
Move on to JUnit 5

Contents

1. Introduction� 1

2. JUnit 5 Advantages � 2

3. Dependencies� 3

3.1. Configure JUnit 5� 4

3.2. Configure JUnit Vintage� 4

4. Imports� 5

5. Annotations� 6

5.1. Before Annotations� 6

5.2. After Annotations� 7

5.3. Test Expectations� 8

5.4. Disabling Tests� 9

6. Assertions� 10

6.1. Assertion Messages� 10

6.2. Messages Supplier� 11

6.3. Grouping Assertions� 11

6.4. Deprecated Assertions� 12

6.5. Migrate AssertThat� 13

7. Assumption� 14

8. Tagging and Filtering� 15

9. Display Names� 16

10. Nested Tests� 17

11. Conditional Test Execution� 19

11.1. Operating System Conditions� 19

11.2. Java Runtime Environment Conditions� 20

11.3. System Property Conditions� 20

11.4. Environment Variable Conditions� 21

11.5. Deactivating Conditions� 21

12. Extension� 22

12.1. Extension Model� 22

12.2. Registering an Extension� 23

13. Rules� 24

13.1. Supported Rules� 24

13.2. Rule Migration to Extension� 25

14. Conclusion� 28

1

1. Introduction

In this ebook, following the A Guide to JUnit 5 tutorial, we’ll see how we can
migrate our test codebase from using JUnit 4 to the latest JUnit 5 release.

We’ll start looking into why we should migrate to JUnit 5, exploring its
advantages, and then we’ll see the different activities that should be
performed to solve compatibility issues and take advantage of the new
features in JUnit 5.

https://www.baeldung.com/junit-5

2

2. JUnit 5 Advantages

JUnit 5, following JUnit 4, was written with the idea to overcome a few
limitations present in the previous version:

•	 The entire framework was contained in a single jar library. The whole library needs
to be imported even when only a single feature is required. In JUnit 5, we get more
granularity and can import only what is necessary.

•	 One test runner can only execute tests in JUnit 4 at a time (e.g., SpringJUnit4ClassRunner
or Parameterized). JUnit 5 allows multiple runners to work simultaneously.

•	 JUnit 4 never advanced beyond Java 7, missing out on a lot of features from Java 8.
JUnit 5 makes good use of Java 8 features.

Let’s start looking at how the library is organized and what we need to
import and for which purpose.

3

3. Dependencies

To overcome the fact that the entire framework was contained in a single jar
library, JUnit 5 is composed of 3 main modules:

•	 Platform - serves as a foundation for launching a testing framework on the JVM
and defines the TestEngine API for developing a testing framework that runs on the
platform

•	 Jupiter - includes the new programming model for writing tests and the extension
model for writing extensions in JUnit 5

•	 Vintage - provides a TestEngine that allows backward compatibility with JUnit 4 or
even JUnit 3

Before starting to configure our JUnit 5 dependency, we have to remember
that this version of the library requires Java 8 to work.

4

3.1. Configure JUnit 5

To start using JUnit 5, we can add the following dependency to our
pom.xml:

<dependency>

 <groupId>org.junit.jupiter</groupId>

 <artifactId>junit-jupiter-engine</artifactId>

 <version>5.1.0</version>

 <scope>test</scope>

</dependency>

or to our build.gradle file:

testCompile(‘org.junit.jupiter:junit-jupiter-api:5.2.0’)

testRuntime(‘org.junit.jupiter:junit-jupiter-engine:5.2.0’)

1.

2.

3.

4.

5.

6.

1.

2.

In order to make the migration of the JUnit tests less painful, we can configure
JUnit Vintage, that allows us to run JUnit 3 or JUnit 4 tests within the JUnit 5
context.

We can use it by simply configuring our pom.xml:

<dependency>

 <groupId>org.junit.vintage</groupId>

 <artifactId>junit-vintage-engine</artifactId>

 <version>5.2.0</version>

 <scope>test</scope>

</dependency>

or our build.gradle file:

testRuntime(‘org.junit.jupiter:junit-vintage-engine:5.2.0’)

1.

2.

3.

4.

5.

6.

1.

3.2. Configure JUnit Vintage

5

4. Imports

Due to the different structure of the library, the first step that we have to
complete is to replace the imports of old versions with the new ones.

First, we can replace all:

import org.junit.Test;1.

with

import org.junit.jupiter.api.*;1.

Then, we can replace all the imports related to the assertions:

import static org.junit.Assert.*;1.

with

import static org.junit.jupiter.api.Assertions.*;1.

Since all the other imports are deprecated, due to the several changes in
the new version of the library, we can safely remove them.

6

5. Annotations

The new version of the library introduced few changes to the different
annotations that were available in JUnit 4. We’ll start looking into the basic
annotations.

5.1. Before Annotations

For configuring tests, there are a few changes to the basic annotation
when performing the migration:

•	 The @Before annotation was replaced by the new @BeforeEach one, that denotes
that a method should be executed before each @Test, @RepeatedTest,

 @ParameterizedTest, or @TestFactory method in the current class

•	 The @BeforeClass annotation gets replaced by the new @BeforeAll one, that
denotes that a method should be executed before the method annotated with

 @Before

With these changes, if we had configured a test class with the JUnit 4 annotations:

@BeforeClass

static void setup() {

 log.info(“@BeforeClass - executes once before all test methods in this class”);

}

@Before

void init() {

 log.info(“@Before - executes before each test method in this class”);

}

1.

2.

3.

4.

5.

6.

7.

8.

We’ll have to change them accordingly:

@BeforeAll

static void setup() {

 log.info(“@BeforeAll - executes once before all test methods in this

class”);

}

@BeforeEach

void init() {

 log.info(“@BeforeEach - executes before each test method in this class”);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

7

5.2. After Annotations

In the same way as the @Before and the @BeforeClass annotations, the new
version of the library removed the @After and the @AfterClass annotations:

•	 The @After annotation gets replaced by the new @AfterEach one, that denotes that
a method should be executed after each @Test, @RepeatedTest, @ParameterizedTest,
or @TestFactory method in the current class

•	 The @AfterClass annotation gets replaced by the new @AfterAll one, that denotes
that a method should be executed after the method annotated with @After

Taking into considerations these changes, if we had configured a test class with the
JUnit 4 annotations:

@After

void tearDown() {

 log.info(“@After - executed after each test method.”);

}

@AfterClass

static void done() {

 log.info(“@AfterClass - executed after all test methods.”);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

We’ll have to change them accordingly:

@AfterEach

void tearDown() {

 log.info(“@AfterEach - executed after each test method.”);

}

@AfterAll

static void done() {

 log.info(“@AfterAll - executed after all test methods.”);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

8

5.3. Test Expectations

Considering the fact that JUnit 5 comes with important changes within its
annotations, the most important one is that we can no longer use
@Test annotation for specifying expectations.

The expected parameter in JUnit 4:

@Test(expected = Exception.class)

public void shouldRaiseAnException() throws Exception {

 // ...

}

1.

2.

3.

4.

Now, we have to use the new assertion method assertThrows:

public void shouldRaiseAnException() throws Exception {

 Assertions.assertThrows(Exception.class, () -> {

 //...

 });

}

1.

2.

3.

4.

5.

The timeout attribute in JUnit 4:

@Test(timeout = 1)

public void shouldFailBecauseTimeout() throws InterruptedException {

 Thread.sleep(10);

}

1.

2.

3.

4.

Now, we have to use the new assertion assertTimeout in JUnit 5:

@Test

public void shouldFailBecauseTimeout() throws InterruptedException {

 Assertions.assertTimeout(Duration.ofMillis(1), () -> Thread.sleep(10));

}

1.

2.

3.

4.

9

5.4. Disabling Tests

JUnit 5 no longer supports the @Ignore annotation, which was used in JUnit
4 to skip the execution of a specific test or a group of tests.

In its place, to disable a test or a test suite, we have to use the @Disabled
annotation:

@Test

@Disabled

void disabledTest() {

 assertTrue(false);

}

1.

2.

3.

4.

5.

We can apply this annotation, as the @Ignore one, both to a method and to
test classes.

10

6. Assertions

With the new version of the library, the package for the assertions changed
from org.junit.Assert to org.junit.jupiter.api.Assertions.

However, JUnit 5 kept many of the assertion methods of JUnit 4 while adding
a few new ones that took advantage of the Java 8 support.

As in the previous versions, the different assertions are available for all
primitive types, Objects, and arrays (either of primitives or Objects).

One of the major breaking changes for the Assertions is that the order of the
parameters changed with the output message parameter moved as the
last parameter.

For this reason, if we have specified a message error for an assertion:

@Test

public void whenAssertingArraysEquality_thenEqual() {

 char[] expected = { ‘J’, ‘u’, ‘n’, ‘i’, ‘t’ };

 char[] actual = “JUnit”.toCharArray();

 assertArrayEquals(“Arrays should be equal”, expected, actual);

}

1.

2.

3.

4.

5.

6.

7.

We have to move it accordingly:

@Test

public void whenAssertingArraysEquality_thenEqual() {

 char[] expected = { ‘J’, ‘u’, ‘n’, ‘i’, ‘t’ };

 char[] actual = “JUnit”.toCharArray();

 assertArrayEquals(expected, actual, “Arrays should be equal”);

}

1.

2.

3.

4.

5.

6.

7.

6.1. Assertion Messages

11

6.2. Messages Supplier

Thanks to the support of Java 8, the output message can be a Supplier,
allowing lazy evaluation of it.

In case we want to enhance our test methods during the migration, we can
replace the String messages with Supplier:

@Test

public void whenAssertingArraysEquality_thenEqual() {

 char[] expected = { ‘J’, ‘u’, ‘n’, ‘i’, ‘t’ };

 char[] actual = “JUnit”.toCharArray();

 assertArrayEquals(expected, actual, () -> “Arrays should be equal”);

}

1.

2.

3.

4.

5.

6.

7.

6.3. Grouping Assertions

One of the issues of JUnit 4 was that all the assertions were performed
sequentially and if one of the assertions failed, those after the failure weren’t
executed.

@Test

public void givenMultipleAssertion_whenAssertingAll_thenOK() {

 assertEquals(“4 is 2 times 2”, 4, 2 * 2);

 assertEquals(“java”, “JAVA”.toLowerCase());

 assertEquals(“null is equal to null”, null, null);

}

1.

2.

3.

4.

5.

6.

JUnit 5 solved this problem with the introduction of the new assertion
assertAll.

This assertion allows the creation of grouped assertions, where all the
assertions are executed, and their failures are reported together.

In details, this assertion accepts a heading, that will be included in the
message String for the MultipleFailureError, and a Stream of Executable.

12

Let’s see how we can define a grouped assertion:

@Test

public void givenMultipleAssertion_whenAssertingAll_thenOK() {

 assertAll(

 “heading”,

 () -> assertEquals(4, 2 * 2, “4 is 2 times 2”),

 () -> assertEquals(“java”, “JAVA”.toLowerCase()),

 () -> assertEquals(null, null, “null is equal to null”)

);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

When one of the executables throws a blacklisted exception
(OutOfMemoryError for example), it interrupts the execution of the grouped
assertion.

6.4. Deprecated Assertions

The new version of the library removed a few deprecated assertions that
were available within JUnit 4:

assertEquals(String message, double expected, double actual)

assertEquals(String message, Object[] expecteds, Object[] actuals)
1.

2.

However, we can still use the other two deprecated assertions from JUnit
4, since they are still available in JUnit 5 and are no longer marked as
deprecated:

assertEquals(double expected, double actual)

assertEquals(Object[] expecteds, Object[] actuals)
1.

2.

13

6.5. Migrate AssertThat

It’s worth noting that the assertThat assertion is no longer available in
JUnit 5.

So if we used this assertion in a test method, this wouldn’t compile:

@Test

public void testAssertThatHasItems() {

 assertThat(

 Arrays.asList(“Java”, “Kotlin”, “Scala”),

 hasItems(“Java”, “Kotlin”));

}

1.

2.

3.

4.

5.

6.

However, we don’t have to rewrite the test method, because what we can
do instead is use the assertThat provided by the Hamcrest testing library.

Therefore, what we need to do is simply change the imports from:

import static org.junit.Assert.assertThat;1.

to:

import static org.hamcrest.MatcherAssert.assertThat;1.

Additional information on the use of the assertThat assertion with Matcher
object, is available at Testing with Hamcrest.

https://www.baeldung.com/java-junit-hamcrest-guide

14

7. Assumption

When we want to run tests only if certain conditions are met, we can use
assumptions. This is typically used for external conditions that are required
for the test to run properly, but which are not directly related to whatever
is being tested.

The new Assumptions class is now in org.junit.jupiter.api.Assumptions,
instead of org.junit.Assume.

The new Assumptions class supports only a few of the assumptions that
were available with JUnit 4: assumeTrue, assumeFalse. A new one was
introduced that is the assumingThat, while the others (assumeNoException,
assumeNotNull and assumeThat) weren’t kept and are therefore not
available in the new version of the library.

In case we have used the assumeTrue and assumeFalse, there are no
issues when upgrading to JUnit 5 unless an output message was specified:

@Test

public void trueAssumption() {

 assumeTrue(“5 is greater the 1”, 5 > 1);

 assertEquals(5 + 2, 7);

}

@Test

public void falseAssumption() {

 assumeFalse(“5 is less then 1”, 5 < 1);

 assertEquals(5 + 2, 7);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

15

8. Tagging and Filtering

In JUnit 4 we could group tests by using the @Category annotation.
With JUnit 5, we have to replace the @Category annotation with the @Tag
annotation:

@Tag(“annotations”)

@Tag(“junit5”)

@RunWith(JUnitPlatform.class)

public class AnnotationTestExampleUnitTest {

 /*...*/

}

1.

2.

3.

4.

5.

6.

We can include/exclude particular tags using the maven-surefire-plugin:

<build>

 <plugins>

 <plugin>

 <artifactId>maven-surefire-plugin</artifactId>

 <configuration>

 <properties>

 <includeTags>junit5</includeTags>

 </properties>

 </configuration>

 </plugin>

 </plugins>

</build>

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

16

9. Display Names

Thanks to the addition of the new annotation @DisplayName in JUnit 5, we
can declare a custom display name on test classes and methods, that the
test runners and test reporting will display:

@DisplayName(“Test case for assertions”)

public class AssertionUnitTest {

 @Test

 @DisplayName(“Arrays should be equals”)

 public void whenAssertingArraysEquality_thenEqual() {

 char[] expected = {‘J’, ‘u’, ‘p’, ‘i’, ‘t’, ‘e’, ‘r’};

 char[] actual = “Jupiter”.toCharArray();

 assertArrayEquals(expected, actual, “Arrays should be equal”);

 }

 @Test

 @DisplayName(“The area of two polygons should be equal”)

 public void whenAssertingEquality_thenEqual() {

 float square = 2 * 2;

 float rectangle = 2 * 2;

 assertEquals(square, rectangle);

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

This single annotation allows us to improve the tests reporting, writing more
verbose and human-readable output.

17

10. Nested Tests

With the introduction of nested tests, we can express complex relationships
between different groups of tests. The syntax is quite straightforward – all
we have to do is to annotate an inner class with @Nested.

With this new annotation, let’s see how it’s possible to create a hierarchy of
tests executions:

public class NestedUnitTest {

 Stack<Object> stack;

 @Test

 @DisplayName(“is instantiated with new Stack()”)

 void isInstantiatedWithNew() {

 new Stack<>();

 }

 @Nested

 @DisplayName(“when new”)

 class WhenNew {

 @BeforeEach

 void init() {

 stack = new Stack<>();

 }

 @Test

 @DisplayName(“is empty”)

 void isEmpty() {

 Assertions.assertTrue(stack.isEmpty());

 }

 @Test

 @DisplayName(“throws EmptyStackException when popped”)

 void throwsExceptionWhenPopped() {

 assertThrows(EmptyStackException.class, () -> stack.pop());

 }

 @Test

 @DisplayName(“throws EmptyStackException when peeked”)

 void throwsExceptionWhenPeeked() {

 assertThrows(EmptyStackException.class, () -> stack.peek());

 }

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

18

 @Nested

 @DisplayName(“after pushing an element”)

 class AfterPushing {

 String anElement = “an element”;

 @BeforeEach

 void init() {

 stack.push(anElement);

 }

 @Test

 @DisplayName(“it is no longer empty”)

 void isEmpty() {

 Assertions.assertFalse(stack.isEmpty());

 }

 @Test

 @DisplayName(“returns the element when popped and is empty”)

 void returnElementWhenPopped() {

 Assertions.assertEquals(anElement, stack.pop());

 Assertions.assertTrue(stack.isEmpty());

 }

 @Test

 @DisplayName(“returns the element when peeked but remains not empty”)

 void returnElementWhenPeeked() {

 Assertions.assertEquals(anElement, stack.peek());

 Assertions.assertFalse(stack.isEmpty());

 }

 }

 }

}

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

With this kind of structure, the output will be hierarchical, expressing the
structure created with the nesting.

19

11. Conditional Test Execution

With the introduction of the ExecutionCondition in JUnit 5, that defines the
Extension API for programmatic conditional test execution, it’s possible to
either enable or disable the execution of a test class or a test method, based
on certain conditions programmatically.

In case we define multiple ExecutionCondition extensions for a test class or
method, we disable the execution of the test method as soon as one of the
conditions returns disabled.

Let’s start looking at the Operating System Conditions.

11.1. Operating System Conditions

We can decide to enable or disable a test class or a method based on a
particular operating system, using the @EnableOnOs and @DisableOnOs.

Let’s see how we can use these annotations:

@Test

@EnabledOnOs({ OS.MAC })

void whenOperatingSystemIsMac_thenTestIsEnabled() {

 assertEquals(5 + 2, 7);

}

@Test

@DisabledOnOs({ OS.WINDOWS })

void whenOperatingSystemIsWindows_thenTestIsDisabled() {

 assertEquals(5 + 2, 7);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

20

11.2. Java Runtime Environment Conditions

We can enable or disable a test class or method depending on a particular
version of the Java Runtime Environment (JRE), using the
@EnableOnJre and @DisableOnJre. Let’s see how we can use these
annotations to enable/disable tests for Java 8 and one Java 9:

@Test

@EnabledOnJre({ JRE.JAVA_8 })

void whenRunningTestsOnJRE8_thenTestIsEnabled() {

 assertTrue(5 > 4, “5 is greater the 4”);

 assertTrue(null == null, “null is equal to null”);

}

@Test

@DisabledOnJre({ JRE.JAVA_10})

void whenRunningTestsOnJRE10_thenTestIsDisabled() {

 assertTrue(5 > 4, “5 is greater the 4”);

 assertTrue(null == null, “null is equal to null”);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

In case we want to enable or disable a test class or method based on the
value of a named JVM system property, we can respectively use the
@EnabledIfSystemProperty and @DisabledIfSystemProperty annotations:

11.3. System Property Conditions

@Test

@EnabledIfSystemProperty(named = “os.arch”, matches = “.*64.*”)

public void whenRunningTestsOn64BitArchitectures_thenTestIsDisabled() {

 Integer value = 5; // result of an algorithm

 assertNotEquals(0, value, “The result cannot be 0”);

}

@Test

@DisabledIfSystemProperty(named = “ci-server”, matches = “true”)

public void whenRunningTestsOnCIServer_thenTestIsDisabled() {

 Integer value = 5; // result of an algorithm

 assertNotEquals(0, value, “The result cannot be 0”);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

21

This annotation will interpret the value supplied, via the matches attribute,
as a regular expression.

11.4. Environment Variable Conditions

With the additions of the @EnabledIfEnvironmentVariable and
@DisabledIfEnvironmentVariable annotations, we can enable or disable a
test class or a test based on the value of the named environment variable
from the underlying operating system:

@Test

@EnabledIfEnvironmentVariable(named = “ENV”, matches = “staging-server”)

public void whenRunningTestsStagingServer_thenTestIsEnabled() {

 char[] expected = {‘J’, ‘u’, ‘p’, ‘i’, ‘t’, ‘e’, ‘r’};

 char[] actual = “Jupiter”.toCharArray();

 assertArrayEquals(expected, actual, “Arrays should be equal”);

}

@Test

@DisabledIfEnvironmentVariable(named = “ENV”, matches = “.*development.*”)

public void whenRunningTestsDevelopmentEnvironment_thenTestIsDisabled() {

 char[] expected = {‘J’, ‘u’, ‘p’, ‘i’, ‘t’, ‘e’, ‘r’};

 char[] actual = “Jupiter”.toCharArray();

 assertArrayEquals(expected, actual, “Arrays should be equal”);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

11.5. Deactivating Conditions

In case we want to run a test suite without certain conditions being active,
we can simply provide a pattern for the junit.jupiter.conditions.deactivate
configuration parameter to specify which condition we want to deactivate.

For example, we can run all our tests, even if annotated with @Disabled, by
starting our JVM with the proper system property:

-Djunit.jupiter.conditions.deactivate=org.junit.*DisabledCondition1.

22

12. Extension

In contrast to JUnit 4, with the JUnit Jupiter extension model, the Runner,
@Rule, and @ClassRule extension points consists of a single, coherent
concept: the Extension, a marker interface for all the extensions.

12.1. Extension Model

JUnit 5 extensions are related to a certain event in the execution of a test,
referred to as an extension point. When the execution of a test reaches a
certain lifecycle phase, the JUnit engine calls registered extensions.

We can use five main types of extension points:

•	 test instance post-processing
•	 conditional test execution
•	 life-cycle callbacks
•	 parameter resolution
•	 exception handling

Note that this is only relevant for the Jupiter engine; other JUnit 5 engines
will not share the same extension model.

Let’s see how we can register an extension.

23

12.2. Registering an Extension

In JUnit4, we used the @RunWith to integrate the test context with other
frameworks or to change the overall execution flow in the test cases.

With JUnit 5, we can now use the @ExtendWith annotation to provide
similar functionality.

As an example, to use the Spring features in JUnit 4:

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(

 {“/app-config.xml”, “/test-data-access-config.xml”})

public class SpringExtensionTest {

 /*...*/

}

1.

2.

3.

4.

5.

6.

Now, in JUnit 5 it is a simple extension:

ExtendWith(SpringExtension.class)

@ContextConfiguration(

 { “/app-config.xml”, “/test-data-access-config.xml” })

public class SpringExtensionTest {

 /*...*/

}

1.

2.

3.

4.

5.

6.

The @ExtendWith annotation accepts any class that implements the
Extension interface.

Additional information on the Extension Model, the creation of an Extension
and its creation are available at A Guide to JUnit 5 Extensions

https://www.baeldung.com/junit-5-extensions

24

13. Rules

In JUnit 4, we used the @Rule and @ClassRule annotations to add special
functionality to tests.

The new version of the library doesn’t support rules natively anymore.
However, in order to enable a gradual migration, the JUnit team has
decided to support a selection of JUnit 4 rules.

Let’s start looking at the supported rules.

13.1. Supported Rules

JUnit 5 support a few rules using adapters and consider only those rules
that are semantically compatible with the JUnit Jupiter extension model.

Therefore, the support includes only those rules that do not completely
change the overall execution flow of the test.

First of all, we have to add a dependency to our pom.xml:

<dependency>

 <groupId>org.junit.jupiter</groupId>

 <artifactId>junit-jupiter-migrationsupport</artifactId>

 <version>${junit.vintage.version}</version>

 <scope>test</scope>

</dependency>

1.

2.

3.

4.

5.

6.

Once we have configured our dependency, we have the support of three
Rule types including subclasses of those types:

•	 org.junit.rules.ExternalResource (including org.junit.rules.TemporaryFolder)
•	 org.junit.rules.Verifier (including org.junit.rules.ErrorCollector)
•	 org.junit.rules.ExpectedException

We can use this limited form of Rule support by switching on by
the class-level annotation org.junit.jupiter.migrationsupport.rules.
EnableRuleMigrationSupport:

25

@EnableRuleMigrationSupport

public class RuleMigrationSupportUnitTest {

 @Rule

 public ExpectedException exceptionRule = ExpectedException.none();

 @Test

 public void whenExceptionThrown_thenExpectationSatisfied() {

 exceptionRule.expect(NullPointerException.class);

 String test = null;

 test.length();

 }

 @Test

 public void whenExceptionThrown_thenRuleIsApplied() {

 exceptionRule.expect(NumberFormatException.class);

 exceptionRule.expectMessage(“For input string”);

 Integer.parseInt(“1a”);

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Since JUnit 4 Rule support in JUnit Jupiter is currently an experimental
feature, if we to develop a new extension for JUnit 5, we should use the
new extension model of JUnit Jupiter instead of the rule-based model of
JUnit 4.

13.2. Rule Migration to Extension

In JUnit 5, we can reproduce the same logic using the @ExtendWith
annotation.

For example, say we have a custom rule in JUnit 4 to write log traces
before and after a test:

In JUnit 5, we can reproduce the same logic using the @ExtendWith
annotation.

For example, say we have a custom rule in JUnit 4 to write log traces
before and after a test:

26

public class TraceUnitTestRule implements TestRule {

@Override

 public Statement apply(Statement base, Description description) {

 return new Statement() {

 @Override

 public void evaluate() throws Throwable {

 // Before and after an evaluation tracing here

 ...

 }

 };

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

And we implement it in a test suite:

@Rule

public TraceUnitTestRule traceRuleTests = new TraceUnitTestRule();
1.

2.

public class TraceUnitExtension implements AfterEachCallback,

BeforeEachCallback {

 @Override

 public void beforeEach(TestExtensionContext context) throws Exception {

 // ...

 }

 @Override

 public void afterEach(TestExtensionContext context) throws Exception {

 // ...

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

In JUnit 5, we can write the same in a much more intuitive manner:

27

Using JUnit 5’s AfterEachCallback and BeforeEachCallback interfaces
available in the package org.junit.jupiter.api.extension, we easily
implement this rule in the test suite:

@RunWith(JUnitPlatform.class)

@ExtendWith(TraceUnitExtension.class)

public class RuleExampleTest {

 @Test

 public void whenTracingTests() {

 /*...*/

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

28

14. Conclusion

In this ebook, we went through all the steps to perform a migration from
JUnit 4 to JUnit5 and how to improve our tests by exploiting the different
enhancements of JUnit 5.

As always, all code examples in this ebook can be found over on GitHub.

V3.1

https://github.com/eugenp/tutorials/tree/master/testing-modules/junit5-migration

