

SQL
Pocket Guide

THIRD EDITION

SQL
Pocket Guide

Jonathan Gennick

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

SQL Pocket Guide, Third Edition
by Jonathan Gennick

Copyright © 2011 Jonathan Gennick. All rights reserved.
Printed in Canada

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://my.safari
booksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Julie Steele
Copyeditor: Teresa Elsey
Production Editor: Teresa Elsey
Proofreader: Emily Quill
Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
March 2004: First Edition.
April 2006: Second Edition.
November 2010: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Guide series desig-
nations, SQL Pocket Guide, the image of a chameleon, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

ISBN: 978-1-449-39409-7

[TG] [2/11]

1296702020

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Contents

SQL Pocket Guide 1
Introduction 1
Analytic Functions 7
CASE Expressions: Simple 7
CASE Expressions: Searched 7
CAST Function 8
CONNECT BY Queries 8
Data Type Conversion 15
Data Types: Binary Integer 15
Data Types: Character String 15
Data Types: Datetime 16
Data Types: Decimal 19
Datetime Conversions: DB2 21
Datetime Conversions: MySQL 24
Datetime Conversions: Oracle 28
Datetime Conversions: PostgreSQL 31
Datetime Conversions: SQL Server 34
Datetime Functions: DB2 38
Datetime Functions: MySQL 39
Datetime Functions: Oracle 40
Datetime Functions: PostgreSQL 43
Datetime Functions: SQL Server 45

v

Deleting Data 47
EXTRACT Function 51
GREATEST 52
Grouping and Summarizing 52
Hierarchical Queries 62
Indexes, Creating 66
Indexes, Removing 67
Inserting Data 67
Joining Tables 72
LEAST 82
Literals 82
Merging Data 86
Nulls 88
Numeric Conversions: DB2 93
Numeric Conversions: MySQL 95
Numeric Conversions: Oracle 95
Numeric Conversions: PostgreSQL 97
Numeric Conversions: SQL Server 98
Numeric/Math Functions 99
OLAP Functions 101
Pivoting and Unpivoting 101
Predicates 109
Recursive Queries 112
Regular Expressions 113
Selecting Data 124
String Functions 134
Subqueries 139
Tables, Creating 143
Tables, Dropping 148
Tables, Modifying 148
Transaction Management 154
Union Queries 162

vi | Table of Contents

Updating Data 168
Window Functions 172

Index 181

Table of Contents | vii

SQL Pocket Guide

Introduction
This book is an attempt to cram the most useful information
about SQL into a pocket-size guide. It covers commonly used
syntax for the following platforms: IBM DB2 Release 9.7,
MySQL 5.1, Oracle Database 11g Release 2, PostgreSQL 9.0,
and Microsoft SQL Server 2008 Release 2.

Not all syntax will work on all platforms, and some features
may not be available in earlier releases of these products.
Whenever possible, I’ve tried to note any product or release
dependencies.

Organization of This Book
Topics are organized alphabetically, with many section names
carefully chosen to correspond to relevant SQL keywords. For
example, see “Inserting Data” on page 67 for help with the
INSERT statement.

Platform notes
MySQL requires the leading parenthesis in a function invoca-
tion to immediately follow the function name. For example,
upper (name) will generate an error message because of the
space between upper and (name).

1

Conventions
The following typographical conventions are used in this book:

UPPERCASE
Indicates an SQL keyword

lowercase
Indicates a user-defined item in an SQL statement

Italic
Indicates emphasis or a new technical term

Constant width
Used for code examples and for in-text references to table
names, column names, expressions, and so forth

Constant width bold
Indicates user input in input/output code examples

Constant width italic
Indicates an element of syntax you need to supply

[]
Denotes an optional element of syntax

{}
Denotes a required choice

|
Separates choices in syntax

Example Data
All example SQL statements in this book execute against a
set of tables and data that you can download from this book’s
catalog page at http://oreilly.com/catalog/9781449394097/.
Figure 1 illustrates the relationships between the core tables,
which give information on waterfalls in Michigan’s Upper Pen-
insula. Some examples also use tables based on or derived from
those in Figure 1.

The terms datum, zone, northing, and easting refer to Universal
Transverse Mercator (UTM) grid coordinates, such as those

2 | SQL Pocket Guide

http://oreilly.com/catalog/9781449394097/

you might use with a topographical map or GPS device. For
more, see http://erg.usgs.gov/isb/pubs/factsheets/fs07701.html.

Some SQL examples in this book use a pivot table, which is
nothing more than a single-column table containing sequen-
tially numbered rows—in this case, 1,000 rows. The name of
the table is pivot. (Exceptions! In SQL Server, pivot is a re-
served word, so the SQL Server example script creates the table
as pivvot, with two vs. In the MySQL script, the table dual is
named duel.)

Using Code Examples
This book is here to help you get your job done. In general, you
may use the code in this book in your programs and docu-
mentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For ex-
ample, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing
a CD-ROM of examples from O’Reilly books does require per-
mission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a
significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For ex-
ample: “SQL Pocket Guide, by Jonathan Gennick (O’Reilly).
Copyright 2011 Jonathan Gennick, 9781449394097.”

If you feel your use of code examples falls outside fair use
or the permission given here, feel free to contact us at
permissions@oreilly.com.

Introduction | 3

http://erg.usgs.gov/isb/pubs/factsheets/fs07701.html
mailto:permissions@oreilly.com

Figure 1. Example schema for this book

4 | SQL Pocket Guide

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, exam-
ples, and any additional information. You can access this
page at:

http://oreilly.com/catalog/9781449394097

To comment or ask technical questions about this book, send
email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource
Centers, and the O’Reilly Network, see our website at:

http://oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital li-
brary that lets you easily search over 7,500 tech-
nology and creative reference books and videos
to find the answers you need quickly.

With a subscription, you can read any page and watch any
video from our library online. Read books on your cell phone
and mobile devices. Access new titles before they are available
for print, and get exclusive access to manuscripts in develop-
ment and post feedback for the authors. Copy and paste
code samples, organize your favorites, download chapters,

Introduction | 5

http://oreilly.com/catalog/9781449394097
mailto:bookquestions@oreilly.com
http://oreilly.com

bookmark key sections, create notes, print out pages, and ben-
efit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books
Online service. To have full digital access to this book and
others on similar topics from O’Reilly and other publishers,
sign up for free at http://my.safaribooksonline.com.

Acknowledgments
My heartiest thanks to the following people for their support,
encouragement, and assistance: Grant Allen; Don Bales;
Vladimir Begun; Tugrul Bingol; John Blake; Michel Cadot;
Dias Costa; Chris Date; Bruno Denuit; Doug Doole; Chris
Eaton; Stéphane Faroult; Iggy Fernandez; Bobby Fielding;
Donna, Jenny, and Jeff Gennick; K. Gopalakrishnan; Jonah
Harris; John Haydu; Kelvin Ho; Brand Hunt; Ken Jacobs;
Chris Kempster; Stephen Lee; Peter Linsley; Jim Melton;
Anthony Molinaro; Ari Mozes; Arup Nanda; Tanel Poder; Ted
Rexstrew; Brandon Rich; Serge Rielau; Debby Russell; Andrew
and Aaron Sears; Jeff Smith; Nuno Souto; Richard Swagerman;
April Wells; and Fred Zemke.

6 | SQL Pocket Guide

http://my.safaribooksonline.com/?portal=oreilly

Analytic Functions
Analytic function is Oracle’s term for what the SQL standard
refers to as a window function. See the section “Window Func-
tions” on page 172 for more on this extremely useful class of
function.

CASE Expressions: Simple
Simple CASE expressions correlate a list of values to a list of
alternatives. For example:

SELECT u.name,
 CASE u.open_to_public
 WHEN 'y' THEN 'Welcome!'
 WHEN 'n' THEN 'Go Away!'
 ELSE 'Bad code!'
 END AS column_alias
FROM upfall u;

Simple CASE expressions are useful when you can directly link
an input value to a WHEN clause by means of an equality con-
dition. If no WHEN clause is a match, and no ELSE is specified,
the expression returns null.

CASE Expressions: Searched
Searched CASE expressions associate a list of alternative return
values with a list of true/false conditions. They also allow you
to implement an IS NULL test. For example:

SELECT u.name,
 CASE
 WHEN u.open_to_public = 'y' THEN 'Welcome!'
 WHEN u.open_to_public = 'n' THEN 'Go Away!'
 WHEN u.open_to_public IS NULL THEN 'Null!'
 ELSE 'Bad code!'
 END AS column_alias
FROM upfall u;

CASE Expressions: Searched | 7

Null is returned when no condition is TRUE and no ELSE is
specified. If multiple conditions are TRUE, the first-listed con-
dition takes precedence.

CAST Function
CAST explicitly converts a value to a new type. For example:

SELECT * FROM upfall u
WHERE u.id = CAST('1' AS INTEGER);

When converting from text to numeric or date types, CAST
offers little flexibility in dealing with different input data for-
mats. For example, if the value you are casting is a string, the
contents must conform to your database’s default text repre-
sentation of the target data type.

NOTE
Most database brands have more useful conversion
functions than CAST. SQL Server’s CONVERT function
is one such example. See the sections on Datetime Con-
versions and Numeric Conversions.

CONNECT BY Queries
Oracle Database supports CONNECT BY syntax for executing
hierarchical queries. Beginning in Oracle Database 11g Release
2, you should consider the WITH clause, which in that release
supports ISO standard syntax for recursive queries. See
“Hierarchical Queries” on page 62.

NOTE
DB2 optionally supports CONNECT BY for compati-
bility with Oracle. There are some limitations, and
support needs to be enabled through B2_COMPATI-
BILITY_VECTOR.

8 | SQL Pocket Guide

Core CONNECT BY Syntax
To return data in a hierarchy, specify a starting node using
START WITH, and specify the parent-child relationship using
CONNECT BY:

SELECT id, name, type, parent_id
FROM gov_unit
START WITH parent_id IS NULL
CONNECT BY parent_id = PRIOR id;

ID NAME TYPE PARENT_ID
----- ---------- -------- ---------
3 Michigan state
2 Alger county 3
1 Munising city 2
4 Munising township 2
5 Au Train township 2
6 Baraga county 3
7 Ontonagon county 3
8 Interior township 7
9 Dickinson county 3
10 Gogebic county 3
11 Delta county 3
12 Masonville township 11
...

The START WITH clause identifies the row(s) Oracle consid-
ers to be at the top of the tree(s). There is only one tree in this
example, and it is for the state of Michigan. Alger County is a
subdivision of Michigan. Munising and Au Train Townships
are subdivisions of Alger County. Each entity’s parent_id
points to its enclosing entity.

Your START WITH condition does not necessarily need to
involve the columns that link parent to child nodes. For ex-
ample, use the following to generate a tree for each county:

START WITH type = 'county'

In a CONNECT BY query, the keyword PRIOR represents an
operator that returns a column’s value from either the parent
or a child row, depending on whether you are walking the tree
top-down or bottom-up. PRIOR is often used to define the re-
cursive relationship, but you can also use PRIOR in SELECT

CONNECT BY Queries | 9

lists, WHERE clauses, or anywhere else a column reference
is valid.

Creative CONNECT BY
CONNECT BY is not limited to hierarchical data. Any data
linked in a recursive fashion is a candidate for CONNECT BY
queries. For instance, the tour stops in this book’s example
schema are linked in a fashion that CONNECT BY handles
very well. The following query uses CONNECT BY to list each
stop in its proper order:

SELECT t.name tour_name, t.stop
FROM trip t
START WITH parent_stop IS NULL
CONNECT BY parent_stop = PRIOR stop
 AND name = PRIOR name;

Because some waterfalls appear in more than one tour, CON-
NECT BY also includes a condition on tour_name to avoid
loops. Output from the query is as follows:

TOUR_NAME STOP
---------- ----------------------
M-28 3
M-28 1
M-28 8
M-28 9
M-28 10
M-28 11
Munising 1
Munising 2
Munising 6
Munising 4
Munising 3
Munising 5
US-2 14
US-2 12
US-2 11
US-2 13

You can also use CONNECT BY as a row generator. For ex-
ample, to generate 100 rows (credit to Mikito Harakiri and
Tom Kyte for showing me this clever trick), specify:

10 | SQL Pocket Guide

SELECT level x
FROM dual CONNECT BY level <= 100;

Some older releases of Oracle have a bug that you can avoid by
placing the logic into a subquery:

SELECT x FROM (
 SELECT level x
 FROM dual CONNECT BY level <= 100);

You can also see the real-life case study “Finding Flight Legs”
at http://gennick.com/flight.html.

WHERE Clauses with CONNECT BY
You can write WHERE clauses in CONNECT BY queries to
restrict the results to specific rows of interest. The conditions
in the CONNECT BY clause control which trees are processed
by your query, and those trees in turn represent a candidate
pool of rows. Conditions in the WHERE clause winnow down
that candidate pool to only those rows that you wish the query
to return.

Joins with CONNECT BY
A CONNECT BY query may involve a join, in which case the
following order of operations applies:

1. The join is materialized first, which means that any join
predicates are evaluated first.

2. The CONNECT BY processing is applied to the rows re-
turned from the join operation.

3. Any filtering predicates from the WHERE clause are ap-
plied to the results of the CONNECT BY operation.

The following is an adaptation of the CONNECT BY query
listing tour stops, which now incorporates a join to bring in the
waterfall names:

SELECT t.name tour_name, t.stop, u.name falls_name
FROM trip t INNER JOIN upfall u
 ON t.stop = u.id

CONNECT BY Queries | 11

http://gennick.com/flight.html

START WITH parent_stop IS NULL
CONNECT BY t.parent_stop = PRIOR t.stop
 AND t.name = PRIOR t.name;

Be careful! Don’t write joins that inadvertently eliminate nodes
from the hierarchy you are querying.

Sorting CONNECT BY Results
Oracle’s CONNECT BY syntax implies an ordering in which,
given a top-down walk of the tree, each parent node is followed
by its immediate children, each child is followed by its imme-
diate children, and so on. It’s rare to write a standard ORDER
BY clause into a CONNECT BY query, because the resulting
sort destroys the hierarchical ordering of the data. However,
beginning in Oracle9i Database, you can use the new ORDER
SIBLINGS BY clause to sort each level independently without
destroying the hierarchy:

SELECT id, name, type, parent_id
FROM gov_unit
START WITH parent_id IS NULL
CONNECT BY parent_id = PRIOR id
ORDER SIBLINGS BY type, name;

ID NAME TYPE PARENT_ID
-- ---------- -------- ----------------------
 3 Michigan state
 2 Alger county 3
 1 Munising city 2
 5 Au Train township 2
 4 Munising township 2
 6 Baraga county 3
...

Baraga County follows Alger County because both are at the
same level and Baraga County comes later in the sorting order.
Within Alger County, the city is listed before the two town-
ships because the sort is on type first, followed by name. The
two townships are then sorted in alphabetical order. Each level
in the hierarchy is sorted independently, yet each parent is still
followed by its immediate children. Thus, the hierarchy
remains intact.

12 | SQL Pocket Guide

Loops in Hierarchical Data
Hierarchical data can sometimes be malformed in that a row’s
child may also be that row’s parent or ancestor. Such a situa-
tion leads to a loop. You can simulate a loop in the trip table
by omitting AND t.name = PRIOR t.name from the CONNECT
BY clause of the query to list tour stops. You can then detect
that loop by adding NOCYCLE to the CONNECT BY clause
and the CONNECT_BY_ISCYCLE pseudocolumn to the
SELECT list:

SELECT t.name tour_name, t.stop,
 u.name falls_name, CONNECT_BY_ISCYCLE
FROM trip t INNER JOIN upfall u
 ON t.stop = u.id
START WITH parent_stop IS NULL
CONNECT BY NOCYCLE
 t.parent_stop = PRIOR t.stop;

NOCYCLE prevents Oracle from following recursive loops in
the data. CONNECT_BY_ISCYCLE returns 1 for any row
having a child that is also a parent or ancestor. Here are the
preceding query’s results:

TOUR_NAME STOP FALLS_NAME CONNECT_BY_ISCYCLE
--------- ---- -------------- ------------------
Munising 1 Munising Falls 0
Munising 2 Tannery Falls 0
Munising 6 Miners Falls 0
Munising 4 Wagner Falls 0
Munising 3 Alger Falls 1
...

The 1 in the fourth column indicates that a loop arises from
the node for stop 3. If you look carefully at the data in the
trip table, you’ll see two nodes where stop = 3. These nodes
are for different tours. Without the restriction on t.name, one
branch of recursive processing will go from stop 3 on the Mu-
nising tour to stop 1 on the M-28 tour (child of a stop 3) to stop
2 on the Munising tour (child of a stop 1). Eventually, you’ll
come again to stop 3 on the Munising tour, thereby creating
the loop.

CONNECT BY Queries | 13

Supporting Functions and Operators
Oracle implements a number of helpful functions and opera-
tors to use in writing CONNECT BY queries:

CONNECT_BY_ISCYCLE
Returns 1 when a row’s child is also its ancestor; other-
wise, it returns 0. Use with CONNECT BY NOCYCLE.
(Oracle Database 10g and higher.)

CONNECT_BY_ISLEAF
Returns 1 for leaf rows, 0 for rows with children. (Oracle
Database 10g and higher.)

CONNECT_BY_ROOT(column)
Returns a value from the root row. See PRIOR. (Oracle
Database 10g and higher.)

LEVEL
Returns 0 for the root node of a hierarchy, 1 for nodes just
below the root, 2 for the next level of nodes, and so forth.
LEVEL is commonly used in SQL*Plus to indent hierarch-
ical results via an incantation such as the following:

RPAD(' ', 2*(LEVEL-1)) || first_column

PRIOR(column) or PRIOR column
Returns a value from a row’s parent. See also
CONNECT_BY_ROOT.

SYS_CONNECT_BY_PATH (column , delimiter)
Returns a concatenated list of column values in the path
from the root to the current node. Each value is preceded
by a delimiter, which you must specify as a string
constant.

Add SYS_CONNECT_BY_PATH(u.name,';') to the SELECT list
of the tour query shown in “Joins with CONNECT
BY” on page 11, and you’ll get results such as these: ;Alger
Falls, ;Alger Falls;Munising Falls, ;Alger Falls;Munis
ing Falls;Scott Falls, and so forth. (Oracle9i Database
and higher.)

14 | SQL Pocket Guide

Data Type Conversion
See the following topics for help on type conversion:

CAST Function
EXTRACT Function
Datetime Conversions for your chosen platform
Numeric Conversions for your chosen platform

Most platforms allow implicit conversion from one data type
to another. Here’s an example in Oracle:

SELECT * FROM upfall WHERE id = '1';

It’s often better to use explicit type conversion so that you
know for sure which value is getting converted and how.

Data Types: Binary Integer
Except for Oracle, the platforms support the following binary
integer types:

SMALLINT
INTEGER
BIGINT

These types correspond to 2-byte, 4-byte, and 8-byte integers,
respectively. Ranges are −32,768 to 32,767; −2,147,483,648
to 2,147,483,647; and −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807, respectively.

Data Types: Character String
For all platforms except Oracle, use the VARCHAR type to
store character data:

VARCHAR(max_bytes)

MySQL allows TEXT as a synonym for VARCHAR:

TEXT (max_bytes)

Data Types: Character String | 15

In Oracle, append a 2 to get VARCHAR2:

VARCHAR2(max_bytes)

Oracle Database 9i and higher allows you to specify explicitly
whether the size refers to bytes or characters:

VARCHAR2(max_bytes BYTE)
VARCHAR2(max_characters CHAR)

Using Oracle’s CHAR option means that all indexing into the
string (such as with SUBSTR) is performed in terms of charac-
ters, not bytes.

Maximums are 4,000 bytes (Oracle), 32,672 bytes (DB2),
8,000 bytes (SQL Server), 65,532 bytes (MySQL), and 1 GB
(PostgreSQL).

Data Types: Datetime
Datetime support varies wildly among platforms; com-
monality is virtually nonexistent.

DB2
DB2 supports the following datetime types:

DATE
TIME
TIMESTAMP
TIMESTAMP(0to12default6)

DATE stores year, month, and day. TIME stores hour, minute,
and second. TIMESTAMP stores both date and time, to a frac-
tional position of up to 12 digits. The range of valid values is
from 1 A.D. through 9999 A.D.

MySQL
MySQL supports the following datetime types:

DATE
TIME

16 | SQL Pocket Guide

DATETIME
TIMESTAMP

DATE stores dates from 1-Jan-1000 through 31-Dec-9999.
TIME stores hour/minute/second values from −838:59:59
through 838:59:59. DATETIME stores both date and time of
day (with the same range as DATE and TIME except that hours
max out at 23). TIMESTAMP stores Unix timestamp values.

The first TIMESTAMP column in a row is set to the current
time in any INSERT or UPDATE, unless you specify explicitly
a value of your own.

Oracle
Oracle supports the following datetime types:

DATE
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
TIMESTAMP(0to9default6) ...

DATE stores date and time to the second. TIMESTAMP adds
fractional seconds. WITH TIME ZONE adds the time zone.
WITH LOCAL TIME ZONE assumes each value to be in the
same time zone as the database server, with time zone trans-
lation taking place automatically between server and session
time zones. The range of valid datetime values is from 4712
B.C. through 9999 A.D. You can specify a fractional precision
of up to nine digits for any TIMESTAMP type.

PostgreSQL
PostgreSQL supports the following datetime types:

DATE
TIME [WITH[OUT] TIME ZONE]
TIMESTAMP [WITH[OUT] TIME ZONE]
TIME(0to6or0to10) ...
TIMESTAMP(0to6) ...

DATE stores a date only. TIME types store time of day. TIME-
STAMP types store both date and time. The default is to

Data Types: Datetime | 17

exclude time zone. The range of years is from 4713 B.C.
through 294,276 A.D. (TIMESTAMPs) and 5,874,897 A.D.
(DATEs).

TIME and TIMESTAMP allow you to limit the number of pre-
cision digits for fractional seconds. The range depends on
whether PostgreSQL stores time using a DOUBLE PRECI-
SION floating point (0 to 6) or BIGINT (0 to 10). The default
is DOUBLE PRECISION. The choice is a compile-time option.
Using BIGINT drops the high end of the TIMESTAMP year
range to 294,276 A.D.

SQL Server
SQL Server supports the following datetime types:

DATE
DATETIME
DATETIME2
DATETIME2(precision)
DATETIMEOFFSET
DATETIMEOFFSET(precision)
SMALLDATETIME
TIME
TIME(precision)

DATE stores date only from 1-Jan-0001 through 31-Dec-9999.
DATETIME stores date and time of day to an increment of 3.33
milliseconds, with a range of 1-Jan-1753 through 31-
Dec-9999. DATETIME2 is a combination of DATE and TIME.
DATETIMEOFFSET extends DATETIME2 with a time zone
offset. SMALLDATETIME stores date and time of day to the
minute, with a range of 1-Jan-1900 through 6-Jun-2079. TIME
stores time of day.

DATETIME2, DATETIMEOFFSET, and TIME take an op-
tional parameter to specify the decimal precision of the seconds
value. The default precision is to store seconds to seven decimal
places. The valid range is from 0 through 7.

18 | SQL Pocket Guide

NOTE
SQL Server supports a type called TIMESTAMP. It has
nothing whatsoever to do with storing datetime values.

Data Types: Decimal
Decimal data types are rather more consistent across platforms
than the datetime types. The following sections describe the
more commonly used decimal types.

DB2’s DECFLOAT Type
DB2 9.5 and higher support a new DECFLOAT type that is
based on the IEEE 754r standard. DB2 supports two precision
choices:

DECFLOAT(16)
DECFLOAT(34)

DECFLOAT(16) gives 16 digits of precision, requiring eight
bytes of storage; DECFLOAT(34) gives 34 digits and requires
16 bytes of storage.

The range for DECFLOAT(16) is:

from –9.999999999999999 × 10384

to –1.0 × 10–383,

and from 1.0 × 10–383

to 9.999999999999999 × 10384.

The range for DECFLOAT(34) is:

from –9.999999999999999999999999999999999 × 106144

to –1.0 × 10–6143,

and from 1.0 × 10–6143

to 9.999999999999999999999999999999999 × 106144.

Data Types: Decimal | 19

The DECFLOAT type supports five rounding modes:

ROUND_CEILING
Rounds upward, always in a positive direction.

ROUND_FLOOR
Rounds downward, always in a negative direction.

ROUND_HALF_UP
Rounds to the nearest up or down value. Values of 0.5
round upward.

ROUND_HALF_EVEN
Rounds to the nearest value. Values of 0.5 round up or
down so as to make the final digit an even digit.

ROUND_DOWN
Rounds toward zero.

You specify the rounding mode at the database level, using the
parameter decflt_rounding. You must restart the database for
any change to take effect.

DECIMAL/NUMBER Type
All platforms support the use of DECIMAL for storing numeric
base-10 data (such as monetary amounts):

DECIMAL
DECIMAL(precision)
DECIMAL(precision, scale)

In Oracle, DECIMAL is a synonym for NUMBER, and you
should generally use NUMBER instead.

DECIMAL(precision) is a decimal integer of up to precision dig-
its. DECIMAL(precision, scale) is a fixed-point decimal number
of precision digits with scale digits to the right of the decimal
point. For example, DECIMAL(9,2) can store values up to
9,999,999.99.

20 | SQL Pocket Guide

NOTE
In Oracle, declaring a column as DECIMAL without
specifying precision or scale results in a decimal float-
ing-point column. In DB2, the same declaration is in-
terpreted as DECIMAL(5,0). In SQL Server, the effect is
the same as DECIMAL(18,0).

Maximum precision/scale values are: 38/127 (Oracle), 31/31
(DB2), 38/38 (SQL Server), 65/30 (MySQL), and 1,000/1,000
(PostgreSQL).

Datetime Conversions: DB2
DB2 recently added a great deal of support to emulate Oracle’s
TO_CHAR and TO_DATE functions. If compatibility with
Oracle is important, test to see whether the functions described
under “Datetime Conversions: Oracle” on page 28 will work
for you.

Otherwise, use the following functions to convert to and from
dates, times, and timestamps. In the syntax, datetime can be a
date, time, or timestamp; date must be either a date or a time-
stamp; time must be either a time or a timestamp; and time
stamp must be a timestamp. Similarly, dateduration must be a
date or timestamp duration; timeduration must be either a time
or timestamp duration; and timestampduration must be a time-
stamp duration. Valid string representations of all of these
types are allowed as well:

BIGINT(datetime)
CHAR(datetime, [ISO|USA|EUR|JIS|LOCAL])
DATE(date)
DATE(integer)
DATE('yyyyddd')
DAY(date)
DAY(dateduration)
DAYNAME(date)
DAYOFWEEK(date)
DAYOFWEEK_ISO(date)

Datetime Conversions: DB2 | 21

DAYOFYEAR(date)
DAYS(date)
DECIMAL(datetime[,precision[,scale]])
GRAPHIC(datetime, [ISO|USA|EUR|JIS|LOCAL])
HOUR(time)
HOUR(timeduration)
INTEGER(date_only)
INTEGER(time_only)
JULIAN_DAY(date)
MICROSECOND(timestamp)
MICROSECOND(timestampduration)
MIDNIGHT_SECONDS(time)
MINUTE(time)
MINUTE(timeduration)
MONTH(date)
MONTH(dateduration)
MONTHNAME(date)
QUARTER(date)
SECOND(time)
SECOND(timeduration)
TIME(time)
TIMESTAMP(timestamp)
TIMESTAMP(date, time)
TIMESTAMP_FORMAT(string, 'YYYY-MM-DD HH24:MI:SS')
TIMESTAMP_ISO(datetime)
TO_CHAR(timestamp, 'YYYY-MM-DD HH24:MI:SS')
TO_DATE(string, 'YYYY-MM-DD HH24:MI:SS')
VARCHAR(datetime)
VARCHAR_FORMAT(timestamp, 'YYYY-MM-DD HH24:MI:SS')
VARGRAPHIC(datetime, [ISO|USA|EUR|JIS|LOCAL])
WEEK(date)
WEEK_ISO(date)
YEAR(date)
YEAR(dateduration)

The following example combines the use of several functions
to produce a text representation of confirmed_date:

SELECT u.id,
 MONTHNAME(u.confirmed_date) || ' '
|| RTRIM(CHAR(DAY(u.confirmed_date))) || ','
|| RTRIM(CHAR(YEAR(u.confirmed_date))) confirmed
FROM upfall u;

22 | SQL Pocket Guide

ID CONFIRMED
----------- ---------------
 1 December 8,2005
 2 December 8,2005
 3 December 8,2005
 4 December 8,2005

Functions requiring date, time, or timestamp arguments also
accept character strings that can be converted implicitly into
values of those types. For example:

SELECT DATE('2003-11-7') ,
 TIME('21:25:00'),
 TIMESTAMP('2003-11-7 21:25:00.00')
FROM pivot WHERE x = 1;

Use the CHAR function’s second argument to exert some con-
trol over the output format of dates, times, and timestamps:

SELECT CHAR(current_date, ISO),
 CHAR(current_date, LOCAL),
 CHAR(current_date, USA)
FROM pivot WHERE x=1;

2003-11-06 11-06-2003 11/06/2003

Use the DATE function to convert an integer to a date. Valid
integers range from 1 to 3,652,059, where 1 represents 1-
Jan-0001. The DAYS function converts in the reverse direction:

SELECT DATE(716194), DAYS('1961-11-15')
FROM pivot WHERE x=1;

11/15/1961 716194

Use the DECIMAL and BIGINT functions to return dates,
times, and timestamps as decimal and 8-byte integer values,
which will take the forms yyyymmdd, hhmmss, and
yyyymmddhhmmss.nnnnnnn, respectively:

SELECT DECIMAL(current_date),
 DECIMAL(current_time),
 DECIMAL(current_timestamp)
FROM pivot
WHERE x=1;

20031106. 213653. 20031106213653.088001

Datetime Conversions: DB2 | 23

The JULIAN_DAY function returns the number of days since
1-Jan-4713 B.C. (which is the same as 1-Jan in the astronomical
year −4712), counting that date as day 0. There is no function
to convert in the reverse direction.

Datetime Conversions: MySQL
MySQL implements a variety of datetime conversion func-
tions, including some in support of Unix timestamps. The
available functions are described in the following subsections.

Date and Time Elements
MySQL supports the following functions to return specific date
and time elements:

DAYOFWEEK(date)
WEEKDAY(date)
DAYOFMONTH(date)
DAYOFYEAR(date)
MONTH(date)
DAYNAME(date)
MONTHNAME(date)
QUARTER(date)
WEEK(date)
WEEK(date, first)
YEAR(date)
YEARWEEK(date)
YEARWEEK(date, first)
HOUR(time)
MINUTE(time)
SECOND(time)

For example, to return the current date in text form, specify:

SELECT CONCAT(DAYOFMONTH(CURRENT_DATE), '-',
 MONTHNAME(CURRENT_DATE), '-',
 YEAR(CURRENT_DATE));

2-January-2004

For functions taking a first argument, you can specify whether
weeks begin on Sunday (first = 0) or on Monday (first = 1).

24 | SQL Pocket Guide

TO_DAYS and FROM_DAYS
Use TO_DAYS to convert a date into the number of days since
the beginning of the Christian calendar (1-Jan-0001 is consid-
ered day 1):

SELECT TO_DAYS(CURRENT_DATE);

731947

Use FROM_DAYS to convert in the reverse direction:

SELECT FROM_DAYS(731947);

2004-01-02

These functions are designed for use only with Gregorian dates,
which begin on 15-Oct-1582. TO_DAYS and FROM_DAYS
functions will not return correct results for earlier dates.

Unix Timestamp Support
The following functions convert to and from Unix timestamps:

UNIX_TIMESTAMP([date])
Returns a Unix timestamp, which is an unsigned integer
with the number of seconds since 1-Jan-1970. With no
argument, you generate the current timestamp. The date
argument may be a date string, a datetime string, a time-
stamp, or a numeric equivalent.

FROM_UNIXTIME(unix_timestamp [, format])
Converts a Unix timestamp into a displayable date and
time using the format you specify, if any. See Table 1 for
a list of valid format elements.

For example, to convert 4-Jan-2004 at 7:18 PM into the num-
ber of seconds since 1-Jan-1970, specify:

SELECT UNIX_TIMESTAMP(20040104191800);

1073261880

Datetime Conversions: MySQL | 25

To convert that timestamp into a human-readable format,
specify:

SELECT FROM_UNIXTIME(1073261880,
 '%M %D, %Y at %h:%i:%r');

January 4th, 2004 at 07:18:07:18:00 PM

The format argument is optional. The default format for the
datetime given in this example is 2004-01-04 19:18:00.

Seconds in the Day
Two MySQL functions let you work in terms of seconds in the
day:

SEC_TO_TIME(seconds)
Converts seconds past midnight into a string of the form
hh:mi:ss.

TIME_TO_SEC(time)
Converts a time into seconds past midnight.

For example:

SELECT TIME_TO_SEC('19:18'), SEC_TO_TIME(69480);

69480 19:18:00

DATE_FORMAT and TIME_FORMAT
These two functions provide a great deal of flexibility in con-
versions to text. Use DATE_FORMAT to convert dates to text
and TIME_FORMAT to convert times:

SELECT DATE_FORMAT(CURRENT_DATE,
 '%W, %M %D, %Y');

Sunday, January 4th, 2004

The second argument to both functions is a format string. For-
mat elements in that format string are replaced with their re-
spective datetime elements, as described in Table 1. Other text
in the format string, such as the commas and spaces in this
example, is left in place as part of the function’s return value.

26 | SQL Pocket Guide

Table 1. MySQL date format elements

Specifier Description

%a Weekday abbreviation: Sun, Mon, Tue,…

%b Month abbreviation: Jan, Feb, Mar,…

%c Month number: 1, 2, 3,…

%D Day of month with suffix: 1st, 2nd, 3rd,…

%d Day of month, two digits: 01, 02, 03,…

%e Day of month: 1, 2, 3,…

%f Microseconds: 000000–999999

%H Hour, two digits, 24-hour clock: 00…23

%h Hour, two digits, 12-hour clock: 01…12

%I Hour, two digits, 12-hour clock: 01…12

%i Minutes: 00, 01,…59

%j Day of year: 001…366

%k Hour, 24-hour clock: 0, 1,…23

%l Hour, 12-hour clock: 1, 2,…12

%M Month name: January, February,…

%m Month number: 01, 02,…12

%p Meridian indicator: AM or PM

%r Time of day on a 12-hour clock, e.g., 12:15:05 PM

%S Seconds: 00, 01,…59

%s Same as %S

%T Time of day on a 24-hour clock, e.g., 12:15:05 (for 12:15:05 PM)

%U Week with Sunday as the first day: 00, 01,…53

%u Week with Monday as the first day: 00, 01,…53

%V Week with Sunday as the first day, beginning with 01 and corresponding to
%X: 01, 02,…53

%v Week with Monday as the first day, beginning with 01 and corresponding
to %x: 01, 02,…53

%W Weekday name: Sunday, Monday,…

Datetime Conversions: MySQL | 27

Specifier Description

%w Numeric day of week: 0=Sunday, 1=Monday,…

%X Year for the week, four digits, with Sunday as the first day and corresponding
to %V

%x Year for the week, four digits, with Monday as the first day and corresponding
to %v

%Y Four-digit year: 2003, 2004,…

%y Two-digit year: 03, 04,…

%% Places the percent sign (%) in the output

Datetime Conversions: Oracle
You can convert to and from datetime types in Oracle by using
the following functions:

TO_CHAR({datetime|interval}, format)
TO_DATE(string, format)
TO_TIMESTAMP(string, format)
TO_TIMESTAMP_TZ(string, format)
TO_DSINTERVAL('D HH:MI:SS')
TO_YMINTERVAL('Y-M')
NUMTODSINTERVAL(number, 'unit_ds')
NUMTOYMINTERVAL(number, 'unit_ym')

unit_ds ::= {DAY|HOUR|MINUTE|SECOND}
unit_ym ::= {YEAR|MONTH}

The format argument allows great control over text represen-
tation. For example, you can specify precisely the display
format for dates:

SELECT name,
 TO_CHAR(confirmed_date, 'dd-Mon-yyyy') cdate
FROM upfall;

Munising Falls 08-Dec-2005
Tannery Falls 08-Dec-2005
Alger Falls 08-Dec-2005
…

28 | SQL Pocket Guide

And to convert in the other direction:

INSERT INTO upfall (id, name, confirmed_date)
VALUES (15, 'Tahquamenon',
 TO_TIMESTAMP('29-Jan-2006','dd-Mon-yyyy'));

Table 2 lists the format elements that you can use in creating a
format mask. Output from many of the elements depends on
your session’s current language setting (e.g., if your session
language is French, you’ll get month names in French).

When converting to text, the case of alphabetic values, such as
month abbreviations, is determined by the case of the format
element. Thus, 'Mon' yields 'Jan' and 'Feb', 'mon' yields
'jan' and 'feb', and 'MON' yields 'JAN' and 'FEB'. When con-
verting from text, case is irrelevant.

The format mask is always optional. You can omit it when your
input value conforms to the default format specified by
the following: NLS_DATE_FORMAT (dates) for dates,
NLS_TIMESTAMP_FORMAT for timestamps, and
NLS_TIMESTAMP_TZ_FORMAT for timestamps with time
zones. You can query the NLS_SESSION_PARAMETERS
view to check your NLS settings.

Table 2. Oracle datetime format elements

Element Description

AM or PM

A.M. or P.M.

Meridian indicator.

BC or AD

B.C. or A.D.

B.C. or A.D. indicator.

CC Century. Output-only.

D Day in the week.

DAY, Day, or day Name of day.

DD Day in the month.

DDD Day in the year.

DL Long date format. Output-only. Combines only with TS.

Datetime Conversions: Oracle | 29

Element Description

DS Short date format. Output-only. Combines only with TS.

DY, Dy, or dy Abbreviated name of day.

E Abbreviated era name for Japanese Imperial, ROC Official, and Thai
Buddha calendars. Input-only.

EE Full era name.

FF, FF1…FF9 Fractional seconds. Only for TIMESTAMP values. Always use two Fs.
FF1…FF9 work in Oracle Database 10g and higher.

FM Toggles blank suppression. Output-only.

FX Requires exact pattern matching on input.

HH or HH12 Hour in the day, from 1–12. HH12 is output-only.

HH24 Hour in the day, from 0–23.

IW ISO week in the year. Output-only.

IYY, IY, or I Last three, two, or one digits of ISO year. Output-only.

IYYY ISO year. Output-only.

J Julian date. January 1, 4712 B.C. is day 1.

MI Minutes.

MM Month number.

MON, Mon, or mon Abbreviated name of month.

MONTH, Month,
or month

Name of month.

Q Quarter of year. Output-only.

RM or rm Roman numeral month number.

RR Last two digits of year. Sliding window for hundreds value: 00–49
= 20xx, 50–99 = 19xx.

RRRR Four-digit year; also accepts two digits on input. Sliding window
just like RR.

SCC Century. B.C. dates negative. Output-only.

SP Suffix that converts a number to its spelled format.

SPTH Suffix that converts a number to its spelled and ordinal formats.

SS Seconds.

30 | SQL Pocket Guide

Element Description

SSSSS Seconds since midnight.

SYEAR, SYear,
or syear

Year in words. B.C. dates negative. Output-only.

SYYYY Four-digit year. B.C. dates negative.

TH or th Suffix that converts a number to ordinal format.

TS Short time format. Output-only. Combine only with DL or DS.

TZD Abbreviated time zone name. Input-only.

TZH Time zone hour displacement from UTC (Coordinated Universal
Time).

TZM Time zone minute displacement from UTC.

TZR Time zone region.

W Week in the month, from 1 through 5. Week 1 starts on the first day
of the month and ends on the seventh. Output-only.

WW Week in the year, from 1 through 53. Output-only.

X Local radix character used to denote the decimal point. This is a
period in American English.

Y,YYY Four-digit year with comma.

YEAR, Year, or
year

Year in words. Output-only.

YYY, YY, or Y Last three, two, or one digits of year.

YYYY Four-digit year.

Datetime Conversions: PostgreSQL
Convert between datetimes and character strings using the fol-
lowing functions:

TO_CHAR({timestamp|interval}, format)
TO_DATE(string, format)
TO_TIMESTAMP(string, format)

Datetime Conversions: PostgreSQL | 31

For example, to convert a date to the character representation
of a timestamp, specify:

SELECT u.name,
 TO_CHAR(u.confirmed_date, 'dd-Mon-YYYY')
FROM upfall u;

 name | to_char
-----------------+-------------
 Munising Falls | 08-Dec-2005
 Tannery Falls | 08-Dec-2005
 Alger Falls | 08-Dec-2005
...

To convert in the other direction (a character representation of
a timestamp to a date), specify:

SELECT TO_DATE('8-Dec-2005', 'dd-mon-yyyy');

PostgreSQL closely follows Oracle in its support for format
elements. Table 3 lists those available in PostgreSQL. Case fol-
lows form for alphabetic elements: use MON to yield JAN, FEB;
Mon to yield Jan, Feb; and mon to yield jan, feb.

WARNING
You cannot apply TO_CHAR to values of type TIME.

You can also use TO_TIMESTAMP to convert a Unix epoch
value to a PostgreSQL timestamp:

SELECT TO_TIMESTAMP(0);

Unix time begins at midnight, at the beginning of 1-Jan-1970,
Coordinated Universal Time (UTC).

Table 3. PostgreSQL datetime format elements

Element Description

AM or PM

A.M. or P.M.

Meridian indicator.

BC or AD

B.C. or A.D.

B.C. or A.D. indicator.

32 | SQL Pocket Guide

Element Description

CC Century. Output-only.

D Day in the week.

DAY, Day, or day Name of day.

DD Day in the month.

DDD Day in the year.

DY, Dy, or dy Abbreviated name of day.

FM Toggles blank suppression. Output-only.

FX Requires exact pattern matching on input.

HH or HH12 Hour in the day, from 1–12. HH12 is output-only.

HH24 Hour in the day, from 0–23.

IW ISO week in the year. Output-only.

IYY, IY, or I Last three, two, or one digits of ISO standard year. Output-only.

IYYY ISO standard year. Output-only.

J Julian date. January 1, 4712 B.C. is day 1.

MI Minutes.

MM Month number.

MON, Mon, or mon Abbreviated name of month.

MONTH, Month, or
month

Name of month.

MS Milliseconds.

Q Quarter of year. Output-only.

RM or rm Month number in Roman numerals.

SP Suffix that converts a number to its spelled format (not
implemented).

SS Seconds.

SSSS Seconds since midnight.

TH or th Suffix that converts a number to ordinal format.

TZ or tz Time zone name.

US Microseconds.

Datetime Conversions: PostgreSQL | 33

Element Description

W Week in the month, from 1 through 5. Week 1 starts on the first
day of the month and ends on the seventh. Output-only.

WW Week in the year, from 1 through 53. Output-only.

Y,YYY Four-digit year with comma.

YYY, YY, or Y Last three, two, or one digits of year.

YYYY Four-digit year.

Datetime Conversions: SQL Server
In SQL Server, you can choose one of four overall approaches
to datetime conversion. The CONVERT function is a good
general choice, although DATENAME and DATEPART pro-
vide a great deal of flexibility when converting to text.

CAST and SET DATEFORMAT
SQL Server supports the standard CAST function and also
allows you to specify a datetime format using the SET DATE-
FORMAT command:

SET DATEFORMAT dmy
SELECT CAST('1/12/2004' AS datetime)

2004-12-01 00:00:00.000

For dates in unambiguous formats, you may not need to worry
about the DATEFORMAT setting:

SET DATEFORMAT dmy
SELECT CAST('12-Jan-2004' AS datetime)

2004-01-12 00:00:00.000

When using SET DATEFORMAT, you can specify any of the
following arguments: mdy, dmy, ymd, myd, dym.

34 | SQL Pocket Guide

CONVERT
You can use the CONVERT function for general datetime
conversions:

CONVERT(datatype[(length)], expression[, style])

The optional style argument allows you to specify the target
and source formats for datetime values, depending on whether
you are converting to or from a character string. Table 4 lists
the supported styles.

For example, you can convert to and from text:

SELECT CONVERT(VARCHAR,
 CONVERT(DATETIME, '15-Nov-1961', 106),
 106)

15 Nov 1961

Use the length argument if you want to specify the length of
the resulting character string type. Subtract 100 from most
style numbers for two-digit years:

SELECT CONVERT(DATETIME, '1/1/50', 1)

1950-01-01 00:00:00.000

SELECT CONVERT(DATETIME, '49.1.1', 2)

2049-01-01 00:00:00.000

SQL Server uses the year 2049 as a cutoff. Years 50–99 are
interpreted as 1950–1999. Years 00–49 are treated as 2000–
2049. You can see this behavior in the preceding example. Be
aware that your DBA can change the cutoff value using the two
digit year cutoff configuration option.

Datetime Conversions: SQL Server | 35

Table 4. SQL Server datetime styles

Style Description

0, 100 Default: mon dd yyyy hh:miAM (or PM)

101a USA: mm/dd/yyyy

102a ANSI: yyyy.mm.dd

103a British/French: dd/mm/yyyy

104a German: dd.mm.yyyy

105a Italian: dd-mm-yyyy

106a dd mon yyyy

107a mon dd, yyyy

108a hh:mm:ss

9, 109 Default with milliseconds: mon dd yyyy hh:mi:ss: mmmAM (or PM)

110a USA: mm-dd-yyyy

111a Japan: yyyy/mm/dd

112a ISO: yyyymmdd

13, 113 Europe default with milliseconds and 24-hour clock: dd mon yyyy
hh:mm:ss:mmm

114a hh:mi:ss:mmm with 24-hour clock

20, 120 ODBC canonical, 24-hour clock: yyyy-mm-dd hh:mi:ss

21, 121 ODBC canonical with milliseconds, 24-hour clock: yyyy-mm-dd
hh:mi:ss.mmm

126 ISO8601, no spaces: yyyy-mm-yyThh:mm:ss:mmm

127 Time with time zone (literal T separating the date from the time): yyyy-mm-
ddThh:mi:ss.mmm

130 Hijri: dd mon yyyy hh:mi:ss:mmmAM

131 Hijri: dd/mm/yyyy hh:mi:ss:mmmAM
a Subtract 100 to get a two-digit year.

DATENAME and DATEPART
Use the DATENAME and DATEPART functions to extract
specific elements from datetime values:

36 | SQL Pocket Guide

DATENAME(datepart, datetime)
DATEPART(datepart, datetime)

DATENAME returns a textual representation, whereas
DATEPART returns a numeric representation. For example:

SELECT DATENAME(month, GETDATE()),
 DATEPART(month, GETDATE())

January 1

Some elements, such as year and day, are always represented
as numbers; however, the two functions give you the choice of
getting back a string or an actual numeric value. Both of the
following function calls return the year, but DATENAME
returns the string '2004', whereas DATEPART returns the
number 2004:

SELECT DATENAME(year, GETDATE()),
 DATEPART(year, GETDATE());

SQL Server supports the following datepart keywords: year,
yy, yyyy, quarter, qq, q, month, mm, m, dayofyear, dy, y, day, dd, d,
week, wk, ww, weekday, dw, hour, hh, minute, mi, n, second, ss, s,
millisecond, ms, microsecond, mcs, nanosecond, ns, TZoffset, tz,
ISO_Week, isowk, isoww.

DAY, MONTH, and YEAR
SQL Server also supports a few functions to extract specific
values from dates:

DAY(datetime)
MONTH(datetime)
YEAR(datetime)

For example:

SELECT DAY(CURRENT_TIMESTAMP),
 MONTH(CURRENT_TIMESTAMP),
 YEAR(CURRENT_TIMESTAMP)

11 11 2003

Datetime Conversions: SQL Server | 37

Datetime Functions: DB2
DB2 implements the following special registers to return date-
time information:

CURRENT DATE or CURRENT_DATE
Returns the current date on the server.

CURRENT TIME or CURRENT_TIME
Returns the current time on the server.

CURRENT TIMESTAMP or CURRENT_TIMESTAMP
Returns the current date and time as a timestamp.

CURRENT TIMEZONE or CURRENT_TIMEZONE
Returns the current time zone as a decimal number rep-
resenting the time zone offset—in hours, minutes, and
seconds—from UTC. The first two digits are the hours,
the second two digits are the minutes, and the last two
digits are the seconds.

DB2 also supports labeled durations. For example:

CURRENT_DATE + 1 YEARS - 3 MONTHS + 10 DAYS

Valid labels are YEAR, YEARS, MONTH, MONTHS, DAY,
DAYS, HOUR, HOURS, MINUTE, MINUTES, SECOND,
SECONDS, MICROSECOND, and MICROSECONDS.

NOTE
DB2 9.7 and higher now support many of the same
functions as Oracle, notably: ROUND, TRUNC,
ADD_MONTHS, LAST_DAY, NEXT_DAY, and
MONTHS_BETWEEN. See “Datetime Functions: Ora-
cle” on page 40 for details.

38 | SQL Pocket Guide

Datetime Functions: MySQL
MySQL implements the following functions to return the cur-
rent date and time:

CURDATE() or CURRENT_DATE
Returns the current date as a string ('YYYY-MM-DD') or a
number (YYYYMMDD), depending on the context.

CURTIME() or CURRENT_TIME
Returns the current time as a string ('HH:MI:SS') or a
number (HHMISS), depending on the context.

NOW(), SYSDATE(), or CURRENT_TIMESTAMP
Returns the current date and time as a string ('YYYY-MM-DD
HH:MI:SS') or a number (YYYYMMDDHHMISS), depending on
the context.

UNIX_TIMESTAMP
Returns the number of seconds since the beginning of 1-
Jan-1970 as an integer.

MySQL also implements the following functions for adding
and subtracting intervals from dates.

DATE_ADD(date , INTERVAL value units)
Adds value number of units to the date. You can use
ADDDATE as a synonym for DATE_ADD.

DATE_SUB(date , INTERVAL value units)
Subtracts value number of units from the date. You can
use SUBDATE as a synonym for DATE_SUB.

For example, to add one month to the current date:

SELECT DATE_ADD(CURRENT_DATE, INTERVAL 1 MONTH);

Or, to subtract one year and two months:

SELECT DATE_SUB(CURRENT_DATE,
 INTERVAL '1-2' YEAR_MONTH);

Valid interval keywords for numeric intervals include SEC-
OND, MINUTE, HOUR, DAY, MONTH, and YEAR. You can
also use the string-based formats shown in Table 5.

Datetime Functions: MySQL | 39

Table 5. MySQL string-based interval formats

Keyword Format

DAY_HOUR 'dd hh'

DAY_MINUTE 'dd hh:mi'

DAY_SECOND 'dd hh:mi:ss'

HOUR_MINUTE 'HH:MI'

HOUR_SECOND 'hh:mi:ss'

MINUTE_SECOND 'MI:SS'

YEAR_MONTH 'yy-mm'

Datetime Functions: Oracle
Oracle implements a wide variety of helpful functions for
working with dates and times.

Getting Current Date and Time
It is common to invoke SYSDATE to return the current date
and time in the server’s time zone. For example:

SELECT SYSDATE FROM dual;

2006-02-07 09:32:32

You can use ALTER SESSION to specify a default date format
for your session using the date format elements described in
Table 2.

ALTER SESSION
 SET NLS_DATE_FORMAT = 'dd-Mon-yyyy hh: mi:ss';

The following Oracle functions return current datetime
information:

CURRENT_DATE
Returns the current date in the session time zone as a value
of type DATE.

40 | SQL Pocket Guide

CURRENT_TIMESTAMP[(precision)]
Returns the current date and time in the session time zone
as a value of type TIMESTAMP WITH TIME ZONE. The
precision is the number of decimal digits used to express
fractional seconds; it defaults to 6.

LOCALTIMESTAMP[(precision)]
The same as CURRENT_TIMESTAMP, but it returns a
TIMESTAMP value with no time zone offset.

SYSDATE
Returns the server date and time as a DATE.

SYSTIMESTAMP[(precision)]
Returns the current server date and time as a TIME-
STAMP WITH TIME ZONE value.

DBTIMEZONE
Returns the database server time zone as an offset from
UTC in the form '[+|-]hh:mi'.

SESSIONTIMEZONE
Returns the session time zone as an offset from UTC in
the form '[+|-]hh:mi'.

Rounding and Truncating
Oracle allows you to round and truncate DATE values to spe-
cific datetime elements. The following example illustrates
rounding and truncating to the nearest month:

SELECT SYSDATE, ROUND(SYSDATE,'Mon'),
 TRUNC(SYSDATE,'Mon')
FROM dual;

SYSDATE ROUND(SYSDA TRUNC(SYSDA
----------- ----------- -----------
31-Dec-2003 01-Jan-2004 01-Dec-2003

Rounding is implemented to the nearest occurrence of the ele-
ment you specify. My input date was closer to 1-Jan-2004 than
it was to 1-Dec-2003, so my date was rounded up to the nearest
month.

Datetime Functions: Oracle | 41

Truncation simply sets any element of lesser significance than
the one you specify to its minimum value. The minimum day
value is 1, so 31-Dec was truncated to 1-Dec.

Use the date format elements from Table 2 to specify the ele-
ment for which you want to round or truncate a date. Avoid
esoteric elements such as RM (Roman numerals) and J (Julian
day); stick to easily understood elements such as MM (month),
Q (quarter), and so forth. If you omit the second argument to
ROUND or TRUNC, the date is rounded or truncated to the
day (the DD element).

Other Oracle Datetime Functions
The following functions work with, and usually return, values
of type DATE:

ADD_MONTHS(date , integer)
Adds integer months to date. If date is the last day of its
month, the result is forced to the last day of the target
month. If the target month has fewer days than date’s
month, the result is also forced to the last of the month.

LAST_DAY(date)
Returns the last day of the month that contains a specified
date.

NEXT_DAY(date , weekday)
Returns the first specified weekday following a given
date. The weekday must be a valid weekday name or ab-
breviation in the current date language for the session.
(You can query NLS_SESSION_PARAMETERS to check
this value.) Even when date falls on weekday, the function
will still return the next occurrence of weekday.

MONTHS_BETWEEN(later_date , earlier_date)
Computes the number of months between two dates. The
math corresponds to later_date – earlier_date. The in-
put dates can actually be in either order, but if the second
date is later, the result will be negative.

42 | SQL Pocket Guide

The result will be an integer number of months for any
case in which both dates correspond to the same day of
the month, or for any case in which both dates correspond
to the last day of their respective months. Otherwise, Ora-
cle calculates a fractional result based on a 31-day month,
also considering any time-of-day components of the input
dates.

None of these functions is overloaded to handle TIMESTAMP
values. Any timestamp inputs are converted implicitly to type
DATE and consequently lose any fractional second and time
zone information.

Datetime Functions: PostgreSQL
The following subsections demonstrate some of PostgreSQL’s
more useful datetime functions.

Getting Current Date and Time
PostgreSQL implements the following functions to return the
current date and time:

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME [(precision)]
CURRENT_TIMESTAMP [(precision)]

LOCALTIME
LOCALTIMESTAMP
LOCALTIME [(precision)]
LOCALTIMESTAMP [(precision)]

NOW()

The function NOW() is equivalent to CURRENT_TIME-
STAMP. The CURRENT functions return values with a time
zone. The LOCAL functions return values without a time zone.

Datetime Functions: PostgreSQL | 43

For example:

SELECT
 TO_CHAR(CURRENT_TIMESTAMP, 'HH:MI:SS tz'),
 TO_CHAR(LOCALTIMESTAMP, 'HH:MI:SS tz');

 05:02:00 est | 05:02:00

Some functions accept an optional precision argument. You
can omit the argument to receive the fullest possible precision.
Alternatively, you can use the argument to round to
precision digits to the right of the decimal. For example:

SELECT CURRENT_TIME, CURRENT_TIME(1);

 17:10:07.490077-05 | 17:10:07.50-05

None of the previously listed functions advance their return
values during a transaction. You will always get the date and
time at which the current transaction began. The function
TIMEOFDAY() is an exception to this rule:

SELECT TIMEOFDAY();

 Sun Feb 05 17:11:39.659280 2006 EST

TIMEOFDAY() returns wall-clock time, advances during a
transaction, and returns a character-string result.

Rounding and Truncating
PostgreSQL does not support the rounding of datetime values;
however, it does provide a DATE_TRUNC function for trun-
cating a datetime:

SELECT CURRENT_DATE,
 DATE_TRUNC('YEAR', CURRENT_DATE);

 2006-02-05 | 2006-01-01 00:00:00-05

The result is either a TIMESTAMP or an INTERVAL, depend-
ing on what type of value is being truncated. The following are
valid values for DATE_TRUNC’s first argument: MICROSEC-
ONDS, MILLISECONDS, SECOND, MINUTE, HOUR,
DAY, WEEK, MONTH, YEAR, DECADE, CENTURY, and

44 | SQL Pocket Guide

MILLENNIUM. Pass one of these values as a text string; case
does not matter.

Other PostgreSQL Datetime Functions
Use AT TIME ZONE either to apply a time zone to a datetime
without one or to convert a datetime from one time zone to
another. For example:

SELECT CURRENT_TIMESTAMP;

 2006-02-05 17:28:38.534286-05

SELECT CURRENT_TIMESTAMP AT TIME ZONE 'PST';

 2006-02-05 14:28:38.541632

You can achieve the same results as those in the previous
example through the TIMEZONE function:

SELECT TIMEZONE('PST', CURRENT_TIMESTAMP);

PostgreSQL supports an Ingres-inspired function called
DATE_PART that provides the same functionality as the ISO-
standard EXTRACT. For example, to extract the current
minute value as a number, specify:

SELECT DATE_PART('minute', CURRENT_TIME);

36

DATE_PART accepts all of the same datetime element names
as EXTRACT. See “EXTRACT Function” on page 51.

Datetime Functions: SQL Server
SQL Server 2008 introduces a set of high-precision functions
to return current datetime information:

SYSDATETIME()
Returns date and time as a DATETIME2 value.

Datetime Functions: SQL Server | 45

SYSDATETIMEOFFSET()
Returns date, time, and time zone offset as a
DATETIMEOFFSET value.

SYSUTCDATETIME
Returns current UTC time as a DATETIME2 value.

SQL Server continues to support the following functions from
previous releases:

CURRENT_TIMESTAMP or GETDATE()
Returns the current date and time on the server as a date-
time value.

GETUTCDATE()
Returns the current UTC date and time, as derived from
the server’s time and time zone setting.

SQL Server implements two functions for date arithmetic:

DATEADD(datepart, interval,date)
Adds interval (expressed as an integer) to date. Specify a
negative interval to perform subtraction. The datepart ar-
gument is a keyword specifying the portion of the date to
increment, and it may be any of the following: year, yy,
yyyy, quarter, qq, q, month, mm, m, dayofyear, dy, y, day, dd, d,
week, wk, ww, hour, hh, minute, mi, n, second, ss, s,
millisecond, ms. For example, to add one day to the cur-
rent date, use DATEADD(day, 1, GETDATE()).

DATEDIFF(datepart , startdate , enddate)
Returns enddate – startdate expressed in terms of the
units you specify for the datepart argument. For example,
to compute the number of minutes between the current
time and UTC time, use DATEDIFF(mi, GETUTCDATE(),
GETDATE()).

SQL Server 2008 introduces new functions to work with time
zone offsets:

SWITCHOFFSET(datetimeoffset, new_offset)
Inserts a new time zone offset into a DATETIMEOFFSET
value and returns that new value.

46 | SQL Pocket Guide

TODATETIMEOFFSET(datetime2, new_offset)
Creates a DATETIMEOFFSET value from a DATETIME2
and an offset that you specify.

Specify time zone offsets in string form. For example, to con-
vert the current time into U.S. Eastern Standard Time:

SELECT
 SWITCHOFFSET (
 SYSDATETIMEOFFSET(),
 '-05:00');

Negative offsets count westward from the prime meridian;
positive offsets count eastward.

Deleting Data
Use the DELETE statement to delete rows from a table:

DELETE
FROM data_source
WHERE predicates

For example, you may want to delete states for which you don’t
know the population:

DELETE FROM state s
WHERE s.population IS NULL;

SQL Server, MySQL, and PostgreSQL 8.1 and earlier do not
allow the alias on the target table. See the section “Predi-
cates” on page 109 for more details on the different kinds of
predicates that you can write.

Deleting in Order
MySQL requires that you include an ORDER BY clause in your
DELETE statement when deleting multiple rows from a table
having a self-referential foreign-key constraint. This is to en-
sure that child rows are deleted before their parents. Because
MySQL checks for constraint violations during statement
execution, this is a MySQL-only issue.

Deleting Data | 47

NOTE
The ISO SQL standard allows constraint checking to be
done either at the end of each statement’s execution or
at the end of a transaction, but never during statement
execution.

In the section “Subquery Inserts” on page 69, you will find
an INSERT INTO…SELECT FROM statement that creates a
new tour in the trip table called J's Tour. If you wish to delete
J's Tour, you must issue a statement such as:

DELETE FROM trip WHERE name = 'J''s Tour'
ORDER BY CASE stop
 WHEN 1 THEN 1
 WHEN 2 THEN 2
 WHEN 6 THEN 3
 WHEN 4 THEN 4
 WHEN 3 THEN 5
 WHEN 5 THEN 6
 END DESC;

The CASE expression in this statement’s ORDER BY clause
hardcodes a child-first delete order. Obviously, this completely
defeats the purpose of a multirow DELETE statement. If you’re
lucky, you’ll have a sortable column that will yield a child-first
delete order without its having to be hardcoded. In the case of
this book’s example schema and data, I wasn’t so lucky.

Deleting All Rows
Omit the WHERE clause to remove all rows from a table:

DELETE FROM township;

Many database systems also implement a TRUNCATE TABLE
statement that empties a table instantly, without logging, and
thus with no hope of rolling back:

TRUNCATE TABLE township;

48 | SQL Pocket Guide

Oracle provides a form that preserves any space allocated to
the table (which is useful if you plan to reload the table right
away):

TRUNCATE TABLE township REUSE STORAGE;

Deleting from Views and Subqueries
All platforms allow deletes from views, but with restrictions.
Oracle and DB2 allow deletes from a subquery (also known as
an inline view). For example, to delete any states not referenced
by the gov_unit table, you can specify:

DELETE FROM (
 SELECT * FROM state s
 WHERE s.id NOT IN (
 SELECT g.id FROM gov_unit g
 WHERE g.type = 'State'));

In PostgreSQL, a view that is the target of a DELETE must have
an associated ON DELETE DO INSTEAD rule. PostgreSQL
does not allow deleting from subqueries.

Various restrictions are placed on deletions from views and
subqueries because, ultimately, a database system must be able
to resolve a DELETE against a view or a subquery to a set of
rows in an underlying table.

Returning Deleted Data: DB2
DB2 provides a very powerful option for retrieving the rows
affected by a DELETE statement. Simply SELECT from the
DELETE statement. For example:

SELECT * FROM OLD TABLE (
 DELETE FROM state
 WHERE name = 'Michigan'
);

Specify FROM OLD TABLE, and wrap your DELETE in
parentheses.

Deleting Data | 49

Returning Deleted Data: Oracle
Oracle’s solution to returning just-deleted rows is a RETURN-
ING clause to specify the data to be returned and where it will
be placed:

DELETE FROM ...
WHERE ...
RETURNING expression [,expression ...]
[BULK COLLECT] INTO variable [,variable ...]

For DELETEs of more than one row, the target variables must
also be PL/SQL collection types, and you must use the BULK
COLLECT keywords:

DECLARE
 TYPE county_id_array IS ARRAY(100) OF NUMBER;
 county_ids county_id_array;
BEGIN
 DELETE FROM county_copy
 RETURNING id BULK COLLECT INTO county_ids;
END;
/

Rather than specifying a target variable for each source
expression, your target can be a record containing the appro-
priate number and type of fields.

Returning Deleted Data: SQL Server
SQL Server implements the OUTPUT clause for returning
deleted rows from a query. For example:

DELETE FROM state
OUTPUT DELETED.id AS state_id,
 DELETED.name;

You can use the syntax OUTPUT DELETED.* to return all columns.
You can specify expressions such as UPPER(DELETED.name). You
can specify column aliases as in any query, with or without the
optional AS keyword.

50 | SQL Pocket Guide

Double-FROM
SQL Server supports an extension to DELETE that lets you
delete from a table based on values from a joined table. For
example, to delete counties from gov_unit for which you do
not know the population, specify:

DELETE FROM gov_unit
FROM gov_unit g JOIN county c
 ON g.id = c.id
WHERE c.population IS NULL;

The first FROM clause identifies the ultimate target of the
DELETE. The second FROM clause specifies a table join. Then
predicates in the WHERE clause can evaluate columns from
both tables in the join. In this example, rows are deleted from
the gov_unit table based on a corresponding population
from the county table.

EXTRACT Function
DB2 (9.7 and higher), MySQL, Oracle, and PostgreSQL
support the standard EXTRACT function to retrieve specific
elements from a datetime value. In MySQL, for example:

SELECT EXTRACT(DAY FROM CURRENT_DATE);

The result will be a number. Valid elements are SECOND,
MINUTE, HOUR, DAY, MONTH, and YEAR.

Oracle supports the following additional elements:
TIMEZONE_HOUR, TIMEZONE_MINUTE, TIME-
ZONE_REGION, and TIMEZONE_ABBR. The latter two
Oracle elements are exceptions and return string values.

PostgreSQL also supports additional elements: CENTURY,
DECADE, DOW (day of week), DOY (day of year), EPOCH
(number of seconds in an interval, or since 1-Jan-1970 for a
date), MICROSECONDS, MILLENNIUM, MILLISEC-
ONDS, QUARTER, TIMEZONE (offset from UTC, in
seconds), TIMEZONE_HOUR (hour part of UTC offset),
TIMEZONE_MINUTE (minute part of offset), and WEEK.

EXTRACT Function | 51

GREATEST
DB2 (9.5 onward), MySQL, Oracle, and PostgreSQL imple-
ment the GREATEST function to return the largest value from
a list of values:

GREATEST(value [, value ...])

The input values may be numbers, datetimes, or strings. On
some platforms, if even one input value is null, then the func-
tion returns null.

Grouping and Summarizing
SQL enables you to collect rows into groups and to summarize
those groups in various ways, ultimately returning just one row
per group. You do this using the GROUP BY and HAVING
clauses, as well as various aggregate functions.

Aggregate Functions
An aggregate function takes a group of values, one from each
row in a group of rows, and returns one value as output. One
of the most common aggregate functions is COUNT, which
counts non-null values in a column. For example, to count the
number of waterfalls associated with a county, specify:

SELECT COUNT(u.county_id) AS county_count
FROM upfall u;

16

Add DISTINCT to the preceding query to count the number
of counties containing waterfalls:

SELECT COUNT(DISTINCT u.county_id)
 AS county_count
FROM upfall u;

6

52 | SQL Pocket Guide

The ALL behavior is the default, counting all values:
COUNT(expression) is equivalent to COUNT(ALL expression).

COUNT is a special case of an aggregate function because you
can pass the asterisk (*) to count rows rather than column
values:

SELECT COUNT(*) FROM upfall;

Nullity is irrelevant when COUNT(*) is used because the concept
of null applies only to columns, not to rows as a whole. All
other aggregate functions ignore nulls.

Table 6 lists some commonly available aggregate functions.
However, most database vendors implement aggregate func-
tions well beyond those shown.

Table 6. Common aggregate functions

Function Description

AVG(x) Returns the mean.

COUNT(x) Counts non-null values.

MAX(x) Returns the greatest value.

MEDIAN(x) Returns the median, or middle value, which may be interpolated.
(Oracle only.)

MIN(x) Returns the least value.

STDDEV(x) Returns the standard deviation. Use STDEV (only one D) in SQL Server.

SUM(x) Sums all numbers.

VARIANCE(x) Returns the statistical variance. Is an alias to VAR_SAMP in Post-
greSQL, and to VAR_POP in MySQL. Use VAR in SQL Server.

GROUP BY
Aggregate functions come into their own when you apply them
to groups of rows rather than to all rows in a table. To do this,
use the GROUP BY clause. The following query counts the
number of waterfalls in each of the predefined tours:

SELECT t.name AS tour_name, COUNT(*)
FROM upfall u INNER JOIN trip t

Grouping and Summarizing | 53

 ON u.id = t.stop
GROUP BY t.name;

When you execute a query like this one, the result-set rows are
grouped as specified by the GROUP BY clause:

TOUR_NAME FALL_NAME
---------- ---------------
M-28 Munising Falls
M-28 Alger Falls
M-28 Scott Falls
M-28 Canyon Falls
M-28 Agate Falls
M-28 Bond Falls

Munising Munising Falls
Munising Tannery Falls
Munising Alger Falls
Munising Wagner Falls
Munising Horseshoe Falls
Munising Miners Falls

US-2 Bond Falls
US-2 Fumee Falls
US-2 Kakabika Falls
US-2 Rapid River Fls

After the groups have been created, any aggregate functions are
applied once to each group. In this example, COUNT(*) is eval-
uated separately for each group:

TOUR_NAME COUNT(*)
---------- ---------------
M-28 6
M-28
M-28
M-28
M-28
M-28

Munising 6
Munising
Munising
Munising
Munising
Munising

54 | SQL Pocket Guide

US-2 4
US-2
US-2
US-2

Any columns to which an aggregate function has not been ap-
plied are now “collapsed” into one value:

TOUR_NAME COUNT(*)
---------- ---------------
M-28 6
Munising 6
US-2 4

In practical terms, this collapsing of many detail rows into one
aggregate row means that you must apply an aggregate function
to any column not listed in your GROUP BY clause.

NOTE
Grouping usually implies a limited sort operation to sort
the rows into their groups.

Listing the Detail Values
Oracle implements the LISTAGG function to aggregate detail
values for a column into a single value per group. The result is
a delimited list of values. The following example extends the
previous section’s query to return a column named stop with
a comma-delimited list of falls on a given tour:

SELECT t.name AS tour_name,
 LISTAGG (u.name, ',') WITHIN GROUP
 (ORDER BY u.name ASC) AS stop
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
GROUP BY t.name;

TOUR_NAME STOP
---------- ------------------------------
M-28 Agate Falls,Alger Falls,Bond
 Falls,Canyon Falls,Munising
 Falls,Scott Falls

Grouping and Summarizing | 55

Munising Alger Falls,Horseshoe
 Falls,Miners Falls,Munising
 Falls,Tannery Falls,Wagner
 Falls

The parameters to LISTAGG specify the column to aggregate
and the delimiter to use in creating the list. The WITHIN
GROUP keywords are mandatory. The ORDER BY clause in
parentheses is also mandatory, and in this case it sorts the list
alphabetically. You can sort the list on any detail column. For
example, you can sort the list of falls in the stop column by
u.confirmed_date, by u.lat_lon, and so forth.

Reducing the GROUP BY List
Sometimes you want to list a column in the SELECT list of a
GROUP BY query without having to list that same column in
the GROUP BY clause. In the following query, a given county
number implies a county name:

SELECT c.id AS county_id,
 c.name AS county_name,
 COUNT(*) AS waterfall_count
FROM upfall u INNER JOIN county c
 ON u.county_id = c.id
GROUP BY c.id, c.name;

Rather than grouping by the c.id and c.name columns, it might
be more efficient to group by the c.id column only, which
yields a much shorter sort key. The grouping sort will poten-
tially run faster and use less scratch space on disk. One ap-
proach to doing this is specified as follows:

SELECT c.id AS county_id,
 MAX(c.name) AS county_name,
 COUNT(*) AS waterfall_count
FROM upfall u INNER JOIN county c
 ON u.county_id = c.id
GROUP BY c.id;

This query drops c.name from the GROUP BY clause. To com-
pensate for that, the query arbitrarily applies the MAX function
to that same column in the SELECT list. Because all county

56 | SQL Pocket Guide

names within a group of similar c.id values are the same, MAX
can return only that one name.

Grouping Before the Join
The GROUP BY examples in the preceding section involve a
join that is performed before the grouping operation. Using a
subquery, it’s possible to restate the query in a way that causes
the join to occur after the aggregation instead:

SELECT c.id AS county_id,
 c.name AS county_name,
 agg.falls_count
FROM county c INNER JOIN (
 SELECT u.county_id, COUNT(*) AS falls_count
 FROM upfall u
 GROUP BY u.county_id) agg
ON c.id = agg.county_id;

The advantage here is that the join involves far fewer rows be-
cause the aggregation occurs prior to the join, not after it. An-
other advantage is a potential reduction in scratch disk and
memory requirements, as the rows involved in the GROUP BY
operation and subsequent aggregation do not include any data
from the county table.

HAVING
The HAVING clause is used to place restrictions on the rows
returned from a GROUP BY query. For example, to list only
those tours having at least six stops, specify the following:

SELECT t.name AS tour_name, COUNT(*)
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
GROUP BY t.name
HAVING COUNT(*) >= 6;

Never put a condition in the HAVING clause that does not
involve an aggregation. Such conditions are evaluated much
more efficiently in the WHERE clause.

Grouping and Summarizing | 57

ROLLUP
The ROLLUP operation supported in DB2, MySQL, Oracle,
and SQL Server generates a summary row for each group. For
example, to roll up tour stops by county in DB2, Oracle, or
SQL Server 2008, specify the following:

SELECT t.name AS tour_name,
 c.name AS county_name,
 COUNT(*) AS falls_count
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
 INNER JOIN county c
 ON u.county_id = c.id
GROUP BY ROLLUP(t.name, c.name);

Use the WITH ROLLUP syntax in MySQL or SQL Server 2005:

SELECT t.name AS tour_name,
 c.name AS county_name,
 COUNT(*) as falls_count
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
 INNER JOIN county c
 ON u.county_id = c.id
GROUP BY t.name, c.name WITH ROLLUP;

Following is the output from the preceding queries. The rows
in boldface are generated as a result of using ROLLUP:

TOUR_NAME COUNTY_NAME FALLS_COUNT
---------- ----------- ----------------------
M-28 Alger 3
M-28 Baraga 1
M-28 Ontonagon 2
M−28 6
US-2 Delta 1
US-2 Gogebic 1
US-2 Dickinson 1
US-2 Ontonagon 1
US−2 4
Munising Alger 6
Munising 6
 16

The GROUP BY operation generates the normal summary by
tour and county. The ROLLUP operation adds in summaries

58 | SQL Pocket Guide

for all other possible levels by tour name and for the entire set
of rows. M-28’s six stops, for example, comprise three stops in
Alger County, two in Ontonagon County, and one in Baraga
County. There are 16 tour stops total across all tours.

CUBE
CUBE takes things a step further. It generates summaries for
all possible combinations of the columns you specify, as well
as a grand total. The following is the CUBE version of the pre-
ceding section’s ROLLUP query for DB2, Oracle, and SQL
Server 2008, but restricted to the Munising tour:

SELECT t.name AS tour_name,
 c.name county_name,
 COUNT(*) AS falls_count
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
 INNER JOIN county c
 ON u.county_id = c.id
WHERE t.name = 'Munising'
GROUP BY CUBE(t.name, c.name);

MySQL 5.1 does not support CUBE. SQL Server 2005 requires
the WITH CUBE syntax:

SELECT t.name AS tour_name,
 c.name AS county_name,
 COUNT(*) AS falls_count
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
 INNER JOIN county c
 ON u.county_id = c.id
WHERE t.name = 'Munising'
GROUP BY t.name, c.name WITH CUBE;

The results in DB2, Oracle, and SQL Server are the same:

TOUR_NAME COUNTY_NAME FALLS_COUNT
---------- ----------- ----------------------
 6
 Alger 6
Munising 6
Munising Alger 6

Grouping and Summarizing | 59

These results are only for the Munising tour. CUBE generates
far more rows than ROLLUP does.

GROUPING SETS
Oracle, DB2, and SQL Server implement the GROUPING
SETS function to let you specify the groupings that you want.
For example:

SELECT t.name AS tour_name,
 c.name AS county_name,
 COUNT(*) AS falls_count
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
 INNER JOIN county c
 ON u.county_id = c.id
GROUP BY
 GROUPING SETS(t.name, c.name);

TOUR_NAME COUNTY_NAME FALLS_COUNT
---------- ----------- -----------
Munising 6
M-28 6
US-2 4
 Delta 1
 Ontonagon 3
 Gogebic 1
 Baraga 1
 Alger 9
 Dickinson 1

This data is a subset of the results generated by CUBE, but if
it’s all you need, then using GROUPING SETS is more
convenient.

Related Functions
The following functions are helpful when using CUBE,
ROLLUP, and GROUPING SETS:

GROUPING(column)
Returns 1 if a null column value was the result of a CUBE,
ROLLUP, or GROUPING SETS operation; otherwise, it
returns 0. (DB2, Oracle, SQL Server.)

60 | SQL Pocket Guide

GROUPING_ID(column , column , ...)
Behaves similarly to GROUPING, but this generates a bit
vector of 1s and 0s, depending on whether the corre-
sponding columns contain nulls generated by an extended
GROUP BY feature. (Available only in Oracle9i Database
and higher.)

GROUP_ID()
Enables you to distinguish between duplicate rows in the
output from CUBE, ROLLUP, and GROUPING SETS.
The function returns 0 through n−1 for each row in a set
of n duplicates. You can use that return value to decide
how many duplicates to retain. Use HAVING GROUP_ID()=0
to eliminate all duplicates. (Oracle only.)

Following is an example of the GROUPING function, using
SQL Server’s WITH CUBE syntax. The function returns a 1
whenever a null is the result of the CUBE operation.

SELECT t.name AS tour_name,
 c.name AS county_name,
 COUNT(*) AS falls_count,
 GROUPING(t.name) AS n1,
 GROUPING(c.name) n2
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
 INNER JOIN county c
 ON u.county_id = c.id
WHERE t.name = 'Munising'
GROUP BY t.name, c.name WITH CUBE;

tour_name county_name falls_count n1 n2
---------- ----------- ----------- ---- ----
Munising Alger 6 0 0
Munising NULL 6 0 1
NULL NULL 6 1 1
NULL Alger 6 1 0

The n1 and n2 columns indicate when null tour and county
names are the result of the CUBE operation rather than of data
actually contained within the tables being queried.

Grouping and Summarizing | 61

Hierarchical Queries
DB2, Oracle, and SQL Server support the recursive use of
WITH as defined in the ISO SQL standard for querying hier-
archical and recursive data. PostgreSQL supports recursive
WITH, but with a slight syntax difference.

NOTE
Oracle also supports a proprietary CONNECT BY syn-
tax. See “CONNECT BY Queries” on page 8.

Recursive WITH
Following is an example recursive query that generates a hier-
archical list of governmental units. States will be listed first,
then counties, then townships.

WITH recursiveGov
 (depth, id, parent_id, name,
 type) AS
 (SELECT 1, parent.id, parent.parent_id,
 parent.name, parent.type
 FROM gov_unit parent
 WHERE parent.parent_id IS NULL
 UNION ALL
 SELECT parent.depth+1, child.id,
 child.parent_id, child.name,
 child.type
 FROM recursiveGOV parent, gov_unit child
 WHERE child.parent_id = parent.id)
SELECT depth, id, parent_id, name, type
FROM recursiveGOV;

PostgreSQL requires that you specify that the WITH clause is
to be recursive by including the RECURSIVE keyword:

WITH RECURSIVE recursiveGov
...

Most of the preceding statement consists of a subquery named
recursiveGOV that is specified using the WITH clause. The
subquery consists of two SELECTs unioned together. Consider

62 | SQL Pocket Guide

the first SELECT as the union query’s starting point. It includes
a predicate to treat rows having null parent_ids as the tree
roots. Consider the second SELECT as defining the recursive
link between parent and child rows.

The second SELECT brings in the children of the first. Because
the second SELECT references the named subquery that it is
part of (itself), it recursively brings back children of the rows it
returned (and so forth until the end). The main SELECT kicks
off all this recursion by simply selecting from the named
subquery.

NOTE
For a more in-depth explanation of what happens when
a recursive WITH executes, read the article “Under-
standing the WITH Clause” at http://gennick.com/with
.html.

The output from the preceding query will look like this:

DEPTH ID PARENT_ID NAME TYPE
----- -- --------- -------- --------
1 3 Michigan state
2 2 3 Alger county
2 6 3 Baraga county
...

Tracking Your Depth
To keep track of your depth in a hierarchy, create a depth col-
umn as shown in the example query. Have the first SELECT
return 1 as the value for that column and have the second
SELECT return parent.depth+1. Then the root node will be
depth 1, the root’s immediate children will be depth 2, and so
on, down to the bottom of the hierarchy.

Hierarchical Queries | 63

http://gennick.com/with.html
http://gennick.com/with.html

Breadth-First Versus Depth-First Sorting
Results are returned by default in the following breadth-first
order, which differs from the order you’ll get using Oracle’s
CONNECT BY syntax (described in “CONNECT BY Quer-
ies” on page 8):

1. The root node

2. The root’s immediate children

3. The children of the root’s immediate children

4. And so forth

Oracle lets you specify whether you prefer depth- or breadth-
first sorting via a search clause. You can also specify how you
want siblings ordered. Look at what follows the SEARCH key-
word that precedes SELECT in the following example:

WITH recursiveGov
 (depth, id, parent_id, name,
 type) AS
 (SELECT 1, parent.id, parent.parent_id,
 parent.name, parent.type
 FROM gov_unit parent
 WHERE parent.parent_id IS NULL
 UNION ALL
 SELECT parent.depth+1, child.id,
 child.parent_id, child.name,
 child.type
 FROM recursiveGOV parent, gov_unit child
 WHERE child.parent_id = parent.id)
 SEARCH DEPTH FIRST
 BY name ASC NULLS FIRST
 SET ordering_column
SELECT depth, id, parent_id, name, type
FROM recursiveGOV
ORDER BY ordering_column;

You can specify either SEARCH DEPTH FIRST or SEARCH
BREADTH FIRST. The preceding query returns results in
depth-first order:

DEPTH ID PARENT_ID NAME TYPE
----- -- --------- -------- --------
 1 3 Michigan State

64 | SQL Pocket Guide

 2 2 3 Alger County
 3 5 2 Au Train Township
 3 1 2 Munising City
...

Key to these results is the SET ordering_column clause. That
clause adds an extra column of output containing a value that
you can sort on in the main query to ensure that rows are, in
fact, returned in the specified breadth- or depth-first order. You
can name the ordering column anything you wish. You can also
include that column in your main query’s select list, in the
WHERE clause, and anywhere else in the main query a column
name is allowed.

Detecting Recursive Loops
Oracle also supports syntax to detect loops in recursive data.
For instance, the example data for this book has been carefully
crafted to include a loop in the trip table. If you look closely
at the raw data, you’ll find that two stops share the same pa-
rent, leading to a loop. The following query uses the CYCLE
clause to detect that problem and the resulting loop:

WITH recursiveTrip
 (name, stop, parent_stop)
AS (SELECT parent.name, parent.stop,
 parent.parent_stop
 FROM trip parent
 WHERE parent.parent_stop IS NULL
 UNION ALL
 SELECT child.name, child.stop,
 child.parent_stop
 FROM recursiveTrip parent, trip child
 WHERE child.parent_stop = parent.stop)
 SEARCH DEPTH FIRST
 BY stop ASC NULLS FIRST
 SET ordering_column
 CYCLE stop
 SET cycle_flag TO 'y' DEFAULT 'n'
SELECT name, stop, parent_stop, cycle_flag
FROM recursiveTrip;

A cycle in this case is any instance of a parent and child row
sharing the same stop number. Hence the specification of

Hierarchical Queries | 65

CYCLE stop in this query. The SET clause adds a new column
to the query output, specifying that the column be set to y in
the event that the row in question is the cause of a loop in the
data. Here’s what the output looks like:

NAME STOP PARENT_STOP CYCLE_FLAG
---------- ---------- ----------- ----------
Munising 1 n
Munising 2 1 n
Munising 6 2 n
Munising 4 6 n
Munising 3 4 n
M-28 1 3 y
Munising 5 3 n
...

If you omit the CYCLE clause and a loop results, Oracle will
throw an ORA-32044: cycle detected while executing recur
sive WITH query error. When you specify both SEARCH and
CYCLE clauses, you must specify them in that order. You can
base loop-detection on a combination of multiple columns by
specifying a comma-delimited list of columns following the
CYCLE keyword.

Indexes, Creating
The basic CREATE INDEX statement syntax is:

CREATE INDEX falls_name ON upfall
 (name, open_to_public);

In this syntax, falls_name is the name of the index. The table
to be indexed is upfall. The index is on the combined values
of name and open_to_public.

Oracle and PostgreSQL allow you to assign an index to a
tablespace:

CREATE INDEX falls_name ON upfall
 (name, open_to_public)
 TABLESPACE users;

Oracle and PostgreSQL also allow you to index column ex-
pressions:

66 | SQL Pocket Guide

CREATE INDEX falls_name ON upfall
 (UPPER(name), open_to_public);

This particular index is useful for resolving queries in which
the WHERE clause predicates involve the expression
UPPER(name).

Indexes on expressions are subject to various restrictions. SQL
Server requires that such expressions return “precise” results,
thus ruling out expressions returning or involving floating-
point data types. Such expressions must also be deterministic,
meaning that a given input always returns the same output, no
matter the server or environmental settings.

Indexes, Removing
In DB2, Oracle, and PostgreSQL, you remove an index by
naming it in a DROP INDEX statement:

DROP INDEX falls_name;

MySQL and SQL Server require you to also specify the table
name:

DROP INDEX falls_name ON upfall;

Inserting Data
Use the INSERT statement to insert new rows in a table. You
can insert one row, many rows, or the results of a subquery.

Single-Row Inserts
The following example adds a county to the gov_unit table.
The values in the VALUES clause correspond to the columns
listed after the table name:

INSERT INTO gov_unit
 (id, parent_id, name, type)
VALUES (13, 3, 'Chippewa', 'County');

Inserting Data | 67

Any columns you omit from an INSERT statement take on
their default values specified at table-creation time. If you do
not specify a default value at table-creation, then a null is used.

Use the DEFAULT keyword to specify explicitly that a column
should take on its default value. Use the null keyword to insert
a null value explicitly in a column that might otherwise default
to a non-null value. For example:

INSERT INTO gov_unit
 (id, parent_id, name, type)
VALUES (14, DEFAULT, 'Mackinac', NULL);

If your VALUES list contains a value for each of the table’s
columns in the order specified at table creation, you can omit
the column list:

INSERT INTO gov_unit
VALUES (15, DEFAULT, 'Luce', 'County');

For anything other than an ad-hoc insert (in other words, for
inserts you embed in your scripts and programs), it’s safer to
specify a list of columns. Otherwise, such queries can fail the
moment a new column is added to the target table.

Multirow Inserts
Many platforms provide the ability to insert multiple rows via
repeated value lists in the VALUES clause:

INSERT INTO gov_unit
 (id, parent_id, name, type)
VALUES (16, 3, 'Menominee', 'County'),
 (17, 3, 'Iron', 'County'),
 (18, 3, 'Keweenaw', 'County');

Insert Targets
All platforms allow inserts into a view. DB2 and Oracle also
allow inserts into subqueries (or inline views):

INSERT INTO
 (SELECT id, name, type FROM gov_unit)

68 | SQL Pocket Guide

 (id, name, type)
VALUES (19, 'Keweenaw', 'County');

PostgreSQL requires views that are the targets of inserts to have
an associated ON INSERT DO INSTEAD rule.

Subquery Inserts
Using a subquery to feed an INSERT statement, it’s possible
to insert a number of rows at one time. For example, to create
a duplicate of the Munising tour, but with a different name,
specify:

INSERT INTO trip (name, stop, parent_stop)
 (SELECT 'J''s Tour', stop, parent_stop
 FROM trip
 WHERE name = 'Munising');

The SELECT statement in this form of INSERT must return an
expression corresponding to each column listed after the target
table. Some platforms let you get away without the parentheses
surrounding the subquery, but it’s safer to include them. The
subquery can be any valid SELECT statement. It may return
zero, one, or many rows.

MySQL requires that you sort your source rowset in a way that
avoids loading any child row ahead of its parent. For example:

INSERT INTO trip (name, stop, parent_stop)
 (SELECT 'J''s Tour', stop, parent_stop
 FROM trip
 WHERE name = 'Munising'
 ORDER BY CASE stop
 WHEN 1 THEN 1
 WHEN 2 THEN 2
 WHEN 6 THEN 3
 WHEN 4 THEN 4
 WHEN 3 THEN 5
 WHEN 5 THEN 6
 END);

The issue with MySQL is that constraints are not checked at
the end of a statement as in all other platforms, but rather they
are checked as a statement executes—in this case, for each row
inserted. Also, in this particular case, there is no column in the

Inserting Data | 69

trip table by which you can sort to prevent a constraint viola-
tion. Thus, you are forced to enumerate each row in the
ORDER BY clause, which virtually eliminates the benefit of
using INSERT INTO…SELECT FROM.

See the section “Deleting in Order” on page 47 for a DELETE
that will remove rows for J's Trip in the reverse order from
their insertion.

Returning Inserted Values: DB2
DB2 allows you to query newly inserted data by simply select-
ing from the INSERT statement. For example:

SELECT * FROM NEW TABLE (
 INSERT INTO gov_unit (id, name, type)
 VALUES (20, 'Limestone', 'Township')
);

Specify FROM NEW TABLE, and wrap your INSERT in
parentheses.

Returning Inserted Values: Oracle
Oracle supports a RETURNING clause to specify the data to
be returned and where it will be placed. The following example
works in Oracle SQL*Plus:

VARIABLE pid VARCHAR2(10);

INSERT INTO gov_unit (id, name, type)
 VALUES (19, 'Houghton', 'County')
 RETURNING parent_id INTO :pid;

VARIABLE is an SQL*Plus command used to create a bind
variable. This example returns one column. You can return
more than one column by simply separating column names and
result variables with commas:

RETURNING col1, col2 ... INTO var1, var2 ...

See “Returning Deleted Data: Oracle” on page 50 for an ex-
ample of the RETURNING clause showing the use of array
variables to return data from multiple rows.

70 | SQL Pocket Guide

Returning Inserted Data: SQL Server
You can use SQL Server’s OUTPUT clause to return values
from newly inserted rows. For example:

INSERT INTO gov_unit (id, name, type)
 OUTPUT INSERTED.parent_id AS pid
 VALUES (19, 'Houghton', 'County');

You can use the syntax OUTPUT INSERTED.* to return all
columns. You can specify expressions such as
UPPER(INSERTED.name). You can specify column aliases as in any
query, with or without the optional AS keyword.

Multitable Inserts
Using Oracle, you can issue INSERTs that affect multiple ta-
bles at once. You can insert the results of a subquery uncon-
ditionally into several tables, or you can write predicates that
control which rows are inserted into which table. If you choose
to write predicates, you can choose whether evaluation stops
with one success or whether a row is considered for insertion
into more than one table.

Unconditional multitable insert
Use INSERT ALL to insert the results of a subquery in more
than one target table:

INSERT ALL
 INTO fall_description
 (id, name, description)
 VALUES (id, name, description)
 INTO fall_location
 (id, datum, zone, northing, easting)
 VALUES (id, datum, zone, northing, easting)
 SELECT id, name, description, datum,
 zone, northing, easting
 FROM upfall;

This example inserts location and description data in two sep-
arate tables. Different data is inserted in each table, but all data

Inserting Data | 71

comes from the subquery. Each row returned by the subquery
results in two new rows—one in each table.

Conditional multitable insert
Use WHEN clauses to insert conditionally in multiple tables.
The following statement splits township and state data into
two separate tables:

INSERT FIRST
WHEN type = 'Township' THEN
 INTO township (id, name)
 VALUES (id, name)
WHEN type = 'State' THEN
 INTO state (id, name)
 VALUES (id, name)
ELSE
 INTO other_unit (id, name)
 VALUES (id, name)
SELECT * FROM gov_unit;

The ELSE clause in this statement causes all rows that do not
meet any other criteria to be added to the other_unit table. The
ELSE clause is optional; you can omit it to ignore rows that do
not meet at least one WHEN condition.

ALL versus FIRST
In a conditional multitable INSERT, the keyword ALL causes
each row returned by the subquery to be evaluated against each
WHEN clause. Thus, a row meeting criteria in two clauses can
be inserted in more than one table. Use INSERT FIRST to stop
evaluating a row after the first matching WHEN clause.

Joining Tables
Joins allow you to combine data from multiple tables into a
single result-set row. There are two fundamental types of join:
inner and outer. There are also two join syntaxes—the syntax
introduced in the 1992 SQL standard, which depends on a
JOIN clause, and an older syntax in which you separate table
names with commas.

72 | SQL Pocket Guide

The Concept of a Join
The concept of a join is best explained by beginning with the
earlier syntax. To join related rows from two tables, begin by
listing two table expressions separated by a comma in your
FROM clause. For example, to retrieve a list of waterfalls and
their county names, you could begin by writing the following:

SELECT u.name AS fall, c.name AS county
FROM upfall u, county c;

FALL COUNTY
--------------- ----------
Munising Falls Alger
Munising Falls Baraga
Munising Falls Ontonagon
...

This result is a Cartesian product, which is all possible com-
binations of rows from the two tables. Conceptually, all joins
begin as Cartesian products. From there, it’s up to you to sup-
ply conditions to narrow down the results to only those rows
that make sense. Using the older join syntax, you supply those
conditions in the WHERE clause:

SELECT u.name AS fall, c.name AS county
FROM upfall u, county c
WHERE u.county_id = c.id;

FALL COUNTY
--------------- ----------
Munising Falls Alger
Tannery Falls Alger
Alger Falls Alger
...

These results are much more useful.

The process I’ve just described is purely conceptual; database
systems will rarely or never form a Cartesian product when
executing a join. However, thinking in these conceptual terms
will help you write correct join queries and understand their
results. Regardless of how the join operation is optimized, join
results must match the conceptual results in the end.

Joining Tables | 73

Cross Joins
The SQL standard uses the term cross join to describe a Car-
tesian product. Generate a cross join as follows:

SELECT *
FROM upfall CROSS JOIN county;

One case in which cross joins are useful is when joining to a
single-row result set. For example, to generate a report of
tablespaces that include database_name, an Oracle database
administrator could specify the following:

SELECT d.name database_name, t.name tablespace_name
FROM v$tablespace T CROSS JOIN v$database d;

DATABASE_NAME TABLESPACE_NAME
------------- ------------------------------
DB01 SYSTEM
DB01 UNDOTBS1
...

This cross join has the effect of replicating the v$database in-
formation to every row of the result set. Because there is only
ever one row in v$database, the result set will still return one
row per tablespace.

NOTE
DB2 began to support the CROSS JOIN syntax in release
9.5.

Cross joins are also useful in conjunction with DB2’s LAT-
ERAL clause:

SELECT u.name, ings.direction, ings.meters
FROM upfall u,
 LATERAL (VALUES
 ('Northing', u.northing),
 ('Easting', u.easting))
 AS ings(direction, meters);

This query results in two rows per waterfall, one with the
northing value and the other with the easting. For example:

74 | SQL Pocket Guide

NAME DIRECTION METERS
--------------- --------- -----------
Munising Falls Northing 5141184
Munising Falls Easting 528971
Olson Falls Northing 5140000
Olson Falls Easting 528808
...

LATERAL generates a new table with values from the table to
its left. The cross join expands each waterfall row into two
rows.

Inner Joins
An inner join brings together corresponding rows from two
tables. For example, you could list each waterfall in its corre-
sponding county:

SELECT u.name AS fall, c.name AS county
FROM upfall u INNER JOIN county c
 ON u.county_id = c.id;

FALL COUNTY
--------------- ----------
Munising Falls Alger
Tannery Falls Alger
Alger Falls Alger
...

The keywords INNER JOIN between the two tables specify
that the join should be an inner join. The ON clause specifies
the join condition, or the condition that must apply in order for
two rows to be considered related. Conceptually, as described
in the preceding section, a Cartesian product is formed and the
join condition is then applied to filter out unwanted combina-
tions of rows.

The order of tables in an inner join is irrelevant. The INNER
keyword is optional. A WHERE clause is still valid in join
queries. For example, to report only on counties with a popu-
lation above 10,000, use the following:

SELECT u.name AS fall, c.name AS county
FROM county c INNER JOIN upfall u

Joining Tables | 75

 ON u.county_id = c.id
WHERE c.population > 10000;

Conceptually, the join results are materialized first, and the
WHERE clause then restricts the results to those joined rows
that satisfy the WHERE conditions. In reality, your database
will find a more optimal approach to producing the results.

The USING Clause
MySQL, Oracle, and PostgreSQL support the USING clause.
When the columns defining a join between two tables are iden-
tically named, and when the join condition would be an equal-
ity condition requiring that each set of identically named
columns contain the same value (an equi-join), you can write
the join more simply by replacing the ON clause with the
USING clause. Here’s an example:

SELECT *
FROM fall_description
JOIN fall_location USING (id);

There is a subtle issue to be aware of when using the USING
clause. Consider the following query:

SELECT fd.id, fl.id
FROM fall_description fd
JOIN fall_location fl USING (id);

This version of the query will work in MySQL and PostgreSQL,
but will fail in Oracle with the following error:

ORA-25154: column part of USING clause cannot have
qualifier

In Oracle, the USING clause merges the two id columns, and
the result will have only one column named id (not fd.id and
not fl.id). That column is associated with neither table, so
neither table alias applies:

SELECT id
FROM fall_description fd
JOIN fall_location fl USING (id);

76 | SQL Pocket Guide

MySQL and PostgreSQL merge the two id columns into one
(thus conforming to the ISO SQL standard), but they still allow
you to select both an fl.id value and an fd.id value. However,
a SELECT * against the join in MySQL or PostgreSQL will yield
only one id column in the result.

Natural Joins
There is yet another shortcut beyond the USING clause, and
that is the NATURAL JOIN syntax supported by MySQL,
Oracle, and PostgreSQL. If two tables should be joined based
on all columns they have in common with the same name and
the join is an equi-join, you can use the NATURAL JOIN key-
words without specifying explicitly the join conditions.

In Oracle, you cannot qualify a NATURAL JOIN column with
an alias. For example, in the following query only one id col-
umn is returned, and it is not associated with either table (and
hence not with any fd or fl alias):

SELECT id
FROM fall_description fd
NATURAL JOIN fall_location fl;

MySQL and PostgreSQL, on the other hand, give you the op-
tion to qualify join columns:

SELECT fd.id, fl.id
FROM fall_description fd
NATURAL JOIN fall_location fl;

Be wary of using NATURAL JOIN, especially in queries that
you encapsulate within program code. The simple addition of
a column to one table, if it has a name that happens to match
a column in a joined table, can suddenly change the semantics
of a NATURAL JOIN query. If you do use NATURAL JOIN,
use it only for ad-hoc queries—and even then, be careful!

Joining Tables | 77

Non-Equi-Joins
So far, all the joins illustrated have been equi-joins, which in-
volve corresponding columns from two tables that have the
same values in two corresponding rows. Equi-joins are proba-
bly the most common type of joins, but it is sometimes useful
and even necessary to write join conditions that are not
equality-based. Such joins are sometimes referred to as non-
equi-joins.

For example, the following statement creates a table of years
via a subquery, and then it joins the table of months to
upfall based on the value of upfall’s confirmed_date. This
particular example runs on MySQL, PostgreSQL and Oracle
(because they support date literals):

SELECT u.name, y.year_num
FROM upfall u JOIN
(SELECT 2005 AS year_num,
 DATE '2005-1-1' AS year_begin,
 DATE '2005-12-31' AS year_end
 FROM dual
 UNION
 SELECT 2006 AS year_num,
 DATE '2006-1-1' AS year_begin,
 DATE '2006-12-31' AS year_end
 FROM dual) y
ON u.confirmed_date
BETWEEN y.year_begin AND y.year_end;

The result is an association of waterfalls to the year in which
their data was confirmed:

NAME YEAR_NUM
--------------- ----------------------
Munising Falls 2005
Tannery Falls 2005
Alger Falls 2005
...
Tahquamenon 2006

There are definitely easier ways to obtain this result, but this
example does illustrate that not all joins need to be equi-joins.

78 | SQL Pocket Guide

Outer Joins
In an outer join, each row in the result set does not necessarily
have to contain a row from both tables being joined; one or
both tables are treated as optional. If you want a join to be done
only when possible, and you want rows back regardless, use
an outer join.

Left outer joins
Use a left outer join when you want all rows from one table,
regardless of whether corresponding rows exist in the other
table. Consider the possibility of a waterfall for which the
owner is unknown: a row in upfall with a null owner_id. You
want to list all waterfalls with their owners if possible, but even
when no corresponding owner row exists, you still want to list
all of the waterfalls. You can do that using a left outer join:

SELECT u.name AS fall, o.name AS owner
FROM upfall u LEFT OUTER JOIN owner o
 ON u.owner_id = o.id;

FALL OWNER
--------------- ---------------
Miners Falls Pictured Rocks
Munising Falls Pictured Rocks
Tannery Falls Michigan Nature
Tahquamenon
Rapid River Fls
Kakabika Falls
...

A left outer join designates the leftmost table as the required
table. In this case, the leftmost table is the upfall table. Thus,
each row in the final result from the query must correspond to
a row from the upfall table. The owner table is the optional
table. If an owner row exists that corresponds to a row from
upfall, the result is the same as that from an inner join: a row
with values from both tables. If no owner row corresponds to a
given upfall row, a row is returned with data from upfall, but
with nulls in place of all the owner values.

Joining Tables | 79

NOTE
The USING and NATURAL clauses, as well as paren-
theses, can be used with outer joins in the same way that
they are used with inner joins.

Interpreting nulls in an outer join
When interpreting the results from the left outer join in the
preceding section, you can’t really be certain that there is no
owner listed for Kakabika Falls, for instance, because there
could be an owner row but with a null name. A “safer” version
of the query includes the primary key column from owner:

SELECT u.name AS fall, o.name AS owner, o.id
FROM upfall u LEFT OUTER JOIN owner o
 ON u.owner_id = o.id;

The o.id column is a primary key, meaning it cannot ever le-
gitimately be null in the owner table. Therefore, if you see a
null o.id value in the result of this query, you can rest assured
that it is a result of the left outer join, not a result of finding a
null in the corresponding owner row.

Another way to address the problem of interpreting an outer
join is to always include the join columns in the result. If the
join columns from the required table (e.g., u.owner_id) are not
null, but the join columns from the optional table (e.g., o.id)
are null, you have a case in which there is no corresponding
row from the optional table (e.g., owner).

Right outer joins
A right outer join is the same as a left outer join except that the
required table is the rightmost table—the second table to be
listed. For example, the following two joins are semantically
equivalent:

SELECT u.name AS fall, o.name AS owner
FROM upfall u LEFT OUTER JOIN owner o
 ON u.owner_id = o.id;

80 | SQL Pocket Guide

SELECT u.name AS fall, o.name AS owner
FROM owner o RIGHT OUTER JOIN upfall u
 ON u.owner_id = o.id;

In either case, upfall is the required table and owner is the op-
tional table. The results of the two queries are identical. To
avoid confusion between left and right, some SQL program-
mers write all such joins as LEFT OUTER JOINs.

Full outer joins
Sometimes you want an outer join in which both tables are
optional. Such a join is a full outer join, and such joins are sup-
ported by DB2, Oracle, PostgreSQL, and SQL Server. You can
write one as follows:

SELECT u.name AS fall, o.name AS owner
FROM upfall u FULL OUTER JOIN owner o
 ON u.owner_id = o.id;

FALL OWNER
--------------- ---------------
Little Miners Pictured Rocks
Agate Falls
 Horseshoe Falls

This query returns falls without recorded owners and “owners”
who own no waterfalls (i.e., potential owners), all in addition
to the standard inner join results of falls and their correspond-
ing owners.

Vendor-specific outer join syntax
In the past, database vendors have developed different ways to
write outer joins. In Oracle, you used to identify the optional
table by adding the suffix (+) to the optional table’s column
reference in all of the join conditions for the given join. For
example:

SELECT u.name fall, o.name owner
FROM upfall u, owner o
WHERE u.owner_id = o.id(+);

Joining Tables | 81

Reversing the order of the columns in the predicate gives the
same result. What matters is the location of the (+) operator:

SELECT u.name fall, o.name owner
FROM upfall u, owner o
WHERE o.id(+) = u.owner_id;

Older versions of SQL Server required the use of *= and =* in
equality conditions to designate left and right outer joins, re-
spectively. For example:

SELECT u.name fall, o.name owner
FROM upfall u, owner o
WHERE o.id *= u.owner_id;

Oracle and SQL Server still support these syntaxes (although
in SQL Server, you must set your compatibility level to 80 or
lower, using stored procedure sp_dbcmptlevel). However, your
queries will be much easier to understand and debug if you
write your joins using the JOIN clause.

LEAST
DB2 (9.5 onward), MySQL, Oracle, and PostgreSQL imple-
ment the LEAST function to return the smallest value from a
list of values:

LEAST(value [, value ...])

The input values may be numbers, datetimes, or strings.

Literals
All database systems make provisions for embedding literal
values in SQL statements. Text and numeric literals are usually
quite simple, but there are some nuances of which you should
be aware. Date and time literals tend to be more complex.

82 | SQL Pocket Guide

Text Literals
The ISO SQL standard for text literals is to enclose them in
single quotes:

'This is a text literal'

Use two adjacent single quotes when you need to embed a sin-
gle quote in a string:

'Isn''t SQL fun?'

SQL will treat the two adjacent single quotes as a single quote
within the literal:

Isn't SQL fun?

Oracle Database 10g and higher allow you to specify alterna-
tive quoting delimiters, which are always two characters and
always include leading and trailing single quotes. Introduce
delimiters by prefacing them with a Q or a q. For example, to
use '[and]' as delimiters, specify:

Q'[This isn't as bad as it looks]'
q'[This isn't as bad as it looks]'

The (, [, and { characters are special cases in that their corre-
sponding closing delimiters must be),], and }, respectively.
Otherwise, use the same character to close the string that you
use to open it:

Q'|This string is delimited by vertical bars|'

You can’t use space, tab, or return characters to delimit a string
in this manner.

PostgreSQL allows you to specify alternative quoting delimit-
ers using a dollar-sign syntax, producing a dollar-quoted string
constant. For example:

tagThis is a dollar-quoted string constanttag

Replace tag with any desired sequence of characters. Your
quoting delimiter is then tag. If you like, you can even use $
$ without any intervening tag text. Escape sequences (see
Table 7) do not have any effect in dollar-quoted string

Literals | 83

constants; they are treated as literal character sequences.
$$\t$$ yields the string \t, not a tab character.

MySQL allows you to include the escape sequences shown in
Table 7 in string literals. PostgreSQL allows the escape
sequences shown in Table 8.

Table 7. MySQL string literal escape sequences

Escape Description

\0 NULL character (ASCII zero)

\' Single quote

\" Double quote

\b Backspace

\n Newline

\r Carriage return

\t Tab

\z ASCII 26 or the Ctrl-Z character

\\ Backslash

\% Percent sign

_ Underscore

Table 8. PostgreSQL string literal escape sequences

Escape Description

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Tab

\octal Character corresponding to the given octal value

\xhexadecimal Character corresponding to the given hexadecimal value

\\ Backslash

84 | SQL Pocket Guide

Numeric Literals
Numeric literals follow standard conventions for writing
numbers:

123 123.45 +123 −123.45

Numbers written without a decimal point are generally treated
as integers. Oracle allows for a trailing F, f, D, or d to indicate
FLOAT or DOUBLE, respectively:

123D 123.45F +123d −123.45f

You can also use scientific notation to write floating-point
constants:

123.45E+23 123.45e−23

These literals are interpreted respectively as 123.45 × 1023 and
123.45 ÷ 1023.

Datetime Literals
The SQL standard defines the following formats for date, time,
and timestamp literals, with hours specified according to a 24-
hour clock:

DATE 'yyyy-mm-dd'
TIME 'hh:mi:ss [{+|-}hh:mi]'
TIMESTAMP 'yyyy-mm-dd hh:mi:ss [{+|-}hh:mi]'

For example, the following specifications refer to 19-Dec-2005,
8:00 PM, and 8:00 PM U.S. Eastern Standard Time on 19-
Dec-2005:

DATE '2005-12-19'
TIME '20:00:00'
TIMESTAMP '2005-12-19 20:00:00 −5:00'

SQL Server does not support these literals. DB2 does not sup-
port specifying the time zone.

Literals | 85

Datetime Interval Literals
SQL defines the following formats for INTERVAL YEAR TO
MONTH literals:

INTERVAL 'year-month' YEAR TO MONTH
INTERVAL 'year' YEAR
INTERVAL 'month' MONTH

Oracle9i Database and higher and PostgreSQL 9.0 and higher
support these formats and also allow you to specify a precision
for the year, which otherwise defaults to two digits:

INTERVAL '42-1' YEAR TO MONTH
INTERVAL '1042' YEAR(4)

Similarly, SQL defines the following formats for INTERVAL
DAY TO SECOND literals:

INTERVAL 'dd hh:mi:ss.ff' DAY TO SECOND
INTERVAL 'hh:mi' HOUR TO MINUTE
INTERVAL 'mi' MINUTE
...

For an INTERVAL DAY TO SECOND literal, you can specify
any contiguous range of time elements from days to seconds.
In Oracle9i Database and higher, days (dd) and fractional sec-
onds (ff) both default to two digits of precision.

Merging Data
DB2, Oracle, and SQL Server 2008 support the use of the
MERGE statement for updating or inserting rows, depending
on whether they already exist in the target table. For example,
to merge potentially new waterfall data into the upfall table,
specify the following:

MERGE INTO upfall u
USING (SELECT * FROM new_falls) nf
 ON (u.id = nf.id)
WHEN MATCHED THEN UPDATE
 SET u.name = nf.name,
 u.open_to_public = nf.open_to_public

86 | SQL Pocket Guide

WHEN NOT MATCHED THEN INSERT
 (id, name, datum, zone, northing, easting,
 lat_lon, county_id, open_to_public,
 owner_id, description, confirmed_date)
 VALUES (nf.id, nf.name, nf.datum, nf.zone,
 nf.northing, nf.easting, nf.lat_lon,
 nf.county_id, nf.open_to_public,
 nf.owner_id, nf.description,
 nf.confirmed_date);

This statement updates only name and open_to_public for
existing waterfalls, although you could choose to update all
columns if you wanted to do so. For new falls, all columns are
inserted into the upfall table.

Oracle allows you to place WHERE conditions on both the
UPDATE and INSERT operations. In addition, Oracle allows
you to specify rows to be deleted following an UPDATE
operation:

MERGE INTO upfall u
USING (SELECT * FROM new_falls) nf
 ON (u.id = nf.id)
WHEN MATCHED THEN UPDATE
 SET u.name = nf.name,
 u.open_to_public = nf.open_to_public
 WHERE nf.name IS NOT NULL
 DELETE WHERE u.open_to_public = 'n'
WHEN NOT MATCHED THEN INSERT
 (id, name, datum, zone, northing, easting,
 lat_lon, county_id, open_to_public,
 owner_id, description, confirmed_date)
 VALUES (nf.id, nf.name, nf.datum, nf.zone,
 nf.northing, nf.easting, nf.lat_lon,
 nf.county_id, nf.open_to_public,
 nf.owner_id, nf.description,
 nf.confirmed_date)
 WHERE nf.open_to_public = 'y';

This statement uses WHERE nf.name IS NOT NULL to prevent up-
dating any name to a null. The subsequent DELETE WHERE
clause then deletes any updated rows that no longer represent
publicly accessible falls.

Merging Data | 87

NOTE
DELETE WHERE is a post-update deletion. Rows not
updated by the MERGE statement are not candidates for
deletion.

In DB2, you can specify a DELETE as the statement for a
WHEN MATCHED clause. DB2 also allows more than one
occurrence of the WHEN MATCHED and WHEN NOT
MATCHED clauses. Following is the DB2 version of the pre-
ceding MERGE statement:

MERGE INTO upfall u
 USING (SELECT * FROM new_falls) nf
 ON (u.id = nf.id)
 WHEN MATCHED AND nf.name IS NOT NULL THEN UPDATE
 SET u.name = nf.name,
 u.open_to_public = nf.open_to_public
 WHEN MATCHED AND u.open_to_public = 'n' THEN DELETE
 WHEN NOT MATCHED AND nf.open_to_public = 'y' THEN INSERT
 (id, name, datum, zone, northing, easting,
 lat_lon, county_id, open_to_public,
 owner_id, description, confirmed_date)
 VALUES (nf.id, nf.name, nf.datum, nf.zone,
 nf.northing, nf.easting, nf.lat_lon,
 nf.county_id, nf.open_to_public,
 nf.owner_id, nf.description,
 nf.confirmed_date);

In DB2, a DELETE is something you can specify in place of an
UPDATE. In Oracle, a DELETE can happen after an UPDATE.

Nulls
When writing SQL, it’s critical to understand nulls and three-
valued logic. With few exceptions, the result of any expression
involving a null will be either null or unknown, and this has
ramifications for any expression (comparison or otherwise)
that you write.

88 | SQL Pocket Guide

Predicates for Nulls
You should not compare a null to any other value using the
standard comparison operators. For example, the following
query will not return all rows from the upfall table:

SELECT u.id, u.name, u.datum
FROM upfall u
WHERE u.datum = 'NAD1927'
 OR u.datum <> 'NAD1927';

You’d think that any given datum would either be NAD1927
or not be NAD1927, but this is not the case. A null datum is
not NAD1927, nor is it not not NAD1927.

SQL provides the IS NULL and IS NOT NULL predicates to
detect the presence or absence of null. To find all datum values
other than NAD1927, including those that are null, specify:

SELECT u.id, u.name, u.datum
FROM upfall u
WHERE u.datum IS NULL
 OR u.datum <> 'NAD1927';

Similarly, you can use IS NOT NULL to match non-null values
explicitly.

Using CASE with Nulls
CASE expressions can sometimes be helpful when working
with potentially null data. For example, you can use CASE to
ensure that you always get a non-null datum in your result set:

SELECT u.id, u.name,
 CASE WHEN u.datum IS NULL THEN
 '*None!*'
 ELSE u.datum END
FROM upfall u;

Most databases also provide functions to do this type of thing
more succinctly.

Nulls | 89

Using the COALESCE Function
All platforms support the standard SQL COALESCE function.
It takes a series of values and returns the first non-null value
encountered. For example, to return a list of waterfall descrip-
tions that show name when a description is null and show
Unknown! when even the name is null, specify:

SELECT id, COALESCE(description, name, '*Unknown!*')
FROM upfall;

You can provide any number of arguments, but you should
ensure that at least one will be non-null. If all arguments are
null, COALESCE returns null as well.

Functions for Nulls: DB2
DB2 supports CASE and COALESCE. It also supports the
NULLIF function, which returns null whenever the two input
values are the same. Notice the effect of NULLIF in the first
row of these results:

SELECT u.name, NULLIF(u.name,'Miners Falls')
FROM upfall u
WHERE u.name LIKE '%Miners%';

NAME 2
--------------- ---------------
Miners Falls
Little Miners Little Miners

DB2 also now supports the same DECODE and NVL functions
as Oracle does. See the section “Functions for Nulls: Ora-
cle” on page 91.

Functions for Nulls: MySQL
MySQL supports CASE and COALESCE. In addition, it sup-
ports a function called IFNULL to return an alternate value for
a potentially null input value. For example:

SELECT id, name, IFNULL(datum, '*None!*')
FROM upfall;

90 | SQL Pocket Guide

As with DB2, MySQL supports NULLIF to return null when-
ever two input values are the same:

SELECT u.name, NULLIF(u.name,'Miners Falls')
FROM upfall u
WHERE u.name LIKE '%Miners%';

You can also use the IF function to return one of two values,
depending on whether an expression is TRUE:

SELECT id, name, IF(datum IS NULL,
 '*None!*', datum)
FROM upfall;

You’d normally use a comparison expression to generate the
Boolean TRUE/FALSE value for the first argument. If the ex-
pression evaluates to TRUE, the value from the second argu-
ment is returned. If the expression evaluates to FALSE or null,
the third argument’s value is returned.

Functions for Nulls: Oracle
Oracle supports CASE and COALESCE. It also provides sev-
eral other functions for dealing with nulls.

NVL is similar to COALESCE. It is supported for backward
compatibility and allows only two arguments:

SELECT id, name, NVL(datum, '*None!*')
FROM upfall;

NVL2 returns one of two values, depending on whether the
first is null:

SELECT id, name, NVL2(datum, datum, '*None!*')
FROM upfall;

DECODE is equivalent to an inline IF statement (although you
should really use CASE today), and it provides yet another way
of dealing with nulls. The following example uses DECODE
to replace some county_id values from upfall with their
respective names:

SELECT id, name,
 DECODE(county_id,
 2, 'Alger County',

Nulls | 91

 6, 'Baraga County',
 NULL, 'Unknown',
 'Other')
FROM upfall;

In this example, counties 2 and 6 translate to Alger and Baraga
Counties, respectively. Any null county_id results in a value of
'Unknown'. Any other gov_unit_ids are denoted as 'Other'.
DECODE supports any number of input/result pairs.

Functions for Nulls: PostgreSQL
PostgreSQL supports CASE and COALESCE. It also supports
NULLIF as described in the section “Functions for Nulls:
DB2” on page 90.

Functions for Nulls: SQL Server
SQL Server supports CASE, COALESCE, and an ISNULL
function:

ISNULL(possible_null, alternative_value)

When possible_null is null, ISNULL will return
alternative_value. Otherwise, ISNULL will return
possible_null.

SQL Server 2008 supports the same NULLIF function that DB2
supports, returning NULL when both input values match.

SQL Server also supports a setting known as ANSI_NULLS,
which affects the behavior of the = and <> predicates that
compare to null:

... WHERE city_name = NULL

... WHERE city_name <> NULL

By default, neither of these predicates will ever match any rows.
However, if you issue the command SET ANSI_NULLS OFF,
you can use = NULL and <> NULL to search for NULL or
NOT NULL values, respectively.

92 | SQL Pocket Guide

Numeric Conversions: DB2
Use the following functions to convert between different nu-
meric types or between numeric and text types:

BIGINT(numeric)
BIGINT(character)
CHAR(integer)
CHAR(decimal [,decimal_character])
CHAR(floating [,decimal_character])
DECFLOAT(numeric, 16or34)
DECFLOAT(character, 16or34
 [, decimal_character])
DECIMAL(numeric [,precision[,scale]])
DECIMAL(character [,precision[,scale
 [,decimal_character]]])
DOUBLE(numeric)
DOUBLE(character)
DOUBLE_PRECISION(numeric)
FLOAT(numeric)
REAL(numeric)
SMALLINT(numeric)
SMALLINT(character)

See “Datetime Conversions: DB2” on page 21 for information
on converting between dates and numbers.

In the syntax, numeric can be any numeric type or expression;
character can be any fixed- or variable-length character type
or expression; integer can be any integer type or expression;
and decimal can be any decimal type or expression.

NOTE
DB2 also provides compatibility with TO_CHAR and
TO_NUMBER, as implemented by Oracle. See the sec-
tion “Numeric Conversions: Oracle” on page 95 for
details.

Numeric Conversions: DB2 | 93

Each function converts its argument to the type indicated by
the function name. The following example shows DECFLOAT
being used to convert from a character string:

SELECT DECFLOAT('100.123451234512345',16)
FROM dual;

100.1234512345123

And following is an example showing CHAR and DECIMAL
being used to convert back and forth between numbers and
strings:

SELECT CHAR(100.12345),
 CHAR(DECIMAL('100.12345',5,2))
FROM pivot WHERE x=1;

100.12345 100.12

DECIMAL’s default scale is zero when converting from a char-
acter string. To preserve digits to the right of the decimal point
in that situation, you must specify a scale, which forces you to
first specify a precision. No rounding occurs. To round a value
being converted, you must first specify a precision and scale
sufficient to hold the raw value, and then apply the ROUND
function:

SELECT DECIMAL('10.999',4,2),
 DECIMAL('10.999',4),
 ROUND(DECIMAL('10.999',5,3),2)
FROM pivot WHERE x=1;

 10.99 10. 11.000

You can use the optional decimal_character parameter to
specify the character to use for the decimal point:

SELECT DECFLOAT('10/95',16,'/'), CHAR(10.95,'/')
FROM pivot WHERE x=1;

 10.95 10/95

When converting to an integer type, any decimal portion is
truncated.

94 | SQL Pocket Guide

Numeric Conversions: MySQL
MySQL implements the following numeric conversion
functions:

FORMAT(number , scale)
Provides general-purpose numeric conversions to text.
The scale is the number of decimal places that you wish
to appear in the result.

CONV(number , from_base , to_base)
Converts from one base to another. The number may be
either an integer or a string, and the base may range from
2 through 36.

BIN(number)
Returns the binary representation of a base-10 number.

OCT(number)
Returns the octal representation of a base-10 number.

HEX(number)
Returns the hexadecimal representation of a base-10
number.

For example:

SELECT CONV('AF',16,10), HEX(175), FORMAT(123456.789,2);

175 AF 123,456.79

Use CAST to convert a string to a number.

Numeric Conversions: Oracle
Use the following functions in Oracle to convert to and from
the supported numeric types:

TO_NUMBER(string, format)
TO_BINARY_DOUBLE(string, format)
TO_BINARY_FLOAT(string, format)
TO_CHAR(number, format)
TO_BINARY_DOUBLE(number)
TO_BINARY_FLOAT(number)
TO_NUMBER(number)

Numeric Conversions: Oracle | 95

Use TO_NUMBER and TO_CHAR (the only two functions
available prior to Oracle Database 10g) to convert between
NUMBER and VARCHAR2 (Table 9 lists the available
numeric format elements):

SELECT
 TO_CHAR(1234.56,'C9G999D99') to_char,
 TO_NUMBER('1,234.56','9G999D99') from_char,
 TO_CHAR(123,'999V99') v_example
FROM dual;

TO_CHAR FROM_CHAR V_EXAMPLE
---------------- ---------------------- ---------
 USD1,234.56 1234.56 12300

Use TO_BINARY_FLOAT and TO_BINARY_DOUBLE to
convert to the new 32- and 64-bit IEEE 754 floating-point types
added in Oracle Database 10g. Also use these functions to
convert values from one numeric type to another.

Table 9. Oracle’s numeric format elements

Element Description

$ Prefix: dollar sign ($).

, (comma) Location of comma. Consider G instead.

. (period) Location of period. Consider D instead.

0 Significant digit. Leading zeros.

9 Significant digit. Leading blanks.

B Prefix: returns zero as blanks.

C Location of ISO currency symbol.

D Location of decimal point.

EEEE Suffix: use scientific notation.

FM Prefix: removes leading/trailing blanks.

G Location of group separator.

L Location of local currency symbol.

MI Suffix: trailing minus (–) sign.

PR Suffix: angle brackets (< and >) around negative values.

RN or rn Roman numerals, upper- or lowercase. Output-only.

96 | SQL Pocket Guide

Element Description

S Prefix: leading plus (+) or minus (–) sign.

TM, TM9, TME Prefix: use minimum number of characters (text-minimum). Output-
only. TM9 gives decimal notation. TME gives scientific notation.

U Specifies location of Euro symbol (€).

V Multiplies the number to the left of the V in the format model by 10
raised to the nth power, where n is the number of 9s found after the
V in the format model. See the example earlier in this section.
Output-only.

X Use hexadecimal notation. Output-only. Precede with 0s for leading
zeros. Precede with FM to trim leading/trailing spaces.

Numeric Conversions: PostgreSQL
You can convert between numeric values and their string rep-
resentations using the following functions, where number can
be any numeric type:

TO_CHAR(number, format)
TO_NUMBER(string, format)

PostgreSQL’s number format elements closely follow Oracle’s.
They are listed in Table 10.

Table 10. PostgreSQL’s numeric format elements

Element Description

$ Prefix: dollar sign ($).

, (comma) Location of comma. Consider G instead.

. (period) Location of period. Consider D instead.

0 Significant digit. Leading zeros.

9 Significant digit. Leading blanks.

B Prefix: returns zero as blanks.

C Location of ISO currency symbol.

D Location of decimal point.

EEEE Suffix: use scientific notation.

Numeric Conversions: PostgreSQL | 97

Element Description

FM Prefix: removes leading/trailing blanks.

G Location of group separator.

L Location of local currency symbol.

MI Suffix: trailing minus (–) sign.

PR Suffix: angle brackets (< and >) around negative values.

RN or rn Roman numerals, upper- or lowercase. Output-only.

S Prefix: leading plus (+) or minus (–) sign.

TM, TM9, TME Prefix: use minimum number of characters (text-minimum). Output-
only. TM9 gives decimal notation. TME gives scientific notation.

U Specifies location of Euro symbol (€).

V Multiplies the number to the left of the V in the format model by 10
raised to the nth power, where n is the number of 9s found after the
V in the format model. See the example in “Numeric Conversions: Ora-
cle” on page 95. Output-only.

X Use hexadecimal notation. Output-only. Precede with 0s for leading
zeros. Precede with FM to trim leading/trailing spaces.

Numeric Conversions: SQL Server
Use the CONVERT function for conversions to and from nu-
meric values:

CONVERT(datatype[(length)], expression[, style])

Table 11 lists styles for converting FLOAT and REAL values
to character strings. Table 12 lists styles for converting
MONEY and SMALLMONEY values to character strings.

Table 11. SQL Server floating-point styles

Style Description

0 Default, 0–6 digits, scientific notation when necessary

1 Eight digits + scientific notation

2 16 digits + scientific notation

98 | SQL Pocket Guide

Table 12. SQL Server money styles

Style Description

0 Money default, no commas, two decimal digits

1 Commas every three digits, two decimal digits

2 No commas, four decimal digits

The following two examples demonstrate numeric conversions
using the CONVERT function. The second example combines
conversion from text with a monetary conversion:

SELECT CONVERT(VARCHAR(10), 1.234567, 2);

1.234567

SELECT CONVERT(
 VARCHAR,
 CONVERT(MONEY, '20999.95'), 1);

20,999.95

Numeric/Math Functions
Following are some useful numeric and math functions that
are fairly universal across database platforms:

ABS(number)
Returns the absolute value of number.

CEIL(number) or CEILING(number)
Returns the smallest integer that is greater than or equal
to the number that you pass. Use CEILING for SQL Server
and CEIL for other platforms. Remember that with neg-
ative numbers, the greater value has the lower absolute
value: CEIL(5.5) is 6, whereas CEIL(−5.5) is −5.

EXP(number)
Returns the mathematical constant e (≈2.71828183)—
also known as Euler’s constant—raised to the power of
number.

Numeric/Math Functions | 99

FLOOR(number)
Returns the largest integer that is less than or equal to the
number you pass. Remember that with negative numbers,
the lesser value has the higher absolute value: FLOOR(5.5)
is 5, whereas FLOOR(−5.5) is −6.

LN(number)
Returns the natural logarithm of number. Supported in
DB2, Oracle, and PostgreSQL. For other platforms, use
LOG instead.

LOG(number)
Returns the natural logarithm of number (in DB2, SQL
Server, and MySQL). In PostgreSQL, it returns the
base-10 logarithm of number.

LOG(base , number)
Returns the logarithm of number in a base that you specify
(Oracle and PostgreSQL).

LOG10(number)
Returns the base-10 logarithm of number (DB2, MySQL,
and SQL Server).

MOD(top , bottom)
Returns the remainder of top divided by bottom (DB2,
MySQL, Oracle, and PostgreSQL).

NANVL(value , alternate)
Returns an alternate value for any floating-point NaN
(Not-a-Number) value. If value is NaN, then alternate is
returned; otherwise, value is returned (Oracle).

REMAINDER(top , bottom)
Returns the remainder of top divided by bottom, the same
as MOD (Oracle).

ROUND(number [, places])
Rounds number to a specified number of decimal places.
The default is to round to an integer value. Use a negative
value for places to round to the left of the decimal point.
SQL Server requires the places argument.

100 | SQL Pocket Guide

ROUND(number, places [, option])
SQL Server’s version of ROUND. Use option to specify
whether rounding or truncating is performed (see
TRUNC below). If option is 0, the function rounds; oth-
erwise, the function truncates.

SIGN(number)
Indicates the sign of a number. SIGN returns −1, 0, or 1,
depending on whether number is negative, zero, or positive.

TRUNC(number [, precision])
Truncates number to a specific number of decimal places.
The default precision is zero decimal places. Use a nega-
tive precision to truncate to the left of the decimal point,
forcing those digits to zero. SQL Server implements trun-
cation using a special form of ROUND. MySQL imple-
ments truncation using TRUNCATE(number, precision),
requiring that you specify precision.

OLAP Functions
Online analytical processing (OLAP) function is the term DB2
uses for what the SQL standard refers to as a window func-
tion. See “Window Functions” on page 172 for more on this
extremely useful class of functions.

Pivoting and Unpivoting
Oracle Database (11g Release 1 onward) and SQL Server (2005
onward) both support pivot and unpivot operators. With the
PIVOT operation, you can present data in a grid format by
turning rows into columns while aggregating some value of
interest. The UNPIVOT operation turns columns into rows,
allowing you to take multiple columns containing the same
type of data and present that data as one column for reporting
or analysis.

Pivoting and Unpivoting | 101

Pivoting: The Concept
Use the pivot operation to create a lookup table presenting
values termed measures at the intersection of other values,
termed dimensions. For example, say that you wish to report
on the number of falls open or closed to the public by county.
You might begin with the following query:

SELECT county_id,
 COALESCE(open_to_public, 'n')
 AS open_to_public,
 COUNT(id)
FROM upfall
GROUP BY county_id, open_to_public;

And you would get row-by-row results like these:

COUNTY_ID O COUNT(ID)
---------- - ----------
*** n 1
 11 y 1
 2 y 11
 6 y 1
 7 y 2
 10 y 1
 9 y 1

Looking carefully at the output, you can see that county #7
has two falls open to the public. The information is all there,
but the presentation is cumbersome and not at all compact.

A more useful presentation might be the following grid, which
allows you to scan down to find the county, and then over to
find the number of open and closed falls within that county:

COUNTY_ID Open Closed
---------- ---------- ----------
*** 0 1
 6 1 0
 11 1 0
 2 11 0
 7 2 0
 9 1 0
 10 1 0

102 | SQL Pocket Guide

You can use the PIVOT operator in both Oracle and SQL
Server to generate these results.

Pivoting: Oracle
You can use the following query to generate results in the tab-
ular format at the end of the preceding section. Essentially, the
query converts the open/closed counts for each county from
two rows into two columns:

SELECT *
FROM
 (SELECT id,
 county_id,
 COALESCE(open_to_public, 'n')
 AS open_to_public
 FROM upfall)
PIVOT (
 COUNT(id)
 FOR open_to_public IN (
 'y' AS "Open",
 'n' AS "Closed"
)
);

Here’s how the query works:

1. The subquery in the FROM clause generates the three
values used to create the grid: the county ID for the vertical
dimension; the open/closed flag for the horizontal dimen-
sion; and the waterfall ID to use as the measure by which
to generate values for each combination of vertical and
horizontal dimensions.

2. The COALESCE function call in the subquery ensures
that the open_to_public flag is never null. (You may or may
not need or want such behavior in your own queries.)

3. The query generates one row per county, because
county_id is the only column not listed in the PIVOT
clause.

Pivoting and Unpivoting | 103

4. The query generates one column for each listed value of
open_to_public. Each column is given the name specified
in the FOR clause: either Open or Closed in this case.

5. All the intersecting points in the grid are filled in by exe-
cuting the expression COUNT(id) for each combination of
county_id and open_to_public values.

Oracle further allows you to pivot on multiple columns. Fol-
lowing is an example query that presents the very same
information, but this time as one long row:

SELECT *
FROM
 (SELECT id,
 county_id,
 COALESCE(open_to_public, 'n')
 AS open_to_public
 FROM upfall)
PIVOT (
 COUNT(id)
 FOR (county_id, open_to_public) IN (
 (2, 'y') AS "Alger Open",
 (2, 'n') AS "Alger Closed",
 (6, 'y') AS "Baraga Open",
 (6, 'n') AS "Baraga Closed",
 (7, 'y') AS "Ontonagon Open",
 (7, 'n') AS "Ontonagon Closed",
 (9, 'y') AS "Dickinson Open",
 (9, 'n') AS "Dickinson Closed",
 (10, 'y') AS "Gogebic Open",
 (10, 'n') AS "Gogebic Closed",
 (11, 'y') AS "Delta Open",
 (11, 'n') AS "Delta Closed",
 (NULL, 'y') AS "Unknown Open",
 (NULL, 'n') AS "Unknown Closed"
)
);

Notice that the FOR clause specifies two column names. Fur-
ther notice that each entry in the IN list specifies a combination
of those same two values. The result will be the following
single row:

104 | SQL Pocket Guide

Alger Open Alger Closed Baraga Open ...
---------- ------------ -----------
 11 0 1

The reason this second query returns only a single row is that
the PIVOT clause consumes all of the columns returned by the
subquery. Thus, no column(s) remain to serve as a vertical di-
mension. The result is a table having only a horizontal dimen-
sion and having one measure for each dimension value.

Pivoting: SQL Server
SQL Server supports a pivot operator as well, though with a
different syntax from Oracle’s implementation. Following is
the query to generate the same tabular format as shown at the
end of “Pivoting: The Concept” on page 102:

SELECT county_id,
 [1] as 'open',
 [0] as 'closed'
FROM
 (SELECT
 id,
 county_id,
 CASE open_to_public
 WHEN 'y' THEN 1
 ELSE 0 END AS open_to_public
 FROM upfall) AS SourceTable
PIVOT (
 COUNT(id)
 FOR open_to_public IN ([1], [0])
) AS PivotTable

Here’s how this query operates:

1. The subquery in the FROM clause generates the three
values to create the grid. You are required to specify an
alias, which in this case is done using the AS clause.

2. The CASE statement in the subquery translates the y and
n values into numeric ones and zeros. This is because SQL
Server is currently unable to pivot on character columns.

3. The outer query lists county_id as the first column, be-
cause that column is the unpivoted column. One row is

Pivoting and Unpivoting | 105

ultimately returned for each unpivoted value: in this case
for each county_id.

4. The second and third columns listed in the outer SELECT
specify the column headings to use for the pivoted data.

5. The FOR…IN clause specifies that the first column is a
count of open waterfalls (1=open to public) and that the
second column is a count of closed waterfalls.

6. The COUNT(id) expression generates the summary
values—in this case a count—for each of the cells.

7. All the intersecting points in the grid are filled in by exe-
cuting the expression COUNT(id) for each combination of
county_id and open_to_public values.

Unlike Oracle, SQL Server does not currently allow pivoting
on two columns.

Unpivoting: The Concept
Sometimes you’ll find yourself working with a table having two
or more columns containing the same type of information. For
example, you might have two or more phone numbers per row.
Or, as in our case, you might choose to treat northing and
easting values as two occurrences of a distance, which in fact
they are.

Following is a simple query to show the northing and easting
values as they are represented in the database table:

SELECT id, northing, easting
FROM upfall
WHERE northing IS NOT NULL
 OR easting IS NOT NULL;

The output presents northing and easting each in its own
column:

 ID NORTHING EASTING
---------- ---------- ----------
 1 5141184 528971
 2 5140000 528808
 3 5137795 527046

106 | SQL Pocket Guide

And here is the same data presented with the distance values
all in one column:

 ID LABEL VALUE
---------- -------- ----------
 1 NORTHING 5141184
 1 EASTING 528971
 2 NORTHING 5140000
 2 EASTING 528808
 3 NORTHING 5137795
...

This second presentation is the unpivoted form.

Unpivoting: Oracle
You can generate the unpivoted form shown at the end of the
preceding section using the following query:

SELECT id, label, value
FROM upfall
UNPIVOT EXCLUDE NULLS (
 value
 FOR label IN (northing, easting)
);

Here is an explanation of the query. It begins from the inside
and works outward.

1. The FOR clause specifies that values from the northing
and easting columns are to be unpivoted by being turned
into rows.

2. The identifier label (following FOR) specifies the name
of a new column that Oracle Database creates to identify
each unpivoted value in the query results. The SELECT
clause lists this column, which receives the name of the
original column containing each unpivoted value.

3. The identifier value specified following the first parenthe-
sis in the UNPIVOT clause specifies the name for the new
column created to hold the unpivoted values. The
SELECT clause lists this column.

Pivoting and Unpivoting | 107

4. The EXCLUDE NULLS clause throws out any nulls that
would otherwise appear in the value column. That is the
default behavior. Specify INCLUDE NULLS to retain
such null values.

5. The SELECT clause lists the id column, causing the query
to return one combination of label and value for each
waterfall (i.e., for each distinct id value).

Unpivoting: SQL Server
Following is the SQL Server UNPIVOT syntax to generate the
results shown at the end of the section “Unpivoting: The Con-
cept” on page 106:

SELECT id, label, value
FROM upfall
UNPIVOT (
 value
 FOR label IN (northing, easting)
) UnpivotTable

Notice the alias name UnpivotTable at the end of the subquery.
SQL Server requires an alias for such a subquery.

Here is the step-by-step explanation of this unpivot query:

1. The FOR clause specifies that values from the northing
and easting columns are to be unpivoted by being turned
into rows.

2. The identifier label (following FOR) specifies the name
of a new column to identify each unpivoted value in the
query results. The SELECT clause lists this column, which
receives the name of the original column containing each
unpivoted value.

3. The identifier value following the first parenthesis in the
UNPIVOT clause specifies the name for the new column
created to hold the unpivoted values. The SELECT clause
lists this column.

4. SQL Server throws out any nulls that would otherwise
appear in the value column.

108 | SQL Pocket Guide

5. The SELECT clause lists the id column, causing the query
to return one combination of label and value for each wa-
terfall (i.e., for each distinct id value).

Predicates
Predicates are conditions you write in the WHERE, ON, and
HAVING clauses of an SQL statement that determine which
rows are affected, or returned, by that statement. For example,
use the predicate name = 'Wagner Falls' to return data for only
that particular waterfall:

SELECT u.zone, u.northing, u.easting
FROM upfall u
WHERE name = 'Wagner Falls';

Table 13 lists the available comparison operators. Some oper-
ators, such as IN and EXISTS, are more fully described in later
subsections. Regular-expression operators are described under
“Regular Expressions” on page 113. Operators for dealing
with nulls are described under “Nulls” on page 88.

Table 13. Comparison operators

Operator Description

!=, <> Tests for inequality

< Tests for less than

<= Tests for less than or equal to

<=> Null-safe test for equality; supported only by MySQL

= Tests for equality

> Tests for greater than

>= Tests for greater than or equal to

BETWEEN Tests whether a value lies within a given range

EXISTS Tests whether rows exist matching conditions that you specify

IN Tests whether a value is contained in a set of values that you specify
or that are returned by a subquery

IS [NOT] NULL Tests for nullity

Predicates | 109

Operator Description

LIKE Tests whether a value matches a pattern

REGEXP, RLIKE Regular-expression comparison operator; supported only by
MySQL

REGEXP_LIKE Tests whether a value matches the pattern described by a regular
expression; supported only by Oracle

EXISTS Predicates
Use EXISTS and NOT EXISTS to test for the existence of rows
matching a set of conditions that you specify. For example, to
return a list of all owners associated with at least one waterfall,
specify:

SELECT o.id, o.name
FROM owner o
WHERE EXISTS (SELECT * FROM upfall u
 WHERE u.owner_id = o.id);

Replace EXISTS with NOT EXISTS to find all owners who are
not associated with any waterfall.

Subqueries used in EXISTS predicates should usually be
correlated, which means that a subquery’s WHERE clause
compares a column from the subquery with a column from the
outer query.

IN Predicates
Use IN to test whether a value falls within a set of values. You
can enumerate that set as a list of literal values, or you can
return the set as the result of a subquery. The following exam-
ple specifies a set of literal values:

SELECT o.id, o.name
FROM owner o
WHERE o.id IN (1,2,3,4);

This next example uses a subquery and restates the EXISTS
query from the preceding section, which returns a list of owners
associated with at least one waterfall:

110 | SQL Pocket Guide

SELECT o.id, o.name
FROM owner o
WHERE o.id IN (SELECT u.owner_id
 FROM upfall u);

Watch out for nulls! If the subquery you use with a NOT IN
predicate returns a null value for even one row in the set, the
result of the NOT IN operation will never be true. Rather, it
will always be unknown, and your query won’t function as you
expect.

BETWEEN Predicates
Use BETWEEN to see whether a value falls in a given range.
For example:

SELECT c.name
FROM county c
WHERE c.population BETWEEN 5000 AND 10000;

Any BETWEEN predicate can easily be expressed using the
>= and <= operators:

SELECT c.name
FROM county c
WHERE c.population >= 5000
 AND c.population <= 10000;

When writing BETWEEN predicates, always list the smallest
value first.

LIKE Predicates
The LIKE and NOT LIKE predicates give you rudimentary
pattern-matching capabilities. You can use the percent (%) and
underscore (_) characters to match any number of characters
or any one character, respectively. For example, to find all wa-
terfalls containing the word “Miners” in their names, specify:

SELECT u.id, u.name
FROM upfall u
WHERE u.name LIKE '%Miners%';

Predicates | 111

Use NOT LIKE to find all falls without “Miners” in their
names.

MySQL and PostgreSQL recognize the backslash (\) as an es-
cape character by default. Use the escape character to specify
pattern-matching characters literally. For example, to find all
falls without a percent in their names:

SELECT u.id, u.name
FROM upfall u
WHERE u.name NOT LIKE '%\%%';

You can also use the ESCAPE clause to specify explicitly the
escape character. The following example will run in DB2, Ora-
cle, and SQL Server:

SELECT u.id, u.name
FROM upfall u
WHERE u.name NOT LIKE '%\%%' ESCAPE '\';

When specifying an escape character in MySQL or Post-
greSQL, be aware that the backslash is also the string-literal
escape character. Thus, to specify explicitly the backslash as
the LIKE escape character, you must escape that backslash in
the ESCAPE clause:

SELECT u.id, u.name
FROM upfall u
WHERE u.name NOT LIKE '%\%%' ESCAPE '\\';

Oracle also implements LIKEC, LIKE2, and LIKE4, which
work with Unicode characters, code units, and code points,
respectively.

Recursive Queries
See “Hierarchical Queries” on page 62. Also see “CONNECT
BY Queries” on page 8 if you are using a release of Oracle
Database prior to Oracle Database 11g Release 2.

112 | SQL Pocket Guide

Regular Expressions
MySQL, Oracle, PostgreSQL, and SQL Server support regular
expressions. SQL Server and MySQL support them only for
string comparison, whereas PostgreSQL adds support for a
regular-expression substring function and Oracle provides
support for that and much more.

Regular Expressions: MySQL
In MySQL, you can perform regular-expression pattern match-
ing using the REGEXP predicate in a manner similar to LIKE:

string REGEXP pattern

REGEXP looks for the specified regular expression anywhere
in the target string. For example, to search for variant spellings
of Fumee Falls:

SELECT u.id, u.name
FROM upfall u
WHERE u.name REGEXP '(Fumee|Fumie|Fumy)';

MySQL’s regular-expression pattern matching is case-
insensitive for nonbinary strings. Because MySQL recognizes
the backslash (\) as an escape character in string literals, you
must use a double backslash (\\) to represent a single backslash
in any pattern that you write as a literal.

Table 14 lists the regular-expression operators recognized by
MySQL.

Table 14. MySQL regular-expression operators

Operator Description

. Matches any character, including newlines.

^ Matches beginning of string.

$ Matches end of string.

[. . .] Matches any of a set of characters.

[^ . . .] Matches any character not in a set.

[[. xx .]] Matches a collation element.

Regular Expressions | 113

Operator Description

[: class :] Specifies a character class within a bracket expression. For ex-
ample, use [[:digit:]] to match all digits. Valid character
classes are: [:alnum:], [:alpha:], [:blank:],
[:cntrl:], [:digit:], [:graph:], [:lower:],
[:print:], [:punct:], [:space:], [:upper:],
[:xdigit:].

[= chars =] Specifies an equivalence class.

[. charname .] Use within a bracket expression to match a character by name.
For example, use [[.tilde.]] or [˜] to match the tilde
(˜). You’ll find a list of character names in regexp/cname.h.

* Matches zero or more.

+ Matches one or more.

? Matches zero or one.

{ x }, { x , y },
{ x ,}

Matches x times, from x to y times, or at least x times.

| Delimits alternatives.

(. . .) Defines a subexpression.

[[:<:]] Matches the beginning of a word.

[[:>:]] Matches the end of a word.

Regular Expressions: Oracle
Oracle Database 10g implements the following regular-
expression functions:

REGEXP_COUNT(source_string, pattern
 [, position [, match_parameter]])

REGEXP_INSTR(source_string, pattern
 [, position [, occurrence
 [, return_option
 [, match_parameter
 [, subexpression]]]]])

REGEXP_LIKE (source_string, pattern
 [, match_parameter])

114 | SQL Pocket Guide

REGEXP_REPLACE(source_string, pattern
 [, replace_string
 [, position [, occurrence
 [, match_parameter]]]])

REGEXP_SUBSTR(source_string, pattern
 [, position [, occurrence
 [, match_parameter]]])

Parameters are as follows:

source_string
The string you wish to search.

pattern
A regular expression describing the text pattern you are
searching for. This expression cannot exceed 512 bytes in
length.

replace_string
The replacement text. Each occurrence of pattern in
source_string is replaced by replace_string, which can
use backreferences to refer to values that match subex-
pressions in the pattern.

position
The character position at which to begin the search. This
defaults to 1 and must be positive.

occurrence
The occurrence of pattern you are interested in finding.
This defaults to 1. Specify 2 if you want to find the second
occurrence of the pattern, 3 for the third occurrence, and
so forth.

return_option
Specify 0 (the default) to return the pattern’s beginning
character position. Specify 1 to return the ending charac-
ter position.

match_parameter
A set of options, in the form of a character string, that
changes the default manner in which regular-expression
pattern matching is performed. You may specify any, all,
or none of the following options, in any order:

Regular Expressions | 115

'i'
Specifies case-insensitive matching.

'c'
Specifies case-sensitive matching.

'n'
Allows the period (.) to match the newline character.
(Normally, that is not the case.)

'm'
Causes the caret (^) and dollar sign ($) to match the
beginning and ending, respectively, of lines within
the source string. Normally, the caret and dollar sign
match only the very beginning and the very end of the
source string, regardless of any newline characters
within the string.

'x'
Ignores whitespace, preventing whitespace charac-
ters from matching themselves.

subexpression
Specify 0 to return the position at which the entire pattern
matches (INSTR) or to return the substring matching the
entire pattern (SUBSTR). Specify 1 through 9 to return the
position corresponding to that subexpression of the pat-
tern (INSTR) or to return the string corresponding to that
subexpression (SUBSTR). Defaults to 0.

The NLS_SORT parameter setting determines whether case-
sensitive or case-insensitive matching is done by default.

NOTE
For detailed information and examples of Oracle’s
regular-expression support, see the Oracle Regular
Expressions Pocket Reference by Jonathan Gennick and
Peter Linsley (O’Reilly).

Table 15 lists the regular-expression operators supported by
these functions.

116 | SQL Pocket Guide

http://oreilly.com/catalog/9780596006013/
http://oreilly.com/catalog/9780596006013/

Table 15. Oracle regular-expression operators

Operator Description

\ Escapes a metacharacter

\1 . . . \9 Backreferences an earlier subexpression; the replace_string
parameter supports from \1 to \500

. Matches any character

^ Matches beginning of line

$ Matches end of line

[. . .] Matches any of a set of characters

[^ . . .] Matches any character not in a set

[.xx.] Encloses a collation element

[:class:] Specifies a character class such as [:digit:], [:alpha:], or
[:upper:] within a bracket expression

[=chars=] Specifies an equivalence class

* Matches zero or more

+ Matches one or more

? Matches zero or one

{x}, {x,y},
{x,}

Matches x times, from x to y times, or at least x times

| Delimits alternatives

(. . .) Defines a subexpression

Regular Expressions | 117

Table 16 lists additional Perl-influenced operators added in
Oracle Database 10g Release 2.

Table 16. Perl-influenced regular-expression operators in Oracle

Operator Description

\d Matches any digit

\D Matches any nondigit

\w Matches a word character, which is defined to include alphabetic
characters, numeric characters, and the underscore

\W Matches any nonword character

\s Matches any whitespace character

\S Matches any nonwhitespace character

\A Anchors an expression to the beginning of a string

\Z Anchors an expression to the end of a string

*? Nongreedy “zero or more” quantifier

+? Nongreedy “one or more” quantifier

?? Nongreedy “zero or one” quantifier

{x}?,
{x,y}?,
{x,}?

Nongreedy versions of {x}, {x, y}, {x,}

Regular Expressions: PostgreSQL
PostgreSQL implements regular expressions in two ways. First,
it provides support in the form of the SQL standard’s SIMILAR
TO predicate. For example, to find variant spellings of Fumee
Falls, specify:

SELECT u.id, u.name
FROM upfall u
WHERE u.name SIMILAR TO '(Fumee|Fumie|Fumy) Falls';

Table 17 lists the regular-expression operators that you can use
with SIMILAR TO. Use a backslash (\) to embed any of the
operators as a literal character. Use the ESCAPE clause to spec-
ify an alternate escape character:

118 | SQL Pocket Guide

WHERE u.name
 SIMILAR TO '(Fumee|Fumie|Fumy) Falls'
 ESCAPE '@'

Table 17. PostgreSQL regular-expression operators

Operator Description

_ Matches any single character

% Matches any string of characters

(. . .) Defines a subexpression

| Denotes alternation

* Matches zero or more

+ Matches one or more

? Matches zero or one

{x}, {x,y}, {x,} Matches x times, from x to y times, and at least x times

[. . .] Matches any of a set of characters

[^ . . .] Matches any character not in a set

The following form of the SUBSTRING function supports the
operators in Table 17:

SUBSTRING(string FROM pattern FOR escape)

For example:

SELECT u.name
FROM upfall u
WHERE SUBSTRING(u.name
 FROM '(Fumee|Fumie|Fumy) Falls' FOR '\\')
 IS NOT NULL;

As with the other queries in this section, this query searches
for alternate spellings of Fumee Falls.

Second, PostgreSQL implements Posix-style regular expres-
sions. For example, to find waterfalls that are described by
Michigan state highway names in the form M-28, M-1, and so
forth, up to three digits, you can write:

SELECT u.name, u.description
FROM upfall u
WHERE u.description ~ '.*M-[[:digit:]]{1,3}';

Regular Expressions | 119

The ̃ operator returns TRUE when the text on the left matches
the expression on the right. The match is case-sensitive. Use
˜* for a case-insensitive match. Similarly, you can use !˜
and !˜* to return TRUE when the text to the left does not match
the pattern.

The following two functions provide additional support for
Posix-style regular expressions:

SUBSTRING(string FROM pattern)
REGEXP_REPLACE(source, pattern, replacement [,flags])

For example, to change waterfall names from “Fumee Falls” to
“Falls, Fumee,” specify:

SELECT REGEXP_REPLACE(
 u.name, '(.+?) (Falls)', '\\2, \\1')
FROM upfall u;

The flags argument to REGEXP_REPLACE is optional. Spec-
ify 'i' for a case-insensitive match, 'g' to replace all matching
substrings, or both (as in 'ig' or 'gi'). Flags must be
lowercase.

Use backreferences \1 through \9 in the replacement string to
insert subexpressions from the matched text (denoted by
(. . .)). Use \& in the replacement string to insert the entire
matched text. Use \\ to place a single backslash in the
replacement string.

\1 through \9 are always backreferences. When multiple digits
are involved, the construct is assumed to be a backreference if
it is within the valid range of currently existing subexpressions.
If the construct is outside the valid range, it is treated as an
octal character escape. However, if the first digit is a zero, the
construct is always treated as an octal character escape, re-
gardless of where it falls in relation to the range.

Table 18 lists the Posix-style regular-expression operators
available in PostgreSQL.

120 | SQL Pocket Guide

Table 18. PostgreSQL Posix-style regular-expression operators

Operator Description

\ Escapes a metacharacter

\1 . . .
\9 . . .

Backreferences an earlier subexpression

. Matches any character

^ Matches beginning of line

$ Matches end of line

[. . .] Matches any of a set of characters

[^ . . .] Matches any character not in a set

[: class :] Specifies a character class within a bracket expression; valid
classes are: [:alnum:], [:alpha:], [:blank:],
[:cntrl;], [:digit:], [:graph:], [:lower:],
[:print:], [:punct:], [:space:], [:upper:],
[:xdigit:]

[. xx .] Encloses a collation element within a bracket expression

[= chars =] Specifies an equivalence class within a bracket expression

[[:<:]] Matches beginning of word

[[:>:]] Matches ending of word

* Matches zero or more

+ Matches one or more

? Matches zero or one

{x}, {x,y},
{x,}

Matches x times, from x to y times, or at least x times

| Delimits alternatives

(. . .) Defines a subexpression

(?: . . .) Defines a noncapturing subexpression

(?= . . .) Anchors to the beginning of a subexpression match

(?! . . .) Anchors to the point of a subexpression mismatch

\a Matches the alert bell

\b Matches backspace

Regular Expressions | 121

Operator Description

\B Matches a backslash (\); synonym for \\

\cX Matches a character in which the low-order five bits are the same
as in the character X

\d Matches any digit

\D Matches any nondigit

\e Matches the escape character

\f Matches the form feed

\m Anchors to the beginning of a word

\M Anchors to the end of a word

\n Matches newline

\r Matches carriage return

\t Matches horizontal tab

\uXXXX Matches the UTF-16 codepoint specified by the four-digit
hexadecimal number XXXX

\Uxxxxxxxx Reserved for an eventual UTF-32 extension

\v Matches vertical tab

\w Matches a word character, which is defined to include alphabetic
characters, numeric characters, and the underscore

\W Matches any nonword character

\xHEX_DIGITS Matches the character at code point HEX_DIGITS

\0 Matches the null character (hex 0)

\xx Matches the character at octal code point xx when xx is not a
backreference

\xxx Same as \xx, but for three octal digits

\y Anchors to either the beginning or ending of a word

\Y Anchors to a point that is not the beginning or ending of a word

\s Matches any whitespace character

\S Matches any nonwhitespace character

\A Anchors an expression to the beginning of a string

\Z Anchors an expression to the end of a string

122 | SQL Pocket Guide

Operator Description

*? Nongreedy “zero or more” quantifier

+? Nongreedy “one or more” quantifier

?? Nongreedy “zero or one” quantifier

{x}?, {x,y}?,
{x,}?

Nongreedy versions of {x}, {x, y}, {x,}

Table 19 lists embedded regular-expression option letters that
you can use to control overall matching behavior. To embed
options in an expression, use the syntax (?xxx . . .), where
each x is an option letter from the table. Specify as many xs as
you need.

Table 19. PostgreSQL Posix-style option letters

Option Description

a Makes the rest of the expression a basic regular expression (BRE)

c Specifies case-sensitive matching

e Makes the rest of the expression an extended regular expression (ERE)

i Specifies case-insensitive matching

m Same as n

n Specifies newline-sensitive matching

p Specifies partial newline-sensitive matching

q Makes the rest of the regular expression a literal (no more operators are
recognized)

s Specifies non-newline-sensitive matching (the default)

t Specifies tight syntax

w Specifies inverse partial newline-sensitive matching (a.k.a. weird matching)

x Switches to expanded syntax

Regular Expressions | 123

Regular Expressions: SQL Server
SQL Server supports a very limited regular-expression syntax
for its version of the LIKE predicate. For example, to find
Fumee Falls even if it is misspelled as “Fumie Falls,” write:

SELECT *
FROM upfall
WHERE name LIKE 'Fum[ie]e Falls';

SQL Server does not support quantifiers, alternation, subex-
pressions, or backreferences. Table 20 lists the few operators
that SQL Server does support.

Table 20. SQL Server regular-expression operators

Operator Description

% Matches any number of characters

_ Matches any character, including newlines

[. . .] Matches any of a set of characters

[^ . . .] Matches any character not in a set

Selecting Data
Use a SELECT statement, or query, to retrieve data from a
database—typically from a table or view or from a combination
of tables and views:

SELECT expression_list
FROM data_source
WHERE predicates
GROUP BY expression_list
HAVING predicates
ORDER BY expression_list

DB2, Oracle, PostgreSQL, and SQL Server support factoring
out subqueries using a WITH clause. See “Hierarchical Quer-
ies” on page 62 and “Subqueries” on page 139 for some ex-
amples of this technique.

124 | SQL Pocket Guide

The SELECT Clause
Each expression in the SELECT clause becomes a column in
the result set returned by the query. Expressions may be simple
column names, may generate a new value using a column value
as input, or may have nothing to do with any columns at all.

Listing the columns to retrieve
The SELECT clause specifies the individual data elements you
want the statement to return. The simple case is to specify a
comma-delimited list of one or more column names from the
tables listed in the FROM clause:

SELECT id, name
FROM owner;

The result set for this query will contain the following columns:

ID NAME
------------ ---------------
1 Pictured Rocks
2 Michigan Nature
3 AF LLC
4 MI DNR
5 Horseshoe Falls

Taking shortcuts with the asterisk
To return all columns from a table, you can specify a single
asterisk rather than write out each column name:

SELECT *
FROM owner;

ID NAME PHONE TYPE
------------ --------------- ------------ -------
1 Pictured Rocks 906.387.2607 public
2 Michigan Nature 517.655.5655 private
3 AF LLC private
4 MI DNR 906-228-6561 public
5 Horseshoe Falls 906.387.2635 private

The asterisk is a helpful shortcut when executing queries in-
teractively because it can save you a fair bit of typing. However,
it’s a risky proposition to use the asterisk in program code

Selecting Data | 125

because the columns in a table may change over time, causing
your program to fail when more or fewer columns than expec-
ted are returned.

Writing expressions
You can use column names in expressions. The following
statement predicts the effect of a 10 percent drop in population
(rounded to zero decimal places):

SELECT name, ROUND(population * 0.90, 0)
FROM county;

It is not necessary for an expression in a SELECT list to refer
to any column at all in the table or view from which you are
selecting. In Oracle, it’s very common to issue queries against
a special table known as dual, as in the following query, which
returns the current date and time:

SELECT SYSDATE
FROM dual;

In DB2, you can query sysibm.sysdummy1:

SELECT CURRENT_DATE
FROM sysibm.sysdummy1;

Your database system will evaluate such expressions for each
row returned by the query. Oracle’s dual table is special in that
it holds only one row. Thus, the preceding query from dual will
return only one value.

In SQL Server and MySQL, you can return the result of an
expression without selecting from a table at all. For example,
use the following to get the current time (SQL Server):

SELECT getdate();

A SELECT such as this one, in which no table is specified, is
the SQL Server/MySQL equivalent of Oracle’s SELECT...FROM
dual.

Specifying result-set column names
SQL enables you to specify a name, or alias, for each expression
in your SELECT list. To specify a column alias, place the alias

126 | SQL Pocket Guide

name immediately after the column name or expression, sep-
arating the two by at least one space:

SELECT id, name,
 ROUND(population * 0.90, 0) est_pop
FROM county;

ID NAME EST_POP
---------- ---------- -------------------
2 Alger 8876
6 Baraga 7871
7 Ontonagon 7036
...

Alternatively, you can introduce a column alias using the AS
keyword:

SELECT id, name,
 ROUND(population * 0.90, 0) AS est_pop
FROM county;

PostgreSQL 8.1 and earlier require the use of AS to introduce
a column alias.

In a given situation, it may not be important to provide an alias
for a simple column name such as id. However, it’s very im-
portant to use aliases when working with expressions to give
sensible names to the resulting columns.

Dealing with case and punctuation in names
By default, SQL is case-insensitive and converts keywords and
identifiers (such as table and column names) to uppercase. In
MySQL, case sensitivity depends on whether the underlying
operating system is case-sensitive (with respect to filenames).
Oddly, in PostgreSQL, the default is to convert to lowercase.

If you must specify an identifier in a case-sensitive manner, you
can enclose it in double quotes. The following example uses
double quotes to generate mixed-case column aliases. Note
that the double quotes also allow for spaces to be included in
the alias names:

SELECT id AS "Fall #", name AS "Fall Name"
FROM upfall;

Selecting Data | 127

Fall # Fall Name
------ ---------------
1 Munising Falls
2 Tannery Falls
3 Alger Falls
...

The ability to quote identifiers also enables you to work with
column and table names containing mixed cases, spaces, and
other unusual characters.

Using subqueries in a SELECT list
Current versions of all of the platforms allow you to embed a
subquery in a SELECT list. Ensure that the embedded sub-
query is scalar: it must return zero or one rows and one column.
When no row is returned, you get a null. You should also spec-
ify a column alias so that the corresponding result-set column
has a simple name to which you can easily refer in your code.
For example, the following query returns the number of wa-
terfalls for each owner:

SELECT o.id, o.name,
 (SELECT COUNT(*) FROM upfall u
 WHERE u.owner_id = o.id) AS fall_count
FROM owner o;

Subqueries can be correlated or uncorrelated. The subquery in
this example is correlated, meaning that it refers to the enclos-
ing table.

Qualifying column names
You can qualify a column name by its table name. This is es-
pecially important when writing queries that involve multiple
tables, because sometimes two tables will have columns with
the same name. To qualify a column name, use dot notation,
as in table_name.column_name. For example:

SELECT owner.id, owner.name
FROM owner;

128 | SQL Pocket Guide

If you qualify a column name by its table name, you can also
qualify that table name by its schema or database name:

SELECT sqlpocket.owner.id
FROM sqlpocket.owner;

To make it easier to qualify column names, you can provide
table aliases. The following example gives the alias o to the table
owner:

SELECT o.id, o.name
FROM owner o;

or:

SELECT o.id
FROM sqlpocket.owner o;

Qualifying column names is often necessary to remove ambi-
guity in a query.

ALL and DISTINCT
Use the ALL and DISTINCT keywords to specify whether you
want the SELECT operation to eliminate duplicate rows from
the result set. Duplicate elimination typically involves a partial
sorting of the data, though other approaches are possible and
the approach taken depends upon the implementation.

Following are two examples showing the difference between
ALL and DISTINCT:

SELECT ALL o.type, u.open_to_public
FROM owner o
JOIN upfall u ON o.id = u.owner_id;

TYPE OPEN_TO_PUBLIC
------- --------------
public y
private y
private y
public y
public y
public y

Selecting Data | 129

SELECT DISTINCT o.type, u.open_to_public
FROM owner o
JOIN upfall u ON o.id = u.owner_id;

TYPE OPEN_TO_PUBLIC
------- --------------
private y
public y

The first query simply returns one row for each owner. (The
ALL keyword is optional and is assumed by default.) The sec-
ond uses DISTINCT to return a list of different type/
open_to_public combinations. Use DISTINCT when you need
each combination of column values to be returned only one
time.

The FROM Clause
Use the FROM clause to specify the source of the data you want
to retrieve. The simplest case is to specify a single table or view
in the FROM clause of a SELECT statement:

SELECT name
FROM upfall
WHERE id = 2;

You can also qualify a table or view name with either a schema
or database name, depending on your platform. Use dot nota-
tion for that purpose:

SELECT name
FROM sqlpocket.upfall
WHERE id = 2;

This query retrieves specifically from the upfall table or view
owned by the user sqlpocket.

Table aliases in the FROM clause
You can specify a name, or table alias, for any table or view
expression in a FROM clause. Aliases are useful for queries
having ambiguous column names resulting from a join or the
use of a subquery. For example, the following query returns a

130 | SQL Pocket Guide

list of waterfalls, and for each fall, it shows the number of other
falls in the same county:

SELECT u.name,
 (SELECT COUNT(*) FROM upfall u2
 WHERE u2.county_id = u.county_id)
FROM upfall u;

You couldn’t write this query without using aliases because the
table names are identical. You also lose the ability to reference
the outer query from the inner query. For example, without
aliases, this query’s WHERE clause would be:

WHERE county_id = county_id

Using aliases is the only way to differentiate between the two
references to the upfall table.

Subqueries in the FROM clause
Subqueries can sometimes be used to good effect in the FROM
clause, where they are also known as inline views. Such sub-
queries must be noncorrelated; in other words, they must not
reference columns from the main query. For example, the fol-
lowing query lists all publicly owned falls:

SELECT u.name AS fall_name, o.name AS owner_name
FROM (SELECT * FROM owner
 WHERE type = 'public') o
JOIN upfall u ON o.id = u.owner_id;

The subquery conceptually materializes a temporary table of
falls that are publicly owned. That temporary table is then
joined to the upfall table.

Generating tables through the VALUES clause
DB2 and SQL Server 2008 allow the use of the VALUES clause
to generate tables on the fly:

SELECT id, name
FROM (VALUES (1, 'Munising Falls'),
 (2, 'Tannery Falls'))
AS falls(id, name);

Selecting Data | 131

ID NAME
----------- --------------
 1 Munising Falls
 2 Tannery Falls

Be sure to place parentheses around the entire VALUES clause
and to separate value lists using commas.

The WHERE Clause
Use the WHERE clause to restrict query results to only those
rows of interest. Rarely will you want all rows from a table.
More often, you’ll want rows that match specific criteria. The
following example retrieves only those waterfalls located in
Alger County that are publicly accessible:

SELECT u.name
FROM upfall u
WHERE
 u.open_to_public = 'y'
 AND u.county_id IN (
 SELECT c.id FROM county c
 WHERE c.name = 'Alger');

The query uses an equality predicate (=) to identify publicly
accessible waterfalls and an IN predicate (IN) to identify falls
in Alger County. See the section “Predicates” on page 109 for
more examples and a list of predicates that you can use in the
WHERE clause.

NOTE
Join conditions are also used to restrict data returned by
a query. See “Joining Tables” on page 72.

The GROUP BY Clause
See the section “Grouping and Summarizing” on page 52.

132 | SQL Pocket Guide

The HAVING Clause
See the section “Grouping and Summarizing” on page 52.

The ORDER BY Clause
Use ORDER BY to specify how you want results to be sorted.
For example, the following returns a list of waterfalls sorted by
owner name, and then sorted within each owner by fall name:

SELECT COALESCE(o.name, 'Unknown') AS owner,
 u.name AS fall
FROM upfall u
LEFT OUTER JOIN owner o
 ON u.owner_id = o.id
ORDER BY o.name, u.name;

The default sort is an ascending sort. You can use the keywords
ASCENDING and DESCENDING (which you can abbreviate
ASC and DESC) to control the sort on each column. The fol-
lowing is a modification of the previous sort, but this time, it
sorts owner names in reverse order:

SELECT COALESCE(o.name, 'Unknown') AS owner,
 u.name AS fall
FROM upfall u
LEFT OUTER JOIN owner o
 ON u.owner_id = o.id
ORDER BY o.name DESC, u.name ASC;

You can sort by columns and expressions that are not in your
SELECT list:

ORDER BY o.id DESC, u.id

You can also sort by numeric column position:

SELECT COALESCE(o.name, 'Unknown') AS owner,
 u.name AS fall
...
ORDER BY 1 DESC, 2 ASC;

Selecting Data | 133

And, in Oracle, PostgreSQL, and SQL Server you can even sort
by the results of a correlated subquery (i.e., one that references
a column from the main query):

SELECT COALESCE(o.name, 'Unknown') AS owner,
 u.name AS fall
FROM upfall u
LEFT OUTER JOIN owner o
 ON u.owner_id = o.id
ORDER BY (SELECT COUNT(*) FROM upfall u2
 WHERE u2.owner_id = o.id) DESC,
 u.name;

The subquery returns the number of waterfalls owned by each
owner, so the result of this query is to first list those falls whose
owners own the greatest number of falls. A second sort is then
performed on falls’ names.

String Functions
The following sections show how to use functions to perform
common string operations.

Searching a String
In DB2 and Oracle, use the following version of INSTR to find
the location of a substring within a string:

INSTR(string, substring[, position[, occurrence]])

You can specify a starting position for the search, and you can
request that a specific occurrence be found. If position is neg-
ative, the search begins from the end of the string.

NOTE
In Oracle Database 10g and higher, you can also use
REGEXP_INSTR, as described in the section “Regular
Expressions” on page 113.

134 | SQL Pocket Guide

Oracle implements INSTR, INSTRB, INSTR2, and INSTR4,
which work in terms of the input character set, bytes, Unicode
code units, and Unicode code points, respectively. DB2 imple-
ments INSTR (and also INSTRB in version 9.7).

DB2 also supports the LOCATE and POSSTR functions:

LOCATE(substring, string[, position])
POSSTR(substring, string)

Both functions return the first occurrence of substring within
string. Zero is returned if no match is found. The default is to
search string beginning from character position 1.

In SQL Server, use the CHARINDEX function:

CHARINDEX(substring, string[, position])

The arguments are the same as they are for DB2’s LOCATE.

In MySQL, use either INSTR or LOCATE:

INSTR(string, substring)
LOCATE(substring, string[, position])

Use position to specify a starting character position other than
1. Zero is returned if substring is not found within string.

In PostgreSQL, use either POSITION or STRPOS:

POSITION(substring IN string)
STRPOS(string, substring)

Notice that the two functions use opposite argument orders.

Replacing Text in a String
Use the REPLACE function to perform a search-and-replace
operation on a string:

REPLACE(string, search, replace)

You can delete occurrences of search by specifying an empty
string ('') as the replace text. Also, Oracle allows you to omit
the replacement string, which has the same effect as specifying
the empty string ('').

String Functions | 135

NOTE
Oracle Database 10g and higher and PostgreSQL sup-
port regular-expression search and replace through the
REGEXP_REPLACE function described in the section
“Regular Expressions” on page 113.

Extracting a Substring
In DB2, Oracle, and PostgreSQL, you can use the SUBSTR
function to extract length characters from a string, beginning
at position start:

SUBSTR(string, start[, length])

Strings begin with position 1. Oracle treats a start of 0 as
though you had specified 1. If start is negative, Oracle counts
backward from the end of the string.

Omit length to get all characters from start to the end of the
string. DB2 pads any result with spaces, if necessary, to ensure
that the result is always length characters long.

NOTE
In Oracle Database 10g and higher, you can also use
REGEXP_SUBSTR, as described in the section “Regular
Expressions” on page 113.

Oracle implements SUBSTR, SUBSTRB, SUBSTR2, and
SUBSTR4, which work in terms of the input character set,
bytes, Unicode code units, and Unicode code points, respec-
tively. DB2 implements SUBSTR (and also SUBSTRB in
version 9.7). PostgreSQL implements only SUBSTR.

PostgreSQL also supports:

SUBSTRING(string FROM start)
SUBSTRING(string FROM start FOR length)

136 | SQL Pocket Guide

In SQL Server, use SUBSTRING. All three arguments are
required:

SUBSTRING(string, start, length)

MySQL implements the following substring functions:

SUBSTRING(string, start)
SUBSTRING(string FROM start)
SUBSTRING(string, start, length)
SUBSTRING(string FROM start FOR length)

The arguments to these SUBSTRING functions are the same
as they are for SUBSTR. MySQL supports a negative start po-
sition, which counts from the right.

Finding the Length of a String
Use the LENGTH function (LEN in SQL Server) to determine
the length of a string:

LENGTH(string)

Oracle implements LENGTH, LENGTHB, LENGTH2, and
LENGTH4, which count characters in the input character set,
bytes, Unicode code units, and Unicode code points,
respectively.

Concatenating Strings
The easiest way to concatenate strings is to use the SQL stand-
ard string concatenation operator (||):

string1 || string2

SQL Server does not support the ISO SQL string concatenation
operator. Use a + instead:

string1 + string2

MySQL supports neither || nor + for concatenating strings, but
it does support an unlimited number of string arguments to
CONCAT:

CONCAT(string[, string ...])

String Functions | 137

PostgreSQL supports a TEXTCAT function:

TEXTCAT(string, string)

Trimming Unwanted Characters
LTRIM, RTRIM, and TRIM remove unwanted characters from
a string. TRIM is part of the SQL standard; the others are not.
TRIM’s syntax is:

TRIM(string)
TRIM(character FROM string)
TRIM(option [character] FROM string)
option ::= {LEADING|TRAILING|BOTH}

Using TRIM, you can trim leading characters, trailing charac
ters, or both from a string. The character to trim defaults to a
single space. The default option is BOTH.

LTRIM removes unwanted characters from the beginning (left
edge) of a string, whereas RTRIM removes from the end (right
edge). The implementation for Oracle and PostgreSQL is:

LTRIM(string[, unwanted])
RTRIM(string[, unwanted])

The unwanted argument is a string containing the characters
you want trimmed, and it defaults to a single space. For ex-
ample, to remove various punctuation from both ends of a
string, specify:

RTRIM(LTRIM(string,'.,! '),'.,! ')

DB2, MySQL, and SQL Server do not support the unwanted
argument; you can trim only spaces.

Changing the Case of a String
Use the UPPER and LOWER functions to upper- or lowercase
all letters in a string:

UPPER(string)
LOWER(string)

138 | SQL Pocket Guide

In DB2 9.7 and higher, Oracle, and PostgreSQL, you can also
use INITCAP(string) to uppercase the first letter of each word
in a string and lowercase the other letters. DB2 supports
UCASE and LCASE as synonyms for UPPER and LOWER.

Subqueries
Subject to various platform restrictions, subqueries can be used
in most SQL statements as follows:

In the SELECT list of a SELECT statement
See “The SELECT Clause” on page 125.

In the FROM clause of a SELECT statement
See “The FROM Clause” on page 130.

In the WHERE clause of a SELECT statement
See “Predicates” on page 109, and also “The WHERE
Clause” on page 132.

In the ORDER BY clause of a SELECT statement
See “The ORDER BY Clause” on page 133.

In an INSERT…SELECT…FROM statement
See “Subquery Inserts” on page 69.

In the SET clause of an UPDATE statement
See “New Values from a Subquery” on page 169.

Subqueries in the FROM Clause
A subquery in the FROM clause of a SELECT statement func-
tions like a view and replaces a table as a data source. You can
use subqueries—just as you can use views—as targets of IN-
SERT, DELETE, and UPDATE statements. For example, for
all platforms except MySQL and SQL Server, you can specify:

DELETE
FROM (SELECT * FROM upfall u
 WHERE u.open_to_public = 'n') u2
WHERE u2.owner_id IS NOT NULL;

This statement deletes waterfalls that are not open to the public
and for which an owner is known.

Subqueries | 139

Subqueries in the WITH Clause
The SQL standard defines a WITH clause that you can use to
factor out a subquery so that you don’t need to repeat it in your
SELECT statement. DB2, Oracle, PostgreSQL, and SQL Server
support WITH.

NOTE
See “Hierarchical Queries” on page 62 to learn how
WITH is used to write recursive queries.

The following SELECT repeats two subqueries twice to gen-
erate a list of counties containing more than the average
number of waterfalls per county:

SELECT c.name,
 (SELECT COUNT(*) FROM upfall u2
 WHERE u2.county_id = c.id) fall_count,
 (SELECT AVG(fall_count)
 FROM (SELECT COUNT(*) fall_count
 FROM upfall u3
 GROUP BY u3.county_id) x1) avg_count
FROM county c
WHERE (SELECT COUNT(*) FROM upfall u2
 WHERE u2.county_id = c.id)
 >
 (SELECT AVG(fall_count)
 FROM (SELECT COUNT(*) fall_count
 FROM upfall u3
 GROUP BY u3.county_id) x2);

Aside from being difficult to read and comprehend, this query
is a potential maintenance disaster because any change to
either subquery must be made twice. Using WITH, you can
rewrite the query in a way that specifies each subquery only
once. For example, in all but PostgreSQL:

WITH fall_count_query AS
 (SELECT u2.county_id id,
 COUNT(*) fall_count
 FROM upfall u2
 GROUP BY u2.county_id),

140 | SQL Pocket Guide

 avg_count_query AS
 (SELECT AVG(fall_count) avg_count
 FROM (SELECT COUNT(*) fall_count
 FROM upfall u3
 GROUP BY u3.county_id))
SELECT c.name,
 (SELECT fall_count FROM fall_count_query
 WHERE fall_count_query.id = c.id) fall_count,
 (SELECT avg_count FROM avg_count_query) avg_count
FROM county c
WHERE (SELECT fall_count FROM fall_count_query
 WHERE fall_count_query.id = c.id)
 > (SELECT avg_count FROM avg_count_query);

PostgreSQL requires an alias for any subquery in the FROM
clause of a subquery in the WITH clause. For example, notice
the alias fc at the end of the following snippet:

...
 avg_count_query AS
 (SELECT AVG(fall_count) avg_count
 FROM (SELECT COUNT(*) fall_count
 FROM upfall u3
 GROUP BY u3.county_id) fc)
...

The correlated subquery changes to a noncorrelated version as
it moves into the WITH clause. The original query used the
following subquery to retrieve the number of waterfalls for a
given county:

(SELECT COUNT(*) FROM upfall u2
WHERE u2.county_id = c.id) fall_count,

In the WITH version of the query, the correlated subquery that
counts waterfalls for a single county is replaced with a GROUP
BY subquery that counts falls for all counties:

(SELECT u2.county_id id,
 COUNT(*) fall_count
FROM upfall u2
GROUP BY u2.county_id),

The “correlation” becomes a WHERE clause when selecting
from the factored-out query:

(SELECT fall_count FROM fall_count_query
WHERE fall_count_query.id = c.id)

Subqueries | 141

When moving a correlated subquery into the WITH clause,
you’ll need to uncorrelate it. Determining how best to accom-
plish this sometimes requires a bit of thought and
experimentation.

Although the preceding query using the WITH clause is some-
what more complex than the one it replaces, the logic for com-
puting the fall count and average fall count is now encapsulated
in the WITH clause. The other subqueries do nothing more
than select specific columns from the result sets of the WITH-
clause queries. As the size of the subqueries increases, so does
the apparent simplification.

Further refactoring is possible. This time, the
avg_count_query references the previously defined
fall_count_query, consolidating the logic for counting water-
falls by county into only one subquery:

WITH fall_count_query AS
 (SELECT u2.county_id id,
 COUNT(*) fall_count
 FROM upfall u2
 GROUP BY u2.county_id),
 avg_count_query AS
 (SELECT AVG(fall_count) avg_count
 FROM (SELECT * FROM fall_count_query))
SELECT c.name,
 (SELECT fall_count FROM fall_count_query
 WHERE fall_count_query.id = c.id) fall_count,
 (SELECT avg_count FROM avg_count_query) avg_count
FROM county c
WHERE (SELECT fall_count FROM fall_count_query
 WHERE fall_count_query.id = c.id)
 > (SELECT avg_count FROM avg_count_query);

DB2 and SQL Server support an alternative method for naming
the result columns from a WITH-clause query. Instead of pro-
viding column names as aliases, you can provide them in
parentheses following the query name:

WITH fall_count_query (id, fall_count) AS

The WITH clause doesn’t eliminate multiple subqueries en-
tirely. It does allow you to locate all of the complex logic in one

142 | SQL Pocket Guide

place, leaving only simple SELECTs for the subqueries in the
main statement.

Tables, Creating
You create a new table in a database by issuing a CREATE
TABLE statement. The syntax varies widely among vendors,
but the following subsections show reasonable examples for
each platform. Bear in mind the following points:

• At a minimum, all you need is a list of column names and
their data types:

CREATE TABLE simple_example (
 id NUMERIC,
 name VARCHAR(15),
 last_changed DATE
);

• The examples give explicit names for many of the
constraints, which I consider a best practice, but the
CONSTRAINT constraint_name syntax is optional and is often
omitted (especially on column constraints such as the
NOT NULL constraint).

• You can usually declare constraints that involve a single
column as part of that column’s definition. Multicolumn
constraints must be declared as table-level elements. The
examples demonstrate both approaches.

See the platform-specific sections on “Data Types” for lists of
valid data types by platform.

Creating a Table: DB2
The following is a typical CREATE TABLE statement for DB2:

CREATE TABLE db2_example (
 id DECIMAL(6) NOT NULL
 GENERATED ALWAYS AS IDENTITY (
 START WITH 1 INCREMENT BY 1
 MAXVALUE 999999
 CACHE 20 NO ORDER),

Tables, Creating | 143

 name VARCHAR(15) NOT NULL,
 country VARCHAR(2) DEFAULT 'CA' NOT NULL
 CONSTRAINT country_check
 CHECK (country IN ('CA','US')),
 indexed_name VARCHAR(15),
 CONSTRAINT db2_example_pk
 PRIMARY KEY (id),
 CONSTRAINT db2_example_fk01
 FOREIGN KEY (name, country)
 REFERENCES parent_example (name, country),
 CONSTRAINT db2_example_u01
 UNIQUE (name, country),
 CONSTRAINT db2_example_c01
 CHECK (indexed_name = UPPER(name))
) IN userspace1;

In DB2, you must specify NOT NULL explicitly for all primary
key columns. Other vendors generally infer NOT NULL from
your primary key specification. Likewise, DB2 requires NOT
NULL on columns involved in UNIQUE constraints.

The id column in this table is automatically generated from a
sequence of values from 1 to 9999999. Sequence values are
cached in memory for faster access and are not necessarily as-
signed in order (which also improves performance).

Creating a Table: MySQL
The following is a typical CREATE TABLE statement for
MySQL. The id column is autogenerated:

CREATE TABLE mysql_example (
 id INTEGER AUTO_INCREMENT,
 name VARCHAR(15) NOT NULL,
 country VARCHAR(2) DEFAULT 'CA'
 NOT NULL
 CHECK (country IN ('CA','US')),
 indexed_name VARCHAR(15),
 CONSTRAINT mysql_example_pk
 PRIMARY KEY (id),
 CONSTRAINT mysql_example_fk01
 FOREIGN KEY (name, country)
 REFERENCES parent_example (name, country),
 CONSTRAINT mysql_example_u01
 UNIQUE (name, country),

144 | SQL Pocket Guide

 CONSTRAINT mysql_example_index_upper
 CHECK (indexed_name = UPPER(name))
) ENGINE = INNODB;

MySQL does not support the CONSTRAINT constraint_name
syntax or the definition of foreign key and check constraints at
the column level.

WARNING
MySQL silently ignores foreign key constraints, except
between InnoDB tables. It will even silently ignore the
declaration of such constraints to tables that do not
exist, unless you are creating an InnoDB table.

MySQL supports different storage engines, which are physical
mechanisms for storing table rows. Use the ENGINE keyword
to specify an engine type. The following are valid engines in
MySQL 5.1: ARCHIVE, BLACKHOLE, CSV, EXAMPLE,
FEDERATED, INNODB, MEMORY, MERGE, MYISAM
(called ISAM prior to 5.0), and NDBCLUSTER. MYISAM is
the default, although that can be changed when starting the
MySQL daemon.

NOTE
Earlier versions of MySQL require you to use the key-
word TYPE rather than ENGINE.

Creating a Table: Oracle
The following is a typical CREATE TABLE statement for
Oracle:

CREATE TABLE oracle_example (
 id NUMBER(6),
 name VARCHAR2(15) NOT NULL,
 country VARCHAR2(2) DEFAULT 'CA'
 CONSTRAINT country_not_null NOT NULL
 CONSTRAINT country_check

Tables, Creating | 145

 CHECK (country IN ('CA','US')),
 indexed_name VARCHAR2(15),
 CONSTRAINT oracle_example_pk
 PRIMARY KEY (id),
 CONSTRAINT oracle_example_fk01
 FOREIGN KEY (name, country)
 REFERENCES parent_example (name, country),
 CONSTRAINT oracle_example_u01
 UNIQUE (name, country),
 CONSTRAINT oracle_example_index_upper
 CHECK (indexed_name = UPPER(name))
) TABLESPACE users;

This statement assigns the table to the users tablespace. The
TABLESPACE clause is optional. If you aren’t certain which
tablespace to specify, you can either omit the clause to accept
your default tablespace assignment or ask your database
administrator’s advice.

If you want the ID column to be an automatically generated
sequential ID number, you can begin by creating an Oracle
sequence:

CREATE SEQUENCE oracle_example_pk
 NOCYCLE MAXVALUE 999999 START WITH 1;

Then, create a trigger to derive a new id value from the
sequence whenever a new row is inserted:

CREATE OR REPLACE TRIGGER oracle_example_pk
BEFORE INSERT ON oracle_example
FOR EACH ROW
DECLARE
 next_id NUMBER;
BEGIN
 SELECT oracle_example_pk.NEXTVAL INTO next_id
 FROM dual;

 :NEW.id := next_id;
END;
/

Oracle sequences generate values up to 1027. Use the MAX-
VALUE clause to constrain the value range to something that
is appropriate to your application and does not exceed the
range of your primary key column.

146 | SQL Pocket Guide

Creating a Table: PostgreSQL
The following is a typical CREATE TABLE statement for
PostgreSQL:

CREATE TABLE postgre_example (
 id SERIAL,
 name VARCHAR(15) NOT NULL,
 country VARCHAR(2) DEFAULT 'CA'
 CONSTRAINT country_not_null NOT NULL
 CONSTRAINT country_check
 CHECK (country IN ('CA','US')),
 indexed_name VARCHAR(15),
 CONSTRAINT postgre_example_pk
 PRIMARY KEY (id),
 CONSTRAINT postgre_example_fk01
 FOREIGN KEY (name, country)
 REFERENCES parent_example (name, country),
 CONSTRAINT postgre_example_u01
 UNIQUE (name, country),
 CONSTRAINT postgre_example_index_upper
 CHECK (indexed_name = UPPER(name))
)TABLESPACE pg_default;

The id column’s type is SERIAL, which results in an auto-
incrementing four-byte integer. Support for tablespaces came
about in PostgreSQL 8.0. The TABLESPACE clause is
optional.

Creating a Table: SQL Server
The following is a typical CREATE TABLE statement for SQL
Server, with an auto-incrementing primary key column that
begins at 1 and increments by 1:

CREATE TABLE msss_example (
 id INT IDENTITY (1,1),
 name VARCHAR(15) NOT NULL,
 country VARCHAR(2) DEFAULT 'CA'
 CONSTRAINT country_not_null NOT NULL
 CONSTRAINT country_check
 CHECK (country IN ('CA','US')),
 indexed_name VARCHAR(15),
 CONSTRAINT msss_example_pk
 PRIMARY KEY (id),

Tables, Creating | 147

 CONSTRAINT msss_example_fk01
 FOREIGN KEY (name, country)
 REFERENCES parent_example (name, country),
 CONSTRAINT msss_example_u01
 UNIQUE (name, country),
 CONSTRAINT msss_example_index_upper
 CHECK (indexed_name = UPPER(name))
);

Tables, Dropping
When you no longer need a table, you can drop it from your
schema:

DROP TABLE table_name;

In Oracle, you can drop a table that is referenced by foreign
key constraints using the following syntax:

DROP TABLE table_name CASCADE CONSTRAINTS;

In PostgreSQL, you can do the same thing using:

DROP TABLE table_name CASCADE;

Foreign key constraints that reference the table being dropped
will be dropped themselves.

NOTE
In DB2, referencing foreign key constraints are always
dropped; no CASCADE clause is needed.

In all other cases, you must drop any referencing foreign key
constraints manually before dropping the referenced table.

Tables, Modifying
You can change the columns and other attributes of a table
using the ALTER TABLE statement. The syntax varies signif-
icantly among vendors. The following subsections show the
same sequence of common table alterations. Many other types

148 | SQL Pocket Guide

of changes are possible; consult your vendor documentation
for details.

Modifying a Table: DB2
Use ALTER TABLE’s ADD clause to add a column or table
constraint. You may add more than one item at a time:

ALTER TABLE db2_example
 ADD COLUMN lower_name VARCHAR(15)
 ADD CONSTRAINT lower_name
 CHECK(lower_name = LOWER(name));

Use the ALTER clause to change a column’s default value or
data type. For example:

ALTER TABLE db2_example
 ALTER COLUMN name SET DEFAULT 'Missing!'
 ALTER COLUMN indexed_name
 SET DATA TYPE VARCHAR(30);

You can change only one item at a time for a given column. If
you need to change both name and data type for a given
column, you will need to issue separate ALTER TABLE state-
ments for each of those two changes.

You can add table constraints but not column constraints, so
the no_leading_space constraint added at the column level on
other platforms must be added at the table level for DB2:

ALTER TABLE db2_example
 ADD CONSTRAINT no_leading_space
 CHECK (indexed_name = LTRIM(indexed_name));

DB2 9.7 and higher support changing the nullability of a col-
umn. For example:

ALTER TABLE db2_example
 ALTER COLUMN name SET NOT NULL;

To change the nullability of a column prior to DB2 9.7, you
must drop and recreate the table. (Remember that columns
participating in unique and primary key constraints cannot be
nullable.) Unlike on the other platforms, there is no easy way
to make name nullable. However, you can achieve the desired

Tables, Modifying | 149

effect of adding NOT NULL to a column by creating a CHECK
constraint:

ALTER TABLE db2_example
 ADD CONSTRAINT indexed_name_not
 CHECK (indexed_name IS NOT NULL);

To remove a constraint, use the DROP clause:

ALTER TABLE db2_example
 DROP CONSTRAINT lower_name
 DROP CONSTRAINT no_leading_space
 DROP CONSTRAINT indexed_name_not;

You cannot drop a column from a table in DB2. If avoiding the
use of an unwanted column is not sufficient, you must drop
and recreate the table.

Modifying a Table: MySQL
Use the ADD clause to add columns and constraints. Be sure
to avoid using the same name for both a column and a
constraint:

ALTER TABLE mysql_example
 ADD lower_name VARCHAR(15),
 ADD CONSTRAINT lower_name_chk
 CHECK (lower_name = LOWER(name));

To create new definitions for a column, use MODIFY. You
must specify at least a data type for each column, and you may
also specify a default value and nullability (e.g., NOT NULL).
New definitions completely overwrite the old. Thus, in the fol-
lowing example, country will lose its existing default value
because it was not respecified in the MODIFY clause:

ALTER TABLE mysql_example
 MODIFY name VARCHAR(30)
 DEFAULT 'Missing!' NULL,
 MODIFY country VARCHAR(2) NOT NULL,
 MODIFY indexed_name VARCHAR(30) NOT NULL;

Constraints—even those referencing a single column—must
be added via the ADD clause:

150 | SQL Pocket Guide

ALTER TABLE mysql_example
 ADD CONSTRAINT no_leading_space
 CHECK (indexed_name = LTRIM(indexed_name));

MySQL does not allow you to drop CHECK constraints. You
can drop primary key and foreign key constraints as follows:

ALTER TABLE table_name
 DROP PRIMARY KEY,
 DROP FOREIGN KEY constraint_name;

To drop a UNIQUE constraint, you must drop the index used
to enforce it:

ALTER TABLE table_name
 DROP INDEX index_name;

Use DROP to remove a column:

ALTER TABLE mysql_example
 DROP COLUMN lower_name;

Modifying a Table: Oracle
Use ALTER TABLE…ADD to add columns and table
constraints:

ALTER TABLE oracle_example ADD (
 lower_name VARCHAR2(15),
 CONSTRAINT lower_name
 CHECK (lower_name = LOWER(name))
);

Use MODIFY to change a column’s data type, default value,
or nullability. You can also add new constraints to a column.
Anything you do not specify is left unchanged:

ALTER TABLE oracle_example MODIFY (
 name VARCHAR2(30) DEFAULT 'Missing!'
 CONSTRAINT name_canbe_null NULL,
 country DEFAULT NULL,
 indexed_name varchar2(30) NOT NULL
 CONSTRAINT no_leading_space
 CHECK (indexed_name = LTRIM(indexed_name))
);

Use DROP to remove a column or constraint. Each drop must
be specified separately, and no parentheses are used:

Tables, Modifying | 151

ALTER TABLE oracle_example
 DROP CONSTRAINT lower_name;

ALTER TABLE oracle_example
 DROP COLUMN lower_name;

Modifying a Table: PostgreSQL
Use the ADD clause to add columns and constraints:

ALTER TABLE postgre_example
 ADD lower_name VARCHAR(15),
 ADD CONSTRAINT lower_name
 CHECK (lower_name = LOWER(name));

Use various ALTER clauses to change a column’s data types,
default values, and nullability:

ALTER TABLE postgre_example
 ALTER name TYPE VARCHAR(30),
 ALTER name SET DEFAULT 'Missing!',
 ALTER name DROP NOT NULL,
 ALTER country DROP DEFAULT,
 ALTER indexed_name TYPE VARCHAR(30),
 ALTER indexed_name SET NOT NULL;

Constraints—even those referencing a single column—must
be added via the ADD clause:

ALTER TABLE postgre_example
 ADD CONSTRAINT no_leading_space
 CHECK (indexed_name = LTRIM(indexed_name));

Use DROP to remove a column or constraint:

ALTER TABLE postgre_example
 DROP CONSTRAINT lower_name,
 DROP COLUMN lower_name;

Modifying a Table: SQL Server
Use ALTER TABLE…ADD to add columns and table
constraints:

ALTER TABLE msss_example ADD
 lower_name VARCHAR(15),

152 | SQL Pocket Guide

 CONSTRAINT lower_name
 CHECK (lower_name = LOWER(name));

Issue ALTER TABLE…ALTER COLUMN to modify a col-
umn’s data type or nullability. You can make only one
alteration per statement:

ALTER TABLE msss_example
 ALTER COLUMN name
 VARCHAR(15) NULL;

ALTER TABLE msss_example
 ALTER COLUMN country
 VARCHAR(2) NULL;

ALTER TABLE msss_example
 ALTER COLUMN indexed_name
 VARCHAR(30) NOT NULL;

Column name’s data type cannot be changed in this example
because SQL Server does not allow data type changes for
columns involved in certain types of constraints (e.g., foreign
key constraints).

You cannot add column-level constraints—only table-level
constraints. The following example adds a constraint that tests
the value in a column, but the constraint is associated with the
table, not with the column in question:

ALTER TABLE msss_example
 ADD CONSTRAINT no_leading_space
 CHECK (indexed_name = LTRIM(indexed_name));

Add or remove default values by adding or removing so-called
default constraints. For example:

ALTER TABLE msss_example
 ADD CONSTRAINT name_default
 DEFAULT 'Missing!' FOR name;

ALTER TABLE msss_example
 DROP CONSTRAINT name_default;

To remove the default value from the country column, you
must first look up the automatically generated constraint name

Tables, Modifying | 153

(e.g., via the GUI), and then drop that constraint by specifying
its name.

Use ALTER TABLE…DROP to remove a column or constraint:

ALTER TABLE msss_example
 DROP CONSTRAINT no_leading_space;

Transaction Management
A transaction is a collection of operations treated as a unit.
Either all operations in the unit are completed or none of them
are. All commonly used databases make provisions for
transactions.

When working in a transactional environment, you need to
know how to begin and end a transaction. You also need to
know how to specify various characteristics of a transaction—
for example, whether it will update any data.

Autocommit Mode
MySQL, PostgreSQL, and SQL Server default to an
autocommit mode in which each statement you execute is
treated as a transaction in and of itself. (Thus, you cannot roll
back a statement when the result isn’t what you expected).

You can disable autocommit in SQL Server with the following
statement:

SET IMPLICIT_TRANSACTIONS ON

You can enable autocommit again using:

SET IMPLICIT_TRANSACTIONS OFF

You leave SQL Server’s and PostgreSQL’s autocommit mode
whenever you issue an explicit BEGIN TRANSACTION (SQL
Server) or BEGIN (PostgreSQL) statement. See “Starting a
Transaction” below for details.

In MySQL, you can disable autocommit with:

SET AUTOCOMMIT=0

154 | SQL Pocket Guide

And you can enable it again with:

SET AUTOCOMMIT=1

You automatically leave autocommit mode whenever you issue
a BEGIN or BEGIN WORK statement.

Starting a Transaction: DB2
DB2 does not implement an SQL statement to explicitly begin
a transaction. When you connect and issue an SQL statement,
you begin a transaction. You also begin a transaction with the
first SQL statement following a COMMIT.

Starting a Transaction: MySQL
Use START TRANSACTION to begin a MySQL transaction
explicitly (when using any version prior to MySQL 4.0.11, use
BEGIN or BEGIN WORK). When not in autocommit mode,
any SQL statement you issue will begin a new transaction
implicitly.

WARNING
Only certain types of MySQL tables (InnoDB tables, for
example) support transactions. Changes to data in non-
transactional tables take place immediately and perma-
nently, regardless of whether you are in a transaction.

Before beginning a transaction, you can use SET TRANSAC-
TION to change the transaction isolation level. A reasonable
sequence of statements might then be:

SET [GLOBAL|SESSION] TRANSACTION ISOLATION LEVEL
 {READ UNCOMMITTED|READ COMMITTED
 |REPEATABLE READ|SERIALIZABLE};
START TRANSACTION;

By default, SET TRANSACTION sets the isolation level only
for your next transaction. Use SET SESSION TRANSACTION
to set the default isolation level for your entire session.

Transaction Management | 155

Starting a Transaction: Oracle
Within Oracle, for all practical purposes, you’re always in a
transaction. The first SQL statement you execute after you
connect begins an implicit transaction, as does the first SQL
statement you execute following the end of a transaction. Ora-
cle’s default transaction type is read/write with statement-level
read consistency.

You can begin a transaction using SET TRANSACTION
explicitly:

SET TRANSACTION options [NAME 'tran_name']
options ::=
 {READ {ONLY|WRITE}
 |ISOLATION LEVEL {SERIALIZABLE|READ COMMITTED}
 |USE ROLLBACK SEGMENT segment_name

The options and parameters are as follows:

NAME 'tran_name '
Specifies a name of up to 255 bytes for the transaction.
Upon COMMIT, the name will be saved as the transaction
comment, overriding any COMMIT comment. It’s espe-
cially helpful to name distributed transactions.

READ ONLY
Gives you a read-only transaction that does not “see” any
changes committed after the transaction begins.

READ WRITE
Gives you the default transaction type: a read/write trans-
action with statement-level read consistency.

ISOLATION LEVEL SERIALIZABLE
Gives you a read/write serializable transaction, as defined
in the SQL standard.

ISOLATION LEVEL READ COMMITTED
Gives you the default Oracle transaction behavior, but
using ANSI/ISO SQL syntax.

156 | SQL Pocket Guide

USE ROLLBACK SEGMENT segment_name
Creates a default transaction and assigns it to the specified
rollback segment. (Obsolete; use automatic undo man-
agement instead.)

Here are some example SET TRANSACTION statements:

SET TRANSACTION READ ONLY;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION
 ISOLATION LEVEL READ COMMITTED;
 NAME 'Delete all attractions';

If you name a distributed transaction and that transaction fails,
its name will appear in the DBA_2PC_PENDING table’s
TRAN_COMMENT column.

Starting a Transaction: PostgreSQL
To start a PostgreSQL transaction, issue a BEGIN command,
which takes PostgreSQL out of autocommit mode. The syntax
for PostgreSQL 8.0 and higher is:

BEGIN [WORK|TRANSACTION] [iso_mode|mode_iso]
iso_mode ::= isolation [[,] mode]
mode_iso ::= mode [[,] isolation]
isolation ::= ISOLATION LEVEL
 {SERIALIZABLE|REPEATABLE READ
 |READ COMMITTED|READ UNCOMMITTED}
mode ::= {READ WRITE|READ ONLY}

For example:

BEGIN ISOLATION LEVEL READ COMMITTED, READ WRITE;

In this syntax, you can use the keyword START instead of
BEGIN. Also, you can separate isolation and mode using either
whitespace or a comma. The default isolation and mode are
READ COMMITTED and READ WRITE, respectively.

In PostgreSQL 7.4 and earlier, BEGIN syntax was simply:

BEGIN [WORK|TRANSACTION]

Transaction Management | 157

Next, to set transaction characteristics, you can follow the
BEGIN statement immediately with a SET TRANSACTION
statement:

SET TRANSACTION [iso_mode|mode_iso]

For example:

BEGIN;
SET TRANSACTION READ WRITE;

Finally, you can set the default isolation and mode for a session
by using the following command:

SET SESSION CHARACTERISTICS AS TRANSACTION
 [iso_mode|mode_iso]

Starting a Transaction: SQL Server
Use the following statement to begin an SQL Server transaction
explicitly:

BEGIN TRAN[SACTION]
 [[transaction_name]
 [WITH MARK ['description']]]

Transaction names are limited to 32 characters. You can spec-
ify a name by means of a variable, as in @variable.

Use the WITH MARK clause to note a transaction in the da-
tabase log; you can also specify a description for it if you wish.

To begin a distributed transaction, use:

BEGIN DISTRIBUTED TRAN[SACTION]
 [transaction_name]

As with BEGIN TRANSACTION, you can specify the trans-
action name by means of a variable in the form @variable.

SQL Server’s default isolation level is READ COMMITTED.
Before beginning a transaction, use the following statement to
specify the isolation level of your choice:

SET TRANSACTION ISOLATION LEVEL
 {READ COMMITTED|READ UNCOMMITTED
 |REPEATABLE READ|SERIALIZABLE}

158 | SQL Pocket Guide

This statement sets the isolation level to be used for all subse-
quent transactions in your session.

Ending a Transaction
To end a transaction and make the transaction’s changes per-
manent, issue a COMMIT statement:

COMMIT [WORK]

Oracle supports an optional COMMENT clause:

COMMIT [WORK] [COMMENT 'text']

WORK is an optional word allowed by the ISO SQL standard
(but not supported by MySQL), and it is commonly omitted.
In Oracle, any name you specify using SET TRANSACTION
when you begin a transaction overrides any comment you
specify when you commit that transaction.

SQL Server also supports a COMMIT TRANSACTION state-
ment, which enables you to identify the transaction you want
to commit:

COMMIT TRAN[SACTION] [transaction_name]

SQL Server actually ignores any transaction_name that you
specify. It allows a name only to make it easier for you to as-
sociate nested COMMITs with their corresponding BEGIN
TRANSACTION statements.

Oracle supports the following syntax to force a distributed
transaction to commit:

COMMIT [WORK] FORCE
 {'local_tran_id'|'global_tran_id'}
 [system_change_number]

You identify a distributed transaction using either its local or
global transaction ID, which you can obtain from the
DBA_2PC_PENDING view. You have the option of assigning
a system change number (SCN) or defaulting to the current
SCN.

Transaction Management | 159

NOTE
DDL statements such as TRUNCATE also typically end
transactions. However, issuing a DDL statement and
depending on an implicit COMMIT is not as clean and
tidy as issuing the COMMIT explicitly.

Aborting a Transaction
To abort a transaction, use the ROLLBACK statement:

ROLLBACK [WORK]

As with COMMIT, the word WORK (which is not supported
by MySQL) is commonly omitted. When you ROLLBACK a
transaction, you undo all of that transaction’s changes.

SQL Server also supports a ROLLBACK TRANSACTION
statement, which enables you to specify the name of the trans-
action to roll back:

ROLLBACK TRAN[SACTION] [transaction_name]

By default, ROLLBACK TRANSACTION rolls back the cur-
rent transaction. In a nested transaction, that means the in-
nermost transaction. If you specify a transaction name, you
must specify the outermost transaction. That transaction and
all nested transactions are then undone.

Oracle supports the following syntax to force a distributed
transaction to roll back:

ROLLBACK [WORK] FORCE
 {'local_tran_id'|'global_tran_id'}

You identify a distributed transaction using either its local or
global transaction ID, which you can obtain from the
DBA_2PC_PENDING view.

160 | SQL Pocket Guide

NOTE
In SQL Server, use SET XACT_ABORT {ON|OFF} to deter-
mine whether an error in an SQL statement aborts the
current transaction automatically.

Aborting to a Savepoint
Rather than rolling back an entire transaction, you can roll
back only part of one. To do this, you must have marked points
in the transaction, known as savepoints, which are specified
using the following syntax for MySQL, Oracle, and
PostgreSQL:

SAVEPOINT savepoint_name

For DB2, you can specify:

SAVEPOINT savepoint_name [UNIQUE]
 ON ROLLBACK RETAIN CURSORS
 [ON ROLLBACK RETAIN LOCKS]

For SQL Server, you can specify:

SAVE TRAN[SACTION] savepoint_name

You can then ROLLBACK to any of those savepoints using:

ROLLBACK [WORK] TO savepoint_name

Except in DB2, you must use:

ROLLBACK TO SAVEPOINT savepoint_name

The following is an example from Oracle:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
UPDATE township SET name = UPPER(name);
SAVEPOINT name_upper_cased;
DELETE FROM trip;
ROLLBACK TO name_upper_cased;
COMMIT;

The net effect of this transaction is to set all township names
to uppercase. The DELETE against the trip table is undone by
the ROLLBACK TO the savepoint that was established fol-
lowing the UPDATE statement.

Transaction Management | 161

Union Queries
Union queries use keywords such as UNION, EXCEPT
(MINUS in Oracle), and INTERSECT to “combine” results
from two or more queries in useful ways.

UNION and UNION ALL
Use the UNION keyword to combine results from two
SELECT statements into one result set. (Think of stacking the
rows from two result sets.) Any duplicate rows are eliminated
from the final results, unless you specify UNION ALL to pre-
serve them.

NOTE
Some would argue that you should use UNION ALL
when you know for a certainty that no duplicates are
possible, thus improving performance by avoiding the
sort.

UNION
The UNION operator conforms closely to SQL’s origin in set
theory. It is used to combine two rowsets and remove any du-
plicates from the results. For example:

SELECT u.id, u.name
FROM upfall u
WHERE open_to_public = 'y'
UNION
SELECT u.id, u.name
FROM upfall u
JOIN owner o ON u.owner_id = o.id
WHERE o.type = 'public';

This query lists waterfalls that are either open to the public or
that are owned by a public entity (such as a national park).
Duplicate elimination ensures that even if a waterfall fits into

162 | SQL Pocket Guide

both categories (is both open to the public and owned by a
public entity), it is returned only once in the query’s result set.

NOTE
Duplicate elimination requires overhead, generally in
the form of a limited sort operation. If you don’t need
duplicate elimination, you’ll get better performance
with UNION ALL.

UNION ALL
UNION ALL is UNION without the duplicate elimination.
The following UNION ALL query simulates an outer join, with
upfall as the required table and owner as the optional table.
The first SELECT picks up waterfalls that can join to owner,
whereas the second SELECT picks up those falls with no
known owner:

SELECT u1.name AS fall, o.name AS owner
FROM upfall u1 JOIN owner o ON u1.owner_id = o.id
UNION ALL
SELECT u2.name AS fall, 'Unknown' AS owner
FROM upfall u2
WHERE u2.owner_id IS NULL;

Getting correct results from this query depends on a foreign
key integrity constraint to ensure that any non-null value in
upfall.owner_id references an existing row in owner. Without
such a constraint, the second SELECT must be written to in-
clude rows with invalid owner_id values.

ORDER BY in Union Queries
SQL allows only one ORDER BY clause per query. In a union
query, the ORDER BY clause belongs at the very end:

SELECT u.id, u.name
FROM upfall u
WHERE open_to_public = 'y'
UNION
SELECT u.id, u.name

Union Queries | 163

FROM upfall u
JOIN owner o ON u.owner_id = o.id
WHERE o.type = 'public'
ORDER BY name;

The sorting operation then applies to the collective results from
all SELECT expressions involved in the union.

Names and Data Types in a Union
The column names used for the first SELECT in a union query
become the names of their respective result columns. In the
following query, the columns will be named col_a and col_b:

SELECT 'One' col_a, 'Two' col_b FROM dual
UNION
SELECT 'Three', 'Four' FROM dual;

Also be aware that column data types must correspond. For
example, don’t try to perform a union of a numeric column to
a text column without first writing an explicit conversion to
synchronize the data types.

NOTE
Remember, PostgreSQL requires the AS keyword when
specifying column aliases (e.g., 'One' AS col_a).

Order of Evaluation
When writing a statement with multiple UNION operations,
you can use parentheses to specify the order in which the union
operations occur in all platforms except MySQL. The follow-
ing is a contrived example (to run it in Oracle, replace EXCEPT
with MINUS):

SELECT * FROM upfall
EXCEPT
(SELECT * FROM upfall
 UNION
 SELECT * FROM upfall);

164 | SQL Pocket Guide

The first SELECT returns all rows from upfall. The UNION
of the two SELECTs in parentheses also returns all rows from
upfall. When you subtract all rows from all rows, you have
none left. Thus, as written, the query returns no rows. If you
remove the parentheses, however, you’ll get all upfall rows in
the result set.

NOTE
Unless you specify otherwise, union operations are per-
formed in top-down order, except that INTERSECT
takes precedence over UNION and EXCEPT.

EXCEPT (or MINUS) and EXCEPT ALL
Use the EXCEPT union operation (MINUS in Oracle) to “sub-
tract” the results of one query from another. If you do not need
duplicate elimination, use EXCEPT ALL. Note that MySQL
does not support EXCEPT.

EXCEPT (MINUS in Oracle)
To find all owners without waterfalls, you can subtract the list
of owners with falls from the total list of owners:

SELECT o.id FROM owner o
EXCEPT
SELECT u.owner_id FROM upfall u;

Remember that you must use the MINUS keyword rather than
EXCEPT to run this query in Oracle.

EXCEPT ALL
DB2 and PostgreSQL support EXCEPT ALL. The following
query uses that operation to return a list of owners who have
at least two waterfalls:

SELECT u.owner_id FROM upfall u
EXCEPT ALL
SELECT o.id FROM owner o;

Union Queries | 165

The first SELECT will potentially return many IDs per owner
(one from each fall that is owned), whereas the second SELECT
will return exactly one ID for each owner. Owners with two or
more falls will have their IDs listed two or more times in the
results of the first query. In the case of Pictured Rocks, the
resulting subtraction looks like this:

1
1
1
EXCEPT ALL
1

Because EXCEPT ALL is used, the single owner ID from the
owner table is subtracted from the three from the upfall table,
which leaves two occurrences in the final result set:

1
1

Because the EXCEPT operation still requires some sorting of
the results to perform the subtraction operation, using
EXCEPT ALL may not produce the same kind of performance
boost you get from using UNION ALL instead of UNION.

INTERSECT and INTERSECT ALL
The INTERSECT operation is used to find rows in common
between the result sets of two SELECTs. Use INTERSECT ALL
when you do not want duplicate elimination. Note that
MySQL does not support INTERSECT.

INTERSECT
The following INTERSECT query is similar to the query used
to illustrate UNION. In this example, rather than being an
“either/or” query, the query returns falls that are both open to
the public and owned by a private (not public this time)
organization:

SELECT u.id, u.name
FROM upfall u
WHERE open_to_public = 'y'

166 | SQL Pocket Guide

INTERSECT
SELECT u.id, u.name
FROM upfall u
JOIN owner o ON u.owner_id = o.id
WHERE o.type = 'private';

Some kind of sorting or hashing operation will be executed to
find rows in common between the two result sets. Duplicate
elimination ensures that each fall is returned only once.

INTERSECT ALL
Use INTERSECT ALL when you want to consider duplicates.
Only DB2 and PostgreSQL support this. For example, given
the following data:

MARQUETTE
MARQUETTE
BARAGA
BARAGA
MUNISING
INTERSECT ALL
MARQUETTE
MARQUETTE
BARAGA

INTERSECT will yield:

MARQUETTE
BARAGA

whereas INTERSECT ALL will yield:

MARQUETTE
MARQUETTE
BARAGA

Because Marquette appears twice in both result sets, it appears
twice in the final results. Baraga, on the other hand, appears
only once in the second result set, so it appears just once in the
final result set.

Union Queries | 167

Updating Data
To modify existing data in a table, use the UPDATE statement.
You can update one row or many rows, you can specify a single
set of new values in the statement, or you can generate new
values through a subquery.

Simple Updates
A simple UPDATE takes the following form:

UPDATE table
SET column = value, column = value ...
WHERE predicates

In this form, predicates identifies one or more rows that you
want to update. You can specify as many column = value pairs
as you like—one for each column you want to modify:

UPDATE upfall
SET owner_id = 1
WHERE name = 'Munising Falls';

When you specify only one new value, you will usually want
to update only one row, and your WHERE-clause predicates
should reference primary or unique key values to identify that
row. Using expressions, you can write sensible UPDATEs that
modify many rows. The following example works in DB2:

UPDATE upfall
SET datum = UPPER(datum),
 lat_lon = TRIM(UPPER(lat_lon));

This example also demonstrates the use of the comma to sep-
arate multiple-column updates in a SET clause.

168 | SQL Pocket Guide

NOTE
In MySQL, if you are updating a self-referential foreign
key or its related primary key, you should include an
ORDER BY clause at the end of your update to control
the order in which rows are updated. For more on this
issue, see “Deleting in Order” on page 47 and “Subquery
Inserts” on page 69.

New Values from a Subquery
You can also generate new values from a subquery. One way
to do this is to write separate subqueries for each column that
you are updating:

UPDATE table
SET column = (subquery), column = (subquery), ...

For example (note that PostgreSQL and SQL Server do not
allow the table alias u):

UPDATE upfall u
SET owner_id =
 (SELECT o.id FROM owner o
 WHERE o.name = 'Pictured Rocks')
WHERE u.name = 'Miners Falls';

Such subqueries must always return zero or one row and one
column. If zero rows are returned, then the value is set to null.

In DB2 and Oracle, you can also write a subquery that returns
more than one column value, in which case the number of val-
ues returned must correspond to the columns you are
updating:

UPDATE table
SET (column, column, ...) = (subquery)

For example, to update names and descriptions with any new
information in the new_falls table (see the section “Merging
Data” on page 86 for a better way to do this), specify:

UPDATE upfall u
SET (u.name, u.description) =
 (SELECT nf.name, nf.description

Updating Data | 169

 FROM new_falls nf
 WHERE u.id = nf.id)
WHERE u.id IN (SELECT nf2.id
 FROM new_falls nf2);

Be careful with this kind of update. If you omit the WHERE
clause in this query, all rows in upfall will be updated, regard-
less of whether corresponding rows exist in new_falls. Worse,
upfall’s name and description columns will be set to null in
cases where no corresponding new_falls rows exist.

Updating Views and Subqueries
All platforms allow UPDATEs to run against views. DB2 and
Oracle also allow updates to run against subqueries (i.e., inline
views):

UPDATE (SELECT * FROM upfall
 WHERE owner_id IS NULL)
SET open_to_public = 'n';

PostgreSQL does not support updates to inline views. Post-
greSQL requires any view that is the target of an UPDATE
statement to be associated with an ON UPDATE DO
INSTEAD rule.

Database systems place various restrictions on the updating of
views, but in general, you must be able to access unambigu-
ously a single table row from a given view row in order to issue
an update against that view (or subquery).

UPDATE FROM Clause
PostgreSQL and SQL Server let you write a FROM clause in an
UPDATE statement in order to gather columns from multiple
tables to use in your SET expressions. For example, the fol-
lowing statement works in SQL Server and appends the owner
type from the owner table to each waterfall’s description:

UPDATE upfall
 SET description
 = u.description + ' (' + o.type + ')'

170 | SQL Pocket Guide

FROM upfall u JOIN owner o
ON u.owner_id = o.id;

When using this syntax, you must ensure that the UPDATE is
deterministic, meaning that there is only one possible value for
any column you reference in a SET expression. The join con-
dition in this query accomplishes this—there will always be
only one owner per waterfall.

Notice the use of aliases in the SET clause. The first reference
to description is unqualified. The column name you specify
following the SET keyword must be in the table that is the
target of the UPDATE statement. The second occurrence of
description, however, is qualified. All values feeding into the
update must come from the tables listed in the FROM clause.

Returning Updated Data: DB2
DB2 allows you to query the before and after values from rows
affected by an UPDATE statement. Simply SELECT from that
UPDATE statement. For example:

SELECT * FROM NEW TABLE (
 UPDATE gov_unit
 SET name = UPPER(name)
 WHERE MOD(id,2) = 0
);

Specify FROM NEW TABLE to see the newly updated values.
Specify FROM OLD TABLE to see the original values. Be sure
to wrap your UPDATE in parentheses.

Returning Updated Data: Oracle
You can use Oracle’s RETURNING clause to return values that
you update. Here is the syntax:

UPDATE ...
SET ...
WHERE ...
RETURNING expression [,expression ...]
INTO variable [,variable ...]

Updating Data | 171

If you update a single row, Oracle expects to return values into
bind variables; if you update more than one row, it expects to
return values into bind arrays. See “Returning Deleted Data:
Oracle” on page 50 for an example involving arrays and “Re-
turning Inserted Values: Oracle” on page 70 for a single-row
example.

Returning Updated Data: SQL Server
You can use SQL Server’s OUTPUT clause to return values
from newly inserted rows. For example:

UPDATE gov_unit
SET type = UPPER(type)
OUTPUT INSERTED.id,
 INSERTED.type AS new_type,
 DELETED.type AS old_type;

Specify INSERTED to reference post-update values. Specify
DELETED to reference pre-update values. The preceding
query displays both old and new type values as follows:

id new_type old_type
----------- -------- --------
1 CITY City
2 COUNTY County
3 STATE State
...

You can use the syntax INSERTED.* or DELETED.* to return all
post- and pre-update values respectively. You can specify ex-
pressions such as LOWER(INSERTED.type). You can specify col-
umn aliases as in any query, with or without the optional AS
keyword.

Window Functions
Window functions enable you to look at different levels of ag-
gregation in the same result row. They make it easy to specify
cumulative sum, moving average, share-of, and many other
important calculations. Window functions are supported in
Oracle (where they are known as analytic functions), DB2

172 | SQL Pocket Guide

(where they are called OLAP functions), SQL Server, and
PostgreSQL.

Defining a Summary Window
The defining role of a window function is to specify a
window, or partition of rows, over which the function operates.
You specify a window using the OVER (. . .) clause, which
you can apply to any of the aggregate functions listed in Ta-
ble 6 (under “Grouping and Summarizing” on page 52). For
example:

SELECT
 u.id, u.county_id, u.northing n1,
 MIN(u.northing) OVER (PARTITION BY u.county_id) n2,
 AVG(u.northing) OVER () n3,
 MAX(u.northing) OVER (PARTITION BY u.open_to_public) n4
FROM upfall u;

Each row returned by this query will have the following four
northing values:

n1
The northing value for the waterfall described by the cur-
rent row

n2
The lowest northing value of any waterfall in the same
county

n3
The average northing value of all waterfalls

n4
The highest northing value of any waterfall having the
same “open to public” status

An OVER() clause with nothing between the parentheses sim-
ply denotes an aggregate function’s use as a window function.
No GROUP BY clause is necessary, and the specified summary
value is returned in each detail row. The summary comprises
all rows in the result set.

Window Functions | 173

To gain the effect of a GROUP BY, add a PARTITION BY
clause within the OVER() clause. The PARTITION BY
u.county_id in the example partitions detail rows into groups
based on their county_id values. The MIN(u.northing) function
is applied to each group. Each detail row is then returned with
a copy of the MIN(u.northing) function’s result for that row’s
group.

The example query in this section returns data at a variety of
summary levels. First, you have the detail—one row for each
fall. Each of those rows then contains data summarized by
county, by the entire result set, and by “open to public” status.

You can partition by more than one column; for example:

MAX(u.northing) OVER (
 PARTITION BY u.county_id,
 u.open_to_public)

Ordering and Ranking Within a Window
You can sort the rows within each partition by placing an
ORDER BY clause within the OVER() clause. After you’ve sor-
ted the rows, you can rank them in various ways. For example,
the following query ranks the northernness of each waterfall in
three different ways with respect to other falls in the same
county that have the same “open to public” status:

SELECT
 u.id, u.county_id, u.open_to_public, u.name,
 ROW_NUMBER() OVER (
 PARTITION BY u.county_id, u.open_to_public
 ORDER BY northing DESC) r1,
 RANK() OVER (
 PARTITION BY u.county_id, u.open_to_public
 ORDER BY northing DESC) r2,
 DENSE_RANK() OVER (
 PARTITION BY u.county_id, u.open_to_public
 ORDER BY northing DESC) r3,
 u.northing
FROM upfall u
WHERE u.northing IS NOT NULL;

174 | SQL Pocket Guide

The following output showing the ranking of publicly accessi-
ble waterfalls in Alger County illustrates the three different
ranking approaches:

...NAME R1 R2 R3 NORTHING

...--------------- ---- ---- ---- ---------

...Munising Falls 1 1 1 5141184

...Twin Falls #1 2 2 2 5140500

...Twin Falls #2 3 2 2 5140500

...Tannery Falls 4 4 3 5140000

...

The ORDER BY northing DESC clause sorts the rows within each
window in descending order by northing. (This sorting is con-
ceptual and may be optimized away by your database plat-
form.) The three functions, ROW_NUMBER(), RANK(), and
DENSE_RANK(), then apply their ranking logic to the rows of
each window as follows:

ROW_NUMBER()
Applies a sequentially increasing number to each row in a
window. This is evident in column R1 of the result set. The
northernmost row will be number 1, the next northern-
most row will be number 2, and so forth.

RANK()
Returns the same result as ROW_NUMBER(), except that
when two rows have the same northing value, they will be
given the same rank. This is why Twin Falls #1 and #2
are both ranked in the number 2 position (column R2 in
the result set). RANK() will then skip values to ensure that
the rank assigned to a given row is always one greater than
the number of rows that are ranked lower. For this reason,
Tannery Falls is ranked at number 4—it occupies the
fourth position.

DENSE_RANK()
Does not skip values. Compare the results from RANK()
in column R2 with those of DENSE_RANK() in column
R3. In both cases, Twin Falls #1 and #2 tie for the number
2 position. In the case of DENSE_RANK(), however, Tan-

Window Functions | 175

nery Falls is treated as though it occupies the third posi-
tion, not the fourth.

There is no particular “right way” to rank. Choose the method
that delivers the results that work best in your application.

NOTE
You don’t need to specify a PARTITION BY clause in
front of an ORDER BY. For example, RANK() OVER
(ORDER BY northing DESC) will rank the current row’s
northing against all rows in the query’s result set.

Comparing Values Across Rows
DB2, Oracle, PostgreSQL, and SQL Server implement some
functions that are quite useful for comparing values across row
boundaries. LAG and LEAD allow you to look ahead and
behind a specified number of rows. FIRST_VALUE and
LAST_VALUE return values from the first and last rows in a
window, respectively. NTH_VALUE (Oracle only) lets you re-
turn a value from a specific row in a window by specifying that
row’s number.

The following query runs in Oracle. Remove the NTH_VALUE
invocation to run on the other platforms.

SELECT
 u.id, u.county_id,
 u.northing n1,
 FIRST_VALUE(u.northing) OVER (
 PARTITION BY u.county_id
 ORDER BY northing DESC) n2,
 LAG(u.northing, 1, 9999999) OVER (
 PARTITION BY u.county_id
 ORDER BY northing DESC) n3,
 LEAD(u.northing, 1, 0) OVER (
 PARTITION BY u.county_id
 ORDER BY northing DESC) n4,
 LAST_VALUE(u.northing) OVER (
 PARTITION BY u.county_id
 ORDER BY northing DESC) n5,

176 | SQL Pocket Guide

 NTH_VALUE(u.northing, 2)
 IGNORE NULLS OVER (
 PARTITION BY u.county_id
 ORDER BY northing DESC) N6
FROM upfall u;

The LAG and LEAD functions each take three arguments. The
first argument is a value in which you are interested. The sec-
ond argument is a numeric row offset. The third argument is a
default value to return when there is no row at the specified
offset.

The LAG function in this example returns u.northing from the
preceding row in the same window (i.e., for the same county)
when it is sorted in descending order by northing.

Oracle’s NTH_VALUE function takes two arguments: the
value to return and the row number from which to retrieve that
value. The IGNORE NULLS clause is optional. RESPECT
NULLS is the default. You can also specify FROM FIRST or
FROM LAST preceding the IGNORE NULLS clause, to specify
whether to count from the beginning or the end of the window.

NOTE
It is not necessary for all window functions in a given
query to PARTITION BY or ORDER BY the same set of
columns as in this section’s example. The window and
sorting criteria can be different in each function.

The six northing values returned by the preceding query are as
follows:

n1
The northing for the waterfall described by the current
row.

n2
The highest northing of all waterfalls in the same county.

Window Functions | 177

n3
The next highest northing for the county, or 9,999,999 if
no higher value exists in the same window. LAG sounds
as though it should return the next lower northing, but
the descending sort turns that around.

n4
The next lower northing for the county, or 0 if no lower
value exists in the same window. See the entry for n3 for
the effect of the descending sort.

n5
The lowest northing of all waterfalls in the same county.

n6
The northing for the waterfall described by the second row
in the window.

LAG and LEAD can be very useful, but only when the same
offset applies consistently to each row, and only when you have
sorted your windows (i.e., the rows in each window) in some
meaningful order.

Summarizing over a Moving Window
Within a partition (keeping in mind that the entire rowset can
be considered a partition), you can choose to summarize over
a moving window of rows. DB2 and Oracle implement this
functionality. For example, you might choose to return the
MIN and MAX northing values within 1000 meters of each
waterfall. Here’s how you might accomplish that:

SELECT u.id, u.county_id, u.northing n1,
 MIN(u.northing) OVER (
 ORDER BY u.northing
 RANGE BETWEEN 1000 PRECEDING
 AND 1000 FOLLOWING) n2,
 MAX(u.northing) OVER (
 ORDER BY u.northing
 RANGE BETWEEN 1000 PRECEDING
 AND 1000 FOLLOWING) n3
FROM upfall u
WHERE u.northing IS NOT NULL;

178 | SQL Pocket Guide

In this particular example, there is only one partition—the en-
tire rowset. You could easily add PARTITION BY u.county_id to
restrict the MIN and MAX computations to each current
waterfall’s county.

The RANGE BETWEEN clause in this example is considered
a framing clause. Framing clause syntax is complex, and it var-
ies between vendors.

Window Function Evaluation and Placement
In the scheme of SQL processing, window functions are among
the last elements to be evaluated. They follow any WHERE,
GROUP BY, and HAVING clause processing, and they precede
ORDER BY. Thus, you can only place window functions in the
SELECT list and ORDER BY clauses of a query.

Window Functions | 179

Index

Symbols
" " (quotation marks, double)

in case-sensitive identifiers,
127

' ' (quotation marks, single)
denoting empty string, 135
in text literals, 83

* (asterisk)
using with SELECT clause,

125
+ (plus sign), string concatenation

operator in SQL Server,
137

, (comma), separating
multicolumn updates in
SET clause, 168

\ (backslash)
in backreferences, 120
escape character in LIKE

predicates, 112
escaping regular expression

metacharacters in
Oracle, 117

escaping string literals, 84
| | (pipe symbols), string

concatenation operator,
137

A
ADD clauses in ALTER TABLE

statements
DB2, 149
MySQL, 150
Oracle, 151
PostgreSQL, 152
SQL Server, 152

aggregate functions, 52
applying to groups of rows

with GROUP BY, 53
listing of common functions,

53
aliases for column names in

SELECT result sets, 127
ALL keyword

EXCEPT ALL queries, 165
versus FIRST in conditional

multitable INSERTs,
72

INSERT ALL statements, 71
INTERSECT ALL queries,

167
UNION ALL statements, 163
using in SELECT operations,

129

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

181

ALTER clauses in ALTER TABLE
statements

DB2, 149
PostgreSQL, 152

ALTER COLUMN clauses in
ALTER TABLE
statements (SQL Server),
153

ALTER SESSION statements in
Oracle, 40

ALTER TABLE statements, 149
in DB2, 149
in MySQL, 150
in Oracle, 151
in PostgreSQL, 152
in SQL Server, 152

analytic functions (see window
functions)

ANSI_NULLS setting (SQL
Server), 92

ASCENDING (ASC) and
DESCENDING (DESC)
sorts, 133

AT TIME ZONE (PostgreSQL),
45

autocommit mode (transactions),
154

B
backreferences, 120
BEGIN DISTRIBUTED

TRAN[SACTION]
statements (SQL Server),
158

BEGIN statements in
PostgreSQL, 157

BEGIN TRAN[SACTION]
statements (SQL Server),
158

BETWEEN predicates, 111
BIGINT function (DB2), 23
BIGINT type, 15
binary integer types, 15

breadth-first sorting of
hierarchical query results,
64

BULK COLLECT keywords in
multi-row DELETEs
(Oracle), 50

C
Cartesian products, 73

cross joins, 74
CASCADE clauses in DROP

TABLE statements, 148
case

changing for strings, 138
in column and table names,

127
CASE expressions

in ORDER BY clause of
DELETE statement,
48

searched, 7
simple, 7
using with nulls, 89

CAST function, 8
datetime conversions in SQL

Server, 34
CHAR function (DB2), 23

converting between numbers
and strings, 94

CHAR option (Oracle), 16
character string data types, 15
CHARINDEX function (SQL

Server), 135
CHECK constraints

adding and removing in DB2,
150

in MySQL, 151
COALESCE function, 90

using with SELECT
statements, 133

code examples from this book, 3
column names

case and punctuation in, 127
and data types in union

queries, 164

182 | Index

qualifying, 128
specifying name or alias for

expressions in
SELECT list, 127

COMMENT clauses, COMMIT
statements (Oracle), 159

COMMIT statements, 159
COMMIT TRANSACTION

statements (SQL Server),
159

comparison operators, 109
nulls and, 89

CONCAT function (MySQL),
137

concatenating strings
+ operator in SQL Server,

137
| | operator, 137

CONNECT BY queries, 8–14
core syntax, 9
joins with, 11
loops in hierarchical data, 13
sorting results, 12
supporting functions and

operators, 14
using on data other than

hierarchical, 10
WHERE clauses in, 11

CONNECT_BY_ISCYCLE
function, 13, 14

CONNECT_BY_ISLEAF
function, 14

CONSTRAINT constraint_name
syntax, 143

constraints
adding and removing in

MySQL, 150
adding and removing in

Oracle, 151
adding and removing in

PostgreSQL, 152
adding and removing in SQL

Server, 153
adding in DB2, 149
when creating table in

MySQL, 145

naming and declaring, 143
conversions, data type, 15

CAST function, 8
datetime types

DATE_FORMAT and
TIME_FORMAT
functions, 26

in DB2, 21
in Oracle, 28
in MySQL, 24
in PostgreSQL, 31
seconds in day (MySQL),

26
in SQL Server, 34
TO_DAYS and

FROM_DAYS
functions, 25

Unix timestamps, 25
numeric types

in DB2, 93
in MySQL, 95
in Oracle, 95
in PostgreSQL, 97
in SQL Server, 98

CONVERT function
datetime conversions in SQL

Server, 35
numeric conversions in SQL

Server, 98
Coordinated Universal Time

(UTC), 32
correlated subqueries, 134, 141
COUNT function, 52

asterisk (*) with, 53
CREATE INDEX statements, 66
CREATE TABLE statements

in DB2, 143
in MySQL, 144
in Oracle, 145
in PostgreSQL, 147
in SQL Server, 147

cross joins, 74
CUBE operation, 59

related functions, 60
CYCLE clauses, 65

Index | 183

D
data types

binary integer, 15
casting, using CAST function,

8
character string, 15
column, in union queries,

164
for columns, 143
converting (see conversions,

data type)
datetime, 16
decimal, 19

DATE function (DB2), 23
DATENAME and DATEPART

functions (SQL Server),
36

datetime data types, 16
conversions in DB2, 21
conversions in MySQL, 24
conversions in Oracle, 28
conversions in PostgreSQL,

31
conversions in SQL Server,

34
conversions of Unix

timestamps, 25
conversions using

DATE_FORMAT and
TIME_FORMAT
functions, 26

conversions using TO_DAYS
and FROM_DAYS
functions, 25

DB2, 16
functions for (see datetime

functions)
MySQL, 16
Oracle, 17
PostgreSQL, 17
retrieving datetime value

elements with
EXTRACT function,
51

SQL Server, 18

datetime functions
in DB2, 38
in MySQL, 39
in Oracle, 40
in PostgreSQL, 43

getting current date and
time, 43

rounding and truncating
values, 44

in SQL Server, 45
datetime literals, 85

interval, 86
DATE_FORMAT function, 26
DATE_PART function

(PostgreSQL), 45
DAY, MONTH, and YEAR

functions (SQL Server),
37

DB2
creating tables, 143
cross joins with LATERAL

clause, 74
datetime conversions, 21
datetime functions, 38
datetime types, 16
DECFLOAT type, 19
functions for nulls, 90
modifying tables, 149
numeric type conversions, 93
returning deleted data, 49
returning inserted values, 70
returning updated data, 171
searching strings, LOCATE

and POSSTR
functions, 135

SELECT…FROM
sysibm.sysdummy1
statement, 126

starting transactions, 155
union queries, EXCEPT ALL

clause, 165
WITH-clause queries, naming

result columns, 142
DECFLOAT function (DB2), 94
DECFLOAT type (DB2), 19
decimal data types, 19

184 | Index

DB2, DECFLOAT type, 19
DECIMAL or NUMBER type,

20
DECIMAL function (DB2), 23

converting between numbers
and strings, 94

DECIMAL type, 20
DECODE function, 90, 91
DEFAULT keyword in VALUES

clause, 68
DELETE statements, 47

deleting all rows, 48
deleting from views and

subqueries, 49
deleting in order, 47
double FROM clauses in SQL

Server, 51
subqueries in FROM clauses,

139
WHEN NOT MATCHED

clause, 88
DELETE WHERE clauses after

UPDATEs, 87
DELETED and INSERTED values

in SQL Server, 172
deleted data

returning in DB2, 49
returning in Oracle, 50
returning in SQL Server, 50

depth, tracking in hierarchy, 63
depth-first sorting of hierarchical

query results, 64
DESCENDING (DESC) and

ASCENDING (ASC)
sorts, 133

deterministic UPDATEs, 171
DISTINCT command, using with

COUNT function, 52
DISTINCT keyword

using in SELECT operations,
129

dollar-quoted string constants
(PostgreSQL), 83

DROP clauses in ALTER TABLE
statements

DB2, 150

MySQL, 151
Oracle, 151
PostgreSQL, 152
SQL Server, 154

DROP INDEX statements, 67
DROP TABLE statements, 148
durations, 21

labeled, in DB2, 38

E
empty strings (' '), 135
ENGINE keyword (MySQL),

145
equi-joins, 76

defined, 78
natural joins, 77
USING clause in, 76

escape characters
in SIMILAR TO predicates,

PostgreSQL, 118
specifying pattern-matching

characters in LIKE
predicates, 112

ESCAPE clauses, 112
specifying escape characters in

PostgreSQL SIMILAR
TO, 118

escape sequences for string
literals, 84

example data for this book, 2
EXCEPT (or MINUS) in union

queries, 165
EXCEPT ALL clauses in union

queries, 165
EXISTS and NOT EXISTS

predicates, 110
expressions

indexes on, 66
writing for SELECT clauses,

126
EXTRACT function, 45

retrieving specific elements
from datetime values,
51

Index | 185

F
Finding Flight Legs (case study),

11
FIRST versus ALL in conditional

multitable INSERTs, 72
FIRST_VALUE and

LAST_VALUE functions,
176

floating-point styles (SQL Server),
98

FORCE clauses (Oracle)
in COMMIT statements, 159
in ROLLBACK statements,

160
foreign key constraints

dropping in MySQL, 151
in MySQL, 145
for tables being dropped, 148

format elements
date, in MySQL, 26
datetime, in Oracle, 29

rounding and truncating
DATE values to,
41

datetime, in PostgreSQL, 32
format masks (Oracle), 29
framing clauses, 179
FROM clauses

double, in DELETE
statements (SQL
Server), 51

subqueries in, 139
in UPDATE statements, 170
using in SELECT statements,

130
generating tables with

VALUES clause,
131

subqueries in FROM
clause, 131

table aliases in FROM
clause, 131

WHERE clause, 132
FROM_DAYS function

(MySQL), 25

full outer joins, 81
functions

datetime conversions in DB2,
21

leading parenthesis in
invocation, 1

supporting CONNECT BY
queries, 14

G
GREATEST function, 52
Gregorian dates, 25
grouping and summarizing, 52–

61
aggregate functions, 52
CUBE operation, 59
GROUP BY clause, 53
grouping before joins, 57
GROUPING SETS function,

60
HAVING clause in GROUP

BY queries, 57
listing detail values, 55
reducing GROUP BY list, 56
related functions, 60
ROLLUP operation, 58

GROUPING function, using SQL
Server WITH CUBE
syntax, 61

H
HAVING clauses in GROUP BY

queries, 57
hierarchical queries, 62–66

breadth-first versus depth-
first sorting, 64

executing using CONNECT
BY, 8

recursive WITH, 62
tracking depth in hierarchy,

63

186 | Index

I
IF function, returning null values

in MySQL, 91
IFNULL function (MySQL), 90
IGNORE NULLS clauses, 177
implicit conversions, 15
IN predicates, 110
indexes

creating, 66
removing, 67

INITCAP function, 139
inline views (see subqueries)
INNER JOIN keywords, 75
inner joins, 75
INSERT statements, 67

multirow inserts, 68
multitable inserts, 71

conditional, 72
unconditional, with

INSERT ALL, 71
single-row inserts, 67
subqueries in FROM clauses,

139
subquery inserts, 69
targets of, 68

INSERTED and DELETED values
in SQL Server, 172

inserted values
returning in DB2, 70
returning in Oracle, 70
returning in SQL Server, 71

inserting data with MERGE
statements, 86

INSTR function, 134
INTEGER type, 15
INTERSECT ALL queries, 167
INTERSECT queries, 166
intervals

adding and subtracting in
MySQL, 39

datetime interval literals, 86
string-based formats in

MySQL, 39
IS NOT NULL predicate, 89
IS NULL predicate, 89

IS NULL test, 7
ISNULL function (SQL Server),

92

J
join conditions, 75
joins, 72–82

with CONNECT BY queries,
11

cross, 74
explanation of concept, 73
grouping before, 57
inner, 75
natural, 77
non-equi, 78
outer, 79

full outer joins, 81
left outer joins, 79
right outer joins, 80
vendor-specific syntax, 81

USING clause in, 76
JULIAN_DAY function (DB2),

24

L
labeled durations (DB2), 38
LAG and LEAD functions, 176
LAST_VALUE and

FIRST_VALUE functions,
176

LATERAL clauses (DB2), cross
joins with, 74

LCASE and UCASE functions
(DB2), 139

LEAST function, 82
left outer joins, 79

interpreting nulls in results,
80

LEN function, 137
LENGTH function, 137
LEVEL operator, 14
LIKE and NOT LIKE predicates,

111
LISTAGG function, 55
literals, 82–86

Index | 187

datetime, 85
datetime interval, 86
numeric, 85
text, 83

LOCAL functions (PostgreSQL),
44

LOCATE function
in DB2, 135
in MySQL, 135

loops
avoiding with CONNECT BY

queries, 10
detecting in recursive data,

65
in hierarchical data, 13

LOWER and UPPER functions,
138

LTRIM and RTRIM functions,
138

M
math functions, 99
MAX function, 178
MAXVALUE clauses, 146
MERGE statements, 86–88

WHERE conditions on
UPDATE and INSERT
operations, 87

MIN function, 174, 178
MINUS clause in union queries

(Oracle), 165
MODIFY clauses in ALTER

TABLE statements
MySQL, 150
Oracle, 151

money styles (SQL Server), 99
MONTH function (SQL Server),

37
MySQL

constraints checking and
subquery inserts, 69

constraints in, 145
creating tables, 144
datetime conversions, 24

date and time elements,
24

seconds in day, 26
using TO_DAYS and

FROM_DAYS
functions, 25

datetime functions, 39
datetime types, 16
DATE_FORMAT function,

date format elements,
26

deleting data, ORDER BY
clause in DELETE
statement, 47

escaping an escape character
in LIKE predicates,
112

functions for nulls, 90
modifying tables, 150
numeric conversions, 95
regular expressions, 113
regular-expression operators,

113
searching strings, using

INSTR and LOCATE
functions, 135

starting transactions, 155
string concatenation with

CONCAT function,
137

string literal escape sequences,
84

SUBSTRING functions, 137
TEXT type, 15

N
natural joins, 77
NOCYCLE, using with

CONNECT BY, 13
non-equi-joins, 78
NOT EXISTS and EXISTS

predicates, 110
NOT LIKE AND LIKE predicates,

111

188 | Index

NOT NULL constraints in DB2,
144

NOW function (PostgreSQL), 44
NTH_VALUE function (Oracle),

176
nullability of a column (DB2),

149
NULLIF function

in DB2, 90
in MySQL, 91
in PostgreSQL, 92
in SQL Server, 92

nulls, 88
functions for, in DB2, 90
functions for, in MySQL, 90
functions for, in Oracle, 91
functions for, in PostgreSQL,

92
functions for, in SQL Server,

92
interpreting in outer joins, 80
IS NULL test, 7
predicates for, 89
preventing updating of names

to null, 87
using CASE expressions with,

89
using COALESCE function

with, 90
NUMBER type, 20

converting to and from
VARCHAR2 in
Oracle, 96

numeric and math functions, 99
numeric data types

conversions in DB2, 93
conversions in MySQL, 95
conversions in Oracle, 95
conversions in PostgreSQL,

97
conversions in SQL Server,

98
numeric format elements

in Oracle, 96
in PostgreSQL, 97

numeric literals, 85

NVL function, 90, 91

O
OLAP (online analytical

processing) functions (see
window functions)

ON clauses in inner joins, 75
ON DELETE DO INSTEAD rule

(PostgreSQL), 49
operators

comparison operators, 109
regular expression

in MySQL, 113
in Oracle, 116
Perl-influenced, in Oracle,

118
Posix-style, in

PostgreSQL, 120
PostgreSQL SIMILAR TO,

118
in SQL Server, 124

supporting CONNECT BY
queries, 14

option letters (PostgreSQL Posix-
style regular expressions),
123

Oracle
alternative quoting delimiters

in strings, 83
creating tables, 145
datetime conversions, 28

datetime format elements,
29

datetime elements, 51
datetime functions, 40

getting current date and
time, 40

rounding and truncating
values, 41

datetime types, 17
depth- or breadth-first sorting,

specifying with
SEARCH clause, 64

detecting recursive loops with
CYCLE clause, 65

Index | 189

DROP TABLE statement,
CASCADE
CONSTRAINTS
clause, 148

functions for nulls, 91
LENGTH functions, 137
LIKE predicates, 112
LISTAGG function, 55
merging data, WHERE

conditions on
UPDATEs and
INSERTs, 87

modifying tables, 151
NTH_VALUE function, 176
numeric conversions, 95
numeric format elements, 96
outer join syntax, 81
pivoting in, 103
regular expressions, 114–118

functions, 114
operators, 116
Perl-influenced operators,

118
regular-expression functions

parameters, 115
returning deleted data, 50
returning inserted values, 70
returning updated data, 171
searching strings, INSTR

functions, 135
SELECT…FROM dual

statement, 126
starting transactions, 156
SUBSTR functions, 136
TRUNCATE TABLE

statement, 49
union queries, MINUS clause,

165
unpivoting in, 107

ORDER BY clauses
CONNECT BY queries and,

12
in DELETE statements, 47
within OVER clauses, 174
in SELECT statements, 133
in union queries, 163

using with LISTAGG
function, 56

window functions in, 179
ORDER SIBLINGS BY clauses

sorting CONNECT BY query
results, 12

outer joins, 79
full, 81
left, 79
nulls in results, 80
right, 80
vendor-specific syntax, 81

OUTPUT clauses
returning deleted data in SQL

Server, 50
returning inserted data in SQL

Server, 71
returning updated data in SQL

Server, 172
OVER clauses, 173

ORDER BY clause within,
174

P
PARTITION BY clause within

OVER clause, 173
pattern-matching

in LIKE and NOT LIKE
predicates, 111

Perl-influenced regular
expression operators
(Oracle), 118

pivot tables, 3
pivoting, 101

explanation of the concept,
102

in Oracle, 103
in SQL Server, 105

POSITION function
(PostgreSQL), 135

Posix-style regular expressions
(PostgreSQL), 119

operators, 120
option letters, 123

POSSTR function (DB2), 135

190 | Index

PostgreSQL
alternative quoting delimiters

for string literals, 83
column aliases, 127
creating tables, 147
datetime conversions, 31
datetime elements, 51
datetime functions, 43

getting current date and
time, 43

rounding and truncating
values, 44

datetime types, 17
DELETE statement with view

as target, 49
escaping an escape character

in LIKE predicates,
112

functions for nulls, 92
modifying tables, 152
numeric type conversions, 97
regular expressions, 118–124

Posix-style, 119
searching strings, using

POSITION and
STRPOS functions,
135

starting transactions, 157
string concatenation with

TEXTCAT function,
138

string literal escape sequences,
84

subquery in FROM clause of a
subquery in WITH
clause, 141

SUBSTRING functions, 136
union queries, EXCEPT ALL

clause, 165
WITH RECURSIVE clause,

62
predicates, 109

BETWEEN, 111
comparison operators

available for, 109

EXISTS and NOT EXISTS,
110

for nulls, 89
identifying rows for updates,

168
IN, 110
LIKE and NOT LIKE, 111
REGEXP, 113
SIMILAR TO, 118

primary key constraints
dropping in MySQL, 151

PRIOR keyword (in CONNECT
BY queries), 10

PRIOR operator, 14
punctuation in column and table

names, 127

Q
qualifying column names, 128

R
RANGE BETWEEN clauses, 179
ranking within a window, 175
recursive loops

avoiding with NOCYCLE in
Oracle, 13

detecting, 65
recursive queries (see CONNECT

BY queries; hierarchical
queries)

REGEXP predicates, 113
REGEXP_REPLACE function

supporting Posix-style regular
expressions in
PostgreSQL, 120

regular expressions, 113–124
in MySQL, 113

operators, 113
in Oracle, 114–118
in PostgreSQL

Posix-style, 119
SIMILAR TO predicate,

118–124
in SQL Server, 124

operators supported, 124

Index | 191

REPLACE function, 135
RESPECT NULLS clauses, 177
RETURNING clauses (Oracle)

returning inserted values, 70
returning updated data, 171

right outer joins, 80
ROLLBACK statements, 160

to a savepoint, 161
ROLLBACK TRANSACTION

statements (SQL Server),
160

ROLLUP operation
related functions, 60
using with GROUP BY, 58

rounding modes, DECFLOAT
type, 20

rounding numbers
DATE values to datetime

elements in Oracle, 41
functions for, 100
ROUND function, 94

row generator, using CONNECT
BY as, 10

RTRIM and LTRIM functions,
138

S
savepoints (transactions), 161
schema (example) for this book,

2
SEARCH clauses (Oracle), 64
searched CASE expressions, 7
seconds in day, MySQL functions

for, 26
SELECT expressions in union

queries, 164
EXCEPT (or MINUS) and

EXCEPT ALL, 164,
165

INTERSECT and
INTERSECT ALL,
166

SELECT statements, 124–134
ALL and DISTINCT

keywords, 129

FROM clause, 130
generating tables with

VALUES clause,
131

subqueries in, 131, 139
table aliases in, 131
WHERE clause in, 132

FROM OLD TABLE, 49
ORDER BY clause, 133
SELECT clause, 125

case and punctuation in
names, 127

listing columns to retrieve,
125

qualifying column names,
128

specifying result set
column names,
127

subqueries in, 128
taking shortcuts with

asterisk (*), 125
writing expressions, 126

subqueries in WITH clause,
140

in subquery INSERTs, 69
using with UPDATE, 171
window functions in, 179

sequences (Oracle), 146
SET clauses in UPDATE

statements
comma separating multi-

column updates, 168
use of aliases, 171

SET DATEFORMAT command
(SQL Server), 34

SET TRANSACTION statements
MySQL, 155
Oracle, 156
PostgreSQL, 158

SIMILAR TO predicate
(PostgreSQL), 118

regular-expression operators,
119

SMALLINT type, 15

192 | Index

special registers returning
datetime information in
DB2, 38

SQL Server
COMMIT TRANSACTION

statement, 159
creating tables, 147
datetime conversions, 34

using CAST and SET
DATEFORMAT,
34

using CONVERT
function, 35

using DATENAME and
DATEPART
functions, 36

using DAY, MONTH, and
YEAR functions,
37

datetime functions, 45
datetime styles, 35
datetime types, 18
DELETE statements, double-

FROM clauses in, 51
functions for nulls, 92
modifying tables, 152
numeric type conversions, 98
outer join syntax, 82
pivoting in, 105
regular expressions, 124
returning deleted data, 50
returning inserted data, 71
returning updated data, 172
ROLLBACK

TRANSACTION
statement, 160

searching strings with
CHARINDEX
function, 135

starting transactions, 158
string concatenation with +

operator, 137
string length, finding with

LEN function, 137
SUBSTRING function, 137
unpivoting in, 108

WITH-clause queries, naming
result columns, 142

START statements in
PostgreSQL, 157

START TRANSACTION
statements (MySQL), 155

START WITH clause,
CONNECT BY queries, 9

storage engines in MySQL, 145
string functions, 134–139

changing case of a string, 138
concatenating strings, 137
extracting a substring, 136
finding length of a string, 137
replacing text in a string, 135
searching a string, 134
trimming unwanted

characters, 138
strings

conversions (see conversions,
data type)

delimiting with single
quotation marks, 83

embedding single quote in,
83

STRPOS function (PostgreSQL),
135

subqueries, 139
correlated, sorting results of,

134
deleting from, 49
in FROM clauses, 139
inserts into, 69
new values from, in UPDATE

operations, 169
in SELECT lists, 128, 131
updating, 170
in WITH clauses, 140

SUBSTR function, 136
SUBSTRING function

in PostgreSQL, 136
PostgreSQL SIMILAR TO

regular-expression
operators in, 119

Index | 193

supporting Posix-style regular
expressions in
PostgreSQL, 120

summarizing (see grouping and
summarizing)

SYSDATE function (Oracle), 40
SYS_CONNECT_BY_PATH

function, 14

T
table names

case and punctuation in, 127
qualifying column names by,

128
specifying name or alias in

SELECT FROM
clause, 131

tables
creating, 143–149

in DB2, 143
in MySQL, 144
in Oracle, 145
in PostgreSQL, 147
in SQL Server, 147

dropping, 148
joining (see joins)
modifying, 149–148

in DB2, 149
in MySQL, 150
in Oracle, 151
in PostgreSQL, 152
in SQL Server, 152

tablespaces
assigning tables to, in Oracle,

146
indexes on, 66
support in PostgreSQL, 147

text literals, 83
TEXT type (MySQL), 15
TEXTCAT function

(PostgreSQL), 138
time zone offsets (SQL Server

functions), 46
TIMEOFDAY function

(PostgreSQL), 44

timestamps
converting to and from, 21
converting to and from

character
representation in
PostgreSQL, 32

Unix timestamp support, 25
TIMEZONE function

(PostgreSQL), 45
TO_DAYS function (MySQL),

25
transactions, 154–161

aborting, 160
aborting to a savepoint, 161
autocommit mode, 154
date and time for, in

PostgreSQL functions,
44

ending, 159
starting in DB2, 155
starting in MySQL, 155
starting in Oracle, 156
starting in PostgreSQL, 157
starting in SQL Server, 158

TRIM function, 138
TRUNCATE TABLE statements,

48
truncation

DATE values in Oracle, 42
datetime values in

PostgreSQL, 44

U
UCASE and LCASE functions

(DB2), 139
union queries, 162

EXCEPT (or MINUS) and
EXCEPT ALL, 165

INTERSECT and
INTERSECT ALL,
166

names and data types in, 164
ORDER BY clauses, 163

194 | Index

order of evaluation with
multiple UNION
operations, 164

UNION ALL operator, 163
UNION operator, 162

UNIQUE constraints
in DB2, 144
dropping in MySQL, 151

Universal Transverse Mercator
(UTM) grid coordinates,
2

Unix timestamps
conversion functions for, 25
conversions in MySQL, 24
conversions in PostgreSQL,

32
TIMESTAMP type in MySQL,

17
unpivoting

explanation of the concept,
106

in Oracle, 107
in SQL Server, 108

UPDATE statements, 168–172
FROM clause, 170
new values generated from

subquery, 169
returning updated data in

DB2, 171
returning updated data in

Oracle, 171
returning updated data in SQL

Server, 172
running against views and

subqueries, 170
simple updates, 168
subqueries in FROM clauses,

139
updates, using MERGE

statements, 86
UPPER and LOWER functions,

138
USING clauses in joins, 76
UTC (Coordinated Universal

Time), 32

V
VALUES clauses

in INSERT statements, 67
multirow inserts, 68

in SELECT FROM
statements, generating
tables with, 131

VARCHAR type, 15
VARCHAR2 type (Oracle), 16

converting between
NUMBER and, 96

VARIABLE command
(SQL*Plus), 70

views
deleting from, 49
inserts into, 68
updating, 170

W
web page for this book, 5
WHEN clauses

in CASE expressions, 7
in conditional multitable

inserts, 72
WHERE clauses

conditions on UPDATEs and
INSERTs in MERGE
statements, 87

in CONNECT BY queries, 11
in join queries, 75
in SELECT FROM

statements, 132
in UPDATE statements,

predicates identifying
rows to update, 168

window functions, 7, 173–179
comparing values across rows,

176
defining summary window,

173
evaluation and placement,

179
ordering and ranking within a

window, 174

Index | 195

summarizing over moving
window of rows, 178

WITH clauses
in CONNECT BY queries, 8
recursive, 62

further information on,
63

subqueries in, 140
WITH CUBE clause (SQL Server),

59, 61
WITH MARK clauses, BEGIN

TRAN statements (SQL
Server), 158

WITH ROLLUP clause, using
with GROUP BY, 58

WITHIN GROUP keywords
using with LISTAGG

function, 56
WORK

in COMMIT statements, 159
in ROLLBACK statements,

160

Y
YEAR function (SQL Server), 37

196 | Index

	Table of Contents
	Chapter 1. SQL Pocket Guide
	Introduction
	Organization of This Book
	Platform notes

	Conventions
	Example Data
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Acknowledgments

	Analytic Functions
	CASE Expressions: Simple
	CASE Expressions: Searched
	CAST Function
	CONNECT BY Queries
	Core CONNECT BY Syntax
	Creative CONNECT BY
	WHERE Clauses with CONNECT BY
	Joins with CONNECT BY
	Sorting CONNECT BY Results
	Loops in Hierarchical Data
	Supporting Functions and Operators

	Data Type Conversion
	Data Types: Binary Integer
	Data Types: Character String
	Data Types: Datetime
	DB2
	MySQL
	Oracle
	PostgreSQL
	SQL Server

	Data Types: Decimal
	DB2’s DECFLOAT Type
	DECIMAL/NUMBER Type

	Datetime Conversions: DB2
	Datetime Conversions: MySQL
	Date and Time Elements
	TO_DAYS and FROM_DAYS
	Unix Timestamp Support
	Seconds in the Day
	DATE_FORMAT and TIME_FORMAT

	Datetime Conversions: Oracle
	Datetime Conversions: PostgreSQL
	Datetime Conversions: SQL Server
	CAST and SET DATEFORMAT
	CONVERT
	DATENAME and DATEPART
	DAY, MONTH, and YEAR

	Datetime Functions: DB2
	Datetime Functions: MySQL
	Datetime Functions: Oracle
	Getting Current Date and Time
	Rounding and Truncating
	Other Oracle Datetime Functions

	Datetime Functions: PostgreSQL
	Getting Current Date and Time
	Rounding and Truncating
	Other PostgreSQL Datetime Functions

	Datetime Functions: SQL Server
	Deleting Data
	Deleting in Order
	Deleting All Rows
	Deleting from Views and Subqueries
	Returning Deleted Data: DB2
	Returning Deleted Data: Oracle
	Returning Deleted Data: SQL Server
	Double-FROM

	EXTRACT Function
	GREATEST
	Grouping and Summarizing
	Aggregate Functions
	GROUP BY
	Listing the Detail Values
	Reducing the GROUP BY List
	Grouping Before the Join
	HAVING
	ROLLUP
	CUBE
	GROUPING SETS
	Related Functions

	Hierarchical Queries
	Recursive WITH
	Tracking Your Depth
	Breadth-First Versus Depth-First Sorting
	Detecting Recursive Loops

	Indexes, Creating
	Indexes, Removing
	Inserting Data
	Single-Row Inserts
	Multirow Inserts
	Insert Targets
	Subquery Inserts
	Returning Inserted Values: DB2
	Returning Inserted Values: Oracle
	Returning Inserted Data: SQL Server
	Multitable Inserts
	Unconditional multitable insert
	Conditional multitable insert
	ALL versus FIRST

	Joining Tables
	The Concept of a Join
	Cross Joins
	Inner Joins
	The USING Clause
	Natural Joins
	Non-Equi-Joins
	Outer Joins
	Left outer joins
	Interpreting nulls in an outer join
	Right outer joins
	Full outer joins
	Vendor-specific outer join syntax

	LEAST
	Literals
	Text Literals
	Numeric Literals
	Datetime Literals
	Datetime Interval Literals

	Merging Data
	Nulls
	Predicates for Nulls
	Using CASE with Nulls
	Using the COALESCE Function
	Functions for Nulls: DB2
	Functions for Nulls: MySQL
	Functions for Nulls: Oracle
	Functions for Nulls: PostgreSQL
	Functions for Nulls: SQL Server

	Numeric Conversions: DB2
	Numeric Conversions: MySQL
	Numeric Conversions: Oracle
	Numeric Conversions: PostgreSQL
	Numeric Conversions: SQL Server
	Numeric/Math Functions
	OLAP Functions
	Pivoting and Unpivoting
	Pivoting: The Concept
	Pivoting: Oracle
	Pivoting: SQL Server
	Unpivoting: The Concept
	Unpivoting: Oracle
	Unpivoting: SQL Server

	Predicates
	EXISTS Predicates
	IN Predicates
	BETWEEN Predicates
	LIKE Predicates

	Recursive Queries
	Regular Expressions
	Regular Expressions: MySQL
	Regular Expressions: Oracle
	Regular Expressions: PostgreSQL
	Regular Expressions: SQL Server

	Selecting Data
	The SELECT Clause
	Listing the columns to retrieve
	Taking shortcuts with the asterisk
	Writing expressions
	Specifying result-set column names
	Dealing with case and punctuation in names
	Using subqueries in a SELECT list
	Qualifying column names

	ALL and DISTINCT
	The FROM Clause
	Table aliases in the FROM clause
	Subqueries in the FROM clause
	Generating tables through the VALUES clause

	The WHERE Clause
	The GROUP BY Clause
	The HAVING Clause
	The ORDER BY Clause

	String Functions
	Searching a String
	Replacing Text in a String
	Extracting a Substring
	Finding the Length of a String
	Concatenating Strings
	Trimming Unwanted Characters
	Changing the Case of a String

	Subqueries
	Subqueries in the FROM Clause
	Subqueries in the WITH Clause

	Tables, Creating
	Creating a Table: DB2
	Creating a Table: MySQL
	Creating a Table: Oracle
	Creating a Table: PostgreSQL
	Creating a Table: SQL Server

	Tables, Dropping
	Tables, Modifying
	Modifying a Table: DB2
	Modifying a Table: MySQL
	Modifying a Table: Oracle
	Modifying a Table: PostgreSQL
	Modifying a Table: SQL Server

	Transaction Management
	Autocommit Mode
	Starting a Transaction: DB2
	Starting a Transaction: MySQL
	Starting a Transaction: Oracle
	Starting a Transaction: PostgreSQL
	Starting a Transaction: SQL Server
	Ending a Transaction
	Aborting a Transaction
	Aborting to a Savepoint

	Union Queries
	UNION and UNION ALL
	UNION
	UNION ALL

	ORDER BY in Union Queries
	Names and Data Types in a Union
	Order of Evaluation
	EXCEPT (or MINUS) and EXCEPT ALL
	EXCEPT (MINUS in Oracle)
	EXCEPT ALL

	INTERSECT and INTERSECT ALL
	INTERSECT
	INTERSECT ALL

	Updating Data
	Simple Updates
	New Values from a Subquery
	Updating Views and Subqueries
	UPDATE FROM Clause
	Returning Updated Data: DB2
	Returning Updated Data: Oracle
	Returning Updated Data: SQL Server

	Window Functions
	Defining a Summary Window
	Ordering and Ranking Within a Window
	Comparing Values Across Rows
	Summarizing over a Moving Window
	Window Function Evaluation and Placement

	Index

