

Mark Lutz

FIFTH EDITION

Python Pocket Reference

Python Pocket Reference, Fifth Edition
by Mark Lutz

Copyright © 2014 Mark Lutz. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebasto‐
pol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://safaribookson
line.com). For more information, contact our corporate/institutional sales de‐
partment: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Kristen Brown
Copyeditor: Richard Carey
Proofreader: Amanda Kersey
Indexer: Lucie Haskins
Cover Designer: Randy Comer
Interior Designer: David Futato

October 1998: First Edition
January 2002: Second Edition
February 2005: Third Edition
October 2009: Fourth Edition
February 2014: Fifth Edition

Revision History for the Fifth Edition:

2020-11-13: Ninth release
See http://oreilly.com/catalog/errata.csp?isbn=9781449357016 for release de‐
tails.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. Python Pocket Reference, the im‐
age of a rock python, and related trade dress are trademarks of O’Reilly Media,
Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

ISBN: 978-1-449-35701-6

[LSI]

2018-11-21: Fifth release
2019-04-05: Sixth release
2019-09-06: Seventh release
2020-03-27: Eighth release

http://safaribooksonline.com
http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449357016

Table of Contents

Introduction 1
Book Conventions 2
Python Command-Line Usage 3

Python Command Options 4
Command-Line Program Specification 5
Python 2.X Command Options 7

Python Environment Variables 7
Operational Variables 8
Python Command Option Variables 9

Python Windows Launcher Usage 10
Launcher File Directives 10
Launcher Command Lines 11
Launcher Environment Variables 11

Built-in Types and Operators 12
Operators and Precedence 12
Operator Usage Notes 14
Operations by Category 16
Sequence Operation Notes 20

Specific Built-in Types 21
Numbers 22

iii

Strings 24
Unicode Strings 42
Lists 46
Dictionaries 53
Tuples 57
Files 58
Sets 63
Other Types and Conversions 65

Statements and Syntax 67
Syntax Rules 67
Name Rules 69

Specific Statements 71
The Assignment Statement 72
The Expression Statement 76
The print Statement 77
The if Statement 80
The while Statement 80
The for Statement 80
The pass Statement 81
The break Statement 81
The continue Statement 81
The del Statement 81
The def Statement 82
The return Statement 86
The yield Statement 87
The global Statement 88
The nonlocal Statement 89
The import Statement 89
The from Statement 93
The class Statement 95
The try Statement 97
The raise Statement 99

iv | Table of Contents

The assert Statement 101
The with Statement 102
Python 2.X Statements 104

Namespace and Scope Rules 105
Qualified Names: Object Namespaces 105
Unqualified Names: Lexical Scopes 105
Nested Scopes and Closures 107

Object-Oriented Programming 108
Classes and Instances 109
Pseudoprivate Attributes 110
New-Style Classes 111
Formal Inheritance Rules 112

Operator Overloading Methods 117
Methods for All Types 118
Methods for Collections (Sequences, Mappings) 123
Methods for Numbers (Binary Operators) 125
Methods for Numbers (Other Operations) 128
Methods for Descriptors 129
Methods for Context Managers 130
Python 2.X Operator Overloading Methods 131

Built-in Functions 134
Python 2.X Built-in Functions 155

Built-in Exceptions 161
Superclasses: Categories 162
Specific Exceptions 163
Specific OSError Exceptions 167
Warning Category Exceptions 169
Warnings Framework 170
Python 3.2 Built-in Exceptions 171
Python 2.X Built-in Exceptions 172

Built-in Attributes 172
Standard Library Modules 173

Table of Contents | v

The sys Module 174
The string Module 182

Functions and Classes 182
Constants 183

The os System Module 184
Administrative Tools 185
Portability Constants 186
Shell Commands 187
Environment Tools 189
File Descriptor Tools 190
File Pathname Tools 193
Process Control 197
The os.path Module 200

The re Pattern-Matching Module 202
Module Functions 202
Regular Expression Objects 205
Match Objects 205
Pattern Syntax 207

Object Persistence Modules 210
The shelve and dbm Modules 211
The pickle Module 213

The tkinter GUI Module and Tools 216
tkinter Example 216
tkinter Core Widgets 217
Common Dialog Calls 218
Additional tkinter Classes and Tools 219
Tcl/Tk-to-Python/tkinter Mappings 220

Internet Modules and Tools 221
Other Standard Library Modules 224

The math Module 224
The time Module 225
The timeit Module 226

vi | Table of Contents

The datetime Module 227
The random Module 228
The json Module 228
The subprocess Module 229
The enum Module 229
The struct Module 230
Threading Modules 231

Python SQL Database API 232
API Usage Example 233
Module Interface 234
Connection Objects 234
Cursor Objects 235
Type Objects and Constructors 236

More Hints and Idioms 236
Core Language Hints 237
Environment Hints 238
Usage Hints 240
Assorted Hints 242

Index 243

Table of Contents | vii

Python Pocket Reference

Introduction
Python is a general-purpose, multiparadigm, open source com‐
puter programming language, with support for object-oriented,
functional, and procedural coding structures. It is commonly
used both for standalone programs and for scripting applications
in a wide variety of domains, and is generally considered to be
one of the most widely used programming languages in the
world.

Among Python’s features are an emphasis on code readability and
library functionality, and a design that optimizes developer pro‐
ductivity, software quality, program portability, and component
integration. Python programs run on most platforms in common
use, including Unix and Linux, Windows and Macintosh, Java
and .NET, Android and iOS, and more.

This pocket reference summarizes Python types and statements,
special method names, built-in functions and exceptions, com‐
monly used standard library modules, and other prominent
Python tools. It is intended to serve as a concise reference tool
for developers and is designed to be a companion to other books
that provide tutorials, code examples, and other learning
materials.

This fifth edition covers both Python 3.X and 2.X. It focuses pri‐
marily on 3.X, but also documents differences in 2.X along the

1

way. Specifically, this edition has been updated to be current with
Python versions 3.3 and 2.7 as well as prominent enhancements
in the imminent 3.4 release, although most of its content also
applies both to earlier and to later releases in the 3.X and 2.X lines.

This edition also applies to all major implementations of Python
—including CPython, PyPy, Jython, IronPython, and Stackless
—and has been updated and expanded for recent changes in lan‐
guage, libraries, and practice. Its changes include new coverage
of the MRO and super(); formal algorithms of inheritance, im‐
ports, context managers, and block indentation; and commonly
used library modules and tools, including json, timeit, random,
subprocess, enum, and the new Windows launcher.

Book Conventions
The following notational conventions are used in this book:
[]

In syntax formats, items in brackets are optional; brackets
are also used literally in some parts of Python’s syntax as
noted where applicable (e.g., lists).

*

In syntax formats, items followed by an asterisk can be re‐
peated zero or more times; star is also used literally in some
parts of Python’s syntax (e.g., multiplication).

a | b
In syntax formats, items separated by a bar are alternatives;
bar is also used literally in some parts of Python’s syntax (e.g.,
union).

Italic
Used for filenames and URLs, and to highlight new or im‐
portant terms.

Constant width

Used for code, commands, and command-line options, and
to indicate the names of modules, functions, attributes, vari‐
ables, and methods.

2 | Python Pocket Reference

Constant width italic

Used for replaceable parameter names in the syntax of com‐
mand lines, expressions, functions, and methods.

Function()

Except where noted, callable functions and methods are de‐
noted by trailing parentheses, to distinguish them from oth‐
er types of attributes.

See “Section Header Name”
References to other sections in this book are given by section
header text in double quotes.

N O T E

In this book, “3.X” and “2.X” mean that a topic applies to
all commonly used releases in a Python line. More specific
release numbers are used for topics of more limited scope
(e.g., “2.7” means 2.7 only). Because future Python changes
can invalidate applicability to future releases, also see
Python’s “What’s New” documents, currently maintained at
http://docs.python.org/3/whatsnew/index.html for Pythons
released after this book.

Python Command-Line Usage
Command lines used to launch Python programs from a system
shell have the following format:

python [option*]
 [scriptfile | -c command | -m module | -] [arg*]

In this format, python denotes the Python interpreter executable
with either a full directory path, or the word python that is re‐
solved by the system shell (e.g., via PATH settings). Command-line
options intended for Python itself appear before the specification
of the program code to be run (option). Arguments intended for
the code to be run appear after the program specification (arg).

Python Command-Line Usage | 3

http://docs.python.org/3/whatsnew/index.html

Python Command Options
The option items in Python command lines are used by Python
itself, and can be any of the following in Python 3.X (see “Python
2.X Command Options” ahead for 2.X differences):
-b

Issue warnings for calling str() with a bytes or bytearray
object and no encoding argument, and comparing a bytes
or bytearray with a str. Option -bb issues errors instead.

-B

Do not write .pyc or .pyo byte-code files on imports.

-d

Turn on parser debugging output (for developers of the
Python core).

-E

Ignore Python environment variables described ahead (such
as PYTHONPATH).

-h

Print help message and exit.

-i

Enter interactive mode after executing a script. Hint: useful
for postmortem debugging; see also pdb.pm(), described in
Python’s library manuals.

-O

Optimize generated byte code (create and use .pyo byte-code
files). Currently yields a minor performance improvement.

-OO

Operates like -O, the previous option, but also removes
docstrings from byte code.

-q

Do not print version and copyright message on interactive
startup (as of Python 3.2).

4 | Python Pocket Reference

-s

Do not add the user site directory to the sys.path module
search path.

-S

Do not imply “import site” on initialization.

-u

Force stdout and stderr to be unbuffered and binary.

-v

Print a message each time a module is initialized, showing
the place from which it is loaded; repeat this flag for more
verbose output.

-V

Print Python version number and exit (also available as
--version).

-W arg
Warnings control: arg takes the form action:message:
category:module:lineno. See also “Warnings Framework”
and “Warning Category Exceptions” ahead, and the warn
ings module documentation in the Python Library Refer‐
ence manual (available at http://www.python.org/doc/).

-x

Skip first line of source, allowing use of non-Unix forms of
#!cmd.

-X option
Set implementation-specific option (as of Python 3.2); see
implementation documentation for supported option

values.

Command-Line Program Specification
Code to be run and command-line arguments to send to it are
specified in the following ways in Python command lines:

Python Command-Line Usage | 5

http://www.python.org/doc/

scriptfile

Denotes the name of a Python script file to run as the main,
topmost file of a program (e.g., python main.py runs the code
in main.py). The script’s name may be an absolute or relative
(to “.”) filename path, and is made available in sys.argv[0].
On some platforms, command lines may also omit the
python component if they begin with a script file name and
have no options for Python itself.

-c command
Specifies Python code (as a string) to run (e.g., python -c
"print('spam' * 8)" runs a Python print operation).
sys.argv[0] is set to '-c'.

-m module
Runs a module as a script: searches for module on sys.path
and runs it as a top-level file (e.g., python -m pdb s.py runs
the Python debugger module pdb located in a standard li‐
brary directory, with argument s.py). module may also name
a package (e.g., idlelib.idle). sys.argv[0] is set to the
module’s full path name.

−

Reads Python commands from the standard input stream,
stdin (the default); enters interactive mode if stdin is a “tty”
(interactive device). sys.argv[0] is set to '−'.

arg*

Indicates that anything else on the command line is passed
to the script file or command, and appears in the built-in list
of strings sys.argv[1:].

If no scriptfile, command, or module is given, Python enters in‐
teractive mode, reading commands from stdin (and using GNU
readline for input, if installed), and setting sys.argv[0] to '' (the
empty string) unless invoked with option – in the preceding list.

Besides using traditional command lines at a system shell
prompt, you can also generally start Python programs by clicking
their filenames in a file explorer GUI; by calling functions in the

6 | Python Pocket Reference

Python standard library (e.g., os.popen()); by using program-
launch menu options in IDEs such as IDLE, Komodo, Eclipse,
and NetBeans; and so on.

Python 2.X Command Options
Python 2.X supports the same command-line format, but does
not support the -b option, which is related to Python 3.X’s string
type changes, nor the recent –q and –X additions in 3.X. It supports
additional options in 2.6 and 2.7 (some may be present earlier):
-t and -tt

Issues warnings for inconsistent mixtures of tabs and spaces
in indentation. Option -tt issues errors instead. Python 3.X
always treats such mixtures as syntax errors (see also “Syntax
Rules”).

-Q

Division-related options: -Qold (the default), -Qwarn,
-Qwarnall, and –Qnew. These are subsumed by the new true
division behavior of Python 3.X (see also “Operator Usage
Notes”).

-3

Issues warnings about any Python 3.X incompatibilities in
code that the Python standard installation’s 2to3 tool cannot
trivially fix.

-R

Enables a pseudorandom salt to make hash values of various
types be unpredictable between separate invocations of the
interpreter, as a defense against denial-of-service attacks.
New in Python 2.6.8. This switch is also present in 3.X as of
3.2.3 for compatibility, but this hash randomization is en‐
abled by default as of 3.3.

Python Environment Variables
Environment (a.k.a. shell) variables are systemwide settings that
span programs and are used for global configuration.

Python Environment Variables | 7

Operational Variables
The following are major user-configurable environment vari‐
ables related to script behavior:
PYTHONPATH

Augments the default search path for imported module files.
The format of this variable’s value is the same as the shell’s
PATH setting: directory pathnames separated by colons
(semicolons on Windows). If set, module imports search for
imported files or directories in each directory listed in
PYTHONPATH, from left to right. Merged into sys.path—the
full module search path for leftmost components in absolute
imports—after the script’s directory, and before standard li‐
brary directories. See also sys.path in “The sys Module”,
and “The import Statement”.

PYTHONSTARTUP

If set to the name of a readable file, the Python commands
in that file are executed before the first prompt is displayed
in interactive mode (useful to define often-used tools).

PYTHONHOME

If set, the value is used as an alternate prefix directory for
library modules (or sys.prefix, sys.exec_prefix). The de‐
fault module search path uses sys.prefix/lib.

PYTHONCASEOK

If set, filename case is ignored in import statements (cur‐
rently only on Windows and OS X).

PYTHONIOENCODING

Assign to string encodingname[:errorhandler] to override
the default Unicode encoding (and optional error handler)
used for text transfers made to the stdin, stdout, and stderr
streams. This setting may be required for non-ASCII text in
some shells (e.g., try setting this to utf8 or other if prints
fail).

8 | Python Pocket Reference

PYTHONHASHSEED

If set to “random”, a random value is used to seed the hashes
of str, bytes, and datetime objects; may also be set to an
integer in the range 0...4,294,967,295 to get hash values with
a predictable seed (as of Python 3.2.3 and 2.6.8).

PYTHONFAULTHANDLER

If set, Python registers handlers at startup to dump a trace‐
back on fatal signal errors (as of Python 3.3, and equivalent
to -X faulthandler).

Python Command Option Variables
The following environment variables are synonymous with some
of Python’s command-line options (see “Python Command Op‐
tions”):
PYTHONDEBUG

If nonempty, same as -d option.

PYTHONDONTWRITEBYTECODE

If nonempty, same as -B option.

PYTHONINSPECT

If nonempty, same as -i option.

PYTHONNOUSERSITE

If nonempty, same as -s option.

PYTHONOPTIMIZE

If nonempty, same as -O option.

PYTHONUNBUFFERED

If nonempty, same as -u option.

PYTHONVERBOSE

If nonempty, same as -v option.

PYTHONWARNINGS

If nonempty, same as -W option, with same value. Also ac‐
cepts a comma-separated string as equivalent to multiple -W
options. (As of Python 3.2 and 2.7.)

Python Environment Variables | 9

Python Windows Launcher Usage
On Windows (only), Python 3.3 and later install a script launcher,
also available separately for earlier versions. This launcher con‐
sists of the executables py.exe (console) and pyw.exe (noncon‐
sole), which can be invoked without PATH settings; are registered
to run Python files via filename associations; and allow Python
versions to be selected in three ways—with “#!” Unix-like direc‐
tives at the top of scripts, with command-line arguments, and
with configurable defaults.

Launcher File Directives
The launcher recognizes “#!” lines at the top of script files that
name Python versions in one of the following forms, in which *
is either: empty to use the default version (currently 2 if installed
and similar to omitting a “#!” line); a major version number (e.g.,
3) to launch the latest version in that line installed; or a com‐
plete major.minor specification, optionally suffixed by −32 to pre‐
fer a 32-bit install (e.g., 3.1–32):

#!/usr/bin/env python*
#!/usr/bin/python*
#!/usr/local/bin/python*
#!python*

Any Python (python.exe) arguments may be given at the end of
the line, and Python 3.4 and later may consult PATH for “#!” lines
that give just python with no explicit version number.

10 | Python Pocket Reference

Launcher Command Lines
The launcher may also be invoked from a system shell with com‐
mand lines of the following form:

py [pyarg] [pythonarg*] script.py [scriptarg*]

More generally, anything that may appear in a python command
after its python component may also appear after the optional
pyarg in a py command, and is passed on to the spawned Python
verbatim. This includes the -m, -c, and - program specification
forms; see “Python Command-Line Usage”.

The launcher accepts the following argument forms for its op‐
tional pyarg, which mirror the * part at the end of a file’s “#!” line:

−2 Launch latest 2.X version installed
-3 Launch latest 3.X version installed
-X.Y Launch specified version (X is 2 or 3)
-X.Y−32 Launch the specified 32-bit version

If both are present, command-line arguments have precedence
over values given in “#!” lines. As installed, “#!” lines may be
applied in more contexts (e.g., icon clicks).

Launcher Environment Variables
The launcher also recognizes optional environment variable set‐
tings, which may be used to customize version selection in default
or partial cases (e.g., missing or major-only “#!” or py command
argument):

PY_PYTHON Version to use in default cases (else 2)
PY_PYTHON3 Version to use in 3 partials (e.g., 3.2)
PY_PYTHON2 Version to use in 2 partials (e.g., 2.6)

These settings are used only by launcher executables, not when
python is invoked directly.

Python Windows Launcher Usage | 11

Built-in Types and Operators
Operators and Precedence
Table 1 lists Python’s expression operators. Operators in the lower
cells of this table have higher precedence (i.e., bind tighter) when
used in mixed-operator expressions without parentheses.

Atomic terms and dynamic typing
In Table 1, the replaceable expression items X, Y, Z, i, j, and k may
be:

• Variable names, replaced with their most recently assigned
value

• Literal expressions, defined in “Specific Built-in Types”

• Nested expressions, taken from any row in this table, pos‐
sibly in parentheses

Python variables follow a dynamic typing model—they are not
declared, and are created by being assigned; have object refer‐
ences as values, and may reference any type of object; and must
be assigned before appearing in expressions, as they have no de‐
fault value. Case is always significant in variable names (see
“Name Rules”). Objects referenced by variables are automatically
created, and automatically reclaimed when no longer in use by
Python’s garbage collector, which uses reference counters in
CPython.

Also in Table 1, replaceable attr must be the literal (unquoted)
name of an attribute; args1 is a formal arguments list as defined
in “The def Statement”; args2 is an input arguments list as defined
in “The Expression Statement”; and a literal ... qualifies as an
atomic expression in 3.X (only).

12 | Python Pocket Reference

The syntax of comprehensions and data structure literals (tuple,
list, dictionary, and set) given abstractly in the last three rows of
Table 1 is defined in “Specific Built-in Types”.
Table 1. Python 3.X expression operators and precedence

Operator Description

yield X Generator function result (returns send() value)

lambda args1: X Anonymous function maker (returns X when
called)

X if Y else Z Ternary selection (X is evaluated only if Y is true)

X or Y Logical OR: Y is evaluated only if X is false

X and Y Logical AND: Y is evaluated only if X is true

not X Logical negation

X in Y, X not in Y Membership: iterables, sets

X is Y, X is not Y Object identity tests

X < Y, X <= Y, X > Y, X >= Y Magnitude comparisons, set subset and superset

X == Y, X != Y Equality operators

X | Y Bitwise OR, set union

X ^ Y Bitwise exclusive OR, set symmetric difference

X & Y Bitwise AND, set intersection

X << Y, X >> Y Shift X left, right by Y bits

X + Y, X − Y Addition/concatenation, subtraction/set
difference

X * Y, X % Y,
X / Y, X // Y

Multiplication/repetition, remainder/format,
division, floor division

-X, +X Unary negation, identity

˜X Bitwise NOT complement (inversion)

X ** Y Power (exponentiation)

X[i] Indexing (sequence, mapping, others)

X[i:j:k] Slicing (all three bounds optional)

X(args2) Call (function, method, class, other callable)

Built-in Types and Operators | 13

Operator Description

X.attr Attribute reference

(....) Tuple, expression, generator expression

[....] List, list comprehension

{....} Dictionary, set, dictionary and set comprehension

Operator Usage Notes

• In Python 2.X only, value inequality can be written as either
X != Y or X <> Y. In Python 3.X, the latter of these options is
removed because it is redundant.

• In Python 2.X only, a backquotes expression ̀ X` works the
same as repr(X), and converts objects to display strings. In
Python 3.X, use the more readable str() and repr() built-
in functions instead.

• In both Python 3.X and 2.X, the X // Y floor division ex‐
pression always truncates fractional remainders, and re‐
turns an integer result for integers.

• The X / Y expression performs true division in 3.X (always
retaining remainders in a floating-point result), and classic
division in 2.X (truncating remainders for integers) unless
3.X’s true division is enabled in 2.X with from __future__
import division or Python option -Qnew.

• The syntax [....] is used for both list literals and list com‐
prehension expressions. The latter of these performs an
implied loop and collects expression results in a new list.

• The syntax (....) is used for tuples and expressions, as
well as generator expressions—a form of list comprehen‐
sion that produces results on demand, instead of building
a result list. Parentheses may sometimes be omitted in all
three constructs. When a tuple’s parentheses are omitted,
the comma separating its items acts like a lowest-
precedence operator if not otherwise significant.

14 | Python Pocket Reference

• The syntax {....} is used for dictionary literals. In Python
3.X and 2.7, it is also used for set literals, and both dictio‐
nary and set comprehensions; use set() and looping state‐
ments in 2.6 and earlier.

• The yield and ternary if/else selection expressions are
available in Python 2.5 and later. The former returns send()
arguments in generators; the latter is a shorthand for a
multiline if statement. yield requires parentheses if not
alone on the right side of an assignment statement.

• Comparison operators may be chained: X < Y < Z produces
the same result as X < Y and Y < Z, but Y is evaluated only
once in the chained form.

• The slice expression X[i:j:k] is equivalent to indexing
with a slice object: X[slice(i, j, k)].

• In Python 2.X, magnitude comparisons of mixed types are
allowed—converting numbers to a common type, and or‐
dering other mixed types according to the type name. In
Python 3.X, nonnumeric mixed-type magnitude compar‐
isons are not allowed and raise exceptions; this includes
sorts by proxy.

• Magnitude comparisons for dictionaries are also no longer
supported in Python 3.X (although equality tests are);
comparing sorted(adict.items()) is one possible replace‐
ment in 3.X.

• Call expressions allow for positional and keyword argu‐
ments, and arbitrarily large numbers of both; see “The Ex‐
pression Statement” and “The def Statement” for call
syntax.

• Python 3.X allows ellipsis (literally, ..., and known by
built-in name Ellipsis) to be used as an atomic expression
anywhere in source code. This may be used as an alternative
to pass or None in some contexts (e.g., stubbed-out function
bodies, type-independent variable initialization).

Built-in Types and Operators | 15

• Although uncertain at this writing, Python 3.5 or later may
generalize the *X and **X star syntax to appear in data
structure literals and comprehensions, where it will unpack
collections into individual items, much as it currently does
in function calls. See “The Assignment Statement” for more
details.

Operations by Category
In this section, trailing parentheses are omitted from __X__
method names for brevity. In general, all built-in types support
the comparisons and Boolean operations listed in Table 2 (al‐
though Python 3.X does not support magnitude comparisons for
dictionaries or mixed nonnumeric types).

Boolean true means any nonzero number or any nonempty col‐
lection object (list, dictionary, etc.), and all objects have a Boolean
value. The built-in names True and False are preassigned to true
and false values and behave like integers 1 and 0 with custom
display formats. The special object None is false and appears in
various Python contexts.

Comparisons return True or False and are automatically applied
recursively in compound objects as needed to determine a result.

Boolean and and or operators stop (short-circuit) as soon as a
result is known and return one of the two operand objects—the
value on the left or the right of the operator—whose Boolean
value gives the result.
Table 2. Comparisons and Boolean operations

Operator Description

X < Y Strictly less thana

X <= Y Less than or equal to

X > Y Strictly greater than

X >= Y Greater than or equal to

X == Y Equal to (same value)

16 | Python Pocket Reference

Operator Description

X != Y Not equal to (same as X<>Y in Python 2.X
only)b

X is Y Same object

X is not Y Negated object identity

X < Y < Z Chained comparisons

not X If X is false then True; else, False

X or Y If X is false then Y; else, X

X and Y If X is false then X; else, Y
a To implement comparison expressions, see both the rich comparison (e.g., __lt__
for <) class methods in 3.X and 2.X, and general __cmp__ method in 2.X, described
in “Operator Overloading Methods”.
b != and <> both mean not equal by value in 2.X, but != is the preferred syntax
in 2.X and the only supported option in 3.X. is performs an identity test; ==
performs value comparison, and so is much more generally useful.

Tables 3 through 6 define operations common to types in the
three major type categories—sequence (positionally ordered),
mapping (access-by-key), and number (all numeric types)—as
well as operations available for mutable (changeable) types in
Python. Most types also export additional type-specific opera‐
tions (e.g., methods), as described in “Specific Built-in Types”.
Table 3. Sequence operations (strings, lists, tuples, bytes, bytearray)

Operation Description Class method

X in S
X not in S

Membership tests __contains__,
__iter__,
__getitem__a

S1 + S2 Concatenation __add__

S * N, N * S Repetition __mul__

S[i] Index by offset __getitem__

Built-in Types and Operators | 17

Operation Description Class method

S[i:j], S[i:j:k] Slicing: items in S from
offset i through j−1 by
optional stride k

__getitem__b

len(S) Length __len__

min(S), max(S) Minimum, maximum item __iter__,
__getitem__

iter(S) Iteration protocol __iter__

for X in S:,
[expr for X in S],
map(func, S), etc.

Iteration (all contexts) __iter__,
__getitem__

a See also “The iteration protocol” for more on these methods and their interplay.
If defined, __contains__ is preferred over __iter__, and __iter__ is
preferred over __getitem__.
b In Python 2.X, you may also define __getslice__, __setslice__, and
__delslice__ to handle slicing operations. In 3.X, these are removed in favor
of passing slice objects to their item-based indexing counterparts. Slice objects may
be used explicitly in indexing expressions in place of i:j:k bounds.

Table 4. Mutable sequence operations (lists, bytearray)

Operation Description Class method

S[i] = X Index assignment: change item at existing
offset i to reference X

__setitem__

S[i:j] = I,
S[i:j:k] = I

Slice assignment: S from i through j−1
with optional stride k (possibly empty) is
replaced by all items in iterable I

__setitem__

del S[i] Index deletion __delitem__

del S[i:j],
del S[i:j:k]

Slice deletion __delitem__

18 | Python Pocket Reference

Table 5. Mapping operations (dictionaries)

Operation Description Class method

D[k] Index by key __getitem__

D[k] = X Key assignment: change or
create entry for key k to
reference X

__setitem__

del D[k] Delete item by key __delitem__

len(D) Length (number of keys) __len__

k in D Key membership testa Same as in Table 3

k not in D Converse of k in D Same as in Table 3

iter(D) Iterator object for D’s keys Same as in Table 3

for k in D:, etc. Iterate through keys in D (all
iteration contexts)

Same as in Table 3

a In Python 2.X, key membership may also be coded as D.has_key(k). This
method is removed in Python 3.X in favor of the in expression, which is also
generally preferred in 2.X. See “Dictionaries”.

Table 6. Numeric operations (all number types)

Operation Description Class method

X + Y, X − Y Add, subtract __add__, __sub__

X * Y, X / Y,
X // Y, X % Y

Multiply, divide, floor
divide, remainder

__mul__, __truediv__a,
__floordiv__, __mod__

−X, +X Negative, identity __neg__, __pos__

X | Y, X & Y,
X ^ Y

Bitwise OR, AND,
exclusive OR (integers)

__or__, __and__, __xor__

X << N, X >> N Bitwise left-shift, right-
shift (integers)

__lshift__, __rshift__

˜X Bitwise invert
(integers)

__invert__

X ** Y X to the power Y __pow__

abs(X) Absolute value __abs__

Built-in Types and Operators | 19

Operation Description Class method

int(X) Convert to integerb __int__

float(X) Convert to float __float__

complex(X),
complex(re,im)

Make a complex value __complex__

divmod(X, Y) Tuple: (X / Y, X % Y) __divmod__

pow(X, Y [,Z]) Raise to a power __pow__

a The / operator invokes __truediv__ in Python 3.X, but __div__ in Python 2.X
unless true division is enabled. See “Operator Usage Notes” for division semantics.
b In Python 2.X, the long() built-in function invokes the __long__ class method.
In Python 3.X, the int type subsumes long, which is removed.

Sequence Operation Notes
Examples and notes on selected sequence operations in Table 3
and Table 4:

Indexing: S[i]

• Fetches components at offsets (first item is at offset 0).

• Negative indexes count backward from the end (last item
is at offset −1).

• S[0] fetches the first item; S[1] fetches the second item.

• S[−2] fetches the second-to-last item (same as S[len(S)
− 2]).

Slicing: S[i:j]

• Extracts contiguous sections of a sequence, from i through
j−1.

• Slice boundaries i and j default to 0 and sequence length
len(S).

• S[1:3] fetches from offsets 1 up to, but not including, 3.

• S[1:] fetches from offsets 1 through the end (len(S)-1).

20 | Python Pocket Reference

• S[:−1] fetches from offsets 0 up to, but not including, the
last item.

• S[:] makes a top-level (shallow) copy of sequence object S.

Extended slicing: S[i:j:k]

• The third item k is a stride (default 1), added to the offset
of each item extracted.

• S[::2] is every other item in entire sequence S.

• S[::−1] is sequence S reversed.

• S[4:1:−1] fetches from offsets 4 up to, but not including,
1, reversed.

Slice assignment: S[i:j:k] = I

• Slice assignment is similar to deleting and then inserting
where deleted.

• Iterables assigned to basic slices S[i:j] need not match in
size.

• Iterables assigned to extended slices S[i:j:k] must match
in size.

Other

• Concatenation, repetition, and slicing return new objects
(though not always for tuples).

Specific Built-in Types
This section covers numbers, strings, lists, dictionaries, tuples,
files, sets, and other core built-in types. Its subsections give details
common to both Python 3.X and 2.X. In general, all the
compound datatypes covered here (e.g., lists, dictionaries, and
tuples) can nest inside each other arbitrarily and as deeply as

Specific Built-in Types | 21

1. In Python 2.X, there is a distinct type named long for unlimited-precision
integers; int is for normal integers with precision that is usually limited
to 32 bits. Long objects may be coded with a trailing “L” (e.g., 99999L),
although integers are automatically promoted to longs if they require the
extra precision. In 3.X, the int type provides unlimited precision and so
subsumes both the 2.X int and long types; the “L” literal syntax is re‐
moved in 3.X.

2. In Python 2.X, octal literals may also be written with just a leading zero
—0777 and 0o777 are equivalent. In 3.X, only the latter form is supported
for octal.

required. Sets may participate in nesting as well, but may contain
only immutable objects.

Numbers
Numbers are immutable (unchangeable) values, supporting nu‐
meric operations. This section covers basic number types (inte‐
gers, floating-point), as well as more advanced types (complex,
decimals, and fractions).

Literals and creation
Numbers are written in a variety of numeric literal forms, and
created by some built-in operations:
1234, −24, +42, 0

Integers (unlimited precision).1

1.23, 3.14e-10, 4E210, 4.0e+210, 1., .1
Floating-point (normally implemented as C doubles in
CPython).

0o177, 0x9ff, 0b1111
Octal, hex, and binary literals for integers.2

3+4j, 3.0+4.0j, 3J
Complex numbers.

22 | Python Pocket Reference

decimal.Decimal('1.33'), fractions.Fraction(4, 3)
Module-based types: decimal, fraction.

int(9.1), int('-9'), int('1111', 2), int('0b1111', 0),
float(9), float('1e2'), float('-.1'), complex(3, 4.0)

Create numbers from other objects, or from strings with
possible base conversion. Conversely, hex(N), oct(N), and
bin(N) create digit strings for integers, and string formatting
makes general strings for numbers. See also “String format‐
ting”, “Type Conversions”, and “Built-in Functions”.

Operations
Number types support all number operations (see Table 6 on page
19). In mixed-type expressions, Python converts operands up to
the type of the “highest” type, where integer is lower than floating-
point, which is lower than complex. As of Python 3.0 and 2.6,
integer and floating-point objects also have a handful of type-
specific methods and other attributes; see Python’s Library Ref‐
erence manual for details:

>>> (2.5).as_integer_ratio() # float attrs
(5, 2)
>>> (2.5).is_integer()
False

>>> (2).numerator, (2).denominator # int attrs
(2, 1)
>>> (255).bit_length(), bin(255) # 3.1+ method
(8, '0b11111111')

Decimal and fraction
Python provides two additional numeric types in standard li‐
brary modules—decimal is a fixed-precision, floating-point
number, and fraction is a rational type that keeps numerator and
denominator explicitly. Both may be used to address inaccuracies
of floating-point arithmetic:

>>> 0.1 - 0.3
-0.19999999999999998

Specific Built-in Types | 23

>>> from decimal import Decimal
>>> Decimal('0.1') - Decimal('0.3')
Decimal('-0.2')

>>> from fractions import Fraction
>>> Fraction(1, 10) - Fraction(3, 10)
Fraction(-1, 5)

>>> Fraction(1, 3) + Fraction(7, 6)
Fraction(3, 2)

Fractions automatically simplify results. By fixing precision and
supporting various truncation and rounding protocols, decimals
are useful for monetary applications. See the Python Library Ref‐
erence for details.

Other numeric types
Python also includes a set type (described in “Sets”). Additional
numeric types such as optimized vectors and matrixes are avail‐
able as third-party open source extensions (e.g., see the NumPy
package at http://www.numpy.org). The third-party domain also
includes support for visualization, statistical tools, extended pre‐
cision floating-point math, and more (see the Web).

Strings
The normal str string object is an immutable (unchangeable)
sequence of characters accessed by offset (position). Its charac‐
ters are code point ordinals in the underlying character set, and
individual characters are string objects of length 1.

The full string object model varies across lines.

Python 3.X has three string types with similar interfaces:
str

An immutable sequence of characters, used for all text—
both ASCII and richer Unicode.

24 | Python Pocket Reference

http://www.numpy.org

bytes

An immutable sequence of short integers, used for the byte
values of binary data.

bytearray

A mutable variant of bytes.

Python 2.X instead has two string types with similar interfaces:
str

An immutable sequence of characters, used for both byte
oriented (8-bit) text and binary data.

unicode

An immutable sequence of characters, used for possibly-
richer Unicode text.

Python 2.X (as of 2.6) also has the Python 3.X bytearray type as
a back-port from 3.X, but it does not impose as sharp a distinction
between text and binary data. (It may be mixed with text strings
freely in 2.X.)

For Unicode support in both 3.X and 2.X, see “Unicode
Strings”. Most of the remainder of this section pertains to all
string types, but see “String methods”, “Unicode Strings”, and
“Built-in Functions” for more on bytes and bytearray.

Literals and creation
String literals are written as a series of characters in quotes, op‐
tionally preceded with a designator character, and in all string
literal forms an empty string is coded as adjacent quotes. Various
built-in operations also return new strings:
'Python"s', "Python's"

Single and double quotes work the same, and each can em‐
bed unescaped quotes of the other kind.

"""This is a multiline block"""

Triple-quoted blocks collect multiple lines of text into a sin‐
gle string, with end-of-line markers (\n) inserted between
the original quoted lines.

Specific Built-in Types | 25

'Python\'s\n'

Backslash escape code sequences (see Table 7) are replaced
with the special-character code point values they represent
(e.g., '\n' is an ASCII character with decimal code-point
value 10).

"This" "is" "concatenated"

Adjacent string constants are concatenated. Hint: this form
may span lines if parenthesized.

r'a raw\string', R'another\one'
Raw strings: backslashes are retained literally (except at the
end of a string). Useful for regular expressions and Windows
(DOS) directory paths: e.g., r'c:\dir1\file'.

hex(), oct(), bin()
Create hex/octal/binary digit strings from integer numbers.
See “Numbers” and “Built-in Functions”.

The following literal forms and calls make specialized strings de‐
scribed in “Unicode Strings”:
b'...'

bytes string literal in Python 3.X: sequence of 8-bit byte
values representing raw binary data. For 3.X compatibility,
this form is also available in Python 2.6 and 2.7, where it
simply creates a normal str string. See “String methods”,
“Unicode Strings”, and “Built-in Functions”.

bytearray(...)

bytearray string construction: a mutable variant of bytes.
Available in Python 3.X, and in Python 2.X as of 2.6. See
“String methods”, “Unicode Strings”, and “Built-in Func‐
tions”.

u'...'

Unicode string literal in Python 2.X: a sequence of Unicode
code points. For 2.X compatibility, this form is also available
in Python 3.X as of 3.3, where it simply creates a normal str
string (but normal string literals and str strings support
Unicode text in Python 3.X). See “Unicode Strings”.

26 | Python Pocket Reference

str(), bytes(), bytearray() (and unicode() in 2.X only)
Create strings from objects, with possible Unicode encod‐
ing/decoding in Python 3.X. See “Built-in Functions”.

String literals may contain escape sequences taken from Table 7
to represent special characters.
Table 7. String constant escape codes

Escape Meaning Escape Meaning

\newline Ignored
continuation

\t Horizontal tab

\\ Backslash (\) \v Vertical tab

\' Single quote (‘) \N{id} Unicode dbase id

\" Double quote (“) \uhhhh Unicode 16-bit hex

\a Bell \Uhhhhhhhh Unicode 32-bit hexa

\b Backspace \xhh Hex (at most 2 digits)

\f Formfeed \ooo Octal (up to 3 digits)

\n Line feed \0 Null (not end of string)

\r Carriage return \other Not an escape
a \Uhhhhhhhh takes exactly eight hexadecimal digits (h); both \u and \U can
be used only in Unicode string literals.

Operations
All string types support all sequence operations (see Table 3), plus
string-specific methods (described in “String methods”). In ad‐
dition, the str type supports string formatting % expressions and
template substitution (discussed next), and the bytearray type
supports mutable sequence operations (Table 4, plus extra list-like
methods). Also see the re string pattern-matching module in
“The re Pattern-Matching Module”, and string-related, built-in
functions in “Built-in Functions”.

Specific Built-in Types | 27

String formatting
In both Python 3.X and 2.X (as of 3.0 and 2.6), normal str strings
support two different flavors of string formatting—operations
that format objects according to format description strings:

• The original expression (all Python versions), coded with
the % operator: fmt % (values)

• The newer method (3.0, 2.6, and later), coded with call
syntax: fmt.format(values)

Both produce new strings based on possibly type-specific sub‐
stitution codes. Their results may be displayed, or assigned to
variables for later use:

>>> '%s, %s, %.2f' % (42, 'spam', 1 / 3.0)
'42, spam, 0.33'

>>> '{0}, {1}, {2:.2f}'.format(42, 'spam', 1 / 3.0)
'42, spam, 0.33'

Although the method call seems to have evolved more rapidly in
recent years, the expression is used extensively in existing code,
and both forms are still fully supported. Moreover, although
some view the method form as marginally more mnemonic and
consistent, the expression is often simpler and more concise. As
these two forms are largely just minor variations on a theme of
equivalent functionality and complexity, there is today no com‐
pelling reason to recommend one over the other.

String formatting expression
String formatting expressions replace % targets in the string on the
left of the % operator, with values on the right (similar to C’s
sprintf). If more than one value is to be replaced, they must be
coded as a tuple to the right of the % operator. If just one item is
to be replaced, it can be coded as a single value or one-item tuple
on the right (nest tuples to format a tuple itself). If key names are
used on the left, a dictionary must be supplied on the right, and
* allows width and precision to be passed in dynamically:

28 | Python Pocket Reference

>>> 'The knights who say %s!' % 'Ni'
'The knights who say Ni!'
>>> '%d %s, %d you' % (1, 'spam', 4.0)
'1 spam, 4 you'
>>> '%(n)d named %(x)s' % {'n': 1, 'x': "spam"}
'1 named spam'
>>> '%(n).0E => [%(x)-6s]' % dict(n=100, x='spam')
'1E+02 => [spam]'
>>> '%f, %.2f, %+.*f' % (1/3.0, 1/3.0, 4, 1/3.0)
'0.333333, 0.33, +0.3333'

Formatting expression syntax
In the format string on the left of the % operator, substitution
targets have the following general format, all but the last com‐
ponent of which is optional (text outside such substitution targets
is retained verbatim):

%[(keyname)][flags][width][.prec]typecode

In this substitution target syntax:
keyname

References an item in the expected dictionary, in
parentheses.

flags

Can be − (left-justify), + (numeric sign), a space (use a blank
before positive numbers and a − for negatives), and 0 (zero
fill).

width

The total minimum field width (use * to fetch from values).

prec

Gives the number of digits (i.e., precision) to include af‐
ter . (use * to fetch from values).

typecode

A character from Table 8.

Specific Built-in Types | 29

Both width and prec can be coded as a * to force their values to
be taken from the next item in the values to the right of the %
operator when sizes are not known until runtime. Hint: %s ge‐
nerically converts any object type to its print representation
string.
Table 8. % string formatting type codes

Code Meaning Code Meaning

s String (or any object, uses str()) X x with uppercase

r s, but uses repr(), not str() e Floating-point exponent

c Character (int or str) E e with uppercase

d Decimal (base 10 integer) f Floating-point decimal

i Integer F f with uppercase

u Same as d (obsolete) g Floating-point e or f

o Octal (base 8 integer) G Floating-point E or F

x Hex (base 16 integer) % Literal ‘%’ (coded as %%)

String formatting method
The formatting method call works similar to the prior section’s
expression, but is invoked with normal method-call syntax on
the format string object, which identifies substitution targets with
{} syntax instead of %.

Substitution targets in the format string may name method-call
arguments by position or keyword name; may further reference
argument attributes, keys, and offsets; may accept default for‐
matting or provide explicit type codes; and may nest target syntax
to pull values from the arguments list:

>>> 'The knights who say {0}!'.format('Ni')
'The knights who say Ni!'
>>> '{0} {1}, {2:.0f} you'.format(1, 'spam', 4.0)
'1 spam, 4 you'
>>> '{n} named {x:s}'.format(n=1, x="spam")
'1 named spam'
>>> '{n:.0E} => [{x:<6s}]'.format(
 **dict(n=100, x='spam'))

30 | Python Pocket Reference

'1E+02 => [spam]'
>>> '{:f}, {:.2f}, {:+.{}f}'.format(
 1/3.0, 1/3.0, 1/3.0, 4)
'0.333333, 0.33, +0.3333'

Most format method applications have equivalents in % expres‐
sion usage patterns as shown in the preceding section (e.g., dic‐
tionary key and * value references), although the method allows
some operations to be coded inside the format string itself:

>>> import sys # Method vs expr: attr, key, index

>>> fmt = '{0.platform} {1[x]} {2[0]}'
>>> fmt.format(sys, dict(x='ham'), 'AB')
'win32 ham A'

>>> fmt = '%s %s %s'
>>> fmt % (sys.platform, dict(x='ham')['x'], 'AB'[0])
'win32 ham A'

As of Python 3.1 and 2.7, a , (comma) preceding an integer or
floating-point designation in typecode, formally described in
“Formatting method syntax”, inserts thousands-separator com‐
mas, and a typecode of % formats a percentage (tools not present
in the formatting expression itself, but straightforward to code
as reusable functions):

>>> '{0:,d}'.format(1000000)
'1,000,000'
>>> '{0:13,.2f}'.format(1000000)
' 1,000,000.00'
>>> '{0:%} {1:,.2%}'.format(1.23, 1234)
'123.000000% 123,400.00%'

Also as of Python 3.1 and 2.7, field numbers are automatically
numbered sequentially if omitted from the fieldname also de‐
scribed in “Formatting method syntax”—the following three
have the same effect, although auto-numbered fields may be less
readable if many fields are present:

>>> '{0}/{1}/{2}'.format('usr', 'home', 'bob')
'usr/home/bob'
>>> '{}/{}/{}'.format('usr', 'home', 'bob') # Auto

Specific Built-in Types | 31

'usr/home/bob'
>>> '%s/%s/%s' % ('usr', 'home', 'bob') # Expr
'usr/home/bob'

A single object may also be formatted with the format(object,
formatspec) built-in function (see “Built-in Functions”), which
is employed by the string format method, and whose behavior
may be implemented with the __format__ operator-overloading
method in classes (see “Operator Overloading Methods”).

Formatting method syntax
Substitution targets in strings used for format method calls take
the following general form, all four parts of which are optional,
and must appear without intervening spaces (used here for clari‐
ty):

{fieldname component !conversionflag :formatspec}

In this substitution target syntax:
fieldname

An optional number or keyword identifying an argument,
which may be omitted to use relative argument numbering
in 2.7, 3.1, and later.

component

A string of zero or more .name or [index] references used
to fetch attributes and indexed values of the argument,
which may be omitted to use the whole argument value.

conversionflag

Introduced by a ! if present, which is followed by r, s, or a
to call repr(), str(), or ascii() built-in functions on the
value, respectively.

formatspec

Introduced by a : if present, and consists of text that specifies
how the value should be presented, including details such
as field width, alignment, padding, decimal precision, and
so on, and ending with an optional datatype code.

32 | Python Pocket Reference

The nested formatspec component after the colon character has
a syntax of its own, formally described as follows (brackets in this
denote optional components and are not coded literally):

[[fill]align][sign][#][0][width][,][.prec][typecode]

In this formatspec nested syntax:
fill

Can be any fill character other than { or }.

align

May be <, >, =, or ^, for left alignment, right alignment,
padding after a sign character, or centered alignment,
respectively.

sign

May be +, −, or space.

, (comma)
Requests a comma for a thousands separator as of Python
3.1 and 2.7.

width and prec
Much as in the % expression, and the formatspec may also
contain nested {} format strings having a fieldname only, to
take values from the arguments list dynamically (much like
the * in formatting expressions). A 0 preceding width ena‐
bles sign-aware zero padding (similar to fill), and a # en‐
ables an alternative conversion (if available).

typecode

Largely the same as in % expressions and listed in Table 8,
but the format method has an extra b type code used to give
integers in binary format (much like using the bin built-in);
has an extra % type code to format percentages as of Python
3.1 and 2.7; and uses only d for base-10 integers (i or u are
not used).

Note that unlike the expression’s generic %s, the method’s s type
code requires a string object argument; omit the type code to
accept any type generically in the method.

Specific Built-in Types | 33

Template string substitution
As of Python 2.4, another form of string substitution is provided
as an alternative to the string formatting expression and method
described in the prior sections. In full formatting, substitution is
achieved with the % operator or str.format() method (all four of
the following return '2: PR5E'):

'%(page)i: %(book)s' % {'page': 2, 'book': 'PR5E'}
'%(page)i: %(book)s' % dict(page=2, book='PR5E')

'{page}: {book}'.format(**dict(page=2, book='PR5E'))
'{page}: {book}'.format(page=2, book='PR5E')

For simpler substitution tasks, a Template class in string uses $
to indicate a substitution:

>>> import string
>>> t = string.Template('$page: $book')
>>> t.substitute({'page': 2, 'book': 'PR5E'})
'2: PR5E'

Substitution values can be provided as keyword arguments or
dictionary keys:

>>> s = string.Template('$who likes $what')
>>> s.substitute(who='bob', what=3.14)
'bob likes 3.14'
>>> s.substitute(dict(who='bob', what='pie'))
'bob likes pie'

A safe_substitute method ignores missing keys rather than
raising an exception:

>>> t = string.Template('$page: $book')
>>> t.safe_substitute({'page': 3})
'3: $book'

String methods
In addition to the format() method described earlier, string
method calls provide higher-level text processing tools beyond
string expressions. Table 9 lists available string method calls; in
this table, S is any string object (technically, a 3.X str). String

34 | Python Pocket Reference

methods that modify text always return a new string and never
modify the object in-place (strings are immutable).

For more details on methods in the table, see the functional area
description sections ahead, or run a help(str.method) interac‐
tively. Hint: this list can vary across Python releases; to see yours,
try:

sorted(x for x in dir(str) if not x.startswith('__'))

See also the re module in “The re Pattern-Matching Module” for
pattern-based equivalents to some string type methods.
Table 9. Python 3.X string method calls

S.capitalize()

S.casefold() (as of Python 3.3)

S.center(width, [, fill])

S.count(sub [, start [, end]])

S.encode([encoding [, errors]])

S.endswith(suffix [, start [, end]])

S.expandtabs([tabsize])

S.find(sub [, start [, end]])

S.format(*args, **kwargs)

S.format_map(mapping) (as of Python 3.2)

S.index(sub [, start [, end]])

S.isalnum()

S.isalpha()

S.isdecimal()

S.isdigit()

S.isidentifier()

S.islower()

S.isnumeric()

S.isprintable()

Specific Built-in Types | 35

S.isspace()

S.istitle()

S.isupper()

S.join(iterable)

S.ljust(width [, fill])

S.lower()

S.lstrip([chars])

S.maketrans(x [, y [, z]])

S.partition(sep)

S.replace(old, new [, count])

S.rfind(sub [, start [, end]])

S.rindex(sub [, start [, end]])

S.rjust(width [, fill])

S.rpartition(sep)

S.rsplit([sep [, maxsplit]])

S.rstrip([chars])

S.split([sep [, maxsplit]])

S.splitlines([keepends])

S.startswith(prefix [, start [, end]])

S.strip([chars])

S.swapcase()

S.title()

S.translate(map)

S.upper()

S.zfill(width)

36 | Python Pocket Reference

byte and bytearray methods
Python 3.X bytes and bytearray string types have method sets
similar to that of the normal str type given in the preceding sec‐
tion, but do not overlap exactly due to differing roles. (str is
Unicode text, bytes is raw binary data, and bytearray is mutable.)
In the following, run in Python 3.3, set(dir(X)) – set(dir(Y))
computes attributes unique to X:

>>> set(dir(str)) - set(dir(bytes))
{'__rmod__', 'encode', 'isnumeric', 'format',
'isidentifier', 'isprintable', 'isdecimal',
'format_map', '__mod__', 'casefold'}

>>> set(dir(bytes)) - set(dir(str))
{'decode', 'fromhex'}

>>> set(dir(bytearray)) - set(dir(bytes))
{'extend', 'remove', 'insert', 'append', 'pop',
'__iadd__', 'reverse', 'clear', '__imul__',
'copy', '__setitem__', '__alloc__', '__delitem__'}

Of note:

• str does not support Unicode decoding (it is already-
decoded text), but may be encoded to bytes.

• bytes and bytearray do not support Unicode encoding
(they are raw bytes, including both media and already-
encoded text), but may be decoded to str.

• bytes and bytearray do not support string formatting (im‐
plemented by str.format and the % operator’s __mod__ and
__rmod__).

• bytearray has extra mutable in-place methods and opera‐
tors similar to list (e.g., append, +=).

See “byte and bytearray strings” for more on byte string opera‐
tions. Also see “Unicode Strings” for more on string type models,
and “Built-in Functions” for more on construction calls.

Specific Built-in Types | 37

N O T E

The set of string methods available in Python 2.X varies
slightly (e.g., there is a decode method for 2.X’s different
Unicode type model). The Python 2.X unicode string type
has a nearly identical interface to 2.X str objects. For more
details, consult the Python 2.X Library Reference, or run
dir(str) or help(str.method) interactively.

The next few sections go into more detail on selected methods
listed in Table 9, grouped by functional area. In all of the docu‐
mented calls that return a string result, the result is a new string
(because strings are immutable, they are never modified in-
place.) Whitespace in this coverage means spaces, tabs, and end-
of-line characters (everything in string.whitespace).

Searching methods
S.find(sub [, start [, end]])

Returns offset of the first occurrence of string sub in S, be‐
tween offsets start and end (which default to 0 and len(S),
the entire string). Returns −1 if not found. Hint: also see the
in membership operator (in Table 3), which may be used to
test substring membership in a string.

S.rfind(sub [, start [, end]])
Like find, but scans from the end (right to left).

S.index(sub [, start [, end]])
Like find, but raises ValueError if not found instead of re‐
turning −1.

S.rindex(sub [, start [, end]])
Like rfind, but raises ValueError if not found instead of re‐
turning −1.

S.count(sub [, start [, end]])
Counts the number of nonoverlapping occurrences of sub
in S, from offsets start to end (defaults: 0, len(S)).

38 | Python Pocket Reference

S.startswith(sub [, start [, end]])
True if string S starts with substring sub. start and end give
optional begin and end points for matching sub.

S.endswith(sub [, start [, end]])
True if string S ends with substring sub. start and end give
optional begin and end points for matching sub.

Splitting and joining methods
S.split([sep [, maxsplit]])

Returns a list of the words in the string S, using sep as the
delimiter string. If maxsplit is given, at most maxsplit splits
are done. If sep is not specified or is None, any whitespace
string is a separator. 'a*b'.split('*') yields ['a','b'].
Hint: use list(S) to convert a string to a list of characters
(e.g., ['a','*','b']).

S.join(iterable)

Concatenates an iterable (e.g., list or tuple) of strings into a
single string, with S added between each item. S can be " (an
empty string) to convert an iterable of characters to a string
('*'.join(['a','b']) yields 'a*b').

S.replace(old, new [, count])
Returns a copy of string S with all occurrences of substring
old replaced by new. If count is passed, the first count oc‐
currences are replaced. This works like a combination of
x=S.split(old) and new.join(x).

S.splitlines([keepends])

Splits string S on line breaks, returning lines list. The result
does not retain line break characters unless keepends is true.

Formatting methods
S.format(*args, **kwargs), S.format_map(mapping)

See section “String formatting”. In Python 3.2 and later,
S.format_map(M) is like S.format(**M), but M is not copied.

Specific Built-in Types | 39

S.capitalize()

Capitalizes the first character of string S, and lowercases its
other characters.

S.expandtabs([tabsize])

Replaces tabs in string S with tabsize spaces (default is 8).

S.strip([chars])

Removes leading and trailing whitespace from string S (or
characters in chars if passed).

S.lstrip([chars])

Removes leading whitespace from string S (or characters in
chars if passed).

S.rstrip([chars])

Removes trailing whitespace from string S (or characters in
chars if passed).

S.swapcase()

Converts all lowercase letters to uppercase, and vice versa.

S.upper()

Converts all letters to uppercase.

S.lower()

Converts all letters to lowercase.

S.casefold()

In Python 3.3 and later, returns a version of S suitable for
caseless comparisons; like S.lower(), but also intelligently
lowercases some Unicode characters.

S.ljust(width [, fill])
Left-justifies string S in a field of the given width; pads on
right with character fill (which defaults to a space). The
string formatting expression and method can achieve sim‐
ilar effects.

S.rjust(width [, fill])
Right-justifies string S in a field of the given width; pads on
left with character fill (which defaults to a space). The

40 | Python Pocket Reference

string formatting expression and method can achieve sim‐
ilar effects.

S.center(width [, fill])
Centers string S in a field of the given width; pads on left and
right with character fill (which defaults to a space). String
formatting can achieve similar effects.

S.zfill(width)

Pads string S on left with zero digits to produce a string result
of the desired width (can also achieve with string format‐
ting).

S.translate(table [, deletechars])
Deletes all characters from string S that are in deletechars
(if present), and then translates the characters using table,
a 256-character string giving the translation for each char‐
acter value indexed by its ordinal.

S.title()

Returns a title-cased version of the string: words start with
uppercase characters; all remaining cased characters are
lowercase.

Content test methods
S.is*()

The is*() Boolean tests work on strings of any length. They
test the content of strings for various categories (and always
return False for an empty).

The original string module
Starting in Python 2.0, most of the string-processing functions
previously available in the standard string module became avail‐
able as methods of string objects. If X references a string object,
a string module function call such as:

import string
res = string.replace(X, 'span', 'spam')

Specific Built-in Types | 41

is usually equivalent in Python 2.0 and later to a string method
call such as:

res = X.replace('span', 'spam')

But the string method call form is preferred and quicker, and
string methods require no module imports. Note that the
string.join(iterable, delim) operation becomes a method of
the delimiter string delim.join(iterable). All these functions
are removed from the string module in Python 3.X: use the
equivalent string object methods instead. See “The string Mod‐
ule” for this module’s remaining content.

Unicode Strings
All text is Unicode text, including text encoded with one char‐
acter per byte (8 bits) in the ASCII scheme. Python supports
richer character sets and encoding schemes with Unicode—
strings which may use multiple bytes to represent characters in
memory, and which translate text to and from various encodings
on files. This support differs in Python lines. Python 3.X treats
all text as Unicode and represents binary data separately, while
Python 2.X distinguishes 8-bit text (and data) from possibly wid‐
er Unicode text:
In Python 3.X

The normal str type and 'ccc' literal represents all text,
both 8-bit and richer Unicode. str is an immutable sequence
of characters—decoded Unicode code points (ordinal iden‐
tifiers) in memory.

A separate bytes type and b'ccc' literal represents binary
data byte values, including media and encoded Unicode text.
bytes is an immutable sequence of small integers (8-bit byte
values), but supports most str operations, and prints con‐
tent as ASCII characters when possible. An additional
bytearray type is a mutable variant of bytes, with extra list-
like methods for in-place changes.

42 | Python Pocket Reference

Also in 3.X, normal files created by open() imply str and
bytes objects for content in text and binary mode, respec‐
tively. In text mode, files automatically encode on output
and decode on input.

As of Python 3.3, 2.X’s u'ccc' Unicode literal form is also
available for backward compatibility with 2.X code (it cre‐
ates a 3.X str).

In Python 2.X
The normal str type and 'ccc' literal represents the byte
values of both 8-bit oriented text and binary data, and a
separate unicode type and u'ccc' literal represents the code
points of possibly wider Unicode text. Both string types are
immutable sequences, and have nearly identical operations.

Also in 2.X, normal files created by open() are byte-oriented,
and a codecs.open() supports reading and writing files con‐
taining Unicode text with encoding and decoding on
transfers.

As of Python 2.6, 3.X’s b'ccc' bytes literal is also available
for forward compatibility with 3.X code (it creates a 2.X
str), and 3.X’s mutable bytearray is present though less type
specific.

Unicode support in Python 3.X
Python 3.X allows non-ASCII characters to be coded in strings
with hex (\x) and both 16- and 32-bit Unicode (\u, \U) escapes.
In addition, chr() supports Unicode character codes:

>>> 'A\xE4B'
'AäB'
>>> 'A\u00E4B'
'AäB'
>>> 'A\U000000E4B'
'AäB'
>>> chr(0xe4)
'ä'

Specific Built-in Types | 43

Normal strings may be encoded into raw bytes and raw bytes may
be decoded into normal strings, using either default or explicit
encodings (and optional error policy: see str() in “Built-in
Functions”):

>>> 'A\xE4B'.encode('latin-1')
b'A\xe4B'
>>> 'A\xE4B'.encode()
b'A\xc3\xa4B'
>>> 'A\xE4B'.encode('utf-8')
b'A\xc3\xa4B'

>>> b'A\xC3\xA4B'.decode('utf-8')
'AäB'

File objects also automatically encode on output and decode on
input in text mode (but not in binary mode), and accept an en‐
coding name to override the default encoding (see open() in
“Built-in Functions”):

>>> S = 'A\xE4B'
>>> open('uni.txt', 'w', encoding='utf-8').write(S)
3
>>> open('uni.txt', 'rb').read()
b'A\xc3\xa4B'
>>>
>>> open('uni.txt', 'r', encoding='utf-8').read()
'AäB'

As of release 3.3, Python 3.X also supports 2.X’s u'ccc' Unicode
literal form for backward compatibility, but it is a synonym for
'ccc', and creates a normal 3.X str string.

In both 3.X and 2.X, you may also embed Unicode content in
program source files directly: use a line of the following form as
line 1 or 2 of your file, if needed to override Python’s UTF-8
default:

-*- coding: latin-1 -*-

44 | Python Pocket Reference

byte and bytearray strings
Python 3.X bytes and bytearray string objects represent 8-bit
binary data (including encoded Unicode text); are printed as AS‐
CII text when possible; and support most normal str string op‐
erations including methods and sequence operations (but not
string formatting):

>>> B = b'spam'
>>> B
b'spam'
>>> B[0] # Sequence ops
115
>>> B + b'abc'
b'spamabc'
>>> B.split(b'a') # Methods
[b'sp', b'm']
>>> list(B) # Sequence of int
[115, 112, 97, 109]

bytearray additionally supports list-like mutable operations:

>>> BA = bytearray(b'spam')
>>> BA
bytearray(b'spam')
>>> BA[0]
115
>>> BA + b'abc'
bytearray(b'spamabc')
>>> BA[0] = 116 # Mutability
>>> BA.append(115) # List methods
>>> BA
bytearray(b'tpams')

Formally, both bytes and bytearray support sequence opera‐
tions (see Table 3), as well as type-specific methods described
earlier in “byte and bytearray methods”. bytearray additionally
supports mutable sequence operations (see Table 4). See also type
constructor calls in “Built-in Functions”.

Python 2.6 and 2.7 have bytearray but not bytes—3.X’s b'ccc'
is supported for forward compatibility, but is simply a synonym
for 'ccc', and creates a normal 2.X str string.

Specific Built-in Types | 45

Unicode support in Python 2.X
In Python 2.X, Unicode strings are written as u'ccc', which cre‐
ates a unicode type object. (In Python 3.X, the normal string type
and literal are used for Unicode.) Arbitrary Unicode characters
can be written using a special escape sequence, \uHHHH, where
HHHH is a four-digit hexadecimal number from 0000 to FFFF. The
traditional \xHH escape sequence can also be used, and octal es‐
capes can be used for characters up to +01FF, which is represented
by \777.

unicode supports both string methods and sequence operations
(see Table 3). Normal and Unicode string objects can be mixed
in Python 2.X; combining 8-bit and Unicode strings always co‐
erces to Unicode, using the default ASCII encoding (e.g., the re‐
sult of 'a' + u'bc' is u'abc'). Mixed-type operations assume the
8-bit string contains 7-bit U.S. ASCII data (and raise an error for
non-ASCII characters). The built-in str() and unicode() func‐
tions can be used to convert between normal and Unicode strings,
and the encode() and decode() string methods apply and undo
Unicode encodings.

Available related modules and built-in functions include
codecs.open(), whose files perform Unicode encoding transla‐
tions on data transfers, much like 3.X’s built-in open() function
files.

Lists
Lists are mutable (changeable) sequences of object references ac‐
cessed by offset (position).

Literals and creation
List literals are written as a comma-separated series of values en‐
closed in square brackets, and various operations construct lists
dynamically:

46 | Python Pocket Reference

[]

An empty list.

[0, 1, 2, 3]

A four-item list: indexes 0 through 3.

L = ['spam', [42, 3.1415], 1.23, {}]

Nested sublists: L[1][0] fetches 42.

L = list('spam')

Creates a list of all items in any iterable, by calling the type
constructor function.

L = [x ** 2 for x in range(9)]

Creates a list by collecting expression results during itera‐
tion (list comprehension).

Operations
Operations include all sequence operations (see Table 3), plus all
mutable sequence operations (see Table 4), plus the following list-
specific methods, in all of which L stands for any list object:
L.append(X)

Inserts the single object X at the end of L, changing the list
in-place.

L.extend(I)

Inserts each item in any iterable I at the end of L in-place
(like an in-place +). Similar to L[len(L):] = I. Hint: use
L[:0] = I to prepend all items in I.

L.sort(key=None, reverse=False)

Sorts L in-place, in ascending order by default. If passed, key
specifies a function of one argument that is used to extract
or compute a comparison value from each list element. If
reverse is passed and true, the list elements are sorted as
if each comparison were reversed. For example:
L.sort(key=str.lower, reverse=True). See also sorted()
in “Built-in Functions”.

Specific Built-in Types | 47

L.reverse()

Reverses items in L in-place. See also reversed() in “Built-
in Functions”.

L.index(X [, i [, j]])
Returns the index of the first occurrence of object X in L;
raises an exception if not found. This is a search method. If
i and possibly j are passed, it returns the smallest k such that
L[k] == X and i <= k < j, where j defaults to len(L).

L.insert(i, X)
Inserts single object X into L at offset i (like L[i:i] = [X],
for positive or negative i). Hint: use L[i:i] = I to insert all
items in any iterable I at offset i.

L.count(X)

Returns the number of occurrences of X in L.

L.remove(X)

Deletes the first occurrence of object X from L; raises an ex‐
ception if not found. Same as del L[L.index(X)].

L.pop([i])

Deletes and returns the last (or offset i) item in L. Useful
with append() to implement stacks. Same as x=L[i]; del
L[i]; return x, where i defaults to −1, the last item.

L.clear()

Removes all items from L. Available in 3.X (only), as of 3.3.

L.copy()

Make a top-level (shallow) copy of L. Available in 3.X (only),
as of 3.3

48 | Python Pocket Reference

N O T E

In Python 2.X, the list sort method signature is:
L.sort(cmp=None, key=None, reverse=False)

where cmp is a two-argument comparison function, which
returns a value less than, equal to, or greater than zero to
denote a less, equal, and greater result. The comparison
function is removed in 3.X because it was typically used to
map sort values and reverse sort order—use cases supported
by the remaining two arguments.

List comprehension expressions
A list literal enclosed in square brackets ([...]) can be a simple
list of expressions or a list comprehension expression of the fol‐
lowing form:

[expr for target1 in iterable1 [if condition1]
 for target2 in iterable2 [if condition2] ...
 for targetN in iterableN [if conditionN]]

List comprehensions construct result lists: they collect all values
of expression expr, for each iteration of all nested for loops, for
which each optional condition is true. The second through
Nth for loops and all if parts are optional, and expr and each
condition can use variables assigned by nested for loops. Names
bound (assigned) inside a list comprehension are created in the
scope enclosing the comprehension expression in 2.X, but are
localized to the comprehension in 3.X. Comprehensions may be
nested arbitrarily.

Comprehensions are similar to the map() built-in function (in
3.X only, map() requires list() to force results generation for
display, because it both iterates and is iterable itself; in 2.X map()
returns a list):

>>> [ord(x) for x in 'spam']
[115, 112, 97, 109]
>>> list(map(ord, 'spam')) # Use list() in 3.X
[115, 112, 97, 109]

Specific Built-in Types | 49

However, comprehensions can often avoid creating a temporary
helper function:

>>> [x ** 2 for x in range(5)]
[0, 1, 4, 9, 16]
>>> list(map((lambda x: x ** 2), range(5)))
[0, 1, 4, 9, 16]

Comprehensions with conditions are similar to filter() (also
an iterable in 3.X only):

>>> [x for x in range(5) if x % 2 == 0]
[0, 2, 4]
>>> list(filter((lambda x: x % 2 == 0), range(5)))
[0, 2, 4]

Comprehensions with nested for loops are similar to the normal
for statement:

>>> [x + y for x in range(3) for y in [10, 20, 30]]
[10, 20, 30, 11, 21, 31, 12, 22, 32]

>>> res = []
>>> for x in range(3):
... for y in [10, 20, 30]:
... res.append(x + y)
...
>>> res
[10, 20, 30, 11, 21, 31, 12, 22, 32]

The iteration protocol
The iteration protocol defines a set of objects and methods used
by all iteration contexts—including comprehensions, for loop
statements, and built-in functions such as map() and filter()—
to automatically step through items in collections or results pro‐
duced on demand. Iteration works as follows:

• Iteration contexts operate on an iterable—an object with
an __iter__() method.

50 | Python Pocket Reference

• When called, the iterable’s __iter__() method returns an
iterator—an object with a __next__() method (possibly the
same object).

• When called, the iterator’s __next__() method returns the
next item in the iteration or raises a StopIteration excep‐
tion to end the iteration.

In addition, the iter(X) built-in function invokes an iterable’s
X.__iter__() method, and the next(I) built-in function calls an
iterator’s I.__next__() method, both to simplify manual itera‐
tion loops and as a portability layer. Some tools, such as the map()
built-in and the generator expression, are both iteration context
(for their subject) and iterable object (for their results); see prior
and next sections.

Classes can provide an __iter__() method to intercept the
iter(X) built-in operation; if defined, its result has a __next__()
method used to step through results in iteration contexts. If no
__iter__() is defined, the __getitem__() indexing method is
used as a fallback to iterate until IndexError.

In Python 2.X, the I.__next__() iterator objects’ method is
named I.next(), but iteration works the same otherwise. The
next(I) built-in function calls the I.next() method in 2.6 and
2.7 instead of I.__next__(), making it useful for both 3.X com‐
patibility in 2.X, and 2.X compatibility in 3.X.

Generator expressions
As of Python 2.4, generator expressions achieve effects similar to
list comprehensions, without generating a physical list to hold all
results. Generator expressions define a set of results, but do not
materialize the entire list, to save memory; instead, they create a
generator object that will return elements one by one in iteration
contexts by automatically supporting the iteration protocol of the
prior section. For example:

ords = (ord(x) for x in aString if x not in skipStr)
for o in ords:
 ...

Specific Built-in Types | 51

Generator expressions are comprehensions coded inside paren‐
theses rather than square brackets, but otherwise support all list
comprehension syntax. The parentheses used for a function with
a single argument suffice when creating an iterable to be passed
to a function:

sum(ord(x) for x in aString)

Generator expression loop variables (e.g., x, in the prior example)
are not accessible outside the generator expression in either
Python 2.X or 3.X. In 2.X, list comprehensions leave the loop
variable assigned to its last value, but all other comprehensions
localize the variable to the expression; in Python 3.X, loop vari‐
ables are localized to the expression in all comprehension forms.

To step through results outside iteration contexts such as for
loops, use either the iteration protocol’s I.__next__() method in
3.X, its I.next() method in Python 2.X, or the next(I) built-in
function in either Python 2.X or 3.X, which calls the appropriate
method portably. When required, use the list() call to produce
all (remaining) results all at once (because generators are their
own iterators, calling their __iter__() is harmless but not
required):

>>> squares = (x ** 2 for x in range(5))
>>> squares
<generator object <genexpr> at 0x027C1AF8>

>>> iter(squares) is squares # __iter__() optional
True
>>> squares.__next__() # Method (.next in 2.X)
0
>>> next(squares) # Built-in (3.X, 2.6+)
1
>>> list(squares) # Till StopIteration
[4, 9, 16]

See “The iteration protocol” for more on the mechanism used by
generator expressions, and “The yield Statement” for the related
generator function, which also creates a generator object.

52 | Python Pocket Reference

Other comprehension expressions
See also dictionary and set comprehensions elsewhere in this
book (sections “Dictionaries” and “Sets”). These are similar ex‐
pressions that produce dictionaries and sets all at once; they sup‐
port syntax identical to list comprehensions and generator ex‐
pressions, but are coded within {}, and dictionary comprehen‐
sions begin with a key:value expression pair:

>>> [x * x for x in range(10)] # List comp
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> (x * x for x in range(10)) # Generator expr
<generator object <genexpr> at 0x009E7328>

>>> {x * x for x in range(10)} # Set: 3.X, 2.7
{0, 1, 4, 81, 64, 9, 16, 49, 25, 36}

>>> {x: x * x for x in range(10)} # Dict: 3.X, 2.7
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49,
8: 64, 9: 81}

Dictionaries
Dictionaries are mutable (changeable) mappings of object refer‐
ences accessed by key (not position). They are unordered tables
that map keys to values, implemented internally as dynamically
expandable hash tables. Dictionaries differ substantially in
Python 3.X:

• In Python 2.X, the keys()/values()/items() methods re‐
turn lists; there is a has_key() lookup method; there are
distinct iterable methods iterkeys()/itervalues()/
iteritems(); and dictionaries may be compared directly.
As of Python 2.7, 3.X’s dictionary comprehensions are
available as a back-port, and 3.X-style views are supported
with methods viewkeys()/viewvalues()/viewitems().

• In Python 3.X, the keys()/values()/items() methods re‐
turn iterable view objects instead of lists; has_key() is re‐
moved in favor of in expressions; Python 2.X iterable

Specific Built-in Types | 53

methods are removed in favor of view object iteration;
dictionaries cannot be compared directly, but their
sorted(D.items()) can; and there is a new dictionary com‐
prehension expression.

• Python 3.X view objects produce results on demand, retain
the original order in the dictionary, reflect future dictio‐
nary changes, and may support set operations. Key views
are always set-like, value views never are, and item views
are if all their items are unique and hashable (immutable).
See “Sets” for set expressions that may be applied to some
views. Pass views to the list() call to force generation of
all their results at once (e.g., for display, or to apply the list’s
L.sort()).

Literals and creation
Dictionary literals are written as comma-separated series of
key:value pairs inside curly braces, the dict() built-in supports
other creation patterns, and dictionary comprehensions employ
iteration in Python 3.X and 2.7. Assigning to new keys generates
new entries.

Any immutable object can be a dictionary key (e.g., string, num‐
ber, tuple), and class instances can be keys if they inherit hashing
protocol methods (see __hash__ in “Operator Overloading Meth‐
ods”). Tuple keys support compound values (e.g.,
adict[(M,D,Y)], with parentheses optional):
{}

An empty dictionary (not a set).

{'spam': 2, 'eggs': 3}

A two-item dictionary: keys 'spam' and 'eggs', values 2 and
3.

D = {'info': {42: 1, type(''): 2}, 'spam': []}

Nested dictionaries: D['info'][42] fetches 1.

54 | Python Pocket Reference

D = dict(name='Bob', age=45, job=('mgr', 'dev'))

Creates a dictionary by passing keyword arguments to the
type constructor.

D = dict(zip('abc', [1, 2, 3]))

Creates a dictionary by passing key/value tuple pairs to the
type constructor.

D = dict([['a', 1], ['b', 2], ['c', 3]])

Same effect as prior line: accepts any iterable of keys and
values.

D = {c.upper(): ord(c) for c in 'spam'}

Dictionary comprehension expression (in Python 3.X and
2.7). See “List comprehension expressions” for full syntax.

Operations
Operations comprise all mapping operations (see Table 5), plus
the following dictionary-specific methods, in all of which D stands
for any dictionary object:
D.keys()

All keys in D. In Python 2.X, this returns a list. In Python
3.X, it returns an iterable view object described earlier. for
K in D also supports keys iteration implicitly.

D.values()

All stored values in D. In Python 2.X, this returns a list. In
Python 3.X, it returns an iterable view object described
earlier.

D.items()

Tuple pairs (key, value), one for each entry in D. In Python
2.X, this returns a list. In Python 3.X, it returns an iterable
view object described earlier.

D.clear()

Removes all items from D.

D.copy()

Returns a shallow (top-level) copy of D.

Specific Built-in Types | 55

D.update(D2)

Merges all of D2’s entries into D, in-place, similar to for (k,
v) in D2.items(): D[k] = v. In Python 2.4 and later, also
accepts an iterable of key/value pairs, as well as keyword
arguments (e.g., D.update(k1=v1, k2=v2)).

D.get(K [, default])
Similar to D[K] for key K, but returns default (or None if no
default) instead of raising an exception when K is not found
in D.

D.setdefault(K, [, default])
Same as D.get(K, default), but also assigns key K to
default if it is not found in D.

D.popitem()

Removes and returns an arbitrary (key, value) tuple pair.

D.pop(K [, default])
If key K in D, returns D[K] and removes K; else, returns
default if given, or raises KeyError if no default.

dict.fromkeys(I [, value])
Creates a new dictionary with keys from iterable I and values
each set to value (default None). Callable on an instance D or
type name dict.

The following methods are available in Python 2.X only:
D.has_key(K)

Returns True if D has a key K, or False otherwise. In Python
2.X only, this method is equivalent to K in D, but is not gen‐
erally recommended, as it is removed in Python 3.X.

D.iteritems(), D.iterkeys(), D.itervalues()
Return iterables over key/value pairs, keys only, or values
only. In Python 3.X, these are removed because items(),
keys(), and values() return iterable view objects.

56 | Python Pocket Reference

D.viewitems(), D.viewkeys(), D.viewvalues()
Available as of 2.7, these return iterable view objects over
key/value pairs, keys only, or values only, to emulate the view
objects returned by 3.X’s items(), keys(), and values().

The following operations are described in Table 5, but relate to
preceding methods:
K in D

Returns True if D has key K, or False otherwise. Replaces
has_key() in Python 3.X.

for K in D
Iterates over keys K in D (all iteration contexts). Dictionary
supports direct iteration: for K in D is similar to for K in
D.keys(). The former uses the dictionary object’s keys iter‐
ator. In Python 2.X, keys() returns a new list that incurs a
slight overhead. In Python 3.X, keys() returns an iterable
view object instead of a physically stored list, making both
forms equivalent.

Tuples
Tuples are immutable (unchangeable) sequences of object refer‐
ences accessed by offset (position).

Literals and creation
Tuple literals are written as comma-separated series of values
enclosed in parentheses. The enclosing parentheses can some‐
times be omitted (e.g., in for loop headers and = assignments):
()

An empty tuple.

(0,)

A one-item tuple (not a simple expression).

(0, 1, 2, 3)

A four-item tuple.

Specific Built-in Types | 57

0, 1, 2, 3

Another four-item tuple (same as prior line); not valid
where comma or parentheses are otherwise significant (e.g.,
function arguments, 2.X prints).

T = ('spam', (42, 'eggs'))

Nested tuples: T[1][1] fetches 'eggs'.

T = tuple('spam')

Creates a tuple of all items in any iterable, by calling the type
constructor function.

Operations
All sequence operations (see Table 3), plus the following tuple-
specific methods in Python 2.6, 3.0, and later in both lines:
T.index(X [, i [, j]])

Returns the index of the first occurrence of object X in tuple
T; raises an exception if not found. This is a search method.
If i and possibly j are passed, it returns the smallest k such
that T[k] == X and i <= k < j, where j defaults to len(T).

T.count(X)

Returns the number of occurrences of X in tuple T.

Files
The built-in open() function creates a file object, the most com‐
mon interface to external files. File objects export the data trans‐
fer methods in the following sections, where file content is
represented as Python strings. This is a partial list: see Python
manuals for lesser-used calls and attributes.

In Python 2.X only, the name file() can be used as a synonym
for open() when creating a file object, but open() is the generally
recommended spelling. In Python 3.X, file() is no longer avail‐
able. (The io module’s classes are used for file customization.)

See the open() function in “Built-in Functions” for more com‐
plete file-creation details. See also “Unicode Strings” for the

58 | Python Pocket Reference

distinction between text and binary files and their corresponding
implied string type differences for content in Python 3.X.

Related file-like tools covered later in this book: see the dbm,
shelve, and pickle modules in “Object Persistence Modules”; the
os module file descriptor-based file functions and the os.path
directory path tools in “The os System Module”; JSON file storage
in “The json Module”; and SQL database usage in “Python SQL
Database API”.

See also Python’s manuals for socketobj.makefile() to convert
a socket to a file-like object, and io.StringIO(str) and
io.BytesIO(bytes) (StringIO.StringIO(str) in Python 2.X) to
convert a string to a file-like object, compatible with APIs that
expect the file object interface defined here.

Input files
infile = open(filename, 'r')

Creates input file object, connected to the named external
file. filename is normally a string (e.g., 'data.txt'), and
maps to the current working directory unless it includes a
directory path prefix (e.g., r'c:\dir\data.txt'). Argument
two gives file mode: 'r' reads text, 'rb' reads binary with
no line-break translation. Mode is optional and defaults to
'r'. Python 3.X’s open() also accepts an optional Unicode
encoding name in text mode; 2.X’s codecs.open() has sim‐
ilar tools.

infile.read()

Reads entire file, returning its contents as a single string. In
text mode ('r'), line-ends are translated to '\n' by default.
In binary mode ('rb'), the result string can contain non‐
printable characters (e.g., '\0'). In Python 3.X, text mode
decodes Unicode text into a str string, and binary mode re‐
turns unaltered content in a bytes string.

infile.read(N)

Reads at most N more bytes (1 or more); empty at end-of-
file.

Specific Built-in Types | 59

infile.readline()

Reads next line (through end-of-line marker); empty at end-
of-file.

infile.readlines()

Reads entire file into a list of line strings. See also the file
object’s line iterator alternative, discussed in the next list
item.

for line in infile
Uses the line iterator of file object infile to step through
lines in the file automatically. Available in all iteration con‐
texts, including for loops, map(), and comprehensions (e.g.,
[line.rstrip() for line in open('filename')]). The
iteration for line in infile has an effect similar to for line
in infile.readlines(), but the line iterator version fetches
lines on demand instead of loading the entire file into mem‐
ory, and so is more space-efficient.

Output files
outfile = open(filename, 'w')

Creates output file object, connected to external file named
by filename (defined in the preceding section). Mode 'w'
writes text, 'wb' writes binary data with no line-break trans‐
lation. Python 3.X’s open() also accepts an optional Unicode
encoding name in text mode; 2.X’s codecs.open() has sim‐
ilar tools.

outfile.write(S)

Writes all content in string S onto file, with no formatting
applied. In text mode, '\n' is translated to the platform-
specific line-end marker sequence by default. In binary
mode, the string can contain nonprintable bytes (e.g., use
'a\0b\0c' to write a string of five bytes, two of which are
binary zero). In Python 3.X, text mode requires str Unicode
strings and encodes them when written, and binary mode
expects and writes bytes strings unaltered.

60 | Python Pocket Reference

outfile.writelines(I)

Writes all strings in iterable I onto file, not adding any line-
end characters automatically.

Any files
file.close()

Manual close to free resources (although CPython currently
auto-closes files if still open when they are garbage collec‐
ted). See also the file object’s context manager in “File con‐
text managers”.

file.tell()

Returns the file’s current position.

file.seek(offset [, whence])
Sets the current file position to offset for random access.
whence can be 0 (offset from front), 1 (offset +/– from current
position), or 2 (offset from end). whence defaults to 0.

file.isatty()

Returns True if the file is connected to a tty-like (interactive)
device, else False (may return 1 or 0 in older Python
versions).

file.flush()

Flushes the file’s stdio buffer. Useful for buffered pipes, if
another process (or human) is reading. Also useful for files
created and read in the same process.

file.truncate([size])

Truncates file to, at most, size bytes (or current position if
no size is passed). Not available on all platforms.

file.fileno()

Gets file number (file descriptor integer) for file. This rough‐
ly converts file objects to file descriptors that can be passed
to tools in the os module. Hint: use os.fdopen() or 3.X’s
open() to convert a file descriptor to a file object.

Specific Built-in Types | 61

Other file attributes (some read-only)
file.closed

True if file has been closed

file.mode

Mode string (e.g., 'r') passed to open() function

file.name

String name of corresponding external file

File context managers
In standard Python (CPython), file objects normally close them‐
selves when garbage collected if still open. Because of this, tem‐
porary files (e.g., open('name').read()) suffice and need not be
closed explicitly, as the file object is immediately reclaimed and
closed. Other Python implementations (e.g., Jython), however,
may collect and close files less deterministically.

To guarantee closes after a block of code exits, regardless of
whether the block raises an exception, use the try/finally state‐
ment and manual closes:

myfile = open(r'C:\misc\script', 'w')
try:
 ...use myfile...
finally:
 myfile.close()

Or use the with/as statement available in Python 3.X and 2.X (as
of 2.6 and 3.0):

with open(r'C:\misc\script', 'w') as myfile:
 ...use myfile...

The first of these inserts a close call as a termination-time action.
The latter employs file object context managers, which guarantee
that a file is automatically closed when the enclosed code block
exits. See the try and with statements in “Statements and Syn‐
tax” for further details.

62 | Python Pocket Reference

File usage notes

• Some file-open modes (e.g., 'r+') allow a file to be both
input and output, and others (e.g., 'rb') specify binary-
mode transfer to suppress line-end marker conversions
(and Unicode encodings in Python 3.X). See open() in
“Built-in Functions”.

• File-transfer operations occur at the current file position,
but seek() method calls reposition the file for random
access.

• File transfers can be made unbuffered: see open() argu‐
ments in “Built-in Functions”, and the -u command-line
flag in “Python Command Options”.

• Python 2.X also includes an xreadlines() file object meth‐
od, which works the same as the file object’s automatic line
iterator, and has been removed in Python 3.X due to its
redundancy.

Sets
Sets are mutable (changeable) and unordered collections of
unique and immutable objects. Sets support mathematical set
operations such as union and intersection. They are not sequen‐
ces (they are unordered), and not mappings (they do not map
values to keys), but support iteration, and function much like
value-less (or keys-only) dictionaries.

Literals and creation
In Python 2.X and 3.X, sets may be created by calling the set()
built-in function, passing it an iterable whose items become
members of the resulting set. In Python 3.X and 2.7, sets may also
be created by {...} set literal and set comprehension expression
syntax, although set() is still used to make an empty set ({} is
the empty dictionary), and to build sets from existing objects.

Specific Built-in Types | 63

Sets are mutable, but items in a set must be immutable; the
frozenset() built-in creates an immutable set, which can be nes‐
ted within another set:
set()

An empty set ({} is an empty dictionary).

S = set('spam')

A four-item set: values 's', 'p', 'a', 'm' (accepts any itera‐
ble).

S = {'s', 'p', 'a', 'm'}

A four-item set, same as prior line (in Python 3.X and 2.7).

S = {ord(c) for c in 'spam'}

Sets comprehension expression (in Python 3.X and 2.7); see
“List comprehension expressions” for full syntax.

S = frozenset(range(−5, 5))

A frozen (immutable) set of 10 integers, −5...4.

Operations
The following documents the most prominent set operations,
where S, S1, and S2 are any set. Most expression operators require
two sets, but their method-based equivalents accept any itera‐
ble, denoted by other in the following (e.g., {1, 2} | [2, 3] fails,
but {1, 2}.union([2, 3]) works). This list is representative but
not complete; see Python’s Library Reference for an exhaustive
list of set expressions and methods available:
x in S

Membership: returns True if set S contains x.

S1 – S2, S1.difference(other)
Difference: new set containing items in S1 that are not in S2
(or other).

S1 | S2, S1.union(other)
Union: new set containing items in either S1 or S2 (or
other) with no duplicates.

64 | Python Pocket Reference

S1 & S2, S1.intersection(other)
Intersection: new set containing items in both S1 and S2 (or
other).

S1 <= S2, S1.issubset(other)
Subset: tests whether every element in S1 is also in S2 (or
other).

S1 >= S2, S1.issuperset(other)
Superset: tests whether every element in S2 (or other) is also
in S1.

S1 < S2, S1 > S2
True subset and superset: also tests that S1 and S2 are not the
same.

S1 ^ S2, S1.symmetric_difference(other)
Symmetric difference: new set with elements in either S1 or
S2 (or other) but not both.

S1 |= S2, S1.update(other)
Updates (not for frozen sets): adds items in S2 (or other) to
S1.

S.add(x), S.remove(x), S.discard(x), S.pop(), S.clear()
Updates (not for frozen sets): adds an item, removes an item
by value, removes an item if present, removes and returns
an arbitrary item, removes all items.

len(S)

Length: numbers items in set.

for x in S
Iteration: all iteration contexts.

S.copy()

Makes a top-level (shallow) copy of S; same as set(S).

Other Types and Conversions
Python’s core built-in types also include Booleans—described
next; None—a false placeholder object; NotImplemented—used by

Specific Built-in Types | 65

operator overloading methods; Ellipsis—created by the ... lit‐
eral in 3.X; types—accessed with the type() built-in function, and
always classes in Python 3.X; and program-unit types—including
functions, modules, and classes (all runtime and first-class ob‐
jects in Python).

Boolean
The Boolean type, named bool, provides two predefined con‐
stants added to the built-in scope, named True and False (avail‐
able since version 2.3). For most purposes, these constants can
be treated as though they were preassigned to integers 1 and 0,
respectively (e.g., True + 3 yields 4). However, the bool type is a
subclass of the integer type int, and customizes it to print in‐
stances differently. (True prints as “True”, not “1”, and may be used
as a built-in mnemonic name in logical tests.)

Type Conversions
Tables 10 and 11 list built-in tools for converting from one type
to another. All of these make new objects (they are not in-place
converters). Python 2.X also supports long(S) to-long and `X`
to-string converters, both removed in Python 3.X. See also
“Numbers” and “String formatting” for some of the tools listed
in these tables.
Table 10. Sequence converters

Converter Converts from Converts to

list(X),
[n for n in X]a

String, tuple, any iterable List

tuple(X) String, list, any iterable Tuple

''.join(X) Iterable of strings String
a The list comprehension form may (or may not) be slower than list(), and may
not be best practice in this specific conversion context. In Python 2.X only,
map(None, X) has the same effect as list(X) in this context, although this
form of map() is removed in Python 3.X.

66 | Python Pocket Reference

Table 11. String/object converters

Converter Converts from Converts to

eval(S) String Any object having expression
syntax

int(S [, base]),a

float(S)

String or number Integer, float

repr(X),
str(X)

Any Python object String (repr is as-code,
str is user-friendly)

F % X, F.format(X),
format(X, [F])

Objects with format
codes

String

hex(X), oct(X),

bin(X), str(X)

Integer types Hexadecimal, octal, binary,
decimal digit strings

ord(C), chr(I) Character, integer code Integer code, character
a In version 2.2 and later, converter functions (e.g., int(), float(), str())
also serve as class constructors and can be subclassed. In Python 3.X, all types are
classes, and all classes are instances of the type class.

Statements and Syntax
This section describes the rules for syntax and variable names.

Syntax Rules
The following are the general rules for writing Python programs:
Control flow

Statements execute sequentially, one after another, unless
control-flow statements are used to branch elsewhere in
code (e.g., if, while, for, raise, calls, etc.).

Blocks
A nested block is delimited by indenting all of its statements
by the same amount, with any number of spaces or tabs used
consistently. A nested block can also appear on the same line
as its statement header (following the header’s : character),
if it consists of simple (noncompound) statements only.

Statements and Syntax | 67

As a rule of thumb, a given block should use all tabs or all
spaces for indentation. Combinations of the two are for‐
mally analyzed by two rules: (1) a tab counts for enough
spaces to move the column number to the next multiple of
8; and (2) additional inconsistency is detected by counting
each tab as one space.

In Python 2.X, combinations of tabs and spaces are allowed,
if they satisfy just rule 1; however, mixing tabs and spaces is
discouraged, as it is error prone and degrades clarity, and –t
or –tt options can be used to flag combinations considered
inconsistent per rule 2 (see “Python Command-Line Us‐
age”). In Python 3.X, combinations of tabs and spaces are
still allowed if they are valid and consistent per both rules 1
and 2, but are otherwise always errors (the same as 2.X’s –tt
option).

For example, in both 3.X and 2.X, an outer block indented
with 2 spaces, 1 tab, and 2 spaces (rule 1: 10, rule 2: 5) allows
an inner block indented with 1 tab and 5 spaces (rule 1: 13,
rule 2: 6). An inner block with 2 tabs and 1 space (rule 1: 17,
rule 2: 3) works in 2.X by default (rule 1) but fails in 3.X (rule
2). Maintainable code should not generally rely on these
subtle rules: use tabs XOR spaces.

Statements
A statement ends at the end of a line, but can continue over
multiple lines if a physical line ends with a \; an unclosed
(), [], or {} pair; or an unclosed, triple-quoted string. Mul‐
tiple simple statements can appear on a single line if they are
separated with a semicolon (;).

Comments
Comments start with a # in any column (and not in a string
constant) and span to the end of the line; they are ignored
by the Python interpreter.

Documentation strings
If a function, module file, or class begins with a string literal
(possibly after # comments), it is stored in the object’s

68 | Python Pocket Reference

3. But this rule may be neither absolute nor strict outside the CPython im‐
plementation. The Jython Java-based system, for example, may allow re‐
served words to be used as variables in some contexts.

__doc__ attribute. See help() in “Built-in Functions”, and
the pydoc module and script in the Python Library Refer‐
ence, for automated extraction and display tools. Hint: as of
Python 3.2, python -m pydoc -b launches PyDoc’s browser-
based interface (use –g instead of –b in earlier releases for
GUI mode).

Whitespace
Generally significant only to the left of code, where inden‐
tation is used to group blocks. Blank lines and spaces are
otherwise ignored and optional except as token separators
and within string constants.

Name Rules
This section contains the rules for user-defined names (i.e., vari‐
ables) in programs.

Name format
Structure

User-defined names start with a letter or underscore (_),
followed by any number of letters, digits, or underscores.

Reserved words
User-defined names cannot be the same as any Python re‐
served word listed in Table 12.3

Case sensitivity
User-defined names and reserved words are always case-
sensitive: SPAM, spam, and Spam are different names.

Unused tokens
Python does not use the characters $ and ? in its syntax,
although they can appear in string constants and comments.
Within strings, $ is special in template substitution (see

Statements and Syntax | 69

“Template string substitution”), and $ and ? are special in
pattern matching (see “The re Pattern-Matching Module”).

Creation
User-defined names are created by assignment but must ex‐
ist when referenced (e.g., counters must be explicitly ini‐
tialized to zero). See the sections “Atomic terms and dynamic
typing” and “Namespace and Scope Rules”.

Table 12. Python 3.X reserved words

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

N O T E

In Python 2.X, print and exec are both reserved words, as
they take the form of statements, not built-in functions. Al‐
so in Python 2.X, nonlocal, True, and False are not reserved
words; the first of these is unavailable, and the latter two are
simply built-in names. with and as are reserved as of both
2.6 and 3.0, but not in earlier 2.X releases unless context
managers are explicitly enabled. yield is reserved as of 2.3;
it morphed from statement to expression later but is still a
reserved word.

Name conventions

• Names that begin and end with two underscores (for ex‐
ample, __init__) have a special meaning to the interpreter
but are not reserved words.

70 | Python Pocket Reference

• Names beginning with one underscore (e.g., _X) and as‐
signed at the top level of a module are not copied out by
from...* imports (see also the __all__ module export
names list in the sections “The from Statement” and “Pseu‐
doprivate Attributes”). In other contexts, this is an informal
convention for internal names.

• Names beginning but not ending with two underscores
(e.g., __X) within a class statement are prefixed with the
enclosing class’s name (see “Pseudoprivate Attributes”).

• The name that is just a single underscore (_) is used in the
interactive interpreter (only) to store the result of the last
evaluation.

• Built-in function and exception names (e.g., open,
SyntaxError) are not reserved words. They live in the last-
searched scope and can be reassigned to hide (a.k.a. shad‐
ow) the built-in meaning in the current scope (e.g., open =
myfunction).

• Class names commonly begin with an uppercase letter
(e.g., MyClass), and modules with a lowercase letter (e.g.,
mymodule).

• The first (leftmost) argument in a class method function is
usually named self, by very strong convention.

• Module names are resolved according to a directory search
path scan; names located earlier on the path can hide others
of the same name, whether intended or not (see “The im‐
port Statement”).

Specific Statements
The following sections describe all Python statements. Each sec‐
tion lists the statement’s syntax formats, followed by usage details.
For compound statements, each appearance of a suite in a state‐
ment format stands for one or more other statements, possibly
indented as a block under a header line. A suite must be indented

Specific Statements | 71

under a header if it contains another compound statement (if,
while, etc.); otherwise, it can appear on the same line as the state‐
ment header. The following are both valid constructs:

if x < 42:
 print(x)
 while x: x = x − 1

if x < 42: print(x)

The following subsections give details common to both Python
3.X and 2.X; see also “Python 2.X Statements” at the end of this
section for details unique to 2.X.

The Assignment Statement
target = expression
target1 = target2 = expression
target1, target2 = expression1, expression2
target1 += expression

target1, target2, ... = same-length-iterable
(target1, target2, ...) = same-length-iterable
[target1, target2, ...] = same-length-iterable
target1, *target2, ... = matching-length-iterable

All assignments store references to objects in targets. Assignment
statements request assignment with the preceding explicit syntax
formats, in which:

• Expressions produce objects.

• Targets can be simple names (X), qualified attributes
(X.attr), or indexes and slices (X[i], X[i:j:k]).

• Variables in targets are not declared ahead of time, but
must have been assigned before being used in an expression
(see “Atomic terms and dynamic typing”).

The first format listed above is basic assignment. The second for‐
mat, multiple-target assignment, assigns the same expression re‐
sult object to each target. The third format, tuple assignment,

72 | Python Pocket Reference

4. Sequence assignment also allows a nested collection of values to be as‐
signed to a nested sequence of targets: ((a,b),c)=([1,2],3). In Python 2.X
only, this pattern may also be used for function header arguments.

pairs targets with expressions, left to right. The fourth format,
augmented assignment, is shorthand for an operation plus an as‐
signment (see the next section).

The last four formats are sequence assignment, and assign com‐
ponents of any sequence or other iterable to corresponding tar‐
gets, from left to right. The iterable on the right can be any type,
but must be the same length unless a single starred-name (*X)
appears in the targets on the left, as in the last format. This last
format, known as extended sequence assignment and available in
Python 3.X only, allows the starred name to collect arbitrarily
many items (see “Extended sequence assignment (3.X)”).4

Assignment also occurs implicitly in other contexts in Python
(e.g., for loop variables and function argument passing), and
some assignment statement formats apply elsewhere (e.g., se‐
quences in for).

Augmented assignment
A set of additional assignment statement formats, listed in
Table 13, are available. Known as augmented assignments, these
formats imply a binary expression plus an assignment. For in‐
stance, the following two formats are roughly equivalent:

X = X + Y
X += Y

However, the reference to target X in the second format needs to
be evaluated only once, and in-place operations may be applied
for mutables as an optimization (e.g., list1 += list2 automati‐
cally calls list1.extend(list2), instead of the slower concate‐
nation operation implied by +). Classes can overload in-place as‐
signments with method names that begin with an i (e.g.,
__iadd__() for +=, __add__() for +). The format X //= Y (floor
division) was added as of version 2.2.

Specific Statements | 73

Table 13. Augmented assignment statements

X += Y X &= Y X −= Y X |= Y

X *= Y X ^= Y X /= Y X >>= Y

X %= Y X <<= Y X **= Y X //= Y

Normal sequence assignment
In Python 2.X and 3.X, any sequence or other iterable of values
may be assigned to any sequence of names, as long as the lengths
are the same. This basic sequence assignment form works in most
assignment contexts:

>>> a, b, c, d = [1, 2, 3, 4]
>>> a, d
(1, 4)

>>> for (a, b, c) in [[1, 2, 3], [4, 5, 6]]:
... print(a, b, c)
...
1 2 3
4 5 6

Extended sequence assignment (3.X)
In Python 3.X (only), sequence assignment is extended to allow
collection of arbitrarily many items, by prefixing one variable in
the assignment target with a star; when used, sequence lengths
need not match, and the starred name collects all otherwise un‐
matched items in a new list:

>>> a, *b = [1, 2, 3, 4]
>>> a, b
(1, [2, 3, 4])

>>> a, *b, c = (1, 2, 3, 4)
>>> a, b, c
(1, [2, 3], 4)

>>> *a, b = 'spam'
>>> a, b

74 | Python Pocket Reference

(['s', 'p', 'a'], 'm')

>>> for (a, *b) in [[1, 2, 3], [4, 5, 6]]:
... print(a, b)
...
1 [2, 3]
4 [5, 6]

N O T E

Python 3.5 or later star generalization? In Python 3.3 and
earlier, the special *X and **X syntax forms can appear in
three places: in assignment statements, where a *X collects
unmatched items in sequence assignments; in function
headers, where the two forms collect unmatched positional
and keyword arguments; and in function calls, where the
two forms unpack iterables and dictionaries into individual
items (arguments).

In Python 3.4, developers considered generalizing this star
syntax to also be usable within data structure literals—
where it would unpack collections into individual items,
much like its original use in function calls. Specifically, the
unpacking star syntax may be allowed to appear in tuples,
lists, sets, dictionaries, and comprehensions. For example:

[x, *iter] # unpack iter items: list

(x, *iter), {x, *iter} # same for tuple, set

{'x': 1, **dict} # unpack dict items: dicts

[*iter for iter in x] # unpack iter items: comps

This is in addition to its original three roles in assignment
statements, and function headers and calls. Some current
restrictions regarding use of the star syntax may also be lif‐
ted in the process. This proposed change was postponed
until after 3.4 just before this edition was published and
remains uncertain—indeed, it has been debated since 2008,
won’t be reconsidered until Python 3.5 or later, and may
never appear at all—so check Python “What’s New” docu‐
ments for more details.

Specific Statements | 75

The Expression Statement
expression
function([value, name=value, *name, **name...])
object.method([value, name=value, *name, **name...])

Any expression can appear as a statement (e.g., on a line by itself).
Conversely, statements cannot appear in any other expression
context (e.g., assignment statements have no result, and cannot
be nested).

Expression statements are commonly used for calling functions
and methods having no useful return value, and for interactive-
mode printing. Expression statements are also the most common
coding for yield expressions and Python 3.X print() built-in
function calls, although both are documented as specific state‐
ments in this book.

Call syntax
In function and method calls, actual arguments are separated by
commas and are normally matched to arguments in function def
headers by position. Calls can optionally list specific argument
names in functions to receive passed values by using the
name=value keyword argument syntax. Keyword arguments
match by name instead of position.

Arbitrary arguments call syntax
Special star syntax can also be used in function and method call
argument lists to unpack collections into arbitrarily many indi‐
vidual arguments. If pargs and kargs are an iterable and a dic‐
tionary, respectively:

f(*pargs, **kargs)

Then this format calls function f with positional arguments from
iterable pargs, and keyword arguments from dictionary kargs.
For instance:

>>> def f(a, b, c, d): print(a, b, c, d)
...

76 | Python Pocket Reference

>>> f(*[1, 2], **dict(c=3, d=4))
1 2 3 4

This syntax is intended to be symmetric with function header
arbitrary-argument syntax such as def f(*pargs, **kargs),
which collects unmatched arguments. In calls, starred items are
unpacked into individual arguments, and may be combined with
other positional and keyword arguments in accordance with or‐
dering rules (e.g., g(1, 2, foo=3, bar=4, *pargs, **kargs)).

In Python 2.X, the apply() built-in function achieves a similar
effect, but is removed in Python 3.X:

apply(f, pargs, kargs)

See also “The def Statement”, including Table 15, for more call
syntax details.

The print Statement
In Python 3.X, printing text to the standard output stream takes
the form of a built-in function call, which is commonly coded as
an expression statement (e.g., on a line by itself). Its call signature
is as follows:

print([value [, value]*]
 [, sep=str] [, end=str]
 [, file=object] [, flush=bool])

Each value is an expression that produces an object, whose str()
string is to be printed. This call is configured by its four optional
keyword-only arguments (defaults apply if omitted or passed
None):
sep

A string to place between values (default is space: ' ').

end

A string to place at the end of the text printed (default is
newline: '\n').

Specific Statements | 77

file

The file-like object to which text is written (default is stan‐
dard output: sys.stdout).

flush

Passed true/false, to enable/disable forced output stream
flush (as of Python 3.3; default is False).

Pass empty or custom strings to sep and end to suppress or over‐
ride space separators and line feeds. Pass a file or file-like object
to file to redirect output in your script (see also “Files”):

>>> print(2 ** 32, 'spam')
4294967296 spam

>>> print(2 ** 32, 'spam', sep='')
4294967296spam

>>> print(2 ** 32, 'spam', end=' '); print(1, 2, 3)
4294967296 spam 1 2 3

>>> print(2 ** 32, 'spam', sep='',
... file=open('out', 'w'))
>>> open('out').read()
'4294967296spam\n'

Because by default print operations simply call the write()
method of the object currently referenced by sys.stdout, the fol‐
lowing is equivalent to print(X):

import sys
sys.stdout.write(str(X) + '\n')

To redirect print text to files or class objects, either pass any ob‐
ject with a write() method to the file keyword argument as
shown earlier, or reassign sys.stdout to any such object (see also
“Files”):

sys.stdout = open('log', 'a') # Object with write()
print('Warning-bad spam!') # To object's write()

Because sys.stdout can be reassigned, the file keyword argu‐
ment is not strictly needed; however, it can often avoid both

78 | Python Pocket Reference

explicit write() method calls, and saving and restoring the orig‐
inal sys.stdout value around a redirected print operation when
the original stream is still required. For more on the 3.X
print(), see also “Built-in Functions”.

Python 2.X print statements
In Python 2.X, printing is a specific statement instead of a built-
in function, of the following form:

print [value [, value]* [,]]
print >> file [, value [, value]* [,]]

The Python 2.X print statement displays the printable represen‐
tation of each value on the standard output stream—the current
setting of sys.stdout—and adds spaces between values. A trail‐
ing comma suppresses the line feed that is normally added at the
end of a list, and is equivalent to using end=' ' in Python 3.X’s
printing function:

>>> print 2 ** 32, 'spam'
4294967296 spam

>>> print 2 ** 32, 'spam',; print 1, 2, 3
4294967296 spam 1 2 3

The Python 2.X print statement can also name an open output
file-like object to be the target of the printed text, instead of
sys.stdout:

fileobj = open('log', 'a')
print >> fileobj, "Warning-bad spam!"

If the file object is None, sys.stdout is used. This Python 2.X >>
syntax is equivalent to the file=F keyword argument in Python
3.X. There is no equivalent to sep=S in Python 2.X’s statement,
although lines can be preformatted and printed as a single item.

Parentheses work in 2.X’s print, but create tuples for multiple
items. To use the Python 3.X printing function in Python 2.X,
run the following in an interactive session or at the top of a script
—this can be used both in 2.X (for 3.X forward compatibility),
and in 3.X (for 2.X backward compatibility):

Specific Statements | 79

from __future__ import print_function

The if Statement
if test:
 suite
[elif test:
 suite]*
[else:
 suite]

The if statement selects from among one or more actions (state‐
ment blocks). It runs the suite associated with the first if or elif
test that is true, or the else suite if all tests are false. The elif and
else parts are optional.

The while Statement
while test:
 suite
[else:
 suite]

The while loop is a general loop that keeps running the first suite
while the test at the top is true. It runs the optional else suite once
on exit if the loop ends without running into a break statement
in the first suite.

The for Statement
for target in iterable:
 suite
[else:
 suite]

The for loop is a sequence (or other iterable) iteration that assigns
items in iterable to target and runs the first suite for each. The
for statement runs the optional else suite once on exit if the loop
ends without running into a break statement in the first suite.
target can be anything that can appear on the left side of an =
assignment statement (e.g., for (x, y) in tuplelist).

80 | Python Pocket Reference

Since Python 2.2, this works by first trying to obtain an iterator
object I with iter(iterable) and then calling that object’s
I.__next__() method repeatedly until StopIteration is raised
(I.__next__() is named I.next() in Python 2.X). If no iterator
object can be obtained (e.g., no __iter__ method is defined), this
works instead by repeatedly indexing iterable at successively
higher offsets until an IndexError is raised.

Iteration occurs in multiple contexts in Python, including for
loop statements, comprehensions, and map(). See “The iteration
protocol” in the coverage of lists for more on the mechanism used
by the for loop and all other iteration contexts.

The pass Statement
pass

This is a do-nothing placeholder statement, and is used when
syntactically necessary (e.g., for stubbed-out function bodies). In
Python 3.X only, ellipses (literally, ...) can achieve similar effects.

The break Statement
break

This immediately exits the closest (innermost) enclosing while
or for loop statement, skipping its associated else (if any). Hint:
raise and try statements can be used to exit multiple loop levels.

The continue Statement
continue

This immediately goes to the top of the closest enclosing while
or for loop statement; it resumes in the loop’s header line.

The del Statement
del name
del name[i]
del name[i:j:k]
del name.attribute

Specific Statements | 81

The del statement deletes variables, items, keys, slices, and at‐
tributes. In the first form, name is a variable name taken literally.
In the last three forms, name can be any expression that evaluates
to the subject object (with parentheses if required for priority).
For instance: del a.b()[1].c.d.

This statement is primarily for data structures, not memory
management. It also removes a reference to formerly referenced
objects, which may cause them to be garbage collected (reclaimed)
if not referenced elsewhere. However, garbage collection is au‐
tomatic, and need not normally be forced with del.

The def Statement
[decoration]
def name([arg,... arg=value,... *arg, **arg]):
 suite

The def statement makes new functions, which may also serve as
methods in classes. It creates a function object and assigns it to
variable name. Each call to a function object generates a new, local
scope, where assigned names are local to the function call by de‐
fault (unless declared global, or nonlocal in 3.X). For more on
scopes, see “Namespace and Scope Rules”.

Arguments are passed by assignment; in a def header, they can
be defined by any of the four formats in Table 14. The argument
forms in Table 14 can also be used in a function call, where they
are interpreted as shown in Table 15 (see “The Expression State‐
ment” for more on function call syntax).
Table 14. Argument formats in definitions

Argument format Interpretation

name Matched by name or position

name=value Default value if name is not passed

*name Collects extra positional arguments as new
tuple name

**name Collects extra keyword arguments as a new
dictionary name

82 | Python Pocket Reference

Argument format Interpretation

*other, name[=value] Python 3.X keyword-only arguments after *

*, name[=value] Same as prior line (when no * otherwise)

Table 15. Argument formats in calls

Argument format Interpretation

value Positional argument

name=value Keyword (match by name) argument

*iterable Unpacks sequence or other iterable of positional arguments

**dictionary Unpacks dictionary of keyword arguments

Python 3.X keyword-only arguments
Python 3.X (only) generalizes function definition to allow
keyword-only arguments, which must be passed by keyword, and
are required if not coded with defaults. Keyword-only arguments
are coded after the *, which may appear without a name if there
are keyword-only arguments but not arbitrary positionals:

>>> def f(a, *b, c): print(a, b, c) # Required kw c
...
>>> f(1, 2, c=3)
1 (2,) 3

>>> def f(a, *, c=None): print(a, c) # Optional kw c
...
>>> f(1)
1 None
>>> f(1, c='spam')
1 spam

Python 3.X function annotations
Python 3.X (only) also generalizes function definition to allow
arguments and return values to be annotated with object values
for use in extensions. Annotations are coded as :value after the
argument name and before a default, and as ->value after the

Specific Statements | 83

argument list. They are collected into an __annotations__ at‐
tribute of the function, but are not otherwise treated as special
by Python itself:

>>> def f(a:99, b:'spam'=None) -> float:
... print(a, b)
...
>>> f(88)
88 None
>>> f.__annotations__
{'a': 99, 'b': 'spam', 'return': <class 'float'>}

lambda expressions
Functions can also be created with the lambda expression form,
which creates a new function object and returns it to be called
later, instead of assigning it to a name:

lambda arg, arg,...: expression

In lambda, each arg is as in def (Table 14), and expression is the
implied return value of later calls; code in expression is effectively
deferred until calls:

>>> L = lambda a, b=2, *c, **d: [a, b, c, d]
>>> L(1, 2, 3, 4, x=1, y=2)
[1, 2, (3, 4), {'y': 2, 'x': 1}]

Because lambda is an expression, not a statement, it can be used
in places that a def cannot (e.g., within a dictionary literal ex‐
pression or an argument list of a function call). Because lambda
computes a single expression instead of running statements, it is
not intended for complex functions (use def).

Function defaults and attributes
Mutable default argument values are evaluated once at def state‐
ment time, not on each call, and so can retain state between calls.
However, some consider this behavior to be a caveat, and classes
and enclosing scope references are often better state-retention
tools; use None defaults for mutable and explicit tests to avoid
unwanted changes, as shown in the following’s comments:

84 | Python Pocket Reference

>>> def grow(a, b=[]): # def grow(a, b=None):
... b.append(a) # if b == None: b = []
... print(b) # ...
...
>>> grow(1); grow(2)
[1]
[1, 2]

Both Python 2.X and 3.X also support attachment of arbitrary
attributes to functions, as another form of state retention (al‐
though attributes support only per-function-object state, which
is per-call only if each call generates a new function object):

>>> grow.food = 'spam'
>>> grow.food
'spam'

Function and method decorators
As of Python 2.4, function definitions can be preceded by a dec‐
laration syntax that describes the function that follows. Known
as decorators and coded with an @ character, these declarations
provide explicit syntax for functional techniques. The function
decorator syntax:

@decorator
def F():
 ...

is equivalent to this manual name rebinding:

def F():
 ...
F = decorator(F)

The effect is to rebind the function name to the result of passing
the function through the decorator callable. Function decorators
may be used to manage functions, or later calls made to them (by
using proxy objects). Decorators may be applied to any function
definition, including methods inside a class:

Specific Statements | 85

class C:
 @decorator
 def M(): # Same as M = decorator(M)
 ...

More generally, the following nested decoration:

@A
@B
@C
def f(): ...

is equivalent to the following nondecorator code:

def f(): ...
f = A(B(C(f)))

Decorators may also take argument lists:

@spam(1, 2, 3)
def f(): ...

In this case, spam must be a function returning a function, and is
known as a factory function; its result is used as the actual deco‐
rator, and may retain argument state as needed. Decorators must
appear on the line preceding a function definition, not the same
line (e.g., @A def f(): ... on a single line is illegal).

Because they accept and return callables, some built-in functions,
including property(), staticmethod(), and classmethod(), may
be used as function decorators (see “Built-in Functions”). Deco‐
rator syntax is also supported for classes in Python 2.6 and 3.0,
and later in both lines; see “The class Statement”.

The return Statement
return [expression]

The return statement exits the enclosing function and returns an
expression value as the result of the call to the function. If
expression is omitted, it defaults to None, which is also the default
return value for functions that exit without a return. Hint: return
a tuple for multiple-value function results. See also “The yield

86 | Python Pocket Reference

Statement” for special semantics of return when used in a gen‐
erator function.

The yield Statement
yield expression # All Pythons
yield from iterable # 3.3 and later

The yield expression in 2.X and 3.X defines a generator func‐
tion, which produces results on demand. Functions containing a
yield are compiled specially; when called, they create and return
a generator object—an iterable that automatically supports the
iteration protocol to provide results in iteration contexts.

Commonly coded as an expression statement (e.g., on a line
by itself), yield suspends function state and returns an
expression value. On the next iteration, the function’s prior lo‐
cation and variable state are restored, and control resumes im‐
mediately after the yield statement.

Use a return statement to end the iteration or simply fall off the
end of the function. A generator function return must give no
return value prior to 3.3, but may provide one in 3.3 and later
that is retained as an exception object attribute (see “Generator
function changes in Python 3.3”):

def generateSquares(N):
 for i in range(N):
 yield i ** 2

>>> G = generateSquares(5) # Has __init__, __next__
>>> list(G) # Generate results now
[0, 1, 4, 9, 16]

When used as an expression (e.g., A = yield X), yield returns
the object passed to the generator’s send() method at the caller,
and must be enclosed in parenthesis unless it is the only item on
the right of = (e.g., A = (yield X) + 42). In this mode, values are
sent to a generator by calling send(value); the generator is re‐
sumed, and the yield expression returns value. If the regular
__next__() method or next() built-in function is called to ad‐
vance, yield returns None.

Specific Statements | 87

Generator functions also have a throw(type) method to raise an
exception inside the generator at the latest yield, and a close()
method that raises a new GeneratorExit exception inside the
generator to terminate the iteration. yield is standard as of ver‐
sion 2.3 and later; generator send(), throw(), and close() meth‐
ods are available as of Python 2.5.

A class __iter__() method containing a yield returns a gener‐
ator with an automatically created __next__(). See “The iteration
protocol” in the coverage of lists for the mechanism used by gen‐
erator functions, and “Generator expressions” for a related tool
which also creates a generator object.

Generator function changes in Python 3.3
As of 3.3, Python 3.X (only) supports a from clause in this state‐
ment, which in basic usage is similar to a yielding for loop that
steps through items in an iterable; in more advanced roles, this
extension allows subgenerators to receive sent and thrown values
directly from the higher calling scope:

for i in range(N): yield i # All Pythons
yield from range(N) # 3.3 and later option

Also as of 3.3, if a generator function stops iteration and exits
with an explicit return statement, any value given in the return
is made available as the value attribute of the implicitly created
and raised StopIteration instance object. This value is ignored
by automatic iterations, but may be queried by manual iterations
or other code that accesses the exception (see “Built-in Excep‐
tions”). In Python 2.X, and in 3.X prior to 3.3, a return with a
value in a generator function is treated as a syntax error.

The global Statement
global name [, name]*

The global statement is a namespace declaration: when used in‐
side a class or function definition statement, it causes all appear‐
ances of name in that context to be treated as references to a global

88 | Python Pocket Reference

(module-level) variable of that name—whether name is assigned
or not, and whether name already exists or not.

This statement allows globals to be created or changed within a
function or class. Because of Python’s scope rules, you need to
declare only global names that are assigned; undeclared names
are made local if assigned, but global references are automatically
located in the enclosing module. See also “Namespace and Scope
Rules”.

The nonlocal Statement
nonlocal name [, name]*

Available in Python 3.X only.

The nonlocal statement is a namespace declaration: when used
inside a nested function, it causes all appearances of name in that
context to be treated as references to a local variable of that name
in an enclosing function’s scope—whether name is assigned or not.

name must exist in an enclosing function; this statement allows it
to be changed by a nested function. Because of Python’s scope
rules, you need to declare only nonlocal names that are as‐
signed; undeclared names are made local if assigned, but nonlocal
references are automatically located in enclosing functions. See
also “Namespace and Scope Rules”.

The import Statement
import [package.]* module [as name]
 [, [package.]* module [as name]]*

The import statement provides module access: it imports a mod‐
ule as a whole. Modules in turn contain names fetched by qual‐
ification: module.attribute. Assignments at the top level of a
Python file create module object attributes. The optional as
clause assigns a variable name to the imported module object and
removes the original module name (useful to provide shorter syn‐
onyms for long module names or package paths), and optional

Specific Statements | 89

package prefixes denote package directory paths (described in the
next section).

module names the target module, which is usually a Python
source-code or compiled byte-code file. The module is given
without its filename extension (e.g., .py), and must generally be
located in a directory on the module search path unless nested in
a package path.

For the leftmost module or package components in absolute im‐
port paths, the module search path is sys.path—a directory
name list initialized from the program’s top-level directory,
PYTHONPATH settings, .pth path file contents, and Python defaults.
Modules may instead be located in a single package directory for
nested package components (see “Package imports”) and relative
imports in from statements (see “Package relative import syn‐
tax”), and search paths may span directories arbitrarily for name‐
space packages as of Python 3.3 (see “Python 3.3 namespace
packages”).

The first time a module is imported by a program, its source-code
file is compiled to byte code if needed (and saved in a .pyc file if
possible), and then executed from top to bottom to generate
module object attributes by assignment. In Python 2.X and 3.1
and earlier, byte-code files are saved in the source-code file’s di‐
rectory with the same base name (e.g., module.pyc). In Python
3.2 and later, byte code is saved in a __pycache__ subdirectory of
the source-code file’s directory, with a version-identifying base
name (e.g., module.cpython-33.pyc).

Later imports use the already-imported module, but
imp.reload() (reload() in 2.X) forces reimports of already-
loaded modules. To import by string name, see __import__()
used by import in “Built-in Functions” and the standard library’s
importlib.import_module(modname).

In standard CPython, imports may also load compiled C and C++
extensions, with attributes corresponding to external language
names. In other implementations, imports may also name other

90 | Python Pocket Reference

language’s class libraries (e.g., Jython may generate a Python
module wrapper that interfaces with a Java library).

Package imports
If used, the package prefix names give enclosing directory names,
and module dotted paths reflect directory hierarchies. An import
of the form import dir1.dir2.mod generally loads the module file
at directory path dir1/dir2/mod.py, where dir1 must be contained
by a directory listed on the module search path (sys.path for
absolute imports) and dir2 is located in dir1 (not on sys.path).

In regular packages, each directory listed in an import statement
must have a (possibly empty) __init__.py file that serves as the
directory level’s module namespace. This file is run on the first
import through the directory, and all names assigned in
__init__.py files become attributes of the directory’s module ob‐
ject. Directory packages can resolve same-name conflicts caused
by the linear nature of PYTHONPATH.

See also “Package relative import syntax” for more on intra-
package references in from statements, and “Python 3.3 name‐
space packages” for an alternative package type which requires
no __init__.py file.

Python 3.3 namespace packages
As of Python 3.3, the import operation is extended to recognize
namespace packages—module packages that are the virtual con‐
catenation of one or more directories nested in module search
path entries.

Namespace packages do not (and cannot) contain an
__init__.py file. They serve as a fallback option and extension to
regular modules and packages, recognized only if a name is not
located otherwise but matches one or more directories found
during the search path scan. This feature is activated by both the
import and from statements.

Specific Statements | 91

Import algorithm
With the addition of namespaces packages, imports follow their
usual initial steps as before (e.g., checking for already-imported
modules and byte-code files), but the search for a module is ex‐
tended as follows.

During imports, Python iterates over each directory in the mod‐
ule search path—defined by sys.path for the leftmost compo‐
nents of absolute imports, and by a package’s location for relative
imports and components nested in package paths. As of 3.3, while
looking for an imported module or package named spam, for
each directory in the module search path, Python tests for match‐
ing criteria in this order (where step 2 involves details omitted
here, including the 3.2 __pycache__ subdirectory described ear‐
lier):

1. If directory\spam__init__.py is found, a regular package is
imported and returned.

2. If directory\spam.{py, pyc, or other module extension} is
found, a simple module is imported and returned.

3. If directory\spam is found and is a directory, it is recorded
and the scan continues with the next directory in the search
path.

4. If none of the above was found, the scan continues with the
next directory in the search path.

If the search path scan completes without returning a module or
package by steps 1 or 2, and at least one directory was recorded
by step 3, then a namespace package is immediately created. The
new namespace package has a __path__ attribute set to an iterable
of the directory path strings that were found and recorded during
the scan by step 3, but does not have a __file__.

The __path__ attribute is used in later accesses to search all pack‐
age components whenever further nested items are requested,
much like the sole directory of a regular package. It serves the
same role for lower-level components that sys.path does at the

92 | Python Pocket Reference

top for the leftmost components of absolute import paths,
becoming the parent path for accessing lower items using the
same four-step algorithm.

The from Statement
from [package.]* module import
 [(] name [as othername]
 [, name [as othername]]* [)]

from [package.]* module import *

The from statement imports a module just as in the import state‐
ment (see the preceding section), but also copies variable names
from the module to be used without qualification: attribute. The
second format (from ... import *) copies all names assigned at
the top level of the module, except those with a single leading
underscore or not listed in the module’s __all__ list-of-strings
attribute (if defined).

If used, the as clause creates a name synonym as in the import
statement, and works for any name component. If used, package
import paths also work as in import (e.g., from dir1.dir2.mod
import X) for both regular and 3.3 namespace packages, although
the package path needs to be listed only once in the from itself
(not at each attribute reference). As of Python 2.4, the names
being imported from a module can be enclosed in parentheses to
span multiple lines without backslashes (this is special-case syn‐
tax for from only).

In Python 3.X, the from ... import * form is invalid within a
function or class, because it makes it impossible to classify name
scopes at definition time. Due to scoping rules, the * format also
generates warnings in 2.X as of version 2.2 if it appears nested in
a function or class.

The from statement is also used to enable future (but still pending)
language additions, with from __future__ import featurename.
This format must appear only at the top of a module file (preceded
only by a docstring or comments), or anytime during an inter‐
active session.

Specific Statements | 93

Package relative import syntax
In Python 3.X and 2.X, the from statement (but not import) may
use leading dots in module names to specify intra-package mod‐
ule references—imports which are relative to the package direc‐
tory in which the importing module resides only. Relative
imports restrict the initial module search path to the package
directory. Other imports are absolute, locating modules on
sys.path. General syntax patterns:

from source import name [, name]* # Abs: sys.path

from . import module [, module]* # Rel: pkg only
from .source import name [, name]* # Rel: pkg only

from .. import module [, module]* # Parent in pkg
from ..source import name [, name]* # Parent in pkg

In this from form, source may be a simple identifier or dot-
separated package path, name and module are simple identifiers,
and leading dots identify the import as package relative. The as
renaming extension (not shown here) also works in this form as
in normal from for both name and module.

Leading-dots syntax works in both Python 3.X and 2.X to make
imports explicitly package relative. However, for imports without
leading dots, the package’s own directory is searched first in
Python 2.X, but not in Python 3.X. To enable full Python 3.X
package import semantics in Python 2.6 and later, use:

from __future__ import absolute_import

Because they may support a broader range of use cases, absolute
package import paths, relative to a directory on sys.path, are
often preferred over both implicit package-relative imports in
Python 2.X, and explicit package-relative import syntax in both
Python 2.X and 3.X.

94 | Python Pocket Reference

The class Statement
[decoration]
class name [(super [, super]* [, metaclass=M])]:
 suite

The class statement makes new class objects, which are factories
for making instance objects. The new class object inherits from
each listed super class in the order given, and is assigned to vari‐
able name. The class statement introduces a new local name
scope, and all names assigned in the class statement generate
class object attributes shared by all instances of the class.

Important class features include the following; for further class
and OOP details, see also the sections “Object-Oriented Pro‐
gramming” and “Operator Overloading Methods”:

• Superclasses (also known as base classes) from which a new
class inherits attributes are listed in parentheses in the
header (e.g., class Sub(Super1, Super2)).

• Assignments in the statement’s suite generate class at‐
tributes inherited by instances: nested def statements make
methods, while assignment statements make simple class
members.

• Calling the class generates instance objects. Each instance
object may have its own attributes, and inherits the at‐
tributes of the class and all of its superclasses.

• Method functions receive a special first argument, called
self by very strong convention, which is the instance ob‐
ject that is the implied subject of the method call, and gives
access to instance state information attributes.

• The staticmethod() and classmethod() built-ins support
additional kinds of methods, and Python 3.X methods may
be treated as simple functions when called through a class.

• Specially named __X__ operator overloading methods in‐
tercept built-in operations.

Specific Statements | 95

• Where warranted, classes provide state retention and pro‐
gram structure, and support code reuse through customi‐
zation in new classes.

Class decorators in Python 3.X, 2.6, and 2.7
In Python 2.6, 3.0, and later in both lines, decorator syntax can
be applied to class statements, in addition to function definitions.
The class decorator syntax:

@decorator
class C:
 def meth():
 ...

is equivalent to this manual name rebinding:

class C:
 def meth():
 ...
C = decorator(C)

The effect is to rebind the class name to the result of passing the
class through the decorator callable. Like function decorators,
class decorators may be nested and support decorator arguments.
Class decorators may be used to manage classes, or later instance-
creation calls made to them (by using proxy objects).

Metaclasses
Metaclasses are classes that generally subclass from the type class,
in order to customize creation of class objects themselves. For
example:

class Meta(type):
 def __new__(meta, cname, supers, cdict):
 # This and __init__ run by type.__call__
 c = type.__new__(meta, cname, supers, cdict)
 return c

In Python 3.X, classes define their metaclasses using keyword
arguments in class headers:

96 | Python Pocket Reference

class C(metaclass=Meta): ...

In Python 2.X, use class attributes instead:

class C(object):
 __metaclass__ = Meta
 ...

Metaclass code is run at the conclusion of a class statement
(much like class decorators). See also type() in “Built-in Func‐
tions” for the mapping from class statements to metaclass
methods.

The try Statement
try:
 suite
except [type [as value]]: # Or [, value] in 2.X
 suite
[except [type [as value]]:
 suite]*
[else:
 suite]
[finally:
 suite]

try:
 suite
finally:
 suite

The try statement catches exceptions. try statements can specify
except clauses with suites that serve as handlers for exceptions
raised during the try suite; else clauses that run if no exception
occurs during the try suite; and finally clauses that run whether
an exception happens or not. except clauses catch and recover
from exceptions, and finally clauses run termination (block
exit) actions.

Exceptions can be raised automatically by Python, or explicitly
by code in raise statements (see “The raise Statement”). In except
clauses, type is an expression giving the exception class to be

Specific Statements | 97

caught, and an extra variable name value can be used to intercept
the instance of the exception class that was raised. Table 16 lists
all the clauses that can appear in a try statement.

The try must have either an except or a finally, or both. The
order of its parts must be: try→except→else→finally, where
the else and finally are optional, and there may be zero or more
except clauses, but there must be at least one except if an else
appears. finally interacts correctly with return, break, and
continue: if any of these pass control out of the try block, the
finally clause is executed on the way out.
Table 16. try statement clause formats

Clause format Interpretation

except: Catch all (or all other) exceptions

except type: Catch a specific exception only

except type as value: Catch exception and its instance

except (type1, type2): Catch any of the exceptions

except (type1, type2) as value: Catch any of the exceptions and its
instance

else: Run if no exceptions are raised

finally: Always run this block on the way
out

Common variations include the following:
except classname as X:

Catch a class exception, and assign X to the raised instance.
X gives access to any attached state information attributes,
print strings, or callable methods on the instance raised. For
older string exceptions, X is assigned to the extra data passed
along with the string (string exceptions are removed in both
Python 3.X and 2.X, as of 3.0 and 2.6).

except (type1, type2, type3) as X:
Catch any of the exceptions named in a tuple, and assign X
to the extra data.

98 | Python Pocket Reference

In Python 3.X, the name X in the as clause is localized to the except
block, and removed when it exits; in 2.X, this name is not local
to this block. See also the sys.exc_info() call in “The sys Mod‐
ule” for generic access to the exception class and instance (a.k.a.,
type and value) after an exception is raised.

Python 2.X try statement forms
In Python 2.X, try statements work as described, but the as clause
used in except handlers to access the raised instance is coded with
a comma instead—both as and comma work in 2.6 and 2.7 (for
3.X compatibility), but as is not present in earlier 2.X:
except classname, X:

Catch a class exception, and assign X to the raised instance
(use as after 2.5).

except (name1, name2, name2), X:
Catch any of the exceptions, and assign X to the extra data
(use as after 2.5).

The raise Statement
In Python 3.X, the raise statement takes the following forms:

raise instance [from (otherexc | None)]
raise class [from (otherexc | None)]
raise

The first form raises a manually created instance of a class (e.g.,
raise Error(args)). The second form creates and raises a new
instance of class (equivalent to raise class()). The third form
reraises the most recent exception. See the next section (“Python
3.X chained exceptions”) for the optional from clause.

The raise statement triggers exceptions. It may be used to ex‐
plicitly raise either built-in exceptions or user-defined excep‐
tions. See also “Built-in Exceptions” for exceptions predefined by
Python.

On raise, control jumps to the matching except clause of the
most recently entered try statement whose clause matches, or, if

Specific Statements | 99

none match, to the top level of the process where it ends the pro‐
gram and prints a standard error message. Any finally clauses
are run along the way. An except clause is considered matching
if it names the raised instance’s class, or one of its superclasses
(see “Class exceptions”). The instance object raised is assigned to
the as variable in the matching except clause (if given).

Python 3.X chained exceptions
In Python 3.X (only), the optional from clause allows exception
chaining: otherexc is another exception class or instance, and is
attached to the raised exception’s __cause__ attribute. If the raised
exception is not caught, Python prints both exceptions as part of
the standard error message:

try:
 ...
except Exception as E:
 raise TypeError('Bad') from E

As of Python 3.3, the raise from form can also specify None, to
cancel any chained exceptions accumulated to the point of the
statement’s execution:

 raise TypeError('Bad') from None

Class exceptions
As of Python 3.0 and 2.6, all exceptions are identified by classes,
which must be derived from the built-in Exception class (in
2.X, this derivation is required of new-style classes only). The
Exception superclass provides defaults for display strings, as well
as constructor argument retention in tuple attribute args.

Class exceptions support exception categories, which can be easi‐
ly extended. Because try statements catch all subclasses when
they name a superclass, exception categories can be modified by
altering the set of subclasses without breaking existing try state‐
ments. The raised instance object also provides storage for extra
information about the exception:

100 | Python Pocket Reference

class General(Exception):
 def __init__(self, x):
 self.data = x

class Specific1(General): pass
class Specific2(General): pass

try:
 raise Specific1('spam')
except General as X:
 print(X.data) # Prints 'spam'

Python 2.X raise statement forms
Prior to Python 2.6, Python 2.X allows exceptions to be identified
with both strings and classes. Because of this, its raise statements
may take the following forms, many of which exist for backward
compatibility:

raise string # Match same string object
raise string, data # Assign data to exc var

raise class, instance # Match class or any super
raise instance # = inst.__class__, inst

raise class # = class()
raise class, arg # = class(arg), noninst
raise class, (arg [, arg]*) # = class(arg, arg,...)
raise # Re-raise current exc

String exceptions were deprecated as of (and issue warnings in)
Python 2.5. Python 2.X also allows a third item in raise state‐
ments, which must be a traceback object used instead of the cur‐
rent location as the place where the exception occurred.

The assert Statement
assert expression [, message]

The assert statement performs debugging checks. If expression
is false, it raises AssertionError, passing it message as its

Specific Statements | 101

constructor argument, if provided. The -O command-line flag
removes assertions (their tests are neither included nor run).

The with Statement
with expression [as variable]: # 3.0/2.6, +
 suite

with expression [as variable]
 [, expression [as variable]]*: # 3.1/2.7, +
 suite

The with statement wraps a nested block of code in a context
manager (described ahead), which can run block entry actions,
and ensure that block exit actions are run whether exceptions are
raised or not. with can be an alternative to try/finally for exit
actions, but only for objects having context managers.

expression is assumed to return an object that supports the con‐
text management protocol. This object may also return a value
that will be assigned to the name variable if the optional as clause
is present. Classes may define custom context managers, and
some built-in types such as files and threads provide context
managers with exit actions that close files, release thread locks,
etc.:

with open(r'C:\misc\script', 'w') as myfile:
 ...process myfile, auto-closed on suite exit...

See “Files” for more details on file context manager usage, and
Python manuals for other built-in types that support this proto‐
col and statement.

This statement is supported as of Python 2.6 and 3.0, and may be
enabled in 2.5 with the following:

from __future__ import with_statement

102 | Python Pocket Reference

Multiple context managers in Python 3.1 and 2.7
As of Python 3.1 and 2.7, the with statement may also specify
multiple (a.k.a. nested) context managers. Any number of context
manager items may be separated by commas, and multiple items
work the same as nested with statements. In general, this code in
3.1, 2.7, and later:

with A() as a, B() as b:
 ...statements...

is equivalent to the following, which also works in 3.0 and 2.6:

with A() as a:
 with B() as b:
 ...statements...

For example, in the following code, both files’ exit actions are
automatically run when the statement block exits, regardless of
exception outcomes:

with open('data') as fin, open('res', 'w') as fout:
 for line in fin:
 fout.write(transform(line))

Context manager protocol
Objects integrate with the with statement according to the fol‐
lowing method-call model; see also “Methods for Context Man‐
agers”:

1. The expression is evaluated, resulting in an object known
as a context manager that must define method names
__enter__ and __exit__.

2. The context manager’s __enter__() method is called. The
value it returns is assigned to variable if present, or simply
discarded otherwise.

3. The code in the nested suite is executed.

Specific Statements | 103

4. If the suite raises an exception, the __exit__(type, value,
traceback) method is called with the exception details. If
this method returns a false value, the exception is reraised;
otherwise, the exception is terminated.

5. If the suite does not raise an exception, the __exit__
method is still called, but its three arguments are all passed
in as None.

Python 2.X Statements
Python 2.X supports the print statement described earlier, does
not support nonlocal, and does not support with fully until 2.6.
In addition, raise, try, and def have the slightly different syn‐
taxes in Python 2.X as noted earlier, and semantics noted as 3.X-
specific in the preceding section do not generally apply to 2.X
(e.g., namespace packages).

The following additional statement is available in Python 2.X
only:

exec codestring [in globaldict [, localdict]]

The exec statement runs code dynamically. codestring may be
any Python statement (or multiple statements separated by new‐
lines) as a string, which is compiled and run in the namespace
containing the exec, or the global/local namespace dictionaries
if specified (localdict defaults to globaldict). codestring can
also be a compiled code object. Also see compile(), eval(), and
the Python 2.X execfile() in “Built-in Functions”.

In Python 3.X, this statement becomes the exec() function (see
“Built-in Functions”). The backward- and forward-compatible
syntax exec(a, b, c) is also accepted in Python 2.X. Hint: do not
use this to evaluate untrustworthy code strings, as they run as
program code.

104 | Python Pocket Reference

5. Lexical scopes refer to physically (syntactically) nested code structures in
a program’s source code.

Namespace and Scope Rules
This section discusses rules for name binding and lookup (see
also the sections “Name format”, “Name conventions”, and
“Atomic terms and dynamic typing”). In all cases, names are cre‐
ated when first assigned but must already exist when referenced.
Qualified and unqualified names are resolved differently.

Qualified Names: Object Namespaces
Qualified names—X, in object.X—are known as attributes and
live in object namespaces. Assignments in some lexical scopes5

serve to initialize object namespaces (e.g., module and class
attributes):
Assignment: object.X = value

Creates or alters the attribute name X in the namespace of
the object. This is the normal case; see “Formal Inheritance
Rules” ahead for full details.

Reference: object.X
Searches for the attribute name X in the object, and then all
accessible classes above it for instances and classes. This is
the definition of inheritance; see “Formal Inheritance
Rules” for full details.

Unqualified Names: Lexical Scopes
Unqualified names—X, at the start of an expression—involve lex‐
ical scope rules. Assignments bind such names to the local scope
unless they are declared global, or nonlocal in 3.X.
Assignment: X = value

Makes name X local by default: creates or changes name X in
the current local scope. If X is declared global, this creates
or changes name X in the enclosing module’s scope. In

Namespace and Scope Rules | 105

Python 3.X only, if X is declared nonlocal, this changes name
X in an enclosing function’s scope. Local variables are nor‐
mally stored in the call stack at runtime for quick access, and
directly visible only to code in the same scope.

Reference: X
Looks for name X in at most four scope categories, in the
following order:

a. The current local scope (the innermost enclosing
function)

b. The local scopes of all lexically enclosing functions
(other function layers, from inner to outer)

c. The current global scope (the enclosing module)

d. The built-in scope (which corresponds to module
builtins in Python 3.X, and module __builtin__ in
Python 2.X)

Local and global scope contexts are defined in Table 17.
global declarations make the search begin in the global
scope instead, and nonlocal declarations in 3.X restrict the
search to enclosing functions.

Special cases: comprehensions, exceptions
Python 3.X localizes loop variables in all comprehensions
(Python 2.X does the same for all but list comprehensions).
Python 3.X localizes and removes the exception variable in
the except clause of try statements (2.X does not localize
this name). See also “List comprehension expressions” and
“The try Statement”.

Table 17. Unqualified name scopes

Code context Global scope Local scope

Module Same as local The module itself

Function, method Enclosing module Function definition/call

Class Enclosing module class statement

106 | Python Pocket Reference

Code context Global scope Local scope

Script, interactive
mode

Same as local module __main__

exec(), eval() Caller’s global (or passed in) Caller’s local (or passed in)

Nested Scopes and Closures
The enclosing functions search of the previous section’s “Refer‐
ence” rules (step b) is called a statically nested scope, and was made
standard as of version 2.2. For example, the following function
works because the reference to x within f2 has access to the en‐
closing f1 scope:

def f1():
 x = 42
 def f2():
 print(x) # Retain x in f1's scope
 return f2 # To be called later: f1()()=>42

Nested functions that retain enclosing scope references (e.g., f2
in the preceding code) are known as closures—a state retention
tool that is sometimes an alternative or complement to classes,
and made more useful in 3.X with nonlocal (see “The nonlocal
Statement”). Scopes nest arbitrarily, but only enclosing functions
(not classes) are searched:

def f1():
 x = 42
 def f2():
 def f3():
 print(x) # Finds x in f1's scope
 f3() # f1() prints 42
 f2()

Enclosing scopes and defaults
In Python versions prior to 2.2, the preceding section’s functions
fail because name x is not local (in the nested function’s scope),
global (in the module enclosing f1), or built-in. To make such
cases work prior to version 2.2 or when required otherwise,

Namespace and Scope Rules | 107

default arguments retain values from the immediately enclosing
scope, because values of defaults are evaluated before entering a
def:

def f1():
 x = 42
 def f2(x=x):
 print(x) # f1()() prints 42
 return f2

This technique still works in more recent Python versions, and
also applies to lambda expressions, which imply a nested scope
just like def and are more commonly nested in practice:

def func(x):
 action = (lambda n: x ** n) # Use as of 2.2
 return action # func(2)(4)=16

def func(x):
 action = (lambda n, x=x: x ** n) # Defaults alt
 return action # func(2)(4)=16

Though now largely outdated in most roles, defaults are still
sometimes needed to reference loop variables when creating
functions inside loops; otherwise, such variables reflect only their
final loop value:

for I in range(N):
 actions.append(lambda I=I: F(I)) # Current I

Object-Oriented Programming
Classes are Python’s main object-oriented programming (OOP)
tool. They support multiple instances, attribute inheritance, and
operator overloading. Python also supports functional program‐
ming techniques—with tools such as generators, lambdas, com‐
prehensions, maps, closures, decorators, and first-class function
objects—which may serve as complement or alternative to OOP
in some contexts.

108 | Python Pocket Reference

Classes and Instances

Class objects provide default behavior

• The class statement creates a class object and assigns it to
a name.

• Assignments inside class statements create class at‐
tributes, which are inherited object state and behavior.

• Class methods are nested defs, with special first arguments
to receive the implied subject instance.

Instance objects are generated from classes

• Calling a class object like a function makes a new in‐
stance object.

• Each instance object inherits class attributes and gets its
own attribute namespace.

• Assignments to attributes of the first argument (e.g., self.X
= V) in methods create per-instance attributes.

Inheritance rules

• Inheritance happens at attribute qualification time: on
object.attribute, if object is a class or instance.

• Classes inherit attributes from all classes listed in their class
statement header line (superclasses). Listing more than one
means multiple inheritance.

• Instances inherit attributes from the class from which they
are generated, plus all that class’s superclasses.

• Inheritance searches the instance, then its class, then all
accessible superclasses, and uses the first version of an at‐
tribute name found. Superclasses are normally searched
depth-first and then left to right, but new-style classes

Object-Oriented Programming | 109

search across before proceeding up in diamond pattern
trees (only).

See “Formal Inheritance Rules” for more details on inheritance.

Pseudoprivate Attributes
By default, all attribute names in modules and classes are visible
everywhere. Special conventions allow some limited data hiding
but are mostly designed to prevent name collisions (see also
“Name conventions”).

Module privates
Names in modules with a single underscore (e.g., _X), and those
not listed on the module’s __all__ list, are not copied over when
a client uses from module import *. This is not strict privacy,
however, as such names can still be accessed with other import
statement forms.

Class privates
Names anywhere within class statements with two leading un‐
derscores only (e.g., __X) are mangled at compile time to include
the enclosing class name as a prefix (e.g., _Class__X). The added
class-name prefix localizes such names to the enclosing class and
thus makes them distinct in both the self instance object and the
class hierarchy.

This helps to avoid unintended clashes that may arise for same-
named methods, and for attributes in the single instance object
at the bottom of the inheritance chain (for a given attr, all as‐
signments to self.attr anywhere in a framework change the
single instance namespace). This is not strict privacy, however,
as such attributes can still be accessed via the mangled name.

Privacy-like access control can also be implemented with proxy
classes that validate attribute access in __getattr__() and
__setattr__() methods (see “Operator Overloading Methods”).

110 | Python Pocket Reference

New-Style Classes
In Python 3.X, there is a single class model: all classes are con‐
sidered new-style whether they derive from object or not. In
Python 2.X, there are two class models: classic—the default in all
2.X; and new-style—an option in 2.2 and later, coded by deriving
from a built-in type or the built-in object class (e.g., class
A(object)).

New-style classes (including all classes in Python 3.X) differ from
classic classes in the following ways:

• Diamond patterns of multiple inheritances have a slightly
different search order—roughly, they are searched across
before up, and more breadth-first than depth-first, per the
new-style __mro__ (see “Formal Inheritance Rules”).

• Classes are now types, and types are now classes. The
type(I) built-in returns the class an instance is made from,
instead of a generic instance type, and is normally the same
as I.__class__. The type class may be subclassed to cus‐
tomize class creation, and all classes inherit from object,
which provides a small set of method defaults.

• The __getattr__() and __getattribute__() methods are
no longer run for attributes implicitly fetched by built-in
operations. They are not called for __X__ operator -
overloading method names by built-ins; the search for such
names begins at classes, not instances. To intercept and
delegate access to such method names, they generally must
be redefined in wrapper/proxy classes.

• New-style classes have a set of new class tools, including
slots, properties, descriptors, and the __getattribute__()
method. Most of these have tool-building purposes.
See “Operator Overloading Methods” for __slots__,
__getattribute__(), and descriptor __get__(),
__set__(), and __delete__() methods; see “Built-in Func‐
tions” for property().

Object-Oriented Programming | 111

Formal Inheritance Rules
Inheritance occurs on attribute name reference—the
object.name lookup at the heart of object-oriented code—when‐
ever object is derived from a class. It differs in classic and new-
style classes, although typical code often runs the same in both
models.

Classic classes: DFLR
In classic classes (the default in 2.X), for name references, inher‐
itance searches:

1. The instance

2. Then its class

3. Then all its class’s superclasses, depth-first and then left to
right

The first occurrence found along the way is used. This order is
known as DFLR.

This reference search may be kicked off from either an instance
or a class; attribute assignments normally store in the target object
itself without search; and there are special cases for
__getattr__() (run if the lookup failed to find a name) and
__setattr__() (run for all attribute assignments).

New-style classes: MRO
Inheritance in new-style classes (the standard in 3.X and an op‐
tion in 2.X) employ the MRO—a linearized path through a class
tree, and a nested component of inheritance, made available in a
class’s __mro__ attribute. The MRO is roughly computed as
follows:

1. List all the classes that an instance inherits from using the
classic class’s DFLR lookup rule, and include a class mul‐
tiple times if it’s visited more than once.

112 | Python Pocket Reference

2. Scan the resulting list for duplicate classes, removing all but
the last (rightmost) occurrence of duplicates in the list.

The resulting MRO sequence for a given class includes the class,
its superclasses, and all higher superclasses up to and including
the implicit or explicit object root class at the top of the tree. It’s
ordered such that each class appears before its parents, and mul‐
tiple parents retain the order in which they appear in the
__bases__ superclass tuple.

Because common parents in diamonds appear only at the position
of their last visitation in the MRO, lower classes are searched first
when the MRO list is used later by attribute inheritance (making
it more breadth-first than depth-first in diamonds only), and
each class is included and thus visited just once, no matter how
many classes lead to it.

The MRO ordering is used both by inheritance (ahead) and by
the super() call—a built-in function that always invokes a next
class on the MRO (relative to the call point), which might not be
a superclass at all, but can be used to dispatch method calls
throughout a class tree visiting each class just once.

Example: nondiamonds
class D: attr = 3 # D:3 E:2
class B(D): pass # | |
class E: attr = 2 # B C:1
class C(E): attr = 1 # \ /
class A(B, C): pass # A
X = A() # |
print(X.attr) # X

DFLR = [X, A, B, D, C, E]
MRO = [X, A, B, D, C, E, object]
Prints "3" in both 3.X and 2.X (always)

Object-Oriented Programming | 113

Example: diamonds
class D: attr = 3 # D:3 D:3
class B(D): pass # | |
class C(D): attr = 1 # B C:1
class A(B, C): pass # \ /
X = A() # A
print(X.attr) # |
 # X
DFLR = [X, A, B, D, C, D]
MRO = [X, A, B, C, D, object] (keeps last D only)
Prints "1" in 3.X, "3" in 2.X ("1" if D(object))

New-style inheritance algorithm
Depending on class code, new-style inheritance may involve de‐
scriptors, metaclasses, and MROs as follows (name sources in
this procedure are attempted in order, either as numbered or per
their left-to-right order in “or” conjunctions).

To look up an attribute name:

1. From an instance I, search the instance, its class, and its
superclasses, as follows:

a. Search the __dict__ of all classes on the __mro__ found
at I’s __class__.

b. If a data descriptor was found in step a, call its
__get__() and exit.

c. Else, return a value in the __dict__ of the instance I.

d. Else, call a nondata descriptor or return a value found
in step a.

2. From a class C, search the class, its superclasses, and its
metaclasses tree, as follows:

a. Search the __dict__ of all metaclasses on the __mro__
found at C’s __class__.

114 | Python Pocket Reference

b. If a data descriptor was found in step a, call its
__get__() and exit.

c. Else, call a descriptor or return a value in the __dict__
of a class on C’s own __mro__.

d. Else, call a nondata descriptor or return a value found
in step a.

3. In both rule 1 and 2, built-in operations (e.g., expressions)
essentially use just step a sources for their implicit lookup
of method names, and super() lookup is customized.

In addition, method __getattr__() may be run if defined when
an attribute is not found; method __getattribute__() may be
run for every attribute fetch; and the implied object superclass
provides some defaults at the top of every class and metaclass tree
(that is, at the end of every MRO).

As special cases, built-in operations skip name sources as de‐
scribed in rule 3, and the super() built-in function precludes
normal inheritance. For objects returned by super(), attributes
are resolved by a special context-sensitive scan of a limited por‐
tion of a class’s MRO only, choosing the first descriptor or value
found along the way, instead of running full inheritance (which
is used on the super object itself only if this scan fails); see super()
in “Built-in Functions”.

To assign an attribute name:

A subset of the lookup procedure is run for attribute assignments:

• When applied to an instance, such assignments essentially
follow steps a through c of rule 1, searching the instance’s
class tree, although step b calls __set__() instead of
__get__(), and step c stops and stores in the instance in‐
stead of attempting a fetch.

• When applied to a class, such assignments run the same
procedure on the class’s metaclass tree: roughly the same
as rule 2, but step c stops and stores in the class.

Object-Oriented Programming | 115

The __setattr__() method still catches all attribute assignments
as before, although it becomes less useful for this method to use
the instance __dict__ to assign names, as some new-style exten‐
sions such as slots, properties, and descriptors implement at‐
tributes at the class level—a sort of “virtual” instance data mech‐
anism. Some instances might not have a __dict__ at all when slots
are used (an optimization).

New-style precedence and context
New-style inheritance procedures effectively impose precedence
rules on the foundational operation of name resolution, which
may be thought of as follows (with corresponding steps of the
inheritance algorithm in parentheses):

For instances, try:

1. Class-tree data descriptors (1b)

2. Instance-object values (1c)

3. Class-tree nondata descriptors (1d)

4. Class-tree values (1d)

For classes, try:

1. Metaclass-tree data descriptors (2b)

2. Class-tree descriptors (2c)

3. Class-tree values (2c)

4. Metaclass-tree nondata descriptors (2d)

5. Metaclass-tree values (2d)

Python runs at most one (for instances) or two (for classes) tree
searches per name lookup, despite the presence of four or five
name sources. See also the preceding section’s description of the
special case lookup procedure run for objects returned by the
new-style super() built-in function.

116 | Python Pocket Reference

See also “Methods for Descriptors” and “Metaclasses” for their
subjects; “Operator Overloading Methods” for usage details of
__setattr__(), __getattr__(), and __getattribute__(); and
Python’s object.c and typeobject.c source code files, which host the
implementations of instances and classes, respectively (in
Python’s source code distribution).

Operator Overloading Methods
Classes may intercept and implement built-in operations by pro‐
viding specially named method functions, all of which start and
end with two underscores. These names are not reserved and can
be inherited from superclasses as usual. Python locates and au‐
tomatically calls at most one per operation.

Python calls a class’s overloading methods when instances appear
in expressions and other contexts. For example, if a class defines
a method named __getitem__, and X is an instance of this
class, the expression X[i] is equivalent to the method call
X.__getitem__(i) (although, at present, using the method call
form directly generally offers no speed advantage, and may even
incur a penalty).

Overloading method names are somewhat arbitrary: a class’s
__add__ method need not perform an addition or concatenation
(although it normally should serve a similar role). Moreover,
classes generally can mix numeric and collection methods and
mutable and immutable operations. Most operator overloading
names have no defaults (except those in object for new-style
classes), and running an operation raises an exception if its cor‐
responding method is not defined (e.g., + without __add__).

The following subsections enumerate available operation meth‐
ods. In this section, trailing parentheses are normally omitted
from __X__ method names for brevity, as their context is implied.
This section focuses on Python 3.X but gives operator overload‐
ing details common to most Python versions. See “Python 2.X
Operator Overloading Methods” at the end of this section for
items unique to Python lines.

Operator Overloading Methods | 117

Methods for All Types
__new__(cls [, arg]*)

Called to create and return a new instance of class cls. Re‐
ceives constructor arguments arg passed to the class cls. If
this returns an instance of the cls class, the instance’s
__init__ method is then invoked with the new self
instance, plus the same constructor arguments; else
__init__ is not run. Typically coded to call a superclass’s
__new__ via explicit superclass name or super() (see “Built-
in Functions”), and manage and return the resulting in‐
stance. This is an automatically static method.

Not used in normal classes; intended to allow subclasses of
immutable types to customize instance creation, and to al‐
low custom metaclasses to tailor class creation. See also
type() in “Built-in Functions” for the latter use case that
invokes this method with class-creation arguments.

__init__(self [, arg]*)
Invoked on class(args...). This is the constructor method
that initializes the new instance, self. When run for calls to
a class name, self is provided automatically; arg is the ar‐
guments passed to the class name, and may be any function-
definition argument form (see “The Expression State‐
ment” and “The def Statement”, including Table 14).

Although technically called after __new__, __init__ is the
preferred way to configure new objects in all application-
level classes. Must return no value, and if needed must call
a superclass’s __init__ manually passing along the instance
to self, via explicit superclass name or super() (see “Built-
in Functions”). Python calls just one __init__ automatically.

__del__(self)

Invoked on instance garbage collection. This is the destruc‐
tor method that cleans up when an instance self is freed
(reclaimed). Embedded objects are automatically freed
when their container is (unless referenced from elsewhere).
Exceptions during this method’s run are ignored and simply

118 | Python Pocket Reference

print messages to sys.stderr. Hint: the try/finally state‐
ment allows more predictable termination actions for a code
block; the with statement provides similar utility for sup‐
ported object types.

__repr__(self)

Invoked on repr(self), interactive echoes, and nested ap‐
pearances (as well as `self` in Python 2.X only). Also in‐
voked on str(self) and print(self) if there is no
__str__. This method generally returns a low-level “as code”
string representation of self.

__str__(self)

Invoked on str(self) and print(self) (or uses __repr__
as a backup if defined). This method generally returns a
high-level “user friendly” string representation of self.

__format__(self, formatspec)
Called by the format() built-in function—and by extension,
the str.format() method of str strings—to produce a “for‐
matted” string representation of the self object, per the
formatspec string whose syntax for built-in types is as given
for the same-named component in str.format(). See “For‐
matting method syntax”, “String formatting method” and
“Built-in Functions”. New as of Python 2.6 and 3.0.

__bytes__(self)

Called by bytes() to return a bytes string representation of
self, in Python 3.X only.

__hash__(self)

Invoked on dictionary[self] and hash(self), and other
hashed collection operations, including those of the set ob‐
ject type. This method returns a unique and unchanging
integer hash key, and interacts subtly with __eq__, both of
which have defaults that ensure that all objects compare un‐
equal except with themselves; see Python’s manuals for more
details.

Operator Overloading Methods | 119

__bool__(self)

Called for truth value testing and the built-in bool() func‐
tion; returns False or True. When __bool__ is not defined,
__len__() is called if it is defined and designates a true value
with a nonzero length. If a class defines neither __len__ nor
__bool__, all its instances are considered true. New in
Python 3.X; in Python 2.X, this method is named __non
zero__ instead of __bool__, but works the same way.

__call__(self [, arg]*)
Invoked on self(args...), when an instance is called like a
function. arg may take any function-definition argument
form. For example, the following two definitions:

 def __call__(self, a, b, c, d=5):
 def __call__(self, *pargs, **kargs):

both match the following two calls:

 self(1, 2, 3, 4)
 self(1, *(2,), c=3, **dict(d=4))

See “The def Statement”, including Table 14, for more on
arg options.

__getattr__(self, name)
Invoked on self.name, when name is an undefined attribute
access (this method is not called if name exists in or is inher‐
ited by self). name is a string. This method returns an object
or raises AttributeError.

Available in both classic and new-style classes. In both
Python 3.X and new-style classes in 2.X, this is not run for
__X__ attributes implicitly fetched by built-in operations
(e.g., expressions); redefine such names in wrapper/proxy
classes or superclasses. See also __dir__ in this list.

__setattr__(self, name, value)
Invoked on self.name=value (all attribute assignments).
Hint: assign through __dict__ key or a superclass (e.g.,
object) to avoid recursive loops; a self.attr=x statement

120 | Python Pocket Reference

within a __setattr__ calls __setattr__ again, but a
self.__dict__['attr']=x does not.

Recursion may also be avoided by calling a new-style class’s
object superclass version explicitly: object.__setattr__
(self, attr, value). This may be preferred or required in
class trees that implement “virtual” instance attributes at the
class level such as slots, properties, or descriptors (e.g., slots
may preclude an instance __dict__).

__delattr__(self, name)
Invoked on del self.name (all attribute deletions). Hint: this
must avoid recursive loops by routing attribute deletions
through __dict__ or a superclass, much like __setattr__.

__getattribute__(self, name)
Called unconditionally to implement attribute accesses for
instances of the class. If the class also defines __getattr__,
it will never be called (unless it is called explicitly). This
method should return the (computed) attribute value or
raise an AttributeError exception. To avoid infinite recur‐
sion in this method, its implementation should always call
the superclass method with the same name to access any
attributes it needs (e.g., object.__getattribute__(self,
name).

Available in Python 3.X, and in 2.X for new-style classes only.
In both, this is not run for __X__ attributes implicitly fetched
by built-in operations (e.g., expressions); redefine such
names in wrapper/proxy classes. See also __dir__ in this list.

__lt__(self, other)
__le__(self, other)
__eq__(self, other)
__ne__(self, other)
__gt__(self, other)
__ge__(self, other)

Respectively, used on self < other, self <= other, self ==
other, self != other, self > other, and self >= other. Added
in version 2.1, these are known as rich comparison methods

Operator Overloading Methods | 121

and are called for all comparison expressions in Python 3.X.
For example, X < Y calls X.__lt__(Y) if defined. In Python
2.X only, these methods are called in preference to __cmp__,
and __ne__ is also run for 2.X’s self <> other.

These methods can return any value, but if the comparison
operator is used in a Boolean context, the return value is
interpreted as a Boolean result for the operator. These
methods can also return (not raise) the special object
NotImplemented if their operation is not supported for the
operands (which works as though the method were not de‐
fined at all, and which forces Python 2.X to revert to the
general __cmp__ method if defined).

There are no implied relationships among comparison
operators. For example, X == Y being true does not imply that
X != Y is false: __ne__ should be defined along with __eq__ if
the operators are expected to behave symmetrically. There
are also no right-side (swapped-argument) versions of these
methods to be used when the left argument does not support
the operation but the right argument does. __lt__ and
__gt__ are each other’s reflection, __le__ and __ge__ are
each other’s reflection, and __eq__ and __ne__ are their own
reflections. Use __lt__ for sorting in Python 3.X, and see
__hash__ in Python manuals for the role of __eq__ in
hashing.

__slots__

This class attribute can be assigned a string, sequence, or
other iterable of strings giving the names of attributes of
instances of the class. If defined in a new-style class (includ‐
ing all classes in Python 3.X), __slots__ generates a
class-level management descriptor (see “Methods for De‐
scriptors”); reserves space for the declared attributes in in‐
stances; and prevents the automatic creation of __dict__ for
each instance (unless string '__dict__' is included in
__slots__, in which case instances also have a __dict__ and
attributes not named in __slots__ may be added dynami‐
cally).

122 | Python Pocket Reference

Because they may suppress a __dict__ per instance, slots can
optimize space usage. However, they are generally discour‐
aged unless clearly warranted in pathological cases, due both
to their potential to break some types of code, and their
complex usage constraints (see Python manuals for details).

To support classes with __slots__, tools that generically list
attributes or access them by string name must generally use
storage-neutral tools such as the getattr(), setattr(), and
dir(), which apply to both __dict__ and __slots__ attribute
storage.

__instancecheck__(self, instance)
Return true for isinstance() if instance is considered a di‐
rect or indirect instance of class. New in Python 3.X and 2.6;
see Python manuals for usage.

__subclasscheck__(self, subclass)
Return true for issubclass() if subclass should be consid‐
ered a direct or indirect subclass of class. New in Python 3.X
and 2.6; see Python manuals for usage.

__dir__(self)

Called on dir(self) (see “Built-in Functions”). Returns a
sequence of attribute names. Allows some classes to make
their attributes known to introspection using dir(), when
those attributes are computed dynamically with tools like
__getattr__ but are known to the class itself. Dynamic use
cases may not qualify directly, but some general proxies may
be able to delegate this call to proxied objects to support
attribute tools. New in Python 3.X; also backported for use
in Python 2.6 and 2.7.

Methods for Collections (Sequences, Mappings)
__len__(self)

Invoked on len(self) and possibly for truth-value tests.
This method returns a collection’s size. For Boolean tests,
Python looks for __bool__ first, then __len__, and then

Operator Overloading Methods | 123

considers the object true (__bool__ is named __nonzero__
in Python 2.X). Zero length means false.

__contains__(self, item)
Invoked on item in self for custom membership tests
(otherwise, membership uses __iter__, if defined, or else
__getitem__). This method returns a true or false result.

__iter__(self)

Invoked on iter(self). Added in version 2.2, this method
is part of the iteration protocol. It returns an object with a
__next__ method (possibly self). The result object’s
__next__() method is then called repeatedly in all iteration
contexts (e.g., for loops), and should return the next result
or raise StopIteration to terminate the results progression.

If no __iter__ is defined, iteration falls back on __get
item__. A class __iter__ method may also be coded with an
embedded yield to return a generator with an automatically
created __next__. In Python 2.X, __next__ is named next.
See also “The for Statement”, and “The iteration protocol”.

__next__(self)

Invoked by the next(self) built-in function, and by all iter‐
ation contexts to advance through results. This method is
part of the iteration protocol; see __iter__ in this list for
more usage details. New in Python 3.X; in Python 2.X, this
method is named next, but works the same way.

__getitem__(self, key)
Invoked on self[key], self[i:j:k], x in self, and possibly
all iteration contexts. This method implements all indexing-
related operations, including those for sequences and map‐
pings. Iteration contexts (e.g., in and for) repeatedly index
from 0 until IndexError, unless the preferred __iter__ is
defined. __getitem__ and __len__ constitute sequence
protocol.

124 | Python Pocket Reference

In Python 3.X, this and the following two methods are also
called for slice operations, in which case key is a slice object.
Slice objects may be propagated to another slice expression,
and have attributes start, stop, and step, any of which can
be None (for absent). See also slice() in “Built-in Func‐
tions”.

__setitem__(self, key, value)
Invoked on self[key]=value, self[i:j:k]=value. This
method is called for assignment to a collection key or index,
or to a sequence’s slice.

__delitem__(self, key)
Invoked on del self[key], del self[i:j:k]. This method
called is for index/key and sequence slice deletion.

__reversed__(self)

Called if defined by the reversed() built-in function to im‐
plement custom reverse iteration. Returns a new iterable
object that iterates over all the objects in the container in
reverse order. If no __reversed__ is defined, reversed()
expects and uses sequence protocol (methods __len__ and
__getitem__).

Methods for Numbers (Binary Operators)
Numeric (and comparison) methods that do not support their
operation for the supplied arguments should return (not raise)
the special built-in NotImplemented object, which works as
though the method were not defined at all. Operations not sup‐
ported for any operand types should be left undefined.

See Table 1 for example roles of operators in built-in types, al‐
though operator meaning is defined by overloading classes. For
example, __add__ is invoked on + for both numeric addition and
sequence concatenation, but may have arbitrary semantics in new
classes.

Operator Overloading Methods | 125

Basic binary methods
__add__(self, other)

Invoked on self + other.

__sub__(self, other)
Invoked on self − other.

__mul__(self, other)
Invoked on self * other.

__truediv__(self, other)
Invoked on self / other in Python 3.X. In Python 2.X, /
instead invokes __div__ unless true division is enabled (see
“Operator Usage Notes”).

__floordiv__(self, other)
Invoked on self // other.

__mod__(self, other)
Invoked on self % other.

__divmod__(self, other)
Invoked on divmod(self, other).

__pow__(self, other [, modulo])
Invoked on pow(self, other [, modulo]) and self ** other.

__lshift__(self, other)
Invoked on self << other.

__rshift__(self, other)
Invoked on self >> other.

__and__(self, other)
Invoked on self & other.

__xor__(self, other)
Invoked on self ^ other.

__or__(self, other)
Invoked on self | other.

126 | Python Pocket Reference

Right-side binary methods
__radd__(self, other)
__rsub__(self, other)
__rmul__(self, other)
__rtruediv__(self, other)
__rfloordiv__(self, other)
__rmod__(self, other)
__rdivmod__(self, other)
__rpow__(self, other)
__rlshift__(self, other)
__rrshift__(self, other)
__rand__(self, other)
__rxor__(self, other)
__ror__(self, other)

These are right-side counterparts to the binary operators of
the preceding section. Binary operator methods have a
right-side variant that starts with an r prefix (e.g., __add__
and __radd__). Right-side variants have the same argument
lists, but self is on the right side of the operator. For in‐
stance, self + other calls self.__add__(other), but other +
self invokes self.__radd__(other).

The r right-side method is called only when the instance is
on the right and the left operand is not an instance of a class
that implements the operation:

• instance + noninstance runs __add__

• instance + instance runs __add__

• noninstance + instance runs __radd__

If two different class instances that overload the operation
appear, the class on the left is preferred. __radd__ often con‐
verts or swaps order and re-adds to trigger __add__.

Operator Overloading Methods | 127

Augmented binary methods
__iadd__(self, other)
__isub__(self, other)
__imul__(self, other)
__itruediv__(self, other)
__ifloordiv__(self, other)
__imod__(self, other)
__ipow__(self, other[, modulo])
__ilshift__(self, other)
__irshift__(self, other)
__iand__(self, other)
__ixor__(self, other)
__ior__(self, other)

These are augmented assignment (in-place) methods. Re‐
spectively, they are called for the following assignment state‐
ment formats: +=, -=, *=, /=, //=, %=, **=, <<=, >>=, &=, ̂ =, and
|=. These methods should attempt to do the operation in-
place (modifying self) and return the result (which can be
self). If a method is not defined, the augmented operation
falls back on the normal methods. To evaluate X += Y, where
X is an instance of a class that has an __iadd__, X.__iadd__(Y)
is called. Otherwise, __add__ and __radd__ are considered.

Methods for Numbers (Other Operations)
__neg__(self)

Invoked on −self.

__pos__(self)

Invoked on +self.

__abs__(self)

Invoked on abs(self).

__invert__(self)

Invoked on ˜self.

128 | Python Pocket Reference

__complex__(self)

Invoked on complex(self).

__int__(self)

Invoked on int(self).

__float__(self)

Invoked on float(self).

__round__(self [, n])
Invoked on round(self [, n]). New in Python 3.X.

__index__(self)

Called to implement operator.index(). Also called in other
contexts where Python requires an integer object. This in‐
cludes instance appearances as indexes, as slice bounds, and
as arguments to the built-in bin(), hex(), and oct() func‐
tions. Must return an integer.

Similar in Python 3.X and 2.X, but not called for hex() and
oct() in 2.X (these require __hex__ and __oct__ methods in
2.X). In Python 3.X, __index__ subsumes and replaces the
__oct__ and __hex__ methods of Python 2.X, and the re‐
turned integer is formatted automatically.

Methods for Descriptors
The following methods apply only when an instance of a class
defining them (a descriptor class) is assigned to a class attribute
of another class (known as the owner class). These methods in
the descriptor are then automatically invoked for access to the
attribute in the owner class and its instances:
__get__(self, instance, owner)

Called to get the attribute of the owner class or of an instance
of that class. owner is always the owner class; instance is the
instance the attribute was accessed through, or None when
the attribute is accessed through the owner class directly;
self is the instance of the descriptor class. Return the at‐
tribute value or raise AttributeError. Both self and
instance may have state information.

Operator Overloading Methods | 129

__set__(self, instance, value)
Called to set the attribute on an instance of the owner class
to a new value.

__delete__(self, instance)
Called to delete the attribute on an instance of the owner
class.

Descriptors and their methods are available for new-style classes,
including all classes in 3.X. They are fully operational in 2.X only
if both the descriptor and owner classes are new-style. A descrip‐
tor with a __set__ is known as data descriptor, and is given
precedence over other names in inheritance (see “Formal Inher‐
itance Rules”).

N O T E

The class “descriptors” here are distinct from “file descrip‐
tors” (see “Files” and “File Descriptor Tools” for the latter).

Methods for Context Managers
The following methods implement the context manager proto‐
col, used by the with statement (see also “The with Statement”
for the mechanism that uses these methods):
__enter__(self)

Enter the runtime context related to this object. The with
statement assigns this method’s return value to the target
specified in the as clause of the statement (if any).

__exit__(self, type, value, traceback)
Exit the runtime context related to this object. The param‐
eters after self describe the exception that caused the con‐
text to be exited. If the context exited without an exception,
all three arguments are None. Otherwise, arguments are the
same as sys.exc_info() results (see “The sys Module”).

130 | Python Pocket Reference

Return a true value to prevent a raised exception from being
propagated by the caller.

Python 2.X Operator Overloading Methods
The preceding section notes semantic differences between oper‐
ator overloading methods that are available in both Python 3.X
and 2.X. This section notes content differences in the two lines.

Some of the methods described in the previous section work in
2.X for new-style classes only, which are an optional extension in
the 2.X line. This includes __getattribute__, __slots__, and de‐
scriptor methods. Other methods may behave differently in 2.X
for new-style classes (e.g., __getattr__ for built-ins), and some
methods are available in later 2.X releases only (e.g., __dir__,
__instancecheck__, __subclasscheck__). The following gives
methods unique to each line.

Methods in Python 3.X only
The following methods are supported in Python 3.X but not
Python 2.X:

• __round__

• __bytes__

• __bool__ (use method name __nonzero__ in Python 2.X, or
__len__)

• __next__ (use method name next in Python 2.X)

• __truediv__ (available in Python 2.X only if true division
is enabled: see “Operator Usage Notes”)

• __index__ for oct(), hex() usage (use __oct__, __hex__ in
Python 2.X)

Operator Overloading Methods | 131

Methods in Python 2.X only
The following methods are supported in Python 2.X but not
Python 3.X:
__cmp__(self, other) (and __rcmp__)

Invoked on self > other, other == self, cmp(self, other),
etc. This method is called for all comparisons for which no
more specific method (such as __lt__) is defined or inher‐
ited. It returns −1, 0, or 1 for self less than, equal to, or greater
than other. If no rich comparison or __cmp__ methods are
defined, class instances compare by their identity (address
in memory). The __rcmp__ right-side method is no longer
supported as of version 2.1.

In Python 3.X, use the more specific comparison methods
described earlier: __lt__, __ge__, __eq__, etc. Use __lt__ for
sorting in Python 3.X.

__nonzero__(self)

Invoked on truth-value (otherwise, uses __len__ if defined).

In Python 3.X, this method is renamed __bool__.

__getslice__(self, low, high)
Invoked on self[low:high] for sequence slicing. If no
__getslice__ is found, and for extended three-item slices,
a slice object is created and passed to the __getitem__ meth‐
od instead.

In Python 2.X, this and the next two methods are considered
deprecated but are still supported—they are called for slice
expressions if defined, in preference to their item-based
counterparts. In Python 3.X, these three methods are
removed entirely—slices always invoke __getitem__,
__setitem__, or __delitem__ instead, with a slice object as
its argument. See slice() in “Built-in Functions”.

__setslice__(self, low, high, value)
Invoked on self[low:high]=value for sequence slice as‐
signment. See also __getitem__ deprecation note earlier.

132 | Python Pocket Reference

__delslice__(self, low, high)
Invoked on del self[low:high] for sequence slice deletion.
See also __getitem__ deprecation note earlier.

__div__(self, other) (plus __rdiv__, __idiv__)
Invoked on self / other, unless true division is enabled (in
which case __truediv__ is run instead). In Python 3.X, these
are always subsumed by __truediv__, __rtruediv__, and
__itruediv__ because / is always true division. See also
“Operator Usage Notes”. Hint: assign __truediv__ =

__div__ to support both models in one method.

__long__(self)

Invoked on long(self). In Python 3.X, the int type sub‐
sumes the long type completely, so this method is removed.

__oct__(self)

Invoked on oct(self). This method returns an octal string
representation. In Python 3.X, return an integer for
__index__() instead.

__hex__(self)

Invoked on hex(self). This method returns a hex string
representation. In Python 3.X, return an integer for
__index__() instead.

__coerce__(self, other)
Invoked on the mixed-mode arithmetic expression,
coerce(). This method returns a tuple of (self, other)
converted to a common type. If __coerce__ is defined, it is
generally called before any real operator methods are tried
(e.g., before __add__). It should return a tuple containing
operands converted to a common type (or None if it can’t
convert). See the Python Language Reference for more on
coercion rules.

__unicode__(self)

Called by 2.X on unicode(self) to return a Unicode string
for self (see “Python 2.X Built-in Functions”). This is the
Unicode equivalent of __str__.

Operator Overloading Methods | 133

__metaclass__

Class attribute assigned to the class’s metaclass. In Python
3.X, use instead metaclass=M keyword argument syntax in
the class header line (see “Metaclasses”).

Built-in Functions
All built-in names (functions, exceptions, and so on) exist in
the implied outer built-in scope, which corresponds to the
builtins module (named __builtin__ in Python 2.X). Because
this scope is always searched last on name lookups, these func‐
tions are always available in programs without imports. However,
their names are not reserved words and might be hidden (shad‐
owed) by assignments to the same name in global or local scopes.
Run help(function) for extra details on any call here.

This section focuses on Python 3.X but gives built-in function
details common to most Python versions. See “Python 2.X Built-
in Functions” at the end of this section for items unique to Python
lines:
abs(N)

Returns the absolute value of a number N.

all(iterable)

Returns True only if all elements of the iterable are true.

any(iterable)

Returns True only if any element of the iterable is true.
Hint: filter(bool, I) and [x for x in I if x] both collect
all true values in an iterable I.

ascii(object)

Like repr(), returns a string containing a printable repre‐
sentation of an object, but escapes the non-ASCII characters
in the repr() result string using \x, \u, or \U escapes. This
result is similar to that returned by repr() in Python 2.X.

134 | Python Pocket Reference

bin(N)

Converts an integer number to a binary (base 2) digits string.
The result is a valid Python expression. If argument N is not
a Python int object, it must define an __index__() method
that returns an integer. Hint: see also int(string, 2) to
convert from binary, 0bNNN binary literals in code, and the b
type code in str.format().

bool([X])

Returns the Boolean value of object X, using the standard
truth testing procedure. If X is false or omitted, this returns
False; otherwise, it returns True. bool is also a class, which
is a subclass of int. The class bool cannot be subclassed fur‐
ther. Its only instances are False and True.

bytearray([arg [, encoding [, errors]]])
Returns a new array of bytes. The bytearray type is a mu‐
table sequence of small integers in the range 0...255, which
prints as ASCII text when possible. It is essentially a mutable
variant of bytes, which supports most operations of mutable
sequences, as well as most methods of the str string type.
arg may be a str string with encoding name (and optionally
errors) as in str() (described later in this list); an integer
size to initialize an array of NULL (zero value) bytes; an
iterable of small integers used to initialize the array such as
a bytes string or another bytearray; an object conforming
to the memory-view (previously known as buffer) interface
used to initialize the array; or absent, to create a zero-length
array. See also “byte and bytearray strings”.

bytes([arg [, encoding [, errors]]])
Returns a new bytes object, which is an immutable sequence
of integers in the range 0...255. bytes is an immutable version
of bytearray. It has the same nonmutating string methods
and sequence operations. It is commonly used to represent
8-bit byte strings of binary data (e.g., media, encoded Uni‐
code text). Constructor arguments are interpreted as for
bytearray(). bytes objects may also be created with the

Built-in Functions | 135

b'ccc' literal in Python 3.X (in 2.X, this makes a normal
str). See also “byte and bytearray strings”.

callable(object)

Returns True if object is callable; otherwise, returns False.
This call is present in 2.X. In 3.X, it was removed in Python
3.0 and 3.1, but restored as of 3.2; in earlier 3.X, use
hasattr(object, '__call__') instead.

chr(I)

Returns a one-character string whose Unicode code point is
integer I. This is the inverse of ord() (e.g., chr(97) is 'a' and
ord('a') is 97).

classmethod(function)

Returns a class method for a function. A class method re‐
ceives the most specific (lowest) class of the subject instance
as an implicit first argument, just like an instance method
receives the instance. Useful for managing per-class data.
Use the @classmethod function decorator form in version
2.4 and later (see “The def Statement”).

compile(string, filename, kind [, flags[, dont_inherit]])
Compiles string into a code object. string is a Python string
containing Python program code. filename is a string used
in error messages (and is usually the name of the file from
which the code was read, or '<string>' if typed interactive‐
ly). kind can be 'exec' if string contains statements; 'eval'
if string is an expression; or 'single', which prints the
output of an expression statement that evaluates to some‐
thing other than None. The resulting code object can be ex‐
ecuted with exec() or eval() built-in function calls. The
optional last two arguments control which future statements
affect the string’s compilation; if absent, the string is com‐
piled with the future statements in effect at the place of the
compile() call (see Python manuals for more details).

136 | Python Pocket Reference

complex([real [, imag]])
Builds a complex number object (this can also be coded us‐
ing the J or j suffix: real+imagJ). imag defaults to 0. If both
arguments are omitted, returns 0j.

delattr(object, name)
Deletes the attribute named name (a string) from object.
Similar to del object.name, but name is a string, not a variable
taken literally (e.g., delattr(a, 'b') is like del a.b).

dict([mapping | iterable | keywords])
Returns a new dictionary initialized from a mapping; a se‐
quence or other iterable of key/value pairs; or a set of key‐
word arguments. If no argument is given, it returns an empty
dictionary. This is a subclassable type class name.

dir([object])

If no argument is passed, this returns the list of names in the
current local scope (namespace). When any object with at‐
tributes is passed as an argument, it returns the list of
attribute names associated with that object. Works on mod‐
ules, classes, and class instances, as well as built-in objects
with attributes (lists, dictionaries, etc.). Its result includes
inherited attributes, and is sorted; use __dict__ attributes
for attribute lists of a single object only. This call runs a cus‐
tom object.__dir__() if defined, which may provide names
of computed attributes in dynamic or proxy classes.

divmod(X, Y)
Returns a tuple of (X // Y, X % Y).

enumerate(iterable, start=0)
Returns an iterable enumerate object. iterable must be a
sequence or other iterable object that supports the iteration
protocol. The __next__() method of the iterator returned
by enumerate() returns a tuple containing a count (from
start, or zero by default) and the corresponding value ob‐
tained from iterating over iterable. Useful for obtaining an
indexed series of both positions and items, in iterations such
as for loops (e.g., (0, x[0]), (1, x[1]), (2, x[2]), …).

Built-in Functions | 137

Available in version 2.3 and later. See also “The enum Mod‐
ule” for fixed enumerations in Python 3.4.

eval(expr [, globals [, locals]])
Evaluates expr, which is assumed to be either a Python string
containing a Python expression or a compiled code object.
expr is evaluated in the namespace scopes of the eval call
itself, unless the globals and/or locals namespace dictio‐
nary arguments are passed. locals defaults to globals if only
globals is passed. This call returns the expr result. Also see
the compile() function earlier in this section to precompile,
and the exec() built-in, later in this section, to run statement
strings. Hint: do not use this to evaluate untrustworthy code
strings, as they run as program code.

exec(stmts [, globals [, locals]])
Evaluates stmts, which is assumed to be either a Python
string containing Python statements or a compiled code ob‐
ject. If stmts is a string, the string is parsed as a suite of
Python statements, which is then executed unless a syntax
error occurs. If it is a code object, it is simply executed.
globals and locals work the same as in eval(), and
compile() may be used to precompile to code objects. This
is available as a statement form in Python 2.X (see “Python
2.X Statements”), and has morphed between statement and
function forms more than once in Python’s history. Hint: do
not use this to evaluate untrustworthy code strings, as they
run as program code.

filter(function, iterable)
Returns those elements of iterable for which function
returns a true value. function takes one parameter. If
function is None, this returns all the true items in iterable
—which is the same as passing the built-in bool to function.

In Python 2.X, this call returns a list. In Python 3.X, it returns
an iterable object that generates values on demand and can
be traversed only once (wrap in a list() call to force results
generation if required).

138 | Python Pocket Reference

float([X])

Converts a number or a string X to a floating-point number
(or 0.0 if no argument is passed). See also “Numbers” for
example uses. This is a subclassable type class name.

format(value [, formatspec])
Converts an object value to a formatted representation, as
controlled by string formatspec. The interpretation of
formatspec depends on the type of the value argument; a
standard formatting syntax is used by most built-in types,
described for the string formatting method earlier in this
book (see formatspec in “Formatting method syntax”).
format(value, formatspec) calls value.__format__

(formatspec), and is a base operation of the str.format()
method (e.g., format(1.3333, '.2f') is equivalent to
'{0:.2f}'.format(1.3333)).

frozenset([iterable])

Returns a frozen set object whose elements are taken from
iterable. Frozen sets are immutable sets that have no up‐
date methods, and may be nested in other sets.

getattr(object, name [, default])
Returns the value of attribute name (a string) from object.
Similar to object.name, but name evaluates to a string, and is
not a variable name taken literally (e.g., getattr(a, 'b') is
like a.b). If the named attribute does not exist, default is
returned if provided; otherwise, AttributeError is raised.

globals()

Returns a dictionary containing the caller’s global variables
(e.g., the enclosing module’s names).

hasattr(object, name)
Returns True if object has an attribute called name (a string);
False otherwise.

Built-in Functions | 139

hash(object)

Returns the hash value of object (if it has one). Hash values
are integers used to quickly compare dictionary keys during
a dictionary lookup. Invokes object.__hash__().

help([object])

Invokes the built-in help system. This function is intended
for interactive use. If no argument is given, an interactive
help session starts in the interpreter console. If the argument
is a string, it is looked up as the name of a module, function,
class, method, keyword, or documentation topic, and its
help text is displayed. If the argument is any other kind of
object, help for that object is generated (e.g.,
help(list.pop))

hex(N)

Converts an integer number N to a hexadecimal (base 16)
digits string. If argument N is not a Python int object, in
Python 3.X it must define an __index__() method that re‐
turns an integer (in 2.X, __hex__() is called instead).

id(object)

Returns the identity integer of object, which is unique for
the calling process among all existing objects (i.e., its address
in memory).

__import__(name, […other args…])

Imports and returns a module, given its name as a string at
runtime (e.g., mod = __import__('mymod')). This call is gen‐
erally faster than constructing and executing an import
statement string with exec(). This function is called by
import and from statements internally and can be overridden
to customize import operations. All arguments but the first
have advanced roles; see the Python Library Reference. See
also the standard library’s imp module and importlib
.import_module() call, as well as “The import Statement”.

input([prompt])

Prints a prompt string if given, and then reads a line from the
stdin input stream (sys.stdin) and returns it as a string. It

140 | Python Pocket Reference

strips the trailing \n at the end of the line and raises EOFError
at the end of the stdin stream. On platforms where GNU
readline is supported, input() uses it. In Python 2.X, this
function is named raw_input().

int([number | string [, base]])
Converts a number or string to a plain integer. Conversion
of floating-point numbers to integers truncates toward 0.
base can be passed only if the first argument is a string, and
defaults to 10. If base is passed as 0, the base is determined
by the string’s contents (as a code literal); otherwise, the val‐
ue passed for base is used for the base of the conversion of
the string. base may be 0, and 2...36. The string may be pre‐
ceded by a sign and surrounded by ignored whitespace. If
no arguments, returns 0. See also “Numbers” for example
uses. This is a subclassable type class name.

isinstance(object, classinfo)
Returns True if object is an instance of classinfo, or an
instance of any subclass thereof. classinfo can also be a tu‐
ple of classes and/or types. In Python 3.X, types are classes,
so there is no special case for types. In Python 2.X, the second
argument can also be a type object, making this function
useful in both Pythons as an alternative type-testing tool
(isinstance(X, Type) versus type(X) is Type).

issubclass(class1, class2)
Returns True if class1 is derived from class2. class2 can
also be a tuple of classes.

iter(object [, sentinel])
Returns an iterator object that can be used to step through
items in iterable object. Iterator objects returned have a
__next__() method that returns the next item or raises
StopIteration to end the progression. All iteration contexts
in Python use this protocol to advance, if supported by
object. The next(I) built-in function also calls
I.__next__() automatically. If one argument, object is as‐
sumed to provide its own iterator or be a sequence; if two
arguments, object is a callable that is called until it returns

Built-in Functions | 141

sentinel. The iter() call can be overloaded in classes with
__iter__().

In Python 2.X, iterator objects have a method named next()
instead of __next__(). For forward and backward compat‐
ibility, the next() built-in function is also available in 2.X
(as of 2.6) and calls I.next() instead of I.__next__(). Prior
to 2.6, I.next() may be called explicitly instead. See also
next() in this list, and “The iteration protocol”.

len(object)

Returns the number of items (length) in a collection
object, which may be a sequence, mapping, set, or other
(e.g., a user-defined collection).

list([iterable])

Returns a new list containing all the items in any iterable
object. If iterable is already a list, it returns a (shallow) copy
of it. If no arguments, returns a new empty list. This is a
subclassable type class name.

locals()

Returns a dictionary containing the local variables of the
caller (with one key:value entry per local).

map(function, iterable [, iterable]*)
Applies function to each item of any sequence or other
iterable object iterable, and returns the individual results.
For example, map(abs, (1, −2)) returns 1 and 2. If addi‐
tional iterable arguments are passed, function must take
that many arguments, and is passed one item from each
iterable on every call; in this mode, iteration stops at the
end of the shortest iterable.

In Python 2.X, this returns a list of the individual call results.
In Python 3.X, it instead returns an iterable object that gen‐
erates results on demand and can be traversed only once
(wrap it in a list() call to force results generation if
required).

142 | Python Pocket Reference

Also in Python 2.X (but not Python 3.X), if function is None,
map() collects all the iterable items into a result list; for
multiple iterables, the result combines their items in tuples,
and all iterables are padded with Nones to the length of the
longest. Similar utility is available in Python 3.X in standard
library module itertools.

max(iterable [, arg]* [, key=func])
With a single argument iterable, returns the highest-
valued item of a nonempty iterable (e.g., string, tuple, list,
set). With more than one argument, it returns the highest
value among all the arguments. The optional keyword-only
key argument specifies a one-argument value transform
function like that used for list.sort() and sorted() (see
“Lists” and “Built-in Functions”).

memoryview(object)

Returns a memory view object created from the given
object argument. Memory views allow Python code to ac‐
cess the internal data of an object that supports the protocol
without copying the object. Memory can be interpreted as
simple bytes or more complex data structures. Built-in ob‐
jects that support the memory-view protocol include bytes
and bytearray. See Python manuals; memory views are
largely a replacement for the Python 2.X buffer() protocol
and built-in function, although memoryview() is backported
to Python 2.7 for 3.X compatibility.

min(iterable [, arg]* [, key=func])
With a single argument iterable, returns the lowest-valued
item of a nonempty iterable (e.g., string, tuple, list, set). With
more than one argument, it returns the lowest value among
all the arguments. The key argument is as in max() (in this
list).

next(iterator [, default])
Retrieves the next item from the iterator object by calling
its __next__() method (in 3.X). If the iterator is exhausted,
default is returned if given; otherwise, StopIteration is
raised. This function is also available in Python 2.6 and 2.7,

Built-in Functions | 143

where it calls iterator.next() instead of iterator.

__next__(). This aids 2.X forward compatibility with 3.X,
and 3.X backward compatibility with 2.X. In Python 2.X
prior to 2.6, this call is missing; use iterator.next() man‐
ually instead for manual iterations. See also iter() in this
list, and “The iteration protocol”.

object()

Returns a new featureless object. object (its literal name) is
a superclass to all new-style classes, which includes all classes
in Python 3.X, and classes explicitly derived from object
in Python 2.X. It has a small set of default methods (see
dir(object)).

oct(N)

Converts a number N to an octal (base 8) digits string. If
argument N is not a Python int object, in Python 3.X it must
define an __index__() method that returns an integer (in
2.X, __oct__() is called instead).

open(...)

open(file
 [, mode='r'
 [, buffering=-1
 [, encoding=None # Text mode only
 [, errors=None # Text mode only
 [, newline=None # Text mode only
 [, closefd=True, # Descriptors only
 [, opener=None]]]]]]]) # Custom opener 3.3+

Returns a new file object connected to the external file
named by file, or raises IOError (or an OSError subclass as
of 3.3) if the open fails. This section describes Python 3.X’s
open(); for Python 2.X usage, see “Python 2.X Built-in Func‐
tions”.

file is usually a text or bytes string object giving the name
(including its path if the file isn’t in the current working di‐
rectory) of the file to be opened. file may also be an integer
file descriptor of the file to be wrapped. If a file descriptor is
given, it is closed when the returned I/O object is closed,

144 | Python Pocket Reference

unless closefd is set to False. All the following options may
be passed as keyword arguments.

mode is an optional string that specifies the mode in which
the file is opened. It defaults to 'r', which means open for
reading in text mode. Other common values are 'w' for
writing (truncating the file if it already exists), and 'a' for
appending. In text mode, if encoding is not specified, the
encoding used is platform dependent, and newlines are
translated to and from '\n' by default. For reading and
writing raw bytes, use binary modes 'rb', 'wb', or 'ab', and
leave encoding unspecified.

Available modes that may be combined: 'r' for read (de‐
fault); 'w' for write, truncating the file first; 'a' for write,
appending to the end of the file if it exists; 'b' for binary
mode; 't' for text mode (default); '+' to open a disk file for
updating (reading and writing); 'U' for universal newline
mode (for backward compatibility only). The default 'r'
mode is the same as 'rt' (open for reading text). For binary
random access, the mode 'w+b' opens and truncates the file
to zero bytes, while 'r+b' opens the file without truncation.

Python distinguishes between files opened in binary and
text modes, even when the underlying operating system
does not:

• For input, files opened in binary mode (by appending
'b' to mode) return contents as bytes objects without
any Unicode decoding or line-end translations. In text
mode (the default, or when 't' is appended to mode),
the contents of the file are returned as str strings after
the bytes are decoded using either an explicitly passed
Unicode encoding name or a platform-dependent de‐
fault, and line-ends are translated per newline.

• For output, binary mode expects a bytes or bytearray
and writes it unchanged. Text mode expects a str, and
encodes it per a Unicode encoding and applies line-
end translations per newline before writing.

Built-in Functions | 145

buffering is an optional integer used to set buffering policy.
By default (when not passed or value −1), full buffering is
on. Pass 0 to switch buffering off (allowed in binary mode
only); 1 to set line buffering (only in text mode); and an
integer > 1 for full buffering and buffer size. Buffered data
transfers might not be immediately fulfilled (use
file.flush() to force buffers to be emptied).

encoding is the name of the encoding used to decode or en‐
code a text file’s content on transfers. This should be used in
text mode only. The default encoding is platform dependent
(obtained from locale.getpreferredencoding()), but any
encoding supported by Python can be passed. See the codecs
module in the Python standard library for the list of sup‐
ported encodings.

errors is an optional string that specifies how to handle
encoding errors. This should be used in text mode only. It
may be passed 'strict' (the default, for None) to raise a
ValueError exception on encoding errors; 'ignore' to ig‐
nore errors (but ignoring encoding errors can result in data
loss); 'replace' to use a replacement marker for invalid
data; and more. See Python manuals and codecs.register
_error() in Python’s standard library for permitted error
values, and str() in this list for related tools.

newline controls how universal newlines work, and applies
to text mode only. It can be None (the default), '', '\n',
'\r', and '\r\n':

• On input, if newline is None, universal newlines mode
is enabled: lines may end in '\n', '\r', or '\r\n', and
all these are translated to '\n' before being returned
to the caller. If newline is '', universal newline mode
is enabled, but line endings are returned to the caller
untranslated. If it has any of the other legal values,
input lines are terminated only by the given string, and
the line ending is returned to the caller untranslated.

146 | Python Pocket Reference

• On output, if newline is None, any '\n' characters
written are translated to the system default line sepa‐
rator, os.linesep. If newline is '', no translation takes
place. If it is any of the other legal values, any '\n'
characters written are translated to the given string.

If closefd is False, the underlying file descriptor will be kept
open when the file is closed. This does not work when a file
name is given as a string and must be True (the default) in
that case. If opener is passed a callable in Python 3.3 and
later, a file descriptor is obtained by opener(file, flags),
with arguments as for os.open() (see “The os System Mod‐
ule”).

See also “Files” for the interface of objects returned by
open(). Hint: any object that supports the file object’s
method interface can generally be used in contexts that ex‐
pect a file (e.g., see socketobj.makefile(), Python 3.X’s
io.StringIO(str) and io.BytesIO(bytes), and Python
2.X’s StringIO.stringIO(str), all in the Python standard
library).

N O T E

Because file mode implies both configuration options
and string datatypes in 3.X, it is useful to think of
open() in terms of two distinct flavors—text and bina‐
ry, as specified in the mode string. Python developers
chose to overload a single function to support the two
file types, with mode-specific arguments and differing
content types, rather than provide two separate open()
functions. The underlying io class library—to which
open() is a frontend in 3.X—does specialize file object
types for modes. See Python manuals for more on the
io module. io is also available in 2.X as of 2.6 as an
alternative to its built-in file type, but is the normal
file interface for open() in 3.X.

Built-in Functions | 147

ord(C)

Returns an integer code point value of a one-character string
C. For ASCII characters, this is the 7-bit ASCII code of C; in
general, this is the Unicode code point of a one-character
Unicode string C. See also this call’s chr() inverse in this list.

pow(X, Y [, Z])
Returns X to power Y [modulo Z]. This is similar to the **
expression operator.

print(...)

print([object [, object]*]
 [, sep=' '] [, end='\n']
 [, file=sys.stdout] [, flush=False])

Prints optional object(s) to the stream file, separated by
sep, followed by end, with an optional post-printing forced
flush. The last four arguments, if present, must be given as
keyword arguments, and default as shown; flush is available
as of Python 3.3.

All nonkeyword arguments are converted to strings using
the equivalent of str(), and written to the stream. Both sep
and end must either be strings, or None (meaning use their
default values). If no object is given, end is written. file
must be an object with a write(string) method, but need
not be an actual file; if it is not passed or is None, sys.stdout
will be used.

Print functionality is available as a statement form in Python
2.X. See also “The print Statement”.

property([fget[, fset[, fdel[, doc]]]])
Returns a property attribute for new-style classes (classes
that derive from object, including all in 3.X). fget is a func‐
tion for getting an attribute value, fset is a function for set‐
ting, and fdel is a function for deleting. This call may be
used as a function decorator itself (@property), and returns
an object with methods getter, setter, and deleter, which
may also be used as decorators in this role (see “The def

148 | Python Pocket Reference

Statement”). Implemented with descriptors (see “Methods
for Descriptors”).

range([start,] stop [, step])
Returns successive integers between start and stop. With
one argument, it returns integers from 0 through stop−1.
With two arguments, it returns integers from start through
stop−1. With three arguments, it returns integers from start
through stop−1, adding step to each predecessor in the re‐
sult. start, step default to 0, 1.

step may be > 1 to skip items (range(0, 20, 2) is a list of
even integers from 0 through 18), or negative to count down
from the start high value (range(5, −5, −1) is 5 through
−4). This call is often used to generate offset lists or repeat
counts in for loops and other iterations.

In Python 2.X, this call returns a list. In Python 3.X, it returns
an iterable object that generates values on demand and can
be traversed multiple times (wrap in a list() call to force
results generation if required).

repr(object)

Returns the lower-level “as-code” printable string represen‐
tation of object. The string generally takes a form poten‐
tially parseable by eval(), or gives more details than str()
(in this list). In Python 2.X only, this is equivalent to
`object` (the backquotes expression, removed in Python
3.X). See __repr__() in “Operator Overloading Methods”.

reversed(seq)

Returns a reverse iterable. seq must be an object that has a
__reversed__() method or supports the sequence protocol
(the __len__() method, and the __getitem__() method
called with integer arguments starting at 0).

round(X [, N])
Returns the floating-point value X rounded to N digits after
the decimal point. N defaults to zero, and may be negative to
denote digits to the left of the decimal point. The return
value is an integer if called with one argument; otherwise, it

Built-in Functions | 149

is of the same type as X. In Python 2.X only, the result is
always a floating-point. In Python 3.X only, this calls
X.__round__().

set([iterable])

Returns a set whose elements are taken from iterable. The
elements must be immutable. To represent sets of sets, the
nested sets should be frozenset objects. If iterable is not
specified, this returns a new empty set. Available since ver‐
sion 2.4. See also “Sets”, and the {...} set literal in Python
3.X and 2.7.

setattr(object, name, value)
Assigns value to the attribute name (a string) in object. Sim‐
ilar to object.name = value, but name evaluates to a string,
and is not a variable name taken literally (e.g., setattr(a,
'b', c) is equivalent to a.b = c).

slice([start ,] stop [, step])
Returns a slice object representing a range, with read-only
attributes start, stop, and step, any of which can be None.
Arguments are interpreted the same as for range(). Slice
objects may be used in place of i:j:k slice notation (e.g.,
X[i:j] is equivalent to X[slice(i, j)]).

sorted(iterable, key=None, reverse=False)

Returns a new sorted list from the items in iterable. The
optional keyword arguments key and reverse have the same
meaning as those for the list.sort() method described in
“Lists”; key is a one-argument value transform function.
This works on any iterable and returns a new object instead
of changing a list in-place, and is thus useful in for loops
(and more) to avoid splitting sort calls out to separate state‐
ments due to None returns. Available in version 2.4 and later.

In Python 2.X, this has call signature sorted(iterable,
cmp=None, key=None, reverse=False), where optional ar‐
guments cmp, key, and reverse have the same meaning as
those for the Python 2.X list.sort() method described
earlier in “Lists”.

150 | Python Pocket Reference

staticmethod(function)

Returns a static method for function. A static method does
not receive an instance as an implicit first argument, and so
is useful for processing class attributes that span instances.
Use the @staticmethod function decorator in version 2.4 and
later (see “The def Statement”). In Python 3.X only, this
built-in is not required for simple functions in classes called
only through class objects (and never through instance
objects).

str([object [, encoding [, errors]]])
This call (which is also a subclassable type name) operates
in one of two modes in Python 3.X determined by call
pattern:

• Print string: when only object is given, this returns
the higher-level “user-friendly” printable string rep‐
resentation of object. For strings, this is the string it‐
self. Unlike repr(X), str(X) does not always attempt
to return a string that is acceptable to eval(); its goal
is to return a readable and printable string. With no
arguments, this returns the empty string. See also
__str__() in “Operator Overloading Methods”, in‐
voked by this mode.

• Unicode decoding: if encoding and/or errors are
passed, this will decode the object, which can either
be a byte string or a character buffer, using the codec
for encoding. The encoding parameter is a string giv‐
ing the name of a Unicode encoding; if the encoding
is not known, LookupError is raised. Error handling is
done according to errors, which may be 'strict' (the
default), to raise ValueError on encoding errors;
'ignore', to silently ignore errors and potentially lose
data; or 'replace', to replace input characters that
cannot be decoded with the official Unicode replace‐
ment character, U+FFFD. See also the standard library’s
codecs module, and the similar bytes.decode()

Built-in Functions | 151

method (e.g., b'a\xe4'.decode('latin-1') is equiv‐
alent to str(b'a\xe4', 'latin-1')).

In Python 2.X, this call has simpler signature str([object]),
and returns a string containing the higher-level printable
representation of object (equivalent to the first Python 3.X
usage mode given in the preceding list’s first bullet item).
Unicode decoding is implemented in 2.X by string methods
or the 2.X unicode() call, which is essentially the same as the
3.X str() here (see the next section).

sum(iterable [, start])
Sums start and all the items of any iterable, and returns
the total. start defaults to 0. The iterable’s items are nor‐
mally numbers and are not allowed to be strings. Hint: to
concatenate an iterable of strings, use ''.join(iterable).

super([type [, object]])
Returns the superclass of type. If the second argument is
omitted, the super object returned is unbound. If the second
argument is an object, isinstance(object, type) must be
true. If the second argument is a type, issubclass(object,
type) must be true. This call works for all classes in 3.X, but
only for new-style classes in Python 2.X, where type is also
not optional.

In 3.X only, calling super() without arguments in a class
method is implicitly equivalent to super(containing-

class, method-self-argument). Whether implicit or explic‐
it, this call form creates a bound proxy object that pairs the
self instance with access to the calling class’s location on the
MRO of self’s class. This proxy object is usable for later
superclass attribute references and method calls. See also
“New-style classes: MRO” for more on MRO ordering.

Because super() always selects a next class on the MRO—
the first class following the calling class having a requested
attribute, whether it is a true superclass or not—it can be
used for method call routing. In a single-inheritance class
tree, this call may be used to refer to parent superclasses

152 | Python Pocket Reference

generically without naming them explicitly. In multiple-
inheritance trees, this call can be used to implement coop‐
erative method-call dispatch that propagates calls through
a tree.

The latter usage mode, cooperative method-call dispatch,
may be useful in diamonds, as a conforming method call
chain visits each superclass just once. However, super() can
also yield highly implicit behavior which for some programs
may not invoke superclasses as expected or required. The
super() method dispatch technique generally imposes three
requirements:

• Anchors: the method called by super() must exist—
which requires extra code if no call-chain anchor is
present.

• Arguments: the method called by super() must have
the same argument signature across the entire class
tree—which can impair flexibility, especially for
implementation-level methods like constructors.

• Deployment: every appearance of the method called
by super() but the last must use super() itself—which
can make it difficult to use existing code, change call
ordering, override methods, and code self-contained
classes.

Because of these constraints, calling superclass methods by
explicit superclass name instead of using super() may in
some cases be simpler, more predictable, or required. For a
superclass S, the explicit and traditional form S.meth
od(self) is equivalent to the implicit super().method(). See
also “New-style inheritance algorithm” for more on the
super() attribute lookup special case; instead of running full
inheritance, its result objects scan a context-dependent tail
portion of a class tree’s MRO, selecting the first matching
descriptor or value.

Built-in Functions | 153

tuple([iterable])

Returns a new tuple with the same elements as any
iterable passed in. If iterable is already a tuple, it is re‐
turned directly (not a copy); this suffices because tuples are
immutable. If no argument, returns a new empty tuple. This
is also a subclassable type class name.

type(object | (name, bases, dict))
This call (which is also a subclassable type name) is used in
two different modes, determined by call pattern:

• With one argument, returns a type object representing
the type of object. Useful for type testing in if state‐
ments (e.g., type(X)==type([])). See also module
types in the standard library for preset type objects
that are not built-in names, and isinstance() earlier
in this section. In new-style classes, type(object) is
generally the same as object.__class__. In Python
2.X only, the types module also includes synonyms
for most built-in type names.

• With three arguments, serves as a constructor, return‐
ing a new type object. This is a dynamic form of the
class statement. The name string is the class name and
becomes the __name__ attribute; the bases tuple item‐
izes the base (super) classes and becomes the
__bases__ attribute; and the dict dictionary is the
namespace containing attribute definitions for the
class body and becomes the __dict__ attribute. For
example, the following are equivalent:

 class X(object): a = 1
 X = type('X', (object,), dict(a=1))

This mapping is employed for metaclass construction,
in which such type() calls are issued automatically,
and generally invoke a metaclass’s __new__() and/or
__init__() with class creation arguments, for sub‐
classes of type.

154 | Python Pocket Reference

See also “Metaclasses”, “Class decorators in Python
3.X, 2.6, and 2.7”, and __new__() in “Operator Over‐
loading Methods”.

vars([object])

Without arguments, returns a dictionary containing the
current local scope’s names. With a module, class, or class
instance object as an argument, it returns a dictionary cor‐
responding to object’s attribute namespace (i.e., its
__dict__). The result should not be modified. Hint: useful
for referring to variables in string formatting.

zip([iterable [, iterable]*])
Returns a series of tuples, where each ith tuple contains the
ith element from each of the argument iterables. For exam‐
ple, zip('ab', 'cd') returns ('a', 'c') and ('b', 'd').
At least one iterable is required, or the result is empty. The
result series is truncated to the length of the shortest argu‐
ment iterable. With a single iterable argument, it returns a
series of one-tuples. May also be used to unzip zipped tuples:
X, Y = zip(*zip(T1, T2)).

In Python 2.X, this returns a list. In Python 3.X, it returns
an iterable object that generates values on demand and can
be traversed only once (wrap in a list() call to force results
generation if required). In Python 2.X (but not Python 3.X),
when there are multiple argument iterables of the same
length, zip() is similar to map() with a first argument of None.

Python 2.X Built-in Functions
The preceding section notes semantic differences between built-
in functions that are available in both Python 3.X and 2.X. This
section notes content differences in the two lines.

Python 3.X built-ins not supported by Python 2.X
Python 2.X does not generally have the following Python 3.X
built-in functions:

Built-in Functions | 155

ascii()

This works like Python 2.X’s repr().

exec()

This is a statement form in Python 2.X with similar
semantics.

memoryview()

But made available in Python 2.7 for 3.X compatibility.

print()

Present in Python 2.X’s __builtin__ module, but not di‐
rectly usable syntactically without __future__ imports, as
printing is a statement form and reserved word in Python
2.X (see “The print Statement”).

Python 2.X built-ins not supported by Python 3.X
Python 2.X has the following additional built-in functions, some
of which are available in different forms in Python 3.X:
apply(func, pargs [, kargs])

Calls any callable object func (a function, method, class,
etc.), passing the positional arguments in tuple pargs, and
the keyword arguments in dictionary kargs. It returns the
func call result.

In Python 3.X, this is removed. Use the argument-
unpacking call syntax instead: func(*pargs, **kargs). This
starred form is also preferred in Python 2.X, both because it
is more general and because it is symmetric with function
definitions’ starred terms (see “The Expression Statement”).

basestring()

The base (super) class for normal and Unicode strings (use‐
ful for isinstance() tests).

In Python 3.X, the single str type represents all text (both
8-bit and richer Unicode).

156 | Python Pocket Reference

buffer(object [, offset [, size]])
Returns a new buffer object for a conforming object (see
the Python 2.X Library Reference).

This call is removed in Python 3.X. The new memoryview()
built-in provides similar functionality in 3.X, and is also
available in Python 2.7 for forward compatibility.

cmp(X, Y)
Returns a negative integer, zero, or a positive integer to des‐
ignate X < Y, X == Y, or X > Y, respectively.

In Python 3.X, this is removed, but may be simulated as:
(X > Y) - (X < Y). However, most common cmp() use cases
(comparison functions in sorts, and the __cmp__() method
of classes) have also been removed in Python 3.X.

coerce(X, Y)
Returns a tuple containing the two numeric arguments X and
Y converted to a common type.

This call is removed in Python 3.X. (Its main use case was
for Python 2.X classic classes.)

execfile(filename [, globals [, locals]])
Like eval(), but runs all the code in a file whose string name
is passed in as filename (instead of an expression). Unlike
imports, this does not create a new module object for the
file. It returns None. Namespaces for code in filename are as
for eval().

In Python 3.X, this may be simulated as: exec(open

(filename).read()).

file(filename [, mode[, bufsize]])
An alias for the open() built-in function, and the subclass‐
able class name of the built-in file type.

In Python 3.X, the name file is removed: use open() to ac‐
cess files, and the io standard library module to customize
them (io is used by open() in 3.X, and is an option in 2.X as
of 2.6).

Built-in Functions | 157

input([prompt]) (original 2.X form)
Prints prompt, if given. Then it reads an input line from the
stdin stream (sys.stdin), evaluates it as Python code, and
returns the result. In 2.X, this is like eval(raw_input
(prompt)). Hint: do not use this to evaluate untrustworthy
code strings, as they run as program code.

In Python 3.X, because raw_input() was renamed input(),
the original Python 2.X input() is no longer available, but
may be simulated as: eval(input(prompt)).

intern(string)

Enters string in the table of “interned strings” and returns
the interned string. Interned strings are “immortals” and
serve as a performance optimization. (They can be com‐
pared by fast is identity, rather than == equality.)

In Python 3.X, this call has been moved to sys.intern().
Import module sys to use it, and see “The sys Module” for
more details.

long(X [, base])
Converts a number or a string X to a long integer. base can
be passed only if X is a string. If 0, the base is determined by
the string contents; otherwise, it is used for the base of the
conversion. This is a subclassable type class name.

In Python 3.X, the int integer type supports arbitrarily long
precision, and so subsumes Python 2.X’s long type. Use
int() in Python 3.X.

raw_input([prompt])

This is the Python 2.X name of the Python 3.X input()
function described in the preceding section: prints prompt,
reads and returns, but does not evaluate, the next input line.

In Python 3.X, use the input() built-in.

reduce(func, iterable [, init])
Applies the two-argument function func to successive items
from iterable, so as to reduce the collection to a single val‐
ue. If init is given, it is prepended to iterable.

158 | Python Pocket Reference

In Python 3.X, this built-in is still available, as functools
.reduce(). Import module functools to use it.

reload(module)

Reloads, reparses, and reexecutes an already imported
module in the module’s current namespace. Reexecution re‐
places prior values of the module’s attributes in-place.
module must reference an existing module object; it is not a
new name or a string. This is useful in interactive mode if
you want to reload a module after fixing it, without restart‐
ing Python. It returns the module object. See also the
sys.modules table, where imported modules are retained
(and can be deleted to force reimports).

In Python 3.X, this built-in is still available as
imp.reload(). Import module imp to use it.

unichr(I)

Returns the Unicode string of one character whose Unicode
code point is integer I (e.g., unichr(97) returns string u'a').
This is the inverse of ord() for Unicode strings, and the
Unicode version of chr(). The argument must be in range
0...65,535 inclusive, or ValueError is raised.

In Python 3.X, normal strings represent Unicode characters:
use the chr() call instead (e.g., ord('\xe4') is 228, and
chr(228) and chr(0xe4) both return 'ä').

unicode([object [, encoding [, errors]]])
Works similarly to the 3.X str() function (see str() in the
preceding section for more details). With just one argument,
this returns a high-level print string representation for
object, but as a 2.X Unicode string (not a str). With more
than one argument, this performs Unicode decoding of
string object using the codec for encoding, with error han‐
dling performed according to errors. The error handling
default is strict errors mode, where all encoding errors raise
ValueError.

See also the codecs module in the Python Library Reference
for files that support encodings. In 2.X, objects may provide

Built-in Functions | 159

a __unicode__() method that gives their Unicode string for
unicode(X).

In Python 3.X, there is no separate type for Unicode—the
str type represents all text (both 8-bit and richer Unicode),
and the bytes type represents bytes of 8-bit binary data. Use
normal str strings for Unicode text; bytes.decode() or
str() to decode from raw bytes to Unicode according to an
encoding; and normal open() file objects to process Unicode
text files.

xrange([start,] stop [, step])
Like range(), but doesn’t actually store the entire list all at
once (rather, it generates one integer at a time). This is useful
in for loops when there is a big range and little memory. It
optimizes space, but generally has no speed benefit.

In Python 3.X, the original range() function is changed to
return an iterable instead of producing a result list in mem‐
ory, and thus subsumes and Python 2.X’s xrange(), which is
removed.

In addition, the file open() call has changed radically enough in
Python 3.X that individual mention of Python 2.X’s variant is
warranted here (in Python 2.X, codecs.open() has many of the
features in Python 3.X’s open(), including support for Unicode
encoding translations on transfers):
open(filename [, mode, [bufsize]])

Returns a new file object connected to the external file
named filename (a string), or raises IOError if the open fails.
The file name is mapped to the current working directory,
unless it includes a directory path prefix. The first two ar‐
guments are generally the same as those for C’s fopen()
function, and the file is managed by the stdio system. With
open(), file data is always represented as a normal str string
in your script, containing bytes from the file. (codecs
.open() interprets file content as encoded Unicode text,
represented as unicode objects.)

160 | Python Pocket Reference

mode defaults to 'r' if omitted, but can be 'r' for input; 'w'
for output (truncating the file first); 'a' for append; and
'rb', 'wb', or 'ab' for binary files (to suppress line-end
conversions to and from \n). On most systems, modes can
also have a + appended to open in input/output updates
mode (e.g., 'r+' to read/write, and 'w+' to read/write but
initialize the file to empty).

bufsize defaults to an implementation-dependent value,
but can be 0 for unbuffered, 1 for line-buffered, negative for
system-default, or a given specific size. Buffered data trans‐
fers might not be immediately fulfilled (use file object
flush() methods to force). See also the io module in
Python’s standard library: an alternative to file in 2.X, and
the normal file interface for open() in 3.X.

Built-in Exceptions
This section describes exceptions predefined by Python that may
be raised by Python or user code during a program’s execution.
It primarily presents the state of built-in exceptions in Python 3.3
—which introduces new classes for system-related errors that
subsume prior generic classes with state information—but gives
details common to most Python versions. See the Python 3.2 and
2.X subsections at the end of this section for version-specific
differences.

Beginning with Python 1.5, all built-in exceptions are class ob‐
jects (prior to 1.5 they were strings). Built-in exceptions are pro‐
vided in the built-in scope namespace (see “Namespace and
Scope Rules”), and many built-in exceptions have associated state
information that provides exception details. User-defined excep‐
tions are generally derived from this built-in set (see “The raise
Statement”).

Built-in Exceptions | 161

Superclasses: Categories
The following exceptions are used only as superclasses for other
exceptions:
BaseException

The root superclass for all built-in exceptions. It is not meant
to be directly inherited by user-defined classes; use
Exception for this role instead. If str() is called on an in‐
stance of this class, the representation of the constructor ar‐
gument(s) passed when creating the instance are returned
(or the empty string if there were no such arguments). These
instance constructor arguments are stored and made avail‐
able in the instance’s args attribute as a tuple. Subclasses
inherit this protocol.

Exception

The root superclass for all built-in and non-system-exiting
exceptions. This is a direct subclass of BaseException.

All user-defined exceptions should be derived (inherit) from
this class. This derivation is required for user-defined ex‐
ceptions in Python 3.X; Python 2.6 and 2.7 require this of
new-style classes, but also allow standalone exception
classes.

try statements that catch this exception will catch all but
system exit events, because this class is superclass to all
exceptions but SystemExit, KeyboardInterrupt, and Genera
torExit (these three derive directly from BaseException
instead).

ArithmeticError

Arithmetic error exceptions category: the superclass of Over
flowError, ZeroDivisionError, and FloatingPointError,
and a subclass of Exception.

BufferError

Raised when a buffer-related operation cannot be per‐
formed. A subclass of Exception.

162 | Python Pocket Reference

LookupError

Sequence and mapping index errors: the superclass for
IndexError and KeyError, also raised for some Unicode en‐
coding lookup errors. A subclass of Exception.

OSError (Python 3.3 version)
Raised when a system function triggers a system-related er‐
ror, including I/O and file operation failures. As of Python
3.3, this exception is a root class to a new set of descriptive
system-related exceptions enumerated in “Specific OSError
Exceptions”, which subsume generic exceptions with state
information used in 3.2 and earlier, described in “Python 3.2
Built-in Exceptions”.

In Python 3.3, OSError is a subclass of Exception, and in‐
cludes common informational attributes that give system
error details: errno (numeric code); strerror (string mes‐
sage); winerror (on Windows); and filename (for exceptions
involving file paths). In 3.3, this class incorporates the for‐
mer EnvironmentError, IOError, WindowsError, VMSError,
socket.error, select.error, and mmap.error, and is a syn‐
onym to os.error. See the latter in “The os System Mod‐
ule” for additional attribute details.

Specific Exceptions
The following classes are more specific exceptions that are
actually raised. In addition, NameError, RuntimeError, Syntax
Error, ValueError, and Warning are both specific exceptions and
category superclasses to other built-in exceptions:
AssertionError

Raised when an assert statement’s test is false.

AttributeError

Raised on attribute reference or assignment failure.

Built-in Exceptions | 163

EOFError

Raised when the immediate end-of-file is hit by input() (or
raw_input() in Python 2.X). File object read methods return
an empty object at end of file instead of raising this.

FloatingPointError

Raised on floating-point operation failure.

GeneratorExit

Raised when a generator’s close() method is called. This
directly inherits from BaseException instead of Exception
since it is not an error.

ImportError

Raised when an import or from fails to find a module or
attribute. As of Python 3.3, instances include name and path
attributes identifying the module that triggered the error,
passed as keyword arguments to the constructor.

IndentationError

Raised when improper indentation is found in source code.
Derived from SyntaxError.

IndexError

Raised on out-of-bounds sequence offsets (fetch or assign).
Slice indexes are silently adjusted to fall in the allowed range;
if an index is not an integer, TypeError is raised.

KeyError

Raised on references to nonexistent mapping keys (fetch).
Assignment to a nonexistent key creates that key.

KeyboardInterrupt

Raised on user entry of the interrupt key (normally Ctrl-C
or Delete). During execution, a check for interrupts is
made regularly. This exception inherits directly from Base
Exception to prevent it from being accidentally caught by
code that catches Exception and thus prevents interpreter
exit.

164 | Python Pocket Reference

MemoryError

Raised on recoverable memory exhaustion. This causes a
stack-trace to be displayed if a runaway program was its
cause.

NameError

Raised on failures to find a local or global unqualified name.

NotImplementedError

Raised on failures to define expected protocols. Abstract
class methods may raise this when they require a method to
be redefined. Derived from RuntimeError. (This is not to be
confused with NotImplemented, a special built-in object re‐
turned by some operator-overloading methods when
operand types are not supported; see “Operator Overload‐
ing Methods”.)

OverflowError

Raised on excessively large arithmetic operation results.
This cannot occur for integers as they support arbitrary
precision. Due to constraints in the underlying C language,
most floating-point operations are also not checked for
overflow.

ReferenceError

Raised in conjunction with weak references: tools for main‐
taining references to objects which do not prevent their rec‐
lamation (e.g., caches). See the weakref module in the
Python standard library.

RuntimeError

A rarely used catch-all exception.

StopIteration

Raised at the end of values progression in iterator objects.
Raised by the next(I) built-in and I.__next__() methods
(named I.next() in Python 2.X).

As of Python 3.3, instances include a value attribute, which
either reflects an explicit constructor positional argument,
or is automatically set to the return value given in a generator

Built-in Exceptions | 165

function’s return statement that ends its iteration. This value
defaults to None, is also available in the exception’s normal
args tuple, and is unused by automatic iterations. Because
generator functions must return no value prior to 3.3 (and
generate syntax errors if they try), use of this extension is
not compatible with earlier 2.X and 3.X versions. See also
“The yield Statement”.

SyntaxError

Raised when parsers encounter a syntax error. This may oc‐
cur during import operations, calls to eval() and exec(),
and when reading code in a top-level script file or standard
input. Instances of this class have attributes filename,
lineno, offset, and text for access to details; str() of the
exception instance returns only the basic message.

SystemError

Raised on interpreter internal errors that are not serious
enough to shut down (these should be reported).

SystemExit

Raised on a call to sys.exit(N). If not handled, the Python
interpreter exits, and no stack traceback is printed. If the
passed value N is an integer, it specifies the program’s system
exit status (passed on to C’s exit function); if it is None or
omitted, the exit status is 0 (success); if it has another type,
the object’s value is printed and the exit status is 1 (failure).
Derived directly from BaseException to prevent it from be‐
ing accidentally caught by code that catches Exception and
thus prevents interpreter exit. See also sys.exit() in “The
sys Module”.

sys.exit() raises this exception so that clean-up handlers
(finally clauses of try statements) are executed, and so that
a debugger can execute a script without losing control. The
os._exit() function exits immediately when needed (e.g.,
in the child process after a call to fork()). Also see the atexit
module in the standard library for exit function
specification.

166 | Python Pocket Reference

TabError

Raised when an improper mixture of spaces and tabs is
found in source code. Derived from IndentationError.

TypeError

Raised when an operation or function is applied to an object
of inappropriate type.

UnboundLocalError

Raised on references to local names that have not yet been
assigned a value. Derived from NameError.

UnicodeError

Raised on Unicode-related encoding or decoding errors; a
superclass category, and a subclass of ValueError. Hint:
some Unicode tools may also raise LookupError.

UnicodeEncodeError

UnicodeDecodeError

UnicodeTranslateError

Raised on Unicode-related processing errors; subclasses of
UnicodeError.

ValueError

Raised when a built-in operation or function receives an
argument that has the correct type but an inappropriate val‐
ue, and the situation is not described by a more specific ex‐
ception like IndexError.

ZeroDivisionError

Raised on division or modulus operations with value 0 as
the right-side operand.

Specific OSError Exceptions
Available in Python 3.3 and later, the following subclasses of
OSError identify system errors, and correspond to system error
codes available in EnvironmentError in earlier Pythons
(see “Python 3.2 Built-in Exceptions”). See also OSError in

Built-in Exceptions | 167

“Superclasses: Categories” for informational attributes common
to its subclasses here:
BlockingIOError

Raised when an operation would block on an object set
for nonblocking operation. Has additional attribute
characters_written, the number of characters written to
the stream before it blocked.

ChildProcessError

Raised when an operation on a child process failed.

ConnectionError

Superclass for connection-related exceptions BrokenPipe
Error, ConnectionAbortedError, ConnectionRefusedError,
and ConnectionResetError.

BrokenPipeError

Raised when trying to write on a pipe while the other end
has been closed, or trying to write on a socket that has been
shut down for writing.

ConnectionAbortedError

Raised when a connection attempt is aborted by the peer.

ConnectionRefusedError

Raised when a connection attempt is refused by the peer.

ConnectionResetError

Raised when a connection is reset by the peer.

FileExistsError

Raised when trying to create a file or directory which already
exists.

FileNotFoundError

Raised when a file or directory is requested but doesn’t exist.

InterruptedError

Raised when a system call is interrupted by an incoming
signal.

168 | Python Pocket Reference

IsADirectoryError

Raised when a file operation such as os.remove() is reques‐
ted on a directory.

NotADirectoryError

Raised when a directory operation such as os.listdir() is
requested on a nondirectory.

PermissionError

Raised for operations run without adequate access rights
(e.g., file system permissions).

ProcessLookupError

Raised when a process doesn’t exist.

TimeoutError

Raised when a system function times out at the system level.

Warning Category Exceptions
The following exceptions are used as warning categories:
Warning

The superclass for all of the following warnings; a direct
subclass of Exception.

UserWarning

Warnings generated by user code.

DeprecationWarning

Warnings about deprecated features.

PendingDeprecationWarning

Warnings about features that will be deprecated in the fu‐
ture.

SyntaxWarning

Warnings about dubious syntax.

RuntimeWarning

Warnings about dubious runtime behavior.

Built-in Exceptions | 169

FutureWarning

Warnings about constructs that will change semantically in
the future.

ImportWarning

Warnings about probable mistakes in module imports.

UnicodeWarning

Warnings related to Unicode.

BytesWarning

Warnings related to bytes and buffer (memory-view)
objects.

ResourceWarning

Added as of Python 3.2, the superclass for warnings related
to resource usage.

Warnings Framework
Warnings are issued when future language changes might break
existing code in a future Python release, and in other contexts.
Warnings may be configured to print messages, raise exceptions,
or be ignored. The warnings framework can be used to issue
warnings by calling the warnings.warn() function:

warnings.warn("usage obsolete", DeprecationWarning)

In addition, you can add filters to disable certain warnings. You
can apply a regular expression pattern to a message or module
name to suppress warnings with varying degrees of generality.
For example, you can suppress a warning about the use of the
deprecated regex module by calling:

import warnings
warnings.filterwarnings(action = 'ignore',
 message='.*regex module*',
 category=DeprecationWarning,
 module = '__main__')

This adds a filter that affects only warnings of the class
DeprecationWarning triggered in the __main__ module, applies a

170 | Python Pocket Reference

regular expression to match only the message that names the
regex module being deprecated, and causes such warnings to be
ignored. Warnings can also be printed only once, printed every
time the offending code is executed, or turned into exceptions
that will cause the program to stop (unless the exceptions are
caught). See the warnings module documentation in Python’s
manual (version 2.1 and later) for more information. See also the
-W argument in “Python Command Options”.

Python 3.2 Built-in Exceptions
In Python 3.2 and earlier, the following additional exceptions are
available. As of Python 3.3, they have been merged into OSError.
They are retained in 3.3 for compatibility, but may be removed
in future releases:
EnvironmentError

The category for exceptions that occur outside Python: the
superclass for IOError and OSError, and a subclass of
Exception. The raised instance includes informational at‐
tributes errno and strerror (and possible filename for ex‐
ceptions involving file paths), which are also in args, and
give system error code and message details.

IOError

Raised on I/O or file-related operation failures. Derived
from EnvironmentError with state information described
earlier in this list.

OSError (Python 3.2 version)
Raised on os module errors (its os.error exception). De‐
rived from EnvironmentError with state information de‐
scribed earlier in this list.

VMSError

Raised on VMS-specific errors; a subclass of OSError.

WindowsError

Raised on Windows-specific errors; a subclass of OSError.

Built-in Exceptions | 171

6. As of Python 2.1, you can also attach arbitrary user-defined attributes to
function objects, simply by assigning them values; see “Function defaults
and attributes”. Python 2.X also supports special attributes I.__meth
ods__ and I.__members__: lists of method and data member names for
instances of some built-in types. These are removed in Python 3.X; use
the built-in dir() function.

Python 2.X Built-in Exceptions
The set of available exceptions, as well as the shape of the excep‐
tion class hierarchy, varies slightly in Python 2.X from the 3.X
description of the preceding sections. For example, in Python
2.X:

• Exception is the topmost root class (not BaseException,
which is absent in Python 2.X).

• StandardError is an additional Exception subclass, and is
a root class above all built-in exceptions except SystemExit.

See Python 2.X library manuals for full details for your version.

Built-in Attributes
Some objects export special attributes that are predefined by
Python. The following is a partial list because many types have
unique attributes all their own; see the entries for specific types
in the Python Library Reference:6

X.__dict__

Dictionary used to store object X’s writable (changeable)
attributes.

I.__class__

Class object from which instance I was generated. In version
2.2 and later, this also applies to types, and most objects have
a __class__ attribute (e.g., [].__class__ == list ==

type([])).

172 | Python Pocket Reference

C.__bases__

Tuple of class C’s base classes, as listed in C’s class statement
header.

C.__mro__

The computed MRO path through new-style class C’s tree
(see “New-style classes: MRO”).

X.__name__

Object X’s name as a string; for classes, the name in the state‐
ment header; for modules, the name as used in imports, or
"__main__" for the module at the top level of a program (e.g.,
the main file run to launch a program).

Standard Library Modules
Standard library modules are always available but must be im‐
ported to be used in client modules. To access them, use one of
these formats:

• import module, and fetch attribute names (module.name)

• from module import name, and use module names unquali‐
fied (name)

• from module import *, and use module names unqualified
(name)

For instance, to use name argv in the sys module, either use
import sys and name sys.argv or use from sys import argv and
name argv. The former full form—module.name—is used in con‐
tent list headers here only to provide context in multipage listings;
descriptions often use just name.

There are hundreds of standard library modules, all of which are
at least as prone to change as the language itself. Accordingly, the
following sections are not exhaustive, and generally document
only commonly used names in commonly used modules. See
Python’s Library Reference for a more complete reference to
standard library modules.

Standard Library Modules | 173

In all of the following module sections:

• Listed export names followed by parentheses are func‐
tions that must be called; others are simple attributes (i.e.,
variable names in modules that are fetched, not called).

• Module contents document the modules’ state in Python
3.X, but generally apply to both 3.X and 2.X except as noted;
see Python manuals for further information on version-
specific differences.

The sys Module
The sys module contains interpreter-related tools: items related
to the interpreter or its process in both Python 3.X and 2.X. It
also provides access to some environment components, such as
the command line, standard streams, and so on. See also os in
“The os System Module” for additional process-related tools:
sys.argv

Command-line argument strings list: [scriptname,

arguments...]. Similar to C’s argv array. argv[0] is either
the script file’s name (possibly with a full path); the string
'-c' for the -c command-line option; a module’s path name
for the -m option; '-' for the − option; or the empty string if
no script name or command option was passed. See also
“Command-Line Program Specification”.

sys.byteorder

Indicates the native byte order (e.g., 'big' for big-endian,
'little' for little-endian).

sys.builtin_module_names

Tuple of string names of C modules compiled into this
Python interpreter.

sys.copyright

String containing the Python interpreter copyright.

174 | Python Pocket Reference

sys.displayhook(value)

Called by Python to display result values in interactive ses‐
sions; assign sys.displayhook to a one-argument function
to customize output.

sys.dont_write_bytecode

While this is true, Python won’t try to write .pyc or .pyo files
on the import of source modules (see also -B command-line
option in “Python Command-Line Usage” to select at
launch).

sys.excepthook(type, value, traceback)
Called by Python to display uncaught exception details to
stderr; assign sys.excepthook to a three-argument function
to customize exception displays.

sys.exc_info()

Returns tuple of three values describing the exception cur‐
rently being handled: (type, value, traceback), where type
is the exception class, value is the instance of the exception
class raised, and traceback is an object that gives access to
the runtime call stack as it existed when the exception oc‐
curred. Specific to current thread. Subsumes exc_type,
exc_value, and exc_traceback in Python 1.5 and later (all
three of which are present in earlier Python 2.X, but re‐
moved completely in Python 3.X). See the traceback mod‐
ule in the Python Library Reference for processing traceback
objects, and “The try Statement” for more on exceptions.

sys.exec_prefix

Assign to a string giving the site-specific directory prefix
where the platform-dependent Python files are installed;
defaults to /usr/local or a build-time argument. Used to
locate shared library modules (in <exec_prefix>/lib/
python<version>/lib-dynload) and configuration files.

sys.executable

String giving the full file pathname of the Python interpreter
program running the caller.

The sys Module | 175

sys.exit([N])

Exits from a Python process with status N (default 0) by
raising a SystemExit built-in exception (which can be caught
in a try statement and ignored if needed). See also
SystemExit in (“Built-in Exceptions”) for more usage de‐
tails, and the os._exit() function (in “The os System Mod‐
ule”) for a related tool that exits immediately without
exception processing (useful in child processes after an
os.fork()). Also see the atexit module in the Python stan‐
dard library for general exit function specification.

sys.flags

Values of Python command-line options, one attribute per
option (see Python manuals).

sys.float_info

Details of Python floating-point implementation via at‐
tributes (see Python manuals).

sys.getcheckinterval()

In Python 3.1 and earlier, returns the interpreter’s “check
interval” (see setcheckinterval() later in this list). Super‐
seded in Python 3.2 and later by getswitchinterval().

sys.getdefaultencoding()

Returns the name of the current default string encoding
used by the Unicode implementation.

sys.getfilesystemencoding()

Returns the name of the encoding used to convert Unicode
filenames into system file names, or None if the system de‐
fault encoding is used.

sys._getframe([depth])

Returns a frame object from the Python call stack (see the
Python Library Reference).

sys.getrefcount(object)

Returns object’s current reference count value (+1 for the
call’s argument itself).

176 | Python Pocket Reference

sys.getrecursionlimit()

Returns the maximum depth limit of the Python call stack;
see also setrecursionlimit(), later in this list.

sys.getsizeof(object [, default])
Returns the size of an object in bytes. The object can be any
type of object. All built-in objects return correct results, but
third-party extension results are implementation specific.
default provides a value that will be returned if the object
type does not implement the size retrieval interface.

sys.getswitchinterval()

In Python 3.2 and later, returns the interpreter’s current
thread switch interval setting (see setswitchinterval()
later in this list). In Python 3.1 and earlier, use getcheck
interval().

sys.getwindowsversion()

Return an object describing the Windows version currently
running (see Python manuals).

sys.hexversion

Python version number, encoded as a single integer (per‐
haps best viewed with the hex() built-in function). Increases
with each new release.

sys.implementation

Available as of Python 3.3, an object giving information
about the implementation of the currently running Python
interpreter (name, version, etc.). See Python manuals.

sys.int_info

Details of Python integer implementation via attributes (see
Python manuals).

sys.intern(string)

Enters string in the table of “interned” strings and returns
the interned string—the string itself or a copy. Interning
strings provides a small performance improvement for dic‐
tionary lookup: if both the keys in a dictionary and the
lookup key are interned, key comparisons (after hashing)

The sys Module | 177

can be done by comparing pointers instead of strings. Nor‐
mally, names used in Python programs are automatically
interned, and the dictionaries used to hold module, class,
and instance attributes have interned keys.

sys.last_type, sys.last_value, sys.last_traceback
Type, value, and traceback objects of last uncaught excep‐
tion (mostly for postmortem debugging).

sys.maxsize

An integer giving the maximum value a variable of type
Py_ssize_t can take. It’s usually 2**31 − 1 on a 32-bit plat‐
form and 2**63 − 1 on a 64-bit platform.

sys.maxunicode

An integer giving the largest supported code point for a
Unicode character. In Python 3.3 and later, this is always
1114111 (0x10FFFF in hexadecimal) due to 3.3’s flexible and
variable-size string storage system. Prior to 3.3, the value of
this depends on the configuration option that specifies
whether Unicode characters are stored as UCS-2 or UCS-4,
and may be 0xFFFF or 0x10FFFF.

sys.modules

Dictionary of modules that are already loaded; there is one
name:object entry per module. Hint: this dictionary may be
changed to impact future imports (e.g., del sys.modules
['name'] forces a module to be reloaded on next import).

sys.path

List of strings specifying module import search path. Ini‐
tialized from PYTHONPATH shell variable, any .pth path files,
and any installation-dependent defaults. Hint: this attribute
and its list may both be changed to impact future imports
(e.g., sys.path.append('C:\\dir') adds a directory to the
module search path dynamically).

The first item, path[0], is the directory containing the script
that was used to invoke the Python interpreter. If the script
directory is not available (e.g., if the interpreter is invoked

178 | Python Pocket Reference

interactively or if the script is read from standard input),
path[0] is the empty string, which directs Python to search
modules in the current working directory first. The script
directory is inserted before the entries inserted from
PYTHONPATH. See also “The import Statement”.

sys.platform

String identifying the system on which Python is running:
'win32', 'darwin', 'linux2', 'cygwin', 'os2', 'freebsd8',
'sunos5', 'PalmOS3', etc. Useful for tests in platform-
dependent code.

This is 'win32' for all current flavors of Windows, but test
sys.platform[:3]=='win' or sys.platform.startswith

('win') for generality. As of Python 3.3, all Linux platforms
are 'linux', but scripts should similarly test for this with
str.startswith('linux') as it was formerly either 'linux2'
or 'linux3'.

sys.prefix

Assign to a string giving the site-specific directory prefix,
where platform-independent Python files are installed; de‐
faults to /usr/local or a build-time argument. Python library
modules are installed in the directory <prefix>/lib/
python<version>; platform-independent header files are
stored in <prefix>/include/python<version>.

sys.ps1

String specifying primary prompt in interactive mode; de‐
faults to >>> unless assigned.

sys.ps2

String specifying secondary prompt for compound state‐
ment continuations, in interactive mode; defaults to ...
unless assigned.

sys.setcheckinterval(reps)

Superseded in Python 3.2 and later by setswitchinterval()
(covered in this list). In 3.2 and later, this function is still

The sys Module | 179

present but has no effect, as the implementation of thread
switching and asynchronous tasks was rewritten.

In Python 3.1 and earlier, called to set how often the inter‐
preter checks for periodic tasks (e.g., thread switches, signal
handlers) to reps, measured in virtual machine instructions
(default is 100). In general, a Python statement translates to
multiple virtual machine instructions. Lower values maxi‐
mize thread responsiveness but also maximize thread switch
overhead.

sys.setdefaultencoding(name)

Removed as of Python 3.2. Call to set the current default
string encoding used by the Unicode implementation to
name. Intended for use by the site module and is available
during start-up only.

sys.setprofile(func)

Call to set the system profile function to func: the profiler’s
“hook” (not run for each line). See the Python Library Ref‐
erence for details.

sys.setrecursionlimit(depth)

Call to set maximum depth of the Python call stack to
depth. This limit prevents infinite recursion from causing
an overflow of the C stack and crashing Python. The default
is 1,000 on Windows, but this may vary. Higher values may
be required for deeply recursive functions.

sys.setswitchinterval(interval)

In Python 3.2 and later, sets the interpreter’s thread switch
interval to interval, given in seconds This is a floating-point
value (e.g., 0.005 is 5 milliseconds) that determines the ideal
duration of the time slices allocated to concurrently running
Python threads. The actual value can be higher, especially if
long-running internal functions or methods are used, and
the choice of thread scheduled at the end of the interval is
made by the operating system. (The Python interpreter does
not have its own scheduler.)

180 | Python Pocket Reference

In Python 3.1 and earlier, use setcheckinterval() instead
(covered in this list).

sys.settrace(func)

Call to set the system trace function to func. This is the pro‐
gram location or state change callback “hook” used by de‐
buggers, etc. See the Python Library Reference for details.

sys.stdin

A preopened file object, initially connected to the standard
input stream, stdin. Can be assigned to any object with read
methods to reset input within a script (e.g., sys.stdin =
MyObj()). Used for interpreter input, including the input()
built-in function (and raw_input() in Python 2.X).

sys.stdout

A preopened file object, initially connected to the standard
output stream, stdout. Can be assigned to any object with
write methods to reset output within a script (e.g.,
sys.stdout=open('log', 'a')). Used for some prompts
and the print() built-in function (and print statement in
Python 2.X). Use PYTHONIOENCODING to override the
platform-dependent encoding if needed (see “Python Envi‐
ronment Variables”), and -u for unbuffered streams (see
“Python Command Options”).

sys.stderr

A preopened file object, initially connected to the standard
error stream, stderr. Can be assigned to any object with
write methods to reset stderr within a script (e.g.,
sys.stderr=wrappedsocket). Used for interpreter prompts/
errors.

sys.__stdin__, sys.__stdout__, sys.__stderr__
Original values of stdin, stderr, and stdout at program start
(e.g., for restores as a last resort; normally, when assigning
to sys.stdout, etc., save the old value and restore it in a
finally clause). Note: these can be None for GUI apps on
Windows with no console.

The sys Module | 181

sys.thread_info

Details of Python’s thread implementation via attributes;
new in Python 3.3 (see Python manuals).

sys.tracebacklimit

Maximum number of traceback levels to print on uncaught
exceptions; defaults to 1,000 unless assigned.

sys.sys.version

String containing the version number of the Python inter‐
preter.

sys.version_info

Tuple containing five version identification components:
major, minor, micro, release level, and serial. For Python
3.0.1, this is (3, 0, 1, 'final', 0). In recent releases only,
this is a named tuple, whose components may be accessed
as either tuple items or attribute names; for Python 3.3.0,
this displays sys.version_info(major=3, minor=3, micro
=0, releaselevel='final', serial=0). See the Python Li‐
brary Reference for more details.

sys.winver

Version number used to form registry keys on Windows
platforms (available only on Windows; see the Python Li‐
brary Reference).

The string Module
The string module defines constants and variables for process‐
ing string objects. See also “Strings” for more on the string tem‐
plate substitution and formatting tools Template and Formatter
defined in this module.

Functions and Classes
As of Python 2.0, most functions in this module are also available
as methods of string objects; method-based calls are more effi‐
cient, are preferred in 2.X, and are the only option retained in
3.X. See “Strings” for more details and a list of all available string

182 | Python Pocket Reference

methods not repeated here. Only items unique to the string
module are listed in this section:
string.capwords(s, sep=None)

Split the argument s into words using s.split(), capitalize
each word using s.capitalize(), and join the capitalized
words using s.join(). If the optional argument sep is absent
or None, runs of whitespace characters are replaced by a sin‐
gle space, and leading and trailing whitespace is removed;
otherwise sep is used to split and join the words.

string.maketrans(from, to)
Returns a translation table suitable for passing to
bytes.translate() that will map each character in from into
the character at the same position in to; from and to must
have the same length.

string.Formatter

Class that allows creation of custom formatters using the
same mechanism as the str.format() method, described in
“String formatting method”.

string.Template

String template substitution class, described in “Template
string substitution”.

Constants
string.ascii_letters

The string ascii_lowercase + ascii_uppercase.

string.ascii_lowercase

The string 'abcdefghijklmnopqrstuvwxyz'; not locale-
dependent and will not change.

string.ascii_uppercase

The string 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'; not locale-
dependent and will not change.

string.digits

The string '0123456789'.

The string Module | 183

string.hexdigits

The string '0123456789abcdefABCDEF'.

string.octdigits

The string '01234567'.

string.printable

Combination of digits, ascii_letters, punctuation, and
whitespace.

string.punctuation

String of characters that are considered punctuation char‐
acters in the locale.

string.whitespace

String containing space, tab, line feed, return, vertical tab,
and form feed: ' \t\n\r\v\f'.

The os System Module
The os module is the primary operating system (OS) services in‐
terface in both Python 3.X and 2.X. It provides generic OS sup‐
port and a standard, platform-independent set of OS utilities. The
os module includes tools for environments, processes, files, shell
commands, and much more. It also includes a nested submodule,
os.path, which provides a portable interface to directory pro‐
cessing tools.

Scripts that use os and os.path for systems programming are
generally portable across most Python platforms. However, some
os exports are not available on all platforms (e.g., os.fork() is
available on Unix and Cygwin, but not in the standard Windows
version of Python). Because the portability of such calls can
change over time, consult the Python Library Reference for plat‐
form details.

The following sections highlight commonly used tools in this
module. This is a partial list: see Python’s standard library manual
for full details on the over 200 tools in this module on some

184 | Python Pocket Reference

platforms, as well as platform and version differences omitted
here. Subsections here reflect this large module’s functional areas:

• Administrative Tools: module-related exports

• Portability Constants: directory and search-path constants

• Shell Commands: running command lines and files

• Environment Tools: execution environment and context

• File Descriptor Tools: processing files by their descriptors

• File Pathname Tools: processing files by their path names

• Process Control: creating and managing processes

• The os.path Module: directory path name-related services

See also these related system modules in Python’s standard library,
covered in Python manuals except as noted: sys—interpreter
process tools (see “The sys Module”); subprocess—spawned
command control (see “The subprocess Module”); threading
and queue—multithreading tools (see “Threading Modules”);
socket—networking and IPC (see “Internet Modules and
Tools”); glob—filename expansion (e.g., glob.glob('*.py'));
tempfile—temporary files; signal—signal handling; multi

processing—threading-like API for processes; and getopt,
optparse, and, in 3.2 and later, argparse—command-line
processing.

Administrative Tools
Following are some miscellaneous module-related exports:
os.error

An alias for the built-in OSError exception: see “Built-in Ex‐
ceptions”. Raised for all os module-related errors. This ex‐
ception has two attributes: errno, the numeric error code
per POSIX (e.g., the value of the C errno variable); and
strerror, the corresponding error message provided by the
operating system, and as formatted by underlying C func‐
tions (e.g., by perror(), and as for os.strerror()). For

The os System Module | 185

exceptions that involve a file pathname (e.g., chdir(),
unlink()), the exception instance also contains the attribute
filename, the filename passed in. See the module errno in
the Python Library Reference for names of the error codes
defined by the underlying OS.

os.name

Name of OS-specific modules whose names are copied to
the top level of os (e.g., posix, nt, mac, os2, ce, or java). See
also sys.platform in section “The sys Module”.

os.path

Nested module for portable pathname-related utilities. For
example, os.path.split() is a platform-independent direc‐
tory name tool that performs appropriate platform-specific
action.

Portability Constants
This section describes file portability tools, for directory and
search paths, line feeds, and more. They are automatically set to
the appropriate value for the platform on which a script is run‐
ning, and are useful for both parsing and constructing platform-
dependent strings. See also “The os.path Module”:
os.curdir

String used to represent current directory (e.g., . for Win‐
dows and POSIX, : for Macintosh).

os.pardir

String used to represent parent directory (e.g., .. for
POSIX, :: for Macintosh).

os.sep

String used to separate directories (e.g., / for Unix, \ for
Windows, or : for Macintosh).

os.altsep

Alternative separator string or None (e.g., / for Windows).

186 | Python Pocket Reference

os.extsep

The character that separates the base filename from the ex‐
tension (e.g., .).

os.pathsep

Character used to separate search path components, as in
the PATH and PYTHONPATH shell variable settings (e.g., ; for
Windows, : for Unix).

os.defpath

Default search path used by os.exec*p* calls if there is no
PATH setting in the shell.

os.linesep

String used to terminate lines on current platform (e.g., \n
for POSIX, \r for Mac OS, and \r\n for Windows). Not re‐
quired writing lines in text mode files—use the file object’s
auto-translation of '\n' (see open() in “Built-in Func‐
tions”).

os.devnull

The file path of the “null” device (for text be discarded). This
is '/dev/null' for POSIX, and 'nul' for Windows (also in
the os.path submodule).

Shell Commands
These functions run command lines or files in the underlying op‐
erating system. In Python 2.X, this module has os.popen2/3/4
calls, which have been replaced in Python 3.X by subprocess
.Popen—a tool that generally offers finer-grained control over
spawned commands (see “The subprocess Module”). Hint: do
not use these tools to launch untrustworthy shell command
strings, as they may run any command allowed for the Python
process:
os.system(cmd)

Executes a shell command-line string cmd in a subshell pro‐
cess. Returns the exit status of the spawned process. Unlike
popen(), does not connect to cmd ’s standard streams via

The os System Module | 187

pipes. Hint: add a & at the end of cmd to run the command
in the background on Unix (e.g., os.system('python

main.py &')); use a Windows (DOS) start command to
launch programs easily on Windows (e.g., os.system

('start file.html')).

os.startfile(filepathname)

Starts a file with its associated application. Acts like double-
clicking the file in Windows Explorer or giving the filename
as an argument to a Windows start command (e.g., with
os.system('start path')). The file is opened in the appli‐
cation with which its extension is associated; the call does
not wait, and does not generally pop up a Windows console
window (a.k.a. Command Prompt). Windows only, added in
version 2.0.

os.popen(cmd, mode='r', buffering=None)

Opens a pipe to or from the shell command-line string cmd,
to send or capture data. Returns an open file object, which
can be used to either read from cmd’s standard output stream
stdout (mode 'r', the default) or write to cmd’s standard input
stream stdin (mode 'w'). For example, dirlist = os.popen
('ls −l *.py').read() reads the output of a Unix ls
command.

cmd is any command string you can type at your system’s
console or shell prompt. mode can be 'r' or 'w' and defaults
to 'r'. buffering is the same as in the built-in open() func‐
tion. cmd runs independently; its exit status is returned by
the resulting file object’s close() method, except that None
is returned if exit status is 0 (no errors). Use readline() or
file object iteration to read output line by line (and possibly
interleave operations more fully).

Python 2.X also has variants popen2(), popen3(), and
popen4() to connect to other streams of the spawned com‐
mand (e.g., popen2() returns a tuple (child_stdin,

child_stdout)). In Python 3.X, these calls are removed; use
subprocess.Popen() instead. The subprocess module in
version 2.4 and later allows scripts to spawn new processes,

188 | Python Pocket Reference

connect to their streams, and obtain their return codes (see
“The subprocess Module”).

os.spawn*(args...)

A family of functions for spawning programs and com‐
mands. See “Process Control” ahead, as well as the Python
Library Reference for more details. The subprocess module
is an alternative to these calls (see “The subprocess Mod‐
ule”).

Environment Tools
These attributes export execution context: shell environment,
current directory, and so on:
os.environ

The shell environment variable dictionary-like object.
os.environ['USER'] is the value of variable USER in the shell
(equivalent to $USER in Unix and %USER% in Windows). Ini‐
tialized on program start-up. Changes made to os.environ
by key assignment are exported outside Python using a call
to C’s putenv() and are inherited by any processes that are
later spawned in any way, as well as any linked-in C code.
See also Python manuals for the os.environb environment
bytes interface in Python 3.2 and later.

os.putenv(varname, value)
Sets the shell environment variable named varname to the
string value. Affects subprocesses started with system(),
popen(), spawnv(), fork() and execv(), and more. Assign‐
ment to os.environ keys automatically calls os.putenv(),
but os.putenv() calls don’t update os.environ, so
os.environ is preferred.

os.getenv(varname, default=None)

Return the value of the environment variable varname if it
exists, else default. At present, this simply indexes the
preloaded environment dictionary, with os.environ.get
(varname, default). varname, default, and the result are str;

The os System Module | 189

see also Python’s manuals for Unicode encoding rules, and
os.getenvb() for a bytes equivalent as of Python 3.2.

os.getcwd()

Returns the current working directory name as a string.

os.chdir(path)

Changes the current working directory for this process to
path, a directory name string. Future file operations are rel‐
ative to the new current working directory. Hint: this does
not update sys.path used for module imports, although
its first entry may be a generic current working directory
designator.

os.strerror(code)

Returns an error message corresponding to code.

os.times()

Returns a five-tuple containing elapsed CPU time informa‐
tion for the calling process in floating-point seconds: (user-
time, system-time, child-user-time, child-system-time,
elapsed-real-time). Also see “The time Module”.

os.umask(mask)

Sets the numeric umask to mask and returns the prior value.

os.uname()

Returns OS name tuple of strings: (systemname, nodename,
release, version, machine).

File Descriptor Tools
The following functions process files by their file descriptors,
where fd is a file descriptor integer. os module file descriptor-
based files are meant for low-level file tasks and are not the same
as stdio file objects returned by the built-in open() function. File
objects, not the file descriptors here, should normally be used for
most file processing. See open() in “Built-in Functions” for de‐
tails. If needed, os.fdopen() and the file object’s fileno() method
convert between the two forms, and the built-in open() function
accepts a file descriptor in 3.X.

190 | Python Pocket Reference

N O T E

The “file descriptors” here are distinct from class “descrip‐
tors” (see “Methods for Descriptors” for the latter). Also
note that Python 3.4 intends to change file descriptors to
not be inherited by default in subprocesses, and provide new
get_inheritable(fd) and set_inheritable(fd, boolean)
calls in os to manage this default.

os.close(fd)

Closes file descriptor fd (not a file object).

os.dup(fd)

Returns duplicate of file descriptor fd.

os.dup2(fd, fd2)
Copies file descriptor fd to fd2 (close fd2 first if open).

os.fdopen(fd, *args, **kwargs)

Returns a built-in stdio file object connected to file descrip‐
tor fd (an integer). This is an alias for the open() built-in
function and accepts the same arguments, except that first
argument of fdopen() must always be an integer file de‐
scriptor (see open() in “Built-in Functions”). A conversion
from file descriptor-based files to file objects is normally
created automatically by the built-in open() function. Hint:
use fileobject.fileno() to convert a file object to a file
descriptor.

os.fstat(fd)

Returns status for file descriptor fd (like os.stat()).

os.ftruncate(fd, length)
Truncates the file corresponding to file descriptor fd so that
it is at most length bytes in size.

os.isatty(fd)

Returns True if file descriptor fd is open and connected to a
tty-like (interactive) device, else False (may return 1 or 0 in
older Pythons).

The os System Module | 191

os.lseek(fd, pos, how)
Sets the current position of file descriptor fd to pos (for ran‐
dom access). how can be 0 to set the position relative to the
start of the file, 1 to set it relative to the current position, or
2 to set it relative to the end.

os.open(filename, flags [, mode=0o777], [dir_fd=None])
Opens a file descriptor-based file and returns the file de‐
scriptor—an integer that may be passed to other os module
file operation calls, not a stdio file object. Intended for low-
level file tasks only; not the same as the built-in open()
function, which is preferred for most file processing (see
“Built-in Functions”).

filename is the file’s possibly-relative path name string.
flags is a bitmask: use | to combine both platform-neutral
and platform-specific flag constants defined in the os mod‐
ule (see Table 18). mode defaults to 0o777 (octal), and the
current umask value is first masked out. dir_fd is new in
Python 3.3, and supports paths relative to directory file de‐
scriptors (see Python manuals). Hint: os.open() may be
used with the os.O_EXCL flag to portably lock files for con‐
current updates or other process synchronization.

os.pipe()

Create an anonymous pipe. See “Process Control”.

os.read(fd, n)
Reads at most n bytes from file descriptor fd and returns
those bytes as a string.

os.write(fd, str)
Writes all bytes in string str to file descriptor fd.

Table 18. Sample or-able flags for os.open (all os.flag)

O_APPEND O_EXCL O_RDONLY O_TRUNC

O_BINARY O_NDELAY O_RDWR O_WRONLY

O_CREAT O_NOCTTY O_RSYNC

O_DSYNC O_NONBLOCK O_SYNC

192 | Python Pocket Reference

File Pathname Tools
The following functions process files by their pathnames, in which
path is a string pathname of a file. See also “The os.path Mod‐
ule”. In Python 2.X, this module also includes temporary file tools
that have been replaced with the tempfile module in Python 3.X.
As of Python 3.3, some of these tools have grown an additional
and optional dir_fd argument not shown here, to support paths
relative to directory file descriptors; see Python manuals for
details:
os.chdir(path)

os.getcwd()

Current working directory tools. See “Environment Tools”.

os.chmod(path, mode)
Changes mode of file path to numeric mode.

os.chown(path, uid, gid)
Changes owner/group IDs of path to numeric uid/gid.

os.link(srcpath, dstpath)
Creates a hard link to file srcpath, named dstpath.

os.listdir(path)

Returns a list of names of all the entries in the directory
path. A fast and portable alternative to the glob.glob
(pattern) call and to running shell listing commands with
os.popen(). See also module glob in Python manuals for
filename pattern expansion, and os.walk() later in this sec‐
tion for full directory tree walking.

In Python 3.X, this call is passed and returns bytes instead
of str to suppress Unicode filename decoding per platform
default (this behavior also applies to glob.glob() and
os.walk()). In Python 3.2 and later, path defaults to “.” if
omitted, the current working directory.

os.lstat(path)

Like os.stat(), but does not follow symbolic links.

The os System Module | 193

os.mkfifo(path [, mode=0o666])
Creates a FIFO (a named pipe) identified by string path with
access permission given by numeric mode (but does not open
it). The default mode is 0o666 (octal). The current umask
value is first masked out from the mode. This call has a dir_fd
optional keyword-only argument in 3.3.

FIFOs are pipes that live in the filesystem and can be opened
and processed like regular files, but support synchronized
access between independently started clients and servers, by
common filename. FIFOs exist until deleted. This call is
currently available on Unix-like platforms, including Cyg‐
win on Windows, but not in standard Windows Python.
Sockets can often achieve similar goals (see the socket mod‐
ule in “Internet Modules and Tools” and Python manuals).

os.mkdir(path [, mode])
Makes a directory called path, with the given mode. The de‐
fault mode is 0o777 (octal).

os.makedirs(path [, mode])
Recursive directory-creation function. Like mkdir(), but
makes all intermediate-level directories needed to contain
the leaf directory. Throws an exception if the leaf directory
already exists or cannot be created. mode defaults to 0o777
(octal). In Python 3.2 and later, this call has an additional
optional argument exists_ok; see Python manual.

os.readlink(path)

Returns the path referenced by a symbolic link path.

os.remove(path)

os.unlink(path)

Removes (deletes) the file named path. remove() is identical
to unlink(). See also rmdir() and removedirs() in this list
for removing directories.

os.removedirs(path)

Recursive directory-removal function. Similar to rmdir(),
but if the leaf directory is successfully removed, directories

194 | Python Pocket Reference

corresponding to the rightmost path segments will then be
pruned until either the whole path is consumed or an error
is raised. Throws an exception if the leaf directory could not
be removed.

os.rename(srcpath, dstpath)
Renames (moves) file srcpath to name dstpath. See also
os.replace() as of Python 3.3 in Python manuals.

os.renames(oldpath, newpath)
Recursive directory- or file-renaming function. Like
rename(), but creation of any intermediate directories need‐
ed to make the new pathname valid is attempted first. After
the rename, directories corresponding to the rightmost
path segments of the old name will be pruned using
removedirs().

os.rmdir(path)

Removes (deletes) a directory named path.

os.stat(path)

Runs stat system call for path; returns a tuple of integers
with low-level file information (whose items are defined and
processed by tools in standard library module stat).

os.symlink(srcpath, dstpath)
Creates a symbolic link to file srcpath, called dstpath.

os.utime(path, (atime, mtime))
Sets file path access and modification times.

os.access(path, mode)
Consult the Python Library Reference or Unix manpages for
details.

os.walk(...)

os.walk(top
 [, topdown=True
 [, onerror=None]
 [, followlinks=False]]])

The os System Module | 195

Generates the filenames in a directory tree by walking the
tree either top-down or bottom-up. For each directory in
the tree rooted at the possibly relative directory path named
by string top (including top itself), yields a three-item tuple
(a.k.a. triple) (dirpath, dirnames, filenames), where:

• dirpath is a string, the path to the directory.

• dirnames is a list of the names of the subdirectories in
dirpath (excluding . and ..).

• filenames is a list of the names of the nondirectory
files in dirpath.

Note that the names in the lists do not contain path com‐
ponents. To get a full path (which begins with top) to a file
or directory in dirpath, run os.path.join(dirpath, name).

If optional argument topdown is true or not specified, the
triple for a directory is generated before the triples for any
of its subdirectories (directories are generated top-down).
If topdown is false, the triple for a directory is generated after
the triples for all its subdirectories (directories are generated
bottom-up). If optional onerror is specified, it should be a
function, which will be called with one argument, an os.
error instance. By default, os.walk will not walk down into
symbolic links that resolve to directories; set followlinks to
True to visit directories pointed to by such links, on systems
that support them.

When topdown is true, the dirnames list may be modified in-
place to control the search, as os.walk() will recurse into
only the subdirectories whose names remain in dirnames.
This is useful to prune the search, impose a specific order of
visitations, etc.

Python 2.X also provides an os.path.walk() call with sim‐
ilar tree-walking functionality, using an event-handler func‐
tion callback instead of a generator. In Python 3.X,
os.path.walk() is removed due to its redundancy; use
os.walk() instead. See also module glob in Python manuals

196 | Python Pocket Reference

for related filename expansion (e.g., glob.glob

(r'***.py')).

Process Control
The following functions are used to create and manage processes
and programs. See also “Shell Commands” for other ways to start
programs and files. Hint: do not use these tools to launch un‐
trustworthy shell command strings, as they may run any com‐
mand allowed for the Python process:
os.abort()

Sends a SIGABRT signal to the current process. On Unix, the
default behavior is to produce a core dump; on Windows,
the process immediately returns exit code 3.

os.execl(path, arg0, arg1,...)
Equivalent to execv(path, (arg0, arg1,...)).

os.execle(path, arg0, arg1,..., env)
Equivalent to execve(path, (arg0, arg1,...), env).

os.execlp(path, arg0, arg1,...)
Equivalent to execvp(path, (arg0, arg1,...)).

os.execve(path, args, env)
Like execv(), but the env dictionary replaces the shell vari‐
able environment. env must map strings to strings.

os.execvp(path, args)
Like execv(path, args), but duplicates the shell’s actions in
searching for an executable file in a list of directories. The
directory list is obtained from os.environ['PATH'].

os.execvpe(path, args, env)
A cross between execve() and execvp(). The directory list
is obtained from os.environ['PATH'].

os.execv(path, args)
Executes the executable file path with the command-line
argument args, replacing the current program in this pro‐
cess (the Python interpreter). args can be a tuple or a list of

The os System Module | 197

strings, and it starts with the executable’s name by conven‐
tion (argv[0]). This function call never returns, unless an
error occurs while starting the new program.

os._exit(n)

Exits the process immediately with status n, without per‐
forming normal program termination steps. Normally used
only in a child process after a fork; the standard way to exit
is to call sys.exit(n).

os.fork()

Spawns a child process (a virtual copy of the calling process,
running in parallel); returns 0 in the child and the new child’s
process ID in the parent. Not available in standard Windows
Python, but is available on Windows in Cygwin Python
(popen(), system(), spawnv(), and the subprocess module
are generally more portable).

os.getpid()

os.getppid()

Returns the process ID of the current (calling) process;
getppid() returns the parent process ID.

os.getuid()

os.geteuid()

Returns the process’s user ID; geteuid returns the effective
user ID.

os.kill(pid, sig)
Send signal sig to the process with ID pid, potentially killing
it (for some signal types). See also the signal standard li‐
brary module in Python manuals for signal constants and
signal handler registration.

os.mkfifo(path [, mode])
See the earlier section “File Pathname Tools” (named files
used for process synchronization).

os.nice(increment)

Adds increment to process’s “niceness” (i.e., lowers its CPU
priority).

198 | Python Pocket Reference

os.pipe()

Returns a tuple of file descriptors (readfd, writefd) for
reading and writing a new anonymous (unnamed) pipe.
Used for cross-process communication of related processes.

os.plock(op)

Locks program segments into memory. op (defined in
<sys./lock.h>) determines which segments are locked.

os.spawnv(mode, path, args)
Executes program path in a new process, passing the argu‐
ments specified in args as a command line. args can be a list
or a tuple. mode is an operational constant made from the
following names, also defined in the os module: P_WAIT,
P_NOWAIT, P_NOWAITO, P_OVERLAY, and P_DETACH. On Win‐
dows, roughly equivalent to a fork() plus execv() combi‐
nation. (fork() is not available on standard Windows
Python, although popen() and system() are.) See also the
standard library subprocess module for more feature-rich
alternatives to this call (see “The subprocess Module”).

os.spawnve(mode, path, args, env)
Like spawnv(), but passes the contents of mapping env as the
spawned program’s shell environment (else it would inherit
its parent’s).

os.wait()

Waits for completion of a child process. Returns a tuple with
child’s ID and exit status.

os.waitpid(pid, options)
Waits for child process with ID pid to complete. options is
0 for normal use, or os.WNOHANG to avoid hanging if no child
status is available. If pid is 0, the request applies to any child
in the process group of the current process. See also the
process exit status-check functions documented in the
Python Library Reference (e.g., WEXITSTATUS(status) to ex‐
tract the exit code).

The os System Module | 199

The os.path Module
The os.path module provides additional file directory pathname-
related services and portability tools. This is a nested module: its
names are nested in the os module within the submodule os.path
(e.g., the exists function may be obtained by importing os and
using name os.path.exists).

Most functions in this module take an argument path, the string
directory pathname of a file (e.g., 'C:\dir1\spam.txt'). Direc‐
tory paths are generally coded per the platform’s conventions and
are mapped to the current working directory if lacking a directory
prefix. Hint: forward slashes usually work as directory separators
on all platforms. In Python 2.X, this module includes an
os.path.walk() tool, which has been replaced by os.walk() in
Python 3.X (see “File Pathname Tools”):
os.path.abspath(path)

Returns a normalized absolute version of path. On most
platforms, this is equivalent to normpath(join(os

.getcwd(), path)).

os.path.basename(path)

Same as second half of pair returned by split(path).

os.path.commonprefix(list)

Returns longest path prefix (character by character) that is
a prefix of all paths in list.

os.path.dirname(path)

Same as first half of pair returned by split(path).

os.path.exists(path)

True if string path is the name of an existing file path.

os.path.expanduser(path)

Returns string that is path with embedded ˜ username ex‐
pansion done.

os.path.expandvars(path)

Returns string that is path with embedded $ environment
variables expanded.

200 | Python Pocket Reference

os.path.getatime(path)

Returns time of last access of path (seconds since the epoch).

os.path.getmtime(path)

Returns time of last modification of path (seconds since the
epoch).

os.path.getsize(path)

Returns size, in bytes, of file path.

os.path.isabs(path)

True if string path is an absolute path.

os.path.isfile(path)

True if string path is a regular file.

os.path.isdir(path)

True if string path is a directory.

os.path.islink(path)

True if string path is a symbolic link.

os.path.ismount(path)

True if string path is a mount point.

os.path.join(path1 [, path2 [, ...]])
Joins one or more path components intelligently (using
platform-specific separator conventions between each part).

os.path.normcase(path)

Normalizes case of a pathname. Has no effect on Unix; on
case-insensitive filesystems, converts to lowercase; on Win‐
dows, also converts / to \.

os.path.normpath(path)

Normalizes a pathname. Collapses redundant separators
and up-level references; on Windows, converts / to \.

os.path.realpath(path)

Returns the canonical path of the specified filename, elim‐
inating any symbolic links encountered in the path.

The os System Module | 201

os.path.samefile(path1, path2)
True if both pathname arguments refer to the same file or
directory.

os.path.sameopenfile(fp1, fp2)
True if both file objects refer to the same file.

os.path.samestat(stat1, stat2)
True if both stat tuples refer to the same file.

os.path.split(path)

Splits path into (head, tail), where tail is the last path‐
name component and head is everything leading up to
tail. Same as tuple (dirname(path), basename(path)).

os.path.splitdrive(path)

Splits path into a pair ('drive:', tail) (on Windows).

os.path.splitext(path)

Splits path into (root, ext), where the last component of
root contains no ., and ext is empty or starts with a ..

os.path.walk(path, visitor, data)
An alternative to os.walk() in Python 2.X only, and based
on directory-handler callback function visitor with state
data, instead of directory generator. Removed in Python
3.X: use os.walk(), not os.path.walk().

The re Pattern-Matching Module
The re module is the standard regular expression pattern-
matching interface in both Python 3.X and 2.X. Regular expres‐
sion (RE) patterns, and the text to be matched by them, are speci‐
fied as strings. This module must be imported.

Module Functions
The module’s top-level interface includes tools to match imme‐
diately or precompile patterns, and creates pattern objects (pobj)
and match objects (mobj) defined in subsequent sections:

202 | Python Pocket Reference

re.compile(pattern [, flags])
Compile an RE pattern string into a RE pattern object
(pobj), for later matching. flags (combinable by bitwise |
operator) include the following, available at the top-level of
the re module:
re.A or re.ASCII or (?a)

Makes \w, \W, \b, \B, \s, and \S perform ASCII-only
matching instead of full Unicode matching. This is
meaningful only for Unicode patterns and is ignored
for byte patterns. Note that for backward compatibility,
the re.U flag still exists (as well as its synonym re.
UNICODE and its embedded counterpart, ?u), but these
are redundant in Python 3.X since matches are Unicode
by default for strings (and Unicode matching isn’t al‐
lowed for bytes).

re.I or re.IGNORECASE or (?i)
Case-insensitive matching.

re.L or re.LOCALE or (?L)
Makes \w, \W, \b, \B, \s, \S, \d, and \D dependent on the
current locale (default is Unicode for Python 3.X).

re.M or re.MULTILINE or (?m)
Matches to each newline, not whole string.

re.S or re.DOTALL or (?s)
. matches all characters, including newline.

re.U or re.UNICODE or (?u)
Makes \w, \W, \b, \B, \s, \S, \d, and \D dependent on
Unicode character properties (new in version 2.0, and
superfluous in Python 3.X).

re.X or re.VERBOSE or (?x)
Ignores whitespace in the pattern, outside character
sets.

The re Pattern-Matching Module | 203

re.match(pattern, string [, flags])
If zero or more characters at start of string match the
pattern string, returns a corresponding match object in‐
stance (mobj), or None if no match. flags is as in compile().

re.search(pattern, string [, flags])
Scans through string for a location matching pattern; re‐
turns a corresponding match object instance (mobj), or None
if no match. flags is as in compile().

re.split(pattern, string [, maxsplit=0])
Splits string by occurrences of pattern. If capturing () are
used in pattern, occurrences of patterns or subpatterns are
also returned.

re.sub(pattern, repl, string [, count=0])
Returns string obtained by replacing the (first count) left‐
most nonoverlapping occurrences of pattern (a string or an
RE object) in string by repl. repl can be a string or a func‐
tion called with a single match object (mobj) argument,
which must return the replacement string. repl can also in‐
clude sequence escapes \1, \2, etc., to use substrings that
match groups, or \0 for all.

re.subn(pattern, repl, string [, count=0])
Same as sub but returns a tuple (new-string, number-of-
subs-made).

re.findall(pattern, string [, flags])
Returns a list of strings giving all nonoverlapping matches
of pattern in string. If one or more groups are present in
the pattern, returns a list of groups.

re.finditer(pattern, string [, flags])
Returns an iterable over all nonoverlapping matches for the
RE pattern in string (match objects).

re.escape(string)

Returns string with all nonalphanumeric characters back‐
slashed, such that they can be compiled as a string literal.

204 | Python Pocket Reference

Regular Expression Objects
RE pattern objects (pobj) are returned by the re.compile() and
have the following attributes, some of which create match objects
(mobj):
pobj.flags

The flags argument used when the RE patterns object was
compiled.

pobj.groupindex

Dictionary of {group-name: group-number} in the pattern.

pobj.pattern

The pattern string from which the RE pattern object was
compiled.

pobj.match(string [, pos [, endpos]])
pobj.search(string [, pos [, endpos]])
pobj.split(string [, maxsplit=0])
pobj.sub(repl, string [, count=0])
pobj.subn(repl, string [, count=0])
pobj.findall(string [, pos[, endpos]])
pobj.finditer(string [, pos[, endpos]])

Same as earlier re module functions, but pattern is implied,
and pos and endpos give start/end string indexes for the
match. The first two may create match objects (mobj).

Match Objects
Match objects (mobj) are returned by successful match() and
search() operations, and have the following attributes (see the
Python Library Reference for additional lesser-used attributes
omitted here):
mobj.pos, mobj.endpos

Values of pos and endpos passed to search or match.

mobj.re

RE pattern object whose match or search produced this
match object (see its pattern string).

The re Pattern-Matching Module | 205

mobj.string

String passed to match or search.

mobj.group([g [, g]*)
Returns substrings that were matched by parenthesized
groups in the pattern. Accepts zero or more group number
or name identifiers g, implied by patterns (R) and (?
P<name>R), respectively. If one argument, result is the sub‐
string that matched the group whose identifier passed. If
multiple arguments, result is a tuple with one matched sub‐
string per argument. If no arguments, returns entire match‐
ing substring. If any group number is 0, return value is entire
matching string; otherwise, returns string matching corre‐
sponding parenthesized group. Groups in pattern are num‐
bered 1...N, from left to right.

mobj.groups()

Returns a tuple of all groups of the match; groups not par‐
ticipating in the match have a value of None.

mobj.groupdict()

Returns a dictionary containing all the named subgroups of
the match, keyed by the subgroup name.

mobj.start([g]), mobj.end([g])
Indexes of start and end of substring matched by group g
(or entire matched string, if no group). For a match object
M, M.string[M.start(g):M.end(g)] == M.group(g).

mobj.span([g])

Returns the tuple (mobj.start(g), mobj.end(g)).

mobj.expand(template)

Returns the string obtained by doing backslash substitution
on the string template, as done by the sub method. Escapes
such as \n are converted to the appropriate characters, and
numeric back-references (e.g., \1, \2) and named back-
references (e.g., \g<1>, \g<name>) are replaced by the corre‐
sponding group.

206 | Python Pocket Reference

Pattern Syntax
Pattern strings are specified by concatenating forms (see
Table 19), as well as by character class escapes (see Table 20).
Python character escapes (e.g., \t for tab) can also appear. Pattern
strings are matched against text strings, yielding a Boolean match
result, as well as grouped substrings matched by subpatterns in
parentheses:

>>> import re
>>> pobj = re.compile('hello[\t]*(.*)')
>>> mobj = pobj.match('hello world!')
>>> mobj.group(1)
'world!'

In Table 19, C is any character, R is any regular expression form
in the left column of the table, and m and n are integers. Each form
usually consumes as much of the string being matched as possi‐
ble, except for the nongreedy forms (which consume as little as
possible, as long as the entire pattern still matches the target
string).
Table 19. Regular expression pattern syntax

Form Description

. Matches any character (including newline if DOTALL flag is
specified).

^ Matches start of string (of every line in MULTILINE mode).

$ Matches end of string (of every line in MULTILINE mode).

C Any nonspecial character matches itself.

R* Zero or more occurrences of preceding regular expression R
(as many as possible).

R+ One or more occurrences of preceding regular expression R
(as many as possible).

R? Zero or one occurrence of preceding regular expression R.

R{m} Matches exactly m repetitions of preceding regular
expression R.

The re Pattern-Matching Module | 207

Form Description

R{m,n} Matches from m to n repetitions of preceding regular
expression R.

R*?, R+?, R??,
R{m,n}?

Same as *, +, and ?, but matches as few characters/times
as possible; nongreedy.

[...] Defines character set; e.g., [a-zA-Z] matches all letters
(also see Table 20).

[^...] Defines complemented character set: matches if character is
not in set.

\ Escapes special characters (e.g., *?+|()) and introduces
special sequences (see Table 20). Due to Python rules, write
as \\ or r'..\..'.

\\ Matches a literal \; due to Python string rules, write as \\\\
in pattern, or r'\\'.

\number Matches the contents of the group of the same number:
r'(.+) \1' matches '42 42'.

R|R Alternative: matches left or right R.

RR Concatenation: matches both Rs.

(R) Matches any RE inside (), and delimits a group (retains
matched substring).

(?:R) Same as (R) but doesn’t delimit a group.

(?=R) Look-ahead assertion: matches if R matches next, but doesn’t
consume any of the string (e.g., 'X(?=Y)' matches X if
followed by Y).

(?!R) Negative look-ahead assertion: matches if R doesn’t match
next. Negative of (?=R).

(?P<name>R) Matches any RE inside () and delimits a named group (e.g.,
r'(?P<id>[a-zA-Z_]\w*)' defines a group named
id).

(?P=name) Matches whatever text was matched by the earlier group
named name.

(?#...) A comment; ignored.

208 | Python Pocket Reference

Form Description

(?letter) letter is one of a, i, L, m, s, x, or u. Set flag (re.A,
re.I, re.L, etc.) for entire RE.

(?<=R) Positive look-behind assertion: matches if preceded by a
match of fixed-width R.

(?<!R) Negative look-behind assertion: matches if not preceded by
a match of fixed-width R.

(?(id/

name)yespatt|

nopatt)

Will try to match with pattern yespatt if the group with
given id or name exists, else with optional nopatt.

In Table 20, \b, \B, \d, \D, \s, \S, \w, and \W behave differently
depending on flags, and defaults to Unicode in Python 3.X, unless
ASCII (a.k.a. ?a) is used. Tip: use raw strings (r'\n') to literalize
backslashes in Table 20 class escapes.
Table 20. Regular expression pattern special sequences

Sequence Description

\number Matches text of the group number (from 1)

\A Matches only at the start of the string

\b Empty string at word boundaries

\B Empty string not at word boundary

\d Any decimal digit (like [0–9])

\D Any nondecimal digit character (like [^0–9])

\s Any whitespace character (like [\t\n\r\f\v])

\S Any nonwhitespace character (like [^ \t\n\r\f\v])

\w Any alphanumeric character

\W Any nonalphanumeric character

\Z Matches only at the end of the string

The re Pattern-Matching Module | 209

Object Persistence Modules
Three modules comprise the standard library’s object persis‐
tence (Python object storage) system:
dbm (anydbm in Python 2.X)

Key-based string-only storage files.

pickle (and cPickle in Python 2.X)
Serializes an in-memory object to/from file streams.

shelve

Key-based persistent object stores: stores objects in dbm files
in pickle form.

The shelve module implements persistent object stores. shelve
in turn uses the pickle module to convert (serialize) in-memory
Python objects to linear strings and the dbm module to store those
linear strings in access-by-key files. All three modules can be used
directly.

N O T E

In Python 2.X, dbm is named anydbm, and the cPickle module
is an optimized version of pickle that may be imported di‐
rectly and is used automatically by shelve, if present. In
Python 3.X, cPickle is renamed _pickle and is automati‐
cally used by pickle if present—it need not be imported
directly and is acquired by shelve.

Also note that in Python 3.X the Berkeley DB (a.k.a. bsddb)
interface for dbm is no longer shipped with Python itself, but
is a third-party open source extension, which must be in‐
stalled separately if needed (see the Python 3.X Library Ref‐
erence for resources).

210 | Python Pocket Reference

The shelve and dbm Modules
dbm is a simple access-by-key text file: strings are stored and fetch‐
ed by their string keys. The dbm module selects the keyed-access
file implementation available in your Python interpreter and
presents a dictionary-like API for scripts.

shelve is an access-by-key object file: it is used like a simple dbm
file, except that module name differs, and the stored value can be
almost any kind of Python object (although keys are still strings).
In most respects, dbm files and shelves work like dictionaries that
must be opened before use, and closed after making changes; all
mapping operations and some dictionary methods work, and are
automatically mapped to external files.

File opens
For shelve, import the library, and call its open() to create a new
or open an existing shelve file:

import shelve
file = shelve.open(filename
 [, flag='c'
 [, protocol=None
 [, writeback=False]]])

For dbm, import the library, and call its open() to create a new or
open an existing dbm file. This employs whatever dbm support
library is available: dbm.bsd, dbm.gnu, dbm.ndbm, or dbm.dumb (the
last being a fallback default always present):

import dbm
file = dbm.open(filename
 [, flag='r'
 [, mode]])

filename in both shelve and dbm is a relative or absolute string
name of an external file where data is stored.

flag is the same in shelve and dbm (shelve passes it on to dbm). It
can be 'r' to open an existing database for reading only (dbm
default); 'w' to open an existing database for reading and writing;

Object Persistence Modules | 211

'c' to create the database if it doesn’t exist (shelve default); or
'n', which will always create a new empty database. The dbm.dumb
module (used by default in 3.X if no other library is installed)
ignores flag—the database is always opened for update and is
created if it doesn’t exist.

For dbm, the optional mode argument is the Unix mode of the file,
used only when the database has to be created. It defaults to octal
0o666.

For shelve, the protocol argument is passed on from shelve to
pickle. It gives the pickling protocol number (described in “The
pickle Module”) used to store shelved objects; it defaults to 0 in
Python 2.X, and currently to 3 in Python 3.X.

By default, changes to objects fetched from shelves are not auto‐
matically written back to disk. If the optional writeback param‐
eter is set to True, all entries accessed are cached in memory, and
written back at close time; this makes it easier to mutate mutable
entries in the shelve, but can consume memory for the cache,
making the close operation slow because all accessed entries are
written back. Reassign objects to their keys to update shelves
manually.

File operations
Once created, shelve and dbm have nearly identical, dictionary-
like interfaces, as follows:

file[key] = value

Store: creates or changes the entry for string key. The value is a
string for dbm, or a nearly arbitrary object for shelve.

value = file[key]

Fetch: loads the value for the key entry. For shelve, reconstructs
the original object in memory.

count = len(file)

Size: returns the number of entries stored.

index = file.keys()

212 | Python Pocket Reference

Index: fetches the stored keys iterable (a list in 2.X).

for key in file: ...

Iterate: keys iterator, usable in any iteration context.

found = key in file # Also has_key() in 2.X only

Query: True if there’s an entry for key.

del file[key]

Delete: removes the entry for key.

file.close()

Manual close; required to flush updates to disk for some under‐
lying dbm interfaces.

The pickle Module
The pickle module is an object serialization tool: it converts
nearly arbitrary in-memory Python objects to/from linear byte-
streams. These byte-streams can be directed to any file-like object
that has the expected read/write methods, and are used by shelve
as its internal data representation. Unpickling re-creates the orig‐
inal in-memory object, with the same value, but a new identity
(memory address).

See the earlier note about Python 2.X’s cPickle and Python 3.X’s
_pickle optimized modules. Also see the makefile method of
socket objects for shipping serialized objects over networks
without manual socket calls (see “Internet Modules and Tools”
and Python manuals).

Pickling interfaces
This module supports the following calls:

P = pickle.Pickler(fileobject [, protocol=None])

Makes a new pickler, for saving to an output file object.

P.dump(object)

Writes an object onto the pickler’s file/stream.

Object Persistence Modules | 213

pickle.dump(object, fileobject [, protocol=None])

Combination of the previous two: pickles object onto file.

string = pickle.dumps(object [, protocol=None])

Returns pickled representation of object as a string (a bytes string
in Python 3.X).

Unpickling interfaces
This module supports the following calls:

U = pickle.Unpickler(fileobject,
 encoding="ASCII", errors="strict")

Makes unpickler, for loading from input file object.

object = U.load()

Reads object from the unpickler’s file/stream.

object = pickle.load(fileobject,
 encoding="ASCII", errors="strict")

Combination of the previous two: unpickles object from file.

object = pickle.loads(string,
 encoding="ASCII", errors="strict")

Reads object from a string (a bytes or compatible string in Python
3.X).

pickle usage notes

• In Python 3.X, files used to store pickled objects should
always be opened in binary mode for all protocols, because
the pickler produces bytes strings, and text mode files do
not support writing bytes (text mode files encode and de‐
code Unicode text in 3.X).

214 | Python Pocket Reference

• In Python 2.X, files used to store pickled objects must be
opened in binary mode for all pickle protocols >= 1, to
suppress line-end translations in binary pickled data. Pro‐
tocol 0 is ASCII-based, so its files may be opened in either
text or binary mode, as long as this is done consistently.

• fileobject is an open file object, or any object that imple‐
ments file object attributes called by the interface. Pickler
calls the file write() method with a string argument. Un
pickler calls the file read() method with a byte-count and
readline() without arguments.

• protocol is an optional argument that selects a format for
pickled data, available in both the Pickler constructor and
the module’s dump() and dumps() convenience functions.
This argument takes a value 0...3, where higher protocol
numbers are generally more efficient, but may also be in‐
compatible with unpicklers in earlier Python releases. The
default protocol number in Python 3.X is 3, which cannot
be unpickled by Python 2.X. The default protocol in Python
2.X is 0, which is less efficient but most portable. Protocol
−1 automatically uses the highest protocol supported.
When unpickling, protocol is implied by pickled data con‐
tents.

• The unpickler’s encoding and errors optional keyword-
only arguments are available in Python 3.X only. They are
used to decode 8-bit string instances pickled by Python 2.X.
These default to 'ASCII' and 'strict', respectively. See
str() in “Built-in Functions” for similar tools.

• Pickler and Unpickler are exported classes that may be
customized by subclassing. See the Python Library Refer‐
ence for available methods.

Object Persistence Modules | 215

N O T E

At this writing, there is a proposal (PEP) for an optimized
pickle protocol number 4. It targets Python 3.4, but is still
draft status, so it’s unclear if and when it will appear. If it
does, it may be the new 3.X default, and may be backward-
incompatible with and unrecognized by all earlier Pythons.
Late breaking update: this change is now official in 3.4, per
its first beta release; see Python “What’s New” documents
for details.

The tkinter GUI Module and Tools
tkinter (named Tkinter in Python 2.X, and a module package
in Python 3.X) is a portable graphical user interface (GUI) con‐
struction library shipped with Python as a standard library mod‐
ule. tkinter provides an object-based interface to the open source
Tk library and implements native look and feel for Python-coded
GUIs on Windows, X-Windows, and Mac OS. It is portable, sim‐
ple to use, well documented, widely used, mature, and well sup‐
ported. Other portable GUI options for Python, such as wxPy‐
thon and PyQT, are third-party extensions with richer widget sets
but generally more complex coding requirements.

tkinter Example
In tkinter scripts, widgets are customizable classes (e.g., Button,
Frame), options are keyword arguments (e.g., text="press"), and
composition refers to object embedding, not pathnames (e.g.,
Label(top,...)):

from tkinter import * # Widgets, constants

def msg(): # Callback handler
 print('hello stdout...')

top = Frame() # Make a container
top.pack()
Label(top, text='Hello world').pack(side=TOP)

216 | Python Pocket Reference

widget = Button(top, text='press', command=msg)
widget.pack(side=BOTTOM)
top.mainloop()

tkinter Core Widgets
Table 21 lists the primary widget classes in the tkinter module.
These are Python classes that can be subclassed and embedded
in other objects. To create a screen device, make an instance of
the corresponding class, configure it, and arrange it with one of
the geometry manager interface methods (e.g., Button(text=
'hello').pack()). In addition to Table 21’s classes, the tkinter
module provides a large set of predefined names (a.k.a. con‐
stants) used to configure widgets (e.g., RIGHT, BOTH, YES); these are
automatically loaded from tkinter.constants (Tkconstants in
Python 2.X).
Table 21. Module tkinter core widget classes

Widget class Description

Label Simple message area

Button Simple labeled pushbutton widget

Frame Container for attaching and arranging other widget objects

Toplevel, Tk Top-level windows managed by the window manager

Message Multiline text-display field (label)

Entry Simple single-line text entry field

Checkbutton Two-state button widget, used for multiple-choice selections

Radiobutton Two-state button widget, used for single-choice selections

Scale A slider widget with scalable positions

PhotoImage Image object for placing full-color images on other widgets

BitmapImage Image object for placing bitmap images on other widgets

Menu Options associated with a Menubutton or top-level window

Menubutton Button that opens a Menu of selectable options/submenus

Scrollbar Bar for scrolling other widgets (e.g., Listbox, Canvas,
Text)

The tkinter GUI Module and Tools | 217

Widget class Description

Listbox List of selection names

Text Multiline text browse/edit widget, support for fonts, etc.

Canvas Graphics drawing area: lines, circles, photos, text, etc.

OptionMenu Composite: pull-down selection list

PanedWindow A multipane window interface

LabelFrame A labeled frame widget

Spinbox A multiple selection widget

ScrolledText Python 2.X name (available in module
tkinter.scrolledtext in Python 3.X); Composite: text
with attached scrollbar

Dialog Python 2.X name (available in module tkinter.dialog
in Python 3.X); Old: common dialog maker (see newer common
dialog calls in the next section)

Common Dialog Calls

Module tkinter.messagebox (tkMessageBox in Python 2.X)
showinfo(title=None, message=None, **options)
showwarning(title=None, message=None, **options)
showerror(title=None, message=None, **options)
askquestion(title=None, message=None, **options)
askokcancel(title=None, message=None, **options)
askyesno(title=None, message=None, **options)
askretrycancel(title=None, message=None, **options)

Module tkinter.simpledialog (tkSimpleDialog in Python 2.X)
askinteger(title, prompt, **kw)
askfloat(title, prompt, **kw)
askstring(title, prompt, **kw)

Module tkinter.colorchooser (tkColorChooser in Python 2.X)
askcolor(color=None, **options)

218 | Python Pocket Reference

Module tkinter.filedialog (tkFileDialog in Python 2.X)
class Open
class SaveAs
class Directory
askopenfilename(**options)
asksaveasfilename(**options)
askopenfile(mode="r", **options)
asksaveasfile(mode="w", **options)
askdirectory(**options)

The common dialog call options are defaultextension (added to
filename if not explicitly given), filetypes (sequence of (label,
pattern) tuples), initialdir (initial directory, remembered by
classes), initialfile (initial file), parent (window in which to
place the dialog box), and title (dialog box title).

Additional tkinter Classes and Tools
Table 22 lists some commonly used tkinter interfaces and tools
beyond the core widget class and standard dialog set. All of these
are standard library tools, except some in the last row (e.g., Pil‐
low); see the Web.
Table 22. Additional tkinter tools

Tool category Available tools

tkinter linked-variable
classes

StringVar, IntVar, DoubleVar, Boolean
Var (in tkinter module)

Geometry management
methods

pack(), grid(), place() widget object
methods, plus configuration options in module

Scheduled callbacks Widget after(), wait(), and update()
methods; file I/O callbacks

Other tkinter tools Clipboard access; bind()/Event low-level event
processing widget object methods; widget
config() options; modal dialog box support

tkinter extensions PMW: more widgets; PIL (a.k.a Pillow): images; tree
widgets, font support, drag-and-drop, tix widgets,
ttk themed widgets, etc.

The tkinter GUI Module and Tools | 219

Tcl/Tk-to-Python/tkinter Mappings
Table 23 compares Python’s tkinter API to the base Tk library
as exposed by the Tcl language, Tk’s now-distant origin. In gen‐
eral, Tcl’s command strings map to objects in the Python lan‐
guage. Specifically, in Python’s tkinter, the Tk GUI interface
differs from Tcl in the following ways:
Creation

Widgets are created as class instance objects by calling a
widget class.

Masters (parents)
Parents are previously created objects, passed to widget class
constructors.

Widget options
Options are constructor or config() keyword arguments,
or indexed keys.

Operations
Widget operations (actions) become tkinter widget class
object methods.

Callbacks
Callback handlers are any callable object: function, method,
lambda, class with __call__ method, etc.

Extension
Widgets are extended using Python class inheritance mech‐
anisms.

Composition
Interfaces are constructed by attaching objects, not by con‐
catenating names.

Linked variables
Variables associated with widgets are tkinter class objects
with methods.

220 | Python Pocket Reference

Table 23. Tk-to-tkinter mappings

Operation Tcl/Tk Python/tkinter

Creation frame .panel panel = Frame()

Masters button .panel.quit quit = Button(panel)

Options button .panel.go -

fg black

go = Button(panel,

fg='black')

Configure .panel.go config -

bg red

go.config(bg='red')

go['bg'] = 'red'

Actions .popup invoke popup.invoke()

Packing pack .panel -side

left -fill x

panel.pack(side=LEFT,

fill=X)

Internet Modules and Tools
This section summarizes Python’s support for Internet scripting
in Python 3.X and 2.X. It gives brief overviews of some of the
more commonly used modules in the Python standard library’s
Internet modules set. This is just a representative sample; see the
Python Library Reference for a more complete list:
socket

Low-level network communications support (TCP/IP, UDP,
etc.). Interfaces for sending and receiving data over BSD-
style sockets: socket.socket() makes an object with socket
call methods (e.g., object.bind()). Most protocol and serv‐
er modules use this module internally.

socketserver (SocketServer in Python 2.X)
Framework for general threading and forking network
servers.

xdrlib

Encodes binary data portably (also see socket modules ear‐
lier in this list).

Internet Modules and Tools | 221

select

Interfaces to Unix and Windows select() function. Waits
for activity on one of a set of files or sockets. Commonly
used to multiplex among multiple streams or to implement
time-outs. Works only for sockets on Windows, not files.

cgi

Server-side CGI script support: cgi.FieldStorage() parses
the input stream; cgi.escape() (and html.escape() in re‐
cent 3.X) applies HTML escape conventions to output
streams. To parse and access form information: after a CGI
script calls form=cgi.FieldStorage(), form is a dictionary-
like object with one entry per form field (e.g.,
form["name"].value is form’s name field text).

urllib.request (urllib, urllib2 in Python 2.X)
Fetches web pages and server script outputs from their
Internet addresses (URLs): urllib.request.urlopen(url)
returns a file-like object with read methods; also urllib
.request.urlretrieve(remote, local). Supports HTTP,
HTTPS, FTP, and local file URLs.

urllib.parse (urlparse in Python 2.X)
Parses URL string into components. Also contains tools for
escaping URL text: urllib.parse.quote_plus(str) does
URL escapes for text inserted into HTML output streams.

ftplib

FTP (file transfer protocol) modules. ftplib provides in‐
terfaces for Internet file transfers in Python programs. After
ftp=ftplib.FTP('sitename'), ftp has methods for login,
changing directories, fetching/storing files and listings, etc.
Supports binary and text transfers; works on any machine
with Python and a usable Internet connection.

poplib, imaplib, smtplib
POP, IMAP (mail fetch), and SMTP (mail send) protocol
modules.

222 | Python Pocket Reference

email package
Parses and constructs email messages with headers and at‐
tachments. Also contains MIME support for both content
and headers.

http.client (httplib in Python 2.X), nntplib, telnetlib
HTTP (web), NNTP (news), and Telnet protocol client
modules.

http.server (CGIHTTPServer, SimpleHTTPServer in Python 2.X)
HTTP request server implementations.

xml package, html package (htmllib in Python 2.X)
Parse XML and HTML documents and web page contents.
xml package supports DOM, SAX, and ElementTree parsing
models, with Expat parsing.

xmlrpc package (xmlrpclib in Python 2.X)
XML-RPC remote method call protocol.

uu, binhex, base64, binascii, quopri
Encodes and decodes binary (or other) data transmitted as
text.

Table 24 lists some of these modules by protocol type; see the
preceding list for 2.X names that differ.
Table 24. Selected Python 3.X Internet modules by protocol

Protocol Common
function

Port
number

Python module

HTTP Web pages 80 http.client,

urllib.request,

xmlrpc.*

NNTP Usenet news 119 nntplib

FTP data
default

File transfers 20 ftplib,

urllib.request

FTP control File transfers 21 ftplib,

urllib.request

SMTP Sending email 25 smtplib

Internet Modules and Tools | 223

Protocol Common
function

Port
number

Python module

POP3 Fetching email 110 poplib

IMAP4 Fetching email 143 imaplib

Telnet Command lines 23 telnetlib

Other Standard Library Modules
This section documents a handful of additional standard library
modules installed with Python itself. Unless otherwise noted,
tools covered here apply to both Python 3.X and 2.X. See the
Python Library Reference for details on all built-in tools, and the
PyPI website (described in “Assorted Hints”) or your favorite web
search engine for third-party modules and tools.

The math Module
The math module exports C standard math library tools for use
in Python. Table 25 lists this module’s exports in Python 3.3, with
seven recent additions in 3.2 and 3.3 in bold font. Python 2.7’s
module is identical, but has no log2 or isfinite. Contents of this
table may vary slightly in other releases. All its entries are callable
functions (with trailing parentheses omitted here), except for pi
and e.

For more details, see the Python Library Reference, or import
math and run help(math.name) for arguments and notes for any
name in this table, and dir(math) to see module content. Also see
the cmath standard library module for complex number tools, and
the NumPy third-party system (and others) on the Web for ad‐
vanced numeric work.

224 | Python Pocket Reference

Table 25. math module exports in Python 3.3

acos acosh asin asinh atan

atan2 atanh ceil copysign cos

cosh degrees e erf erfc

exp expm1 fabs factorial floor

fmod frexp fsum gamma hypot

isfinite isinf isnan ldexp lgamma

log log10 log1p log2 modf

pi pow radians sin sinh

sqrt tan tanh trunc

The time Module
Utilities related to time and date: time access, formatting, and
pauses. Following is a partial list of time module exports. See also
“The datetime Module”, “The timeit Module”, and the Python
Library Reference for more details:
time.clock()

Returns the CPU time or real time since the start of the pro‐
cess or since the first call to clock(). Precision and semantics
are platform-dependent (see Python manuals). Returns sec‐
onds expressed as a floating-point number. Useful for
benchmarking and timing alternative code sections.

time.time()

Returns a floating-point number representing UTC time in
seconds since the epoch. On Unix, epoch is 1970. May have
better precision than clock() on some platforms (see
Python manuals).

time.ctime(secs)

Converts a time expressed in seconds since the epoch to a
string representing local time (e.g., ctime(time())). The ar‐
gument is optional and defaults to the current time if
omitted.

Other Standard Library Modules | 225

time.sleep(secs)

Suspends the process’s (calling thread’s) execution for secs
seconds. secs can be a float to represent fractions of seconds.

The next two calls are available in Python 3.3 and later only. They
are designed to provide timing data portably (but may not be
directly comparable with calls in earlier Python versions). For
both, the reference point of the returned value is undefined, so
that only the difference between the results of consecutive calls
is valid:
time.perf_counter()

Returns the value in fractional seconds of a performance
counter, defined as a clock with the highest available reso‐
lution to measure a short duration. It includes time elapsed
during sleep states and is systemwide. Can be thought of as
wall time, and if present, is used by default in the timeit
module.

time.process_time()

Returns the value in fractional seconds of the sum of the
system and user CPU time of the current process. It does not
include time elapsed during sleep, and is process-wide by
definition.

The timeit Module
Tools for portably measuring execution time of a code string or
function call. See Python’s manuals for complete details.

Command-line interface:
py[thon] -m timeit [-n number] [-r repeat]
 [-s setup]* [-t] [-c] [-p] [-h] [statement]*

Where number is times to run statements (default is a computed
power of 10); repeat is runs to make (default 3); setup (zero or
more, each with –s) is code to run before timed statements;
statement (zero or more) is the code to be timed; -h prints help;
and -t, -c, and -p specify timers to use—time.time(),
time.clock(), or as of Python 3.3 time.process_time() (else

226 | Python Pocket Reference

time.perf_counter() is the default in 3.3 and later). Displayed
results give the best time among the repeat runs made, which
helps neutralize transient system load fluctuations.

Library API interface:
timeit.Timer(stmt='pass', setup='pass', timer=dflt)

Used by the following convenience functions. Both stmt and
setup are either a code string (use ; or \n to separate multiple
statements, and spaces or \t for indentation), or a no-argument
callable. The timer function’s default, dflt, is platform and
version-dependent.

timeit.repeat(stmt='pass', setup='pass',
 timer=dflt, repeat=3, number=1000000)

Creates a Timer instance with the given stmt and setup code and
timer function, and runs its repeat method with repeat count
and number executions. Returns list of timing results: take its
min() for best of repeat times.

timeit.timeit(stmt='pass', setup='pass',
 timer=dflt, number=1000000)

Creates a Timer instance with the given stmt and setup code and
timer function and run its timeit method with number execu‐
tions. Runs setup once; returns time to run stmt number times.

The datetime Module
Tools for date processing: subtracting dates, adding days to dates,
and so on. See also “The time Module”, and the Python Library
Reference for more tools and details.

>>> from datetime import date, timedelta
>>> date(2013, 11, 15) - date(2013, 10, 29) # Between
datetime.timedelta(17)

>>> date(2013, 11, 15) + timedelta(60) # Future
datetime.date(2014, 1, 14)
>>> date(2013, 11, 15) - timedelta(410) # Past
datetime.date(2012, 10, 1)

Other Standard Library Modules | 227

The random Module
Assorted randomization calls: random numbers, shuffles, and
selections. See Python manuals for full details.

>>> import random
>>> random.random() # Random float in [0, 1)
0.7082048489415967
>>> random.randint(1, 10) # Random int in [x, y]
8
>>> L = [1, 2, 3, 4]
>>> random.shuffle(L) # Shuffle L in place
>>> L
[2, 1, 4, 3]
>>> random.choice(L) # Choose random item
4

The json Module
Utilities for translating Python dictionary and list structures to
and from JSON text—a portable data representation format, used
by systems such as MongoDB (per BSON), and Android’s SL4A
(in JSON-RPC). See also Python’s native object serialization in
“The pickle Module”; XML support in “Internet Modules and
Tools”; and other database concepts in “Python SQL Database
API”.

>>> R = {'job': ['dev', 1.5], 'emp': {'who': 'Bob'}}

>>> import json
>>> json.dump(R, open('savejson.txt', 'w'))
>>> open('savejson.txt').read()
'{"emp": {"who": "Bob"}, "job": ["dev", 1.5]}'
>>> json.load(open('savejson.txt'))
{'emp': {'who': 'Bob'}, 'job': ['dev', 1.5]}

>>> R = dict(title='PyRef5E', pub='orm', year=2014)
>>> J = json.dumps(R, indent=4)
>>> P = json.loads(J)
>>> P
{'year': 2014, 'title': 'PyRef5E', 'pub': 'orm'}
>>> print(J)

228 | Python Pocket Reference

{
 "year": 2014,
 "title": "PyRef5E",
 "pub": "orm"
}

The subprocess Module
Tools for running command lines, tapping into any of their three
streams, fetching exit codes, and specifying shell execution,
which are alternatives to some os module tools such as
os.popen() and os.spawnv(); see “The os System Module” and
Python manuals for further details. Hint: do not use these tools
to launch untrustworthy shell command strings, as they may run
any command allowed for the Python process. In the following,
script m.py prints its sys.argv command line:

>>> from subprocess import call, Popen, PIPE
>>> call('python m.py -x', shell=True)
['m.py', '-x']
0
>>> pipe = Popen('python m.py -x', stdout=PIPE)
>>> pipe.communicate()
(b"['m.py', '-x']\r\n", None)
>>> pipe.returncode
0
>>> pipe = Popen('python m.py -x', stdout=PIPE)
>>> pipe.stdout.read()
b"['m.py', '-x']\r\n"
>>> pipe.wait()
0

The enum Module
Available as of Python 3.4, this module provides standard support
for enumerations—sets of symbolic names (a.k.a. members)
bound to unique, constant values. Not to be confused with the
enumerate() call, used to sequentially number iterator results (see
“Built-in Functions”):

>>> from enum import Enum
>>> class PyBooks(Enum):

Other Standard Library Modules | 229

 Learning5E = 2013
 Programming4E = 2011
 PocketRef5E = 2014

>>> print(PyBooks.PocketRef5E)
PyBooks.PocketRef5E
>>> PyBooks.PocketRef5E.name,
 PyBooks.PocketRef5E.value
('PocketRef5E', 2014)

>>> type(PyBooks.PocketRef5E)
<enum 'PyBooks'>
>>> isinstance(PyBooks.PocketRef5E, PyBooks)
True
>>> for book in PyBooks: print(book)
...
PyBooks.Learning5E
PyBooks.Programming4E
PyBooks.PocketRef5E

>>> bks = Enum('Books', 'LP5E PP4E PR5E')
>>> list(bks)
[<Books.LP5E: 1>, <Books.PP4E: 2>, <Books.PR5E: 3>]

The struct Module
The struct module provides an interface for parsing and con‐
structing packed binary data as strings, per formats designed to
mirror C language struct layouts. Often used in conjunction
with the 'rb' and 'wb' binary files modes of open(), or other
binary data source. See the Python Library Reference for
format datatype and endian codes.
string = struct.pack(format, v1, v2, ...)

Returns a string (a bytes in 3.X and a str in 2.X) containing
the values v1, v2, etc., packed according to the given
format string. The arguments must match the values re‐
quired by the format string’s type codes exactly. The for
mat string can specify the endian format of the result in its
first character, as well as repeat counts for individual type
codes.

230 | Python Pocket Reference

tuple = struct.unpack(format, string)
Unpacks the string (a bytes in 3.X and a str in 2.X) into a
tuple of Python object values, according to the given
format string.

struct.calcsize(format)

Returns size of the struct (and hence of the byte string)
corresponding to the given format.

Following is an example showing how to pack and unpack data
using struct in Python 3.X (Python 2.X uses normal str strings
instead of bytes; Python 3.X requires bytes for s values as of 3.2,
not str; and '4si' in the following means the same as C’s
char[4]+int):

>>> import struct
>>> data = struct.pack('4si', b'spam', 123)
>>> data
b'spam{\x00\x00\x00'
>>> x, y = struct.unpack('4si', data)
>>> x, y
(b'spam', 123)

>>> open('data', 'wb').write(
 struct.pack('>if', 1, 2.0))
8
>>> open('data', 'rb').read()
b'\x00\x00\x00\x01@\x00\x00\x00'
>>> struct.unpack('>if', open('data', 'rb').read())
(1, 2.0)

Threading Modules
Threads are lightweight processes that share global memory (i.e.,
scopes, objects, and system internals) and run functions in par‐
allel (concurrently) within the same process. Python thread mod‐
ules work portably across platforms. They are suited for running
nonblocking tasks in IO-bound and user-interface contexts.

See also setcheckinterval() and setswitchinterval() in “The
sys Module”, as well as the multiprocessing standard library

Other Standard Library Modules | 231

module which implements a threading-like API for portably
spawned processes:
_thread (named thread in Python 2.X)

Basic and low-level thread module, with tools to start, stop,
and synchronize functions run in parallel. To spawn a
thread: _thread.start_new_thread(function, args [,

kargs]) runs function in a new thread, with positional ar‐
guments from tuple args, and keyword arguments from
dictionary kargs. start_new_thread is a synonym for
start_new (which is documented as obsolete in 3.X). To
synchronize threads, use thread locks: lock=thread.

allocate_lock(); lock.acquire(); update-objects;
lock.release().

threading

Module threading builds upon thread to provide custom‐
izable threading-oriented tools: Thread, Condition,
Semaphore, Lock, Timer, daemonic threads, thread joins
(waits), etc. Subclass Thread to overload run action method.
This is functionally richer than _thread, but also requires
more code in simpler use cases.

queue (named Queue in Python 2.X)
A multiproducer, multiconsumer FIFO queue of Python
objects, especially useful for threaded applications. Auto‐
matically locks its get() and put() operations to synchron‐
ize access to data on the queue. See the Python Library
Reference.

Python SQL Database API
Python’s portable SQL-based relational database API provides
script portability between different vendor-specific SQL database
packages. For each vendor, install the vendor-specific extension
module, but write your scripts according to the portable database
API. Your standard SQL database scripts will largely continue
working unchanged after migrating to a different underlying
vendor package.

232 | Python Pocket Reference

Note that most database extension modules are not part of the
Python standard library; they are third-party components that
must be fetched and installed separately. Exception: the SQLite
embedded in-process relational database package is included
with Python as standard library module sqlite3, intended for
program data storage and prototyping.

See also “Object Persistence Modules” for simpler storage alter‐
natives. There are additional popular database tools in the third-
party domain, including MongoDB’s JSON document storage;
object-oriented databases such as ZODB and others; object-
relational mappers including SQLAlchemy and SQLObject; and
cloud-oriented APIs such as App Engine’s data store.

API Usage Example
The following uses the SQLite standard library module, and
omits some return values for space. Usage for enterprise-level
database such as MySQL, PostgreSQL, and Oracle are similar, but
require different connection parameters and installation of ex‐
tension modules, and may support vendor-specific (and non‐
portable) SQL extensions:

>>> from sqlite3 import connect
>>> conn = connect(r'C:\code\temp.db')
>>> curs = conn.cursor()

>>> curs.execute('create table emp (who, job, pay)')
>>> prefix = 'insert into emp values '
>>> curs.execute(prefix + "('Bob', 'dev', 100)")
>>> curs.execute(prefix + "('Sue', 'dev', 120)")

>>> curs.execute("select * from emp where pay > 100")
>>> for (who, job, pay) in curs.fetchall():
... print(who, job, pay)
...
Sue dev 120

>>> result = curs.execute("select who, pay from emp")
>>> result.fetchall()
[('Bob', 100), ('Sue', 120)]

Python SQL Database API | 233

>>> query = "select * from emp where job = ?"
>>> curs.execute(query, ('dev',)).fetchall()
[('Bob', 'dev', 100), ('Sue', 'dev', 120)]

Module Interface
This and the following sections provide a partial list of exports;
see the full API specification at http://www.python.org for details
omitted here. Tools at the top-level of the interface module
(dbmod):
dbmod.connect(parameters...)

Constructor for a connection object (conn) that represents
a connection to the database. Parameters are vendor-
specific.

dbmod.paramstyle

String giving type of parameter marker formatting (e.g.,
qmark = ? style).

dbmod.Warning

Exception raised for important warnings, such as data trun‐
cations.

dbmod.Error

Exception that is the base class of all other error exceptions.

Connection Objects
Connection objects (conn) respond to the following methods:
conn.close()

Closes the connection now (rather than when __del__ is
called).

conn.commit()

Commits any pending transactions to the database.

234 | Python Pocket Reference

http://www.python.org

conn.rollback()

Rolls database back to the start of any pending transaction;
closing a connection without committing the changes first
will cause an implicit rollback.

conn.cursor()

Returns a new cursor object (curs) for submitting SQL
strings through the connection.

Cursor Objects
Cursor objects (curs) represent database cursors, used to manage
the context of a fetch operation:
curs.description

Sequence of seven-item sequences; each contains informa‐
tion describing one result column: (name, type_code,
display_size, internal_size, precision, scale, null_ok).

curs.rowcount

Specifies the number of rows that the last execute* variant
produced (for DQL statements like select) or affected (for
DML statements like update or insert).

curs.callproc(procname [, parameters])
Calls a stored database procedure with the given name. The
sequence of parameters must contain one entry for each ar‐
gument that the procedure expects; result is returned as a
modified copy of the inputs.

curs.close()

Closes the cursor now (rather than when __del__ is called).

curs.execute(operation [, parameters])
Prepares and executes a database operation (query or com‐
mand); parameters can be specified as a list of tuples to insert
multiple rows in a single operation (but executemany() is
preferred).

Python SQL Database API | 235

curs.executemany(operation, seq_of_parameters)
Prepares a database operation (query or command) and ex‐
ecutes it against all parameter sequences or mappings in se‐
quence seq_of_parameters. Similar to multiple execute()
calls.

curs.fetchone()

Fetches the next row of a query result set, returning a single
sequence, or None when no more data is available. Useful for
large data sets or slow delivery speed.

curs.fetchmany([size=curs.arraysize])

Fetches the next set of rows of a query result, returning a
sequence of sequences (e.g., a list of tuples). An empty se‐
quence is returned when no more rows are available.

curs.fetchall()

Fetches all (or all remaining) rows of a query result, return‐
ing them as a sequence of sequences (e.g., a list of tuples).

Type Objects and Constructors
Date(year, month, day)

Constructs an object holding a date value.

Time(hour, minute, second)
Constructs an object holding a time value.

None

SQL NULL values are represented by the Python None on
input and output.

More Hints and Idioms
This section briefly gives common Python coding patterns and
usage hints, beyond those disclosed throughout this book. Con‐
sult the Python Library Reference and Python Language Refer‐
ence (http://www.python.org/doc/) and the Web at large for fur‐
ther information on some topics mentioned here.

236 | Python Pocket Reference

http://www.python.org/doc/

Core Language Hints

• S[:] makes a top-level (shallow) copy of any sequence;
copy.deepcopy(X) makes full copies; list(L) and D.copy()
copy lists and dictionaries (also L.copy() for lists as of 3.3).

• L[:0]=iterable inserts multiple items in iterable at front
of list L, in-place.

• L[len(L):]=iterable, L.extend(iterable), and
L+=iterable all insert multiple items in iterable at the end
of a list L, in-place.

• L.append(X) and X=L.pop() can be used to implement in-
place stack operations, where X is stacked items, and the
end of the list is the top of the stack.

• Use for key in D.keys() to iterate through dictionaries, or
simply for key in D in version 2.2 and later. In Python 3.X,
these two forms are equivalent, since keys() returns an
iterable view.

• Use for key in sorted(D) to iterate over dictionary keys in
sorted fashion in version 2.4 and later; the form
K=D.keys(); K.sort(); for key in K: also works in Python
2.X but not Python 3.X, since keys() results are view ob‐
jects, not lists.

• X=A or B or None assigns X to the first true object among A
and B, or else None if both are false (i.e., 0 or empty).

• X,Y = Y,X swaps the values of X and Y without requiring
assignment of X to an explicit temporary.

• red, green, blue = range(3) assigns integer series as a
simple name enumeration; class attributes and dictionaries
may also suffice as enumerations. In Python 3.4 and later,
see the more explicit and functionally rich support of enu‐
merations in the enum standard library module.

More Hints and Idioms | 237

• Use try/finally statements to ensure that arbitrary ter‐
mination code is run; especially useful around locked op‐
erations (e.g., acquire a lock before the try, and release it
in the finally block).

• Use with/as statements to guarantee that object-specific
termination code is run for objects that support the context
manager protocol only (e.g., file auto-close, thread lock
auto-release).

• Wrap iterables in a list() call to view all their results in‐
teractively in Python 3.X, and to ensure that multiple tra‐
versals work properly; this includes range(), map(), zip(),
filter(), dict.keys(), and more.

Environment Hints

• Use if __name__ == '__main__': to add self-test code or
a call to a main function at the bottom of module files; true
only when a file is run, not when it is imported as a library
component.

• To load file contents in a single expression, use
data=open(filename).read(). Outside CPython, explicit
close calls may be required to force immediate reclamation
of system resources (e.g., within loops).

• To iterate through text files by lines, use for line in file
in version 2.2 and later. (In older versions, use for line in
file.xreadlines().)

• To retrieve command-line arguments, use sys.argv.

• To access shell environment settings, use os.environ.

• The standard streams are: sys.stdin, sys.stdout, and
sys.stderror.

• To return a list of files matching a given pattern, use:
glob.glob(pattern).

238 | Python Pocket Reference

• To return a list of files and subdirectories on a path (e.g.,
“.”), use: os.listdir(path).

• To walk an entire tree of directories, use os.walk() in
Python 3.X and 2.X. (os.path.walk() is also available in
Python 2.X only.)

• To run shell commands within Python scripts, you can use
os.system(cmdline), output=os.popen(cmdline, 'r')

.read(). The latter form reads the spawned program’s
standard output, and may also be used to read line-by-line
and interleave operations.

• Other streams of a spawned command are available via the
subprocess module in both Python 3.X and 2.X, and the
os.popen2/3/4() calls in Python 2.X only. The os.fork()/
os.exec*() calls have similar effect on Unix-like platforms.

• To make a file an executable script on Unix-like platforms,
add a line like #!/usr/bin/env python or #!/usr/

local/bin/python at the top and give the file executable
permissions with a chmod command.

• On Windows, files can be clicked and run directly due to
registered filename associations. As of 3.3, the Windows
launcher also recognizes #! Unix-style lines: see “Python
Windows Launcher Usage”.

• print() and input() (known as print and raw_input() in
Python 2.X) use sys.stdout and sys.stdin streams: assign
to file-like objects to redirect I/O internally, or use the
print(..., file=F) form in Python 3.X (or the print >>
F, ... form in Python 2.X).

• Set environment variable PYTHONIOENCODING to utf8 (or
other) if your scripts fail when printing non-ASCII Uni‐
code text, such as file names and content.

More Hints and Idioms | 239

Usage Hints

• Use from __future__ import featurename to enable pend‐
ing language changes that might break existing code, but
enable version compatibility.

• Intuition about performance in Python programs is usually
wrong: always measure before optimizing or migrating to
C. Use the profile, time, and timeit modules (as well as
cProfile).

• See modules unittest (a.k.a. PyUnit) and doctest for au‐
tomated testing tools shipped with the Python standard
library; unittest is a sophisticated class framework;
doctest scans documentation strings for tests and outputs
to rerun interactive sessions.

• The dir([object]) function is useful for inspecting at‐
tribute namespaces; print(object.__doc__) gives raw
docstring documentation.

• The help([object]) function provides interactive help for
modules, functions, types, type methods, and more;
help(str) gives help on the str type; help('module') gives
help on modules even if they have not yet been imported;
and help('topic') gives help on keywords and other help
topics (use 'topics' for a list of help topics).

• See PyDoc’s pydoc library module and script shipped with
Python for extraction and display of documentation strings
associated with modules, functions, classes, and methods;
python -m pydoc -b launches PyDoc’s browser-based in‐
terface as of 3.2 (else use –g instead of –b for GUI client
mode).

• See “Warnings Framework”, as well as -W in “Python Com‐
mand Options”, for details about turning off future-
deprecation warnings emitted by the interpreter.

• See Distutils, eggs, the next bullet’s items, and others for
Python program distribution options.

240 | Python Pocket Reference

• See PyInstaller, py2exe, cx_freeze, py2app, and others for
packaging Python programs as standalone executables
(e.g., .exe files for Windows).

• See NumPy, SciPy, Sage, and related packages for exten‐
sions that turn Python into a numeric or scientific-
programming tool with vector objects, mathematical
libraries, etc. Also watch for the new basic statistics
standard library module in Python 3.4.

• See ZODB and others for full-featured OODB support that
allows Python native objects to be stored by key, and
SQLObject, SQLAlchemy, and others for object relational
mappers that allow classes to be used with relational tables.
See MongoDB for a JSON-based “NoSQL” database option.

• See Django, App Engine, Web2py, Zope, Pylons, Turbo‐
Gears, and others for Python Web development frame‐
works.

• See SWIG (among others) for a tool that can automatically
generate glue code for using C and C++ libraries within
Python scripts.

• See IDLE for a development GUI shipped with Python,
with syntax-coloring text editors, object browsers, debug‐
ging, etc.; see also PythonWin, Komodo, Eclipse, NetBeans,
and others for additional IDE options.

• See Emacs help for tips on editing/running code in the
Emacs text editor. Most other editors support Python as
well (e.g., auto-indenting, coloring), including VIM and
IDLE; search for the Python editors’ page at http://
www.python.org.

• Porting to Python 3.X: use the −3 command-line option in
Python 2.X to issue incompatibility warnings, and see the
2to3 script, which automatically converts much 2.X code
to run under 3.X Python. See also six, a system which pro‐
vides a 2.X/3.X compatibility layer; 3to2, which aspires to

More Hints and Idioms | 241

http://www.python.org
http://www.python.org

convert 3.X code to run on 2.X interpreters; and pies, which
also promotes line compatibility.

Assorted Hints

• Relevant websites to refer to:
http://www.python.org

The Python home page

http://oreilly.com
The publisher’s home page

http://www.python.org/pypi
Additional third-party Python tools

http://www.rmi.net/~lutz
The author’s book support site

• Python philosophy: import this.

• You should say spam and eggs instead of foo and bar in
Python examples.

• Always look on the bright side of life.

242 | Python Pocket Reference

http://www.python.org
http://oreilly.com
http://www.python.org/pypi
http://www.rmi.net/~lutz

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

Symbols
#! launcher file directives, 10
% operator, 28
- program specification, 6
-3 Python option, 7

A
abs function, 134
all function, 134
any function, 134
apply function (Python 2.X), 156
arguments

command line, 6
functions, 76, 82

ArithmeticError class, 162
as clause, 89, 102
ascii function, 134
assert statement, 101
AssertionError class, 163
assignment statement, 72–76
AttributeError class, 163
attributes

built-in, 172

class attributes, 95, 109
file, 62
namespaces and, 105, 109
number operations, 23
pseudo-private, 110
state retention and, 85

augmented assignments, 73
augmented binary methods, 127

B
-b Python option, 4
-B Python option, 4
backslash escape sequences, 26
base classes, 95
base64 module, 223
BaseException class, 162
basestring function (Python 2.X),

156
__bases__ attribute, 173
bin function, 135
binary methods, 125–128
binascii module, 223
binhex module, 223
BlockingIOError class, 168

243

blocks, 67
bool function, 135
Boolean operations, 16
Boolean type, 66
break statement, 81
BrokenPipeError class, 168
buffer function (Python 2.X), 157
BufferError class, 162
buffering (open function), 146
buffering (streams), 5, 181
built-in attributes, 172
built-in exceptions, 161–172

Python 2.X, 172
Python 3.X, 171
specific exceptions raised,

163–169
superclasses, 162–163
warning category exceptions,

169
warnings framework, 170

built-in functions, 134–161
built-in operators

operations by category, 16–20
precedence and, 12–14
sequence operation notes, 20–

21
usage notes, 14–16

built-in types, 21–67
Boolean type, 66
dictionaries, 53–57
files, 58–63
lists, 46–53
numbers, 22–24
operations by category, 16–20
program-unit types, 66
sets, 63–65
strings, 24–42
tuples, 57
type conversions, 66
Unicode strings, 42–46

bytearray function, 135
bytearray string type

about, 25

bytearray methods, 37
string literals, 26
Unicode and, 45

bytes function, 135
bytes string type

about, 25
bytes, 37
string literals, 26
Unicode and, 45

BytesIO, 59, 147
BytesWarning class, 170

C
-c command specification, 6
callable function, 136
__cause__ attribute, 100
cgi module, 222
chained exceptions, 100
ChildProcessError class, 168
chr function, 136
class privates, 110
class statement, 95–97

class decorators, 96
metaclasses, 96
OOP and, 109

classes
class attributes, 95, 109
class exceptions, 100
class methods, 17–20, 109
class statement, 95–97
classic classes, 112
new-style classes, 111–117
OOP and, 109, 111

classmethod function, 95, 136
__class__ attribute, 172
closefd (open function), 147
closures, 107
cmp function (Python 2.X), 157
coerce function (Python 2.X), 157
command-line options

format for, 3
option variables, 9
program specification, 5

244 | Index

Python 2.X, 7
Python 3.X, 4–5
script launcher, 11

comments, 68
comparisons, 16
compile function, 136
complex function, 137
composition, 216
compound statements, 71
comprehensions

dictionary, 53
generator, 52
list, 49, 53
set, 53
unqualified names and, 106

concatenated string constants, 26
ConnectionAbortedError class,

168
ConnectionError class, 168
ConnectionRefusedError class,

168
ConnectionResetError class, 168
constructors, 118, 236
context manager protocol, 103
context managers

files, 62
overloading methods for, 130
Python 2.7, 103
Python 3.X, 103

continue statement, 81
control flow, 67
conventions, 2
core widget classes (tkinter), 217

D
-d Python option, 4
data descriptors, 130
datetime module, 227
dbm module, 211–213
decimal type, 23
decorators, 85, 96
def statement, 82–86

argument formats, 82

defaults and attributes, 84
function and method decora‐

tors, 85
lambda expressions, 84
Python 3.X, 83

del statement, 82
delattr function, 137
DeprecationWarning class, 169
descriptors

data, 130
file descriptor tools, 190–192
new-style inheritance, 114
overloading methods for, 129

destructors, 118
DFLR, 112
dict function, 137
dictionaries, 53–57

dictionary comprehensions,
53

literals and creation, 54
operations, 55–57
Python 2.X, 53
Python 3.X, 53

dictionary comprehensions, 53
__dict__ attribute, 172
dir function, 137
divmod function, 137
documentation strings, 68
dynamic typing, 12

E
-E Python option, 4
else clause, 80–81, 98
email package, 223
encoding

non-ASCII character, 43
open function, 146

__enter__ method, 103
enum module, 229
enumerate function, 137
environment tools, 189
environment variables

command-line options and, 9

Index | 245

operational variables, 8
Windows script launcher, 11

EnvironmentError class, 171
EOFError class, 164
errors (open function), 146
escape codes, string constant, 27
eval function, 138
except clause, 97
Exception class, 162, 172
exception names, 71
exceptions, 106

(see also built-in exceptions)
chained exceptions, 100
class exceptions, 100
raise statement and, 99–101
try statement and, 97
unqualified names and, 106

exec function, 138
exec statement (Python 2.X), 104
execfile function (Python 2.X),

157
__exit__ method, 104
expression operators

atomic terms, 12
dynamic typing, 12
precedence, 12–14
usage notes, 14–16

expression statement, 76–77

F
factory functions, 86
file descriptor tools, 190–192
file function, 58
file function (Python 2.X), 157
file pathname tools, 193–197
FileExistsError class, 168
FileNotFoundError class, 168
files, 58–63

any files (operations), 61
attributes, 62
file context managers, 62
file function, 58
input files, 59

open function, 58
output files, 60
usage notes, 63

filter function, 138
finally clause, 97
float function, 139
FloatingPointError class, 164
for loops, nested in list compre‐

hensions, 49
for statement, 80–81
format function, 139
Formatter class, 183
fraction type, 23
from clause, 88, 100
from statement, 93–94
frozenset function, 64, 139
ftplib module, 222
function headers, 75
functional programming, 108
functions

built-in functions, 134–161
call syntax, 76
creating, 82
factory functions, 86
functional programming, 108
generator functions, 87–88
method functions, 95

FutureWarning class, 170

G
garbage collection, 12, 62, 82
generator expressions, 51
generator functions, 87–88
GeneratorExit class, 164
getattr function, 139
glob.glob function, 185, 193, 238
global statement, 88
globals function, 139

H
-h Python option, 4
hasattr function, 139
hash function, 140

246 | Index

help function, 140
hex function, 140
hints and idioms, 236–242

core language hints, 237
environment hints, 238–239
usage hints, 240–242
websites, 242

html package, 223
http.client module, 223
http.server module, 223

I
-i Python option, 4
id function, 140
if statement, 80
imaplib module, 222
immutable objects

dictionary keys, 54
numbers, 22
sets, 63
strings, 24
tuples, 57

import algorithm, 92
__import__ function, 140
import statement, 89–93
ImportError class, 164
ImportWarning class, 170
indentation, 68–69
IndentationError class, 164
IndexError class, 164
indexing, 20
inheritance

classic classes, 112
inheritance rules, 109, 112–

117
new-style classes, 112–117
qualified names and, 105

inheritance algorithm, 114–116
__init__ method, 118
__init__.py file, 91
input files, 59
input function, 140
input function (Python 2.X), 158

instance objects, 95
instances, 109
int function, 141
int number type, 22
intern function (Python 2.X), 158
Internet modules, 221–224
InterruptedError class, 168
io module, 58, 147
IOError class, 171
is* string methods, 41
IsADirectoryError class, 169
isinstance function, 141
issubclass function, 141
items method, 53
iter function, 141
iteration protocol, 50, 87
iterators, 81
__iter__ method, 51, 88

J
joining strings, 39
json module, 228

K
KeyboardInterrupt class, 164
KeyError class, 164
keys method, 53

L
lambda expressions, 84
len function, 142
lexical scopes, 105–107
list function, 142
lists, 46–53

generator expressions, 51
iteration protocol, 50
list comprehension expres‐

sions, 49, 53
literals and creation, 46
operations, 47

locals function, 142
long function (Python 2.X), 158
long type, 22

Index | 247

LookupError class, 163
loop variables, 108

M
-m module specification, 6
map function, 49, 142
mapping operations, 19, 123–125
mapping type category, 17
match objects, 205
math module, 224
max function, 143
MemoryError class, 165
memoryview function, 143, 156
metaclasses

class statement and, 96
new-style inheritance, 114

method functions, 95
methods

binary methods, 125–128
call syntax, 76
class methods, 17–20, 109
number operations, 23
operator overloading meth‐

ods, 95, 117–134
self arguments, 95
string, 34–41

min function, 143
module privates, 110
module search path, 90, 92
modules

Internet, 221–224
object persistence, 210–215
standard library, 173, 210–

215, 221–232
threading, 231

MRO, 112–117
__mro__ attribute, 112, 173
mutable objects

dictionaries, 53
lists, 46
sets, 63

mutable sequence operations, 18,
47

mutable type category, 17

N
name rules, 69–71
NameError class, 165
namespace packages

about, 91
from statement and, 93
import algorithm and, 92
Python 2.X, 104
Python 3.3, 91

namespaces, 105–108
attributes and, 105, 109
lexical scopes, 105–107
object namespaces, 105
qualified names, 105
statically nested scopes, 107
unqualified names, 105–107

__name__ attribute, 173
newline (open function), 146
next function, 87, 143
__next__ method, 51, 87
nntplib module, 223
non-ASCII character encoding, 43
None placeholder object, 65, 84,

86, 236
nonlocal statement, 89
NotADirectoryError class, 169
NotImplementedError class, 165
number operations, 125–129
number types

decimal and fraction, 23
immutable, 22
literals and creation, 22
operations, 23
overloading methods for, 125–

129
third-party types, 24

numeric operations, 19

O
-O Python option, 4
object class, 111

248 | Index

object function, 144
object persistence modules, 210–

215
object serialization, 213–215
oct function, 144
-OO Python option, 4
OOP (object-oriented program‐

ming), 108–117
attributes, 109–110
classes, 109, 111
inheritance, 109, 112–117
instances, 109

open function, 58, 144–147, 160
opener (open function), 147
operational variables (environ‐

ment), 8
operator overloading methods,

117–134
for all types, 118–123
for collections, 123–125
for context managers, 130
for descriptors, 129
for numbers, 125–129
Python 2.X methods, 131–134
Python 3.X methods, 131
specially named, 95

ord function, 148
os module, 184–202

administrative tools, 185
environment tools, 189
file descriptor tools, 190–192
file pathname tools, 193–197
os.path module, 200–202
portability constants, 186
process control, 197–199
shell commands, 187

os.path module, 200–202
OSError class, 163, 167, 171
output files, 60
OverflowError class, 165

P
package imports, 91

pattern-matching module (see re
module)

PendingDeprecationWarning
class, 169

PermissionError class, 169
pickle module, 213–215
poplib module, 222
pow function, 148
precedence of expression opera‐

tors, 12–14
print function, 148, 156
print statement (Python 2.X), 77–

79
process control, 197–199
ProcessLookupError class, 169
program specification, 5
program-unit types, 66
programs, starting, 6
property function, 148
pseudo-private attributes, 110
PyDoc, 69, 240
Python 2.6

class decorators, 96
command options, 7
number operations, 23
operator usage notes, 15
string types, 26, 45

Python 2.7
class decorators, 96
command options, 7
context managers, 103
dictionaries, 53
operator usage notes, 15
sets, 63
string types, 26, 45

Python 2.X
built-in attributes, 172
built-in exceptions, 172
built-in functions, 155–161
command-line format, 7
dictionaries, 53
files, 63, 160
generator expressions, 51

Index | 249

iteration protocol, 51
lists, 49
namespace packages, 104
numbers, 22
operator overloading methods

for, 131–134
operator usage notes, 14–15
pickle module, 215
print statement, 79
raise statement forms, 101
sets, 63
statement support, 104
string methods, 38
string types, 25–26
try statement, 99
Unicode strings, 43, 46

Python 3.3
exceptions, 100
generator functions, 88
namespace packages, 91
Windows script launcher, 10

Python 3.4
enum module, 229
file descriptors, 191
operator usage notes, 16
pickle protocol, 216
star generalization, 75

Python 3.X
built-in exceptions, 171
chained exceptions, 100
class decorators, 96
context managers, 103
def statement, 83
dictionaries, 53
files, 63
number operations, 23
operator overloading methods

for, 131
operator usage notes, 14
pickle module, 214
Python command options, 4
sets, 63
star generalization, 75

string types, 24
Unicode strings, 42–45
Windows script launcher, 10

Python programming language, 1
Python versions, 1
PYTHONCASEOK environment

variable, 8
PYTHONDEBUG environment

variable, 9
PYTHONDONTWRITEBYTE‐

CODE environment variable,
9

PYTHONFAULTHANDLER en‐
vironment variable, 9

PYTHONHASHSEED environ‐
ment variable, 9

PYTHONHOME environment
variable, 8

PYTHONINSPECT environment
variable, 9

PYTHONIOENCODING envi‐
ronment variable, 8

PYTHONNOUSERSITE environ‐
ment variable, 9

PYTHONOPTIMIZE environ‐
ment variable, 9

PYTHONPATH environment
variable, 8

PYTHONSTARTUP environment
variable, 8

PYTHONUNBUFFERED envi‐
ronment variable, 9

PYTHONVERBOSE environment
variable, 9

PYTHONWARNINGS environ‐
ment variable, 9

Q
-q Python option, 4
-Q Python option, 7
qualified names (see namespaces)
quopri module, 223
quotes, 25

250 | Index

R
-R Python option, 7
raise statement, 99–101
random module, 228
range function, 149
raw strings, 26
raw_input function (Python 2.X),

158
re module, 202–209

match objects, 205
module functions, 202–204
pattern syntax, 207–209
regular expression objects, 205

reduce function (Python 2.X), 158
ReferenceError class, 165
regular expression objects, 205
relative imports, 94
reload function (Python 2.X), 159
repr function, 149
ResourceWarning class, 170
return statement, 86–87
reversed function, 149
round function, 149
RuntimeError class, 165
RuntimeWarning class, 169

S
-s Python option, 5
-S Python option, 5
scopes, 105–108

lexical scopes, 105–107
statically nested scopes, 107

script launcher (Windows), 10
scriptfile specification, 6
searching strings, 38
select module, 222
self argument, 95
sequence assignment, 74
sequence converters, 66
sequence operations

lists, 47
methods for, 17, 123–125
notes, 20–21

strings, 27
tuples, 58

sequence type category, 17
serialization, object, 213–215
set comprehensions, 53, 53
set function, 150
set type, 24
setattr function, 150
sets, 63–65

literals and creation, 63
operations, 64

shell commands, 187
shelve module, 211–213
slice function, 150
slicing, 20
__slots__ attribute, 122
smtplib module, 222
socket module, 221
socketobj.makefile, 59, 147
socketserver module, 221
sorted function, 150
splitting strings, 39
SQL database API, 232–236

API usage example, 233
connection objects, 234
cursor objects, 235
module interface, 234
type objects and constructors,

236
standard library modules, 173,

210–215, 221–232
StandardError class, 172
starting programs, 6
statements, 71–104

assert statement, 101
assignment statement, 72–76
break statement, 81
class statement, 95–97
compound statements, 71
continue statement, 81
def statement, 82–86
del statement, 82

Index | 251

exec statement (Python 2.X),
104

expression statement, 76–77
for statement, 80–81
from statement, 93–94
global statement, 88
if statement, 80
import statement, 89–93
name rules, 69–71
nonlocal statement, 89
print statement, 77–79
Python 2.X, 104
raise statement, 99–101
return statement, 86
suites, 71
syntax rules, 67
try statement, 97–99
while statement, 80
with statement, 102–104
yield statement, 87–88

statically nested scopes, 107
staticmethod function, 95, 151
StopIteration class, 165
str function, 151
str string type, 24, 37, 42
string module, 182–184

capwords function, 183
Formatter class, 183
maketrans function, 183
original, 41
Template class, 183

StringIO, 59, 147
strings, 24–42

backslash escape sequences, 26
bytearray methods, 37
bytearray string type, 25–26,

45
bytes, 37
bytes string type, 25–26, 45
content test methods, 41
formatting expressions, 28
formatting methods, 30–33,

39

formatting support, 28
literals and creation, 25–27
operations, 27
quotes, 25
searching, 38
splitting and joining, 39
str string type, 24, 37, 42
string constant escape codes,

27
string converters, 67
string methods, 34–41
string module, 41
template string substitution,

34
unicode string type, 25
Unicode strings, 42–46

struct module, 230
subprocess module, 229
suites (statements), 71
sum function, 152
super function, 113, 152
superclasses, 95, 109, 162–163
syntax rules, 67
SyntaxError class, 166
SyntaxWarning class, 169
sys module, 174–182

argv, 174
builtin_module_names, 174
byteorder, 174
copyright, 174
displayhook, 175
dont_write_bytecode, 175
excepthook, 175
exc_info, 175
executable, 175
exec_prefix, 175
exit, 176
flags, 176
float_info, 176
getcheckinterval, 176
getdefaultencoding, 176
getfilesystemencoding, 176
_getframe, 176

252 | Index

getrecursionlimit, 177
getrefcount, 176
getsizeof, 177
getswitchinterval, 177
getwindowsversion, 177
hexversion, 177
implementation, 177
intern, 177
int_info, 177
last_traceback, 178
last_type, 178
last_value, 178
maxsize, 178
maxunicode, 178
modules, 178
path, 178
platform, 179
prefix, 179
ps1, 179
ps2, 179
setcheckinterval, 179
setdefaultencoding, 180
setprofile, 180
setrecursionlimit, 180
setswitchinterval, 180
settrace, 181
stderr, 181
__stderr__, 181
stdin, 181
__stdin__, 181
stdout, 181
__stdout__, 181
thread_info, 182
tracebacklimit, 182
version, 182
version_info, 182
winver, 182

SystemError class, 166
SystemExit class, 166

T
-t Python option, 7
TabError class, 167

telnetlib module, 223
Template class, 183
template string substitution, 34
third-party numeric types, 24
threading modules, 231
throw method, 88
time module, 225
timeit module, 226
TimeoutError class, 169
tkinter module, 216–220

additional classes and tools,
219

common dialog calls, 219
core widget classes, 217
example, 216
Tcl/Tk-to-Python/tkinter

mappings, 220
try statement, 97–99
tuple function, 154
tuples, 57
type conversions, built-in types,

66
type function, 66, 154
TypeError class, 167

U
-u Python option, 5
UnboundLocalError class, 167
unichr function (Python 2.X), 159
unicode function (Python 2.X),

159
unicode string type, 25, 27
Unicode strings, 42–46

bytes and bytearray, 45
Python 2.X support, 26, 46
Python 3.X support, 43

UnicodeDecodeError class, 167
UnicodeEncodeError class, 167
UnicodeError class, 167
UnicodeTranslateError class, 167
UnicodeWarning class, 170
unqualified names (see lexical

scopes)

Index | 253

urllib.parse module, 222
urllib.request module, 222
user-defined names, rules for, 69–

71
UserWarning class, 169
uu module, 223

V
-v Python option, 5
-V Python option, 5
ValueError class, 167
values method, 53
variables

dynamic typing, 12
environment, 7–9, 11
loop, 108
name rules, 69–71
namespace and scope rules,

106
vars function, 155
VMSError class, 171

W
-W Python option, 5
Warning class, 169

warnings.warn function, 170
weak references, 165
while statement, 80
whitespace, 69
widget classes (tkinter), 217
Windows script launcher, 10
WindowsError class, 171
with statement, 102–104, 130

X
-x Python option, 5
-X Python option, 5
xdrlib module, 221
xml package, 223
xmlrpc package, 223
xrange function (Python 2.X), 160

Y
yield statement, 87–88

Z
ZeroDivisionError class, 167
zip function, 155

254 | Index

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Cover
	Copyright
	Table of Contents
	Chapter 1. Python Pocket Reference
	Introduction
	Book Conventions
	Python Command-Line Usage
	Python Command Options
	Command-Line Program Specification
	Python 2.X Command Options

	Python Environment Variables
	Operational Variables
	Python Command Option Variables

	Python Windows Launcher Usage
	Launcher File Directives
	Launcher Command Lines
	Launcher Environment Variables

	Built-in Types and Operators
	Operators and Precedence
	Operator Usage Notes
	Operations by Category
	Sequence Operation Notes

	Specific Built-in Types
	Numbers
	Strings
	Unicode Strings
	Lists
	Dictionaries
	Tuples
	Files
	Sets
	Other Types and Conversions

	Statements and Syntax
	Syntax Rules
	Name Rules

	Specific Statements
	The Assignment Statement
	The Expression Statement
	The print Statement
	The if Statement
	The while Statement
	The for Statement
	The pass Statement
	The break Statement
	The continue Statement
	The del Statement
	The def Statement
	The return Statement
	The yield Statement
	The global Statement
	The nonlocal Statement
	The import Statement
	The from Statement
	The class Statement
	The try Statement
	The raise Statement
	The assert Statement
	The with Statement
	Python 2.X Statements

	Namespace and Scope Rules
	Qualified Names: Object Namespaces
	Unqualified Names: Lexical Scopes
	Nested Scopes and Closures

	Object-Oriented Programming
	Classes and Instances
	Pseudoprivate Attributes
	New-Style Classes
	Formal Inheritance Rules

	Operator Overloading Methods
	Methods for All Types
	Methods for Collections (Sequences, Mappings)
	Methods for Numbers (Binary Operators)
	Methods for Numbers (Other Operations)
	Methods for Descriptors
	Methods for Context Managers
	Python 2.X Operator Overloading Methods

	Built-in Functions
	Python 2.X Built-in Functions

	Built-in Exceptions
	Superclasses: Categories
	Specific Exceptions
	Specific OSError Exceptions
	Warning Category Exceptions
	Warnings Framework
	Python 3.2 Built-in Exceptions
	Python 2.X Built-in Exceptions

	Built-in Attributes
	Standard Library Modules
	The sys Module
	The string Module
	Functions and Classes
	Constants

	The os System Module
	Administrative Tools
	Portability Constants
	Shell Commands
	Environment Tools
	File Descriptor Tools
	File Pathname Tools
	Process Control
	The os.path Module

	The re Pattern-Matching Module
	Module Functions
	Regular Expression Objects
	Match Objects
	Pattern Syntax

	Object Persistence Modules
	The shelve and dbm Modules
	The pickle Module

	The tkinter GUI Module and Tools
	tkinter Example
	tkinter Core Widgets
	Common Dialog Calls
	Additional tkinter Classes and Tools
	Tcl/Tk-to-Python/tkinter Mappings

	Internet Modules and Tools
	Other Standard Library Modules
	The math Module
	The time Module
	The timeit Module
	The datetime Module
	The random Module
	The json Module
	The subprocess Module
	The enum Module
	The struct Module
	Threading Modules

	Python SQL Database API
	API Usage Example
	Module Interface
	Connection Objects
	Cursor Objects
	Type Objects and Constructors

	More Hints and Idioms
	Core Language Hints
	Environment Hints
	Usage Hints
	Assorted Hints

	Index

