
Robert Liguori &
 Patricia Liguori

Java
Pocket Guide
INSTANT HELP FOR JAVA PROGRAMMERS

4th Edition

Covers Java 8 & 9

Robert Liguori and Patricia Liguori

Java Pocket Guide
FOURTH EDITION

978-1-491-93869-0

[LSI]

Java Pocket Guide
by Robert Liguori and Patricia Liguori

Copyright ©2017 Gliesian, LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebasto‐
pol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo‐
tional use. Online editions are also available for most titles (http://oreilly.com/
safari). For more information, contact our corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Foster
Production Editor: Justin Billing
Copyeditor: Amanda Kersey
Proofreader: Marta Justak
Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2017: Fourth Edition

Revision History for the Fourth Edition
2017-08-25: First Release
2017-11-10: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491938690 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java Pocket
Guide, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the authors have used good faith efforts to ensure
that the information and instructions contained in this work are accurate, the
publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained
in this work is at your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses or the intellec‐
tual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/safari
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491938690

This book is dedicated to our beautiful daughter, Ashleigh.

Table of Contents

Preface xiii

Part I. Language

Chapter 1: Naming Conventions 3
Acronyms 3
Annotation Names 3
Class Names 4
Constant Names 4
Enumeration Names 4
Generic Type Parameter Names 5
Instance and Static Variable Names 5
Interface Names 5
Method Names 5
Package Names 6
Module Names 6
Parameter and Local Variable Names 6

Chapter 2: Lexical Elements 9

v

Unicode and ASCII 9
Compact Strings 11
Comments 12
Keywords 13
Identifiers 14
Separators 14
Operators 15
Literals 17
Escape Sequences 20
Unicode Currency Symbols 21

Chapter 3: Fundamental Types 23
Primitive Types 23
Literals for Primitive Types 24
Floating-Point Entities 26
Numeric Promotion of Primitive Types 28
Wrapper Classes 30
Autoboxing and Unboxing 31

Chapter 4: Reference Types 35
Comparing Reference Types to Primitive Types 36
Default Values 36
Conversion of Reference Types 38
Converting Between Primitives and Reference Types 40
Passing Reference Types into Methods 40
Comparing Reference Types 41
Copying Reference Types 44
Memory Allocation and Garbage Collection of Reference
Types 46

Chapter 5: Object-Oriented Programming 47
Classes and Objects 47

vi | Table of Contents

Variable-Length Argument Lists 54
Abstract Classes and Abstract Methods 55
Static Data Members, Static Methods, Static Constants, and
Static Initializers 56
Interfaces 58
Enumerations 59
Annotation Types 59
Functional Interfaces 62

Chapter 6: Statements and Blocks 63
Expression Statements 63
Empty Statement 64
Blocks 64
Conditional Statements 64
Iteration Statements 66
Transfer of Control 68
Synchronized Statement 70
Assert Statement 70
Exception Handling Statements 71

Chapter 7: Exception Handling 73
The Exception Hierarchy 73
Checked/Unchecked Exceptions and Errors 74
Common Checked/Unchecked Exceptions and Errors 75
Exception Handling Keywords 78
The Exception Handling Process 83
Defining Your Own Exception Class 83
Printing Information About Exceptions 84

Chapter 8: Java Modifiers 87
Access Modifiers 88
Other (Nonaccess) Modifiers 89

Table of Contents | vii

Modifiers Encoding 90

Part II. Platform

Chapter 9: Java Platform, Standard Edition 95
Common Java SE API Libraries 95

Chapter 10: Development Basics 109
Java Runtime Environment 109
Java Development Kit 109
Java Program Structure 110
Command-Line Tools 112
Classpath 118

Chapter 11: Memory Management 119
Garbage Collectors 119
Memory Management Tools 121
Command-Line Options 122
Resizing the JVM Heap 125
Metaspace 125
Interfacing with the GC 126

Chapter 12: Basic Input and Output 129
Standard Streams in, out, and err 129
Class Hierarchy for Basic Input and Output 130
File Reading and Writing 131
Socket Reading and Writing 133
Serialization 135
Zipping and Unzipping Files 136

Chapter 13: New I/O API (NIO.2) 139
The Path Interface 139

viii | Table of Contents

The Files Class 140
Additional Features 141

Chapter 14: Concurrency 143
Creating Threads 143
Thread States 145
Thread Priorities 145
Common Methods 145
Synchronization 147
Concurrent Utilities 148

Chapter 15: Java Collections Framework 153
The Collection Interface 153
Implementations 154
Collection Framework Methods 155
Collections Class Algorithms 155
Algorithm Efficiencies 156
Comparator Functional Interface 158
Convenience Factory Methods 161

Chapter 16: Generics Framework 163
Generic Classes and Interfaces 163
Constructors with Generics 165
Substitution Principle 165
Type Parameters, Wildcards, and Bounds 166
The Get and Put Principle 167
Generic Specialization 168
Generic Methods in Raw Types 169

Chapter 17: The Java Scripting API 171
Scripting Languages 171
Script Engine Implementations 171

Table of Contents | ix

Setting Up Scripting Languages and Engines 174

Chapter 18: Date and Time API 179
Legacy Interoperability 180
Regional Calendars 180
ISO Calendar 181

Chapter 19: Lambda Expressions 189
λEs Basics 189
Specific-Purpose Functional Interfaces 192
General-Purpose Functional Interfaces 193
Resources for λEs 195

Chapter 20: JShell: the Java Shell 197
Getting Started 197
Snippets 198
Using JShell 199
JShell Features 207
Summary of JShell Commands 212

Chapter 21: Java Module System 215
Project Jigsaw 215
Java Modules 216
Compiling Modules 218
Modular JDK 220
jdeps 222
Defining a Module 224
Exporting a Package 224
Declaring Dependencies 225
Transitive Dependencies 226
Defining Service Providers 226

x | Table of Contents

jlink 229

Part III. Appendixes

A. Fluent APIs 233

B. Third-Party Tools 235

C. UML Basics 245

Index 255

Table of Contents | xi

Preface

Designed to be your companion, this Pocket Guide provides a
quick reference to the standard features of the Java program‐
ming language and its platform.

This Pocket Guide provides you with the information you will
need while developing or debugging your Java programs,
including helpful programming examples, tables, figures, and
lists.

Java coverage in this book is representative through Java SE 9
incorporating a subset of the 80+ JDK Enhancement Proposals
(JEPs) slated for the release. This Java coverage includes
improvements to the generage language as well as coverage of
the new Java Shell and the new Java Module System. This book
supercedes the three previous versions: Java Pocket Guide, Java
7 Pocket Guide, and Java 8 Pocket Guide.

For uniformity and enhanced interest, the majority of the code
examples in this fourth edition of the Java Pocket Guide have
been updated from code segments of the Gliesians Web Appli‐
cation. At the time of this writing, the primary focus of the
Gliesians Web Application is to provide free utilities relative to
genealogy and small unmanned aerial systems.

The material in this book also provides support in preparing
for the Oracle Certified Programmer exams. If you are consid‐

xiii

http://gliesians.com/index-genealogy.faces
http://gliesians.com/index-genealogy.faces

ering pursuing one of the Java certifications, you may also wish
to acquire the OCA Java SE 8 Programmer I Study Guide (Exam
1Z0-808) by Edward Finegan and Robert Liguori (McGraw-
Hill Osborne Media, 2015).

Book Structure
This book is broken into three parts: Part I details the Java pro‐
gramming language as derived from the Java Language Specifi‐
cation (JLS) and JEPs. Part II details Java platform components
and related topics. Part III is the appendixes covering support‐
ing technologies.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables, state‐
ments, and keywords.

Constant width bold

Shows commands or other text that should be typed liter‐
ally by the user.

Constant width italic

Shows text that should be replaced with user-supplied val‐
ues or by values determined by context.

TIP

This element signifies a tip, suggestion, or general note.

xiv | Preface

WARNING

This element indicates a warning or caution.

O’Reilly Safari

Safari (formerly Safari Books
Online) is a membership-based
training and reference platform for

enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos,
Learning Paths, interactive tutorials, and curated playlists from
over 250 publishers, including O’Reilly Media, Harvard Busi‐
ness Review, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Adobe,
Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apr‐
ess, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Preface | xv

http://oreilly.com/safari
http://oreilly.com/safari

We have a web page for this book, where we list errata, exam‐
ples, and any additional information. You can access this page
at http://bit.ly/java-pocket-guide-4e.

To comment or ask technical questions about this book, send
email to bookquestions@oreilly.com.

For more information about our books, courses, conferences,
and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We extend a special thank you to all the folks at O’Reilly.
Appreciation of support also goes out to Greg Grockenberger
and Ryan Cuprak, who wrote for the JShell and Java Module
System chapters, respectively. Ryan also performed the techni‐
cal review of the book, which we appreciate.

We would also like to thank again all of those who participated
with the original Java Pocket Guide, the Java 7 Pocket Guide,
and the Java 8 Pocket Guide.

Additional appreciation to people not related to this book
project: Don Anderson, David Chong, Keith Cianfrani, Jay
Clark, Steve Cullen, Ed DiCampli, Phil Greco, Scott Houck,
Cliff Johnson, Juan Keller, Fran Kelly, Mike Krauss, Mike Lazlo,
Phil Maloney, Lana Manovych, Matt Mariani, Chris Martino,
Roe Morande, Sohrob Mottaghi, Brendan Nugent, Keith Sma‐
niotto, Tom Tessitore, Lacey Thompson, Tyler Travis, Justin
Trulear, and Jack Wombough.

We would finally like to thank all of our family members for
always being there for us.

xvi | Preface

http://bit.ly/java-pocket-guide-4e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://shop.oreilly.com/product/0636920027829.do
http://shop.oreilly.com/product/0636920033318.do

PART I
Language

CHAPTER 1

Naming Conventions

Naming conventions are used to make Java programs more
readable. It is important to use meaningful and unambiguous
names comprised of Java letters. The following examples are
from various Java sources.

Acronyms
When using acronyms in names, only the first letter of the
acronym should be uppercase and only when uppercase is
appropriate:

// e.g., DNA is represented as Dna
public class GliesianDnaProvider {...}

// e.g., Most Recent Common Ancestor (MRCA) is Mrca
public class MrcaCalculator {...}

Annotation Names
Annotation names have been presented several ways in the Java
SE API for predefined annotation types, [adjective|verb]
[noun]:

@Documented
@Retention(RetentionPolicy.RUNTIME)

3

@Target(ElementType.TYPE)
public @interface FunctionalInterface {}

Class Names
Class names should be nouns, as they represent “things” or
“objects.” They should be mixed case (camel case) with only the
first letter of each word capitalized, as in the following:

public class AirDensityCalculator {...}

Constant Names
Constant names should be all uppercase letters, and multiple
words should be separated by underscores:

private static final double KELVIN = 273.16;
private static final double DRY_AIR_GAS_CONSTANT =
287.058;
private static final double HUMID_AIR_GAS_CONSTANT
= 461.4964;

Enumeration Names
Enumeration names should follow the conventions of class
names. The enumeration set of objects (choices) should be all
uppercase letters:

public enum MeasurementSystem {
 METRIC, UNITED_STATES_CUSTOMARY, IMPERIAL
}

public enum Study {
 ALL, NON_ENDOGAMOUS, SEMI_ENDOGAMOUS, ENDOGAMOUS
}

public enum RelationshipMatchCategory {
 IMMEDIATE, CLOSE, DISTANT, SPECULATIVE
}

4 | Chapter 1: Naming Conventions

Generic Type Parameter Names
Generic type parameter names should be uppercase single let‐
ters. The letter T for type is typically recommended.

The Collections Framework makes extensive use of generics. E
is used for collection elements, S is used for service loaders, and
K and V are used for map keys and values:

public interface Map <K,V> {
 V put(K key, V value);
}

Instance and Static Variable Names
Instance and static variable names should be nouns and should
follow the same capitalization convention as method names:

private String prediction;

Interface Names
Interface names should be adjectives. They should end with
“able” or “ible” whenever the interface provides a capability;
otherwise, they should be nouns. Interface names follow the
same capitalization convention as class names:

public interface Relatable {...}
public interface SystemPanel {...}

Method Names
Method names should contain a verb, as they are used to make
an object take action. They should be mixed case, beginning
with a lowercase letter, and the first letter of each subsequent
word should be capitalized. Adjectives and nouns may be
included in method names:

public void clear() {...} // verb
public void toString() // preposition and noun
public double getDryAirDensity() {...} // verb,

Generic Type Parameter Names | 5

adjective and noun
public double getHumidAirDensity() {...} // verb,
adjective and noun

Package Names
Package names should be unique and consist of lowercase let‐
ters. Underscores may be used if necessary:

// Gliesian.com (company), JAirDensity (software)
package com.gliesian.jairdensity;

// Gliesian.com (company), FOREX Calculator (soft
ware), Utilties
package com.gliesian.forex_calculator.utils;

Publicly available packages should be the reversed internet
domain name of the organization, beginning with a single-
word top-level domain name (e.g., com, net, org, or edu), fol‐
lowed by the name of the organization and the project or divi‐
sion. (Internal packages are typically named according to the
project.)

Package names that begin with java and javax are restricted
and can be used only to provide conforming implementations
to the Java class libraries.

Module Names
Module names should be the reversed internet domain name
with the same guidelines as package names:

module com.gliesian.utils {
}

Parameter and Local Variable Names
Parameter and local variable names should be descriptive low‐
ercase single words, acronyms, or abbreviations. If multiple
words are necessary, they should follow the same capitalization
convention as method names:

6 | Chapter 1: Naming Conventions

public void printPredictions (ArrayList predic
tions) {
 int counter = 1;
 for (String prediction : predictions) {
 System.out.println("Predictions #" + counter++
+ ": " + prediction);
 }
}

Temporary variable names may be single letters such as i, j, k,
m, and n for integers and c, d, and e for characters. Temporary
and looping variables may be one-character names as shown in
Table 1-1.

Table 1-1. Temporary and looping variables

One-character name Type

b Byte

c Character

d Double

e Exception

f Float

i, j, or k Integer

l Long

o Object

s String

Parameter and Local Variable Names | 7

CHAPTER 2

Lexical Elements

Java source code consists of words or symbols called lexical ele‐
ments, or tokens. Java lexical elements include line terminators,
whitespace, comments, keywords, identifiers, separators, oper‐
ators, and literals. The words or symbols in the Java program‐
ming language are comprised of the Unicode character set.

Unicode and ASCII
Maintained by the Unicode Consortium standards organiza‐
tion, Unicode is the universal character set with the first 128
characters the same as those in the American Standard Code
for Information Interchange (ASCII) character set. Unicode
provides a unique number for each character, usable across all
platforms, programs, and languages. Java SE 9 supports Uni‐
code 8.0.0. You can find more information about the Unicode
Standard in the online manual. Java SE 8 supports Unicode
6.2.0.

9

http://www.unicode.org/versions/Unicode8.0.0/

TIP

Java comments, identifiers, and string literals are not limi‐
ted to ASCII characters. All other Java input elements are
formed from ASCII characters.

The Unicode set version used by a specified version of the Java
platform is documented in the Character class of the Java API.
The Unicode Character Code Chart for scripts, symbols, and
punctuation can be accessed at http://unicode.org/charts/.

Printable ASCII Characters
ASCII reserves code 32 (spaces) and codes 33–126 (letters, dig‐
its, punctuation marks, and a few others) for printable charac‐
ters. Table 2-1 contains the decimal values followed by the cor‐
responding ASCII characters for these codes.

Table 2-1. Printable ASCII characters

32 SP 48 0 64 @ 80 P 96 ' 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 " 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 C 115 S

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ' 55 7 71 G 87 W 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 x

41) 57 9 73 I 89 Y 105 i 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

10 | Chapter 2: Lexical Elements

http://unicode.org/charts/

45 - 61 = 77 M 93] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o

Nonprintable ASCII Characters
ASCII reserves decimal numbers 0–31 and 127 for control char‐
acters. Table 2-2 contains the decimal values followed by the
corresponding ASCII characters for these codes.

Table 2-2. Nonprintable ASCII characters

00 NUL 07 BEL 14 SO 21 NAK 28 FS

01 SOH 08 BS 15 SI 22 SYN 29 GS

02 STX 09 HT 16 DLE 23 ETB 30 RS

03 ETX 10 NL 17 DC1 24 CAN 31 US

04 EOT 11 VT 18 DC2 25 EM 127 DEL

05 ENQ 12 NP 19 DC3 26 SUB

06 ACK 13 CR 20 DC4 27 ESC

TIP

ASCII 10 is a newline or linefeed. ASCII 13 is a carriage
return.

Compact Strings
The compact strings feature is an optimization that allows for a
more space-efficient internal representation of strings. It is
enabled by default in Java 9. This feature may be disabled by
using -XX:-CompactStrings, if you are mainly using UTF-16
strings.

Compact Strings | 11

Comments
A single-line comment begins with two forward slashes and
ends immediately before the line terminator character:

// Default child's birth year
private Integer childsBirthYear = 1950;

A multiline comment begins with a forward slash immediately
followed by an asterisk and ends with an asterisk immediately
followed by a forward slash. The single asterisks in between
provide a nice formatting convention; they are typically used,
but are not required:

 /*
 * The average age of a woman giving birth in the
 * US in 2001 was 24.9 years old. Therefore,
 * we'll use the value of 25 years old as our
 * default.
 */
 private Integer mothersAgeGivingBirth = 25;

A Javadoc comment is processed by the Javadoc tool to gener‐
ate API documentation in HTML format. A Javadoc comment
must begin with a forward slash, immediately followed by two
asterisks, and end with an asterisk immediately followed by a
forward slash (Oracle’s documentation page provides more
information on the Javadoc tool):

/**
 * Genitor birthdate predictor
 *
 * @author Robert J. Liguori
 * @author Gliesian, LLC.
 * @version 0.1.1 09-02-16
 * @since 0.1.0 09-01-16
 */
public class GenitorBirthdatePredictorBean {...}

In Java, comments cannot be nested:

/* This is /* not permissible */ in Java */

12 | Chapter 2: Lexical Elements

http://bit.ly/16mhGeT

Keywords
Table 2-3 contains the Java 9 keywords. Two of these, the const
and goto keywords, are reserved but are not used by the Java
language.

TIP

Java keywords cannot be used as identifiers in a Java
program.

Table 2-3. Java keywords

abstract enum module synchronized

assert exports native this

boolean extends new throw

break final package throws

byte finally private to

case float protected transient

catch for provides try

char goto public uses

class if requires void

const implements return volatile

continue import short while

default instanceof static with

do int strictfp _

double interface super

else long switch

Keywords | 13

TIP

Sometimes true, false, and null literals are mistaken
for keywords. They are not keywords; they are reserved lit‐
erals.

Identifiers
A Java identifier is the name that a programmer gives to a class,
method, variable, and so on.

Identifiers cannot have the same Unicode character sequence as
any keyword, boolean, or null literal.

Java identifiers are made up of Java letters. A Java letter is a
character for which Character.isJavaIdentifierStart(int)

returns true. Java letters from the ASCII character set are limi‐
ted to the dollar sign ($), upper- and lowercase letters, and the
underscore symbol (_). Note that as of Java 9, (_) is a keyword
and may not be used alone as an identifier.

Digits are also allowed in identifiers after the first character:

// Valid identifier examples
class GedcomBean {
 private File uploadedFile; // uppercase and
 // lowercase
 private File _file; // leading underscore
 private File $file; // leading $
 private File file1; // non-leading digit
}

See Chapter 1 for naming guidelines.

Separators
Several ASCII characters delimit program parts and are used as
separators. (), { }, [], and < > are used in pairs:

() { } [] < > :: : ; , . ->

14 | Chapter 2: Lexical Elements

Table 2-4 cites nomenclature that can be used to reference the
different types of bracket separators. The first names men‐
tioned for each bracket are what is typically seen in the Java
Language Specification.

Table 2-4. Java bracket separators

Brackets Nomenclature Usage

() Parentheses, curved brackets, oval
brackets, and round brackets

Adjusts precedence in
arithmetic expressions,
encloses cast types, and
surrounds set of method
arguments

{ } Braces, curly brackets, fancy
brackets, squiggly brackets, and
squirrelly brackets

Surrounds blocks of code and
supports arrays

[] Box brackets, closed brackets, and
square brackets

Supports and initializes arrays

< > Angle brackets, diamond brackets,
and chevrons

Encloses generics

Guillemet characters, a.k.a. angle quotes, are used to specify
stereotypes in UML << >>.

Operators
Operators perform operations on one, two, or three operands
and return a result. Operator types in Java include assignment,
arithmetic, comparison, bitwise, increment/decrement, and
class/object. Table 2-5 contains the Java operators listed in
precedence order (those with the highest precedence at the top
of the table), along with a brief description of the operators and
their associativity (left to right or right to left).

Operators | 15

Table 2-5. Java operators

Precedence Operator Description Association

1 ++,-- Postincrement, postdecrement R → L

2 ++,-- Preincrement, predecrement R → L

+,- Unary plus, unary minus R → L

~ Bitwise complement R → L

! Boolean NOT R → L

3 new Create object R → L

(type) Type cast R → L

4 *,/,% Multiplication, division,
remainder

L → R

5 +,- Addition, subtraction L → R

+ String concatenation L → R

6 <<, >>, >>> Left shift, right shift, unsigned
right shift

L → R

7 <, <=, >, >= Less than, less than or equal to,
greater than, greater than or
equal to

L → R

instanceof Type comparison L → R

8 ==, != Value equality and inequality L → R

==, != Reference equality and
inequality

L → R

9 & Boolean AND L → R

& Bitwise AND L → R

10 ^ Boolean exclusive OR (XOR) L → R

^ Bitwise exclusive OR (XOR) L → R

11 | Boolean inclusive OR L → R

| Bitwise inclusive OR L → R

16 | Chapter 2: Lexical Elements

Precedence Operator Description Association

12 && Logical AND (a.k.a. conditional
AND)

L → R

13 || Logical OR (a.k.a. conditional
OR)

L → R

14 ?: Conditional ternary operator L → R

15 =, +=, -=,
*=, /=, %=, &=,
^=, |=, <<=,
>> =, >>>=

Assignment operators R → L

Literals
Literals are source code representation of values. As of Java SE
7, underscores are allowed in numeric literals to enhance read‐
ability of the code. The underscores may only be placed
between individual numbers and are ignored at runtime.

For more information on primitive type literals, see “Literals
for Primitive Types” on page 24 in Chapter 3.

Boolean Literals
Boolean literals are expressed as either true or false:

boolean isFullRelation = true;
boolean isHalfRelation = Boolean.val
ueOf(false); // unboxed
boolean isEndogamyPresent = false;

Character Literals
A character literal is either a single character or an escape
sequence contained within single quotes. Line terminators are
not allowed:

char charValue1 = 'a';
// An apostrophe
Character charValue2 = Character.valueOf('\'');

Literals | 17

Integer Literals
Integer types (byte, short, int, and long) can be expressed in
decimal, hexadecimal, octal, and binary. By default, integer lit‐
erals are of type int:

int intValue1 = 34567, intValue2 = 1_000_000;

Decimal integers contain any number of ASCII digits, zero
through nine, and represent positive numbers:

Integer integerValue1 = Integer.valueOf(100);

Prefixing the decimal with the unary negation operator can
form a negative decimal:

public static final int INT_VALUE = -200;

Hexadecimal literals begin with 0x or 0X, followed by the ASCII
digits 0 through 9 and the letters a through f (or A through F).
Java is not case-sensitive when it comes to hexadecimal literals.

Hex numbers can represent positive and negative integers and
zero:

int intValue3 = 0X64; // 100 decimal from hex

Octal literals begin with a zero followed by one or more ASCII
digits zero through seven:

int intValue4 = 0144; // 100 decimal from octal

Binary literals are expressed using the prefix 0b or 0B followed
by zeros and ones:

char msgValue1 = 0b01001111; // O
char msgValue2 = 0B01001011; // K
char msgValue3 = 0B0010_0001; // !

To define an integer as type long, suffix it with an ASCII letter L
(preferred and more readable) or l:

long longValue = 100L;

18 | Chapter 2: Lexical Elements

Floating-Point Literals
A valid floating-point literal requires a whole number and/or a
fractional part, decimal point, and type suffix. An exponent
prefaced by an e or E is optional. Fractional parts and decimals
are not required when exponents or type suffixes are applied.

A floating-point literal (double) is a double-precision floating
point of eight bytes. A float is four bytes. Type suffixes for
doubles are d or D; suffixes for floats are f or F:

[whole-number].[fractional_part][e|E exp][f|F|d|D]

float floatValue1 = 9.15f, floatValue2 = 1_168f;
Float floatValue3 = new Float(20F);
double doubleValue1 = 3.12;
Double doubleValue2 = Double.valueOf(1e058);
float expValue1 = 10.0e2f, expValue2=10.0E3f;

String Literals
String literals contain zero or more characters, including escape
sequences enclosed in a set of double quotes. String literals
cannot contain Unicode \u000a and \u000d for line termina‐
tors; use \r and \n instead. Strings are immutable:

String stringValue1 = new String("Valid literal.");
String stringValue2 = "Valid.\nOn new line.";
String stringValue3 = "Joins str" + "ings";
String stringValue4 = "\"Escape Sequences\"\r";

There is a pool of strings associated with class String. Initially,
the pool is empty. Literal strings and string-valued constant
expressions are interned in the pool and added to the pool only
once.

The following example shows how literals are added to and
used in the pool:

// Adds String "thisString" to the pool
String stringValue5 = "thisString";

Literals | 19

// Uses String "thisString" from the pool
String stringValue6 = "thisString";

A string can be added to the pool (if it does not already exist in
the pool) by calling the intern() method on the string. The
intern() method returns a string, which is either a reference to
the new string that was added to the pool or a reference to the
existing string:

String stringValue7 = new String("thatString");
String stringValue8 = stringValue7.intern();

Null Literals
The null literal is of type null and can be applied to reference
types. It does not apply to primitive types:

String n = null;

Escape Sequences
Table 2-6 provides the set of escape sequences in Java.

Table 2-6. Character and string literal escape sequences

Name Sequence Decimal Unicode

Backspace \b 8 \u0008

Horizontal tab \t 9 \u0009

Line feed \n 10 \u000A

Form feed \f 12 \u000C

Carriage return \r 13 \u000D

Double quote \” 34 \u0022

Single quote \' 39 \u0027

Different line terminators are used for different platforms to
achieve a newline (see Table 2-7). The println() method,
which includes a line break, is a better solution than hardcod‐
ing \n and \r when used appropriately.

20 | Chapter 2: Lexical Elements

Table 2-7. Newline variations

Operating system Newline

POSIX-compliant operating systems (e.g., Solaris, Linux) and
macOS

LF (\n)

Microsoft Windows CR+LF (\r\n)

macOS up to version 9 CR (\r)

Unicode Currency Symbols
Unicode currency symbols are present in the range of \u20A0–
\u20CF (8352–8399). See Table 2-8 for examples.

Table 2-8. Currency symbols within range

Name Symbol Decimal Unicode

Franc sign ₣ 8355 \u20A3

Lira sign ₤ 8356 \u20A4

Mill sign ₥ 8357 \u20A5

Rupee sign ₨ 8360 \u20A8

Dong sign ₫ 8363 \u20AB

Euro sign € 8364 \u20AC

Drachma sign ₯ 8367 \u20AF

German penny sign ₰ 8368 \u20B0

A number of currency symbols exist outside of the designated
currency range. See Table 2-9 for examples.

Unicode Currency Symbols | 21

Table 2-9. Currency symbols outside of range

Name Symbol Decimal Unicode

Dollar sign $ 36 \u0024

Cent sign ¢ 162 \u00A2

Pound sign £ 163 \u00A3

Currency sign ¤ 164 \u00A4

Yen sign ¥ 165 \u00A5

Latin small f with hook ƒ 402 \u0192

Bengali rupee mark ৲ 2546 \u09F2

Bengali rupee sign ৳ 2547 \u09F3

Gujarati rupee sign ૱ 2801 \u0AF1

Tamil rupee sign ௹ 3065 \u0BF9

Thai symbol baht ฿ 3647 \u0E3F

Script captial ℳ 8499 \u2133

CJK unified ideograph 1 元 20803 \u5143

CJK unified ideograph 2 円 20870 \u5186

CJK unified ideograph 3 圆 22278 \u5706

CJK unified ideograph 4 圓 22291 \u5713

22 | Chapter 2: Lexical Elements

CHAPTER 3

Fundamental Types

Fundamental types include the Java primitive types and their
corresponding wrapper classes/reference types. There is provi‐
sion for automatic conversion between these primitive and ref‐
erence types through autoboxing and unboxing. Numeric pro‐
motion is applied to primitive types where appropriate.

Primitive Types
There are eight primitive types in Java: each is a reserved key‐
word. They describe variables that contain single values of the
appropriate format and size (see Table 3-1). Primitive types are
always the specified precision, regardless of the underlying
hardware precisions (e.g., 32- or 64-bit).

Table 3-1. Primitive types

Type Detail Storage Range

boolean true or false 1 bit Not applicable

char Unicode character 2 bytes \u0000 to \uFFFF

byte Integer 1 byte –128 to 127

short Integer 2 bytes –32768 to 32767

int Integer 4 bytes –2147483648 to 2147483647

23

Type Detail Storage Range

long Integer 8 bytes –263 to 263 –1

float Floating point 4 bytes 1.4e–45 to 3.4e+38

double Floating point 8 bytes 5e–324 to 1.8e+308

TIP

Primitive types byte, short, int, long, float, and
double are all signed. Type char is unsigned.

Literals for Primitive Types
All primitive types except boolean can accept character, deci‐
mal, hexadecimal, octal, and Unicode literal formats, as well as
character escape sequences. Where appropriate, the literal
value is automatically cast or converted. Remember that bits
are lost during truncation. The following is a list of primitive
assignment examples.

The boolean primitive’s only valid literal values are true and
false:

boolean isEndogamous = true;

The char primitive represents a single Unicode character. Lit‐
eral values of the char primitive that are greater than two bytes
need to be explicitly cast.

// 'atDNA'
 char[] cArray = {
 '\'', // '
 '\u0061', // a
 't', // t
 0x0044, // D
 0116, // N
 (char) (65 + 131072) , // A
 0b00100111}; // '

24 | Chapter 3: Fundamental Types

The byte primitive has a four-byte signed integer as its valid lit‐
eral. If an explicit cast is not performed, the integer is implicitly
cast to one byte:

final byte CHROMOSOME_PAIRS = 12;
final byte CHROMOSOME_TOTAL = (byte) 48;

The short primitive has a four-byte signed integer as its valid
literal. If an explicit cast is not performed, the integer is implic‐
itly cast to two bytes:

short firstCousins = 6;
short secondCousins = (short) 18;

The int primitive has a four-byte signed integer as its valid lit‐
eral. When char, byte, and short primitives are used as liter‐
als, they are automatically cast to four-byte integers, as in the
case of the short value within vipSeats. Floating-point and
long literals must be explicitly cast:

int thirdCousins = 104;
int forthCousins = (int) 648.0D;
int fifthCousins = (short) 3_888;

The long primitive has an eight-byte signed integer as its valid
literal. It is designated by an L or l postfix. The value is cast
from four bytes to eight bytes when no postfix or cast is
applied:

long sixthCousins = 23_000;
long seventhCousins = (long) 138_000;
long eighthCousins = 828_000l;
long ninthCousins = 4_968_000L;

The float primitive has a four-byte signed floating point as its
valid literal. An F or f postfix or an explicit cast designates it.
Even though no explicit cast is necessary for an int literal, an
int will not always fit into a float where the value exceeds
about 223:

float totalSharedCentimorgansX = 0;
float totalSharedCentimorgansAutosomal = (float)
285.5;

Literals for Primitive Types | 25

float largestSharedCentimorgansX = 0.0f;
float largestSharedCentimorgansAutosomal = 71F;

The double primitive uses an eight-byte signed floating-point
value as its valid literal. The literal can have a D, d, or explicit
cast with no postfix. If the literal is an integer, it is implicitly
cast:

double centimorgansSharedFloor = 0;
double centimorgansSharedCeiling = 6766.20;
double centimorgansShared = (double) 888;
double centimorgansUnShared = 5878.0d;
double centimorgansPercentShared = 13.12D;

See Chapter 2 for more details on literals.

Floating-Point Entities
Positive and negative floating-point infinities, negative zero,
and not a number (NaN) are special entities defined to meet the
IEEE 754-1985 standard (see Table 3-2).

The Infinity, –Infinity, and –0.0 entities are returned when
an operation creates a floating-point value that is too large to be
traditionally represented.

Table 3-2. Floating-point entities

Entity Description Examples

Infinity Represents the concept of
positive infinity

1.0 / 0.0, 1e300 / 1e–300, Math.abs
(–1.0 / 0.0)

–Infinity Represents the concept of
negative infinity

–1.0 / 0.0, 1.0 / (–0.0), 1e300/–1e–
300

–0.0 Represents a negative
number close to zero

–1.0 / (1.0 / 0.0), –1e–300 / 1e300

NaN Represents undefined
results

0.0 / 0.0, 1e300 * Float.NaN,
Math.sqrt (–9.0)

26 | Chapter 3: Fundamental Types

Positive infinity, negative infinity, and NaN entities are avail‐
able as double and float constants:

Double.POSITIVE_INFINITY; // Infinity
Float.POSITIVE_INFINITY; // Infinity
Double.NEGATIVE_INFINITY; // –Infinity
Float.NEGATIVE_INFINITY; // –Infinity
Double.NaN; // Not-a-Number
Float.NaN; // Not-a-Number

The Double and Float wrapper classes have methods to deter‐
mine if a number is finite, infinite, or NaN:

Double.isFinite(Double.POSITIVE_INFINITY); // false
Double.isFinite(Double.NEGATIVE_INFINITY); // false
Double.isFinite(Double.NaN); // false
Double.isFinite(1); // true
// true
Double.isInfinite(Double.POSITIVE_INFINITY);
// true
Double.isInfinite(Double.NEGATIVE_INFINITY);
Double.isInfinite(Double.NaN); // false
Double.isInfinite(1); // false
Double.isNaN(Double.NaN); // true
Double.isNaN(1); // false

Operations Involving Special Entities
Table 3-3 shows the results of special entity operations where
the operands are abbreviated as INF for Double.POSITIVE_INFIN
ITY, –INF for Double.NEGATIVE_INFINITY, and NAN for Dou
ble.NaN.

For example, column 4’s heading entry (–0.0) and row 12’s
entry (* NAN) have a result of NaN, and could be written as fol‐
lows:

// 'NaN' will be printed
System.out.print((-0.0) * Double.NaN);

Floating-Point Entities | 27

Table 3-3. Operations involving special entities

INF (–INF) (–0.0)

* INF Infinity –Infinity NaN

+ INF Infinity NaN Infinity

– INF NaN –Infinity –Infinity

/ INF NaN NaN –0.0

* 0.0 NaN NaN –0.0

+ 0.0 Infinity –Infinity 0.0

+ 0.5 Infinity –Infinity 0.5

* 0.5 Infinity –Infinity –0.0

+ (–0.5) Infinity –Infinity –0.5

* (–0.5) –Infinity Infinity 0.0

+ NAN NaN NaN NaN

* NAN NaN NaN NaN

TIP

Any operation performed on NaN results in NaN; there is no
such thing as –NaN.

Numeric Promotion of Primitive Types
Numeric promotion consists of rules that are applied to the
operands of an arithmetic operator under certain conditions.
Numeric promotion rules consist of both unary and binary
promotion rules.

28 | Chapter 3: Fundamental Types

Unary Numeric Promotion
When a primitive of a numeric type is part of an expression, as
listed in Table 3-4, the following promotion rules are applied:

• If the operand is of type byte, short, or char, the type
will be promoted to type int.

• Otherwise, the type of the operand remains unchanged.

Table 3-4. Expression for unary promotion rules

Expression

Operand of a unary plus operator

Operand of a unary minus operator –

Operand of a bitwise complement operator ~

All shift operators >>, >>>, or <<

Index expression in an array access expression

Dimension expression in an array creation expression

Binary Numeric Promotion
When two primitives of different numerical types are com‐
pared via the operators listed in Table 3-5, one type is promo‐
ted based on the following binary promotion rules:

• If either operand is of type double, the non-double primi‐
tive is converted to type double.

• If either operand is of type float, the non-float primi‐
tive is converted to type float.

• If either operand is of type long, the non-long primitive
is converted to type long.

• Otherwise, both operands are converted to int.

Numeric Promotion of Primitive Types | 29

Table 3-5. Operators for binary promotion rules

Operators Description

+ and – Additive operators

*, /, and % Multiplicative operators

<, <=, >, and >= Comparison operators

== and != Equality operators

&, ^, and | Bitwise operators

? : Conditional operator (see next section)

Special Cases for Conditional Operators
• If one operand is of type byte and the other is of type
short, the conditional expression will be of type short:

short = true ? byte : short

• If one operand R is of type byte, short, or char, and the
other is a constant expression of type int whose value is
within range of R, the conditional expression is of type R:

short = (true ? short : 1967)

• Otherwise, binary numeric promotion is applied, and the
conditional expression type will be that of the promoted
type of the second and third operands.

Wrapper Classes
Each of the primitive types has a corresponding wrapper class/
reference type, which is located in package java.lang. Each
wrapper class has a variety of methods, including one to return
the type’s value, as shown in Table 3-6. These integer and
floating-point wrapper classes can return values of several
primitive types.

30 | Chapter 3: Fundamental Types

Table 3-6. Wrapper classes

Primitive
types

Reference
types

Methods to get primitive values

boolean Boolean booleanValue()

char Character charValue()

byte Byte byteValue(), shortValue(),
intValue(), longValue(), float
Value(), doubleValue()

short Short byteValue(), shortValue(),
intValue(), longValue(), float
Value(), doubleValue()

int Integer byteValue(), shortValue(),
intValue(), longValue(), float
Value(), doubleValue()

long Long byteValue(), shortValue(),
intValue(), longValue(), float
Value(), doubleValue()

float Float byteValue(), shortValue(),
intValue(), longValue(), float
Value(), doubleValue()

double Double byteValue(), shortValue(),
intValue(), longValue(), float
Value(), doubleValue()

Autoboxing and Unboxing
Autoboxing and unboxing are typically used for collections of
primitives. Autoboxing involves the dynamic allocation of
memory and the initialization of an object for each primitive.
Note that the overhead can often exceed the execution time of
the desired operation. Unboxing involves the production of a
primitive for each object.

Autoboxing and Unboxing | 31

Computationally intensive tasks using primitives (e.g., iterating
through primitives in a container) should be done using arrays
of primitives instead of collections of wrapper objects.

Autoboxing
Autoboxing is the automatic conversion of primitive types to
their corresponding wrapper classes. In this example, the dip‐
loid chromosome number for each species (e.g., 60, 46, and 38)
are automatically converted to their corresponding wrappers
class because collections store references, not primitive values:

// Create hash map of weight groups
HashMap<String, Integer> diploidChromosomeNumberMap
 = new HashMap<String, Integer> ();
diploidChromosomeNumberMap.put("Canis latrans",
78);
diploidChromosomeNumberMap.put("Bison bison", 60);
diploidChromosomeNumberMap.put("Homo sapiens", 46);
diploidChromosomeNumberMap.put("Sus scrofa", 38);
diploidChromosomeNumberMap.put("Myrmecia pilo
sula", 2);

The following example shows an acceptable but not recom‐
mended use of autoboxing:

// Set number of autosomal (atDNA) chromosomes
Integer atDnaChromosomeSet = 22; //improper

As there is no reason to force autoboxing, the preceding state‐
ment should instead be written as follows:

Integer atDnaChromosomeSet = Integer.valueOf(22);

Unboxing
Unboxing is the automatic conversion of the wrapper classes to
their corresponding primitive types. In this example, a refer‐
ence type is retrieved from the hash map. It is automatically
unboxed so that it can fit into the primitive type:

32 | Chapter 3: Fundamental Types

// Get the DCN of a homo sapien, performing unbox
ing
int homoSapienDcn = diploidChromosomeNumber
Map.get("Homo sapiens");

System.out.println(homoSapienDcn);
$ 46

The following example shows an acceptable but not recom‐
mended use of unboxing:

// Establish the total number of chromosomes
Integer atDnaChromosomeSet = 22;
int multiplier = 2;
int xChromosomes = 2; // 1 or 2
int yChromosome = 0; // 0 or 1
// Mixing int and Integer; not recommended
int dcn = xChromosomes + yChromosome
 + (multiplier * atDnaChromosomeSet);

It is better to write this expression with the intValue() method,
as shown here:

int dcn = xChromosomes + yChromosome
 + (multiplier * atDnaChromosomeSet.intValue());

Autoboxing and Unboxing | 33

CHAPTER 4

Reference Types

Reference types hold references to objects and provide a means
to access those objects stored somewhere in memory. The
memory locations are irrelevant to programmers. All reference
types are a subclass of type java.lang.Object.

Table 4-1 lists the five Java reference types.

Table 4-1. Reference types

Reference type Brief description

Annotation Provides a way to associate metadata (data about data) with
program elements.

Array Provides a fixed-size data structure that stores data elements of
the same type.

Class Designed to provide inheritance, polymorphism, and
encapsulation. Usually models something in the real world and
consists of a set of values that holds data and a set of methods
that operates on the data.

Enumeration A reference for a set of objects that represents a related set of
choices.

Interface Provides a public API and is “implemented” by Java classes.

35

Comparing Reference Types to Primitive
Types
There are two type categories in Java: reference types and prim‐
itive types. Table 4-2 shows some of the key differences
between them. See Chapter 3 for more details.

Table 4-2. Reference types compared with primitive types

Reference types Primitive types

Unlimited number of reference
types, as they are defined by the
user.

Consists of boolean and numeric types:
char, byte, short, int, long,
float, and double.

Memory location stores a reference
to the data.

Memory location stores actual data held by
the primitive type.

When a reference type is assigned
to another reference type, both will
point to the same object.

When a value of a primitive is assigned to
another variable of the same type, a copy is
made.

When an object is passed into a
method, the called method can
change the contents of the object
passed to it but not the address of
the object.

When a primitive is passed into a method,
only a copy of the primitive is passed. The
called method does not have access to the
original primitive value and therefore
cannot change it. The called method can
change the copied value.

Default Values
Default values are the values assigned to instance variables in
Java, when no initialization value has been explicitly set.

Instance and Local Variable Objects
Instance variables (i.e., those declared at the class level) have a
default value of null. null references nothing.

Local variables (i.e., those declared within a method) do not
have a default value, not even a value of null. Always initialize
local variables because they are not given a default value.

36 | Chapter 4: Reference Types

Checking an uninitialized local variable object for a value
(including a value of null) will result in a compile-time error.

Although object references with a value of null do not refer to
any object on the heap, objects set to null can be referenced in
code without receiving compile-time or runtime errors:

LocalDate birthdate = null;
// This will compile
if (birthdate == null) {
 System.out.println(birthdate);
}
$ null

Invoking a method on a reference variable that is null or using
the dot operator on the object will result in a java.lang.Null
PointerException:

final int MAX_LENGTH = 20;
String partyTheme = null;
/*
 * java.lang.NullPointerException is thrown
 * since partyTheme is null
 */
if (partyTheme.length() > MAX_LENGTH) {}

Arrays
Arrays are always given a default value whether they are
declared as instance variables or local variables. Arrays that are
declared but not initialized are given a default value of null.

In the following code, the gameList1 array is initialized, but not
the individual values, meaning that the object references will
have a value of null. Objects have to be added to the array:

/*
 * The declared arrays named gameList1 and
 * gameList2 are initialized to null by default
 */
Game[] gameList1;
Game gameList2[];

Default Values | 37

/*
 * The following array has been initialized but
 * the object references are still null because
 * the array contains no objects
 */
 gameList1 = new Game[10];

// Add a Game object to the list, so it has one
object
 gameList1[0] = new Game();

Multidimensional arrays in Java are actually arrays of arrays.
They may be initialized with the new operator or by placing
their values within braces. Multidimensional arrays may be
uniform or nonuniform in shape:

// Anonymous array
int twoDimensionalArray[][] = new int[6][6];
twoDimensionalArray[0][0] = 100;
int threeDimensionalArray[][][] = new int[2][2][2];
threeDimensionalArray[0][0][0] = 200;
int varDimensionArray[][] = {{0,0},{1,1,1},
{2,2,2,2}};
varDimensionArray[0][0] = 300;

Anonymous arrays allow for the creation of a new array of val‐
ues anywhere in the code base:

// Examples using anonymous arrays
int[] luckyNumbers = new int[] {7, 13, 21};
int totalWinnings = sum(new int[] {3000, 4500,
5000});

Conversion of Reference Types
An object can be converted to the type of its superclass (widen‐
ing) or any of its subclasses (narrowing).

The compiler checks conversions at compile time, and the Java
Virtual Machine (JVM) checks conversions at runtime.

38 | Chapter 4: Reference Types

Widening Conversions
• Widening implicitly converts a subclass to a parent class

(superclass).
• Widening conversions do not throw runtime exceptions.
• No explicit cast is necessary:

String s = new String();
Object o = s; // widening

Narrowing Conversions
• Narrowing converts a more general type into a more spe‐

cific type.
• Narrowing is a conversion of a superclass to a subclass.
• An explicit cast is required. To cast an object to another

object, place the type of object to which you are casting
in parentheses immediately before the object you are
casting.

• Illegitimate narrowing results in a ClassCastException.
• Narrowing may result in a loss of data/precision.

Objects cannot be converted to an unrelated type—that is, a
type other than one of its subclasses or superclasses. Doing so
will generate an inconvertible types error at compile time.
The following is an example of a conversion that will result in a
compile-time error due to inconvertible types:

Object o = new Object();
String s = (Integer) o; // compile-time error

Conversion of Reference Types | 39

Converting Between Primitives and
Reference Types
The automatic conversion of primitive types to reference types,
and vice versa, is called autoboxing and unboxing, respectively.
For more information, refer back to Chapter 3.

Passing Reference Types into Methods
When an object is passed into a method as a variable:

• A copy of the reference variable is passed, not the actual
object.

• The caller and the called methods have identical copies of
the reference.

• The caller will also see any changes the called method
makes to the object. Passing a copy of the object to the
called method will prevent it from making changes to the
original object.

• The called method cannot change the address of the
object, but it can change the contents of the object.

The following example illustrates passing reference types and
primitive types into methods and the effects on those types
when changed by the called method:

void roomSetup() {
 // Reference passing
 Table table = new Table();
 table.setLength(72);
 // Length will be changed
 modTableLength(table);

 // Primitive passing
 // Value of chairs not changed
 int chairs = 8;
 modChairCount(chairs);
}

40 | Chapter 4: Reference Types

void modTableLength(Table t) {
 t.setLength(36);
}

void modChairCount(int i) {
 i = 10;
}

Comparing Reference Types
Reference types are comparable in Java. Equality operators and
the equals method can be used to assist with comparisons.

Using the Equality Operators
The != and == equality operators are used to compare the
memory locations of two objects. If the memory addresses of
the objects being compared are the same, the objects are con‐
sidered equal. These equality operators are not used to com‐
pare the contents of two objects.

In the following example, guest1 and guest2 have the same
memory address, so the statement "They are equal" is output:

String guest1 = new String("name");
String guest2 = guest1;
if (guest1 == guest2)
 System.out.println("They are equal");

In the following example, the memory addresses are not equal,
so the statement "They are not equal" is output:

String guest1 = new String("name");
String guest2 = new String("name");
if (guest1 != guest2)
 System.out.println("They are not equal");

Using the equals() Method
To compare the contents of two class objects, the
equals()method from class Object can be used or overridden.

Comparing Reference Types | 41

When the equals() method is overridden, the hashCode()
method should also be overridden. This is done for compatibil‐
ity with hash-based collections such as HashMap() and Hash
Set().

TIP

By default, the equals() method uses only the == operator
for comparisons. This method has to be overridden to
really be useful.

For example, if you want to compare values contained in two
instances of the same class, you should use a programmer-
defined equals() method.

Comparing Strings
There are two ways to check whether strings are equal in Java,
but the definition of “equal” for each of them is different:

• The equals() method compares two strings, character by
character, to determine equality. This is not the default
implementation of the equals() method provided by the
Object class. This is the overridden implementation pro‐
vided by String class.

• The == operator checks to see whether two object refer‐
ences refer to the same instance of an object.

Here is a program that shows how strings are evaluated using
the equals() method and the == operator (for more informa‐
tion on how strings are evaluated, see “String Literals” on page
19 in Chapter 2):

class MyComparisons {

 // Add string to pool
 String first = "chairs";

42 | Chapter 4: Reference Types

 // Use string from pool
 String second = "chairs";
 // Create a new string
 String third = new String ("chairs");

 void myMethod() {

 /*
 * Contrary to popular belief, this evaluates
 * to true. Try it!
 */
 if (first == second) {
 System.out.println("first == second");
 }

 // This evaluates to true
 if (first.equals(second)) {
 System.out.println("first equals second");
 }
 // This evaluates to false
 if (first == third) {
 System.out.println("first == third");
 }
 // This evaluates to true
 if (first.equals(third)) {
 System.out.println("first equals third");
 }
 } // End myMethod()
} //end class

TIP

Objects of the StringBuffer and StringBuilder classes
are mutable. Objects of the String class are immutable.

Comparing Reference Types | 43

Comparing Enumerations
enum values can be compared using == or the equals() method
because they return the same result. The == operator is used
more frequently to compare enumeration types.

Copying Reference Types
When reference types are copied, either a copy of the reference
to an object is made, or an actual copy of the object is made,
creating a new object. The latter is referred to as cloning in Java.

Copying a Reference to an Object
When copying a reference to an object, the result is one object
with two references. In the following example, closingSong is
assigned a reference to the object pointed to by lastSong. Any
changes made to lastSong will be reflected in closingSong, and
vice versa:

Song lastSong = new Song();
Song closingSong = lastSong;

Cloning Objects
Cloning results in another copy of the object, not just a copy of
a reference to an object. Cloning is not available to classes by
default. Note that cloning is usually very complex, so you
should consider a copy constructor instead, for the following
reasons:

• For a class to be cloneable, it must implement the inter‐
face Cloneable.

• The protected method clone() allows for objects to clone
themselves.

• For an object to clone an object other than itself, the
clone() method must be overridden and made public by
the object being cloned.

44 | Chapter 4: Reference Types

• When cloning, a cast must be used because clone()
returns type object.

• Cloning can throw a CloneNotSupportedException.

Shallow and deep cloning
Shallow and deep cloning are the two types of cloning in Java.

In shallow cloning, primitive values and the references in the
object being cloned are copied. Copies of the objects referred to
by those references are not made.

In the following example, leadingSong will be assigned the
value of length because it is a primitive type. Also, leadingSong
will be assigned the references to title, artist, and year
because they are references to types:

class Song {
 String title;
 Artist artist;
 float length;
 Year year;
 void setData() {...}
}
Song firstSong = new Song();
try {
 // Make an actual copy by cloning
 Song leadingSong = (Song)firstSong.clone();
} catch (CloneNotSupportedException cnse) {
 cnse.printStackTrace();
} // end

In deep cloning, the cloned object makes a copy of each of its
object’s fields, recursing through all other objects referenced by
it. A deep-clone method must be defined by the programmer,
as the Java API does not provide one. Alternatives to deep clon‐
ing are serialization and copy constructors. (Copy constructors
are often preferred over serialization.)

Copying Reference Types | 45

Memory Allocation and Garbage Collection
of Reference Types
When a new object is created, memory is allocated. When there
are no references to an object, the memory that object used can
be reclaimed during the garbage collection process. For more
information on this topic, see Chapter 11.

46 | Chapter 4: Reference Types

CHAPTER 5

Object-Oriented Programming

Basic elements of object-oriented programming (OOP) in Java
include classes, objects, and interfaces.

Classes and Objects
Classes define entities that usually represent something in the
real world. They consist of a set of values that holds data and a
set of methods that operates on the data.

Classes can inherit data members and methods from other
classes. A class can directly inherit from only one class—the
superclass. A class can have only one direct superclass. This is
called inheritance.

An instance of a class is called an object, and it is allocated
memory. There can be multiple instances of a class.

When implementing a class, the inner details of the class
should be private and accessible only through public inter‐
faces. This is called encapsulation. The JavaBean convention is
to use accessor and mutator methods (e.g., getFirstName() and
setFirstName("Leonardina")) to indirectly access the private
members of a class and to ensure that another class cannot
unexpectedly modify private members. Returning immutable
values (i.e., strings, primitive values, and objects intentionally

47

made immutable) is another way to protect the data members
from being altered by other objects.

Class Syntax
A class has a class signature, optional constructors, data mem‐
bers, and methods:

[javaModifiers] class className
 [extends someSuperClass]
 [implements someInterfaces separated by commas] {
 // Data member(s)
 // Constructor(s)
 // Method(s)
}

Instantiating a Class (Creating an Object)
An object is an instance of a class. Once instantiated, objects
have their own set of data members and methods:

// Sample class definitions
public class Candidate {...}
class Stats extends ToolSet {...}

public class Report extends ToolSet
 implements Runnable {...}

Separate objects of class Candidate are created (instantiated)
using the keyword new:

Candidate candidate1 = new Candidate();
Candidate candidate2 = new Candidate();

Data Members and Methods
Data members, also known as fields, hold data about a class.
Data members that are nonstatic are also called instance vari‐
ables:

[javaModifier] type dataMemberName

48 | Chapter 5: Object-Oriented Programming

Methods operate on class data:

[javaModifiers] type methodName (parameterList)
[throws listOfExceptionsSeparatedByCommas] {
 // Method body
}

The following is an example of class Candidate and its data
members and methods:

public class Candidate {
 // Data members or fields
 private String firstName;
 private String lastName;
 private String party;
 // Methods
 public void setParty (String p) {party = p;}
 public String getLastName() {return lastName;}
} // End class Candidate

Accessing Data Members and Methods in Objects
The dot operator (.) is used to access data members and meth‐
ods in objects. It is not necessary to use the dot operator when
accessing data members or methods from within an object:

candidate1.setParty("Whig");
String name = getFirstName() + getLastName();

Overloading
Methods, including constructors, can be overloaded. Overload‐
ing means that two or more methods have the same name but
different signatures (parameters and return values). Note that
overloaded methods must have different parameters, and they
may have different return types; but having only different
return types is not overloading. The access modifiers of over‐
loaded methods can be different:

public class VotingMachine {
 ...
 public void startUp() {...}

Classes and Objects | 49

 private void startUp(int delay) {...}
}

When a method is overloaded, it is permissible for each of its
signatures to throw different checked exceptions:

private String startUp(District d) throws IOExcep
tion {...}

Overriding
A subclass can override the methods it inherits. When overrid‐
den, a method contains the same signature (name and parame‐
ters) as a method in its superclass, but it has different imple‐
mentation details.

The method startUp() in superclass Display is overridden in
class TouchScreenDisplay:

public class Display {
 void startUp(){
 System.out.println("Using base display.");
 }
}
public class TouchScreenDisplay extends Display {
 void startUp() {
 System.out.println("Using new display.");
 }
}

Rules regarding overriding methods include the following:

• Methods that are not final, private, or static can be
overridden.

• Protected methods can override methods that do not
have access modifiers.

• The overriding method cannot have a more restrictive
access modifier (i.e., package, public, private, protec
ted) than the original method.

50 | Chapter 5: Object-Oriented Programming

• The overriding method cannot throw any new checked
exceptions.

Constructors
Constructors are called upon object creation and are used to
initialize data in the newly created object. Constructors are
optional, have exactly the same name as the class, and they do
not have a return in the body (as methods do).

A class can have multiple constructors. The constructor that is
called when a new object is created is the one that has a match‐
ing signature:

public class Candidate {
 ...
 Candidate(int id) {
 this.identification = id;
 }
 Candidate(int id, int age) {
 this.identification = id;
 this.age = age;
 }
}
// Create a new Candidate and call its constructor
Candidate candidate = new Candidate(id);

Classes implicitly have a no-argument constructor if no explicit
constructor is present. Note that if a constructor with argu‐
ments is added, there will be no no-argument constructor
unless it is manually added.

Superclasses and Subclasses
In Java, a class (known as the subclass) can inherit directly from
one class (known as the superclass). The Java keyword extends
indicates that a class inherits data members and methods from
another class. Subclasses do not have direct access to private
members of its superclass, but do have access to the public and
protected members of the superclass. A subclass also has

Classes and Objects | 51

access to members of the superclass where the same package is
shared (package-private or protected). As previously men‐
tioned, accessor and mutator methods provide a mechanism to
indirectly access the private members of a class, including a
superclass:

public class Machine {
 boolean state;
 void setState(boolean s) {state = s;}
 boolean getState() {return state;}
}
public class VotingMachine extends Machine {
 ...
}

The keyword super is used to access methods in the superclass
overridden by methods in the subclass:

public class PrivacyWall {
 public void printSpecs() {
 System.out.println("Printed PrivacyWall
Specs");
 }
}
public class Curtain extends PrivacyWall {
 public void printSpecs() {
 super.printSpecs();
 System.out.println("Printed Curtain Specs");
 }
 public static void main(String[] args) {
 Curtain curtain = new Curtain();
 curtain.printSpecs();
 }
}
$ Printed PrivacyWall Specs
$ Printed Curtain Specs

Another common use of the keyword super is to call the con‐
structor of a superclass and pass it parameters. Note that this
call must be the first statement in the constructor calling super:

52 | Chapter 5: Object-Oriented Programming

public PrivacyWall(int length, int width) {
 this.length = length;
 this.width = width;
 this.area = length * width;
}

public class Curtain extends PrivacyWall {
 // Set default length and width
 public Curtain() {super(15, 25);}
}

If there is not an explicit call to the constructor of the super‐
class, an automatic call to the no-argument constructor of the
superclass is made.

The this Keyword
The three common uses of the this keyword are to refer to the
current object, to call a constructor from within another con‐
structor in the same class, and to pass a reference of the current
object to another object.

To assign a parameter variable to an instance variable of the
current object:

public class Curtain extends PrivacyWall {
 String color;
 public void setColor(String color) {
 this.color = color;
 }
}

To call a constructor from another constructor in the same
class:

public class Curtain extends PrivacyWall {
 public Curtain(int length, int width) {}
 public Curtain() {this(10, 9);}
}

Classes and Objects | 53

To pass a reference of the current object to another object:

// Print the contents of class curtain
System.out.println(this);

public class Builder {
 public void setWallType(Curtain c) {...}
}

Variable-Length Argument Lists
Methods can have a variable-length argument list. Called var‐
args, these methods are declared such that the last (and only the
last) argument can be repeated zero or more times when the
method is called. The vararg parameter can be either a primi‐
tive or an object. An ellipsis (…) is used in the argument list of
the method signature to declare the method as a vararg. The
syntax of the vararg parameter is as follows:

type... objectOrPrimitiveName

Here is an example of a signature for a vararg method:

public setDisplayButtons(int row,
 String... names) {...}

The Java compiler modifies vararg methods to look like regular
methods. The previous example would be modified at compile
time to:

public setDisplayButtons(int row,
 String [] names) {...}

It is permissible for a vararg method to have a vararg parameter
as its only parameter:

// Zero or more rows
public void setDisplayButtons (String... names)
{...}

A vararg method is called the same way that an ordinary
method is called except that it can take a variable number of
parameters, repeating only the last argument:

54 | Chapter 5: Object-Oriented Programming

setDisplayButtons("Jim");
setDisplayButtons("John", "Mary", "Pete");
setDisplayButtons("Sue", "Doug", "Terry", "John");

The printf method is often used when formatting a variable
set of output, because printf is a vararg method. From the Java
API, type the following:

public PrintStream printf(String format,
 Object... args)

The printf method is called with a format string and a variable
set of objects:

System.out.printf("Hello voter %s%n
 This is machine %d%n", "Sally", 1);

For detailed information on formatting a string passed into the
printf method, see java.util.Formatter.

The enhanced for loop (for each) is often used to iterate
through the variable argument:

printRows() {
 for (String name: names)
 System.out.println(name);
}

Abstract Classes and Abstract Methods
Abstract classes and methods are declared with the keyword
abstract.

Abstract Classes
An abstract class is typically used as a base class and cannot be
instantiated. It can contain abstract and nonabstract methods,
and it can be a subclass of an abstract or a nonabstract class. All
of its abstract methods must be defined by the classes that
inherit (extend) it unless the subclass is also abstract:

public abstract class Alarm {
 public void reset() {...}

Abstract Classes and Abstract Methods | 55

 public abstract void renderAlarm();
}

Abstract Methods
An abstract method contains only the method declaration,
which must be defined by any nonabstract class that inherits it:

public class DisplayAlarm extends Alarm {
 public void renderAlarm() {
 System.out.println("Active alarm.");
 }
}

Static Data Members, Static Methods, Static
Constants, and Static Initializers
Static data members, methods, constants, and initializers reside
with a class and not instances of classes. Static data members,
methods, and constants can be accessed in the class in which
they are defined or in another class using the dot operator.

Static Data Members
Static data members have the same features as static methods
and are stored in a single location in memory.

They are used when only one copy of a data member is needed
across all instances of a class (e.g., a counter):

// Declaring a static data member
public class Voter {
 static int voterCount = 0;
 public Voter() { voterCount++;}
 public static int getVoterCount() {
 return voterCount;
 }
}
...
int numVoters = Voter.voterCount;

56 | Chapter 5: Object-Oriented Programming

Static Methods
Static methods have the keyword static in the method decla‐
ration:

// Declaring a static method
class Analyzer {
 public static int getVotesByAge() {...}
}
// Using the static method
Analyzer.getVotesByAge();

Static methods cannot access nonstatic methods or variables
because static methods are associated with a class, not an
object.

Static Constants
Static constants are static members declared constant. They
have the keywords static and final, and a program cannot
change them:

// Declaring a static constant
static final int AGE_LIMIT = 18;
// Using a static constant
if (age == AGE_LIMIT)
 newVoter = "yes";

Static Initializers
Static initializers include a block of code prefaced by the key‐
word static. A class can have any number of static initializer
blocks, and it is guaranteed that they will run in the order in
which they appear. Static initializer blocks are executed only
once per class initialization. A block is run when the JVM class
loader loads StaticClass, which is upon the initial reference to
the code:

public class Election {
 private static int numberOfCandidates;
 // Static Initializer
 static {

Static Data Members, Static Methods, Static Constants, and Static Initializers
| 57

 numberOfCandidates = getNumberOfCandidates();
 }
}

Interfaces
Interfaces provide a set of declared public methods that do not
have method bodies. A class that implements an interface must
provide concrete implementations of all the methods defined
by the interface, or it must be declared abstract.

An interface is declared using the keyword interface, followed
by the name of the interface and a set of method declarations.

Interface names are usually adjectives and end with “able” or
“ible,” as the interface provides a capability:

interface Reportable {
 void genReport(String repType);
 void printReport(String repType);
}

A class that implements an interface must indicate so in its
class signature with the keyword implements:

class VotingMachine implements Reportable {
 public void genReport (String repType) {
 Report report = new Report(repType);
 }
 public void printReport(String repType) {
 System.out.println(repType);
 }
}

With Java 8, you can provide an implementation of a method in
an interface. Java 9 introduces private interface methods.

TIP

Classes can implement multiple interfaces, and interfaces
can extend multiple interfaces.

58 | Chapter 5: Object-Oriented Programming

Enumerations
In simplest terms, enumerations are a set of objects that repre‐
sent a related set of choices:

enum DisplayButton {ROUND, SQUARE}
DisplayButton round = DisplayButton.ROUND;

Looking beyond simplest terms, an enumeration is a class of
type enum, and it is a singleton. Enum classes can have methods,
constructors, and data members:

enum DisplayButton {
 // Size in inches
 ROUND (.50f),
 SQUARE (.40f);
 private final float size;
 DisplayButton(float size) {this.size = size;}
 private float size() { return size; }
}

The method values() returns an array of the ordered list of
objects defined for the enum:

for (DisplayButton b : DisplayButton.values())
 System.out.println("Button: " + b.size());

Annotation Types
Annotations provide a way to associate metadata (data about
data) with program elements at compile time and runtime.
Packages, classes, methods, fields, parameters, variables, and
constructors can be annotated.

Built-in Annotations
Java annotations provide a way to obtain metadata about a
class. Java has three built-in annotation types, as depicted in
Table 5-1. These annotation types are contained in the
java.lang package.

Enumerations | 59

Built-in annotations must be placed directly before the item
being annotated. They do not throw exceptions. Annotations
return primitive types, enumerations, class String, class Class,
annotations, and arrays (of these types).

Table 5-1. Built-in annotations

Annotation type Description

@Override Indicates that the method is intended to override
a method in a superclass.

@Deprecated Indicates that a deprecated API is being used or
overridden. Java 9 adds forRemoval and since
methods.

@FunctionalInterface Defines one and only one abstract method.

@SafeVarargs Coder’s assertion that the annotated method or
constructor body doesn’t perform unsafe
operations on its varargs parameter.

@SuppressWarnings Used to selectively suppress warnings.

The following are examples of annotation use:

@Deprecated(forRemoval=true)
 public void method () {
 ;
 }

@Override
 public String toString() {
 return super.toString() + " more";
 }

Because @Override is a marker annotation, a compile warning
will be returned if the method to be overridden cannot be
found.

Developer-Defined Annotations
Developers can define their own annotations using three anno‐
tation types. A marker annotation has no parameters, a single

60 | Chapter 5: Object-Oriented Programming

value annotation has a single parameter, and a multivalue
annotation has multiple parameters.

The definition of an annotation is the symbol @, followed by the
word interface, followed by the name of the annotation.

Repeated annotations are permitted.

The meta-annotation Retention indicates that an annotation
should be retained by the VM so that it can be read at runtime.
Retention is in the package java.lang.annotation:

@Retention(RetentionPolicy.RUNTIME)
public @interface Feedback {} // Marker
public @interface Feedback {
 String reportName();
} // Single value
public @interface Feedback {
 String reportName();
 String comment() default "None";
} // Multi value

Place the user-defined annotation directly before the item
being annotated:

@Feedback(reportName="Report 1")
public void myMethod() {...}

Programs can check the existence of annotations and obtain
annotation values by calling getAnnotation() on a method:

Feedback fb =
 myMethod.getAnnotation(Feedback.class);

The Type Annotations Specification (also known as “JSR 308”)
allows for annotations to be written in array positions and
generic type arguments. Annotations may also be written with
superclasses, implemented interfaces, casts, instanceof checks,
exception specifications, wildcards, method references, and
constructor references. See Java SE 8 for the Really Impatient by
Cay S. Horstmann (Addison-Wesley) for detailed information
on annotations in these contexts.

Annotation Types | 61

Functional Interfaces
A functional interface, a.k.a. a single abstract method (SAM)
interface, is an inteface that defines one and only one abstract
method. The annotation @FunctionalInterface may be placed
in front of an interface to declare its intention as a functional
interface. It is possible for an interface to have any number of
default methods:

@FunctionalInterface
 public interface InterfaceName {

 // Only one abstract method allowed
 public void doAbstractTask();

 // Multiple default methods allowed
 default public void performTask1(){
 System.out.println("Msg from task 1.");
 }
 default public void performTask2(){
 System.out.println("Msg from task 2.");
 }
}

Instances of functional interfaces can be created with lambda
expressions, method references, or constructor references.

62 | Chapter 5: Object-Oriented Programming

CHAPTER 6

Statements and Blocks

A statement is a single command that performs some activity
when executed by the Java interpreter:

GigSim simulator = new GigSim("Let's play gui
tar!");

Java statements include the following varieties: expression,
empty, block, conditional, iteration, transfer of control, excep‐
tion handling, variable, labeled, assert, and synchronized.

Reserved Java words used in statements are if, else, switch,
case, while, do, for, break, continue, return, synchronized,
throw, try, catch, finally, and assert.

Expression Statements
An expression statement is a statement that changes the pro‐
gram state. It is a Java expression that ends in a semicolon.
Expression statements include assignments, prefix and postfix
increments, prefix and postfix decrements, object creation, and
method calls. The following are examples of expression state‐
ments:

isWithinOperatingHours = true;
++fret; patron++; --glassOfWater; pick--;

63

Guitarist guitarist = new Guitarist();
guitarist.placeCapo(guitar, capo, fret);

Empty Statement
The empty statement provides no additional functionality and
is written as a single semicolon (;) or as an empty block {}.

Blocks
A group of statements is called a block or statement block. A
block of statements is enclosed in braces. Variables and classes
declared in the block are called local variables and local classes,
respectively. The scope of local variables and classes is the block
in which they are declared.

In blocks, one statement is interpreted at a time in the order in
which it was written or in the order of flow control. The follow‐
ing is an example of a block:

static {
 GigSimProperties.setFirstFestivalActive(true);
 System.out.println("First festival has begun");
 gigsimLogger.info("Simulator started 1st festi
val");
}

Conditional Statements
if, if else, and if else if are decision-making control flow
statements. They are used to execute statements conditionally.
The expression for any of these statements must have type
Boolean or boolean. Type Boolean is subject to unboxing and
autoconversion of Boolean to boolean.

The if Statement
The if statement consists of an expression and a statement or a
block of statements that are executed if the expression evaluates
to true:

64 | Chapter 6: Statements and Blocks

Guitar guitar = new Guitar();
guitar.addProblemItem("Whammy bar");
if (guitar.isBroken()) {
 Luthier luthier = new Luthier();
 luthier.repairGuitar(guitar);
}

The if else Statement
When using else with if, the first block of statements is exe‐
cuted if the expression evaluates to true; otherwise, the block
of code in the else is executed:

CoffeeShop coffeeshop = new CoffeeShop();
if (coffeeshop.getPatronCount() > 5) {
 System.out.println("Play the event.");
} else {
 System.out.println("Go home without pay.");
}

The if else if Statement
if else if is typically used when you need to choose among
multiple blocks of code. When the criteria are not met to exe‐
cute any of the blocks, the block of code in the final else is exe‐
cuted:

ArrayList<Song> playList = new ArrayList<>();
Song song1 = new Song("Mister Sandman");
Song song2 = new Song("Amazing Grace");
playList.add(song1);
playList.add(song2);
...
int numOfSongs = playList.size();
if (numOfSongs <= 24) {
 System.out.println("Do not book");
} else if ((numOfSongs > 24) & (numOfSongs < 50)){
 System.out.println("Book for one night");
} else if ((numOfSongs >= 50)) {
 System.out.println("Book for two nights");
} else {

Conditional Statements | 65

 System.out.println("Book for the week");
}

The switch Statement
The switch statement is a control flow statement that starts
with an expression and transfers control to one of the case
statements based on the value of the expression. A switch
works with char, byte, short, int, as well as Character, Byte,
Short, and Integer wrapper types; enumeration types; and the
String type. Support for String objects was added in Java SE 7.
The break statement is used to exit out of a switch statement. If
a case statement does not contain a break, the line of code after
the completion of the case will be executed.

This continues until either a break statement is reached or the
end of the switch is reached. One default label is permitted
and is often listed last for readability:

String style;
String guitarist = "Eric Clapton";
...
switch (guitarist) {
 case "Chet Atkins":
 style = "Nashville sound";
 break;
 case "Thomas Emmanuel":
 style = "Complex fingerstyle";
 break;
 default:
 style = "Unknown";
 break;
}

Iteration Statements
The for loop, enhanced for loop, while, and do-while state‐
ments are iteration statements. They are used for iterating
through pieces of code.

66 | Chapter 6: Statements and Blocks

The for Loop
The for statement contains three parts: initialization, expres‐
sion, and update. As shown next, the variable (i.e., i) in the
statement must be initialized before being used. The expression
(i.e., i<bArray.length) is evaluated before iterating through the
loop (i.e., i++). The iteration takes place only if the expression
is true and the variable is updated after each iteration:

Banjo [] bArray = new Banjo[2];
bArray[0] = new Banjo();
bArray[0].setManufacturer("Windsor");
bArray[1] = new Banjo();
bArray[1].setManufacturer("Gibson");
for (int i=0; i<bArray.length; i++){
 System.out.println(bArray[i].getManufacturer());
}

The Enhanced for Loop
The enhanced for loop, a.k.a. the “for in” loop and “for each”
loop, is used for iteration through an iterable object or array.
The loop is executed once for each element of the array or col‐
lection and does not use a counter, because the number of iter‐
ations is already determined:

ElectricGuitar eGuitar1 = new ElectricGuitar();
eGuitar1.setName("Blackie");
ElectricGuitar eGuitar2 = new ElectricGuitar();
eGuitar2.setName("Lucille");
ArrayList <ElectricGuitar> eList = new Array
List<>();
eList.add(eGuitar1); eList.add(eGuitar2);
for (ElectricGuitar e : eList) {
 System.out.println("Name:" + e.getName());
}

Iteration Statements | 67

The while Loop
In a while statement, the expression is evaluated and the loop is
executed only if the expression evaluates to true. The expres‐
sion can be of type boolean or Boolean:

int bandMembers = 5;
while (bandMembers > 3) {
 CoffeeShop c = new CoffeeShop();
 c.performGig(bandMembers);
 // Randomly set zero to seven members
 bandMembers = new Random().nextInt(8);
}

The do while Loop
In a do while statement, the loop is always executed at least
once and will continue to be executed as long as the expression
is true. The expression can be of type boolean or Boolean:

int bandMembers = 1;
do {
 CoffeeShop c = new CoffeeShop();
 c.performGig(bandMembers);
 Random generator = new Random();
 bandMembers = generator.nextInt(7) + 1; // 1-7
} while (bandMembers > 3);

Transfer of Control
Transfer of control statements are used to change the flow of
control in a program. These include the break, continue, and
return statements.

The break Statement
An unlabeled break statement is used to exit the body of a
switch statement or to immediately exit the loop in which it is
contained. Loop bodies include those for the for loop,
enhanced for loop, while, and do-while iteration statements:

68 | Chapter 6: Statements and Blocks

Song song = new Song("Pink Panther");
Guitar guitar = new Guitar();
int measure = 1; int lastMeasure = 10;
while (measure <= lastMeasure) {
 if (guitar.checkForBrokenStrings()) {
 break;
 }
 song.playMeasure(measure);
 measure++;
}

A labeled break forces a break of the loop statement immedi‐
ately following the label. Labels are typically used with for and
while loops when there are nested loops and there is a need to
identify which loop to break. To label a loop or a statement,
place the label statement immediately before the loop or state‐
ment being labeled, as follows:

...
playMeasures:
while (isWithinOperatingHours()) {
 while (measure <= lastMeasure) {
 if (guitar.checkForBrokenStrings()) {
 break playMeasures;
 }
 song.playMeasure(measure);
 measure++;
 }
} // exits to here

The continue Statement
When executed, the unlabeled continue statement stops the
execution of the current for loop, enhanced for loop, while, or
do-while statements and starts the next iteration of the loop.
The rules for testing loop conditions apply. A labeled continue
statement forces the next iteration of the loop statement imme‐
diately following the label:

for (int i=0; i<25; i++) {
 if (playList.get(i).isPlayed()) {

Transfer of Control | 69

 continue;
 } else {
 song.playAllMeasures();
 }
}

The return Statement
The return statement is used to exit a method and return a
value if the method specifies a return type:

private int numberOfFrets = 18; // default
...
public int getNumberOfFrets() {
 return numberOfFrets;
}

The return statement will be optional when it is the last state‐
ment in a method and the method doesn’t return anything.

Synchronized Statement
The Java keyword synchronized can be used to limit access to
sections of code (i.e., entire methods) to a single thread. It pro‐
vides the capability to control access to resources shared by
multiple threads. See Chapter 14 for more information.

Assert Statement
Assertions are Boolean expressions used to check whether code
behaves as expected while running in debug mode (i.e., using
the -enableassertions or -ea switch with the Java interpreter).
Assertions are written as follows:

assert boolean_expression;

Assertions help identify bugs more easily, including identifying
unexpected values. They are designed to validate assumptions
that should always be true. While running in debug mode, if
the assertion evaluates to false, a java.lang.AssertionError is
thrown and the program exits; otherwise, nothing happens:

70 | Chapter 6: Statements and Blocks

// 'strings' value should be 4, 5, 6, 7, 8 or 12
assert (strings == 12 ||
 (strings >= 4 && strings <= 8));

Assertions need to be explicitly enabled. To find command-line
arguments used to enable assertions, see Chapter 10.

Assertions may also be written to include an optional error
code. Although called an error code, it is really just text or a
value to be used for informational purposes only.

When an assertion that contains an error code evaluates to
false, the error code value is turned into a string and displayed
to the user immediately prior to the program exiting:

assert boolean_expression : errorcode;

An example of an assertion using an error code is as follows:

// Show invalid 'stringed instruments' strings
value
assert (strings == 12 ||
 (strings >= 4 && strings <= 8))
 : "Invalid string count: " + strings;

Exception Handling Statements
Exception handling statements are used to specify code to be
executed during unusual circumstances. The keywords throw
and try/catch/finally are used for exception handling. For
more information on exception handling, see Chapter 7.

Exception Handling Statements | 71

CHAPTER 7

Exception Handling

An exception is an anomalous condition that alters or inter‐
rupts the flow of execution. Java provides built-in exception
handling to deal with such conditions. Exception handling
should not be part of the normal program flow.

The Exception Hierarchy
As shown in Figure 7-1, all exceptions and errors inherit from
the class Throwable, which inherits from the class Object.

Figure 7-1. Snapshot of the exception hierarchy

73

Checked/Unchecked Exceptions and Errors
Exceptions and errors fall into three categories: checked excep‐
tions, unchecked exceptions, and errors.

Checked Exceptions
• Checked exceptions are checked by the compiler at com‐

pile time.
• Methods that throw a checked exception must indicate so

in the method declaration using the throws clause. This
must continue all the way up the calling stack until the
exception is handled.

• All checked exceptions must be explicitly caught with a
catch block.

• Checked exceptions include exceptions of the type Excep
tion, and all classes that are subtypes of Exception,
except for RuntimeException and the subtypes of Runtime
Exception.

The following is an example of a method that throws a checked
exception:

// Method declaration that throws
// an IOException
void readFile(String filename)
 throws IOException {
 ...
}

Unchecked Exceptions
• The compiler does not check unchecked exceptions at

compile time.
• Unchecked exceptions occur during runtime due to pro‐

grammer error (e.g., out-of-bounds index, divide by zero,

74 | Chapter 7: Exception Handling

and null pointer exception) or system resource exhaus‐
tion.

• Unchecked exceptions do not have to be caught.
• Methods that may throw an unchecked exception do not

have to (but can) indicate this in the method declaration.
• Unchecked exceptions include exceptions of the type Run
timeException and all subtypes of RuntimeException.

Errors
• Errors are typically unrecoverable and present serious

conditions.
• Errors are not checked at compile time and do not have

to be (but can be) caught/handled.

TIP

Any checked exceptions, unchecked exceptions, or errors
can be caught.

Common Checked/Unchecked Exceptions
and Errors
There are various checked exceptions, unchecked exceptions,
and unchecked errors that are part of the standard Java plat‐
form. Some are more likely to occur than others.

Common Checked Exceptions
ClassNotFoundException

Thrown when a class cannot be loaded because its defini‐
tion cannot be found.

Common Checked/Unchecked Exceptions and Errors | 75

IOException

Thrown when a failed or interrupted operation occurs.
Two common subtypes of IOException are EOFException
and FileNotFoundException.

FileNotFoundException

Thrown when an attempt is made to open a file that can‐
not be found.

SQLException

Thrown when there is a database error.

InterruptedException

Thrown when a thread is interrupted.

NoSuchMethodException

Thrown when a called method cannot be found.

CloneNotSupportedException

Thrown when clone() is called by an object that is not
cloneable.

Common Unchecked Exceptions
ArithmeticException

Thrown to indicate that an exceptional arithmetic condi‐
tion has occurred.

ArrayIndexOutOfBoundsException

Thrown to indicate an index is out of range.

ClassCastException

Thrown to indicate an attempt to cast an object to a sub‐
class of which it is not an instance.

DateTimeException

Thrown to indicate problems with creating, querying, and
manipulating date-time objects.

IllegalArgumentException

Thrown to indicate that an invalid argument has been
passed to a method.

76 | Chapter 7: Exception Handling

IllegalStateException

Thrown to indicate that a method has been called at an
inappropriate time.

IndexOutOfBoundsException

Thrown to indicate that an index is out of range.

NullPointerException

Thrown when code references a null object but a nonnull
object is required.

NumberFormatException

Thrown to indicate an invalid attempt to convert a string
to a numeric type.

UncheckedIOException

Wraps an IOException with an unchecked exception.

Common Errors
AssertionError

Thrown to indicate that an assertion failed.

ExceptionInInitializeError

Thrown to indicate an unexpected exception in a static
initializer.

VirtualMachineError

Thrown to indicate a problem with the JVM.

OutOfMemoryError

Thrown when there is no more memory available to allo‐
cate an object or perform garbage collection.

NoClassDefFoundError

Thrown when the JVM cannot find a class definition that
was found at compile time.

StackOverflowError

Thrown to indicate that a stack overflow occurs.

Common Checked/Unchecked Exceptions and Errors | 77

Exception Handling Keywords
In Java, error-handling code is cleanly separated from error-
generating code. Code that generates the exception is said to
“throw” an exception, whereas code that handles the exception
is said to “catch” the exception:

// Declare an exception
public void methodA() throws IOException {
 ...
 throw new IOException();
 ...
}

// Catch an exception
public void methodB() {
 ...
 /* Call to methodA must be in a try/catch block
 ** since the exception is a checked exception;
 ** otherwise methodB could throw the exception */
 try {
 methodA();

 }catch (IOException ioe) {
 System.err.println(ioe.getMessage());
 ioe.printStackTrace();
 }
}

The throw Keyword
To throw an exception, use the keyword throw. Any checked/
unchecked exception and error can be thrown:

if (n == -1)
 throw new EOFException();

The try/catch/finally Keywords
Thrown exceptions are handled by a Java try, catch, finally
block. The Java interpreter looks for code to handle the excep‐

78 | Chapter 7: Exception Handling

tion, first looking in the enclosed block of code, and then prop‐
agating up the call stack to main() if necessary. If the exception
is not handled on the main thread (i.e., not the Event Dispatch
Thread [EDT]) or a thread that you created, the program exits
and a stack trace is printed:

try {
 method();
} catch (EOFException eofe) {
 eofe.printStackTrace();
} catch (IOException ioe) {
 ioe.printStackTrace();
} finally {
 // cleanup
}

The try-catch Statement
The try-catch statement includes one try and one or more
catch blocks.

The try block contains code that may throw exceptions. All
checked exceptions that may be thrown must have a catch
block to handle the exception. If no exceptions are thrown, the
try block terminates normally. A try block may have zero or
more catch clauses to handle the exceptions.

TIP

A try block must have at least one catch or finally block
associated with it, or it can omit the catch as long as the
method throws the exception.

There cannot be any code between the try block and any of the
catch blocks (if present) or the finally block (if present).

The catch block(s) contain code to handle thrown exceptions,
including printing information about the exception to a file,

Exception Handling Keywords | 79

which gives users an opportunity to input correct information.
Note that catch blocks should never be empty because such
“silencing” results in exceptions being hidden, which makes
errors harder to debug.

A common convention for naming the parameter in the catch
clause is a set of letters representing each of the words in the
name of the exception:

catch (ArrayIndexOutOfBoundsException aioobe) {
 aioobe.printStackStrace();
}

Within a catch clause, a new exception may also be thrown if
necessary.

The order of the catch clauses in a try/catch block defines the
precedence for catching exceptions. Always begin with the
most specific exception that may be thrown and end with the
most general.

TIP

Exceptions thrown in the try block are directed to the first
catch clause containing arguments of the same type as the
exception object or superclass of that type. The catch
block with the Exception parameter should always be last
in the ordered list.

If none of the parameters for the catch clauses match the
exception thrown, the system will search for the parameter that
matches the superclass of the exception.

The try-finally Statement
The try-finally statement includes one try and one finally
block. The finally block is used for releasing resources when
necessary:

80 | Chapter 7: Exception Handling

public void testMethod() throws IOException {
FileWriter fileWriter =
 new FileWriter("\\data.txt");
 try {
 fileWriter.write("Information...");
 } finally {
 fileWriter.close();
 }
}

This block is optional and is only used where needed. When
used, it is executed last in a try-finally block and will always
be executed, whether or not the try block terminates normally.
If the finally block throws an exception, it must be handled.

The try-catch-finally Statement
The try-catch-finally statement includes one try, one or
more catch blocks, and one finally block.

For this statement, the finally block is also used for cleanup
and releasing resources:

public void testMethod() {
 FileWriter fileWriter = null;
 try {
 fileWriter = new FileWriter("\\data.txt");
 fileWriter.write("Information...");
 } catch (IOException ex) {
 ex.printStackTrace();
 } finally {
 try {
 fileWriter.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

This block is optional and is only used where needed. When
used, it is executed last in a try-catch-finally block and will

Exception Handling Keywords | 81

always be executed, whether or not the try block terminates
normally or the catch clause(s) were executed. If the finally
block throws an exception, it must be handled.

The try-with-resources Statement
The try-with-resources statement is used for declaring
resources that must be closed when they are no longer needed.
These resources are declared in the try block. Java 9 simplifies
the statement:

// Java 7 and 8
public void testMethod() throws IOException {
 FileWriter fileWriter = new FileWriter("\
\data.txt");
 try (FileWriter fw = fileWriter)
 {
 fw.write("Information...");
 }
}
// Java 9
public void testMethod() throws IOException {
 FileWriter fileWriter = new FileWriter("\
\data.txt");
 try (fileWriter)
 {
 f1.write("Information...");
 }
}

Any resource that implements the AutoClosable interface may
be used with the try-with-resources statement.

The multi-catch Clause
The multi-catch clause is used to allow for multiple exception
arguments in one catch clause:

boolean isTest = false;
public void testMethod() {
 try {

82 | Chapter 7: Exception Handling

 if (isTest) {
 throw new IOException();
 } else {
 throw new SQLException();
 }
 } catch (IOException | SQLException e) {
 e.printStackTrace();
 }
}

The Exception Handling Process
Here are the steps to the exception handling process:

1. An exception is encountered, which results in an excep‐
tion object being created.

2. A new exception object is thrown.
3. The runtime system looks for code to handle the excep‐

tion, beginning with the method in which the exception
object was created. If no handler is found, the runtime
environment traverses the call stack (the ordered list of
methods) in reverse looking for an exception handler. If
the exception is not handled, the program exits and a
stack trace is automatically output.

4. The runtime system hands the exception object off to an
exception handler to handle (catch) the exception.

Defining Your Own Exception Class
Programmer-defined exceptions should be created when those
other than the existing Java exceptions are necessary. In gen‐
eral, the Java exceptions should be reused wherever possible:

• To define a checked exception, the new exception class
must extend the Exception class, directly or indirectly.

The Exception Handling Process | 83

• To define an unchecked exception, the new exception
class must extend the RuntimeException class, directly or
indirectly.

• To define an unchecked error, the new error class must
extend the Error class.

User-defined exceptions should have at least two constructors
—a constructor that does not accept any arguments and a con‐
structor that does:

public class ReportException extends Exception {
 public ReportException () {}
 public ReportException (String message, int
 reportId) {
 ...
 }
}

If catching an exception and throwing a more specific excep‐
tion, it is wise to always capture the base exception.

Printing Information About Exceptions
The methods in the Throwable class that provide information
about thrown exceptions are getMessage(), toString, and
printStackTrace(). In general, one of these methods should be
called in the catch clause handling the exception. Programmers
can also write code to obtain additional useful information
when an exception occurs (i.e., the name of the file that was not
found).

The getMessage() Method
The getMessage() method returns a detailed message string
about the exception:

try {
 new FileReader("file.js");
} catch (FileNotFoundException fnfe) {

84 | Chapter 7: Exception Handling

 System.err.println(fnfe.getMessage());
}

The toString() Method
This toString() method returns a detailed message string
about the exception, including its class name:

try {
 new FileReader("file.js");
} catch (FileNotFoundException fnfe) {
 System.err.println(fnfe.toString());
}

The printStackTrace() Method
This printStackTrace() method returns a detailed message
string about the exception, including its class name and a stack
trace from where the error was caught, all the way back to
where it was thrown:

try {
 new FileReader("file.js");
} catch (FileNotFoundException fnfe) {
 fnfe.printStackTrace();
}

The following is an example of a stack trace. The first line con‐
tains the contents returned when the toString() method is
invoked on an exception object. The remainder shows the
method calls, beginning with the location where the exception
was thrown and going all the way back to where it was caught
and handled:

java.io.FileNotFoundException: file.js (The system
cannot find the file specified)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.(init)
 (FileInputSteam.java:106)
 at java.io.FileInputStream.(init)
 (FileInputSteam.java:66)
 at java.io.FileReader(init)(FileReader.java:41)

Printing Information About Exceptions | 85

 at EHExample.openFile(EHExample.java:24)
 at EHExample.main(EHExample.java:15)

TIP

Java 9 introduces a Stack-Walking API that allows easy fil‐
tering of and lazy access to the information in stack traces.

86 | Chapter 7: Exception Handling

CHAPTER 8

Java Modifiers

Modifiers, which are Java keywords, may be applied to classes,
interfaces, constructors, methods, and data members.

Table 8-1 lists the Java modifiers and their applicability. Note
that private and protected classes are allowed, but only as inner
or nested classes. Reference Chapter 21 for accessibility details
relative to Java 9.

Table 8-1. Java modifiers

Modifier Class Interface Constructor Method Data member

Access modifiers

package-private Yes Yes Yes Yes Yes

private No No Yes Yes Yes

protected No No Yes Yes Yes

public Yes Yes Yes Yes Yes

Other modifiers

abstract Yes Yes No Yes No

final Yes No No Yes Yes

native No No No Yes No

strictfp Yes Yes No Yes No

87

Modifier Class Interface Constructor Method Data member

static No No No Yes Yes

synchronized No No No Yes No

transient No No No No Yes

volatile No No No No Yes

Inner classes may also use the private or protected access
modifiers. Local variables may only use one modifier: final.

Access Modifiers
Access modifiers define the access privileges of classes, inter‐
faces, constructors, methods, and data members. Access modi‐
fiers consist of public, private, and protected. If no modifier
is present, the default access of package-private is used.

Table 8-2 provides details on visibility when access modifiers
are used.

Table 8-2. Access modifiers and their visibility

Modifier Visibility

package-
private

The default package-private limits access from within the
package.

private The private method is accessible from within its class.
The private data member is accessible from within its class
or interface (Java 9). It can be indirectly accessed through
methods (i.e., getter and setter methods).

protected The protected method is accessible from within its package,
and also from outside its package by subclasses of the class
containing the method.
The protected data member is accessible within its package,
and also from outside its package by subclasses of the class
containing the data member.

88 | Chapter 8: Java Modifiers

Modifier Visibility

public The public modifier allows access from anywhere, even
outside of the package in which it was declared. Note that
interfaces are public by default.

Other (Nonaccess) Modifiers
Table 8-3 contains the nonaccess Java modifiers and their
usage.

Table 8-3. Nonaccess Java modifiers

Modifier Usage

abstract An abstract class is a class that is declared with the keyword
abstract. It cannot be simultaneously declared with final.
Interfaces are abstract by default and do not have to be declared
abstract.
An abstract method is a method that contains only a signature
and no body. If at least one method in a class is abstract, then the
enclosing class is abstract. It cannot be declared final, native,
private, static, or synchronized.

default A default method, a.k.a. defender method, allows for the
creation of a default method implementation in an interface.

final A final class cannot be extended.
A final method cannot be overridden.
A final data member is initialized only once and cannot be
changed. A data member that is declared static final is set
at compile time and cannot be changed.

native A native method is used to merge other programming
languages such as C and C++ code into a Java program. It
contains only a signature and no body. It cannot be used
simultaneously with strictfp.

Other (Nonaccess) Modifiers | 89

Modifier Usage

static Both static methods and static variables are accessed through
the class name. They are used for the whole class and all
instantiations from that class.
A static data member is accessed through the class name. Only
one static data member exists, no matter how many instances of
the class exist.

strictfp A strictfp class will follow the IEEE 754-1985 floating-point
specification for all of its floating-point operations.
A strictfp method has all expressions in the method as FP-
strict. Methods within interfaces cannot be declared strictfp.
It cannot be used simultaneously with the native modifier.

synchron

ized

A synchronized method allows only one thread to execute the
method block at a time, making it thread safe. Statements can
also be synchronized.

transi

ent

A transient data member is not serialized when the class is
serialized. It is not part of the persistent state of an object.

volatile A volatile data member informs a thread, both to get the
latest value for the variable (instead of using a cached copy) and to
write all updates to the variable as they occur.

Modifiers Encoding
Modifiers applied to classes and members can be retrieved with
Class.getModifiers() and Member.getModifiers(), respec‐
tively. The modifiers are encoded, and can be decoded with
Modifier.toString(value):

// Modifiers used on the HashMap class
Class c = new HashMap().getClass();
String modifiers = Modifier.toString(c.getModifi
ers());
System.out.println("Class Modifier(s) = " + modi
fiers);
$ Class Modifier(s) = public

// Modifiers used on the Hashmap isEmpty

90 | Chapter 8: Java Modifiers

// member/method
Member m = new HashMap().getClass().getDeclaredMe
thod("isEmpty");
String modifiers = Modifier.toString(m.getModifi
ers());
System.out.println("Method Modifier(s) = " + modi
fiers);
$ Method Modifier(s) = public

Modifiers Encoding | 91

PART II
Platform

CHAPTER 9

Java Platform, Standard Edition

The Java Platform, Standard Edition (SE), includes the Java
Runtime Environment (JRE) and its encompassing Java Devel‐
opment Kit (JDK; see Chapter 10), the Java Programming Lan‐
guage, Java Virtual Machines (JVMs), tools/utilities, and the
Java SE API libraries. A variety of platforms are available
including Windows, macOS, Linux, and Solaris.

Common Java SE API Libraries
Java SE 9 API standard libraries are provided within packages
(and modules). Each package is made up of classes and/or
interfaces. An abbreviated list of commonly used packages is
represented here to demonstrate the capabilities of the API.
They are listed outside of the module ordering in JDK 9.

Java SE provides the JavaFX runtime libraries from Java SE 7
update 6 and JavaFX 2.2 onwards. JavaFX has replaced the
Swing API as the primary client UI library for Java SE.

Language and Utility Libraries
java.lang

Language support: system/math methods, fundamental
types, strings, threads, and exceptions

95

http://download.java.net/java/jdk9/docs/api/
http://bit.ly/1gvdiNC

java.lang.annotation

Annotation framework: metadata library support

java.lang.instrument

Program instrumentation: agent services to instrument
JVM programs

java.lang.invoke

Dynamic Language Support: supported by core classes
and VM

java.lang.management

Java Management Extensions API: JVM monitoring and
management

java.lang.module

Module descriptors and configurations support

java.lang.ref

Reference-object classes: interaction support with the GC

java.lang.reflect

Reflective information about classes and objects

java.util

Utilities: collections, event model, date/time, and interna‐
tional support

java.util.concurrent

Concurrency utilities: executors, queues, timing, and syn‐
chronizers

java.util.concurrent.atomic

Atomic toolkit: lock-free thread-safe programming on sin‐
gle variables

java.util.concurrent.locks

Locking framework: locks and conditions

java.util.function

Functional interfaces: provides target types for lambda
expressions and method references

96 | Chapter 9: Java Platform, Standard Edition

java.util.jar

Java Archive file format: reading and writing

java.util.logging

Logging: failures, errors, performance issues, and bugs

java.util.prefs

User and system preferences: retrieval and storage

java.util.regex

Regular expressions: char sequences matched to patterns

java.util.stream

Streams: functional-style operations on streams of ele‐
ments

java.util.zip

ZIP and GZIP file formats: reading and writing

Base Libraries
java.beans

Beans: components based on JavaBeans, long-term persis‐
tence

java.beans.beancontext

Bean context: containers for beans, run environments

java.io

Input/output: through data streams, the filesystem, and
serialization

java.math

Mathematics: extra large integer and decimal arithmetic

java.net

Networking: TCP, UDP, sockets, and addresses

java.nio

High performance I/O: buffers, memory-mapped files

java.nio.channels

Channels for I/O: selectors for nonblocking I/O

Common Java SE API Libraries | 97

java.nio.charset

Character sets: translation between bytes and Unicode

java.nio.file

File support: files, file attributes, filesystems

java.nio.file.attribute

File and filesystem attribute support

java.text

Text utilities: text, dates, numbers, and messages

java.time

Time: dates, times, instants, and durations

java.time.chrono

Time: calendar systems

java.time.format

Time: printing and parsing

java.time.temporal

Time: access using fields, units, and adjusters

java.time.zone

Time: support for time zones and their rules

javax.annotation

Annotation types: library support

javax.management

JMX API: application configuration, statistics, and state
changes

javax.net

Networking: socket factories

javax.net.http

High level HTTP and WebSocket API

javax.net.ssl

Secured sockets layer: error detection, data encryption/
authentication

98 | Chapter 9: Java Platform, Standard Edition

javax.tools

Program invoked tool interfaces: compilers, file managers

Integration Libraries
java.sql

Structured Query Language (SQL): access and processing
data source information

javax.jws

Java web services: supporting annotation types

javax.jws.soap

Java web services: SOAP bindings and message parameters

javax.naming

Naming services: Java Naming and Directory Interface
(JNDI)

javax.naming.directory

Directory services: JNDI operations for directory-stored
objects

javax.naming.event

Event services: JNDI event notification operations

javax.naming.ldap

Lightweight Directory Access Protocol v3: operations and
controls

javax.script

Scripting language support: integration, bindings, and
invocations

javax.sql

SQL: database APIs and server-side capabilities

javax.sql.rowset.serial

Serializable mappings: between SQL types and data types

javax.sql.rowset

Java Database Connectivity (JDBC) Rowset: standard
interfaces

Common Java SE API Libraries | 99

javax.transactions.xa

XA Interface: transaction and resource manager contracts
for JTA

Miscellaneous User Interface Libraries
javax.accessibility

Accessibility technology: assistive support for UI compo‐
nents

javax.imageio

Java image I/O: image file content description (metadata,
thumbnails)

javax.print

Print services: formatting and job submissions

javax.print.attribute

Java Print Services: attributes and attribute set collecting

javax.print.attribute.standard

Standard attributes: widely used attributes and values

javax.print.event

Printing events: services and print job monitoring

javax.sound.midi

Sound: I/O, sequencing, and synthesis of MIDI Types
0 and 1

javax.sound.sampled

Sound: sampled audio data (AIFF, AU, and WAV formats)

JavaFX User Interface Library
javafx.animation

Transition-based animation

javafx.application

Application life cycle

javafx.beans

Generic form of observability

100 | Chapter 9: Java Platform, Standard Edition

javafx.beans.binding

Binding characteristics

javafx.beans.property

Read-only and writable properties

javafx.beans.property.adapter

Property adapter

javafx.beans.value

Reading and writing

javafx.collections

JavaFX collection utilities

javafx.concurrent

JavaFX concurrent task

javafx.embed.swing

Swing API application integration

javafx.embed.swt

SWT API application integration

javafx.event

Event framework (e.g., delivery and handling)

javafx.fxml

Markup language (e.g., loading an object hierarchy)

javafx.geometry

Two-dimensional geometry

javafx.scene

Base classes: core Scene Graph API

javafx.scene.canvas

Canvas classes: an immediate mode style of rendering API

javafx.scene.chart

Chart components: data visualization

javafx.scene.control

User interface controls: specialized nodes in the scene
graph

Common Java SE API Libraries | 101

javafx.scene.control.cell

Cell-related classes (i.e., noncore classes)

javafx.scene.effect

Graphical filter effects: supporting scene graph nodes

javafx.scene.image

Loading and displaying images

javafx.scene.input

Mouse and keyboard input event handling

javafx.scene.layout

Interface layout classes

javafx.scene.media

Audio and video classes

javafx.scene.paint

Colors and gradients support (e.g., fill shapes and back‐
grounds)

javafx.scene.shape

Two-dimensional shapes

javafx.scene.text

Fonts and text node rendering

javafx.scene.transform

Transformation: rotating, scaling, shearing, and transla‐
tion for affine objects

javafx.scene.web

Web content: loading and displaying web content

javafx.stage

Stage: top-level container

javafx.util

Utilities and helper classes

javafx.util.converter

String converters

102 | Chapter 9: Java Platform, Standard Edition

Remote Method Invocation (RMI) and CORBA
Libraries
java.rmi

Remote Method Invocation: invokes objects on remote
JVMs

java.rmi.activation

RMI object activation: activates persistent remote object’s
references

java.rmi.dgc

RMI distributed garbage collection (DGC): remote object
tracking from client

java.rmi.registry

RMI registry: remote object that maps names to remote
objects

java.rmi.server

RMI server side: RMI transport protocol, Hypertext
Transfer Protocol (HTTP) tunneling, stubs

javax.rmi

Remote Method Invocation (RMI): Remote Method Invo‐
cation Internet InterORB Protocol (RMI-IIOP), Java
Remote Method Protocol (JRMP), Java Remote Method
Protocol (JRMP)

javax.rmi.CORBA

Common Object Request Broker Architecture (CORBA)
support: portability APIs for RMI-IIOP and Object
Request Brokers (ORBs)

javax.rmi.ssl

Secured Sockets Layer (SSL): RMI client and server sup‐
port

org.omg.CORBA

OMG CORBA: CORBA to Java mapping, ORBs

Common Java SE API Libraries | 103

org.omg.CORBA_2_3

OMG CORBA additions: further Java Compatibility Kit
(JCK) test support

Security Libraries
java.security

Security: algorithms, mechanisms, and protocols

java.security.cert

Certifications: parsing, managing Certificate Revocation
Lists (CRLs) and certification paths

java.security.interfaces

Security interfaces: Rivest, Shamir, and Adelman (RSA)
and Digital Signature Algorithm (DSA) generation

java.security.spec

Specifications: security keys and algorithm parameters

javax.crypto

Cryptographic operations: encryption, keys, MAC genera‐
tions

javax.crypto.interfaces

Diffie-Hellman keys: defined in RSA Laboratories’ PKCS
#3

javax.crypto.spec

Specifications: for security key and algorithm parameters

javax.security.auth

Security authentication and authorization: access controls
specifications

javax.security.auth.callback

Authentication callback support: services interaction with
apps

javax.security.auth.kerberos

Kerberos network authentication protocol: related utility
classes

104 | Chapter 9: Java Platform, Standard Edition

javax.security.auth.login

Login and configuration: pluggable authentication frame‐
work

javax.security.auth.x500

X500 Principal and X500 Private Credentials: subject stor‐
age

javax.security.sasl

Simple Authentication and Security Layer (SASL): SASL
authentication

org.ietf.jgss

Java Generic Security Service (JGSS): authentication, data
integrity

Extensible Markup Language (XML) Libraries
javax.xml

Extensible Markup Language (XML): constants

javax.xml.bind

XML runtime bindings: unmarshalling, marshalling, and
validation

javax.xml.catalog

XML catalog support: XML Catalogs OASIS Standard
V1.1, 7 October 2005

javax.xml.crypto

XML cryptography: signature generation and data encryp‐
tion

javax.xml.crypto.dom

XML and Document Object Model (DOM): cryptographic
implementations

javax.xml.crypto.dsig

XML digital signatures: generating and validating

javax.xml.datatype

XML and Java data types: mappings

Common Java SE API Libraries | 105

javax.xml.namespace

XML namespaces: processing

javax.xml.parsers

XML parsers: Simple API for XML (SAX) and DOM pars‐
ers

javax.xml.soap

XML; SOAP messages: creation and building

javax.xml.transform

XML transformation processing: no DOM or SAX
dependency

javax.xml.transform.dom

XML transformation processing: DOM-specific API

javax.xml.transform.sax

XML transformation processing: SAX-specific API

javax.xml.transform.stax

XML transformation processing: Streaming API for XML
(StAX) API

javax.xml.validation

XML validation: verification against XML schema

javax.xml.ws

Java API for XML Web Services (JAX-WS): core APIs

javax.xml.ws.handler

JAX-WS message handlers: message context and handler
interfaces

javax.xml.ws.handler.soap

JAX-WS: SOAP message handlers

javax.xml.ws.http

JAX-WS: HTTP bindings

javax.xml.ws.soap

JAX-WS: SOAP bindings

106 | Chapter 9: Java Platform, Standard Edition

javax.xml.xpath

XPath expressions: evaluation and access

org.w3c.dom

W3C’s DOM: file content and structure access and
updates

org.xml.sax

XML.org’s SAX: file content and structure access and
updates

Common Java SE API Libraries | 107

CHAPTER 10

Development Basics

The Java Runtime Environment (JRE) provides the backbone
for running Java applications. The Java Development Kit (JDK)
provides all of the components and necessary resources to
develop Java applications.

Java Runtime Environment
The JRE is a collection of software that allows a computer sys‐
tem to run a Java application. The software collection consists
of the Java Virtual Machines (JVMs) that interpret Java byte‐
code into machine code, standard class libraries, user interface
toolkits, and a variety of utilities.

Java Development Kit
The JDK is a programming environment for compiling, debug‐
ging, and running Java applications and Java Beans. The JDK
includes the JRE with the addition of the Java programming
language and additional development tools and tool APIs. Ora‐
cle’s JDK supports macOS, Solaris, Linux (Oracle, Suse, Red
Hat, Ubuntu, and Debian [on ARM]), and Microsoft Windows
(Server 2008 R2, Server 2012, Vista, Windows 7, Windows 8,
and Windows 10). Additional operating-system and special-

109

purpose JVMs, JDKs, and JREs are freely available from Java
Virtual Machine.

Table 10-1 lists versions of the JDK provided by Oracle. Down‐
load the most recent version at Oracle’s website, where you can
also download older versions.

Table 10-1. Java Development Kits

Java Development Kits Codename Release Packages Classes

Java SE 9 with JDK 1.9.0 --- 2017 ~225 ~4,413

Java SE 8 with JDK 1.8.0 --- 2014 217 4,240

Java SE 7 with JDK 1.7.0 Dolphin 2011 209 4,024

Java SE 6 with JDK 1.6.0 Mustang 2006 203 3,793

Java 2 SE 5.0 with JDK 1.5.0 Tiger 2004 166 3,279

Java 2 SE with SDK 1.4.0 Merlin 2002 135 2,991

Java 2 SE with SDK 1.3 Kestrel 2000 76 1,842

Java 2 with SDK 1.2 Playground 1998 59 1,520

Development Kit 1.1 --- 1997 23 504

Development Kit 1.0 Oak 1996 8 212

Java SE version 7 reached Oracle’s End of Public Updates in
April 2015.

Java Program Structure
Java source files are created with text editors such as jEdit,
TextPad, Vim, Notepad++, or one provided by a Java Integra‐
ted Development Environment (IDE). The source files must
have the .java extension and the same name as the public class
name contained in the file. If the class has package-private
access, the class name can differ from the filename.

Therefore, a source file named HelloWorld.java would corre‐
spond to the public class named HelloWorld, as represented in

110 | Chapter 10: Development Basics

http://bit.ly/16mhI6k
http://bit.ly/16mhI6k
http://bit.ly/16mhImY
http://bit.ly/16mhHzq

the following example (all nomenclature in Java is case-
sensitive):

 1 package com.oreilly.tutorial;
 2 import java.time.*;
 3 // import java.time.ZoneId;;
 4 // import java.time.Clock;
 5
 6 public class HelloWorld
 7 {
 8 public static void main(String[] args)
 9 {
 10 ZoneId zi = ZoneId.systemDefault();
 11 Clock c = Clock.system(zi);
 12 System.out.print("From: "
 13 + c.getZone().getId());
 13 System.out.println(", \"Hello, World!\"");
 14 }
 15 }

In line 1, the class HelloWorld is contained in the package
com.oreilly.tutorial. This package name implies that com/
oreilly/tutorial is a directory structure that is accessible on the
class path for the compiler and the runtime environment. Pack‐
aging source files is optional but recommended to avoid con‐
flicts with other software packages.

In line 2, the import declaration allows the JVM to search for
classes from other packages. Here, the asterisk makes all classes
in the java.time package available. However, you should
always explicitly include classes so that dependencies are docu‐
mented, including the statements import java.time. ZoneId;
and import java.time.Clock;, which as you see are currently
commented out and would have been a better choice than sim‐
ply using import java.time.*;. Note that import statements
are not needed because you can include the full package name
before each class name; however, this is not an ideal way to
code.

Java Program Structure | 111

TIP

The java.lang package is the only Java package imported
by default.

In line 6, there must be only one top-level public class defined
in a source file. In addition, the file may include multiple top-
level package-private classes.

Looking at line 8, we note that Java applications must have a
main method. This method is the entry point into a Java pro‐
gram, and it must be defined. The modifiers must be declared
public, static, and void. The arguments parameter provides a
string array of command-line arguments.

TIP

Container-managed application components (e.g., Spring
and Java EE) are not dependent on a main method.

In lines 12 and 13, the statements provide calls to the Sys
tem.out.print and System.out.println methods to print out
the supplied text to the console window.

Command-Line Tools
A JDK provides several command-line tools that aid in soft‐
ware development. Commonly used tools include the compiler,
launcher/interpreter, archiver, and documenter. Find a com‐
plete list of tools at Oracle.com.

Java Compiler
The Java compiler translates Java source files into Java byte‐
code. The compiler creates a bytecode file with the same name

112 | Chapter 10: Development Basics

http://bit.ly/16mhHQ3

as the source file but with the .class extension. Here is a list of
commonly used compiler options:

javac [-options] [source files]

Compiles Java source files.

javac HelloWorld.java

Compiles the program to produce HelloWorld.class.

javac –cp /dir/Classes/ HelloWorld.java

The –cp and –classpath options are equivalent and iden‐
tify classpath directories to utilize at compile time.

javac –d /opt/hwapp/classes HelloWorld.java

The –d option places generated class files into a preexist‐
ing, specified directory. If there is a package definition, the
path will be included (e.g., /opt/hwapp/classes/com/oreilly/
tutorial/).

javac –s /opt/hwapp/src HelloWorld.java

The –s option places generated source files into a preexist‐
ing, specified directory. If there is a package definition, the
path will be further expanded (e.g., /opt/hwapp/src/com/
oreilly/tutorial/).

javac –-release 8 HelloWorld.java

The –release option compiles for a specific VM version,
supporting Java 6, 7, 8, and 9.

javac –source 1.8 HelloWorld.java

The –source option provides source compatibility with the
given release, allowing unsupported keywords to be used
as identifiers.

javac –X

The –X option prints a synopsis of nonstandard options.
For example, –Xlint:unchecked enables recommended
warnings, which prints out further details for unchecked
or unsafe operations.

Command-Line Tools | 113

TIP

Even though –Xlint and other -X options are commonly
found among Java compilers, the –X options are not stand‐
ardized, so their availability across JDKs should not be
assumed.

javac –version

The –version option prints the version of the javac utility.

javac –help

The –help option, or the absence of arguments, will cause
the help information for the javac command to be printed.

See Chapter 21 to see how javac has been extended with addi‐
tional parameters for handling modules.

Java Interpreter
The Java interpreter handles the program execution, including
launching the application. Here is a list of commonly used
interpreter options:

java [-options] class [arguments…]

Runs the interpreter.

java [-options] –jar jarfile [arguments…]

Executes a JAR file.

java HelloWorld

Starts the JRE, loads the class HelloWorld, and runs the
main method of the class.

java com.oreilly.tutorial.HelloWorld

Starts the JRE, loads the HelloWorld class under the com/
oreilly/tutorial/ directory, and runs the main method of
the class.

114 | Chapter 10: Development Basics

java [-cp | -classpath] /tmp/Classes HelloWorld

The –cp and –classpath options identify classpath directo‐
ries to use at runtime.

java –Dsun.java2d.ddscale=true HelloWorld

The –D option sets a system property value. Here, hard‐
ware accelerator scaling is turned on.

java [–ea | enableassertions] HelloWorld

The –ea and –enableassertions options enable Java asser‐
tions. Assertions are diagnostic code that you insert in
your application. For more information on assertions, see
“Assert Statement” on page 70.

java [-da | disableassertions] HelloWorld

The –da and –disableassertions options disable Java
assertions.

java –client HelloWorld

The –client option selects the client virtual machine to
enhance interactive applications such as GUIs.

java –server HelloWorld

The –server option selects the server virtual machine to
enhance overall system performance.

java –splash:images/world.gif HelloWorld

The –splash option accepts an argument to display a
splash screen of an image prior to running the application.

java –version

The –version option prints the version of the Java inter‐
preter, the JRE, and the virtual machine.

java –help

The –help option, or the absence of arguments, will cause
the help information for the java command to be printed.

javaw <classname>

On the Windows OS, javaw is equivalent to the java com‐
mand but without a console window. The Linux equiva‐
lent is accomplished by running the java command as a

Command-Line Tools | 115

background process with the ampersand: java <class

name> &.

Java Program Packager
The Java Archive (JAR) utility is an archiving and compression
tool, typically used to combine multiple files into a single file
called a JAR file. JAR consists of a ZIP archive containing a
manifest file (JAR content describer) and optional signature
files (for security). Here is a list of commonly used JAR
options, along with examples:

jar [options] [jar-file] [manifest-files] [entry-point]

[-C dir] files…

This is the usage for the JAR utility.

jar cf files.jar HelloWorld.java com/oreilly/tutorial/

HelloWorld.class

The c option allows for the creation of a JAR file. The f
option allows for the specification of the filename. In this
example, HelloWorld.java and com/oreilly/tutorial/Hello‐
World.class are included in the JAR file.

jar tfv files.jar

The t option is used to list the table of contents of the JAR
file. The f option is used to specify the filename. The v
option lists the contents in verbose format.

jar xf files.jar

The x option allows for the extraction of the contents of
the JAR file. The f option allows for the specification of
the filename.

TIP

Several other ZIP tools (e.g., 7-Zip, WinZip, and Win-
RAR) can work with JAR files.

116 | Chapter 10: Development Basics

JAR File Execution
JAR files can be created so that they are executable by specify‐
ing the file within the JAR where the “main” class resides, so the
Java interpreter knows which main() method to utilize. Here is
a complete example of making a JAR file executable:

1. Create a HelloWorld.java file from the HelloWorld class at
the beginning of this chapter.

2. Create the subfolders com/oreilly/tutorial/.
3. Run javac HelloWorld.

Use this command to compile the program and place the
HelloWorld.class file into the com/oreilly/tutorial/ direc‐
tory.

4. Create a file named Manifest.txt in the directory where the
package is located. In the file, include the following line
specifying where the main class is located:

Main-Class: com.oreilly.tutorial.HelloWorld

5. Execute jar cmf Manifest.txt helloWorld.jar com/

oreilly/tutorial.
Use this command to create a JAR file that adds the Mani‐
fest.txt contents to the manifest file, MANIFEST.MF. The
manifest file is also used to define extensions and various
package-related data:

Manifest-Version: 1.0
Created-By: 1.7.0 (Oracle Corporation)
Main-Class: com.oreilly.tutorial.HelloWorld

6. Run jar tf HelloWorld.jar.
Use this command to display the contents of the JAR file:

META-INF/
META-INF/MANIFEST.MF
com/
com/oreilly/
com/oreilly/tutorial
com/oreilly/tutorial/HelloWorld.class

Command-Line Tools | 117

7. Finally, run java –jar HelloWorld.jar.
Use this command to execute the JAR file.

Classpath
The classpath (i.e., primary focus through Java 8) is an argu‐
ment set used by several command-line tools that tells the JVM
where to look for user-defined classes and packages. Classpath
conventions differ among operating systems.

On Microsoft Windows, directories within paths are delineated
with backslashes, and the semicolon is used to separate the
paths:

-classpath \home\XClasses\;dir\YClasses\;.

On POSIX-compliant operations systems (e.g., Solaris, Linux,
and macOS), directories within paths are delineated with for‐
ward slashes, and a colon is used to separate the paths:

-classpath /home/XClasses/:dir/YClasses/:.

TIP

The period represents the current working directory.

The CLASSPATH environmental variable can also be set to tell the
Java compiler where to look for class files and packages:

rem Windows
set CLASSPATH=classpath1;classpath2

Linux, Solaris, macOS
(May vary due to shell specifics)
setenv CLASSPATH classpath1:classpath2

118 | Chapter 10: Development Basics

CHAPTER 11

Memory Management

Java has automatic memory management, which is also known
as garbage collection (GC). GC’s principal tasks are allocating
memory, maintaining referenced objects in memory, and
recovering memory from objects that no longer have references
to them.

Garbage Collectors
Since the J2SE 5.0 release, the Java HotSpot Virtual Machine
performs self-tuning. This process includes the attempted best-
fit GC and related settings at startup, based on platform infor‐
mation, as well as ongoing GC tuning.

Although the initial settings and runtime tuning for GC are
generally successful, there are times when you may wish to
change or tune your GC based on the following goals:

Maximum pause time goal
The maximum pause time goal is the desired time that the
GC pauses the application to recover memory.

Throughput goal
The throughput goal is the desired application time, or the
time spent outside of GC.

119

The following sections provide an overview of various garbage
collectors, their main focus, and situations in which they
should be used. “Command-Line Options” on page 122
explains how to acquire information for manually selecting the
GC.

Serial Collector
The serial collector is performed via a single thread on a single
CPU. When this GC thread is run, the execution of the applica‐
tion will pause until the collection is complete.

This collection is best used when your application has a small
data set, up to approximately 100 MB, and does not have a
requirement for low pause times.

Parallel Collector
The parallel collector, also known as the throughput collector,
can be performed with multiple threads across several CPUs.
Using these multiple threads significantly speeds up GC.

This collector is best used when there are no pause time con‐
straints and application performance is the most important
aspect of your program.

Parallel Compacting Collector
The parallel compacting collector is similar to the parallel col‐
lector, except for refined algorithms that reduce collection
pause times.

This collector is best used for applications that do have pause
time constraints.

TIP

The parallel compacting collector is available beginning
with J2SE 5.0 update 6.

120 | Chapter 11: Memory Management

Concurrent Mark-Sweep Collector
The Concurrent Mark-Sweep (CMS), also known as the low-
latency collector, implements algorithms to handle large collec‐
tions that might warrant long pauses.

This collector is best used when response times take prece‐
dence over throughput times and GC pauses.

Garbage-First (G1) Collector
The Garbage-First collector, also known as the G1 collector, is
used for multiprocessor machines with large memories. This
server-style GC meets pause time goals with high probability,
while achieving high throughput. Whole-heap operations (e.g.,
global marking) are performed concurrently with the applica‐
tion threads, which prevents interruptions proportional to the
heap or live-data size.

TIP

Java SE 9 has made G1 the default garbage collector on 32-
bit and 64-bit server configurations. G1 has been available
since Java SE 7 update 4

Memory Management Tools
Although tuning your GC may prove to be successful, it is
important to note that the GCs do not provide guarantees, only
goals; however, any improvement gained on one platform may
be undone on another. It is best to find the source of the prob‐
lem with memory management tools, including profilers.

Table 11-1 lists such tools. All are command-line applications,
except Heap/CPU Profiling Tool (HPROF). HPROF is dynami‐
cally loaded from a command-line option.

Memory Management Tools | 121

Table 11-1. JDK memory management tools

Resource Description

jvisualvm Troubleshooting tool packaged in Java 8 but external to 9

jconsole Java Management Extensions (JMX)-compliant monitoring tool

jinfo Configuration information tool

jstat JVM statistics monitoring tool

jstatd jstat with remote tools attachment

jmc Profiling, monitoring, and diagnostics tools

jmap Memory map tool

jstack Stack trace tool

jcmd Diagnostic command request tool

jdb Java debugger tool

jps Instrumented JVMs listing tool

TIP

Consider exploring Oracle Java SE Advanced, which
includes Java Mission Control (i.e., jmc) and Java Flight
Recorder. These are enterprise-grade, production-savvy
diagnostics and monitoring tools. Java Flight Recorder
requires a commercial license for use in production.

Command-Line Options
The following GC-related command-line options can be passed
into the Java interpreter to interface with the functionality of
the Java HotSpot Virtual Machine:

-XX:+PrintGC or -verbose:gc
Prints out general information about the heap and garbage
collection at each collection. GC logging uses the unified
JVM logging framework as of Java 9.

122 | Chapter 11: Memory Management

-XX:+PrintCommandLineFlags -version

Prints out heap settings, applied -XX values, and version
information.

-XX:+PrintGCDetails

Prints out detailed information about the heap and
garbage collection during each collection.

-XX:+PrintGCTimeStamps

Adds timestamps to the output from PrintGC or Print-
GCDetails.

-XX:+UseSerialGC

Enables the serial collector.

-XX:+UseParallelGC

Enables the parallel collector for scavenges.

-XX:+UseParallelOldGC

Enables the parallel collector for full collectors.

-XX:+UseParNewGC

Enables the parallel young generation collector. Can be
used with the concurrent low pause collector. Removed in
Java 9.

-XX:+UseConcMarkSweepGC

Enables the concurrent low pause CMS collector. Can be
used with the parallel young generation collector.
Removed in Java 9.

-XX:+UseG1GC

Enables the Garbage-First collector.

-XX:+DisableExplicitGC

Disables the explicit GC (System.gc()) methods.

-XX:ParallelGCThreads=[threads]

Defines the number of GC threads. The default correlates
to the number of CPUs. This option applies to the CMS
and parallel collectors.

Command-Line Options | 123

-XX:MaxGCPauseMillis=[milliseconds]

Provides a hint to the GC for the desired maximum pause
time goal in milliseconds. This option applies to the paral‐
lel collectors.

-XX:+GCTimeRatio=[__value__]

Provides a hint to the GC for the desired ratio of GC time
to application time (1 / (1 + [value])) for the desired
throughput goal. The default value is 99. This means that
the application will run 99% of the time, and therefore the
GC will run 1% of the time. This option applies to the par‐
allel collectors.

-XX:+CMSIncrementalMode

Enables incremental mode for the CMS collector only.
Used for machines with one or two processors. Removed
in Java 9.

-XX:+CMSIncrementalPacing

Enables automatic packing for the CMS collector only.

-XX:MinHeapFreeRatio=[percent]

Sets the minimum target percent for the proportion of free
space to total heap size. The default percent is 40.

-XX:MaxHeapFreeRatio=[percent]

Sets the maximum target percent for the proportion of
free space to total heap size. The default percent is 70.

-Xms[bytes]

Overrides the minimum heap size in bytes. Default: 1/64
of the system’s physical memory up to 1 GB. Initial heap
size is 4 MB for machines that are not server-class.

-Xmx[bytes]

Overrides the maximum heap size in bytes. Default:
Smaller than 1/4 physical memory or 1 GB. Maximum
heap size is 64 MB for machines that are not server-class.

-Xmn[bytes]

The size of the heap for the young generation.

124 | Chapter 11: Memory Management

-XX:OnError=[command_line_tool [__options__]]

Used to specify user-supplied scripts or commands when a
fatal error occurs.

-XX+AggressiveOpts

Enables performance optimizations that are expected to be
on by default in future releases.

For a more complete list of options, visit Java HotSpot VM
Options. Java 9 validates command-line flags to avoid crashes.

TIP

Byte values include [k|K] for kilobytes, [m|M] for mega‐
bytes, and [g|G] for gigabytes.

Note that –XX options are not guaranteed to be stable. They are
not part of the Java Language Specification (JLS) and are
unlikely to be available in exact form and function from other
third-party JVMs, if at all.

Resizing the JVM Heap
The heap is an area in memory that stores all objects created by
executing a Java program. You should resize the heap only if it
needs to be sized larger than the default heap size. If you are
having performance problems or seeing the Permanent Gener‐
ation (PermGen) error message java.lang.OutOfMemoryError,
you may be running out of heap space.

Metaspace
Native memory is used for the representation of class metadata,
creating a memory space called Metaspace. Metaspace is the
sucessor to the PermGen model. Because of this, the JDK 8
HotSpot JVM will no longer see any PermGen OutOfMemoryEr
ror occurring. JVisualVM, prior to Java 9, provides analysis

Resizing the JVM Heap | 125

http://bit.ly/16mhL27
http://bit.ly/16mhL27

support to the Metaspace if any memory leaks should occur.
JVisualVM is now VisualVM maintained on GitHub.

Interfacing with the GC
Interfacing with the garbage collector can be done through
explicit invocation or via overriding the finalize method.

Explicit Garbage Collection
The garbage collector can be explicitly requested to be invoked
with System.gc() or Runtime.getRuntime().gc(). However,
explicit invocation of the GC should generally be avoided
because it could force full collections (when a minor collection
may suffice), thereby unnecessarily increasing the pause times.
The request for System.gc() is not always fulfilled as the JVM
can and does ignore it at times.

Finalization
Every object has a finalize() method inherited from class
Object. The garbage collector, prior to destroying the object,
can invoke this method, but this invocation is not guaranteed.
The default implementation of the finalize() method does
nothing, and although it is not recommended, the method can
be overridden:

public class TempClass extends SuperClass {
 ...
 // Performed when garbage collection occurs
 protected void finalize() throws Throwable {
 try {
 /* Desired functionality goes here */
 } finally {
 // Optionally, you can call the
 // finalize method of the superclass
 super.finalize(); // From SuperClass
 }
 }
}

126 | Chapter 11: Memory Management

https://visualvm.github.io/

The following example destroys an object:

public class MainClass {
 public static void main(String[] args) {
 TempClass t = new TempClass();
 // Object has references removed
 t = null;
 // GC made available
 System.gc();
 }
}

Interfacing with the GC | 127

CHAPTER 12

Basic Input and Output

Java provides several classes for basic input and output, a few of
which are discussed in this chapter. The basic classes can be
used to read and write to files, sockets, and the console. They
also provide for working with files and directories and for seri‐
alizing data. Java I/O classes throw exceptions, including the
IOException, which needs to be handled.

Java I/O classes also support formatting data, compressing and
decompressing streams, encrypting and decrypting, and com‐
municating between threads using piped streams.

The new I/O (NIO) APIs that were introduced in Java 1.4 pro‐
vide additional I/O capabilities, including buffering, file lock‐
ing, regular expression matching, scalable networking, and
buffer management.

NIO.2 was introduced with Java SE 7 and is covered in the next
chapter. NIO.2 extends NIO and provides a new filesystem
API.

Standard Streams in, out, and err
Java uses three standard streams: in, out, and err.

129

System.in is the standard input stream that is used to get data
from the user to a program:

byte teamName[] = new byte[200];
int size = System.in.read(teamName);
System.out.write(teamName,0,size);

System.out is the standard output stream that is used to output
data from a program to the user:

System.out.print("Team complete");

System.err is the standard error stream that is used to output
error data from a program to the user:

System.err.println("Not enough players");

Note that each of these methods can throw an IOException.

TIP

The Console class, introduced in Java SE 6, provides an
alternative to the standard streams for interacting with the
command-line environment.

Class Hierarchy for Basic Input and Output
Figure 12-1 shows a class hierarchy for commonly used read‐
ers, writers, and input and output streams. Note that I/O
classes can be chained together to get multiple effects.

The Reader and Writer classes are used for reading and writing
character data (text). The InputStream and OutputStream

classes are typically used for reading and writing binary data.

130 | Chapter 12: Basic Input and Output

Figure 12-1. Common readers, writers, and input/output streams

File Reading and Writing
Java provides facilities to easily read and write to system files.

Reading Character Data from a File
To read character data from a file, use a BufferedReader. A File
Reader can also be used, but it will not be as efficient if there is
a large amount of data. The call to readLine() reads a line of
text from the file. When reading is complete, call close() on
the BufferedReader:

BufferedReader bReader = new BufferedReader
 (new FileReader("Master.txt"));
String lineContents;

File Reading and Writing | 131

while ((lineContents = bReader.readLine())
 != null) {...}
bReader.close();

Use NIO 2.0’s Files.newBufferedReader(<path>,<charset>);
to avoid the implicit assumption about the file encoding.

Reading Binary Data from a File
To read binary data, use a DataInputStream. The call to read()
reads the data from the input stream. Note that if only an array
of bytes will be read, you should just use InputStream:

DataInputStream inStream = new DataInputStream
 (new FileInputStream("Team.bin"));
inStream.read();

If a large amount of data is going to be read, you should also
use a BufferedInputStream to make reading the data more effi‐
cient:

DataInputStream inStream = new DataInputStream
(new BufferedInputStream(new FileInput
Stream(team)));

Binary data that has been read can be put back on the stream
using methods in the PushbackInputStream class:

unread(int i); // pushback a single byte
unread(byte[] b); // pushback array of bytes

Writing Character Data to a File
To write character data to a file, use a PrintWriter. Call the
close() method of class PrintWriter when writing to the out‐
put stream is complete:

String in = "A huge line of text";
PrintWriter pWriter = new PrintWriter
 (new FileWriter("CoachList.txt"));
pWriter.println(in);
pWriter.close();

132 | Chapter 12: Basic Input and Output

Text can also be written to a file using a FileWriter if there is
only a small amount of text to be written. Note that if the file
passed into the FileWriter does not exist, it will automatically
be created:

FileWriter fWriter = new
 FileWriter("CoachList.txt");
fWriter.write("This is the coach list.");
fWriter.close();

Writing Binary Data to a File
To write binary data, use a DataOutputStream. The call to write
Int() writes an array of integers to the output stream:

File positions = new File("Positions.bin");
int[] pos = {0, 1, 2, 3, 4};
DataOutputStream outStream = new DataOutputStream
 (new FileOutputStream(positions));
for (int i = 0; i < pos.length; i++)
 outStream.writeInt(pos[i]);

If a large amount of data is going to be written, then also use a
BufferedOutputStream:

DataOutputStream outStream = new DataOutputStream
(new BufferedOutputStream(positions));

Socket Reading and Writing
Java provides facilities to read and write to system sockets with
ease.

Reading Character Data from a Socket
To read character data from a socket, connect to the socket and
then use a BufferedReader to read the data:

Socket socket = new Socket("127.0.0.1", 64783);
InputStreamReader reader = new InputStreamReader
 (socket.getInputStream());
BufferedReader bReader

Socket Reading and Writing | 133

 = new BufferedReader(reader);
String msg = bReader.readLine();

BufferedReader introduced the lines() method in Java SE 8,
relative to the new Stream API. This method returns a Stream,
the elements of which are lines lazily read from the contexted
BufferedReader.

Reading Binary Data from a Socket
To read binary data, use a DataInputStream. The call to read()
reads the data from the input stream. Note that the Socket class
is located in java.net:

Socket socket = new Socket("127.0.0.1", 64783);
DataInputStream inStream = new DataInputStream
 (socket.getInputStream());
inStream.read();

If a large amount of data is going to be read, then also use a
BufferedInputStream to make reading the data more efficient:

DataInputStream inStream = new DataInputStream
(new BufferedInputStream(socket.getInputStream()));

Writing Character Data to a Socket
To write character data to a socket, make a connection to a
socket and then create and use a PrintWriter to write the char‐
acter data to the socket:

Socket socket = new Socket("127.0.0.1", 64783);
PrintWriter pWriter = new PrintWriter
 (socket.getOutputStream());
pWriter.println("Dad, we won the game.");

Writing Binary Data to a Socket
To write binary data, use a DataOutputStream. The call to
write() writes the data to an output stream:

byte positions[] = new byte[10];
Socket socket = new Socket("127.0.0.1", 64783);

134 | Chapter 12: Basic Input and Output

DataOutputStream outStream = new DataOutputStream
 (socket.getOutputStream());
outStream.write(positions, 0, 10);

If a large amount of data is going to be written, then also use a
BufferedOutputStream:

DataOutputStream outStream = new DataOutputStream
(new BufferedOutputStream(socket.getOutput
Stream()));

Serialization
To save a version of an object (and all related data that would
need to be restored) as an array of bytes, the class of this object
must implement the interface Serializable. Note that data
members declared transient will not be included in the serial‐
ized object. Use caution when using serialization and deseriali‐
zation, as changes to a class—including moving the class in the
class hierarchy, deleting a field, changing a field to nontransient
or static, and using different JVMs—can all impact restoring an
object.

The ObjectOutputStream and ObjectInputStream classes can be
used to serialize and deserialize objects.

Serialize
To serialize an object, use an ObjectOutputStream:

ObjectOutputStream s = new
 ObjectOutputStream(new FileOutput
Stream("p.ser"));

An example of serializing follows:

ObjectOutputStream oStream = new
 ObjectOutputStream(new
 FileOutputStream("PlayerDat.ser"));
oStream.writeObject(player);
oStream.close();

Serialization | 135

Deserialize
To deserialize an object (i.e., turn it from a flattened version of
an object to an object), use an ObjectInputStream; then read in
the file and cast the data into the appropriate object:

ObjectInputStream d = new
 ObjectInputStream(new FileInputStream("p.ser"));

An example of deserializing follows:

ObjectInputStream iStream = new
 ObjectInputStream(new
 FileInputStream("PlayerDat.ser"));
Player p = (Player) iStream.readObject();

Java 9 allows incoming streams of object-serialization data to
be filtered for security and robustness.

Zipping and Unzipping Files
Java provides classes for creating compressed ZIP and GZIP
files. ZIP archives multiple files, whereas GZIP archives a single
file.

Use ZipOutputStream to zip files and ZipInputSteam to unzip
them:

ZipOutputStream zipOut = new ZipOutputStream(
 new FileOutputStream("out.zip"));
String[] fNames = new String[] {"f1", "f2"};
for (int i = 0; i < fNames.length; i++) {
ZipEntry entry = new ZipEntry(fNames[i]);
FileInputStream fin =
 new FileInputStream(fNames[i]);
try {
 zipOut.putNextEntry(entry);
 for (int a = fin.read();
 a != -1; a = fin.read()) {
 zipOut.write(a);
 }
 fin.close();

136 | Chapter 12: Basic Input and Output

 zipOut.close();
 } catch (IOException ioe) {...}
}

To unzip a file, create a ZipInputStream, call its getNextEntry()
method, and read the file into an OutputStream.

Compressing and Uncompressing GZIP Files
To compress a GZIP file, create a new GZIPOutputStream, pass it
the name of a file with the .gzip extension, and then transfer the
data from the GZIPOutputStream to the FileInputStream.

To uncompress a GZIP file, create a GZipInputStream, create a
new FileOutputStream, and read the data into it.

Zipping and Unzipping Files | 137

CHAPTER 13

New I/O API (NIO.2)

NIO.2 was introduced with JDK 7 to provide enhanced file I/O
support and access to the default filesystem. NIO.2 is supported
by the java.nio.file and java.nio.file.attribute packages.
The NIO.2 API is also known as JSR 203: More New I/O APIs
for the Java Platform. Popular interfaces that are used from the
API are Path, PathMatcher, FileVisitor, and WatchService.
Popular classes that are used from the API are Paths and Files.

The Path Interface
The Path interface can be used to operate on file and directory
paths. This class is an upgraded version of the java.io.File
class. The following code demonstrates the use of some of the
methods of the Path interface and the Paths class for acquiring
information:

Path p = Paths.get("\\opt\\jpgTools\\README.txt");
System.out.println(p.getParent()); // \opt\jpgTools
System.out.println(p.getRoot()); // \
System.out.println(p.getNameCount()); // 3
System.out.println(p.getName(0)); // opt
System.out.println(p.getName(1)); // jpgTools
System.out.println(p.getFileName()); // README.txt
System.out.println(p.toString()); // The full path

139

The Path class also provides additional features, some of which
are detailed in Table 13-1.

Table 13-1. Path interface capabilities

Path method Capability

path.toUri() Converts a path to a URI object

path.resolve(Path) Combines two paths together

path.relativize(Path) Constructs a path from one location to another

path.compareTo(Path) Compares two paths against each other

The Files Class
The Files class can be used to create, check, delete, copy, or
move a file or directory. The following code demonstrates some
commonly used methods of the Files class:

// Create directory
Path dirs = Paths.get("\\opt\\jpg\\");
Files.createDirectories(dirs);
// Instantiate path objects
Path target1 = Paths.get("\\opt\\jpg\
\README1.txt");
Path p1 = Files.createFile(target1);
Path target2 = Paths.get("\\opt\\jpg\
\README2.txt");
Path p2 = Files.createFile(target2);
// Check file attributes
System.out.println(Files.isReadable(p1));
System.out.println(Files.isReadable(p2));
System.out.println(Files.isExecutable(p1));
System.out.println(Files.isSymbolicLink(p1));
System.out.println(Files.isWritable(p1));
System.out.println(Files.isHidden(p1));
System.out.println(Files.isSameFile(p1, p2));

// Delete, move, and copy examples
Files.delete(p2);
System.out.println(Files.move(p1, p2));

140 | Chapter 13: New I/O API (NIO.2)

System.out.println(Files.copy(p2, p1));
Files.delete(p1);
Files.delete(p2);

The move method accepts the varargs enumeration using
REPLACE_EXISTING or ATOMIC_MOVE. REPLACE_EXISTING moves
the file, even if it already exists. ATOMIC_MOVE ensures that any
process watching the directory will be able to access the com‐
plete file.

The copy method accepts the varargs enumeration with
REPLACE_EXISTING, COPY_ATTRIBUTES, or NOFOLLOW_LINKS.
REPLACE_EXISTING copies the file, even if it already exists.
COPY_ATTRIBUTES copies the file attributes. NOFOLLOW_LINKS

copies the links, but not the targets.

The lines, list, walk, and find methods have been added to
the Files class relative to the Stream API. The lines method
lazily reads a stream of lines. The list method lazily lists direc‐
tory entries, and walk recursively traverses the entries. The find
method lazily provides Path by searching for files in a file tree
rooted at a given file node.

Additional Features
The NIO 2.0 API also provides the following features, which
are good to know for the job. Questions about these features
are also included on the Oracle Certified Professional Java SE 7
Programmer Exam. These items are not covered here, as they
are more suited to a tutorial style guide or resource:

• The ability to watch a directory using the WatchService
interface.

• The ability to recursively access directory trees using the
FileVisitor interface.

• The ability to find files using the PathMatcher functional
interface.

Additional Features | 141

Since PathMatcher is a functional interface, it may be used with
a lambda expression:

PathMatcher matcher = (Path p) -> {
 // returns boolean
 return (p.toString().contains("World"));
};
Path path1 = FileSystems.getDefault().getPath(
 "\\tmp\\Hello.java");
Path path2 = FileSystems.getDefault().getPath(
 "\\tmp\\HelloWorld.java");
System.out.print("Matches: "
 + matcher.matches(path1) + ", "
 + matcher.matches(path2));

$ Matches: false, true

TIP

Consider using the new java.nio.file.Directory

Stream functional interface with the enhanced for loop to
iterate over a directory.

142 | Chapter 13: New I/O API (NIO.2)

CHAPTER 14

Concurrency

Threads in Java allow the use of multiple processors or multiple
cores in one processor to be more efficient. On a single pro‐
cessor, threads provide for concurrent operations such as over‐
lapping I/O with processing.

Java supports multithreaded programming features with the
Thread class and the Runnable interface.

Creating Threads
Threads can be created two ways, either by extending
java.lang.Thread or by implementing java.lang.Runnable.

Extending the Thread Class
Extending the Thread class and overriding the run() method
can create a threadable class. This is an easy way to start a
thread:

class Comet extends Thread {
 public void orbit() {
 System.out.println("orbiting");
 }
 public void run() {
 orbit();

143

 }
}

Comet halley = new Comet();
halley.start();

Remember that only one superclass can be extended, so a class
that extends Thread cannot extend any other superclass.

Implementing the Runnable Interface
Implementing the Runnable functional interface and defining
its run() method can also create a threadable class:

class Asteroid implements Runnable {
 public void orbit() {
 System.out.println("orbiting");
 }
 public void run() {
 orbit();
 }
}

Asteroid majaAsteroid = new Asteroid();
Thread majaThread = new Thread(majaAsteroid);
majaThread.start();

A single runnable instance can be passed to multiple thread
objects. Each thread performs the same task, as shown here
after the use of a lambda expression:

Runnable asteroid = () -> {
 System.out.println("orbiting");
};
Thread asteroidThread1 = new Thread(asteroid);
Thread asteroidThread2 = new Thread(asteroid);
asteroidThread1.start();
asteroidThread2.start();

144 | Chapter 14: Concurrency

Thread States
Enumeration Thread.state provides six thread states, as depic‐
ted in Table 14-1.

Table 14-1. Thread states

Thread state Description

NEW A thread that is created but not started

RUNNABLE A thread that is available to run

BLOCKED An “alive” thread that is blocked waiting for a monitor lock

WAITING An “alive” thread that calls its own wait() or join()
while waiting on another thread

TIMED_WAITING An “alive” thread that is waiting on another thread for a
specified period of time; sleeping

TERMINATED A thread that has completed

Thread Priorities
The valid range of priority values is typically 1 through 10, with
a default value of 5. Thread priorities are one of the least
portable aspects of Java, as their range and default values can
vary among Java Virtual Machines (JVMs). Using MIN_PRIOR
ITY, NORM_PRIORITY, and MAX_PRIORITY can retrieve priorities:

System.out.print(Thread.MAX_PRIORITY);

Lower-priority threads yield to higher-priority threads.

Common Methods
Table 14-2 contains common methods used for threads from
the Thread class.

Thread States | 145

Table 14-2. Thread methods

Method Description

getPriority() Returns the thread’s priority

getState() Returns the thread’s state

interrupt() Interrupts the thread

isAlive() Returns the thread’s alive status

isInterrupted() Checks for interruption of the thread

join() Causes the thread that invokes this method to wait for
the thread that this object represents to finish

setPrior

ity(int)

Sets the thread’s priority

start() Places the thread into a runnable state

Table 14-3 contains common methods used for threads from
the Object class.

Table 14-3. Methods from the Object class used for threads

Method Description

notify() Tells a thread to wake up and run

noti

fyAll()

Tells all threads that are waiting on a thread or resource to wake
up, and then the scheduler will select one of the threads to run

wait() Pauses a thread in a wait state until another thread calls
notify() or notifyAll()

TIP

Calls to wait() and notify() throw an Interrupted
Exception if called on a thread that has its interrupted flag
set to true.

146 | Chapter 14: Concurrency

Table 14-4 contains common static methods used for threads
from the Thread class (i.e., Thread.sleep(1000)).

Table 14-4. Static thread methods

Method Description

activeCount() Returns number of threads in the current thread’s group

currentTh

read()

Returns reference to the currently running thread

interrupted() Checks for interruption of the currently running thread

sleep(long) Blocks the currently running thread for +parameter+
number of milliseconds

yield() Pauses the current thread to allow other threads to run

Synchronization
The synchronized keyword provides a means to apply locks to
blocks and methods. Locks should be applied to blocks and
methods that access critically shared resources. These monitor
locks begin and end with opening and closing braces. Follow‐
ing are some examples of synchronized blocks and methods.

Object instance t with a synchronized lock:

synchronized (t) {
 // Block body
}

Object instance this with a synchronized lock:

synchronized (this) {
 // Block body
}

Method raise() with a synchronized lock:

// Equivalent code segment 1
synchronized void raise() {
 // Method body
}

Synchronization | 147

// Equivalent code segment 2
void raise() {
 synchronized (this) {
 // Method body
 }
}

Static method calibrate() with a synchronized lock:

class Telescope {
 synchronized static void calibrate() {
 // Method body
 }
}

TIP

A lock is also known as a monitor or mutex (mutually
exclusive lock).

The concurrent utilities provide additional means to apply and
manage concurrency.

Concurrent Utilities
Java 2 SE 5.0 introduced utility classes for concurrent program‐
ming. These utilities reside in the java.util.concurrent pack‐
age, and they include executors, concurrent collections, syn‐
chronizers, and timing utilities.

Executors
The class ThreadPoolExecutor, as well as its subclass Scheduled
ThreadPoolExecutor, implement the Executor interface to pro‐
vide configurable, flexible thread pools. Thread pools allow
server components to take advantage of the reusability of
threads.

148 | Chapter 14: Concurrency

The class Executors provides factory (object creator) methods
and utility methods. Of them, the following are supplied to cre‐
ate thread pools:

newCachedThreadPool()

Creates an unbounded thread pool that automatically
reuses threads

newFixedThreadPool(int nThreads)

Creates a fixed-size thread pool that automatically reuses
threads off a shared unbounded queue

newScheduledThreadPool(int corePoolSize)

Creates a thread pool that can have commands scheduled
to run periodically or on a specified delay

newSingleThreadExecutor()

Creates a single-threaded executor that operates off an
unbounded queue

newSingleThreadScheduledExecutor()

Creates a single-threaded executor that can have com‐
mands scheduled to run periodically or by a specified
delay

The following example demonstrates usage of the newFixed
ThreadPool factory method:

import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;

public class ThreadPoolExample {
 public static void main() {
 // Create tasks
 // (from 'class RTask implements Runnable')
 RTask t1 = new RTask("thread1");
 RTask t2 = new RTask("thread2");

 // Create thread manager
 ExecutorService threadExecutor =
 Executors.newFixedThreadPool(2);

Concurrent Utilities | 149

 // Make threads runnable
 threadExecutor.execute(t1);
 threadExecutor.execute(t2);

 // Shut down threads
 threadExecutor.shutdown();
 }
}

Concurrent Collections
Even though collection types can be synchronized, it is best to
use concurrent thread-safe classes that perform equivalent
functionality, as represented in Table 14-5.

Table 14-5. Collections and their thread-safe equivalents

Collection class Thread-safe equivalent

HashMap ConcurrentHashMap

TreeMap ConcurrentSkipListMap

TreeSet ConcurrentSkipListSet

Map subtypes ConcurrentMap

List subtypes CopyOnWriteArrayList

Set subtypes CopyOnWriteArraySet

PriorityQueue PriorityBlockingQueue

Deque BlockingDeque

Queue BlockingQueue

Synchronizers
Synchronizers are special-purpose synchronization tools.
Available synchronizers are listed in Table 14-6.

Table 14-6. Synchronizers

Synchronizer Description

Semaphore Maintains a set of permits

150 | Chapter 14: Concurrency

Synchronizer Description

CountDown

Latch

Implements waits against sets of operations being
performed

CyclicBarrier Implements waits against common barrier points

Exchanger Implements a synchronization point where threads can
exchange elements

Timing Utility
The TimeUnit enumeration is commonly used to inform time-
based methods how a given timing parameter should be evalu‐
ated, as shown in the following example:

// tyrLock (long time, TimeUnit unit)
if (lock.tryLock(15L, TimeUnit.DAYS)) {...}
 //15 days

Available TimeUnit enum constants are listed in Table 14-7.

Table 14-7. TimeUnit constants

Constants Unit def. Unit (sec) Abbreviation

NANOSECONDS 1/1000 µs .000000001 ns

MICROSECONDS 1/1000 ms .000001 µs

MILLISECONDS 1/1000 sec .001 ms

SECONDS sec 1 sec

MINUTES 60 sec 60 min

HOURS 60 min 3,600 hr

DAYS 24 hr 86,400 d

Concurrent Utilities | 151

CHAPTER 15

Java Collections Framework

The Java Collections Framework is designed to support numer‐
ous collections in a hierarchical fashion. It is essentially made
up of interfaces, implementations, and algorithms.

The Collection Interface
Collections are objects that group multiple elements and store,
retrieve, and manipulate those elements. The Collection inter‐
face is at the root of the collection hierarchy. Subinterfaces of
Collection include List, Queue, and Set. Table 15-1 shows
these interfaces and whether they are ordered or allow dupli‐
cates. The Map interface is also included in the table, as it is part
of the framework.

Table 15-1. Common collections

Interface Ordered Dupes Notes

List Yes Yes Positional access; element insertion control

Map Can be No (Keys) Unique keys; one value mapping max per key

Queue Yes Yes Holds elements; usually FIFO

Set Can be No Uniqueness matters

153

Implementations
Table 15-2 lists commonly used collection type implementa‐
tions, their interfaces, and whether or not they are ordered,
sorted, and/or contain duplicates.

Table 15-2. Collection type implementations

Implementations Interface Ordered Sorted Dupes Notes

ArrayList List Index No Yes Fast resizable
array

LinkedList List Index No Yes Doubly linked list

Vector List Index No Yes Legacy,
synchronized

HashMap Map No No No Key/value pairs

Hashtable Map No No No Legacy,
synchronized

LinkedHash

Map

Map Insertion,
last
access

No No Linked list/hash
table

TreeMap Map Balanced Yes No Red-black tree
map

Priority

Queue

Queue Priority Yes Yes Heap
implementation

HashSet Set No No No Fast access set

LinkedHash

Set

Set Insertion No No Linked list/hash
set

TreeSet Set Sorted Yes No Red-black tree set

154 | Chapter 15: Java Collections Framework

Collection Framework Methods
The subinterfaces of the Collection interface provide several
valuable method signatures, as shown in Table 15-3.

Table 15-3. Valuable subinterface methods

Method List params Set params Map params Returns

add index, element element n/a boolean

contains Object Object n/a boolean

containsKey n/a n/a key boolean

containsValue n/a n/a value boolean

get index n/a key Object

indexOf Object n/a n/a int

iterator none none n/a Iterator

keySet n/a n/a none Set

put n/a n/a key, value void

remove index or Object Object key void

size none none none int

Collection.stream() returns a sequential Stream with the con‐
text collection as its source. Collection.parallelStream()

returns a parallel Stream with the context collection as its
source.

Collections Class Algorithms
The Collections class, not to be confused with the Collection
interface, contains several valuable static methods (e.g., algo‐
rithms). These methods can be invoked on a variety of collec‐
tion types. Table 15-4 shows commonly used Collection class
methods, their acceptable parameters, and return values.

Collection Framework Methods | 155

Table 15-4. Collection class algorithms

Method Parameters Returns

addAll Collection <? super T>, T… boolean

max Collection, [Comparator] <T>

min Collection, [Comparator] <T>

disjoint Collection, Collection boolean

frequency Collection, Object int

asLifoQueue Deque Queue<T>

reverse List void

shuffle List void

copy List destination, List source void

rotate List, int distance void

swap List, int position, int position void

binarySearch List, Object int

fill List, Object void

sort List, Object, [Comparator] void

replaceAll List, Object oldValue, Object newValue boolean

newSetFromMap Map Set<E>

See Chapter 16 for more information on typed parameters
(e.g., <T>).

Algorithm Efficiencies
Algorithms and data structures are optimized for different rea‐
sons—some for random element access or insertion/deletion,
others for keeping things in order. Depending on your needs,
you may have to switch algorithms and structures.

Common collection algorithms, their types, and average time
efficiencies are shown in Table 15-5.

156 | Chapter 15: Java Collections Framework

Table 15-5. Algorithm efficiencies

Algorithms Concrete type Time

get, set ArrayList 0 (1)

add, remove ArrayList 0 (n)

contains, indexOf ArrayList 0 (n)

get, put, remove, containsKey HashMap 0 (1)

add, remove, contains HashSet 0 (1)

add, remove, contains LinkedHash

Set

0 (1)

get, set, add, remove (from either end) LinkedList 0 (1)

get, set, add, remove (from index) LinkedList 0 (n)

contains, indexOf LinkedList 0 (n)

peek Priority

Queue

0 (1)

add, remove Priority

Queue

0 (log n)

remove, get, put, containsKey TreeMap 0 (log n)

add, remove, contains TreeSet 0 (log n)

The Big O notation is used to indicate time efficiencies, where
n is the number of elements (see Table 15-6).

Table 15-6. Big O notation

Notation Description

0 (1) Time is constant, regardless of the number of elements.

0 (n) Time is linear to the number of elements.

0 (log n) Time is logarithmic to the number of elements.

0 (n log n) Time is linearithmic to the number of elements.

Algorithm Efficiencies | 157

Comparator Functional Interface
Several methods in the Collections class assume that the
objects in the collection are comparable. If there is no natural
ordering, a helper class can implement the Comparator func‐
tional interface to specify how the objects are to be ordered.
The code example here orders surnames by their generated
metaphone codes:

TIP

Take a look at the Metaphone Code Calculator written
with Java for a better understanding of metaphone codes.

import org.apache.commons.codec.language.Metaphone;
public class MetaphoneCode {
 private String metaphoneCode;
 public MetaphoneCode(String surname) {
 Metaphone m = new Metaphone();
 metaphoneCode = m.metaphone(surname) + "(" +
surname + ")";
 }
 public String getMetaphoneCode() {
 return metaphoneCode;
 }
 public void setMetaphoneCode(String metaphone
Code) {
 this.metaphoneCode = metaphoneCode;
 }
 public String toString() {
 return this.metaphoneCode;
 }
}

import java.util.Comparator;
public class SurnameSort implements Comparator <Met
aphoneCode> {
 @Override

158 | Chapter 15: Java Collections Framework

http://gliesians.com/metaphone-calculator.faces

 public int compare (MetaphoneCode mc1, Metaphone
Code mc2) {
 return mc1.getMetaphoneCode().compareTo(mc2.get
MetaphoneCode());
 }
}

import java.util.ArrayList;
import java.util.Collections;
public class SurnameApp {
 public static void main(String[] args) {
 MetaphoneCode m1 = new Metaphone
Code("Whitede");
 MetaphoneCode m2 = new MetaphoneCode("White
head");
 MetaphoneCode m3 = new MetaphoneCode("Whit
ted");
 MetaphoneCode m4 = new MetaphoneCode("Whits
head");
 MetaphoneCode m5 = new MetaphoneCode("White");
 ArrayList<MetaphoneCode> mlist = new ArrayList
<>();
 mList.add(m1);
 mList.add(m2);
 mList.add(m3);
 mList.add(m4);
 mList.add(m5);
 System.out.println("Unsorted: " + mList);
 SurnameSort cSort = new SurnameSort();
 Collections.sort(mList, cSort);
 System.out.println("Sorted: " + mList);
 }
}

$ Unsorted: [WTT (Whitede), WTHT(Whitehead), WTT
(Whitted), WTXT (Whitshead), WT (White)]
$ Sorted: [WT (White), WTHT (Whitehead), WTT
(Whitede), WTT (Whitted), WTXT (Whitshead)]

The SurnameSort class implemented the Comparator interface
that was used by the cSort instance. Optionally, an anonymous

Comparator Functional Interface | 159

inner class could have been created to avoid the work of creat‐
ing the seperate SurnameSort class:

// Replace: SurnameSort cSort = new SurnameSort();
Comparator<MetaphoneCode> cSort = new Compara
tor<MetaphoneCode>() {
 public int compare(MetaphoneCode mc1, Metaphone
Code mc2) {
 return mc1.getMetaphoneCode().compareTo(mc2.get
MetaphoneCode());
 }
};

Since Comparator is a functional interface, a lambda expression
could have been used to make the code more readable:

Comparator<MetaphoneCode> cSort = (MetaphoneCode
mc1, MetaphoneCode mc2)
 -> mc1.getMetaphoneCode().compareTo(mc2.getMeta
phoneCode());

Class names do not need to be explicitly stated in the argument
list, as the lambda expressions have knowledge of the target
types. That is, notice (mc1, mc2) versus (MetaphoneCode mc1,
MetaphoneCode mc2):

// Example 1
Comparator <MetaphoneCode> cSort = (mc1, mc2)
 -> mc1.getMetaphoneCode().compareTo(mc2.getMeta
phoneCode());
Collections.sort(mList, cSort);

// Example 2
Collections.sort(mList, (mc1, mc2)
 -> mc1.getMetaphoneCode().compareTo(mc2.getMetapho
neCode()));

160 | Chapter 15: Java Collections Framework

Convenience Factory Methods
JDK 9 introduces new convenience factory methods that create
compact unmodifiable collection (e.g., List, Set, Map) instan‐
ces. Therefore, multiple lines of code can be refactored into
one:

// Pre Java 9 immutable list instantiation
List<String> haplogroups = new ArrayList<>();
haplogroups.add("I2");
haplogroups.add("I2B");
haplogroups.add("IJ");
haplogroups = Collections.unmodifiableList(hap
logroups);

// Refactored Java 9 immutable list instantiation
List <String> haplogroups = List.of("I2","I2B",
"IJ");

Convenience Factory Methods | 161

CHAPTER 16

Generics Framework

The Generics Framework, introduced in Java SE 5.0 and upda‐
ted in Java SE 7 and 8, provides support that allows for the
parameterization of types. Generics over Primitive Types is tar‐
geted for Java SE 10.

The benefit of generics is the significant reduction in the
amount of code that needs to be written when developing a
library. Another benefit is the elimination of casting in many
situations.

The classes of the Collections Framework, the class Class, and
other Java libraries have been updated to include generics.

See Java Generics and Collections by Philip Wadler and Maurice
Naftalin (O’Reilly, 2009) for comprehensive coverage of the
Generics Framework.

Generic Classes and Interfaces
Generic classes and interfaces parameterize types by adding a
type parameter within angular brackets (i.e., <T>). The type is
instantiated at the place of the brackets.

Once instantiated, the generic parameter type is applied
throughout the class for methods that have the same type

163

http://bit.ly/java-generics-collections

specified. In the following example, the add() and get() meth‐
ods use the parameterized type as their parameter argument
and return types, respectively:

public interface List <E> extends Collection<E>{
 public boolean add(E e);
 E get(int index);
}

When a variable of a parameterized type is declared, a concrete
type (i.e., <Integer>) is specified to be used in place of the type
parameter (i.e., <E>).

Subsequently, the need to cast when retrieving elements from
things such as collections would be eliminated:

// Collection List/ArrayList with generics
List<Integer> iList = new ArrayList<Integer>();
iList.add(1000);
// Explicit cast not necessary
Integer i = iList.get(0);

// Collection List/ArrayList without generics
List iList = new ArrayList();
iList.add(1000);
// Explicit cast is necessary
Integer i = (Integer)iList.get(0);

The diamond operator <> was introduced in Java SE 7 to sim‐
plify the creation of generic types, by reducing the need for
additional typing:

// Without the use of the diamond operator
List<Integer> iList1 = new ArrayList<Integer>();
// With the use of the diamond operator
List<Integer> iList2 = new ArrayList<>();

164 | Chapter 16: Generics Framework

Constructors with Generics
Constructors of generic classes do not require generic type
parameters as arguments:

// Generic class
public class SpecialList <E> {
 // Constructor without arguments
 public SpecialList() {...}
 public SpecialList(String s) {...}
}

A generic object of this class could be instantiated as such:

SpecialList<String> b = new
 SpecialList<String>();

If a constructor for a generic class includes a parameter type,
such as a String, the generic object could be instantiated as
such:

SpecialList<String> b = new
 SpecialList<String>("Joan Marie");

Substitution Principle
As specified in Java Generics and Collections (O’Reilly), the
substitution principle allows subtypes to be used where their
supertype is parameterized:

• A variable of a given type may be assigned a value of any
subtype of that type.

• A method with a parameter of a given type may be
invoked with an argument of any subtype of that type.

Byte, Short, Integer, Long, Float, Double, BigInteger, and Big
Decimal are all subtypes of class Number:

// List declared with generic Number type
List<Number> nList = new ArrayList<Number>();
nList.add((byte)27); // Byte (Autoboxing)

Constructors with Generics | 165

http://shop.oreilly.com/product/9780596527754.do

nList.add((short)30000); // Short
nList.add(1234567890); // Integer
nList.add((long)2e62); // Long
nList.add((float)3.4); // Float
nList.add(4000.8); // Double
nList.add(new BigInteger("9223372036854775810"));
nList.add(new BigDecimal("2.1e309"));

// Print Number's subtype values from the list
for(Number n : nList)
 System.out.println(n);

Type Parameters, Wildcards, and Bounds
The simplest declaration of a generic class is with an unboun‐
ded type parameter, such as T:

public class GenericClass <T> {...}

Bounds (constraints) and wildcards can be applied to the type
parameter(s), as shown in Table 16-1.

Table 16-1. Type parameters, bounds, and wildcards

Type parameters Description

<T> Unbounded type; same as <T extends Object>

<T,P> Unbounded types; <T extends Object> and
<P extends Object>

<T extends P> Upper bounded type; a specific type T that is a
subtype of type P

<T extends P & S> Upper bounded type; a specific type T that is a
subtype of type P and that implements type S

<T super P> Lower bounded type; a specific type T that is a
supertype of type P

<?> Unbounded wildcard; any object type, same as
<? extends Object>

<? extends P> Bounded wildcard; some unknown type that is a
subtype of type P

166 | Chapter 16: Generics Framework

Type parameters Description

<? extends P & S> Bounded wildcard; some unknown type that is a
subtype of type P and that implements type S

<? super P> Lower bounded wildcard; some unknown type that is
a supertype of type P

The Get and Put Principle
As also specified in Java Generics and Collections, the get and
put principle details the best usage of extends and super wild‐
cards:

• Use an extends wildcard when you get only values out of
a structure.

• Use a super wildcard when you put only values into a
structure.

• Do not use a wildcard when you place both get and put
values into a structure.

The extends wildcard has been used in the method declaration
of the addAll() method of the List collection, as this method
gets values from a collection:

public interface List <E> extends Collection<E>{
 boolean addALL(Collection <? extends E> c)
}

List<Integer> srcList = new ArrayList<Integer>();
srcList.add(0);
srcList.add(1);
srcList.add(2);
// Using addAll() method with extends wildcard
List<Integer> destList = new ArrayList<Integer>();
destList.addAll(srcList);

The super wildcard has been used in the method declaration of
the addAll() method of the class Collections, as the method
puts values into a collection:

The Get and Put Principle | 167

public class Collections {
 public static <T> boolean addAll
 (Collection<? super T> c, T... elements){...}
}

// Using addAll() method with super wildcard
List<Number> sList = new ArrayList<Number>();
sList.add(0);
Collections.addAll(sList, (byte)1, (short)2);

Generic Specialization
A generic type can be extended in a variety of ways.

Given the parameterized abstract class AbstractSet <E>:

class SpecialSet<E> extends AbstractSet<E> {…}

The SpecialSet class extends the AbstractSet class with
the parameter type E. This is the typical way to declare
generalizations with generics.

class SpecialSet extends AbstractSet<String> {…}

The SpecialSet class extends the AbstractSet class with
the parameterized type String.

class SpecialSet<E,P> extends AbstractSet<E> {…}

The SpecialSet class extends the AbstractSet class with
the parameter type E. Type P is unique to the SpecialSet
class.

class SpecialSet<E> extends AbstractSet {…}

The SpecialSet class is a generic class that would parame‐
terize the generic type of the AbstractSet class. Because
the raw type of the AbstractSet class has been extended
(as opposed to generic), the parameterization cannot
occur. Compiler warnings will be generated upon method
invocation attempts.

class SpecialSet extends AbstractSet {…}

The SpecialSet class extends the raw type of the Abstract
Set class. Because the generic version of the AbstractSet

168 | Chapter 16: Generics Framework

class was expected, compiler warnings will be generated
upon method invocation attempts.

Generic Methods in Raw Types
Static methods, nonstatic methods, and constructors that are
part of nongeneric or raw type classes can be declared as
generic. A raw type class is the nongeneric counterpart class to
a generic class.

For generic methods of nongeneric classes, the method’s return
type must be preceded with the generic type parameter (e.g.,
<E>). However, there is no functional relationship between the
type parameter and the return type, unless the return type is of
the generic type:

public class SpecialQueue {
 public static <E> boolean add(E e) {...}
 public static <E> E peek() {...}
}

When calling the generic method, the generic type parameter is
placed before the method name. Here, <String> is used to spec‐
ify the generic type argument:

SpecialQueue.<String>add("White Carnation");

Generic Methods in Raw Types | 169

CHAPTER 17

The Java Scripting API

The Java Scripting API, introduced in Java SE 6, provides sup‐
port that allows Java applications and scripting languages to
interact through a standard interface. This API is detailed in
JSR 223, “Scripting for the Java Platform,” and is contained in
the javax.script package found within the java.scripting
module.

Scripting Languages
Several scripting languages have script engine implementations
available that conform to JSR 223. See “Scripting Languages
Compatible with JSR-223” on page 242 in Appendix B for a
subset of these supported languages.

Script Engine Implementations
The ScriptEngine interface provides the fundamental methods
for the API. The ScriptEngineManager class works in conjunc‐
tion with this interface and provides a means to establish the
desired scripting engines to be utilized.

171

Embedding Scripts into Java
The scripting API includes the ability to embed scripts and/or
scripting components into Java applications.

The following example shows two ways to embed scripting
components into a Java application: (1) the scripting engine’s
eval method reads in the scripting language syntax directly,
and (2) the scripting engine’s eval method reads the syntax in
from a file:

import java.io.FileReader;
import java.nio.file.Path;
import java.nio.file.Paths;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class HelloWorld {
 public static void main(String[] args) throws
 Exception {
 ScriptEngineManager m
 = new ScriptEngineManager();
 // Sets up Nashorn JavaScript Engine
 ScriptEngine e = m.getEngineByExtension("js");
 // Nashorn JavaScript syntax
 e.eval("print ('Hello, ')");
 // world.js contents: print('World!\n');
 Path p1 = Paths.get("/opt/jpg2/world.js");
 e.eval(new FileReader(p1.toString()));
 }
}

$ Hello, World!

Invoking Methods of Scripting Languages
Scripting engines that implement the optional Invocable inter‐
face provide a means to invoke (execute) scripting language
methods that the engine has already evaluated (interpreted).

172 | Chapter 17: The Java Scripting API

The following Java-based invokeFunction() method calls the
evaluated Nashorn scripting language function greet(), which
we have created:

ScriptEngineManager m = new ScriptEngineManager();
ScriptEngine e = m.getEngineByExtension("js");
e.eval("function greet(message) {print(message)}");
Invocable i = (Invocable) e;
i.invokeFunction("greet", "Greetings from Mars!");

$ Greetings from Mars!

Accessing and Controlling Java Resources from
Scripts
The Java Scripting API provides the ability to access and con‐
trol Java resources (objects) from within evaluated scripting
language code. The script engines use key-value bindings.

Here, the evaluated Nashorn JavaScript makes use of the name
Key/world binding and reads in (and prints out) a Java data
member from the evaluated scripting language:

ScriptEngineManager m = new ScriptEngineManager();
ScriptEngine e = m.getEngineByExtension("js");
e.put("nameKey", "Gliese 581 c");
e.eval("var w = nameKey");
e.eval("print(w)");

$ Gliese 581 c

By utilizing the key-value bindings, you can make modifica‐
tions to the Java data members from the evaluated scripting
language:

ScriptEngineManager m = new ScriptEngineManager();
ScriptEngine e = m.getEngineByExtension("js");
List<String> worldList = new ArrayList<>();
worldList.add ("Earth");
worldList.add ("Mars");
e.put("nameKey", worldList);
e.eval("var w = nameKey.toArray();");

Script Engine Implementations | 173

e.eval(" nameKey.add (\"Gliese 581 c\")");
System.out.println(worldList);

$ [Earth, Gliese 581 c]

Setting Up Scripting Languages and Engines
Before using the Scripting API, you must obtain and set up the
desired script engine implementations. Many scripting lan‐
guages include the JSR-223 scripting engine with their distribu‐
tion, either in a separate JAR or in their main JAR, as in the
case of JRuby.

Scripting Language Setup
Here are the steps for setting up the scripting language:

1. Set up the scripting language on your system. “Scripting
Languages Compatible with JSR-223” on page 242 in
Appendix B contains a list of download sites for some sup‐
ported scripting languages. Follow the associated installa‐
tion instructions.

2. Invoke the script interpreters to ensure that they function
properly. There is normally a command-line interpreter,
as well as one with a graphical user interface.

For JRuby (as an example), the following commands should be
validated to ensure proper setup:

jruby [file.rb] //Command line file
jruby.bat //Windows batch file

Scripting Engine Setup
Here are the steps for setting up the scripting engine:

1. Determine if your scripting language distribution includes
the JSR-223 scripting API engine in its distribution. If it is
included, steps 2 and 3 are not necessary.

174 | Chapter 17: The Java Scripting API

2. Download the scripting engine file from the engine’s web‐
site.

3. Place the downloaded file into a directory and extract it to
expose the necessary JAR. Note that the optional software
(opt) directory is commonly used as an installation direc‐
tory.

TIP

To install and configure certain scripting languages on a
Windows machine, you may need a minimal POSIX-
compliant shell, such as MSYS or Cygwin.

Scripting Engine Validation
Validate the scripting engine setup by compiling and/or inter‐
preting the scripting language libraries and the scripting engine
libraries. The following is an older version of JRuby where the
engine was available externally:

javac -cp c:\opt\jruby-1.0\lib\jruby.jar;c:\opt\
jruby-engine.jar;. Engines

You can perform additional testing with short programs. The
following application produces a list of the available scripting
engine names, language version numbers, and extensions. Note
that this updated version of JRuby includes JSR-223 support in
its primary JAR file; therefore, the engine does not need to be
separately called out on the class path:

$ java -cp c:\opt\jruby-9.1.6.0\lib\jruby.jar;.
 EngineReport

import java.util.List;
import javax.script.ScriptEngineManager;
import javax.script.ScriptEngineFactory;

Setting Up Scripting Languages and Engines | 175

public class EngineReport {
 public static void main(String[] args) {
 ScriptEngineManager m =
 new ScriptEngineManager();
 List<ScriptEngineFactory> s =
 m.getEngineFactories();
 // Iterate through list of factories
 for (ScriptEngineFactory f: s) {
 // Release name and version
 String en = f.getEngineName();
 String ev = f.getEngineVersion();
 System.out.println("Engine: "
 + en + " " + ev);
 // Language name and version
 String ln = f.getLanguageName();
 String lv = f.getLanguageVersion();
 System.out.println("Language: "
 + ln + " " + lv);
 // Extensions
 List<String> l = f.getExtensions();
 for (String x: l) {
 System.out.println("Extensions: " + x);
 }
 }
 }
}

$ Engine: JSR 223 JRuby Engine 9.1.6.0
$ Language: ruby jruby 9.1.6.0
$ Extensions: rb

$ Engine: Oracle Nashorn 9-ea
$ Language: ECMAScript ECMA - 262 Edition 5.1
$ Extensions: js

176 | Chapter 17: The Java Scripting API

TIP

Nashorn JavaScript is a scripting API packaged with Java
SE 8 onwards. The command and argument jjs -script
ing invokes the Nashorn engine with shell scripting
features.

Setting Up Scripting Languages and Engines | 177

CHAPTER 18

Date and Time API

The Date and Time API (JSR 310) provides support for date,
time, and calendar calculations. The reference implementation
(RI) for this JSR is the ThreeTen Project and was provided for
inclusion into JDK 1.8. The Date and Time API is relative to
the java.time package and the following subpackages:
java.time.chrono, java.time.format, java.time.temporal, and
java.time.zone.

JSR 310 achieved several design goals:

• A fluent API that is easy to read with chained methods
• A thread-safe design with immutable value classes
• An extensible API with calendar systems, adjusters, and

queries
• Expectable behavior where each method’s behavior is

clear and well defined

The Date and Time API uses the International Organization for
Standardization date and time data exchange model (ISO
8601). The ISO 8601 standard is formally called “Data elements
and interchange formats—Information interchange—Repre‐
sentation of dates and times.” The standard is based on the Gre‐
gorian calendar. Regional calendars are also supported.

179

http://www.threeten.org/

See Appendix A for more information on fluent APIs.

Legacy Interoperability
JSR 310 supercedes but does not deprecate java.util.Date,
java.util.Calendar, java.util.DateFormat, java.util.Gregor
ianCalendar, java.util.TimeZone, and java.sql.Date. JDK 8
provides methods to these classes to convert to and from the
JSR 310 types for legacy support:

// Legacy Calendar -> New Instant-> Legacy Date
Calendar c = Calendar.getInstance();
Instant i = c.toInstant();
Date d = Date.from(i);

/*
 * New ZonedDateTime -> Legacy GregorianCalendar
 * -> New LocalDateTime
 */
 ZonedDateTime zdt =
 ZonedDateTime.parse("2014-02-24T11:17:00+01:00"
 + "[Europe/Gibraltar]")
GregorianCalendar gc = GregorianCalendar.from(zdt);
LocalDateTime ldt
 = gc.toZonedDateTime().toLocalDateTime();

Regional Calendars
JSR 310 allows for the addition of new calendars. When creat‐
ing a new calendar, classes need to be implemented against the
Era, Chronology, and ChronoLocalDate interfaces.

Four regional calendars are packaged with the API:

• Hijrah
• Japanese imperial
• Minguo
• Thai Buddhist

180 | Chapter 18: Date and Time API

With regional calendars, you will not be using the main classes
of the ISO calendar.

ISO Calendar
The primary java.time package of the API provides the ISO
8601 calendar system that is based on Gregorian rules. This
and the related packages of the API provide an easy-to-use
interface, as you can see in the following example of determin‐
ing age difference between two dates. This example was derived
from Gliesians Age Difference Calculator:

final String YANNI_BIRTH_YEAR = "1954";
final String ADELE_BIRTH_YEAR = "1988";

Year birthYear1 = Year.parse(YANNI_BIRTH_YEAR);
Year birthYear2 = Year.parse(ADELE_BIRTH_YEAR);
long diff
 = ChronoUnit.YEARS.between(birthYear1,
 birthYear2);
System.out.println("There is an age difference of "
 + Math.abs(diff) + " years.");

 $ There is an age difference of 34 years.

The primary classes of the API are listed here with key text
derived from the online API:

Instant

Instantaneous point on the timeline. Measured from the
standard Java epoch of 1970-01-01T00:00:00Z.

LocalDate

Immutable date-time object. t represents a date, viewed as
year-month-day.

LocalTime

Immutable date-time object that represents a time. Viewed
as hour-minute-second.

ISO Calendar | 181

LocalDateTime

Immutable date-time object that represents a date-time.
Viewed as year-month-day-hour-minute-second.

OffsetTime

Immutable date-time object that represents a time. Viewed
as hour-minute-second-offset.

OffsetDateTime

Immutable representation of a date-time with an offset.
Stores all date and time fields to a precision of nanosec‐
onds, as well as the offset from UTC/Greenwich.

ZonedDateTime

Immutable representation of a date-time with a time zone.
Stores all date and time fields to a precision of nanosec‐
onds and a time zone, with a zone offset used to handle
ambiguous local date-times.

ZoneOffset

Time-zone offset. Amount of time that a time-zone differs
from Greenwich/UTC.

ZonedId

Time-zone identification. Used to identify the rules to
convert between an Instant and a LocalDateTime.

Year

Immutable date-time object; represents a year.

YearMonth

Immutable date-time object. Represents the combination
of a year and month.

MonthDay

Immutable date-time object. Represents the combination
of a year and month.

DayOfWeek

Enumeration for the days of the week: Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday, and Sunday.

182 | Chapter 18: Date and Time API

Month

Enumeration for the months of the year: January, Febru‐
ary, March, April, May, June, July, August, September,
October, November, and December.

Duration

A time-based amount of time measured in seconds.

Period

A date-based amount of time.

Clock

A clock provides access to the current instant, date, and
time using a time zone. Its use is optional.

The sections that follow highlight key attributes and usage of
some of these classes.

Machine Interface
JSR 310 uses the UNIX Epoch for its default ISO 8301 calendar,
with zero starting at 1970-01-01T00:00Z. Time is continuous
since then, with negative values for instances before it.

To get an instance of the current time, simply call the
Instant.now() method:

Instant i = Instant.now();

System.out.println("Machine: " + i.toEpochMilli());
$ Machine: 1478860514417

System.out.println("Human: " + i);
$ Human: 2016-11-11T10:35:31.727Z

The Clock class provides access to the current instant, date, and
time while using a time zone:

Clock clock1 = Clock.systemUTC();
Instant i1 = Instant.now(clock1);

ZoneId zid = ZoneId.of("Europe/Vienna");

ISO Calendar | 183

Clock clock2 = Clock.system(zid);
Instant i2 = Instant.now(clock2);

The Date-Time API uses the Time Zone Database (TZDB).

Durations and Periods
A Duration is a time-based amount consisting of days, hours,
minutes, seconds, and nanoseconds. A duration is the time
between two instances on a timeline.

The usage for a duration as a parsable string is PnDTnHnMnS,
where P stands for period and T stands for time. D, H, M, and S
are days, hours, minutes, and seconds prefaced by their values
(n):

Duration d1 = Duration.parse("P2DT3H4M1.1S");

Durations can also be created using the of[Type] method.
Hours, minutes, seconds, and nanoseconds can be added to
their associated status:

Duration d2 = Duration.of(41, ChronoUnit.YEARS);

Duration d3 = Duration.ofDays(8);
d3 = d3.plusHours(3);
d3 = d3.plusMinutes(30);
d3 = d3.plusSeconds(55).minusNanos(300);

The Duration.between() method can be used to create a Dura
tion from a start and end time:

Instant birth =
Instant.parse("1967-09-15T10:30:00Z");
Instant current = Instant.now();
Duration d4 = Duration.between(birth, current);
System.out.print("Days alive: " + d4.toDays());

A Period is a date-based amount consisting of years, months,
and days.

184 | Chapter 18: Date and Time API

http://www.iana.org/time-zones

The usage for a period as a parsable string is PnYnMnD, where P
stands for period; Y, M, and D are years, months, and days pref‐
aced by their values (n):

Period p1 = Period.parse("P10Y5M2D");

Periods can also be created using the of[Type] method. Years,
months, and days can be added or subtracted to/from their
associated states:

Period p2 = Period.of(5, 10, 40);
p2 = p2.plusYears(100);
p2 = p2.plusMonths(5).minusDays(30);

JDBC and XSD Mapping
Interoperation between the java.time and java.sql types has
been achieved. Table 18-1 provides a visual mapping of the JSR
310 types to the SQL, as well as XML Schema (XSD) types.

Table 18-1. JDBC and XSD mapping

JSR 310 type SQL type XSD type

LocalDate DATE xs:time

LocalTime TIME xs:time

LocalDateTime TIMESTAMP WITHOUT TIMEZONE xs:dateTime

OffsetTime TIME WITH TIMEZONE xs:time

OffsetDateTime TIMESTAMP WITH TIMEZONE xs:dateTime

Period INTERVAL .

ISO Calendar | 185

Formatting
The DateTimeFormatter class provides a formatting capability
for printing and parsing date-time objects. The upcoming
example demonstrates the use of pattern letters with the ofPat
tern() method of the class. Usable pattern letters are identified
in the Javadoc for the DateTimeFormatter class:

LocalDateTime input = LocalDateTime.now();
DateTimeFormatter format
 = DateTimeFormatter.ofPattern("yyyyMMddhhmmss");
String date = input.format(format);
String logFile = "simple-log-" + date + ".txt";

Table 18-2 contains examples of predefined formatters using
the following structure:

System.out.print(LocalDateTime.now()
 .format(DateTimeFormatter.BASIC_ISO_DATE));

Table 18-2. Predefined formatters

Class Formatter Example

LocalDateTime BASIC_ISO_DATE 20140215

LocalDateTime ISO_LOCAL_DATE 2014-02-15

OffsetDateTime ISO_OFFSET_DATE 2014-02-15-05:00

LocalDateTime ISO_DATE 2014-02-15

OffsetDateTime ISO_DATE 2014-02-15-05:00

LocalDateTime ISO_LOCAL_TIME 23:39:07.884

OffsetTime ISO_OFFSET_TIME 23:39:07.888-05:00

LocalDateTime ISO_TIME 23:39:07.888

OffsetDateTime ISO_TIME 23:39:07.888-05:00

LocalDateTime ISO_LOCAL_DATE_TIME 2014-02-15T23:39:07.888

OffsetDateTime ISO_OFFSET_DATE_TIME 2014-02-15T23:39:07.888-05:00

186 | Chapter 18: Date and Time API

Class Formatter Example

ZonedDateTime ISO_ZONED_DATE_TIME 2014-02-15T23:39:07.89-05:00
[America/New_York]

LocalDateTime ISO_DATE_TIME 2014-02-15T23:39:07.891

ZonedDateTime ISO_DATE_TIME 2014-02-15T23:39:07.891-05:00
[America/New_York]

LocalDateTime ISO_ORDINAL_DATE 2014-046

LocalDate ISO_WEEK_DATE 2014-W07-6

ZonedDateTime RFC_1123_DATE_TIME Sat, 15 Feb 2014 23:39:07 -0500

ISO Calendar | 187

CHAPTER 19

Lambda Expressions

Lambda expressions (λEs), also known as closures, provide a
means to represent anonymous methods. Supported by Project
Lambda, λEs allow for the creation and use of single method
classes. These methods have a basic syntax that provides for the
omission of modifiers, the return type, and optional parame‐
ters. The specification for λEs is set out in JSR 335, which is
divided into seven parts: functional interfaces, lambda expres‐
sions, method and constructor references, poly expressions,
typing and evaluation, type inference, and default methods.
This chapter focuses on the first two.

λEs Basics
λEs must have a functional interface (FI). An FI is an interface
that has one abstract method and zero or more default meth‐
ods. FIs provide target types for lambda expressions and
method references, and ideally should be annotated with @Func
tionalInterface to aid the developer and compiler with design
intent, as shown in the following code example:

@FunctionalInterface
public interface Comparator<T> {
 // Only one abstract method allowed
 int compare(T o1, T o2);

189

http://openjdk.java.net/projects/lambda/
http://openjdk.java.net/projects/lambda/
http://bit.ly/JSR-335

 // Overriding allowed
 boolean equals(Object obj);
 // Optional default methods allowed
}

λEs Syntax and Example
Lambda expressions typically include a parameter list, a return
type, and a body:

(parameter list) -> { statements; }

Examples of λEs include the following:

() -> 66
(x,y) -> x + y
(Integer x, Integer y) -> x*y
(String s) -> { System.out.println(s); }

This simple JavaFX GUI application adds text to the title bar
when the button is pressed. The code makes use of the Even
tHandler functional interface with the one abstract method, han
dle():

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
public class JavaFxApp extends Application {
 @Override
 public void start(Stage stage) {
 Button b = new Button();
 b.setText("Press Button to Set Title");
 // Anonymous inner class usage
 b.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 stage.setTitle("λEs rock!");
 }

190 | Chapter 19: Lambda Expressions

 });
 StackPane root = new StackPane();
 root.getChildren().add(b);
 Scene scene = new Scene(root, 300, 100);
 stage.setScene(scene);
 stage.show();
 }
 public static void main(String[] args) {
 launch();
 }
}

To refactor this anonymous inner class into a lambda expres‐
sion, the parameter type needs to be either (ActionEvent
event) or just (event), and the desired functionality needs to
be provided as statements in the body:

// Lambda expression usage
b.setOnAction((ActionEvent event) -> {
 stage.setTitle("λEs rock!");
});

TIP

Modern IDEs have features to convert anonymous inner
classes to lambda expressions.

See “Comparator Functional Interface” on page 158 for another
example of lambda expressions with the Comparator functional
interface.

Method and Constructor References
A method reference refers to an existing method without
invoking it. Types include static method reference, instance
method of particular object, super method of particular object,
and instance method of arbitrary object of particular type.

λEs Basics | 191

Method references are lambda expressions that execute just one
method, as demonstrated in the following examples:

"some text"::length // Get length of String
String::length // Get length of String
CheckAcct::compareByBalance // Static method ref
myComparator::compareByName // Inst method part obj
super::toString // Super method part object
String::compareToIgnoreCase // Inst method arb obj
ArrayList<String>::new // New ArrayList construc
tor
Arrays::sort // Sort array elements

Specific-Purpose Functional Interfaces
Annotated FIs listed in Table 19-1 have been established for
specific purposes relative to the packages/APIs in which they
reside. Not all functional interfaces in the Java SE API are
annotated.

Table 19-1. Specific-purpose FIs

API Class Method

AWT KeyEventDis

pacter

dispatchKeyEvent (KeyEvent e)

AWT KeyEventPostPro

cessor

postProcessKeyEvent (KeyE

vent e)

IO FileFilter accept(File pathname)

IO FilenameFilter accept(File dir, String name)

LANG Runnable run ()

Nashorn DiagnosticLis

tener

report (Diagnostic diagnos

tic)

NIO DirectorStream iterator ()

NIO PathMatcher matches (Path path)

TIME TemporalAdjus

ter

adjustInto (Temporal tempo

ral)

192 | Chapter 19: Lambda Expressions

API Class Method

TIME TemporalQuery queryFrom (TemporalAccessor

temporal)

UTIL Comparator compare (T o1, T o2)

CONC Callable call ()

LOG Filter isLoggable (LogRecord record)

PREF PreferenceChan

geListener

preferenceChange (Preference

ChangeEvent evt)

General-Purpose Functional Interfaces
The java.util.function package is made up of general-
purpose FIs for the primary use of features of the JDK.
Table 19-2 lists them all.

Table 19-2. Functional interfaces functional package

Class Method

Consumer accept (T t)

BiConsumer accept (T t, U u)

ObjDoubleConsumer accept (T t, double value)

ObjIntConsumer accept (T t, int value)

ObjLongConsumer accept (T t, long value)

DoubleConsumer accept (double value)

IntConsumer accept (int value)

LongConsumer accept (long value)

Function apply (T t)

BiFunction apply (T t, U u)

DoubleFunction apply (double value)

IntFunction apply (int value)

LongFunction apply (long value)

General-Purpose Functional Interfaces | 193

Class Method

BinaryOperator apply (Object, Object)

ToDoubleBiFunction applyAsDouble (T t, U u)

ToDoubleFunction applyAsDouble (T value)

IntToDoubleFunction applyAsDouble (int value)

LongToDoubleFunction applyAsDouble(long value)

DoubleBinaryOperator applyAsDouble (double left, dou

ble right)

ToIntBiFunction applyAsInt (T t, U u)

ToIntFunction applyAsInt (T value)

LongToIntFunction applyAsInt (long value)

DoubleToIntFunction applyAsInt(double value)

IntBinaryOperator applyAsInt (int left, int right)

ToLongBiFunction applyAsLong (T t, U u)

ToLongFunction applyAsLong (T value)

DoubleToLongFunction applyAsLong (double value)

IntToLongFunction applyAsLong (int value)

LongBinaryOperator applyAsLong (long left, long

right)

BiPredicate test (T t, U u)

Predicate test (T t)

DoublePredicate test (double value)

IntPredicate test (int value)

LongPredicate test (long value)

Supplier get()

BooleanSupplier getAsBoolean()

DoubleSupplier getAsDouble()

194 | Chapter 19: Lambda Expressions

Class Method

IntSupplier getAsInt()

LongSupplier getAsLong()

UnaryOperator identity()

DoubleUnaryOperator identity()

IntUnaryOperator applyAsInt (int operand)

LongUnaryOperator applyAsInt (long value)

Resources for λEs
This section provides links to tutorials and community resour‐
ces about λEs.

Tutorials
Comprehensive tutorials exist, such as those provided by Ora‐
cle, O’Reilly Learning, and Maurice Naftalin.

• The Java Tutorials: “Lambda Expressions”
• “Java 8 functional interfaces” on O’Reilly Learning
• Maurice Naftalin’s Lambda FAQ: “Your questions

answered: all about Lambdas and friends”

Community Resources
Online bulletin boards, mailing lists, and instructional videos
provide support for learning and using λEs:

• Java 8’s new features (e.g., λEs) forum at CodeRanch
• Oracle Learning Library on YouTube

Resources for λEs | 195

http://bit.ly/1oHnAAt
https://www.oreilly.com/learning/java-8-functional-interfaces
http://www.lambdafaq.org/
http://www.lambdafaq.org/
https://coderanch.com/f/143/java
http://bit.ly/1m3ZHhs

CHAPTER 20

JShell: the Java Shell

JShell, originally called Project Kulla, is an interactive
command-line read-eval-print-loop (REPL) tool introduced in
the Java 9 SDK. Similar in functionality to such interpreters as
Python’s ipython and Haskell’s ghci, JShell allows users to eval‐
uate and test fragments of code in real time without the trouble
of creating a test project or a class housing a main function.

The code in this chapter was tested against JShell version 9-ea.

Getting Started
JShell can be launched from the menu of the NetBeans IDE
(Tools→Java Platform Shell), from the Windows command line
by running jshell.exe from the /bin/ directory of your JDK
installation, or in POSIX environments with the jshell com‐
mand.

When the environment has loaded, you will be greeted with a
prompt:

| Welcome to JShell -- Version 9-ea
| For an introduction type: /help intro

jshell>

197

From here, you will be able to enter, execute, or modify code
snippets, or interact with the JShell environment through its
built-in commands.

Snippets
JShell operates upon units called snippets, which are code frag‐
ments entered by the user at the jshell> prompt. Each snippet
must take a form defined in the JLS, as summarized in
Table 20-1:

Table 20-1. Permitted snippet forms

Java Language
Specification Production

Example

Primary 10 / 2

Statement if (value == null) { numWidgets =

0; }

ClassDeclaration class Foo { }

MethodDeclaration void sayHello () { Sys

tem.out.println(“Hello”); }

FieldDeclaration boolean isAnchovyLover = true;

InterfaceDeclaration interface eventHandler { void onThi

sEvent(); }

ImportDeclaration import java.math.BigInteger;

Modifiers
JShell handles modifiers differently than does standard com‐
piled Java. Most notably, it prohibits the use of several in top-
level declarations (i.e., in the main JShell “sandbox” and outside
of the scope of a class/method declaration or other nested con‐
text). The following example warns the user when the inappro‐
priate use of the private modifier is attempted:

jshell> private double airPressure
| Warning:

198 | Chapter 20: JShell: the Java Shell

| Modifier 'private' not permitted in top-level
 declarations, ignored
| private double airPressure;
| ^-----^
airPressure ==> 0.0

jshell> class AirData { private double airPres
sure; }
| created class AirData

Table 20-2 shows a summary of JShell’s modifier policies.

Table 20-2. JShell modifier rules

Modifier Rule

private, protected, pub

lic, final, static

Ignored with warning if top-level
declaration

abstract, default Usable only in class declarations

default, synchronized Prohibited in top-level declarations

Flow Control Statements
Similarly, the flow control statements break, continue, and
return are disallowed at the top level, as they have no relevant
meaning in that context.

Package Declarations
Package declarations are not allowed in JShell, as all JShell code
is placed in the transient package jshell.

Using JShell
As mentioned in “Getting Started” on page 197, your interac‐
tion with JShell will primarily consist of entering, manipulat‐
ing, and executing snippets. The following sections provide
detail on working with each of the major snippet varieties, as
well as saving and loading code and input histories and restor‐
ing and persisting JShell’s state.

Using JShell | 199

Primary Expressions
JShell will immediately evaluate and/or execute any primary
expressions entered via the prompt:

jshell> 256 / 8
$1 ==> 32

jshell> true || false
$2 ==> true

jshell> 97 % 2
$3 ==> 1

jshell> System.out.println("Hello, Dave. Shall we
continue the game?")
Hello, Dave. Shall we continue the game?

jshell> StringBuilder sb = new StringBuilder("HAL")
sb ==> HAL

jshell> sb.append(" 9000")
$4 ==> HAL 9000

Notice that JShell will append missing semicolons to the ends
of expressions and statements. Semicolons are, however,
required as usual when declaring methods, classes, and other
code contained in blocks.

Dependencies
The command /imports returns a list of all libraries currently
imported into the workspace:

jshell> /imports
| import java.io.*
| import java.math.*
| import java.net.*
| import java.nio.file*
| import java.util.*
| import java.util.concurrent.*
| import java.util.function.*

200 | Chapter 20: JShell: the Java Shell

| import java.util.prefs.*
| import java.util.regex.*
| import java.util.stream.*

The results represent the libraries that JShell imports into each
new workspace by default. Additional libraries can be imported
via the import command:

jshell> import java.lang.StringBuilder

Statements and Code Blocks
Like primary expressions, snippets representing statements are
immediately executed upon entry:

jshell> double[] tempKelvin = {373.16, 200.19, 0.0}
tempKelvin ==> double[3] { 373.16, 200.19, 0.0 }

When a statement contains one or more blocks of code, the
JShell prompt becomes the new-line prompt (…>) upon the first
carriage return press and continues reading the snippet line by
line until the highest-level block is terminated:

jshell> import java.text.DecimalFormat

jshell> DecimalFormat df = new DecimalFor
mat("#.#");
df ==> java.text.DecimalFormat@674dc

jshell> double[] tempFahrenheit = {30.8, 77.0,
29.3, 60.2 }
tempFahrenheit ==> double[5] { 30.8, 77.0, 29.3,
60.2 }

jshell> for (double temp : tempFahrenheit) {
 ...> double tempCelsius = ((temp - 32)*5/9);
 ...> System.out.println(temp + " degrees F is
equal to "
 ...> + df.format(tempCelsius) + " degrees C.
\n");
 ...> }
30.8 degrees F is equal to -0.7 degrees C.

Using JShell | 201

77.0 degrees F is equal to 25 degrees C.
29.3 degrees F is equal to -1.5 degrees C.
60.2 degrees F is equal to 15.7 degrees C.

If a code block contains a compile-time error such as a syntax
error, the snippet will neither be created nor executed and must
be re-entered. Although the up arrow key can be used at the
prompt to scroll up through previous commands in the line
buffer, this still can be a tedious process. Take care, then, to
input large code blocks carefully when using the command
line.

The command /! can be used to re-execute the snippet that
was last run. Similarly, the /-<n> command will execute the
prior snippet relative to the number supplied:

jshell> System.out.println("Hello");
Hello
jshell> System.out.println("World");
World
jshell> /!
System.out.println("World");
World
jshell> /-3
System.out.println("Hello");
Hello

Method and Class Declarations
Methods are declared in JShell in the same way as any other
statements or code blocks, and may be invoked from the com‐
mand line:

jshell> double KELVIN = 273.16
KELVIN ==> 273.16

jshell> double DRY_AIR_GAS_CONSTANT = 287.058
DRY_AIR_GAS_CONSTANT ==> 287.058

jshell> double getDryAirDensity(double temperature,
 ...> double atmosphericPressure) {

202 | Chapter 20: JShell: the Java Shell

 ...> // convert from hPa to Pa
 ...> double airDensity = atmosphericPressure *
100
 ...> / (DRY_AIR_GAS_CONSTANT
 ...> * (temperature + KELVIN));
 ...> return airDensity;
 ...> }
| created method getDryAirDensity(double,double)

jshell> double todaysAirDensity =
 ...> getDryAirDensity(15, 1013.25)
todaysAirDensity ==> 1.2249356158607942

The command /methods returns a list of all methods currently
residing in the workspace, as well as their signatures:

jshell> /methods
| double getDryAirDensity (double,double)

The process for declaring classes is the same. In the following
example, we wrap the air density calculator code in a utility
class to apply the static final modifiers that will make our
constants behave as constants:

jshell> class AirDensityUtils {
 ...> private static final double KELVIN = 273.16;
 ...> private static final double
 ...> DRY_AIR_GAS_CONSTANT = 287.058;
 ...>
 ...> double getDryAirDensity(double temperature,
 ...> double atmosphericPressure) {
 ...> // convert from hPa to Pa
 ...> double airDensity = atmosphericPressure *
100
 ...> / (DRY_AIR_GAS_CONSTANT
 ...> * (temperature + KELVIN));
 ...> return airDensity;
 ...> }
 ...> }
| created class AirDensityUtils

Using JShell | 203

The methods and members of the class can be accessed from
the command line via standard Java dot notation. Although Air
DensityUtils is a utility class, it cannot be referenced from a
static context, as the static modifier is not allowed in top-level
declarations, and so must be instantiated:

jshell> new AirDensityUtils().
 ...> getDryAirDensity(15, 1013.25)
$5 ==> 1.2249356158607942

Other types, such as interfaces and enums, are also declared
this way. The /types command will return a list of all types cur‐
rently residing in the workspace:

jshell> interface EventHandler { void onWeatherDa
taReceived(); }
| created interface EventHandler

jshell> enum WeatherCondition { RAIN, SNOW, HAIL }
| created enum WeatherCondition

jshell> /types
| class AirDenstityUtils
| interface EventHandler
| enum WeatherCondition

Viewing, Deleting, and Modifying Snippets
Once they are defined, snippets can be easily viewed, deleted,
and modified. The /list command displays a list of all current
snippet code, along with corresponding identification num‐
bers:

jshell> /list

 1 : double KELVIN = 273.16;
 2 : double DRY_AIR_GAS_CONSTANT = 287.058;
 3 : double getDryAirDensity(double temperature,
 double atmPressure) {
 // convert from hPa to Pa
 double airDensity = atmoPressure * 100
 / (DRY_AIR_GAS_CONSTANT

204 | Chapter 20: JShell: the Java Shell

 * (temperature + KELVIN));
 return airDensity;
 }
 4 : class AirDensityUtils {
 private static final double
 KELVIN = 273.16;
 private static final double
 DRY_AIR_GAS_CONSTANT = 287.058;

 double getDryAirDensity(double temperature,
 double atmPressure) {
 // convert from hPa to Pa
 double airDensity = atmPressure * 100
 / (DRY_AIR_GAS_CONSTANT *
 (temperature + KELVIN));
 return airDensity;
 }
 }

Snippets may be referenced in JShell commands either by name
or by identification number. In the previous example, we made
the two top-level pseudoconstants DRY_AIR_GAS_CONSTANT and
KELVIN superfluous when we wrapped them and getDryAirDen
sity(double, double) in a class, so we will delete them by
using the /drop command:

jshell> /drop KELVIN
| dropped variable KELVIN

jshell> /drop 2
| dropped variable DRY_AIR_GAS_CONSTANT

Modification or replacement of previously defined snippets is
easy, as well. The first method by which to perform this action
is simply to overwrite the original:

jshell> double getDryAirDensity(double temperature,
 ...> double atmPressure) {
 ...> // We don't need this method anymore,
 ...> // but let's replace it anyway!

Using JShell | 205

 ...> }
| replaced method getDryAirDensity(double,double)

This is not a terribly practical solution for cases involving large
code fragments or only minor adjustments. Fortunately, JShell
also allows snippet code to be modified in an external editor
via /edit <name> or /edit <id>.

Figure 20-1. JShell default edit pad

In Figure 20-1, AirDensityUtils has been opened for editing in
the default JShell edit pad. However, the text editor that JShell
launches for this task may be specified using /set editor

<_command_>, where +command+ is the operating system-
dependent command to launch one’s text editor of choice. For
example, in Linux, /set editor vim or /set editor emacs.

Regardless of which method one employs to modify a snippet,
any snippets that refer to or depend upon the snippet being
modified will not be affected by the change.

Saving, Loading, and State
The command /save <_file_> will save the source of all cur‐
rent active snippets to the designated filename. Applying the
-all flag will save all source code entered during the current
session, including overwritten and rejected snippet code;
applying the -history flag will save all snippet code and com‐
mands in the order in which they were entered.

206 | Chapter 20: JShell: the Java Shell

Conversely, /open <_file_> will load the contents of the speci‐
fied file as JShell input. Be aware that the file will not success‐
fully load if it contains a package declaration.

JShell’s state may also be reset or restored while the session is
active. The /reset command resets JShell’s state, clearing all
entered code, restarting the execution state, and re-executing
any startup code.

The /reload command, on the other hand, will reset JShell’s
code and execution state and replay all valid snippet entries and
commands. The replay will commence from the start of the
session or from the last /reset or /reload, whichever happened
most recently. Additionally, /reload -restore will restore
JShell’s state from the previous session if used at startup.

JShell can be instructed to load snippets automatically after a /
reset or /reload with the command /set start <_file_>,
where file is a saved collection of snippet code. Further, subse‐
quently using the command /retain start will cause the code
to load each time JShell starts. This can be a useful feature for
those working with the same set of methods and classes from
session to session.

JShell Features
JShell sports a number of conveniences from other shell script‐
ing and interpreter environments, as well as characteristics that
set it apart from traditional compiled Java. Notable among
these are scratch variables, tab smart-complete, forward refer‐
encing, leniency in checked exception handling, and its treat‐
ment of top-level variables.

Scratch Variables
The return value of a stand-alone primary expression or
method invocation is stored in a scratch variable, which is pre‐
fixed with ($) and which is accessible from within the JShell
environment:

JShell Features | 207

jshell> 21 + 20
$6 ==> 41

jshell> $6 + 1
$7 ==> 42

jshell> "The meaning of life is " + $7
$8 ==> "The meaning of life is 42"

jshell> $8.getClass().getName()
$9 ==> "java.lang.String"

In order to see the return type of a statement without having to
invoke getClass(), the user may set JShell’s feedback mode to
verbose:

jshell> /set feedback verbose
| Feedback mode: verbose

jshell> 7.0 % 2
$10 ==> 1.0
| created scratch variable $10 : double

Tab Auto-Complete
The JShell environment includes one of the more convenient
features of most modern command-line interpreters and shells:
tab auto-completion. When the user presses the Tab key, JShell
automatically completes partially typed variable, snippet, or
object names.

In ambiguous cases, JShell presents the user with a list of possi‐
bilities. In the following example, the user presses the Tab key
after typing temp, but there are currently three variables in the
environment beginning with those characters:

shell> temp
tempCelsius tempFahrenheit tempKelvin

208 | Chapter 20: JShell: the Java Shell

Forward Referencing
JShell allows for forward referencing in snippet definitions.
That is, one may define a method that references other meth‐
ods, classes, or variables that have not yet been defined. How‐
ever, any undefined items must be defined before the method
may be invoked or referenced:

jshell> void getDryAirDensity(
 ...> MeasurementSystem unit) {
 ...> temperature = x;
 ...> pressure = y;
 ...> adjustUnits(x, y, unit);
 ...> // calculation code
 ...> }
| created method
getDryAirDensity(MeasurementSystem
), however, it cannot be referenced until
class Measure mentSystem, variable
temperature, variable pressure, and
variable y are declared

Undefined classes may not be used as return types in method
declarations, nor may any members, methods, or constructors
of undefined classes be referenced.

Checked Exceptions
If a a single, stand-alone statement invokes a method that
throws a checked exception, JShell will automatically provide
the exception handling behind the scenes without any addi‐
tional input from the user:

jshell> BufferedReader bReader = new Buffere
dReader(
 ...> new FileReader("message.txt"))
bReader ==> java.io.BufferedReader@1e3c938

jshell> String txtLine;
txtLine ==> null

JShell Features | 209

jshell> while ((txtLine = bReader.readLine()) !=
null)
 ...> { System.out.println(txtLine); }
I don't like macaroni cheese. And I don't like
scrambled eggs. And I don't like cocoa.

jshell> bReader.close()

In the preceding example, three file I/O operations are success‐
fully performed without any IOException handling. However,
when a snippet is a method or class declaration (i.e., it does not
constitute one single, discrete statement), its code must handle
any thrown exceptions as usual:

jshell> void displayMessage() {
 ...> BufferedReader bReader = new Buffere
dReader(
 ...> new FileReader("message.txt"));
 ...> String txtLine;
 ...> while ((txtLine = bReader.readLine()) !=
null)
 ...> { System.out.println(txtLine); }
 ...> bReader.close();
 ...> }
| Error:
| unreported exception java.io.FileNotFoundExcep
tion; must be caught or declared to be thrown
| BufferedReader bReader = new BufferedReader(new
FileReader("message.txt"));
|
| Error:
| unreported exception java.io.IOException; must
be caught or declared to be thrown
| while ((textLine = bReader.readLine()) != null)
{ System.out.println(textLine); }
|
| Error:
| unreported exception java.io.IOException; must
be caught or declared to be thrown
| bReader.close();
|

210 | Chapter 20: JShell: the Java Shell

Hierarchy and Scope
An interesting feature of the JShell environment is that vari‐
ables, methods, and classes declared at the top level are accessi‐
ble from any scope in the JShell hierarchy.

This is due to the fact that the JShell interpreter wraps snippets
within a synthetic class in order to make them comprehensible
to the Java compiler, which only recognizes import statements
and class declarations at the top level.

Specifically, top-level JShell variable, method, and class declara‐
tions are made static members of this synthetic class, while
statements and primary expressions are enclosed in synthetic
methods and then added to it. Import statements, being a rec‐
ognized top-level construct, are placed unmodified at the top of
the synthetic class.

The following example’s method and class both read and mod‐
ify the top-level double variable pressure from within their
respective scopes:

jshell> double pressure = 30.47
pressure ==> 30.47

jshell> void convertPressureinHgTohPa() {
 ...> pressure = pressure * 33.86389;
 ...> }
| created method convertPressureinHgTohPa()

jshell> convertPressureinHgTohPa()

jshell> pressure
pressure ==> 1031.8327282999999

jshell> class WeatherStation {
 ...> double mAirPressure;
 ...> public WeatherStation() {
 ...> mAirPressure = pressure;
 ...> }
 ...> }

JShell Features | 211

| created class WeatherStation

jshell> WeatherStation ws = new WeatherStation()
ws ==> WeatherStation@b1ffe6

jshell> ws.mAirPressure
$11 ==> 1031.8327282999999

Such an example is not likely to win any accolades for pro‐
gramming best practices, but as JShell is an excellent play‐
ground for experimentation and quick, informal code testing,
some may find this quirk useful.

Summary of JShell Commands
Table 20-3 shows a list of all commands available in the JShell
environment. It may be accessed at any time from within JShell
via the /help command.

Table 20-3. JShell commands

Command Description

/list [<name or

id>|-all|-start]

Lists source code entered into JShell

/edit <name or id> Edits source entry corresponding with name or
ID

/drop <name or id> Deletes source entry corresponding with name
or ID

/save [-all|-

history|-start]

<file>

Saves specified snippets and/or commands to
file

/open <file> Opens file as source input

/vars [<name or

id>|-all|-start]

Lists declared variables and corresponding
values

/methods [<name or

id>|-all|-start]

Lists declared methods and corresponding
signatures

212 | Chapter 20: JShell: the Java Shell

Command Description

/types [<name or

id>|-all|-start]

Lists declared classes, interfaces, and enums

/imports Lists current active JShell imports

/exit Exit JShell without saving

/reset Resets JShell’s state

/reload [-restore]

[-quiet]

Resets JShell state and replays history since
JShell start or most recent /reset or /reload
command

/history Displays history of all snippets and commands
entered since JShell was started

/help [<command>|

<subject>]

Displays list of JShell commands and help
subjects or further information on specified
command or subject

/set editor|start|

feedback|mode|

prompt|truncation|

format

Sets JShell configuration options

/retain editor|

start|feedback|mode

Retains settings for use in subsequent JShell
sessions

/? [<command>|<sub

ject>]

Identical to /help

/! Re-runs last snippet

/<id> Re-runs a snippet referenced by ID

/-<n> Re-runs nth previous snippet

Summary of JShell Commands | 213

CHAPTER 21

Java Module System

Java 9 introduces the Project Jigsaw, which both adds modulari‐
zation to the platform and modularizes the JDK itself. The goal
of Jigsaw is twofold: to enable reliable configuration and add
strong encapsulation to Java. With modularization, it is now
possible to restrict which packages are public and also ensure
that runtime dependencies are present when an application is
launched.

The Java Platform Module System (JPMS) is implemented as a
separate layer within the JVM. This distinguishes it from other
module systems, such as OSGi, which are implemented using
Classloaders. JPMS enables modularization of the JDK itself.

Project Jigsaw
Project Jigsaw is made up of a JSR (Java Specification Request)
and multiple JEPs (JDK Enhancement Proposals). The specifi‐
cations that make up Jigsaw are as follows:

• JSR 376 Java Platform Module System
• JEP 200: Modular JDK
• JEP 201: Modular Source Code
• JEP 220: Modular Runtime Images

215

• JEP 260: Encapsulate Most Internal APIs
• JEP 261: Module System
• JEP 282: jlink: Java Linker

The main project page for Jigsaw has links to each of these
specifications.

Java Modules
Java modules are a JAR file containing a module-info.java file
in the default package. Since “module-info” is an invalid Java
class name, it is ignored by Java 8 and earlier. It does get com‐
piled to bytecode and is available via reflection. The module file
declares the name of the module, dependencies of a module,
and which packages are exported by this module. Services pro‐
vided by this module can also be specified in this file.

The module system has the following rules:

• Modules specify which packages are exported. Public
types within these packages are available to other mod‐
ules.

• Packages not exported are not accessible and Java reflec‐
tion cannot be used to access types at runtime.

• Module names must be globally unique. Reverse domain
names should be used as the module name.

• Only one version of a module may be loaded. Multiple
versions can be loaded using layers (see java.lang.Modu
leLayer).

• Module dependency graph cannot contain cycles.
• All modules’ dependencies must be present on startup.

Any missing dependencies result in an error.
• Module path, analogous to the classpath, has been added

to Java tools.

216 | Chapter 21: Java Module System

http://openjdk.java.net/projects/jigsaw/

Java applications do not need to be modularized to run on Java
9. If the code is loaded using the classpath instead of the mod‐
ule path, the code will run as it did pre-Java 9. If code is loaded
using the module path, then the module graph is resolved and
dependencies are checked.

With a JAR file, how it is interpreted by the module system is
dependent upon whether it is loaded on the module path or
classpath and also whether it contains a module-info.java file.
JPMS will create either an application module, unnamed mod‐
ule, or automatic module. Table 21-1 gives the breakdown of
the behavior.

Table 21-1. JPMS loading behavior

--module-path -classpath

Modular JAR Application module Unnamed module

Nonmodular JAR Automatic module Unnamed module

Automatic Modules
JPMS will automatically create a module for JAR files added to
the module path which are missing module-info.java. All
packages in an automatic module are exported. The name of
the automatic module is derived from the name of the JAR file.
The rules for the module name are as follows:

• “.jar” suffix is removed.
• The module name will be extracted from the text preced‐

ing the hyphen of the first occurrence of the regular
expressions -(\\d(\\.|$))+, and the version will be extrac‐
ted after the hyphen if it can be parsed.

• All nonalphanumeric characters will be replaced with a
dot, all repeating dots are replaced by a single dot, and all
leading/trailing dots are removed.

Table 21-2 shows some examples of module names.

Java Modules | 217

Table 21-2. Module name examples

JAR name Module name Version

forex-calc.jar forex.calc None

forex-calc-0.1.0.jar forex.calc 0.1.0

forex-0.1.0.jar forex 0.1.0

Unnamed Modules
Classes loaded from the classpath, as opposed to the module
path, are loaded as an unnamed module. Classes in the
unnamed module are not visible to classes on the module path.

Accessibility
Modules add a new layer of encapsulation to Java. With mod‐
ules, it is possible to restrict access to public types and selec‐
tively declare which modules can access a package. A public
class is no longer globally public. A public class can be limited
to just its module, or it can be exported and publically accessi‐
ble to other modules.

Compiling Modules
The javac compiler command has been extended with addi‐
tional parameters for handling modules. Multiple modules may
be compiled simultaneously. For multiple modules, each mod‐
ule’s content should be placed in a directory with the same
name of the module. An example of this is shown in
Figure 21-1.

218 | Chapter 21: Java Module System

Figure 21-1. Multiple-module layout example

The example in Figure 21-1 would be compiled with the fol‐
lowing command line on a Unix system:

javac -d out --module-source-path src $(find .
 -name "*.java")

Other module command-line options:

--add-modules <module>(,<module>)*

Root modules to resolve in addition to the initial modules,
or all modules on the module path if <module> is ALL-
MODULE-PATH

--limit-modules <module>(,<module>)*

Limit the universe of observable modules

--module <module-name>, -m <module-name>

Compile only the specified module, check timestamps

--module-path <path>, -p <path>

Specify where to find application modules

--module-source-path <module-source-path>

Specify where to find input source files for multiple
modules

Compiling Modules | 219

--module-version <version>

Specify version of modules that are being compiled

--upgrade-module-path <path>

Override location of upgradeable modules

Modular JDK
As a part of Project Jigsaw (JEP 200), the JDK itself was heavily
refactored and modularized. The module java.base is present
by default, meaning you do not need to explicitly require it.
However, if you are using JavaFX, JDBC, etc., you will need to
include the relevant modules in addition to adding the relevant
imports to your code. See Table 21-3 for a list of modules.

The Java compiler uses the java.se.ee module, whereas at run‐
time Java uses the java.se module. The functionality contained
in java.se.ee is typically provided by a Java EE container.

Table 21-3. Module summary

Module Requires

java.activation java.base, java.datatransfer, java.logging

java.base

java.compiler java.base

java.cobra java.base, java.desktop, java.logging, java.naming,
java.rmi, java.transaction, jdk.unsupported
+ 4 transitive dependencies

java.datatransfer java.base

java.desktop java.base, java.datatransfer, java.prefs, java.xml

java.instrument java.base

java.logging java.base

java.management java.base

java.management.rmi java.base, java.management, java.naming, java.rmi
+ 2 transitive dependencies

220 | Chapter 21: Java Module System

Module Requires

java.naming java.base, java.security.sasl
+ 1 transitive dependency

java.prefs java.base, java.xml

java.rmi java.base, java.logging

java.scripting java.base

java.se java.base, java.compiler, java.datatransfer,
java.desktop, java.instrument, java.logging,
java.management, java.management.rmi,
java.naming, java.prefs, java.rmi, java.scripting,
java.security.jgss, java.security.sasl, java.sql,
java.sql.rowset, java.xml, java.xml.crypto

java.se.ee java.activation, java.base, java.corba, java.se,
java.transaction, java.xml.bind, java.xml.ws,
java.xml.ws.annotation
+ 19 transitive dependencies

java.security.jgss java.base, java.naming
+ 2 transitive dependencies

java.security.sasl java.base, java.logging

java.smartcardio java.base

java.sql java.base, java.logging, java.xml

java.sql.rowset java.base, java.logging, java.naming, java.sql
+ 2 transitive dependencies

java.transaction java.base,java.rmi
+ 1 transitive dependency

java.xml java.base

java.xml.bind java.activation, java.base, java.compiler, java.desktop,
java.logging, java.xml, jdk.unsupported
+ 2 transitive dependencies

java.xml.crypto java.base, java.logging, java.xml

Modular JDK | 221

Module Requires

java.xml.ws java.activation, java.base, java.desktop, java.logging,
java.management, java.xml, java.xml.bind,
java.xml.ws.annotation, jdk.httpserver,
jdk.unsupported
+ 3 transitive dependencies

java.xml.ws.annotation java.base

jdeps
To prepare for Project Jigsaw in Java 9, Oracle added the jdeps
command-line tool in Java 8. This is a static dependency
checker, which is meant to aid in preparation for Java 9. This
tool has three primary uses:

• Identify which JDK modules are required for a set of
classes.

• Trace transitive dependencies of a set of classes.
• Identify dependencies on undocumented internal JDK

classes.

The utility can generate the analysis on the console or dump it
to a .dot file. Tools such as graphviz can use the .dot file to ren‐
der the output graphically.

Identifying Dependencies
jdeps postgresql-42.1.1.jar

postgresql-42.1.1.jar -> /Library/Java/JavaVirtual
Machines/jdk1.8.0_131.jdk/Contents/Home/jre/lib/
jce.jar
postgresql-42.1.1.jar -> not found
postgresql-42.1.1.jar -> /Library/Java/JavaVirtual
Machines/jdk1.8.0_131.jdk/Contents/Home/jre/lib/
rt.jar
 org.postgresql (postgresql-42.1.1.jar)
 -> java.io

222 | Chapter 21: Java Module System

https://graphviz.org

 -> java.lang
 -> java.net
 -> java.security
 -> java.sql
 -> java.util
 -> java.util.logging
 -> org.postgresql.copy postgresql-42.1.1.jar
 -> org.postgresql.fastpath postgresql-42.1.1.jar
 -> org.postgresql.jdbc postgresql-42.1.1.jar
 -> org.postgresql.largeobject
postgresql-42.1.1.jar
 -> org.postgresql.replication
postgresql-42.1.1.jar
 -> org.postgresql.util postgresql-42.1.1.jar
…

Identifying Undocumented JDK Internal
Dependencies
To identify dependencies on undocumented JDK classes, use
–jdkinternals. Undocumented JDK classes are those that
begin with com.sun.* or sun.*. These were not meant to be
used outside of the JDK and may be removed at any point.
With Java 9, many of these APIs have been refactored or
removed.

The following jdeps command invocation returns the depen‐
dencies for the MyEncoder jar:

jdeps -jdkinternals MyEncoder.jar

MyEncoder.jar -> /Library/Java/JavaVirtualMachines/
jdk1.8.0_131.jdk/Contents/Home/jre/lib/rt.jar
 org.ctjava.util.TransmitUtil (MyEncoder.jar)
 -> sun.misc.BASE64Encoder JDK internal API
(rt.jar)

Warning: JDK internal APIs are unsupported and pri
vate to JDK implementation that are
subject to be removed or changed incompatibly and
could break your application.

jdeps | 223

Please modify your code to eliminate dependency on
any JDK internal APIs.
For the most recent update on JDK internal API
replacements, please check:
https://wiki.openjdk.java.net/display/JDK8/Java
+Dependency+Analysis+Tool

JDK Internal API Suggested Replacement
---------------- ---------------------
sun.misc.BASE64Encoder Use java.util.Base64 @since
1.8

In this example, the class TransmitUtil depends upon an undo‐
cumented JDK class which isn’t supported in Java 9.

Defining a Module
To define a module, a module-info.java file must be created in
the default package. The content of the file is as follows:

<open> module <module-name> {
 [export <java package> [to <module name>]
 [requires [transitive] [static] <module-name>]
 [opens <module name> [to <module name]]
 [provides <interface> with <implementa
tion>]
 [uses <interface>]
}

The module name must be unique and should use the reverse
domain name pattern. The following example defines module
with the name org.ctjava.admin, which doesn’t export any
packages or depend upon any modules:

module org.ctjava.admin {
}

Exporting a Package
All public types in a package may be exported by adding one or
more export statements to the module definition:

224 | Chapter 21: Java Module System

module org.ctjava.admin {
 exports org.ctjava.admin.api
}

In this example, all public classes in org.ctjava.admin.api are
exported and available to other modules that depend upon
org.ctjava.admin.

Packages can be selectively exported to a specific module, for
example:

module org.ctjava.admin {
 exports org.ctjava.admin.ui to javafx.graphics;
}

In this example, org.ctjava.admin.ui is selectively exported to
javafx.graphics. This gives classes in javafx.graphics access
to classes within org.ctjava.admin.ui without this packaging
having to declare a dependency in its module file. This is typi‐
cally done when another package uses reflection. Without the
export, classes in javafx.graphics would not be able to per‐
form reflection on classes in org.ctjava.admin.ui.

Declaring Dependencies
To declare a dependency upon another package, add the
requires statement to the module definition. The following
example has three dependencies, which must be present when
the module is loaded at runtime:

module org.ctjava.admin {
 requires javafx.controls;
 requires org.ctjava.services;
 requires org.ctjava.message.api;
}

The optional static keyword is for compile time dependencies.

Declaring Dependencies | 225

Transitive Dependencies
If a module is exporting a package which uses classes from
another module and which will be required by downstream
dependencies, then the dependency must include the transi
tive keyword.

Consider the following module definition:

module org.ctjava.services {
 requires transitive org.ctjava.model;
 exports org.ctjava.services;
}

This definition will export the org.ctjava.services package,
which contains the following class:

public interface MeetingService {
 void scheduleMeeting(Meeting meeting,
 Date scheduledDate);
 void updateMeeting(Meeting meeting);
 …
 }
}

This class uses the type Meeting from the org.ctjava.model
package. If org.ctjava.services didn’t include the transitive
keyword on the requires for org.ctjava.model, then users who
depend upon org.ctjava.services would not have access to
the Meeting class and hence could not invoke/use the Meeting
Service class.

Defining Service Providers
Modules can be defined that export a service which can be
dynamically added to the module path on startup. The Service
Provider API was first added in Java 6 and has been modified
for Java 9. With Service Providers, you have the following:

• A module containing interfaces for a service

226 | Chapter 21: Java Module System

• One or more modules containing the implementation of
the service

• A module that uses the service

Figure 21-1 shows an example service implementation. The
modules are as follows:

org.ctjava.message.api::Contains an interface MessageSer

vice.java org.ctjava.email::Contains an implementation of
MessageService.java org.ctjava.admin::Uses implementations
of org.ctjava.message.api added to the module path.

Figure 21-2. Service Provider API example

Defining Service API
The module org.ctjava.message.api, contains MessageSer
vice.java defining the contract for the service:

module org.ctjava.message.api {
 exports org.ctjava.message.api;
}

The package org.ctjava.message.api contains an interface
defining the service:

package org.ctjava.message.api;

public interface MessageService {
 void sendMessage(String memeber, String mes
sage);
}

Defining Service Providers | 227

Implementing Service API
Providing an implementation of a service is straightforward.
The module file declares a dependency on service API and
specifies that it provides an implementation of the interface.
The new requires and provides keywords are needed in the
relative statements to declare the dependency as shown here:

module org.ctjava.email {
 requires org.ctjava.message.api;
 provides org.ctjava.message.api.MessageService
 with org.ctjava.email.EmailMessageSer
vice;
}

The implementation of the service is straightforward:

package org.ctjava.email;

import org.ctjava.message.api.MessageService;

public class EmailMessageService implements Message
Service {
 @Override
 public void sendMessage(String memeber, String
message) {
 // send message
 }
}

Using Service Providers
To use a service, a dependency upon the API is declared, along
with a uses statement specifying the interface of the service, as
shown here:

module org.ctjava.admin {
 requires org.ctjava.message.api;
 uses org.ctjava.message.api.MessageService;
}

228 | Chapter 21: Java Module System

To use the service, use java.util.ServiceLoader to get a refer‐
ence:

Iterable<MessageService> mservice = Service
Loader.load(MessageService.class);
for(MessageService ms : mservice) {
 ms.sendMessage(member, "Hello World!");
}

jlink
The jlink tool assembles and optimizes a set of modules and
their dependencies into a custom runtime image. This utility is
defined in JEP 282. Only required modules are included in the
image. For example, a desktop application using JavaFX is only
95 MB versus 454 MB for the full JDK.

The command jlink has the following parameters:

jlink --module-path <modulepath> +
 --add-modules <modules> +
 --limit-modules <modules> +
 --output <path>

Here’s an example:

jlink --module-path $JAVA_HOME/jmods:dist --add-modules

org.ctjava.TimerUtil --output test

jlink | 229

PART III
Appendixes

APPENDIX A

Fluent APIs

Fluent APIs, a.k.a. fluent interfaces, are object-oriented APIs
designed to make the API code more readable and therefore
easier to use. Wiring objects together via method chaining
helps accomplish these readability and usability goals. In this
design and the following example, chained methods generally
maintain the same type.

/*
 * Transform 'palindrome!' string
 * to 'semordnilap' string.
*/

// StringBuilder API
StringBuilder sb = new StringBuilder("palin
drome!");

// Method chaining (delete, append, reverse)
sb.delete(10, 11).append("s").reverse();

System.out.println("New value: " + sb);
$ New value: semordnilap

To name a few popular fluent APIs written in Java, there is the
Java Object Oriented Querying (jOOQ) API, the jMock testing

233

API, the Calculon Android testing API, the Apache Camel
integration patterns API, Java 8’s Date Time API (JSR 310), and
the Java Money and Currency API (JSR 354). Each of these is
considered to contain a Java domain-specific language (DSL).

An external DSL can be easily mapped into a new Java internal
DSL by using the fluent API approach.

Common method prefixes used in fluent APIs include at, for
mat, from, get, to, and with.

The LocalDateTime class of the Date Time API is represented
here, with and without method chaining:

// Static method with method chaining
LocalDateTime ldt2 = LocalDateTime.now()
 .withDayOfMonth(1).withYear(1878)
 .plusWeeks(2).minus(3, ChronoUnit.HOURS);
System.out.println(ldt2);

$ 1878-02-15T06:33:25.724

// Standalone static method without method chaining
LocalDateTime ldt1 = LocalDateTime.now();
System.out.println(ldt1);

$ 2016-11-06T16:10:12.344

TIP

Consider reviewing Domain Specific Languages by Martin
Fowler (Addison-Wesley) for comprehensive information
on DSLs.

234 | Appendix A: Fluent APIs

APPENDIX B

Third-Party Tools

A wide variety of open source and commercial third-party
tools and technologies are available to assist you with develop‐
ing Java-based applications.

The sample set of resources listed here are both effective and
popular, or at least many that we have used frequently. Remem‐
ber to check the licensing agreements of the open source tools
you are using for commercial environment restrictions.

Development, CM, and Test Tools
Ant

Apache Ant is an XML-based tool for building and
deploying Java applications. It’s similar to the well-known
Unix make utility.

Bloodhound
Apache Bloodhound is an open source web-based project
management and bug tracking system.

CruiseControl
CruiseControl is a framework for a continuous build
process.

235

http://bit.ly/16mhLiI
http://bit.ly/1i4Qkfw
http://bit.ly/16mhM6j

Enterprise Architect
Enterprise Architect is a commercial computer-aided soft‐
ware engineering (CASE) tool that provides forward and
reverse Java code engineering with UML.

FindBugs
FindBugs is a program that looks for bugs in Java code.

Git
Git is an open source distributed version control system.

Gradle
Gradle is a build system that provides testing, publishing,
and deployment support.

Hudson
Hudson is an extensible continuous integration server.

Ivy
Apache Ivy is a transitive relation dependency manager. It
is integrated with Apache Ant.

Javacc
Javacc is a tool that reads a grammar specification and
converts it to a Java application that can recognize gram‐
mar matches.

Jalopy
Jalopy is a source code formatter for Java that has plug-ins
for Eclipse, jEdit, NetBeans, and other tools.

jClarity
jClarity is a performance analysis and monitoring tool for
cloud environments.

jEdit
jEdit is a text editor designed for programmers. It has sev‐
eral plug-ins available through a plug-in manager.

JavaFX SceneBuilder
JavaFX Scene Builder is a visual layout tool for designing
JavaFX applications.

236 | Appendix B: Third-Party Tools

http://bit.ly/16mhNqN
http://bit.ly/16mhMTO
http://bit.ly/16mhOep
http://bit.ly/1eTp2Xs
http://bit.ly/16mhPii
https://ant.apache.org/ivy/
https://javacc.org/
http://bit.ly/16mhRGY
http://www.jclarity.com
http://bit.ly/16mhTi5
http://bit.ly/2fKFvp9

Jenkins
Jenkins CI is an open source continuous integration
server, formally known as Hudson Labs.

JIRA
JIRA is a commercial bug tracking, issue tracking, and
project management application.

JUnit
JUnit is a framework for unit testing that provides a means
to write and run repeatable tests.

JMeter
Apache JMeter is an application that measures system
behavior, such as functional behavior and performance.

Maven
Apache Maven is a software project management tool.
Maven can manage builds, reports, and documentation.

Nemo
Nemo is an online instance of Sonar dedicated to open
source projects.

PMD
PMD scans Java source code for bugs, suboptimal code,
and overly complicated expressions.

SonarQube
SonarQube is an open source quality management plat‐
form.

Subversion
Apache Subversion is a centralized version control system
that keeps track of work and changes for a set of files.

Libraries
ActiveMQ

Apache ActiveMQ is a message broker that supports many
cross-language clients and protocols.

Libraries | 237

http://bit.ly/XUeClg
http://bit.ly/16mhVGM
http://bit.ly/16mhWdY
http://bit.ly/16mhUCH
http://bit.ly/16mhV9O
http://bit.ly/16mhYm2
http://bit.ly/16mhY5z
http://bit.ly/16mhZ9B
http://bit.ly/16mhZq9
http://bit.ly/16mhZWY

BIRT
BIRT is an open source Eclipse-based reporting system to
be used with Java EE applications.

Bitlyj
A DSL for Bitly-powered URL shortening services.

Camel
Apache Camel is a rule-based routing and mediation
engine.

gedcom4j
gedcom4j is a Java library for parsing, manipulating, and
writing GEDCOM data.

Geocoder-java
Geocoder-java is a Java API for Google geocoder v3.

GSON
Google-gson is a Java API that can convert Java Objects
into JSON and back.

Guava
Google Guava is a set of libraries that includes new collec‐
tion types, immutable collections, a graph library, func‐
tional types, an in-memory cache, concurrency utilities,
I/O, hashing, primitives and reflection.

Hibernate
Hibernate is an object/relational persistence and query
service. It allows for the development of persistent classes.

iText
iText is a Java library that allows for the creation and
manipulation of PDF documents.

Jakarta Commons
Jakarta Commons is a repository of reusable Java compo‐
nents.

Jackrabbit
Apache Jackrabbit is a content repository system that pro‐
vides hierarchical content storage and control.

238 | Appendix B: Third-Party Tools

http://bit.ly/16mi0dz
https://github.com/criedel/bitlyj
http://bit.ly/1ijRVyI
http://gedcom4j.org/main/
https://github.com/panchmp/geocoder-java
https://github.com/google/gson
https://github.com/google/guava
http://bit.ly/16mi2Ck
http://bit.ly/16mi3Gp
http://bit.ly/16mi4tM
http://bit.ly/16mi4da

JasperReports
JasperReports is an open source Java reporting engine.

Jasypt
Jasypt is a Java library that allows the developer to add
basic encryption capabilities.

JFreeChart
JFreeChart is a Java class library for generating charts.

JFXtras2
JFXtras2 is a set of controls and add-ons for JavaFX 2.0.

JGoodies
JGoodies provides components and solutions to solve
common user interface tasks.

JIDE
JIDE software provides various Java and Swing compo‐
nents.

jMonkeyEngine
jMonkeyEngine is a collection of libraries providing a Java
3D (OpenGL) game engine.

JOGL
JOGL is a Java API supporting OpenGL and ES specifica‐
tions.

jOOQ
jOOQ is a fluent API for typesafe SQL query construction
and execution.

Moneta
Moneta is a reference implementation of the JSR 354
Money & Currency API.

opencsv
opencsv is a comma-separated values (CSV) parser library
for Java.

Libraries | 239

http://bit.ly/16mi6Sy
http://bit.ly/16mi796
http://bit.ly/16mi5hq
http://bit.ly/16mi5Oy
http://bit.ly/16mi90J
http://bit.ly/16mi5Oh
http://jmonkeyengine.org/
https://jogamp.org/jogl/www/
http://www.jooq.org/
http://javamoney.github.io/ri.html
http://opencsv.sourceforge.net/

POI
Apache Poor Obfuscation Implementation (POI) is a
library for reading and writing Microsoft Office formats.

ROME
ROME is a Java framework for RSS and Atom feeds.

RXTX
RXTX provides native serial and parallel communications
for Java.

Spring
Spring is a layered Java/Java EE application framework.

Tess4J
A Java JNA wrapper for the Tesseract optical character
recognition (OCR) API.

Twitter4j
A Java library for the Twitter API.

Integrated Development Environments
BlueJ

BlueJ is an IDE designed for introductory teaching.

Eclipse IDE
Eclipse IDE is an open source IDE for creating desktop,
mobile, and web applications.

Greenfoot
Greenfoot is a simple IDE designed to teach object orien‐
tation with Java.

IntelliJ IDEA
IntelliJ IDEA is a commercial IDE for creating desktop,
mobile, and web applications.

JCreator
JCreator is a commercial IDE for creating desktop, mobile,
and web applications.

240 | Appendix B: Third-Party Tools

http://bit.ly/LBob50
https://rometools.github.io/rome/
http://bit.ly/16mid0f
http://bit.ly/16midgS
http://tess4j.sourceforge.net/
http://twitter4j.org/en/index.html/
http://bit.ly/16migJu
http://bit.ly/16mih05
http://bit.ly/1ef1kIv
http://bit.ly/16miel3
http://bit.ly/16mihNJ

JDeveloper
JDeveloper is Oracle’s IDE for creating desktop, mobile,
and web applications.

NetBeans IDE
NetBeans is Oracle’s open source IDE for creating desktop,
mobile, and web applications. This IDE is currently in the
Apache Incubator.

Web Application Platforms
Geronimo

Apache Geronimo is a Java EE server used for applica‐
tions, portals, and web services.

Glassfish
Glassfish is an open source Java EE server used for appli‐
cations, portals, and web services. Payara is a GlassFish
derivative.

IBM WebSphere
IBM WebSphere is a commercial Java EE server used for
applications, portals, and web services.

JavaServer Faces
JavaServer Faces technology simplifies building user inter‐
faces for Java server applications. JSF implementations and
component sets include Apache MyFaces, ICEFaces, Rich‐
Faces, and Primefaces.

Jetty
Jetty is a web container for Java Servlets and JavaServer
Pages.

Oracle WebLogic Application Server
Oracle WebLogic Application Server is a commercial Java
EE server used for applications, portals, and web services.

Resin
Resin is a high-performance, cloud-optimized Java appli‐
cation server.

Web Application Platforms | 241

http://bit.ly/15XCBkv
http://bit.ly/16miikG
http://bit.ly/16miiBc
http://bit.ly/16migcz
http://ibm.co/16mij8l
https://jcp.org/en/jsr/detail?id=314
http://bit.ly/16miksP
http://bit.ly/16mikZM
http://bit.ly/16milgv

ServiceMix
Apache ServiceMix is an enterprise service bus that com‐
bines the functionality of a service-oriented architecture
and an event-driven architecture on the Java Business
Integration specification.

Sling
Sling is a web application framework that leverages the
Representational State Transfer (REST) software architec‐
ture style.

Struts
Apache Struts is a framework for creating enterprise-ready
Java web applications that utilize a model-view-controller
architecture.

Tapestry
Apache Tapestry is a framework for creating web applica‐
tions based upon the Java Servlet API.

Tomcat
Apache Tomcat is a web container for Java Servlets and
JavaServer Pages.

TomEE
Apache TomEE is an all-Apache Java EE 6 Web Profile cer‐
tified stack.

WildFly
WildFly, formally known as JBoss Application Server, is an
open source Java EE server used for applications, portals,
and web services.

Scripting Languages Compatible with
JSR-223
BeanShell

BeanShell is an embeddable Java source interpreter with
object-based scripting language features.

242 | Appendix B: Third-Party Tools

http://servicemix.apache.org/
http://bit.ly/16mioZF
http://bit.ly/16mipwx
http://bit.ly/16miq3x
http://bit.ly/16misIJ
http://tomee.apache.org/
http://www.wildfly.org/
http://bit.ly/16mitfM

Clojure
Clojure is a dynamic programming language targeted for
the Java Virtual Machine, Common Language Runtime,
and JavaScript engines.

FreeMarker
FreeMarker is a Java-based general-purpose template
engine.

Groovy
Groovy is a scripting language with many Python, Ruby,
and Smalltalk features in a Java-like syntax.

Jacl
Jacl is a pure Java implementation of the Tcl scripting lan‐
guage.

JEP
Java Math Expression Parser (JEP) is a Java library for
parsing and evaluating mathematical expressions.

Jawk
Jawk is a pure Java implementation of the AWK scripting
language.

Jelly
Jelly is a scripting tool used for turning XML into exe‐
cutable code.

JRuby
JRuby is a pure Java implementation of the Ruby program‐
ming language.

Jython
Jython is a pure Java implementation of the Python pro‐
gramming language.

Nashorn
Nashorn is a JavaScript implementation. It is the only
scripting language that has a script engine implementation
included in the Java Scripting API by default.

Scripting Languages Compatible with JSR-223 | 243

http://bit.ly/16miwIo
http://bit.ly/16miwZa
http://www.groovy-lang.org/
http://bit.ly/16miws2
http://bit.ly/16mixMz
http://bit.ly/16miz7h
http://bit.ly/16miD6O
http://bit.ly/16miEHY
http://bit.ly/16miG2B
http://bit.ly/1komFPD

Scala
Scala is a general-purpose programming language
designed to express common programming patterns in a
concise, elegant, and type-safe way.

Sleep
Sleep, based on Perl, is an embeddable scripting language
for Java applications.

Velocity
Apache Velocity is a Java-based general-purpose template
engine.

Visage
Visage is a domain-specific language (DSL) designed for
the express purpose of writing user interfaces.

244 | Appendix B: Third-Party Tools

http://bit.ly/16miGQf
http://bit.ly/16miIY9
http://bit.ly/16miKzh
http://code.google.com/p/visage/

APPENDIX C

UML Basics

Unified Modeling Language (UML) is an object-modeling
specification language that uses graphical notation to create an
abstract model of a system. The Object Management Group
governs UML. This modeling language can be applied to Java
programs to help graphically depict such things as class rela‐
tionships and sequence diagrams. The latest specifications for
UML can be found at the OMG website. An informative book
on UML is UML Distilled, Third Edition, by Martin Fowler
(Addison-Wesley).

Class Diagrams
A class diagram represents the static structure of a system, dis‐
playing information about classes and the relationships
between them. The individual class diagram is divided into
three compartments: name, attributes (optional), and opera‐
tions (optional). See Figure C-1 and the example that follows it.

245

http://bit.ly/16miJLR
http://bit.ly/16miLmZ

Figure C-1. Class diagram

// Corresponding code segment
class Orchestra { // Class Name
 // Attributes
 private String orch Name;
 private Integer instrCount = 7;
 // Operations
 public void setOrchName(String name) {...}
 public Boolean play(Score s) {...}
}

Name
The name compartment is required and includes the class or
interface name typed in boldface.

Attributes
The attributes compartment is optional and includes member
variables that represent the state of the object. The complete
UML usage is as follows:

visibility name : type [multiplicity] = default
Value
{property-string}

Typically, only the attribute names and types are represented.

Operations
The operations compartment is optional and includes member
functions that represent the system’s behavior. The complete
UML usage for operations is as follows:

246 | Appendix C: UML Basics

visibility name (parameter-list) :
return-type-expression
{property-string}

Typically, only the operation names and parameter lists are rep‐
resented.

TIP

{property-string} can be any of several properties such
as {ordered} or {read-only}.

Visibility
Visibility indicators (prefix symbols) can be optionally defined
for access modifiers. The indicators can be applied to the mem‐
ber variables and member functions of a class diagram (see
Table C-1).

Table C-1. Visibility indicators

Visibility indicators Access modifiers

~ package-private

protected

- private

Object Diagrams
Object diagrams are differentiated from class diagrams by
underlining the text in the object’s name compartment. The
text can be represented in three different ways (see Table C-2).

Table C-2. Object names

: ClassName Class name only

objectName Object name only

objectName : ClassName Object and class name

Object Diagrams | 247

Object diagrams are not frequently used, but they can be help‐
ful when detailing information, as shown in Figure C-2.

Figure C-2. Object diagram

Graphical Icon Representation
Graphical icons are the main building blocks in UML diagrams
(see Figure C-3).

Figure C-3. Graphical icon representation

Classes, Abstract Classes, and Interfaces
Classes, abstract classes, and interfaces are all represented with
their names in boldface within a rectangle. Abstract classes are
also italicized. Interfaces are prefaced with the word interface
enclosed in guillemet characters. Guillemets house stereotypes
and in the interface case, a classifier.

Notes
Notes are comments in a rectangle with a folded corner. They
can be represented alone, or they can be connected to another
icon by a dashed line.

248 | Appendix C: UML Basics

Packages
A package is represented with an icon that resembles a file
folder. The package name is inside the larger compartment
unless the larger compartment is occupied by other graphical
elements (i.e., class icons). In the latter case, the package name
would be in the smaller compartment. An open arrowhead
with a dashed line shows package dependencies.

The arrow always points in the direction of the package that is
required to satisfy the dependency. Package diagrams are
shown in Figure C-4.

Figure C-4. Package diagrams

Connectors
Connectors are the graphical images that show associations
between classes. Connectors are detailed in “Class Relation‐
ships” on page 250.

Multiplicity Indicators
Multiplicity indicators represent how many objects are partici‐
pating in an association (see Table C-3). These indicators are
typically included next to a connector and can also be used as
part of a member variable in the attributes compartment.

Connectors | 249

Table C-3. Multiplicity indicators

Indicator Definition

* Zero or more objects

0..* Zero or more objects

0..1 Optional (zero or one object)

0..n Zero to n objects where n > 1

1 Exactly one object

1..* One or more objects

1..n One to n objects where n > 1

m..n Specified range of objects

n Only n objects where n > 1

Role Names
Role names are utilized when the relationships between classes
need to be further clarified. Role names are often seen with
multiplicity indicators. Figure C-5 shows Orchestra where it
performs one or more Scores.

Figure C-5. Role names

Class Relationships
Class relationships are represented by the use of connectors
and class diagrams (see Figure C-6). Graphical icons, multiplic‐
ity indicators, and role names may also be used in depicting
relationships.

250 | Appendix C: UML Basics

Association
An association denotes a relationship between classes and can
be bidirectionally implied. Class attributes and multiplicities
can be included at the target end(s).

Figure C-6. Class relationships

Direct Association
Direct association, also known as navigability, is a relationship
directing the source class to the target class. This relationship
can be read as “Orchestra has a Clarinet.” Class attributes and
multiplicities can be included at the target end. Navigability can
be bidirectional between classes.

Composition Association
Composition association, also known as containment, models a
whole-part relationship, where the whole governs the lifetime
of the parts. The parts cannot exist except as components of the
whole. This is a stronger form of association than aggregation.
This can be read as “Score is composed of ” one or more parts.

Class Relationships | 251

Aggregation Association
Aggregation association models a whole-part relationship,
where the parts may exist independently of the whole. The
whole does not govern the existence of the parts. This can be
read as “Orchestra is the whole and Clarinet is part of Orches‐
tra.”

Temporary Association
Temporary association, better known as dependency, is repre‐
sented where one class requires the existence of another class.
It’s also seen in cases where an object is used as a local variable,
return value, or a member function argument. Passing a fre‐
quency to a tune method of class Clarinet can be read as class
Clarinet depends on class Frequency, or “Clarinet uses a Fre‐
quency.”

Generalization
Generalization is where a specialized class inherits elements of
a more general class. In Java, we know this as inheritance, such
as class extends class Woodwind, or “Clarinet is a Woodwind.”

Realization
Realization models a class implementing an interface, such as
class Clarinet implements interface Instrument.

Sequence Diagrams
UML sequence diagrams are used to show dynamic interaction
between objects (see Figure C-7). The collaboration starts at the
top of the diagram and works its way toward the bottom.

252 | Appendix C: UML Basics

Figure C-7. Sequence diagrams

Participant (1)
The participants are considered objects.

Found Message (2)
A found message is one in which the caller is not represented
in the diagram. This means that the sender is not known, or
does not need to be shown in the given diagram.

Synchronous Message (3)
A synchronous message is used when the source waits until the
target has finished processing the message.

Return Call (4)
The return call can optionally depict the return value and is
typically excluded from sequence diagrams.

Sequence Diagrams | 253

Asynchronous Message (5)
An asynchronous message is used when the source does not
wait for the target to finish processing the message.

Message to Self (6)
A message to self, or self-call, is defined by a message that stays
within the object.

Lifeline (7)
Lifelines are associated with each object and are oriented verti‐
cally. They are related to time and are read downward, with the
earliest event at the top of the page.

Activation Bar (8)
The activation bar is represented on the lifeline or another acti‐
vation bar. The bar shows when the participant (object) is
active in the collaboration.

254 | Appendix C: UML Basics

Index

Symbols
!= operator, 41
$ (dollar sign), 14
() (parenthesis), 14
. (dot) operator, 49

accessing class methods and
members in JShell, 204

/! command (JShell), 202
/-<n> command (JShell), 202
/drop command (JShell), 205
/edit commands (JShell), 206
/list command (JShell), 204
/types command (JShell), 204
; (semicolon), 63

in JShell expressions and
statements, 200

<> (angle brackets)
<< >> angle quotes, 15, 248
bracket separators, 15
diamond operator, 164

== operator, 41
use by equals() method, 42

@ (annotation) symbol, 61
[] (square brackets), 14
_ (underscore symbol), 14
_ keyword, 14
{ } (curly brackets), 14

λEs (see lambda expressions)
–0.0 entity, 26
… (ellipsis) in vararg method sig‐

natures, 54

A
abstract classes, 55, 89
abstract methods, 56, 89
access modifiers, 88

and their visibility, 88
visibility indicators in UML,

247
accessor methods, 47
acronyms, naming conventions

for, 3
activation bar (UML), 254
affine objects, 102
aggregation association of classes,

252
algorithms, optimizing, 156
American Standard Code for

Information Interchange (see
ASCII)

annotated functional interfaces,
192

annotations, 59-61
built-in, 59

255

developer-defined, 60
naming conventions for, 3

anonymous inner classes, con‐
verting to lambda expres‐
sions, 191

Apache Camel API, 234
argument list, 54-55
arithmetic operators, 15
arrays, default values of, 37
ASCII, 9-11

compact strings feature, 11
nonprintable, 11
printable, 10

assertions, 70
assignment operators, 15
association of classes, 251
asynchronous message (UML),

254
autoboxing, 31
AutoClosable interface, 82
autoconversion, 64
automatic modules, 217

B
base libraries (Java), 97-99
Big O notation, 157
binary data

reading from files, 132
reading from sockets, 134
writing to files, 133
writing to sockets, 134

binary literals, 18
binary numeric promotion, 29
bitwise operators, 15
blocks, 64

applying locks to, 147
execution in JShell, 201
static initializer, 57

boolean literals, 17, 24
Boolean type, 64
bounds (generic type parame‐

ters), 166
bracket separators, 14

break statement, 66, 68
JShell and, 199

BufferedInputStream, 132, 134
BufferedOutputStream, 133, 135
BufferedReader, 131, 133
built-in annotations, 59
byte type, 25

in switch statements, 66
Byte type, 66

C
Calculon Android API, 234
calendars

ISO 8601 calendar system,
181-186

java.util.Calendar, 180
regional, 180

Canvas classes, 101
case statement, 66
catch block, 74

in try-catch statements, 79
multi-catch clause, 82

Certificate Revocation Lists
(CRLs), 104

char type, 24
in switch statements, 66

Character class, 10, 66
character data

reading from files, 131
reading from sockets, 133
writing to files, 132
writing to sockets, 134

character literals, 17
Character.isJavaIdentifier‐

Start(int), 14
checked exceptions, 74

common types of, 75
in JShell, 209
programmer-defined, 83

ChronoLocalDate interface, 180
Chronology interface, 180
class diagrams (UML), 245-247

attributes compartment, 246

256 | Index

name compartment, 246
operations compartment, 246
visibility indicators, 247

ClassCastException, 39
classes, 47-54

abstract, 55, 89
accessing methods/data mem‐

bers of, 49
constructors, 51
containment of, 251
data members and methods,

48
declaring in JShell, 203
dependency of, 252
generic, 163
generic methods in, 169
hierarchy and scope in JShell,

211
I/O class hierarchy, 130
implementing interfaces, 58
instantiating, 48
naming conventions for, 4
operators, 15
overloading methods, 49
overriding methods, 50
private data, accessing, 47
relationships between, in

UML, 250-252
representing in UML, 248
superclasses and subclasses,

51-53
syntax, 48
this keyword, 53

classpath argument, 118
CLASSPATH environment vari‐

able, 118
Clock class, 183
clone() method, 44
cloning objects, 44

shallow and deep cloning, 45
closures (see lambda expressions)
CM, third-party tools for,

235-237

code snippets (see JShell; snip‐
pets)

Collection.parallelStream(), 155
Collection.stream(), 155
collections

concurrent, 150
defined, 153

Collections Framework, 5,
153-160
collection algorithm ineffi‐

ciencies, 156
Collection interface and sub‐

interfaces, 153
valuable methods, 155

collection type implementa‐
tions, 154

Collections class algorithms,
155

Comparator functional inter‐
face, 158-161

convenience factory methods,
161

generics, 163
command-line tools, 112

compiler, 112-114
executing JAR files, 117
for garbage collection,

122-125
for memory management,

122-125
JAR, 116
Java interpreter, 114
-X options, 114

commands (JShell), summary of,
212

comments, 12
Common Object Request Broker

Architecture (CORBA), 103
compact strings, 11
Comparator functional interface,

158-160, 191
comparison operators, 15
compiler (javac), 112-114

Index | 257

compiling modules, 218
composition association of

classes, 251
compressed files, 136
concurrency, 143-151

collections, 150
creating threads, 143-145
executor utilities, 148
methods for, 145
synchronized statements and,

147
synchronizers, 150
thread priorities, 145
thread states, 145
timing utility, 151

concurrent mark-sweep (CMS)
collector, 121

conditional operators and
numeric promotion of primi‐
tive types, 30

conditional statements, 64
if else if statement, 65
if else statement, 65
if statement, 64
switch statement, 66

connectors (UML), 249
Console class, 130
constants

naming conventions for, 4
static, 57

constructors, 51
calling from another con‐

structor in same class
using this, 53

calling superclass constructor
with super keyword, 52

for user-defined exceptions,
84

lambda expressions and, 191
with generics, 165

containment of classes, 251
continue statement, 69

JShell and, 199

conversion of reference types, 38
narrowing conversions, 39
widening conversions, 39

copy constructors, 45
CORBA libraries (Java), 103
CRLs (see Certificate Revocation

Lists)
currency symbols, 21

D
data members

accessing in objects, 49
final, 89
in classes, 48
static, 56, 90
transient, 90, 135

data structures, optimizing, 156
DataInputStream, 132, 134
DataOutputStream, 133, 134
Date and Time API (JSR 310),

179-186, 234
durations and periods, 184
formatting date-time objects,

186
ISO calendar, 181
JDBC and XSD mapping, 185
legacy code and, 180
LocalDateTime class, with

and without method
chaining, 234

machine interface for, 183
primary classes, 181
regional calendars in, 180

DateTimeFormatter class, 186
Debian, 109
decimal integers, 18
deep cloning, 45
default method, 89
default statement, 66
default values (of reference types),

36-38
arrays, 37

258 | Index

instance and local variables,
36

defender method, 89
dependencies, 252

declaring, 225
in JShell, 200
transitive, 226

dependency checker (jdeps),
222-224
identifying dependencies, 222
identifying undocumented

JDK internal dependen‐
cies, 223

developer-defined annotations, 60
development, 109-118

classpath argument and, 118
command line tools for, 112
Java Development Kit (JDK),

109
Java Runtime Environment

(JRE), 109
program structure, 110-112
third-party tools for, 235-237

diamond operator (<>), 164
Diffie-Hellman keys, 104
Digital Signature Algorithm

(DSA) generation, 104
direct association of classes, 251
do while loop, 68
Document Object Model (DOM),

105
documentation, Javadoc com‐

ments and, 12
domain specific languages

(DSLs), 234
Domain Specific Languages

(Fowler), 234
double literals, 19
double type, 26
Double wrapper class, 27
DSA generation, 104
durations, 184

Duration.between() method,
184

E
-ea switch, 70
ellipsis (…) in vararg method sig‐

natures, 54
empty statements, 64
enableassertions switch, 70
encapsulation, 47
enhanced for loop, 67
entities

floating-point, 26-28
operations involving, 27

enumerations, 59
comparing, 44
declaring in JShell, 204
enum class type, 59
in switch statements, 66
naming conventions for, 4

epoch, 183
equality operators, 41
equals() method (Object), 41
equals() method (String), 42
Era interface, 180
err stream (System), 129
errors, 75

common types of, 77
compile-time errors in JShell

snippets, 202
escape sequences, 20
Event Dispatch Thread (EDT), 79
Exception class, 74
exception handling

checked exceptions in JShell,
209

keywords for, 78-82
throw keyword, 78
try-catch statements, 79
try/catch/finally, 78

multi-catch clause, 82
process, 83

Index | 259

programmer-defined excep‐
tions, 83

statements for, 71
try-catch-finally statements,

81
try-finally statements, 80
try-with-resources state‐

ments, 82
exceptions, 73-85

checked, 74
common checked/unchecked

exceptions and errors,
75-77

errors, 75
hierarchy of, 73
logging, 84
programmer-defined, 83
unchecked, 74

Executor interface, 148
explicit garbage collection, 126
expression statements, 63
extends keyword, 51
extends wildcard, 167

F
fields (see data members)
file I/O, 131-133

reading binary data from files,
132

reading raw character data
from files, 131

writing binary data to files,
133

writing character data to files,
132

zipping and unzipping files,
136

FileReader, 131
Files class, 140
Files.newBufferedReader()

method, 132
FileVisitor interface, 141
FileWriter, 133

final keyword, 57
final modifier, 89
finalize() method, 126
finally block

in try-catch statements, 79
in try-catch-finally state‐

ments, 81
in try-finally statements, 80

float type, 25
Float wrapper class, 27
floating-point entities, 26-28
floating-point literals, 19
fluent APIs, 233-234
fluent interfaces (see fluent APIs)
for loop, 67

enhanced, 67
forward referencing (in JShell),

209
found message (UML), 253
Fowler, Martin, 234, 245
functional interfaces (FIs), 62

annotated, 192
general purpose, 193-195
of Lambda Expressions, 189

@FunctionalInterface annotation,
62, 189

G
G1 collector, 121
garbage collection, 119-121

command-line options for,
122-125

concurrent mark-sweep
(CMS), 121

explicit, 126
finalize() method and, 126
Garbage-First (G1) collector,

121
interfacing with, 126
parallel collector, 120
parallel compacting collector,

120
serial collector, 120

260 | Index

Garbage-First (G1) collector, 121
GC (see garbage collection)
generalization of classes, 252
generics, 163-169

classes and interfaces, 163
constructors with, 165
extending, 168
generic methods in raw types,

169
get and put principle, 167
substitution principle, 165
type parameter names, 5
type parameters, wildcards,

and bounds, 166
get and put principle, 167
getMessage() method (Throwable

class), 84
global marking, 121
graphical icon representation, 248

of classes, 248
of notes, 248
of packages, 249

Gregorian calendar, 179
guillemet characters (<< >>), 15,

248
GZIP files, I/O with, 136
GZipInputStream, 137
GZipOutputStream, 137

H
hashCode() method, 42
HashMap() method, 42
HashSet() method, 42
heap, resizing, 125
Heap/CPU Profiling Tool

(HPROF), 121
hexadecimal literals, 18
Hijrah calendar system, 180
Horstmann, Cay S., 61
HPROF (Heap/CPU Profiling

Tool), 121

I
I/O (input/output), 129-137, 139

(see also NIO.2)
class hierarchy for, 130
with compressed files, 136
on files, 131-133
serialization of objects, 135
sockets, 133-135
standard streams, in, out, and

err, 129
identifiers, 14

keywords and, 13
IDEs (see integrated development

environments)
if else if statement, 65
if else statement, 65
if statement, 64
implements keyword, 58
/imports command (JShell), 200
in stream (System), 129
inconvertible types error, 39
Infinity entity, 26

operations involving, 27
–Infinity entity, 26

operations involving, 27
inheritance, 47

abstract classes and, 55
initializers, static, 57
InputStream, 132
instance variables, 48

default values for, 36
instances, naming conventions

for, 5
Instant.now() method, 183
int type, 25

in switch statements and, 66
integer literals, 18
Integer wrapper class, 66
integrated development environ‐

ments, 240
lambda expressions and, 191

integration libraries (Java), 99
interfaces, 58

Index | 261

declaring in JShell, 204
functional, 62
generic, 163
naming conventions for, 5, 58

intern() method (String), 20
interpreter (Java), 114
InterruptedException, 146
Invocable interface, 172
IOException error, 130
ISO 8601 standard, 179

ISO calendar, 181-186
iteration statements, 66

do while loop, 68
enhanced for loop, 67
for loop, 67
while loop, 68

J
Japanese Imperial calendar sys‐

tem, 180
JAR (see Java Archive utility)
Java

command line tools, 112
compiler, 112-114
interpreter, 114
program structure of, 110-112

Java 8 functional interfaces, 195
Java 8 new features forum at

CodeRanch, 195
Java API for XML Web Services

(JAX-WS), 106
Java Archive (JAR) utility, 116

executing JAR files, 117
Java Compatibility Kit (JCK), 104
Java Database Connectivity

(JDBC), 99, 185
Java Development Kit (JDK), 109

Enhancement Proposals
(JEPs), 215

memory management tools,
121

modularization of, 220-222

Java domain specific language
(DSL), 234

Java Flight Recorder, 122
Java Generic Security Service

(JGSS), 105
Java Generics and Collections

(Naftalin, Wadler), 163
Java HotSpot Virtual Machine,

119
Java Mission Control (JMC), 122
Java Naming and Directory Inter‐

face (JNDI), 99
Java Object Oriented Querying

(jOOQ) API, 233
Java Platform Module System

(JPMS), 215
Java Runtime Environment (JRE),

109
Java SE, 95-107

base libraries, 97-99
integration libraries, 99
JavaFX libraries, 100-102
language and utility libraries,

95
Remote Method Invocation

(RMI) libraries, 103
security libraries, 104
standard libraries, 95
user interface libraries, 100
XML libraries, 105-107

Java SE 8 for the Really Impatient
(Horstmann), 61

Java Shell (see JShell)
The Java Tutorial: Lambda

Expressions, 195
Java Virtual Machines (JVMs),

109
garbage collection and, 126
Java Platform Module System

(JPMS) implementation,
215

source for, 109
thread priorities and, 145

262 | Index

java.lang package, 59
java.lang.AssertionError, 70
java.lang.NullPointerException,

37
java.lang.Object, 35-46
java.lang.OutOfMemoryError,

125
java.lang.Runnable, 143
java.lang.Thread, 143
java.nio.file.DirectoryStream FI,

142
java.sql package, 185
java.time package, 179

DateTimeFormatter class, 186
java.sql and, 185

java.util.concurrent, 148
java.util.function package,

193-195
JavaBeans, 47
Javadoc, comments, 12
JavaFX libraries, 100-102
JAX-WS (see Java API for XML

Web Services)
JCK (see Java Compatibility Kit)
JDBC (see Java Database Connec‐

tivity)
JDK (see Java Development Kit)
jEdit, 110
JEPs (JDK Enhancement Propos‐

als), 215
JGSS (see Java Generic Security

Service)
Jigsaw project, 215
jlink tool, 229
JMC (see Java Mission Control)
jMock API, 233
JNDI (see Java Naming and

Directory Interface)
jOOQ API (see Java Object Ori‐

ented Querying)
JRE (see Java Runtime Environ‐

ment)
JRuby, 174

setting up, 174
JShell (Java Shell), 197-213

checked exceptions, 209
dependencies, importation of,

200
features, 207
flow control statements and,

199
forward referencing, 209
hierarchy and scope, 211
launching, 197
method and class declara‐

tions, 202
modifiers, handling, 198
package declarations and, 199
primary expressions, 200
saving, loading, and state, 206
scratch variables, 207
snippets, 198
statements and code blocks,

201
summary of commands, 212
tab auto-completion, 208
viewing, deleting, and modi‐

fying snippets, 204
JSR 203 (More New I/O APIs for

the Java Platform), 139
JSR 223, 171

(see also Scripting API)
scripting languages compati‐

ble with, 242
JSR 308 (Type Annotations Speci‐

fication), 61
JSR 310, 179

(see also Date and Time API)
JSR 335, 189
JSR 354 (Money and Currency

API), 234
JSR 376 (Java Platform Module

System), 215
JVisualVM, 125
JVMs (see Java Virtual Machines)

Index | 263

K
keywords, 13

for exception handling, 78-82

L
lambda expressions, 189-195

annotated functional inter‐
faces, 192

community resources for, 195
example of use, 190
functional interfaces (FIs),

189
general-purpose functional

interfaces, 193-195
method and constructor ref‐

erences, 191
syntax, 190
tutorials on, 195

language libraries (Java), 95
legacy code, interoperability with

Date and Time API, 180
lexical elements, 9-21

comments, 12
currency symbols in Unicode,

21
escape sequences, 20
identifiers, 14
keywords, 13
literals, 17-20
operators, 15
separators, 14
Unicode and ASCII, 9-11

libraries, third-party, 237
lifeline (UML), 254
Lightweight Directory Access

Protocol v3 (LDAP), 99
Linux, 109

POSIX-compliance and, 118
List interface, 153
literals, 17-20

boolean, 17
character, 17
floating-point, 19

for primitive types, 24
integer, 18
null, 20
string, 19

local variables
default values for, 36
final modifier, 88
naming conventions for, 6

LocalDateTime class, 234
locking threads, 147
locks, applying to blocks and

methods, 147
logging exceptions, 84
long integers, 18
long type, 25
looping variables, naming con‐

ventions, 7
low-latency collector, 121

M
Mac OS X, 109

POSIX-compliance and, 118
marker annotation, 60
Maurice Nuftalin's Lambda FAQ,

195
maximum pause time goal, 119
memory management, 119-127

command-line options for,
122-125

garbage collection, 119-121
heap, resizing, 125
interfacing with the garbage

collector, 126-127
metaspace, 125
tools for, 121

message to self (UML), 254
metaspace, 125
methods, 48

abstract, 56, 89
accessing, 49
applying locks to, 147
declaring in JShell, 202
fluent API prefixes for, 234

264 | Index

generic methods in raw types,
169

interface, 58
in Java 8 and Java 9, 58

invoking, of scripting lan‐
guages, 172

method references in lambda
expressions, 191

naming conventions for, 5
overloading, 49
overriding, 50
passing reference types into,

40
static, 57
vararg, 54-55

Microsoft Windows, 109
file paths, 118

Minquo calendar system, 180
modifiers, 87-90

access, 88
encoding, 90
JShell handling of, 198
nonaccess, 89

module-info.java file, 224
modules, 215-229

compiling, 218
declaring dependencies, 225
defining, 224
defining service providers,

226-229
exporting a package, 224
Java, 216-218

accessibility, 218
automatic modules, 217
JPMS loading behavior,

217
rules for, 216
unnamed, 218

jdeps dependency checker,
222-224

jlink tool, 229
modular JDK, 220-222
naming conventions for, 6

Project Jigsaw, 215
transitive dependencies, 226

Money and Currency API (JSR
354), 234

monitor, 148
multi-catch clause, 82
multidimensional arrays, 38
multiplicity indicators (UML),

249
multivalue annotation, 61
mutator methods, 47
mutex, 148

N
Naftalin, Maurice, 163, 195
naming conventions, 3-7

for acronyms, 3
for annotations, 3
for automatic modules, 217
for classes, 4
for constants, 4
for enumerations, 4
for generic parameter types, 5
for instances, 5
for interfaces, 5
for local variables, 6
for methods, 5
for modules, 6
for packages, 6
for parameters, 6
for static variables, 5

NaN (not a number), 26
operations involving NaN

entities, 27
narrowing conversions, 39
Nashorn JavaScript, 173, 177

accessing/controlling Java
resources from scripts,
173

native methods, 89
new I/O (NIO) APIs, 129

(see also NIO.2)

Index | 265

newBufferedReader() method
(Files), 132

newlines, 20
NIO.2, 139-142

additional features, 141
Files class, 140
Path interface, 139

nonaccess modifiers, 89
not a number (NaN), 26-28

operations involving NaN
entities, 27

Notepad+\+, 110
notes, in UML, 248
notify() method (Object), 146
null literals, 20
Number class, subtypes of, 165
numeric promotion (of primitive

types), 28-30
binary, 29
special cases for conditional

operators, 30
unary, 29

O
Object class

equals() method, 41
methods used for threads, 146

object diagrams (UML), 247
Object Management Group, 245
Object Request Brokers (ORBs),

103
object-oriented programming,

47-62
annotation types, 59-61
classes and objects, 47-54
enumerations, 59
functional interfaces, 62
interfaces, 58

ObjectInputStream class, 136
ObjectOutputStream class, 135
objects, 47-54

accessing methods/data mem‐
bers of, 49

cloning, 44
constructors, 51
copying reference types to, 44
creating, 48
deserializing, 136
methods, 48
methods overriding, 50
operators, 15
overloading methods, 49
serializing, 135
this keyword, 53

octal literals, 18
operators, 15
optional software directory, 175
Oracle, 109, 195
Oracle Certified Professional Java

SE Programmer Exam, 141
Oracle Java SE Advanced, 122
Oracle Learning Library on You‐

Tube, 195
out stream (System), 129
overloading methods, 49
@Override annotation, 60
overriding methods, 50

P
package-private access modifier,

52, 88
packages

naming conventions for, 6
package declarations and

JShell, 199
representing in UML, 249

parallel collectors, 120
parallel compacting collectors,

120
parameters, 163

(see also type parameters)
naming conventions for, 6
naming conventions for

generic type, 5
participants (UML), 253
Path interface, 139

266 | Index

PathMatcher interface, 141
Paths class, 139
periods, 184

Period class, 184
Period.of() method, 185

Permanent Generation (Perm‐
Gen) error message, 125

primary expressions, 200
primitive types, 23-33

autoboxing, 31
comparison to reference

types, 36
converting between reference

types and, 40
listed, 23
literals for, 24
numeric promotion of, 28-30
passing into methods, 40
unboxing, 32
wrapper classes for, 30

printf method as vararg method,
55

println() method, 20
printStackTrace() method

(Throwable class), 85
PrintWriter, 132, 134
private access modifier, 88
private data, 47
programmer-defined exceptions,

83
Project Jigsaw, 215
Project Lambda, 189
protected access modifier, 88
protected keyword, 52
public access modifier, 88
publicly available packages, 6
PushbackInputStream class, 132

Q
Queue interface, 153

R
realization models, 252
Red Hat, 109
reference types, 35-46

comparing, 41-44
enumerations, 44
strings, 42
using equality operators,

41
using equals() method, 41

comparing to primitives, 36
conversion of, 38-40
converting between primitive

types and, 40
copying, 44-45

cloning objects, 44
to an object, 44

default values of, 36-38
memory allocation and

garbage collection, 46
passing into methods, 40

regional calendars, 180
Remote Method Invocation

(RMI) and CORBA libraries,
103

requires statement, 225
reserved words in statements, 63
resources, accessing/controlling

from scripts, 173
Retention meta-annotation, 61
return call (UML), 253
return statement, 70

JShell and, 199
RMI-IIOP, 103
role names (UML), 250
RSA security interface, 104
run() method (Thread class), 143
Runnable interface, 143

implementing, 144
Runtime.getRuntime() method,

126
Runtime.getRuntime().gc(), 126
RuntimeException class, 74

Index | 267

S
SASL (see Simple Authentication

and Security Layer)
SAX (see Simple API for XML)
Scene Graph API, 101
ScheduledThreadPoolExecutor

class, 148
scratch variables, 207
ScriptEngine interface, 171-173
ScriptEngineManager class, 171
Scripting API, 171-177

script engine implementa‐
tions, 171-173
accessing/controlling Java

resources from scripts,
173

embedding scripts in Java,
172

invoking methods of
scripting languages,
172

scripting languages, 171
setting up scripting languages

and engines, 174-177
scripting engines

setting up, 174
validation of, 175

scripting languages, 242
Secured Sockets Layer (SSL), 103
security libraries (Java), 104
self-calls, 254
separators, 14
sequence diagrams (UML), 252

activation bar, 254
asynchronous message, 254
found message, 253
lifeline, 254
message to self, 254
participants, 253
return call, 253
synchronous message, 253

serial collectors, 120
Serializable interface, 135

serialization, 45, 135
deserializing an object, 136

service providers, defining in Java
9, 226
implementing Service API,

228
using service providers, 228

Set interface, 153
shallow cloning, 45
short type, 25

in switch statements and, 66
Short wrapper class, 66
signed types, 24
Simple API for XML (SAX), 106
Simple Authentication and Secu‐

rity Layer (SASL), 105
single abstract method (SAM)

interfaces, 62
single value annotation, 60
snippets, 198

handling thrown exceptions
in, 210

saving, loading, and state, 206
viewing, deleting, and modi‐

fying, 204
socket I/O, 133-135

reading binary data from
sockets, 134

reading characters from sock‐
ets, 133

writing binary data to sockets,
134

writing character data to
sockets, 134

Solaris, 109
POSIX-compliance and, 118

SQL (Structured Query Lan‐
guage), 99
Date Time API and, 185

SSL, 103
stack trace, printing, 85
statements, 63-71

assert, 70

268 | Index

blocks, 64
conditional, 64-66
empty, 64
exception handling, 71, 78
execution in JShell, 201
expression, 63
iteration, 66-68
synchronized, 70
transfer of control, 68-70

states of threads, 145
static keyword, 57
static modifier, 90

static constants, 57
static data members, 56
static initializers, 57
static methods, 57
static variables, naming con‐

ventions for, 5
StAX API (see Streaming API for

XML (StAX) API)
Stream API, 141
Streaming API for XML (StAX)

API, 106
streams, 129
strictfp, 89
string literals, 19
StringBuffer class, 43
StringBuilder class, 43
strings

compact, 11
comparing, 42
String type in switch state‐

ments, 66
Structured Query Language

(SQL), 99
Date and Time API and, 185

subclasses, 51-53
substitution principle, 165
super keyword, 52, 167
super wildcard, 167
superclasses, 47, 51-53
Suse, 109
switch statement, 66

synchronized keyword, 147
synchronized methods, 90
synchronized statements, 70

concurrency and, 147
synchronizers, 150
synchronous message (UML), 253
System.err stream, 129
System.gc() method, 126

T
tab auto-completion (JShell), 208
temporary association of classes,

252
temporary variables, naming con‐

ventions, 7
testing, third-party tools for,

235-237
TextPad, 110
Thai Buddhist calendar system,

180
third-party tools, 235-244

development, CM, and test
tools, 235-237

integrated development envi‐
ronments (IDEs), 240

libraries, 237
scripting languages compati‐

ble with JSR 223, 242
web application platforms,

241-242
this keyword, 53
Thread class

extending, 143
methods from, 145
state enumerator, 145

ThreadPoolExecutor class, 148
threads, 143-151

common methods used for
from Object class, 146
from Thread class, 145
Thread class static meth‐

ods, 147
creating, 143

Index | 269

locking, 147
priorities of, 145

ThreeTen Project, 179
throughput goal, 119
throw keyword, 78
Throwable class, 73

methods providing informa‐
tion on exceptions, 84

throws clause, 74
time, 179

(see also Date and Time API)
Time Zone Database (TZDB), 184
TimeUnit enumeration, 151
timing utility, 151
tools, third-party (see third-party

tools)
toString() method (Throwable

class), 85
transfer of control statements, 68

break, 68
continue, 69
return, 70

transient data members, 90, 135
transitive dependencies, 226
try-catch statements, 79
try-catch-finally statements, 81
try-finally statements, 80
try-with-resources statements, 82
try/catch/finally blocks, 78
Type Annotations Specification

(JSR 308), 61
type parameters (in generics), 163

bounds and wildcards applied
to, 166

for generic methods called in
non-generic types, 169

naming conventions for, 5
unbounded, 166

types
primitive types and their

wrapper classses/reference
types, 23-33

reference, 35-46

/types command in JShell, 204

U
Ubuntu, 109
UML Distilled (Fowler), 245
unary numeric promotion, 29
unboxing, 32

Boolean types, 64
unchecked exceptions, 74

common types of, 76
programmer-defined, 84

Unicode, 9-11
compact strings feature, 11
currency symbols in, 21
string literals, 19
Unicode Character Code

Chart, 10
Unicode 8.0.0, 9
Unicode Consortium, 9
Unified Modeling Language

(UML), 245-254
class relationships, 250-252
classes, diagraming, 245-247
connectors, 249
graphical icon representation,

248
multiplicity indicators, 249
object diagrams, 247
role names, 250
sequence diagrams, 252-254

UNIX Epoch, 183
unnamed modules, 218
unsigned types, 24
user interface libraries

JavaFX, 100-102
miscellaneous, 100

utility libraries, 95

V
varargs, 54-55
Vim, 110
visibility indicators (UML), 247

270 | Index

VisualVM, 126
volatile data members, 90

W
W3C’s DOM, 107
Wadler, Philip, 163
wait() method (Object), 146
WatchService interface, 141
web application platforms,

241-242
while loop, 68
whole-heap operations, 121
widening conversions, 39
wildcards in generic type parame‐

ters, 166
extends and super wildcards,

167
wrapper classes for primitive

types, 30
automatic conversion of

primitive types to, 32
automatic conversion to

primitive types, 32

X
-X options, 114
X500 Principal Credentials, 105
X500 Private Credentials, 105
XML libraries (Java), 105-107
XML Schema (XSD) types, Date

and Time API and, 185
–XX options for garbage collec‐

tion, 125

Y
YouTube, Oracle Learning

Library, 195

Z
ZIP files, I/O with, 136
ZipInputStream, 136
ZipOutputStream, 136

Index | 271

About the Authors
Robert James Liguori is an Oracle Certified Java Professional
and developer of several Java-based and Python-based aero‐
space and natural sciences applications.

Patricia Liguori is a multidisciplinary information systems
engineer for The MITRE Corporation in the air traffic manage‐
ment domain.

Colophon
The animal on the cover of Java Pocket Guide is the Javan tiger
(Panthera tigris sondaica). In recent history, this extinct species
lived on the island of Java in Indonesia, though fossil records
indicate that as recently as 12,000 years ago, they also lived on
Borneo Island and the Palawan archipelago.

Distinct for their long snouts, small frames, and relatively
strong, powerful paws, these tigers subsisted on boars, deer,
and wild cattle. Dutch writer J.G. ten Bokkel noted in 1890 that
the locals would use an honorific title when referring to the
animals (“Mister Tiger) for fear that discussing the animal in a
familiar way would draw its ire.

Though efforts were made to conserve territory for these tigers
as the population of Java expanded, a combination of hunting,
industrial development, and civil unrest in the region drove the
Javan tiger to extinction by 1994.

Many of the animals on O’Reilly covers are endangered. To
learn more about how you can help, go to animals.oreilly.com.

The cover image is from the Dover Pictoral Archive. The cover
fonts are URW Typewriter and Guardian Sans. The text font is
Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

http://www.mitre.org/
http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Book Structure
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Part I. Language
	Chapter 1. Naming Conventions
	Acronyms
	Annotation Names
	Class Names
	Constant Names
	Enumeration Names
	Generic Type Parameter Names
	Instance and Static Variable Names
	Interface Names
	Method Names
	Package Names
	Module Names
	Parameter and Local Variable Names

	Chapter 2. Lexical Elements
	Unicode and ASCII
	Printable ASCII Characters
	Nonprintable ASCII Characters

	Compact Strings
	Comments
	Keywords
	Identifiers
	Separators
	Operators
	Literals
	Boolean Literals
	Character Literals
	Integer Literals
	Floating-Point Literals
	String Literals
	Null Literals

	Escape Sequences
	Unicode Currency Symbols

	Chapter 3. Fundamental Types
	Primitive Types
	Literals for Primitive Types
	Floating-Point Entities
	Operations Involving Special Entities

	Numeric Promotion of Primitive Types
	Unary Numeric Promotion
	Binary Numeric Promotion
	Special Cases for Conditional Operators

	Wrapper Classes
	Autoboxing and Unboxing
	Autoboxing
	Unboxing

	Chapter 4. Reference Types
	Comparing Reference Types to Primitive Types
	Default Values
	Instance and Local Variable Objects
	Arrays

	Conversion of Reference Types
	Widening Conversions
	Narrowing Conversions

	Converting Between Primitives and Reference Types
	Passing Reference Types into Methods
	Comparing Reference Types
	Using the Equality Operators
	Using the equals() Method
	Comparing Strings
	Comparing Enumerations

	Copying Reference Types
	Copying a Reference to an Object
	Cloning Objects

	Memory Allocation and Garbage Collection of Reference Types

	Chapter 5. Object-Oriented Programming
	Classes and Objects
	Class Syntax
	Instantiating a Class (Creating an Object)
	Data Members and Methods
	Accessing Data Members and Methods in Objects
	Overloading
	Overriding
	Constructors
	Superclasses and Subclasses
	The this Keyword

	Variable-Length Argument Lists
	Abstract Classes and Abstract Methods
	Abstract Classes
	Abstract Methods

	Static Data Members, Static Methods, Static Constants, and Static Initializers
	Static Data Members
	Static Methods
	Static Constants
	Static Initializers

	Interfaces
	Enumerations
	Annotation Types
	Built-in Annotations
	Developer-Defined Annotations

	Functional Interfaces

	Chapter 6. Statements and Blocks
	Expression Statements
	Empty Statement
	Blocks
	Conditional Statements
	The if Statement
	The if else Statement
	The if else if Statement
	The switch Statement

	Iteration Statements
	The for Loop
	The Enhanced for Loop
	The while Loop
	The do while Loop

	Transfer of Control
	The break Statement
	The continue Statement
	The return Statement

	Synchronized Statement
	Assert Statement
	Exception Handling Statements

	Chapter 7. Exception Handling
	The Exception Hierarchy
	Checked/Unchecked Exceptions and Errors
	Checked Exceptions
	Unchecked Exceptions
	Errors

	Common Checked/Unchecked Exceptions and Errors
	Common Checked Exceptions
	Common Unchecked Exceptions
	Common Errors

	Exception Handling Keywords
	The throw Keyword
	The try/catch/finally Keywords
	The try-catch Statement
	The try-finally Statement
	The try-catch-finally Statement
	The try-with-resources Statement
	The multi-catch Clause

	The Exception Handling Process
	Defining Your Own Exception Class
	Printing Information About Exceptions
	The getMessage() Method
	The toString() Method
	The printStackTrace() Method

	Chapter 8. Java Modifiers
	Access Modifiers
	Other (Nonaccess) Modifiers
	Modifiers Encoding

	Part II. Platform
	Chapter 9. Java Platform, Standard Edition
	Common Java SE API Libraries
	Language and Utility Libraries
	Base Libraries
	Integration Libraries
	Miscellaneous User Interface Libraries
	JavaFX User Interface Library
	Remote Method Invocation (RMI) and CORBA Libraries
	Security Libraries
	Extensible Markup Language (XML) Libraries

	Chapter 10. Development Basics
	Java Runtime Environment
	Java Development Kit
	Java Program Structure
	Command-Line Tools
	Java Compiler
	Java Interpreter
	Java Program Packager
	JAR File Execution

	Classpath

	Chapter 11. Memory Management
	Garbage Collectors
	Serial Collector
	Parallel Collector
	Parallel Compacting Collector
	Concurrent Mark-Sweep Collector
	Garbage-First (G1) Collector

	Memory Management Tools
	Command-Line Options
	Resizing the JVM Heap
	Metaspace
	Interfacing with the GC
	Explicit Garbage Collection
	Finalization

	Chapter 12. Basic Input and Output
	Standard Streams in, out, and err
	Class Hierarchy for Basic Input and Output
	File Reading and Writing
	Reading Character Data from a File
	Reading Binary Data from a File
	Writing Character Data to a File
	Writing Binary Data to a File

	Socket Reading and Writing
	Reading Character Data from a Socket
	Reading Binary Data from a Socket
	Writing Character Data to a Socket
	Writing Binary Data to a Socket

	Serialization
	Serialize
	Deserialize

	Zipping and Unzipping Files
	Compressing and Uncompressing GZIP Files

	Chapter 13. New I/O API (NIO.2)
	The Path Interface
	The Files Class
	Additional Features

	Chapter 14. Concurrency
	Creating Threads
	Extending the Thread Class
	Implementing the Runnable Interface

	Thread States
	Thread Priorities
	Common Methods
	Synchronization
	Concurrent Utilities
	Executors
	Concurrent Collections
	Synchronizers
	Timing Utility

	Chapter 15. Java Collections Framework
	The Collection Interface
	Implementations
	Collection Framework Methods
	Collections Class Algorithms
	Algorithm Efficiencies
	Comparator Functional Interface
	Convenience Factory Methods

	Chapter 16. Generics Framework
	Generic Classes and Interfaces
	Constructors with Generics
	Substitution Principle
	Type Parameters, Wildcards, and Bounds
	The Get and Put Principle
	Generic Specialization
	Generic Methods in Raw Types

	Chapter 17. The Java Scripting API
	Scripting Languages
	Script Engine Implementations
	Embedding Scripts into Java
	Invoking Methods of Scripting Languages
	Accessing and Controlling Java Resources from Scripts

	Setting Up Scripting Languages and Engines
	Scripting Language Setup
	Scripting Engine Setup
	Scripting Engine Validation

	Chapter 18. Date and Time API
	Legacy Interoperability
	Regional Calendars
	ISO Calendar
	Machine Interface
	Durations and Periods
	JDBC and XSD Mapping
	Formatting

	Chapter 19. Lambda Expressions
	λEs Basics
	λEs Syntax and Example
	Method and Constructor References

	Specific-Purpose Functional Interfaces
	General-Purpose Functional Interfaces
	Resources for λEs
	Tutorials
	Community Resources

	Chapter 20. JShell: the Java Shell
	Getting Started
	Snippets
	Modifiers
	Flow Control Statements
	Package Declarations

	Using JShell
	Primary Expressions
	Dependencies
	Statements and Code Blocks
	Method and Class Declarations
	Viewing, Deleting, and Modifying Snippets
	Saving, Loading, and State

	JShell Features
	Scratch Variables
	Tab Auto-Complete
	Forward Referencing
	Checked Exceptions
	Hierarchy and Scope

	Summary of JShell Commands

	Chapter 21. Java Module System
	Project Jigsaw
	Java Modules
	Automatic Modules
	Unnamed Modules
	Accessibility

	Compiling Modules
	Modular JDK
	jdeps
	Identifying Dependencies
	Identifying Undocumented JDK Internal Dependencies

	Defining a Module
	Exporting a Package
	Declaring Dependencies
	Transitive Dependencies
	Defining Service Providers
	Defining Service API
	Implementing Service API
	Using Service Providers

	jlink

	Part III. Appendixes
	Appendix A. Fluent APIs
	Appendix B. Third-Party Tools
	Development, CM, and Test Tools
	Libraries
	Integrated Development Environments
	Web Application Platforms
	Scripting Languages Compatible with JSR-223

	Appendix C. UML Basics
	Class Diagrams
	Name
	Attributes
	Operations
	Visibility

	Object Diagrams
	Graphical Icon Representation
	Classes, Abstract Classes, and Interfaces
	Notes
	Packages

	Connectors
	Multiplicity Indicators
	Role Names
	Class Relationships
	Association
	Direct Association
	Composition Association
	Aggregation Association
	Temporary Association
	Generalization
	Realization

	Sequence Diagrams
	Participant (1)
	Found Message (2)
	Synchronous Message (3)
	Return Call (4)
	Asynchronous Message (5)
	Message to Self (6)
	Lifeline (7)
	Activation Bar (8)

	Index

