. Now we can assess our likelihoods, or the probability of getting 
our data given each hypothesis.

P(D | H) is the probability of getting n correct answers in a row given 
that the Mystic Seer can predict the future. This likelihood will always be 1, 
no matter the number of questions asked. This is because, if the Mystic Seer 
is supernatural, it will always pick the right answer, whether it is asked one 
question or a thousand. Of course, this also means that if the Mystic Seer 
gets a single answer wrong, the probability for this hypothesis will drop to 
0, because a psychic machine wouldn’t ever guess incorrectly. In that case, 
we might want to come up with a weaker hypothesis—for example, that the 
Mystic Seer is correct 90 percent of the time (we’ll explore a similar prob-
lem in Chapter 19).

P(D | H) is the probability of getting n correct answers in a row if the 
Mystic Seer is randomly spitting out answers. Here, P(D | H) is 0.5n. In other 
words, if the machine is just guessing, then each answer has a 0.5 chance of 
being correct.
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To compare these hypotheses, let’s look at the ratio of the two likelihoods:

P D H

P D H

|( )
|( )

As a reminder, this ratio measures how many times more likely the data 
is, given H as opposed to H, when we assume both hypotheses are equally 
likely. Now let’s see how these ideas compare.

Measuring the Bayes Factor
As we did in the preceding chapter, we’ll temporarily ignore the ratio 
of our prior odds and concentrate on comparing the ratio of the likeli-
hoods, or the Bayes factor. We’re assuming (for the time being) that the 
Mystic Seer has an equal chance of being supernatural as it does of being 
simply lucky.

In this example, our numerator, P(D | H), is always 1, so for any value of 
n we have:

BF
P D H

P D H
n

n
n=

|( )
|( )

=
1

0 5.

Let’s imagine the Mystic Seer has given three correct answers so far. At 
this point, P(D3 | H) = 1, and P(D | H) = 0.53 = 0.125. Clearly H explains the 
data better, but certainly nobody—not even superstitious Don—will be con-
vinced by only three correct guesses. Assuming the prior odds are the same, 
our Bayes factor for three questions is:

BF = =
1

0 125
8

.

We can use the same guidelines we used for evaluating posterior odds 
in Table 16-1 to evaluate Bayes factors here (if we assume each hypothesis is 
equally likely), as shown in Table 17-1. As you can see, a Bayes factor (BF) of 
8 is far from conclusive.

table 17-1: Guidelines for Evaluating Bayes Factors 

bf strength of evidence

1 to 3 Interesting, but nothing conclusive

3 to 20 Looks like we’re on to something

20 to 150 Strong evidence in favor of H1 

> 150 Overwhelming evidence in favor of H1 
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So, at three questions answered correctly and with BF = 8, we should at 
least be curious about the power of the Mystic Seer, though we shouldn’t be 
convinced yet.

But by this point in the episode, Don already seems pretty sure that the 
Mystic Seer is psychic. It takes only four correct answers for him to feel cer-
tain of it. On the other hand, it takes 14 questions for Pat to even start con-
sidering the possibility seriously, resulting in a Bayes factor of 16,384—way 
more evidence than she should need. 

Calculating the Bayes factor doesn’t explain why Don and Pat form dif-
ferent beliefs about the evidence, though. What’s going on there?

Accounting for Prior Beliefs 
The element missing in our model is each character’s prior belief in the 
hypotheses. Remember that Don is extremely superstitious, while Pat is a 
skeptic. Clearly, Don and Pat are using extra information in their mental 
models, because each of them arrives at a conclusion of a different strength, 
and at very different times. This is fairly common in everyday reasoning: 
two people often respond differently to the exact same facts.

We can model this phenomenon by simply imagining the initial odds of 
P(H) and P(H) given no additional information. We call this the prior odds 
ratio, as you saw in Chapter 16:

prior odds = ( ) = ( )
( )

O H
P H

P H

The concept of prior beliefs in relation to the Bayes factor is actually 
pretty intuitive. Say we walk into the diner from The Twilight Zone, and I 
ask you, “What are the odds that the Mystic Seer is psychic?” You might 
reply, “Uh, one in a million! There’s no way that thing is supernatural.” 
Mathematically, we can express this as:

O H( ) = 1
1 000 000, ,

Now let’s combine this prior belief with our data. To do this, we’ll mul-
tiply our prior odds with the results of the likelihood ratio to get our poste-
rior odds for the hypothesis, given the data we’ve observed: 

posterior odds = |( ) = ( ) × |( )
|( )

O H D O H
P D H

P D H

Thinking there’s only a one in a million chance the Mystic Seer is psy-
chic before looking at any evidence is pretty strong skepticism. The Bayesian 
approach reflects this skepticism quite well. If you think the hypothesis that 
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the Mystic Seer is supernatural is extremely unlikely from the start, then 
you’ll require significantly more data to be convinced otherwise. Suppose 
the Mystic Seer gets five answers correct. Our Bayes factor then becomes:

BF = =
1

0 5
325.

A Bayes factor of 32 is a reasonably strong belief that the Mystic Seer is 
truly supernatural. However, if we add in our very skeptical prior odds to 
calculate our posterior odds, we get the following results:

posterior odds = |( ) ×
|( )
|( )

= × =O H D
P D H

P D H
5

5

5
5

1
1 000 000

1
0 5

0 0
, , .

. 000032

Now our posterior odds tell us it’s extremely unlikely that the machine 
is psychic. This result corresponds quite well with our intuition. Again, if 
you really don’t believe in a hypothesis from the start, it’s going to take a lot 
of evidence to convince you otherwise. 

In fact, if we work backward, posterior odds can help us figure out 
how much evidence we’d need to make you believe H. At a posterior odds 
of 2, you’d just be starting to consider the supernatural hypothesis. So, if 
we solve for a posterior odds of greater than 2, we can determine what it 
would take to convince you.

1
1 000 000

1
0 5

2
, , .

× >n

If we solve for n to the nearest whole number, we get:

n > 21

At 21 correct answers in a row, even a strong skeptic should start to 
think that the Seer may, in fact, be psychic.

Thus, our prior odds can do much more than tell us how strongly 
we believe something given our background. It can also help us quantify 
exactly how much evidence we would need to be convinced of a hypothesis. 
The reverse is true, too; if, after 21 correct answers in a row, you find your-
self believing strongly in H, you might want to weaken your prior odds.

developing our own Psychic Powers
At this point, we’ve learned how to compare hypotheses and calculate 
how much favorable evidence it would take to convince us of H, given our 
prior belief in H. Now we’ll look at one more trick we can do with poste-
rior odds: quantifying Don and Pat’s prior beliefs based on their reactions 
to the evidence.
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We don’t know exactly how strongly Don and Pat believe in the possibil-
ity that the Mystic Seer is psychic when they first walk into the diner. But we 
do know it takes Don about seven correct questions to become essentially 
certain of the Mystic Seer’s supernatural abilities. We can estimate that 
at this point Don’s posterior odds are 150—the threshold for very strong 
beliefs, according to Table 17-1. Now we can write out everything we know, 
except for O(H), which we’ll be solving for:

150 = ( ) ×
|( )
|( )

= ( ) ×O H
P D H

P D H
O H7

7
7

1
0 5.

Solving this for O(H) gives us:

O H( ) =
Don

1 17.

What we have now is a quantitative model for Don’s superstitious 
beliefs. Because his initial odds ratio is greater than 1, Don walks into the 
diner being slightly more willing than not to believe that the Mystic Seer is 
supernatural, before collecting any data at all. This makes sense, of course, 
given his superstitious nature.

Now on to Pat. At around 14 correct answers, Pat grows nervous, calling 
the Mystic Seer “a stupid piece of junk!” Although she has begun to suspect 
that the Mystic Seer might be psychic, she’s not nearly as certain as Don. I 
would estimate that her posterior odds are 5—the point at which she might 
start thinking, “Maybe the Mystic Seer could have psychic powers . . . ” Now 
we can create the posterior odds for Pat’s beliefs in the same way: 

5
1

0 5
14

14
14= ( ) ×

|( )
|( )

= ( ) ×O H
P D H

P D H
O H

.

When we solve for O(H), we can model Pat’s skepticism as:

O H( ) =
Pat

0 0003.

In other words, Pat, walking into the diner, would claim that the Seer 
has about a 1 in 3,000 chance of being supernatural. Again, this cor-
responds to our intuition; Pat begins with the very strong belief that the 
fortune-telling machine is nothing more than a fun game to play while she 
and Don wait for food.

What we’ve done here is remarkable. We’ve used our rules of probabil-
ity to come up with a quantitative statement about what someone believes. 
In essence, we have become mind readers!
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Wrapping Up
In this chapter, we explored three ways of using Bayes factors and posterior 
odds in order to reason about problems probabilistically. We started by 
revisiting what we learned in the previous chapter: that we can use posterior 
odds as a way to compare two ideas. Then we saw that if we know our prior 
belief in the odds of one hypothesis versus another, we can calculate exactly 
how much evidence it will take to convince us that we should change our 
beliefs. Finally, we used posterior odds to assign a value for each person’s 
prior beliefs by looking at how much evidence it takes to convince them. In 
the end, posterior odds is far more than just a way to test ideas. It provides 
us with a framework for thinking about reasoning under uncertainty. 

You can now use your own “mystic” powers of Bayesian reasoning to 
answer the exercises below:

Exercises
Try answering the following questions to see how well you understand quan
tifying the amount of evidence it should take to convince someone of a 
hypothesis and esti mating the strength of someone else’s prior belief. The 
solutions can be found in Appendix C.

1. Every time you and your friend get together to watch movies, you flip 
a coin to determine who gets to choose the movie. Your friend always 
picks heads, and every Friday for 10 weeks, the coin lands on heads. 
You develop a hypothesis that the coin has two heads sides, rather than 
both a heads side and a tails side. Set up a Bayes factor for the hypoth
esis that the coin is a trick coin over the hypothesis that the coin is fair. 
What does this ratio alone suggest about whether or not your friend is 
cheating you?

2. Now imagine three cases: that your friend is a bit of a prankster, that 
your friend is honest most of the time but can occasionally be sneaky, 
and that your friend is very trustworthy. In each case, estimate some 
prior odds ratios for your hypothesis and compute the posterior odds.

3. Suppose you trust this friend deeply. Make the prior odds of them 
cheating 1/10,000. How many times would the coin have to land on 
heads before you feel unsure about their innocence—say, a posterior 
odds of 1?

4. Another friend of yours also hangs out with this same friend and, after 
only four weeks of the coin landing on heads, feels certain you’re both 
being cheated. This confidence implies a posterior odds of about 100. 
What value would you assign to this other friend’s prior belief that the 
first friend is a cheater?
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W h e n  D a t a  D O e s n ’ t 

c O n v i n c e  y O u

In the previous chapter, we used Bayesian 
reasoning to reason about two hypotheses 

from an episode of The Twilight Zone:

•	 H The fortune-telling Mystic Seer is supernatural.

•	 H The fortune-telling Mystic Seer isn’t supernatural, 
just lucky.

We also learned how to account for skepticism by changing the prior 
odds ratio. For example, if you, like me, believe that the Mystic Seer defi-
nitely isn’t psychic, then you might want to set the prior odds extremely 
low—something like 1/1,000,000.

However, depending on your level of personal skepticism, you might 
feel that even a 1/1,000,000 odds ratio wouldn’t be quite enough to con-
vince you of the seer’s power. 
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Maybe even after receiving 1,000 correct answers from the seer—which, 
despite your very skeptical prior odds, would suggest you were astronomi-
cally in favor of believing the seer is psychic—you still wouldn’t buy into its 
supernatural powers. We could represent this by simply making our prior 
odds even more extreme, but I personally don’t find this solution very satis-
fying because no amount of data would convince me that the Mystic Seer is, 
in fact, psychic.

In this chapter, we’ll take a deeper look at problems where the data 
doesn’t convince people in the way we expect it to. In the real world, these 
situations are fairly common. Anyone who has argued with a relative over 
a holiday dinner has likely noticed that oftentimes the more contradictory 
evidence you give, the more they seem to be convinced of their preexisting 
belief! In order to fully understand Bayesian reasoning, we need to be able 
to understand, mathematically, why situations like these arise. This will help 
us identify and avoid them in our statistical analysis.

a Psychic friend Rolling dice
Suppose your friend tells you they can predict the outcome of a six-sided die 
roll with 90 percent accuracy because they are psychic. You find this claim 
difficult to believe, so you set up a hypothesis test using the Bayes factor. As in 
the Mystic Seer example, you have two hypotheses you want to compare:

H P1

1
6

: correct( ) =
      

H P2

9
10

: correct( ) =

The first hypothesis, H1, represents your belief that the die is fair, and 
that your friend is not psychic. If the die is fair, there is a 1 in 6 chance 
of guessing the result correctly. The second hypothesis, H2, represents 
your friend’s belief that they can, in fact, predict the outcome of a die roll 
90 percent of the time and is therefore given a 9/10 ratio. Next we need 
some data to start testing their claim. Your friend rolls the die 10 times and 
correctly guesses the outcome of the roll 9 times.

Comparing Likelihoods
As we often have in previous chapters, we’ll start by looking at the Bayes 
factor, assuming for now that the prior odds for each hypothesis are equal. 
We’ll formulate our likelihood ratio as: 

P D H

P D H

|( )
|( )

2

1

so that our results will tell us how many times better (or worse) your 
friend’s claim of being psychic explains the data than your hypothesis does. 
For this example, we’ll use the variable BF for “Bayes factor” in our equa-
tions for brevity. Here is our result, taking into account the fact that your 
friend correctly predicted 9 out of 10 rolls:
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Our likelihood ratio shows that the friend-being-psychic hypothesis 
explains the data 468,517 times better than the hypothesis that your friend 
is just lucky. This is a bit concerning. According to the Bayes factor chart 
we saw in earlier chapters, this means we should be nearly certain that H2 
is true and your friend is psychic. Unless you’re already a deep believer in 
the possibility of psychic powers, something seems very wrong here.

Incorporating Prior Odds
In most cases in this book where the likelihood alone gives us strange 
results, we can solve the problem by including our prior probabilities. 
Clearly, we don’t believe in our friend’s hypothesis nearly as strongly as 
we believe in our own, so it makes sense to create a strong prior odds in 
favor of our hypothesis. We can start by simply setting our odds ratio high 
enough that it cancels out the extreme result of the Bayes factor, and see 
if this fixes our problem:

 

O H 2

1
468 517

( ) =
,

Now, when we work out our full posterior odds, we find that we are, 
once again, unconvinced that your friend is psychic:

posterior = ( ) ×
|( )
|( )

=O H
P D H

P D H2
10 2

10 1

1

For now, it looks like prior odds have once again saved us from a prob-
lem that occurred when we looked only at the Bayes factor. 

But suppose your friend rolls the die five more times and successfully 
predicts all five outcomes. Now we have a new set of data, D15, which repre-
sents 15 rolls of a die, 14 of which your friend guessed accurately. Now when 
we calculate our posterior odds, we see that even our extreme prior is of 
little help:

posterior = ( ) ×
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Using our existing prior, with just five more rolls of the die, we have 
posterior odds of 4,592—which means we’re back to being nearly certain 
that your friend is truly psychic! 
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In most of our previous problems, we’ve corrected nonintuitive posterior 
results by adding a sane prior. We’ve added a pretty extreme prior against 
your friend being psychic, but our posterior odds are still strongly in favor of 
the hypothesis that they’re psychic.

This is a major problem, because Bayesian reasoning should align with 
our everyday sense of logic. Clearly, 15 rolls of a die with 14 successful guesses 
is highly unusual, but it’s unlikely to convince many people that the guesser 
truly possesses psychic powers! However, if we can’t explain what’s going on 
here with our hypothesis test, it means that we really can’t rely on our test to 
solve our everyday statistical problems.

Considering Alternative Hypotheses
The issue here is that we don’t want to believe your friend is psychic. If you found 
yourself in this situation in real life, it’s likely you would quickly come to 
some alternative conclusion. You might come to believe that your friend is 
using a loaded die that rolls a certain value about 90 percent of the time, 
for example. This represents a third hypothesis. Our Bayes factor is looking 
at only two possible hypotheses: H1, the hypothesis that the die is fair, and 
H2, the hypothesis that your friend is psychic. 

Our Bayes factor so far tells us that it’s far more likely that our friend 
is psychic than that they are guessing the rolls of a fair die correctly. When 
we think of the conclusion in those terms, it makes more sense: with these 
results, it’s extremely unlikely that the die is fair. We don’t feel comfortable 
accepting the H2 alternative, because our own beliefs about the world don’t 
support the idea that H2 is a realistic explanation.

It’s important to understand that a hypothesis test compares only two 
explanations for an event, but very often there are countless possible expla-
nations. If the winning hypothesis doesn’t convince you, you could always 
consider a third one.

Let’s look at what happens when we compare H2, our winning hypoth-
esis, with a new hypothesis, H3: that the die is rigged so it has a certain out-
come 90 percent of the time.

We’ll start with a new prior odds about H2, which we’ll call O(H2)′ (the 
tick mark is a common notation in mathematics meaning “like but not the 
same as”). This will represent the odds of H2/H3. For now, we’ll just say that 
we believe it’s 1,000 times more likely that your friend is using a loaded die 
than that your friend is really psychic (though our real prior might be much 
more extreme). That means the prior odds of your friend being psychic is 
1/1,000. If we reexamine our new posterior odds, we get the following inter-
esting result:
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According to this calculation, our posterior odds are the same as our 
prior odds, O(H2)′. This happens because our two likelihoods are the same. 
In other words, P(D15 | H2) = P(D15 | H3). For both hypotheses, the likeli-
hood of your friend correctly guessing the outcome of the die roll is exactly 
the same for the loaded die because the probability each assigns to success 
is the same. This means that our Bayes factor will always be 1. 

These results correspond quite well to our everyday intuition; after all, 
prior odds aside, each hypothesis explains the data we’ve seen equally well. 
That means that if, before considering the data, we believe one explana-
tion is far more likely than the other, then no amount of new evidence 
will change our minds. So we no longer have a problem with the data we 
observed; we’ve simply found a better explanation for it.

In this scenario, no amount of data will change our mind about believ-
ing H3 over H2 because both explain what we’ve observed equally well, and we 
already think that H3 is a far more likely explanation than H2. What’s interest-
ing here is that we can find ourselves in this situation even if our prior beliefs 
are entirely irrational. Maybe you’re a strong believer in psychic phenom-
ena and think that your friend is the most honest person on earth. In this 
case, you might make the prior odds O(H2)′ = 1,000. If you believed this, no 
amount of data could convince you that your friend is using a loaded die.

In cases like this, it’s important to realize that if you want to solve a 
problem, you need to be willing to change your prior beliefs. If you’re 
unwilling to let go of unjustifiable prior beliefs, then, at the very least, 
you must acknowledge that you’re no longer reasoning in a Bayesian—or 
logical—way at all. We all hold irrational beliefs, and that’s perfectly okay, 
so long as we don’t attempt to use Bayesian reasoning to justify them.

arguing with Relatives and conspiracy theorists
Anyone who has argued with relatives over a holiday dinner about politics, 
climate change, or their favorite movies has experienced firsthand a situ-
ation in which they are comparing two hypotheses that both explain the 
data equally well (to the person arguing), and only the prior remains. How 
can we change someone else’s (or our own) beliefs even when more data 
doesn’t change anything?

We’ve already seen that if you compare the belief that your friend has 
a loaded die and the belief that they are psychic, more data will do noth-
ing to change your beliefs about your friend’s claim. This is because both 
your hypothesis and your friend’s hypothesis explain the data equally well. 
In order for your friend to convince you that they are psychic, they have to 
alter your prior beliefs. For example, since you’re suspicious that the die 
might be loaded, your friend could then offer to let you choose the die they 
roll. If you bought a new die and gave it to your friend, and they continued 
to accurately predict their rolls, you might start to be convinced. This same 
logic holds anytime you run into a problem where two hypotheses equally 
explain the data. In these cases, you must then see if there’s anything you 
can change in your prior.
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Suppose after you purchase the new die for your friend and they con-
tinue to succeed, you still don’t believe them; you now claim that they must 
have a secret way of rolling. In response, your friend lets you roll the die for 
them, and they continue to successfully predict the rolls—yet you still don’t 
believe them. In this scenario, something else is happening beyond just 
a hidden hypothesis. You now have an H4—that your friend is completely 
cheating—and you won’t change your mind. This means that for any Dn, 
P(Dn | H4) = 1. Clearly we’re out of Bayesian territory since you’ve essentially 
conceded that you won’t change your mind, but let’s see what happens 
mathematically if your friend persists in trying to convince you.

Let’s look at how these two explanations, H2 and H4, compete using our 
data D10 with 9 correct predictions and 1 missed prediction. The Bayes fac-
tor for this is:
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Because you refuse to believe anything other than that your friend is 
cheating, the probability of what you observe is, and will always be, 1. Even 
though the data is exactly as we would expect in the case of your friend 
being psychic, we find our beliefs explain the data 26 times as well. Your 
friend, deeply determined to change your stubborn mind, persists and rolls 
100 times, getting 90 guesses right and 10 wrong. Our Bayes factor shows 
something very strange that happens:
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Even though the data seems to strongly support your friend’s 
hypothesis, because you refuse to budge in your beliefs, you’re now even 
more wildly convinced that you’re right! When we don’t allow our minds 
to be changed at all, more data only further convinces us we are correct.

This pattern may seem familiar to anyone who has argued with a politi-
cally radical relative or someone who adamantly believes in a conspiracy 
theory. In Bayesian reasoning, it is vital that our beliefs are at least falsifi-
able. In traditional science, falsifiability means that something can be dis-
proved, but in our case it just means there has to be some way to reduce our 
belief in a hypothesis. 

The danger of nonfalsifiable beliefs in Bayesian reasoning isn’t just 
that they can’t be proved wrong—it’s that they are strengthened even by 
evidence that seems to contradict them. Rather than persisting in trying to 
convince you, your friend should have first asked, “What can I show you that 
would change your mind?” If your reply had been that nothing could change 
your mind, then your friend would be better off not presenting you with 
more evidence. 
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So, the next time you argue with a relative over politics or conspiracy 
theories, you should ask them: “What evidence would change your mind?” 
If they have no answer to this, you’re better off not trying to defend your 
views with more evidence, as it will only increase your relative’s certainty in 
their belief.

Wrapping Up
In this chapter, you learned about a few ways hypothesis tests can go wrong. 
Although the Bayes factor is a competition between two ideas, it’s quite pos-
sible that there are other, equally valid, hypotheses worth testing out. 

Other times, we find that two hypotheses explain the data equally 
well; you’re just as likely to see your friend’s correct predictions if they were 
caused by your friend’s psychic ability or a trick in the die. When this is the 
case, only the prior odds ratio for each hypothesis matters. This also means 
that acquiring more data in those situations will never change our beliefs, 
because it will never give either hypothesis an edge over the other. In these 
cases, it’s best to consider how you can alter the prior beliefs that are affect-
ing the results.

In more extreme cases, we might have a hypothesis that simply refuses to 
be changed. This is like having a conspiracy theory about the data. When this 
is the case, not only will more data never convince us to change our beliefs, 
but it will actually have the opposite effect. If a hypothesis is not falsifiable, 
more data will only serve to make us more certain of the conspiracy.

Exercises
Try answering the following questions to see how well you understand how 
to deal with extreme cases in Bayesian reasoning. The solutions can be 
found in Appendix C.

1. When two hypotheses explain the data equally well, one way to change 
our minds is to see if we can attack the prior probability. What are 
some factors that might increase your prior belief in your friend’s 
psychic powers?

2. An experiment claims that when people hear the word Florida, they 
think of the elderly and this has an impact on their walking speed. 
To test this, we have two groups of 15 students walk across a room; one 
group hears the word Florida and one does not. Assume H1 = the groups 
don’t move at different speeds, and H2 = the Florida group is slower 
because of hearing the word Florida. Also assume:

BF
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P D H
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The experiment shows that H2 has a Bayes factor of 19. Suppose 
someone is unconvinced by this experiment because H2 had a lower 
prior odds. What prior odds would explain someone being uncon-
vinced and what would the BF need to be to bring the posterior odds to 
50 for this unconvinced person?

Now suppose the prior odds do not change the skeptic’s mind. 
Think of an alternate H3 that explains the observation that the Florida 
group is slower. Remember if H2 and H3 both explain the data equally 
well, only prior odds in favor of H3 would lead someone to claim H3 is 
true over H2, so we need to rethink the experiment so that these odds 
are decreased. Come up with an experiment that could change the 
prior odds in H3 over H2. 
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f R O m  h y P O t h e s i s  t e s t i n G  t O 

P a R a m e t e R  e s t i m a t i O n

So far, we’ve used posterior odds to com-
pare only two hypotheses. That’s fine for 

simple problems; even if we have three or 
four hypotheses, we can test them all by con-

ducting multiple hypothesis tests, as we did in the 
previous chapter. But sometimes we want to search a 
really large space of possible hypotheses to explain 
our data. For example, you might want to guess how 
many jelly beans are in a jar, the height of a faraway 
building, or the exact number of minutes it will take 
for a flight to arrive. In all these cases, there are many, 
many possible hypotheses—too many to conduct 
hypothesis tests for all of them.
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Luckily, there’s a technique for handling this scenario. In Chapter 15, 
we learned how to turn a parameter estimation problem into a hypothesis 
test. In this chapter, we’re going to do the opposite: by looking at a virtually 
continuous range of possible hypotheses, we can use the Bayes factor and 
posterior odds (a hypothesis test) as a form of parameter estimation! This 
approach allows us to evaluate more than just two hypotheses and provides 
us with a simple framework for estimating any parameter.

is the carnival game Really fair?
Suppose you’re at a carnival. While walking through the games, you 
notice someone arguing with a carnival attendant near a pool of little plas-
tic ducks. Curious, you get closer and hear the player yelling, “This game is 
rigged! You said there was a 1 in 2 chance of getting a prize and I’ve picked 
up 20 ducks and only received one prize! It looks to me like the chance of 
getting a prize is only 1 in 20!”

Now that you have a strong understanding of probability, you decide 
to settle this argument yourself. You explain to the attendant and the angry 
customer that if you observe some more games that day, you’ll be able to 
use the Bayes factor to determine who’s right. You decide to break up the 
results into two hypotheses: H1, which represents the attendant’s claim that 
the probability of a prize is 1/2, and H2, the angry customer’s claim that the 
probability of a prize is just 1/20:

H P1

1
2

: prize( ) =

H P2

1
20

: prize( ) =

The attendant argues that because he didn’t watch the customer 
pick up ducks, he doesn’t think you should use his reported data, since no 
one else can verify it. This seems fair to you. You decide to watch the next 
100 games and use that as your data instead. After the customer has picked 
up 100 ducks, you observe that 24 of them came with prizes.

Now, on to the Bayes factor! Since we don’t have a strong opinion about 
the claim from either the customer or the attendant, we won’t worry about 
the prior odds or calculating our full posterior odds yet. 

To get our Bayes factor, we need to compute P(D | H) for each hypothesis:

P D H|( ) = ( ) × −( )1
24 760 5 1 0 5. .

P D H|( ) = ( ) × −( )2
24 760 05 1 0 05. .
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Now, individually, both of these probabilities are quite small, but all we 
care about is the ratio. We’ll look at our ratio in terms of H2/H1 so that our 
result will tell us how many times better the customer’s hypothesis explains 
the data than the attendant’s:

P D H

P D H

|( )
|( )

=2

1

1
653

Our Bayes factor tells us that H1, the attendant’s hypothesis, explains 
the data 653 times as well as H2, which means that the attendant’s hypoth-
esis (that the probability of getting a prize when picking up a duck is 0.5) is 
the more likely one.

This should immediately seem strange. Clearly, the probability of get-
ting only 24 prizes out of a total of 100 ducks seems really unlikely if the 
true probability of a prize is 0.5. We can use R’s pbinom() function (intro-
duced in Chapter 13) to calculate the binomial distribution, which will tell 
us the probability of seeing 24 or fewer prizes, assuming that the probability 
of getting a prize is really 0.5:

> pbinom(24,100,0.5)
9.050013e-08

As you can see, the probability of getting 24 or fewer prizes if the true 
probability of a prize is 0.5 is extremely low; expanding it out to the full 
decimal values, we get a probability of 0.00000009050013! Something is 
definitely up with H1. Even though we don’t believe the attendant’s hypoth-
esis, it still explains the data much better than the customer’s.

So what’s missing? In the past, we’ve often found that the prior prob-
ability usually matters a lot when the Bayes factor alone doesn’t give us an 
answer that makes sense. But as we saw in Chapter 18, there are cases in 
which the prior isn’t the root cause of our problem. In this case, using the 
following equation seems reasonable, since we don’t have a strong opinion 
either way: 
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But maybe the problem here is that you have a preexisting mistrust in 
carnival games. Because the result of the Bayes factor favors the attendant’s 
hypothesis so strongly, we’d need our prior odds to be at least 653 to get a 
posterior odds that favors the customer’s hypothesis: 
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That’s a really deep distrust of the fairness of the game! There must be 
some problem here other than the prior.
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Considering Multiple Hypotheses
One obvious problem is that, while it seems intuitively clear that the atten-
dant is wrong in his hypothesis, the customer’s alternative hypothesis is just 
too extreme to be right, either, so we have two wrong hypotheses. What if 
the customer thought the probability of winning was 0.2, rather than 0.05? 
We’ll call this hypothesis H3. Testing H3 against the attendant’s hypothesis 
radically changes the results of our likelihood ratio:

bf
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Here we see that H3 explains the data wildly better than H1. With 
a Bayes factor of 917,399, we can be certain that H1 is far from the best 
hypothesis for explaining the data we’ve observed, because H3 blows it out 
of the water. The trouble we had in our first hypothesis test was that the cus-
tomer’s belief was a far worse description of the event than the attendant’s 
belief. As we can see, though, that doesn’t mean the attendant was right. 
When we came up with an alternative hypothesis, we saw that it was a much 
better guess than either the attendant’s or the customer’s.

Of course, we haven’t really solved our problem. What if there’s an even 
better hypothesis out there?

Searching for More Hypotheses with R
We want a more general solution that searches all of our possible hypoth-
eses and picks out the best one. To do this, we can use R’s seq() function to 
create a sequence of hypotheses we want to compare to our H1. 

We’ll consider every increment of 0.01 between 0 and 1 as a possible 
hypothesis. That means we’ll consider 0.01, 0.02, 0.03, and so on. We’ll call 
0.01—the amount we’re increasing each hypothesis by—dx (a common 
notation from calculus representing the “smallest change”) and use it to 
define a hypotheses variable, which represents all of the possible hypotheses 
we want to consider. Here we use R’s seq() function to generate a range 
of values for each hypothesis between 0 and 1 by incrementing the values 
by our dx:

dx <- 0.01
hypotheses <- seq(0,1,by=dx)

Next, we need a function that can calculate our likelihood ratio for any 
two hypotheses. Our bayes.factor() function will take two arguments: h_top, 
which is the probability of getting a prize for the hypothesis on the top (the 
numerator) and h_bottom, which is the hypothesis we’re competing against 
(the attendant’s hypothesis). We set this up like so:

bayes.factor <- function(h_top,h_bottom){
  ((h_top)^24*(1-h_top)^76)/((h_bottom)^24*(1-h_bottom)^76)
}
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Finally, we compute the likelihood ratio for all of these possible 
hypotheses:

bfs <- bayes.factor(hypotheses,0.5)

Then, we use R’s base plotting functionality to see what these likelihood 
ratios look like:

plot(hypotheses,bfs, type='l')

Figure 19-1 shows the resulting plot.
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Figure 19-1: Plotting the Bayes factor for each of our hypotheses

Now we can see a clear distribution of different explanations for the 
data we’ve observed. Using R, we can look at a wide range of possible 
hypotheses, where each point in our line represents the Bayes factor for 
the corresponding hypothesis on the x-axis.

We can also see how high the largest Bayes factor is by using the max() 
function with our vector of bfs:

> max(bfs)
1.47877610^{6}

Then we can check which hypothesis corresponds to the highest likeli-
hood ratio, telling us which hypothesis we should believe in the most. To do 
this, enter:

> hypotheses[which.max(bfs)] 
0.24
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Now we know that a probability of 0.24 is our best guess, since this 
hypothesis produces the highest likelihood ratio when compared with the 
attendant’s. In Chapter 10, you learned that using the mean or expectation 
of our data is often a good way to come up with a parameter estimate. Here 
we’ve simply chosen the hypothesis that individually explains the data the 
best, because we don’t currently have a way to weigh our estimates by their 
probability of occurring.

Adding Priors to Our Likelihood Ratios
Now suppose you present your findings to the customer and the attendant. 
Both agree that your findings are pretty convincing, but then another per-
son walks up to you and says, “I used to make games like these, and I can 
tell you that for some strange industry reason, the people who design these 
duck games never put the prize rate between 0.2 and 0.3. I’d bet you the 
odds are 1,000 to 1 that the real prize rate is not in this range. Other than 
that, I have no clue.”

Now we have some prior odds that we’d like to use. Since the former 
game maker has given us some solid odds about his prior beliefs in the 
probability of getting a prize, we can try to multiply this by our current list 
of Bayes factors and compute the posterior odds. To do this, we create a 
list of prior odds ratios for every hypothesis we have. As the former game 
maker told us, the prior odds ratio for all probabilities between 0.2 and 0.3 
should be 1/1,000. Since the maker has no opinion about other hypotheses, 
the odds ratio for these will just be 1. We can use a simple ifelse statement, 
using our vector of hypotheses, to create a vector of our odds ratios:

priors <- ifelse(hypotheses >= 0.2 & hypotheses <= 0.3, 1/1000,1)

Then we can once again use plot() to display this distribution of priors:

plot(hypotheses,priors,type='l')

Figure 19-2 shows our distribution of prior odds.
Because R is a vector-based language (for more information on this, 

see Appendix A), we can simply multiply our priors by our bfs and get a 
new vector of posteriors representing our Bayes factors:

posteriors  <- priors*bfs

Finally, we can plot a chart of the posterior odds of each of our many 
hypotheses:

plot(hypotheses,posteriors,type='l')

Figure 19-3 shows the plot.
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Figure 19-2: Visualizing our prior odds ratios
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Figure 19-3: Plotting our distribution of Bayes factors

As we can see, we get a very strange distribution of possible beliefs. 
We have reasonable confidence in the values between 0.15 and 0.2 and 
between 0.3 and 0.35, but find the range between 0.2 and 0.3 to be 
extremely unlikely. But this distribution is an honest representation 
of the strength of belief in each hypothesis, given what we’ve learned 
about the duck game manufacturing process.

While this visualization is helpful, we really want to be able to treat 
this data like a true probability distribution. That way, we can ask questions 
about how much we believe in ranges of possible hypotheses and calculate 
the expectation of our distribution to get a single estimate for what we 
believe the hypothesis to be.
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building a Probability distribution
A true probability distribution is one where the sum of all possible beliefs 
equals 1. Having a probability distribution would allow us to calculate the 
expectation (or mean) of our data to make a better estimate about the true 
rate of getting a prize. It would also allow us to easily sum ranges of values 
so we could come up with confidence intervals and other similar estimates.

The problem is that if we add up all the posterior odds for our hypoth-
eses, they don’t equal 1, as shown in this calculation:

> sum(posteriors)
3.140687510^{6}

This means we need to normalize our posterior odds so that they do 
sum to 1. To do so, we simply divide each value in our posteriors vector by 
the sum of all the values:

p.posteriors <- posteriors/sum(posteriors)

Now we can see that our p.posteriors values add up to 1:

> sum(p.posteriors)
1

Finally, let’s plot our new p.posteriors:

plot(hypotheses,p.posteriors,type='l') 

Figure 19-4 shows the plot.
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Figure 19-4: Our normalized posterior odds (note the scale on the y-axis)
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We can also use our p.posteriors to answer some common questions we 
might have about our data. For example, we can now calculate the probability 
that the true rate of getting a prize is less than what the attendant claims. We 
just add up all the probabilities for values less than 0.5:

sum(p.posteriors[which(hypotheses < 0.5)]) 
> 0.9999995

As we can see, the probability that the prize rate is lower than the 
attendant’s hypothesis is nearly 1. That is, we can be almost certain that the 
attendant is overstating the true prize rate.

We can also calculate the expectation of our distribution and use this 
result as our estimate for the true probability. Recall that the expectation is 
just the sum of the estimates weighted by their value:

> sum(p.posteriors*hypotheses) 
0.2402704

Of course, we can see our distribution is a bit atypical, with a big gap 
in the middle, so we might want to simply choose the most likely estimate, 
as follows:

> hypotheses[which.max(p.posteriors)] 
0.19

Now we’ve used the Bayes factor to come up with a range of proba-
bilistic estimates for the true possible rate of winning a prize in the 
duck game. This means that we’ve used the Bayes factor as a form of 
parameter estimation!

from the bayes factor to Parameter estimation
Let’s take a moment to look at our likelihood ratios alone again. When we 
weren’t using a prior probability for any of the hypotheses, you might have 
felt that we already had a perfectly good approach to solving this problem 
without needing the Bayes factor. We observed 24 ducks with prizes and 76 
ducks without prizes. Couldn’t we just use our good old beta distribution 
to solve this problem? As we’ve discussed many times since Chapter 5, if we 
want to estimate the rate of some event, we can always use the beta distribu-
tion. Figure 19-5 shows a plot of a beta distribution with an alpha of 24 and 
a beta of 76.
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Figure 19-5: The beta distribution with an alpha of 24 and a beta of 76

Except for the scale of the y-axis, the plot looks nearly identical to the 
original plot of our likelihood ratios! In fact, if we do a few simple tricks, we 
can get these two plots to line up perfectly. If we scale our beta distribution 
by the size of our dx and normalize our bfs, we can see that these two distri-
butions get quite close (Figure 19-6).
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Figure 19-6: Our initial distribution of likelihood ratios maps pretty closely to Beta(24,76).
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There seems to be only a slight difference now. We can fix it by using 
the weakest prior that indicates that getting a prize and not getting a prize 
are equally likely—that is, by adding 1 to both the alpha and beta param-
eters, as shown in Figure 19-7.
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Figure 19-7: Our likelihood ratios map perfectly to a Beta(24+1,76+1) distribution.

Now we can see that the two distributions are perfectly aligned. 
Chapter 5 mentioned that the beta distribution was difficult to derive 
from our basic rules of probability. However, by using the Bayes factor, we’ve 
been able to empirically re-create a modified version of it that assumes a 
prior of Beta(1,1). And we did it without any fancy mathematics! All we had 
to do was:

1. Define the probability of the evidence given a hypothesis.

2. Consider all possible hypotheses.

3. Normalize these values to create a probability distribution.

Every time we’ve used the beta distribution in this book, we’ve used a 
beta-distributed prior. This made the math easier, since we can arrive at the 
posterior by combining the alpha and beta parameters from the likelihood 
and prior beta distributions. In other words:

Beta Beta , posterior posterior prior likelihood priorα β α α β,( ) = + ++( )βlikelihood

However, by building our distribution from the Bayes factor, we were 
able to easily use a unique prior distribution. Not only is the Bayes factor a 
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great tool for setting up hypothesis tests, but, as it turns out, it’s also all we 
need to create any probability distribution we might want to use to solve our 
problem, whether that’s hypothesis testing or parameter estimation. We just 
need to be able to define the basic comparison between two hypotheses, 
and we’re on our way.

When we built our A/B test in Chapter 15, we figured out how to 
reduce many hypothesis tests to a parameter estimation problem. Now 
you’ve seen how the most common form of hypothesis testing can also be 
used to perform parameter estimation. Given these two related insights, 
there is virtually no limit to the type of probability problems we can solve 
using only the most basic rules of probability.

Wrapping Up
Now that you’ve finished your journey into Bayesian statistics, you can 
appreciate the true beauty of what you’ve been learning. From the basic 
rules of probability, we can derive Bayes’ theorem, which lets us convert 
evidence into a statement expressing the strength of our beliefs. From 
Bayes’ theorem, we can derive the Bayes factor, a tool for comparing how 
well two hypotheses explain the data we’ve observed. By iterating through 
possible hypotheses and normalizing the results, we can use the Bayes 
factor to create a parameter estimate for an unknown value. This, in turn, 
allows us to perform countless other hypothesis tests by comparing our 
estimates. And all we need to do to unlock all this power is use the basic 
rules of probability to define our likelihood, P(D | H)!

Exercises
Try answering the following questions to see how well you understand using 
the Bayes factor and posterior odds to do parameter estimation. The solu-
tions can be found in Appendix C.

1. Our Bayes factor assumed that we were looking at H1: P(prize) = 0.5. This 
allowed us to derive a version of the beta distribution with an alpha of 1 
and a beta of 1. Would it matter if we chose a different probability for H1? 
Assume H1: P(prize) = 0.24, then see if the resulting distribution, once 
normalized to sum to 1, is any different than the original hypothesis.

2. Write a prior for the distribution in which each hypothesis is 1.05 times 
more likely than the previous hypothesis (assume our dx remains 
the same).

3. Suppose you observed another duck game that included 34 ducks with 
prizes and 66 ducks without prizes. How would you set up a test to 
answer “What is the probability that you have a better chance of win-
ning a prize in this game than in the game we used in our example?” 
Implementing this requires a bit more sophistication than the R used 
in this book, but see if you can learn this on your own to kick off your 
adventures in more advanced Bayesian statistics!
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In this book, we use the R programming lan-
guage to do some tricky mathematical work 

for us. R is a programming language that spe-
cializes in statistics and data science. If you don’t 

have experience with R, or with programming in gen-
eral, don’t worry—this appendix will get you started.
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R and Rstudio
To run the code examples in this book, you’ll need to have R installed on 
your computer. To install R, visit https://cran.rstudio.com/ and follow the 
installation steps for the operating system you’re using. 

Once you’ve installed R, you should also install RStudio, an integrated 
development environment (IDE) that makes it extremely easy to run R proj-
ects. Download and install RStudio from www.rstudio.com/products/rstudio/
download/. 

When you open RStudio, you should be greeted with several panels 
(Figure A-1). 

Figure A-1: Viewing the console in RStudio

The most important panel is the big one in the middle, called the con-
sole. In the console, you can enter any of the code examples from the book 
and run them simply by pressing enter. The console runs all the code you 
enter immediately, which makes it hard to keep track of the code you’ve 
written so far. 

To write programs that you can save and come back to, you can place 
your code in an R script, which is a text file that you can load into the con-
sole later. R is an extremely interactive programming language, so rather 
than thinking of the console as a place you can test out code, think of R 
scripts as a way to quickly load tools you can use in the console. 

https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/
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creating an R script
To create an R script, go to FileNew FileR Script in RStudio. This should 
create a new blank panel in the top left (Figure A-2).

Figure A-2: Creating an R script

In this panel, you can enter code and save it as a file. To run the code, 
simply click the Source button at the top right of the panel, or run individ-
ual lines by clicking the Run button. The Source button will automatically 
load your file into the console as though you had typed it there yourself.

basic concepts in R
We’ll be using R as an advanced calculator in this book, which means you’ll 
only need to understand a few basics to work through the problems and 
extend the examples in the book on your own.

Data Types
All programming languages have different types of data, which you can use 
for different purposes and manipulate in different ways. R has a rich variety 
of types and data structures, but we’ll only be using a very small number of 
them in this book. 
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Doubles

The numbers we use in R will all be of the type double (short for “double-
precision floating-point,” which is the most common way to represent 
decimal numbers on a computer). The double is the default type for repre-
senting decimal numbers. Unless otherwise specified, all numbers you enter 
into the console are of the double type. 

We can manipulate numbers in the double type using standard mathe-
matical operations. For example, we can add two numbers with the + opera-
tor. Try this out in the console:

> 5 + 2
[1] 7

We can also divide any numbers that give us decimal results using the 
/ operator:

> 5/2
[1] 2.5

We can multiply values with the * operator like so:

> 5 * 2
[1] 10

and take the exponential of a value using the ^ operator. For example, 52 is:

> 5^2
[1] 25

We can also add - in front of a number to make it negative:

> 5 - -2
[1] 7

And we can also use scientific notation with e+. So 5 × 102 is just:

> 5e+2
[1] 500

If we use e- we get the same result as 5 × 10–2:

> 5e-2
[1] 0.05

This is useful to know because sometimes R will return the result in sci-
entific notation if it is too large to easily fit on the screen, like so:

> 5*10^20
[1] 5e+20
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Strings

Another important type in R is the string, which is just a group of characters 
used to represent text. In R, we surround a string with quotation marks, 
like this:

> "hello"
[1] "hello"

Note that if you put a number inside a string, you can’t use that number 
in regular numeric operations because strings and numbers are different 
types. For example:

> "2" + 2
Error in "2" + 2 : non-numeric argument to binary operator

We won’t be making much use of strings in this book. We’ll primarily 
use them to pass arguments to functions and to give labels to plots. But it’s 
important to remember them if you’re using text.

Logicals

Logical or binary types are true or false values represented by the codes TRUE 
and FALSE. Note that TRUE and FALSE aren’t strings—they’re not surrounded 
by quotes, and they’re written in all uppercase. (R also allows you to simply 
use T or F instead of writing out the full words.)

We can combine logical types with the symbols & (“and”) and | (“or”) 
to perform basic logical operations. For example, if we wanted to know 
whether it’s possible for something to be both true and false at the same 
time, we might enter:

> TRUE & FALSE

R would return:

[1] FALSE

telling us that a value can’t be both true and false. 
But what about true or false?

> TRUE | FALSE
[1] TRUE

Like strings, in this book logical values will primarily be used to pro-
vide arguments to functions we’ll be using, or as the results of comparing 
two different values.
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Missing Values
In practical statistics and data science, data is often missing some values. 
For example, say you have temperature data for the morning and afternoon 
of every day for a month, but something malfunctioned one day and you’re 
missing a morning temperature. Because missing values are so common, R 
has a special way of representing them: using the value NA. It’s important to 
have a way to handle missing values because they can mean very different 
things in different contexts. For example, when you’re measuring rainfall a 
missing value might mean there was no rain in the gauge, or it might mean 
that there was plenty of rain but temperatures were freezing that night, 
cracking the gauge and causing all the water to leak out. In the first case, 
we might consider missing values to mean 0, but in the latter case it’s not 
clear what the value should be. Keeping missing values separate from other 
values forces us to consider these differences.

To prompt us to make sense of what our missing values are whenever we 
try to use one, R will output NA for any operation using a missing value:

> NA + 2
[1] NA

As we’ll see in a bit, various functions in R can handle missing values in 
different ways, but you shouldn’t have to worry about missing values for the 
R you’ll use in this book.

Vectors 
Nearly every programming language contains certain features that make it 
unique and especially suited to solving problems in its domain. R’s special 
feature is that it is a vector language. A vector is a list of values, and every-
thing R does is an operation on a vector. We use the code c(...) to define 
vectors (but even if we put in just a single value, R does this for us!). 

To understand how vectors work, let’s consider an example. Enter the 
next example in a script, rather than the console. We first create a new vec-
tor by assigning the variable x to the vector c(1,2,3) using the assignment 
operator <- like so:

x <- c(1,2,3)

Now that we have a vector, we can use it in our calculations. When we 
perform a simple operation, like adding 3 to x, when we enter this in the 
console, we get a rather unexpected result (especially if you’re used to 
another programming language):

> x + 3
[1] 4 5 6
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The result of x + 3 tells us what happens if we add 3 to each value in our 
x vector. (In many other programming languages, we’d need to use a for 
loop or some other iterator to perform this operation.)

We can also add vectors to each other. Here, we’ll create a new vector 
containing three elements, each with a value of 2. We’ll name this vector y, 
then add y to x:

> y <- c(2,2,2)
> x + y
[1] 3 4 5

As you can see, this operation added each element in x to its corre-
sponding element in y. 

What if we multiply our two vectors?

> x * y
[1] 2 4 6

Each value in x was multiplied by its corresponding value in y. If the 
lists weren’t the same size, or a multiple of the same size, then we’d get an 
error. If a vector is a multiple of the same size, R will just repeatedly apply 
the smaller vector to the larger one. However, we won’t be making use of 
this feature in this book.

We can quite easily combine vectors in R by defining another vector 
based on the existing ones. Here, we’ll create the vector z by combining 
x and y:

> z <- c(x,y)
> z
[1] 1 2 3 2 2 2

Notice that this operation didn’t give us a vector of vectors; instead, we 
got a single vector that contains the values from both, in the order you set 
x and y when you defined z.

Learning to use vectors efficiently in R can be a bit tricky for beginners. 
Ironically, programmers who are experienced in a non-vector-based language 
often have the most difficulty. Don’t worry, though: in this book, we’ll use vec-
tors to make reading code easier.

functions
Functions are blocks of code that perform a particular operation on a value, 
and we’ll use them in R to solve problems. 

In R and RStudio, all functions come equipped with documentation. 
If you enter ? followed by a function name into the R console, you’ll get the 
full documentation for that function. For example, if you enter ?sum into the 
RStudio console, you should see the documentation shown in Figure A-3 in 
the bottom-right screen.
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Figure A-3: Viewing the documentation for the sum() function

This documentation gives us the definition of the sum() function and 
some of its uses. The sum() function takes a vector’s values and adds them all 
together. The documentation says it takes ... as an argument, which means 
it can accept any number of values. Usually these values will be a vector of 
numbers, but they can consist of multiple vectors, too. 

The documentation also lists an optional argument: na.rm = FALSE. 
Optional arguments are arguments that you don’t have to pass in to the 
function for it to work; if you don’t pass an optional argument in, R will 
use the argument’s default value. In the case of na.rm, which automatically 
removes any missing values, the default value, after the equal sign, is FALSE. 
That means that, by default, sum() won’t remove missing values.

Basic Functions
Here are some of R’s most important functions.

the length() and nchar() Functions

The length() function will return the length of a vector:

> length(c(1,2,3))
[1] 3
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Since there are three elements in this vector, the length() function 
returns 3. 

Because everything in R is a vector, you can use the length() function to 
find the length of anything—even a string, like "doggies":

> length("doggies")
[1] 1

R tells us that "doggies" is a vector containing one string.
Now, if we had two strings, "doggies" and "cats", we’d get:

> length(c("doggies","cats"))
[1] 2

To find the number of characters in a string, we use the nchar() function:

> nchar("doggies")
[1] 7

Note that if we use nchar() on the c("doggies","cats") vector, R returns a 
new vector containing the number of characters in each string:

> nchar(c("doggies","cats"))
[1] 7 4

the sum(), cumsum(), and diff() Functions

The sum() function takes a vector of numbers and adds all those numbers 
together:

> sum(c(1,1,1,1,1))
[1] 5

As we saw in the documentation in the previous section, sum() takes ... 
as its argument, which means it can accept any number of values:

> sum(2,3,1)
[1] 6
> sum(c(2,3),1)
[1] 6
> sum(c(2,3,1))
[1] 6

As you can see, no matter how many vectors we provide, sum() adds 
them up as though they were a single vector of integers. If you wanted to 
sum up multiple vectors, you’d call sum() on them each separately.

Remember, also, that the sum() function takes the optional argument 
na.rm, which by default is set to FALSE. The na.rm argument determines if 
sum() removes NA values or not. 
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If we leave na.rm set to FALSE, here’s what happens if we try to use sum() 
on a vector with a missing value:

> sum(c(1,NA,3))
[1] NA

As we saw when NA was introduced, adding a value to an NA value results 
in NA. If we’d like R to give us a number as an answer instead, we can tell 
sum() to remove NA values by setting na.rm = TRUE:

> sum(c(1,NA,3),na.rm = TRUE)
[1] 4

The cumsum() function takes a vector and calculates its cumulative sum— 
a vector of the same length as the input that replaces each number with the 
sum of the numbers that come before it (including that number). Here’s an 
example in code to make this clearer: 

> cumsum(c(1,1,1,1,1)) 
[1] 1 2 3 4 5 
> cumsum(c(2,10,20)) 
[1] 2 12 32

The diff() function takes a vector and subtracts each number from the 
number that precedes it in the vector:

> diff(c(1,2,3,4,5))
[1] 1 1 1 1
> diff(c(2,10,3))
[1]  8 -7

Notice that the result of the diff() function contains one fewer element 
than the original vector did. That’s because nothing gets subtracted from 
the first value in the vector.

the : operator and the seq() Function

Often, rather than manually listing each element of a vector, we’d prefer 
to generate vectors automatically. To automatically create a vector of whole 
numbers in a certain range, we can use the : operator to separate the start 
and end of the range. R can even figure out if you want to count up or down 
(the c() wrapping this operator is not strictly necessary):

> c(1:5)
[1] 1 2 3 4 5

> c(5:1)
[1] 5 4 3 2 1

When you use :, R will count from the first value to the last.
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Sometimes we’ll want to count by something other than increments of 
one. The seq() function allows us to create vectors of a sequence of values 
that increment by a specified amount. The arguments to seq() are, in order: 

1. The start of the sequence 

2. The end of the sequence 

3. The amount to increment the sequence by

Here are some examples of using seq():

> seq(1,1.1,0.05)
[1] 1.00 1.05 1.10

> seq(0,15,5)
[1]  0  5 10 15

> seq(1,2,0.3)
[1] 1.0 1.3 1.6 1.9

If we want to count down to a certain value using the seq() function, 
we use a minus value as our increment, like this:

> seq(10,5,-1)
[1] 10  9  8  7  6  5

the ifelse() Function

The ifelse() function tells R to take one of two actions based on some con-
dition. This function can be a bit confusing if you’re used to the normal if 
... else control structure in other languages. In R, it takes the following 
three arguments (in order): 

1. A statement about a vector that may be either true or false of its values 

2. What happens in the case that the statement is true

3. What happens in the case that the statement is false

The ifelse() function operates on entire vectors at once. When it comes 
to vectors containing a single value, its use is pretty intuitive:

> ifelse(2 < 3,"small","too big")
[1] "small"

Here the statement is that 2 is smaller than 3, and we ask R to output 
"small" if it is, and "too big" if it isn’t. 

Suppose we have a vector x that contains multiple values:

> x <- c(1,2,3)
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The ifelse() function will return a value for each element in the vector:

> ifelse(x < 3,"small","too big")
[1] "small"   "small"   "too big"

We can also use vectors in the results arguments for the ifelse(). 
Suppose that, in addition to our x vector, we had another vector, y:

y <- c(2,1,6)

We want to generate a new list that contains the greatest value from 
x and y for each element in the vector. We could use ifelse() to solve this 
very simply:

> ifelse(x > y,x,y)
[1] 2 2 6

You can see R has compared the values in x to the respective value in y 
and outputs the largest of the two for each element.

Random sampling 
We’ll often use R to randomly sample values. This allows us to have the 
computer pick a random number or value for us. We use this sample to sim-
ulate activities like flipping a coin, playing “rock, paper, scissors,” or picking 
a number between 1 and 100. 

The runif() Function
One way to randomly sample values is with the function runif(), short for 
“random uniform,” which takes a required argument n and gives that many 
samples in the range 0 to 1:

> runif(5)
[1] 0.8688236 0.1078877 0.6814762 0.9152730 0.8702736

We can use this function with ifelse() to generate a value A 20 percent 
of the time. In this case we’ll use runif(5) to create five random values 
between 0 and 1. Then if the value is less than 0.2, we’ll return "A"; other-
wise, we’ll return "B":

> ifelse(runif(5) < 0.2,"A","B")
[1] "B" "B" "B" "B" "A"
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Since the numbers we’re generating are random, we’ll get a different result 
each time we run the ifelse() function. Here are some possible outcomes:

> ifelse(runif(5) < 0.2,"A","B")
[1] "B" "B" "B" "B" "B"
> ifelse(runif(5) < 0.2,"A","B") 
 [1] "A" "A" "B" "B" "B"

The runif() function can take optional second and third arguments, 
which are the minimum and maximum values of the range to be uniformly 
sampled from. By default, the function uses the range between 0 and 1 
inclusive, but you can set the range to be whatever you’d like:

> runif(5,0,2)
[1] 1.4875132 0.9368703 0.4759267 1.8924910 1.6925406

The rnorm() Function
We can also sample from a normal distribution using the rnorm() function, 
which we’ll discuss in more depth in the book (the normal distribution is 
covered in Chapter 12):

> rnorm(3)
[1]  0.28352476  0.03482336 -0.20195303

By default, rnorm() samples from a normal distribution with a mean of 
0 and standard deviation of 1, as is the case in this example. For readers 
unfamiliar with the normal distribution, this means that samples will have a 
“bell-shaped” distribution around 0, with most samples being close to 0 and 
very few being less than –3 or greater than 3.

The rnorm() function has two optional arguments, mean and sd, which 
allow you to set a different mean and standard deviation, respectively:

> rnorm(4,mean=2,sd=10)
[1] -12.801407  -9.648737   1.707625  -8.232063

In statistics, sampling from a normal distribution is often more com-
mon than sampling from a uniform distribution, so rnorm() comes in quite 
handy.

The sample() Function
Sometimes, we want to sample from something other than just a well-
studied distribution. Suppose you have a drawer containing socks of 
many colors:

socks <- c("red","grey","white","red","black")
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If you wanted to simulate the act of randomly picking any two socks, 
you could use R’s sample() function, which takes as arguments a vector of 
values and the number of elements to sample:

> sample(socks,2)
[1] "grey" "red" 

The sample() function behaves as though we’ve picked two random 
socks out of the drawer—without putting any back. If we sample five socks, 
we’ll get all of the socks we originally had in the drawer:

> sample(socks,5)
[1] "grey"  "red"   "red"   "black" "white"

That means that if we try to take six socks from the drawer where there 
are only five available socks, we’ll get an error:

> sample(socks,6)
Error in sample.int(length(x), size, replace, prob) : 
  cannot take a sample larger than the population when 'replace = FALSE'

If we want to both sample and “put the socks back,” we can set the 
optional argument replace to TRUE. Now, each time we sample a sock, we put 
it back in the drawer. This allows us to sample more socks than are in the 
drawer. It also means the distribution of socks in the drawer never changes.

> sample(socks,6,replace=TRUE)
[1] "black" "red"   "black" "red"   "black" "black"

With these simple sampling tools, you can run surprisingly sophisti-
cated simulations in R that save you from doing a lot of math.

Using set.seed() for Predictable Random Results
The “random numbers” generated by R aren’t truly random numbers. As 
in all programming languages, random numbers are generated by a pseu-
dorandom number generator, which takes a seed value and uses that to create a 
sequence of numbers that are random enough for most purposes. The seed 
value sets the initial state of the random number generator and determines 
which numbers will come next in the sequence. In R, we can manually set 
this seed using the set.seed() function. Setting the seed is extremely useful 
for cases when we want to use the same random results again:

> set.seed(1337)
> ifelse(runif(5) < 0.2,"A","B")
[1] "B" "B" "A" "B" "B"
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> set.seed(1337)
> ifelse(runif(5) < 0.2,"A","B")
[1] "B" "B" "A" "B" "B"

As you can see, when we used the same seed twice with the runif() func-
tion, it generated the same set of supposedly random values. The main ben-
efit of using set.seed() is making the results reproducible. This can make 
tracking down bugs in programs that involve sampling much easier, since 
the results don’t change each time the program is run.

defining your own functions
Sometimes it’s helpful to write our own functions for specific operations 
we’ll have to perform repeatedly. In R, we can define functions using the 
keyword function (a keyword in a programming language is simply a special 
word reserved by the programming language for a specific use).

Here’s the definition of a function that takes a single argument, val—
which here stands for the value the user will input to the function—and 
then doubles val and cubes it.

double_then_cube <- function(val){
  (val*2)^3
}

Once we’ve defined our function, we can use it, just like R’s built-in 
functions. Here’s our double_then_cube() function applied to the number 8:

> double_then_cube(8)
[1] 4096

Also, because everything we did to define our function is vectorized (that 
is, all values work on vectors of values), our function will work on vectors as 
well as single values:

> double_then_cube(c(1,2,3)) 
[1] 8 64 216

We can define functions that take more than one argument as well. 
The sum_then_square() function, defined here, adds two arguments together, 
then squares the result:

sum_then_square <- function(x,y){
  (x+y)^2
}
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By including the two arguments (x,y) in the function definition, we’re 
telling R the sum_then_square() function expects two arguments. Now we can 
use our new function, like this:

> sum_then_square(2,3)
[1] 25
> sum_then_square(c(1,2),c(5,3))
[1] 36 25

We can also define functions that require multiple lines. In R, when a 
function is called it will always return the result of the calculation on the 
final line of the function definition. That means we could have rewritten 
sum_then_square() like this:

sum_then_square <- function(x,y){
  sum_of_args <- x+y
  square_of_result <- sum_of_args^2
  square_of_result
}

Typically, when you write functions, you’ll want to write them in an R 
script file so you can save them and reuse them later.

creating basic Plots
In R, we can quickly generate plots of data very easily. Though R has an 
extraordinary plotting library called ggplot2, which contains many useful 
functions for generating beautiful plots, we’ll restrict ourselves to R’s base 
plotting functions for now, which are plenty useful on their own.

To show how plotting works, we’ll create two vectors of values, our xs 
and our ys:

> xs <- c(1,2,3,4,5)
> ys <- c(2,3,2,4,6)

Next, we can use these vectors as arguments to the plot() function, 
which will plot our data for us. The plot() function takes two arguments: 
the values of the plot’s points on the x-axis and the values of those points 
on the y-axis, in that order:

> plot(xs,ys)

This function should generate the plot shown in Figure A-4 in the bot-
tom-left window of RStudio.
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Figure A-4: A simple plot created with R’s plot() function

This plot shows the relationship between our xs values and their cor-
responding ys values. If we return to the function, we can give this plot a 
title using the optional main argument. We can also change the x- and y-axis 
labels with the xlab and ylab arguments, like this:

plot(xs,ys,
     main="example plot",
     xlab="x values",
     ylab="y values"
     )

The new labels should show up as they appear in Figure A-5.
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Figure A-5: Changing the plot title and labels with the plot() function
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We can also change the plot’s type using the type argument. The first 
kind of plot we generated is called a point plot, but if we wanted to make a 
line plot, which draws a line through each value, we could set type="l":

plot(xs,ys,
     type="l",
     main="example plot",
     xlab="x values",
     ylab="y values"
     )

It would then look like Figure A-6. 
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Figure A-6: A line plot generated with R’s plot() function

Or we can do both! An R function called lines() can add lines to an 
existing plot. It takes most of the same arguments as plot():

plot(xs,ys,
     main="example plot",
     xlab="x values",
     ylab="y values"
     )
lines(xs,ys)

Figure A-7 shows the plot this function would generate.
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Figure A-7: Adding lines to an existing plot with R’s lines() function

There are many more amazing ways to use R’s basic plots, and you can 
consult ?plot for more information on them. However, if you want to create 
truly beautiful plots in R, you should research the ggplot2 library (https://
ggplot2.tidyverse.org/).

exercise: simulating a stock Price
Now let’s put everything we’ve learned together to create a simulated stock 
ticker! People often model stock prices using the cumulative sum of nor-
mally distributed random values. To start, we’ll simulate stock movement 
for a period of time by generating a sequence of values from 1 to 20, incre-
menting by 1 each time using the seq() function. We’ll call the vector repre-
senting the period of time t.vals.

 t.vals <- seq(1,20,by=1)

Now t.vals is a vector containing the sequence of numbers from 1 to 
20 incremented by 1. Next, we’ll create some simulated prices by taking 
the cumulative sum of a normally distributed value for each time in your 
t.vals. To do this we’ll use rnorm() to sample the number of values equal to 
the length of t.vals. Then we’ll use cumsum() to calculate the cumulative sum 
of this vector of values. This will represent the idea of a price moving up or 
down based on random motion; less extreme movements are more com-
mon than more extreme ones.

 price.vals <- cumsum(rnorm(length(t.vals),mean=5,sd=10))
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Finally, we can plot all these values to see how they look! We’ll use 
both the plot() and lines() functions, and label the axes according to what 
they represent.

plot(t.vals,price.vals,
     main="Simulated stock ticker",
     xlab="time",
     ylab="price")
lines(t.vals,price.vals)

The plot() and lines() functions should generate the plot shown in 
Figure A-8. 
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Figure A-8: The plot generated for our simulated stock ticker

summary
This appendix should cover enough R to give you a grasp of the examples in 
this book. I recommend following along with the book’s chapters, then playing 
around by modifying the code examples to learn more. R also has some great 
online documentation if you want to take your experimentation further.
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e n O u G h  c a L c u L u s  t O  G e t  b y

In this book, we’ll occasionally use ideas 
from calculus, though no actual manual 

solving of calculus problems will be required! 
What will be required is an understanding of 

some of the basics of calculus, such as the derivative 
and (especially) the integral. This appendix is by no 
means an attempt to teach these concepts deeply or 
show you how to solve them; instead, it offers a brief 
overview of these ideas and how they’re represented 
in mathematical notation.
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functions
A function is just a mathematical “machine” that takes one value, does 
something with it, and returns another value. This is very similar to how 
functions in R work (see Appendix A): they take in a value and return a 
result. For example, in calculus we might have a function called f defined 
like this:

f x x( ) = 2

In this example, f takes a value, x, and squares it. If we input the value 3 
into f, for example, we get:

f 3 9( ) =

This is a little different than how you might have seen it in high 
school algebra, where you’d usually have a value y and some equation 
involving x.

y x= 2

One reason why functions are important is that they allow us to abstract 
away the actual calculations we’re doing. That means we can say something 
like y = f(x), and just concern ourselves with the abstract behavior of the 
function itself, not necessarily how it’s defined. That’s the approach we’ll 
take for this appendix.

As an example, say you’re training to run a 5 km race and you’re 
using a smartwatch to keep track of your distance, speed, time, and other 
factors. You went out for a run today and ran for half an hour. However, 
your smartwatch malfunctioned and recorded only your speed in miles per 
hour (mph) throughout your 30-minute run. Figure B-1 shows the data you 
were able to recover.

For this appendix, think of your running speed as being created by a 
function, s, that takes an argument t, the time in hours. A function is typi-
cally written in terms of the argument it takes, so we would write s(t), which 
results in a value that gives your current speed at time t. You can think of 
the function s as a machine that takes the current time and returns your 
speed at that time. In calculus, we’d usually have a specific definition of 
s(t), such as s(t) = t 2 + 3t + 2, but here we’re just talking about general con-
cepts, so we won’t worry about the exact definition of s. 

n O t e  Throughout the book we’ll be using R to handle all our calculus needs, so it’s really 
only important that you understand the fundamental ideas behind it, rather than the 
mechanics of solving calculus problems.
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From this function alone, we can learn a few things. It’s clear that 
your pace was a little uneven during this run, going up and down from 
a high of nearly 8 mph near the end and a low of just under 4.5 mph in 
the beginning.

Sp
ee

d 
(m

ph
)

0.20.1

0

4

0.3 0.40.0

6

2

Running speed (mph) recovered from watch

Time (hours)

8

0.5

Figure B-1: The speed for a given time in your run

However, there are still a lot of interesting questions you might want to 
answer, such as:

•	 How far did you run?

•	 When did you lose the most speed?

•	 When did you gain the most speed?

•	 During what times was your speed relatively consistent?

We can make a fairly accurate estimate of the last question from this 
plot, but the others seem impossible to answer from what we have. However, 
it turns out that we can answer all of these questions with the power of cal-
culus! Let’s see how.

Determining How Far You’ve Run
So far our chart just shows your running speed at a certain time, so how do 
we find out how far you’ve run?
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This doesn’t sound too difficult in theory. Suppose, for example, you 
ran 5 mph consistently for the whole run. In that case, you ran 5 mph for 
0.5 hour, so your total distance was 2.5 miles. This intuitively makes sense, 
since you would have run 5 miles each hour, but you ran for only half an 
hour, so you ran half the distance you would have run in an hour.

But our problem involves a different speed at nearly every moment that 
you were running. Let’s look at the problem another way. Figure B-2 shows 
the plotted data for a constant running speed.
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Figure B-2: Visualizing distance as the area of the speed/time plot

You can see that this data creates a straight line. If we think about the 
space under this line, we can see that it’s a big block that actually represents 
the distance you’ve run! The block is 5 high and 0.5 long, so the area of this 
block is 5 × 0.5 = 2.5, which gives us the 2.5 miles result!

Now let’s look at a simplified problem with varying speeds, where you 
ran 4.5 mph from 0.0 to 0.3 hours, 6 mph from 0.3 to 0.4 hours, and 3 mph 
the rest of the way to 0.5 miles. If we visualize these results as blocks, or 
towers, as in Figure B-3, we can solve our problem the same way.
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The first tower is 4.5 × 0.3, the second is 6 × 0.1, and the third is 3 × 0.1, 
so that:

4 5 0 3 6 0 1 3 0 1 2 25. . . . .× + × + × =

By looking at the area under the tower, then, we get the total distance 
you traveled: 2.25 miles.
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Figure B-3: We can easily calculate your total distance traveled by adding together 
these towers.

Measuring the Area Under the Curve: The Integral
You’ve now seen that we can figure out the area under the line to tell us 
how far you traveled. Unfortunately, the line for our original data is curved, 
which makes our problem a bit difficult: how can we calculate the towers 
under our curvy line?

We can start this process by imagining some large towers that are fairly 
close to the pattern of our curve. If we start with just three towers, as we can 
see in Figure B-4, it isn’t a bad estimate.
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Figure B-4: Approximating the curve with three towers

By calculating the area under each of these towers, we get a value of 
3.055 miles for your estimated total miles traveled. But we could clearly do 
better by making more, smaller towers, as shown in Figure B-5.
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Figure B-5: Approximating the curve better by using 10 towers instead of 3
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Adding up the areas of these towers, we get 3.054 miles, which is a more 
accurate estimate.

If we imagine repeating this process forever, using more and thin-
ner towers, eventually we would get the full area under the curve, as in 
Figure B-6.
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Figure B-6: Completely capturing the area under the curve

This represents the exact area traveled for your half-hour run. If we 
could add up infinitely many towers, we would get a total of 3.053 miles. 
Our estimates were pretty close, and as we use more and smaller towers, our 
estimate gets closer. The power of calculus is that it allows us to calculate 
this exact area under the curve, or the integral. In calculus, we’d represent 
the integral for our s(t) from 0 to 0.5 in mathematical notation as:

s t dt( )∫0
0 5.

That ∫ is just a fancy S, meaning the sum (or total) of the area of all the 
little towers in s(t). The dt notation reminds us that we’re talking about little 
bits of the variable t; the d is a mathematical way to refer to these little tow-
ers. Of course, in this bit of notation, there’s only one variable, t, so we aren’t 
likely to get confused. Likewise, in this book, we typically drop the dt (or its 
equivalent for the variable being used) since it’s obvious in the examples.
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In our last notation we set the beginning and end of our integral, which 
means we can find the distance not just for the whole run but also for a sec-
tion of it. Suppose we wanted to know how far you ran between 0.1 to 0.2 of 
an hour. We would note this as:

s t dt( )∫0 1

0 2

.

.

We can visualize this integral as shown in Figure B-7.
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Figure B-7: Visualizing the area under the curve for the region from 0.1 to 0.2

The area of just this shaded region is 0.556 miles.
We can even think of the integral of our function as another function. 

Suppose we define a new function, dist(T), where T is our “total time run”:

dist T s t dt
T

( ) = ( )∫0
This gives us a function that tells us the distance you’ve traveled at time 

T. We can also see why we want to use dt because we can see that our inte-
gral is being applied to the lowercase t argument rather than the capital T 
argument. Figure B-8 plots this out to the total distance you’ve run at any 
given time T during your run.



Enough Calculus to Get By   223

D
ist

an
ce

 (m
ile

s)

0.20.1

0

1

0.3 0.40.0

2

Distance traveled over time as the integral of speed over time

Time (hours)

3

0.50.20.1

0

1

0.3 0.40.0

2

Distance traveled over time as the integral of speed over time

3

0.5

Figure B-8: Plotting out the integral transforms a time and speed plot to a time and dis-
tance plot.

In this way, the integral has transformed our function s, which was 
“speed at a time,” to a function dist, “distance covered at a time.” As shown 
earlier, the integral of our function between two points represents the dis-
tance traveled between two different times. Now we’re looking at the total 
distance traveled at any given time t from the beginning time of 0.

The integral is important because it allows us to calculate the area 
under curves, which is much trickier to calculate than if we have straight 
lines. In this book, we’ll use the concept of the integral to determine the 
probabilities that events are between two ranges of values.

Measuring the Rate of Change: The Derivative
You’ve seen how we can use the integral to figure out the distance traveled 
when all we have is a recording of your speed at various times. But with our 
varying speed measurements, we might also be interested in figuring out 
the rate of change for your speed at various times. When we talk about the 
rate at which speed is changing, we’re referring to acceleration. In our chart, 
there are a few interesting points regarding the rate of change: the points 
when you’re losing speed the fastest, when you’re gaining speed the fastest, 
and when the speed is the most steady (i.e., the rate of change is near 0).
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Just as with integration, the main challenge of figuring out your accelera-
tion is that it seems to always be changing. If we had a constant rate of change, 
calculating the acceleration isn’t that difficult, as shown in Figure B-9.
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Figure B-9: Visualizing a constant rate of change (compared with your actual 
changing rate)

You might remember from basic algebra that we can draw any line 
using this formula:

y mx b= +

where b is the point at which the line crosses the y-axis and m is the slope of 
the line. The slope represents the rate of change of a straight line. For the 
line in Figure B-9, the full formula is:

y x= +5 4 8.

The slope of 5 means that for every time x grows by 1, y grows by 5; 4.8 
is the point at which the line crosses the x-axis. In this example, we’d inter-
pret this formula as s(t) = 5t + 4.8, meaning that for every mile you travel 
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you accelerate by 5 mph, and that you started off at 4.8 mph. Since you’ve 
run half a mile, using this simple formula, we can figure out:

s t( ) = × + =5 0 5 4 8 7 3. . .

which means at the end of your run, you would be traveling 7.3 mph. We 
could similarly determine your exact speed at any point in the run, as long 
as the acceleration is constant!

For our actual data, because the line is curvy it’s not easy to determine 
the slope at a single point in time. Instead, we can figure out the slopes of 
parts of the line. If we divide our data into three subsections, we could draw 
lines between each part as in Figure B-10.
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Figure B-10: Using multiple slopes to get a better estimate of your rate of change

Now, clearly these lines aren’t a perfect fit to our curvy line, but they 
allow us to see the parts where you accelerated the fastest, slowed down the 
most, and were relatively stable.

If we split our function up into even more pieces we can get even better 
estimates, as in Figure B-11.



226   Appendix B

Sp
ee

d 
(m

ph
)

0.20.1

0

4

0.3 0.40.0

6

2

Approximating the change in speed at different times

Time (hours)

8

0.5

Figure B-11: Adding more slopes allows us to better approximate your curve.

Here we have a similar pattern to when we found the integral, where we 
split the area under the curve into smaller and smaller towers until we were 
adding up infinitely many small towers. Now we want to break up our line 
into infinitely many small line segments. Eventually, rather than a single 
m representing our slope, we have a new function representing the rate of 
change at each point in our original function. This is called the derivative, 
represented in mathematical notation like this:

d
dx

f x( )

Again, the dx just reminds us that we’re looking at very small pieces of 
our argument x. Figure B-12 shows the plot of the derivative for our s(t) 
function, which allows us to see the exact rate of speed change at each 
moment in your run. In other words, this is a plot of your acceleration dur-
ing your run. Looking at the y-axis, you can see that you rapidly lost speed 
in the beginning, and at around 0.3 hours you had a period of 0 accelera-
tion, meaning your pace did not change (this is usually a good thing when 
practicing for a race!). We can also see exactly when you gained the most 
speed. Looking at the original plot, we couldn’t easily tell if you were gain-
ing speed faster around 0.1 hours (just after your first speedup) or at the 
end of your run. With the derivative, though, it’s clear that the final burst of 
speed at the end was indeed faster than at the beginning.
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Figure B-12: The derivative is another function that describes the slope of s(x)  
at each point.

The derivative works just like the slope of a straight line, only it tells us 
how much a curvy line is sloping at a certain point.

the fundamental theorem of calculus
We’ll look at one last truly remarkable calculus concept. There’s a very 
interesting relationship between the integral and the derivative. (Proving 
this relationship is far beyond the scope of this book, so we’ll focus only on 
the relationship itself here.) Suppose we have a function F(x), with a capital 
F. What makes this function special is that its derivative is f(x). For example, 
the derivative of our dist function is our s function; that is, your change in 
distance at each point in time is your speed. The derivative of speed is accel-
eration. We can describe this mathematically as:

d
dx

F x f x( ) = ( )

In calculus terms we call F the antiderivative of f, because f is F ’s deriva-
tive. Given our examples, the antiderivative of acceleration would be speed, 
and the antiderivative of speed would be distance. Now suppose for any 
value of f, we want to take its integral between 10 and 50; that is, we want:

f x dx( )∫10

50
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We can get this simply by subtracting F(10) from F(50), so that:

f x dx F F( ) = ( ) − ( )∫10

50
50 10

The relationship between the integral and the derivative is called the 
fundamental theorem of calculus. It’s a pretty amazing tool, because it allows 
us to solve integrals mathematically, which is often much more difficult 
than finding derivatives. Using the fundamental theorem, if we can find the 
antiderivative of the function we want to find the integral of, we can easily 
perform integration. Figuring this out is the heart of performing integra-
tion by hand. 

A full course on calculus (or two) typically explores the topics of inte-
grals and derivatives in much greater depth. However, as mentioned, in this 
book we’ll only be making occasional use of calculus, and we’ll be using R for 
all of the calculations. Still, it’s helpful to have a rough understanding of what 
calculus and those unfamiliar ∫ symbols are all about!



C
A N S W E R S  T O  T H E  E X E R C I S E S

Here you’ll find all the exercise questions 
and their answers. For some exercises, there 

are multiple ways we could come up with a 
solution, so I’ve provided at least one option.

Part I: Introduction to Probability

Chapter 1: Bayesian Thinking and Everyday Reasoning
Q1. Rewrite the following statements as equations using the mathematical 
notation you learned in this chapter: 

• The probability of rain is low

• The probability of rain given that it is cloudy is high

• The probability of you having an umbrella given it is raining is 
much greater than the probability of you having an umbrella in 
general.
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A1. 

P

P

P P

rain low

rain cloudy high

umbrella rain umbrella

( ) =
( ) =
( ) ( )

|

| 

Q2. Organize the data you observe in the following scenario into a math-
ematical notation, using the techniques we’ve covered in this chapter. Then 
come up with a hypothesis to explain this data:

You come home from work and notice that your front door is 
open and the side window is broken. As you walk inside, you 
immediately notice that your laptop is missing.

A2. We first want to describe our data with a variable:

D = door open, window broken, laptop missing

Our data represents three facts you observed upon arriving home. 
An immediate explanation for this data is that you’ve been robbed! We 
would express this mathematically as:

H1 = you ve been robbed!’

Now we can express this as “The probability of seeing all these 
things, given that you’ve been robbed” as:

P D H| 1( )

Q3. The following scenario adds data to the previous one. Demonstrate 
how this new information changes your beliefs and come up with a second 
hypothesis to explain the data, using the notation you’ve learned in this 
chapter. 

A neighborhood child runs up to you and apologizes profusely 
for accidentally throwing a rock through your window. They 
claim that they saw the laptop and didn’t want it stolen so they 
opened the front door to grab it, and your laptop is safe at their 
house.

A3. Now we have another hypothesis for the things you observed:

H 2 = child accidentally broke your window 
  and took the lapttop for safekeeping

We can express this as:

P D H P D H| |2 1( ) ( )
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And we would expect:

P D H

P D H

|

|
2

1

( )
( )

= a large number

Of course, you might think that this child is untrustworthy and 
notorious for causing trouble, which might change your mind about 
how likely their explanation is and lead you to hypothesize that they 
have robbed you! As you move through this book, you’ll learn more 
about how you can reflect that mathematically.

Chapter 2: Measuring Uncertainty
Q1. What is the probability of rolling two six-sided dice and getting a 
value greater than 7?

A1. There are 36 possible ways that we could roll the two dice (if we 
consider 1 and 6 different from 6 and 1). You can list this all out on 
paper (or find a way to do it in code, which will be faster). Fifteen of 
these 36 pairs are greater than 7. So the probability that you’ll get a 
value greater than 7 is 15/36.

Q2. What is the probability of rolling three six-sided dice and getting a 
value greater than 7?

A2. With three rolls there are 216 different possible outcomes. You 
can write these out on a sheet of paper, which is fine but will take you 
quite a while. You can see why learning the basics of coding is helpful, 
as there are various programs (even messy ones) you can write to solve 
this problem. For example, we can find the answer with this simple set 
of for loops in R:

count <- 0
for(roll1 in c(1:6)){
  for(roll2 in c(1:6)){
    for(roll3 in c(1:6)){
      count <- count + ifelse(roll1+roll2+roll3 > 7,1,0)
    }
  }
}

Here you can see the count is 181, so the probability of the rolls 
totaling more than 7 is 181/216. As noted, however, there are many 
ways to compute this. One alternative is this single (difficult to read!) 
line of R, which does the same thing as the for loops:

sum(apply(expand.grid(c(1:6),c(1:6),c(1:6)),1,sum) > 7)

When learning to code, you should focus on getting the correct 
answer over using a particular approach to arrive at it.
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Q3. The Yankees are playing the Red Sox. You’re a diehard Sox fan and 
bet your friend they’ll win the game. You’ll pay your friend $30 if the Sox 
lose and your friend will have to pay you only $5 if the Sox win. What is 
the probability you have intuitively assigned to the belief that the Red Sox 
will win?

A3. We can see that the odds you’ve given for the Red Sox to win is:

O Red Sox win( ) = =
30
5

6

Recalling our formula for converting odds to probabilities, we can 
translate the odds into a probability that the Red Sox will win:

P
O

O
Red Sox win

Red Sox win

Red Sox win
( ) = ( )

+ ( )
=

1
6
7

So, based on the bet you take, you would say there’s about an 86 
percent chance that the Red Sox will win!

Chapter 3: The Logic of Uncertainty
Q1. What is the probability of rolling a 20 three times in a row on a 
20-sided die?

A1. The probability of rolling a 20 is 1/20, and to determine the prob-
ability of rolling three in a row, we must use our product rule:

P three 20s( ) = × × =
1

20
1

20
1

20
1

8 000,

Q2. The weather report says there’s a 10 percent chance of rain tomorrow, 
and you forget your umbrella half the time you go out. What is the prob-
ability that you’ll be caught in the rain without an umbrella tomorrow?

A2. Again, we can use the product rule to solve this problem. We know 
that P(rain) = 0.1 and P(forgetting umbrella) = 0.5, so:

P P Prain, forget umbrella rain forget umbrella( ) = ( ) × ( ) = 0 05.

As you can see, there’s only a 5 percent chance that you’ll find your-
self caught in the rain without an umbrella.

Q3. Raw eggs have a 1/20,000 probability of having salmonella. If you eat 
two raw eggs, what is the probability you ate a raw egg with salmonella?
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A3. For this question, we need to use the sum rule because if either egg 
has salmonella, you’ll get sick:

P P P Pegg egg egg egg1 2 1 2

1
20 000

1
20 000

1
20 000

1
2

( ) + ( ) ( ) × ( )

= + ×

−

−
, , , 00 000

39 999
400 000 000

,
,

, ,
=

. . . which is just a hair under 1/10,000.

Q4. What is the probability of either flipping two heads in two coin tosses 
or rolling three 6s in three six-sided dice rolls?

A4. For this exercise, we need to combine our product rule and our 
sum rule. First, let’s calculate P(two heads) and P(three 6s) separately. 
Each probability uses the product rule:

P

P

two heads

three 6s

( ) = × =

( ) = × × =

1
2

1
2

1
4

1
6

1
6

1
6

1
216

Now we need to use the sum rule to figure out the probability of 
either of these happening, P(two heads or three 6s):

P P P Ptwo heads three 6s two heads three 6s( ) + ( ) ( ) × ( )

= +

−

−
1
4

1
216

11
4

1
216

73
288

× =

. . . which is just a little bit more than a 25 percent chance.

Chapter 4: Creating a Binomial Probability Distribution
Q1. What are the parameters of the binomial distribution for the prob-
ability of rolling either a 1 or a 20 on a 20-sided die, if we roll the die 
12 times?

A1. We’re looking for an event to happen 1 time out of 12 trials, so 
n = 12, and k = 1. We have 20 sides and care about 2 of them, so  
p = 2/20 = 1/10.

Q2. There are four aces in a deck of 52 cards. If you pull a card, return 
the card, then reshuffle and pull a card again, how many ways can you pull 
just one ace in five pulls?
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A2. We don’t even need combinatorics for this one. There are five pos-
sible cases, if we imagine A stands for “ace” and x for anything else:

•	 Axxxx

•	 xAxxx

•	 xxAxx

•	 xxxAx

•	 xxxxA

We could just call this
 

5

1







  or, in R, choose(5,1). Either way, the 

answer is 5.

Q3. For the example in question 2, what is the probability of pulling five 
aces in 10 pulls (remember the card is shuffled back in the deck when it is 
pulled)?

A3. This is the same as B(5; 10, 1/13).
As expected, the probability of this is extremely low: about 

1/32,000.

Q4. When you’re searching for a new job, it’s always helpful to have more 
than one offer on the table so you can use it in negotiations. If you have a 
1/5 probability of receiving a job offer when you interview, and you inter-
view with seven companies in a month, what is the probability you’ll have 
at least two competing offers by the end of that month?

A4. We can use the following R code to compute this answer:

> pbinom(1,7,1/5,lower.tail = FALSE)
 0.4232832

As you can see, there’s about a 42 percent chance of receiving two 
or more job offers if you interview at seven companies.

Q5. You get a bunch of recruiter emails and find out you have 25 inter-
views lined up in the next month. Unfortunately, you know this will leave 
you exhausted, and the probability of getting an offer will drop to 1/10 
if you’re tired. You really don’t want to go on this many interviews unless 
you are at least twice as likely to get at least two competing offers. Are you 
more likely to get at least two offers if you go for 25 interviews, or stick to 
just 7?

A5. Let’s write a bit more R code to sort this out:

p.two.or.more.7 <- pbinom(1,7,1/5,lower.tail = FALSE)
p.two.or.more.25 <- pbinom(1,25,1/10,lower.tail = FALSE)

Even with the reduced probability of an offer, your probability of 
getting at least two offers in 25 interviews is 73 percent. However, you’ll 
go this route only if you are twice as likely. 
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As we can see in R:

> p.two.or.more.25/p.two.or.more.7
[1] 1.721765

. . . you’re only 1.72 times more likely to get two or more offers, so 
all the hassle isn’t worth it.

Chapter 5: The Beta Distribution
Q1. You want to use the beta distribution to determine whether or not a 
coin you have is a fair coin—meaning that the coin gives you heads and 
tails equally. You flip the coin 10 times and get 4 heads and 6 tails. Using 
the beta distribution, what is the probability that the coin will land on 
heads more than 60 percent of the time?

A1. We would model this as Beta(4,6). We want to calculate the integral 
from 0.6 to 1, which we can do in R like so:

integrate(function(x) dbeta(x,4,6),0.6,1)

This tells us there is about a 10 percent chance that the true prob-
ability of getting heads is 60 percent or greater.

Q2. You flip the coin 10 more times and now have 9 heads and 11 tails 
total. What is the probability that the coin is fair, using our definition of 
fair, give or take 5 percent?

A2. Our beta distribution is now Beta(9,11). But we want to know the 
probability that the coin is fair, meaning the chance of getting heads is 
0.5, within 0.05 probability either way. This means we need to integrate 
our new distribution between 0.45 and 0.55. We can do so with this line 
of R:

integrate(function(x) dbeta(x,9,11),0.45,0.55)

Now we find that there’s a 30 percent chance that our coin is fair, 
given the new data we have.

Q3. Data is the best way to become more confident in your assertions. You 
flip the coin 200 more times and end up with 109 heads and 111 tails. Now 
what is the probability that the coin is fair, give or take 5 percent?

A3. Given the previous question, this answer is pretty straightforward:

integrate(function(x) dbeta(x,109,111),0.45,0.55)

Now we’re 86 percent certain that the coin is reasonably fair. Notice 
that the key to becoming more certain was to include more data.
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Part II: Bayesian Probability and Prior Probabilities

Chapter 6: Conditional Probability
Q1. What piece of information would we need in order to use Bayes’ 
theorem to determine the probability that someone in 2010 who had GBS 
also had the flu vaccine that year?

A1. We want to figure out P(flu vaccines | GBS). We can solve this using 
Bayes’ theorem, provided we have all these pieces of information:

P
P P

P
flu vaccine GBS

flu vaccine GBS flu vaccine

GBS
|

|( ) = ( ) × ( )
( )

Of these pieces of information, the only one we don’t know is the 
probability of getting the flu vaccine in the first place. We could prob-
ably get this information from the Centers for Disease Control and 
Prevention or another national data collection service.

Q2. What is the probability that a random person picked from the 
population is female and is not color blind?

A2. We know that P(female) = 0.5 and that P(color blind | female) 
= 0.005, but we want to know the probability that someone is female 
and not color blind, which is 1 – P(color blind | female) = 0.995. So:

P P Pfemale, not color blind female not color blind fema( ) = ( ) × | lle( )
= × =0 5 0 995 0 4975. . .

Q3. What is the probability that a male who received the flu vaccine in 
2010 is either color blind or has GBS?

A3. This problem may initially seem complex, but we can simplify it a 
bit. Let’s start by just working on the probability of being color blind 
given someone is male, and the probability of having GBS given they’ve 
received the flu vaccine. Notice that we’re taking a bit of a shortcut, 
since being male is independent from GBS (as far as we’re concerned 
here) and having a flu vaccine has no impact on being color blind. 
We’ll make each of these into a separate probability:

P A P

P B P

( ) = ( )
( ) = ( )

color blind male

GBS flu vaccine

|

|

Luckily we already did all this work earlier in the chapter, so we 
know that P(A) = 4/1,000 and P(B) = 3/100,000.

Now we can just use our sum rule to solve this:

P A B P A P B P A P B A or ( ) = ( ) + ( ) ( ) × ( )− |
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And because the probability of being color blind, as far as we know, 
has nothing to do with the probability of GBS, we know that P(B | A)  
= P(B). Plugging in our numbers, we get an answer of 100,747/25,000,000 
or 0.00403. This is just bit larger than the chance of being color blind 
given someone is male, because the probability of GBS is so small.

Chapter 7: Bayes’ Theorem with LEGO
Q1. Kansas City, despite its name, sits on the border of two US states: 
Missouri and Kansas. The Kansas City metropolitan area consists of 
15 counties, 9 in Missouri and 6 in Kansas. The entire state of Kansas has 
105 counties and Missouri has 114. Use Bayes’ theorem to calculate the 
probability that a relative who just moved to a county in the Kansas City 
metropolitan area also lives in a county in Kansas. Make sure to show 
P(Kansas) (assuming your relative lives either in Kansas or Missouri), 
P(Kansas City metropolitan area), and P(Kansas City metropolitan area | 
Kansas).

A1. Hopefully it is pretty clear that there are 15 counties in the Kansas 
City metro area, and 6 of them are in Kansas, so the probability of 
being in Kansas, given you know someone lives in the Kansas City 
metro area, should be 6/15, which is equivalent to 2/5. The purpose 
of this question, however, is not just to get an answer but to show that 
Bayes’ theorem provides the tools to solve it. When we work on harder 
problems, it will be very helpful to have established trust in Bayes’ 
theorem.

So, to solve P(Kansas | Kansas City), we can use Bayes’ theorem as 
follows:

P
P P

P
Kansas Kansas City

Kansas City Kansas Kansas

Kans
|

|
( ) = ( ) × ( )

aas City( )

From our data we know that of the 105 counties in Kansas, 6 are in 
the Kansas City metro area:

P Kansas City Kansas|( ) = 6
105

And between Missouri and Kansas there are 219 counties, 105 of 
which are in Kansas:

P Kansas( ) = 105
219

And of this total of 219 counties, 15 are in the Kansas City 
metro area:

P Kansas City( ) = 15
219
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Filling in all of the parts of Bayes’ theorem, then, gives us:

P Kansas Kansas City|( ) =
×

=

6
105

105
219

15
219

2
5

Q2. A deck of cards has 52 cards with suits that are either red or black. 
There are four aces in a deck of cards: two red and two black. You remove 
a red ace from the deck and shuffle the cards. Your friend pulls a black 
card. What is the probability that it is an ace?

A2. As with the previous question, we can easily see there are 26 black 
cards and 2 of them are aces, so there is a 2/26 or 1/13 probability of 
getting an ace if we have a black card. But, again, we want to establish 
some trust in Bayes’ theorem and not take so many mathematical men-
tal shortcuts. Using Bayes’ theorem we get:

P
P P

P
ace black card

black card ace ace

black card
|

|( ) = ( ) × ( )
( )

There are 26 black cards in the deck, out of what is now 51 cards 
since we removed 1 red ace. If we know that we have an ace, the prob-
ability it is black is:

P black card ace|( ) = 2
3

In this deck there are now 51 cards, only 3 of which are aces, so 
we have:

P ace( ) = 3
51

Finally, we know that of the remaining 51 cards, 26 of them are 
black, so:

P black card( ) = 26
51

Now we have enough information to solve our problem:

P ace black card|( ) =
×

=

2
3

3
51

26
51

1
13
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Chapter 8: The Prior, Likelihood, and Posterior of Bayes’ Theorem
Q1. As mentioned, you might disagree with the our original probability 
assigned to the likelihood: 

P(broken window, open front door, missing laptop | robbed) = 3/10

How much does this change our strength in believing H1 over H2?

A1. To start, remember that:

P

P

broken window, open front door, missing laptop robbed|( )
= DD H| 1( )

To see how this changes our beliefs, all we have to do now is replace 
this part in our ratio:

P H P D H

P H P D H
1 1

2 2

( ) × ( )
( ) × ( )

|
|

We already know that the denominator of our formula is 
1/21,900,000 and that P(H1) = 1/1,000, so to get our answer we just 
have to add our changed belief in P(D | H1):

1
1 000

3
100

1
21 900 000

657,

, ,

×
=

So when we believe (D | H1) is 10 times less likely, our ratio is 10 
times smaller (though still very much in favor of H1).

Q2. How unlikely would you have to believe being robbed is—our prior 
for H1—in order for the ratio of H1 to H2 to be even?

A2. In the previous answer, decreasing our probability in P(D | H1) 
by 10 times reduced our ratio 10 times. This time, we want to change 
P(H1) so that our ratio is 1, which means we need to make it 657 times 
smaller:

1
1 000 657

3
100

1
21 900 000

1,

, ,

×
×

=

So our new P(H1) needs to be 1/657,000, which is a pretty extreme 
belief in the unlikeliness of getting robbed!
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Chapter 9: Bayesian Priors and Working with Probability Distributions
Q1. A friend finds a coin on the ground, flips it, and gets six heads in a 
row and then one tails. Give the beta distribution that describes this. 
Use integration to determine the probability that the true rate of flipping 
heads is between 0.4 and 0.6, reflecting that the coin is reasonably fair.

A1. We can represent this as a beta distribution with α = 6 and β = 1, since 
we have six heads and one tail. In R we can integrate this as follows:

> integrate(function(x) dbeta(x,6,1),0.4,0.6) 
0.04256 with absolute error < 4.7e-16

With about a 4 percent chance this coin is fair, based on likelihood 
alone, we would consider it unfair.

Q2. Come up with a prior probability that the coin is fair. Use a beta 
distribution such that there is at least a 95 percent chance that the true 
rate of flipping heads is between 0.4 and 0.6.

A2. Any αprior = βprior will give us a “fair” prior; and the larger those val-
ues are, the stronger that prior is. For example, if we use 10, we get:

> prior.val <- 10
> integrate(function(x) dbeta(x,6+prior.val,1+prior.val),0.4,0.6)
0.4996537 with absolute error < 5.5e-15

But, of course, that’s only a 50 percent chance that the coin is 
fair. Using a bit of trial and error, we can find a number that works for 
us. Using αprior = βprior = 55, we find that this gives a prior that achieves 
our goal:

> prior.val <- 55
> integrate(function(x) dbeta(x,6+prior.val,1+prior.val),0.4,0.6)
0.9527469 with absolute error < 1.5e-11

Q3. Now see how many more heads (with no more tails) it would take to 
convince you that there is a reasonable chance that the coin is not fair. In 
this case, let’s say that this means that our belief in the rate of the coin 
being between 0.4 and 0.6 drops below 0.5.

A3. Again, we can solve this problem simply through trial and error 
until we get an answer that works. Remember that we’re still using 
Beta(55,55) as our prior. This time, we want to see how much we can 
add to our α in order to change the probability of a fair coin to around 
50 percent. We can see that with five more heads, our posterior drops 
to 90 percent:

> more.heads <- 5
> integrate(function(x) dbeta(x,6+prior.val+more.heads,1+prior.val),0.4,0.6)
0.9046876 with absolute error < 3.2e-11
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And if we got 23 more heads, we’d find that the probability of the 
coin being fair now would be about 50 percent. This shows that even a 
strong prior belief can be overcome with more data.

Part III: Parameter Estimation

Chapter 10: Introduction to Averaging and Parameter Estimation
Q1. It’s possible to get errors that don’t quite cancel out the way we want. 
In the Fahrenheit temperature scale, 98.6 degrees is the normal body 
temperature and 100.4 degrees is the typical threshold for a fever. Say 
you are taking care of a child that feels warm and seems sick, but you take 
repeated readings from the thermometer and they all read between 99.5 
and 100.0 degrees: warm, but not quite a fever. You try the thermometer 
yourself and get several readings between 97.5 and 98. What could be 
wrong with the thermometer?

A1. It looks like the thermometer might be giving biased measurements 
that tend to be off by 1 degree F. If you added 1 degree to your results, 
you’d see that they were between 98.5 and 99, which seems correct for 
someone that normally has a 98.6 degree body temperature.

Q2. Given that you feel healthy and have traditionally had a very consis-
tently normal temperature, how could you alter the measurements 100, 
99.5, 99.6, and 100.2 to estimate if the child has a fever?

A2. If measurements are biased, it means that they are systematically 
wrong, so no amount of sampling will correct this on its own. To correct 
our original measurements, we could just add 1 degree to each.

Chapter 11: Measuring the Spread of Our Data
Q1. One of the benefits of variance is that squaring the differences makes 
the penalties exponential. Give some examples of when this would be a 
useful property.

A1. Exponential penalties are very useful for many everyday situations. 
One of the most obvious is physical distance. Suppose someone invents 
a teleporter that can transport you to another location. If you miss the 
mark by 3 feet, that’s fine; 3 miles might be okay; but 30 miles could be 
incredibly dangerous. In this case, you want the penalty for being far 
away from your target to get much more severe as it grows.

Q2. Calculate the mean, variance, and standard deviation for the 
following values: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

A2. Mean = 5.5, variance = 8.25, standard deviation = 2.87.
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Chapter 12: The Normal Distribution

Q1. What is the probability of observing a value five sigma greater than 
the mean or more?

A1. We can use integrate() on a normal distribution with a mean of 0 
and standard deviation of 1. Then we just integrate from 5 to some rea-
sonably large number like 100:

> integrate(function(x) dnorm(x,mean=0,sd=1),5,100)
2.88167e-07 with absolute error < 5.6e-07

Q2. A fever is any temperature greater than 100.4 degrees Fahrenheit. 
Given the following measurements, what is the probability that the patient 
has a fever?

100.0, 99.8, 101.0, 100.5, 99.7

A2. We’ll start by figuring out the mean and standard deviation of 
our data:

temp.data <- c(100.0, 99.8, 101.0, 100.5, 99.7)
temp.mean <- mean(temp.data)
temp.sd <- my.sd(temp.data)

A NOT E ON S TA NDA R D DE V I AT ION

R has a built-in function, sd, that computes the sample standard deviation, 
rather than the standard deviation we’ve discussed in the book. The idea of 
sample standard deviation is that you average by n – 1 instead of n. Sample 
standard deviation is used in classical statistics to make estimates about popu-
lation means given data. Here, the function my.sd computes the standard devia-
tion used in this book:

my.sd <- function(val){
  val.mean <- mean(val)
  sqrt(mean((val.mean-val)^2))
}

As your data set grows in size, the difference between sample standard 
deviation and the true standard deviation will become irrelevant. But for the 
small data sizes in these examples, it will make a small difference. For all the 
examples in Chapter 12 I’ve used my.sd, but sometimes for convenience I’ll just 
use the default, sd.
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Then we just use integrate() to find out the probability that the 
temperature is over 100.4:

> integrate(function(x) dnorm(x,mean=temp.mean,sd=temp.sd),100.4,200)
0.3402821 with absolute error < 1.1e-08

Given these measurements, there’s about a 34 percent chance of 
fever.

Q3. Suppose in Chapter 11 we tried to measure the depth of a well by 
timing coin drops and got the following values: 

2.5, 3, 3.5, 4, 2

The distance an object falls can be calculated (in meters) with the 
following formula:

distance = 1/2 × G × time2 

where G is 9.8 m/s/s. What is the probability that the well is over 500 
meters deep?

A3. Let’s start by putting our time data in R:

time.data <- c(2.5,3,3.5,4,2)
time.data.mean <- mean(time.data)
time.data.sd <- my.sd(time.data)

Next we need to figure out how much time it takes to reach 500 
meters. We need to solve:

1
2

5002× × =G t

If G is 9.8, we can work out that time (t) is about 10.10 seconds (you 
can also solve this by making a function in R and just manually iterat-
ing, or look up the solution on something like Wolfram Alpha). Now we 
just have to integrate our normal distribution to beyond 10.1:

> integrate(function(x) 
dnorm(x,mean=time.data.mean,sd=time.data.sd),10.1,200)
2.056582e-24 with absolute error < 4.1e-24

This is basically 0 probability, so we can be pretty certain that the 
well is not 500 meters deep.

Q4. What is the probability there is no well (i.e., the well is really 0 meters 
deep)? You’ll notice that probability is higher than you might expect, given 
your observation that there is a well. There are two good explanations for 
this probability being higher than it should. The first is that the normal 
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distribution is a poor model for our measurements; the second is that, 
when making up numbers for an example, I chose values that you likely 
wouldn’t see in real life. Which is more likely to you?

A4. If we do the same integration but with –1 to 0, we get:

> integrate(function(x)
dnorm(x,mean=time.data.mean,sd=time.data.sd),-1,0) 
1.103754e-05 with absolute error < 1.2e-19

It’s small, but the probability that there is no well is greater than 1 
in 100,000. But you can see a well! It’s right in front of you! So, even 
if the probability is small, it’s not really that close to zero. Now should 
we question the model, or should we question the data? As a Bayesian, 
generally you should favor questioning the model over the data. For 
example, movement in stock prices will typically have very high σ events 
during financial crises. This means that the normal distribution is a 
bad model for stock movements. However, in this example, there’s no 
reason to question the assumptions of the normal distribution, and in 
fact these are the original numbers that I picked for the previous chap-
ter until my editor pointed out that the values seemed too spread out.

One of the greatest virtues in statistical analysis is skepticism. In 
practice I have been given bad data to work with on a few occasions. 
Even though models are always imperfect, it’s very important to make 
sure that you can trust your data as well. See if the assumptions you 
have about the world hold up and, if they don’t, see if you can be con-
vinced that you still trust your model and your data.

Chapter 13: Tools of Parameter Estimation: The PDF, CDF, and 
Quantile Function
Q1. Using the code example for plotting the PDF on page 127, plot the 
CDF and quantile functions.

A1. Taking the code from the chapter, you just need to substitute 
dbeta() with pbeta() for the CDF like so:

xs <- seq(0.005,0.01,by=0.00001)
plot(xs,pbeta(xs,300,40000-300),type='l',lwd=3,
     ylab="Cumulative probability",
     xlab="Probability of subscription",
     main="CDF Beta(300,39700)")
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And for quantile we need to change the xs to the actual quantiles:

xs <- seq(0.001,0.99,by=0.001)
plot(xs,qbeta(xs,300,40000-300),type='l',lwd=3, 
     ylab="Probability of subscription",
     xlab="Quantile",
     main="Quantile of Beta(300,39700)")
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Q2. Returning to the task of measuring snowfall from Chapter 10, say you 
have the following measurements (in inches) of snowfall: 

7.8, 9.4, 10.0, 7.9, 9.4, 7.0, 7.0, 7.1, 8.9, 7.4

What is your 99.9 percent confidence interval for the true value of 
snowfall?

A2. We’ll calculate the mean and standard deviation for this data first:

snow.data <- c(7.8, 9.4, 10.0, 7.9, 9.4, 7.0, 7.0, 7.1, 8.9, 7.4)
snow.mean <- mean(snow.data)
snow.sd <- sd(snow.data)
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Then we use qnorm() to calculate the 99.9 percent confidence inter-
val upper and lower bounds.

• Lower is qnorm(0.0005,mean=snow.mean,sd=snow.sd) = 4.46

• Upper is qnorm(0.9995,mean=snow.mean,sd=snow.sd) = 11.92

This means that we’re very confident that there’s no less than 4.46 
inches of snowfall and no more than 11.92.

Q3. A child is going door to door selling candy bars. So far she has visited 
30 houses and sold 10 candy bars. She will visit 40 more houses today. 
What is the 95 percent confidence interval for how many candy bars she 
will sell the rest of the day?

A3. First we have to calculate the 95 percent confidence interval for the 
probability of selling a candy bar. We can model this as Beta(10,20) and 
then use qbeta() to figure out these values:

• Lower is qbeta(0.025,10,20) = 0.18

• Upper is qbeta(0.975,10,20) = 0.51

Given there is 40 houses left, we can expect she’ll sell between 
40 × 0.18 = 7.2 and 40 × 0.51 = 20.4 candy bars. Of course, she can sell 
only whole bars, so we’ll say we’re pretty confident she’ll sell between 
7 and 20 candy bars.

If you really want to be particular, we could actually calculate the 
quantile for the binomial distribution at each extreme of her selling 
rates using qbinom()! I’ll leave that as an exercise for you to explore on 
your own.

Chapter 14: Parameter Estimation with Prior Probabilities
Q1. Suppose you’re playing air hockey with some friends and flip a coin 
to see who starts with the puck. After playing 12 times, you realize that 
the friend who brings the coin almost always seems to go first: 9 out of 
12 times. Some of your other friends start to get suspicious. Define prior 
probability distributions for the following beliefs:

• One person who weakly believes that the friend is cheating and 
the true rate of coming up heads is closer to 70 percent.

• One person who very strongly trusts that the coin is fair and pro-
vided a 50 percent chance of coming up heads.

• One person who strongly believes the coin is biased to come up 
heads 70 percent of the time.

A1. Picking these priors is a bit subjective, but here are some examples 
that correspond to each of the beliefs:

• Beta(7,3) is a reasonably weak prior representing the belief that the 
rate is closer to 70 percent.

• Beta(1000,1000) is a very strong belief that the coin is fair.
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• Beta(70,30) is a much stronger belief that the coin is biased to 70 
percent heads.

Q2. To test the coin, you flip it 20 more times and get 9 heads and 11 tails. 
Using the priors you calculated in the previous question, what are the 
updated posterior beliefs in the true rate of flipping a heads in terms of 
the 95 percent confidence interval?

A2. Now we have an updated data set with a total of 32 observations, 
which includes 18 heads and 14 tails. Using R’s qbeta() and the priors 
from the preceding questions, we can come up with the 95 percent con-
fidence intervals for these different beliefs:

We’ll just show the code for Beta(7,3) since the other examples are 
identical.

• The lower bound for the 95 percent interval is qbeta(0.025,18+7,14+3) 
= 0.445, and the upper bound is qbeta(0.975,18+7,14+3) = 0.737.

• For Beta(1000,1000) we have: 0.479 – 0.523.

• And for Beta(70,30) we have: 0.5843 – 0.744.

So, as you can see, the weak prior provides the widest range of pos-
sibility, the very strong fair prior remains quite certain that the coin is 
fair, and the strong 70 percent prior still leans toward a higher range of 
possible values for the true rate of the coin.

Part IV: Hypothesis Testing: The Heart of Statistics

Chapter 15: From Parameter Estimation to Hypothesis Testing:  
Building a Bayesian A/B Test
Q1. Suppose a director of marketing with many years of experience tells 
you he believes very strongly that the variant without images (B) won’t 
perform any differently than the original variant. How could you account 
for this in our model? Implement this change and see how your final 
conclusions change as well.

A1. You can account for this by increasing the strength of the prior. For 
example:

prior.alpha <- 300
prior.beta <- 700

This will require much more evidence to change our beliefs. To see 
how this changes our conclusions, we can rerun our code:

a.samples <- rbeta(n.trials,36+prior.alpha,114+prior.beta)
b.samples <- rbeta(n.trials,50+prior.alpha,100+prior.beta)
p.b_superior <- sum(b.samples > a.samples)/n.trials
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And our new p.b_superior is 0.74, which is much lower than our 
original 0.96.

Q2. The lead designer sees your results and insists that there’s no way that 
variant B should perform better with no images. She feels that you should 
assume the conversion rate for variant B is closer to 20 percent than 
30 percent. Implement a solution for this and again review the results of 
our analysis.

A2. Rather than using one prior to change our beliefs, we want to use 
two—one that reflects the original prior we had for A and one that 
reflects the lead designer’s belief in B. Rather than use the weak prior, 
we’ll use a slightly stronger one:

a.prior.alpha <- 30
a.prior.beta <- 70

b.prior.alpha <- 20
b.prior.beta <- 80

And when we run this simulation, we need to use two separate 
priors:

a.samples <- rbeta(n.trials,36+a.prior.alpha,114+a.prior.beta)
b.samples <- rbeta(n.trials,50+b.prior.alpha,100+b.prior.beta)
p.b_superior <- sum(b.samples > a.samples)/n.trials

The p.b_superior this time is 0.66, which is lower than before, but 
still slightly suggests that B might be the superior variant.

Q3. Assume that being 95 percent certain means that you’re more or less 
“convinced” of a hypothesis. Also assume that there’s no longer any limit 
to the number of emails you can send in your test. If the true conversion 
for A is 0.25 and for B is 0.3, explore how many samples it would take to 
convince the director of marketing that B was in fact superior. Explore 
the same for the lead designer. You can generate samples of conversions 
with the following snippet of R:

true.rate <- 0.25
number.of.samples <- 100
results <- runif(number.of.samples) <= true.rate

A3. Here’s the basic code to figure out this problem for the case of the 
director of marketing (for the lead designer, you’ll need to add the 
separate priors). You can use a while loop in R to iterate through the 
examples (or just manually try new values).

a.true.rate <- 0.25 
b.true.rate <- 0.3
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prior.alpha <- 300
prior.beta <- 700

number.of.samples <- 0
#using this as an initial value so that the loop starts
p.b_superior <- -1
while(p.b_superior < 0.95){
  number.of.samples <- number.of.samples + 100
  a.results <- runif(number.of.samples/2) <= a.true.rate
  b.results <- runif(number.of.samples/2) <= b.true.rate
  a.samples <- rbeta(n.trials,
                   sum(a.results==TRUE)+prior.alpha,
                   sum(a.results==FALSE)+prior.beta)
  b.samples <-  rbeta(n.trials,
                   sum(b.results==TRUE)+prior.alpha,
                   sum(b.results==FALSE)+prior.beta)
  p.b_superior <- sum(b.samples > a.samples)/n.trials
}

Note that because this code itself is a simulation, you’ll get different 
results each time you run it, so run it a few times (or build a more com-
plicated example that runs itself a few more times).

For the director of marketing it should take about 1,200 samples 
to be convinced. The lead designer should take about 1,000 samples. 
Notice that even though the lead designer believes that B is worse, 
she also has weaker priors in our example, so it takes less evidence to 
change her mind.

Chapter 16: Introduction to the Bayes Factor and Posterior Odds:  
The Competition of Ideas
Q1. Returning to the dice problem, assume that your friend made a 
mistake and suddenly realized that there were, in fact, two loaded dice 
and only one fair die. How does this change the prior, and therefore the 
posterior odds, for our problem? Are you more willing to believe that the 
die being rolled is the loaded die?

A1. The original prior odds were the following:

1
3
2
3

1
2

=

And the Bayes factor was 3.77, giving us posterior odds of 1.89. 
Our new prior odds are the following:

2
3
1
3

2=
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So our posterior odds are 2 × 3.77 = 7.54. We’re certainly more will-
ing now to believe that the die being rolled is loaded, but our posterior 
odds are still not very strong either way. We’d want to collect more evi-
dence before completely giving up.

Q2. Returning to the rare diseases example, suppose you go to the doctor, 
and after having your ears cleaned you notice that your symptoms persist. 
Even worse, you have a new symptom: vertigo. The doctor proposes an-
other possible explanation, labyrinthitis, which is a viral infection of the 
inner ear in which 98 percent of cases involve vertigo. However, hearing 
loss and tinnitus are less common in this disease; hearing loss occurs only 
30 percent of the time, and tinnitus occurs only 28 percent of the time. 
Vertigo is also a possible symptom of vestibular schwannoma, but occurs 
in only 49 percent of cases. In the general population, 35 people per mil-
lion contract labyrinthitis annually. What is the posterior odds when you 
compare the hypothesis that you have labyrinthitis against the hypothesis 
that you have vestibular schwannoma?

A2. We’ll mix things up a bit and make H1 “has labryinthitis” and H2 
“has vestibular schwannoma,” since we already saw how unlikely vestibu-
lar schwannoma is. We need to recalculate every piece of our posterior 
odds because we’re looking at a new piece of data, “has vertigo,” and an 
entirely new hypothesis as well.

Let’s start with the Bayes factor. For H1 we have:

P D H| 1 0 98 0 30 0 28 0 082( ) = × × =. . . .

And the new likelihood for H2 is:

P D H| 2 0 63 0 55 0 49 0 170( ) = × × =. . . .

So the Bayes factor for the new hypothesis is:

P D H

P D H

|
|

1

2

0 48
( )
( )

= .

This means that given the Bayes factor alone, vestibular schwan-
noma is a roughly two times better explanation than labyrinthitis. Now 
we have to look at the odds ratio:
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.
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Labyrinthitis is much less common than impacted earwax, and only 
about three times more common than vestibular schwannoma. When 
we put posterior odds together, we can see:

O H
P D H

P D H1
1

2

3 18 0 48 1 53( ) × ( )
( )

= × =
|
|

. . .

The end result is that labyrinthititis is only a slightly better explana-
tion than vestibular schwannoma.

Chapter 17: Bayesian Reasoning in the Twilight Zone
Q1. Every time you and your friend get together to watch movies, you flip 
a coin to determine who gets to choose the movie. Your friend always 
picks heads, and every Friday for 10 weeks, the coin lands on heads. You 
develop a hypothesis that the coin has two heads sides, rather than both 
a heads side and a tails side. Set up a Bayes factor for the hypothesis that 
the coin is a trick coin over the hypothesis that the coin is fair. What does 
this ratio alone suggest about whether or not your friend is cheating you?

A1. Let’s say H1 is the hypothesis that the coin is in fact a trick coin, and 
H2 is the hypothesis that it is fair. If the coin is indeed a trick coin, the 
probability of getting 10 heads in a row is 1, so we know that:

P D H| 1 1( ) =

And if the coin is fair, then the probability of observing 10 heads is 
0.510 = 1/1,024. So we know that:

P D H| 2

1
1 024

( ) =
,

The Bayes factor for this tells us that:

P D H

P D H

|
|

1

2

1
1

1 024

1 024
( )
( )

= =

,

,

This means that, given the Bayes factor alone, it is 1,024 times more 
likely that the coin is a trick coin.
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Q2. Now imagine three cases: that your friend is a bit of a prankster, that 
your friend is honest most of the time but can occasionally be sneaky, and 
that your friend is very trustworthy. In each case, estimate some prior 
odds ratios for your hypothesis and compute the posterior odds.

A2. This is a bit subjective, but let’s make some estimates. We need to 
come up with three different prior odds ratios. For each case we just 
multiply the prior odds by the Bayes factor from the previous question 
to get our posterior.

Being a prankster means your friend is more likely than not to 
trick you, so we’ll set O(H1) = 10. Then our posterior odds becomes 
10 × 1,024 = 10,240.

If your friend is mostly honest but can be sneaky, you wouldn’t be 
that surprised if he was tricking you, but don’t expect it, so we’ll make 
the prior odds O(H1) = 1/4, which means that our posterior odds 
become 240.

If you really trust your friend, you might want to put the prior 
odds very low for cheating. Prior odds here might be O(H1) = 1/10,000, 
which gives you a posterior odds of roughly 1/10, meaning you still 
think it’s 10 times more likely that the coin is fair than that your friend 
is cheating.

Q3. Suppose you trust this friend deeply. Make the prior odds of them 
cheating 1/10,000. How many times would the coin have to land on heads 
before you feel unsure about their innocence—say, a posterior odds of 1?

A3. At 14 coin tosses the Bayes factor would be the following:

1
1

0 5

16 384

14.

,=

Your posterior odds would be 16,384/10,000 = 1.64. At this point, 
you start to feel unsure about your friend’s innocence. But with fewer 
than 14 coin tosses, you might still favor the idea that the coin is fair.

Q4. Another friend of yours also hangs out with this same friend and, 
after only four weeks of the coin landing on heads, feels certain you’re 
both being cheated. This confidence implies a posterior odds of about 
100. What value would you assign to this other friend’s prior belief that 
the first friend is a cheater?

A4. We can solve this by filling in the blanks. We know the following, 
meaning that our Bayes factor would be 16: 

P D H| 2
40 5

1
16

( ) = =.
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We just need to find a value to multiply by 16 that equals 100.

100 16

100
16

6
1
4

1

1

= ( ) ×

( ) = =

O H

O H

And now we’ve assigned an exact value to the prior odds in your 
suspicious friend’s mind!

Chapter 18: When Data Doesn’t Convince You
Q1. When two hypotheses explain the data equally well, one way to change 
our minds is to see if we can attack the prior probability. What are some 
factors that might increase your prior belief in your friend’s psychic 
powers?

A1. Since we’re talking about prior beliefs, the answers to this are likely 
to be a little bit different for everyone. For me, merely predicting the 
outcome of the roll of a die seems particularly easy to fake. I’d like to 
see this friend demonstrate psychic powers in an experiment of my 
choosing—for example, asking the friend to predict the last digit on 
the serial number of the dollar bills in my wallet—so that it would be 
much more difficult to trick me. 

Q2. An experiment claims that when people hear the word Florida, they 
think of the elderly and this has an impact on their walking speed. To test 
this, we have two groups of 15 students walk across a room; one group 
hears the word Florida and one does not. Assume H1 = the groups don’t 
move at different speeds, and H2 = the Florida group is slower because of 
hearing the word Florida. Also assume: 

BF
P D H

P D H
=

( )
( )

||

||
2

1

The experiment shows that H2 has a Bayes factor of 19. Suppose 
someone is unconvinced by this experiment because H2 had a lower prior 
odds. What prior odds would explain someone being unconvinced and 
what would the BF need to be to bring the posterior odds to 50 for this 
unconvinced person?

A2. This question comes from an actual paper, “Automaticity of Social 
Behavior.”1 If the experiment seems questionable, you’re not alone. 
The results of the study have been notoriously difficult to reproduce. 

1. John A. Bargh, Mark Chen, and Lara Burrows, “Automaticity of Social Behavior: Direct 
Effects of Trait Construct and Stereotype Activation on Action,” Journal of Personality and 
Social Psychology 71, no. 2 (1996).
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If you were unconvinced, we’ll say that means prior odds must be 
about 1/19 to negate the results. In order to have a posterior odds of 
50, you would need:

50
1

19
950= ×

So you’d need a Bayes factor of 950 to get your posterior odds into 
the “strong belief” range, given your initial skepticism.

Now suppose the prior odds do not change the skeptic’s mind. Think 
of an alternate H3 that explains the observation that the Florida group is 
slower. Remember if H2 and H3 both explain the data equally well, only 
prior odds in favor of H3 would lead someone to claim H3 is true over H2, 
so we need to rethink the experiment so that these odds are decreased. 
Come up with an experiment that could change the prior odds in H3 
over H2.

It is entirely possible that the second group was on average slower. With 
only 15 participants, it’s not hard to imagine that the group hearing the 
word Florida just happened to include a higher number of shorter peo-
ple who might walk a short distance in a longer time. To be convinced 
I would need to, at minimum, see this experiment reproduced many 
times with many different groups of people to ensure that it wasn’t just 
chance that led the group hearing the word Florida to be slower.

Chapter 19: From Hypothesis Testing to Parameter Estimation
Q1. Our Bayes factor assumed that we were looking at H1: P(prize) = 0.5. 
This allowed us to derive a version of the beta distribution with an alpha 
of 1 and a beta of 1. Would it matter if we chose a different probability 
for H1 ? Assume H1: P(prize) = 0.24 , then see if the resulting distribution, 
once normalized to sum to 1, is any different than the original hypothesis.

A1. We can rerun all of our code but this time make one group of bfs 
for the 0.5 version, and another for the 0.24 version:

dx <- 0.01
hypotheses <- seq(0,1,by=0.01)
bayes.factor <- function(h_top,h_bottom){
  ((h_top)^24*(1-h_top)^76)/((h_bottom)^24*(1-h_bottom)^76)
}
bfs.v1 <- bayes.factor(hypotheses,0.5) 
bfs.v2 <- bayes.factor(hypotheses,0.24) 

Next we’ll plot these each out separately:

plot(hypotheses,bfs.v1,type='l')
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Here we see the only difference is the y-axis. Choosing a weaker or 
stronger hypothesis changes only the scale of the distribution, not the 
shape of it. If we normalize and plot these two together, we see they are 
identical:

plot(hypotheses,bfs.v1/sum(bfs.v1),type='l')
points(hypotheses,bfs.v2/sum(bfs.v2))
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Q2. Write a prior for the distribution in which each hypothesis is 1.05 
times more likely than the previous hypothesis (assume our dx remains 
the same).

A2. Let’s re-create our bfs from the original (see the code in the previ-
ous answer for the first part of this):

bfs <- bayes.factor(hypotheses,0.5)

Next our new priors are going to start with 1 (since there is no 
previous hypothesis), then 1.05, 1.05*1.05, 1.05*1.05*1.05, and so on. 
There’s a few ways to do this, but we’ll just start with a vector of 1.05s 
one less than the length our hypotheses (since the first one is 1), using 
R’s replicate() function:

vals <- replicate(length(hypotheses)-1,1.05)

Then we add 1 to this list, and we can use the cumprod() function 
(which is just like cumsum() but for multiplying) to create our priors:

vals <- c(1,vals)
priors <- cumprod(vals)

Finally, we just compute our posteriors and normalize them, and 
then we can visualize our new distribution:

posteriors <- bfs*priors
p.posteriors <- posteriors/sum(posteriors)
plot(hypotheses,p.posteriors,type='l')
#add the bfs alone for comparison
points(hypotheses,bfs/sum(bfs))
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Note that this doesn’t change our final distribution all that much. 
Even though it gives much stronger prior odds to the last hypothesis—
around 125 times more likely—the Bayes factor is so low that it doesn’t 
make much of a difference in the end.
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Q3. Suppose you observed another duck game that included 34 ducks 
with prizes and 66 ducks without prizes. How would you set up a test 
to determine “What is the probability that you have a better chance of 
winning a prize in this game than in the game we used in our example?” 
Implementing this requires a bit more sophistication than the R used 
in this book, but see if you can learn this on your own to kick off your 
adventures in more advanced Bayesian statistics!

A3. Clearly what we need to do to solve this problem is to set up an 
A/B test like in Chapter 15. We can easily come up with our two dis-
tributions for the “34 prizes, 66 no prizes” example just by repeating 
the process we used in this chapter. The tricky part is sampling from 
our posterior that we created ourselves. In the past, to sample from a 
known distribution, we used built-in functions like rbeta(), but we have 
no equivalent function for this case. To solve this problem you’ll need 
to use an advanced sampling technique like rejection sampling or even 
Metropolis–Hastings. If you’re eager to solve this problem, it’s a good 
time to start looking into a more advanced book on Bayesian analysis. 
But you should be proud, as it means you have a solid understanding of 
the basics!
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