

 [image: Third Edition]

[image: O'Reilly Strata Conference]

SQL Pocket Guide

Jonathan Gennick

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/0636920013471/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Chapter 1. SQL Pocket Guide

Introduction

This book is an attempt to cram the most useful information about
 SQL into a pocket-size guide. It covers commonly used syntax for the
 following platforms: IBM DB2 Release 9.7, MySQL 5.1, Oracle Database
 11g Release 2, PostgreSQL 9.0, and Microsoft SQL
 Server 2008 Release 2.
Not all syntax will work on all platforms, and some features may
 not be available in earlier releases of these products. Whenever
 possible, I’ve tried to note any product or release dependencies.
Organization of This Book

Topics are organized alphabetically, with many section names
 carefully chosen to correspond to relevant SQL keywords. For example,
 see Inserting Data for help with the INSERT
 statement.
Platform notes

MySQL requires the leading parenthesis in a function
 invocation to immediately follow the function name. For example,
 upper (name) will generate an
 error message because of the space between upper and (name).

Conventions

The following typographical conventions are used in this
 book:
	UPPERCASE
	Indicates an SQL keyword

	lowercase
	Indicates a user-defined item in an SQL statement

	Italic
	Indicates emphasis or a new technical term

	Constant width
	Used for code examples and for in-text references to table
 names, column names, expressions, and so forth

	Constant width
 bold
	Indicates user input in input/output code examples

	Constant width italic
	Indicates an element of syntax you need to supply

	[]
	Denotes an optional element of syntax

	{}
	Denotes a required choice

	|
	Separates choices in syntax

Example Data

All example SQL statements in this book execute against a
 set of tables and data that you
 can download from this book’s catalog page at http://oreilly.com/catalog/9781449394097/. Figure 1-1 illustrates the
 relationships between the core tables, which give information on
 waterfalls in Michigan’s Upper Peninsula. Some examples also use
 tables based on or derived from those in Figure 1-1.
The terms datum, zone,
 northing, and easting refer
 to Universal Transverse Mercator (UTM) grid coordinates, such as those
 you might use with a topographical map or GPS device. For more, see
 http://erg.usgs.gov/isb/pubs/factsheets/fs07701.html.
[image: Example schema for this book]

Figure 1-1. Example schema for this book

Some SQL examples in this book use a pivot table, which is
 nothing more than a single-column table containing sequentially
 numbered rows—in this case, 1,000 rows. The name of the table is
 pivot. (Exceptions! In SQL Server,
 pivot is a reserved word, so the
 SQL Server example script creates the table as pivvot, with two vs. In
 the MySQL script, the table dual is
 named duel.)

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You
 do not need to contact us for permission unless you’re reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require
 permission. Selling or distributing a CD-ROM of examples from O’Reilly
 books does require permission. Answering a question by citing this
 book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product’s documentation does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “SQL Pocket Guide, by Jonathan Gennick
 (O’Reilly). Copyright 2011 Jonathan Gennick, 9781449394097.”
If you feel your use of code examples falls outside fair use
 or the permission given here,
 feel free to contact us at
 permissions@oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to
 the publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata,
 examples, and any additional information. You can access this page at:
	http://oreilly.com/catalog/9781449394097

To comment or ask technical questions about this book, send
 email to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O’Reilly Network, see our website at:
	http://oreilly.com

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets
 you easily search over 7,500 technology and creative reference books
 and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video
 from our library online. Read books on your cell phone and mobile
 devices. Access new titles before they are available for print, and
 get exclusive access to manuscripts in development and post feedback
 for the authors. Copy and paste code
 samples, organize your favorites, download chapters, bookmark key sections, create notes,
 print out pages, and benefit from tons of other time-saving
 features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on
 similar topics from O’Reilly and other publishers, sign up for free at
 http://my.safaribooksonline.com.

Acknowledgments

My heartiest thanks to the following people for their support,
 encouragement, and assistance: Grant Allen; Don Bales; Vladimir Begun; Tugrul Bingol; John Blake; Michel
 Cadot; Dias Costa; Chris Date; Bruno Denuit; Doug Doole; Chris Eaton; Stéphane Faroult; Iggy Fernandez;
 Bobby Fielding; Donna, Jenny, and Jeff Gennick; K. Gopalakrishnan;
 Jonah Harris; John Haydu; Kelvin Ho; Brand Hunt; Ken Jacobs; Chris
 Kempster; Stephen Lee; Peter Linsley; Jim Melton;
 Anthony Molinaro; Ari Mozes; Arup Nanda; Tanel Poder; Ted
 Rexstrew; Brandon Rich; Serge Rielau; Debby Russell; Andrew and Aaron
 Sears; Jeff Smith; Nuno Souto; Richard Swagerman; April Wells; and
 Fred Zemke.

Analytic Functions

Analytic function is Oracle’s term for what
 the SQL standard refers to as a window function.
 See the section Window Functions for more on this
 extremely useful class of function.

CASE Expressions: Simple

Simple CASE expressions correlate a list of values to a list of
 alternatives. For example:
SELECT u.name,
 CASE u.open_to_public
 WHEN 'y' THEN 'Welcome!'
 WHEN 'n' THEN 'Go Away!'
 ELSE 'Bad code!'
 END AS column_alias
FROM upfall u;
Simple CASE expressions are useful when you can directly link an
 input value to a WHEN clause by means of an equality condition. If no
 WHEN clause is a match, and no ELSE is specified, the expression returns
 null.

CASE Expressions: Searched

Searched CASE expressions associate a list of alternative return
 values with a list of true/false conditions. They also allow you to
 implement an IS NULL test. For example:
SELECT u.name,
 CASE
 WHEN u.open_to_public = 'y' THEN 'Welcome!'
 WHEN u.open_to_public = 'n' THEN 'Go Away!'
 WHEN u.open_to_public IS NULL THEN 'Null!'
 ELSE 'Bad code!'
 END AS column_alias
FROM upfall u;
Null is returned when no condition is TRUE and no ELSE is
 specified. If multiple conditions are TRUE, the first-listed condition
 takes precedence.

CAST Function

CAST explicitly converts a value to a new type. For
 example:
SELECT * FROM upfall u
WHERE u.id = CAST('1' AS INTEGER);
When converting from text to numeric or date types, CAST offers
 little flexibility in dealing with different input data formats. For
 example, if the value you are casting is a string, the contents must
 conform to your database’s default text representation of the target
 data type.
Note
Most database brands have more useful conversion functions than
 CAST. SQL Server’s CONVERT function is one such example. See the
 sections on Datetime
 Conversions and Numeric
 Conversions.

CONNECT BY Queries

Oracle Database supports CONNECT BY syntax for executing
 hierarchical queries. Beginning in Oracle Database
 11g Release 2, you should consider the WITH clause,
 which in that release supports ISO standard syntax for recursive
 queries. See Hierarchical Queries.
Note
DB2 optionally supports CONNECT BY for compatibility with
 Oracle. There are some limitations, and support needs to be enabled through
 B2_COMPATIBILITY_VECTOR.

Core CONNECT BY Syntax

To return data in a hierarchy, specify a starting node using
 START WITH, and specify the parent-child relationship using CONNECT
 BY:
SELECT id, name, type, parent_id
FROM gov_unit
START WITH parent_id IS NULL
CONNECT BY parent_id = PRIOR id;

ID NAME TYPE PARENT_ID
----- ---------- -------- ---------
3 Michigan state
2 Alger county 3
1 Munising city 2
4 Munising township 2
5 Au Train township 2
6 Baraga county 3
7 Ontonagon county 3
8 Interior township 7
9 Dickinson county 3
10 Gogebic county 3
11 Delta county 3
12 Masonville township 11
...
The START WITH clause identifies the row(s) Oracle considers to
 be at the top of the tree(s). There is only one tree in this example,
 and it is for the state of Michigan. Alger County is a subdivision of
 Michigan. Munising and Au Train Townships are subdivisions of Alger
 County. Each entity’s parent_id
 points to its enclosing entity.
Your START WITH condition does not necessarily need to involve
 the columns that link parent to child nodes. For example, use the
 following to generate a tree for each county:
START WITH type = 'county'
In a CONNECT BY query, the keyword PRIOR represents an operator
 that returns a column’s value from either the parent or a child row,
 depending on whether you are walking the tree top-down or bottom-up.
 PRIOR is often used to define the recursive relationship, but you can
 also use PRIOR in SELECT lists, WHERE clauses, or anywhere else a
 column reference is
 valid.

Creative CONNECT BY

CONNECT BY is not limited to hierarchical data. Any data linked
 in a recursive fashion is a candidate for CONNECT BY queries. For
 instance, the tour stops in this book’s example schema are linked in a
 fashion that CONNECT BY handles very well. The following query uses
 CONNECT BY to list each stop in its proper order:
SELECT t.name tour_name, t.stop
FROM trip t
START WITH parent_stop IS NULL
CONNECT BY parent_stop = PRIOR stop
 AND name = PRIOR name;
Because some waterfalls appear in more than one tour, CONNECT BY
 also includes a condition on tour_name to avoid loops. Output from the
 query is as follows:
TOUR_NAME STOP
---------- ----------------------
M-28 3
M-28 1
M-28 8
M-28 9
M-28 10
M-28 11
Munising 1
Munising 2
Munising 6
Munising 4
Munising 3
Munising 5
US-2 14
US-2 12
US-2 11
US-2 13
You can also use CONNECT BY as a row generator. For example, to
 generate 100 rows (credit to Mikito Harakiri and Tom Kyte for showing
 me this clever trick), specify:
SELECT level x
FROM dual CONNECT BY level <= 100;
Some older releases of Oracle have a bug that you can avoid by
 placing the logic into a subquery:
SELECT x FROM (
 SELECT level x
 FROM dual CONNECT BY level <= 100);
You can also see the real-life case study “Finding Flight Legs”
 at http://gennick.com/flight.html.

WHERE Clauses with CONNECT BY

You can write WHERE clauses in CONNECT BY queries to restrict
 the results to specific rows of interest. The conditions in the
 CONNECT BY clause control which trees are processed by your query, and
 those trees in turn represent a candidate pool of rows. Conditions in
 the WHERE clause winnow down that candidate pool to only those rows
 that you wish the query to return.

Joins with CONNECT BY

A CONNECT BY query may involve a join, in which case the
 following order of operations applies:
	The join is materialized first, which means that any join
 predicates are evaluated first.

	The CONNECT BY processing is applied to the rows returned
 from the join operation.

	Any filtering predicates from the WHERE clause are applied
 to the results of the CONNECT BY operation.

The following is an adaptation of the CONNECT BY query listing
 tour stops, which now incorporates a join to bring in the waterfall
 names:
SELECT t.name tour_name, t.stop, u.name falls_name
FROM trip t INNER JOIN upfall u
 ON t.stop = u.id
START WITH parent_stop IS NULL
CONNECT BY t.parent_stop = PRIOR t.stop
 AND t.name = PRIOR t.name;
Be careful! Don’t write joins that inadvertently eliminate nodes
 from the hierarchy you are querying.

Sorting CONNECT BY Results

Oracle’s CONNECT BY syntax implies an ordering in which, given a
 top-down walk of the tree, each parent node is followed by its
 immediate children, each child is followed by its
 immediate children, and so on. It’s rare to write a standard ORDER BY
 clause into a CONNECT BY query, because the resulting sort destroys
 the hierarchical ordering of the data. However, beginning in
 Oracle9i Database, you can use the new ORDER
 SIBLINGS BY clause to sort each level independently without destroying
 the hierarchy:
SELECT id, name, type, parent_id
FROM gov_unit
START WITH parent_id IS NULL
CONNECT BY parent_id = PRIOR id
ORDER SIBLINGS BY type, name;

ID NAME TYPE PARENT_ID
-- ---------- -------- ----------------------
 3 Michigan state
 2 Alger county 3
 1 Munising city 2
 5 Au Train township 2
 4 Munising township 2
 6 Baraga county 3
...
Baraga County follows Alger County because both are at the same
 level and Baraga County comes later in the sorting order. Within Alger
 County, the city is listed before the two townships because the sort
 is on type first, followed by
 name. The two townships are then
 sorted in alphabetical order. Each level in the hierarchy is sorted
 independently, yet each parent is still followed by its immediate
 children. Thus, the hierarchy remains intact.

Loops in Hierarchical Data

Hierarchical data can sometimes be malformed in that a row’s
 child may also be that row’s parent or ancestor. Such a situation
 leads to a loop. You can simulate a loop in the
 trip table by omitting AND t.name = PRIOR t.name from the CONNECT
 BY clause of the query to list tour stops. You can then detect that
 loop by adding NOCYCLE to the CONNECT BY clause and the
 CONNECT_BY_ISCYCLE pseudocolumn to the SELECT list:
SELECT t.name tour_name, t.stop,
 u.name falls_name, CONNECT_BY_ISCYCLE
FROM trip t INNER JOIN upfall u
 ON t.stop = u.id
START WITH parent_stop IS NULL
CONNECT BY NOCYCLE
 t.parent_stop = PRIOR t.stop;
NOCYCLE prevents Oracle from following recursive loops in the
 data. CONNECT_BY_ISCYCLE returns 1 for any row having a child that is
 also a parent or ancestor. Here are the preceding query’s
 results:
TOUR_NAME STOP FALLS_NAME CONNECT_BY_ISCYCLE
--------- ---- -------------- ------------------
Munising 1 Munising Falls 0
Munising 2 Tannery Falls 0
Munising 6 Miners Falls 0
Munising 4 Wagner Falls 0
Munising 3 Alger Falls 1
...
The 1 in the fourth column indicates that a loop arises from the
 node for stop 3. If you look carefully at the data in the trip table, you’ll see two nodes where
 stop = 3. These nodes are for
 different tours. Without the restriction on t.name, one branch of recursive processing
 will go from stop 3 on the Munising tour to stop 1 on the M-28 tour
 (child of a stop 3) to stop 2 on the Munising tour (child of a stop
 1). Eventually, you’ll come again to stop 3 on the Munising tour,
 thereby creating the loop.

Supporting Functions and Operators

Oracle implements a number of helpful functions and operators to
 use in writing CONNECT BY queries:
	CONNECT_BY_ISCYCLE
	Returns 1 when a row’s child is also its ancestor;
 otherwise, it returns 0. Use with CONNECT BY NOCYCLE. (Oracle
 Database 10g and higher.)

	CONNECT_BY_ISLEAF
	Returns 1 for leaf rows, 0 for rows with children. (Oracle
 Database 10g and higher.)

	CONNECT_BY_ROOT(column)
	Returns a value from the root row. See PRIOR. (Oracle
 Database 10g and higher.)

	LEVEL
	Returns 0 for the root node of a hierarchy, 1 for nodes
 just below the root, 2 for the next level of nodes, and so
 forth. LEVEL is commonly used in SQL*Plus to indent hierarchical
 results via an incantation such as the following:
RPAD(' ', 2*(LEVEL-1)) || first_column

	PRIOR(column) or PRIOR
 column
	Returns a value from a row’s parent. See also CONNECT_BY_ROOT.

	SYS_CONNECT_BY_PATH
 (column ,
 delimiter)
	Returns a concatenated list of
 column values in the path from the
 root to the current node. Each value is preceded by a
 delimiter, which you must specify as
 a string constant.
Add SYS_CONNECT_BY_PATH(u.name,';') to the
 SELECT list of the tour query shown in Joins with CONNECT BY, and you’ll get results such
 as these: ;Alger Falls,
 ;Alger Falls;Munising Falls,
 ;Alger Falls;Munising Falls;Scott
 Falls, and so forth. (Oracle9i
 Database and higher.)

Data Type Conversion

See the following topics for help on type conversion:
	CAST Function
	EXTRACT
 Function
	Datetime
 Conversions for your chosen platform
	Numeric
 Conversions for your chosen platform

Most platforms allow implicit conversion from one data type to
 another. Here’s an example in Oracle:
SELECT * FROM upfall WHERE id = '1';
It’s often better to use explicit type conversion so that you know
 for sure which value is getting converted and how.

Data Types: Binary Integer

Except for Oracle, the platforms support the following binary
 integer types:
SMALLINT
INTEGER
BIGINT
These types correspond to 2-byte, 4-byte, and 8-byte integers,
 respectively. Ranges are −32,768 to 32,767; −2,147,483,648 to 2,147,483,647; and
 −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807,
 respectively.

Data Types: Character String

For all platforms except Oracle, use the VARCHAR type to store
 character data:
VARCHAR(max_bytes)
MySQL allows TEXT as a synonym for VARCHAR:
TEXT (max_bytes)
In Oracle, append a 2 to get
 VARCHAR2:
VARCHAR2(max_bytes)
Oracle Database 9i and higher allows you to
 specify explicitly whether the size refers to bytes or
 characters:
VARCHAR2(max_bytes BYTE)
VARCHAR2(max_characters CHAR)
Using Oracle’s CHAR option means that all indexing into the string
 (such as with SUBSTR) is performed in terms of characters, not
 bytes.
Maximums are 4,000 bytes (Oracle), 32,672 bytes (DB2), 8,000 bytes
 (SQL Server), 65,532 bytes (MySQL), and 1 GB (PostgreSQL).

Data Types: Datetime

Datetime support varies wildly among platforms; commonality is virtually nonexistent.
DB2

DB2 supports the following datetime types:
DATE
TIME
TIMESTAMP
TIMESTAMP(0to12default6)
DATE stores year, month, and day. TIME stores hour, minute, and
 second. TIMESTAMP stores both date and time, to a fractional position
 of up to 12 digits. The range of valid values is from 1 A.D. through
 9999 A.D.

MySQL

MySQL supports the following datetime types:
DATE
TIME
DATETIME
TIMESTAMP
DATE stores dates from 1-Jan-1000 through 31-Dec-9999. TIME
 stores hour/minute/second values from −838:59:59 through 838:59:59.
 DATETIME stores both date and time of day (with the same range as DATE
 and TIME except that hours max out at 23). TIMESTAMP stores Unix
 timestamp values.
The first TIMESTAMP column in a row is set to the current time
 in any INSERT or UPDATE, unless you specify explicitly a value of your
 own.

Oracle

Oracle supports the following datetime types:
DATE
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
TIMESTAMP(0to9default6) ...
DATE stores date and time to the second. TIMESTAMP adds
 fractional seconds. WITH TIME ZONE adds the time zone. WITH LOCAL TIME
 ZONE assumes each value to be in the same time zone as the database
 server, with time zone translation taking place automatically between
 server and session time zones. The range of valid datetime values is
 from 4712 B.C. through 9999 A.D. You can specify a fractional
 precision of up to nine digits for any TIMESTAMP type.

PostgreSQL

PostgreSQL supports the following datetime types:
DATE
TIME [WITH[OUT] TIME ZONE]
TIMESTAMP [WITH[OUT] TIME ZONE]
TIME(0to6or0to10) ...
TIMESTAMP(0to6) ...
DATE stores a date only. TIME types store time of day. TIMESTAMP
 types store both date and time. The default is to exclude time zone. The range of years is
 from 4713 B.C. through 294,276 A.D. (TIMESTAMPs) and 5,874,897 A.D.
 (DATEs).
TIME and TIMESTAMP allow you to limit the number of precision
 digits for fractional seconds. The range depends on whether PostgreSQL
 stores time using a DOUBLE PRECISION floating point (0 to 6) or BIGINT
 (0 to 10). The default is DOUBLE PRECISION. The choice is a
 compile-time option. Using BIGINT drops the high end of the TIMESTAMP
 year range to 294,276 A.D.

SQL Server

SQL Server supports the following datetime types:
DATE
DATETIME
DATETIME2
DATETIME2(precision)
DATETIMEOFFSET
DATETIMEOFFSET(precision)
SMALLDATETIME
TIME
TIME(precision)
DATE stores date only from 1-Jan-0001 through 31-Dec-9999.
 DATETIME stores date and time of day to an increment of 3.33
 milliseconds, with a range of 1-Jan-1753 through 31-Dec-9999.
 DATETIME2 is a combination of DATE and TIME. DATETIMEOFFSET extends
 DATETIME2 with a time zone offset. SMALLDATETIME stores date and time
 of day to the minute, with a range of 1-Jan-1900 through 6-Jun-2079.
 TIME stores time of day.
DATETIME2, DATETIMEOFFSET, and TIME take an optional parameter
 to specify the decimal precision of the seconds value. The default
 precision is to store seconds to seven decimal places. The valid range
 is from 0 through 7.
Note
SQL Server supports a type called TIMESTAMP. It has nothing
 whatsoever to do with storing datetime values.

Data Types: Decimal

Decimal data types are rather more consistent across platforms
 than the datetime types. The following sections describe the more
 commonly used decimal types.
DB2’s DECFLOAT Type

DB2 9.5 and higher support a new DECFLOAT type that is based on
 the IEEE 754r standard. DB2 supports two precision choices:
DECFLOAT(16)
DECFLOAT(34)
DECFLOAT(16) gives 16 digits of precision, requiring eight bytes
 of storage; DECFLOAT(34) gives 34 digits and requires 16 bytes of
 storage.
The range for DECFLOAT(16) is:
from –9.999999999999999 × 10384

to –1.0 × 10–383,

and from 1.0 × 10–383

to 9.999999999999999 × 10384.

The range for DECFLOAT(34) is:
from –9.999999999999999999999999999999999 × 106144

to –1.0 × 10–6143,

and from 1.0 × 10–6143

to 9.999999999999999999999999999999999 × 106144.

The DECFLOAT type supports five rounding modes:
	ROUND_CEILING
	Rounds upward, always in a positive direction.

	ROUND_FLOOR
	Rounds downward, always in a negative direction.

	ROUND_HALF_UP
	Rounds to the nearest up or down value. Values of 0.5
 round upward.

	ROUND_HALF_EVEN
	Rounds to the nearest value. Values of 0.5 round up or
 down so as to make the final digit an even digit.

	ROUND_DOWN
	Rounds toward zero.

You specify the rounding mode at the database level, using the
 parameter decflt_rounding. You must
 restart the database for any change to take effect.

DECIMAL/NUMBER Type

All platforms support the use of DECIMAL for storing numeric
 base-10 data (such as monetary amounts):
DECIMAL
DECIMAL(precision)
DECIMAL(precision, scale)
In Oracle, DECIMAL is a synonym for NUMBER, and you should
 generally use NUMBER instead.
DECIMAL(precision) is a decimal integer of up to
 precision digits. DECIMAL(precision, scale) is a fixed-point decimal number of
 precision digits with
 scale digits to the right of the decimal
 point. For example, DECIMAL(9,2) can store values up to
 9,999,999.99.
Note
In Oracle, declaring a column as DECIMAL without specifying
 precision or
 scale results in a decimal floating-point
 column. In DB2, the same declaration is interpreted as DECIMAL(5,0).
 In SQL Server, the effect is the same as DECIMAL(18,0).

Maximum
 precision/scale
 values are: 38/127 (Oracle), 31/31 (DB2), 38/38 (SQL Server), 65/30
 (MySQL), and 1,000/1,000 (PostgreSQL).

Datetime Conversions: DB2

DB2 recently added a great deal of support to emulate Oracle’s
 TO_CHAR and TO_DATE functions. If compatibility with Oracle is
 important, test to see whether the functions described under Datetime Conversions: Oracle will work for
 you.
Otherwise, use the following functions to convert to and from
 dates, times, and timestamps. In the syntax,
 datetime can be a date, time, or timestamp;
 date must be either a date or a timestamp;
 time must be either a time or a timestamp;
 and timestamp must be a timestamp. Similarly,
 dateduration must be a date or timestamp
 duration; timeduration must be either a time
 or timestamp duration; and timestampduration
 must be a timestamp duration. Valid string representations of all of
 these types are allowed as well:
BIGINT(datetime)
CHAR(datetime, [ISO|USA|EUR|JIS|LOCAL])
DATE(date)
DATE(integer)
DATE('yyyyddd')
DAY(date)
DAY(dateduration)
DAYNAME(date)
DAYOFWEEK(date)
DAYOFWEEK_ISO(date)
DAYOFYEAR(date)
DAYS(date)
DECIMAL(datetime[,precision[,scale]])
GRAPHIC(datetime, [ISO|USA|EUR|JIS|LOCAL])
HOUR(time)
HOUR(timeduration)
INTEGER(date_only)
INTEGER(time_only)
JULIAN_DAY(date)
MICROSECOND(timestamp)
MICROSECOND(timestampduration)
MIDNIGHT_SECONDS(time)
MINUTE(time)
MINUTE(timeduration)
MONTH(date)
MONTH(dateduration)
MONTHNAME(date)
QUARTER(date)
SECOND(time)
SECOND(timeduration)
TIME(time)
TIMESTAMP(timestamp)
TIMESTAMP(date, time)
TIMESTAMP_FORMAT(string, 'YYYY-MM-DD HH24:MI:SS')
TIMESTAMP_ISO(datetime)
TO_CHAR(timestamp, 'YYYY-MM-DD HH24:MI:SS')
TO_DATE(string, 'YYYY-MM-DD HH24:MI:SS')
VARCHAR(datetime)
VARCHAR_FORMAT(timestamp, 'YYYY-MM-DD HH24:MI:SS')
VARGRAPHIC(datetime, [ISO|USA|EUR|JIS|LOCAL])
WEEK(date)
WEEK_ISO(date)
YEAR(date)
YEAR(dateduration)
The following example combines the use of several functions to
 produce a text representation of confirmed_date:
SELECT u.id,
 MONTHNAME(u.confirmed_date) || ' '
|| RTRIM(CHAR(DAY(u.confirmed_date))) || ','
|| RTRIM(CHAR(YEAR(u.confirmed_date))) confirmed
FROM upfall u;

ID CONFIRMED
----------- ---------------
 1 December 8,2005
 2 December 8,2005
 3 December 8,2005
 4 December 8,2005
Functions requiring date, time, or timestamp arguments also accept
 character strings that can be converted implicitly into values of those
 types. For example:
SELECT DATE('2003-11-7') ,
 TIME('21:25:00'),
 TIMESTAMP('2003-11-7 21:25:00.00')
FROM pivot WHERE x = 1;
Use the CHAR function’s second argument to exert some control over
 the output format of dates, times, and timestamps:
SELECT CHAR(current_date, ISO),
 CHAR(current_date, LOCAL),
 CHAR(current_date, USA)
FROM pivot WHERE x=1;

2003-11-06 11-06-2003 11/06/2003
Use the DATE function to convert an integer to a date. Valid
 integers range from 1 to 3,652,059, where 1 represents 1-Jan-0001. The
 DAYS function converts in the reverse direction:
SELECT DATE(716194), DAYS('1961-11-15')
FROM pivot WHERE x=1;

11/15/1961 716194
Use the DECIMAL and BIGINT functions to return dates, times, and
 timestamps as decimal and 8-byte integer values, which will take the
 forms yyyymmdd,
 hhmmss, and
 yyyymmddhhmmss.nnnnnnn,
 respectively:
SELECT DECIMAL(current_date),
 DECIMAL(current_time),
 DECIMAL(current_timestamp)
FROM pivot
WHERE x=1;

20031106. 213653. 20031106213653.088001
The JULIAN_DAY function returns the number of days since
 1-Jan-4713 B.C. (which is the same as 1-Jan in the astronomical year
 −4712), counting that date as day 0. There is no function to convert in
 the reverse direction.

Datetime Conversions: MySQL

MySQL implements a variety of datetime conversion functions,
 including some in support of Unix timestamps. The available functions
 are described in the following subsections.
Date and Time Elements

MySQL supports the following functions to return specific date
 and time elements:
DAYOFWEEK(date)
WEEKDAY(date)
DAYOFMONTH(date)
DAYOFYEAR(date)
MONTH(date)
DAYNAME(date)
MONTHNAME(date)
QUARTER(date)
WEEK(date)
WEEK(date, first)
YEAR(date)
YEARWEEK(date)
YEARWEEK(date, first)
HOUR(time)
MINUTE(time)
SECOND(time)
For example, to return the current date in text form,
 specify:
SELECT CONCAT(DAYOFMONTH(CURRENT_DATE), '-',
 MONTHNAME(CURRENT_DATE), '-',
 YEAR(CURRENT_DATE));

2-January-2004
For functions taking a first
 argument, you can specify whether weeks begin on Sunday
 (first = 0) or on Monday
 (first = 1).

TO_DAYS and FROM_DAYS

Use TO_DAYS to convert a date into the number of days since the
 beginning of the Christian calendar (1-Jan-0001 is considered day
 1):
SELECT TO_DAYS(CURRENT_DATE);

731947
Use FROM_DAYS to convert in the reverse direction:
SELECT FROM_DAYS(731947);

2004-01-02
These functions are designed for use only with Gregorian dates,
 which begin on 15-Oct-1582. TO_DAYS and FROM_DAYS functions will not
 return correct results for earlier dates.

Unix Timestamp Support

The following functions convert to and from Unix
 timestamps:
	UNIX_TIMESTAMP([
 date])
	Returns a Unix timestamp, which is an unsigned integer
 with the number of seconds since 1-Jan-1970. With no argument,
 you generate the current timestamp. The
 date argument may be a date string, a
 datetime string, a timestamp, or a numeric equivalent.

	FROM_UNIXTIME(unix_timestamp
 [,
 format])
	Converts a Unix timestamp into a displayable date and time
 using the format you specify, if any.
 See Table 1-1 for a list of
 valid format elements.

For example, to convert 4-Jan-2004 at 7:18 PM into the number of
 seconds since 1-Jan-1970, specify:
SELECT UNIX_TIMESTAMP(20040104191800);

1073261880
To convert that timestamp into a human-readable format,
 specify:
SELECT FROM_UNIXTIME(1073261880,
 '%M %D, %Y at %h:%i:%r');

January 4th, 2004 at 07:18:07:18:00 PM
The format argument is optional. The
 default format for the datetime given in this example is 2004-01-04 19:18:00.

Seconds in the Day

Two MySQL functions let you work in terms of seconds in the
 day:
	SEC_TO_TIME(seconds)
	Converts seconds past midnight into a string of the form
 hh:mi:ss.

	TIME_TO_SEC(time)
	Converts a time into seconds past midnight.

For example:
SELECT TIME_TO_SEC('19:18'), SEC_TO_TIME(69480);

69480 19:18:00

DATE_FORMAT and TIME_FORMAT

These two functions provide a great deal of flexibility in
 conversions to text. Use DATE_FORMAT to convert dates to text and
 TIME_FORMAT to convert times:
SELECT DATE_FORMAT(CURRENT_DATE,
 '%W, %M %D, %Y');

Sunday, January 4th, 2004
The second argument to both functions is a format string. Format
 elements in that format string are replaced with their respective
 datetime elements, as described in Table 1-1. Other text in the format
 string, such as the commas and spaces in this example, is left in
 place as part of the function’s return value.
Table 1-1. MySQL date format elements
	Specifier
	Description

	%a
	Weekday abbreviation:
 Sun, Mon, Tue,…

	%b
	Month abbreviation:
 Jan, Feb, Mar,…

	%c
	Month number: 1, 2,
 3,…

	%D
	Day of month with
 suffix: 1st, 2nd, 3rd,…

	%d
	Day of month, two
 digits: 01, 02, 03,…

	%e
	Day of month: 1, 2,
 3,…

	%f
	Microseconds:
 000000–999999

	%H
	Hour, two digits,
 24-hour clock: 00…23

	%h
	Hour, two digits,
 12-hour clock: 01…12

	%I
	Hour, two digits,
 12-hour clock: 01…12

	%i
	Minutes: 00,
 01,…59

	%j
	Day of year:
 001…366

	%k
	Hour, 24-hour clock: 0,
 1,…23

	%l
	Hour, 12-hour clock: 1,
 2,…12

	%M
	Month name: January,
 February,…

	%m
	Month number: 01,
 02,…12

	%p
	Meridian indicator: AM
 or PM

	%r
	Time of day on a
 12-hour clock, e.g., 12:15:05 PM

	%S
	Seconds: 00,
 01,…59

	%s
	Same as %S

	%T
	Time of day on a
 24-hour clock, e.g., 12:15:05 (for 12:15:05 PM)

	%U
	Week with Sunday as the
 first day: 00, 01,…53

	%u
	Week with Monday as the
 first day: 00, 01,…53

	%V
	Week with Sunday as the
 first day, beginning with 01 and corresponding to %X: 01, 02,…53

	%v
	Week with Monday as the
 first day, beginning with 01 and corresponding to %x: 01, 02,…53

	%W
	Weekday name: Sunday,
 Monday,…

	%w
	Numeric day of week:
 0=Sunday, 1=Monday,…

	%X
	Year for the week, four
 digits, with Sunday as the first day and corresponding to
 %V

	%x
	Year for the week, four
 digits, with Monday as the first day and corresponding to
 %v

	%Y
	Four-digit year: 2003,
 2004,…

	%y
	Two-digit year: 03,
 04,…

	%%
	Places the percent sign
 (%) in the output

Datetime Conversions: Oracle

You can convert to and from datetime types in Oracle by using the
 following functions:
TO_CHAR({datetime|interval}, format)
TO_DATE(string, format)
TO_TIMESTAMP(string, format)
TO_TIMESTAMP_TZ(string, format)
TO_DSINTERVAL('D HH:MI:SS')
TO_YMINTERVAL('Y-M')
NUMTODSINTERVAL(number, 'unit_ds')
NUMTOYMINTERVAL(number, 'unit_ym')

unit_ds ::= {DAY|HOUR|MINUTE|SECOND}
unit_ym ::= {YEAR|MONTH}
The format argument allows great
 control over text representation. For example, you can specify precisely
 the display format for
 dates:
SELECT name,
 TO_CHAR(confirmed_date, 'dd-Mon-yyyy') cdate
FROM upfall;

Munising Falls 08-Dec-2005
Tannery Falls 08-Dec-2005
Alger Falls 08-Dec-2005
…
And to convert in the other direction:
INSERT INTO upfall (id, name, confirmed_date)
VALUES (15, 'Tahquamenon',
 TO_TIMESTAMP('29-Jan-2006','dd-Mon-yyyy'));
Table 1-2 lists the
 format elements that you can use in creating a
 format mask. Output from many of the elements
 depends on your session’s current language setting (e.g., if your
 session language is French, you’ll get month names in French).
When converting to text, the case of
 alphabetic values, such as month abbreviations, is determined by the
 case of the format element. Thus, 'Mon' yields 'Jan' and 'Feb', 'mon' yields 'jan' and 'feb', and 'MON' yields 'JAN' and 'FEB'. When converting
 from text, case is irrelevant.
The format mask is always optional. You
 can omit it when your input value conforms to the default format
 specified by the following:
 NLS_DATE_FORMAT (dates) for dates, NLS_TIMESTAMP_FORMAT for timestamps,
 and NLS_TIMESTAMP_TZ_FORMAT for timestamps with time zones. You can
 query the NLS_SESSION_PARAMETERS view to check your NLS
 settings.
Table 1-2. Oracle datetime format elements
	Element
	Description

	AM or PM
A.M. or P.M.	Meridian
 indicator.

	BC or AD
B.C. or A.D.	B.C. or A.D.
 indicator.

	CC
	Century.
 Output-only.

	D
	Day in the
 week.

	DAY, Day, or day
	Name of
 day.

	DD
	Day in the
 month.

	DDD
	Day in the
 year.

	DL
	Long date format.
 Output-only. Combines only with TS.

	DS
	Short date format.
 Output-only. Combines only with TS.

	DY, Dy, or dy
	Abbreviated name of
 day.

	E
	Abbreviated era name for
 Japanese Imperial, ROC Official, and Thai Buddha calendars.
 Input-only.

	EE
	Full era
 name.

	FF, FF1…FF9
	Fractional seconds. Only
 for TIMESTAMP values. Always use two Fs. FF1…FF9 work in Oracle Database
 10g and higher.

	FM
	Toggles blank
 suppression. Output-only.

	FX
	Requires exact pattern
 matching on input.

	HH or HH12
	Hour in the day, from
 1–12. HH12 is
 output-only.

	HH24
	Hour in the day, from
 0–23.

	IW
	ISO week in the year.
 Output-only.

	IYY, IY, or I
	Last three, two, or one
 digits of ISO year. Output-only.

	IYYY
	ISO year.
 Output-only.

	J
	Julian date. January 1,
 4712 B.C. is day 1.

	MI
	Minutes.

	MM
	Month
 number.

	MON, Mon, or mon
	Abbreviated name of
 month.

	MONTH, Month, or month
	Name of
 month.

	Q
	Quarter of year.
 Output-only.

	RM or rm
	Roman numeral month
 number.

	RR
	Last two digits of year.
 Sliding window for hundreds value: 00–49 = 20xx, 50–99 =
 19xx.

	RRRR
	Four-digit year; also
 accepts two digits on input. Sliding window just like RR.

	SCC
	Century. B.C. dates
 negative. Output-only.

	SP
	Suffix that converts a
 number to its spelled format.

	SPTH
	Suffix that converts a
 number to its spelled and ordinal formats.

	SS
	Seconds.

	SSSSS
	Seconds since
 midnight.

	SYEAR, SYear, or syear
	Year in words. B.C. dates
 negative. Output-only.

	SYYYY
	Four-digit year. B.C.
 dates negative.

	TH or th
	Suffix that converts a
 number to ordinal format.

	TS
	Short time format.
 Output-only. Combine only with DL or DS.

	TZD
	Abbreviated time zone
 name. Input-only.

	TZH
	Time zone hour
 displacement from UTC (Coordinated Universal
 Time).

	TZM
	Time zone minute
 displacement from UTC.

	TZR
	Time zone
 region.

	W
	Week in the month, from 1
 through 5. Week 1 starts on the first day of the month and ends
 on the seventh. Output-only.

	WW
	Week in the year, from 1
 through 53. Output-only.

	X
	Local radix character
 used to denote the decimal point. This is a period in American
 English.

	Y,YYY
	Four-digit year with
 comma.

	YEAR, Year, or year
	Year in words.
 Output-only.

	YYY, YY, or Y
	Last three, two, or one
 digits of year.

	YYYY
	Four-digit
 year.

Datetime Conversions: PostgreSQL

Convert between datetimes and character strings using the
 following functions:
TO_CHAR({timestamp|interval}, format)
TO_DATE(string, format)
TO_TIMESTAMP(string, format)
For example, to convert a date to the character representation of
 a timestamp, specify:
SELECT u.name,
 TO_CHAR(u.confirmed_date, 'dd-Mon-YYYY')
FROM upfall u;

 name | to_char
-----------------+-------------
 Munising Falls | 08-Dec-2005
 Tannery Falls | 08-Dec-2005
 Alger Falls | 08-Dec-2005
...
To convert in the other direction (a character representation of a
 timestamp to a date), specify:
SELECT TO_DATE('8-Dec-2005', 'dd-mon-yyyy');
PostgreSQL closely follows Oracle in its support for format
 elements. Table 1-3 lists
 those available in PostgreSQL. Case follows form for alphabetic
 elements: use MON to yield JAN, FEB;
 Mon to yield Jan, Feb;
 and mon to yield jan, feb.
Warning
You cannot apply TO_CHAR to values of type TIME.

You can also use TO_TIMESTAMP to convert a Unix epoch value to a
 PostgreSQL timestamp:
SELECT TO_TIMESTAMP(0);
Unix time begins at midnight, at the beginning of 1-Jan-1970,
 Coordinated Universal Time (UTC).
Table 1-3. PostgreSQL datetime format elements
	Element
	Description

	AM or PM
A.M. or P.M.	Meridian
 indicator.

	BC or AD
B.C. or A.D.	B.C. or A.D.
 indicator.

	CC
	Century.
 Output-only.

	D
	Day in the
 week.

	DAY, Day, or day
	Name of
 day.

	DD
	Day in the
 month.

	DDD
	Day in the
 year.

	DY, Dy, or dy
	Abbreviated name of
 day.

	FM
	Toggles blank
 suppression. Output-only.

	FX
	Requires exact pattern
 matching on input.

	HH or HH12
	Hour in the day, from
 1–12. HH12 is output-only.

	HH24
	Hour in the day, from
 0–23.

	IW
	ISO week in the year.
 Output-only.

	IYY, IY, or I
	Last three, two, or one
 digits of ISO standard year. Output-only.

	IYYY
	ISO standard year.
 Output-only.

	J
	Julian date. January 1,
 4712 B.C. is day 1.

	MI
	Minutes.

	MM
	Month
 number.

	MON, Mon, or mon
	Abbreviated name of
 month.

	MONTH, Month, or month
	Name of
 month.

	MS
	Milliseconds.

	Q
	Quarter of year.
 Output-only.

	RM or rm
	Month number in Roman
 numerals.

	SP
	Suffix that converts a
 number to its spelled format (not implemented).

	SS
	Seconds.

	SSSS
	Seconds since
 midnight.

	TH or th
	Suffix that converts a
 number to ordinal format.

	TZ or tz
	Time zone
 name.

	US
	Microseconds.

	W
	Week in the month, from 1
 through 5. Week 1 starts on the first day of the month and ends
 on the seventh. Output-only.

	WW
	Week in the year, from 1
 through 53. Output-only.

	Y,YYY
	Four-digit year with
 comma.

	YYY, YY, or Y
	Last three, two, or one
 digits of year.

	YYYY
	Four-digit
 year.

Datetime Conversions: SQL Server

In SQL Server, you can choose one of four overall approaches to
 datetime conversion. The CONVERT function is a good general choice,
 although DATENAME and DATEPART provide a great deal of flexibility when
 converting to text.
CAST and SET DATEFORMAT

SQL Server supports the standard CAST function and also allows you to specify a datetime format
 using the SET DATEFORMAT command:
SET DATEFORMAT dmy
SELECT CAST('1/12/2004' AS datetime)

2004-12-01 00:00:00.000
For dates in unambiguous formats, you may not need to worry
 about the DATEFORMAT setting:
SET DATEFORMAT dmy
SELECT CAST('12-Jan-2004' AS datetime)

2004-01-12 00:00:00.000
When using SET DATEFORMAT, you can specify any of the following
 arguments: mdy, dmy, ymd,
 myd, dym.

CONVERT

You can use the CONVERT function for general datetime conversions:
CONVERT(datatype[(length)], expression[, style])
The optional style argument allows
 you to specify the target and source formats for datetime values,
 depending on whether you are converting to or from a character string.
 Table 1-4 lists the supported
 styles.
For example, you can convert to and from text:
SELECT CONVERT(VARCHAR,
 CONVERT(DATETIME, '15-Nov-1961', 106),
 106)

15 Nov 1961
Use the length argument if you want
 to specify the length of the resulting character string type. Subtract
 100 from most style numbers for two-digit years:
SELECT CONVERT(DATETIME, '1/1/50', 1)

1950-01-01 00:00:00.000

SELECT CONVERT(DATETIME, '49.1.1', 2)

2049-01-01 00:00:00.000
SQL Server uses the year 2049 as a cutoff. Years 50–99 are
 interpreted as 1950–1999. Years 00–49 are treated as 2000–2049. You
 can see this behavior in the preceding example. Be aware that your DBA
 can change the cutoff value using the two
 digit year cutoff configuration option.
Table 1-4. SQL Server datetime styles
	Style
	Description

	0, 100
	Default: mon dd yyyy hh:miAM (or PM)

	101[a]
	USA: mm/dd/yyyy

	102[a]
	ANSI: yyyy.mm.dd

	103[a]
	British/French:
 dd/mm/yyyy

	104[a]
	German: dd.mm.yyyy

	105[a]
	Italian: dd-mm-yyyy

	106[a]
	dd mon yyyy

	107[a]
	mon dd, yyyy

	108[a]
	hh:mm:ss

	9, 109
	Default with
 milliseconds: mon dd yyyy hh:mi:ss:
 mmmAM (or PM)

	110[a]
	USA: mm-dd-yyyy

	111[a]
	Japan: yyyy/mm/dd

	112[a]
	ISO: yyyymmdd

	13, 113
	Europe default with
 milliseconds and 24-hour clock: dd
 mon yyyy hh:mm:ss:mmm

	114[a]
	hh:mi:ss:mmm with 24-hour
 clock

	20, 120
	ODBC canonical, 24-hour
 clock: yyyy-mm-dd
 hh:mi:ss

	21, 121
	ODBC canonical with
 milliseconds, 24-hour clock: yyyy-mm-dd
 hh:mi:ss.mmm

	126
	ISO8601, no spaces:
 yyyy-mm-yyThh:mm:ss:mmm

	127
	Time with time zone
 (literal T separating the
 date from the time): yyyy-mm-ddThh:mi:ss.mmm

	130
	Hijri: dd mon yyyy
 hh:mi:ss:mmmAM

	131
	Hijri: dd/mm/yyyy
 hh:mi:ss:mmmAM

	[a] Subtract 100 to get a two-digit year.

DATENAME and DATEPART

Use the DATENAME and DATEPART functions to extract specific
 elements from datetime values:
DATENAME(datepart, datetime)
DATEPART(datepart, datetime)
DATENAME returns a textual representation, whereas DATEPART returns a numeric
 representation. For example:
SELECT DATENAME(month, GETDATE()),
 DATEPART(month, GETDATE())

January 1
Some elements, such as year and
 day, are always represented as numbers;
 however, the two functions give you the choice of getting back a
 string or an actual numeric value. Both of the following function
 calls return the year, but DATENAME returns the string '2004', whereas DATEPART returns the number
 2004:
SELECT DATENAME(year, GETDATE()),
 DATEPART(year, GETDATE());
SQL Server supports the following
 datepart keywords: year, yy,
 yyyy, quarter, qq, q,
 month, mm, m,
 dayofyear, dy, y,
 day, dd, d,
 week, wk, ww,
 weekday, dw, hour,
 hh, minute, mi, n,
 second, ss, s,
 millisecond, ms, microsecond, mcs, nanosecond, ns, TZoffset, tz, ISO_Week, isowk, isoww.

DAY, MONTH, and YEAR

SQL Server also supports a few functions to extract specific
 values from dates:
DAY(datetime)
MONTH(datetime)
YEAR(datetime)
For example:
SELECT DAY(CURRENT_TIMESTAMP),
 MONTH(CURRENT_TIMESTAMP),
 YEAR(CURRENT_TIMESTAMP)

11 11 2003

Datetime Functions: DB2

DB2 implements the following special
 registers to return datetime information:
	CURRENT DATE
 or CURRENT_DATE
	Returns the current date on the server.

	CURRENT TIME
 or CURRENT_TIME
	Returns the current time on the server.

	CURRENT TIMESTAMP
 or CURRENT_TIMESTAMP
	Returns the current date and time as a timestamp.

	CURRENT TIMEZONE
 or CURRENT_TIMEZONE
	Returns the current time zone as a decimal number
 representing the time zone offset—in hours, minutes, and
 seconds—from UTC. The first two digits are the hours, the second
 two digits are the minutes, and the last two digits are the
 seconds.

DB2 also supports labeled durations. For
 example:
CURRENT_DATE + 1 YEARS - 3 MONTHS + 10 DAYS
Valid labels are YEAR, YEARS, MONTH, MONTHS, DAY, DAYS, HOUR,
 HOURS, MINUTE, MINUTES, SECOND, SECONDS, MICROSECOND, and
 MICROSECONDS.
Note
DB2 9.7 and higher now support many of the same functions as Oracle, notably: ROUND,
 TRUNC, ADD_MONTHS, LAST_DAY, NEXT_DAY, and MONTHS_BETWEEN. See Datetime Functions: Oracle for details.

Datetime Functions: MySQL

MySQL implements the following functions to return the current
 date and time:
	CURDATE()
 or CURRENT_DATE
	Returns the current date as a string ('YYYY-MM-DD') or a number (YYYYMMDD), depending on the
 context.

	CURTIME()
 or CURRENT_TIME
	Returns the current time as a string ('HH:MI:SS') or a number (HHMISS), depending on the
 context.

	NOW(), SYSDATE(), or
 CURRENT_TIMESTAMP
	Returns the current date and time as a string ('YYYY-MM-DD HH:MI:SS') or a number
 (YYYYMMDDHHMISS), depending on
 the context.

	UNIX_TIMESTAMP
	Returns the number of seconds since the beginning of
 1-Jan-1970 as an integer.

MySQL also implements the following functions for adding and
 subtracting intervals from dates.
	DATE_ADD(date
 , INTERVAL
 value
 units)
	Adds value number of
 units to the
 date. You can use ADDDATE as a synonym
 for DATE_ADD.

	DATE_SUB(date
 , INTERVAL
 value
 units)
	Subtracts value number of
 units from the
 date. You can use SUBDATE as a synonym
 for DATE_SUB.

For example, to add one month to the current date:
SELECT DATE_ADD(CURRENT_DATE, INTERVAL 1 MONTH);
Or, to subtract one year and two months:
SELECT DATE_SUB(CURRENT_DATE,
 INTERVAL '1-2' YEAR_MONTH);
Valid interval keywords for numeric intervals include SECOND,
 MINUTE, HOUR, DAY, MONTH, and YEAR. You can also use the string-based
 formats shown in Table 1-5.
Table 1-5. MySQL string-based interval formats
	Keyword
	Format

	DAY_HOUR
	'dd hh'

	DAY_MINUTE
	'dd hh:mi'

	DAY_SECOND
	'dd hh:mi:ss'

	HOUR_MINUTE
	'HH:MI'

	HOUR_SECOND
	'hh:mi:ss'

	MINUTE_SECOND
	'MI:SS'

	YEAR_MONTH
	'yy-mm'

Datetime Functions: Oracle

Oracle implements a wide variety of helpful functions for working
 with dates and times.
Getting Current Date and Time

It is common to invoke SYSDATE to return the current date and
 time in the server’s time zone. For example:
SELECT SYSDATE FROM dual;

2006-02-07 09:32:32
You can use ALTER SESSION to specify a default date format for
 your session using the date format elements described in Table 1-2.
ALTER SESSION
 SET NLS_DATE_FORMAT = 'dd-Mon-yyyy hh: mi:ss';
The following Oracle functions return current datetime information:
	CURRENT_DATE
	Returns the current date in the session time zone as a
 value of type DATE.

	CURRENT_TIMESTAMP[(precision)]
	Returns the current date and time in the session time zone
 as a value of type TIMESTAMP WITH TIME ZONE. The precision is
 the number of decimal digits used to express fractional seconds;
 it defaults to 6.

	LOCALTIMESTAMP[(precision)]
	The same as CURRENT_TIMESTAMP, but it returns a TIMESTAMP
 value with no time zone offset.

	SYSDATE
	Returns the server date and time as a DATE.

	SYSTIMESTAMP[(precision)]
	Returns the current server date and time as a TIMESTAMP
 WITH TIME ZONE value.

	DBTIMEZONE
	Returns the database server time zone as an offset from
 UTC in the form '[+|-]hh:mi'.

	SESSIONTIMEZONE
	Returns the session time zone as an offset from UTC in the
 form '[+|-]hh:mi'.

Rounding and Truncating

Oracle allows you to round and truncate DATE values to specific
 datetime elements. The following example illustrates rounding and
 truncating to the nearest month:
SELECT SYSDATE, ROUND(SYSDATE,'Mon'),
 TRUNC(SYSDATE,'Mon')
FROM dual;

SYSDATE ROUND(SYSDA TRUNC(SYSDA
----------- ----------- -----------
31-Dec-2003 01-Jan-2004 01-Dec-2003
Rounding is implemented to the nearest
 occurrence of the element you specify. My input date was closer to
 1-Jan-2004 than it was to 1-Dec-2003, so my date was rounded up to the
 nearest month.
Truncation simply sets any element of
 lesser significance than the one you specify to its minimum value. The
 minimum day value is 1, so 31-Dec was truncated to 1-Dec.

Use the date format elements from Table 1-2 to specify the element
 for which you want to round or truncate a date. Avoid esoteric
 elements such as RM (Roman
 numerals) and J (Julian day); stick
 to easily understood elements such as MM (month), Q (quarter), and so forth. If you omit the
 second argument to ROUND or TRUNC, the date is rounded or truncated to
 the day (the DD element).

Other Oracle Datetime Functions

The following functions work with, and usually return, values of
 type DATE:
	ADD_MONTHS(date
 ,
 integer)
	Adds integer months to
 date. If
 date is the last day of its month,
 the result is forced to the last day of the target month. If the
 target month has fewer days than
 date’s month, the result is also
 forced to the last of the month.

	LAST_DAY(date)
	Returns the last day of the month that contains a
 specified date.

	NEXT_DAY(date
 ,
 weekday)
	Returns the first specified weekday following a given
 date. The
 weekday must be a valid weekday name
 or abbreviation in the current date language for the session.
 (You can query NLS_SESSION_PARAMETERS to check this value.) Even
 when date falls on
 weekday, the function will still
 return the next occurrence of
 weekday.

	MONTHS_BETWEEN(later_date
 ,
 earlier_date)
	Computes the number of months between two dates. The math
 corresponds to later_date –
 earlier_date. The input dates can
 actually be in either order, but if the second date is later,
 the result will be negative.
The result will be an integer number of months for any
 case in which both dates correspond to the same day of the
 month, or for any case in which both dates correspond to the
 last day of their respective months. Otherwise, Oracle
 calculates a fractional result based on a 31-day month, also
 considering any time-of-day components of the input
 dates.

None of these functions is overloaded to handle TIMESTAMP
 values. Any timestamp inputs are converted implicitly to type DATE and
 consequently lose any fractional second and time zone
 information.

Datetime Functions: PostgreSQL

The following subsections demonstrate some of PostgreSQL’s more
 useful datetime functions.
Getting Current Date and Time

PostgreSQL implements the following functions to return the
 current date and time:
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME [(precision)]
CURRENT_TIMESTAMP [(precision)]

LOCALTIME
LOCALTIMESTAMP
LOCALTIME [(precision)]
LOCALTIMESTAMP [(precision)]

NOW()
The function NOW() is equivalent to CURRENT_TIMESTAMP. The
 CURRENT functions return values with a time zone. The LOCAL functions
 return values without a time zone.
For example:
SELECT
 TO_CHAR(CURRENT_TIMESTAMP, 'HH:MI:SS tz'),
 TO_CHAR(LOCALTIMESTAMP, 'HH:MI:SS tz');

 05:02:00 est | 05:02:00
Some functions accept an optional
 precision argument. You can omit the
 argument to receive the fullest possible precision. Alternatively, you
 can use the argument to round to precision
 digits to the right of the decimal. For example:
SELECT CURRENT_TIME, CURRENT_TIME(1);

 17:10:07.490077-05 | 17:10:07.50-05
None of the previously listed functions advance their return
 values during a transaction. You will always get the date and time at
 which the current transaction began. The function TIMEOFDAY() is an
 exception to this rule:
SELECT TIMEOFDAY();

 Sun Feb 05 17:11:39.659280 2006 EST
TIMEOFDAY() returns wall-clock time, advances during a
 transaction, and returns a character-string result.

Rounding and Truncating

PostgreSQL does not support the rounding of datetime values;
 however, it does provide a DATE_TRUNC function for truncating a
 datetime:
SELECT CURRENT_DATE,
 DATE_TRUNC('YEAR', CURRENT_DATE);

 2006-02-05 | 2006-01-01 00:00:00-05
The result is either a TIMESTAMP or an INTERVAL, depending on
 what type of value is being truncated. The following are valid values
 for DATE_TRUNC’s first argument: MICROSECONDS, MILLISECONDS, SECOND,
 MINUTE, HOUR, DAY, WEEK, MONTH, YEAR, DECADE, CENTURY, and MILLENNIUM.
 Pass one of these values as a text string; case does not
 matter.

Other PostgreSQL Datetime Functions

Use AT TIME ZONE either to apply a time zone to a datetime
 without one or to convert a datetime from one time zone to another.
 For example:
SELECT CURRENT_TIMESTAMP;

 2006-02-05 17:28:38.534286-05

SELECT CURRENT_TIMESTAMP AT TIME ZONE 'PST';

 2006-02-05 14:28:38.541632
You can achieve the same results as those in the previous
 example through the TIMEZONE
 function:
SELECT TIMEZONE('PST', CURRENT_TIMESTAMP);
PostgreSQL supports an Ingres-inspired function called DATE_PART
 that provides the same functionality as the ISO-standard EXTRACT. For
 example, to extract the current minute value as a number,
 specify:
SELECT DATE_PART('minute', CURRENT_TIME);

36
DATE_PART accepts all of the same datetime element names as
 EXTRACT. See EXTRACT Function.

Datetime Functions: SQL Server

SQL Server 2008 introduces a set of high-precision functions to
 return current datetime information:
	SYSDATETIME()
	Returns date and time as a DATETIME2 value.

	SYSDATETIMEOFFSET()
	Returns date, time, and time zone offset as a DATETIMEOFFSET value.

	SYSUTCDATETIME
	Returns current UTC time as a DATETIME2 value.

SQL Server continues to support the following functions from
 previous releases:
	CURRENT_TIMESTAMP
 or GETDATE()
	Returns the current date and time on the server as a
 datetime value.

	GETUTCDATE()
	Returns the current UTC date and time, as derived from the
 server’s time and time zone setting.

SQL Server implements two functions for date arithmetic:
	DATEADD(datepart,
 interval,date)
	Adds interval (expressed as an
 integer) to date. Specify a negative
 interval to perform subtraction. The
 datepart argument is a keyword
 specifying the portion of the date to
 increment, and it may be any of the following: year, yy, yyyy, quarter, qq, q, month, mm, m, dayofyear, dy, y, day, dd, d, week, wk, ww, hour, hh, minute, mi, n, second, ss, s, millisecond, ms. For example, to add one day to the
 current date, use DATEADD(day, 1,
 GETDATE()).

	DATEDIFF(datepart
 ,
 startdate ,
 enddate)
	Returns enddate –
 startdate expressed in terms of the
 units you specify for the datepart
 argument. For example, to compute the number of minutes between
 the current time and UTC time, use DATEDIFF(mi, GETUTCDATE(), GETDATE()).

SQL Server 2008 introduces new functions to work with time zone
 offsets:
	SWITCHOFFSET(datetimeoffset,
 new_offset)
	Inserts a new time zone offset into a DATETIMEOFFSET value
 and returns that new value.

	TODATETIMEOFFSET(datetime2,
 new_offset)
	Creates a DATETIMEOFFSET value from a DATETIME2 and an
 offset that you specify.

Specify time zone offsets in string form. For example, to convert
 the current time into U.S. Eastern Standard Time:
SELECT
 SWITCHOFFSET (
 SYSDATETIMEOFFSET(),
 '-05:00');
Negative offsets count westward from the prime meridian; positive
 offsets count eastward.

Deleting Data

Use the DELETE statement to delete rows from a table:
DELETE
FROM data_source
WHERE predicates
For example, you may want to delete states for which you don’t
 know the population:
DELETE FROM state s
WHERE s.population IS NULL;
SQL Server, MySQL, and PostgreSQL 8.1 and earlier do not allow the
 alias on the target table. See the section Predicates
 for more details on the different kinds of predicates that you can
 write.
Deleting in Order

MySQL requires that you include an ORDER BY clause in your
 DELETE statement when deleting multiple rows from a table having a
 self-referential foreign-key constraint. This is to ensure that child
 rows are deleted before their parents. Because MySQL checks for
 constraint violations during statement execution, this is a MySQL-only
 issue.
Note
The ISO SQL standard allows constraint checking to be done
 either at the end of each statement’s execution or at the end of a
 transaction, but never during statement
 execution.

In the section Subquery Inserts, you will
 find an INSERT INTO…SELECT FROM
 statement that creates a new tour in the trip table called J's Tour. If you wish to delete J's Tour, you must issue a statement such
 as:
DELETE FROM trip WHERE name = 'J''s Tour'
ORDER BY CASE stop
 WHEN 1 THEN 1
 WHEN 2 THEN 2
 WHEN 6 THEN 3
 WHEN 4 THEN 4
 WHEN 3 THEN 5
 WHEN 5 THEN 6
 END DESC;
The CASE expression in this statement’s ORDER BY clause
 hardcodes a child-first delete order. Obviously, this completely
 defeats the purpose of a multirow DELETE statement. If you’re lucky,
 you’ll have a sortable column that will yield a child-first delete
 order without its having to be hardcoded. In the case of this book’s
 example schema and data, I wasn’t so lucky.

Deleting All Rows

Omit the WHERE clause to remove all rows from a table:
DELETE FROM township;
Many database systems also implement a TRUNCATE TABLE statement
 that empties a table instantly, without logging, and thus with no hope
 of rolling back:
TRUNCATE TABLE township;
Oracle provides a form that preserves any space allocated to the
 table (which is useful if you plan to reload the table right
 away):
TRUNCATE TABLE township REUSE STORAGE;

Deleting from Views and Subqueries

All platforms allow deletes from views, but with restrictions.
 Oracle and DB2 allow deletes from a subquery (also known as an
 inline view). For example, to delete any states
 not referenced by the gov_unit
 table, you can specify:
DELETE FROM (
 SELECT * FROM state s
 WHERE s.id NOT IN (
 SELECT g.id FROM gov_unit g
 WHERE g.type = 'State'));
In PostgreSQL, a view that is the target of a DELETE must have
 an associated ON DELETE DO INSTEAD rule. PostgreSQL does not allow
 deleting from subqueries.
Various restrictions are placed on deletions from views and
 subqueries because, ultimately, a database system must be able to
 resolve a DELETE against a view or a subquery to a set of rows in an
 underlying table.

Returning Deleted Data: DB2

DB2 provides a very powerful option for retrieving the rows
 affected by a DELETE statement. Simply SELECT from the DELETE
 statement. For example:
SELECT * FROM OLD TABLE (
 DELETE FROM state
 WHERE name = 'Michigan'
);
Specify FROM OLD TABLE, and wrap your DELETE in parentheses.

Returning Deleted Data: Oracle

Oracle’s solution to returning just-deleted rows is a RETURNING
 clause to specify the data to be returned and where it will be
 placed:
DELETE FROM ...
WHERE ...
RETURNING expression [,expression ...]
[BULK COLLECT] INTO variable [,variable ...]
For DELETEs of more than one row, the target variables must also
 be PL/SQL collection types, and you must use the BULK COLLECT
 keywords:
DECLARE
 TYPE county_id_array IS ARRAY(100) OF NUMBER;
 county_ids county_id_array;
BEGIN
 DELETE FROM county_copy
 RETURNING id BULK COLLECT INTO county_ids;
END;
/
Rather than specifying a target
 variable for each source expression, your target can be a
 record containing the appropriate number and type of fields.

Returning Deleted Data: SQL Server

SQL Server implements the OUTPUT clause for returning deleted rows from a query. For
 example:
DELETE FROM state
OUTPUT DELETED.id AS state_id,
 DELETED.name;
You can use the syntax OUTPUT
 DELETED.* to return all columns. You can specify expressions
 such as UPPER(DELETED.name). You
 can specify column aliases as in any query, with or without the
 optional AS keyword.

Double-FROM

SQL Server supports an extension to DELETE that lets you delete
 from a table based on values from a joined table. For example, to
 delete counties from gov_unit for
 which you do not know the population, specify:
DELETE FROM gov_unit
FROM gov_unit g JOIN county c
 ON g.id = c.id
WHERE c.population IS NULL;
The first FROM clause identifies the ultimate target of the
 DELETE. The second FROM clause
 specifies a table join. Then predicates in the WHERE clause can
 evaluate columns from both tables in the join. In this example, rows
 are deleted from the gov_unit table
 based on a corresponding population from
 the county
 table.

EXTRACT Function

DB2 (9.7 and higher), MySQL, Oracle, and PostgreSQL support the standard EXTRACT function to
 retrieve specific elements from a datetime value. In MySQL, for
 example:
SELECT EXTRACT(DAY FROM CURRENT_DATE);
The result will be a number. Valid elements are SECOND, MINUTE, HOUR, DAY, MONTH, and YEAR.
Oracle supports the following additional elements: TIMEZONE_HOUR, TIMEZONE_MINUTE,
 TIMEZONE_REGION, and
 TIMEZONE_ABBR. The latter two Oracle elements are exceptions and return
 string values.
PostgreSQL also supports additional elements: CENTURY, DECADE, DOW
 (day of week), DOY (day of year), EPOCH (number of seconds in an
 interval, or since 1-Jan-1970 for a date), MICROSECONDS, MILLENNIUM,
 MILLISECONDS, QUARTER, TIMEZONE (offset from UTC, in seconds), TIMEZONE_HOUR (hour part of UTC
 offset), TIMEZONE_MINUTE (minute part of offset), and WEEK.

GREATEST

DB2 (9.5 onward), MySQL, Oracle, and PostgreSQL implement the
 GREATEST function to return the largest value from a list of
 values:
	GREATEST(value
 [, value
 ...])

The input values may be numbers, datetimes, or strings. On some
 platforms, if even one input value is null, then the function returns
 null.

Grouping and Summarizing

SQL enables you to collect rows into groups and to summarize those
 groups in various ways, ultimately returning just one row per group. You
 do this using the GROUP BY and HAVING clauses, as well as various
 aggregate functions.
Aggregate Functions

An aggregate function takes a group of
 values, one from each row in a group of rows, and returns one value as
 output. One of the most common aggregate functions is COUNT, which
 counts non-null values in a column. For example, to count the number
 of waterfalls associated with a county, specify:
SELECT COUNT(u.county_id) AS county_count
FROM upfall u;

16
Add DISTINCT to the preceding query to count the number of
 counties containing waterfalls:
SELECT COUNT(DISTINCT u.county_id)
 AS county_count
FROM upfall u;

6
The ALL behavior is the default, counting all values: COUNT(expression) is equivalent to COUNT(ALL
 expression).
COUNT is a special case of an aggregate function because you can
 pass the asterisk (*) to count rows rather than column values:
SELECT COUNT(*) FROM upfall;
Nullity is irrelevant when COUNT(*) is used because the concept of null
 applies only to columns, not to rows as a whole. All other aggregate
 functions ignore nulls.
Table 1-6 lists some
 commonly available aggregate functions. However, most database vendors
 implement aggregate functions well beyond those shown.
Table 1-6. Common aggregate functions
	Function
	Description

	AVG(x)
	Returns the
 mean.

	COUNT(x)
	Counts non-null
 values.

	MAX(x)
	Returns the greatest
 value.

	MEDIAN(x)
	Returns the median, or
 middle value, which may be interpolated.(Oracle
 only.)

	MIN(x)
	Returns the least
 value.

	STDDEV(x)
	Returns the standard
 deviation. Use STDEV (only
 one D) in SQL Server.

	SUM(x)
	Sums all
 numbers.

	VARIANCE(x)
	Returns the statistical
 variance. Is an alias to VAR_SAMP in
 PostgreSQL, and to VAR_POP in MySQL. Use
 VAR in SQL Server.

GROUP BY

Aggregate functions come into their own when you apply them to
 groups of rows rather than to all rows in a table. To do this, use the
 GROUP BY clause. The following query counts the number of waterfalls
 in each of the predefined tours:
SELECT t.name AS tour_name, COUNT(*)
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
GROUP BY t.name;
When you execute a query like this one, the result-set rows are
 grouped as specified by the GROUP BY clause:
TOUR_NAME FALL_NAME
---------- ---------------
M-28 Munising Falls
M-28 Alger Falls
M-28 Scott Falls
M-28 Canyon Falls
M-28 Agate Falls
M-28 Bond Falls

Munising Munising Falls
Munising Tannery Falls
Munising Alger Falls
Munising Wagner Falls
Munising Horseshoe Falls
Munising Miners Falls

US-2 Bond Falls
US-2 Fumee Falls
US-2 Kakabika Falls
US-2 Rapid River Fls
After the groups have been created, any aggregate functions are
 applied once to each group. In this example, COUNT(*) is evaluated separately for each
 group:
TOUR_NAME COUNT(*)
---------- ---------------
M-28 6
M-28
M-28
M-28
M-28
M-28

Munising 6
Munising
Munising
Munising
Munising
Munising

US-2 4
US-2
US-2
US-2
Any columns to which an aggregate function has not been applied
 are now “collapsed” into one value:
TOUR_NAME COUNT(*)
---------- ---------------
M-28 6
Munising 6
US-2 4
In practical terms, this collapsing of many detail rows into one
 aggregate row means that you must apply an
 aggregate function to any column not listed in your GROUP BY
 clause.
Note
Grouping usually implies a limited sort operation to sort the
 rows into their groups.

Listing the Detail Values

Oracle implements the LISTAGG function to aggregate detail
 values for a column into a single value per group. The result is a
 delimited list of values. The following example extends the previous
 section’s query to return a column named stop with a comma-delimited list of falls on
 a given tour:
SELECT t.name AS tour_name,
 LISTAGG (u.name, ',') WITHIN GROUP
 (ORDER BY u.name ASC) AS stop
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
GROUP BY t.name;

TOUR_NAME STOP
---------- ------------------------------
M-28 Agate Falls,Alger Falls,Bond
 Falls,Canyon Falls,Munising
 Falls,Scott Falls

Munising Alger Falls,Horseshoe
 Falls,Miners Falls,Munising
 Falls,Tannery Falls,Wagner
 Falls
The parameters to LISTAGG specify the column to aggregate and
 the delimiter to use in creating the list. The WITHIN GROUP keywords
 are mandatory. The ORDER BY clause in parentheses is also mandatory,
 and in this case it sorts the list alphabetically. You can sort the
 list on any detail column. For example, you can sort the list of falls
 in the stop column by u.confirmed_date, by u.lat_lon, and so forth.

Reducing the GROUP BY List

Sometimes you want to list a column in the SELECT list of a
 GROUP BY query without having to list that same column in the GROUP BY
 clause. In the following query, a given county number implies a county
 name:
SELECT c.id AS county_id,
 c.name AS county_name,
 COUNT(*) AS waterfall_count
FROM upfall u INNER JOIN county c
 ON u.county_id = c.id
GROUP BY c.id, c.name;
Rather than grouping by the c.id and c.name columns, it might be more efficient
 to group by the c.id column only,
 which yields a much shorter sort key. The grouping sort will
 potentially run faster and use less scratch space on disk. One
 approach to doing this is specified as follows:
SELECT c.id AS county_id,
 MAX(c.name) AS county_name,
 COUNT(*) AS waterfall_count
FROM upfall u INNER JOIN county c
 ON u.county_id = c.id
GROUP BY c.id;
This query drops c.name from
 the GROUP BY clause. To compensate for that, the query arbitrarily
 applies the MAX function to that same column in the SELECT list.
 Because all county names within a group of similar c.id values are the same, MAX can return
 only that one name.

Grouping Before the Join

The GROUP BY examples in the preceding section involve a join
 that is performed before the grouping operation. Using a subquery,
 it’s possible to restate the query in a way that causes the join to
 occur after the aggregation instead:
SELECT c.id AS county_id,
 c.name AS county_name,
 agg.falls_count
FROM county c INNER JOIN (
 SELECT u.county_id, COUNT(*) AS falls_count
 FROM upfall u
 GROUP BY u.county_id) agg
ON c.id = agg.county_id;
The advantage here is that the join involves far fewer rows
 because the aggregation occurs prior to the join, not after it.
 Another advantage is a potential reduction in scratch disk and memory
 requirements, as the rows involved in the GROUP BY operation and
 subsequent aggregation do not include any data from the county table.

HAVING

The HAVING clause is used to place restrictions on the rows
 returned from a GROUP BY query. For example, to list only those tours
 having at least six stops, specify the following:
SELECT t.name AS tour_name, COUNT(*)
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
GROUP BY t.name
HAVING COUNT(*) >= 6;
Never put a condition in the HAVING clause that does not involve
 an aggregation. Such conditions are evaluated much more efficiently in
 the WHERE clause.

ROLLUP

The ROLLUP operation supported in DB2, MySQL, Oracle, and SQL
 Server generates a summary row for each group. For example, to roll up
 tour stops by county in DB2, Oracle, or SQL Server 2008, specify the
 following:
SELECT t.name AS tour_name,
 c.name AS county_name,
 COUNT(*) AS falls_count
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
 INNER JOIN county c
 ON u.county_id = c.id
GROUP BY ROLLUP(t.name, c.name);
Use the WITH ROLLUP syntax in MySQL or SQL Server
 2005:
SELECT t.name AS tour_name,
 c.name AS county_name,
 COUNT(*) as falls_count
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
 INNER JOIN county c
 ON u.county_id = c.id
GROUP BY t.name, c.name WITH ROLLUP;
Following is the output from the preceding queries. The rows in
 boldface are generated as a result of using ROLLUP:
TOUR_NAME COUNTY_NAME FALLS_COUNT
---------- ----------- ----------------------
M-28 Alger 3
M-28 Baraga 1
M-28 Ontonagon 2
M−28 6
US-2 Delta 1
US-2 Gogebic 1
US-2 Dickinson 1
US-2 Ontonagon 1
US−2 4
Munising Alger 6
Munising 6
 16
The GROUP BY operation generates the normal summary by tour and
 county. The ROLLUP operation adds in summaries for all other possible
 levels by tour name and for the entire set of rows. M-28’s six stops,
 for example, comprise three stops in Alger County, two in Ontonagon
 County, and one in Baraga County. There are 16 tour stops total across
 all tours.

CUBE

CUBE takes things a step further. It generates summaries for all
 possible combinations of the columns you specify, as well as a grand
 total. The following is the CUBE version of the preceding section’s
 ROLLUP query for DB2, Oracle, and SQL Server 2008, but restricted to
 the Munising tour:
SELECT t.name AS tour_name,
 c.name county_name,
 COUNT(*) AS falls_count
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
 INNER JOIN county c
 ON u.county_id = c.id
WHERE t.name = 'Munising'
GROUP BY CUBE(t.name, c.name);
MySQL 5.1 does not support CUBE. SQL Server 2005 requires the
 WITH CUBE syntax:
SELECT t.name AS tour_name,
 c.name AS county_name,
 COUNT(*) AS falls_count
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
 INNER JOIN county c
 ON u.county_id = c.id
WHERE t.name = 'Munising'
GROUP BY t.name, c.name WITH CUBE;
The results in DB2, Oracle, and SQL Server are the same:
TOUR_NAME COUNTY_NAME FALLS_COUNT
---------- ----------- ----------------------
 6
 Alger 6
Munising 6
Munising Alger 6
These results are only for the Munising tour. CUBE generates far
 more rows than ROLLUP does.

GROUPING SETS

Oracle, DB2, and SQL Server implement the GROUPING SETS function
 to let you specify the groupings that you want. For example:
SELECT t.name AS tour_name,
 c.name AS county_name,
 COUNT(*) AS falls_count
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
 INNER JOIN county c
 ON u.county_id = c.id
GROUP BY
 GROUPING SETS(t.name, c.name);

TOUR_NAME COUNTY_NAME FALLS_COUNT
---------- ----------- -----------
Munising 6
M-28 6
US-2 4
 Delta 1
 Ontonagon 3
 Gogebic 1
 Baraga 1
 Alger 9
 Dickinson 1
This data is a subset of the results generated by CUBE, but if
 it’s all you need, then using GROUPING SETS is more convenient.

Related Functions

The following functions are helpful when using CUBE, ROLLUP, and
 GROUPING SETS:
	GROUPING(column)
	Returns 1 if a null column value was the result of a CUBE,
 ROLLUP, or GROUPING SETS operation; otherwise, it returns 0.
 (DB2, Oracle, SQL Server.)

	GROUPING_ID(column
 ,
 column ,
 ...)
	Behaves similarly to GROUPING, but this generates a bit
 vector of 1s and 0s, depending on whether the corresponding
 columns contain nulls generated by an extended GROUP BY feature.
 (Available only in Oracle9i Database and
 higher.)

	GROUP_ID()
	Enables you to distinguish between duplicate rows in the
 output from CUBE, ROLLUP, and GROUPING SETS. The function
 returns 0 through n−1 for each row in a set
 of n duplicates. You can use that return
 value to decide how many duplicates to retain. Use HAVING GROUP_ID()=0 to eliminate all
 duplicates. (Oracle only.)

Following is an example of the GROUPING function, using SQL
 Server’s WITH CUBE syntax. The function returns a 1 whenever a null is
 the result of the CUBE operation.
SELECT t.name AS tour_name,
 c.name AS county_name,
 COUNT(*) AS falls_count,
 GROUPING(t.name) AS n1,
 GROUPING(c.name) n2
FROM upfall u INNER JOIN trip t
 ON u.id = t.stop
 INNER JOIN county c
 ON u.county_id = c.id
WHERE t.name = 'Munising'
GROUP BY t.name, c.name WITH CUBE;

tour_name county_name falls_count n1 n2
---------- ----------- ----------- ---- ----
Munising Alger 6 0 0
Munising NULL 6 0 1
NULL NULL 6 1 1
NULL Alger 6 1 0
The n1 and n2 columns indicate when null tour and
 county names are the result of the CUBE operation rather than of data
 actually contained within the tables being queried.

Hierarchical Queries

DB2, Oracle, and SQL Server support the recursive use of WITH as
 defined in the ISO SQL standard for querying hierarchical and recursive
 data. PostgreSQL supports recursive WITH, but with a slight syntax
 difference.
Note
Oracle also supports a proprietary CONNECT BY syntax. See CONNECT BY Queries.

Recursive WITH

Following is an example recursive query that generates a
 hierarchical list of governmental units. States will be listed first,
 then counties, then townships.
WITH recursiveGov
 (depth, id, parent_id, name,
 type) AS
 (SELECT 1, parent.id, parent.parent_id,
 parent.name, parent.type
 FROM gov_unit parent
 WHERE parent.parent_id IS NULL
 UNION ALL
 SELECT parent.depth+1, child.id,
 child.parent_id, child.name,
 child.type
 FROM recursiveGOV parent, gov_unit child
 WHERE child.parent_id = parent.id)
SELECT depth, id, parent_id, name, type
FROM recursiveGOV;
PostgreSQL requires that you specify that the WITH clause is to
 be recursive by including the RECURSIVE keyword:
WITH RECURSIVE recursiveGov
...
Most of the preceding statement consists of a subquery named
 recursiveGOV that is specified
 using the WITH clause. The subquery consists of two SELECTs unioned
 together. Consider the first SELECT as the union query’s starting
 point. It includes a predicate to treat rows having null parent_ids as the tree roots. Consider the
 second SELECT as defining the recursive link between parent and child
 rows.
The second SELECT brings in the children of the first. Because
 the second SELECT references the named subquery that it is part of
 (itself), it recursively brings back children of the rows it returned
 (and so forth until the end). The main SELECT kicks off all this
 recursion by simply selecting from the named subquery.
Note
For a more in-depth explanation of what happens when a
 recursive WITH executes, read the article “Understanding the WITH
 Clause” at http://gennick.com/with.html.

The output from the preceding query will look like this:
DEPTH ID PARENT_ID NAME TYPE
----- -- --------- -------- --------
1 3 Michigan state
2 2 3 Alger county
2 6 3 Baraga county
...

Tracking Your Depth

To keep track of your depth in a hierarchy, create a depth column as shown in the example query.
 Have the first SELECT return 1 as the value for that column and have
 the second SELECT return
 parent.depth+1. Then the root node
 will be depth 1, the root’s immediate children will be depth 2, and so
 on, down to the bottom of the hierarchy.

Breadth-First Versus Depth-First Sorting

Results are returned by default in the following breadth-first
 order, which differs from the order you’ll get using Oracle’s CONNECT
 BY syntax (described in CONNECT BY Queries):
	The root node

	The root’s immediate children

	The children of the root’s immediate children

	And so forth

Oracle lets you specify whether you prefer depth- or
 breadth-first sorting via a search clause. You
 can also specify how you want siblings ordered. Look at what follows
 the SEARCH keyword that precedes SELECT in the following
 example:
WITH recursiveGov
 (depth, id, parent_id, name,
 type) AS
 (SELECT 1, parent.id, parent.parent_id,
 parent.name, parent.type
 FROM gov_unit parent
 WHERE parent.parent_id IS NULL
 UNION ALL
 SELECT parent.depth+1, child.id,
 child.parent_id, child.name,
 child.type
 FROM recursiveGOV parent, gov_unit child
 WHERE child.parent_id = parent.id)
 SEARCH DEPTH FIRST
 BY name ASC NULLS FIRST
 SET ordering_column
SELECT depth, id, parent_id, name, type
FROM recursiveGOV
ORDER BY ordering_column;
You can specify either SEARCH DEPTH FIRST or SEARCH BREADTH
 FIRST. The preceding query returns results in depth-first
 order:
DEPTH ID PARENT_ID NAME TYPE
----- -- --------- -------- --------
 1 3 Michigan State
 2 2 3 Alger County
 3 5 2 Au Train Township
 3 1 2 Munising City
...
Key to these results is the SET
 ordering_column clause. That clause adds an extra column of
 output containing a value that you can sort on in the main query to
 ensure that rows are, in fact, returned in the specified breadth- or
 depth-first order. You can name the ordering column anything you wish.
 You can also include that column in your main query’s select list, in
 the WHERE clause, and anywhere else in the main query a column name is
 allowed.

Detecting Recursive Loops

Oracle also supports syntax to detect loops in recursive data.
 For instance, the example data for this book has been carefully
 crafted to include a loop in the trip table. If you look closely at the raw
 data, you’ll find that two stops share the same parent, leading to a
 loop. The following query uses the CYCLE clause to detect that problem
 and the resulting loop:
WITH recursiveTrip
 (name, stop, parent_stop)
AS (SELECT parent.name, parent.stop,
 parent.parent_stop
 FROM trip parent
 WHERE parent.parent_stop IS NULL
 UNION ALL
 SELECT child.name, child.stop,
 child.parent_stop
 FROM recursiveTrip parent, trip child
 WHERE child.parent_stop = parent.stop)
 SEARCH DEPTH FIRST
 BY stop ASC NULLS FIRST
 SET ordering_column
 CYCLE stop
 SET cycle_flag TO 'y' DEFAULT 'n'
SELECT name, stop, parent_stop, cycle_flag
FROM recursiveTrip;
A cycle in this case is any instance of a parent and child row
 sharing the same stop number. Hence the specification of CYCLE stop in this
 query. The SET clause adds a new column to the query output,
 specifying that the column be set to y in the event that the row in question is
 the cause of a loop in the data. Here’s what the output looks
 like:
NAME STOP PARENT_STOP CYCLE_FLAG
---------- ---------- ----------- ----------
Munising 1 n
Munising 2 1 n
Munising 6 2 n
Munising 4 6 n
Munising 3 4 n
M-28 1 3 y
Munising 5 3 n
...
If you omit the CYCLE clause and a loop results, Oracle will
 throw an ORA-32044: cycle detected while
 executing recursive WITH query error. When you specify both
 SEARCH and CYCLE clauses, you must specify them in that order. You can
 base loop-detection on a combination of multiple columns by specifying
 a comma-delimited list of columns following the CYCLE
 keyword.

Indexes, Creating

The basic CREATE INDEX statement syntax is:
CREATE INDEX falls_name ON upfall
 (name, open_to_public);
In this syntax, falls_name is
 the name of the index. The table to be indexed is upfall. The index is on the combined values of
 name and open_to_public.
Oracle and PostgreSQL allow you to assign an index to a tablespace:
CREATE INDEX falls_name ON upfall
 (name, open_to_public)
 TABLESPACE users;
Oracle and PostgreSQL also allow you to index column
 expressions:
CREATE INDEX falls_name ON upfall
 (UPPER(name), open_to_public);
This particular index is useful for resolving queries in which the
 WHERE clause predicates involve the expression UPPER(name).
Indexes on expressions are subject to various restrictions. SQL
 Server requires that such expressions return “precise” results, thus
 ruling out expressions returning or involving floating-point data types.
 Such expressions must also be deterministic, meaning that a given input
 always returns the same output, no matter the
 server or environmental settings.

Indexes, Removing

In DB2, Oracle, and PostgreSQL, you remove an index by naming it
 in a DROP INDEX statement:
DROP INDEX falls_name;
MySQL and SQL Server require you to also specify the table
 name:
DROP INDEX falls_name ON upfall;

Inserting Data

Use the INSERT statement to insert new rows in a table. You can
 insert one row, many rows, or the results of a subquery.
Single-Row Inserts

The following example adds a county to the gov_unit table. The values in the VALUES
 clause correspond to the columns listed after the table
 name:
INSERT INTO gov_unit
 (id, parent_id, name, type)
VALUES (13, 3, 'Chippewa', 'County');
Any columns you omit from an INSERT statement take on their
 default values specified at table-creation time. If you do not specify
 a default value at table-creation, then a null is used.
Use the DEFAULT keyword to specify explicitly that a column
 should take on its default value. Use the null keyword to insert a
 null value explicitly in a column that might otherwise default to a
 non-null value. For example:
INSERT INTO gov_unit
 (id, parent_id, name, type)
VALUES (14, DEFAULT, 'Mackinac', NULL);
If your VALUES list contains a value for each of the table’s
 columns in the order specified at table creation, you can omit the
 column list:
INSERT INTO gov_unit
VALUES (15, DEFAULT, 'Luce', 'County');
For anything other than an ad-hoc insert (in other words, for
 inserts you embed in your scripts and programs), it’s safer to specify
 a list of columns. Otherwise, such queries can fail the moment a new
 column is added to the target table.

Multirow Inserts

Many platforms provide the ability to insert multiple rows via
 repeated value lists in the VALUES clause:
INSERT INTO gov_unit
 (id, parent_id, name, type)
VALUES (16, 3, 'Menominee', 'County'),
 (17, 3, 'Iron', 'County'),
 (18, 3, 'Keweenaw', 'County');

Insert Targets

All platforms allow inserts into a view. DB2 and Oracle also
 allow inserts into subqueries (or inline views):
INSERT INTO
 (SELECT id, name, type FROM gov_unit)
 (id, name, type)
VALUES (19, 'Keweenaw', 'County');
PostgreSQL requires views that are the targets of inserts to
 have an associated ON INSERT DO INSTEAD rule.

Subquery Inserts

Using a subquery to feed an INSERT statement, it’s possible to
 insert a number of rows at one time. For example, to create a
 duplicate of the Munising tour, but with a different name,
 specify:
INSERT INTO trip (name, stop, parent_stop)
 (SELECT 'J''s Tour', stop, parent_stop
 FROM trip
 WHERE name = 'Munising');
The SELECT statement in this form of INSERT must return an
 expression corresponding to each column listed after the target table.
 Some platforms let you get away without the parentheses surrounding
 the subquery, but it’s safer to include them. The subquery can be any
 valid SELECT statement. It may return zero, one, or many
 rows.
MySQL requires that you sort your source rowset in a way that
 avoids loading any child row ahead of its parent. For
 example:
INSERT INTO trip (name, stop, parent_stop)
 (SELECT 'J''s Tour', stop, parent_stop
 FROM trip
 WHERE name = 'Munising'
 ORDER BY CASE stop
 WHEN 1 THEN 1
 WHEN 2 THEN 2
 WHEN 6 THEN 3
 WHEN 4 THEN 4
 WHEN 3 THEN 5
 WHEN 5 THEN 6
 END);
The issue with MySQL is that constraints are not checked at the
 end of a statement as in all other platforms, but rather they are
 checked as a statement executes—in this case, for each row inserted.
 Also, in this particular case, there is no column in the trip table by which you can sort to prevent
 a constraint violation. Thus, you are forced to enumerate each row in
 the ORDER BY clause, which
 virtually eliminates the benefit of using INSERT INTO…SELECT
 FROM.
See the section Deleting in Order for a
 DELETE that will remove rows for J's
 Trip in the reverse order from their insertion.

Returning Inserted Values: DB2

DB2 allows you to query newly inserted data by simply selecting
 from the INSERT statement. For example:
SELECT * FROM NEW TABLE (
 INSERT INTO gov_unit (id, name, type)
 VALUES (20, 'Limestone', 'Township')
);
Specify FROM NEW TABLE, and wrap your INSERT in parentheses.

Returning Inserted Values: Oracle

Oracle supports a RETURNING clause to specify the data to be
 returned and where it will be placed. The following example works in
 Oracle SQL*Plus:
VARIABLE pid VARCHAR2(10);

INSERT INTO gov_unit (id, name, type)
 VALUES (19, 'Houghton', 'County')
 RETURNING parent_id INTO :pid;
VARIABLE is an SQL*Plus command used to create a bind variable.
 This example returns one column. You can return more than one column
 by simply separating column names and result variables with
 commas:
RETURNING col1, col2 ... INTO var1, var2 ...
See Returning Deleted Data: Oracle for
 an example of the RETURNING clause showing the use of array variables
 to return data from multiple rows.

Returning Inserted Data: SQL Server

You can use SQL Server’s OUTPUT clause to return values from
 newly inserted rows. For example:
INSERT INTO gov_unit (id, name, type)
 OUTPUT INSERTED.parent_id AS pid
 VALUES (19, 'Houghton', 'County');
You can use the syntax OUTPUT
 INSERTED.* to return all columns. You can specify expressions
 such as UPPER(INSERTED.name). You can specify column aliases
 as in any query, with or without the optional AS keyword.

Multitable Inserts

Using Oracle, you can issue INSERTs that affect multiple tables
 at once. You can insert the results of a subquery unconditionally into
 several tables, or you can write predicates that control which rows
 are inserted into which table. If you choose to write predicates, you
 can choose whether evaluation stops with one success or whether a row
 is considered for insertion into more than one table.
Unconditional multitable insert

Use INSERT ALL to insert the results of a subquery in more
 than one target table:
INSERT ALL
 INTO fall_description
 (id, name, description)
 VALUES (id, name, description)
 INTO fall_location
 (id, datum, zone, northing, easting)
 VALUES (id, datum, zone, northing, easting)
 SELECT id, name, description, datum,
 zone, northing, easting
 FROM upfall;
This example inserts location and description data in two
 separate tables. Different data is inserted in each table, but all
 data comes from the subquery. Each row returned by the subquery
 results in two new rows—one in each table.

Conditional multitable insert

Use WHEN clauses to insert conditionally in multiple tables.
 The following statement splits township and state data into two
 separate tables:
INSERT FIRST
WHEN type = 'Township' THEN
 INTO township (id, name)
 VALUES (id, name)
WHEN type = 'State' THEN
 INTO state (id, name)
 VALUES (id, name)
ELSE
 INTO other_unit (id, name)
 VALUES (id, name)
SELECT * FROM gov_unit;
The ELSE clause in this statement causes all rows that do not
 meet any other criteria to be added to the other_unit table. The ELSE clause is
 optional; you can omit it to ignore rows that do not meet at least
 one WHEN condition.

ALL versus FIRST

In a conditional multitable INSERT, the keyword ALL causes
 each row returned by the subquery to be evaluated against each WHEN
 clause. Thus, a row meeting criteria in two clauses can be inserted
 in more than one table. Use INSERT FIRST to stop evaluating a row
 after the first matching WHEN clause.

Joining Tables

Joins allow you to combine data from multiple tables into a single
 result-set row. There are two fundamental types of join:
 inner and outer. There are
 also two join syntaxes—the syntax introduced in the 1992 SQL standard,
 which depends on a JOIN clause, and an older syntax in which you
 separate table names with commas.
The Concept of a Join

The concept of a join is best explained by beginning with the
 earlier syntax. To join related rows from two tables, begin by listing
 two table expressions separated by a comma in your FROM clause. For
 example, to retrieve a list of waterfalls and their county names, you
 could begin by writing the following:
SELECT u.name AS fall, c.name AS county
FROM upfall u, county c;

FALL COUNTY
--------------- ----------
Munising Falls Alger
Munising Falls Baraga
Munising Falls Ontonagon
...
This result is a Cartesian product, which is all possible
 combinations of rows from the two tables. Conceptually, all joins
 begin as Cartesian products. From there, it’s up to you to supply
 conditions to narrow down the results to only those rows that make
 sense. Using the older join syntax, you supply those conditions in the
 WHERE clause:
SELECT u.name AS fall, c.name AS county
FROM upfall u, county c
WHERE u.county_id = c.id;

FALL COUNTY
--------------- ----------
Munising Falls Alger
Tannery Falls Alger
Alger Falls Alger
...
These results are much more useful.
The process I’ve just described is purely conceptual; database
 systems will rarely or never form a Cartesian product when executing a
 join. However, thinking in these conceptual terms will help you write
 correct join queries and understand their results. Regardless of how
 the join operation is optimized, join results must match the
 conceptual results in the end.

Cross Joins

The SQL standard uses the term cross join
 to describe a Cartesian product. Generate a cross join as
 follows:
SELECT *
FROM upfall CROSS JOIN county;
One case in which cross joins are useful is
 when joining to a single-row result set. For example, to generate a
 report of tablespaces that
 include database_name, an Oracle
 database administrator could specify the following:
SELECT d.name database_name, t.name tablespace_name
FROM v$tablespace T CROSS JOIN v$database d;

DATABASE_NAME TABLESPACE_NAME
------------- ------------------------------
DB01 SYSTEM
DB01 UNDOTBS1
...
This cross join has the effect of replicating the v$database information to every row of the
 result set. Because there is only ever one row in
 v$database, the result set will
 still return one row per tablespace.
Note
DB2 began to support the CROSS JOIN syntax in release
 9.5.

Cross joins are also useful in conjunction with DB2’s LATERAL
 clause:
SELECT u.name, ings.direction, ings.meters
FROM upfall u,
 LATERAL (VALUES
 ('Northing', u.northing),
 ('Easting', u.easting))
 AS ings(direction, meters);
This query results in two rows per waterfall, one with the
 northing value and the other with the easting. For example:
NAME DIRECTION METERS
--------------- --------- -----------
Munising Falls Northing 5141184
Munising Falls Easting 528971
Olson Falls Northing 5140000
Olson Falls Easting 528808
...
LATERAL generates a new table with values from the table to its
 left. The cross join expands each waterfall row into two rows.

Inner Joins

An inner join brings together corresponding
 rows from two tables. For
 example, you could list each waterfall in its corresponding
 county:
SELECT u.name AS fall, c.name AS county
FROM upfall u INNER JOIN county c
 ON u.county_id = c.id;

FALL COUNTY
--------------- ----------
Munising Falls Alger
Tannery Falls Alger
Alger Falls Alger
...
The keywords INNER JOIN between the two tables specify that the
 join should be an inner join. The ON clause specifies the
 join condition, or the condition that must apply
 in order for two rows to be considered related. Conceptually, as
 described in the preceding section, a Cartesian product is formed and
 the join condition is then applied to filter out unwanted combinations
 of rows.
The order of tables in an inner join is irrelevant. The INNER
 keyword is optional. A WHERE clause is still valid in join queries.
 For example, to report only on counties with a population above
 10,000, use the following:
SELECT u.name AS fall, c.name AS county
FROM county c INNER JOIN upfall u
 ON u.county_id = c.id
WHERE c.population > 10000;
Conceptually, the join results are materialized first, and the
 WHERE clause then restricts the results to those joined rows that
 satisfy the WHERE conditions. In reality, your database will find a
 more optimal approach to producing the results.

The USING Clause

MySQL, Oracle, and PostgreSQL support the USING clause. When the
 columns defining a join between two tables are identically named, and
 when the join condition would be an equality condition requiring that
 each set of identically named columns contain the same value (an
 equi-join), you can write the join more simply by
 replacing the ON clause with the USING clause. Here’s an
 example:
SELECT *
FROM fall_description
JOIN fall_location USING (id);
There is a subtle issue to be aware of when using the USING
 clause. Consider the following query:
SELECT fd.id, fl.id
FROM fall_description fd
JOIN fall_location fl USING (id);
This version of the query will work in MySQL and PostgreSQL, but
 will fail in Oracle with the following error:
ORA-25154: column part of USING clause cannot have
qualifier
In Oracle, the USING clause merges the two id columns, and the result will have only
 one column named id (not fd.id and not fl.id). That column is associated with
 neither table, so neither table alias applies:
SELECT id
FROM fall_description fd
JOIN fall_location fl USING (id);
MySQL and PostgreSQL merge the two id columns into one (thus conforming to the
 ISO SQL standard), but they still allow you to select both an fl.id value and an fd.id value. However, a SELECT * against the join in MySQL or
 PostgreSQL will yield only one id
 column in the result.

Natural Joins

There is yet another shortcut beyond the USING clause, and that
 is the NATURAL JOIN syntax supported by MySQL, Oracle, and PostgreSQL.
 If two tables should be joined based on all
 columns they have in common with the same name and the join is an
 equi-join, you can use the NATURAL JOIN keywords without specifying
 explicitly the join conditions.
In Oracle, you cannot qualify a NATURAL JOIN column with an
 alias. For example, in the following query only one id column is returned, and it is not
 associated with either table (and hence not with any fd or fl
 alias):
SELECT id
FROM fall_description fd
NATURAL JOIN fall_location fl;
MySQL and PostgreSQL, on the other hand, give you the option to
 qualify join columns:
SELECT fd.id, fl.id
FROM fall_description fd
NATURAL JOIN fall_location fl;
Be wary of using NATURAL JOIN, especially in queries that you
 encapsulate within program code. The simple addition of a column to
 one table, if it has a name that happens to match a column in a joined
 table, can suddenly change the semantics of a NATURAL JOIN query. If
 you do use NATURAL JOIN, use it only for ad-hoc queries—and even then,
 be careful!

Non-Equi-Joins

So far, all the joins illustrated have been
 equi-joins, which involve corresponding columns
 from two tables that have the same values in two corresponding rows.
 Equi-joins are probably the most common type of joins, but it is
 sometimes useful and even necessary to write join conditions that are
 not equality-based. Such joins are sometimes referred
 to as non-equi-joins.
For example, the following statement creates a table of years
 via a subquery, and then it joins the table of months to upfall based on the value of upfall’s confirmed_date. This particular example runs
 on MySQL, PostgreSQL and Oracle (because they support date
 literals):
SELECT u.name, y.year_num
FROM upfall u JOIN
(SELECT 2005 AS year_num,
 DATE '2005-1-1' AS year_begin,
 DATE '2005-12-31' AS year_end
 FROM dual
 UNION
 SELECT 2006 AS year_num,
 DATE '2006-1-1' AS year_begin,
 DATE '2006-12-31' AS year_end
 FROM dual) y
ON u.confirmed_date
BETWEEN y.year_begin AND y.year_end;
The result is an association of waterfalls to the year in which
 their data was confirmed:
NAME YEAR_NUM
--------------- ----------------------
Munising Falls 2005
Tannery Falls 2005
Alger Falls 2005
...
Tahquamenon 2006
There are definitely easier ways to obtain this result, but this
 example does illustrate that not all joins need to be
 equi-joins.

Outer Joins

In an outer join, each row in the result
 set does not necessarily have to contain a row from both tables being
 joined; one or both tables are treated as optional. If you want a join
 to be done only when possible, and you want rows back regardless, use
 an outer join.
Left outer joins

Use a left outer join when you want all
 rows from one table, regardless of whether corresponding rows exist
 in the other table. Consider the possibility of a waterfall for
 which the owner is unknown: a row in upfall with a null owner_id. You want to list all waterfalls
 with their owners if possible, but even when no corresponding
 owner row exists, you still want
 to list all of the waterfalls. You can do that
 using a left outer join:
SELECT u.name AS fall, o.name AS owner
FROM upfall u LEFT OUTER JOIN owner o
 ON u.owner_id = o.id;

FALL OWNER
--------------- ---------------
Miners Falls Pictured Rocks
Munising Falls Pictured Rocks
Tannery Falls Michigan Nature
Tahquamenon
Rapid River Fls
Kakabika Falls
...
A left outer join designates the leftmost table as the
 required table. In this case, the leftmost
 table is the upfall table. Thus,
 each row in the final result from the query must correspond to a row
 from the upfall table. The
 owner table is the
 optional table. If an owner row exists that corresponds to a row
 from upfall, the result is the
 same as that from an inner join: a row with values from both tables.
 If no owner row corresponds to a
 given upfall row, a row is
 returned with data from upfall,
 but with nulls in place of all the owner values.
Note
The USING and NATURAL clauses, as well as parentheses, can
 be used with outer joins in the same way that they are used with
 inner joins.

Interpreting nulls in an outer join

When interpreting the results from the left outer join in the
 preceding section, you can’t really be certain that there is no
 owner listed for Kakabika Falls, for instance, because there could
 be an owner row but with a null
 name. A “safer” version of the query includes the primary key column
 from owner:
SELECT u.name AS fall, o.name AS owner, o.id
FROM upfall u LEFT OUTER JOIN owner o
 ON u.owner_id = o.id;
The o.id column is a
 primary key, meaning it cannot ever legitimately be null in the
 owner table. Therefore, if you see a null o.id value in the result of this query,
 you can rest assured that it is a result of the left outer join, not
 a result of finding a null in the corresponding owner row.
Another way to address the problem of interpreting an outer
 join is to always include the join columns in the result. If the
 join columns from the required table (e.g., u.owner_id) are not null, but the join
 columns from the optional table (e.g., o.id) are null, you have a case in which
 there is no corresponding row from the optional table (e.g.,
 owner).

Right outer joins

A right outer join is the same as a left
 outer join except that the required table is the rightmost table—the
 second table to be listed. For example, the following two joins are
 semantically equivalent:
SELECT u.name AS fall, o.name AS owner
FROM upfall u LEFT OUTER JOIN owner o
 ON u.owner_id = o.id;

SELECT u.name AS fall, o.name AS owner
FROM owner o RIGHT OUTER JOIN upfall u
 ON u.owner_id = o.id;
In either case, upfall is
 the required table and owner is
 the optional table. The results of the two queries are identical. To
 avoid confusion between left and right, some SQL programmers write
 all such joins as LEFT OUTER JOINs.

Full outer joins

Sometimes you want an outer join in which both tables are
 optional. Such a join is a full outer join, and
 such joins are supported by DB2, Oracle, PostgreSQL, and SQL Server.
 You can write one as follows:
SELECT u.name AS fall, o.name AS owner
FROM upfall u FULL OUTER JOIN owner o
 ON u.owner_id = o.id;

FALL OWNER
--------------- ---------------
Little Miners Pictured Rocks
Agate Falls
 Horseshoe Falls
This query returns falls without recorded owners and “owners”
 who own no waterfalls (i.e., potential owners), all in addition to
 the standard inner join results of falls and their corresponding
 owners.

Vendor-specific outer join syntax

In the past, database vendors have developed different ways to
 write outer joins. In Oracle, you used to identify the optional
 table by adding the suffix (+) to
 the optional table’s column reference in all of the join conditions
 for the given join. For example:
SELECT u.name fall, o.name owner
FROM upfall u, owner o
WHERE u.owner_id = o.id(+);
Reversing the order of the columns in the predicate gives the
 same result. What matters is the location of the (+) operator:
SELECT u.name fall, o.name owner
FROM upfall u, owner o
WHERE o.id(+) = u.owner_id;
Older versions of SQL Server required the use of *= and =* in
 equality conditions to designate left and right outer joins,
 respectively. For example:
SELECT u.name fall, o.name owner
FROM upfall u, owner o
WHERE o.id *= u.owner_id;
Oracle and SQL Server still support these syntaxes (although
 in SQL Server, you must set your compatibility level to 80 or lower,
 using stored procedure sp_dbcmptlevel). However, your queries
 will be much easier to understand and debug if you write your joins
 using the JOIN clause.

LEAST

DB2 (9.5 onward), MySQL, Oracle, and PostgreSQL implement the
 LEAST function to return the smallest value from a list of
 values:
	LEAST(value
 [, value
 ...])

The input values may be numbers, datetimes, or strings.

Literals

All database systems make provisions for embedding literal values
 in SQL statements. Text and numeric literals are usually quite simple,
 but there are some nuances of which you should be aware. Date and time
 literals tend to be more complex.
Text Literals

The ISO SQL standard for text literals is to enclose them in
 single quotes:
'This is a text literal'
Use two adjacent single quotes when you need to embed a single
 quote in a string:
'Isn''t SQL fun?'
SQL will treat the two adjacent single quotes as a single quote
 within the literal:
Isn't SQL fun?
Oracle Database 10g and higher allow you to
 specify alternative quoting delimiters, which are always two
 characters and always include leading and trailing single quotes.
 Introduce delimiters by prefacing them with a Q or a q.
 For example, to use '[and]' as delimiters, specify:
Q'[This isn't as bad as it looks]'
q'[This isn't as bad as it looks]'
The (, [, and {
 characters are special cases in that their corresponding closing
 delimiters must be),], and },
 respectively. Otherwise, use the same character to close the string
 that you use to open it:
Q'|This string is delimited by vertical bars|'
You can’t use space, tab, or return characters to delimit a
 string in this manner.
PostgreSQL allows you to specify alternative quoting delimiters
 using a dollar-sign syntax, producing a dollar-quoted string
 constant. For example:
tagThis is a dollar-quoted string constanttag
Replace tag with any desired sequence
 of characters. Your quoting delimiter is then tag. If you like, you can even use $$ without any intervening tag text. Escape
 sequences (see Table 1-7) do not
 have any effect in dollar-quoted string constants; they are treated as literal
 character sequences. $$\t$$ yields the string \t, not a tab character.
MySQL allows you to include the escape sequences shown in Table 1-7 in string literals.
 PostgreSQL allows the escape sequences shown in Table 1-8.
Table 1-7. MySQL string literal escape sequences
	Escape
	Description

	\0
	NULL character (ASCII
 zero)

	\'
	Single
 quote

	\"
	Double
 quote

	\b
	Backspace

	\n
	Newline

	\r
	Carriage
 return

	\t
	Tab

	\z
	ASCII 26 or the Ctrl-Z
 character

	\\
	Backslash

	\%
	Percent
 sign

	_
	Underscore

Table 1-8. PostgreSQL string literal escape sequences
	Escape
	Description

	\b
	Backspace

	\f
	Form
 feed

	\n
	Newline

	\r
	Carriage
 return

	\t
	Tab

	\octal
	Character corresponding
 to the given octal value

	\xhexadecimal
	Character corresponding
 to the given hexadecimal value

	\\
	Backslash

Numeric Literals

Numeric literals follow standard conventions for writing numbers:
123 123.45 +123 −123.45
Numbers written without a decimal point are generally treated as
 integers. Oracle allows for a trailing F, f,
 D, or d to indicate FLOAT or DOUBLE,
 respectively:
123D 123.45F +123d −123.45f
You can also use scientific notation to write floating-point
 constants:
123.45E+23 123.45e−23
These literals are interpreted respectively as 123.45 ×
 1023 and 123.45 ÷
 1023.

Datetime Literals

The SQL standard defines the following formats for date, time,
 and timestamp literals, with hours specified according to a 24-hour
 clock:
DATE 'yyyy-mm-dd'
TIME 'hh:mi:ss [{+|-}hh:mi]'
TIMESTAMP 'yyyy-mm-dd hh:mi:ss [{+|-}hh:mi]'
For example, the following specifications refer to 19-Dec-2005,
 8:00 PM, and 8:00 PM U.S. Eastern Standard Time on 19-Dec-2005:
DATE '2005-12-19'
TIME '20:00:00'
TIMESTAMP '2005-12-19 20:00:00 −5:00'
SQL Server does not support these literals. DB2 does not support
 specifying the time zone.

Datetime Interval Literals

SQL defines the following formats for INTERVAL YEAR TO MONTH
 literals:
INTERVAL 'year-month' YEAR TO MONTH
INTERVAL 'year' YEAR
INTERVAL 'month' MONTH
Oracle9i Database and higher and PostgreSQL
 9.0 and higher support these formats and also allow you to specify a
 precision for the year, which otherwise defaults to two digits:
INTERVAL '42-1' YEAR TO MONTH
INTERVAL '1042' YEAR(4)
Similarly, SQL defines the following formats for INTERVAL DAY TO
 SECOND literals:
INTERVAL 'dd hh:mi:ss.ff' DAY TO SECOND
INTERVAL 'hh:mi' HOUR TO MINUTE
INTERVAL 'mi' MINUTE
...
For an INTERVAL DAY TO SECOND literal, you can specify any
 contiguous range of time elements from days to seconds. In
 Oracle9i Database and higher, days
 (dd) and fractional seconds
 (ff) both default to two digits of
 precision.

Merging Data

DB2, Oracle, and SQL Server 2008 support the use of the MERGE
 statement for updating or inserting rows, depending on whether they
 already exist in the target table. For example, to merge potentially new
 waterfall data into the upfall table,
 specify the following:
MERGE INTO upfall u
USING (SELECT * FROM new_falls) nf
 ON (u.id = nf.id)
WHEN MATCHED THEN UPDATE
 SET u.name = nf.name,
 u.open_to_public = nf.open_to_public
WHEN NOT MATCHED THEN INSERT
 (id, name, datum, zone, northing, easting,
 lat_lon, county_id, open_to_public,
 owner_id, description, confirmed_date)
 VALUES (nf.id, nf.name, nf.datum, nf.zone,
 nf.northing, nf.easting, nf.lat_lon,
 nf.county_id, nf.open_to_public,
 nf.owner_id, nf.description,
 nf.confirmed_date);
This statement updates only name and open_to_public for existing waterfalls, although you could
 choose to update all columns if you wanted to do so. For new falls, all
 columns are inserted into the upfall
 table.
Oracle allows you to place WHERE conditions on both the UPDATE and
 INSERT operations. In addition, Oracle allows you to specify rows to be
 deleted following an UPDATE operation:
MERGE INTO upfall u
USING (SELECT * FROM new_falls) nf
 ON (u.id = nf.id)
WHEN MATCHED THEN UPDATE
 SET u.name = nf.name,
 u.open_to_public = nf.open_to_public
 WHERE nf.name IS NOT NULL
 DELETE WHERE u.open_to_public = 'n'
WHEN NOT MATCHED THEN INSERT
 (id, name, datum, zone, northing, easting,
 lat_lon, county_id, open_to_public,
 owner_id, description, confirmed_date)
 VALUES (nf.id, nf.name, nf.datum, nf.zone,
 nf.northing, nf.easting, nf.lat_lon,
 nf.county_id, nf.open_to_public,
 nf.owner_id, nf.description,
 nf.confirmed_date)
 WHERE nf.open_to_public = 'y';
This statement uses WHERE nf.name IS NOT
 NULL to prevent updating any name to a null. The subsequent
 DELETE WHERE clause then deletes any updated rows that no longer
 represent publicly accessible falls.
Note
DELETE WHERE is a post-update deletion. Rows not updated by the
 MERGE statement are not candidates for deletion.

In DB2, you can specify a DELETE as the statement for a WHEN
 MATCHED clause. DB2 also allows more than one occurrence of the WHEN
 MATCHED and WHEN NOT MATCHED clauses. Following is the DB2 version of
 the preceding MERGE statement:
MERGE INTO upfall u
 USING (SELECT * FROM new_falls) nf
 ON (u.id = nf.id)
 WHEN MATCHED AND nf.name IS NOT NULL THEN UPDATE
 SET u.name = nf.name,
 u.open_to_public = nf.open_to_public
 WHEN MATCHED AND u.open_to_public = 'n' THEN DELETE
 WHEN NOT MATCHED AND nf.open_to_public = 'y' THEN INSERT
 (id, name, datum, zone, northing, easting,
 lat_lon, county_id, open_to_public,
 owner_id, description, confirmed_date)
 VALUES (nf.id, nf.name, nf.datum, nf.zone,
 nf.northing, nf.easting, nf.lat_lon,
 nf.county_id, nf.open_to_public,
 nf.owner_id, nf.description,
 nf.confirmed_date);
In DB2, a DELETE is something you can specify in place
 of an UPDATE. In Oracle, a DELETE can happen
 after an UPDATE.

Nulls

When writing SQL, it’s critical to understand nulls and
 three-valued logic. With few exceptions, the result of any expression
 involving a null will be either null or unknown, and this has
 ramifications for any expression (comparison or otherwise) that you
 write.
Predicates for Nulls

You should not compare a null to any other value using the
 standard comparison operators. For example, the following query will
 not return all rows from the upfall table:
SELECT u.id, u.name, u.datum
FROM upfall u
WHERE u.datum = 'NAD1927'
 OR u.datum <> 'NAD1927';
You’d think that any given datum would either be NAD1927 or not
 be NAD1927, but this is not the case. A null datum is not NAD1927, nor
 is it not not NAD1927.
SQL provides the IS NULL and IS NOT NULL predicates to detect
 the presence or absence of null. To find all datum values other than
 NAD1927, including those that are null, specify:
SELECT u.id, u.name, u.datum
FROM upfall u
WHERE u.datum IS NULL
 OR u.datum <> 'NAD1927';
Similarly, you can use IS NOT NULL to match non-null values
 explicitly.

Using CASE with Nulls

CASE expressions can sometimes be helpful when working with
 potentially null data. For example, you can use CASE to ensure that
 you always get a non-null datum in your result set:
SELECT u.id, u.name,
 CASE WHEN u.datum IS NULL THEN
 '*None!*'
 ELSE u.datum END
FROM upfall u;
Most databases also provide functions to do this type of thing
 more succinctly.

Using the COALESCE Function

All platforms support the standard SQL COALESCE function. It
 takes a series of values and returns the first non-null value
 encountered. For example, to return a list of waterfall descriptions
 that show name when a description
 is null and show Unknown! when even
 the name is null, specify:
SELECT id, COALESCE(description, name, '*Unknown!*')
FROM upfall;
You can provide any number of arguments, but you should ensure
 that at least one will be non-null. If all arguments are null,
 COALESCE returns null as well.

Functions for Nulls: DB2

DB2 supports CASE and COALESCE. It also supports the NULLIF
 function, which returns null whenever the two input values are the
 same. Notice the effect of NULLIF in the first row of these
 results:
SELECT u.name, NULLIF(u.name,'Miners Falls')
FROM upfall u
WHERE u.name LIKE '%Miners%';

NAME 2
--------------- ---------------
Miners Falls
Little Miners Little Miners
DB2 also now supports the same DECODE and NVL functions as
 Oracle does. See the section Functions for Nulls: Oracle.

Functions for Nulls: MySQL

MySQL supports CASE and COALESCE. In addition, it supports a
 function called IFNULL to return an alternate value for a potentially
 null input value. For example:
SELECT id, name, IFNULL(datum, '*None!*')
FROM upfall;
As with DB2, MySQL supports NULLIF to return null whenever two
 input values are the same:
SELECT u.name, NULLIF(u.name,'Miners Falls')
FROM upfall u
WHERE u.name LIKE '%Miners%';
You can also use the IF function to return one of two values,
 depending on whether an expression is TRUE:
SELECT id, name, IF(datum IS NULL,
 '*None!*', datum)
FROM upfall;
You’d normally use a comparison expression to generate the
 Boolean TRUE/FALSE value for the first argument. If the expression
 evaluates to TRUE, the value from the second argument is returned. If
 the expression evaluates to FALSE or null, the third argument’s value
 is returned.

Functions for Nulls: Oracle

Oracle supports CASE and COALESCE. It also provides several
 other functions for dealing with nulls.
NVL is similar to COALESCE. It is supported for backward
 compatibility and allows only two arguments:
SELECT id, name, NVL(datum, '*None!*')
FROM upfall;
NVL2 returns one of two values, depending on whether the first
 is null:
SELECT id, name, NVL2(datum, datum, '*None!*')
FROM upfall;
DECODE is equivalent to an inline IF statement (although you
 should really use CASE today), and it provides yet another way of
 dealing with nulls. The following example uses DECODE to replace
 some county_id
 values from upfall with their
 respective names:
SELECT id, name,
 DECODE(county_id,
 2, 'Alger County',
 6, 'Baraga County',
 NULL, 'Unknown',
 'Other')
FROM upfall;
In this example, counties 2 and 6 translate to Alger and Baraga
 Counties, respectively. Any null county_id results in a value of 'Unknown'. Any other gov_unit_ids are denoted as 'Other'. DECODE supports any number of
 input/result pairs.

Functions for Nulls: PostgreSQL

PostgreSQL supports CASE and COALESCE. It also supports NULLIF
 as described in the section Functions for Nulls: DB2.

Functions for Nulls: SQL Server

SQL Server supports CASE, COALESCE, and an ISNULL
 function:
ISNULL(possible_null, alternative_value)
When possible_null is null, ISNULL
 will return alternative_value.
 Otherwise, ISNULL will return possible_null.
SQL Server 2008 supports the same NULLIF function that DB2
 supports, returning NULL when both input values match.
SQL Server also supports a setting known as ANSI_NULLS, which
 affects the behavior of the = and <> predicates that compare to
 null:
... WHERE city_name = NULL
... WHERE city_name <> NULL
By default, neither of these predicates will ever match any
 rows. However, if you issue the command SET ANSI_NULLS OFF, you can
 use = NULL and <> NULL to search for NULL or NOT NULL values,
 respectively.

Numeric Conversions: DB2

Use the following functions to convert between different numeric
 types or between numeric and text types:
BIGINT(numeric)
BIGINT(character)
CHAR(integer)
CHAR(decimal [,decimal_character])
CHAR(floating [,decimal_character])
DECFLOAT(numeric, 16or34)
DECFLOAT(character, 16or34
 [, decimal_character])
DECIMAL(numeric [,precision[,scale]])
DECIMAL(character [,precision[,scale
 [,decimal_character]]])
DOUBLE(numeric)
DOUBLE(character)
DOUBLE_PRECISION(numeric)
FLOAT(numeric)
REAL(numeric)
SMALLINT(numeric)
SMALLINT(character)
See Datetime Conversions: DB2 for
 information on converting between dates and numbers.
In the syntax, numeric can be any
 numeric type or expression; character can be
 any fixed- or variable-length character type or expression;
 integer can be any integer type or
 expression; and decimal can be any decimal
 type or expression.
Note
DB2 also provides compatibility with TO_CHAR and TO_NUMBER, as
 implemented by Oracle. See the section Numeric Conversions: Oracle for details.

Each function converts its argument to the type indicated by the
 function name. The following example shows DECFLOAT being used to
 convert from a character string:
SELECT DECFLOAT('100.123451234512345',16)
FROM dual;

100.1234512345123
And following is an example showing CHAR and DECIMAL being used to
 convert back and forth between numbers and strings:
SELECT CHAR(100.12345),
 CHAR(DECIMAL('100.12345',5,2))
FROM pivot WHERE x=1;

100.12345 100.12
DECIMAL’s default scale is zero when converting from a character
 string. To preserve digits to the right of the decimal point in that
 situation, you must specify a scale, which forces you to first specify a
 precision. No rounding occurs. To round a value being converted, you
 must first specify a precision and scale sufficient to hold the raw
 value, and then apply the ROUND function:
SELECT DECIMAL('10.999',4,2),
 DECIMAL('10.999',4),
 ROUND(DECIMAL('10.999',5,3),2)
FROM pivot WHERE x=1;

 10.99 10. 11.000
You can use the optional
 decimal_character parameter to specify the character to use for the
 decimal point:
SELECT DECFLOAT('10/95',16,'/'), CHAR(10.95,'/')
FROM pivot WHERE x=1;

 10.95 10/95
When converting to an integer type, any decimal portion is
 truncated.

Numeric Conversions: MySQL

MySQL implements the following numeric conversion functions:
	FORMAT(number
 ,
 scale)
	Provides general-purpose numeric conversions to text. The
 scale is the number of decimal places
 that you wish to appear in the result.

	CONV(number
 ,
 from_base ,
 to_base)
	Converts from one base to another. The
 number may be either an integer or a
 string, and the base may range from 2 through 36.

	BIN(number)
	Returns the binary representation of a base-10
 number.

	OCT(number)
	Returns the octal representation of a base-10
 number.

	HEX(number)
	Returns the hexadecimal representation of a base-10 number.

For example:
SELECT CONV('AF',16,10), HEX(175), FORMAT(123456.789,2);

175 AF 123,456.79
Use CAST to convert a string to a number.

Numeric Conversions: Oracle

Use the following functions in Oracle to convert to and from the
 supported numeric types:
TO_NUMBER(string, format)
TO_BINARY_DOUBLE(string, format)
TO_BINARY_FLOAT(string, format)
TO_CHAR(number, format)
TO_BINARY_DOUBLE(number)
TO_BINARY_FLOAT(number)
TO_NUMBER(number)
Use TO_NUMBER and TO_CHAR (the only two functions available prior
 to Oracle Database 10g) to convert between NUMBER
 and VARCHAR2 (Table 1-9 lists the
 available numeric format
 elements):
SELECT
 TO_CHAR(1234.56,'C9G999D99') to_char,
 TO_NUMBER('1,234.56','9G999D99') from_char,
 TO_CHAR(123,'999V99') v_example
FROM dual;

TO_CHAR FROM_CHAR V_EXAMPLE
---------------- ---------------------- ---------
 USD1,234.56 1234.56 12300
Use TO_BINARY_FLOAT and TO_BINARY_DOUBLE to convert to the new 32-
 and 64-bit IEEE 754 floating-point types added in Oracle Database
 10g. Also use these functions to convert values
 from one numeric type to another.
Table 1-9. Oracle’s numeric format elements
	Element
	Description

	$
	Prefix: dollar sign
 ($).

	, (comma)
	Location of comma.
 Consider G
 instead.

	. (period)
	Location of period.
 Consider D
 instead.

	0
	Significant digit.
 Leading zeros.

	9
	Significant digit.
 Leading blanks.

	B
	Prefix: returns zero as
 blanks.

	C
	Location of ISO currency
 symbol.

	D
	Location of decimal
 point.

	EEEE
	Suffix: use scientific
 notation.

	FM
	Prefix: removes
 leading/trailing blanks.

	G
	Location of group
 separator.

	L
	Location of local
 currency symbol.

	MI
	Suffix: trailing minus
 (–) sign.

	PR
	Suffix: angle brackets
 (< and >) around negative
 values.

	RN or rn
	Roman numerals, upper- or
 lowercase. Output-only.

	S
	Prefix: leading plus
 (+) or minus (–) sign.

	TM, TM9, TME
	Prefix: use minimum
 number of characters (text-minimum). Output-only. TM9 gives
 decimal notation. TME gives scientific notation.

	U
	Specifies location of
 Euro symbol (€).

	V
	Multiplies the number to
 the left of the V in the
 format model by 10 raised to the nth power,
 where n is the number of 9s found after the
 V in the format model. See
 the example earlier in this section. Output-only.

	X
	Use hexadecimal notation.
 Output-only. Precede with 0s
 for leading zeros. Precede with FM to trim leading/trailing
 spaces.

Numeric Conversions: PostgreSQL

You can convert between numeric values and their string
 representations using the following functions, where
 number can be any numeric type:
TO_CHAR(number, format)
TO_NUMBER(string, format)
PostgreSQL’s number format elements closely follow Oracle’s. They
 are listed in Table 1-10.
Table 1-10. PostgreSQL’s numeric format elements
	Element
	Description

	$
	Prefix: dollar sign
 ($).

	, (comma)
	Location of comma.
 Consider G
 instead.

	. (period)
	Location of period.
 Consider D
 instead.

	0
	Significant digit.
 Leading zeros.

	9
	Significant digit.
 Leading blanks.

	B
	Prefix: returns zero as
 blanks.

	C
	Location of ISO currency
 symbol.

	D
	Location of decimal
 point.

	EEEE
	Suffix: use scientific
 notation.

	FM
	Prefix: removes
 leading/trailing blanks.

	G
	Location of group
 separator.

	L
	Location of local
 currency symbol.

	MI
	Suffix: trailing minus
 (–) sign.

	PR
	Suffix: angle brackets
 (< and >) around negative
 values.

	RN or rn
	Roman numerals, upper- or
 lowercase. Output-only.

	S
	Prefix: leading plus
 (+) or minus (–) sign.

	TM, TM9, TME
	Prefix: use minimum
 number of characters (text-minimum). Output-only. TM9 gives decimal notation. TME gives scientific
 notation.

	U
	Specifies location of
 Euro symbol (€).

	V
	Multiplies the number to
 the left of the V in the
 format model by 10 raised to the nth power,
 where n is the number of 9s found after the V in the format model. See the example
 in Numeric Conversions: Oracle.
 Output-only.

	X
	Use hexadecimal notation.
 Output-only. Precede with 0s
 for leading zeros. Precede with FM to trim leading/trailing
 spaces.

Numeric Conversions: SQL Server

Use the CONVERT function for conversions to and from numeric
 values:
CONVERT(datatype[(length)], expression[, style])
Table 1-11 lists styles
 for converting FLOAT and REAL values to character strings. Table 1-12 lists styles for converting MONEY
 and SMALLMONEY values to character strings.
Table 1-11. SQL Server floating-point styles
	Style
	Description

	0
	Default, 0–6 digits,
 scientific notation when necessary

	1
	Eight digits + scientific
 notation

	2
	16 digits + scientific
 notation

Table 1-12. SQL Server money styles
	Style
	Description

	0
	Money default, no commas,
 two decimal digits

	1
	Commas every three
 digits, two decimal digits

	2
	No commas, four decimal
 digits

The following two examples demonstrate numeric conversions using
 the CONVERT function. The second example combines conversion from text
 with a monetary conversion:
SELECT CONVERT(VARCHAR(10), 1.234567, 2);

1.234567

SELECT CONVERT(
 VARCHAR,
 CONVERT(MONEY, '20999.95'), 1);

20,999.95

Numeric/Math Functions

Following are some useful numeric and math functions that are
 fairly universal across database platforms:
	ABS(number)
	Returns the absolute value of
 number.

	CEIL(number) or CEILING(number)
	Returns the smallest integer that is greater than or equal
 to the number that you pass. Use CEILING for SQL Server and CEIL
 for other platforms. Remember that with negative numbers, the
 greater value has the lower
 absolute value: CEIL(5.5) is 6, whereas CEIL(−5.5) is −5.

	EXP(number)
	Returns the mathematical constant e
 (≈2.71828183)—also known as Euler’s
 constant—raised to the power of
 number.

	FLOOR(number)
	Returns the largest integer that is less than or equal to
 the number you pass. Remember that with negative numbers, the
 lesser value has the higher
 absolute value: FLOOR(5.5) is 5, whereas FLOOR(−5.5) is −6.

	LN(number)
	Returns the natural logarithm of
 number. Supported in DB2, Oracle, and
 PostgreSQL. For other platforms, use LOG instead.

	LOG(number)
	Returns the natural logarithm of
 number (in DB2, SQL Server, and MySQL).
 In PostgreSQL, it returns the base-10 logarithm of
 number.

	LOG(base
 ,
 number)
	Returns the logarithm of number
 in a base that you specify (Oracle and
 PostgreSQL).

	LOG10(number)
	Returns the base-10 logarithm of
 number (DB2, MySQL, and SQL
 Server).

	MOD(top
 ,
 bottom)
	Returns the remainder of top
 divided by bottom (DB2, MySQL, Oracle,
 and PostgreSQL).

	NANVL(value
 ,
 alternate)
	Returns an alternate value for any floating-point NaN
 (Not-a-Number) value. If
 value is NaN, then
 alternate is returned; otherwise,
 value is returned (Oracle).

	REMAINDER(top
 ,
 bottom)
	Returns the remainder of top
 divided by bottom, the same as MOD
 (Oracle).

	ROUND(number
 [,
 places])
	Rounds number to a specified
 number of decimal places. The default
 is to round to an integer value. Use a negative value for
 places to round to the
 left of the decimal point. SQL Server
 requires the places argument.

	ROUND(number, places
 [,
 option])
	SQL Server’s version of ROUND. Use
 option to specify whether rounding or
 truncating is performed (see TRUNC below). If
 option is 0, the function rounds;
 otherwise, the function truncates.

	SIGN(number)
	Indicates the sign of a number. SIGN returns −1, 0, or 1,
 depending on whether number is
 negative, zero, or positive.

	TRUNC(number
 [,
 precision])
	Truncates number to a specific
 number of decimal places. The default
 precision is zero decimal places. Use a
 negative precision to truncate to the
 left of the decimal point, forcing those digits to zero. SQL
 Server implements truncation using a special form of ROUND. MySQL
 implements truncation using TRUNCATE(number,
 precision), requiring that you specify
 precision.

OLAP Functions

Online analytical processing (OLAP) function
 is the term DB2 uses for what the SQL standard refers to as a
 window function. See Window Functions for more on this extremely useful class of
 functions.

Pivoting and Unpivoting

Oracle Database (11g Release 1 onward) and
 SQL Server (2005 onward) both support pivot and unpivot operators. With
 the PIVOT operation, you can present data in a grid format by turning
 rows into columns while aggregating some value of interest. The UNPIVOT
 operation turns columns into rows, allowing you to take multiple columns
 containing the same type of data and present that data as one column for
 reporting or analysis.
Pivoting: The Concept

Use the pivot operation to create a lookup table presenting
 values termed measures at the intersection of
 other values, termed dimensions. For example, say
 that you wish to report on the number of falls open or closed to the
 public by county. You might begin with the following query:
SELECT county_id,
 COALESCE(open_to_public, 'n')
 AS open_to_public,
 COUNT(id)
FROM upfall
GROUP BY county_id, open_to_public;
And you would get row-by-row results like these:
COUNTY_ID O COUNT(ID)
---------- - ----------
*** n 1
 11 y 1
 2 y 11
 6 y 1
 7 y 2
 10 y 1
 9 y 1
Looking carefully at the output, you can see that county #7 has
 two falls open to the public. The information is all there, but the
 presentation is cumbersome and not at all compact.
A more useful presentation might be the following grid, which
 allows you to scan down to find the county, and then over to find the
 number of open and closed falls within that county:
COUNTY_ID Open Closed
---------- ---------- ----------
*** 0 1
 6 1 0
 11 1 0
 2 11 0
 7 2 0
 9 1 0
 10 1 0
You can use the PIVOT operator in both Oracle and SQL Server to
 generate these results.

Pivoting: Oracle

You can use the following query to generate results in the
 tabular format at the end of the preceding section. Essentially, the
 query converts the open/closed counts for each county from two rows
 into two columns:
SELECT *
FROM
 (SELECT id,
 county_id,
 COALESCE(open_to_public, 'n')
 AS open_to_public
 FROM upfall)
PIVOT (
 COUNT(id)
 FOR open_to_public IN (
 'y' AS "Open",
 'n' AS "Closed"
)
);
Here’s how the query works:
	The subquery in the FROM clause generates the three values
 used to create the grid: the county ID for the vertical dimension;
 the open/closed flag for the horizontal dimension; and the
 waterfall ID to use as the measure by which to generate values for
 each combination of vertical and horizontal dimensions.

	The COALESCE function call in the subquery ensures that the
 open_to_public flag is never
 null. (You may or may not need or want such behavior in your own
 queries.)

	The query generates one row per county, because county_id is the only column not listed
 in the PIVOT clause.

	The query generates one column for each listed value of
 open_to_public. Each column is
 given the name specified in the FOR clause: either Open or Closed in this case.

	All the intersecting points in the grid are filled in by
 executing the expression COUNT(id) for each combination of
 county_id and open_to_public values.

Oracle further allows you to pivot on multiple columns.
 Following is an example query that presents the very same information, but this time as one long
 row:
SELECT *
FROM
 (SELECT id,
 county_id,
 COALESCE(open_to_public, 'n')
 AS open_to_public
 FROM upfall)
PIVOT (
 COUNT(id)
 FOR (county_id, open_to_public) IN (
 (2, 'y') AS "Alger Open",
 (2, 'n') AS "Alger Closed",
 (6, 'y') AS "Baraga Open",
 (6, 'n') AS "Baraga Closed",
 (7, 'y') AS "Ontonagon Open",
 (7, 'n') AS "Ontonagon Closed",
 (9, 'y') AS "Dickinson Open",
 (9, 'n') AS "Dickinson Closed",
 (10, 'y') AS "Gogebic Open",
 (10, 'n') AS "Gogebic Closed",
 (11, 'y') AS "Delta Open",
 (11, 'n') AS "Delta Closed",
 (NULL, 'y') AS "Unknown Open",
 (NULL, 'n') AS "Unknown Closed"
)
);
Notice that the FOR clause specifies two column names. Further
 notice that each entry in the IN list specifies a combination of those
 same two values. The result will be the following single row:
Alger Open Alger Closed Baraga Open ...
---------- ------------ -----------
 11 0 1
The reason this second query returns only a single row is that
 the PIVOT clause consumes all of the columns
 returned by the subquery. Thus, no column(s) remain to serve as a
 vertical dimension. The result is a table having only a horizontal
 dimension and having one measure for each dimension value.

Pivoting: SQL Server

SQL Server supports a pivot operator as well, though with a
 different syntax from Oracle’s implementation. Following is the query
 to generate the same tabular format as shown at the end of Pivoting: The Concept:
SELECT county_id,
 [1] as 'open',
 [0] as 'closed'
FROM
 (SELECT
 id,
 county_id,
 CASE open_to_public
 WHEN 'y' THEN 1
 ELSE 0 END AS open_to_public
 FROM upfall) AS SourceTable
PIVOT (
 COUNT(id)
 FOR open_to_public IN ([1], [0])
) AS PivotTable
Here’s how this query operates:
	The subquery in the FROM clause generates the three values
 to create the grid. You are required to specify an alias, which in
 this case is done using the AS clause.

	The CASE statement in the subquery translates the y and n values into numeric ones and zeros.
 This is because SQL Server is currently unable to pivot on
 character columns.

	The outer query lists county_id as the first column, because
 that column is the unpivoted column. One row is ultimately
 returned for each unpivoted value: in this case for each county_id.

	The second and third columns listed in the outer SELECT
 specify the column headings to use for the pivoted data.

	The FOR…IN clause specifies that the first column is a count
 of open waterfalls (1=open to public) and that the second column
 is a count of closed waterfalls.

	The COUNT(id) expression
 generates the summary values—in this case a count—for each
 of the cells.

	All the intersecting points in the grid are filled in by
 executing the expression COUNT(id) for each combination of
 county_id and open_to_public values.

Unlike Oracle, SQL Server does not currently allow pivoting on
 two columns.

Unpivoting: The Concept

Sometimes you’ll find yourself working with a table having two
 or more columns containing the same type of information. For example,
 you might have two or more phone numbers per row. Or, as in our case,
 you might choose to treat northing and easting values as two
 occurrences of a distance, which in fact they are.
Following is a simple query to show the northing and easting
 values as they are represented in the database table:
SELECT id, northing, easting
FROM upfall
WHERE northing IS NOT NULL
 OR easting IS NOT NULL;
The output presents northing and easting each in its own column:
 ID NORTHING EASTING
---------- ---------- ----------
 1 5141184 528971
 2 5140000 528808
 3 5137795 527046
And here is the same data presented with the distance values all
 in one column:
 ID LABEL VALUE
---------- -------- ----------
 1 NORTHING 5141184
 1 EASTING 528971
 2 NORTHING 5140000
 2 EASTING 528808
 3 NORTHING 5137795
...
This second presentation is the unpivoted form.

Unpivoting: Oracle

You can generate the unpivoted form shown at the end of the
 preceding section using the following query:
SELECT id, label, value
FROM upfall
UNPIVOT EXCLUDE NULLS (
 value
 FOR label IN (northing, easting)
);
Here is an explanation of the query. It begins from the inside
 and works outward.
	The FOR clause specifies that values from the northing and easting columns are to be unpivoted by
 being turned into rows.

	The identifier label
 (following FOR) specifies the name of a new column that Oracle
 Database creates to identify each unpivoted value in the query
 results. The SELECT clause lists this column, which receives the
 name of the original column containing each unpivoted
 value.

	The identifier value
 specified following the first parenthesis in the UNPIVOT clause
 specifies the name for the new column created to hold the
 unpivoted values. The SELECT
 clause lists this column.

	The EXCLUDE NULLS clause throws out any nulls that would
 otherwise appear in the value
 column. That is the default behavior. Specify INCLUDE NULLS to
 retain such null values.

	The SELECT clause lists the id column, causing the query to return
 one combination of label and
 value for each waterfall (i.e.,
 for each distinct id
 value).

Unpivoting: SQL Server

Following is the SQL Server UNPIVOT syntax to generate the
 results shown at the end of the section Unpivoting: The Concept:
SELECT id, label, value
FROM upfall
UNPIVOT (
 value
 FOR label IN (northing, easting)
) UnpivotTable
Notice the alias name UnpivotTable at the end of the subquery. SQL
 Server requires an alias for such a subquery.
Here is the step-by-step explanation of this unpivot
 query:
	The FOR clause specifies that values from the northing and easting columns are to be unpivoted by
 being turned into rows.

	The identifier label
 (following FOR) specifies the name of a new column to identify
 each unpivoted value in the query results. The SELECT clause lists
 this column, which receives the name of the original column
 containing each unpivoted value.

	The identifier value
 following the first parenthesis in the UNPIVOT clause specifies
 the name for the new column created to hold the unpivoted values.
 The SELECT clause lists this column.

	SQL Server throws out any nulls that would otherwise appear
 in the value column.

	The SELECT clause lists the id column, causing the query to return
 one combination of label and value for each waterfall (i.e., for
 each distinct id value).

Predicates

Predicates are conditions you write in the
 WHERE, ON, and HAVING clauses of an SQL statement that determine which
 rows are affected, or returned, by that statement. For example, use the
 predicate name = 'Wagner Falls' to
 return data for only that particular waterfall:
SELECT u.zone, u.northing, u.easting
FROM upfall u
WHERE name = 'Wagner Falls';
Table 1-13 lists the available
 comparison operators. Some operators, such as IN and EXISTS, are more
 fully described in later subsections. Regular-expression operators are
 described under Regular Expressions. Operators for
 dealing with nulls are described under Nulls.
Table 1-13. Comparison operators
	Operator
	Description

	!=, <>
	Tests for
 inequality

	<
	Tests for less
 than

	<=
	Tests for less than or
 equal to

	<=>
	Null-safe test for
 equality; supported only by MySQL

	=
	Tests for
 equality

	>
	Tests for greater
 than

	>=
	Tests for greater than or
 equal to

	BETWEEN
	Tests whether a value
 lies within a given range

	EXISTS
	Tests whether rows exist
 matching conditions that you specify

	IN
	Tests whether a value is
 contained in a set of values that you specify or that are
 returned by a subquery

	IS [NOT] NULL
	Tests for
 nullity

	LIKE
	Tests whether a value
 matches a pattern

	REGEXP, RLIKE
	Regular-expression
 comparison operator; supported only by MySQL

	REGEXP_LIKE
	Tests whether a value
 matches the pattern described by a regular expression; supported
 only by Oracle

EXISTS Predicates

Use EXISTS and NOT EXISTS to test for the existence of rows
 matching a set of conditions that you specify. For example, to return
 a list of all owners associated with at least one waterfall,
 specify:
SELECT o.id, o.name
FROM owner o
WHERE EXISTS (SELECT * FROM upfall u
 WHERE u.owner_id = o.id);
Replace EXISTS with NOT EXISTS to find all owners who are not
 associated with any waterfall.
Subqueries used in EXISTS predicates should usually be correlated, which
 means that a subquery’s WHERE clause compares a column from the
 subquery with a column from the outer query.

IN Predicates

Use IN to test whether a value falls within a set of values. You
 can enumerate that set as a list of literal values, or you can return
 the set as the result of a subquery. The following example specifies a
 set of literal values:
SELECT o.id, o.name
FROM owner o
WHERE o.id IN (1,2,3,4);
This next example uses a subquery and restates the EXISTS query
 from the preceding section, which returns a list of owners associated
 with at least one waterfall:
SELECT o.id, o.name
FROM owner o
WHERE o.id IN (SELECT u.owner_id
 FROM upfall u);
Watch out for nulls! If the subquery you use with a NOT IN
 predicate returns a null value for even one row in the set, the result
 of the NOT IN operation will never be true. Rather, it will always be
 unknown, and your query won’t function as you expect.

BETWEEN Predicates

Use BETWEEN to see whether a value falls in a given range. For
 example:
SELECT c.name
FROM county c
WHERE c.population BETWEEN 5000 AND 10000;
Any BETWEEN predicate can easily be expressed using the >= and <= operators:
SELECT c.name
FROM county c
WHERE c.population >= 5000
 AND c.population <= 10000;
When writing BETWEEN predicates, always list the smallest value
 first.

LIKE Predicates

The LIKE and NOT LIKE predicates give you rudimentary
 pattern-matching capabilities. You can use the percent (%) and underscore (_) characters to match any number of
 characters or any one character, respectively. For example, to find
 all waterfalls containing the word “Miners” in their names,
 specify:
SELECT u.id, u.name
FROM upfall u
WHERE u.name LIKE '%Miners%';
Use NOT LIKE to find all falls without “Miners” in their
 names.
MySQL and PostgreSQL recognize the backslash (\) as an escape character by default. Use
 the escape character to specify pattern-matching characters literally.
 For example, to find all falls without a percent in their
 names:
SELECT u.id, u.name
FROM upfall u
WHERE u.name NOT LIKE '%\%%';
You can also use the ESCAPE clause to specify explicitly the
 escape character. The following example will run in DB2, Oracle, and
 SQL Server:
SELECT u.id, u.name
FROM upfall u
WHERE u.name NOT LIKE '%\%%' ESCAPE '\';
When specifying an escape character in MySQL or PostgreSQL, be
 aware that the backslash is also the string-literal escape character.
 Thus, to specify explicitly the backslash as the LIKE escape
 character, you must escape that backslash in the ESCAPE
 clause:
SELECT u.id, u.name
FROM upfall u
WHERE u.name NOT LIKE '%\%%' ESCAPE '\\';
Oracle also implements LIKEC, LIKE2, and LIKE4, which work with
 Unicode characters, code units, and code points,
 respectively.

Recursive Queries

See Hierarchical Queries. Also see CONNECT BY Queries if you are using a release of Oracle
 Database prior to Oracle Database
 11g Release 2.

Regular Expressions

MySQL, Oracle, PostgreSQL, and SQL Server support
 regular expressions. SQL Server and MySQL support
 them only for string comparison, whereas PostgreSQL adds support for a
 regular-expression substring function and Oracle provides support for
 that and much more.
Regular Expressions: MySQL

In MySQL, you can perform regular-expression pattern matching
 using the REGEXP predicate in a manner similar to LIKE:
string REGEXP pattern
REGEXP looks for the specified regular expression anywhere in
 the target string. For example, to search for variant spellings of
 Fumee Falls:
SELECT u.id, u.name
FROM upfall u
WHERE u.name REGEXP '(Fumee|Fumie|Fumy)';
MySQL’s regular-expression pattern matching is case-insensitive for nonbinary strings.
 Because MySQL recognizes the backslash (\) as an escape character in string
 literals, you must use a double backslash (\\) to represent a single backslash in any
 pattern that you write as a literal.
Table 1-14 lists the
 regular-expression operators recognized by MySQL.
Table 1-14. MySQL regular-expression operators
	Operator
	Description

	.
	Matches any character,
 including newlines.

	^
	Matches beginning of
 string.

	$
	Matches end of
 string.

	[. . .]
	Matches any of a set of
 characters.

	[^ . . .]
	Matches any character
 not in a set.

	[[. xx
 .]]
	Matches a collation
 element.

	[: class
 :]
	Specifies a character
 class within a bracket expression. For example, use [[:digit:]] to match all digits.
 Valid character classes are: [:alnum:], [:alpha:], [:blank:], [:cntrl:], [:digit:], [:graph:], [:lower:], [:print:], [:punct:], [:space:], [:upper:], [:xdigit:].

	[= chars
 =]
	Specifies an
 equivalence class.

	[.
 charname .]
	Use within a bracket
 expression to match a character by name. For example, use
 [[.tilde.]] or [˜] to match the tilde (˜). You’ll find a list of character
 names in regexp/cname.h.

	*
	Matches zero or
 more.

	+
	Matches one or
 more.

	?
	Matches zero or
 one.

	{ x
 }, {
 x , y
 }, {
 x ,}
	Matches
 x times, from
 x to y
 times, or at least x
 times.

	|
	Delimits
 alternatives.

	(. . .)
	Defines a
 subexpression.

	[[:<:]]
	Matches the beginning
 of a word.

	[[:>:]]
	Matches the end of a
 word.

Regular Expressions: Oracle

Oracle Database 10g implements the
 following regular-expression functions:
REGEXP_COUNT(source_string, pattern
 [, position [, match_parameter]])

REGEXP_INSTR(source_string, pattern
 [, position [, occurrence
 [, return_option
 [, match_parameter
 [, subexpression]]]]])

REGEXP_LIKE (source_string, pattern
 [, match_parameter])

REGEXP_REPLACE(source_string, pattern
 [, replace_string
 [, position [, occurrence
 [, match_parameter]]]])

REGEXP_SUBSTR(source_string, pattern
 [, position [, occurrence
 [, match_parameter]]])
Parameters are as follows:
	source_string
	The string you wish to search.

	pattern
	A regular expression describing the text pattern you are
 searching for. This expression cannot exceed 512 bytes in
 length.

	replace_string
	The replacement text. Each occurrence of
 pattern in
 source_string is replaced by
 replace_string, which can use
 backreferences to refer to values that match subexpressions in
 the pattern.

	position
	The character position at which to begin the search. This
 defaults to 1 and must be positive.

	occurrence
	The occurrence of pattern you
 are interested in finding. This defaults to 1. Specify 2 if you
 want to find the second occurrence of the pattern, 3 for the
 third occurrence, and so forth.

	return_option
	Specify 0 (the default) to return the pattern’s beginning
 character position. Specify 1 to return the ending character
 position.

	match_parameter
	A set of options, in the form of a character string, that
 changes the default manner in which regular-expression pattern
 matching is performed. You may specify any, all, or none of the
 following options, in any order:
	'i'
	Specifies case-insensitive matching.

	'c'
	Specifies case-sensitive matching.

	'n'
	Allows the period (.) to match the newline
 character. (Normally, that is not the case.)

	'm'
	Causes the caret (^) and dollar sign ($) to match the beginning and
 ending, respectively, of lines within the source string.
 Normally, the caret and dollar sign match only the very
 beginning and the very end of the source string,
 regardless of any newline characters within the
 string.

	'x'
	Ignores whitespace, preventing whitespace characters
 from matching themselves.

	subexpression
	Specify 0 to return the position at which the entire
 pattern matches (INSTR) or to return the substring matching the
 entire pattern (SUBSTR). Specify 1 through 9 to return the
 position corresponding to that subexpression of the pattern
 (INSTR) or to return the string corresponding to that
 subexpression (SUBSTR). Defaults to 0.

The NLS_SORT parameter setting determines whether case-sensitive
 or case-insensitive matching is done by default.
Note
For detailed information and examples of Oracle’s regular-expression support, see the Oracle
 Regular Expressions Pocket
 Reference by Jonathan Gennick and Peter Linsley (O’Reilly).

Table 1-15 lists the
 regular-expression operators supported by these functions.
Table 1-15. Oracle regular-expression operators
	Operator
	Description

	\
	Escapes a
 metacharacter

	\1 . . . \9
	Backreferences an
 earlier subexpression; the
 replace_string parameter supports
 from \1 to \500

	.
	Matches any
 character

	^
	Matches beginning of
 line

	$
	Matches end of
 line

	[. . .]
	Matches any of a set of
 characters

	[^ . . .]
	Matches any character
 not in a set

	[.xx.]
	Encloses a collation
 element

	[:class:]
	Specifies a character
 class such as [:digit:],
 [:alpha:], or [:upper:] within a bracket
 expression

	[=chars=]
	Specifies an
 equivalence class

	*
	Matches zero or
 more

	+
	Matches one or
 more

	?
	Matches zero or
 one

	{x},
 {x,y},
 {x,}
	Matches
 x times, from
 x to y
 times, or at least x
 times

	|
	Delimits
 alternatives

	(. . .)
	Defines a
 subexpression

Table 1-16
 lists additional Perl-influenced operators added in Oracle Database
 10g Release 2.
Table 1-16. Perl-influenced regular-expression operators in
 Oracle
	Operator
	Description

	\d
	Matches any
 digit

	\D
	Matches any
 nondigit

	\w
	Matches a
 word character, which is defined to
 include alphabetic characters, numeric characters, and the
 underscore

	\W
	Matches any nonword
 character

	\s
	Matches any whitespace
 character

	\S
	Matches any
 nonwhitespace character

	\A
	Anchors an expression
 to the beginning of a string

	\Z
	Anchors an expression
 to the end of a string

	*?
	Nongreedy “zero or
 more” quantifier

	+?
	Nongreedy “one or more”
 quantifier

	??
	Nongreedy “zero or one”
 quantifier

	{x}?,
 {x,y}?,
 {x,}?
	Nongreedy versions of
 {x}, {x,
 y}, {x,}

Regular Expressions: PostgreSQL

PostgreSQL implements regular expressions in two ways. First, it
 provides support in the form of the SQL standard’s SIMILAR TO
 predicate. For example, to find variant spellings of Fumee Falls,
 specify:
SELECT u.id, u.name
FROM upfall u
WHERE u.name SIMILAR TO '(Fumee|Fumie|Fumy) Falls';
Table 1-17
 lists the regular-expression operators that you can use with SIMILAR
 TO. Use a backslash (\) to embed
 any of the operators as a literal character. Use the ESCAPE clause to
 specify an alternate escape character:
WHERE u.name
 SIMILAR TO '(Fumee|Fumie|Fumy) Falls'
 ESCAPE '@'
Table 1-17. PostgreSQL regular-expression operators
	Operator
	Description

	_
	Matches any single
 character

	%
	Matches any string of
 characters

	(. . .)
	Defines a
 subexpression

	|
	Denotes
 alternation

	*
	Matches zero or
 more

	+
	Matches one or
 more

	?
	Matches zero or
 one

	{x}, {x,y}, {x,}
	Matches
 x times, from
 x to y
 times, and at least x
 times

	[. . .]
	Matches any of a set of
 characters

	[^ . . .]
	Matches any character
 not in a set

The following form of the SUBSTRING function supports the
 operators in Table 1-17:
SUBSTRING(string FROM pattern FOR escape)
For example:
SELECT u.name
FROM upfall u
WHERE SUBSTRING(u.name
 FROM '(Fumee|Fumie|Fumy) Falls' FOR '\\')
 IS NOT NULL;
As with the other queries in this section, this query searches
 for alternate spellings of Fumee Falls.
Second, PostgreSQL implements Posix-style regular expressions.
 For example, to find waterfalls that are described by Michigan state
 highway names in the form M-28, M-1, and so forth, up to three digits,
 you can write:
SELECT u.name, u.description
FROM upfall u
WHERE u.description ~ '.*M-[[:digit:]]{1,3}';
The ˜ operator returns TRUE
 when the text on the left matches the expression on the right. The
 match is case-sensitive. Use ˜* for
 a case-insensitive match. Similarly, you can use !˜ and !˜* to return TRUE when the text to the left
 does not match the pattern.
The following two functions provide additional support for
 Posix-style regular expressions:
SUBSTRING(string FROM pattern)
REGEXP_REPLACE(source, pattern, replacement [,flags])
For example, to change waterfall names from “Fumee Falls” to
 “Falls, Fumee,” specify:
SELECT REGEXP_REPLACE(
 u.name, '(.+?) (Falls)', '\\2, \\1')
FROM upfall u;
The flags argument to REGEXP_REPLACE
 is optional. Specify 'i' for a
 case-insensitive match, 'g' to
 replace all matching substrings, or both (as in 'ig' or 'gi'). Flags must be lowercase.
Use backreferences \1 through
 \9 in the
 replacement string to insert subexpressions
 from the matched text (denoted by (. . .
)). Use \& in the
 replacement string to insert the entire
 matched text. Use \\ to place a
 single backslash in the replacement string.
\1 through \9 are always backreferences. When multiple
 digits are involved, the construct is assumed to be a backreference if
 it is within the valid range of currently existing subexpressions. If
 the construct is outside the valid range, it is treated as an octal
 character escape. However, if the first digit is a zero, the construct
 is always treated as an octal character escape,
 regardless of where it falls in relation to the range.
Table 1-18
 lists the Posix-style regular-expression operators available in
 PostgreSQL.
Table 1-18. PostgreSQL Posix-style regular-expression operators
	Operator
	Description

	\
	Escapes a
 metacharacter

	\1 . . . \9 . . .
	Backreferences an
 earlier subexpression

	.
	Matches any
 character

	^
	Matches beginning of
 line

	$
	Matches end of
 line

	[. . .]
	Matches any of a set of
 characters

	[^ . . .]
	Matches any character
 not in a set

	[: class
 :]
	Specifies a character
 class within a bracket expression; valid classes are: [:alnum:], [:alpha:], [:blank:], [:cntrl;], [:digit:], [:graph:], [:lower:], [:print:], [:punct:], [:space:], [:upper:], [:xdigit:]

	[. xx
 .]
	Encloses a collation
 element within a bracket expression

	[= chars
 =]
	Specifies an
 equivalence class within a bracket expression

	[[:<:]]
	Matches beginning of
 word

	[[:>:]]
	Matches ending of
 word

	*
	Matches zero or
 more

	+
	Matches one or
 more

	?
	Matches zero or
 one

	{x},
 {x,y},
 {x,}
	Matches
 x times, from
 x to y
 times, or at least x
 times

	|
	Delimits
 alternatives

	(. . .)
	Defines a
 subexpression

	(?: . . .)
	Defines a noncapturing
 subexpression

	(?= . . .)
	Anchors to the
 beginning of a subexpression match

	(?! . . .)
	Anchors to the point of
 a subexpression mismatch

	\a
	Matches the alert
 bell

	\b
	Matches
 backspace

	\B
	Matches a backslash
 (\); synonym for \\

	\cX
	Matches a character in
 which the low-order five bits are the same as in the character
 X

	\d
	Matches any
 digit

	\D
	Matches any
 nondigit

	\e
	Matches the escape
 character

	\f
	Matches the form
 feed

	\m
	Anchors to the
 beginning of a word

	\M
	Anchors to the end of a
 word

	\n
	Matches
 newline

	\r
	Matches carriage
 return

	\t
	Matches horizontal
 tab

	\uXXXX
	Matches the UTF-16
 codepoint specified by the four-digit hexadecimal number
 XXXX

	\Uxxxxxxxx
	Reserved for an
 eventual UTF-32 extension

	\v
	Matches vertical
 tab

	\w
	Matches a
 word character, which is defined to
 include alphabetic characters, numeric characters, and the
 underscore

	\W
	Matches any nonword
 character

	\xHEX_DIGITS
	Matches the character
 at code point
 HEX_DIGITS

	\0
	Matches the null
 character (hex 0)

	\xx
	Matches the character
 at octal code point xx when
 xx is not a
 backreference

	\xxx
	Same as \xx, but
 for three octal digits

	\y
	Anchors to either the
 beginning or ending of a word

	\Y
	Anchors to a point that
 is not the beginning or ending of a word

	\s
	Matches any whitespace
 character

	\S
	Matches any
 nonwhitespace character

	\A
	Anchors an expression
 to the beginning of a string

	\Z
	Anchors an expression
 to the end of a string

	*?
	Nongreedy “zero or
 more” quantifier

	+?
	Nongreedy “one or more”
 quantifier

	??
	Nongreedy “zero or one”
 quantifier

	{x}?,
 {x,y}?,
 {x,}?
	Nongreedy versions of
 {x}, {x,
 y}, {x,}

Table 1-19 lists
 embedded regular-expression option letters that you can use to control
 overall matching behavior. To embed options in an expression, use the
 syntax (?xxx . . .), where each
 x is an option letter from the table.
 Specify as many xs as you need.
Table 1-19. PostgreSQL Posix-style option letters
	Option
	Description

	a
	Makes the rest of the
 expression a basic regular expression (BRE)

	c
	Specifies
 case-sensitive matching

	e
	Makes the rest of the
 expression an extended regular expression (ERE)

	i
	Specifies
 case-insensitive matching

	m
	Same as n

	n
	Specifies
 newline-sensitive matching

	p
	Specifies partial
 newline-sensitive matching

	q
	Makes the rest of the
 regular expression a literal (no more operators are recognized)

	s
	Specifies
 non-newline-sensitive matching (the default)

	t
	Specifies tight
 syntax

	w
	Specifies inverse
 partial newline-sensitive matching (a.k.a. weird
 matching)

	x
	Switches to expanded
 syntax

Regular Expressions: SQL Server

SQL Server supports a very limited regular-expression syntax for
 its version of the LIKE predicate. For example, to find Fumee Falls even if it is misspelled as
 “Fumie Falls,” write:
SELECT *
FROM upfall
WHERE name LIKE 'Fum[ie]e Falls';
SQL Server does not support quantifiers, alternation,
 subexpressions, or backreferences. Table 1-20 lists the few
 operators that SQL Server does support.
Table 1-20. SQL Server regular-expression operators
	Operator
	Description

	%
	Matches any number of
 characters

	_
	Matches any character,
 including newlines

	[. . .]
	Matches any of a set of
 characters

	[^ . . .]
	Matches any character
 not in a set

Selecting Data

Use a SELECT statement, or query, to retrieve
 data from a database—typically
 from a table or view or from a combination of tables and
 views:
SELECT expression_list
FROM data_source
WHERE predicates
GROUP BY expression_list
HAVING predicates
ORDER BY expression_list
DB2, Oracle, PostgreSQL, and SQL Server support factoring out
 subqueries using a WITH clause. See Hierarchical Queries and Subqueries for
 some examples of this technique.
The SELECT Clause

Each expression in the SELECT clause becomes a column in the
 result set returned by the query. Expressions may be simple column
 names, may generate a new value using a column value as input, or may
 have nothing to do with any columns at all.
Listing the columns to retrieve

The SELECT clause specifies the individual data elements you
 want the statement to return. The simple case is to specify a
 comma-delimited list of one or more column names from the tables
 listed in the FROM clause:
SELECT id, name
FROM owner;
The result set for this query will contain the following
 columns:
ID NAME
------------ ---------------
1 Pictured Rocks
2 Michigan Nature
3 AF LLC
4 MI DNR
5 Horseshoe Falls

Taking shortcuts with the asterisk

To return all columns from a table, you can specify a single
 asterisk rather than write out each column name:
SELECT *
FROM owner;

ID NAME PHONE TYPE
------------ --------------- ------------ -------
1 Pictured Rocks 906.387.2607 public
2 Michigan Nature 517.655.5655 private
3 AF LLC private
4 MI DNR 906-228-6561 public
5 Horseshoe Falls 906.387.2635 private
The asterisk is a helpful shortcut when executing queries
 interactively because it can save you a fair bit of typing. However,
 it’s a risky proposition to use the asterisk in program code because the columns in a table may
 change over time, causing your program to fail when more or fewer
 columns than expected are returned.

Writing expressions

You can use column names in expressions. The following
 statement predicts the effect of a 10 percent drop in population
 (rounded to zero decimal places):
SELECT name, ROUND(population * 0.90, 0)
FROM county;
It is not necessary for an expression in a SELECT list to
 refer to any column at all in the table or view from which you are
 selecting. In Oracle, it’s very common to issue queries against a
 special table known as dual, as
 in the following query, which returns the current date and
 time:
SELECT SYSDATE
FROM dual;
In DB2, you can query sysibm.sysdummy1:
SELECT CURRENT_DATE
FROM sysibm.sysdummy1;
Your database system will evaluate such expressions for each
 row returned by the query. Oracle’s dual table is special in that it holds
 only one row. Thus, the preceding query from dual will return only one value.
In SQL Server and MySQL, you can return the result of an
 expression without selecting from a table at all. For example, use
 the following to get the current time (SQL Server):
SELECT getdate();
A SELECT such as this one, in which no table is specified, is
 the SQL Server/MySQL equivalent of Oracle’s SELECT...FROM dual.

Specifying result-set column names

SQL enables you to specify a name, or
 alias, for each expression in your SELECT list.
 To specify a column alias, place the alias name immediately after
 the column name or expression, separating the two by at least one
 space:
SELECT id, name,
 ROUND(population * 0.90, 0) est_pop
FROM county;

ID NAME EST_POP
---------- ---------- -------------------
2 Alger 8876
6 Baraga 7871
7 Ontonagon 7036
...
Alternatively, you can introduce a column alias using the AS
 keyword:
SELECT id, name,
 ROUND(population * 0.90, 0) AS est_pop
FROM county;
PostgreSQL 8.1 and earlier require the
 use of AS to introduce a column alias.
In a given situation, it may not be important to provide an
 alias for a simple column name such as id. However, it’s very important to use
 aliases when working with expressions to give sensible names to the
 resulting columns.

Dealing with case and punctuation in names

By default, SQL is case-insensitive and converts keywords and
 identifiers (such as table and column names) to uppercase. In MySQL,
 case sensitivity depends on whether the underlying operating system
 is case-sensitive (with respect to filenames). Oddly, in PostgreSQL,
 the default is to convert to lowercase.
If you must specify an identifier in a case-sensitive manner,
 you can enclose it in double quotes. The following example uses
 double quotes to generate mixed-case column aliases. Note that the
 double quotes also allow for spaces to be included in the alias
 names:
SELECT id AS "Fall #", name AS "Fall Name"
FROM upfall;

Fall # Fall Name
------ ---------------
1 Munising Falls
2 Tannery Falls
3 Alger Falls
...
The ability to quote identifiers also enables you to work with
 column and table names containing mixed cases, spaces, and other
 unusual characters.

Using subqueries in a SELECT list

Current versions of all of the platforms allow you to embed a
 subquery in a SELECT list. Ensure that the embedded subquery is
 scalar: it must return zero or one rows and one column. When no row
 is returned, you get a null. You should also specify a column alias
 so that the corresponding result-set column has a simple name to
 which you can easily refer in your code. For example, the following
 query returns the number of waterfalls for each owner:
SELECT o.id, o.name,
 (SELECT COUNT(*) FROM upfall u
 WHERE u.owner_id = o.id) AS fall_count
FROM owner o;
Subqueries can be correlated or uncorrelated. The subquery in
 this example is correlated, meaning that it refers to the enclosing
 table.

Qualifying column names

You can qualify a column name by its table name. This is
 especially important when writing queries that involve multiple
 tables, because sometimes two tables will have columns with the same
 name. To qualify a column name, use dot notation, as in
 table_name.column_name. For
 example:
SELECT owner.id, owner.name
FROM owner;
If you qualify a column name by its table name, you can also
 qualify that table name by its schema or database name:
SELECT sqlpocket.owner.id
FROM sqlpocket.owner;
To make it easier to qualify column names, you can provide
 table aliases. The following example gives the alias o to the table owner:
SELECT o.id, o.name
FROM owner o;
or:
SELECT o.id
FROM sqlpocket.owner o;
Qualifying column names is often necessary to remove ambiguity
 in a query.

ALL and DISTINCT

Use the ALL and DISTINCT keywords to specify whether you want
 the SELECT operation to eliminate duplicate rows from the result set.
 Duplicate elimination typically involves a partial sorting of the
 data, though other approaches are possible and the approach taken
 depends upon the implementation.
Following are two examples showing the difference between ALL
 and DISTINCT:
SELECT ALL o.type, u.open_to_public
FROM owner o
JOIN upfall u ON o.id = u.owner_id;

TYPE OPEN_TO_PUBLIC
------- --------------
public y
private y
private y
public y
public y
public y

SELECT DISTINCT o.type, u.open_to_public
FROM owner o
JOIN upfall u ON o.id = u.owner_id;

TYPE OPEN_TO_PUBLIC
------- --------------
private y
public y
The first query simply returns one row for each owner. (The ALL
 keyword is optional and is assumed by default.) The second uses
 DISTINCT to return a list of different type/open_to_public combinations. Use DISTINCT
 when you need each combination of column values to be returned only
 one time.

The FROM Clause

Use the FROM clause to specify the source of the data you want
 to retrieve. The simplest case is to specify a single table or view in
 the FROM clause of a SELECT statement:
SELECT name
FROM upfall
WHERE id = 2;
You can also qualify a table or view name with either a schema
 or database name, depending on your platform. Use dot notation for
 that purpose:
SELECT name
FROM sqlpocket.upfall
WHERE id = 2;
This query retrieves specifically from the upfall table or view owned by the user
 sqlpocket.
Table aliases in the FROM clause

You can specify a name, or table alias,
 for any table or view expression in a FROM clause. Aliases are
 useful for queries having ambiguous column names resulting from a
 join or the use of a subquery. For example, the following query
 returns a list of waterfalls, and for each fall, it shows the number
 of other falls in the same county:
SELECT u.name,
 (SELECT COUNT(*) FROM upfall u2
 WHERE u2.county_id = u.county_id)
FROM upfall u;
You couldn’t write this query without using aliases because
 the table names are identical. You also lose the ability to
 reference the outer query from the inner query. For example, without
 aliases, this query’s WHERE clause would be:
WHERE county_id = county_id
Using aliases is the only way to differentiate between the two
 references to the upfall
 table.

Subqueries in the FROM clause

Subqueries can sometimes be used to good effect in the FROM
 clause, where they are also known as inline
 views. Such subqueries must be
 noncorrelated; in other words, they must not
 reference columns from the main query. For example, the following
 query lists all publicly owned falls:
SELECT u.name AS fall_name, o.name AS owner_name
FROM (SELECT * FROM owner
 WHERE type = 'public') o
JOIN upfall u ON o.id = u.owner_id;
The subquery conceptually materializes a temporary table of
 falls that are publicly owned. That temporary table is then joined
 to the upfall table.

Generating tables through the VALUES clause

DB2 and SQL Server 2008 allow the use of the VALUES clause to
 generate tables on the fly:
SELECT id, name
FROM (VALUES (1, 'Munising Falls'),
 (2, 'Tannery Falls'))
AS falls(id, name);

ID NAME
----------- --------------
 1 Munising Falls
 2 Tannery Falls
Be sure to place parentheses around the entire VALUES clause
 and to separate value lists using commas.

The WHERE Clause

Use the WHERE clause to restrict query results to only those
 rows of interest. Rarely will you want all rows from a table. More
 often, you’ll want rows that match specific criteria. The following
 example retrieves only those waterfalls located in Alger County that
 are publicly accessible:
SELECT u.name
FROM upfall u
WHERE
 u.open_to_public = 'y'
 AND u.county_id IN (
 SELECT c.id FROM county c
 WHERE c.name = 'Alger');
The query uses an equality predicate (=) to identify publicly accessible
 waterfalls and an IN predicate (IN)
 to identify falls in Alger County. See the section Predicates for more examples and a list of predicates
 that you can use in the WHERE clause.
Note
Join conditions are also used to restrict data returned by a
 query. See Joining Tables.

The GROUP BY Clause

See the section Grouping and Summarizing.

The HAVING Clause

See the section Grouping and Summarizing.

The ORDER BY Clause

Use ORDER BY to specify how you want results to be sorted. For
 example, the following returns a list of waterfalls sorted by owner
 name, and then sorted within each owner by fall name:
SELECT COALESCE(o.name, 'Unknown') AS owner,
 u.name AS fall
FROM upfall u
LEFT OUTER JOIN owner o
 ON u.owner_id = o.id
ORDER BY o.name, u.name;
The default sort is an ascending sort. You can use the keywords
 ASCENDING and DESCENDING (which you can abbreviate ASC and DESC) to
 control the sort on each column. The following is a modification of
 the previous sort, but this time, it sorts owner names in reverse
 order:
SELECT COALESCE(o.name, 'Unknown') AS owner,
 u.name AS fall
FROM upfall u
LEFT OUTER JOIN owner o
 ON u.owner_id = o.id
ORDER BY o.name DESC, u.name ASC;
You can sort by columns and expressions that are not in your
 SELECT list:
ORDER BY o.id DESC, u.id
You can also sort by numeric column position:
SELECT COALESCE(o.name, 'Unknown') AS owner,
 u.name AS fall
...
ORDER BY 1 DESC, 2 ASC;
And, in Oracle, PostgreSQL, and SQL Server you can even sort by
 the results of a correlated subquery (i.e., one
 that references a column from the main query):
SELECT COALESCE(o.name, 'Unknown') AS owner,
 u.name AS fall
FROM upfall u
LEFT OUTER JOIN owner o
 ON u.owner_id = o.id
ORDER BY (SELECT COUNT(*) FROM upfall u2
 WHERE u2.owner_id = o.id) DESC,
 u.name;
The subquery returns the number of waterfalls owned by each
 owner, so the result of this query is to first list those falls whose
 owners own the greatest number of falls. A second sort is then
 performed on falls’ names.

String Functions

The following sections show how to use functions to perform common
 string operations.
Searching a String

In DB2 and Oracle, use the following version of INSTR to find
 the location of a substring within a string:
INSTR(string, substring[, position[, occurrence]])
You can specify a starting position
 for the search, and you can request that a specific
 occurrence be found. If
 position is negative, the search begins
 from the end of the string.
Note
In Oracle Database 10g and higher, you
 can also use REGEXP_INSTR, as described in the section Regular Expressions.

Oracle implements INSTR, INSTRB, INSTR2, and INSTR4, which work
 in terms of the input character set, bytes, Unicode code units, and
 Unicode code points, respectively. DB2 implements INSTR (and also
 INSTRB in version 9.7).
DB2 also supports the LOCATE and POSSTR functions:
LOCATE(substring, string[, position])
POSSTR(substring, string)
Both functions return the first occurrence of
 substring within
 string. Zero is returned if no match is
 found. The default is to search string
 beginning from character position 1.
In SQL Server, use the CHARINDEX function:
CHARINDEX(substring, string[, position])
The arguments are the same as they are for DB2’s LOCATE.
In MySQL, use either INSTR or LOCATE:
INSTR(string, substring)
LOCATE(substring, string[, position])
Use position to specify a starting
 character position other than 1. Zero is returned if
 substring is not found within
 string.
In PostgreSQL, use either POSITION or STRPOS:
POSITION(substring IN string)
STRPOS(string, substring)
Notice that the two functions use opposite argument
 orders.

Replacing Text in a String

Use the REPLACE function to perform a search-and-replace
 operation on a string:
REPLACE(string, search, replace)
You can delete occurrences of search
 by specifying an empty string ('')
 as the replace text. Also, Oracle allows
 you to omit the replacement string, which has the same effect as
 specifying the empty string ('').
Note
Oracle Database 10g and higher and
 PostgreSQL support regular-expression search and replace through the
 REGEXP_REPLACE function described in the section Regular Expressions.

Extracting a Substring

In DB2, Oracle, and PostgreSQL, you can use the SUBSTR function
 to extract length characters from a
 string, beginning at position
 start:
SUBSTR(string, start[, length])
Strings begin with position 1. Oracle treats a
 start of 0 as though you had specified 1.
 If start is negative, Oracle counts
 backward from the end of the string.
Omit length to get all characters
 from start to the end of the string. DB2
 pads any result with spaces, if necessary, to ensure that the result
 is always length characters long.
Note
In Oracle Database 10g and higher, you
 can also use REGEXP_SUBSTR, as described in the section Regular Expressions.

Oracle implements SUBSTR, SUBSTRB, SUBSTR2, and SUBSTR4, which
 work in terms of the input character set, bytes, Unicode code units,
 and Unicode code points, respectively. DB2 implements SUBSTR (and also
 SUBSTRB in version 9.7).
 PostgreSQL implements only SUBSTR.
PostgreSQL also supports:
SUBSTRING(string FROM start)
SUBSTRING(string FROM start FOR length)
In SQL Server, use SUBSTRING. All three arguments are required:
SUBSTRING(string, start, length)
MySQL implements the following substring functions:
SUBSTRING(string, start)
SUBSTRING(string FROM start)
SUBSTRING(string, start, length)
SUBSTRING(string FROM start FOR length)
The arguments to these SUBSTRING functions are the same as they
 are for SUBSTR. MySQL supports a negative
 start position, which counts from the
 right.

Finding the Length of a String

Use the LENGTH function (LEN in SQL Server) to determine the
 length of a string:
LENGTH(string)
Oracle implements LENGTH, LENGTHB, LENGTH2, and LENGTH4, which
 count characters in the input character set, bytes, Unicode code
 units, and Unicode code points, respectively.

Concatenating Strings

The easiest way to concatenate strings is to use the SQL
 standard string concatenation operator (||):
string1 || string2
SQL Server does not support the ISO SQL string concatenation
 operator. Use a +
 instead:
string1 + string2
MySQL supports neither || nor
 + for concatenating strings, but it
 does support an unlimited number of string arguments to
 CONCAT:
CONCAT(string[, string ...])
PostgreSQL supports a TEXTCAT function:
TEXTCAT(string, string)

Trimming Unwanted Characters

LTRIM, RTRIM, and TRIM remove unwanted characters from a string.
 TRIM is part of the SQL standard; the others are not. TRIM’s syntax
 is:
TRIM(string)
TRIM(character FROM string)
TRIM(option [character] FROM string)
option ::= {LEADING|TRAILING|BOTH}
Using TRIM, you can trim leading
 characters, trailing
 characters, or both from a string. The
 character to trim defaults to a single
 space. The default option is BOTH.
LTRIM removes unwanted characters
 from the beginning (left edge) of a string,
 whereas RTRIM removes from the end (right edge). The implementation
 for Oracle and PostgreSQL is:
LTRIM(string[, unwanted])
RTRIM(string[, unwanted])
The unwanted argument is a string
 containing the characters you want trimmed, and it defaults to a
 single space. For example, to remove various punctuation from both
 ends of a string, specify:
RTRIM(LTRIM(string,'.,! '),'.,! ')
DB2, MySQL, and SQL Server do not support the
 unwanted argument; you can trim only
 spaces.

Changing the Case of a String

Use the UPPER and LOWER functions to upper- or lowercase all
 letters in a string:
UPPER(string)
LOWER(string)
In DB2 9.7 and higher, Oracle, and PostgreSQL, you can also use
 INITCAP(string) to uppercase the first letter of each word
 in a string and lowercase the other letters. DB2 supports UCASE and
 LCASE as synonyms for UPPER and LOWER.

Subqueries

Subject to various platform restrictions, subqueries can be used
 in most SQL statements as follows:
	In the SELECT list of a SELECT
 statement
	See The SELECT Clause.

	In the FROM clause of a SELECT
 statement
	See The FROM Clause.

	In the WHERE clause of a SELECT
 statement
	See Predicates, and also The WHERE Clause.

	In the ORDER BY clause of a SELECT
 statement
	See The ORDER BY Clause.

	In an INSERT…SELECT…FROM statement
	See Subquery Inserts.

	In the SET clause of an UPDATE
 statement
	See New Values from a Subquery.

Subqueries in the FROM Clause

A subquery in the FROM clause of a SELECT statement functions
 like a view and replaces a table as a data source. You can use
 subqueries—just as you can use views—as targets of INSERT, DELETE, and
 UPDATE statements. For example, for all platforms except MySQL and SQL
 Server, you can specify:
DELETE
FROM (SELECT * FROM upfall u
 WHERE u.open_to_public = 'n') u2
WHERE u2.owner_id IS NOT NULL;
This statement deletes waterfalls that are not open to the
 public and for which an owner is known.

Subqueries in the WITH Clause

The SQL standard defines a WITH clause that you can use to
 factor out a subquery so that you don’t need to repeat it in your
 SELECT statement. DB2, Oracle, PostgreSQL, and SQL Server support
 WITH.
Note
See Hierarchical Queries to learn how WITH
 is used to write recursive queries.

The following SELECT repeats two subqueries twice to generate a
 list of counties containing more than the average number of waterfalls per county:
SELECT c.name,
 (SELECT COUNT(*) FROM upfall u2
 WHERE u2.county_id = c.id) fall_count,
 (SELECT AVG(fall_count)
 FROM (SELECT COUNT(*) fall_count
 FROM upfall u3
 GROUP BY u3.county_id) x1) avg_count
FROM county c
WHERE (SELECT COUNT(*) FROM upfall u2
 WHERE u2.county_id = c.id)
 >
 (SELECT AVG(fall_count)
 FROM (SELECT COUNT(*) fall_count
 FROM upfall u3
 GROUP BY u3.county_id) x2);
Aside from being difficult to read and comprehend, this query is
 a potential maintenance disaster because any change to either subquery must be made twice.
 Using WITH, you can rewrite the query in a way that specifies each
 subquery only once. For example, in all but PostgreSQL:
WITH fall_count_query AS
 (SELECT u2.county_id id,
 COUNT(*) fall_count
 FROM upfall u2
 GROUP BY u2.county_id),
 avg_count_query AS
 (SELECT AVG(fall_count) avg_count
 FROM (SELECT COUNT(*) fall_count
 FROM upfall u3
 GROUP BY u3.county_id))
SELECT c.name,
 (SELECT fall_count FROM fall_count_query
 WHERE fall_count_query.id = c.id) fall_count,
 (SELECT avg_count FROM avg_count_query) avg_count
FROM county c
WHERE (SELECT fall_count FROM fall_count_query
 WHERE fall_count_query.id = c.id)
 > (SELECT avg_count FROM avg_count_query);
PostgreSQL requires an alias for any subquery in the FROM clause
 of a subquery in the WITH clause. For example, notice the alias
 fc at the end of the following
 snippet:
...
 avg_count_query AS
 (SELECT AVG(fall_count) avg_count
 FROM (SELECT COUNT(*) fall_count
 FROM upfall u3
 GROUP BY u3.county_id) fc)
...
The correlated subquery changes to a noncorrelated version as it
 moves into the WITH clause. The original query used the following
 subquery to retrieve the number of waterfalls for a given
 county:
(SELECT COUNT(*) FROM upfall u2
WHERE u2.county_id = c.id) fall_count,
In the WITH version of the query, the correlated subquery that
 counts waterfalls for a single county is replaced with a GROUP BY
 subquery that counts falls for all
 counties:
(SELECT u2.county_id id,
 COUNT(*) fall_count
FROM upfall u2
GROUP BY u2.county_id),
The “correlation” becomes a WHERE clause when selecting from the
 factored-out query:
(SELECT fall_count FROM fall_count_query
WHERE fall_count_query.id = c.id)
When moving a correlated subquery into the WITH clause, you’ll
 need to uncorrelate it. Determining how best to accomplish this
 sometimes requires a bit of thought and experimentation.
Although the preceding query using the WITH clause is somewhat
 more complex than the one it replaces, the logic for computing the
 fall count and average fall count is now encapsulated in the WITH
 clause. The other subqueries do nothing more than select specific
 columns from the result sets of the WITH-clause queries. As the size
 of the subqueries increases, so does the apparent
 simplification.
Further refactoring is possible. This time, the avg_count_query references the previously
 defined fall_count_query,
 consolidating the logic for counting waterfalls by county into only
 one subquery:
WITH fall_count_query AS
 (SELECT u2.county_id id,
 COUNT(*) fall_count
 FROM upfall u2
 GROUP BY u2.county_id),
 avg_count_query AS
 (SELECT AVG(fall_count) avg_count
 FROM (SELECT * FROM fall_count_query))
SELECT c.name,
 (SELECT fall_count FROM fall_count_query
 WHERE fall_count_query.id = c.id) fall_count,
 (SELECT avg_count FROM avg_count_query) avg_count
FROM county c
WHERE (SELECT fall_count FROM fall_count_query
 WHERE fall_count_query.id = c.id)
 > (SELECT avg_count FROM avg_count_query);
DB2 and SQL Server support an alternative method for naming the
 result columns from a WITH-clause query. Instead of providing column
 names as aliases, you can provide them in parentheses following the query
 name:
WITH fall_count_query (id, fall_count) AS
The WITH clause doesn’t eliminate multiple subqueries entirely.
 It does allow you to locate all of the complex logic in one place,
 leaving only simple SELECTs for the subqueries in the main
 statement.

Tables, Creating

You create a new table in a database by issuing a CREATE TABLE
 statement. The syntax varies widely among vendors, but the following
 subsections show reasonable examples for each platform. Bear in mind the
 following points:
	At a minimum, all you need is a list of column names and their
 data types:
CREATE TABLE simple_example (
 id NUMERIC,
 name VARCHAR(15),
 last_changed DATE
);

	The examples give explicit names for many of the constraints, which I consider a best
 practice, but the CONSTRAINT
 constraint_name syntax is optional and is
 often omitted (especially on column constraints such as the NOT NULL
 constraint).

	You can usually declare constraints that involve a single
 column as part of that column’s definition. Multicolumn constraints
 must be declared as table-level elements. The examples demonstrate
 both approaches.

See the platform-specific sections on “Data Types” for lists
 of valid data types by platform.
Creating a Table: DB2

The following is a typical CREATE TABLE statement for
 DB2:
CREATE TABLE db2_example (
 id DECIMAL(6) NOT NULL
 GENERATED ALWAYS AS IDENTITY (
 START WITH 1 INCREMENT BY 1
 MAXVALUE 999999
 CACHE 20 NO ORDER),
 name VARCHAR(15) NOT NULL,
 country VARCHAR(2) DEFAULT 'CA' NOT NULL
 CONSTRAINT country_check
 CHECK (country IN ('CA','US')),
 indexed_name VARCHAR(15),
 CONSTRAINT db2_example_pk
 PRIMARY KEY (id),
 CONSTRAINT db2_example_fk01
 FOREIGN KEY (name, country)
 REFERENCES parent_example (name, country),
 CONSTRAINT db2_example_u01
 UNIQUE (name, country),
 CONSTRAINT db2_example_c01
 CHECK (indexed_name = UPPER(name))
) IN userspace1;
In DB2, you must specify NOT NULL explicitly for all primary key
 columns. Other vendors generally infer NOT NULL from your primary key
 specification. Likewise, DB2 requires NOT NULL on columns involved in
 UNIQUE constraints.
The id column in this table
 is automatically generated from a sequence of values from 1 to
 9999999. Sequence values are cached in memory for faster access and
 are not necessarily assigned in order (which also improves
 performance).

Creating a Table: MySQL

The following is a typical CREATE TABLE statement for MySQL. The
 id column is
 autogenerated:
CREATE TABLE mysql_example (
 id INTEGER AUTO_INCREMENT,
 name VARCHAR(15) NOT NULL,
 country VARCHAR(2) DEFAULT 'CA'
 NOT NULL
 CHECK (country IN ('CA','US')),
 indexed_name VARCHAR(15),
 CONSTRAINT mysql_example_pk
 PRIMARY KEY (id),
 CONSTRAINT mysql_example_fk01
 FOREIGN KEY (name, country)
 REFERENCES parent_example (name, country),
 CONSTRAINT mysql_example_u01
 UNIQUE (name, country),
 CONSTRAINT mysql_example_index_upper
 CHECK (indexed_name = UPPER(name))
) ENGINE = INNODB;
MySQL does not support the CONSTRAINT
 constraint_name syntax or the definition of foreign key
 and check constraints at the column level.
Warning
MySQL silently ignores foreign key constraints, except between
 InnoDB tables. It will even silently ignore the declaration of such
 constraints to tables that do not exist, unless you are creating an
 InnoDB table.

MySQL supports different storage engines,
 which are physical mechanisms for storing table rows. Use the ENGINE
 keyword to specify an engine type. The following are valid engines in
 MySQL 5.1: ARCHIVE, BLACKHOLE, CSV, EXAMPLE, FEDERATED, INNODB,
 MEMORY, MERGE, MYISAM (called ISAM prior to 5.0), and NDBCLUSTER.
 MYISAM is the default, although that can be changed when starting the
 MySQL daemon.
Note
Earlier versions of MySQL require you to use the keyword TYPE
 rather than ENGINE.

Creating a Table: Oracle

The following is a typical CREATE TABLE statement for Oracle:
CREATE TABLE oracle_example (
 id NUMBER(6),
 name VARCHAR2(15) NOT NULL,
 country VARCHAR2(2) DEFAULT 'CA'
 CONSTRAINT country_not_null NOT NULL
 CONSTRAINT country_check
 CHECK (country IN ('CA','US')),
 indexed_name VARCHAR2(15),
 CONSTRAINT oracle_example_pk
 PRIMARY KEY (id),
 CONSTRAINT oracle_example_fk01
 FOREIGN KEY (name, country)
 REFERENCES parent_example (name, country),
 CONSTRAINT oracle_example_u01
 UNIQUE (name, country),
 CONSTRAINT oracle_example_index_upper
 CHECK (indexed_name = UPPER(name))
) TABLESPACE users;
This statement assigns the table to the users tablespace. The TABLESPACE clause is
 optional. If you aren’t certain which tablespace to specify, you can
 either omit the clause to accept your default tablespace assignment or
 ask your database administrator’s advice.
If you want the ID column to be an automatically generated
 sequential ID number, you can begin by creating an Oracle
 sequence:
CREATE SEQUENCE oracle_example_pk
 NOCYCLE MAXVALUE 999999 START WITH 1;
Then, create a trigger to derive a new id value from the sequence whenever a new row is
 inserted:
CREATE OR REPLACE TRIGGER oracle_example_pk
BEFORE INSERT ON oracle_example
FOR EACH ROW
DECLARE
 next_id NUMBER;
BEGIN
 SELECT oracle_example_pk.NEXTVAL INTO next_id
 FROM dual;

 :NEW.id := next_id;
END;
/
Oracle sequences generate values up to
 1027. Use the MAXVALUE clause to constrain
 the value range to something that is appropriate to your application
 and does not exceed the range of your primary key column.

Creating a Table: PostgreSQL

The following is a typical CREATE TABLE statement for PostgreSQL:
CREATE TABLE postgre_example (
 id SERIAL,
 name VARCHAR(15) NOT NULL,
 country VARCHAR(2) DEFAULT 'CA'
 CONSTRAINT country_not_null NOT NULL
 CONSTRAINT country_check
 CHECK (country IN ('CA','US')),
 indexed_name VARCHAR(15),
 CONSTRAINT postgre_example_pk
 PRIMARY KEY (id),
 CONSTRAINT postgre_example_fk01
 FOREIGN KEY (name, country)
 REFERENCES parent_example (name, country),
 CONSTRAINT postgre_example_u01
 UNIQUE (name, country),
 CONSTRAINT postgre_example_index_upper
 CHECK (indexed_name = UPPER(name))
)TABLESPACE pg_default;
The id column’s type is
 SERIAL, which results in an auto-incrementing four-byte integer. Support
 for tablespaces came about in PostgreSQL 8.0. The TABLESPACE clause is
 optional.

Creating a Table: SQL Server

The following is a typical CREATE TABLE statement for SQL
 Server, with an auto-incrementing primary key column that begins at 1
 and increments by 1:
CREATE TABLE msss_example (
 id INT IDENTITY (1,1),
 name VARCHAR(15) NOT NULL,
 country VARCHAR(2) DEFAULT 'CA'
 CONSTRAINT country_not_null NOT NULL
 CONSTRAINT country_check
 CHECK (country IN ('CA','US')),
 indexed_name VARCHAR(15),
 CONSTRAINT msss_example_pk
 PRIMARY KEY (id),
 CONSTRAINT msss_example_fk01
 FOREIGN KEY (name, country)
 REFERENCES parent_example (name, country),
 CONSTRAINT msss_example_u01
 UNIQUE (name, country),
 CONSTRAINT msss_example_index_upper
 CHECK (indexed_name = UPPER(name))
);

Tables, Dropping

When you no longer need a table, you can drop it from your
 schema:
DROP TABLE table_name;
In Oracle, you can drop a table that is referenced by foreign key
 constraints using the following syntax:
DROP TABLE table_name CASCADE CONSTRAINTS;
In PostgreSQL, you can do the same thing using:
DROP TABLE table_name CASCADE;
Foreign key constraints that reference the table being dropped
 will be dropped themselves.
Note
In DB2, referencing foreign key constraints are always dropped;
 no CASCADE clause is needed.

In all other cases, you must drop any referencing foreign key
 constraints manually before dropping the referenced table.

Tables, Modifying

You can change the columns and other attributes of a table using
 the ALTER TABLE statement. The syntax varies significantly among
 vendors. The following subsections show the same sequence of common
 table alterations. Many other types of changes are possible; consult
 your vendor documentation for details.
Modifying a Table: DB2

Use ALTER TABLE’s ADD clause to add a column or table
 constraint. You may add more than one item at a time:
ALTER TABLE db2_example
 ADD COLUMN lower_name VARCHAR(15)
 ADD CONSTRAINT lower_name
 CHECK(lower_name = LOWER(name));
Use the ALTER clause to change a column’s default value or data
 type. For example:
ALTER TABLE db2_example
 ALTER COLUMN name SET DEFAULT 'Missing!'
 ALTER COLUMN indexed_name
 SET DATA TYPE VARCHAR(30);
You can change only one item at a time for a given column. If
 you need to change both name and data type for a
 given column, you will need to
 issue separate ALTER TABLE statements for each of those two
 changes.
You can add table constraints but not column constraints, so the
 no_leading_space constraint added
 at the column level on other platforms must be added at the table
 level for DB2:
ALTER TABLE db2_example
 ADD CONSTRAINT no_leading_space
 CHECK (indexed_name = LTRIM(indexed_name));
DB2 9.7 and higher support changing the nullability of a column.
 For example:
ALTER TABLE db2_example
 ALTER COLUMN name SET NOT NULL;
To change the nullability of a column prior to DB2 9.7, you must
 drop and recreate the table. (Remember that columns participating in
 unique and primary key constraints cannot be nullable.) Unlike on the
 other platforms, there is no easy way to make name nullable. However, you can achieve the
 desired effect of adding NOT NULL to a column by creating a CHECK
 constraint:
ALTER TABLE db2_example
 ADD CONSTRAINT indexed_name_not
 CHECK (indexed_name IS NOT NULL);
To remove a constraint, use the DROP clause:
ALTER TABLE db2_example
 DROP CONSTRAINT lower_name
 DROP CONSTRAINT no_leading_space
 DROP CONSTRAINT indexed_name_not;
You cannot drop a column from a table in DB2. If avoiding the
 use of an unwanted column is not sufficient, you must drop and
 recreate the table.

Modifying a Table: MySQL

Use the ADD clause to add columns and constraints. Be sure to
 avoid using the same name for both a column and a constraint:
ALTER TABLE mysql_example
 ADD lower_name VARCHAR(15),
 ADD CONSTRAINT lower_name_chk
 CHECK (lower_name = LOWER(name));
To create new definitions for a column, use MODIFY. You must
 specify at least a data type for each column, and you may also specify
 a default value and nullability (e.g., NOT NULL). New definitions
 completely overwrite the old. Thus, in the following example, country will lose its existing default value
 because it was not respecified
 in the MODIFY clause:
ALTER TABLE mysql_example
 MODIFY name VARCHAR(30)
 DEFAULT 'Missing!' NULL,
 MODIFY country VARCHAR(2) NOT NULL,
 MODIFY indexed_name VARCHAR(30) NOT NULL;
Constraints—even those referencing a single column—must be added
 via the ADD clause:
ALTER TABLE mysql_example
 ADD CONSTRAINT no_leading_space
 CHECK (indexed_name = LTRIM(indexed_name));
MySQL does not allow you to drop CHECK constraints. You can drop
 primary key and foreign key constraints as follows:
ALTER TABLE table_name
 DROP PRIMARY KEY,
 DROP FOREIGN KEY constraint_name;
To drop a UNIQUE constraint, you must drop the index used to
 enforce it:
ALTER TABLE table_name
 DROP INDEX index_name;
Use DROP to remove a column:
ALTER TABLE mysql_example
 DROP COLUMN lower_name;

Modifying a Table: Oracle

Use ALTER TABLE…ADD to add columns and table constraints:
ALTER TABLE oracle_example ADD (
 lower_name VARCHAR2(15),
 CONSTRAINT lower_name
 CHECK (lower_name = LOWER(name))
);
Use MODIFY to change a column’s data type, default value, or
 nullability. You can also add new constraints to a column. Anything
 you do not specify is left unchanged:
ALTER TABLE oracle_example MODIFY (
 name VARCHAR2(30) DEFAULT 'Missing!'
 CONSTRAINT name_canbe_null NULL,
 country DEFAULT NULL,
 indexed_name varchar2(30) NOT NULL
 CONSTRAINT no_leading_space
 CHECK (indexed_name = LTRIM(indexed_name))
);
Use DROP to remove a column or constraint. Each drop must be
 specified separately, and no parentheses are used:
ALTER TABLE oracle_example
 DROP CONSTRAINT lower_name;

ALTER TABLE oracle_example
 DROP COLUMN lower_name;

Modifying a Table: PostgreSQL

Use the ADD clause to add columns and constraints:
ALTER TABLE postgre_example
 ADD lower_name VARCHAR(15),
 ADD CONSTRAINT lower_name
 CHECK (lower_name = LOWER(name));
Use various ALTER clauses to change a column’s data types,
 default values, and nullability:
ALTER TABLE postgre_example
 ALTER name TYPE VARCHAR(30),
 ALTER name SET DEFAULT 'Missing!',
 ALTER name DROP NOT NULL,
 ALTER country DROP DEFAULT,
 ALTER indexed_name TYPE VARCHAR(30),
 ALTER indexed_name SET NOT NULL;
Constraints—even those referencing a single column—must be added
 via the ADD clause:
ALTER TABLE postgre_example
 ADD CONSTRAINT no_leading_space
 CHECK (indexed_name = LTRIM(indexed_name));
Use DROP to remove a column or constraint:
ALTER TABLE postgre_example
 DROP CONSTRAINT lower_name,
 DROP COLUMN lower_name;

Modifying a Table: SQL Server

Use ALTER TABLE…ADD to add columns and table constraints:
ALTER TABLE msss_example ADD
 lower_name VARCHAR(15),
 CONSTRAINT lower_name
 CHECK (lower_name = LOWER(name));
Issue ALTER TABLE…ALTER COLUMN to modify a column’s data type or
 nullability. You can make only one alteration per statement:
ALTER TABLE msss_example
 ALTER COLUMN name
 VARCHAR(15) NULL;

ALTER TABLE msss_example
 ALTER COLUMN country
 VARCHAR(2) NULL;

ALTER TABLE msss_example
 ALTER COLUMN indexed_name
 VARCHAR(30) NOT NULL;
Column name’s data type
 cannot be changed in this example because SQL Server does not allow
 data type changes for columns
 involved in certain types of constraints (e.g., foreign key
 constraints).
You cannot add column-level constraints—only table-level
 constraints. The following example adds a constraint that tests the
 value in a column, but the constraint is associated with the table,
 not with the column in question:
ALTER TABLE msss_example
 ADD CONSTRAINT no_leading_space
 CHECK (indexed_name = LTRIM(indexed_name));
Add or remove default values by adding or removing so-called
 default constraints. For example:
ALTER TABLE msss_example
 ADD CONSTRAINT name_default
 DEFAULT 'Missing!' FOR name;

ALTER TABLE msss_example
 DROP CONSTRAINT name_default;
To remove the default value from the country column, you must first look up the
 automatically generated constraint name (e.g., via the GUI), and then
 drop that constraint by specifying its name.
Use ALTER TABLE…DROP to remove a column or constraint:
ALTER TABLE msss_example
 DROP CONSTRAINT no_leading_space;

Transaction Management

A transaction is a collection of operations
 treated as a unit. Either all operations in the unit are completed or
 none of them are. All commonly used databases make provisions for
 transactions.
When working in a transactional environment, you need to know how
 to begin and end a transaction. You also need to know how to specify
 various characteristics of a transaction—for example, whether it will
 update any data.
Autocommit Mode

MySQL, PostgreSQL, and SQL Server default to an autocommit mode in which each statement you
 execute is treated as a transaction in and of itself. (Thus, you
 cannot roll back a statement when the result isn’t what you
 expected).
You can disable autocommit in SQL Server with the following
 statement:
SET IMPLICIT_TRANSACTIONS ON
You can enable autocommit again using:
SET IMPLICIT_TRANSACTIONS OFF
You leave SQL Server’s and PostgreSQL’s autocommit mode whenever
 you issue an explicit BEGIN TRANSACTION (SQL Server) or BEGIN
 (PostgreSQL) statement. See “Starting a
 Transaction” below for details.
In MySQL, you can disable autocommit with:
SET AUTOCOMMIT=0
And you can enable it again with:
SET AUTOCOMMIT=1
You automatically leave autocommit mode whenever you issue a
 BEGIN or BEGIN WORK statement.

Starting a Transaction: DB2

DB2 does not implement an SQL statement to explicitly begin a
 transaction. When you connect and issue an SQL statement, you begin a
 transaction. You also begin a transaction with the first SQL statement
 following a COMMIT.

Starting a Transaction: MySQL

Use START TRANSACTION to begin a MySQL transaction explicitly
 (when using any version prior to MySQL 4.0.11, use BEGIN or BEGIN
 WORK). When not in autocommit mode, any SQL statement you issue will
 begin a new transaction implicitly.
Warning
Only certain types of MySQL tables (InnoDB tables, for
 example) support transactions. Changes to data in nontransactional
 tables take place immediately and permanently, regardless of whether
 you are in a transaction.

Before beginning a transaction, you can use SET TRANSACTION to
 change the transaction isolation level. A reasonable sequence of
 statements might then be:
SET [GLOBAL|SESSION] TRANSACTION ISOLATION LEVEL
 {READ UNCOMMITTED|READ COMMITTED
 |REPEATABLE READ|SERIALIZABLE};
START TRANSACTION;
By default, SET TRANSACTION sets the isolation level only for
 your next transaction. Use SET SESSION TRANSACTION to set the default
 isolation level for your entire session.

Starting a Transaction: Oracle

Within Oracle, for all practical purposes, you’re always in a
 transaction. The first SQL statement you execute after you connect
 begins an implicit transaction, as does the first SQL statement you
 execute following the end of a transaction. Oracle’s default
 transaction type is read/write with statement-level read
 consistency.
You can begin a transaction using SET TRANSACTION explicitly:
SET TRANSACTION options [NAME 'tran_name']
options ::=
 {READ {ONLY|WRITE}
 |ISOLATION LEVEL {SERIALIZABLE|READ COMMITTED}
 |USE ROLLBACK SEGMENT segment_name
The options and parameters are as follows:
	NAME
 'tran_name '
	Specifies a name of up to 255 bytes for the transaction.
 Upon COMMIT, the name will be saved as the transaction comment,
 overriding any COMMIT comment. It’s especially helpful to name
 distributed transactions.

	READ ONLY
	Gives you a read-only transaction that does not “see” any
 changes committed after the transaction begins.

	READ WRITE
	Gives you the default transaction type: a read/write
 transaction with statement-level read consistency.

	ISOLATION LEVEL
 SERIALIZABLE
	Gives you a read/write serializable transaction, as
 defined in the SQL standard.

	ISOLATION LEVEL READ
 COMMITTED
	Gives you the default Oracle transaction behavior, but
 using ANSI/ISO SQL syntax.

	USE ROLLBACK SEGMENT
 segment_name
	Creates a default transaction and assigns it to the
 specified rollback segment. (Obsolete; use automatic undo
 management instead.)

Here are some example SET TRANSACTION statements:
SET TRANSACTION READ ONLY;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION
 ISOLATION LEVEL READ COMMITTED;
 NAME 'Delete all attractions';
If you name a distributed transaction and that transaction
 fails, its name will appear in the DBA_2PC_PENDING table’s
 TRAN_COMMENT column.

Starting a Transaction: PostgreSQL

To start a PostgreSQL transaction, issue a BEGIN command, which
 takes PostgreSQL out of autocommit mode. The syntax for PostgreSQL 8.0
 and higher is:
BEGIN [WORK|TRANSACTION] [iso_mode|mode_iso]
iso_mode ::= isolation [[,] mode]
mode_iso ::= mode [[,] isolation]
isolation ::= ISOLATION LEVEL
 {SERIALIZABLE|REPEATABLE READ
 |READ COMMITTED|READ UNCOMMITTED}
mode ::= {READ WRITE|READ ONLY}
For example:
BEGIN ISOLATION LEVEL READ COMMITTED, READ WRITE;
In this syntax, you can use the keyword START instead of BEGIN. Also, you can separate isolation
 and mode using either whitespace or a comma. The default isolation and
 mode are READ COMMITTED and READ WRITE, respectively.
In PostgreSQL 7.4 and earlier, BEGIN syntax was simply:
BEGIN [WORK|TRANSACTION]
Next, to set transaction characteristics, you can follow the
 BEGIN statement immediately with
 a SET TRANSACTION statement:
SET TRANSACTION [iso_mode|mode_iso]
For example:
BEGIN;
SET TRANSACTION READ WRITE;
Finally, you can set the default isolation and mode for a
 session by using the following command:
SET SESSION CHARACTERISTICS AS TRANSACTION
 [iso_mode|mode_iso]

Starting a Transaction: SQL Server

Use the following statement to begin an SQL Server transaction
 explicitly:
BEGIN TRAN[SACTION]
 [[transaction_name]
 [WITH MARK ['description']]]
Transaction names are limited to 32 characters. You can specify
 a name by means of a variable, as in @variable.
Use the WITH MARK clause to note a transaction in the database
 log; you can also specify a description for
 it if you wish.
To begin a distributed transaction, use:
BEGIN DISTRIBUTED TRAN[SACTION]
 [transaction_name]
As with BEGIN TRANSACTION, you can specify the transaction name
 by means of a variable in the form @variable.
SQL Server’s default isolation level is READ COMMITTED. Before
 beginning a transaction, use the following statement to specify the
 isolation level of your choice:
SET TRANSACTION ISOLATION LEVEL
 {READ COMMITTED|READ UNCOMMITTED
 |REPEATABLE READ|SERIALIZABLE}
This statement sets the isolation level to be used for all
 subsequent transactions in your session.

Ending a Transaction

To end a transaction and make the transaction’s changes
 permanent, issue a COMMIT statement:
COMMIT [WORK]
Oracle supports an optional COMMENT clause:
COMMIT [WORK] [COMMENT 'text']
WORK is an optional word allowed by the ISO SQL standard (but
 not supported by MySQL), and it is commonly omitted. In Oracle, any
 name you specify using SET TRANSACTION when you begin a transaction
 overrides any comment you specify when you commit that
 transaction.
SQL Server also supports a COMMIT TRANSACTION statement, which
 enables you to identify the transaction you want to commit:
COMMIT TRAN[SACTION] [transaction_name]
SQL Server actually ignores any
 transaction_name that you specify. It
 allows a name only to make it easier for you to associate nested
 COMMITs with their corresponding BEGIN TRANSACTION statements.
Oracle supports the following syntax to force a distributed
 transaction to commit:
COMMIT [WORK] FORCE
 {'local_tran_id'|'global_tran_id'}
 [system_change_number]
You identify a distributed transaction using either its local or
 global transaction ID, which you can obtain from the DBA_2PC_PENDING
 view. You have the option of assigning a system change number (SCN) or
 defaulting to the current SCN.
Note
DDL statements such as TRUNCATE also typically end
 transactions. However, issuing a DDL statement and depending on an
 implicit COMMIT is not as clean and tidy as issuing the COMMIT
 explicitly.

Aborting a Transaction

To abort a transaction, use the ROLLBACK statement:
ROLLBACK [WORK]
As with COMMIT, the word WORK (which is not supported by MySQL)
 is commonly omitted. When you ROLLBACK a transaction, you undo all of
 that transaction’s changes.
SQL Server also supports a ROLLBACK TRANSACTION statement, which
 enables you to specify the name of the transaction to roll
 back:
ROLLBACK TRAN[SACTION] [transaction_name]
By default, ROLLBACK TRANSACTION rolls back the current
 transaction. In a nested transaction, that means the innermost
 transaction. If you specify a transaction name, you
 must specify the outermost transaction. That
 transaction and all nested transactions are then undone.
Oracle supports the following syntax to force a distributed
 transaction to roll back:
ROLLBACK [WORK] FORCE
 {'local_tran_id'|'global_tran_id'}
You identify a distributed transaction using either its local or
 global transaction ID, which you can obtain from the DBA_2PC_PENDING
 view.
Note
In SQL Server, use SET XACT_ABORT
 {ON|OFF} to determine whether an error in an SQL statement
 aborts the current transaction automatically.

Aborting to a Savepoint

Rather than rolling back an entire transaction, you can roll
 back only part of one. To do this, you must have marked points in the
 transaction, known as savepoints, which are
 specified using the following syntax for MySQL, Oracle, and PostgreSQL:
SAVEPOINT savepoint_name
For DB2, you can specify:
SAVEPOINT savepoint_name [UNIQUE]
 ON ROLLBACK RETAIN CURSORS
 [ON ROLLBACK RETAIN LOCKS]
For SQL Server, you can specify:
SAVE TRAN[SACTION] savepoint_name
You can then ROLLBACK to any of those savepoints
 using:
ROLLBACK [WORK] TO savepoint_name
Except in DB2, you must use:
ROLLBACK TO SAVEPOINT savepoint_name
The following is an example from Oracle:
SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
UPDATE township SET name = UPPER(name);
SAVEPOINT name_upper_cased;
DELETE FROM trip;
ROLLBACK TO name_upper_cased;
COMMIT;
The net effect of this transaction is to set all township names
 to uppercase. The DELETE against the trip table is undone by the ROLLBACK TO the
 savepoint that was established following the UPDATE
 statement.

Union Queries

Union queries use keywords such as UNION, EXCEPT (MINUS in Oracle), and INTERSECT to
 “combine” results from two or more queries in useful ways.
UNION and UNION ALL

Use the UNION keyword to combine results from two SELECT statements into one result set.
 (Think of stacking the rows from two result sets.) Any duplicate rows
 are eliminated from the final results, unless you specify UNION ALL to
 preserve them.
Note
Some would argue that you should use UNION ALL when you
 know for a certainty that no duplicates are
 possible, thus improving performance by avoiding the sort.

UNION

The UNION operator conforms closely to SQL’s origin in set
 theory. It is used to combine two rowsets and remove any duplicates
 from the results. For example:
SELECT u.id, u.name
FROM upfall u
WHERE open_to_public = 'y'
UNION
SELECT u.id, u.name
FROM upfall u
JOIN owner o ON u.owner_id = o.id
WHERE o.type = 'public';
This query lists waterfalls that are either open to the public
 or that are owned by a public entity (such as a national park).
 Duplicate elimination ensures that even if a waterfall fits into
 both categories (is both open to the public and
 owned by a public entity), it is returned only once in the query’s
 result set.
Note
Duplicate elimination requires overhead, generally in the
 form of a limited sort operation. If you don’t need duplicate
 elimination, you’ll get better performance with UNION ALL.

UNION ALL

UNION ALL is UNION without the duplicate elimination. The
 following UNION ALL query simulates an outer join, with upfall as the required table and owner as the optional table. The first
 SELECT picks up waterfalls that can join to
 owner, whereas the second SELECT
 picks up those falls with no known owner:
SELECT u1.name AS fall, o.name AS owner
FROM upfall u1 JOIN owner o ON u1.owner_id = o.id
UNION ALL
SELECT u2.name AS fall, 'Unknown' AS owner
FROM upfall u2
WHERE u2.owner_id IS NULL;
Getting correct results from this query depends on a foreign
 key integrity constraint to ensure that any non-null value in
 upfall.owner_id references an
 existing row in owner. Without
 such a constraint, the second SELECT must be written to include rows
 with invalid owner_id
 values.

ORDER BY in Union Queries

SQL allows only one ORDER BY clause per query. In a union query,
 the ORDER BY clause belongs at the very end:
SELECT u.id, u.name
FROM upfall u
WHERE open_to_public = 'y'
UNION
SELECT u.id, u.name
FROM upfall u
JOIN owner o ON u.owner_id = o.id
WHERE o.type = 'public'
ORDER BY name;
The sorting operation then applies to the collective results
 from all SELECT expressions involved in the union.

Names and Data Types in a Union

The column names used for the first SELECT in a union query
 become the names of their respective result columns. In the following
 query, the columns will be named col_a and col_b:
SELECT 'One' col_a, 'Two' col_b FROM dual
UNION
SELECT 'Three', 'Four' FROM dual;
Also be aware that column data types must correspond. For
 example, don’t try to perform a union of a numeric column to a text
 column without first writing an explicit conversion to synchronize the
 data types.
Note
Remember, PostgreSQL requires the AS keyword when specifying
 column aliases (e.g., 'One' AS
 col_a).

Order of Evaluation

When writing a statement with multiple UNION operations, you can
 use parentheses to specify the order in which the union operations
 occur in all platforms except MySQL. The following is a contrived
 example (to run it in Oracle, replace EXCEPT with MINUS):
SELECT * FROM upfall
EXCEPT
(SELECT * FROM upfall
 UNION
 SELECT * FROM upfall);
The first SELECT returns all rows from upfall. The UNION of the two SELECTs in
 parentheses also returns all rows from upfall. When you subtract all rows from all
 rows, you have none left. Thus, as written, the query returns no rows.
 If you remove the parentheses, however, you’ll get all upfall rows in the result set.
Note
Unless you specify otherwise, union operations are performed
 in top-down order, except that INTERSECT takes precedence over UNION
 and EXCEPT.

EXCEPT (or MINUS) and EXCEPT ALL

Use the EXCEPT union operation (MINUS in Oracle) to “subtract”
 the results of one query from another. If you do not need duplicate
 elimination, use EXCEPT ALL. Note that MySQL does not support
 EXCEPT.
EXCEPT (MINUS in Oracle)

To find all owners without waterfalls, you can subtract the
 list of owners with falls from the total list
 of owners:
SELECT o.id FROM owner o
EXCEPT
SELECT u.owner_id FROM upfall u;
Remember that you must use the MINUS keyword rather than
 EXCEPT to run this query in Oracle.

EXCEPT ALL

DB2 and PostgreSQL support EXCEPT ALL. The following query
 uses that operation to return a list of owners who have at least two
 waterfalls:
SELECT u.owner_id FROM upfall u
EXCEPT ALL
SELECT o.id FROM owner o;
The first SELECT will potentially return many IDs per owner
 (one from each fall that is owned), whereas the second SELECT will
 return exactly one ID for each owner. Owners with two or more falls
 will have their IDs listed two or more times in the results of the
 first query. In the case of Pictured Rocks, the resulting
 subtraction looks like this:
1
1
1
EXCEPT ALL
1
Because EXCEPT ALL is used, the single owner ID from the
 owner table is subtracted from
 the three from the upfall table,
 which leaves two occurrences in the final result set:
1
1
Because the EXCEPT operation still requires some sorting of
 the results to perform the subtraction operation, using EXCEPT ALL may not produce the same
 kind of performance boost you get from using UNION ALL instead of
 UNION.

INTERSECT and INTERSECT ALL

The INTERSECT operation is used to find rows in common between
 the result sets of two SELECTs. Use INTERSECT ALL when you do not want
 duplicate elimination. Note that MySQL does not support
 INTERSECT.
INTERSECT

The following INTERSECT query is similar to the query used to
 illustrate UNION. In this example, rather than being an “either/or” query, the query returns
 falls that are both open to the public and
 owned by a private (not public this time) organization:
SELECT u.id, u.name
FROM upfall u
WHERE open_to_public = 'y'
INTERSECT
SELECT u.id, u.name
FROM upfall u
JOIN owner o ON u.owner_id = o.id
WHERE o.type = 'private';
Some kind of sorting or hashing operation will be executed to
 find rows in common between the two result sets. Duplicate
 elimination ensures that each fall is returned only once.

INTERSECT ALL

Use INTERSECT ALL when you want to consider duplicates. Only
 DB2 and PostgreSQL support this. For example, given the following
 data:
MARQUETTE
MARQUETTE
BARAGA
BARAGA
MUNISING
INTERSECT ALL
MARQUETTE
MARQUETTE
BARAGA
INTERSECT will yield:
MARQUETTE
BARAGA
whereas INTERSECT ALL will yield:
MARQUETTE
MARQUETTE
BARAGA
Because Marquette appears twice in both result sets, it
 appears twice in the final results. Baraga, on the other hand,
 appears only once in the second result set, so it appears just once
 in the final result set.

Updating Data

To modify existing data in a table, use the UPDATE statement. You
 can update one row or many rows, you can specify a single set of new
 values in the statement, or you can generate new values through a
 subquery.
Simple Updates

A simple UPDATE takes the following form:
UPDATE table
SET column = value, column = value ...
WHERE predicates
In this form, predicates identifies
 one or more rows that you want to update. You can specify as many
 column =
 value pairs as you like—one for each column
 you want to modify:
UPDATE upfall
SET owner_id = 1
WHERE name = 'Munising Falls';
When you specify only one new value, you will usually want to
 update only one row, and your WHERE-clause predicates should reference
 primary or unique key values to identify that row. Using expressions,
 you can write sensible UPDATEs that modify many rows. The following
 example works in DB2:
UPDATE upfall
SET datum = UPPER(datum),
 lat_lon = TRIM(UPPER(lat_lon));
This example also demonstrates the use of the comma to separate
 multiple-column updates in a SET clause.
Note
In MySQL, if you are updating a self-referential foreign key
 or its related primary key, you should include an ORDER BY clause at
 the end of your update to control the order in which rows are
 updated. For more on this issue, see Deleting in Order and Subquery Inserts.

New Values from a Subquery

You can also generate new values from a subquery. One way to do
 this is to write separate subqueries for each column that you are
 updating:
UPDATE table
SET column = (subquery), column = (subquery), ...
For example (note that PostgreSQL and SQL Server do not allow
 the table alias u):
UPDATE upfall u
SET owner_id =
 (SELECT o.id FROM owner o
 WHERE o.name = 'Pictured Rocks')
WHERE u.name = 'Miners Falls';
Such subqueries must always return zero or one row and one
 column. If zero rows are returned, then the value is set to
 null.
In DB2 and Oracle, you can also write a subquery that returns
 more than one column value, in which case the number of values
 returned must correspond to the columns you are updating:
UPDATE table
SET (column, column, ...) = (subquery)
For example, to update names and descriptions with any new
 information in the new_falls table
 (see the section Merging Data for a better way to
 do this), specify:
UPDATE upfall u
SET (u.name, u.description) =
 (SELECT nf.name, nf.description
 FROM new_falls nf
 WHERE u.id = nf.id)
WHERE u.id IN (SELECT nf2.id
 FROM new_falls nf2);
Be careful with this kind of update. If you omit the WHERE
 clause in this query, all rows in upfall will be updated, regardless of
 whether corresponding rows exist in new_falls. Worse, upfall’s name and description columns will be set to null in
 cases where no corresponding new_falls rows exist.

Updating Views and Subqueries

All platforms allow UPDATEs to run against views. DB2 and Oracle
 also allow updates to run against subqueries (i.e., inline
 views):
UPDATE (SELECT * FROM upfall
 WHERE owner_id IS NULL)
SET open_to_public = 'n';
PostgreSQL does not support updates to inline views. PostgreSQL
 requires any view that is the target of an UPDATE statement to be
 associated with an ON UPDATE DO INSTEAD rule.
Database systems place various restrictions on the updating of
 views, but in general, you must be able to access unambiguously a
 single table row from a given view row in order to issue an update
 against that view (or subquery).

UPDATE FROM Clause

PostgreSQL and SQL Server let you write a FROM clause in an
 UPDATE statement in order to gather columns from multiple tables to
 use in your SET expressions. For example, the following statement
 works in SQL Server and appends the owner type from the owner table to
 each waterfall’s description:
UPDATE upfall
 SET description
 = u.description + ' (' + o.type + ')'
FROM upfall u JOIN owner o
ON u.owner_id = o.id;
When using this syntax, you must ensure that the UPDATE is
 deterministic, meaning that there is only one
 possible value for any column you reference in a SET expression. The
 join condition in this query accomplishes this—there will always be
 only one owner per waterfall.
Notice the use of aliases in the SET clause. The first reference
 to description is unqualified. The
 column name you specify following the SET keyword must be in the table
 that is the target of the UPDATE statement. The second occurrence of
 description, however,
 is qualified. All values feeding into the update
 must come from the tables listed in the FROM clause.

Returning Updated Data: DB2

DB2 allows you to query the before and after values from rows
 affected by an UPDATE statement. Simply SELECT from that UPDATE
 statement. For example:
SELECT * FROM NEW TABLE (
 UPDATE gov_unit
 SET name = UPPER(name)
 WHERE MOD(id,2) = 0
);
Specify FROM NEW TABLE to see the newly updated values. Specify
 FROM OLD TABLE to see the original values. Be sure to wrap your UPDATE
 in parentheses.

Returning Updated Data: Oracle

You can use Oracle’s RETURNING clause to return values that you
 update. Here is the syntax:
UPDATE ...
SET ...
WHERE ...
RETURNING expression [,expression ...]
INTO variable [,variable ...]
If you update a single row, Oracle expects to return values into
 bind variables; if you update more than one row, it expects to return
 values into bind arrays. See Returning Deleted Data: Oracle for an example
 involving arrays and Returning Inserted Values: Oracle for a single-row
 example.

Returning Updated Data: SQL Server

You can use SQL Server’s OUTPUT clause to return values from
 newly inserted rows. For example:
UPDATE gov_unit
SET type = UPPER(type)
OUTPUT INSERTED.id,
 INSERTED.type AS new_type,
 DELETED.type AS old_type;
Specify INSERTED to reference post-update values. Specify
 DELETED to reference pre-update values. The preceding query displays
 both old and new type values as follows:
id new_type old_type
----------- -------- --------
1 CITY City
2 COUNTY County
3 STATE State
...
You can use the syntax INSERTED.* or DELETED.* to return all post- and pre-update
 values respectively. You can specify expressions such
 as LOWER(INSERTED.type). You can
 specify column aliases as in any query, with or without the optional
 AS keyword.

Window Functions

Window functions enable you to look at different levels of
 aggregation in the same result row. They make it easy to specify
 cumulative sum, moving average, share-of, and many other important
 calculations. Window functions are supported in Oracle (where they are
 known as analytic functions), DB2 (where they are
 called OLAP functions), SQL Server, and PostgreSQL.
Defining a Summary Window

The defining role of a window function is to specify a
 window, or
 partition of rows, over which the function operates. You specify a
 window using the OVER (. . .)
 clause, which you can apply to any of the aggregate functions listed
 in Table 1-6 (under Grouping and Summarizing). For example:
SELECT
 u.id, u.county_id, u.northing n1,
 MIN(u.northing) OVER (PARTITION BY u.county_id) n2,
 AVG(u.northing) OVER () n3,
 MAX(u.northing) OVER (PARTITION BY u.open_to_public) n4
FROM upfall u;
Each row returned by this query will have the following four
 northing values:
	n1
	The northing value for the waterfall described by the
 current row

	n2
	The lowest northing value of any waterfall in the same
 county

	n3
	The average northing value of all waterfalls

	n4
	The highest northing value of any waterfall having the
 same “open to public” status

An OVER() clause with nothing between the parentheses simply
 denotes an aggregate function’s use as a window function. No GROUP BY
 clause is necessary, and the specified summary value is returned in
 each detail row. The summary comprises all rows in the result
 set.
To gain the effect of a GROUP BY, add a PARTITION BY clause
 within the OVER() clause. The PARTITION BY
 u.county_id in the example partitions detail rows into
 groups based on their county_id
 values. The MIN(u.northing)
 function is applied to each group. Each detail row is then returned
 with a copy of the MIN(u.northing)
 function’s result for that row’s group.
The example query in this section returns data at a variety of
 summary levels. First, you have the detail—one row for each fall. Each
 of those rows then contains data summarized by county, by the entire
 result set, and by “open to public” status.
You can partition by more than one column; for example:
MAX(u.northing) OVER (
 PARTITION BY u.county_id,
 u.open_to_public)

Ordering and Ranking Within a Window

You can sort the rows within each partition by placing an
 ORDER BY clause within the
 OVER() clause. After you’ve sorted the rows, you can rank them in
 various ways. For example, the following query ranks the northernness
 of each waterfall in three different ways with respect to other falls
 in the same county that have the same “open to public”
 status:
SELECT
 u.id, u.county_id, u.open_to_public, u.name,
 ROW_NUMBER() OVER (
 PARTITION BY u.county_id, u.open_to_public
 ORDER BY northing DESC) r1,
 RANK() OVER (
 PARTITION BY u.county_id, u.open_to_public
 ORDER BY northing DESC) r2,
 DENSE_RANK() OVER (
 PARTITION BY u.county_id, u.open_to_public
 ORDER BY northing DESC) r3,
 u.northing
FROM upfall u
WHERE u.northing IS NOT NULL;
The following output showing the ranking of publicly accessible
 waterfalls in Alger County illustrates the three different ranking
 approaches:
...NAME R1 R2 R3 NORTHING
...--------------- ---- ---- ---- ---------
...Munising Falls 1 1 1 5141184
...Twin Falls #1 2 2 2 5140500
...Twin Falls #2 3 2 2 5140500
...Tannery Falls 4 4 3 5140000
...
The ORDER BY northing DESC
 clause sorts the rows within each window in descending order by
 northing. (This sorting is
 conceptual and may be optimized away by your database platform.) The
 three functions, ROW_NUMBER(), RANK(), and DENSE_RANK(), then apply
 their ranking logic to the rows of each window as follows:
	ROW_NUMBER()
	Applies a sequentially increasing number to each row in a
 window. This is evident in column R1 of the result set. The northernmost
 row will be number 1, the next northernmost row will be number
 2, and so forth.

	RANK()
	Returns the same result as ROW_NUMBER(), except that when
 two rows have the same northing value, they will be given the
 same rank. This is why Twin Falls #1 and #2 are both ranked in
 the number 2 position (column R2 in the result set). RANK() will
 then skip values to ensure that the rank assigned to a given row
 is always one greater than the number of rows that are ranked
 lower. For this reason, Tannery Falls is ranked at number 4—it
 occupies the fourth position.

	DENSE_RANK()
	Does not skip values. Compare the results from RANK() in
 column R2 with those of
 DENSE_RANK() in column R3. In
 both cases, Twin Falls #1 and #2 tie for the number 2 position.
 In the case of DENSE_RANK(), however, Tannery Falls is treated
 as though it occupies the third position,
 not the fourth.

There is no particular “right way” to rank. Choose the method
 that delivers the results that work best in your application.
Note
You don’t need to specify a PARTITION BY clause in front of an
 ORDER BY. For example, RANK() OVER (ORDER
 BY northing DESC) will rank the current row’s northing
 against all rows in the query’s result set.

Comparing Values Across Rows

DB2, Oracle, PostgreSQL, and SQL Server implement some functions
 that are quite useful for comparing values across row boundaries. LAG
 and LEAD allow you to look ahead and behind a specified number of rows.
 FIRST_VALUE and LAST_VALUE return values from the first and last rows
 in a window, respectively. NTH_VALUE (Oracle only) lets you return a
 value from a specific row in a window by specifying that row’s
 number.
The following query runs in Oracle. Remove the NTH_VALUE
 invocation to run on the other platforms.
SELECT
 u.id, u.county_id,
 u.northing n1,
 FIRST_VALUE(u.northing) OVER (
 PARTITION BY u.county_id
 ORDER BY northing DESC) n2,
 LAG(u.northing, 1, 9999999) OVER (
 PARTITION BY u.county_id
 ORDER BY northing DESC) n3,
 LEAD(u.northing, 1, 0) OVER (
 PARTITION BY u.county_id
 ORDER BY northing DESC) n4,
 LAST_VALUE(u.northing) OVER (
 PARTITION BY u.county_id
 ORDER BY northing DESC) n5,
 NTH_VALUE(u.northing, 2)
 IGNORE NULLS OVER (
 PARTITION BY u.county_id
 ORDER BY northing DESC) N6
FROM upfall u;
The LAG and LEAD functions each take three arguments. The first
 argument is a value in which you are interested. The second argument
 is a numeric row offset. The third argument is a default value to
 return when there is no row at the specified offset.
The LAG function in this example returns u.northing from the preceding row in the
 same window (i.e., for the same county) when it is sorted in
 descending order by northing.
Oracle’s NTH_VALUE function takes two arguments: the value to
 return and the row number from which to retrieve that value. The
 IGNORE NULLS clause is optional. RESPECT NULLS is the default. You can
 also specify FROM FIRST or FROM LAST preceding the IGNORE NULLS
 clause, to specify whether to count from the beginning or the end of
 the window.
Note
It is not necessary for all window functions in a given query
 to PARTITION BY or ORDER BY the same set of columns as in this
 section’s example. The window and sorting criteria can be different
 in each function.

The six northing values
 returned by the preceding query are as follows:
	n1
	The northing for the waterfall described by the current
 row.

	n2
	The highest northing of all waterfalls in the same
 county.

	n3
	The next highest northing for the county, or 9,999,999 if
 no higher value exists in the same window. LAG sounds as though
 it should return the next lower northing, but the descending
 sort turns that around.

	n4
	The next lower northing for the county, or 0 if no lower
 value exists in the same window. See the entry for n3 for the effect of the descending
 sort.

	n5
	The lowest northing of all waterfalls in the same
 county.

	n6
	The northing for the waterfall described by the second row
 in the window.

LAG and LEAD can be very useful, but only when the same offset
 applies consistently to each row, and only when you have sorted your
 windows (i.e., the rows in each window) in some meaningful
 order.

Summarizing over a Moving Window

Within a partition (keeping in mind that the entire rowset can
 be considered a partition), you can choose to summarize over a moving
 window of rows. DB2 and Oracle implement this functionality. For
 example, you might choose to return the MIN and MAX northing values
 within 1000 meters of each waterfall. Here’s how you might accomplish
 that:
SELECT u.id, u.county_id, u.northing n1,
 MIN(u.northing) OVER (
 ORDER BY u.northing
 RANGE BETWEEN 1000 PRECEDING
 AND 1000 FOLLOWING) n2,
 MAX(u.northing) OVER (
 ORDER BY u.northing
 RANGE BETWEEN 1000 PRECEDING
 AND 1000 FOLLOWING) n3
FROM upfall u
WHERE u.northing IS NOT NULL;
In this particular example, there is only one partition—the
 entire rowset. You could easily add PARTITION
 BY u.county_id to restrict the MIN and MAX computations to
 each current waterfall’s
 county.
The RANGE BETWEEN clause in this example is considered a
 framing clause. Framing clause syntax is complex,
 and it varies between vendors.

Window Function Evaluation and Placement

In the scheme of SQL processing, window functions are among the
 last elements to be evaluated. They follow any WHERE, GROUP BY, and
 HAVING clause processing, and they precede ORDER BY. Thus, you can
 only place window functions in the SELECT list and ORDER BY clauses of
 a query.

 Index

A note on the digital index

 A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers,
 it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text
 in which the marker appears.

 Symbols
	" " (quotation marks, double), Dealing with case and punctuation in names
		in case-sensitive identifiers, Dealing with case and punctuation in names

	' ' (quotation marks, single), Text Literals, Replacing Text in a String
		denoting empty string, Replacing Text in a String
	in text literals, Text Literals

	* (asterisk), Taking shortcuts with the asterisk
		using with SELECT clause, Taking shortcuts with the asterisk

	+ (plus sign), string concatenation operator in SQL
 Server, Concatenating Strings
	, (comma), separating multicolumn updates in SET
 clause, Simple Updates
	\ (backslash), Text Literals, LIKE Predicates, Regular Expressions: Oracle, Regular Expressions: PostgreSQL
		in backreferences, Regular Expressions: PostgreSQL
	escape character in LIKE predicates, LIKE Predicates
	escaping regular expression metacharacters in
 Oracle, Regular Expressions: Oracle
	escaping string literals, Text Literals

	| | (pipe symbols), string concatenation
 operator, Concatenating Strings

 A
	ADD clauses in ALTER TABLE statements, Modifying a Table: DB2, Modifying a Table: MySQL, Modifying a Table: Oracle, Modifying a Table: PostgreSQL, Modifying a Table: SQL Server
		DB2, Modifying a Table: DB2
	MySQL, Modifying a Table: MySQL
	Oracle, Modifying a Table: Oracle
	PostgreSQL, Modifying a Table: PostgreSQL
	SQL Server, Modifying a Table: SQL Server

	aggregate functions, Aggregate Functions, Aggregate Functions, GROUP BY
		applying to groups of rows with GROUP BY, GROUP BY
	listing of common functions, Aggregate Functions

	aliases for column names in SELECT result
 sets, Specifying result-set column names
	ALL keyword, Unconditional multitable insert, ALL versus FIRST, ALL and DISTINCT, UNION ALL, EXCEPT ALL, INTERSECT ALL
		EXCEPT ALL queries, EXCEPT ALL
	versus FIRST in conditional multitable
 INSERTs, ALL versus FIRST
	INSERT ALL statements, Unconditional multitable insert
	INTERSECT ALL queries, INTERSECT ALL
	UNION ALL statements, UNION ALL
	using in SELECT operations, ALL and DISTINCT

	ALTER clauses in ALTER TABLE statements, Modifying a Table: DB2, Modifying a Table: PostgreSQL
		DB2, Modifying a Table: DB2
	PostgreSQL, Modifying a Table: PostgreSQL

	ALTER COLUMN clauses in ALTER TABLE statements (SQL
 Server), Modifying a Table: SQL Server
	ALTER SESSION statements in Oracle, Getting Current Date and Time
	ALTER TABLE statements, Tables, Modifying, Modifying a Table: DB2, Modifying a Table: MySQL, Modifying a Table: Oracle, Modifying a Table: PostgreSQL, Modifying a Table: SQL Server
		in DB2, Modifying a Table: DB2
	in MySQL, Modifying a Table: MySQL
	in Oracle, Modifying a Table: Oracle
	in PostgreSQL, Modifying a Table: PostgreSQL
	in SQL Server, Modifying a Table: SQL Server

	analytic functions, Analytic Functions (see window functions)
	ANSI_NULLS setting (SQL Server), Functions for Nulls: SQL Server
	ASCENDING (ASC) and DESCENDING (DESC) sorts, The ORDER BY Clause
	AT TIME ZONE (PostgreSQL), Other PostgreSQL Datetime Functions
	autocommit mode (transactions), Autocommit Mode

 B
	backreferences, Regular Expressions: PostgreSQL
	BEGIN DISTRIBUTED TRAN[SACTION] statements (SQL
 Server), Starting a Transaction: SQL Server
	BEGIN statements in PostgreSQL, Starting a Transaction: PostgreSQL
	BEGIN TRAN[SACTION] statements (SQL Server), Starting a Transaction: SQL Server
	BETWEEN predicates, BETWEEN Predicates
	BIGINT function (DB2), Datetime Conversions: DB2
	BIGINT type, Data Types: Binary Integer
	binary integer types, Data Types: Binary Integer
	breadth-first sorting of hierarchical query
 results, Breadth-First Versus Depth-First Sorting
	BULK COLLECT keywords in multi-row DELETEs
 (Oracle), Returning Deleted Data: Oracle

 C
	Cartesian products, The Concept of a Join, Cross Joins
		cross joins, Cross Joins

	CASCADE clauses in DROP TABLE statements, Tables, Dropping
	case, Dealing with case and punctuation in names, Changing the Case of a String
		changing for strings, Changing the Case of a String
	in column and table names, Dealing with case and punctuation in names

	CASE expressions, CASE Expressions: Simple, CASE Expressions: Searched, Deleting in Order, Using CASE with Nulls
		in ORDER BY clause of DELETE
 statement, Deleting in Order
	searched, CASE Expressions: Searched
	simple, CASE Expressions: Simple
	using with nulls, Using CASE with Nulls

	CAST function, CAST Function, CAST and SET DATEFORMAT
		datetime conversions in SQL Server, CAST and SET DATEFORMAT

	CHAR function (DB2), Datetime Conversions: DB2, Numeric Conversions: DB2
		converting between numbers and strings, Numeric Conversions: DB2

	CHAR option (Oracle), Data Types: Character String
	character string data types, Data Types: Character String
	CHARINDEX function (SQL Server), Searching a String
	CHECK constraints, Modifying a Table: DB2, Modifying a Table: MySQL
		adding and removing in DB2, Modifying a Table: DB2
	in MySQL, Modifying a Table: MySQL

	COALESCE function, Using the COALESCE Function, The ORDER BY Clause
		using with SELECT statements, The ORDER BY Clause

	code examples from this book, Using Code Examples
	column names, Specifying result-set column names, Dealing with case and punctuation in names, Qualifying column names, Names and Data Types in a Union
		case and punctuation in, Dealing with case and punctuation in names
	and data types in union
 queries, Names and Data Types in a Union
	qualifying, Qualifying column names
	specifying name or alias for expressions in SELECT
 list, Specifying result-set column names

	COMMENT clauses, COMMIT statements (Oracle), Ending a Transaction
	COMMIT statements, Ending a Transaction
	COMMIT TRANSACTION statements (SQL Server), Ending a Transaction
	comparison operators, Predicates for Nulls, Predicates
		nulls and, Predicates for Nulls

	CONCAT function (MySQL), Concatenating Strings
	concatenating strings, Concatenating Strings, Concatenating Strings
		+ operator in SQL Server, Concatenating Strings
	| | operator, Concatenating Strings

	CONNECT BY queries, CONNECT BY Queries–Supporting Functions and Operators, Core CONNECT BY Syntax, Creative CONNECT BY, WHERE Clauses with CONNECT BY, Joins with CONNECT BY, Sorting CONNECT BY Results, Loops in Hierarchical Data, Supporting Functions and Operators
		core syntax, Core CONNECT BY Syntax
	joins with, Joins with CONNECT BY
	loops in hierarchical data, Loops in Hierarchical Data
	sorting results, Sorting CONNECT BY Results
	supporting functions and operators, Supporting Functions and Operators
	using on data other than hierarchical, Creative CONNECT BY
	WHERE clauses in, WHERE Clauses with CONNECT BY

	CONNECT_BY_ISCYCLE function, Loops in Hierarchical Data, Supporting Functions and Operators
	CONNECT_BY_ISLEAF function, Supporting Functions and Operators
	CONSTRAINT constraint_name syntax, Tables, Creating
	constraints, Tables, Creating, Creating a Table: MySQL, Modifying a Table: DB2, Modifying a Table: DB2, Modifying a Table: MySQL, Modifying a Table: Oracle, Modifying a Table: PostgreSQL, Modifying a Table: SQL Server
		adding and removing in MySQL, Modifying a Table: MySQL
	adding and removing in Oracle, Modifying a Table: Oracle
	adding and removing in PostgreSQL, Modifying a Table: PostgreSQL
	adding and removing in SQL Server, Modifying a Table: SQL Server
	adding in DB2, Modifying a Table: DB2, Modifying a Table: DB2
	when creating table in MySQL, Creating a Table: MySQL
	naming and declaring, Tables, Creating

	conversions, data type, CAST Function, Data Type Conversion, Datetime Conversions: DB2, Datetime Conversions: MySQL, TO_DAYS and FROM_DAYS, Unix Timestamp Support, Seconds in the Day, DATE_FORMAT and TIME_FORMAT, Datetime Conversions: Oracle, Datetime Conversions: PostgreSQL, Datetime Conversions: SQL Server, Numeric Conversions: DB2, Numeric Conversions: MySQL, Numeric Conversions: Oracle, Numeric Conversions: PostgreSQL, Numeric Conversions: SQL Server
		CAST function, CAST Function
	datetime types, Datetime Conversions: DB2, Datetime Conversions: MySQL, TO_DAYS and FROM_DAYS, Unix Timestamp Support, Seconds in the Day, DATE_FORMAT and TIME_FORMAT, Datetime Conversions: Oracle, Datetime Conversions: PostgreSQL, Datetime Conversions: SQL Server
		DATE_FORMAT and TIME_FORMAT functions, DATE_FORMAT and TIME_FORMAT
	in DB2, Datetime Conversions: DB2
	in Oracle, Datetime Conversions: Oracle
	in MySQL, Datetime Conversions: MySQL
	in PostgreSQL, Datetime Conversions: PostgreSQL
	seconds in day (MySQL), Seconds in the Day
	in SQL Server, Datetime Conversions: SQL Server
	TO_DAYS and FROM_DAYS functions, TO_DAYS and FROM_DAYS
	Unix timestamps, Unix Timestamp Support

	numeric types, Numeric Conversions: DB2, Numeric Conversions: MySQL, Numeric Conversions: Oracle, Numeric Conversions: PostgreSQL, Numeric Conversions: SQL Server
		in DB2, Numeric Conversions: DB2
	in MySQL, Numeric Conversions: MySQL
	in Oracle, Numeric Conversions: Oracle
	in PostgreSQL, Numeric Conversions: PostgreSQL
	in SQL Server, Numeric Conversions: SQL Server

	CONVERT function, CONVERT, Numeric Conversions: SQL Server
		datetime conversions in SQL Server, CONVERT
	numeric conversions in SQL Server, Numeric Conversions: SQL Server

	Coordinated Universal Time (UTC), Datetime Conversions: PostgreSQL
	correlated subqueries, The ORDER BY Clause, Subqueries in the WITH Clause
	COUNT function, Aggregate Functions, Aggregate Functions
		asterisk (*) with, Aggregate Functions

	CREATE INDEX statements, Indexes, Creating
	CREATE TABLE statements, Creating a Table: DB2, Creating a Table: MySQL, Creating a Table: Oracle, Creating a Table: PostgreSQL, Creating a Table: SQL Server
		in DB2, Creating a Table: DB2
	in MySQL, Creating a Table: MySQL
	in Oracle, Creating a Table: Oracle
	in PostgreSQL, Creating a Table: PostgreSQL
	in SQL Server, Creating a Table: SQL Server

	cross joins, Cross Joins
	CUBE operation, CUBE, Related Functions
		related functions, Related Functions

	CYCLE clauses, Detecting Recursive Loops

 D
	data types, CAST Function, Data Type Conversion, Data Types: Binary Integer, Data Types: Character String, Data Types: Datetime, Data Types: Decimal, Tables, Creating, Names and Data Types in a Union
		binary integer, Data Types: Binary Integer
	casting, using CAST function, CAST Function
	character string, Data Types: Character String
	column, in union queries, Names and Data Types in a Union
	for columns, Tables, Creating
	converting, Data Type Conversion (see conversions, data type)
	datetime, Data Types: Datetime
	decimal, Data Types: Decimal

	DATE function (DB2), Datetime Conversions: DB2
	DATENAME and DATEPART functions (SQL Server), DATENAME and DATEPART
	datetime data types, Data Types: Datetime, DB2, MySQL, Oracle, PostgreSQL, SQL Server, Datetime Conversions: DB2, Datetime Conversions: MySQL, TO_DAYS and FROM_DAYS, Unix Timestamp Support, DATE_FORMAT and TIME_FORMAT, Datetime Conversions: Oracle, Datetime Conversions: PostgreSQL, Datetime Conversions: SQL Server, Datetime Functions: DB2, EXTRACT Function
		conversions in DB2, Datetime Conversions: DB2
	conversions in MySQL, Datetime Conversions: MySQL
	conversions in Oracle, Datetime Conversions: Oracle
	conversions in PostgreSQL, Datetime Conversions: PostgreSQL
	conversions in SQL Server, Datetime Conversions: SQL Server
	conversions of Unix timestamps, Unix Timestamp Support
	conversions using DATE_FORMAT and TIME_FORMAT
 functions, DATE_FORMAT and TIME_FORMAT
	conversions using TO_DAYS and FROM_DAYS
 functions, TO_DAYS and FROM_DAYS
	DB2, DB2
	functions for, Datetime Functions: DB2 (see datetime functions)
	MySQL, MySQL
	Oracle, Oracle
	PostgreSQL, PostgreSQL
	retrieving datetime value elements with EXTRACT
 function, EXTRACT Function
	SQL Server, SQL Server

	datetime functions, Datetime Functions: DB2, Datetime Functions: MySQL, Datetime Functions: Oracle, Datetime Functions: PostgreSQL, Getting Current Date and Time, Rounding and Truncating, Datetime Functions: SQL Server
		in DB2, Datetime Functions: DB2
	in MySQL, Datetime Functions: MySQL
	in Oracle, Datetime Functions: Oracle
	in PostgreSQL, Datetime Functions: PostgreSQL, Getting Current Date and Time, Rounding and Truncating
		getting current date and time, Getting Current Date and Time
	rounding and truncating values, Rounding and Truncating

	in SQL Server, Datetime Functions: SQL Server

	datetime literals, Datetime Literals, Datetime Interval Literals
		interval, Datetime Interval Literals

	DATE_FORMAT function, DATE_FORMAT and TIME_FORMAT
	DATE_PART function (PostgreSQL), Other PostgreSQL Datetime Functions
	DAY, MONTH, and YEAR functions (SQL Server), DAY, MONTH, and YEAR
	DB2, DB2, DB2’s DECFLOAT Type, Datetime Conversions: DB2, Datetime Functions: DB2, Returning Deleted Data: DB2, Returning Inserted Values: DB2, Cross Joins, Functions for Nulls: DB2, Numeric Conversions: DB2, Writing expressions, Searching a String, Subqueries in the WITH Clause, Creating a Table: DB2, Modifying a Table: DB2, Starting a Transaction: DB2, EXCEPT ALL, Returning Updated Data: DB2
		creating tables, Creating a Table: DB2
	cross joins with LATERAL clause, Cross Joins
	datetime conversions, Datetime Conversions: DB2
	datetime functions, Datetime Functions: DB2
	datetime types, DB2
	DECFLOAT type, DB2’s DECFLOAT Type
	functions for nulls, Functions for Nulls: DB2
	modifying tables, Modifying a Table: DB2
	numeric type conversions, Numeric Conversions: DB2
	returning deleted data, Returning Deleted Data: DB2
	returning inserted values, Returning Inserted Values: DB2
	returning updated data, Returning Updated Data: DB2
	searching strings, LOCATE and POSSTR
 functions, Searching a String
	SELECT…FROM sysibm.sysdummy1 statement, Writing expressions
	starting transactions, Starting a Transaction: DB2
	union queries, EXCEPT ALL clause, EXCEPT ALL
	WITH-clause queries, naming result columns, Subqueries in the WITH Clause

	DECFLOAT function (DB2), Numeric Conversions: DB2
	DECFLOAT type (DB2), DB2’s DECFLOAT Type
	decimal data types, Data Types: Decimal, DB2’s DECFLOAT Type, DECIMAL/NUMBER Type
		DB2, DECFLOAT type, DB2’s DECFLOAT Type
	DECIMAL or NUMBER type, DECIMAL/NUMBER Type

	DECIMAL function (DB2), Datetime Conversions: DB2, Numeric Conversions: DB2
		converting between numbers and strings, Numeric Conversions: DB2

	DECIMAL type, DECIMAL/NUMBER Type
	DECODE function, Functions for Nulls: DB2, Functions for Nulls: Oracle
	DEFAULT keyword in VALUES clause, Single-Row Inserts
	DELETE statements, Deleting Data, Deleting in Order, Deleting All Rows, Deleting from Views and Subqueries, Double-FROM, Merging Data, Subqueries in the FROM Clause
		deleting all rows, Deleting All Rows
	deleting from views and subqueries, Deleting from Views and Subqueries
	deleting in order, Deleting in Order
	double FROM clauses in SQL Server, Double-FROM
	subqueries in FROM clauses, Subqueries in the FROM Clause
	WHEN NOT MATCHED clause, Merging Data

	DELETE WHERE clauses after UPDATEs, Merging Data
	DELETED and INSERTED values in SQL Server, Returning Updated Data: SQL Server
	deleted data, Returning Deleted Data: DB2, Returning Deleted Data: Oracle, Returning Deleted Data: SQL Server
		returning in DB2, Returning Deleted Data: DB2
	returning in Oracle, Returning Deleted Data: Oracle
	returning in SQL Server, Returning Deleted Data: SQL Server

	depth, tracking in hierarchy, Tracking Your Depth
	depth-first sorting of hierarchical query
 results, Breadth-First Versus Depth-First Sorting
	DESCENDING (DESC) and ASCENDING (ASC) sorts, The ORDER BY Clause
	deterministic UPDATEs, UPDATE FROM Clause
	DISTINCT command, using with COUNT function, Aggregate Functions
	DISTINCT keyword, ALL and DISTINCT
		using in SELECT operations, ALL and DISTINCT

	dollar-quoted string constants (PostgreSQL), Text Literals
	DROP clauses in ALTER TABLE statements, Modifying a Table: DB2, Modifying a Table: MySQL, Modifying a Table: Oracle, Modifying a Table: PostgreSQL, Modifying a Table: SQL Server
		DB2, Modifying a Table: DB2
	MySQL, Modifying a Table: MySQL
	Oracle, Modifying a Table: Oracle
	PostgreSQL, Modifying a Table: PostgreSQL
	SQL Server, Modifying a Table: SQL Server

	DROP INDEX statements, Indexes, Removing
	DROP TABLE statements, Tables, Dropping
	durations, Datetime Conversions: DB2, Datetime Functions: DB2
		labeled, in DB2, Datetime Functions: DB2

 E
	empty strings (' '), Replacing Text in a String
	ENGINE keyword (MySQL), Creating a Table: MySQL
	equi-joins, The USING Clause, The USING Clause, Natural Joins, Non-Equi-Joins
		defined, Non-Equi-Joins
	natural joins, Natural Joins
	USING clause in, The USING Clause

	escape characters, LIKE Predicates, Regular Expressions: PostgreSQL
		in SIMILAR TO predicates,
 PostgreSQL, Regular Expressions: PostgreSQL
	specifying pattern-matching characters in LIKE
 predicates, LIKE Predicates

	ESCAPE clauses, LIKE Predicates, Regular Expressions: PostgreSQL
		specifying escape characters in PostgreSQL SIMILAR
 TO, Regular Expressions: PostgreSQL

	escape sequences for string literals, Text Literals
	example data for this book, Example Data
	EXCEPT (or MINUS) in union queries, EXCEPT (MINUS in Oracle)
	EXCEPT ALL clauses in union queries, EXCEPT ALL
	EXISTS and NOT EXISTS predicates, EXISTS Predicates
	expressions, Indexes, Creating, Writing expressions
		indexes on, Indexes, Creating
	writing for SELECT clauses, Writing expressions

	EXTRACT function, Other PostgreSQL Datetime Functions, EXTRACT Function
		retrieving specific elements from datetime
 values, EXTRACT Function

 F
	Finding Flight Legs (case study), Creative CONNECT BY
	FIRST versus ALL in conditional multitable
 INSERTs, ALL versus FIRST
	FIRST_VALUE and LAST_VALUE functions, Comparing Values Across Rows
	floating-point styles (SQL Server), Numeric Conversions: SQL Server
	FORCE clauses (Oracle), Ending a Transaction, Aborting a Transaction
		in COMMIT statements, Ending a Transaction
	in ROLLBACK statements, Aborting a Transaction

	foreign key constraints, Creating a Table: MySQL, Tables, Dropping, Modifying a Table: MySQL
		dropping in MySQL, Modifying a Table: MySQL
	in MySQL, Creating a Table: MySQL
	for tables being dropped, Tables, Dropping

	format elements, DATE_FORMAT and TIME_FORMAT, Datetime Conversions: Oracle, Datetime Conversions: PostgreSQL, Rounding and Truncating
		date, in MySQL, DATE_FORMAT and TIME_FORMAT
	datetime, in Oracle, Datetime Conversions: Oracle, Rounding and Truncating
		rounding and truncating DATE values to, Rounding and Truncating

	datetime, in PostgreSQL, Datetime Conversions: PostgreSQL

	format masks (Oracle), Datetime Conversions: Oracle
	framing clauses, Summarizing over a Moving Window
	FROM clauses, Double-FROM, The FROM Clause, Table aliases in the FROM clause, Subqueries in the FROM clause, Generating tables through the VALUES clause, The WHERE Clause, Subqueries in the FROM Clause, UPDATE FROM Clause
		double, in DELETE statements (SQL Server), Double-FROM
	subqueries in, Subqueries in the FROM Clause
	in UPDATE statements, UPDATE FROM Clause
	using in SELECT statements, The FROM Clause, Table aliases in the FROM clause, Subqueries in the FROM clause, Generating tables through the VALUES clause, The WHERE Clause
		generating tables with VALUES clause, Generating tables through the VALUES clause
	subqueries in FROM clause, Subqueries in the FROM clause
	table aliases in FROM clause, Table aliases in the FROM clause
	WHERE clause, The WHERE Clause

	FROM_DAYS function (MySQL), TO_DAYS and FROM_DAYS
	full outer joins, Full outer joins
	functions, Platform notes, Supporting Functions and Operators, Datetime Conversions: DB2
		datetime conversions in DB2, Datetime Conversions: DB2
	leading parenthesis in invocation, Platform notes
	supporting CONNECT BY queries, Supporting Functions and Operators

 G
	GREATEST function, GREATEST
	Gregorian dates, TO_DAYS and FROM_DAYS
	grouping and summarizing, Grouping and Summarizing–Related Functions, Aggregate Functions, GROUP BY, Listing the Detail Values, Reducing the GROUP BY List, Grouping Before the Join, HAVING, ROLLUP, CUBE, GROUPING SETS, Related Functions
		aggregate functions, Aggregate Functions
	CUBE operation, CUBE
	GROUP BY clause, GROUP BY
	grouping before joins, Grouping Before the Join
	GROUPING SETS function, GROUPING SETS
	HAVING clause in GROUP BY queries, HAVING
	listing detail values, Listing the Detail Values
	reducing GROUP BY list, Reducing the GROUP BY List
	related functions, Related Functions
	ROLLUP operation, ROLLUP

	GROUPING function, using SQL Server WITH CUBE
 syntax, Related Functions

 H
	HAVING clauses in GROUP BY queries, HAVING
	hierarchical queries, CONNECT BY Queries, Hierarchical Queries–Detecting Recursive Loops, Recursive WITH, Tracking Your Depth, Breadth-First Versus Depth-First Sorting
		breadth-first versus depth-first sorting, Breadth-First Versus Depth-First Sorting
	executing using CONNECT BY, CONNECT BY Queries
	recursive WITH, Recursive WITH
	tracking depth in hierarchy, Tracking Your Depth

 I
	IF function, returning null values in MySQL, Functions for Nulls: MySQL
	IFNULL function (MySQL), Functions for Nulls: MySQL
	IGNORE NULLS clauses, Comparing Values Across Rows
	implicit conversions, Data Type Conversion
	IN predicates, IN Predicates
	indexes, Indexes, Creating, Indexes, Removing
		creating, Indexes, Creating
	removing, Indexes, Removing

	INITCAP function, Changing the Case of a String
	inline views, Deleting from Views and Subqueries (see subqueries)
	INNER JOIN keywords, Inner Joins
	inner joins, Inner Joins
	INSERT statements, Inserting Data, Single-Row Inserts, Multirow Inserts, Insert Targets, Subquery Inserts, Multitable Inserts, Unconditional multitable insert, Conditional multitable insert, Subqueries in the FROM Clause
		multirow inserts, Multirow Inserts
	multitable inserts, Multitable Inserts, Unconditional multitable insert, Conditional multitable insert
		conditional, Conditional multitable insert
	unconditional, with INSERT ALL, Unconditional multitable insert

	single-row inserts, Single-Row Inserts
	subqueries in FROM clauses, Subqueries in the FROM Clause
	subquery inserts, Subquery Inserts
	targets of, Insert Targets

	INSERTED and DELETED values in SQL Server, Returning Updated Data: SQL Server
	inserted values, Returning Inserted Values: DB2, Returning Inserted Values: Oracle, Returning Inserted Data: SQL Server
		returning in DB2, Returning Inserted Values: DB2
	returning in Oracle, Returning Inserted Values: Oracle
	returning in SQL Server, Returning Inserted Data: SQL Server

	inserting data with MERGE statements, Merging Data
	INSTR function, Searching a String
	INTEGER type, Data Types: Binary Integer
	INTERSECT ALL queries, INTERSECT ALL
	INTERSECT queries, INTERSECT and INTERSECT ALL
	intervals, Datetime Functions: MySQL, Datetime Functions: MySQL, Datetime Interval Literals
		adding and subtracting in MySQL, Datetime Functions: MySQL
	datetime interval literals, Datetime Interval Literals
	string-based formats in MySQL, Datetime Functions: MySQL

	IS NOT NULL predicate, Predicates for Nulls
	IS NULL predicate, Predicates for Nulls
	IS NULL test, CASE Expressions: Searched
	ISNULL function (SQL Server), Functions for Nulls: SQL Server

 J
	join conditions, Inner Joins
	joins, Joins with CONNECT BY, Grouping Before the Join, Joining Tables–Vendor-specific outer join syntax, The Concept of a Join, Cross Joins, Inner Joins, The USING Clause, Natural Joins, Non-Equi-Joins, Outer Joins, Left outer joins, Right outer joins, Full outer joins, Vendor-specific outer join syntax
		with CONNECT BY queries, Joins with CONNECT BY
	cross, Cross Joins
	explanation of concept, The Concept of a Join
	grouping before, Grouping Before the Join
	inner, Inner Joins
	natural, Natural Joins
	non-equi, Non-Equi-Joins
	outer, Outer Joins, Left outer joins, Right outer joins, Full outer joins, Vendor-specific outer join syntax
		full outer joins, Full outer joins
	left outer joins, Left outer joins
	right outer joins, Right outer joins
	vendor-specific syntax, Vendor-specific outer join syntax

	USING clause in, The USING Clause

	JULIAN_DAY function (DB2), Datetime Conversions: DB2

 L
	labeled durations (DB2), Datetime Functions: DB2
	LAG and LEAD functions, Comparing Values Across Rows, Comparing Values Across Rows
	LAST_VALUE and FIRST_VALUE functions, Comparing Values Across Rows
	LATERAL clauses (DB2), cross joins with, Cross Joins
	LCASE and UCASE functions (DB2), Changing the Case of a String
	LEAST function, LEAST
	left outer joins, Left outer joins, Interpreting nulls in an outer join
		interpreting nulls in results, Interpreting nulls in an outer join

	LEN function, Finding the Length of a String
	LENGTH function, Finding the Length of a String
	LEVEL operator, Supporting Functions and Operators
	LIKE and NOT LIKE predicates, LIKE Predicates
	LISTAGG function, Listing the Detail Values
	literals, Literals–Datetime Interval Literals, Text Literals, Numeric Literals, Datetime Literals, Datetime Interval Literals
		datetime, Datetime Literals
	datetime interval, Datetime Interval Literals
	numeric, Numeric Literals
	text, Text Literals

	LOCAL functions (PostgreSQL), Getting Current Date and Time
	LOCATE function, Searching a String, Searching a String
		in DB2, Searching a String
	in MySQL, Searching a String

	loops, Creative CONNECT BY, Loops in Hierarchical Data, Detecting Recursive Loops
		avoiding with CONNECT BY queries, Creative CONNECT BY
	detecting in recursive data, Detecting Recursive Loops
	in hierarchical data, Loops in Hierarchical Data

	LOWER and UPPER functions, Changing the Case of a String
	LTRIM and RTRIM functions, Trimming Unwanted Characters

 M
	math functions, Numeric/Math Functions
	MAX function, Summarizing over a Moving Window
	MAXVALUE clauses, Creating a Table: Oracle
	MERGE statements, Merging Data–Merging Data, Merging Data
		WHERE conditions on UPDATE and INSERT
 operations, Merging Data

	MIN function, Defining a Summary Window, Summarizing over a Moving Window
	MINUS clause in union queries (Oracle), EXCEPT (or MINUS) and EXCEPT ALL
	MODIFY clauses in ALTER TABLE statements, Modifying a Table: MySQL, Modifying a Table: Oracle
		MySQL, Modifying a Table: MySQL
	Oracle, Modifying a Table: Oracle

	money styles (SQL Server), Numeric Conversions: SQL Server
	MONTH function (SQL Server), DAY, MONTH, and YEAR
	MySQL, Data Types: Character String, MySQL, Datetime Conversions: MySQL, Date and Time Elements, TO_DAYS and FROM_DAYS, Seconds in the Day, DATE_FORMAT and TIME_FORMAT, Datetime Functions: MySQL, Deleting in Order, Subquery Inserts, Text Literals, Functions for Nulls: MySQL, Numeric Conversions: MySQL, LIKE Predicates, Regular Expressions: MySQL, Regular Expressions: MySQL, Searching a String, Extracting a Substring, Concatenating Strings, Creating a Table: MySQL, Creating a Table: MySQL, Modifying a Table: MySQL, Starting a Transaction: MySQL
		constraints checking and subquery inserts, Subquery Inserts
	constraints in, Creating a Table: MySQL
	creating tables, Creating a Table: MySQL
	datetime conversions, Datetime Conversions: MySQL, Date and Time Elements, TO_DAYS and FROM_DAYS, Seconds in the Day
		date and time elements, Date and Time Elements
	seconds in day, Seconds in the Day
	using TO_DAYS and FROM_DAYS functions, TO_DAYS and FROM_DAYS

	datetime functions, Datetime Functions: MySQL
	datetime types, MySQL
	DATE_FORMAT function, date format elements, DATE_FORMAT and TIME_FORMAT
	deleting data, ORDER BY clause in DELETE
 statement, Deleting in Order
	escaping an escape character in LIKE
 predicates, LIKE Predicates
	functions for nulls, Functions for Nulls: MySQL
	modifying tables, Modifying a Table: MySQL
	numeric conversions, Numeric Conversions: MySQL
	regular expressions, Regular Expressions: MySQL
	regular-expression operators, Regular Expressions: MySQL
	searching strings, using INSTR and LOCATE
 functions, Searching a String
	starting transactions, Starting a Transaction: MySQL
	string concatenation with CONCAT function, Concatenating Strings
	string literal escape sequences, Text Literals
	SUBSTRING functions, Extracting a Substring
	TEXT type, Data Types: Character String

 N
	natural joins, Natural Joins
	NOCYCLE, using with CONNECT BY, Loops in Hierarchical Data
	non-equi-joins, Non-Equi-Joins
	NOT EXISTS and EXISTS predicates, EXISTS Predicates
	NOT LIKE AND LIKE predicates, LIKE Predicates
	NOT NULL constraints in DB2, Creating a Table: DB2
	NOW function (PostgreSQL), Getting Current Date and Time
	NTH_VALUE function (Oracle), Comparing Values Across Rows
	nullability of a column (DB2), Modifying a Table: DB2
	NULLIF function, Functions for Nulls: DB2, Functions for Nulls: MySQL, Functions for Nulls: PostgreSQL, Functions for Nulls: SQL Server
		in DB2, Functions for Nulls: DB2
	in MySQL, Functions for Nulls: MySQL
	in PostgreSQL, Functions for Nulls: PostgreSQL
	in SQL Server, Functions for Nulls: SQL Server

	nulls, CASE Expressions: Searched, Interpreting nulls in an outer join, Merging Data, Nulls, Predicates for Nulls, Using CASE with Nulls, Using the COALESCE Function, Functions for Nulls: DB2, Functions for Nulls: MySQL, Functions for Nulls: Oracle, Functions for Nulls: PostgreSQL, Functions for Nulls: SQL Server
		functions for, in DB2, Functions for Nulls: DB2
	functions for, in MySQL, Functions for Nulls: MySQL
	functions for, in Oracle, Functions for Nulls: Oracle
	functions for, in PostgreSQL, Functions for Nulls: PostgreSQL
	functions for, in SQL Server, Functions for Nulls: SQL Server
	interpreting in outer joins, Interpreting nulls in an outer join
	IS NULL test, CASE Expressions: Searched
	predicates for, Predicates for Nulls
	preventing updating of names to null, Merging Data
	using CASE expressions with, Using CASE with Nulls
	using COALESCE function with, Using the COALESCE Function

	NUMBER type, DECIMAL/NUMBER Type, Numeric Conversions: Oracle
		converting to and from VARCHAR2 in Oracle, Numeric Conversions: Oracle

	numeric and math functions, Numeric/Math Functions
	numeric data types, Numeric Conversions: DB2, Numeric Conversions: MySQL, Numeric Conversions: Oracle, Numeric Conversions: PostgreSQL, Numeric Conversions: SQL Server
		conversions in DB2, Numeric Conversions: DB2
	conversions in MySQL, Numeric Conversions: MySQL
	conversions in Oracle, Numeric Conversions: Oracle
	conversions in PostgreSQL, Numeric Conversions: PostgreSQL
	conversions in SQL Server, Numeric Conversions: SQL Server

	numeric format elements, Numeric Conversions: Oracle, Numeric Conversions: PostgreSQL
		in Oracle, Numeric Conversions: Oracle
	in PostgreSQL, Numeric Conversions: PostgreSQL

	numeric literals, Numeric Literals
	NVL function, Functions for Nulls: DB2, Functions for Nulls: Oracle

 O
	OLAP (online analytical processing) functions, OLAP Functions (see window functions)
	ON clauses in inner joins, Inner Joins
	ON DELETE DO INSTEAD rule (PostgreSQL), Deleting from Views and Subqueries
	operators, Supporting Functions and Operators, Predicates, Regular Expressions: MySQL, Regular Expressions: Oracle, Regular Expressions: Oracle, Regular Expressions: PostgreSQL, Regular Expressions: PostgreSQL, Regular Expressions: SQL Server
		comparison operators, Predicates
	regular expression, Regular Expressions: MySQL, Regular Expressions: Oracle, Regular Expressions: Oracle, Regular Expressions: PostgreSQL, Regular Expressions: PostgreSQL, Regular Expressions: SQL Server
		in MySQL, Regular Expressions: MySQL
	in Oracle, Regular Expressions: Oracle
	Perl-influenced, in Oracle, Regular Expressions: Oracle
	Posix-style, in PostgreSQL, Regular Expressions: PostgreSQL
	PostgreSQL SIMILAR TO, Regular Expressions: PostgreSQL
	in SQL Server, Regular Expressions: SQL Server

	supporting CONNECT BY queries, Supporting Functions and Operators

	option letters (PostgreSQL Posix-style regular
 expressions), Regular Expressions: PostgreSQL
	Oracle, Oracle, Datetime Conversions: Oracle, Datetime Conversions: Oracle, Datetime Functions: Oracle, Getting Current Date and Time, Rounding and Truncating, Deleting All Rows, Returning Deleted Data: Oracle, EXTRACT Function, Listing the Detail Values, Breadth-First Versus Depth-First Sorting, Detecting Recursive Loops, Returning Inserted Values: Oracle, Vendor-specific outer join syntax, Text Literals, Merging Data, Functions for Nulls: Oracle, Numeric Conversions: Oracle, Numeric Conversions: Oracle, Pivoting: Oracle, Unpivoting: Oracle, LIKE Predicates, Regular Expressions: Oracle, Regular Expressions: Oracle–Regular Expressions: PostgreSQL, Regular Expressions: Oracle, Regular Expressions: Oracle, Regular Expressions: Oracle, Writing expressions, Searching a String, Extracting a Substring, Finding the Length of a String, Creating a Table: Oracle, Tables, Dropping, Modifying a Table: Oracle, Starting a Transaction: Oracle, EXCEPT (or MINUS) and EXCEPT ALL, Returning Updated Data: Oracle, Comparing Values Across Rows
		alternative quoting delimiters in strings, Text Literals
	creating tables, Creating a Table: Oracle
	datetime conversions, Datetime Conversions: Oracle, Datetime Conversions: Oracle
		datetime format elements, Datetime Conversions: Oracle

	datetime elements, EXTRACT Function
	datetime functions, Datetime Functions: Oracle, Getting Current Date and Time, Rounding and Truncating
		getting current date and time, Getting Current Date and Time
	rounding and truncating values, Rounding and Truncating

	datetime types, Oracle
	depth- or breadth-first sorting, specifying with SEARCH
 clause, Breadth-First Versus Depth-First Sorting
	detecting recursive loops with CYCLE clause, Detecting Recursive Loops
	DROP TABLE statement, CASCADE CONSTRAINTS
 clause, Tables, Dropping
	functions for nulls, Functions for Nulls: Oracle
	LENGTH functions, Finding the Length of a String
	LIKE predicates, LIKE Predicates
	LISTAGG function, Listing the Detail Values
	merging data, WHERE conditions on UPDATEs and
 INSERTs, Merging Data
	modifying tables, Modifying a Table: Oracle
	NTH_VALUE function, Comparing Values Across Rows
	numeric conversions, Numeric Conversions: Oracle
	numeric format elements, Numeric Conversions: Oracle
	outer join syntax, Vendor-specific outer join syntax
	pivoting in, Pivoting: Oracle
	regular expressions, Regular Expressions: Oracle, Regular Expressions: Oracle–Regular Expressions: PostgreSQL, Regular Expressions: Oracle, Regular Expressions: Oracle
		functions, Regular Expressions: Oracle
	operators, Regular Expressions: Oracle
	Perl-influenced operators, Regular Expressions: Oracle

	regular-expression functions, Regular Expressions: Oracle
		parameters, Regular Expressions: Oracle

	returning deleted data, Returning Deleted Data: Oracle
	returning inserted values, Returning Inserted Values: Oracle
	returning updated data, Returning Updated Data: Oracle
	searching strings, INSTR functions, Searching a String
	SELECT…FROM dual statement, Writing expressions
	starting transactions, Starting a Transaction: Oracle
	SUBSTR functions, Extracting a Substring
	TRUNCATE TABLE statement, Deleting All Rows
	union queries, MINUS clause, EXCEPT (or MINUS) and EXCEPT ALL
	unpivoting in, Unpivoting: Oracle

	ORDER BY clauses, Sorting CONNECT BY Results, Deleting in Order, Listing the Detail Values, The ORDER BY Clause, ORDER BY in Union Queries, Ordering and Ranking Within a Window, Window Function Evaluation and Placement
		CONNECT BY queries and, Sorting CONNECT BY Results
	in DELETE statements, Deleting in Order
	within OVER clauses, Ordering and Ranking Within a Window
	in SELECT statements, The ORDER BY Clause
	in union queries, ORDER BY in Union Queries
	using with LISTAGG function, Listing the Detail Values
	window functions in, Window Function Evaluation and Placement

	ORDER SIBLINGS BY clauses, Sorting CONNECT BY Results
		sorting CONNECT BY query results, Sorting CONNECT BY Results

	outer joins, Outer Joins, Left outer joins, Interpreting nulls in an outer join, Right outer joins, Full outer joins, Vendor-specific outer join syntax
		full, Full outer joins
	left, Left outer joins
	nulls in results, Interpreting nulls in an outer join
	right, Right outer joins
	vendor-specific syntax, Vendor-specific outer join syntax

	OUTPUT clauses, Returning Deleted Data: SQL Server, Returning Inserted Data: SQL Server, Returning Updated Data: SQL Server
		returning deleted data in SQL Server, Returning Deleted Data: SQL Server
	returning inserted data in SQL Server, Returning Inserted Data: SQL Server
	returning updated data in SQL Server, Returning Updated Data: SQL Server

	OVER clauses, Defining a Summary Window, Ordering and Ranking Within a Window
		ORDER BY clause within, Ordering and Ranking Within a Window

 P
	PARTITION BY clause within OVER clause, Defining a Summary Window
	pattern-matching, LIKE Predicates
		in LIKE and NOT LIKE
 predicates, LIKE Predicates

	Perl-influenced regular expression operators
 (Oracle), Regular Expressions: Oracle
	pivot tables, Example Data
	pivoting, Pivoting and Unpivoting, Pivoting: The Concept, Pivoting: Oracle, Pivoting: SQL Server
		explanation of the concept, Pivoting: The Concept
	in Oracle, Pivoting: Oracle
	in SQL Server, Pivoting: SQL Server

	POSITION function, Searching a String
		(PostgreSQL), Searching a String

	Posix-style regular expressions (PostgreSQL), Regular Expressions: PostgreSQL, Regular Expressions: PostgreSQL, Regular Expressions: PostgreSQL
		operators, Regular Expressions: PostgreSQL
	option letters, Regular Expressions: PostgreSQL

	POSSTR function (DB2), Searching a String
	PostgreSQL, PostgreSQL, Datetime Conversions: PostgreSQL, Datetime Functions: PostgreSQL, Getting Current Date and Time, Rounding and Truncating, Deleting from Views and Subqueries, EXTRACT Function, Recursive WITH, Text Literals, Text Literals, Functions for Nulls: PostgreSQL, Numeric Conversions: PostgreSQL, LIKE Predicates, Regular Expressions: PostgreSQL–Regular Expressions: SQL Server, Regular Expressions: PostgreSQL, Specifying result-set column names, Searching a String, Extracting a Substring, Concatenating Strings, Subqueries in the WITH Clause, Creating a Table: PostgreSQL, Modifying a Table: PostgreSQL, Starting a Transaction: PostgreSQL, EXCEPT ALL
		alternative quoting delimiters for string
 literals, Text Literals
	column aliases, Specifying result-set column names
	creating tables, Creating a Table: PostgreSQL
	datetime conversions, Datetime Conversions: PostgreSQL
	datetime elements, EXTRACT Function
	datetime functions, Datetime Functions: PostgreSQL, Getting Current Date and Time, Rounding and Truncating
		getting current date and time, Getting Current Date and Time
	rounding and truncating values, Rounding and Truncating

	datetime types, PostgreSQL
	DELETE statement with view as target, Deleting from Views and Subqueries
	escaping an escape character in LIKE
 predicates, LIKE Predicates
	functions for nulls, Functions for Nulls: PostgreSQL
	modifying tables, Modifying a Table: PostgreSQL
	numeric type conversions, Numeric Conversions: PostgreSQL
	regular expressions, Regular Expressions: PostgreSQL–Regular Expressions: SQL Server, Regular Expressions: PostgreSQL
		Posix-style, Regular Expressions: PostgreSQL

	searching strings, using POSITION and STRPOS
 functions, Searching a String
	starting transactions, Starting a Transaction: PostgreSQL
	string concatenation with TEXTCAT function, Concatenating Strings
	string literal escape sequences, Text Literals
	subquery in FROM clause of a subquery in WITH
 clause, Subqueries in the WITH Clause
	SUBSTRING functions, Extracting a Substring
	union queries, EXCEPT ALL clause, EXCEPT ALL
	WITH RECURSIVE clause, Recursive WITH

	predicates, Predicates for Nulls, Predicates, Predicates, EXISTS Predicates, IN Predicates, BETWEEN Predicates, LIKE Predicates, Regular Expressions: MySQL, Regular Expressions: PostgreSQL, Simple Updates
		BETWEEN, BETWEEN Predicates
	comparison operators available for, Predicates
	EXISTS and NOT EXISTS, EXISTS Predicates
	for nulls, Predicates for Nulls
	identifying rows for updates, Simple Updates
	IN, IN Predicates
	LIKE and NOT LIKE, LIKE Predicates
	REGEXP, Regular Expressions: MySQL
	SIMILAR TO, Regular Expressions: PostgreSQL

	primary key constraints, Modifying a Table: MySQL
		dropping in MySQL, Modifying a Table: MySQL

	PRIOR keyword (in CONNECT BY queries), Core CONNECT BY Syntax
	PRIOR operator, Supporting Functions and Operators
	punctuation in column and table names, Dealing with case and punctuation in names

 Q
	qualifying column names, Qualifying column names

 R
	RANGE BETWEEN clauses, Summarizing over a Moving Window
	ranking within a window, Ordering and Ranking Within a Window
	recursive loops, Loops in Hierarchical Data, Detecting Recursive Loops
		avoiding with NOCYCLE in Oracle, Loops in Hierarchical Data
	detecting, Detecting Recursive Loops

	recursive queries, Recursive Queries (see CONNECT BY queries; hierarchical queries)
	REGEXP predicates, Regular Expressions: MySQL
	REGEXP_REPLACE function, Regular Expressions: PostgreSQL
		supporting Posix-style regular expressions in
 PostgreSQL, Regular Expressions: PostgreSQL

	regular expressions, Regular Expressions–Selecting Data, Regular Expressions: MySQL, Regular Expressions: MySQL, Regular Expressions: Oracle–Regular Expressions: PostgreSQL, Regular Expressions: PostgreSQL–Regular Expressions: SQL Server, Regular Expressions: PostgreSQL, Regular Expressions: SQL Server, Regular Expressions: SQL Server
		in MySQL, Regular Expressions: MySQL, Regular Expressions: MySQL
		operators, Regular Expressions: MySQL

	in Oracle, Regular Expressions: Oracle–Regular Expressions: PostgreSQL
	in PostgreSQL, Regular Expressions: PostgreSQL–Regular Expressions: SQL Server, Regular Expressions: PostgreSQL
		Posix-style, Regular Expressions: PostgreSQL
	SIMILAR TO predicate, Regular Expressions: PostgreSQL–Regular Expressions: SQL Server

	in SQL Server, Regular Expressions: SQL Server, Regular Expressions: SQL Server
		operators supported, Regular Expressions: SQL Server

	REPLACE function, Replacing Text in a String
	RESPECT NULLS clauses, Comparing Values Across Rows
	RETURNING clauses (Oracle), Returning Inserted Values: Oracle, Returning Updated Data: Oracle
		returning inserted values, Returning Inserted Values: Oracle
	returning updated data, Returning Updated Data: Oracle

	right outer joins, Right outer joins
	ROLLBACK statements, Aborting a Transaction, Aborting to a Savepoint
		to a savepoint, Aborting to a Savepoint

	ROLLBACK TRANSACTION statements (SQL Server), Aborting a Transaction
	ROLLUP operation, ROLLUP, Related Functions
		related functions, Related Functions
	using with GROUP BY, ROLLUP

	rounding modes, DECFLOAT type, DB2’s DECFLOAT Type
	rounding numbers, Rounding and Truncating, Numeric Conversions: DB2, Numeric/Math Functions
		DATE values to datetime elements in Oracle, Rounding and Truncating
	functions for, Numeric/Math Functions
	ROUND function, Numeric Conversions: DB2

	row generator, using CONNECT BY as, Creative CONNECT BY
	RTRIM and LTRIM functions, Trimming Unwanted Characters

 S
	savepoints (transactions), Aborting to a Savepoint
	schema (example) for this book, Example Data
	SEARCH clauses (Oracle), Breadth-First Versus Depth-First Sorting
	searched CASE expressions, CASE Expressions: Searched
	seconds in day, MySQL functions for, Seconds in the Day
	SELECT expressions in union queries, ORDER BY in Union Queries, Order of Evaluation, EXCEPT (or MINUS) and EXCEPT ALL, INTERSECT and INTERSECT ALL
		EXCEPT (or MINUS) and EXCEPT ALL, Order of Evaluation, EXCEPT (or MINUS) and EXCEPT ALL
	INTERSECT and INTERSECT ALL, INTERSECT and INTERSECT ALL

	SELECT statements, Returning Deleted Data: DB2, Subquery Inserts, Selecting Data–The ORDER BY Clause, The SELECT Clause, Listing the columns to retrieve, Taking shortcuts with the asterisk, Writing expressions, Specifying result-set column names, Dealing with case and punctuation in names, Using subqueries in a SELECT list, Qualifying column names, ALL and DISTINCT, The FROM Clause, Table aliases in the FROM clause, Subqueries in the FROM clause, Generating tables through the VALUES clause, The WHERE Clause, The ORDER BY Clause, Subqueries in the FROM Clause, Subqueries in the WITH Clause, Returning Updated Data: DB2, Window Function Evaluation and Placement
		ALL and DISTINCT keywords, ALL and DISTINCT
	FROM clause, The FROM Clause, Table aliases in the FROM clause, Subqueries in the FROM clause, Generating tables through the VALUES clause, The WHERE Clause, Subqueries in the FROM Clause
		generating tables with VALUES clause, Generating tables through the VALUES clause
	subqueries in, Subqueries in the FROM clause, Subqueries in the FROM Clause
	table aliases in, Table aliases in the FROM clause
	WHERE clause in, The WHERE Clause

	FROM OLD TABLE, Returning Deleted Data: DB2
	ORDER BY clause, The ORDER BY Clause
	SELECT clause, The SELECT Clause, Listing the columns to retrieve, Taking shortcuts with the asterisk, Writing expressions, Specifying result-set column names, Dealing with case and punctuation in names, Using subqueries in a SELECT list, Qualifying column names
		case and punctuation in names, Dealing with case and punctuation in names
	listing columns to retrieve, Listing the columns to retrieve
	qualifying column names, Qualifying column names
	specifying result set column names, Specifying result-set column names
	subqueries in, Using subqueries in a SELECT list
	taking shortcuts with asterisk (*), Taking shortcuts with the asterisk
	writing expressions, Writing expressions

	subqueries in WITH clause, Subqueries in the WITH Clause
	in subquery INSERTs, Subquery Inserts
	using with UPDATE, Returning Updated Data: DB2
	window functions in, Window Function Evaluation and Placement

	sequences (Oracle), Creating a Table: Oracle
	SET clauses in UPDATE statements, Simple Updates, UPDATE FROM Clause
		comma separating multi-column updates, Simple Updates
	use of aliases, UPDATE FROM Clause

	SET DATEFORMAT command (SQL Server), CAST and SET DATEFORMAT
	SET TRANSACTION statements, Starting a Transaction: MySQL, Starting a Transaction: Oracle, Starting a Transaction: PostgreSQL
		MySQL, Starting a Transaction: MySQL
	Oracle, Starting a Transaction: Oracle
	PostgreSQL, Starting a Transaction: PostgreSQL

	SIMILAR TO predicate (PostgreSQL), Regular Expressions: PostgreSQL, Regular Expressions: PostgreSQL
		regular-expression operators, Regular Expressions: PostgreSQL

	SMALLINT type, Data Types: Binary Integer
	special registers returning datetime information in
 DB2, Datetime Functions: DB2
	SQL Server, SQL Server, Datetime Conversions: SQL Server, CAST and SET DATEFORMAT, CONVERT, CONVERT, DATENAME and DATEPART, DAY, MONTH, and YEAR, Datetime Functions: SQL Server, Returning Deleted Data: SQL Server, Double-FROM, Returning Inserted Data: SQL Server, Vendor-specific outer join syntax, Functions for Nulls: SQL Server, Numeric Conversions: SQL Server, Pivoting: SQL Server, Unpivoting: SQL Server, Regular Expressions: SQL Server, Searching a String, Extracting a Substring, Finding the Length of a String, Concatenating Strings, Subqueries in the WITH Clause, Creating a Table: SQL Server, Modifying a Table: SQL Server, Starting a Transaction: SQL Server, Ending a Transaction, Aborting a Transaction, Returning Updated Data: SQL Server
		COMMIT TRANSACTION statement, Ending a Transaction
	creating tables, Creating a Table: SQL Server
	datetime conversions, Datetime Conversions: SQL Server, CAST and SET DATEFORMAT, CONVERT, DATENAME and DATEPART, DAY, MONTH, and YEAR
		using CAST and SET DATEFORMAT, CAST and SET DATEFORMAT
	using CONVERT function, CONVERT
	using DATENAME and DATEPART functions, DATENAME and DATEPART
	using DAY, MONTH, and YEAR functions, DAY, MONTH, and YEAR

	datetime functions, Datetime Functions: SQL Server
	datetime styles, CONVERT
	datetime types, SQL Server
	DELETE statements, double-FROM clauses in, Double-FROM
	functions for nulls, Functions for Nulls: SQL Server
	modifying tables, Modifying a Table: SQL Server
	numeric type conversions, Numeric Conversions: SQL Server
	outer join syntax, Vendor-specific outer join syntax
	pivoting in, Pivoting: SQL Server
	regular expressions, Regular Expressions: SQL Server
	returning deleted data, Returning Deleted Data: SQL Server
	returning inserted data, Returning Inserted Data: SQL Server
	returning updated data, Returning Updated Data: SQL Server
	ROLLBACK TRANSACTION statement, Aborting a Transaction
	searching strings with CHARINDEX function, Searching a String
	starting transactions, Starting a Transaction: SQL Server
	string concatenation with + operator, Concatenating Strings
	string length, finding with LEN function, Finding the Length of a String
	SUBSTRING function, Extracting a Substring
	unpivoting in, Unpivoting: SQL Server
	WITH-clause queries, naming result columns, Subqueries in the WITH Clause

	START statements in PostgreSQL, Starting a Transaction: PostgreSQL
	START TRANSACTION statements (MySQL), Starting a Transaction: MySQL
	START WITH clause, CONNECT BY queries, Core CONNECT BY Syntax
	storage engines in MySQL, Creating a Table: MySQL
	string functions, String Functions–Changing the Case of a String, Searching a String, Replacing Text in a String, Extracting a Substring, Finding the Length of a String, Concatenating Strings, Trimming Unwanted Characters, Changing the Case of a String
		changing case of a string, Changing the Case of a String
	concatenating strings, Concatenating Strings
	extracting a substring, Extracting a Substring
	finding length of a string, Finding the Length of a String
	replacing text in a string, Replacing Text in a String
	searching a string, Searching a String
	trimming unwanted characters, Trimming Unwanted Characters

	strings, Double-FROM, Text Literals, Text Literals
		conversions, Double-FROM (see conversions, data type)
	delimiting with single quotation marks, Text Literals
	embedding single quote in, Text Literals

	STRPOS function (PostgreSQL), Searching a String
	subqueries, Deleting from Views and Subqueries, Subquery Inserts, Using subqueries in a SELECT list, Subqueries in the FROM clause, The ORDER BY Clause, Subqueries, Subqueries in the FROM Clause, Subqueries in the WITH Clause, New Values from a Subquery, Updating Views and Subqueries
		correlated, sorting results of, The ORDER BY Clause
	deleting from, Deleting from Views and Subqueries
	in FROM clauses, Subqueries in the FROM Clause
	inserts into, Subquery Inserts
	new values from, in UPDATE operations, New Values from a Subquery
	in SELECT lists, Using subqueries in a SELECT list, Subqueries in the FROM clause
	updating, Updating Views and Subqueries
	in WITH clauses, Subqueries in the WITH Clause

	SUBSTR function, Extracting a Substring
	SUBSTRING function, Regular Expressions: PostgreSQL, Regular Expressions: PostgreSQL, Extracting a Substring
		in PostgreSQL, Extracting a Substring
	PostgreSQL SIMILAR TO regular-expression operators
 in, Regular Expressions: PostgreSQL
	supporting Posix-style regular expressions in
 PostgreSQL, Regular Expressions: PostgreSQL

	summarizing, Grouping and Summarizing (see grouping and summarizing)
	SYSDATE function (Oracle), Getting Current Date and Time
	SYS_CONNECT_BY_PATH function, Supporting Functions and Operators

 T
	table names, Dealing with case and punctuation in names, Qualifying column names, Table aliases in the FROM clause
		case and punctuation in, Dealing with case and punctuation in names
	qualifying column names by, Qualifying column names
	specifying name or alias in SELECT FROM
 clause, Table aliases in the FROM clause

	tables, Joining Tables, Tables, Creating–Tables, Modifying, Creating a Table: DB2, Creating a Table: MySQL, Creating a Table: Oracle, Creating a Table: PostgreSQL, Creating a Table: SQL Server, Tables, Dropping, Tables, Modifying–Tables, Dropping, Modifying a Table: DB2, Modifying a Table: MySQL, Modifying a Table: Oracle, Modifying a Table: PostgreSQL, Modifying a Table: SQL Server
		creating, Tables, Creating–Tables, Modifying, Creating a Table: DB2, Creating a Table: MySQL, Creating a Table: Oracle, Creating a Table: PostgreSQL, Creating a Table: SQL Server
		in DB2, Creating a Table: DB2
	in MySQL, Creating a Table: MySQL
	in Oracle, Creating a Table: Oracle
	in PostgreSQL, Creating a Table: PostgreSQL
	in SQL Server, Creating a Table: SQL Server

	dropping, Tables, Dropping
	joining, Joining Tables (see joins)
	modifying, Tables, Modifying–Tables, Dropping, Modifying a Table: DB2, Modifying a Table: MySQL, Modifying a Table: Oracle, Modifying a Table: PostgreSQL, Modifying a Table: SQL Server
		in DB2, Modifying a Table: DB2
	in MySQL, Modifying a Table: MySQL
	in Oracle, Modifying a Table: Oracle
	in PostgreSQL, Modifying a Table: PostgreSQL
	in SQL Server, Modifying a Table: SQL Server

	tablespaces, Indexes, Creating, Creating a Table: Oracle, Creating a Table: PostgreSQL
		assigning tables to, in Oracle, Creating a Table: Oracle
	indexes on, Indexes, Creating
	support in PostgreSQL, Creating a Table: PostgreSQL

	text literals, Text Literals
	TEXT type (MySQL), Data Types: Character String
	TEXTCAT function (PostgreSQL), Concatenating Strings
	time zone offsets (SQL Server functions), Datetime Functions: SQL Server
	TIMEOFDAY function (PostgreSQL), Getting Current Date and Time
	timestamps, Datetime Conversions: DB2, Unix Timestamp Support, Datetime Conversions: PostgreSQL
		converting to and from, Datetime Conversions: DB2
	converting to and from character representation in
 PostgreSQL, Datetime Conversions: PostgreSQL
	Unix timestamp support, Unix Timestamp Support

	TIMEZONE function (PostgreSQL), Other PostgreSQL Datetime Functions
	TO_DAYS function (MySQL), TO_DAYS and FROM_DAYS
	transactions, Getting Current Date and Time, Transaction Management–Aborting to a Savepoint, Autocommit Mode, Starting a Transaction: DB2, Starting a Transaction: MySQL, Starting a Transaction: Oracle, Starting a Transaction: PostgreSQL, Starting a Transaction: SQL Server, Ending a Transaction, Aborting a Transaction, Aborting to a Savepoint
		aborting, Aborting a Transaction
	aborting to a savepoint, Aborting to a Savepoint
	autocommit mode, Autocommit Mode
	date and time for, in PostgreSQL functions, Getting Current Date and Time
	ending, Ending a Transaction
	starting in DB2, Starting a Transaction: DB2
	starting in MySQL, Starting a Transaction: MySQL
	starting in Oracle, Starting a Transaction: Oracle
	starting in PostgreSQL, Starting a Transaction: PostgreSQL
	starting in SQL Server, Starting a Transaction: SQL Server

	TRIM function, Trimming Unwanted Characters
	TRUNCATE TABLE statements, Deleting All Rows
	truncation, Rounding and Truncating, Rounding and Truncating
		DATE values in Oracle, Rounding and Truncating
	datetime values in PostgreSQL, Rounding and Truncating

 U
	UCASE and LCASE functions (DB2), Changing the Case of a String
	union queries, Union Queries, UNION and UNION ALL, UNION ALL, ORDER BY in Union Queries, Names and Data Types in a Union, Order of Evaluation, EXCEPT (or MINUS) and EXCEPT ALL, INTERSECT and INTERSECT ALL
		EXCEPT (or MINUS) and EXCEPT ALL, EXCEPT (or MINUS) and EXCEPT ALL
	INTERSECT and INTERSECT ALL, INTERSECT and INTERSECT ALL
	names and data types in, Names and Data Types in a Union
	ORDER BY clauses, ORDER BY in Union Queries
	order of evaluation with multiple UNION
 operations, Order of Evaluation
	UNION ALL operator, UNION ALL
	UNION operator, UNION and UNION ALL

	UNIQUE constraints, Creating a Table: DB2, Modifying a Table: MySQL
		in DB2, Creating a Table: DB2
	dropping in MySQL, Modifying a Table: MySQL

	Universal Transverse Mercator (UTM) grid
 coordinates, Example Data
	Unix timestamps, MySQL, Datetime Conversions: MySQL, Unix Timestamp Support, Datetime Conversions: PostgreSQL
		conversion functions for, Unix Timestamp Support
	conversions in MySQL, Datetime Conversions: MySQL
	conversions in PostgreSQL, Datetime Conversions: PostgreSQL
	TIMESTAMP type in MySQL, MySQL

	unpivoting, Unpivoting: The Concept, Unpivoting: Oracle, Unpivoting: SQL Server
		explanation of the concept, Unpivoting: The Concept
	in Oracle, Unpivoting: Oracle
	in SQL Server, Unpivoting: SQL Server

	UPDATE statements, Subqueries in the FROM Clause, Updating Data–Returning Updated Data: SQL Server, Simple Updates, New Values from a Subquery, Updating Views and Subqueries, UPDATE FROM Clause, Returning Updated Data: DB2, Returning Updated Data: Oracle, Returning Updated Data: SQL Server
		FROM clause, UPDATE FROM Clause
	new values generated from subquery, New Values from a Subquery
	returning updated data in DB2, Returning Updated Data: DB2
	returning updated data in Oracle, Returning Updated Data: Oracle
	returning updated data in SQL Server, Returning Updated Data: SQL Server
	running against views and subqueries, Updating Views and Subqueries
	simple updates, Simple Updates
	subqueries in FROM clauses, Subqueries in the FROM Clause

	updates, using MERGE statements, Merging Data
	UPPER and LOWER functions, Changing the Case of a String
	USING clauses in joins, The USING Clause
	UTC (Coordinated Universal Time), Datetime Conversions: PostgreSQL

 V
	VALUES clauses, Single-Row Inserts, Multirow Inserts, Generating tables through the VALUES clause
		in INSERT statements, Single-Row Inserts, Multirow Inserts
		multirow inserts, Multirow Inserts

	in SELECT FROM statements, generating
 tables with, Generating tables through the VALUES clause

	VARCHAR type, Data Types: Character String
	VARCHAR2 type (Oracle), Data Types: Character String, Numeric Conversions: Oracle
		converting between NUMBER and, Numeric Conversions: Oracle

	VARIABLE command (SQL*Plus), Returning Inserted Values: Oracle
	views, Deleting from Views and Subqueries, Insert Targets, Updating Views and Subqueries
		deleting from, Deleting from Views and Subqueries
	inserts into, Insert Targets
	updating, Updating Views and Subqueries

 W
	web page for this book, How to Contact Us
	WHEN clauses, CASE Expressions: Simple, Conditional multitable insert
		in CASE expressions, CASE Expressions: Simple
	in conditional multitable
 inserts, Conditional multitable insert

	WHERE clauses, WHERE Clauses with CONNECT BY, Inner Joins, Merging Data, The WHERE Clause, Simple Updates
		conditions on UPDATEs and INSERTs in MERGE
 statements, Merging Data
	in CONNECT BY queries, WHERE Clauses with CONNECT BY
	in join queries, Inner Joins
	in SELECT FROM statements, The WHERE Clause
	in UPDATE statements, predicates
 identifying rows to update, Simple Updates

	window functions, Analytic Functions, Window Functions–Window Function Evaluation and Placement, Defining a Summary Window, Ordering and Ranking Within a Window, Comparing Values Across Rows, Summarizing over a Moving Window, Window Function Evaluation and Placement
		comparing values across rows, Comparing Values Across Rows
	defining summary window, Defining a Summary Window
	evaluation and placement, Window Function Evaluation and Placement
	ordering and ranking within a window, Ordering and Ranking Within a Window
	summarizing over moving window of rows, Summarizing over a Moving Window

	WITH clauses, CONNECT BY Queries, Recursive WITH, Recursive WITH, Subqueries in the WITH Clause
		in CONNECT BY queries, CONNECT BY Queries
	recursive, Recursive WITH, Recursive WITH
		further information on, Recursive WITH

	subqueries in, Subqueries in the WITH Clause

	WITH CUBE clause (SQL Server), CUBE, Related Functions
	WITH MARK clauses, BEGIN TRAN statements (SQL
 Server), Starting a Transaction: SQL Server
	WITH ROLLUP clause, using with GROUP BY, ROLLUP
	WITHIN GROUP keywords, Listing the Detail Values
		using with LISTAGG function, Listing the Detail Values

	WORK, Ending a Transaction, Aborting a Transaction
		in COMMIT statements, Ending a Transaction
	in ROLLBACK statements, Aborting a Transaction

 Y
	YEAR function (SQL Server), DAY, MONTH, and YEAR

 About the Author
Jonathan Gennick is an SQL aficionado who writes extensively on the SQL language and other database topics. He is the author of several books, and also a number of articles in Oracle Magazine. He is currently a book editor focusing on database titles, primarily involving Oracle and SQL Server.

SQL Pocket Guide

Jonathan Gennick

Editor
Julie Steele

Copyright © 2010 Jonathan Gennick

O’Reilly books may be purchased for educational, business, or
 sales promotional use. Online editions are also available for most
 titles (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or
 corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly
 logo are registered trademarks of O’Reilly Media, Inc. The
 Pocket Guide series designations, SQL
 Pocket Guide, the image of a chameleon, and related trade
 dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of
 a trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-04-01T07:45:41-07:00

OEBPS/httpatomoreillycomsourceoreillyimages713879.png
[N

doisward <<py>>

fuwnp

Tond

pr<cwyd>>

dois <<g'yd>> 1L u_sw._ﬁ“,.w”wu
aweu <<pytd>> [,_w,_siévvv
n (and~o1 vado

. prunD<<y>>

o

bupsea

Bugiou

adiy . auoz

avoyd 0 wnep

aweu [0 awey
p<ci>> peayi>>
Jaumo Jeydn

*0

funo>

adhy
aweu

prisased <oy>>
p<opt>>

un" Ao

OEBPS/orm_front_cover.jpg
Pocket Guide

O REILLY® Jonathan Gennick

OEBPS/oreilly_large.png.jpg

OEBPS/ad_files/strata_ebook_ad.jpg
Change the world with data.
We'll show you how.
strataconf.com

OREILLY"

Strata

CONFERENCE
Data Makes a Difference

Sep 25-27, 2013
Boston, MA

% CONFERENCE

i

L Bl| HApboorP

" . l #WORLD
i Oct 28 - 30, 2013

New York, NY

B P,

CONFERENCE
Making Data Work

Nov 11-13, 2013
London, England
A

O'REILLY

Spreading the knowledge of innovators.

