#Baeldung

Get the Most out of
the HTTP Client



Table of Contents

1: Posting with HttpClient

1 OVEIVIOW e 1
2. Basic POST e 2
3. POST with Authorization 3
4. POST WIth JSON . e 4
5. POST with the HttpClient Fluent AP . 5
6. POST Multipart Request 6
7.Upload a File using HttpClient ..., 7
8. Get File Upload Progress ... .. . . . . . . ... 8
9. CoNCLUSION e 11

2: HttpClient 4 - Get the Status Code

L OV IV W ] 13
2. Retrieve the Status Code from the Http Response ... . ... 14
3. CONCIUSION 15

#Baeldung



Table of Contents

3: HttpClient Timeout

1. OVEIVIOW e 17
2. Configure Timeouts via raw String Parameters__ .. . .. 18
3. Configure Timeoutsviathe APl 19
4. Configure Timeouts using the new 4.3. Builder._____................... 20
5. Timeout Properties Explained . . 21
6. Using the HttpClient 22
7-Hard Timeout 23
8. Timeout and DNS Round Robin-Something to Be Aware Of .. . . 24
9. CoONCLUSION 26

#Baeldung




Table of Contents

4: Custom HTTP Header with the HttpClient

1 OVEIVIOW, e 28
2. Set Header on Request - 4.3andabove ... 29
3. Set Headeron Request -Before 4.3 . ... ... 30
4. Set Default Headeronthe Client ... . ... ... 31
5. CONCLUSION 32

5: HttpClient with SSL

L OVEIVIOW, e 34
2. The SSLPeerUnverifiedException . 35
3. Configure SSL - Accept All(HttpClient < 4.3) .. ... 36
4. Configure SSL - Accept All (HttpClient 4.4 and above) . .. ... . 37
5. The Spring RestTemplate with SSL (HttpClient<4.3) . . 38
6. The Spring RestTemplate with SSL (HttpClient 4.4)... ... ... ... .. 39
7-CoNCLUSION 40

#Baeldung



Table of Contents

6: HttpClient 4 - Send Custom Cookie

1 OVEIVIOW e 42
2. Configure Cookie Management on the HttpClient. ... . .. .. . .43

2.1 HEPpClient after 4.3, 43

2.2 HttpClient before 4.3, 44
3.Set the CookieontheRequest . ... 45
4. Set the Cookie onthe Low LevelRequest . .. . . 46
5. CONCLUSION e 47

7: HttpClient Basic Authentication

1 OVEIVIOW e 49
2. Basic Authentication withthe APl . 50
3. Preemptive Basic Authentication ... ... 52
4. Basic Auth withRaw HTTPHeaders . .. . . . . ... 54
5. CONCLUSION e 55

#Baeldung




1: Posting with HttpClient

#Baeldung 6



1. Overview

In this chapter - we'll POST with the HttpClient 4 - using first authorization,
then the fluent HttpClient API.

Finally, we'll discuss how to upload a File using HttpClient.

#Baeldung




2. Basic POST

First, let's go over a simple example and send a POST request using
HttpClient.

We'll do a POST with two parameters - “username” and “password".

1. @Test

2. public void whenPostRequestUsingHttpClient_thenCorrect ()

3. throws ClientProtocolException, IOException {

4. CloseableHttpClient client = HttpClients.createDefault () ;

5. HttpPost httpPost = new HttpPost (“http://www.example.com”) ;
6.

7. List<NameValuePalr> params = new ArrayList<NameValuePair> () ;
8. params.add (new BasicNameValuePair (“username”, “John”));

9. params.add (new BasicNameValuePair (“password”, “pass”));

10. httpPost.setEntity (new UrlEncodedFormEntity (params)) ;

11.

12. CloseableHttpResponse response = client.execute (httpPost) ;
13. assertThat (response.getStatusLine () .getStatusCode (), equalTo(200));
14. client.close();

15. }

Note how we used a List of NameValuePair to include parameters in the
POST request.

#Baeldung




3. POST with Authorization

Next, let's see how to do a POST with Authentication credentials using the
HttpClient.

In the following example - we send a POST request to a URL secured with
Basic Authentication by adding an Authorization header:

1. @Test

2. public void whenPostRequestWithAuthorizationUsingHttpClient_thenCorrect ()
3. throws ClientProtocolException, IOException, AuthenticationException {
4. CloseableHttpClient client = HttpClients.createDefault () ;

5. HttpPost httpPost = new HttpPost (“http://www.example.com”) ;

6.

7. httpPost.setEntity (new StringEntity (“test post”));

8. UsernamePasswordCredentials creds

9. = new UsernamePasswordCredentials (“John”, “pass”);

10. httpPost.addHeader (new BasicScheme () .authenticate (creds, httpPost, null));
11.

12. CloseableHttpResponse response = client.execute (httpPost) ;

13. assertThat (response.getStatusLine () .getStatusCode (), equalTo(200));
14. client.close();

15. }

#Baeldung




4. POST with JSON

Now - let's see how to send a POST request with a JSON body using the
HttpClient.

In the following example - we're sending some person information
(id, name) as JSON:

1. @Test

2. public void whenPostJsonUsingHttpClient_thenCorrect ()

3. throws ClientProtocolException, IOException {

4. CloseableHttpClient client = HttpClients.createDefault () ;
5. HttpPost httpPost = new HttpPost (“http://www.example.com”) ;
6.

7. String json = “{“id”:1,"”name”:”"John”}";

8. StringEntity entity = new StringEntity (json);

9. httpPost.setEntity (entity) ;

10. httpPost.setHeader (“Accept”, “application/json”);

11. httpPost.setHeader (“Content-type”, “application/json”);

12.

13. CloseableHttpResponse response = client.execute (httpPost);
14. assertThat (response.getStatusLine () .getStatusCode (), equalTo(200));
15. client.close();

16. }

Note how we’'re using the StringEntity to set the body of the request.

We're also setting the ContentType header to application/json to give the
server the necessary information about the representation of the content
we're sending.

#Baeldung




5. POST with the HttpClient Fluent API

Next, let's POST with the HttpClient Fluent API.

We're going to send a request with two parameters “username” and

‘password”;
1. @Test
2. public void whenPostFormUsingHttpClientFluentAPI_thenCorrect ()
3. throws ClientProtocolException, IOException {
4. HttpResponse response = Request.Post (“http://www.example.com”) .bodyForm (
5. Form. form() .add(“username”, “John”).add(“password”, “pass”).build())
6. .execute () .returnResponse () ;
7.
8. assertThat (response.getStatusLine () .getStatusCode (), equalTo(200));
9. }

#Baeldung




6. POST Multipart Request

Now, let's POST a Multipart Request.

We'll post a File, username, and password using MultipartEntityBuilder:

1. @Test

2. public void whenSendMultipartRequestUsingHttpClient_thenCorrect ()

3. throws ClientProtocolException, IOException {

4. CloseableHttpClient client = HttpClients.createDefault () ;

5. HttpPost httpPost = new HttpPost (“http://www.example.com”) ;

6.

7. MultipartEntityBuilder builder = MultipartEntityBuilder.create();
3. builder.addTextBody (“username”, “John”) ;

9. builder.addTextBody (“password”, “pass”);

10. builder.addBinaryBody (“file”, new File(“test.txt”), ContentType.
11. APPLICATION_OCTET_STREAM, “file.ext”);

12.

13. HttpEntity multipart = builder.build() ;

14. httpPost.setEntity (multipart) ;

15.

16. CloseableHttpResponse response = client.execute (httpPost) ;

17. assertThat (response.getStatusLine () .getStatusCode (), equalTo (200)) ;
18. client.close();

19. }

#Baeldung




7. Upload a File using HttpClient

Next, let's see how to upload a File using the HttpClient.

We'll upload the “test.txt" file using MultipartEntityBuilder:

1. @Test

2. public void whenUploadFileUsingHttpClient_thenCorrect () throws

3. ClientProtocolException, IOException {

4. CloseableHttpClient client = HttpClients.createDefault () ;

5. HttpPost httpPost = new HttpPost (“http://www.example.com”) ;

6.

7. MultipartEntityBuilder builder = MultipartEntityBuilder.create();
8. builder.addBinaryBody (“file”, new File(“test.txt”), ContentType.
9. APPLICATION_OCTET_STREAM, “file.ext”);

10. HttpEntity multipart = builder.build() ;

11. httpPost.setEntity (multipart) ;

12.

13. CloseableHttpResponse response = client.execute (httpPost);

14. assertThat (response.getStatusLine () .getStatusCode (), equalTo(200)) ;
15. client.close();

16. }

#Baeldung




8. Get File Upload Progress

Finally - let's see how to get the progress of File upload using HttpClient.

In the following example, we'll extend the HttpEntityWrapper to gain
visibility into the upload process.

First — here's the upload method:

1. @Test

2. public void whenGetUploadFileProgressUsingHttpClient_thenCorrect ()

3. throws ClientProtocolException, IOException {

4. CloseableHttpClient client = HttpClients.createDefault () ;

5. HttpPost httpPost = new HttpPost (“http://www.example.com”) ;

6.

7. MultipartEntityBuilder builder = MultipartEntityBuilder.createl() ;
8. builder.addBinaryBody (“file”, new File(”“test.txt”), ContentType.

9. APPLICATION_OCTET_STREAM, “file.ext”);

10. HttpEntity multipart = builder.build() ;

11.

12. ProgressEntityWrapper.ProgressListener pListener =

13. percentage -> assertFalse (Float.compare (percentage, 100) > 0);
14. httpPost.setEntity (new ProgressEntityWrapper (multipart, pListener));
15.

16. CloseableHttpResponse response = client.execute (httpPost) ;

17. assertThat (response.getStatusLine () .getStatusCode (), equalTo(200));
18. client.close();

19. }

We'll also add the interface ProgressListener that enables us to observe
the upload progress:

1. public static interface ProgressListener {

2. void progress (float percentage) ;

#Baeldung




And here's our extended version of HttpEntityWrapper
“ProgressEntityWrapper":

1. public class ProgressEntityWrapper extends HttpEntityWrapper {

2. private ProgressListener listener;

3. public ProgressEntityWrapper (HttpEntity entity, ProgressListener listener)
4. {

5. super (entity) ;

6. this.listener = listener;

7. }

8. @Override

9. public void writeTo (OutputStream outstream) throws IOException {
10. super.writeTo (new CountingOutputStream(outstream, listener,
11. getContentLength()));

12. }

13. }

And the extended version of FilterOutputStream “CountingOutputStream®.

1. public static class CountingOutputStream extends FilterOutputStream {
2. private ProgressListener listener;

3. private long transferred;

4. private long totalBytes;

5. public CountingOutputStream (

6. OutputStream out, ProgressListener listener, long totalBytes) {
7. super (out) ;

8. this.listener = listener;

9. transferred = 0;

10. this.totalBytes = totalBytes;

11. }

12. @Override

13. public void write(byte[] b, int off, int len) throws IOException {
14 . out.write(b, off, len);

15. transferred += len;

16. listener.progress (getCurrentProgress()) ;

17. }

18 @Override

19 public void write(int b) throws IOException {

20. out.write(b) ;

21. transferred++;

22. listener.progress (getCurrentProgress());

23. }

24. private float getCurrentProgress () {

25. return ((float) transferred / totalBytes) * 100;

26. }

27. }

#Baeldung




Note that:

When extending FilterOutputStream to “CountingOutputStream” - we
are overriding the write() method to count the written (transferred) bytes

When extending HttpEntityWrapper to “ProgressEntityWrapper” - we are
overriding the writeTo() method to use our “CountingOutputStream"”

#Baeldung




9. Conclusion

In this chapter, we illustrated the most common ways to send POST HTTP
Requests with the Apache HttpClient 4.

We learned how to send a POST request with Authorization, how to post
using HttpClient fluent APl and how to upload a file and track its progress.

The implementation of all these examples and code snippets can be found
in the github project.

#Baeldung



https://github.com/eugenp/tutorials/tree/master/httpclient-simple

2: HttpClient 4 - Get the Status Code

#Baeldung



1. Overview

In this very quick chapter, we'll see how to get and validate the Status
Code of the HTTP Response using HttpClient 4.

#Baeldung




2. Retrieve the Status Code from the Http Response

After sending the Http request - we get back an instance of
org.apache.http.HttpResponse — which allows us to access the status line
of the response, and implicitly the Status Code;

1. . response.getStatusLine () .getStatusCode ()

Using this, we can validate that the code we receive from the server is
indeed correct:

@Test
public void givenGetRequestExecuted_whenAnalyzingTheResponse_
thenCorrectStatusCode ()
throws ClientProtocolException, IOException {
HttpClient client = HttpClientBuilder.create() .build();
HttpResponse response = client.execute (new HttpGet (SAMPLE_URL)) ;
int statusCode = response.getStatusLine().getStatusCode() ;
assertThat (statusCode, equalTo (HttpStatus.SC_OK)) ;

O ® J o U W N e

Notice that we're using the predefined Status Codes also available in the
library via org.apache.http.HttpStatus.

#Baeldung




3. Conclusion

This very simple example shows how to retrieve and work with Status
Codes with the Apache HttpClient 4.

The implementation of allthese examples and code snippets can be found
in my github project.

#Baeldung



https://github.com/eugenp/tutorials/tree/master/httpclient-simple

3: HttpClient Timeout

#Baeldung



1. Overview

This chapter will show how to configure a timeout with the Apache
HttpClient 4.

#Baeldung




2. Configure Timeouts via raw String Parameters

The HttpClient comes with a lot of configuration parameters, and all of
these can be set in a generic, map-like manner.

There are 3 timeout parameters to configure:

1. DefaultHttpClient httpClient = new DefaultHttpClient () ;

2.

3. int timeout = 5; // seconds

4. HttpParams httpParams = httpClient.getParams () ;

5. httpParams.setParameter (

6. CoreConnectionPNames.CONNECTION_TIMEOUT, timeout * 1000);

7. httpParams.setParameter (

8. CoreConnectionPNames.SO_TIMEOUT, timeout * 1000);

9. httpParams.setParameter (

10. ClientPNames.CONN_MANAGER_TIMEOUT, new Long(timeout * 1000)) ;

#Baeldung




3. Configure Timeouts via the API

The more important of these parameters — namely the first two - can also
be set via a more type-safe API:

DefaultHttpClient httpClient = new DefaultHttpClient () ;

int timeout = 5; // seconds
HttpParams httpParams = httpClient.getParams () ;
HttpConnectionParams.setConnectionTimeout (

httpParams, timeout * 1000); // http.connection.timeout
HttpConnectionParams.setSoTimeout (

httpParams, timeout * 1000); // http.socket.timeout

O 3 o U W N

Thethird parameterdoesn't have a custom setterin HttpConnectionParams,
and it will still need to be set manually via the setParameter method.

#Baeldung




4. Configure Timeouts using the new 4.3. Builder

The fluent, builder API introduced in 4.3 provides the right way to set
timeouts at a high level:

int timeout = 5;

RequestConfig config = RequestConfig.custom/()
.setConnectTimeout (timeout * 1000)
.setConnectionRequestTimeout (timeout * 1000)
.setSocketTimeout (timeout * 1000) .build() ;

CloseableHttpClient client =
HttpClientBuilder.create () .setDefaultRequestConfig (config) .build() ;

~N oy U N

This is the recommended way of configuring all three timeouts in a
type-safe and readable manner.

#Baeldung




5. Timeout Properties Explained

Now, let's explain what these various types of timeouts mean:

the Connection Timeout (http.connection.timeout) - the time to establish
the connection with the remote host

the Socket Timeout (http.socket.timeout) - the time waiting for data -
after establishing the connection; maximum time of inactivity between
two data packets

the Connection Manager Timeout (http.connection-manager.timeout) -
the time to wait for a connection from the connection manager/pool

The first two parameters - the connection and socket timeouts - are the
most important. However, setting a timeout for obtaining a connection is
definitely important in high load scenarios, which is why the third parameter
shouldn't be ianored.

#Baeldung




6. Using the HttpClient

After configuring it, we can now use the client to perform HTTP requests:

HttpGet getMethod = new HttpGet (“http://host:8080/path”) ;
HttpResponse response = httpClient.execute(getMethod) ;
System.out.println(

sow DR

“HTTP Status of response: “ + response.getStatusLine().getStatusCode()) ;

With the previously defined client, the connection to the host will time
out in 5 seconds. Also, if the connection is established but no data is
received, the timeout will also be 5 additional seconds.

Note that the connection timeout will result in an
org.apache.http.conn.ConnectTimeoutException being thrown, while
socket timeout will result in a java.net.SocketTimeoutException.

#Baeldung




7. Hard Timeout

While setting timeouts on establishing the HTTP connection and not
receiving data is very useful, sometimes we need to set a hard timeout for
the entire request.

For example, the download of a potentially large file fits into this category.
In this case, the connection may be successfully established, data may be
consistently coming through, but we still need to ensure that the operation
doesn't go over some specific time threshold.

HttpClient doesn't have any configuration that allows us to set an overall
timeout for a request; it does, however, provide abort functionality for
requests, so we can leverage that mechanism to implement a simple
timeout mechanism:

HttpGet getMethod = new HttpGet (
“http://localhost:8080/httpclient-simple/api/bars/1") ;

int hardTimeout = 5; // seconds
TimerTask task = new TimerTask() {
@Override
public void run() {
if (getMethod != null) {
getMethod.abort () ;

O 0 J oUW N

=
B o .
-

-

b g

new Timer (true) .schedule(task, hardTimeout * 1000) ;

= e
~ow

HttpResponse response = httpClient.execute (getMethod) ;

I
Ul

System.out.println(

=
N

“HTTP Status of response: “ + response.getStatusLine().getStatusCode());

[N
~J

We're making use of the java.util. Timer and java.util. TimerTask to set up a
simple delayed task which aborts the HTTP GET request after a 5 seconds
hard timeout.

#Baeldung




8. Timeout and DNS Round Robin-Something to Be Aware Of

It's quite common that some larger domains willbe using a DNS round robin
configuration - essentially having the same domain mapped to multiple
IP addresses. This introduces a new challenge for a timeout against such
a domain, simply because of the way HttpClient will try to connect to that
domain that times out:

HttpClient gets the list of IP routes to that domain

it tries the first one - that times out (with the timeouts we configure)
it tries the second one - that also times out

and soon ..

So, as you can see - the overall operation will not time out when we
expect it to. Instead - it will time out when all the possible routes have
timed out. What's more - this will happen completely transparently for the
client (unless you have your log configured at the DEBUG level).

Here's a simple example you can run and replicate this issue:

int timeout = 3;

RequestConfig config = RequestConfig.custom() .
setConnectTimeout (timeout * 1000).
setConnectionRequestTimeout (timeout * 1000) .
setSocketTimeout (timeout * 1000) .build() ;

CloseableHttpClient client = HttpClientBuilder.create()
.setDefaultRequestConfig (config) .build() ;

W 00 J oo U1 B W NN -

HttpGet request = new HttpGet (“http://www.google.com:81") ;

response = client.execute (request);

[N
(@}

#Baeldung




You will notice the retrying logic with a DEBUG log level:

O ® J oUW N e

e = Sy S
© 9o WD R O

DEBUG o.a.h.i.c.HttpClientConnectionOperator
com/173.194.34.212:81

DEBUG o.a.h.i.c.HttpClientConnectionOperator
Connect to www.google.com/173.194.34.212:81

retried using another IP address

DEBUG o.a.h.i.c.HttpClientConnectionOperator
com/173.194.34.208:81

DEBUG o.a.h.i.c.HttpClientConnectionOperator
Connect to www.google.com/173.194.34.208:81
retried using another IP address

DEBUG o.a.h.i.c.HttpClientConnectionOperator

com/173.194.34.209:81

DEBUG o.a.h.i.c.HttpClientConnectionOperator
Connect to www.google.com/173.194.34.209:81
retried using another IP address

[/

#Baeldung

- Connecting to www.google.

timed out. Connection will

- Connecting to www.google.

timed out. Connection will

- Connecting to www.google.

timed out. Connection will

be

be

be




9. Conclusion

This chapter discussed how to configure the various types of timeouts
available for an HttpClient. It also illustrated a simple mechanism for hard
timeout of an ongoing HTTP connection.

The implementation of these examples can be found in the GitHub project.

#Baeldung



https://github.com/eugenp/tutorials/tree/master/httpclient-simple

4: Custom HTTP Header with the HttpClient

#Baeldung



1. Overview

In this chapter, we'll look at how to set a custom header with the HttpClient.

#Baeldung




2. Set Header on Request - 4.3 and above

HttpClient 4.3 has introduced a new way of building requests - the
RequestBuilder. To set a header, we'll use the setHeader method - on the
builder:

HttpClient client = HttpClients.custom().build() ;
HttpUriRequest request = RequestBuilder.get ()
.setUri (SAMPLE_URL)
.setHeader (HttpHeaders.CONTENT_TYPE, “application/json”)
.build () ;

client.execute (request) ;

o Ul W N

#Baeldung




3. Set Header on Request - Before 4.3

Inversions pre 4.3 of HttpClient, we can set any custom headeron arequest
with a simple setHeader call on the request:

HttpClient client = new DefaultHttpClient () ;
HttpGet request = new HttpGet (SAMPLE_URL) ;
request.setHeader (HttpHeaders.CONTENT_TYPE, “application/json”);

S~ W N

client.execute (request) ;

As we can see, we're setting the Content-Type directly on the request to a
custom value - JSON.

#Baeldung




4. Set Default Header on the Client

Instead of setting the Header on each and every request, we can also
configure it as a default header on the Client itself:

Header header = new BasicHeader (HttpHeaders.CONTENT_TYPE, “application/
json”) ;
List<Header> headers = Lists.newArrayList (header) ;

HttpClient client = HttpClients.custom() .setDefaultHeaders (headers) .build() ;
HttpUriRequest request = RequestBuilder.get () .setUri (SAMPLE_URL) .build() ;

client.execute (request) ;

o U1 W N

This is extremely helpful when the header needs to be the same for all
requests - such as a custom application header.

#Baeldung




5. Conclusion

This chapter illustrated how to add an HTTP header to one or all requests
sent via the Apache HttpClient.

The implementation of allthese examples and code snippets can be found
in the GitHub project.

#Baeldung



https://github.com/eugenp/tutorials/tree/master/httpclient-simple

5: HttpClient with SSL

#Baeldung



1. Overview

This chapter will show how to configure the Apache HttpClient 4 with
“Accept All" SSL support. The goalis simple - consume HTTPS URLs which

do not have valid certificates.

#Baeldung




2. The SSLPeerUnverifiedException

Without configuring SSL with the HttpClient, the following test -
consuming an HTTPS URL - will fail:

1. public class RestClientLiveManualTest {

2.

3. @Test (expected = SSLPeerUnverifiedException.class)

4. public void whenHttpsUrlIsConsumed_thenException ()

5. throws ClientProtocolException, IOException {

6.

7. CloseableHttpClient httpClient = HttpClients.createDefault () ;
3. String urlOverHttps

9. = “"https://localhost:8082/httpclient-simple”;

10. HttpGet getMethod = new HttpGet (urlOverHttps) ;

11.

12. HttpResponse response = httpClient.execute (getMethod) ;

13. assertThat (response.getStatusLine () .getStatusCode (), equalTo(200)) ;
14. }

15. }

The exact failure is:

javax.net.ssl.SSLPeerUnverifiedException: peer not authenticated
at sun.security.ssl.SSLSessionImpl.getPeerCertificates (SSLSessionImpl.java:397)

at org.apache.http.conn.ssl.AbstractVerifier.verify (AbstractVerifier.java:126)

S oW N

The javax.net.ssl.SSLPeerUnverifiedException exception occurs whenever a
valid chain of trust couldn't be established for the URL.

#Baeldung



http://docs.oracle.com/javase/7/docs/api/javax/net/ssl/SSLPeerUnverifiedException.html

3. Configure SSL - Accept All (HttpClient < 4.3)

Let's now configure the HTTP client to trust all certificate chains regardless

of their validity:
1. @Test
2. public final void givenAcceptingAllCertificates_whenHttpsUrlIsConsumed_thenOk ()
3. throws GeneralSecurityException {
4. HttpComponentsClientHttpRequestFactory requestFactory = new
5. HttpComponentsClientHttpRequestFactory () ;
6. CloseableHttpClient httpClient = (CloseableHttpClient) requestFactory.
7. getHttpClient () ;
8.
9. TrustStrategy acceptingTrustStrategy = (cert, authType) -> true;
10. SSLSocketFactory sf = new SSLSocketFactory (acceptingTrustStrategy, ALLOW_
11. ALL_HOSTNAME_VERIFIER) ;
12. httpClient.getConnectionManager () .getSchemeRegistry () .register (new
13. Scheme (“https”, 8443, sf));
14.
15. ResponseEntity<String> response = new RestTemplate (requestFactory) .
16. exchange (urlOverHttps, HttpMethod.GET, null, String.class);
17. assertThat (response.getStatusCode () .value (), equalTo(200));
18. }

With the new TrustStrategy now overriding the standard certificate
verification process (which should consult a configured trust manager) -
the test now passes and the client is able to consume the HTTPS URL.

#Baeldung




4. Configure SSL - Accept All (HttpClient 4.4 and above)

With the new HTTPClient, now we have an enhanced, redesignhed
default SSL hostname verifier. Also with the introduction of
SSLConnectionSocketFactory and RegistryBuilder, it's easy to build
SSLSocketFactory. So we can write the above test case like:

1. @Test

2. public final void givenAcceptingAllCertificates_whenHttpsUrlIsConsumed_thenOk ()
3. throws GeneralSecurityException

4. TrustStrategy acceptingTrustStrategy = (cert, authType) -> true;
5. SSLContext sslContext = SSLContexts.custom().loadTrustMaterial (null,
6. acceptingTrustStrategy) .build() ;

7. SSLConnectionSocketFactory sslsf = new

8. SSLConnectionSocketFactory (sslContext,

9. NoopHostnameVerifier.INSTANCE) ;

10.

11. Registry<ConnectionSocketFactory> socketFactoryRegistry =

12. RegistryBuilder.<ConnectionSocketFactory> create()

13. .register (“https”, sslsf)

14. .register (“http”, new PlainConnectionSocketFactory())

15. .build();

16.

17. BasicHttpClientConnectionManager connectionManager =

18. new BasicHttpClientConnectionManager (socketFactoryRegistry) ;

19. CloseableHttpClient httpClient = HttpClients.custom() .

20 setSSLSocketFactory (sslsf)

21. .setConnectionManager (connectionManager) .build() ;

22.

23. HttpComponentsClientHttpRequestFactory requestFactory =

24. new HttpComponentsClientHttpRequestFactory (httpClient) ;

25. ResponseEntity<String> response = new RestTemplate (requestFactory)
26 .exchange (urlOverHttps, HttpMethod.GET, null, String.class);

27. assertThat (response.getStatusCode () .value (), equalTo(200));

28. }

#Baeldung




5. The Spring RestTemplate with SSL (HttpClient < 4.3)

Now that we have seen how to configure a raw HttpClient with SSL support,
let's take a look at a higher level client - the Spring RestTemplate.
With no SSL configured, the following test fails as expected:

@Test (expected = ResourceAccessException.class)
public void whenHttpsUrlIsConsumed_thenException () {
String urlOverHttps
= “https://localhost:8443/httpclient-simple/api/bars/1";
ResponseEntity<String> response
= new RestTemplate () .exchange (urlOverHttps, HttpMethod.GET, null,
String.class) ;

assertThat (response.getStatusCode () .value(), equalTo(200)) ;

W W O oUW N

So let's configure SSL:

1. @Test

2. public void givenAcceptingAllCertificates_whenHttpsUrlIsConsumed_

3. thenException ()

4. throws GeneralSecurityException ({

56 HttpComponentsClientHttpRequestFactory requestFactory

6. = new HttpComponentsClientHttpRequestFactory () ;

7. DefaultHttpClient httpClient

3. = (DefaultHttpClient) requestFactory.getHttpClient () ;

9. TrustStrategy acceptingTrustStrategy = (cert, authType) -> true
10. SSLSocketFactory sf = new SSLSocketFactory (

11. acceptingTrustStrategy, ALLOW_ALL_HOSTNAME_VERIFIER) ;

12. httpClient.getConnectionManager () .getSchemeRegistry ()

13. .register (new Scheme (“https”, 8443, sf));

14.

15. String urlOverHttps

16. = “https://localhost:8443/httpclient-simple/api/bars/1";

17. ResponseEntity<String> response = new RestTemplate (requestFactory) .
18. exchange (urlOverHttps, HttpMethod.GET, null, String.class);
19. assertThat (response.getStatusCode () .value(), equalTo(200)) ;

20. }

As we can see, this is very similar to the way we configured SSL for the
raw HttpClient - we configure the request factory with SSL support and
then we instantiate the template passing this preconfigured factory.

#Baeldung




6. The Spring RestTemplate with SSL (HttpClient 4.4)

And we can use the same way to configure our RestTemplate:

@Test
public void givenAcceptingAllCertificatesUsing4_4_whenUsingRestTemplate_
thenCorrect ()
throws ClientProtocolException, IOException {
CloseableHttpClient httpClient
= HttpClients.custom()
.setSSLHostnameVerifier (new NoopHostnameVerifier ())
.build() ;
HttpComponentsClientHttpRequestFactory requestFactory
= new HttpComponentsClientHttpRequestFactory () ;
requestFactory.setHttpClient (httpClient) ;

ResponseEntity<String> response
= new RestTemplate (requestFactory) .exchange (
urlOverHttps, HttpMethod.GET, null, String.class);
assertThat (response.getStatusCode () .value(), equalTo(200)) ;

O 0 3 oo W o I 60 WV W ~J o Ul i W N -

#Baeldung




7. Conclusion

This chapter discussed how to configure SSL for an Apache HttpClient so
that it is able to consume any HTTPS URL, regardless of the certificate. The
same configuration for the Spring RestTemplate is also illustrated.

An important thing to understand however is that this strategy entirely
ignores certificate checking - which makes it insecure and only to be used
where that makes sense.

The implementation of these examples can be found in the GitHub project.

#Baeldung



https://github.com/eugenp/tutorials/tree/master/httpclient-simple

6: HttpClient 4 - Send Custom Cookie

#Baeldung



1. Overview

This chapter will focus on how to send a Custom Cookie using the Apache
HttpClient 4.

#Baeldung




2. Configure Cookie Management on the HttpClient

2.1. HttpClient after 4.3

Inthe newer HttpClient 4.3, we'll leverage the fluent builder APl responsible
with both constructing and configuring the client.

First, we'll need to create a cookie store and set up our sample cookie in
the store:

BasicCookieStore cookieStore = new BasicCookieStore() ;
BasicClientCookie cookie = new BasicClientCookie (“JSESSIONID”, “1234");
cookie.setDomain (“.github.com”) ;

cookie.setPath(“/");

cookieStore.addCookie (cookie) ;

O W N

Then, we can set up this cookie store on the HttpClient using the
setDefaultCookieStore() method and send the request:

1. @Test

2. public void whenSettingCookiesOnTheHttpClient_thenCookieSentCorrectly ()
3. throws ClientProtocolException, IOException {

4. BasicCookieStore cookieStore = new BasicCookieStore() ;

5. BasicClientCookie cookie = new BasicClientCookie (“JSESSIONID”, “1234");
6. cookie.setDomain (“.github.com”) ;

7. cookie.setPath(“/");

8. cookieStore.addCookie (cookie) ;

9. HttpClient client = HttpClientBuilder.create().

10. setDefaultCookieStore (cookieStore) .build() ;

11.

12. final HttpGet request = new HttpGet (“http://www.github.com”) ;

13.

14. response = client.execute(request) ;

15. assertThat (response.getStatusLine () .getStatusCode (), equalTo(200));
16. }

#Baeldung




A very important element is the domain being set on the cookie - without
setting the proper domain, the client will not send the cookie at all!

2.2. HttpClient before 4.3

With older versions of the HttpClient (before 4.3) - the cookie store was set
directly on the HttpClient:

1. @Test

2. public void givenUsingDeprecatedApi_whenSettingCookiesOnTheHttpClient_
3. thenCorrect ()

4. throws ClientProtocolException, IOException {

5. BasicCookieStore cookieStore = new BasicCookieStore() ;

6. BasicClientCookie cookie = new BasicClientCookie (“JSESSIONID”, “1234");
7. cookie.setDomain (“.github.com”) ;

8. cookie.setPath(”/");

9. cookieStore.addCookie (cookie) ;

10. DefaultHttpClient client = new DefaultHttpClient () ;

11. client.setCookieStore (cookieStore) ;

12

13. HttpGet request = new HttpGet (“http://www.github.com”) ;

14.

15. response = client.execute(request) ;

16. assertThat (response.getStatusLine () .getStatusCode (), equalTo(200));
17. }

Other than the way the client is built, there's no other difference from the
previous example.

#Baeldung




3. Set the Cookie on the Request

If setting the cookie onthe entire HttpClient is notan option, we can configure
requests with the cookie individually using the HttpContext class:

1. @Test

2. public void whenSettingCookiesOnTheRequest_thenCookieSentCorrectly ()

3. throws ClientProtocolException, IOException {

4. BasicCookieStore cookieStore = new BasicCookieStore() ;

5. BasicClientCookie cookie = new BasicClientCookie (“JSESSIONID”, “1234");
6. cookie.setDomain (“.github.com”) ;

7. cookie.setPath(”/");

8. cookieStore.addCookie (cookie) ;

9. instance = HttpClientBuilder.create() .build() ;

10.

11. HttpGet request = new HttpGet (“http://www.github.com”) ;

12

13. HttpContext localContext = new BasicHttpContext () ;

14. localContext.setAttribute (HttpClientContext .COOKIE_STORE, cookieStore);
15. // localContext.setAttribute (ClientContext.COOKIE_STORE, cookieStore) ;
16. // before 4.3

17. response = instance.execute(request, localContext) ;

18.

19. assertThat (response.getStatusLine () .getStatusCode (), equalTo(200));

16. }

#Baeldung




4. Set the Cookie on the Low Level Request

A low level alternative of setting the cookie on the HTTP Request would be
setting it as a raw Header:

@Test
public void whenSettingCookiesOnARequest_thenCorrect ()
throws ClientProtocolException, IOException {
instance = HttpClientBuilder.create().build() ;
HttpGet request = new HttpGet (“http://www.github.com”) ;
request .setHeader (“Cookie”, “JSESSIONID=1234");

response = instance.execute (request) ;

O W 9 oUW N e

[
O .

assertThat (response.getStatusLine () .getStatusCode (), equalTo(200));

=
=
—

This is of course much more error-prone than working with the built
in cookie support. For example, notice that we're no longer setting the
domain in this case - which is not correct.

#Baeldung




5. Conclusion

This chapter illustrated how to work with the HttpClient to send a custom,
user controlled Cookie.

Note that this is not the same as letting the HttpClient deal with the cookies
set by a server. Instead, it's controlling the client side manually at a low
level.

The implementation of all these examples and code snippets can be found
in my GitHub project.

#Baeldung



https://github.com/eugenp/tutorials/tree/master/httpclient-simple

7: HttpClient Basic Authentication

#Baeldung



1. Overview

This chapter will illustrate how to configure Basic Authentication on the
Apache HttpClient 4.

#Baeldung




2. Basic Authentication with the API

Let's start with the standard way of configuring Basic Authentication on
the HttpClient - via a CredentialsProvider:

O ~J o U W N

© = =
N R O

CredentialsProvider provider = new BasicCredentialsProvider () ;
UsernamePasswordCredentials credentials
= new UsernamePasswordCredentials (“userl”, “userlPass”);

provider.setCredentials (AuthScope.ANY, credentials);

HttpClient client = HttpClientBuilder.create()
.setDefaultCredentialsProvider (provider)
Jbuild() ;

HttpResponse response = client.execute (
new HttpGet (URL_SECURED_BY_BASTC_AUTHENTICATION) ) ;
int statusCode = response.getStatusLine()
.getStatusCode () ;

assertThat (statusCode, equalTo (HttpStatus.SC_OK)) ;

As we can see, creating the client with a credentials provider to set it up
with Basic Authentication is not difficult.

Now, to understand what HttpClient will actually do behind the scenes,
we'll need to look at the logs:

QO ~J o U W N

e e e e
N N =)

# request i1s sent with no credentials

[main] DEBUG ... - Authentication required

[main] DEBUG ... - localhost:8080 requested authentication

[main] DEBUG ... - Authentication schemes in the order of preference:

[negotiate, Kerberos, NTLM, Digest, Basic]

[main] DEBUG ... - Challenge for negotiate authentication scheme not
available

[main] DEBUG ... - Challenge for Kerberos authentication scheme not
available

[main] DEBUG ... - Challenge for NTLM authentication scheme not available
[main] DEBUG ... - Challenge for Digest authentication scheme not
available

[main] DEBUG ... - Selected authentication options: [BASIC]

# ... the request is sent again - with credentials

#Baeldung




The entire Client-Server communication is now clear:

the Client sends the HTTP Request with no credentials

the Server sends back a challenge

the Client negotiates and identifies the right authentication scheme
the Client sends a second Request, this time with credentials

#Baeldung




3. Preemptive Basic Authentication

Out ofthe box, the HttpClient doesn't do preemptive authentication. Instead,
this has to be an explicit decision made by the client.

First, we need to create the HttpContext - pre-populating it with an
authentication cache with the right type of authentication scheme pre-
selected. This will mean that the negotiation from the previous example is
no longer necessary - Basic Authentication is already chosen:

1. HttpHost targetHost = new HttpHost (“localhost”, 8082, “http”);
2. CredentialsProvider credsProvider = new BasicCredentialsProvider () ;
3. credsProvider.setCredentials (AuthScope.ANY,

4. new UsernamePasswordCredentials (DEFAULT_USER, DEFAULT_PASS)) ;
5.

6. AuthCache authCache = new BasicAuthCache() ;

7. authCache.put (targetHost, new BasicScheme()) ;

8.

9. // Add AuthCache to the execution context

10. HttpClientContext context = HttpClientContext.create();

11. context.setCredentialsProvider (credsProvider) ;

12. context.setAuthCache (authCache) ;

Now we can use the client with the new context and send the
pre-authentication request:

HttpClient client = HttpClientBuilder.create() .build() ;
response = client.execute (
new HttpGet (URL_SECURED_BY_BASIC_AUTHENTICATION), context);

int statusCode = response.getStatusLine().getStatusCode() ;
assertThat (statusCode, equalTo (HttpStatus.SC_OK)) ;

o U1 W N

#Baeldung




Let's look at the logs:

1. [main] DEBUG ... - Re-using cached ‘basic’ auth scheme for http://

2. localhost:8082

3. [main] DEBUG ... - Executing request GET /spring-security-rest-basic-auth/
4. api/foos/1 HTTP/1.1

5. [main] DEBUG ... >> GET /spring-security-rest-basic-auth/api/foos/1

6. HTTP/1.1

7. [main] DEBUG ... >> Host: localhost:8082

8. [main] DEBUG ... >> Authorization: Basic dXN1lcjE6dXN1cjFQYXNz

9. [main] DEBUG ... << HTTP/1.1 200 OK

10. [main] DEBUG ... - Authentication succeeded

Everything looks OK:

- the “Basic Authentication” scheme is pre-selected
+ the Request is sent with the Authorization header
+ the Server responds with a 200 OK

- Authentication succeeds

#Baeldung




4. Basic Auth with Raw HTTP Headers

Preemptive Basic Authentication basically means pre-sending the
Authorization header.

So, instead of going through the rather complex previous example to set it
up, we can take control of this header and construct it by hand:

1. HttpGet request = new HttpGet (URL_SECURED_BY_BASIC_AUTHENTICATION) ;
2. String auth = DEFAULT_USER + “:” + DEFAULT_PASS;

3. byte[] encodedAuth = Base6t4.encodeBaseb4 (

4. auth.getBytes (StandardCharsets.ISO_8859_1));

5. String authHeader = “Basic “ + new String(encodedAuth) ;

6. request .setHeader (HttpHeaders .AUTHORIZATION, authHeader) ;
7.

S . HttpClient client = HttpClientBuilder.create() .build() ;

9. HttpResponse response = client.execute (request) ;

10.

11. int statusCode = response.getStatusLine().getStatusCode() ;
12. assertThat (statusCode, equalTo (HttpStatus.SC_OK)) ;

Let's make sure this is working correctly:

1. [main] DEBUG ... - Auth cache not set in the context

2. [main] DEBUG ... - Opening connection {}->http://localhost:8080

3. [main] DEBUG ... - Connecting to localhost/127.0.0.1:8080

4. [main] DEBUG ... - Executing request GET /spring-security-rest-basic-auth/
5 api/foos/1 HTTP/1.1

6. [main] DEBUG ... - Proxy auth state: UNCHALLENGED

7. [main] DEBUG ... - http-outgoing-0 >> GET /spring-security-rest-basic-
8. auth/api/foos/1 HTTP/1.1

9. [main] DEBUG ... - http-outgoing-0 >> Authorization: Basic

10. AXN1ciE6dXNLCIFQYXNzZ

11 [main] DEBUG ... - http-outgoing-0 << HTTP/1.1 200 OK

So, even though there is no auth cache, Basic Authentication still works
correctly and we receive 200 OK.

#Baeldung




5. Conclusion

This chapter illustrated various ways to set up and use basic authentication
with the Apache HttpClient 4.

As always, the code presented is available over on GitHub.

#Baeldung



https://github.com/eugenp/tutorials/tree/master/httpclient-simple

