#Baeldung

Persistence with
Spring

Table of Contents

1: A Guide to JPA with Spring

1 OVEIVIOW e 1
2. JPAIN SPrNG BOOt e 2
2.1. Maven Dependencies.. 2
2.2. CoNfIQUIALION. e 2
3. The JPA Spring Configuration withJava ... 5
4. The JPA Spring Configuration with XML . . 7
5.Going FULLXML-less 9
6. The Maven Configuration] 10
7-CoNCLUSION 11
2: Bootstrapping Hibernate 5 with Spring
1 OVEIVIOW e 13
2.Spring Integration. .. e 14
3.Maven Dependencies 15

#Baeldung

Table of Contents

4. CoNfIQUIALION e 16
4.1. Using Java Configuration,......................e, 16
4.2. Using XML Configuration. ...l 18
B USAQC e 20
6. Supported Databases 21
7- CONCLUSION. | e 22

3: The DAO with Spring and Hibernate

Lo OVEIVIOW. ..o 24
2. No More Spring Templates 25
2.1. Exception Translation without the HibernateTemplate..........................25
2.2. Hibernate Session management without the Template 25
3. TR DAO e 26
4. CONCLUSION. e 28

#Baeldung

Table of Contents

4: Simplify the DAO with Spring and Java Generics

1 OVEIVIOW e 30
2. The Hibernate and JPADAOsS . .., 31
2.1. The Abstract Hibernate DAO............................... 32
2.2. The Generic Hibernate DAO._............................, 33
2.3. The Abstract JPADAO. 34
2.4.The Generic JPADAO 35
3. Injecting this DAO. 36
4. CoNCLUSION 37
5: Transactions with Spring and JPA
1 OVEIVIOW e 39
2. Configure Transactions without XML ..., 40
3. Configure Transactions with XML . 41
4. The @Transactional Annotation 42

#Baeldung

Table of Contents

5.3. Read-Only Transactions 44
5.4. Transaction LOQQiNG 44
6. CONCLUSION 45

6: Introduction to Spring Data JPA

1 OVEIVIOW e 47
2. The Spring Data generated DAO 48
3. Custom Access Method and Queries .. . 49
3.1. Automatic Custom Queries 50
3.2.Manual Custom Queries——— 51
4. Transaction Configuration.... ... 52
4.1. Exception Translationis Aliveand Well ... 52
5. Spring Data Configuration 53
6. The Spring Java or XML Configuration. 54

#Baeldung

Table of Contents

7. The Maven DependencCy . 55
8. Using Spring Boot 56
0. CONCLUSION 57
7: Spring Data JPA @Query
L OV IV W 59
2. S et QUK 60
2 P QL 60
2. 2. NIV 60
3. Define Orderin a QUENY 61
3.1. Sorting for JPA Provided and Derived Method 61
B2 P Qe 62
3.3 N IV 63
4. PaginatioNn 64
AL P 64
4.2 NIV C 64
4.3. Spring Data JPA Versions Priorto2.0.4.. 65

#Baeldung

Table of Contents

8.1 JP QL. e 67
6.2 NatIVe 68
7. Collection Parameter . 69
8. Update Queries with @Modifying 70
Bl JPQL. e 70
8.2.NatiVe e 70
8.3 INSertS e 71
9. DYNamicC QUENY. ... e 72
9.1. Example of a Dynamic Query. ..., 72
9.2. Custom Repositories and the JPA Criteria APl 73
9.3. Extending the Existing Repository... ..., 74
9.4.Using the Repository 74
10. CONCLUSION e 75

#Baeldung

Table of Contents

8: Spring JDBC
1 OVEIVIOW, e 77
2. Configuration . e 78
3. The JdbcTemplate and running queries_ ... 80
3L BasiCQUEeNeSs 80
3.2. Queries with Named Parameters 81
3.3. Mapping Query Results to Java Object. ... 82
4. Exception Translation . 83
5. JDBC operations using SimpleJdbc classes ... 84
5.1.SimpleJdbcinsert. . . . 84
5.2. Stored Procedures with SimpleJdbcCall ... 85
6. Batch operations . 86
6.1. Basic batch operations using JdbcTemplate................................ 86
7.Spring JDBC with Spring Boot . 88
7.1 Maven DependencCy. . . . 88
7.2. Configuration. . 88
8. CoNCLUSION e 89

#Baeldung

1: A Guide to JPA with Spring

#Baeldung 9

1. Overview

This chapter shows how to set up Spring with JPA, using Hibernate as a
persistence provider.

For a step by step introduction about setting up the Spring context using
Java based configuration and the basic Maven pom for the project, see this
article.

We'll start by setting up JPA in a Spring Boot project, then we'll lLook into the
full configuration we need if we have a standard Spring project.

#Baeldung

https://www.baeldung.com/bootstraping-a-web-application-with-spring-and-java-based-configuration
https://www.baeldung.com/bootstraping-a-web-application-with-spring-and-java-based-configuration

2. JPA in Spring Boot

The Spring Boot project is intended to make creating Spring applications
much faster and easier. This is done with the use of starters and auto-
configuration for various Spring functionalities, JPA among them.

2.1.MavenDependencies

To enable JPA in a Spring Boot application, we need the spring-boot-starter
and spring-boot-starter-data-jpa dependencies:

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactIdsspring-boot-starter</artifactId>
<version>2.1.4.RELEASE</version>

</dependency>

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactIdsspring-boot-starter-data-jpa</artifactId>
<version>2.1.4.RELEASE</version>

0. </dependency>

= O 00 3 o Ul i W DN

The spring-boot-starter contains the necessary auto-configurationfor Spring
JPA. Also, the spring-boot-starter-jpa project references all the necessary
dependencies such as hibernate-entitymanager.

2.2, Configuration

Spring Boot configures Hibernate as the default JPA provider, so it's no
longer necessary to define the entityManagerFactory bean unless we want
to customize it.

Spring Boot can also auto-configure the dataSource bean, depending on
the database we're using. In the case of an in-memory database of type H2,
HSQLDB and Apache Derby, Boot automatically configures the DataSource
if the corresponding database dependency is present on the classpath.

For example, if we want to use an in-memory H2 database in a Spring Boot
JPA application, we only need to add the h2 dependency to the pom.xmlfile;

#Baeldung

<dependency>

U w N

</dependency>

<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<version>1.4.197</version>

This way, we don't need to define the dataSource bean, but we can do so if
we want to customize it.

If we want to use JPA with MySQL database, then we need the
mysql-connector-java dependency, as well as to define the DataSource

configuration.

We can do this in a @Configuration class, or by using standard Spring Boot

properties.

The Java configuration looks the same as it does in a standard Spring project:

1. @Bean

2. public DataSource dataSource() {

3. DriverManagerDataSource dataSource = new DriverManagerDataSource() ;
4.

B dataSource.setDriverClassName (“com.mysgl.cj.jdbc.Driver”) ;

6. dataSource.setUsername (“mysgluser”) ;

7. dataSource.setPassword (“mysqglpass”) ;

8. dataSource.setUrl (

9. “jdbc:mysqgl://localhost:3306/myDb?createDatabaselfNotExist=true”) ;
10.

11. return dataSource;

12. }

To configure the data source using a properties file, we have to set properties
prefixed with spring.datasource:

spring.datasource
spring.datasource
spring.datasource

O W N

#Baeldung

spring.datasource.
.username=mysqgluser

.password=mysglpass

.url=
jdbc:mysqgl://localhost:3306/myDb?createDatabaselfNotExist=true

driver-class-name=com.mysgl.cj.jdbc.Driver

Spring Boot will automatically configure a data source based on these
properties.

Also in Spring Boot 1, the default connection pool was Tomcat, but with
Spring Boot 2 it has been changed to HikariCP.

You can find more examples of configuring JPA in Spring Boot in the GitHub
project.

As we can see, the basic JPA configuration is fairly simple if we're using
Spring Boot.

However, if we have a standard Spring project, then we need more explicit
configuration, using either Java or XML. That's what we'll focus on in the
next sections.

#Baeldung

https://github.com/eugenp/tutorials/tree/master/spring-boot
https://github.com/eugenp/tutorials/tree/master/spring-boot
https://github.com/eugenp/tutorials/tree/master/spring-boot
https://github.com/eugenp/tutorials/tree/master/spring-boot
https://github.com/eugenp/tutorials/tree/master/spring-boot
https://github.com/eugenp/tutorials/tree/master/spring-boot
https://github.com/eugenp/tutorials/tree/master/spring-boot
https://github.com/eugenp/tutorials/tree/master/spring-boot
https://github.com/eugenp/tutorials/tree/master/spring-boot

3. The JPA Spring Configuration with Java

To use JPA in a Spring project, we need to set up the EntityManager.

This is the main part of the configuration and we can do it via a Spring factory
bean. This can be either the simpler LocalEntityManagerFactoryBean or the
more flexible LocalContainerEntityManagerFactoryBean.

Let's see how we can use the latter option:

1. @Configuration

2. @EnableTransactionManagement

3. public class PersistenceJPAConfig({

4.

5. @Bean

6. public LocalContainerEntityManagerFactoryBean entityManagerFactory ()
7. {

8. LocalContainerEntityManagerFactoryBean em

9. = new LocalContainerEntityManagerFactoryBean() ;

10. em.setDataSource (dataSource()) ;

11. em.setPackagesToScan (new String[] { “com.baeldung.persistence.
12. model” });

13.

14. JpaVendorAdapter vendorAdapter = new HibernatedpaVendorAdapter () ;
15. em. setJpaVendorAdapter (vendorAdapter) ;

16. em.setJpaProperties (additionalProperties());

17.

18. return em;

19. }

20.

21. //

22.

23. }

#Baeldung

We also need to explicitly define the DataSource bean we've used above;

@Bean

public DataSource dataSource () {
DriverManagerDataSource dataSource = new DriverManagerDataSource () ;
dataSource.setDriverClassName (“com.mysgl.cj.jdbc.Driver”) ;
dataSource.setUrl (“jdbc:mysqgl://localhost:3306/spring_jpa”) ;
dataSource.setUsername(“tutorialuser”);
dataSource.setPassword(“tutorialmybgl”);
return dataSource;

O 0 ~J o Ul i W DN

The final part of the configuration are the additional Hibernate properties
and the TransactionManager and exceptionTranslation beans:

1. @Bean

2. public PlatformTransactionManager

3. transactionManager (EntityManagerFactory emf) ({

4. JpaTransactionManager transactionManager = new

5. JpaTransactionManager () ;

6. transactionManager.setEntityManagerFactory (emf) ;

7.

8. return transactionManager;

9. }

10.

11. @Bean

12. public PersistenceExceptionTranslationPostProcessor

13. exceptionTranslation () {

14. return new PersistenceExceptionTranslationPostProcessor () ;
15. }

16.

17. Properties additionalProperties() {

18. Properties properties = new Properties();

19. properties.setProperty (“hibernate.hbm2ddl.auto”, “create-drop”) ;
20. properties.setProperty (“hibernate.dialect”, “org.hibernate.dialect.
21. My SQL5Dialect”) ;

22.

23. return properties;

24. }

#Baeldung

4. The JPA Spring Configuration with XML

Next, let's see the same Spring Configuration with XML

W 0 ~J 0o Ul ix W N

W W WWwWwWwwwwhhhNNDDNNDNNDNDNNDNNNNNREERREREPRERRREREE
~N oUW N O WO oUW R O WO oUW O

<bean id="myEmf”
class="org.springframework.orm. jpa.
LocalContainerEntityManagerFactoryBean” >
<property name="dataSource” ref="dataSource” />
<property name="packagesToScan” value="com.baeldung.persistence.
model” />
<property name="jpaVendorAdapter”>
<bean class="org.springframework.orm. jpa.vendor.
HibernatedpaVendorAdapter” />
</property>
<property name="jpaProperties”>
<props>
<prop key="hibernate.hbm2ddl.auto”>create-drop</prop>
<prop key="hibernate.dialect”>org.hibernate.dialect.
My SQL5Dialect</prop>
</props>
</property>
</bean>

<bean id="dataSource”
class="org.springframework.jdbc.datasource.DriverManagerDataSource” >
<property name="driverClassName” value="com.mysgl.cj.jdbc.Driver” />
<property name="url” value="jdbc:mysgl://localhost:3306/spring_jpa”

/>
<property name="username” value="tutorialuser” />
<property name="password” value="tutorialmybqgl” />
</bean>

<bean id="transactionManager” class="org.springframework.orm. jpa.
JpaTransactionManager”>
<property name="entityManagerFactory” ref="myEmf” />
</bean>
<tx:annotation-driven />

<bean id="persistenceExceptionTranslationPostProcessor” class=
“org.springframework.dao.annotation.
PersistenceExceptionTranslationPostProcessor” />

#Baeldung

There is a relatively small difference between the XML and the new Java-
based configuration. Namely, in XML, a reference to another bean can point
to either the bean or a bean factory for that bean.

In Java, however, since the types are different, the compiler doesn't allow it,
and so the EntityManagerFactory is first retrieved from its bean factory and
then passed to the transaction manager:

txManager.setEntityManagerFactory(this.entityManagerFactoryBean().
getObject());

#Baeldung

5. Going Full XML-less

Usually, JPAdefinesapersistence unitthrough the META-INF/persistence.xml
file. Starting with Spring 3.1, the persistence.xml is no longer necessary. The
LocalContainerEntityManagerFactoryBean now supports a ‘packagesTioScan’
property where the packages to scan for @Entity classes can be specified.

This file was the last piece of XML we need to remove. We can now set up
JPA fully with no XML.

We would usually specify JPA properties in the persistence.xml file.
Alternatively, we can add the properties directly to the entity manager
factory bean:

factoryBean.setJpaProperties(this.additionalProperties());

As a side-note, if Hibernate would be the persistence provider, then this
would be the way to specify Hibernate specific properties.

#Baeldung

6. The Maven Configuration

In addition to the Spring Core and persistence dependencies - show in detail
in the Spring with Maven tutorial - we also need to define JPA and Hibernate
in the project, as well as a MySQL connector:

<dependency>
<groupld>org.hibernate</groupId>
<artifactId>hibernate-entitymanager</artifactId>
<version>5.4.2.Final</version>
<scope>runtime</scope>

</dependency>

O ~J O U1 i W N -

<dependency>
<groupldsmysgl</groupId>
<artifactIdsmysgl-connector-java</artifactId>
<version>6.0.6</version>
<scope>runtime</scope>

</dependency>

N el
w N P o

Note that the MySQL dependency is included as an example. We need a
driver to configure the datasource, but any Hibernate supported database
will do.

#Baeldung

http://community.jboss.org/wiki/SupportedDatabases2

7. Conclusion

This chapter illustrated how to configure JPA with Hibernate in Spring in
both a Spring Boot, and a standard Spring application.

As always, the code presented in this chapter is available over on Github

#Baeldung

https://github.com/eugenp/tutorials/tree/master/persistence-modules/spring-persistence-simple

2: Bootstrapping Hibernate 5 with Spring

#Baeldung

1. Overview

In this chapter, we'll discuss how to bootstrap Hibernate 5 with Spring, using
both Java and XML configuration.

#Baeldung

2. Spring Integration

Bootstrapping a SessionFactory with the native Hibernate API is a bit
complicated and would take us quite a few lines of code (have a look at the
official documentation in case you really need to do that).

Fortunately, Spring supports bootstrapping the SessionFactory - so that
we only need a few lines of Java code or XML configuration.

Also, before we jump in, if you're working with older versions of Hibernate,
you can have a look at the articles about Hibernate 3 as well as Hibernate 4
with Spring.

#Baeldung

https://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#bootstrap-native
https://www.baeldung.com/hibernate3-spring
https://www.baeldung.com/hibernate-4-spring

3. Maven Dependencies

Let's get started by first adding the necessary dependencies to our
pom.xml:

<dependency>
<groupld>org.hibernate</groupld>
<artifactIds>hibernate-core</artifactId>
<version>5.4.2.Final</version>
</dependency>

g s w N

The spring-orm module provides the Spring integration with Hibernate:

<dependency>
<groupld>org.springframework</groupIld>
<artifactIdsspring-orm</artifactId>
<version>5.1.6.RELEASE</version>
</dependency>

U w N

For the sake of simplicity, we'll use H2 as our database:

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<version>1.4.197</version>
</dependency>

g w N

Finally, we are going to use Tomcat JDBC Connection Pooling, which fits
better for production purposes than the DriverManagerDataSource provided
by Spring:

<dependency>
<groupld>org.apache.tomcat</groupId>
<artifactId>tomcat-dbcp</artifactId>
<version>9.0.1</version>
</dependency>

U w N

#Baeldung

4. Configuration

As mentioned before, Spring supports us with bootstrapping the Hibernate
SessionFactory.

All we have to do is to define some beans as well as a few parameters.

With Spring, we have two options for these configurations, a Java-based
and an XML-based way.

4.1. Using Java Configuration

For using Hibernate 5 with Spring, little has changed since Hibernate 4:
we have to use LocalSessionFactoryBean from the package org.
springframework.orm.hibernates instead of
org.springframework.orm.hibernate4.

Like with Hibernate 4 before, we have to define beans for
LocalSessionFactoryBean, DataSource, and PlatformTransactionManager,
as well as some Hibernate-specific properties.

Let's create our HibernateConfig class to configure Hibernate 5 with
Spring:

#Baeldung

https://www.baeldung.com/hibernate-4-spring

1. @Configuration

2. @EnableTransactionManagement

3. public class HibernateConf ({

4.

5. @Bean

6. public LocalSessionFactoryBean sessionFactory () {

7. LocalSessionFactoryBean sessionFactory = new

8. LocalSessionFactoryBean () ;

9. sessionFactory.setDataSource (dataSource ()) ;

10. sessionFactory.setPackagesToScan (

11. {”com.baeldung.hibernate.bootstrap.model” });

12. sessionFactory.setHibernateProperties (hibernateProperties());
13.

14. return sessionFactory;

15. }

16.

17. @Bean

18. public DataSource dataSource() {

19. BasicDataSource dataSource = new BasicDataSource() ;
20. dataSource.setDriverClassName (“org.h2.Driver”) ;

21. dataSource.setUrl (“jdbc:h2 :mem:db; DB_CLOSE_DELAY=-1") ;
22. dataSource.setUsername (“sa”) ;

23. dataSource.setPassword(“sa”) ;

24.

25. return dataSource;

26. }

27.

28. @Bean

29. public PlatformTransactionManager hibernateTransactionManager () {
30. HibernateTransactionManager transactionManager

31. = new HibernateTransactionManager () ;

32. transactionManager.setSessionFactory (sessionFactory () .
33. getObject ());

34. return transactionManager;

35. }

36.

37. private final Properties hibernateProperties() {

38. Properties hibernateProperties = new Properties();

39. hibernateProperties.setProperty (

40. “hibernate.hbm2ddl.auto”, “create-drop”);

41. hibernateProperties.setProperty (

42. “hibernate.dialect”, “org.hibernate.dialect.H2Dialect”);
43.

44 . return hibernateProperties;

45. }

46. }

#Baeldung

4.2. Using XML Configuration

As a secondary option, we can also configure Hibernate 5 with an
XML-based configuration:

1. <?xml version="1.0" encoding="UTF-8"7?>

2. <beans xmlns="...">

3.

4. <bean id="sessionFactory”

5. class="org.springframework.orm.hibernate5.

6. LocalSessionFactoryBean”>

7. <property name="dataSource”

8. ref="dataSource” />

9. <property name="packagesToScan”

10. value="com.baeldung.hibernate.bootstrap.model” />
11. <property name="hibernateProperties”>

12. <props>

13. <prop key="hibernate.hbm2ddl.auto”>

14. create-drop

15. </prop>

16. <prop key="hibernate.dialect”>

17. org.hibernate.dialect.H2Dialect

18. </prop>

19. </props>

20. </property>

21. </bean>

22.

23. <bean id="dataSource”

24. class="org.apache.tomcat .dbcp.dbcp?2.BasichDataSource” >
25. <property name="driverClassName” value="org.h2.Driver”/>
26. <property name="url” value="jdbc:h2:mem:db;DB_CLOSE_DELAY=-1"/>
27. <property name="username” value="gsa”/>

28. <property name="password” value="gsa”/>

29. </bean>

30.

31 <bean id="txManager”

32 class="org.springframework.orm.hibernate5.

33. HibernateTransactionManager” >

34. <property name="sessionFactory” ref="sessionFactory”/>
35. </bean>

36. </beans>

#Baeldung

As we can easily see, we're defining exactly the same beans and parameters
as in the Java-based configuration earlier.

To bootstrap the XML into the Spring context, we can use a simple Java
configuration file if the application is configured with Java configuration:

@Configuration
@EnableTransactionManagement
@ImportResource ({“classpath:hibernate5Configuration.xml”})
public class HibernateXMLConf ({
//

O U1 i W N

}

Alternatively, we can simply provide the XML file to the Spring Context, if the
overall configuration is purely XML.

#Baeldung

At this point, Hibernate 5 is fully configured with Spring, and we can inject
the raw Hibernate SessionFactory directly whenever we need to:

1.
2.
3.
4.
5.
6.
7.

public abstract class BarHibernateDAO ({

@Autowired
private SessionFactory sessionFactory;

/...

#Baeldung

6. Supported Databases

Unfortunately, the Hibernate project doesn't exactly provide an official list of
supported databases.

That being said, it's easy to see if a particular database type might be
supported, we can have a look at the list of supported dialects,

#Baeldung

http://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#database-dialect

7. Conclusion

In this quick chapter, we configured Spring with Hibernate 5 - with both
Java and XML configuration.

As always, the full source code of the examples is available over on GitHub

#Baeldung

https://github.com/eugenp/tutorials/tree/master/persistence-modules/spring-persistence-simple

3: The DAO with Spring and Hibernate

#Baeldung

1. Overview

This chapter will show how to implement the DAO with Spring and Hibernate.
For the core Hibernate configuration, check out the previous chapter.

#Baeldung

https://docs.google.com/document/d/1C9auOr3cy_wHb8vZFnmK5abVULxPXYKDjff2e-9gm_k/edit#heading=h.wka2tem1v3z5

2. No More Spring Templates

Starting Spring 3.0 and Hibernate 3.0.1, the Spring HibernateTemplate is no
longer necessary to manage the Hibernate Session. It's now possible to
make use of contextual sessions - sessions managed directly by Hibernate
and active throughout the scope of a transaction.

As a consequence, it's now best practice to use the Hibernate API directly
instead of the HibernateTemplate. This will effectively decouple the DAO
layer implementation from Spring entirely.

2.1. Exception Translation without the HibernateTemplate

Exception Translation was one of the responsibilities of HibernateTemplate
- translating the low-level Hibernate exceptions to higher level, generic
Spring exceptions.

Without the template, this mechanism is still enabled and active for all
the DAOs annotated with the @Repository annotation. Under the hood, this
uses a Spring bean postprocessor that will advise all @Repository beans
with all the PersistenceExceptionTranslator found in the Spring context.

One thing to remember is that exception translation uses proxies. For Spring
to be able to create proxies around the DAO classes, these must not be
declared as final.

2.2. Hibernate Session management without the Template

When Hibernate support for contextual sessions came out, the
HibernateTemplate essentially became obsolete. In fact, the Javadoc of the
class now highlights this aspect (bold from the original):

NOTE: As of Hibernate 3.0.1, transactional Hibernate access code can also be coded in
plain Hibernate style. Hence, for newly started projects, consider adopting the standard
Hibernate3 style of coding data access objects instead, based on {@link org.hibernate.
SessionFactory#getCurrentSession()}.

#Baeldung

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/architecture.html#architecture-current-session

3. The DAO

We'll start with the base DAO - an abstract, parametrized DAO which
supports the common generic operations and that we can extend for each

entity:
1. public abstract class AbstractHibernateDAO< T extends Serializable >{
2. private Class< T > clazz;
3.
4. @Autowired
5. private SessionFactory sessionFactory;
6.
7. public void setClazz (Class< T > clazzToSet) {
8. clazz = clazzToSet;
9. }
10.
11. public T findOne (long id) {
12. return (T) getCurrentSession().get(clazz, id);
13. }
14. public List< T > findAll() {
15. return getCurrentSession()
16. .createQuery(“from “ + clazz.getName()).list();
17. }
18.
19. public void save (T entity) {
20. getCurrentSession () .persist (entity);
21. }
22.
23. public T update (T entity) {
24. return (T) getCurrentSession().merge(entity);
25. }
26.
27. public void delete(T entity) {
28. getCurrentSession () .delete(entity);
29. }
30. public void deleteById(long id) {
31. final T entity = findOne(1id) ;
32. delete(entity);
33. }
34.
35. protected final Session getCurrentSession() {
36. return sessionFactory.getCurrentSession() ;
37. }
38. }

#Baeldung

A few aspects are interesting here - as discussed, the abstract DAO doesn't
extend any Spring template (such as Hibernatelemplate). Instead, the
Hibernate SessionFactory is injected directly in the DAO, and will have the
role of the main Hibernate API, through the contextual Session it exposes:

this.sessionFactory.getCurrentSession();

Also, note that the constructor receives the Class of the entity as a parameter
to be used in the generic operations.

Now, let's look at an example implementation of this DAO, for a Foo entity:

@Repository
public class FooDAO extends AbstractHibernateDAO< Foo > implements
IFooDAO({

public FooDAO () {
setClazz (Foo.class) ;

}

O ~J o Ul W

#Baeldung

4. Conclusion

This chapter covered the configuration and implementation of the
persistence layer with Hibernate and Spring.

The reasons to stop relying on templates for the DAO layer was discussed,
as well as possible pitfalls of configuring Spring to manage transactions
and the Hibernate Session. The final result is a lightweight, clean DAO
implementation, with almost no compile-time reliance on Spring.

The implementation of this simple project can be found in the github project.

#Baeldung

https://github.com/eugenp/tutorials/tree/master/persistence-modules/spring-persistence-simple

4: Simplify the DAO with Spring and
Java Generics

#Baeldung

1. Overview

This chapter will focus on simplifying the DAO layer by using a single,
generified Data Access Object for all entities in the system, which will result
in elegant data access, with no unnecessary clutter or verbosity.

We'll build on the Abstract DAO class we saw in our previous chapter on
Spring and Hibernate, and add generics support.

#Baeldung

https://docs.google.com/document/d/1C9auOr3cy_wHb8vZFnmK5abVULxPXYKDjff2e-9gm_k/edit#heading=h.pr93cyobflju

2. The Hibernate and JPA DAOs

Most production codebases have some kind of DAO layer. Usually, the
implementation ranges from multiple classes with no abstract base class
to some kind of generified class. However, one thing is consistent - there
is always more than one. Most likely, there is a one to one relation between
the DAOs and the entities in the system.

Also,dependingonthelevelofgenericsinvolved,theactualimplementations
can vary from heavily duplicated code to almost empty, with the bulk of the
logic grouped in a base abstract class.

These multiple implementations can usually be replaced by a single
parametrized DAO. We can implement this such that no functionality is lost
by taking full advantage of the type safety provided by Java Generics.

We'll show two implementations of this concept next, one for a Hibernate
centric persistence layer and the other focusing on JPA.

These implementations are by no means complete, but we can easily add
more additional data access methods are included.

#Baeldung

2.1. The Abstract Hibernate DAO

Let's take a quick look at the AbstractHibernateDao class:

1. public abstract class AbstractHibernateDao<T extends Serializable> {
2.

3. private Class<T> clazz;

4.

5 @Autowired

6. SessionFactory sessionFactory;

7.

8. public void setClazz (Class< T > clazzToSet) {
9. this.clazz = clazzToSet;

10. }

11.

12. public List findAll () {

13. return getCurrentSession() .createQuery (“from “ +
14. clazz.getName ()) .list () ;

15. }

16.

17. public T create(T entity) {

18. getCurrentSession () .saveOrUpdate (entity) ;
19. return entity;

20. }

21.

22. public T update(T entity) {

23. return (T) getCurrentSession().merge(entity) ;
24 . }

25.

26. public void delete (T entity) {

27. getCurrentSession () .delete(entity) ;

28. }

29.

30. public void deleteById(long entityId) {

31. T entity = findOne (entityId) ;

32. delete(entity) ;

33. }

34.

35. protected Session getCurrentSession() {

36. return sessionFactory.getCurrentSession() ;
37. }

38. }

This is an abstract class with several data access methods, that uses the
SessionFactory for manipulating entities.

#Baeldung

2.2. The Generic Hibernate DAO

Now that we have the abstract DAO class, we can extend it just once. The
generic DAO implementation will become the only implementation we need:

@Repository
@Scope (BeanDefinition.SCOPE_PROTOTYPE)
public class GenericHibernateDao<T extends Serializable>
extends AbstractHibernateDao<T> implements IGenericDao<T>{
//

N Ul W N

First, note that the genericimplementationis itself parameterized, allowing
the client to choose the correct parameter on a case by case basis. This will
mean that the clients get all the benefits of type safety without needing to
create multiple artifacts for each entity.

Secondly, notice the prototype scope of this generic DAO implementation.
Using this scope means that the Spring container will create a new instance
of the DAO each time it's requested (including on autowiring). That will allow
aservice to use multiple DAOs with different parameters for different entities,
as needed.

The reason this scope is so important is due to the way Spring initializes
beansinthe container. Leaving the generic DAO without a scope would mean
using the default singleton scope, which would lead to a single instance of
the DAO living in the container. That would obviously be majorly restrictive
for any kind of more complex scenario.

The IGenericDao is simply an interface for all the DAO methods so that we
can inject the implementation we need:

public interface IGenericDao<T extends Serializable> {
T AindOne (Anal long id);
List<T> fndAll () ;
vold create(final T entity);
T update (final T entity);
void delete(final T entity);
void deleteById(final long entityId);

O ~J o Ul W

#Baeldung

2.3. The Abstract JPA DAO

The AbstractJpaDao is very similar to the AbstractHibernateDao:

1. public abstract class AbstractdpaDao< T extends Serializable > {
2.

3. private Class< T > clazz;

4.

5 @PersistenceContext

6. EntityManager entityManager;

7.

8. public void setClazz(Class< T > clazzToSet) {
9. this.clazz = clazzToSet;

10. }

11.

12. public T findOne(Long id) {

13. return entityManager.find(clazz, id);
14. }

15. public List< T > findAll () {

16. return entityManager.createQuery(“from “ + clazz.getName())
17. .getResultList () ;

18. }

19.

20. public void save(T entity) {

21. entityManager.persist (entity);

22. }

23.

24. public void update(T entity) {

25. entityManager.merge(entity);

26. }

27.

28. public void delete(T entity){

29. entityManager.remove (entity);

30. }

31. public void deleteById(Long entityId) {
32. T entity = getById(entityId);

33. delete(entity);

34. }

35. }

Similar to the Hibernate DAO implementation, we're using the Java
Persistence API directly, without relying on the now deprecated Spring
JpaTlemplate.

#Baeldung

2.4. The Generic JPA DAO

Similar to the Hibernate implementation, the JPA Data Access Object is
straightforward as well:

@Repository
@Scope (BeanDefinition.SCOPE_PROTOTYPE)
public class GenericJdpaDao< T extends Serializable >
extends AbstractdpabDao< T > implements IGenericDao< T >{
//

O U1 i W N

#Baeldung

3. Injecting this DAO

We now have a single DAO interface we can inject. \We also need to specify

the Class
1. @Service
2. class FooService implements IFooService(
3.
4. IGenericDao<Foo> dao;
Be
6. @Autowired
7. public void setDao (IGenericDao<Foo> daoToSet) {
8. dao = daoToSet;

= O
O .

dao.setClazz (Foo.class) ;

}

B e
w N P
-

/...

Spring autowires the new DAO instance using setter injection so that the
implementation can be customized with the Class object. After this point,
the DAO is fully parametrized and ready to be used by the service.

There are of course other ways that the class can be specified for the DAO -
via reflection, or even in XML. My preference is towards this simpler solution
because of the improved readability and transparency compared to using
reflection.

#Baeldung

4. Conclusion

This chapter discussed the simplification of the Data Access Layer by
providing a single, reusable implementation of a generic DAO. We showed
the implementation in both a Hibernate and a JPA based environment. The
result is a streamlined persistence layer, with no unnecessary clutter.

For a step by step introduction about setting up the Spring context using
Java based configuration and the basic Maven pom for the project, see this
article.

Finally, the code for this chapter can be found in the GitHub project.

#Baeldung

https://www.baeldung.com/bootstraping-a-web-application-with-spring-and-java-based-configuration
https://www.baeldung.com/bootstraping-a-web-application-with-spring-and-java-based-configuration
https://github.com/eugenp/tutorials/tree/master/persistence-modules/spring-persistence-simple

5: Transactions with Spring and JPA

#Baeldung

1. Overview

This chapter will discuss the right way to configure Spring Transactions,
how to use the @Transactional annotation and common pitfalls.

Basically, there are two distinct ways to configure Transactions — annotations
and AOP - each with their own advantages. We're going to discuss the more
common annotation-config here.

#Baeldung

2. Configure Transactions without XML

Spring 3.1 introduces the @EnableTransactionManagement annotation that
we can use in a @Configuration class and enable transactional support:

O ~J O Ul i W N

e e e o e
WO JoNU W RO

@Configuration
@EnableTransactionManagement
public class PersistenceJPAConfig({

@Bean
public LocalContainerEntityManagerFactoryBean
entityManagerFactoryBean () {
/] ...
}

@Bean
public PlatformTransactionManager transactionManager () {
JpaTransactionManager transactionManager
= new JpaTransactionManager () ;
transactionManager.setEntityManagerFactory (
entityManagerFactoryBean () .getObject ());
return transactionManager;

However, if we're using a Spring Boot project, and have a spring-data-" or
spring-tx dependencies on the classpath, then transaction management
will be enabled by default.

#Baeldung

3. Configure Transactions with XML

Before 3.1 or if Java is not an option, here is the XML configuration, using
annotation-driven and the namespace support:

<bean id="txManager” class="org.springframework.orm.jpa.
JpaTransactionManager”>

<property name="entityManagerFactory” ref="myEmf” />
</bean>
<tx:annotation-driven transaction-manager="txManager” />

U w N

#Baeldung

4. The @Transactional Annotation

With transactions configured, we can now annotation a bean with @
Transactional either at the class or method level:

@Service

@Transactional

public class FooService {
/). ..

U w N

}

The annotation supports further configuration as well:

the Propagation Type of the transaction

the Isolation Level of the transaction

a Timeout for the operation wrapped by the transaction

a readOnly flag - a hint for the persistence provider that the transaction
should be read only

the Rollback rules for the transaction

Note that - by default, rollback happens for runtime, unchecked exceptions
only. The checked exception does not trigger a rollback of the transaction.
We can, of course, configure this behavior with the rollbackFor and
noRollbackFor annotation parameters.

#Baeldung

5. Potential Pitfalls

5.1. Transactions and Proxies

At a high level, Spring creates proxies for all the classes annotated with
@Transactional - either on the class or on any of the methods. The proxy
allows the framework to inject transactional logic before and after the
running method - mainly for starting and committing the transaction.

What's important to keep in mind is that, if the transactional bean is
implementing an interface, by default the proxy will be a Java Dynamic Proxy.
This means that only external method calls that come in through the proxy
will be intercepted. Any self-invocation calls will not start any transaction,
even if the method has the @Transactional annotation.

Another caveat of using proxies is that only public methods should be
annotated with @Transactional. Methods of any other visibilities will simply
ignore the annotation silently as these are not proxied.

This article discusses further proxying pitfalls in great detail here.

5.2. Changing the Isolation level
We can also change the transaction isolation level:

1. ' @Transactional (isolation = Isolation.SERIALIZABLE)

Note that this has actually been introduced in Spring 4.1; if we run the above
example before Spring 4.1, it will result in:

‘org.springframeworR.transaction.invalidlsolationLevelException: Standard
JPA does not support custom isolation levels - use a special JpaDialect for
your JPA implementation”

#Baeldung

http://nurkiewicz.blogspot.ro/2011/10/spring-pitfalls-proxying.html
https://jira.spring.io/browse/SPR-5012

5.3. Read-Only Transactions

The readOnly flag usually generates confusion, especially when working
with JPA; from the Javadoc:

“This just serves as a hint for the actual transaction subsystem; it will not
necessarily cause failure of write access attempts. A transaction manager
which cannot interpret the read-only hint will not throw an exception when
asked for a read-only transaction.”

The fact is that we can't be sure that an insert or update will not occur
when the readOnly flag is set. This behavior is vendor dependent, whereas
JPA is vendor agnostic.

It's also important to understand that the readOnly flag is only relevant
inside atransaction. If an operation occurs outside of a transactional context,
the flag is simply ignored. A simple example of that would call a method
annotated with:

1. ' @Transactional (propagation = Propagation.SUPPORTS,readOnly = true)

from a non-transactional context - a transaction will not be created and the
readOnly flag will be ignored.

5.4. Transaction Logging

A helpful method to understand transactional related issues is fine-tuning
logging in the transactional packages. The relevant package in Spring is
‘org.springframeworR.transaction’, which should be configured with a logging
level of TRACE.

#Baeldung

6. Conclusion

We covered the basic configuration of transactional semantics using
both Java and XML, how to use @Transactional and best practices of a
Transactional Strategy.

As always, the code presented in this chapter is available over on Github.

#Baeldung

https://github.com/eugenp/tutorials/tree/master/persistence-modules/spring-persistence-simple

6: Introduction to Spring Data JPA

#Baeldung

1. Overview

This chapter will focus on introducing Spring Data JPA into a Spring project
and fully configuring the persistence layer.

#Baeldung

2. The Spring Data generated DAO

As we discussed in an earlier chapter, the DAO layer usually consists of a
lot of boilerplate code that can and should be simplified. The advantages
of such a simplification are many: a decrease in the number of artifacts that
we need to define and maintain, consistency of data access patterns and
consistency of configuration.

Spring Data takes this simplification one step forward and makes it possible
to remove the DAO implementations entirely. The interface of the DAO is
now the only artifact that we need to explicitly define.

In order to start leveraging the Spring Data programming model with JPA,
a DAO interface needs to extend the JPA specific Repository interface
- JpaRepository. This will enable Spring Data to find this interface and
automatically create an implementation for it.

By extending the interface we get the most relevant CRUD methods for
standard data access available in a standard DAO.

#Baeldung

3. Custom Access Method and Queries

As discussed, by implementing one of the Repository interfaces, the DAO
will already have some basic CRUD methods (and queries) defined and
implemented.

To define more specific access methods, Spring JPA supports quite a few
options:

simply define a new method in the interface

provide the actual JPQ query by using the @Query annotation

use the more advanced Specification and Querydsl support in Spring
Data

define custom queries via JPA Named Queries

The third option - the Specifications and Querydsl support - is similar to JPA
Criteria but using a more flexible and convenient API. This makes the whole
operation much more readable and reusable. The advantages of this API
will become more pronounced when dealing with a large number of fixed
queries, as we could potentially express these more concisely through a
smaller number of reusable blocks.

This last option has the disadvantage that it either involves XML or burdening
the domain class with the queries.

#Baeldung

3.1. Automatic Custom Queries

When Spring Data creates a new Repository implementation, it analyses all
the methods defined by the interfaces and tries to automatically generate
queries from the method names. While this has some limitations, it's a very
powerful and elegant way of defining new custom access methods with
very little effort.

Let's look at an example: if the entity has a name field (and the Java Bean
standard getName and setName methods), we'll define the findByName
method in the DAO interface; this will automatically generate the correct

query:

public interface IFooDAO extends JpaRepository<Foo, Long> {

Foo findByName (String name) ;

U W N

This is a relatively simple example. The query creation mechanism supports
a much larger set of keywords.

In case that the parser cannot match the property with the domain object
field, we'll see the following exception:

1. java.lang.IllegalArgumentException: No property nam found for type class
2. org.rest.model.Foo

#Baeldung

https://docs.spring.io/spring-data/data-jpa/docs/current/reference/html/#jpa.query-methods.query-creation

3.2. Manual Custom Queries

Let's now look at a custom query that we'll define via the @Query annotation:

1. @Query (“SELECT f FROM Foo f WHERE LOWER(f.name) = LOWER(:name) ")
2. Foo retrieveByName (@Param(“name”) String name) ;

For even more fine-grained control over the creation of queries, such as
using named parameters or modifying existing queries, the reference is a
good place to start.

#Baeldung

https://docs.spring.io/spring-data/data-jpa/docs/current/reference/html/#jpa.named-parameters

4. Transaction Configuration

The actual implementation of the Spring Data managed DAO is indeed
hidden since we don't work with it directly. However, this is a simple enough
implementation - the SimpleJpaRepository - which defines transaction
semantics using annotations.

More explicitly, this uses a read-only @ Transactional annotation at the class
level, which is then overridden for the non-read-only methods. The rest of
the transaction semantics are default, but these can be easily overridden
manually per method.

4.1. Exception Translation is Alive and Well

The questionis now - since we're not using the default Spring ORM templates
(UpaTemplate, HibernateTemplate) — are we losing exception translation by
using Spring Data JPA? Are we not going to get our JPA exceptions translated
to Spring's DataAccessException hierarchy?

Of course not - exception translation is still enabled by the use of
the @Repository annotation on the DAO. This annotation enables a
Spring bean postprocessor to advise all @Repository beans with all the
PersistenceExceptionTranslator instances found in the Container, and provide
exception translation just as before.

Let's verify exception translation with an integration test:

@Test (expected = DatalIntegrityViolationException.class)
public void givenFooHasNoName_whenInvalidEntityIsCreated_
thenDataException () {

service.create (new Fool());

U w N

}

Keep in mind that exception translation is done through proxies. In order
for Spring to be able to create proxies around the DAO classes, these must
not be declared final.

#Baeldung

5. Spring Data Configuration

To activate the Spring JPA repository support we can use the
@EnableJpaRepositories annotation and specify the package that contains
the DAO interfaces:

1. @EnabledpaRepositories (basePackages = “com.baeldung.jpa.dao”)
2. public class PersistenceConfig { ... }

We can do the same with an XML configuration:

1. ' <jpa:repositories base-package="org.rest.dao.spring” />

#Baeldung

6. The Spring Java or XML Configuration

We already discussed in great detail how to configure JPA in Spring in a
previous chapter. Spring Data also takes advantage of the Spring support
for the JPA @PersistenceContext annotation. It uses this to wire the
EntityManagerinto the Spring factory bean responsible for creating the actual
DAO implementations - JpaRepositoryFactoryBean.

In addition to the already discussed configuration, we also need to include
the Spring Data XML Config - if we are using XML

@Configuration
@EnableTransactionManagement
@ImportResource(“classpath*:*springDataConfig.xml”)

public class PersistenceJPAConfig{

o Ul W N

}

#Baeldung

7. The Maven Dependency

In addition to the Maven configuration for JPA-defined in a previous chapter,
the spring-data-jpa dependency is added:

<dependency>
<groupld>org.springframework.data</groupIds>
<artifactIdsspring-data-jpa</artifactId>
<version>2.1.6.RELEASE</version>
</dependency>

U s w N

#Baeldung

8. Using Spring Boot

We can also use the Spring Boot Starter Data JPA dependency that will
automatically configure the DataSource for us.

We also need to make sure that the database we want to use is present in
the classpath. In our example, we've added the H2 in-memory database:

<dependency>
<groupld>org.springframework.boot</groupIds>
<artifactIdsspring-boot-starter-data-jpa</artifactId>
<version>2.1.3.RELEASE</version>

</dependency>

<dependency>
<groupId>com.h2database</groupIld>
<artifactId>h2</artifactId>
<version>1.4.197</version>

0. </dependency>

= O 00 3 o Ul i W DN

That's it, just by doing these dependencies, our application is up and running
and we can use it for other database operations.

The explicit configuration for a standard Spring application is now included
as part of Spring Boot auto-configuration.

We can, of course, modify the auto-configuration by adding our own explicit
configuration.

Spring Boot provides an easy way to do this using properties in the
application.properties file:

1. spring.datasource.url=jdbc:h2:mem:db; DB_CLOSE_DELAY=-1
2. spring.datasource.username=sa
3. spring.datasource.password=sa

In this example, we've changed the connection URL and credentials.

#Baeldung

9. Conclusion

This chapter covered the configuration and implementation of the
persistence layer with Spring 4, JPA 2 and Spring Data JPA (part of the Spring
Data umbrella project), using both XML and Java based configuration.

We discussed ways to define more advanced custom queries, as well as a
configuration with the new jpa name space and transactional semantics.
The final result is a new and elegant take on data access with Spring, with
almost no actual implementation work.

The implementation of this chapter can be found in the GitHub project.

#Baeldung

https://github.com/eugenp/tutorials/tree/master/persistence-modules/spring-persistence-simple

7: Spring Data JPA @Query

#Baeldung

1. Overview

Spring Data provides many ways to define a query that we can execute. One
of these is the @Query annotation.

In this chapter, we'll demonstrate how to use the @Query annotation in
Spring Data JPA to execute both JPQL and native SQL queries.

Also, we'll show how to build a dynamic query when the @Query annotation
is not enough.

#Baeldung

2. Select Query

In order to define SQL to execute for a Spring Data repository method, we
can annotate the method with the @Query annotation — its value attribute
contains the JPQL or SQL to execute.

The @Query annotation takes precedence over named queries, which are
annotated with @NamedQuery or defined in an orm.xml file.

It's a good approach to place a query definition just above the method inside
the repository rather than inside our domain model as named queries. The
repository is responsible for persistence, so it's a better place to store these
definitions.

2.1. JPQL

By default the query definition uses JPQL.

Let's look at a simple repository method that returns active User entities
from the database:

1. @Query (“SELECT u FROM User u WHERE u.status = 17)
2. Collection<User> findAllActiveUsers () ;

2.2. Native

We can use also native SQL to define our query. All we have to do is to set
the value of the nativeQuery attribute to true and define the native SQL query
in the value attribute of the annotation

@Query (
value = “SELECT * FROM USERS u WHERE u.status = 17,
nativeQuery = true)

Collection<User> findAllActiveUsersNative() ;

S w N

#Baeldung

3. Define Order in a Query

We can pass an additional parameter of type Sort to a Spring Data method
declaration that has the @Query annotation. It'll be translated into the ORDER
BY clause that gets passed to the database.

3.1. Sorting for JPA Provided and Derived Method

For the methods we get out-of-the-box like findAll(Sort) or the ones that are
generated by parsing method signatures, we can only use object properties
to define our sort:

1. . userRepository.findAll (new Sort (Sort.Direction.ASC, “name”)) ;

Now imagine that we want to sort by the length of a name property:

1. . userRepository.findAll (new Sort (“LENGTH (name)”)) ;

When we execute the above code we'll receive an exception:

org.springframework.data.mapping
PropertyReferenceException: No Property LENGTH(hame)
found for type User!

#Baeldung

3.2. JPQL

When we use JPQL for a query definition, then Spring Data can handle
sorting without any problem — all we have to do is to add a method
parameter of type Sort:

1. @Query (value = “SELECT u FROM User u”)
2. List<User> findAllUsers (Sort sort) ;

We can call this method and pass a Sort parameter, which will order the
result by the name property of the Userobject:

1. . userRepository.findAl1Users (new Sort (“name”)) ;

And because we used @Query annotation, we can use the same method to
get the sorted list of Users by the length of their names:

1. ' userRepository.findAllUsers (JpaSort .unsafe (“LENGTH (name) ”)) ;

It's crucial that we use JpaSort.unsafe() to create a Sort object instance.
When we use:

1. § new Sort (“LENGTH (name)”) ;

then we'll receive exactly the same exception as we saw above for the
findAll() method.

When Spring Data discovers the unsafe Sort order for a method that uses
the @Query annotation, then it just appends the sort clause to the query
— it skips checking whether the property to sort by belongs to the domain
model.

#Baeldung

3.3. Native

When the @Query annotation uses native SQL, then it's not possible to
define a Sort.

If we do, we'll receive an exception:

org.springframework.data,jpa.repository.query.
InvalidJpaQueryMethodException: Cannot use native
queries with dynamic sorting and/or pagination

As the exception says, the sort isn't supported for native queries. The error
message gives us a hint that pagination will cause an exception too.
However, there is a workaround that enables pagination, and we'll cover in
the next section.

#Baeldung

4. Pagination

Pagination allows us to return just a subset of a whole result in a Page. This
is useful, for example, when navigating through several pages of data on a
web page.

Another advantage of pagination is that the amount of data sent from server
to client is minimized. By sending smaller pieces of data, we can generally
see an improvement in performance.

4.1. JPQL

Using pagination in the JPQL query definition is straightforward:

1. @Query (value = “SELECT u FROM User u ORDER BY id”)
2. Page<User> findAllUsersWithPagination (Pageable pageable) ;

We can pass a PageRequest parameter to get a page of data. Pagination is
also supported for native queries but requires a little bit of additional work.

4.2. Native

We can enable pagination for native queries by declaring an additional
attribute countQuery — this defines the SQL to execute to count the number
of rows in the whole result:

@dQuery (
value = “SELECT * FROM Users ORDER BY id”,
countQuery = “SELECT count (*) FROM Users”,

nativeQuery = true)
Page<User> findAllUsersWithPagination (Pageable pageable) ;

g w N

#Baeldung

4.3. Spring Data JPA Versions Prior to 2.0.4

The above solution for native queries works fine for Spring Data JPA version
2.0.4 and later.

Prior to that version, when we try to execute such a query we'll receive an
exception — the same one we described in the previous section on sorting.

We can overcome this by adding an additional parameter for pagination
inside our query:

@dQuery (
value = “SELECT * FROM Users ORDER BY id \n-- #pageable\n”,
countQuery = “SELECT count (*) FROM Users”,
nativeQuery = true)

Page<User> findAllUsersWithPagination (Pageable pageable) ;

O W N

In the above example, we add “\n- #pageable\n" as the placeholder for the
pagination parameter. This tells Spring Data JPA how to parse the query and
inject the pageable parameter. This solution works for the H2 database.

We've covered how to create simple select queries via JPQL and native SQL.
Next, we'll show how to define additional parameters.

#Baeldung

5. Indexed Query Parameters

There are two possible ways that we can pass method parameters to our
query. In this section, we'll cover indexed parameters.

5.1. JPQL

For indexed parameters in JPQL, Spring Data will pass method parameters
to the query in the same order they appear in the method declaration:

@Query (“SELECT u FROM User u WHERE u.status = ?1")
User findUserByStatus (Integer status);

@Query (“SELECT u FROM User u WHERE u.status = 2?1 and u.name = ?227")
User fAindUserByStatusAndName (Integer status, String name) ;

U w N

For the above queries, the status method parameter will be assigned to
the query parameter with index 1, and the name method parameter will be
assigned to the query parameter with index 2.

5.2. Native

Indexed parameters for the native queries work exactly in the same way as
for JPQL.:

@Query (
value = “SELECT * FROM Users u WHERE u.status = 21",
nativeQuery = true)

User findUserByStatusNative (Integer status);

S w N

In the next section, we'll show a different approach — passing parameters
via name.

#Baeldung

6. Named Parameters

We canalso pass method parametersto the queryusing named parameters.
We define these using the @Param annotation inside our repository method
declaration.

Each parameter annotated with @Param must have a value string matching
the corresponding JPQL or SQL query parameter name. A query with named
parameters is easier to read and is less error-prone in case the query needs
to be refactored.

6.1. JPQL

As mentioned above, we use the @Param annotation in the method
declaration to match parameters defined by name in JPQL with parameters
from the method declaration:

1. @Query (“SELECT u FROM User u WHERE u.status = :status and u.name =
2. :name”)

3. User fAindUserByStatusAndNameNamedParams (

4. @Param(“status”) Integer status,

5 . @Param(“name”) String name) ;

Note that in the above example, we defined our SQL query and method
parameters to have the same names, but it's not required, as long as the
value strings are the same;

1. @Query (“SELECT u FROM User u WHERE u.status = :status and u.name =
2. :name”)

3. User fiindUserByUserStatusAndUserName (@Param(”“status”) Integer

4. userStatus,

5 . @Param(“name”) String userName) ;

#Baeldung

6.2. Native

Forthe native query definition, there is no difference how we pass a parameter
via the name to the query in comparison to JPQL — we use the @Param

annotation:
1. @Query (value = “SELECT * FROM Users u WHERE u.status = :status and
2. u.name = :name”,
3. nativeQuery = true)
4. User fAndUserByStatusAndNameNamedParamsNative (
5. @Param(“status”) Integer status, @Param(“name”) String name) ;

#Baeldung

7. Collection Parameter

Let's consider the case when the where clause of our JPQL or SQL query
contains the IN (or NOT IN) keyword

i ' SELECT u FROM User u WHERE u.name IN :names

In this case we can define a query method which takes Collection as a
parameter:

1. @Query (value = “SELECT u FROM User u WHERE u.name IN :names”)
2. List<User> findUserByNamelList (@Param(“names”) Collection<String> names) ;

As the parameter is a Collection it can be used with List, HashSet, etc.
Next, we'll show how to modify data with the @Modifying annotation.

#Baeldung

8. Update Queries with @Modifying

We can use the @Query annotation to modify the state of the database by
also adding the @Modifying annotation to the repository method.

8.1. JPQL

The repository method that modifies the data has two difference in
comparison to the select query — it has the @Modifying annotation and, of
course, the JPQL query uses update instead of select:

1. @Modifying

2. @dQuery (“update User u set u.status = :status where u.name = :name”)
3. int updateUserSetStatusForName (@Param(“status”) Integer status,

4. @Param(“name”) String name) ;

The return value defines how many rows the execution of the query updated.
Both indexed and named parameters can be used inside update queries.

8.2. Native

We can modify the state of the database also with a native query — we just
need to add the @Modifying annotation:

@Modifying

@Query (value = “update Users u set u.status = ? where u.name = ?”,
nativeQuery = true)

int updateUserSetStatusForNameNative (Integer status, String name) ;

W N

#Baeldung

8.3. Inserts

To perform an insert operation, we have to both apply @Modifying and use a
native query since INSERT is not a part of the JPA interface:

1. @Modifying

2. @Query (value = “insert into Users (name, age, email, status) values
3. (:name, :age, :email, :status)”,

4. nativeQuery = true)

5. void insertUser (@Param(“name”) String name, @Param(“age”) Integer
6. age,

7. @Param(“status”) Integer status, @Param(“email”) String email) ;

#Baeldung

https://www.baeldung.com/jpa-insert

9. Dynamic Query

Often times, we'll encounter the need for building SQL statements based
on conditions or data sets whose values are only known at runtime. And, in
those cases, we can't just use a static query.

9.1. Example of a Dynamic Query

For example, let's imagine a situation, where we need to select all the users
whose email is LIKE one from a set defined at runtime — email1, emailz, ..,
emailn:

SELECT u FROM User u WHERE u.email LIKE ‘%emaill$%’
or u.email LIKE ‘%$email2%’

S w N

or u.email LIKE ‘%emailn%’

Since the set is dynamically constructed, we can't know at compile-time
how many LIKE clauses to add.

In this case, we can't just use the @Query annotation since we can’t provide
a static SQL statement.

Instead, by implementing a custom composite repository, we can extend
the base JpaRepository functionality and provide our own logic for building
a dynamic query. Let's take a look at how to do this.

#Baeldung

9.2. Custom Repositories and the JPA Criteria API

Luckily for us, Spring provides a way for extending the base repository
through the use of custom fragment interfaces. We can then link them
together to create a composite repository.

We'll start by creating a custom fragment interface:

1. public interface UserRepositoryCustom {
List<User> findUserByEmails (Set<String> emails);

[\

3. }

And then, we'llimplement it:

1. public class UserRepositoryCustomImpl implements UserRepositoryCustom {
2.

3. @PersistenceContext

4. private EntityManager entityManager;

5

6. @Override

7. public List<User> findUserByEmails (Set<String> emails) {

8. CriteriaBuilder cb = entityManager.getCriteriaBuilder () ;
9. CriteriaQuery<User> query = cb.createQuery (User.class);
10. Root<User> user = query.from(User.class);

11.

12. Path<String> emailPath = user.get(“email”);

13.

14. List<Predicate> predicates = new ArrayList<>();

15. for (String email : emails) {

16. predicates.add(cb.like(emailPath, email)) ;

17. }

18. query.select (user)

19. .where (cb.or (predicates.toArray (new Predicate[predicates.
20 size()])));

21.

22. return entityManager.createQuery (query)

23. .getResultList () ;

24 . }

25. }

#Baeldung

https://www.baeldung.com/spring-data-composable-repositories

As shown above, we leveraged the JPA Criteria API| to build our dynamic
query.

Also, we need to make sure to include the Impl postfix in the class
name. Spring will search the UserRepositoryCustom implementation
as UserRepositoryCustomimpl. Since fragments are not repositories
by themselves, Spring relies on this mechanism to find the fragment
implementation.

9.3. Extending the Existing Repository

Notice that all the query methods from section 2 - section 7 are in the
UserRepository. So now, we'll integrate our fragment by extending the new
interface in the UserRepository:.

public interface UserRepository extends JpaRepository<User,
Integer>, UserRepositoryCustom {
// query methods from section 2 - section 7

S W N

}

9.4. Using the Repository
And finally, we can call our dynamic query method:

Set<String> emails = new HashSet<>();
// filling the set with any number of items

S W N

userRepository.findUserByEmails (emails) ;

We've successfully created a composite repository and called our custom
method.

#Baeldung

https://www.baeldung.com/hibernate-criteria-queries

10. Conclusion

In this chapter, we covered several ways of defining queries in Spring Data
JPA repository methods using the @Queryannotation.

Also, we learned how to implement a custom repository and create a
dynamic query.

As always, the complete code examples used in this chapter are available
over on Github.

#Baeldung

https://github.com/eugenp/tutorials/tree/master/persistence-modules/spring-persistence-simple

8: Spring JDBC

#Baeldung

1. Overview

In this chapter, we'll go through practical use cases of the Spring JDBC
module.

All the classes in Spring JDBC are divided into four separate packages:

+ core - the core functionality of JDBC. Some of the important classes under
this package include JdbcTemplate,SimpleJdbcinsert, SimpleJdbcCall and
NamedParameterJdbcTemplate.

- datasource - utility classes to access a datasource. It also has various
datasource implementations for testing JDBC code outside the Java EE
container.

- object - DB access in an object-oriented manner. It allows executing
queries and returning the results as a business object. It also maps the
query results between the columns and properties of business objects.

« support - support classes for classes under core and object packages.
E.g. provides the SQLExceptiontranslation functionality.

#Baeldung

2. Configuration

To begin with, let's start with some simple configuration of the data source
(we'll use a MySQL database for this example):

O ~J O U1 i W N -

e e el e
Ui W o -

@Configuration
@ComponentScan (“com.baeldung. jdbc”)
public class SpringJdbcConfig ({
@Bean
public DataSource mysglDataSource () {
DriverManagerDataSource dataSource = new
DriverManagerDataSource () ;
dataSource.setDriverClassName (“com.mysgl.jdbc.Driver”) ;
dataSource.setUrl (“jdbc:mysqgl://localhost:3306/springjdbc”) ;
dataSource.setUsername (“guest_user”) ;
dataSource.setPassword (“guest_password”) ;

return dataSource;

Alternatively, we can also make good use of an embedded database for
development or testing - here is a quick configuration that creates an
instance of H2 embedded database and pre-populates it with simple SQL
scripts:

~ o U W N

@Bean
public DataSource dataSource () {
return new EmbeddedDatabaseBuilder ()
.setType (EmbeddedDatabaseType.H2)
.addScript (“classpath:jdbc/schema.sgl”)
.addScript (“classpath:jdbc/test-data.sgl”) .build() ;

#Baeldung

Finally - the same can, of course, be done using XML configuring for the

datasource:

<property
<property
springjdbc” />
<property
<property
</bean>

O ~J o Ul W

#Baeldung

<bean id="dataSource” class="org.apache.commons.dbcp.BasicDataSource”
destroy-method="close”>

name="driverClassName” value="com.mysql.jdbc.Driver”/>
name="url” value="jdbc:mysqgl://localhost:3306/

name="username” value="guest_user”/>
name="password” value="guest_password”/>

3. The JdbcTemplate and running queries

3.1. Basic Queries

The JDBC template is the main API through which we'll access most of the
functionality that we're interested in:

creation and closing of connections
executing statements and stored procedure calls
iterating over the ResultSet and returning results

Firstly, let's start with a simple example to see what the JdbcTemplate can
do:

1. int result = jdbcTemplate.queryForObject (
2. “SELECT COUNT (*) FROM EMPLOYEE”, Integer.class);

and also here's a simple INSERT:

1. public int addEmplyee(int id) {

2. return jdbcTemplate.update (

3. #INSERT INTO EMPLOYEE VALUES (?, ?, 2, 2)", 5, “Bill”,
4. “Gates”, *“USA");

5.

}

Notice the standard syntax of providing parameters — using the ?" character.
Next - let's look at an alternative to this syntax.

#Baeldung

3.2. Queries with Named Parameters

To get support for named parameters, we'll use the other JDBC template
provided by the framework - the NamedParameterJdbcTemplate.

Additionally, this wraps the JbdcTemplate and provides an alternative to
the traditional syntax using “?" to specify parameters. Under the hood, it
substitutes the named parameters to JDBC “?" placeholder and delegates
to the wrapped JDCTemplate to execute the queries:

SglParameterSource namedParameters = new MapSglParameterSource () .
addvalue (“id”, 1);
return namedParameterJdbcTemplate.queryForObject (

“SELECT FIRST NAME FROM EMPLOYEE WHERE ID = :id"”,
namedParameters, String.class);

s w N

Notice how we are using the MapSqlParameterSource to provide the values
for the named parameters.

For instance, let's look at below example that uses properties from a bean
to determine the named parameters:

Employee employee = new Employee() ;
employee.setFirstName (“James”) ;

String SELECT_BY_ID = “SELECT COUNT(*) FROM EMPLOYEE WHERE FIRST_
NAME = :firstName”;

SglParameterSource namedParameters = new
BeanPropertySglParameterSource (employee) ;

return namedParameterJdbcTemplate.queryForObject (SELECT_BY_ID,
0. namedParameters, Integer.class);

= O 00 ~J o Ul i W DN

Note how we're now making use of the BeanPropertySqlParameterSource
implementations instead of specifying the named parameters manually
like before.

#Baeldung

3.3. Mapping Query Results to Java Object

Another very useful feature is the ability to map query results to Java objects
- by implementing the RowMapper interface.

For example - for every row returned by the query, Spring uses the row
mapper to populate the java bean:

1.

2. @Override

3.

4. SQLException {

5. Employee
6.

7. employee.
8. employee.
9. employee.
10. employee.
11.

12.

13. }

14. }

public class EmployeeRowMapper implements RowMapper<Employee> {

public Employee mapRow (ResultSet rs, int rowNum) throws

employee = new Employee () ;

setId(rs.getInt (“ID")) ;

setFirstName (rs.getString (“FIRST NAME”)) ;
setLastName (rs.getString (“LAST_NAME”)) ;
setAddress (rs.getString (“ADDRESS”)) ;

return emplovee;

Subsequently, we can now pass the row mapper to the query APl and get
fully populated Java objects:

1. String query = “SELECT * FROM EMPLOYEE WHERE ID = ?2”";
2. List<Employee> employees = jdbcTemplate.queryForObject (
3. query, new Object[] { id }, new EmployeeRowMapper()) ;

#Baeldung

4. Exception Translation

Spring comes with its own data exception hierarchy out of the box - with
DataAccessException as the root exception - and it translates all underlying
raw exceptions to it.

And so we keep our sanity by not having to handle low-level persistence
exceptions and benefit from the fact that Spring wraps the low-level
exceptions in DataAccessException or one of its sub-classes.

Also, this keeps the exception handling mechanism independent of the
underlying database we are using.

Besides, the default SQLErrorCodeSQLExceptionTranslator, we can also
provide our own implementation of SQLExceptionTranslator.

Here's a quick example of a custom implementation, customizing the error
message when there is a duplicate key violation, which results in error code
23505 when using H2:

1. public class CustomSQLErrorCodeTranslator extends

2. SQLErrorCodeSQLExceptionTranslator {

3. @Override

4. protected DataAccessException customTranslate

5. (String task, String sqgl, SQLException sqglException) {
6. if (sglException.getErrorCode() == 23505) {

7. return new DuplicateKeyException (

3. “Custom Exception translator - Integrity constraint
9. violation.”, sglException);

10. }

11. return null;

12. }

13. }

Tousethiscustomexceptiontranslator,we needtopassittothe JdbcTemplate
by calling setExceptionTranslator() method:

1. CustomSQLErrorCodeTranslator customSQLErrorCodeTranslator = new
2. CustomSQLErrorCodeTranslator () ;
3. jdbcTemplate.setExceptionTranslator (customSQLErrorCodeTranslator) ;

#Baeldung

https://www.h2database.com/javadoc/org/h2/api/ErrorCode.html#c23505
https://www.h2database.com/javadoc/org/h2/api/ErrorCode.html#c23505

5. JDBC operations using SimpleJdbc classes

SimpleJdbc classes provide an easy way to configure and execute SQL
statements. These classes use database metadata to build basic queries.
SimpleJdbcinsert and SimpleJdbcCall classes provide an easier way to
execute insert and stored procedure calls.

5.1. SimpleJdbcinsert

Let's take a look at executing simple insert statements with minimal
configuration.

The INSERT statement is generated based on the configuration of
SimpleJdbcinsert and all we need is to provide the Table hame, Column
names and values.

First, let's create a SimpleJdbcinsert:

1. SimpleddbcInsert simpleJddbcInsert = new SimpleJdbcInsert (dataSource) .
2. withTableName (“EMPLOYEE”) ;

Next, let's provide the Column names and values, and execute the
operation

public int addEmplyee (Employee emp) {
Map<String, Object> parameters = new HashMap<String, Object>();
parameters.put (“ID”, emp.getId()) ;
parameters.put (“FIRST _NAME”, emp.getFirstName());
parameters.put (“LAST_NAME”, emp.getLastName()) ;
parameters.put (“ADDRESS”, emp.getAddress());

return simpleJdbcInsert.execute (parameters) ;

O 0 ~J o0 Ul ix W DN

#Baeldung

Further, to allow the database to generate the primary key, we can make
use of the executeAndReturnKey() API; we'll also need to configure the actual
column that is auto-generated:

SimpleddbcInsert simpleddbcInsert = new SimpleddbcInsert (dataSource)
.withTableName (“EMPLOYEE")

.usingGeneratedKeyColumns (“ID") ;

Number id = simpleJddbcInsert.executeAndReturnKey (parameters) ;
System.out.println (“Generated id - “ + id.longValue());

~ o Ul W N

Finally — we can also pass in this data by using the
BeanPropertySqlParameterSource and MapSqlParameterSource.

5.2. Stored Procedures with SimpleJdbcCall

Also, let's take a look at executing stored procedures - we'll make use of the
SimpleJdbcCall abstraction:

1. SimpleddbcCall simpleddbcCall = new SimpleddbcCall (dataSource)
2. .withProcedureName (“READ_EMPLOYEE”) ;

3.

4. public Employee getEmployeeUsingSimpleJddbcCall (int id) {
5. SglParameterSource in = new MapSglParameterSource () .
6. addvalue (“in_id"”, id);

7. Map<String, Object> out = simpleJddbcCall.execute(in);
8.

9. Employee emp = new Emplovee() ;

10. emp.setFirstName ((String) out.get (“FIRST _NAME”)) ;

11. emp.setLastName ((String) out.get (“LAST_NAME”)) ;

12.

13. return emp;

14. }

#Baeldung

6. Batch operations

Anothersimple use case - batching multiple operationstogether.

6.1. Basic batch operations using JdbcTemplate

Using JdbcTemplate, batch operations can be executed viathe batchUpdate()

API.

The interesting part here is the concise but highly useful
BatchPreparedStatementSetter implementation:

1. public int[] batchUpdateUsingJddbcTemplate (List<Employee> employees)
2. return jdbcTemplate.batchUpdate (“INSERT INTO EMPLOYEE VALUES (?, ?,
3. 2,)",

4. new BatchPreparedStatementSetter () {

5. @Override

6. public void setValues (PreparedStatement ps, int i) throws
7. SQLException {

8. ps.setInt (1, employees.get (i) .getId());

9. ps.setString (2, employees.get (1) .getFirstName());

10. ps.setString (3, employees.get (1) .getLastName());

11. ps.setString (4, employees.get (1) .getAddress();

12. }

13. @Override

14. public int getBatchSize() {

15. return 50;

16. }

17. 5) 5

18. }

#Baeldung

We also have the option of batching operations with the
NamedParameterJdbcTemplate - batchUpdate() API.

This APl is simpler than the previous one - no need to implement any extra
interfaces to set the parameters, as it has an internal prepared statement
setter to set the parameter values.

Instead, the parameter values can be passed to the batchUpdate() method
as an array of SqlParameterSource.

SglParameterSource[] batch = SglParameterSourceUtils.

createBatch (employees.toArray ()) ;

int[] updateCounts = namedParameterJdbcTemplate.batchUpdate (
“INSERT INTO EMPLOYEE VALUES (:1d, :firstName, :lastName,

:address)”, batch);

return updateCounts;

O U1 i W N

#Baeldung

7- Spring JDBC with Spring Boot

Spring Boot provides a starter spring-boot-starter-jdbc for using JDBC with
relational databases. As with every Spring Boot starter, this one also helps
us in getting our application up and running quickly.

7.1. Maven Dependency

We'll need the spring-boot-starter-jdbc dependency as the primary one as
well as a dependency for the database that we'll be using. In our case, this
is MySQL.:

<dependency>
<groupld>org.springframework.boot</groupIld>
<artifactIdsspring-boot-starter-jdbc</artifactId>

</dependency>

<dependency>
<groupIld>mysqgl</groupId>
<artifactIdsmysqgl-connector-java</artifactId>
<scope>runtime</scope>

</dependency>

O 0 ~J O Ul ix W DN

7.2. Configuration

Spring Boot configures the data source automatically for us. We just need
to provide the properties in a propertiesfile:

1. spring.datasource.url=jdbc:mysqgl://localhost:3306/springjdbc
2. spring.datasource.username=guest_user
3. spring.datasource.password=guest_password

That's it, just by doing these configurations only, our application is up and
running and we can use it for other database operations.

The explicit configuration we saw in the previous section for a standard
Spring application is now included as part of Spring Boot auto-configuration.

#Baeldung

8. Conclusion

In this chapter, we looked at the JDBC abstraction in the Spring Framework,
covering the various capabilities provided by Spring JDBC with practical
examples.

Also, we looked into how we can quickly get started with Spring JDBC using
a Spring Boot JDBC starter.

The source code for the examples is available over on GitHub.

#Baeldung

https://github.com/eugenp/tutorials/tree/master/persistence-modules/spring-persistence-simple

