

Full-Stack React Projects
Second Edition

Learn MERN stack development by building modern web
apps using MongoDB, Express, React, and Node.js

Shama Hoque

BIRMINGHAM - MUMBAI

Full-Stack React Projects
Second Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Acquisition Editor: Clint Rodricks
Content Development Editor: Aamir Ahmed
Senior Editor: Hayden Edwards
Technical Editor: Deepesh Patel
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Joshua Misquitta

First published: May 2018
Second edition: April 2020

Production reference: 1160420

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83921-541-4

www.packt.com

http://www.packt.com

To my parents, for setting examples of perseverance and relentless dedication.

-Shama Hoque

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Shama Hoque has more than 9 years of experience as a software developer and
mentor, with a master's in software engineering from Carnegie Mellon University.

From Java programming to full-stack development with JavaScript, the applications
she has worked on include national Olympiad registration websites, universally
accessible widgets, video conferencing apps, and 3D medical reconstruction software.

Currently, she makes web-based prototypes for R&D start-ups in California, while
training aspiring software engineers and teaching web development to CS
undergrads in Bangladesh.

About the reviewers
Kirill Ezhemenskii is an experienced software engineer, frontend and mobile
developer, solution architect, and the CTO of a healthcare company. He is also a
functional programming advocate; an expert in the React stack, GraphQL, and
TypeScript; and a React Native mentor.

Carlos Santana Roldán is a senior web developer with more than 12 years of
experience. Currently, he is working as a senior React developer at MindBody Inc. He
is the founder of Dev Education, one of the most popular developer communities in
Latin America, training people in web technologies such as React, Node.js, GraphQL,
and JavaScript in general.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Getting Started with MERN
Chapter 1: Unleashing React Applications with MERN 8

What is new in the second edition? 9
Book structure 9

Getting started with MERN 10
Building MERN applications from the ground up 10
Developing web applications with MERN 10
Advancing to complex MERN applications 10
Going forward with MERN 11

Getting the most out of this book 11
The MERN stack 13

Node 13
Express 14
MongoDB 15
React 16

Relevance of MERN 16
Consistency across the technology stack 17
Takes less time to learn, develop, deploy, and extend 17
Widely adopted in the industry 17
Community support and growth 17

Range of MERN applications 18
MERN applications developed in this book 18

Social media platform 19
Web-based classroom application 20
Online marketplace 21
Expense tracking application 22
Media streaming application 23
VR game for the web 24

Summary 25

Chapter 2: Preparing the Development Environment 26
Selecting development tools 26

Workspace options 27
Local and cloud development 27

IDE or text editors 27
Chrome Developer Tools 28
Git 28

Installation 28

Table of Contents

[ii]

Remote Git hosting services 29
Setting up MERN stack technologies 29

MongoDB 29
Installation 30
Running the mongo shell 30

Node.js 30
Installation 31
Node version management with nvm 31

Yarn package manager 31
Modules for MERN 32

Key modules 32
devDependency modules 32

Checking your development setup 34
Initializing package.json and installing Node.js modules 35
Configuring Babel, Webpack, and Nodemon 36

Babel 37
Webpack 37

Client-side Webpack configuration for development 38
Server-side Webpack configuration 40
Client-side Webpack configuration for production 41

Nodemon 42
Frontend views with React 42
Server with Express and Node 44

Express app 44
Bundling React app during development 44
Serving static files from the dist folder 45
Rendering templates at the root 45

Connecting the server to MongoDB 46
Run scripts 47
Developing and debugging in real time 48

Summary 48

Section 2: Building MERN from the Ground Up
Chapter 3: Building a Backend with MongoDB, Express, and Node 51

Overview of the skeleton application 52
Feature breakdown 52
Defining the backend components 52

User model 53
API endpoints for user CRUD 53
Auth with JSON Web Tokens 54

How JWT works 54
Setting up the skeleton backend 56

Folder and file structure 56
Initializing the project 57

Adding package.json 57
Development dependencies 58

Babel 58

Table of Contents

[iii]

Webpack 59
Nodemon 59

Config variables 59
Running scripts 60

Preparing the server 60
Configuring Express 60
Starting the server 62
Setting up Mongoose and connecting to MongoDB 63
Serving an HTML template at a root URL 64

Implementing the user model 65
User schema definition 66

Name 66
Email 66
Created and updated timestamps 67
Hashed password and salt 67

Password for auth 67
Handling the password string as a virtual field 68
Encryption and authentication 68
Password field validation 70

Mongoose error handling 70
Adding user CRUD APIs 72

User routes 73
User controller 74
Creating a new user 75
Listing all users 76
Loading a user by ID to read, update, or delete 76

Loading 77
Reading 77
Updating 78
Deleting 79

Integrating user auth and protected routes 80
Auth routes 80
Auth controller 81
Sign-in 82
Signout 83
Protecting routes with express-jwt 84

Protecting user routes 84
Requiring sign-in 85
Authorizing signed in users 85
Auth error handling for express-jwt 86

Checking the standalone backend 86
Creating a new user 87
Fetching the user list 88
Trying to fetch a single user 89
Signing in 90
Fetching a single user successfully 91

Summary 92

Table of Contents

[iv]

Chapter 4: Adding a React Frontend to Complete MERN 93
Defining the skeleton application frontend 94

Folder and file structure 95
Setting up for React development 96

Configuring Babel and Webpack 97
Babel 97
Webpack 98
Loading Webpack middleware for development 98

Loading bundled frontend code 100
Serving static files with Express 100
Updating the template to load a bundled script 100

Adding React dependencies 101
React 101
React Router 101
Material-UI 102

Rendering a home page view 102
Entry point at main.js 103
Root React component 103

Customizing the Material-UI theme 104
Wrapping the root component with ThemeProvider and BrowserRouter 105
Marking the root component as hot-exported 106

Adding a home route to MainRouter 106
The Home component 107

Imports 108
Style declarations 108
Component definition 110

Bundling image assets 111
Running and opening in the browser 111

Integrating backend APIs 112
Fetch for user CRUD 112

Creating a user 112
Listing users 113
Reading a user profile 113
Updating a user's data 114
Deleting a user 115

Fetch for the auth API 116
Sign-in 116
Sign-out 117

Adding auth in the frontend 117
Managing auth state 118

Saving credentials 118
Retrieving credentials 119
Deleting credentials 119

The PrivateRoute component 120
Completing the User frontend 121

The Users component 122
The Signup component 125

Table of Contents

[v]

The Signin component 129
The Profile component 131
The EditProfile component 135
The DeleteUser component 137

Validating props with PropTypes 140
The Menu component 140

Implementing basic server-side rendering 143
Modules for server-side rendering 144
Generating CSS and markup 144
Sending a template with markup and CSS 145
Updating template.js 146
Updating App.js 146
Hydrate instead of render 147

Summary 147

Chapter 5: Growing the Skeleton into a Social Media Application 149
Introducing MERN Social 150
Updating the user profile 153

Adding an about description 153
Uploading a profile photo 154

Updating the user model to store a photo in MongoDB 155
Uploading a photo from the edit form 155

File input with Material-UI 156
Form submission with the file attached 157

Processing a request containing a file upload 158
Retrieving a profile photo 160

Profile photo URL 160
Showing a photo in a view 161

Following users in MERN Social 162
Following and unfollowing 162

Updating the user model 162
Updating the userByID controller method 163
Adding APIs to follow and unfollow 163
Accessing the follow and unfollow APIs in views 166
Follow and unfollow buttons 167

The FollowProfileButton component 167
Updating the Profile component 168

Listing followings and followers 170
Making a FollowGrid component 171

Finding people to follow 172
Fetching users not followed 172
The FindPeople component 174

Posting on MERN Social 176
Mongoose schema model for Post 178
The Newsfeed component 179
Listing posts 181

Listing posts in Newsfeed 182
Newsfeed API for posts 182

Table of Contents

[vi]

Fetching Newsfeed posts in the view 183
Listing posts by user in Profile 186

API for posts by a user 186
Fetching user posts in the view 187

Creating a new post 189
Creating the post API 189
Retrieving a post's photo 190
Fetching the create post API in the view 191
Making the NewPost component 192

The Post component 193
Layout 193

Header 194
Content 194
Actions 195
Comments 195

Deleting a post 196
Interacting with Posts 197

Likes 198
The Like API 198
The Unlike API 199
Checking if a post has been liked and counting likes 200
Handling like clicks 201

Comments 202
Adding a comment 203

The Comment API 203
Writing something in the view 204

Listing comments 206
Deleting a comment 207

The Uncomment API 207
Removing a comment from the view 208

Comment count update 209
Summary 210

Section 3: Developing Web Applications with MERN
Chapter 6: Building a Web-Based Classroom Application 212

Introducing MERN Classroom 213
Updating the user with an educator role 215

Adding a role to the user model 215
Updating the EditProfile view 216
Rendering an option to teach 218

Adding courses to the classroom 219
Defining a Course model 219
Creating a new course 221

The create course API 221
Fetching the create API in the view 223
The NewCourse component 223

Listing courses by educator 227
The list course API 227

Table of Contents

[vii]

Fetching the list API in the view 228
The MyCourses component 229

Display a course 231
A read course API 231
The Course component 233

Updating courses with lessons 236
Storing lessons 236
Adding new lessons 237

Adding a lesson API 237
The NewLesson component 239
Displaying lessons 243

Editing a course 244
Updating the course API 244
The EditCourse component 245
Updating lessons 249

Editing lesson details 249
Moving the lessons to rearrange the order 250
Deleting a lesson 251

Deleting a course 252
The delete course API 252
The DeleteCourse component 253

Publishing courses 254
Implementing the publish option 254

Publish button states 254
Confirm to publish 255

Listing published courses 257
The published courses API 258
The Courses component 259

Enrolling on courses 261
Defining an Enrollment model 261
The create Enrollment API 262
The Enroll component 265
The Enrolled Course view 266

The read enrollment API 267
The Enrollment component 269

Tracking progress and enrollment stats 272
Completing lessons 273

Lessons completed API 273
Completed lessons from the view 274

Listing all enrollments for a user 277
The list of enrollments API 277
The Enrollments component 278

Enrollment stats 279
The enrollment stats API 279
Displaying enrollment stats for a published course 280

Summary 282

Chapter 7: Exercising MERN Skills with an Online Marketplace 284

Table of Contents

[viii]

Introducing the MERN Marketplace app 285
Allowing users to be sellers 287

Updating the user model 287
Updating the Edit Profile view 288
Updating the menu 290

Adding shops to the marketplace 290
Defining a Shop model 291
Creating a new shop 292

The create shop API 292
Fetching the create API in the view 295
The NewShop component 295

Listing shops 298
Listing all shops 298

The shops list API 299
Fetch all shops for the view 299
The Shops component 300

Listing shops by owner 302
The shops by owner API 302
Fetch all shops owned by a user for the view 303
The MyShops component 304

Displaying a shop 305
The read a shop API 306
The Shop component 307

Editing a shop 309
The edit shop API 309
The EditShop component 311

Deleting a shop 312
The delete shop API 312
The DeleteShop component 313

Adding products to shops 314
Defining a Product model 315
Creating a new product 317

The create product API 317
The NewProduct component 319

Listing products 320
Listing by shop 320

The products by shop API 321
Products component for buyers 322
MyProducts component for shop owners 324

Listing product suggestions 326
Latest products 326
Related products 327
The Suggestions component 329

Displaying a product 330
Read a product API 331
Product component 331

Editing and deleting a product 334
Edit 334
Delete 335

Table of Contents

[ix]

Searching for products with name and category 336
The categories API 336
The search products API 337

Fetch search results for the view 338
The Search component 339
The Categories component 341

Summary 342

Chapter 8: Extending the Marketplace for Orders and Payments 343
Introducing cart, payments, and orders in the MERN
Marketplace 344
Implementing a shopping cart 345

Adding to the cart 345
Cart icon in the menu 347
The cart view 348

The CartItems component 349
Retrieving cart details 350
Modifying quantity 352
Removing items 353
Showing the total price 354
Option to check out 354

Using Stripe for payments 355
Stripe-connected account for each seller 356

Updating the user model 356
Button to connect with Stripe 357
The StripeConnect component 358
The stripe auth update API 360

Stripe Card Elements for checkout 362
Stripe Customer for recording card details 363

Updating the user model 363
Updating the user controller 363

Creating a new Stripe Customer 364
Updating an existing Stripe Customer 365

Creating a charge for each product that's processed 365
Integrating the checkout process 367

Initializing checkout details 368
Customer information 368
Delivery address 369

Placing an order 370
Using Stripe Card Elements 370
The CardElement component 371
Adding a button to place an order 372
Empty cart 373
Redirecting to the order view 373

Creating a new order 374
Defining an Order model 374

The Order schema 374
The CartItem schema 376

Table of Contents

[x]

Create order API 376
Decrease product stock quantity 378
Create controller method 379

Listing orders by shop 379
The list by shop API 380
The ShopOrders component 381

List orders 382
The ProductOrderEdit component 384

Handling actions to cancel a product order 386
Handling the action to process charge for a product 387
Handling the action to update the status of a product 388

APIs for products ordered 389
Get status values 389
Update order status 390
Cancel product order 391
Process charge for a product 393

Viewing single-order details 394
Summary 396

Chapter 9: Adding Real-Time Bidding Capabilities to the
Marketplace 397

Introducing real-time bidding in the MERN Marketplace 398
Adding auctions to the marketplace 400

Defining an Auction model 400
Creating a new auction 402

The create auction API 403
Fetching the create API in the view 405
The NewAuction component 405

Listing auctions 408
The open Auctions API 409
The Auctions by bidder API 410
The Auctions by seller API 411
The Auctions component 412

Editing and deleting auctions 415
Updating the list view 416
Edit and delete auction APIs 416

Displaying the auction view 418
The read auction API 419
The Auction component 420
Adding the Timer component 422

Implementing real-time bidding with Socket.IO 425
Integrating Socket.IO 425
Placing bids 428

Adding a form to enter a bid 429
Receiving a bid on the server 430

Displaying the changing bidding history 431
Updating the view state with a new bid 432
Rendering the bidding history 432

Table of Contents

[xi]

Summary 434

Section 4: Advancing to Complex MERN Applications
Chapter 10: Integrating Data Visualization with an Expense
Tracking Application 436

Introducing MERN Expense Tracker 437
Adding expense records 438

Defining an Expense model 439
Creating a new expense record 441

The create expense API 441
The NewExpense component 442

Listing expenses 445
The expenses by user API 446
The Expenses component 447

Searching by date range 449
Rendering expenses 451

Modifying an expense record 452
Rendering the edit form and delete option 453
Editing and deleting an expense in the backend 455

Visualizing expense data over time 458
Summarizing recent expenses 458

Previewing expenses in the current month 459
The current month preview API 459
Rendering the preview of current expenses 461

Tracking current expenses by category 463
The current expenses by category API 464
Rendering an overview of expenses per category 466

Displaying expense data charts 469
A month's expenses in a scatter plot 469

The scatter plot data API 470
The MonthlyScatter component 472

Total expenses per month in a year 474
The yearly expenses API 474
The YearlyBar component 476

Average expenses per category in a pie chart 478
The average expenses by category API 479
The CategoryPie component 480

Summary 482

Chapter 11: Building a Media Streaming Application 483
Introducing MERN Mediastream 484
Uploading and storing media 486

Defining a Media model 486
Using MongoDB GridFS to store large files 487
Creating a new media post 489

The create media API 489
The NewMedia component 491

Retrieving and streaming media 494

Table of Contents

[xii]

The video API 495
Using a React media player to render the video 498

Listing media 499
The MediaList component 500
Listing popular media 501
Listing media by users 502

Displaying, updating, and deleting media 504
Displaying media 504

The read media API 504
The Media component 506

Updating media details 509
The media update API 509
The media edit form 511

Deleting media 513
The delete media API 513
The DeleteMedia component 514

Summary 515

Chapter 12: Customizing the Media Player and Improving SEO 516
Adding a custom media player to MERN Mediastream 517

The play media page 519
The component structure 519

Listing related media 520
The related media list API 521
The RelatedMedia component 523

The PlayMedia component 524
Customizing the media player 527

Updating the Media component 528
Initializing the media player 528
Custom media controls 532

Play, pause, and replay 532
Play next 533
Loop when a video ends 533
Volume control 535
Progress control 536
Fullscreen 539
Played duration 540

Autoplaying related media 542
Toggling autoplay 542
Handling autoplay across components 543
Updating the state when a video ends in MediaPlayer 545

Server-side rendering with data 546
Adding a route configuration file 547
Updating SSR code for the Express server 548

Using route configuration to load data 548
Isomorphic-fetch 549

Absolute URLs 549

Table of Contents

[xiii]

Injecting data into the React app 550
Applying server-injected data to client code 551

Passing data props to PlayMedia from MainRouter 551
Rendering received data in PlayMedia 552

Checking the implementation of SSR with data 552
Testing in Chrome 552

Loading a page with JavaScript enabled 553
Disabling JavaScript from settings 553
PlayMedia view with JavaScript blocked 553

Summary 555

Chapter 13: Developing a Web-Based VR Game 556
Introducing the MERN VR Game 557

Game features 557
Getting started with React 360 558

Setting up a React 360 project 558
Key concepts for developing the VR game 561

Equirectangular panoramic images 561
3D position – coordinates and transforms 562

3D coordinate system 562
Transforming 3D objects 563

React 360 components 565
Core components 565

View 565
Text 566

Components for the 3D VR experience 566
Entity 566
VrButton 568

The React 360 API 568
Environment 568
Native modules 569

AudioModule 569
Location 570

StyleSheet 571
VrHeadModel 572
Loading assets 572

React 360 input events 573
Defining game details 574

Game data structure 574
Details of VR objects 575

Static data versus dynamic data 576
Building the game view in React 360 577

Updating client.js and mounting to Location 578
Defining styles with StyleSheet 579
World background 580
Adding 3D VR objects 581
Interacting with VR objects 582

Rotating a VR object 583
Animation with requestAnimationFrame 583

Table of Contents

[xiv]

Clicking on the 3D objects 585
Collecting the correct object on click 586

Game completed state 589
Bundling for production and integration with MERN 591

Bundling React 360 files 592
Integrating with a MERN application 592

Adding the React 360 production files 593
Updating references in index.html 593
Trying out the integration 594

Summary 595

Chapter 14: Making the VR Game Dynamic using MERN 596
Introducing the dynamic MERN VR Game application 597
Defining a Game model 598

Exploring the game schema 599
Specifying the VR object schema 600
Validating array length in the game schema 602

Implementing game CRUD APIs 603
Creating a new game 603
Listing all games 606
Listing games by the maker 607
Loading a game 608
Editing a game 610
Deleting a game 613

Adding a form for creating and editing games 614
Making a new game 615

Updating the menu 615
The NewGame component 615

Editing the game 617
The EditGame component 618

Implementing the GameForm component 620
Inputting simple game details 621
Modifying arrays of VR objects 623

Iterating and rendering the object details form 623
Adding a new object to the array 625
Removing an object from the array 625
Handling the object detail change 626

The VRObjectForm component 627
Adding the game list views 630

Rendering lists of games 631
The GameDetail component 633

Playing the VR game 636
Implementing the API to render the VR game view 636

Updating the game code in React 360 637
Getting the game ID from a link 638
Fetching the game data with the load game API 639
Bundling and integrating the updated code 639

Table of Contents

[xv]

Summary 640

Section 5: Going Forward with MERN
Chapter 15: Following Best Practices and Developing MERN
Further 642

Separation of concerns with modularity 643
Revisiting the application folder structure 643

Server-side code 643
Client-side code 644

Adding CSS styles 645
External style sheets 645
Inline styles 646
JavaScript Style Sheets (JSS) 646

Selective server-side rendering with data 647
When is server-side rendering with data relevant? 648

Using stateful versus pure functional components 648
Stateful React components with ES6 classes or Hooks 649
Stateless React components as pure functions 649
Designing the UI with stateful components and stateless functional
components 650

Using Redux or Flux 651
Enhancing security 651

JSON web tokens – client-side or server-side storage 652
Securing password storage 652

Writing test code 653
Testing tools for full-stack JavaScript projects 654

Static analysis with ESLint 654
End-to-end testing with Cypress 654
Comprehensive testing with Jest 655

Adding a test to the MERN Social application 655
Installing the packages 656
Defining the script to run tests 656
Adding a tests folder 656
Adding the test 657
Generating a snapshot of the correct Post view 658
Running and checking the test 659

Optimizing the bundle size 660
Code splitting 661

Dynamic import() 662
Extending the applications 663

Extending the server code 664
Adding a model 664
Implementing the APIs 664

Adding controllers 664
Adding routes 664

Extending the client code 665

Table of Contents

[xvi]

Adding the API fetch methods 665
Adding components 665
Loading new components 665

Summary 666

Other Books You May Enjoy 668

Index 671

Preface
This book explores the development of full-stack JavaScript web applications by
combining the power of React with industry-tested server-side technologies, such as
Node.js, Express, and MongoDB. The JavaScript landscape has been growing rapidly
for some time now. With an abundance of options and resources available in relation
to full-stack JavaScript web applications, it is easy to get lost when you need to choose
from these frequently changing entities, learn about them, and make them work
together to build your own web applications. In an attempt to address this pain point,
this book adopts a practical approach to help you set up and build a diverse range of
working applications using the popular MERN stack.

Who this book is for
This book is for JavaScript developers who may have worked with React but have
minimal experience with full-stack development involving Node.js, Express, and
MongoDB.

What this book covers
Chapter 1, Unleashing React Applications with MERN, introduces the MERN stack
technologies and the applications that will be developed in this book. We will discuss
developing web applications with React, Node.js, Express, and MongoDB.

Chapter 2, Preparing the Development Environment, helps you to set up the MERN
stack technologies for development. We will explore essential development tools;
install Node.js, MongoDB, Express, React, and any other required libraries; and then
run code to check the setup.

Chapter 3, Building a Backend with MongoDB, Express, and Node, implements the
backend of a skeleton MERN application. We will build a standalone server-side
application with MongoDB, Express, and Node.js that stores user details and has
APIs for user authentication and CRUD operations.

Preface

[2]

Chapter 4, Adding a React Frontend to Complete MERN, completes the MERN skeleton
application by integrating a React frontend. We will implement a working frontend
with React views for interacting with the user CRUD operations and auth APIs on the
server.

Chapter 5, Growing the Skeleton into a Social Media Application, builds a social media
application by extending the skeleton application. We will explore the capabilities of
the MERN stack by implementing social media features, such as post sharing, liking,
commenting, following friends, and an aggregated newsfeed.

Chapter 6, Building a Web-Based Classroom Application, focuses on building a simple
online classroom application by extending the MERN stack skeleton application. This
classroom application will support multiple user roles, the addition of course content
and lessons, student enrollments, progress tracking, and course enrollment statistics.

Chapter 7, Exercising MERN Skills with an Online Marketplace, utilizes the MERN stack
technologies to develop basic features in an online marketplace application. We will
implement buying-and selling-related features with support for seller accounts,
product listings, and product search by category.

Chapter 8, Extending the Marketplace for Orders and Payments, focuses on extending the
online marketplace we built in the previous chapter by implementing capabilities for
buyers to add products to a shopping cart, checkout, and place orders, and for sellers
to manage these orders and have payments processed from the marketplace
application. We will also integrate Stripe to collect and process payments.

Chapter 9, Adding Real-Time Bidding Capabilities to the Marketplace, focuses on teaching
you how to use the MERN stack technologies, along with Socket.IO, to easily
integrate real-time behavior in a full-stack application. We will do this
by incorporating an auctioning feature with real-time bidding capabilities in the
MERN marketplace application.

Chapter 10, Integrating Data Visualization with an Expense Tracking Application, focuses
on using MERN stack technologies along with Victory—a charting library for
React—to easily integrate data visualization features in a full-stack application. We
will extend the MERN skeleton application to build an expense tracking application
that will incorporate data processing and visualization features for expense data
recorded by a user over time.

Preface

[3]

Chapter 11, Building a Media Streaming Application, focuses on extending the MERN
skeleton application to build a media uploading and streaming application using
MongoDB GridFS. We will start by building a basic media streaming application,
allowing registered users to upload video files that will be stored on MongoDB and
streamed back so that viewers can play each video in a simple React media player.

Chapter 12, Customizing the Media Player and Improving SEO, upgrades the media
viewing capabilities of our media application with a custom media player and
autoplay media list. We will implement customized controls on the default React
media player, add a playlist that can be autoplayed, and improve SEO for the media
details by adding selective server-side rendering with data for just the media detail
view.

Chapter 13, Developing a Web-Based VR Game, uses React 360 to develop a three-
dimensional virtual reality (VR)-infused game for the web. We will explore the three-
dimensional and VR capabilities of React 360 and build a simple web-based VR game.

Chapter 14, Making the VR Game Dynamic Using MERN, is where you will build a
dynamic VR game application by extending the MERN skeleton application and
integrating React 360. We will implement a game data model that allows users to
create their own VR games and incorporate the dynamic game data with the game
developed using React 360.

Chapter 15, Following Best Practices and Developing MERN Further, reflects on the
lessons learned in previous chapters and suggests improvements for further MERN-
based application development. We will expand on some of the best practices already
applied, such as modularity in the app structure, other practices that should be
applied, such as writing test code, and possible improvements, such as optimizing
bundle size.

To get the most out of this book
This book assumes that you have familiarity with basic web-based technologies,
working knowledge of programming constructs in JavaScript, and a general idea of
how React applications work. As you go through the book, you will uncover how
these concepts come together when building fully-fledged web applications with
React 16.13.1, Node.js 13.12.0, Express 4.17.1, and MongoDB 4.2.5.

In order to maximize your learning experience while reading through the chapters, it
is recommended that you run the associated application code in parallel, maintaining
the specified package versions and using the relevant instructions provided in each
chapter.

Preface

[4]

If you are using the digital version of this book, we advise you to type the code
yourself or access the code via the GitHub repository (link available in the next
section). Doing so will help you avoid any potential errors related to the copying
and pasting of code.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edi
tion. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as
another disk in your system."

A block of code is set as follows:

addItem(item, cb) {
 let cart = []
 if (typeof window !== "undefined") {
 if (localStorage.getItem('cart')) {
 cart = JSON.parse(localStorage.getItem('cart'))
 }
 cart.push({
 product: item,
 quantity: 1,
 shop: item.shop._id
 })
 localStorage.setItem('cart', JSON.stringify(cart))
 cb()
 }
}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

<Grid container spacing={24}>
 <Grid item xs={6} sm={6}>
 <CartItems checkout={checkout}
 setCheckout={showCheckout}/>
 </Grid>
 {checkout &&
 <Grid item xs={6} sm={6}>
 <Checkout/>
 </Grid>}
</Grid>

Any command-line input or output is written as follows:

yarn add --dev @babel/preset-react

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Select System info from the Administration panel."

Preface

[6]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Getting Started with MERN

In this part, we get an introduction to MERN and an overview of its different
components. Additionally, you will develop an understanding of how to configure
your development environment correctly, before you start developing full-fledged
web applications with these technologies.

This section comprises the following chapters:

Chapter 1, Unleashing React Applications with MERN
Chapter 2, Preparing the Development Environment

1
Unleashing React

Applications with MERN
React may have opened up new frontiers for frontend web development and changed
the way we program JavaScript user interfaces, but we still need a solid backend to
build a complete web application. While there are myriad options when selecting
backend technologies, the benefits and appeal of using a full JavaScript stack are
undeniable, especially when there are robust and widely adopted backend
technologies such as Node, Express, and MongoDB. Combining the potential of React
with these industry-tested, server-side technologies creates a diverse array of
possibilities when developing real-world web applications. This book guides you
through Setting up MERN (short for MongoDB, Express.js, React, and Node.js) -
based web development, to building real-world web applications of varying
complexities.

Before diving into the development of these web applications, we are going to answer
the following questions in this chapter, so you can use this book effectively to acquire
full-stack development skills, and also understand the context behind choosing the
MERN stack to build your applications:

What is new in the second edition?
How is this book organized to help master MERN?
What is the MERN stack?
Why is MERN relevant today?
When is MERN a good fit for developing web apps?

Unleashing React Applications with MERN Chapter 1

[9]

What is new in the second edition?
MERN stack technologies along with the whole full-stack development ecosystem are
continuously growing and improving with increased adoption and usage in the
industry. In this edition, we take these new developments into account and update all
the applications and corresponding code bases from the first edition.

We use the latest versions and conventions of each technology, library, and module
needed for both development-related setup and feature implementations.
Additionally, we highlight the use of new features from these technology upgrades
such as React Hooks, and JavaScript features such as async/await.

In order to showcase even more possibilities with the MERN stack, we updated the
existing marketplace application to add a more advanced feature such as real-time
bidding. We also add two new projects, a web-based classroom application and an
expense tracking application with data visualization features.

To better understand the content and concepts covered throughout the book, we
expand on explanations and provide leads to the latest resources that may help you
get a deeper grasp and improve your learning experience.

Besides covering the latest updates to MERN technologies and providing elaborate
explanations, the concepts and projects in this book are organized to help you learn
from easy to advanced topics with the flexibility to start at any project of your
choosing. In the next section, we will discuss the structure of the book and how you
can utilize it based on your preference and experience level.

Book structure
This book aims to help JavaScript developers who have zero-to-some experience with
the MERN stack to set up and start developing web applications of varying
complexity. It includes guidelines for building out and running the different
applications supplemented with code snippets and explanations of key concepts.

The book is organized into five parts, progressing from basic to advanced topics,
taking you on a journey of building MERN from the ground up, then using it to
develop different applications with simple to complex features, while demonstrating
how to extend the capabilities of the MERN stack based on an application's
requirements.

Unleashing React Applications with MERN Chapter 1

[10]

Getting started with MERN
Chapter 1, Unleashing React Applications with MERN, and Chapter 2, Preparing the
Development Environment, set the context for developing web applications in a MERN
stack and guide you through setting up your development environment.

Building MERN applications from the ground
up
Chapter 3, Building a Backend with MongoDB, Express, and Node, and Chapter
4, Adding a React Frontend to Complete MERN, show you how to bring the MERN stack
technologies together to form a skeleton web application with minimal and basic
features. Chapter 5, Growing the Skeleton into a Social Media Application, demonstrates
how this skeletal MERN application can act as a base and be easily extended to build
a simple social media platform. This ability to extend and customize the base
application will be employed with the other applications developed in the rest of this
book.

Developing web applications with MERN
In this part, you will become more familiar with the core attributes of a MERN stack
web application by building out two real-world applications—a web-based classroom
application in Chapter 6, Building a Web-Based Classroom Application, and a feature-
rich online marketplace in Chapter 7, Exercising MERN Skills with an Online
Marketplace, Chapter 8, Extending the Marketplace for Orders and
Payments, and Chapter 9, Adding Real-Time Bidding Capabilities to the Marketplace.

Advancing to complex MERN applications
Chapter 10, Integrating Data Visualization with an Expense Tracking Application, Chapter
11, Building a Media Streaming Application, Chapter 12, Customizing the Media Player
and Improving SEO, Chapter 13, Developing a Web-Based VR Game, and Chapter
14, Making the VR Game Dynamic Using MERN, demonstrate how this stack can be
used to develop applications with more complex and immersive features, such as
data visualization, media streaming, and virtual reality (VR) using React 360.

Unleashing React Applications with MERN Chapter 1

[11]

Going forward with MERN
Finally, Chapter 15, Following Best Practices and Developing MERN Further, wraps up
the preceding chapters and applications developed by expanding on the best
practices to follow to make successful MERN applications, suggesting improvements
and further developments.

You may choose to use the book out of the prescribed order based on your experience
level and preference. A developer who is new to MERN can follow the path set out in
the book. For a more seasoned JavaScript developer, the chapters in the Building
MERN from the Ground up section would be a good place to start setting up the base
application, then pick any of the six applications to build and extend.

This structure is set out with the intention to enable hands-on learning for developers
from varying backgrounds. In order to maximize this intent, we recommend a
practical approach for following along with the material in the book, as described in
more detail in the next section.

Getting the most out of this book
The content in this book is practical-oriented and covers the implementation steps,
code, and concepts relevant to building each MERN application. However, most of
the code explanations will refer to specific snippets from files that may contain more
lines of code, making up the complete and working application code.

Put simply, it is highly recommended that, rather than attempting to just read
through the chapters, you should run the relevant code in parallel, and browse
through the application features while following the explanations in the book.

Chapters that discuss code implementations will point to the GitHub repositories
containing the complete code with instructions on how to run the code. You can pull
the code, install it, and then run it before reading through the chapter:

Unleashing React Applications with MERN Chapter 1

[12]

You should consider the recommended steps outlined here to follow the
implementations in this book:

Before diving into the implementation details discussed in the chapter, pull
the code from the relevant GitHub repository.
Follow the instructions with the code to install and run the application.
Browse the features of the running application while reading the feature
descriptions in the relevant chapter.
With the code running in development mode and also open in the editor,
refer to the steps and explanations in the book to get a deeper
understanding of the implementations.

This book aims to provide a quick onboarding with the working code for each
application. You can experiment with, improve, and extend this code as desired. For
an active learning experience, you are encouraged to refactor and modify the code
while following the book. In some examples, the book chooses verbose code over
succinct and cleaner code because it is easier to reason about for newcomers. In some
other implementations, the book sticks with more widely used and traditional
conventions over modern and upcoming JavaScript conventions. This is done to
minimize disparity when you refer to online resources and documentation while
researching the discussed technologies and concepts on your own. These instances,
where the code in the book can be updated, serve as good opportunities to explore
and grow skills beyond what is covered in the book.

Unleashing React Applications with MERN Chapter 1

[13]

You should now have an overall idea of what to expect in this book and how you can
utilize its content and structure to the fullest as we move on to discussing the specifics
of the MERN stack and start uncovering its potential.

The MERN stack
MongoDB, Express, React, and Node are all used in tandem to build web applications
and make up the MERN stack. In this lineup, Node and Express bind the web
backend together, MongoDB serves as the NoSQL database, and React makes the
frontend that the user sees and interacts with.

All four of these technologies are free, open source, cross-platform, and JavaScript-
based, with extensive community and industry support. Each technology has a
unique set of attributes, which, when integrated together, make a simple but effective
full JavaScript stack for web development.

Since these are independent technologies, it is also important to recognize these as
moving parts in your project that need to be configured, combined, and extended
with additional parts to meet the specific requirements of your project. Even if you
are not an expert in all the technologies in this stack, you need familiarity with each
and an understanding of how these can work together.

Node
Node was developed as a JavaScript runtime environment built on Chrome's V8
JavaScript engine. Node made it possible to start using JavaScript on the server side
to build a variety of tools and applications beyond previous use cases that were
limited to being within a browser.

Node has an event-driven architecture capable of asynchronous, non-blocking I/O
(short for Input/Output). Its unique non-blocking I/O model eliminates the waiting
approach to serving requests. This allows you to build scalable and lightweight real-
time web applications that can efficiently handle many requests.

Node's default package management system, the Node Package Manager or npm,
comes bundled with the Node installation. npm gives you access to hundreds of
thousands of reusable Node packages built by developers all over the world and
boasts that it is currently the largest ecosystem of open source libraries in the world.

Unleashing React Applications with MERN Chapter 1

[14]

Learn more about Node at https://nodejs.org/en/, and browse
through the available npm registry at https://www.npmjs.com/.

However, npm isn't the only package management system at your disposal. Yarn is a
newer package manager developed by Facebook and has been gaining popularity in
recent years. It can be used as an alternative to npm, with access to all the same
modules from the npm registry and more features that are not yet available with npm.

Learn more about Yarn and its features at https:/ ​/​yarnpkg. ​com.

Node will enable us to build and run complete full-stack JavaScript applications.
However, to implement an extensible server-side application with web application-
specific features such as API routing, we will use the Express module on top of Node.

Express
Express is a simple server-side web framework for building web applications with
Node. It complements Node with a layer of rudimentary web application features
that provide HTTP utility methods and middleware functionality.

In general terms, middleware functionality in any application
enables different components to be added on to work together. In
the specific context of server-side web application frameworks,
middleware functions have access to the HTTP request-response
pipeline, which means access to request-response objects and also
the next middleware functions in the web application's request-
response cycle.

In any web application developed with Node, Express can be used as an API routing
and middleware web framework. It is possible to insert almost any compatible
middleware of your choice into the request handling chain, in almost any order,
making Express very flexible to work with.

Find out what is possible with Express.js at expressjs.com.

https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://yarnpkg.com
https://yarnpkg.com
https://yarnpkg.com
https://yarnpkg.com
https://yarnpkg.com
https://yarnpkg.com
https://yarnpkg.com
http://expressjs.com/

Unleashing React Applications with MERN Chapter 1

[15]

In the MERN-based applications that we will develop, Express can be used to handle
API routing on the server side, serve static files to the client, restrict access to
resources with authentication integration, implement error handling, and, essentially,
add on any middleware package that will extend the web application functionality as
required.

A crucial functionality in any complete web application is the data storage system.
The Express module does not define requirements or put restrictions on integrating
databases with a Node-Express web application. Therefore, this gives you the
flexibility to choose any database option, be it a relational database such
as PostgreSQL or a NoSQL database such as MongoDB.

MongoDB
MongoDB is a top choice when deciding on a NoSQL database for any application. It
is a document-oriented database that stores data in flexible, JSON-like documents.
This means that fields can vary from document to document and data models can
evolve over time in response to changing application requirements.

Applications that place a high priority on availability and scalability benefit from
MongoDB's distributed architecture features. It comes with built-in support for high
availability, horizontal scaling using sharding, and multi-data center scalability across
geographic distributions.

MongoDB has an expressive query language, enabling ad hoc queries, indexing for
fast lookups, and real-time aggregation that provides powerful ways to access and
analyze data while maintaining performance even when data size grows
exponentially.

Explore MongoDB's features and services at
https://www.mongodb.com/.

Choosing MongoDB as the database for a Node and Express web application will
make a fully JavaScript-based and standalone server-side application. This will leave
you with the option to integrate a client-side interface that may be built with a
compatible frontend library such as React to complete the full-stack application.

https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/

Unleashing React Applications with MERN Chapter 1

[16]

React
React is a declarative and component-based JavaScript library for building user
interfaces. Its declarative and modular nature makes it easy for developers to create
and maintain reusable, interactive, and complex user interfaces.

Large applications that display a lot of changing data can be fast and responsive if
built with React, as it takes care of efficiently updating and rendering just the right
user interface components when specific data changes. React does this efficient
rendering with its notable implementation of a virtual DOM, setting React apart from
other web user interface libraries that handle page updates with expensive
manipulations directly in the browser's DOM.

Developing user interfaces using React also forces frontend programmers to write
well-reasoned, modular code that is reusable and easier to debug, test, and extend.

Take a look at the resources on React at https://reactjs.org/.

Since all four technologies are JavaScript-based, these are inherently optimized for
integration. However, how these are actually put together in practice to form the
MERN stack can vary based on application requirements and developer preferences,
making MERN customizable and extensible to specific needs. Whether this stack is a
relevant option for your next full-stack web project not only depends on how well it
can meet your requirements, but also on how it is currently faring in the industry and
where these technologies are headed.

Relevance of MERN
JavaScript has come a long way since its inception, and it is ever-growing. MERN
stack technologies have challenged the status quo and broken new ground for what is
possible with JavaScript. But when it comes to developing real-world applications
that need to be sustainable, is it a worthy choice? Some of the reasons that make a
strong case for choosing MERN for your next web application are briefly outlined in
the following sections.

https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/

Unleashing React Applications with MERN Chapter 1

[17]

Consistency across the technology stack
As JavaScript is used throughout, developers don't need to learn and change gears
frequently to work with very different technologies. This also enables better
communication and understanding across teams working on different parts of the
web application.

Takes less time to learn, develop, deploy, and
extend
Consistency across the stack also makes it easy to learn and work with MERN,
reducing the overhead of adopting a new stack and the time to develop a working
product. Once the working base of a MERN application is set up and a workflow
established, it takes less effort to replicate, further develop, and extend any
application.

Widely adopted in the industry
Organizations of all sizes have been adopting the technologies in this stack based on
their needs because they can build applications faster, handle highly diverse
requirements, and manage applications more efficiently at scale.

Community support and growth
Developer communities surrounding the very popular MERN stack technologies are
quite diverse and are growing on a regular basis. With lots of people continuously
using, fixing, updating, and willing to help grow these technologies, the support
system will remain strong for the foreseeable future. These technologies will continue
to be maintained, and resources are very likely to be available in terms of
documentation, add-on libraries, and technical support.

The ease and benefits of using these technologies are already widely recognized.
Because of the high-profile companies that continue adoption and adaptation, and the
growing number of people contributing to the code bases, providing support, and
creating resources, the technologies in the MERN stack will continue to be relevant
for a long time to come.

Unleashing React Applications with MERN Chapter 1

[18]

In order to determine whether this widely adopted stack will meet the specific
requirements of your project, you can explore the extent of feature implementations
possible with this group of technologies. In the next section, we will highlight a few
aspects of this stack and also several features of the book's example applications that
demonstrate the diverse array of options that are available with these technologies.

Range of MERN applications
Given the unique features attributed to each technology, along with the ease of
extending functionalities of this stack by integrating other technologies, the range of
applications that can be built with this stack is actually quite vast.

These days, web applications are, by default, expected to be rich client apps that are
immersive, interactive, and don't fall short on performance or availability. The
grouping of MERN strengths makes it perfect for developing web applications that
meet these very aspects and demands.

Moreover, novel and upcoming attributes of some of these technologies, such as low-
level operation manipulation with Node, large file streaming capabilities with
MongoDB GridFS, and VR features on the web using React 360, make it possible to
build even more complex and unique applications with MERN.

It may seem reasonable to pick specific features in the MERN technologies and argue
why they don't work for certain applications. However, given the versatile nature of
how a MERN stack can come together and be extended, these concerns can be
addressed in MERN on a case-by-case basis. In this book, we will demonstrate how to
make such considerations when faced with specific requirements and demands in the
application being built.

MERN applications developed in this book
To demonstrate the breadth of possibilities with MERN and how you can easily start
building a web application with varying features, this book will showcase everyday-
use web applications alongside complex and rare web experiences.

Unleashing React Applications with MERN Chapter 1

[19]

Social media platform
For the first MERN application, we will build a basic social media application
inspired by Twitter and Facebook, as follows:

This social media platform will implement simple features such as post sharing,
liking and commenting, following friends, and an aggregated news feed.

Unleashing React Applications with MERN Chapter 1

[20]

Web-based classroom application
Remote or online learning is a common practice these days, with both instructors and
students utilizing internet connectivity to teach and learn over online platforms. We
will implement a simple web-based classroom application using MERN, which will
look like the following screenshot:

This classroom will have features that allow instructors to add courses with lessons,
while students can enroll in these courses and track their progress.

Unleashing React Applications with MERN Chapter 1

[21]

Online marketplace
All sorts of e-commerce web applications are abundant on the internet, and they will
not go out of style anytime soon. Using MERN, we will build a comprehensive online
marketplace application with basic-to-advanced e-commerce features. The following
screenshot shows the completed home page of the marketplace with product listings:

The features of this marketplace application will cover aspects such as support for
seller accounts, product listings, a shopping cart for customers, payment processing,
order management, and real-time bidding capabilities.

Unleashing React Applications with MERN Chapter 1

[22]

Expense tracking application
Adding data visualization to any data-intensive application can boost its value
considerably. We will extend MERN with an expense-tracking application to
demonstrate how you can incorporate data visualization features, including graphs
and charts, in a full-stack MERN application. The following screenshot shows the
completed home page of the expense tracker application with an overview of the
user's current expenses:

Unleashing React Applications with MERN Chapter 1

[23]

With this application, users will be able to keep track of their day-to-day expenses.
The application will add the expenses incurred over time. Then, the application will
extract data patterns to give the users a visual representation of how their expense
habits fare as time progresses.

Media streaming application
To test out some advanced MERN capabilities, a more immersive application, such as
a media streaming application, is the next pick. The following screenshot shows the
home page view containing a list of popular videos added to this platform, which is
inspired by features from Netflix and YouTube:

In this media streaming application, we will implement content uploading and
viewing capabilities with a media content upload feature for content providers, and
real-time content streaming for viewers.

Unleashing React Applications with MERN Chapter 1

[24]

VR game for the web
With frameworks such as React 360, which is built on top of React, it is possible to
apply web VR and 3D capabilities to React's user interfaces. We will explore how to
create rare web experiences with React 360 in MERN by putting together a basic VR
game application for the web, as shown in the following screenshot:

Users will be able to play the VR games and also make their own games with this
web-based application. Each game will have animated VR objects placed across a 360
world, and players will have to find and collect these objects to complete the game.

Following along with the implementations for these diverse applications in the book
will teach you how to combine, extend, and use MERN stack technologies to build
full-stack web applications, and also reveal a diverse range of options for your own
full-stack projects.

Unleashing React Applications with MERN Chapter 1

[25]

Summary
In this chapter, we discovered the context for developing web applications in the
MERN stack and how this book will help you to develop with this stack. MERN stack
projects integrate MongoDB, Express, React, and Node to build web applications.
Each of the technologies in this stack has made relevant strides in the world of web
development. These are widely adopted and continue to improve with the support of
growing communities. It is possible to develop MERN applications with diverse
requirements, ranging from everyday-use applications to more complex web
experiences. The practical-oriented approach in this book can be used to grow MERN
skills from basic to advanced, or for diving right into building more complex
applications.

In the next chapter, we will start gearing up for MERN application development by
learning how to set up the development environment with each MERN stack
technology, and also write code for a MERN starter application to ensure the setup on
your system is correct.

2
Preparing the Development

Environment
Before building applications with the MERN stack, we first need to prepare the
development environment with each technology, and also with tools to aid
development and debugging. Working with this stack requires that you make
different technologies and tools work well together, and given the many options and
resources available on this topic, it can seem like a daunting task to figure out how it
all comes together. This chapter guides you through the workspace options, the
essential development tools, how to set up the MERN technologies in your
workspace, and how to check this setup with actual code.

We are going to cover the following topics:

Selecting development tools
Setting up MERN stack technologies
Checking your development setup

Selecting development tools
There are plenty of options available when it comes to selecting basic development
tools such as text editors or IDEs, version control software, and even the development
workspace itself. In this section, we will go over the options and recommendations
that are relevant to web development with the MERN stack so you can make
informed decisions when selecting these tools based on individual preferences.

Preparing the Development Environment Chapter 2

[27]

Workspace options
Developing on a local machine is a common practice among programmers, but with
the advent of good cloud and remote development services, such as AWS Cloud9
(https:/​/​aws.​amazon. ​com/ ​cloud9/ ​?​origin= ​c9io) and Visual Studio Code's Remote
Development extension (https:/ ​/​code. ​visualstudio. ​com/ ​docs/ ​remote), you can set
up your local workspace with MERN technologies (and this will be assumed to be
the case for the rest of the book), but you can also choose to run and develop the code
in cloud services that are equipped for Node development.

Local and cloud development
You can choose to use both types of workspaces to enjoy the benefits of working
locally without worrying about bandwidth/internet issues and to work remotely
when you don't physically have your favorite local machine. To do this, you can use
Git to version control your code, store your latest code on remote Git hosting services
such as GitHub or BitBucket, and then share the same code across all your
workspaces. On your workspaces, you can compose the code in an IDE of your choice
from the many available options, some of which are discussed next.

IDE or text editors
Most cloud development environments will come integrated with source code
editors, but for your local workspace, you can pick any based on your preference as a
programmer and then customize it for MERN development. For example, the
following popular options can each be customized as required:

Visual Studio Code (https://code.visualstudio.com/): A feature-rich
source code editor by Microsoft with extensive support for modern web
application development workflow, including support for MERN stack
technologies
Atom (https://atom.io/): A free, open source text editor for GitHub that
has many packages relevant to the MERN stack from other developers
SublimeText (https://www.sublimetext.com/): A proprietary, cross-
platform text editor that also has many packages relevant to the MERN
stack, along with support for JavaScript development
WebStorm (https://www.jetbrains.com/webstorm/): A full-fledged
JavaScript IDE by JetBrains, with support for MERN stack development

https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://aws.amazon.com/cloud9/?origin=c9io
https://code.visualstudio.com/docs/remote
https://code.visualstudio.com/docs/remote
https://code.visualstudio.com/docs/remote
https://code.visualstudio.com/docs/remote
https://code.visualstudio.com/docs/remote
https://code.visualstudio.com/docs/remote
https://code.visualstudio.com/docs/remote
https://code.visualstudio.com/docs/remote
https://code.visualstudio.com/docs/remote
https://code.visualstudio.com/docs/remote
https://code.visualstudio.com/docs/remote
https://code.visualstudio.com/docs/remote
https://code.visualstudio.com/docs/remote
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/

Preparing the Development Environment Chapter 2

[28]

There are other editors at your disposal, but besides focusing on what each has to
offer, it is important that you choose one that is right for you, enables a productive
workflow, and also integrates well with the other tools necessary for web application
development.

Chrome Developer Tools
Loading, viewing, and debugging the frontend is a very crucial part of the web
development process. Chrome DevTools (https:/ ​/​developers. ​google. ​com/ ​web/
tools/​chrome-​devtools), which is a part of the Chrome browser, has many great
features that allow debugging, testing, and experimenting with the frontend code and
the look, feel, responsiveness, and performance of the UI. Additionally, the React
Developer Tools extension is available as a Chrome plugin, and it adds React
debugging tools to Chrome DevTools.

Utilizing tools like this in your development workflow can help you to understand
the code better and to build your applications effectively. Similarly, integrating code
version control with a tool such as Git can increase your productivity and efficiency
as a developer.

Git
Any development workflow is incomplete without a version control system that
enables tracking code changes, code sharing, and collaboration. Over the years, Git
has become the leading version control system for many developers and is the most
widely used distributed source code management tool. For code development in this
book, Git will help primarily to track progress as we go through the steps to build
each application.

Installation
To start using Git, first install it on your local machine or cloud development
environment based on your system specifications. Instructions to download and
install the latest version of Git, along with documentation on using Git commands,
can be found at https:/ ​/ ​git- ​scm. ​com/ ​downloads.

https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads

Preparing the Development Environment Chapter 2

[29]

Remote Git hosting services
Cloud-based Git repository hosting services such as GitHub and BitBucket help share
your latest code across workspaces and deployment environments, and also to back
up your code. These services pack in a lot of useful features to help with code
management and the development workflow. To get started, you can create an
account and set up remote repositories for your code bases.

All these essential tools will help enrich your web development workflow and
increase productivity. Once you've completed the necessary setup in your workspace
according to the discussion in the next section, we'll move on and start building
MERN applications.

Setting up MERN stack technologies
MERN stack technologies are being developed and upgraded as this book is being
written, so for the work demonstrated throughout this book, we use the latest stable
versions at the time of writing. Installation guidelines for most of these technologies
are dependent on the system environment of your workspaces, so this section points
to all relevant installation resources and also acts as a guide for setting up a fully
functioning MERN stack.

MongoDB
MongoDB must be set up, running, and accessible to your development environment
before any database features are added to MERN applications. At the time of writing,
the current stable version of MongoDB is 4.2.0, and this version of the MongoDB
Community Edition is used for developing the applications in this book. The rest of
this section provides resources on how to install and run MongoDB.

Preparing the Development Environment Chapter 2

[30]

Installation
You need to install and start MongoDB on your workspace before you can use it for
development. The installation and startup process for MongoDB depends on your
workspace specifications:

Cloud development services will have their own instructions for installing
and setting up MongoDB. For example, the how-to steps for AWS Cloud9
can be found at https:/ ​/ ​docs. ​c9.​io/ ​docs/ ​setup- ​a- ​database#mongodb.
The guide for MongoDB installation on your local machine is at https:/ ​/
docs. ​mongodb. ​com/ ​manual/ ​administration/ ​install- ​community

After you have successfully installed MongoDB on your workspace and have it
running, you can interact with it using the mongo shell.

Running the mongo shell
The mongo shell is an interactive tool for MongoDB that comes as a part of the
MongoDB installation. It is a good place to start getting familiar with MongoDB
operations. Once MongoDB is installed and running, you can run the mongo shell on
the command line. In the mongo shell, you can use commands to query and update
data and perform administrative operations.

You could also skip the local installation of MongoDB and instead
deploy a MongoDB database in the cloud using MongoDB Atlas
(https:/ ​/​www. ​mongodb. ​com/ ​cloud/ ​atlas). It is a global cloud
database service that can be used to add fully managed MongoDB
databases to modern applications.

The next core component of MERN development is Node.js, which will be necessary
to complete the remaining MERN setup.

Node.js
Backend server implementation for the MERN applications relies on Node.js. At the
time of writing, 13.12.0 is the latest stable Node.js version available, and the code in
the book has also been tested with version 14.0.0 from the latest nightly builds. The
version of Node.js you choose to download will come bundled with npm as the
package manager. Depending on whether you choose npm or Yarn as the package
manager for your MERN projects, you can install Node.js with or without npm.

https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.c9.io/docs/setup-a-database#mongodb
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas

Preparing the Development Environment Chapter 2

[31]

Installation
Node.js can be installed via direct download, installers, or the Node Version
Manager:

You can install Node.js by directly downloading the source code or a pre-
built installer specific to your workspace platform. Downloads are
available at nodejs.org/en/download.
Cloud development services may come with Node.js pre-installed, as AWS
Cloud9 does, or will have specific instructions for adding and updating it.

To test if the installation was successful, you can open the command line and
run node -v to see if it correctly returns the version number.

Node version management with nvm
If you need to maintain multiple versions of Node.js and npm for different projects,
nvm is a useful command-line tool to install and manage different versions on the
same workspace. You have to install nvm separately. Instructions for setup can be
found at github.com/creationix/nvm.

With Node.js set up on your system, you can use a package manager such as npm or
Yarn to start integrating the remaining parts of the MERN stack.

Yarn package manager
Yarn is a relatively new package manager for JavaScript dependencies, and it can be
used as an alternative to npm. It is a fast, reliable, and secure dependency manager
that provides a different range of additional features, including an offline mode for
re-installation of packages without an internet connection and support for multiple
package registries, such as npmjs.com and Bower.

We will use Yarn (v1.22.4) to manage Node modules and packages for the projects in
this book. Before using Yarn, you will need to install it on your workspace. There are
a number of ways to install Yarn depending on your operating system and its
version.

To learn more about your options for installing Yarn on your
workspace, visit https:/ ​/​yarnpkg. ​com/ ​lang/ ​en/​docs/ ​install.

https://nodejs.org/en/download/
https://github.com/creationix/nvm
https://yarnpkg.com/lang/en/docs/install
https://yarnpkg.com/lang/en/docs/install
https://yarnpkg.com/lang/en/docs/install
https://yarnpkg.com/lang/en/docs/install
https://yarnpkg.com/lang/en/docs/install
https://yarnpkg.com/lang/en/docs/install
https://yarnpkg.com/lang/en/docs/install
https://yarnpkg.com/lang/en/docs/install
https://yarnpkg.com/lang/en/docs/install
https://yarnpkg.com/lang/en/docs/install
https://yarnpkg.com/lang/en/docs/install
https://yarnpkg.com/lang/en/docs/install
https://yarnpkg.com/lang/en/docs/install
https://yarnpkg.com/lang/en/docs/install
https://yarnpkg.com/lang/en/docs/install

Preparing the Development Environment Chapter 2

[32]

Once Yarn is installed, it can be used to add the other necessary modules including
Express and React.

Modules for MERN
The remaining MERN stack technologies are all available as Node.js package modules
and can be added to each project using Yarn. These include key modules, such as
React and Express, that are required to run each MERN application, and also modules
that will be necessary during development. In this section, we list and discuss these
modules, then see how to use the modules in a working project in the following
section.

Key modules
To integrate the MERN stack technologies and run your applications, we will need
the following modules:

React: To start using React, we will need two modules:
react

react-dom

Express: To use Express in your code, you will need the express module.
MongoDB: To use MongoDB directly with Node applications, you need to
add the driver, which is available as a Node module named mongodb.

These key modules will produce full-stack web applications, but we will need some
additional modules to aid in the development and generation of the application code.

devDependency modules
To maintain consistency throughout the development of our MERN applications, we
will use new JavaScript syntax from ES6 and higher versions in both client- and
server-side implementations. As a consequence, and also to aid the development
process, we will use the following additional modules to compile and bundle the
code, and also to automatically reload the server and browser app as the code is
updated during development:

Preparing the Development Environment Chapter 2

[33]

Babel modules are needed to convert ES6 and JSX to suitable JavaScript for
all browsers. The modules needed to get Babel working are as follows:

@babel/core

babel-loader

for transpiling JavaScript files with Webpack
@babel/preset-env and @babel/preset-react to
provide support for React, and the latest JavaScript feature

Webpack modules will help bundle the compiled JavaScript, both for the
client-side and the server-side code. Modules needed to get Webpack
working are as follows:

webpack.
webpack-cli to run Webpack commands.
webpack-node-externals to ignore external Node.js
module files when bundling in Webpack.
webpack-dev-middleware to serve the files emitted from
Webpack over a connected server during the development of
the code.
webpack-hot-middleware to add hot module reloading
into an existing server by connecting a browser client to a
Webpack server and receiving updates as code changes
during development.
nodemon to watch server-side changes during development,
so the server can be reloaded to put changes into effect.
react-hot-loader for faster development on the client
side. Every time a file changes in the React frontend, react-
hot-loader enables the browser app to update without re-
bundling the whole frontend code.
@hot-loader/react-dom to enable hot-reloading support
for React hooks. It essentially replaces the react-dom
package of the same version, but with additional patches to
support hot reloading.

Although react-hot-loader is meant to help the development
flow, it is safe to install this module as a regular dependency rather
than a devDependency. It automatically ensures that hot reloading
is disabled in production and the footprint is minimal.

Preparing the Development Environment Chapter 2

[34]

With the necessary MERN stack technologies and associated tools installed and ready
for use, in the next section, we will use this toolset and write code that can confirm if
your workspace is set up correctly to begin developing MERN-based web
applications.

Checking your development setup
In this section, we will go through the development workflow and write code step by
step to ensure that the environment is correctly set up to start developing and
running MERN applications.

We will generate these project files in the following folder structure to run a simple
setup project:

| mern-simplesetup/
 | -- client/
 | --- HelloWorld.js
 | --- main.js
 | -- server/
 | --- devBundle.js
 | --- server.js
 | -- .babelrc
 | -- nodemon.json
 | -- package.json
 | -- template.js
 | -- webpack.config.client.js
 | -- webpack.config.client.production.js
 | -- webpack.config.server.js

The code discussed in this section is available on GitHub in the
repository at https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Full- ​Stack-
React- ​Projects- ​Second- ​Edition/ ​tree/ ​master/ ​Chapter02/ ​mern-
simplesetup. You can clone this code and run it as you go through
the code explanations in the rest of this chapter.

We will leave the configuration files in the root folder and organize the application
code into client-side and server-side folders. The client folder will contain the
frontend code and the server folder will contain the backend code. In the rest of this
section, we will generate these files and implement both frontend and backend code
to build a working full-stack web application.

https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter02/mern-simplesetup

Preparing the Development Environment Chapter 2

[35]

Initializing package.json and installing Node.js
modules
We will begin by using Yarn to install all the required modules. It is a best practice to
add a package.json file in every project folder to maintain, document, and share the
Node.js modules being used in the MERN application. The package.json file will
contain meta-information about the application, as well as list the module
dependencies.

Perform the steps outlined in the following points to generate a package.json file,
modify it, and use it to install the modules:

yarn init: From the command line, enter your project folder and run
yarn init. You will be asked a series of questions to gather meta-
information about your project, such as name, license, and author. Then, a
package.json file will be auto generated with your answers.
dependencies: Open package.json in your editor and modify the JSON
object to add the key modules and react-hot-loader as regular
dependencies:

The file path mentioned before a code block indicates the location of
the code in the project directory. This convention has been
maintained throughout the book to provide better context and
guidance as you follow along with the code.

 mern-simplesetup/package.json:

"dependencies": {
 "@hot-loader/react-dom": "16.13.0",
 "express": "4.17.1",
 "mongodb": "3.5.5",
 "react": "16.13.1",
 "react-dom": "16.13.1",
 "react-hot-loader": "4.12.20"
 }

Preparing the Development Environment Chapter 2

[36]

devDependencies: Modify package.json further to add the following
Node modules required during development as devDependencies:

 mern-simplesetup/package.json:

"devDependencies": {
 "@babel/core": "7.9.0",
 "@babel/preset-env": "7.9.0",
 "@babel/preset-react": "7.9.4",
 "babel-loader": "8.1.0",
 "nodemon": "2.0.2",
 "webpack": "4.42.1",
 "webpack-cli": "3.3.11",
 "webpack-dev-middleware": "3.7.2",
 "webpack-hot-middleware": "2.25.0",
 "webpack-node-externals": "1.7.2"
 }

yarn: Save package.json and, from the command line, run
the yarn command to fetch and add all these modules to your project.

With all the necessary modules installed and added to the project, next we will add
configuration to compile and run the application code.

Configuring Babel, Webpack, and Nodemon
Before we start coding up the web application, we need to configure Babel, Webpack,
and Nodemon to compile, bundle, and auto-reload the changes in the code during
development.

Preparing the Development Environment Chapter 2

[37]

Babel
Create a .babelrc file in your project folder and add the following JSON with
presets and plugins specified:

mern-simplesetup/.babelrc:

{
 "presets": [
 ["@babel/preset-env",
 {
 "targets": {
 "node": "current"
 }
 }
],
 "@babel/preset-react"
],
 "plugins": [
 "react-hot-loader/babel"
]
}

In this configuration, we specify that we need Babel to transpile the latest JavaScript
syntax with support for code in a Node.js environment and also React/JSX code.
The react-hot-loader/babel plugin is required by the react-hot-loader
module to compile React components.

Webpack
We will have to configure Webpack to bundle both the client and server code and the
client code separately for production. Create webpack.config.client.js,
webpack.config.server.js, and webpack.config.client.production.js
files in your project folder. All three files will have the following code structure,
starting with imports, then the definition of the config object, and finally the export
of the defined config object:

const path = require('path')
const webpack = require('webpack')
const CURRENT_WORKING_DIR = process.cwd()

const config = { ... }

module.exports = config

Preparing the Development Environment Chapter 2

[38]

The config JSON object will differ with values specific to the client- or server-side
code, and development versus production code. In the following sections, we will
highlight the relevant properties in each configuration instance.

Alternatively, you can also generate Webpack configurations using
the interactive portal Generate Custom Webpack Configuration
at https:/ ​/ ​generatewebpackconfig. ​netlify. ​com/ ​ or using the
Webpack-cli's init command from the command line.

Client-side Webpack configuration for development
Update the config object with the following in your webpack.config.client.js
file in order to configure Webpack to bundle and hot-load React code during
development:

mern-simplesetup/webpack.config.client.js:

const config = {
 name: "browser",
 mode: "development",
 devtool: 'eval-source-map',
 entry: [
 'webpack-hot-middleware/client?reload=true',
 path.join(CURRENT_WORKING_DIR, 'client/main.js')
],
 output: {
 path: path.join(CURRENT_WORKING_DIR , '/dist'),
 filename: 'bundle.js',
 publicPath: '/dist/'
 },
 module: {
 rules: [
 {
 test: /\.jsx?$/,
 exclude: /node_modules/,
 use: ['babel-loader']
 }
]
 },
 plugins: [
 new webpack.HotModuleReplacementPlugin(),
 new webpack.NoEmitOnErrorsPlugin()
],
 resolve: {
 alias: {
 'react-dom': '@hot-loader/react-dom'

https://generatewebpackconfig.netlify.com/
https://generatewebpackconfig.netlify.com/
https://generatewebpackconfig.netlify.com/
https://generatewebpackconfig.netlify.com/
https://generatewebpackconfig.netlify.com/
https://generatewebpackconfig.netlify.com/
https://generatewebpackconfig.netlify.com/
https://generatewebpackconfig.netlify.com/
https://generatewebpackconfig.netlify.com/
https://generatewebpackconfig.netlify.com/

Preparing the Development Environment Chapter 2

[39]

 }
 }
}

The highlighted keys and values in the config object will determine how Webpack
bundles the code and where the bundled code will be placed:

mode sets process.env.NODE_ENV to the given value and tells Webpack
to use its built-in optimizations accordingly. If not set explicitly, it defaults
to a value of "production". It can also be set via the command line by
passing the value as a CLI argument.
devtool specifies how source maps are generated, if at all. Generally, a
source map provides a way of mapping code within a compressed file back
to its original position in a source file to aid debugging.
entry specifies the entry file where Webpack starts bundling, in this case
with the main.js file in the client folder.
output specifies the output path for the bundled code, in this case set to
dist/bundle.js.
publicPath allows specifying the base path for all assets in the
application.
module sets the regex rule for the file extension to be used for transpilation,
and the folders to be excluded. The transpilation tool to be used here is
babel-loader.
HotModuleReplacementPlugin enables hot module replacement for
react-hot-loader.
NoEmitOnErrorsPlugin allows skipping emitting when there are compile
errors.
We also add a Webpack alias to point react-dom references to the @hot-
loader/react-dom version.

The client-side code of the application will be loaded in the browser from the bundled
code in bundle.js.

Preparing the Development Environment Chapter 2

[40]

Webpack provides other configuration options too, which can be used as required
depending on your code and bundling specifications, as we will see next when we
explore server-side-specific bundling.

Server-side Webpack configuration
Modify the code to require nodeExternals, and update the config object with the
following code in your webpack.config.server.js file to configure Webpack for
bundling server-side code:

mern-simplesetup/webpack.config.server.js:

const nodeExternals = require('webpack-node-externals')
const config = {
 name: "server",
 entry: [path.join(CURRENT_WORKING_DIR , './server/server.js')],
 target: "node",
 output: {
 path: path.join(CURRENT_WORKING_DIR , '/dist/'),
 filename: "server.generated.js",
 publicPath: '/dist/',
 libraryTarget: "commonjs2"
 },
 externals: [nodeExternals()],
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 use: ['babel-loader']
 }
]
 }
}

The mode option is not set here explicitly but will be passed as required when
running the Webpack commands with respect to running for development or
building for production.

Webpack starts bundling from the server folder with server.js, then outputs the
bundled code in server.generated.js in the dist folder. During bundling, a
CommonJS environment will be assumed as we are specifying commonjs2
in libraryTarget, so the output will be assigned to module.exports.

Preparing the Development Environment Chapter 2

[41]

We will run the server-side code using the generated bundle in
server.generated.js.

Client-side Webpack configuration for production
To prepare the client-side code for production, update the config object with the
following code in your webpack.config.client.production.js file:

mern-simplesetup/webpack.config.client.production.js:

const config = {
 mode: "production",
 entry: [
 path.join(CURRENT_WORKING_DIR, 'client/main.js')
],
 output: {
 path: path.join(CURRENT_WORKING_DIR , '/dist'),
 filename: 'bundle.js',
 publicPath: "/dist/"
 },
 module: {
 rules: [
 {
 test: /\.jsx?$/,
 exclude: /node_modules/,
 use: [
 'babel-loader'
]
 }
]
 }
}

This will configure Webpack to bundle the React code to be used in production mode.
The configuration here is similar to the client-side configuration for development
mode, but without the hot-reloading plugin and debug configuration as these will not
be required in production.

With the bundling configurations in place, we can add configuration for running
these generated bundles automatically on code updates during development using
Nodemon.

Preparing the Development Environment Chapter 2

[42]

Nodemon
Create a nodemon.json file in your project folder and add the following
configuration:

mern-simplesetup/nodemon.json:

{
 "verbose": false,
 "watch": ["./server"],
 "exec": "webpack --mode=development --config
 webpack.config.server.js
 && node ./dist/server.generated.js"
}

This configuration will set up nodemon to watch for changes in the server files during
development, then execute compile and build commands as necessary. We can begin
writing the code for a simple full-stack web application to see these configurations in
action.

Frontend views with React
In order to start developing a frontend, first create a root template file called
template.js in the project folder, which will render the HTML with React
components:

mern-simplesetup/template.js:

export default () => {
 return `<!doctype html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>MERN Kickstart</title>
 </head>
 <body>
 <div id="root"></div>
 <script type="text/javascript" src="/dist/bundle.js">
 </script>
 </body>
 </html>`
}

Preparing the Development Environment Chapter 2

[43]

When the server receives a request to the root URL, this HTML template will be
rendered in the browser, and the div element with ID "root" will contain our React
component.

Next, create a client folder where we will add two React files, main.js, and
HelloWorld.js.

The main.js file simply renders the top-level entry React component in the div
element in the HTML document:

mern-simplesetup/client/main.js:

import React from 'react'
import { render } from 'react-dom'
import HelloWorld from './HelloWorld'

render(<HelloWorld/>, document.getElementById('root'))

In this case, the entry React component is the HelloWorld component imported from
HelloWorld.js:

mern-simplesetup/client/HelloWorld.js:

import React from 'react'
import { hot } from 'react-hot-loader'

const HelloWorld = () => {
 return (
 <div>
 <h1>Hello World!</h1>
 </div>
)
}

export default hot(module)(HelloWorld)

HelloWorld.js contains a basic HelloWorld React component, which is hot-
exported to enable hot reloading with react-hot-loader during development.

To see the React component rendered in the browser when the server receives a
request to the root URL, we need to use the Webpack and Babel setup to compile and
bundle this code, and also add server-side code that responds to the root route
request with the bundled code. We will implement this server-side code next.

Preparing the Development Environment Chapter 2

[44]

Server with Express and Node
In the project folder, create a folder called server, and add a file called
server.js that will set up the server. Then, add another file called devBundle.js,
which will help compile the React code using Webpack configurations while in
development mode. In the following sections, we will implement the Node-Express
app, which initiates client-side code bundling, starts the server, sets up the path to
serve static assets to the client, and renders the React view in a template when a GET
request is made to the root route.

Express app
In server.js, we will first add code to import the express module in order to
initialize an Express app:

mern-simplesetup/server/server.js:

import express from 'express'

const app = express()

Then we will use this Express app to build out the rest of the Node server application.

Bundling React app during development
In order to keep the development flow simple, we will initialize Webpack to compile
the client-side code when the server is run. In devBundle.js, we will set up a
compile method that takes the Express app and configures it to use the Webpack
middleware to compile, bundle, and serve code, as well as enable hot reloading in
development mode:

mern-simplesetup/server/devBundle.js:

import webpack from 'webpack'
import webpackMiddleware from 'webpack-dev-middleware'
import webpackHotMiddleware from 'webpack-hot-middleware'
import webpackConfig from './../webpack.config.client.js'

const compile = (app) => {
 if(process.env.NODE_ENV == "development"){
 const compiler = webpack(webpackConfig)
 const middleware = webpackMiddleware(compiler, {
 publicPath: webpackConfig.output.publicPath

Preparing the Development Environment Chapter 2

[45]

 })
 app.use(middleware)
 app.use(webpackHotMiddleware(compiler))
 }
}

export default {
 compile
}

We will call this compile method in server.js by adding the following lines while
in development mode:

mern-simplesetup/server/server.js:

import devBundle from './devBundle'
const app = express()
devBundle.compile(app)

These two highlighted lines are only meant for development mode and should be
commented out when building the application code for production. In development
mode, when these lines are executed, Webpack will compile and bundle the React
code to place it in dist/bundle.js.

Serving static files from the dist folder
Webpack will compile client-side code in both development and production mode,
then place the bundled files in the dist folder. To make these static files available on
requests from the client side, we will add the following code in server.js to serve
static files from the dist folder:

mern-simplesetup/server/server.js:

import path from 'path'
const CURRENT_WORKING_DIR = process.cwd()
app.use('/dist', express.static(path.join(CURRENT_WORKING_DIR,
'dist')))

This will configure the Express app to return static files from the dist folder when
the requested route starts with /dist.

Preparing the Development Environment Chapter 2

[46]

Rendering templates at the root
When the server receives a request at the root URL /, we will render template.js in
the browser. In server.js, add the following route-handling code to the Express
app to receive GET requests at /:

mern-simplesetup/server/server.js:

import template from './../template'
app.get('/', (req, res) => {
 res.status(200).send(template())
})

Finally, configure the Express app to start a server that listens on the specified port
for incoming requests:

mern-simplesetup/server/server.js:

let port = process.env.PORT || 3000
app.listen(port, function onStart(err) {
 if (err) {
 console.log(err)
 }
 console.info('Server started on port %s.', port)
})

With this code, when the server is running, it will be able to accept requests at the
root route and render the React view with the "Hello World" text in the browser. The
only part missing from this full-stack implementation is a connection to the database,
which we will add in the next section.

Connecting the server to MongoDB
To connect your Node server to MongoDB, add the following code to server.js,
and make sure you have MongoDB running in your workspace or you have the URL
of a cloud MongoDB database instance:

mern-simplesetup/server/server.js:

import { MongoClient } from 'mongodb'
const url = process.env.MONGODB_URI ||
 'mongodb://localhost:27017/mernSimpleSetup'
MongoClient.connect(url, (err, db)=>{
 console.log("Connected successfully to mongodb server")
 db.close()

Preparing the Development Environment Chapter 2

[47]

})

In this code example, MongoClient is the driver that connects to the running
MongoDB instance using its URL. It allows us to implement the database-related code
in the backend. This completes our full-stack integration for this simple web
application using the MERN setup, and finally, we can run this code to see this
application working live.

Run scripts
In order to run the application, we will update the package.json file to add the
following run scripts for development and production:

mern-simplesetup/package.json:

"scripts": {
 "development": "nodemon",
 "build": "webpack --config webpack.config.client.production.js
 && webpack --mode=production --config
 webpack.config.server.js",
 "start": "NODE_ENV=production node ./dist/server.generated.js"
}

Let's look at the code:

yarn development: This command will get Nodemon, Webpack, and the
server started for development.
yarn build: This will generate the client and server code bundles for
production mode (before running this script, make sure to remove the
devBundle.compile code from server.js).
yarn start: This command will run the bundled code in production.

You can use these commands to run the application either for debugging while you
are developing the application or when the application is ready to go live in
production.

Preparing the Development Environment Chapter 2

[48]

Developing and debugging in real time
To run the code developed so far, and to ensure that everything is working, you can
go through the following steps:

Run the application from the command line: yarn development.1.
Load in browser: Open the root URL in the browser, which is2.
http://localhost:3000 if you are using your local machine. You should
see a page with the title MERN Kickstart that just shows Hello World!.
Develop code and debug live: Change the HelloWorld.js component3.
text from "Hello World!" to just "hello". Save the changes to see the
instantaneous update in the browser, and also check the command-line
output to see that bundle.js is not re-created. Similarly, you can also see
instant updates when you change the server-side code, increasing
productivity during development.

If you have made it this far, congratulations! You are all set to start developing
exciting MERN applications.

Summary
In this chapter, we discussed development tool options and how to install MERN
technologies, and then we wrote code to check whether the development
environment is set up correctly.

We began by looking at the recommended workspace, IDE, version control software,
and browser options suitable for web development. You can select from these options
based on your preferences as a developer.

Next, we set up the MERN stack technologies by first installing MongoDB, Node, and
Yarn, and then adding the remaining required libraries using Yarn.

Before moving on to writing code to check this setup, we configured Webpack and
Babel to compile and bundle code during development, and to build production-
ready code. We learned that it is necessary to compile the ES6 and JSX code that is
used for developing a MERN application before opening the application on browsers.

Preparing the Development Environment Chapter 2

[49]

Additionally, we made the development flow efficient by including React Hot Loader
for frontend development, configuring Nodemon for backend development, and
compiling both the client and server code in one command when the server is run
during development.

In the next chapter, we will use this setup to start building a skeleton MERN
application that will function as a base for full-featured applications.

2
Building MERN from the

Ground Up
In this part, we build out a full-stack MERN application base from scratch and
demonstrate how it can be easily extended to develop the first example application.

This section comprises the following chapters:

Chapter 3, Building a Backend with MongoDB, Express, and Node
Chapter 4, Adding a React Frontend to Complete MERN
Chapter 5, Growing the Skeleton into a Social Media Application

3
Building a Backend with
MongoDB, Express, and

Node
While developing different web applications, you will find there are common tasks,
basic features, and implementation code repeated across the process. The same is true
for the MERN applications that will be developed in this book. Taking these
similarities into consideration, we will first lay the foundations for a skeleton MERN
application that can be easily modified and extended to implement a variety of
MERN applications.

In this chapter, we will cover the following topics and start with the backend
implementation of the MERN skeleton using Node, Express, and MongoDB:

Overview of the skeleton application
Backend code setup
User model with Mongoose
User CRUD API endpoints with Express
User Auth with JSON Web Tokens
Running backend code and checking APIs

Building a Backend with MongoDB, Express, and Node Chapter 3

[52]

Overview of the skeleton application
The skeleton application will encapsulate rudimentary features and a workflow that's
repeated for most MERN applications. We will build the skeleton as a basic but fully
functioning MERN web application with user create, read, update, delete (CRUD),
and authentication-authorization (auth) capabilities; this will also demonstrate how
to develop, organize, and run code for general web applications built using this
stack. The aim is to keep the skeleton as simple as possible so that it is easy to extend
and can be used as a base application for developing different MERN applications.

Feature breakdown
In the skeleton application, we will add the following use cases with user CRUD and
auth functionality implementations:

Sign up: Users can register by creating a new account using an email
address.
User list: Any visitor can see a list of all registered users.
Authentication: Registered users can sign-in and sign-out.
Protected user profile: Only registered users can view individual user
details after signing in.
Authorized user edit and delete: Only a registered and authenticated user
can edit or remove their own user account details.

With these features, we will have a simple working web application that supports
user accounts. We will start building this basic web application with the backend
implementation, then integrate a React frontend to complete the full stack.

Defining the backend components
In this chapter, we will focus on building a working backend for the skeleton
application with Node, Express, and MongoDB. The completed backend will be a
standalone server-side application that can handle HTTP requests to create a user, list
all users, and view, update, or delete a user in the database while taking user
authentication and authorization into consideration.

Building a Backend with MongoDB, Express, and Node Chapter 3

[53]

User model
The user model will define the user details to be stored in the MongoDB database,
and also handle user-related business logic such as password encryption and user
data validation. The user model for this skeletal version will be basic with support for
the following attributes:

Field name Type Description
name String Required field to store the user's name.

email String Required unique field to store the user's email and identify each account
(only one account allowed per unique email).

password String A required field for authentication. The database will store the encrypted
password and not the actual string for security purposes.

created Date Automatically generated timestamp when a new user account is created.

updated Date Automatically generated timestamp when existing user details are
updated.

When we build applications by extending this skeleton, we can add more fields as
required. But starting with these fields will be enough to identify unique user
accounts, and also for implementing user CRUD operation-related features.

API endpoints for user CRUD
To enable and handle user CRUD operations on the user database, the backend will
implement and expose API endpoints that the frontend can utilize in the views, as
follows:

Operation API route HTTP method
Create a user /api/users POST

List all users /api/users GET

Fetch a user /api/users/:userId GET

Update a user /api/users/:userId PUT

Delete a user /api/users/:userId DELETE

User sign-in /auth/signin POST

User signout (optional) /auth/signout GET

Building a Backend with MongoDB, Express, and Node Chapter 3

[54]

Some of these user CRUD operations will have protected access, which will require
the requesting client to be authenticated, authorized, or both, as defined by the
feature specifications. The last two routes in the table are for authentication and will
allow the user to sign-in and sign-out. For the applications developed in this book, we
will use the JWT mechanism to implement these authentication features, as discussed
in more detail in the next section.

Auth with JSON Web Tokens
To restrict and protect access to user API endpoints according to the skeleton features,
the backend will need to incorporate authentication and authorization mechanisms.
There are a number of options when it comes to implementing user auth for web
applications. The most common and time-tested option is the use of sessions to store
user state on both the client and server-side. But a newer approach is the use of JSON
Web Token (JWT) as a stateless authentication mechanism that does not require
storing user state on the server side.

Both approaches have strengths for relevant real-world use cases. However, for the
purpose of keeping the code simple in this book, and because it pairs well with the
MERN stack and our example applications, we will use JWT for auth
implementation.

How JWT works
Before diving into the implementation of authentication with JWT in the MERN stack,
we will look at how this mechanism generally works across a client-server
application, as outlined in the following diagram:

Building a Backend with MongoDB, Express, and Node Chapter 3

[55]

Initially, when a user signs in using their credentials, the server-side generates a JWT
signed with a secret key and a unique user detail. Then, this token is returned to the
requesting client to be saved locally either in localStorage, sessionStorage or a
cookie in the browser, essentially handing over the responsibility for maintaining
user state to the client-side.

For HTTP requests that are made following a successful sign-in, especially requests
for API endpoints that are protected and have restricted access, the client-side has to
attach this token to the request. More specifically, the JSON Web Token must be
included in the request Authorization header as a Bearer:

Authorization: Bearer <JSON Web Token>

When the server receives a request for a protected API endpoint, it checks the
Authorization header of the request for a valid JWT, then verifies the signature to
identify the sender and ensures the request data was not corrupted. If the token is
valid, the requesting client is given access to the associated operation or resource;
otherwise, an authorization error is returned.

In the skeleton application, when a user signs in with their email and password, the
backend will generate a signed JWT with the user's ID and with a secret key that's
available only on the server. This token will then be required for verification when a
user tries to view any user profiles, update their account details, or delete their user
account.

Building a Backend with MongoDB, Express, and Node Chapter 3

[56]

Implementing the user model to store and validate user data, then integrating it with
APIs to perform CRUD operations based on auth with JWT, will produce a
functioning standalone backend. In the rest of this chapter, we will look at how to
achieve this in the MERN stack and setup.

Setting up the skeleton backend
To start developing the backend part of the MERN skeleton, we will set up the project
folder, install and configure the necessary Node modules, and then prepare run
scripts to aid development and run the code. Then, we will go through the code step
by step to implement a working Express server, a user model with Mongoose, API
endpoints with Express router, and JWT-based auth to meet the specifications we
defined earlier for user-oriented features.

The code that will be discussed in this chapter, as well as the
complete skeleton application, is available on
GitHub at https://github.com/PacktPublishing/Full-Stack-Rea
ct-Projects-Second-

Edition/tree/master/Chapter03%20and%2004/mern-skeleton . The
code for just the backend is available at the same repository in the
branch named mern2-skeleton-backend. You can clone this code
and run the application as you go through the code explanations in
the rest of this chapter.

Folder and file structure
As we go through our setup and implementation in the rest of this chapter, we will
end up with the following folder structure containing files that are relevant to the
MERN skeleton backend. With these files, we will have a functioning, standalone
server-side application:

| mern_skeleton/
 | -- config/
 | --- config.js
 | -- server/
 | --- controllers/
 | ---- auth.controller.js
 | ---- user.controller.js
 | --- helpers/
 | ---- dbErrorHandler.js
 | --- models/

https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton

Building a Backend with MongoDB, Express, and Node Chapter 3

[57]

 | ---- user.model.js
 | --- routes/
 | ---- auth.routes.js
 | ---- user.routes.js
 | --- express.js
 | --- server.js
 | -- .babelrc
 | -- nodemon.json
 | -- package.json
 | -- template.js
 | -- webpack.config.server.js
 | -- yarn.lock

We will keep the configuration files in the root directory and the backend-related
code in the server folder. Within the server folder, we will divide the backend code
into modules containing models, controllers, routes, helpers, and common server-side
code. This folder structure will be further expanded in the next chapter, where we'll
complete the skeleton application by adding a React frontend.

Initializing the project
If your development environment is already set up, you can initialize the MERN
project to start developing the backend. First, we will initialize package.json in the
project folder, configure and install any development dependencies, set configuration
variables to be used in the code, and update package.json with run scripts to help
develop and run the code.

Adding package.json
We will need a package.json file to store meta information about the project, list
module dependencies with version numbers, and to define run scripts. To initialize a
package.json file in the project folder, go to the project folder from the command
line and run yarn init, then follow the instructions to add the necessary
details. With package.json created, we can proceed with setup and development
and update the file as more modules are required throughout code implementation.

Building a Backend with MongoDB, Express, and Node Chapter 3

[58]

Development dependencies
In order to begin the development process and run the backend server code, we will
configure and install Babel, Webpack, and Nodemon, as discussed in Chapter 2,
Preparing the Development Environment, and make some minor adjustments to the
backend.

Babel
Since we will be using ES6+ and the latest JS features in the backend code, we will
install and configure Babel modules to convert ES6+ into older versions of JS so that
it's compatible with the Node version being used.

First, we'll configure Babel in the .babelrc file with presets for the latest JS
features and specify the current version of Node as the target environment.

mern-skeleton/.babelrc:

{
 "presets": [
 ["@babel/preset-env",
 {
 "targets": {
 "node": "current"
 }
 }
]
]
}

Setting targets.node to current instructs Babel to compile against the current
version of Node and allows us to use expressions such as async/await in our
backend code.

Next, we need to install the Babel modules as devDependencies from the command
line:

yarn add --dev @babel/core babel-loader @babel/preset-env

Once the module installations are done, you will notice that the devDependencies
list has been updated in the package.json file.

Building a Backend with MongoDB, Express, and Node Chapter 3

[59]

Webpack
We will need Webpack to compile and bundle the server-side code using Babel. For
configuration, we can use the same webpack.config.server.js we discussed in
Chapter 2, Preparing the Development Environment.

From the command line, run the following command to install webpack, webpack-
cli, and the webpack-node-externals module:

yarn add --dev webpack webpack-cli webpack-node-externals

This will install the Webpack modules and update the package.json file.

Nodemon
To automatically restart the Node server as we update our code during development,
we will use Nodemon to monitor the server code for changes. We can use the same
installation and configuration guidelines we discussed in Chapter 2, Preparing the
Development Environment.

Before we add run scripts to start developing and running the backend code, we will
define configuration variables for values that are used across the backend
implementation.

Config variables
In the config/config.js file, we will define some server-side configuration-related
variables that will be used in the code but should not be hardcoded as a best practice,
as well as for security purposes.

mern-skeleton/config/config.js:

const config = {
 env: process.env.NODE_ENV || 'development',
 port: process.env.PORT || 3000,
 jwtSecret: process.env.JWT_SECRET || "YOUR_secret_key",
 mongoUri: process.env.MONGODB_URI ||
 process.env.MONGO_HOST ||
 'mongodb://' + (process.env.IP || 'localhost') + ':' +
 (process.env.MONGO_PORT || '27017') +
 '/mernproject'
}

export default config

Building a Backend with MongoDB, Express, and Node Chapter 3

[60]

The config variables that were defined are as follows:

env: To differentiate between development and production modes
port: To define the listening port for the server
jwtSecret: The secret key to be used to sign JWT
mongoUri: The location of the MongoDB database instance for the project

These variables will give us the flexibility to change values from a single file and use
it across the backend code. Next, we will add the run scripts, which will allow us to
run and debug the backend implementation.

Running scripts
To run the server as we develop the code for only the backend, we can start with the
yarn development script in the package.json file. For the complete skeleton
application, we will use the same run scripts we defined in Chapter 2, Preparing the
Development Environment.

mern-skeleton/package.json:

"scripts": {
 "development": "nodemon"
 }

With this script added, running yarn development in the command line from your
project folder will basically start Nodemon according to the configuration in
nodemon.json. The configuration instructs Nodemon to monitor server files for
updates and, on update, to build the files again, then restart the server so that the
changes are immediately available. We will begin by implementing a working server
with this configuration in place.

Preparing the server
In this section, we will integrate Express, Node, and MongoDB in order to run a
completely configured server before we start implementing user-specific features.

Configuring Express
To use Express, we will install it and then add and configure it in the
server/express.js file.

Building a Backend with MongoDB, Express, and Node Chapter 3

[61]

From the command line, run the following command to install the express module
and to have the package.json file automatically updated:

yarn add express

Once Express has been installed, we can import it into the express.js file, configure
it as required, and make it available to the rest of the app.

mern-skeleton/server/express.js:

import express from 'express'
const app = express()
 /*... configure express ... */
export default app

To handle HTTP requests and serve responses properly, we will use the following
modules to configure Express:

body-parser: Request body-parsing middleware to handle the
complexities of parsing streamable request objects so that we can simplify
browser-server communication by exchanging JSON in the request body.
To install the module, run yarn add body-parser from the command
line. Then, configure the Express app
with bodyParser.json() and bodyParser.urlencoded({ extended:
true }).
cookie-parser: Cookie parsing middleware to parse and set cookies in
request objects. To install the cookie-parser module, run yarn add
cookie-parser from the command line.
compression: Compression middleware that will attempt to compress
response bodies for all requests that traverse through the middleware. To
install the compression module, run yarn add compression from the
command line.
helmet: Collection of middleware functions to help secure Express apps by
setting various HTTP headers. To install the helmet module, run yarn
add helmet from the command line.
cors: Middleware to enable cross-origin resource sharing (CORS). To
install the cors module, run yarn add cors from the command line.

After the preceding modules have been installed, we can update express.js to
import these modules and configure the Express app before exporting it for use in the
rest of the server code.

Building a Backend with MongoDB, Express, and Node Chapter 3

[62]

The updated mern-skeleton/server/express.js code should be as follows:

import express from 'express'
import bodyParser from 'body-parser'
import cookieParser from 'cookie-parser'
import compress from 'compression'
import cors from 'cors'
import helmet from 'helmet'

const app = express()

app.use(bodyParser.json())
app.use(bodyParser.urlencoded({ extended: true }))
app.use(cookieParser())
app.use(compress())
app.use(helmet())
app.use(cors())

export default app

The Express app can now accept and process information from incoming HTTP
requests, for which we first need to start a server using this app.

Starting the server
With the Express app configured to accept HTTP requests, we can go ahead and use it
to implement a server that can listen for incoming requests.

In the mern-skeleton/server/server.js file, add the following code to
implement the server:

import config from './../config/config'
import app from './express'

app.listen(config.port, (err) => {
 if (err) {
 console.log(err)
 }
 console.info('Server started on port %s.', config.port)
})

Building a Backend with MongoDB, Express, and Node Chapter 3

[63]

First, we import the config variables to set the port number that the server will listen
on and then import the configured Express app to start the server. To get this code
running and continue development, we can run yarn development from the
command line. If the code has no errors, the server should start running with
Nodemon monitoring for code changes. Next, we will update this server code to
integrate the database connection.

Setting up Mongoose and connecting to MongoDB
We will be using the mongoose module to implement the user model in this skeleton,
as well as all future data models for our MERN applications. Here, we will start by
configuring Mongoose and utilizing it to define a connection with the MongoDB
database.

First, to install the mongoose module, run the following command:

yarn add mongoose

Then, update the server.js file to import the mongoose module, configure it so that
it uses native ES6 promises, and finally use it to handle the connection to the
MongoDB database for the project.

mern-skeleton/server/server.js:

import mongoose from 'mongoose'

mongoose.Promise = global.Promise
mongoose.connect(config.mongoUri, { useNewUrlParser: true,
 useCreateIndex: true,
 useUnifiedTopology: true })

mongoose.connection.on('error', () => {
 throw new Error(`unable to connect to database: ${mongoUri}`)
})

If you have the code running in development and also have MongoDB running,
saving this update should successfully restart the server, which is now integrated
with Mongoose and MongoDB.

Building a Backend with MongoDB, Express, and Node Chapter 3

[64]

Mongoose is a MongoDB object modeling tool that provides a
schema-based solution to model application data. It includes built-in
type casting, validation, query building, and business logic hooks.
Using Mongoose with this backend stack provides a higher layer
over MongoDB with more functionality, including mapping object
models to database documents. This makes it simpler and more
productive to develop with a Node and MongoDB backend. To
learn more about Mongoose, visit mongoosejs.com.

With an Express app configured, the database integrated with Mongoose, and a
listening server ready, we can add code to load an HTML view from this backend.

Serving an HTML template at a root URL
With a Node- Express- and MongoDB- enabled server now running, we can extend it
so that it serves an HTML template in response to an incoming request at the root
URL /.

In the template.js file, add a JS function that returns a simple HTML document
that will render Hello World on the browser screen.

mern-skeleton/template.js:

export default () => {
 return `<!doctype html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>MERN Skeleton</title>
 </head>
 <body>
 <div id="root">Hello World</div>
 </body>
 </html>`
}

To serve this template at the root URL, update the express.js file to import this
template and send it in the response to a GET request for the '/' route.

mern-skeleton/server/express.js:

import Template from './../template'
...

http://mongoosejs.com

Building a Backend with MongoDB, Express, and Node Chapter 3

[65]

app.get('/', (req, res) => {
 res.status(200).send(Template())
})
...

With this update, opening the root URL in a browser should show Hello World
rendered on the page. If you are running the code on your local machine, the root
URL will be http://localhost:3000/.

At this point, the backend Node- Express- and MongoDB-based server that we can
build on to add user-specific features.

Implementing the user model
We will implement the user model in the server/models/user.model.js file and
use Mongoose to define the schema with the necessary user data fields. We're doing
this so that we can add built-in validation for the fields and incorporate business logic
such as password encryption, authentication, and custom validation.

We will begin by importing the mongoose module and use it to generate a
UserSchema, which will contain the schema definition and user-related business
logic to make up the user model. This user model will be exported so that it can be
used by the rest of the backend code.

mern-skeleton/server/models/user.model.js:

import mongoose from 'mongoose'

const UserSchema = new mongoose.Schema({ … })

export default mongoose.model('User', UserSchema)

The mongoose.Schema() function takes a schema definition object as a parameter to
generate a new Mongoose schema object that will specify the properties or structure
of each document in a collection. We will discuss this schema definition for the User
collection before we add any business logic code to complete the user model.

Building a Backend with MongoDB, Express, and Node Chapter 3

[66]

User schema definition
The user schema definition object that's needed to generate the new Mongoose
schema will declare all user data fields and associated properties. The schema will
record user-related information including name, email, created-at and last-updated-at
timestamps, hashed passwords, and the associated unique password salt. We will
elaborate on these properties next, showing you how each field is defined in the user
schema code.

Name
The name field is a required field of the String type.

mern-skeleton/server/models/user.model.js:

name: {
 type: String,
 trim: true,
 required: 'Name is required'
 },

This field will store the user's name.

Email
The email field is a required field of the String type.

mern-skeleton/server/models/user.model.js:

email: {
 type: String,
 trim: true,
 unique: 'Email already exists',
 match: [/.+\@.+\..+/, 'Please fill a valid email address'],
 required: 'Email is required'
},

The value to be stored in this email field must have a valid email format and must
also be unique in the user collection.

Building a Backend with MongoDB, Express, and Node Chapter 3

[67]

Created and updated timestamps
The created and updated fields are Date values.

mern-skeleton/server/models/user.model.js:

created: {
 type: Date,
 default: Date.now
},
updated: Date,

 These Date values will be programmatically generated to record timestamps that
indicate when a user is created and user data is updated.

Hashed password and salt
The hashed_password and salt fields represent the encrypted user password that
we will use for authentication.

mern-skeleton/server/models/user.model.js:

hashed_password: {
 type: String,
 required: "Password is required"
},
salt: String

The actual password string is not stored directly in the database for security purposes
and is handled separately, as discussed in the next section.

Password for auth
The password field is very crucial for providing secure user authentication in any
application, and each user password needs to be encrypted, validated, and
authenticated securely as a part of the user model.

Building a Backend with MongoDB, Express, and Node Chapter 3

[68]

Handling the password string as a virtual field
The password string that's provided by the user is not stored directly in the user
document. Instead, it is handled as a virtual field.

mern-skeleton/server/models/user.model.js:

UserSchema
 .virtual('password')
 .set(function(password) {
 this._password = password
 this.salt = this.makeSalt()
 this.hashed_password = this.encryptPassword(password)
 })
 .get(function() {
 return this._password
 })

When the password value is received on user creation or update, it is encrypted into
a new hashed value and set to the hashed_password field, along with the
unique salt value in the salt field.

Encryption and authentication
The encryption logic and salt generation logic, which are used to generate the
hashed_password and salt values representing the password value, are defined as
UserSchema methods.

mern-skeleton/server/models/user.model.js:

UserSchema.methods = {
 authenticate: function(plainText) {
 return this.encryptPassword(plainText) === this.hashed_password
 },
 encryptPassword: function(password) {
 if (!password) return ''
 try {
 return crypto
 .createHmac('sha1', this.salt)
 .update(password)
 .digest('hex')
 } catch (err) {
 return ''
 }
 },

Building a Backend with MongoDB, Express, and Node Chapter 3

[69]

 makeSalt: function() {
 return Math.round((new Date().valueOf() * Math.random())) + ''
 }
}

The UserSchema methods can be used to provide the following functionality:

 authenticate: This method is called to verify sign-in attempts by
matching the user-provided password text with the hashed_password
stored in the database for a specific user.
encryptPassword: This method is used to generate an encrypted hash
from the plain-text password and a unique salt value using the crypto
module from Node.
makeSalt: This method generates a unique and random salt value using
the current timestamp at execution and Math.random().

The crypto module provides a range of cryptographic
functionality, including some standard cryptographic hashing
algorithms. In our code, we use the SHA1 hashing algorithm
and createHmac from crypto to generate the cryptographic
HMAC hash from the password text and salt pair.

Hashing algorithms generate the same hash for the same input
value. But to ensure two users don't end up with the same hashed
password if they happen to use the same password text, we pair
each password with a unique salt value before generating the
hashed password for each user. This will also make it difficult to
guess the hashing algorithm being used because the same user input
is seemingly generating different hashes.

These UserSchema methods are used to encrypt the user-provided password string
into a hashed_password with a randomly generated salt value. The
hashed_password and the salt are stored in the user document when the user
details are saved to the database on a create or update. Both the hashed_password
and salt values are required in order to match and authenticate a password string
provided during user sign-in using the authenticate method. We should also
ensure the user selects a strong password string to begin with, which can done by
adding custom validation to the passport field.

Building a Backend with MongoDB, Express, and Node Chapter 3

[70]

Password field validation
To add validation constraints to the actual password string that's selected by the end
user, we need to add custom validation logic and associate it with the
hashed_password field in the schema.

mern-skeleton/server/models/user.model.js:

UserSchema.path('hashed_password').validate(function(v) {
 if (this._password && this._password.length < 6) {
 this.invalidate('password', 'Password must be at least 6
characters.')
 }
 if (this.isNew && !this._password) {
 this.invalidate('password', 'Password is required')
 }
}, null)

We will keep the password validation criteria simple in our application and ensure
that a password value is provided and it has a length of at least six characters when a
new user is created or an existing password is updated. We achieve this by adding
custom validation to check the password value before Mongoose attempts to store the
hashed_password value. If validation fails, the logic will return the relevant error
message.

The defined UserSchema, along with all the password-related business logic,
completes the user model implementation. Now, we can import and use this user
model in other parts of the backend code. But before we begin using this model to
extend backend functionality, we will add a helper module so that we can parse
readable Mongoose error messages, which are thrown against schema validations.

Mongoose error handling
The validation constraints that are added to the user schema fields will throw error
messages if they're violated when user data is saved to the database. To handle these
validation errors and other errors that the database may throw when we make
queries to it, we will define a helper method that will return a relevant error message
that can be propagated in the request-response cycle as appropriate.

Building a Backend with MongoDB, Express, and Node Chapter 3

[71]

We will add the getErrorMessage helper method to the
server/helpers/dbErrorHandler.js file. This method will parse and return the
error message associated with the specific validation error or other errors that can
occur while querying MongoDB using Mongoose.

mern-skeleton/server/helpers/dbErrorHandler.js:

const getErrorMessage = (err) => {
 let message = ''
 if (err.code) {
 switch (err.code) {
 case 11000:
 case 11001:
 message = getUniqueErrorMessage(err)
 break
 default:
 message = 'Something went wrong'
 }
 } else {
 for (let errName in err.errors) {
 if (err.errors[errName].message)
 message = err.errors[errName].message
 }
 }
 return message
}

export default {getErrorMessage}

Errors that are not thrown because of a Mongoose validator violation will contain an
associated error code. In some cases, these errors need to be handled differently. For
example, errors caused due to a violation of the unique constraint will return an
error object that is different from Mongoose validation errors. The unique option is
not a validator but a convenient helper for building MongoDB unique indexes, so we
will add another getUniqueErrorMessage method to parse the unique constraint-
related error object and construct an appropriate error message.

mern-skeleton/server/helpers/dbErrorHandler.js:

const getUniqueErrorMessage = (err) => {
 let output
 try {
 let fieldName =
 err.message.substring(err.message.lastIndexOf('.$') + 2,
 err.message.lastIndexOf('_1'))
 output = fieldName.charAt(0).toUpperCase() + fieldName.slice(1)

Building a Backend with MongoDB, Express, and Node Chapter 3

[72]

+
 ' already exists'
 } catch (ex) {
 output = 'Unique field already exists'
 }
 return output
}

By using the getErrorMessage function that's exported from this helper file, we can
add meaningful error messages when handling errors that are thrown by Mongoose
operations.

With the user model completed, we can perform Mongoose operations that are
relevant to achieving user CRUD functionality with the User APIs we'll develop in
the next section.

Adding user CRUD APIs
The user API endpoints exposed by the Express app will allow the frontend to
perform CRUD operations on documents that are generated according to the user
model. To implement these working endpoints, we will write Express routes and the
corresponding controller callback functions that should be executed when HTTP
requests come in for these declared routes. In this section, we will look at how these
endpoints work without any auth restrictions.

Our user API routes will be declared using the Express router in
server/routes/user.routes.js, and then mounted on the Express app we
configured in server/express.js.

mern-skeleton/server/express.js:

import userRoutes from './routes/user.routes'
...
app.use('/', userRoutes)
...

All routes and API endpoints, such as the user-specific routes we'll declare next, need
to be mounted on the Express app so that they can be accessed from the client-side.

Building a Backend with MongoDB, Express, and Node Chapter 3

[73]

User routes
The user routes that are defined in the user.routes.js file will use
express.Router() to define route paths with the relevant HTTP methods and
assign the corresponding controller function that should be called when these
requests are received by the server.

We will keep the user routes simplistic by using the following:

/api/users for the following:
Listing users with GET
Creating a new user with POST

/api/users/:userId for the following:
Fetching a user with GET
Updating a user with PUT
Deleting a user with DELETE

The resulting user.routes.js code will look as follows (without the auth
considerations that need to be added for protected routes).

mern-skeleton/server/routes/user.routes.js:

import express from 'express'
import userCtrl from '../controllers/user.controller'

const router = express.Router()

router.route('/api/users')
 .get(userCtrl.list)
 .post(userCtrl.create)

router.route('/api/users/:userId')
 .get(userCtrl.read)
 .put(userCtrl.update)
 .delete(userCtrl.remove)

router.param('userId', userCtrl.userByID)

export default router

Besides declaring API endpoints that correspond to user CRUD operations, we'll also
configure the Express router so that it handles the userId parameter in a requested
route by executing the userByID controller function.

Building a Backend with MongoDB, Express, and Node Chapter 3

[74]

When the server receives requests at each of these defined routes, the corresponding
controller functions are invoked. We will define the functionality for each of these
controller methods and export it from the user.controller.js file in the next
subsection.

User controller
The server/controllers/user.controller.js file will contain definitions of the
controller methods that were used in the preceding user route declarations as
callbacks to be executed when a route request is received by the server.

The user.controller.js file will have the following structure:

import User from '../models/user.model'
import extend from 'lodash/extend'
import errorHandler from './error.controller'

const create = (req, res, next) => { … }
const list = (req, res) => { … }
const userByID = (req, res, next, id) => { … }
const read = (req, res) => { … }
const update = (req, res, next) => { … }
const remove = (req, res, next) => { … }

export default { create, userByID, read, list, remove, update }

This controller will make use of the errorHandler helper to respond to route
requests with meaningful messages when a Mongoose error occurs. It will also use a
module called lodash when updating an existing user with changed values.

lodash is a JavaScript library that provides utility functions for
common programming tasks, including the manipulation of arrays
and objects. To install lodash, run yarn add lodash from the
command line.

Each of the controller functions we defined previously is related to a route request,
and will be elaborated on in relation to each API use case.

Building a Backend with MongoDB, Express, and Node Chapter 3

[75]

Creating a new user
The API endpoint to create a new user is declared in the following route.

mern-skeleton/server/routes/user.routes.js:

router.route('/api/users').post(userCtrl.create)

When the Express app gets a POST request at '/api/users', it calls the create
function we defined in the controller.

mern-skeleton/server/controllers/user.controller.js:

const create = async (req, res) => {
 const user = new User(req.body)
 try {
 await user.save()
 return res.status(200).json({
 message: "Successfully signed up!"
 })
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

This function creates a new user with the user JSON object that's received in the POST
request from the frontend within req.body. The call to user.save attempts to save
the new user in the database after Mongoose has performed a validation check on the
data. Consequently, an error or success response is returned to the requesting client.

The create function is defined as an asynchronous function with the async keyword,
allowing us to use await with user.save(), which returns a Promise. Using
the await keyword inside an async function causes this function to wait until the
returned Promise resolves, before the next lines of code are executed. If the Promise
rejects, an error is thrown and caught in the catch block.

Async/await is an addition to ES8 that allows us to write
asynchronous JavaScript code in a seemingly sequential or
synchronous manner. For controller functions that handle
asynchronous behavior such as accessing the database, we will use
the async/await syntax to implement them.

Building a Backend with MongoDB, Express, and Node Chapter 3

[76]

Similarly, in the next section, we will use async/await while implementing the
controller function to list all users after querying the database.

Listing all users
The API endpoint to fetch all the users is declared in the following route.

mern-skeleton/server/routes/user.routes.js:

router.route('/api/users').get(userCtrl.list)

When the Express app gets a GET request at '/api/users', it executes the list
controller function.

mern-skeleton/server/controllers/user.controller.js:

const list = async (req, res) => {
 try {
 let users = await User.find().select('name email updated created')
 res.json(users)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The list controller function finds all the users from the database, populates only the
name, email, created, and updated fields in the resulting user list, and then returns
this list of users as JSON objects in an array to the requesting client.

The remaining CRUD operations to read, update, and delete a single user require that
we retrieve a specific user by ID first. In the next section, we will implement the
controller functions that enable fetching a single user from the database to either
return the user, update the user, or delete the user in response to the corresponding
requests.

Loading a user by ID to read, update, or delete
All three API endpoints for read, update, and delete require a user to be loaded from
the database based on the user ID of the user being accessed. We will program the
Express router to do this action first before responding to a specific request to read,
update, or delete.

Building a Backend with MongoDB, Express, and Node Chapter 3

[77]

Loading
Whenever the Express app receives a request to a route that matches a path
containing the :userId parameter in it, the app will execute the userByID controller
function, which fetches and loads the user into the Express request object, before
propagating it to the next function that's specific to the request that came in.

mern-skeleton/server/routes/user.routes.js:

router.param('userId', userCtrl.userByID)

The userByID controller function uses the value in the :userId parameter to query
the database by _id and load the matching user's details.

mern-skeleton/server/controllers/user.controller.js:

const userByID = async (req, res, next, id) => {
 try {
 let user = await User.findById(id)
 if (!user)
 return res.status('400').json({
 error: "User not found"
 })
 req.profile = user
 next()
 } catch (err) {
 return res.status('400').json({
 error: "Could not retrieve user"
 })
 }
}

If a matching user is found in the database, the user object is appended to the request
object in the profile key. Then, the next() middleware is used to propagate control
to the next relevant controller function. For example, if the original request was to
read a user profile, the next() call in userByID would go to the read controller
function, which is discussed next.

Reading
The API endpoint to read a single user's data is declared in the following route.

mern-skeleton/server/routes/user.routes.js:

router.route('/api/users/:userId').get(userCtrl.read)

Building a Backend with MongoDB, Express, and Node Chapter 3

[78]

When the Express app gets a GET request at '/api/users/:userId', it executes the
userByID controller function to load the user by the userId value, followed by the
read controller function.

mern-skeleton/server/controllers/user.controller.js:

const read = (req, res) => {
 req.profile.hashed_password = undefined
 req.profile.salt = undefined
 return res.json(req.profile)
}

The read function retrieves the user details from req.profile and removes
sensitive information, such as the hashed_password and salt values, before
sending the user object in the response to the requesting client. This rule is also
followed in implementing the controller function to update a user, as shown next.

Updating
The API endpoint to update a single user is declared in the following route.

mern-skeleton/server/routes/user.routes.js:

router.route('/api/users/:userId').put(userCtrl.update)

When the Express app gets a PUT request at '/api/users/:userId', similar to
read, it loads the user with the :userId parameter value before executing the
update controller function.

mern-skeleton/server/controllers/user.controller.js:

const update = async (req, res) => {
 try {
 let user = req.profile
 user = extend(user, req.body)
 user.updated = Date.now()
 await user.save()
 user.hashed_password = undefined
 user.salt = undefined
 res.json(user)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }

Building a Backend with MongoDB, Express, and Node Chapter 3

[79]

}

The update function retrieves the user details from req.profile and then uses the
lodash module to extend and merge the changes that came in the request body to
update the user data. Before saving this updated user to the database, the updated
field is populated with the current date to reflect the last updated timestamp. Upon
successfully saving this update, the updated user object is cleaned by removing
sensitive data, such as hashed_password and salt, before sending the user object in
the response to the requesting client. Implementation of the final user controller
function to delete a user is similar to the update function, as detailed in the next
section.

Deleting
The API endpoint to delete a user is declared in the following route.

mern-skeleton/server/routes/user.routes.js:

router.route('/api/users/:userId').delete(userCtrl.remove)

When the Express app gets a DELETE request at '/api/users/:userId', similar to
read and update, it loads the user by ID and then the remove controller function is
executed.

mern-skeleton/server/controllers/user.controller.js:

const remove = async (req, res) => {
 try {
 let user = req.profile
 let deletedUser = await user.remove()
 deletedUser.hashed_password = undefined
 deletedUser.salt = undefined
 res.json(deletedUser)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The remove function retrieves the user from req.profile and uses the remove()
query to delete the user from the database. On successful deletion, the requesting
client is returned the deleted user object in the response.

Building a Backend with MongoDB, Express, and Node Chapter 3

[80]

With the implementation of the API endpoints so far, any client can perform CRUD
operations on the user model. However, we want to restrict access to some of these
operations with authentication and authorization. We'll look at this in the next
section.

Integrating user auth and protected
routes
To restrict access to user operations such as user profile view, user update, and user
delete, we will first implement sign-in authentication with JWT, then use it to protect
and authorize the read, update, and delete routes.

The auth-related API endpoints for sign-in and sign-out will be declared in
server/routes/auth.routes.js and then mounted on the Express app in
server/express.js.

mern-skeleton/server/express.js:

import authRoutes from './routes/auth.routes'
 ...
 app.use('/', authRoutes)
 ...

This will make the routes we define in auth.routes.js accessible from the client-
side.

Auth routes
The two auth APIs are defined in the auth.routes.js file using
express.Router() to declare the route paths with the relevant HTTP methods.
They're also assigned the corresponding controller functions, which should be called
when requests are received for these routes.

The auth routes are as follows:

'/auth/signin': POST request to authenticate the user with their email
and password
'/auth/signout': GET request to clear the cookie containing a JWT that
was set on the response object after sign-in

Building a Backend with MongoDB, Express, and Node Chapter 3

[81]

The resulting mern-skeleton/server/routes/auth.routes.js file will be as
follows:

import express from 'express'
import authCtrl from '../controllers/auth.controller'

const router = express.Router()

router.route('/auth/signin')
 .post(authCtrl.signin)
router.route('/auth/signout')
 .get(authCtrl.signout)

export default router

A POST request to the signin route and a GET request to the signout route will
invoke the corresponding controller functions defined in the auth.controller.js
file, as discussed in the next section.

Auth controller
The auth controller functions in server/controllers/auth.controller.js will
not only handle requests to the signin and signout routes, but also provide JWT
and express-jwt functionality to enable authentication and authorization for
protected user API endpoints.

The mern-skeleton/server/controllers/auth.controller.js file will have
the following structure:

import User from '../models/user.model'
import jwt from 'jsonwebtoken'
import expressJwt from 'express-jwt'
import config from './../../config/config'

const signin = (req, res) => { … }
const signout = (req, res) => { … }
const requireSignin = …
const hasAuthorization = (req, res) => { … }

export default { signin, signout, requireSignin, hasAuthorization }

The four controller functions are elaborated on in the following sections to show how
the backend implements user auth using JSON Web Tokens. We'll start with the
signin controller function in the next section.

Building a Backend with MongoDB, Express, and Node Chapter 3

[82]

Sign-in
The API endpoint to sign-in a user is declared in the following route.

mern-skeleton/server/routes/auth.routes.js:

router.route('/auth/signin').post(authCtrl.signin)

When the Express app gets a POST request at '/auth/signin', it executes the
signin controller function.

mern-skeleton/server/controllers/auth.controller.js:

const signin = async (req, res) => {
 try {
 let user = await User.findOne({ "email": req.body.email })
 if (!user)
 return res.status('401').json({ error: "User not found" })

 if (!user.authenticate(req.body.password)) {
 return res.status('401').send({ error: "Email and
 password don't match." })
 }

 const token = jwt.sign({ _id: user._id }, config.jwtSecret)

 res.cookie('t', token, { expire: new Date() + 9999 })

 return res.json({
 token,
 user: {
 _id: user._id,
 name: user.name,
 email: user.email
 }
 })
 } catch (err) {
 return res.status('401').json({ error: "Could not sign in" })
 }
}

The POST request object receives the email and password in req.body. This email is
used to retrieve a matching user from the database. Then, the password
authentication method defined in UserSchema is used to verify the password that's
received in req.body from the client.

Building a Backend with MongoDB, Express, and Node Chapter 3

[83]

If the password is successfully verified, the JWT module is used to generate a signed
JWT using a secret key and the user's _id value.

Install the jsonwebtoken module to make it available to this
controller in the import by running yarn add
jsonwebtoken from the command line.

Then, the signed JWT is returned to the authenticated client, along with the user's
details. Optionally, we can also set the token to a cookie in the response object so that
it is available to the client-side if cookies are the chosen form of JWT storage. On the
client-side, this token must be attached as an Authorization header when
requesting protected routes from the server. To sign-out a user, the client-side can
simply delete this token depending on how it is being stored. In the next section, we
will learn how to use a signout API endpoint to clear the cookie containing the
token.

Signout
The API endpoint to sign-out a user is declared in the following route.

mern-skeleton/server/routes/auth.routes.js:

router.route('/auth/signout').get(authCtrl.signout)

When the Express app gets a GET request at '/auth/signout', it executes the
signout controller function.

mern-skeleton/server/controllers/auth.controller.js:

const signout = (req, res) => {
 res.clearCookie("t")
 return res.status('200').json({
 message: "signed out"
 })
}

The signout function clears the response cookie containing the signed JWT. This is
an optional endpoint and not really necessary for auth purposes if cookies are not
used at all in the frontend.

Building a Backend with MongoDB, Express, and Node Chapter 3

[84]

With JWT, user state storage is the client's responsibility, and there are multiple
options for client-side storage besides cookies. On signout, the client needs to delete
the token on the client-side to establish that the user is no longer authenticated. On
the server-side, we can use and verify the token that's generated at sign-in to protect
routes that should not be accessed without valid authentication. In the next section,
we will learn how to implement these protected routes using JWT.

Protecting routes with express-jwt
To protect access to the read, update, and delete routes, the server will need to check
that the requesting client is actually an authenticated and authorized user.

To check whether the requesting user is signed in and has a valid JWT when a
protected route is accessed, we will use the express-jwt module.

The express-jwt module is a piece of middleware that validates
JSON Web Tokens. Run yarn add express-jwt from the
command line to install express-jwt.

Protecting user routes
We will define two auth controller
methods called requireSignin and hasAuthorization, both of which will be
added to the user route declarations that need to be protected with authentication and
authorization.

The read, update, and delete routes in user.routes.js need to be updated as
follows.

mern-skeleton/server/routes/user.routes.js:

import authCtrl from '../controllers/auth.controller'
...
router.route('/api/users/:userId')
 .get(authCtrl.requireSignin, userCtrl.read)
 .put(authCtrl.requireSignin, authCtrl.hasAuthorization,
 userCtrl.update)
 .delete(authCtrl.requireSignin, authCtrl.hasAuthorization,
 userCtrl.remove)
...

Building a Backend with MongoDB, Express, and Node Chapter 3

[85]

The route to read a user's information only needs authentication verification, whereas
the update and delete routes should check for both authentication and authorization
before these CRUD operations are executed. We will look into the implementation of
the requireSignin method, which checks authentication, and the
hasAuthorization method, which checks authorization, in the next section.

Requiring sign-in
The requireSignin method in auth.controller.js uses express-jwt to verify
that the incoming request has a valid JWT in the Authorization header. If the token
is valid, it appends the verified user's ID in an 'auth' key to the request object;
otherwise, it throws an authentication error.

mern-skeleton/server/controllers/auth.controller.js:

const requireSignin = expressJwt({
 secret: config.jwtSecret,
 userProperty: 'auth'
})

We can add requireSignin to any route that should be protected against
unauthenticated access.

Authorizing signed in users
For some of the protected routes, such as update and delete, on top of checking for
authentication we also want to make sure the requesting user is only updating or
deleting their own user information.

To achieve this, the hasAuthorization function defined in auth.controller.js
will check whether the authenticated user is the same as the user being updated or
deleted before the corresponding CRUD controller function is allowed to proceed.

mern-skeleton/server/controllers/auth.controller.js:

const hasAuthorization = (req, res, next) => {
 const authorized = req.profile && req.auth
 && req.profile._id == req.auth._id
 if (!(authorized)) {
 return res.status('403').json({
 error: "User is not authorized"
 })
 }

Building a Backend with MongoDB, Express, and Node Chapter 3

[86]

 next()
}

The req.auth object is populated by express-jwt in requireSignin after
authentication verification, while req.profile is populated by the userByID
function in user.controller.js. We will add the hasAuthorization function to
routes that require both authentication and authorization.

Auth error handling for express-jwt
To handle auth-related errors thrown by express-jwt when it tries to validate JWT
tokens in incoming requests, we need to add the following error-catching code to the
Express app configuration in mern-skeleton/server/express.js, near the end of
the code, after the routes are mounted and before the app is exported:

app.use((err, req, res, next) => {
 if (err.name === 'UnauthorizedError') {
 res.status(401).json({"error" : err.name + ": " + err.message})
 }else if (err) {
 res.status(400).json({"error" : err.name + ": " + err.message})
 console.log(err)
 }
})

express-jwt throws an error named UnauthorizedError when a token cannot be
validated for some reason. We catch this error here to return a 401 status back to the
requesting client. We also add a response to be sent if other server-side errors are
generated and caught here.

With user auth implemented for protecting routes, we have covered all the desired
features of a working backend for our skeleton MERN application. In the next section,
we will look at how we can check whether this standalone backend is functioning as
desired without implementing a frontend.

Checking the standalone backend
There are a number of options when it comes to selecting tools to check backend
APIs, ranging from the command-line tool curl (https:/ ​/​github. ​com/ ​curl/ ​curl) to
Advanced REST Client (ARC) (https:/ ​/​chrome. ​google. ​com/ ​webstore/ ​detail/
advanced-​rest- ​client/ ​hgmloofddffdnphfgcellkdfbfbjeloo), a Chrome extension
app with an interactive user interface.

https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo

Building a Backend with MongoDB, Express, and Node Chapter 3

[87]

To check the APIs that were implemented in this chapter, first, have the server
running from the command line and use either of these tools to request the routes. If
you are running the code on your local machine, the root URL is
http://localhost:3000/.

Using ARC, we will showcase the expected behavior for five use cases so that we can
check the implemented API endpoints.

Creating a new user
First, we will create a new user with the /api/users POST request and pass name,
email, and password values in the request body. When the user is successfully
created in the database without any validation errors, we will see a 200 OK success
message, as shown in the following screenshot:

Building a Backend with MongoDB, Express, and Node Chapter 3

[88]

You can also try to send the same request with invalid values for name, email, and
password to check whether the relevant error messages are returned by the backend.
Next, we will check whether the users were successfully created and stored in the
database by calling the list users API.

Fetching the user list
We can see whether a new user is in the database by fetching a list of all users with a
GET request to /api/users. The response should contain an array of all the user
objects stored in the database:

Building a Backend with MongoDB, Express, and Node Chapter 3

[89]

Notice how the returned user objects only show the _id, name, email, and created
field values, and not the salt or hashed_password values, which are also present in
the actual documents stored in the database. The request only retrieves the selected
fields we specified in the Mongoose find query that we made in the list controller
method. This omission is also in place when fetching a single user.

Trying to fetch a single user
Next, we will try to access a protected API without signing in first. A GET request to
read any one of the users will return a 401 Unauthorized error, such as in the
following example. Here, a GET request to
/api/users/5a1c7ead1a692aa19c3e7b33 returns a 401 error:

To make this request return a successful response with user details, a valid
authorization token needs to be provided in the request header. We can generate a
valid token by successfully calling the sign-in request.

Building a Backend with MongoDB, Express, and Node Chapter 3

[90]

Signing in
To be able to access the protected route, we will sign-in using the credentials of the
user we created in the first example. To sign-in, a POST request is sent
to /auth/signin with the email and password in the request body, as shown in the
following screenshot:

On successful sign-in, the server returns a signed JWT and user details. We will need
this token to access the protected route for fetching a single user.

Building a Backend with MongoDB, Express, and Node Chapter 3

[91]

Fetching a single user successfully
Using the token received after sign-in, we can now access the protected route that
failed previously. The token is set in the Authorization header in the Bearer scheme
when making the GET request to /api/users/5a1c7ead1a692aa19c3e7b33. This
time, the user object is returned successfully:

Using ARC as demonstrated in this section, you can also check the implementation of
the other API endpoints for updating and deleting a user. With all these API
endpoints working as expected, we have a complete working backend for MERN-
based applications.

Building a Backend with MongoDB, Express, and Node Chapter 3

[92]

Summary
In this chapter, we developed a fully functioning standalone server-side application
using Node, Express, and MongoDB and covered the first part of the MERN skeleton
application. In the backend, we implemented a user model for storing user data,
implemented with Mongoose; user API endpoints to perform CRUD operations,
which were implemented with Express; and user auth for protected routes, which
was implemented with JWT and express-jwt.

We also set up the development flow by configuring Webpack so that it compiles
ES6+ code using Babel. We also configured Nodemon so that it restarts the server
when the code changes. Finally, we checked the implementation of the APIs using the
Advanced Rest API Client extension app for Chrome.

Now, we are ready to extend this backend application code and add the React
frontend, which will complete the MERN skeleton application. We will do this in the
next chapter.

4
Adding a React Frontend to

Complete MERN
A web application is incomplete without a frontend. It is the part that users interact
with and it is crucial to any web experience. In this chapter, we will use React to add
an interactive user interface to the basic user and auth features that have been
implemented for the backend of the MERN skeleton application, which we started
building in the previous chapter. This functional frontend will add React components
that connect to the backend API and allow users to navigate seamlessly within the
application based on authorization. By the end of this chapter, you will have learned
how to easily integrate a React client-side with a Node-Express-MongoDB server-side
to make a full-stack web application.

In this chapter, we will cover the following topics:

Frontend features of the skeleton
Setting up development with React, React Router, and Material-UI
Rendering a home page built with React
Backend user API integration
Auth integration for restricted access
User list, profile, edit, delete, sign up, and sign in UI to complete the user
frontend
Basic server-side rendering

Adding a React Frontend to Complete MERN Chapter 4

[94]

Defining the skeleton application
frontend
In order to fully implement the skeleton application features we discussed in the
Feature breakdown section of Chapter 3, Building a Backend with MongoDB, Express, and
Node, we will add the following user interface components to our base application:

Home page: A view that renders at the root URL to welcome users to the
web application.
Sign-up page: A view with a form for user sign-up, allowing new users to
create a user account and redirecting them to a sign-in page when
successfully created.
Sign-in page: A view with a sign-in form that allows existing users to sign
in so they have access to protected views and actions.
User list page: A view that fetches and shows a list of all the users in the
database, and also links to individual user profiles.
Profile page: A component that fetches and displays an individual user's
information. This is only accessible by signed-in users and also contains
edit and delete options, which are only visible if the signed-in user is
looking at their own profile.
Edit profile page: A form that fetches the user's information to prefill the
form fields. This allows the user to edit the information and this form is
accessible only if the logged-in user is trying to edit their own profile.
Delete user component: An option that allows the signed-in user to delete
their own profile after confirming their intent.
Menu navigation bar: A component that lists all the available and relevant
views to the user, and also helps to indicate the user's current location in
the application.

The following React component tree diagram shows all the React components we will
develop to build out the views for this base application:

Adding a React Frontend to Complete MERN Chapter 4

[95]

MainRouter will be the main React component. This contains all the other custom
React views in the application. Home, Signup, Signin, Users, Profile, and EditProfile
will render at individual routes declared with React Router, whereas the Menu
component will render across all these views. DeleteUser will be a part of the Profile
view.

The code discussed in this chapter, as well as the complete skeleton,
is available on GitHub at https:/ ​/​github. ​com/ ​PacktPublishing/
Full- ​Stack- ​React- ​Projects- ​Second- ​Edition/ ​tree/ ​master/
Chapter03%20and%2004/ ​mern-​skeleton. You can clone this code and
run the application as you go through the code explanations in the
rest of this chapter.

In order to implement these frontend React views, we will have to extend the existing
project code, which contains the standalone server application for the MERN
skeleton. Next, we'll take a brief look at the files that will make up this frontend and
that are needed to complete the full-stack skeleton application code.

Folder and file structure
The following folder structure shows the new folders and files to be added to the
skeleton project we started implementing in the previous chapter, in order to
complete it with a React frontend:

| mern_skeleton/
 | -- client/
 | --- assets/

https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter03%20and%2004/mern-skeleton

Adding a React Frontend to Complete MERN Chapter 4

[96]

 | ---- images/
 | --- auth/
 | ---- api-auth.js
 | ---- auth-helper.js
 | ---- PrivateRoute.js
 | ---- Signin.js
 | --- core/
 | ---- Home.js
 | ---- Menu.js
 | --- user/
 | ---- api-user.js
 | ---- DeleteUser.js
 | ---- EditProfile.js
 | ---- Profile.js
 | ---- Signup.js
 | ---- Users.js
 | --- App.js
 | --- main.js
 | --- MainRouter.js
 | --- theme.js
 | -- server/
 | --- devBundle.js
 | -- webpack.config.client.js
 | -- webpack.config.client.production.js

The client folder will contain the React components, helpers, and frontend assets,
such as images and CSS. Besides this folder and the Webpack configuration files for
compiling and bundling the client code, we will also modify some of the other
existing files to finish up the integration of the complete skeleton application in this
chapter.

Before we start implementing the specific frontend features, we need to get set up for
React development by installing the necessary modules and adding configuration to
compile, bundle, and load the React views. We will go through these setup steps in
the next section.

Setting up for React development
Before we can start developing with React in our existing skeleton codebase, we need
to add configuration to compile and bundle the frontend code, add the React-related
dependencies that are necessary to build the interactive interface, and tie this all
together in the MERN development flow.

Adding a React Frontend to Complete MERN Chapter 4

[97]

To achieve this, we will add frontend configuration for Babel, Webpack, and React
Hot Loader to compile, bundle, and hot reload the code. Next, we will modify the
server code to initiate code bundling for both the frontend and backend in one
command to make the development flow simple. Then, we will update the code
further so that it serves the bundled code from the server when the application runs
in the browser. Finally, we will finish setting up by installing the React dependencies
that are necessary to start implementing the frontend.

Configuring Babel and Webpack
It is necessary to compile and bundle the React code that we will write to implement
the frontend before the code can run in browsers. To compile and bundle the client
code so that we can run it during development and also bundle it for production, we
will update the configuration for Babel and Webpack. Then, we will configure the
Express app to initiate frontend and backend code bundling in one command, so that
just starting the server during development gets the complete stack ready for running
and testing.

Babel
To compile React, first, install the Babel React preset module as a development
dependency by running the following command from the command line:

yarn add --dev @babel/preset-react

Then, update .babelrc with the following code. This will include the module and
also configure the react-hot-loader Babel plugin as required for the react-hot-
loader module.

mern-skeleton/.babelrc:

{
 "presets": [
 ["@babel/preset-env",
 {
 "targets": {
 "node": "current"
 }
 }
],
 "@babel/preset-react"
],

Adding a React Frontend to Complete MERN Chapter 4

[98]

 "plugins": [
 "react-hot-loader/babel"
]
}

To put this updated Babel configuration to use, we need to update the Webpack
configuration, which we will look at in the next section.

Webpack
To bundle client-side code after compiling it with Babel, and also to enable react-
hot-loader for faster development, install the following modules by running these
commands from the command line:

yarn add -dev webpack-dev-middleware webpack-hot-middleware file-
loader
yarn add react-hot-loader @hot-loader/react-dom

Then, to configure Webpack for frontend development and to build the production
bundle, we will add a webpack.config.client.js file and
a webpack.config.client.production.js file with the same configuration code
we described in Chapter 2, Preparing the Development Environment.

With Webpack configured and ready for bundling the frontend React code, next, we
will add some code that we can use in our development flow. This will make the full-
stack development process seamless.

Loading Webpack middleware for development
During development, when we run the server, the Express app should also load the
Webpack middleware that's relevant to the frontend with respect to the configuration
that's been set for the client-side code, so that the frontend and backend development
workflow is integrated. To enable this, we will use the devBundle.js file we
discussed in Chapter 2, Preparing the Development Environment, in order to set up a
compile method that takes the Express app and configures it to use the Webpack
middleware. The devBundle.js file in the server folder will look as follows.

mern-skeleton/server/devBundle.js:

import config from './../config/config'
import webpack from 'webpack'
import webpackMiddleware from 'webpack-dev-middleware'
import webpackHotMiddleware from 'webpack-hot-middleware'

Adding a React Frontend to Complete MERN Chapter 4

[99]

import webpackConfig from './../webpack.config.client.js'

const compile = (app) => {
 if(config.env === "development"){
 const compiler = webpack(webpackConfig)
 const middleware = webpackMiddleware(compiler, {
 publicPath: webpackConfig.output.publicPath
 })
 app.use(middleware)
 app.use(webpackHotMiddleware(compiler))
 }
}

export default {
 compile
}

In this method, the Webpack middleware uses the values set
in webpack.config.client.js, and we enable hot reloading from the server-side
using Webpack Hot Middleware.

Finally, we need to import and call this compile method in express.js by adding
the following highlighted lines, but only during development.

mern-skeleton/server/express.js:

import devBundle from './devBundle'
const app = express()
devBundle.compile(app)

These two highlighted lines are only meant for development mode and should be
commented out when building the code for production. When the Express app runs
in development mode, adding this code will import the middleware, along with
the client-side Webpack configuration. Then, it will initiate Webpack to compile and
bundle the client-side code and also enable hot reloading.

The bundled code will be placed in the dist folder. This code will be needed to
render the views. Next, we will configure the Express server app so that it serves the
static files from this dist folder. This will ensure that the bundled React code can be
loaded in the browser.

Adding a React Frontend to Complete MERN Chapter 4

[100]

Loading bundled frontend code
The frontend views that we will see rendered in the browser will load from the
bundled files in the dist folder. For it to be possible to add these bundled files to the
HTML view containing our frontend, we need to configure the Express app so that it
serves static files, which are files that aren't generated dynamically by server-side
code.

Serving static files with Express
To ensure that the Express server properly handles the requests to static files such as
CSS files, images, or the bundled client-side JS, we will configure it so that it serves
static files from the dist folder by adding the following configuration in
express.js.

mern-skeleton/server/express.js:

import path from 'path'
const CURRENT_WORKING_DIR = process.cwd()
app.use('/dist', express.static(path.join(CURRENT_WORKING_DIR,
'dist')))

With this configuration in place, when the Express app receives a request at a route
starting with /dist, it will know to look for the requested static resource in the dist
folder before returning the resource in the response. Now, we can load the bundled
files from the dist folder in the frontend.

Updating the template to load a bundled script
To add the bundled frontend code in the HTML to render our React frontend, we will
update the template.js file so that it adds the script file from the dist folder to the
end of the <body> tag.

mern-skeleton/template.js:

...
<body>
 <div id="root"></div>
 <script type="text/javascript" src="/dist/bundle.js"></script>
</body>

Adding a React Frontend to Complete MERN Chapter 4

[101]

This script tag will load our React frontend code in the browser when we visit the
root URL '/' with the server running. We are ready to see this in action and can start
installing the dependencies that will add the React views.

Adding React dependencies
The frontend views in our skeleton application will primarily be implemented using
React. In addition, to enable client-side routing, we will use React Router, and to
enhance the user experience with a sleek look and feel, we will use Material-UI. To
add these libraries, we will install the following modules in this section:

Core React modules: react and react-dom
React Router modules: react-router and react-router-dom
Material-UI modules: @material-ui/core and @material-ui/icons

React
Throughout this book, we will use React to code up the frontend. To start writing the
React component code, we will need to install the following modules as regular
dependencies:

yarn add react react-dom

These are the core React library modules that are necessary for implementing the
React-based web frontend. With other additional modules, we will add more
functionality on top of React.

React Router
React Router provides a collection of navigational components that enable routing on
the frontend for React applications. We will add the following React Router modules:

yarn add react-router react-router-dom

These modules will let us utilize declarative routing and have bookmarkable URL
routes in the frontend.

Adding a React Frontend to Complete MERN Chapter 4

[102]

Material-UI
In order to keep the UI in our MERN applications sleek without delving too much
into UI design and implementation, we will utilize the Material-UI library. It provides
ready to use and customizable React components that implement Google's material
design. To start using Material-UI components to make the frontend, we need to
install the following modules:

yarn add @material-ui/core @material-ui/icons

At the time of writing, the latest version of Material-UI is 4.9.8. It is
recommended that you install this exact version in order to ensure
the code for the example projects does not break.

To add the Roboto fonts that are recommended by Material-UI and to use the
Material-UI icons, we will add the relevant style links into the template.js file, in
the HTML document's <head> section:

<link rel="stylesheet"
href="https://fonts.googleapis.com/css?family=Roboto:100,300,400">
<link href="https://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">

With the development configuration all set up and the necessary React modules
added to the code base, we can now implement the custom React components,
starting with a home page. This should load up as the first view of the complete
application.

Rendering a home page view
To demonstrate how to implement a functional frontend for this MERN skeleton, we
will start by detailing how to render a simple home page at the root route of the
application, before covering backend API integration, user auth integration, and
implementing the other view components in the rest of this chapter.

The process of implementing and rendering a working Home component at the root
route will also expose the basic structure of the frontend code in the skeleton. We will
start with the top-level entry component that houses the whole React app and renders
the main router component, which links all the React components in the application.

Adding a React Frontend to Complete MERN Chapter 4

[103]

In the following sections, we will begin implementing the React frontend. First, we
will add the root React component, which is integrated with React Router and
Material-UI and configured for hot reloading. We will also learn how to customize
the Material-UI theme and make the theme available to all our components. Finally,
we will implement and load the React component representing the home page, in
turn demonstrating how to add and render React views in this application.

Entry point at main.js
The client/main.js file in the client folder will be the entry point to render the
complete React app, as already indicated in the client-side Webpack configuration
object. In client/main.js, we import the root or top-level React component that
will contain the whole frontend and render it to the div element with the 'root' ID
specified in the HTML document in template.js.

mern-skeleton/client/main.js:

import React from 'react'
import { render } from 'react-dom'
import App from './App'

render(<App/>, document.getElementById('root'))

Here, the top-level root React component is the App component and it is being
rendered in the HTML. The App component is defined in client/App.js, as
discussed in the next subsection.

Root React component
The top-level React component that will contain all the components for the
application's frontend is defined in the client/App.js file. In this file, we configure
the React app so that it renders the view components with a customized Material-UI
theme, enables frontend routing, and ensures that the React Hot Loader can instantly
load changes as we develop the components.

In the following sections, we will add code to customize the theme, make this theme
and React Router capabilities available to our React components, and configure the
root component for hot reloading.

Adding a React Frontend to Complete MERN Chapter 4

[104]

Customizing the Material-UI theme
The Material-UI theme can be easily customized using the ThemeProvider
component. It can also be used to configure the custom values of theme variables in
createMuiTheme(). We will define a custom theme for the skeleton application in
client/theme.js using createMuiTheme, and then export it so that it can be used
in the App component.

mern-skeleton/client/theme.js:

import { createMuiTheme } from '@material-ui/core/styles'
import { pink } from '@material-ui/core/colors'

const theme = createMuiTheme({
 typography: {
 useNextVariants: true,
 },
 palette: {
 primary: {
 light: '#5c67a3',
 main: '#3f4771',
 dark: '#2e355b',
 contrastText: '#fff',
 },
 secondary: {
 light: '#ff79b0',
 main: '#ff4081',
 dark: '#c60055',
 contrastText: '#000',
 },
 openTitle: '#3f4771',
 protectedTitle: pink['400'],
 type: 'light'
 }
})

export default theme

For the skeleton, we only apply minimal customization by setting some color values
to be used in the UI. The theme variables that are generated here will be passed to,
and available in, all the components we build.

Adding a React Frontend to Complete MERN Chapter 4

[105]

Wrapping the root component with ThemeProvider
and BrowserRouter
The custom React components that we will create to make up the user interface will
be accessed with the frontend routes specified in the MainRouter component.
Essentially, this component houses all the custom views that have been developed for
the application and needs to be given the theme values and routing features. This
component will be our core component in the root App component, which is defined
in the following code.

mern-skeleton/client/App.js:

import React from 'react'
import MainRouter from './MainRouter'
import {BrowserRouter} from 'react-router-dom'
import { ThemeProvider } from '@material-ui/styles'
import theme from './theme'

const App = () => {
 return (
 <BrowserRouter>
 <ThemeProvider theme={theme}>
 <MainRouter/>
 </ThemeProvider>
 </BrowserRouter>
)}

When defining this root component in App.js, we wrap the MainRouter component
with ThemeProvider, which gives it access to the Material-UI theme,
and BrowserRouter, which enables frontend routing with React Router. The custom
theme variables we defined previously are passed as a prop to ThemeProvider,
making the theme available in all our custom React components. Finally, in the
App.js file, we need to export this App component so that it can be imported and
used in main.js.

Adding a React Frontend to Complete MERN Chapter 4

[106]

Marking the root component as hot-exported
The last line of code in App.js, which exports the App component, uses the higher-
order component (HOC) hot module from react-hot-loader to mark the root
component as hot.

mern-skeleton/client/App.js:

import { hot } from 'react-hot-loader'
const App = () => { ... }
export default hot(module)(App)

Marking the App component as hot in this way essentially enables live reloading of
our React components during development.

For our MERN applications, we won't have to change the main.js and App.js code
all that much after this point, and we can continue building out the rest of the React
app by injecting new components into the MainRouter component, which is what
we'll do in the next section.

Adding a home route to MainRouter
The MainRouter.js code will help render our custom React components with
respect to the routes or locations in the application. In this first version, we will only
add the root route for rendering the Home component.

mern-skeleton/client/MainRouter.js:

import React from 'react'
import {Route, Switch} from 'react-router-dom'
import Home from './core/Home'
const MainRouter = () => {
 return (<div>
 <Switch>
 <Route exact path="/" component={Home}/>
 </Switch>
 </div>
)
}
export default MainRouter

Adding a React Frontend to Complete MERN Chapter 4

[107]

As we develop more view components, we will update the MainRouter and add
routes for the new components inside the Switch component.

The Switch component in React Router renders a route exclusively.
In other words, it only renders the first child that matches the
requested route path. On the other hand, without being nested in a
Switch, every Route component renders inclusively when there is a
path match; for example, a request at '/' also matches a route at
'/contact'.

The Home component, which we added this route for in MainRouter, needs to be
defined and exported, which we'll do in the next section.

The Home component
The Home component will be the React component containing the home page view of
the skeleton application. It will be rendered in the browser when the user visits the
root route, and we will compose it with Material-UI components.

The following screenshot shows the Home component, as well as the Menu component,
which will be implemented later in this chapter as an individual component that
provides navigation across the application:

Adding a React Frontend to Complete MERN Chapter 4

[108]

The Home component and other view components that will be rendered in the
browser for the user to interact with will follow a common code structure that
contains the following parts in the given order:

Imports of libraries, modules, and files needed to construct the component
Style declarations to define the specific CSS styles for the component
elements
A function that defines the React component

Throughout this book, as we develop new React components representing the
frontend views, we will focus mainly on the React component definition part. But for
our first implementation, we will elaborate on all these parts to introduce the
necessary structure.

Imports
For each React component implementation, we need to import the libraries, modules,
and files being used in the implementation code. The component file will start with
imports from React, Material-UI, React Router modules, images, CSS, API fetch, and
the auth helpers from our code, as required by the specific component. For example,
for the Home component code in Home.js, we use the following imports.

mern-skeleton/client/core/Home.js:

import React from 'react'
import { makeStyles } from '@material-ui/core/styles'
import Card from '@material-ui/core/Card'
import CardContent from '@material-ui/core/CardContent'
import CardMedia from '@material-ui/core/CardMedia'
import Typography from '@material-ui/core/Typography'
import unicornbikeImg from './../assets/images/unicornbike.jpg'

The image file is kept in the client/assets/images/ folder and is imported so that
it can be added to the Home component. These imports will help us build the
component and also define the styles to be used in the component.

Style declarations
After the imports, we will define the CSS styles that are required to style the elements
in the component by utilizing the Material-UI theme variables and
makeStyles, which is a custom React hook API provided by Material-UI.

Adding a React Frontend to Complete MERN Chapter 4

[109]

Hooks are new to React. Hooks are functions that make it possible to
use React state and life cycle features in function components,
without having to write a class to define the component. React
provides some built-in hooks, but we can also build custom hooks as
needed to reuse stateful behavior across different components. To
learn more about React Hooks, visit reactjs.org/docs/hooks-
intro.html.

For the Home component in Home.js, we have the following styles.

mern-skeleton/client/core/Home.js:

const useStyles = makeStyles(theme => ({
 card: {
 maxWidth: 600,
 margin: 'auto',
 marginTop: theme.spacing(5)
 },
 title: {
 padding:`${theme.spacing(3)}px ${theme.spacing(2.5)}px
${theme.spacing(2)}px`,
 color: theme.palette.openTitle
 },
 media: {
 minHeight: 400
 }
}))

The JSS style objects defined here will be injected into the component using the hook
returned by makeStyles. The makeStyles hook API takes a function as an
argument and gives access to our custom theme variables, which we can use when
defining the styles.

Material-UI uses JSS, which is a CSS-in-JS styling solution for adding
styles to components. JSS uses JavaScript as a language to describe
styles. This book will not cover CSS and styling implementations in
detail. It will mostly rely on the default look and feel of Material-UI
components. To learn more about JSS, visit http:/ ​/​cssinjs. ​org/ ​?
v=​v9. ​8.​1. For examples of how to customize the Material-UI
component styles, check out the Material-UI documentation at
https:/ ​/ ​material- ​ui. ​com/​.

We can use these generated styles to style the elements in the component, as shown in
the following Home component definition.

https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
http://cssinjs.org/?v=v9.8.1
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/

Adding a React Frontend to Complete MERN Chapter 4

[110]

Component definition
While writing the function to define the component, we will compose the content and
behavior of the component. The Home component will contain a Material-UI Card
with a headline, an image, and a caption, all styled with the styles we defined
previously and returned by calling the useStyles() hook.

mern-skeleton/client/core/Home.js:

export default function Home(){
 const classes = useStyles()
 return (
 <Card className={classes.card}>
 <Typography variant="h6" className={classes.title}>
 Home Page
 </Typography>
 <CardMedia className={classes.media}
 image={unicornbikeImg} title="Unicorn Bicycle"/>
 <CardContent>
 <Typography variant="body2" component="p">
 Welcome to the MERN Skeleton home page.
 </Typography>
 </CardContent>
 </Card>
)
}

In the preceding code, we defined and exported a function component named Home.
The exported component can now be used for composition within other components.
We already imported this Home component in a route in the MainRouter component,
as we discussed earlier.

Throughout this book, we will define all our React components as
functional components. We will utilize React Hooks, which is a new
addition to React, to add state and life cycle features, instead of
using class definitions to achieve the same.

The other view components to be implemented in our MERN applications will adhere
to the same structure. In the rest of this book, we will focus mainly on the component
definition, highlighting the unique aspects of the implemented component.

We are almost ready to run this code to render the home page component in the
frontend. But before that, we need to update the Webpack configurations so that we
can bundle and display images.

Adding a React Frontend to Complete MERN Chapter 4

[111]

Bundling image assets
The static image file that we imported into the Home component view must also be
included in the bundle with the rest of the compiled JS code so that the code can
access and load it. To enable this, we need to update the Webpack configuration files
and add a module rule to load, bundle, and emit image files to the dist output
directory, which contains the compiled frontend and backend code.

Update the webpack.config.client.js, webpack.config.server.js, and
webpack.config.client.production.js files so that you can add the following
module rule after the use of babel-loader:

[…
 {
 test: /\.(ttf|eot|svg|gif|jpg|png)(\?[\s\S]+)?$/,
 use: 'file-loader'
 }
]

This module rule uses the file-loader node module for Webpack, which needs to
be installed as a development dependency, as follows:

yarn add --dev file-loader

With this image bundling configuration added, the home page component should
successfully render the image when we run the application.

Running and opening in the browser
The client code up to this point can be run so that we can view the Home component
in the browser at the root URL. To run the application, use the following command:

yarn development

Then, open the root URL (http://localhost:3000) in the browser to see the Home
component.

The Home component we've developed in this section is a basic view component
without interactive features and does not require the use of the backend APIs for user
CRUD or auth. However, the remaining view components for our skeleton frontend
will need the backend APIs and auth, so we will look at how to integrate these in the
next section.

Adding a React Frontend to Complete MERN Chapter 4

[112]

Integrating backend APIs
Users should be able to use the frontend views to fetch and modify user data in the
database based on authentication and authorization. To implement these
functionalities, the React components will access the API endpoints that are exposed
by the backend using the Fetch API.

The Fetch API is a newer standard that makes network requests
similar to XMLHttpRequest (XHR) but using promises instead,
enabling a simpler and cleaner API. To learn more about the Fetch
API, visit https:/ ​/ ​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​API/
Fetch_ ​API.

Fetch for user CRUD
In the client/user/api-user.js file, we will add methods for accessing each of
the user CRUD API endpoints, which the React components can use to exchange user
data with the server and database as required. In the following sections, we will look
at the implementation of these methods and how they correspond to each CRUD
endpoint.

Creating a user
The create method will take user data from the view component, which is where we
will invoke this method. Then, it will use fetch to make a POST call at the create API
route, '/api/users', to create a new user in the backend with the provided data.

mern-skeleton/client/user/api-user.js:

const create = async (user) => {
 try {
 let response = await fetch('/api/users/', {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json'
 },
 body: JSON.stringify(user)
 })
 return await response.json()
 } catch(err) {
 console.log(err)

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

Adding a React Frontend to Complete MERN Chapter 4

[113]

 }
}

Finally, in this method, we return the response from the server as a promise. So, the
component calling this method can use this promise to handle the response
appropriately, depending on what is returned from the server. Similarly, we will
implement the list method next.

Listing users
The list method will use fetch to make a GET call to retrieve all the users in the
database, and then return the response from the server as a promise to the
component.

mern-skeleton/client/user/api-user.js:

const list = async (signal) => {
 try {
 let response = await fetch('/api/users/', {
 method: 'GET',
 signal: signal,
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

The returned promise, if it resolves successfully, will give the component an array
containing the user objects that were retrieved from the database. In the case of a
single user read, we will deal with a single user object instead, as demonstrated next.

Reading a user profile
The read method will use fetch to make a GET call to retrieve a specific user by ID.
Since this is a protected route, besides passing the user ID as a parameter, the
requesting component must also provide valid credentials, which, in this case, will be
a valid JWT received after a successful sign-in.

mern-skeleton/client/user/api-user.js:

const read = async (params, credentials, signal) => {
 try {
 let response = await fetch('/api/users/' + params.userId, {

Adding a React Frontend to Complete MERN Chapter 4

[114]

 method: 'GET',
 signal: signal,
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 }
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

The JWT is attached to the GET fetch call in the Authorization header using the
Bearer scheme, and then the response from the server is returned to the component
in a promise. This promise, when it resolves, will either give the component the user
details for the specific user or notify that access is restricted to authenticated users.
Similarly, the updated user API method also needs to be passed valid JWT credentials
for the fetch call, as shown in the next section.

Updating a user's data
The update method will take changed user data from the view component for a
specific user, then use fetch to make a PUT call to update the existing user in the
backend. This is also a protected route that will require a valid JWT as the credential.

mern-skeleton/client/user/api-user.js:

const update = async (params, credentials, user) => {
 try {
 let response = await fetch('/api/users/' + params.userId, {
 method: 'PUT',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: JSON.stringify(user)
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

Adding a React Frontend to Complete MERN Chapter 4

[115]

As we have seen with the other fetch calls, this method will also return a promise
containing the server's response to the user update request. In the final method, we
will learn how to call the user delete API.

Deleting a user
The remove method will allow the view component to delete a specific user from the
database and use fetch to make a DELETE call. This, again, is a protected route that
will require a valid JWT as a credential, similar to the read and update methods.

mern-skeleton/client/user/api-user.js:

const remove = async (params, credentials) => {
 try {
 let response = await fetch('/api/users/' + params.userId, {
 method: 'DELETE',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 }
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

The response from the server to the delete request will be returned to the component
as a promise, as in the other methods.

In these five helper methods, we have covered calls to all the user CRUD-related API
endpoints that we implemented on the backend. Finally, we can export these methods
from the api-user.js file as follows.

mern-skeleton/client/user/api-user.js:

export { create, list, read, update, remove }

These user CRUD methods can now be imported and used by the React components
as required. Next, we will implement similar helper methods to integrate the auth-
related API endpoints.

Adding a React Frontend to Complete MERN Chapter 4

[116]

Fetch for the auth API
In order to integrate the auth API endpoints from the server with the frontend React
components, we will add methods for fetching sign-in and sign-out API endpoints in
the client/auth/api-auth.js file. Let's take a look at them.

Sign-in
The signin method will take user sign-in data from the view component, then use
fetch to make a POST call to verify the user with the backend.

mern-skeleton/client/auth/api-auth.js:

const signin = async (user) => {
 try {
 let response = await fetch('/auth/signin/', {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json'
 },
 credentials: 'include',
 body: JSON.stringify(user)
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

The response from the server will be returned to the component in a promise, which
may provide the JWT if sign-in was successful. The component invoking this method
needs to handle the response appropriately, such as storing the received JWT locally
so it can be used when making calls to other protected API routes from the frontend.
We will look at the implementation for this when we implement the Sign In view
later in this chapter.

After the user is successfully signed in, we also want the option to call the signout
API when the user is signing out. The call to the signout API is discussed next.

Adding a React Frontend to Complete MERN Chapter 4

[117]

Sign-out
We will add a signout method to api-auth.js, which will use fetch to make a GET
call to the signout API endpoint on the server.

mern-skeleton/client/auth/api-auth.js:

const signout = async () => {
 try {
 let response = await fetch('/auth/signout/', { method: 'GET' })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

This method will also return a promise to inform the component about whether the
API request was successful.

At the end of the api-auth.js file, we will export the signin and signout
methods.

mern-skeleton/client/auth/api-auth.js:

export { signin, signout }

Now, these methods can be imported into the relevant React components so that we
can implement the user sign-in and signout features.

With these API fetch methods added, the React frontend has complete access to the
endpoints we made available in the backend. Before we start putting these methods
to use in our React components, we will look into how user auth state can be
maintained across the frontend.

Adding auth in the frontend
As we discussed in the previous chapter, implementing authentication with JWT
relinquishes responsibility to the client-side to manage and store user auth state. To
this end, we need to write code that will allow the client-side to store the JWT that's
received from the server on successful sign-in, make it available when accessing
protected routes, delete or invalidate the token when the user signs out, and also
restrict access to views and components on the frontend based on the user auth state.

Adding a React Frontend to Complete MERN Chapter 4

[118]

Using examples of the auth workflow from the React Router documentation, in the
following sections, we will write helper methods to manage the auth state across the
components, and also use a custom PrivateRoute component to add protected
routes to the frontend of the MERN skeleton application.

Managing auth state
To manage auth state in the frontend of the application, the frontend needs to be able
to store, retrieve, and delete the auth credentials that are received from the server on
successful user sign in. In our MERN applications, we will use the browser's
sessionsStorage as the storage option to store the JWT auth credentials.

Alternatively, you can use localStorage instead of
sessionStorage to store the JWT credentials. With
sessionStorage, the user auth state will only be remembered in
the current window tab. With localStorage, the user auth state
will be remembered across tabs in a browser.

In client/auth/auth-helper.js, we will define the helper methods discussed in
the following sections to store and retrieve JWT credentials from client-
side sessionStorage, and also clear out the sessionStorage on user sign-out.

Saving credentials
In order to save the JWT credentials that are received from the server on successful
sign-in, we use the authenticate method, which is defined as follows.

mern-skeleton/client/auth/auth-helper.js:

authenticate(jwt, cb) {
 if(typeof window !== "undefined")
 sessionStorage.setItem('jwt', JSON.stringify(jwt))
 cb()
}

Adding a React Frontend to Complete MERN Chapter 4

[119]

The authenticate method takes the JWT credentials, jwt, and a callback
function, cb, as arguments. It stores the credentials in sessionStorage after
ensuring window is defined, in other words ensuring this code is running in a
browser and hence has access to sessionStorage. Then, it executes the callback
function that is passed in. This callback will allow the component – in our case, the
component where sign-in is called – to define actions that should take place after
successfully signing in and storing credentials. Next, we will discuss the method that
lets us access these stored credentials.

Retrieving credentials
In our frontend components, we will need to retrieve the stored credentials to check if
the current user is signed in. In the isAuthenticated() method, we can retrieve
these credentials from sessionStorage.

mern-skeleton/client/auth/auth-helper.js:

isAuthenticated() {
 if (typeof window == "undefined")
 return false

 if (sessionStorage.getItem('jwt'))
 return JSON.parse(sessionStorage.getItem('jwt'))
 else
 return false
}

A call to isAuthenticated() will return either the stored credentials or false,
depending on whether credentials were found in sessionStorage. Finding
credentials in storage will mean a user is signed in, whereas not finding credentials
will mean the user is not signed in. We will also add a method that allows us to delete
the credentials from storage when a signed-in user signs out from the application.

Deleting credentials
When a user successfully signs out from the application, we want to clear the stored
JWT credentials from sessionStorage. This can be accomplished by calling the
clearJWT method, which is defined in the following code.

mern-skeleton/client/auth/auth-helper.js:

clearJWT(cb) {

Adding a React Frontend to Complete MERN Chapter 4

[120]

 if(typeof window !== "undefined")
 sessionStorage.removeItem('jwt')
 cb()
 signout().then((data) => {
 document.cookie = "t=; expires=Thu, 01 Jan 1970
00:00:00
 UTC; path=/;"
 })
}

This clearJWT method takes a callback function as an argument, and it removes the
JWT credential from sessionStorage. The passed in cb() function allows the
component initiating the signout functionality to dictate what should happen after a
successful sign-out.

The clearJWT method also uses the signout method we defined earlier in api-
auth.js to call the signout API in the backend. If we had used cookies to store the
credentials instead of sessionStorage, the response to this API call would be where
we clear the cookie, as shown in the preceding code. Using the signout API call is
optional since this is dependent on whether cookies are used as the credential storage
mechanism.

With these three methods, we now have ways of storing, retrieving, and deleting JWT
credentials on the client-side. Using these methods, the React components we build
for the frontend will be able to check and manage user auth state to restrict access in
the frontend, as demonstrated in the following section with the custom
PrivateRoute component.

The PrivateRoute component
The code in the file defines the PrivateRoute component, as shown in the auth flow
example at https:/ ​/ ​reacttraining. ​com/​react- ​router/ ​web/ ​example/ ​auth-
workflow, which can be found in the React Router documentation. It will allow us to
declare protected routes for the frontend to restrict view access based on user auth.

mern-skeleton/client/auth/PrivateRoute.js:

import React, { Component } from 'react'
import { Route, Redirect } from 'react-router-dom'
import auth from './auth-helper'

const PrivateRoute = ({ component: Component, ...rest }) => (
 <Route {...rest} render={props => (

https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow
https://reacttraining.com/react-router/web/example/auth-workflow

Adding a React Frontend to Complete MERN Chapter 4

[121]

 auth.isAuthenticated() ? (
 <Component {...props}/>
) : (
 <Redirect to={{
 pathname: '/signin',
 state: { from: props.location }
 }}/>
)
)}/>
)

export default PrivateRoute

Components to be rendered in this PrivateRoute will only load when the user is
authenticated, which is determined by a call to the isAuthenticated method;
otherwise, the user will be redirected to the Signin component. We load the
components that should have restricted access, such as the user profile component, in
a PrivateRoute. This will ensure that only authenticated users are able to view the
user profile page.

With the backend APIs integrated and the auth management helper methods ready
for use in the components, we can now start building the remaining view components
that utilize these methods and complete the frontend.

Completing the User frontend
The React components that will be described in this section complete the interactive
features we defined for the skeleton by allowing users to view, create, and modify
user data stored in the database with respect to auth restrictions. The components we
will implement are as follows:

Users: To fetch and list all users from the database to the view
Signup: To display a form that allows new users to sign up
Signin: To display a form that allows existing users to sign in
Profile: To display details for a specific user after retrieving from the
database
EditProfile: To display details for a specific user and allow authorized
user to update these details

Adding a React Frontend to Complete MERN Chapter 4

[122]

DeleteUser: To allow an authorized user to delete their account from the
application
Menu: To add a common navigation bar to each view in the application

For each of these components, we will go over their unique aspects, as well as how to
add them to the application in the MainRouter.

The Users component
The Users component in client/user/Users.js shows the names of all the users
that have been fetched from the database and links each name to the user profile. The
following component can be viewed by any visitor to the application and will render
at the '/users' route:

In the component definition, similar to how we implemented the Home component,
we define and export a function component. In this component, we start by
initializing the state with an empty array of users.

mern-skeleton/client/user/Users.js:

export default function Users() {
 ...
 const [users, setUsers] = useState([])
 ...
}

Adding a React Frontend to Complete MERN Chapter 4

[123]

We are using the built-in React hook, useState, to add state to this function
component. By calling this hook, we are essentially declaring a state variable
named users, which can be updated by invoking setUsers, and also set the initial
value of users to [].

Using the built-in useState hook allows us to add state behavior to a function
component in React. Calling it will declare a state variable, similar to using
this.state in class component definitions. The argument that's passed to useState
is the initial value of this variable – in other words, the initial state. Invoking
useState returns the current state and a function that updates the state value, which
is similar to this.setState in a class definition.

With the users state initialized, next, we will use another built-in React hook named
useEffect to fetch a list of users from the backend and update the users value in
the state.

The Effect Hook, useEffect, serves the purpose of
the componentDidMount, componentDidUpdate, and
componentWillUnmount React life cycle methods that we would
otherwise use in React classes. Using this hook in a function
component allows us to perform side effects such as fetching data
from a backend. By default, React runs the effects defined with
useEffect after every render, including the first render. But we can
also instruct the effect to only rerun if something changes in state.
Optionally, we can also define how to clean up after an effect, for
example, to perform an action such as aborting a fetch signal when
the component unmounts to avoid memory leaks.

In our Users component, we use useEffect to call the list method from the api-
user.js helper methods. This will fetch the user list from the backend and load the
user data into the component by updating the state.

mern-skeleton/client/user/Users.js:

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal

 list(signal).then((data) => {
 if (data && data.error) {
 console.log(data.error)
 } else {
 setUsers(data)

Adding a React Frontend to Complete MERN Chapter 4

[124]

 }
 })

 return function cleanup(){
 abortController.abort()
 }
 }, [])

In this effect, we also add a cleanup function to abort the fetch call when the
component unmounts. To associate a signal with the fetch call, we use the
AbortController web API, which allows us to abort DOM requests as needed.

In the second argument of this useEffect hook, we pass an empty array so that this
effect cleanup runs only once upon mounting and unmounting, and not after every
render.

Finally, in the return of the Users function component, we add the actual view
content. The view is composed of Material-UI components such as Paper, List, and
ListItem. These elements are styled with the CSS that is defined and made available
with the makeStyles hook, the same way as in the Home component.

mern-skeleton/client/user/Users.js:

return (
 <Paper className={classes.root} elevation={4}>
 <Typography variant="h6" className={classes.title}>
 All Users
 </Typography>
 <List dense>
 {users.map((item, i) => {
 return <Link to={"/user/" + item._id} key={i}>
 <ListItem button>
 <ListItemAvatar>
 <Avatar>
 <Person/>
 </Avatar>
 </ListItemAvatar>
 <ListItemText primary={item.name}/>
 <ListItemSecondaryAction>
 <IconButton>
 <ArrowForward/>
 </IconButton>
 </ListItemSecondaryAction>
 </ListItem>
 </Link>
 })
 }

Adding a React Frontend to Complete MERN Chapter 4

[125]

 </List>
 </Paper>
)

In this view, to generate each list item, we iterate through the array of users in the
state using the map function. A list item is rendered with an individual user's name
from each item that's accessed per iteration on the users array.

To add this Users component to the React application, we need to update the
MainRouter component with a Route that renders this component at the
'/users' path. Add the Route inside the Switch component after the Home route.

mern-skeleton/client/MainRouter.js:

<Route path="/users" component={Users}/>

To see this view rendered in the browser, you can temporarily add a Link component
to the Home component to be able to route to the Users component:

<Link to="/users">Users</Link>

Clicking on this link after rendering the Home view at the root route in the browser
will display the Users component we implemented in this section. We will
implement the other React components similarly, starting with the Signup
component in the next section.

The Signup component
The Signup component in client/user/Signup.js presents a form with name,
email, and password fields to the user for sign-up at the '/signup' path, as
displayed in the following screenshot:

Adding a React Frontend to Complete MERN Chapter 4

[126]

In the component definition, we initialize the state using the useState hook with
empty input field values, an empty error message, and set the dialog open variable to
false.

mern-skeleton/client/user/Signup.js:

export default function Signup() {
 ...
 const [values, setValues] = useState({
 name: '',
 password: '',
 email: '',
 open: false,
 error: ''
 })
 ...
}

We also define two handler functions to be called when the input values change or
the submit button is clicked. The handleChange function takes the new value that's
entered in the input field and sets it as the state.

mern-skeleton/client/user/Signup.js:

const handleChange = name => event => {
 setValues({ ...values, [name]: event.target.value })
}

The clickSubmit function is called when the form is submitted. It takes the input
values from the state and calls the create fetch method to sign up the user with the
backend. Then, depending on the response from the server, either an error message is
shown or a success dialog is shown.

mern-skeleton/client/user/Signup.js:

 const clickSubmit = () => {
 const user = {
 name: values.name || undefined,
 email: values.email || undefined,
 password: values.password || undefined
 }
 create(user).then((data) => {
 if (data.error) {
 setValues({ ...values, error: data.error})
 } else {
 setValues({ ...values, error: '', open: true})
 }

Adding a React Frontend to Complete MERN Chapter 4

[127]

 })
 }

In the return function, we compose and style the form components in the signup
view using components such as TextField from Material-UI.

mern-skeleton/client/user/Signup.js:

return (
 <div>
 <Card className={classes.card}>
 <CardContent>
 <Typography variant="h6" className={classes.title}>
 Sign Up
 </Typography>
 <TextField id="name" label="Name"
 className={classes.textField}
 value={values.name} onChange={handleChange('name')}
 margin="normal"/>

 <TextField id="email" type="email" label="Email"
 className={classes.textField}
 value={values.email} onChange={handleChange('email')}
 margin="normal"/>

 <TextField id="password" type="password" label="Password"
 className={classes.textField} value={values.password}
 onChange={handleChange('password')} margin="normal"/>

 {
 values.error && (<Typography component="p" color="error">
 <Icon color="error"
className={classes.error}>error</Icon>
 {values.error}</Typography>)
 }
 </CardContent>
 <CardActions>
 <Button color="primary" variant="contained"
onClick={clickSubmit}
 className={classes.submit}>Submit</Button>
 </CardActions>
 </Card>
 </div>
)

Adding a React Frontend to Complete MERN Chapter 4

[128]

This return also contains an error message block, along with a Dialog component
that is conditionally rendered depending on the signup response from the server. If
the server returns an error, the error block that was added below the form, which we
implemented in the preceding code, will render in the view with the corresponding
error message. If the server returns a successful response, a Dialog component will
be rendered instead.

The Dialog component in Signup.js is composed as follows.

mern-skeleton/client/user/Signup.js:

<Dialog open={values.open} disableBackdropClick={true}>
 <DialogTitle>New Account</DialogTitle>
 <DialogContent>
 <DialogContentText>
 New account successfully created.
 </DialogContentText>
 </DialogContent>
 <DialogActions>
 <Link to="/signin">
 <Button color="primary" autoFocus="autoFocus"
 variant="contained">
 Sign In
 </Button>
 </Link>
 </DialogActions>
</Dialog>

On successful account creation, the user is given confirmation and asked to sign in
using this Dialog component, which links to the Signin component, as shown in the
following screenshot:

Adding a React Frontend to Complete MERN Chapter 4

[129]

To add the Signup component to the app, add the following Route to
MainRouter in the Switch component.

mern-skeleton/client/MainRouter.js:

<Route path="/signup" component={Signup}/>

This will render the Signup view at '/signup'. Similarly, we will implement the
Signin component next.

The Signin component
The Signin component in client/auth/Signin.js is also a form with only email
and password fields for signing in. This component is quite similar to
the Signup component and will render at the '/signin' path. The key difference is
in the implementation of redirection after a successful sign-in and storing the received
JWT credentials. The rendered Signin component can be seen in the following
screenshot:

For redirection, we will use the Redirect component from React Router. First,
initialize a redirectToReferrer value to false in the state with the other fields:

mern-skeleton/client/auth/Signin.js:

export default function Signin(props) {
 const [values, setValues] = useState({
 email: '',
 password: '',

Adding a React Frontend to Complete MERN Chapter 4

[130]

 error: '',
 redirectToReferrer: false
 })
}

The Signin function will take props in the argument that contain React Router
variables. We will use these for the redirect. redirectToReferrer should be set
to true when the user successfully signs in after submitting the form and the
received JWT is stored in sessionStorage. To store the JWT and redirect afterward,
we will call the authenticate() method defined in auth-helper.js. This
implementation will go in the clickSubmit() function so that it can be called on
form submit.

mern-skeleton/client/auth/Signin.js:

const clickSubmit = () => {
 const user = {
 email: values.email || undefined,
 password: values.password || undefined
 }

 signin(user).then((data) => {
 if (data.error) {
 setValues({ ...values, error: data.error})
 } else {
 auth.authenticate(data, () => {
 setValues({ ...values, error: '',redirectToReferrer: true})
 })
 }
 })
}

The redirection will happen conditionally based on the redirectToReferrer value
using the Redirect component from React Router. We add the redirect code inside
the function before the return block, as follows.

mern-skeleton/client/auth/Signin.js:

const {from} = props.location.state || {
 from: {
 pathname: '/'
 }
 }
const {redirectToReferrer} = values
if (redirectToReferrer) {
 return (<Redirect to={from}/>)

Adding a React Frontend to Complete MERN Chapter 4

[131]

}

The Redirect component, if rendered, will take the app to the last location that was
received in the props or to the Home component at the root.

The function return code is not displayed here as it is very similar to the code
in Signup. It will contain the same form elements with
just email and password fields, a conditional error message, and the submit button.

To add the Signin component to the app, add the following Route to MainRouter in
the Switch component.

mern-skeleton/client/MainRouter.js:

<Route path="/signin" component={Signin}/>

This will render the Signin component at "/signin" and can be linked in the Home
component, similar to the Signup component, so that it can be viewed in the browser.
Next, we will implement the profile view to display the details of a single user.

The Profile component
The Profile component in client/user/Profile.js shows a single user's
information in the view at the '/user/:userId' path, where the userId parameter
represents the ID of the specific user. The completed Profile will display user
details, and also conditionally show edit/delete options. The following screenshot
shows how the Profile renders when the user currently browsing is viewing
someone else's profile and not their own profile:

This profile information can be fetched from the server if the user is signed in. To
verify this, the component has to provide the JWT credential to the read fetch call;
otherwise, the user should be redirected to the Sign In view.

Adding a React Frontend to Complete MERN Chapter 4

[132]

In the Profile component definition, we need to initialize the state with an empty
user and set redirectToSignin to false.

mern-skeleton/client/user/Profile.js:

export default function Profile({ match }) {
 ...
 const [user, setUser] = useState({})
 const [redirectToSignin, setRedirectToSignin] = useState(false)
 ...
}

We also need to get access to the match props passed by the Route component,
which will contain a :userId parameter value. This can be accessed as
match.params.userId.

The Profile component should fetch user information and render the view with
these details. To implement this, we will use the useEffect hook, as we did in the
Users component.

mern-skeleton/client/user/Profile.js:

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal
 const jwt = auth.isAuthenticated()
 read({
 userId: match.params.userId
 }, {t: jwt.token}, signal).then((data) => {
 if (data && data.error) {
 setRedirectToSignin(true)
 } else {
 setUser(data)
 }
 })

 return function cleanup(){
 abortController.abort()
 }

 }, [match.params.userId])

This effect uses the match.params.userId value and calls the read user fetch
method. Since this method also requires credentials to authorize the signed-in user,
the JWT is retrieved from sessionStorage using the isAuthenticated method
from auth-helper.js, and passed in the call to read.

Adding a React Frontend to Complete MERN Chapter 4

[133]

Once the server responds, either the state is updated with the user information or the
view is redirected to the Sign In view if the current user is not authenticated. We also
add a cleanup function in this effect hook to abort the fetch signal when the
component unmounts.

This effect only needs to rerun when the userId parameter changes in the route, for
example, when the app goes from one profile view to the other. To ensure this effect
reruns when the userId value updates, we will add [match.params.userId] in
the second argument to useEffect.

If the current user is not authenticated, we set up the conditional redirect to the Sign
In view.

mern-skeleton/client/user/Profile.js

if (redirectToSignin) {
 return <Redirect to='/signin'/>
}

The function will return the Profile view with the following elements if the user
who's currently signed in is viewing another user's profile.

mern-skeleton/client/user/Profile.js:

return (
 <Paper className={classes.root} elevation={4}>
 <Typography variant="h6" className={classes.title}>
 Profile
 </Typography>
 <List dense>
 <ListItem>
 <ListItemAvatar>
 <Avatar>
 <Person/>
 </Avatar>
 </ListItemAvatar>
 <ListItemText primary={user.name} secondary={user.email}/>
 </ListItem>
 <Divider/>
 <ListItem>
 <ListItemText primary={"Joined: " + (
 new Date(user.created)).toDateString()}/>
 </ListItem>
 </List>
 </Paper>
)

Adding a React Frontend to Complete MERN Chapter 4

[134]

However, if the user that's currently signed in is viewing their own profile, they will
be able to see edit and delete options in the Profile component, as shown in the
following screenshot:

To implement this feature, in the first ListItem component in the Profile, add a
ListItemSecondaryAction component containing the Edit button and a
DeleteUser component, which will render conditionally based on whether the
current user is viewing their own profile.

mern-skeleton/client/user/Profile.js:

{ auth.isAuthenticated().user && auth.isAuthenticated().user._id ==
user._id &&
 (<ListItemSecondaryAction>
 <Link to={"/user/edit/" + user._id}>
 <IconButton aria-label="Edit" color="primary">
 <Edit/>
 </IconButton>
 </Link>
 <DeleteUser userId={user._id}/>
 </ListItemSecondaryAction>)
}

The Edit button will route to the EditProfile component, while the custom
DeleteUser component will handle the delete operation with the userId passed to
it as a prop.

Adding a React Frontend to Complete MERN Chapter 4

[135]

To add the Profile component to the app, add the Route to MainRouter in the
Switch component.

mern-skeleton/client/MainRouter.js:

<Route path="/user/:userId" component={Profile}/>

To visit this route in the browser and render a Profile with user details, the link
should be composed with a valid user ID in it. In the next section, we will use this
same approach of retrieving single user details and rendering it in the component to
implement the Edit Profile view.

The EditProfile component
The EditProfile component in client/user/EditProfile.js has similarities in
its implementation to both the Signup and Profile components. It allows the
authorized user to edit their own profile information in a form similar to the signup
form, as shown in the following screenshot:

Upon loading at '/user/edit/:userId', the component will fetch the user's
information with their ID after verifying JWT for auth, and then load the form with
the received user information. The form will allow the user to edit and submit only
the changed information to the update fetch call, and, on successful update, redirect
the user to the Profile view with updated information.

Adding a React Frontend to Complete MERN Chapter 4

[136]

EditProfile will load the user information the same way as in the Profile
component, that is, by fetching with read in useEffect using the userId parameter
from match.params. It will gather credentials from auth.isAuthenticated. The
form view will contain the same elements as the Signup component, with the input
values being updated in the state when they change.

On form submit, the component will call the update fetch method with the userId,
JWT and updated user data.

mern-skeleton/client/user/EditProfile.js:

const clickSubmit = () => {
const jwt = auth.isAuthenticated()
 const user = {
 name: values.name || undefined,
 email: values.email || undefined,
 password: values.password || undefined
 }
 update({
 userId: match.params.userId
 }, {
 t: jwt.token
 }, user).then((data) => {
 if (data && data.error) {
 setValues({...values, error: data.error})
 } else {
 setValues({...values, userId: data._id, redirectToProfile:
true})
 }
 })
}

Depending on the response from the server, the user will either see an error message
or be redirected to the updated Profile page using the Redirect component, as
follows.

mern-skeleton/client/user/EditProfile.js:

if (values.redirectToProfile) {
 return (<Redirect to={'/user/' + values.userId}/>)
}

Adding a React Frontend to Complete MERN Chapter 4

[137]

To add the EditProfile component to the app, we will use a PrivateRoute, which
will restrict the component from loading at all if the user is not signed in. The order of
placement in MainRouter will also be important.

mern-skeleton/client/MainRouter.js:

<Switch>
 ...
 <PrivateRoute path="/user/edit/:userId" component={EditProfile}/>
 <Route path="/user/:userId" component={Profile}/>
</Switch>

The route with the '/user/edit/:userId' path needs to be placed before the route
with the '/user/:userId' path, so that the edit path is matched first exclusively in
the Switch component when this route is requested, and not confused with the
Profile route.

With this profile edit view added, we only have the user delete UI implementation
left to complete the user-related frontend.

The DeleteUser component
The DeleteUser component in client/user/DeleteUser.js is basically a button
that we will add to the Profile view that, when clicked, opens a Dialog component
asking the user to confirm the delete action, as shown in the following screenshot:

This component initializes the state with open set to false for the Dialog
component, as well as redirect set to false so that it isn't rendered first.

mern-skeleton/client/user/DeleteUser.js:

export default function DeleteUser(props) {
 ...

Adding a React Frontend to Complete MERN Chapter 4

[138]

 const [open, setOpen] = useState(false)
 const [redirect, setRedirect] = useState(false)
 ...
}

The DeleteUser component will also receive props from the parent component. In
this case, the props will contain the userId that was sent from the Profile
component.

Next, we need some handler methods to open and close the dialog button. The
dialog is opened when the user clicks the delete button.

mern-skeleton/client/user/DeleteUser.js:

const clickButton = () => {
 setOpen(true)
}

The dialog is closed when the user clicks cancel on the dialog.

mern-skeleton/client/user/DeleteUser.js:

const handleRequestClose = () => {
 setOpen(false)
}

The component will have access to the userId that's passed in as a prop from the
Profile component, which is needed to call the remove fetch method, along with
the JWT credentials, after the user confirms the delete action in the dialog.

mern-skeleton/client/user/DeleteUser.js:

const deleteAccount = () => {
const jwt = auth.isAuthenticated()
 remove({
 userId: props.userId
 }, {t: jwt.token}).then((data) => {
 if (data && data.error) {
 console.log(data.error)
 } else {
 auth.clearJWT(() => console.log('deleted'))
 setRedirect(true)
 }
 })
}

Adding a React Frontend to Complete MERN Chapter 4

[139]

On confirmation, the deleteAccount function calls the remove fetch method with
the userId from props and JWT from isAuthenticated. On successful deletion, the
user will be signed out and redirected to the Home view. The Redirect component
from React Router is used to redirect the current user to the Home view, as follows:

if (redirect) {
 return <Redirect to='/'/>
}

The component function returns the DeleteUser component elements, including a
DeleteIcon button and the confirmation Dialog.

mern-skeleton/client/user/DeleteUser.js:

return (
 <IconButton aria-label="Delete"
 onClick={clickButton} color="secondary">
 <DeleteIcon/>
 </IconButton>

 <Dialog open={open} onClose={handleRequestClose}>
 <DialogTitle>{"Delete Account"}</DialogTitle>
 <DialogContent>
 <DialogContentText>
 Confirm to delete your account.
 </DialogContentText>
 </DialogContent>
 <DialogActions>
 <Button onClick={handleRequestClose} color="primary">
 Cancel
 </Button>
 <Button onClick={deleteAccount}
 color="secondary" autoFocus="autoFocus">
 Confirm
 </Button>
 </DialogActions>
 </Dialog>
)

DeleteUser takes the userId as a prop to be used in the delete fetch call, so we
need to add a required prop validation check for this React component. We'll do this
next.

Adding a React Frontend to Complete MERN Chapter 4

[140]

Validating props with PropTypes
To validate the required injection of userId as a prop to the component, we'll add
the PropTypes requirement validator to the defined component.

mern-skeleton/client/user/DeleteUser.js:

DeleteUser.propTypes = {
 userId: PropTypes.string.isRequired
}

Since we are using the DeleteUser component in the Profile component, it gets
added to the application view when Profile is added in MainRouter.

With the delete user UI added, we now have a frontend that contains all the React
component views in order to complete the skeleton application features. But, we still
need a common navigation UI to link all these views together and make each view
easy to access for the frontend user. In the next section, we will implement this
navigation menu component.

The Menu component
The Menu component will function as a navigation bar across the frontend application
by providing links to all the available views, and also by indicating the user's current
location in the application.

To implement these navigation bar functionalities, we will use the
HOC withRouter from React Router to get access to the history object's properties.
The following code in the Menu component adds just the title, the Home icon linked to
the root route, and the Users button, which is linked to the '/users' route.

mern-skeleton/client/core/Menu.js:

const Menu = withRouter(({history}) => (
 <AppBar position="static">
 <Toolbar>
 <Typography variant="h6" color="inherit">
 MERN Skeleton
 </Typography>
 <Link to="/">
 <IconButton aria-label="Home" style={isActive(history, "/")}>
 <HomeIcon/>
 </IconButton>
 </Link>

Adding a React Frontend to Complete MERN Chapter 4

[141]

 <Link to="/users">
 <Button style={isActive(history, "/users")}>Users</Button>
 </Link>
 </Toolbar>
 </AppBar>))

To indicate the current location of the application on the Menu, we will highlight the
link that matches the current location path by changing the color conditionally.

mern-skeleton/client/core/Menu.js:

const isActive = (history, path) => {
 if (history.location.pathname == path)
 return {color: '#ff4081'}
 else
 return {color: '#ffffff'}
}

The isActive function is used to apply color to the buttons in the Menu, as follows:

style={isActive(history, "/users")}

The remaining links such as SIGN IN, SIGN UP, MY PROFILE, and SIGN OUT will
show up on the Menu based on whether the user is signed in or not. The following
screenshot shows how the Menu renders when the user is not signed in:

For example, the links to SIGN UP and SIGN IN should only appear on the menu
when the user is not signed in. Therefore, we need to add it to the Menu component
after the Users button with a condition.

mern-skeleton/client/core/Menu.js:

{
 !auth.isAuthenticated() && (
 <Link to="/signup">
 <Button style={isActive(history, "/signup")}> Sign Up </Button>
 </Link>
 <Link to="/signin">
 <Button style={isActive(history, "/signin")}> Sign In </Button>
 </Link>
)
}

Adding a React Frontend to Complete MERN Chapter 4

[142]

Similarly, the link to MY PROFILE and the SIGN OUT button should only appear on
the menu when the user is signed in, and should be added to the Menu component
with the following condition check.

mern-skeleton/client/core/Menu.js:

{
 auth.isAuthenticated() && (
 <Link to={"/user/" + auth.isAuthenticated().user._id}>
 <Button style={isActive(history, "/user/"
 + auth.isAuthenticated().user._id)}>
 My Profile
 </Button>
 </Link>
 <Button color="inherit"
 onClick={() => { auth.clearJWT(() => history.push('/')) }}>
 Sign out
 </Button>
)
}

The MY PROFILE button uses the signed-in user's information to link to the user's
own profile, while the SIGN OUT button calls the auth.clearJWT() method when
it's clicked. When the user is signed in, the Menu will look as follows:

To have the Menu navigation bar present in all the views, we need to add it to the
MainRouter before all the other routes, and outside the Switch component.

mern-skeleton/client/MainRouter.js:

 <Menu/>
 <Switch>
 …
 </Switch>

This will make the Menu component render on top of all the other components when
these components are accessed at their respective routes.

Adding a React Frontend to Complete MERN Chapter 4

[143]

The skeleton frontend is now complete and has all necessary components to allow a
user to sign up, view, and modify user data on the backend while considering
authentication and authorization restrictions. However, it is still not possible to visit
the frontend routes directly in the browser address bar; these can only be accessed
when they're linked from within the frontend view. To enable this functionality in the
skeleton application, we need to implement basic server-side rendering.

Implementing basic server-side rendering
Currently, when the React Router routes or pathnames are directly entered in the
browser address bar or when a view that is not at the root path is refreshed, the URL
does not work. This happens because the server does not recognize the React Router
routes we defined in the frontend. We have to implement basic server-side rendering
on the backend so that the server is able to respond when it receives a request to a
frontend route.

To render the relevant React components properly when the server receives requests
to the frontend routes, we need to initially generate the React components on the
server-side with regard to the React Router and Material-UI components, before the
client-side JS is ready to take over the rendering.

The basic idea behind server-side rendering React apps is to use the
renderToString method from react-dom to convert the root React component into
a markup string. Then, we can attach it to the template that the server renders when it
receives a request.

In express.js, we will replace the code that returns template.js in response to
the GET request for '/' with code that, upon receiving any incoming GET request,
generates some server-side rendered markup and the CSS of the relevant React
component tree, before adding this markup and CSS to the template. This updated
code will achieve the following:

app.get('*', (req, res) => {

 // 1. Generate CSS styles using Material-UI's ServerStyleSheets
 // 2. Use renderToString to generate markup which renders
 components specific to the route requested
 // 3. Return template with markup and CSS styles in the response
})

In the following sections, we will look at the implementation of the steps outlined in
the preceding code block, and also discuss how to prepare the frontend so that it
accepts and handles this server-rendered code.

Adding a React Frontend to Complete MERN Chapter 4

[144]

Modules for server-side rendering
To implement basic server-side rendering, we will need to import the following
React, React Router, and Material-UI-specific modules into the server code. In our
code structure, the following modules will be imported into server/express.js:

React modules: The following modules are required to render the React
components and use renderToString:

import React from 'react'
import ReactDOMServer from 'react-dom/server'

Router modules: StaticRouter is a stateless router that takes the
requested URL to match with the frontend route which was declared in the
MainRouter component. The MainRouter is the root component in our
frontend.

import StaticRouter from 'react-router-dom/StaticRouter'
import MainRouter from './../client/MainRouter'

Material-UI modules and the custom theme: The following modules will
help generate the CSS styles for the frontend components based on the
stylings and Material-UI theme that are used on the frontend:

import { ServerStyleSheets, ThemeProvider } from '@material-
ui/styles'
import theme from './../client/theme'

With these modules, we can prepare, generate, and return server-side rendered
frontend code, as we will discuss next.

Generating CSS and markup
To generate the CSS and markup representing the React frontend views on the server-
side, we will use Material-UI's ServerStyleSheets and React's renderToString.

On every request received by the Express app, we will create a new
ServerStyleSheets instance. Then, we will render the relevant React tree with the
server-side collector in a call to renderToString, which ultimately returns the
associated markup or HTML string version of the React view that is to be shown to
the user in response to the requested URL.

Adding a React Frontend to Complete MERN Chapter 4

[145]

The following code will be executed on every GET request that's received by the
Express app.

mern-skeleton/server/express.js:

const sheets = new ServerStyleSheets()
const context = {}
const markup = ReactDOMServer.renderToString(
 sheets.collect(
 <StaticRouter location={req.url} context={context}>
 <ThemeProvider theme={theme}>
 <MainRouter />
 </ThemeProvider>
 </StaticRouter>
)
)

While rendering the React tree, the client app's root component, MainRouter, is
wrapped with the Material-UI ThemeProvider to provide the styling props that are
needed by the MainRouter child components. The stateless StaticRouter is used
here instead of the BrowserRouter that's used on the client-side in order to wrap
MainRouter and provide the routing props that are used for implementing the client-
side components.

Based on these values, such as the requested location route and theme that are
passed in as props to the wrapping components, renderToString will return the
markup containing the relevant view.

Sending a template with markup and CSS
Once the markup has been generated, we need to check if there was a redirect
rendered in the component to be sent in the markup. If there was no redirect, then we
get the CSS string from sheets using sheets.toString, and, in the response, we
send the Template back with the markup and CSS injected, as shown in the
following code.

mern-skeleton/server/express.js:

if (context.url) {
 return res.redirect(303, context.url)
}
const css = sheets.toString()
res.status(200).send(Template({
 markup: markup,

Adding a React Frontend to Complete MERN Chapter 4

[146]

 css: css
}))

An example of a case where redirect is rendered in the component is when we're
trying to access a PrivateRoute via a server-side render. As the server-side cannot
access the auth token from the browser's sessionStorage, the redirect in
PrivateRoute will render. The context.url value , in this case, will have the
'/signin' route, and hence, instead of trying to render the PrivateRoute
component, it will redirect to the '/signin' route.

This completes the code we need to add to the server-side to enable the basic server-
side rendering of the React views. Next, we need to update the frontend so it is able to
integrate and render this server-generated code.

Updating template.js
The markup and CSS that we generated on the server must be added to the
template.js HTML code for it to be loaded when the server renders the template.

mern-skeleton/template.js:

export default ({markup, css}) => {
 return `...
 <div id="root">${markup}</div>
 <style id="jss-server-side">${css}</style>
 ...`
}

This will load the server-generated code in the browser before the frontend script is
ready to take over. In the next section, we will learn how the frontend script needs to
account for this takeover from server-rendered code.

Updating App.js
Once the code that's been rendered on the server-side reaches the browser and the
frontend script takes over, we need to remove the server-side injected CSS when the
root React component mounts, using the useEffect hook.

mern-skeleton/client/App.js:

React.useEffect(() => {
 const jssStyles = document.querySelector('#jss-server-side')

Adding a React Frontend to Complete MERN Chapter 4

[147]

 if (jssStyles) {
 jssStyles.parentNode.removeChild(jssStyles)
 }
}, [])

This will give back full control over rendering the React app to the client-side. To
ensure this transfer happens efficiently, we need to update how the ReactDOM
renders the views.

Hydrate instead of render
Now that the React components will be rendered on the server-side, we can update
the main.js code so that it uses ReactDOM.hydrate() instead of
ReactDOM.render():

import React from 'react'
import { hydrate } from 'react-dom'
import App from './App'

hydrate(<App/>, document.getElementById('root'))

The hydrate function hydrates a container that already has HTML content rendered
by ReactDOMServer. This means the server-rendered markup is preserved and only
event handlers are attached when React takes over in the browser, allowing the initial
load performance to be better.

With basic server-side rendering implemented, direct requests to the frontend routes
from the browser address bar can now be handled properly by the server, making it
possible to bookmark the React frontend views.

The skeleton MERN application that we've developed in this chapter is now a
completely functioning MERN web application with basic user features. We can
extend the code in this skeleton to add a variety of features for different applications.

Summary
In this chapter, we completed the MERN skeleton application by adding a working
React frontend, including frontend routing and basic server-side rendering of the
React views.

Adding a React Frontend to Complete MERN Chapter 4

[148]

We started off by updating the development flow so that it included client-side code
bundling for the React views. We updated the configuration for Webpack and Babel
to compile the React code and discussed how to load the configured Webpack
middleware from the Express app to initiate server-side and client-side code
compilation from one place during development.

With the development flow updated, and before building out the frontend, we added
the relevant React dependencies, along with React Router for frontend routing and
Material-UI, to use their existing components in the skeleton app's user interface.

Then, we implemented the top-level root React components and integrated React
Router, which allowed us to add client-side routes for navigation. Using these routes,
we loaded the custom React components that we developed using Material-UI
components to make up the skeleton application's user interface.

To make these React views dynamic and interactive with data fetched from the
backend, we used the Fetch API to connect to the backend user APIs. Then, we
incorporated authentication and authorization on the frontend views. We did this
using sessionStorage, which stores user-specific details, and JWT fetched from the
server on successful sign-in, as well as by limiting access to certain views using a
PrivateRoute component.

Finally, we modified the server code so that we could implement basic server-side
rendering, which allows us to load the frontend routes directly in the browser with
server-side rendered markup after the server recognizes that the incoming request is
actually for a React route.

Now, you should be able to implement and integrate a React-based frontend that
incorporates client-side routing and auth management with a standalone
server application.

In the next chapter, we will use the concepts we've learned in this chapter to extend
the skeleton application code so that we can build a fully-featured social media
application.

5
Growing the Skeleton into a

Social Media Application
Social media is an integral part of the web these days, and many of the user-centric
web applications we build end up requiring a social component down the line to
drive user engagement.

For our first real-world MERN application, we will modify the MERN skeleton
application we developed in Chapter 3, Building a Backend with MongoDB, Express,
and Node, and Chapter 4, Adding a React Frontend to Complete MERN, to build a simple
social media application in this chapter. While doing this, you will learn how to
extend the integration of the MERN stack technologies and add new features to grow
your own full-stack web applications.

In this chapter, we will go over the following topics:

Introducing MERN Social
Updating the user profile
Following users in MERN Social
Posting messages with photos
Implementing interactions on posts

Growing the Skeleton into a Social Media Application Chapter 5

[150]

Introducing MERN Social
MERN Social is a social media application with rudimentary features inspired by
existing social media platforms such as Facebook and Twitter. The main purpose of
this application is to demonstrate how to use the MERN stack technologies to
implement features that allow users to connect or follow each other, and interact over
shared content. While building out MERN Social in this chapter, we will go over the
implementation of the following social media-flavored features:

User profile with a description and a photo
Users following each other
Who to follow suggestions
Posting messages with photos
Newsfeed with posts from followed users
Listing posts by user
Liking posts
Commenting on posts

You can extend these implementations further, as desired, for more complex features.
The MERN Social home page looks as follows:

Growing the Skeleton into a Social Media Application Chapter 5

[151]

The code for the complete MERN Social application is available on
GitHub at https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Full- ​Stack-
React- ​Projects- ​Second- ​Edition/ ​tree/ ​master/ ​Chapter05/ ​mern-
social. You can clone this code and run the application as you go
through the code explanations for the rest of this chapter.

https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter05/mern-social

Growing the Skeleton into a Social Media Application Chapter 5

[152]

The views needed for the MERN Social application will be developed by extending
and modifying the existing React components in the MERN skeleton application. The
following component tree shows all the custom React components that make up the
MERN Social frontend and also exposes the composition structure we will use to
build out the views in the rest of this chapter:

Besides updating the existing components, we will also add new custom components
to compose views, including a Newsfeed view where the user can create a new post
and also browse a list of all the posts from people they follow on MERN Social. In the
next section, we will begin by updating the user profile to demonstrate how to upload
a profile photo and add a short bio for each user on the platform.

Growing the Skeleton into a Social Media Application Chapter 5

[153]

Updating the user profile
The existing skeleton application only has support for a user's name, email, and
password. But in MERN Social, we will allow users to add a description about
themselves, as well as upload a profile photo while editing the profile after signing
up, as shown in the following screenshot:

In order to implement this feature update, we need to modify both the user backend
and frontend. In the following sections, we will learn how to update the user model
and user update API in the backend, and then the user profile and user profile edit
form views in the frontend to add a short description and a profile photo for users in
MERN Social.

Adding an about description
To store the short description that's entered in the about field by a user, we need to
add an about field to the user model in server/models/user.model.js:

about: {
 type: String,
 trim: true
 }

Growing the Skeleton into a Social Media Application Chapter 5

[154]

Then, to get the description as input from the user, we need to add a multiline
TextField to the EditProfile form and handle the value change the same way we
did for the user's name input.

mern-social/client/user/EditProfile.js:

 <TextField
 id="multiline-flexible"
 label="About"
 multiline
 rows="2"
 value={values.about}
 onChange={handleChange('about')}
 />

Finally, to show the description text that was added to the about field on the user
profile page, we can add it to the existing profile view.

mern-social/client/user/Profile.js:

<ListItem> <ListItemText primary={this.state.user.about}/> </ListItem>

With this modification to the user feature in the MERN skeleton code, users can now
add and update a description about themselves to be displayed on their profiles.
Next, we will add the ability to upload a photo to complete the user profile.

Uploading a profile photo
Allowing a user to upload a profile photo will require that we store the uploaded
image file and retrieve it on request to load it in the view. There are multiple ways of
implementing this upload feature while considering the different file storage options:

Server filesystem: Upload and save files to a server filesystem and store
the URL in MongoDB.
External file storage: Save files to external storage such as Amazon S3 and
store the URL in MongoDB.
Store as data in MongoDB: Save files that are small in size (less than 16
MB) to MongoDB as data of the Buffer type.

For MERN Social, we will assume that the photo files that are uploaded by the user
will be small in size and demonstrate how to store these files in MongoDB for the
profile photo upload feature. In Chapter 8, Extending the Marketplace for Orders and
Payments, we will discuss how to store larger files in MongoDB using GridFS.

Growing the Skeleton into a Social Media Application Chapter 5

[155]

To implement this photo upload feature, in the following sections, we will do the
following:

Update the user model to store the photo.
Integrate updated frontend views to upload the photo from the client- side.
Modify the user update controller in the backend to process the uploaded
photo.

Updating the user model to store a photo in
MongoDB
In order to store the uploaded profile photo directly in the database, we will update
the user model to add a photo field that stores the file as data of the Buffer type,
along with the file's contentType.

mern-social/server/models/user.model.js:

photo: {
 data: Buffer,
 contentType: String
}

An image file that's uploaded by the user from the client- side will be converted into
binary data and stored in this photo field for documents in the Users collection in
MongoDB. Next, we will look at how to upload the file from the frontend.

Uploading a photo from the edit form
Users will be able to upload an image file from their local files when editing the
profile. In order to implement this interaction, we will update the EditProfile
component in client/user/EditProfile.js with an upload photo option and
then attach the user selected file in the form data that's submitted to the server. We
will discuss this in the following sections.

Growing the Skeleton into a Social Media Application Chapter 5

[156]

File input with Material-UI
We will utilize the HTML5 file input type to let the user select an image from their
local files. The file input will return the filename in the change event when the user
selects a file. We will add the file input element to the edit profile form as follows:

mern-social/client/user/EditProfile.js:

<input accept="image/*" type="file"
 onChange={handleChange('photo')}
 style={{display:'none'}}
 id="icon-button-file" />

To integrate this file input element with Material-UI components, we apply
display:none to hide the input element from the view, then add a Material-UI
button inside the label for this file input. This way, the view displays the Material-UI
button instead of the HTML5 file input element. The label is added as follows:

mern-social/client/user/EditProfile.js:

<label htmlFor="icon-button-file">
 <Button variant="contained" color="default" component="span">
 Upload <FileUpload/>
 </Button>
</label>

When the Button's component prop is set to span, the Button component renders as
a span element inside the label element. A click on the Upload span or label is
registered by the file input with the same ID as the label, and as a result, the file select
dialog is opened. Once the user selects a file, we can set it to state in the call
to handleChange(...) and display the name in the view, as shown in the following
code.

mern-social/client/user/EditProfile.js:

 {values.photo ? values.photo.name : ''}

This way, the user will see the name of the file they are trying to upload as the profile
photo. With the file selected for uploading, next, we have to attach and send this file
with the request to the server to update the user information in the database.

Growing the Skeleton into a Social Media Application Chapter 5

[157]

Form submission with the file attached
Uploading files to the server with a form requires a multipart form submission. This
is in contrast to the stringified object we sent in previous implementations of fetch.
We will modify the EditProfile component so that it uses the FormData API to
store the form data in the format needed for encoding in the multipart/form-
data type.

You can learn more about the FormData API
at developer.mozilla.org/en-US/docs/Web/API/FormData.

First, we will update the input handleChange function so that we can store input
values for both the text fields and the file input, as shown in the following code.

mern-social/client/user/EditProfile.js:

const handleChange = name => event => {
 const value = name === 'photo'
 ? event.target.files[0]
 : event.target.value
 setValues({...values, [name]: value })
}

Then, on form submission, we need to initialize FormData and append the values
from the fields that were updated, as shown here.

mern-social/client/user/EditProfile.js:

const clickSubmit = () => {
 let userData = new FormData()
 values.name && userData.append('name', values.name)
 values.email && userData.append('email', values.email)
 values.passoword && userData.append('passoword', values.passoword)
 values.about && userData.append('about', values.about)
 values.photo && userData.append('photo', values.photo)
 ...
}

After appending all the fields and values to it, userData is sent with the fetch API
call to update the user, as shown in the following code.

mern-social/client/user/EditProfile.js:

update({

https://developer.mozilla.org/en-US/docs/Web/API/FormData

Growing the Skeleton into a Social Media Application Chapter 5

[158]

 userId: match.params.userId
 }, {
 t: jwt.token
 }, userData).then((data) => {
 if (data && data.error) {
 setValues({...values, error: data.error})
 } else {
 setValues({...values, 'redirectToProfile': true})
 }
})

Since the content type of the data that's sent to the server is no longer
'application/json', we also need to modify the update fetch method in api-
user.js to remove Content-Type from the headers in the fetch call, as shown
here.

mern-social/client/user/api-user.js:

const update = async (params, credentials, user) => {
 try {
 let response = await fetch('/api/users/' + params.userId, {
 method: 'PUT',
 headers: {
 'Accept': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: user
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }}

Now, if the user chooses to upload a profile photo when editing the profile, the server
will receive a request with the file attached, along with the other field values. Next,
we need to modify the server-side code to be able to process this request.

Processing a request containing a file upload
On the server, to process the request to the update API that may now contain a file,
we will use the formidable Node module. Run the following command from the
command line to install formidable:

yarn add formidable

Growing the Skeleton into a Social Media Application Chapter 5

[159]

The formidable will allow the server to read the multipart form data and give us
access to the fields and the file, if there are any. If there is a file, formidable will
store it temporarily in the filesystem. We will read it from the filesystem using the fs
module, which will retrieve the file type and data, and store it in the photo field in
the user model. The formidable code will go in the update controller
in user.controller.js, as follows.

mern-social/server/controllers/user.controller.js:

import formidable from 'formidable'
import fs from 'fs'
const update = async (req, res) => {
 let form = new formidable.IncomingForm()
 form.keepExtensions = true
 form.parse(req, async (err, fields, files) => {
 if (err) {
 return res.status(400).json({
 error: "Photo could not be uploaded"
 })
 }
 let user = req.profile
 user = extend(user, fields)
 user.updated = Date.now()
 if(files.photo){
 user.photo.data = fs.readFileSync(files.photo.path)
 user.photo.contentType = files.photo.type
 }
 try {
 await user.save()
 user.hashed_password = undefined
 user.salt = undefined
 res.json(user)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
 })
}

Growing the Skeleton into a Social Media Application Chapter 5

[160]

This will store the uploaded file as data in the database. Next, we will set up file
retrieval so that we can access and display the photo that's uploaded by the user in
the frontend views.

Retrieving a profile photo
The simplest option to retrieve the image stored in the database and then show it in a
view is to set up a route that will fetch the data and return it as an image file to the
requesting client. In this section, we will learn how to set up this route to expose a
photo URL, as well as how to use this URL to display the photo in the frontend views.

Profile photo URL
We will set up a route to the photo stored in the database for each user, and also add
another route that will fetch a default photo if the given user did not upload a profile
photo. These routes will be defined as follows.

mern-social/server/routes/user.routes.js:

router.route('/api/users/photo/:userId')
 .get(userCtrl.photo, userCtrl.defaultPhoto)
router.route('/api/users/defaultphoto')
 .get(userCtrl.defaultPhoto)

We will look for the photo in the photo controller method and, if found, send it in the
response to the request at the photo route; otherwise, we'll call next() to return the
default photo, as shown in the following code.

mern-social/server/controllers/user.controller.js:

const photo = (req, res, next) => {
 if(req.profile.photo.data){
 res.set("Content-Type", req.profile.photo.contentType)
 return res.send(req.profile.photo.data)
 }
 next()
}

The default photo is retrieved and sent from the server's file system, as shown here.

mern-social/server/controllers/user.controller.js:

import profileImage from './../../client/assets/images/profile-
pic.png'

Growing the Skeleton into a Social Media Application Chapter 5

[161]

const defaultPhoto = (req, res) => {
 return res.sendFile(process.cwd()+profileImage)
}

We can use the route defined here to display the photo in the views, as described in
the next section.

Showing a photo in a view
With the photo URL routes set up to retrieve the photo, we can simply use these in
the img element's src attribute to load the photo in the view. For example, in the
Profile component, we use the user ID from the values in the state to construct the
photo URL, as shown in the following code.

mern-social/client/user/Profile.js:

const photoUrl = values.user._id
 ? `/api/users/photo/${values.user._id}?${new Date().getTime()}`
 : '/api/users/defaultphoto'

To ensure the img element reloads in the Profile view after the photo is updated,
we have to add a time value to the photo URL to bypass the browser's default image
caching behavior.

Then, we can set the photoUrl to the Material-UI Avatar component, which renders
the linked image in the view:

 <Avatar src={photoUrl}/>

The updated user profile in MERN Social can now display a user uploaded profile
photo and an about description, as shown in the following screenshot:

Growing the Skeleton into a Social Media Application Chapter 5

[162]

We have successfully updated the MERN skeleton application code to let users
upload a profile photo and add a short bio description to their profiles. In the next
section, we will update this further and implement the social media flavored feature
that allows users to follow each other.

Following users in MERN Social
In MERN Social, users will be able to follow each other. Each user will have a list of
followers and a list of people they follow. Users will also be able to see a list of users
they can follow; in other words, the users in MERN Social they are not already
following. In the following sections, we will learn how to update the full-stack code to
implement these features.

Following and unfollowing
In order to keep track of which user is following which other users, we will have to
maintain two lists for each user. When one user follows or unfollows another user, we
will update one's following list and the other's followers list. First, we will update
the backend to store and update these lists, then modify the frontend views to allow
users to perform follow and unfollow actions.

Updating the user model
To store the list of following and followers in the database, we will need to
update the user model with two arrays of user references, as shown in the following
code.

mern-social/server/models/user.model.js:

following: [{type: mongoose.Schema.ObjectId, ref: 'User'}],
followers: [{type: mongoose.Schema.ObjectId, ref: 'User'}]

These references will point to the users in the collection being followed by or
following the given user. Next, we will update the user controllers to ensure the
details of the users that are referenced in these lists are returned in a response to
client-side requests.

Growing the Skeleton into a Social Media Application Chapter 5

[163]

Updating the userByID controller method
When a single user is retrieved from the backend, we want the user object to include
the names and IDs of the users referenced in the following and followers arrays.
To retrieve these details, we need to update the userByID controller method so that it
populates the returned user object, as shown in the highlighted code.

mern-social/server/controllers/user.controller.js:

const userByID = async (req, res, next, id) => {
 try {
 let user = await User.findById(id)
 .populate('following', '_id name')
 .populate('followers', '_id name')
 .exec()
 if (!user)
 return res.status('400').json({
 error: "User not found"
 })
 req.profile = user
 next()
 } catch (err) {
 return res.status('400').json({
 error: "Could not retrieve user"
 })
 }
}

We use the Mongoose populate method to specify that the user object that's
returned from the query should contain the name and ID of the users referenced in
the following and followers lists. This will give us the names and IDs of the user
references in the followers and following lists when we fetch the user with the
read API call.

With the user model updated, we are ready to add API endpoints that will update
these lists to either add or remove users from the lists, as discussed in the next
section.

Adding APIs to follow and unfollow
When a user follows or unfollows another user from the view, both users' records in
the database will be updated in response to the follow or unfollow requests.

Growing the Skeleton into a Social Media Application Chapter 5

[164]

Set up follow and unfollow routes in user.routes.js as follows.

mern-social/server/routes/user.routes.js:

router.route('/api/users/follow')
 .put(authCtrl.requireSignin,
 userCtrl.addFollowing,
 userCtrl.addFollower)
router.route('/api/users/unfollow')
 .put(authCtrl.requireSignin,
 userCtrl.removeFollowing,
 userCtrl.removeFollower)

The addFollowing controller method in the user controller will update the
following array for the current user by pushing the followed user's reference into
the array, as shown in the following code.

mern-social/server/controllers/user.controller.js:

const addFollowing = async (req, res, next) => {
 try{
 await User.findByIdAndUpdate(req.body.userId,
 {$push: {following: req.body.followId}})
 next()
 }catch(err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

On successful update of the following array, next() is invoked, and as a result,
the addFollower method is executed to add the current user's reference to the
followed user's followers array. The addFollower method is defined as follows.

mern-social/server/controllers/user.controller.js:

const addFollower = async (req, res) => {
 try{
 let result = await User.findByIdAndUpdate(req.body.followId,
 {$push: {followers: req.body.userId}},
 {new: true})
 .populate('following', '_id name')
 .populate('followers', '_id name')
 .exec()
 result.hashed_password = undefined
 result.salt = undefined

Growing the Skeleton into a Social Media Application Chapter 5

[165]

 res.json(result)
 }catch(err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

For unfollowing, the implementation is similar. The removeFollowing and
removeFollower controller methods update the respective 'following' and
'followers' arrays by removing the user references with $pull instead of
$push. removeFollowing and removeFollower will look as follows.

mern-social/server/controllers/user.controller.js:

const removeFollowing = async (req, res, next) => {
 try{
 await User.findByIdAndUpdate(req.body.userId,
 {$pull: {following: req.body.unfollowId}})
 next()
 }catch(err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}
const removeFollower = async (req, res) => {
 try{
 let result = await User.findByIdAndUpdate(req.body.unfollowId,
 {$pull: {followers: req.body.userId}},
 {new: true})
 .populate('following', '_id name')
 .populate('followers', '_id name')
 .exec()
 result.hashed_password = undefined
 result.salt = undefined
 res.json(result)
 }catch(err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The user backend on the server-side is ready for the follow and unfollow features.
Next, we will update the frontend to utilize these new backend APIs and complete
this feature.

Growing the Skeleton into a Social Media Application Chapter 5

[166]

Accessing the follow and unfollow APIs in views
In order to access these API calls in the views, we will update api-user.js with
the follow and unfollow fetch methods. The follow and unfollow methods will
be similar, making calls to the respective routes with the current user's ID and
credentials, and the followed or unfollowed user's ID. The follow method will be as
follows.

mern-social/client/user/api-user.js:

const follow = async (params, credentials, followId) => {
 try {
 let response = await fetch('/api/users/follow/', {
 method: 'PUT',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: JSON.stringify({userId:params.userId, followId: followId})
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

The unfollow fetch method is similar; it takes the unfollowed user's ID and calls the
unfollow API, as shown in the following code.

mern-social/client/user/api-user.js:

const unfollow = async (params, credentials, unfollowId) => {
 try {
 let response = await fetch('/api/users/unfollow/', {
 method: 'PUT',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: JSON.stringify({userId:params.userId, unfollowId:
unfollowId})
 })
 return await response.json()
 } catch(err) {
 console.log(err)

Growing the Skeleton into a Social Media Application Chapter 5

[167]

 }
}

With the API fetch code implemented, we can use these two methods to integrate the
backend updates in the views, as discussed in the next section, which will allow users
to follow or unfollow another user in the application.

Follow and unfollow buttons
The button that will allow a user to follow or unfollow another user will appear
conditionally, depending on whether the user is already followed or not by the
current user, as shown in the following screenshot:

In the following sections, we will add this button in a separate React component,
integrate it with the existing user profile view, and connect it to the follow and
unfollow fetch methods.

The FollowProfileButton component
We will create a separate component for the follow button called
FollowProfileButton, which will be added to the Profile component. This
component will show the Follow or Unfollow button, depending on whether the
current user is already a follower of the user in the profile. The
FollowProfileButton component will look as follows.

mern-social/client/user/FollowProfileButton.js:

export default function FollowProfileButton (props) {
 const followClick = () => {
 props.onButtonClick(follow)
 }
 const unfollowClick = () => {
 props.onButtonClick(unfollow)
 }
 return (<div>
 { props.following
 ? (<Button variant="contained" color="secondary"
 onClick={unfollowClick}>Unfollow</Button>)
 : (<Button variant="contained" color="primary"
 onClick={followClick}>Follow</Button>)

Growing the Skeleton into a Social Media Application Chapter 5

[168]

 }
 </div>)
}
FollowProfileButton.propTypes = {
 following: PropTypes.bool.isRequired,
 onButtonClick: PropTypes.func.isRequired
}

When FollowProfileButton is added to the profile, the following value will be
determined and sent from the Profile component as a prop to
FollowProfileButton, along with the click handler that takes the specific follow
or unfollow fetch API to be called as a parameter. The resulting profile views will
look as follows:

In order to integrate this FollowProfileButton component with the profile view,
we need to update the existing Profile component, as discussed next.

Updating the Profile component
In the Profile view, FollowProfileButton should only be shown when the user
views the profile of other users, so we need to modify the condition for showing
the Edit and Delete buttons when viewing a profile, as follows:

{auth.isAuthenticated().user &&
 auth.isAuthenticated().user._id == values.user._id
 ? (edit and delete buttons)
 : (follow button)
}

In the Profile component, after the user data is successfully fetched in useEffect,
we will check whether the signed-in user is already following the user in the profile
or not and set the following value to the respective state, as shown in the following
code.

Growing the Skeleton into a Social Media Application Chapter 5

[169]

mern-social/client/user/Profile.js:

let following = checkFollow(data)
setValues({...values, user: data, following: following})

To determine the value to set in following, the checkFollow method will check if
the signed-in user exists in the fetched user's followers list, then return match if
found; otherwise, it will return undefined if a match is not found.
The checkFollow method is defined as follows.

mern-social/client/user/Profile.js:

const checkFollow = (user) => {
 const match = user.followers.some((follower)=> {
 return follower._id == jwt.user._id
 })
 return match
}

The Profile component will also define the click handler for
FollowProfileButton so that the state of the Profile can be updated when the
follow or unfollow action completes, as shown in the following code.

mern-social/client/user/Profile.js:

 const clickFollowButton = (callApi) => {
 callApi({
 userId: jwt.user._id
 }, {
 t: jwt.token
 }, values.user._id).then((data) => {
 if (data.error) {
 setValues({...values, error: data.error})
 } else {
 setValues({...values, user: data, following:
!values.following})
 }
 })
 }

Growing the Skeleton into a Social Media Application Chapter 5

[170]

The click handler definition takes the fetch API call as a parameter and is passed as a
prop to FollowProfileButton, along with the following value when it is added
to the Profile view, as follows.

mern-social/client/user/Profile.js:

<FollowProfileButton following={this.state.following}
onButtonClick={this.clickFollowButton}/>

This will load FollowProfileButton into the profile view, with all the necessary
conditions accounted for, and provide the current user the option to follow or
unfollow other users in the MERN Social application. Next, we will extend this
feature to allow users to view the list of followings or followers in the user profile
view.

Listing followings and followers
In order to give users easy access to the users they are following and the users who
are following them on MERN Social, we will add these lists to their profile views. In
each user's profile, we will add a list of their followers and the people they are
following, as shown in the following screenshot:

The details of the users referenced in the following and followers lists are already
in the user object that is fetched using the read API when the profile is loaded. In
order to render these separate lists of followers and followings, we will create a new
component called FollowGrid.

Growing the Skeleton into a Social Media Application Chapter 5

[171]

Making a FollowGrid component
The FollowGrid component will take a list of users as props, display the avatars of
the users with their names, and link them to each user's own profile. We can add this
component to the Profile view to display followings or followers. The
FollowGrid component is defined as follows.

mern-social/client/user/FollowGrid.js:

export default function FollowGrid (props) {
 const classes = useStyles()
 return (<div className={classes.root}>
 <GridList cellHeight={160} className={classes.gridList}
cols={4}>
 {props.people.map((person, i) => {
 return <GridListTile style={{'height':120}} key={i}>
 <Link to={"/user/" + person._id}>
 <Avatar src={'/api/users/photo/'+person._id}
 className={classes.bigAvatar}/>
 <Typography className={classes.tileText}>
 {person.name}
 </Typography>
 </Link>
 </GridListTile>
 })}
 </GridList>
 </div>)
}

FollowGrid.propTypes = {
 people: PropTypes.array.isRequired
}

To add the FollowGrid component to the Profile view, we can place it as desired
in the view and pass the list of followers or followings as the people prop:

<FollowGrid people={props.user.followers}/>
<FollowGrid people={props.user.following}/>

As shown previously, in MERN Social, we chose to display the FollowGrid
components in tabs within the Profile component. We created a separate
ProfileTabs component using Material-UI tab components and added that to the
Profile component. This ProfileTabs component contains the two FollowGrid
components with following and followers lists, along with a PostList component
that shows the posts by the user.

Growing the Skeleton into a Social Media Application Chapter 5

[172]

This PostList component will be discussed later in this chapter. In the next section,
we will add a feature that will allow a user to discover other users on the platform
who they are not following yet.

Finding people to follow
The Who to follow feature will show the signed-in user a list of people in MERN
Social that they are not currently following, thus giving them the option to follow
them or view their profiles, as shown in the following screenshot:

To implement this feature, we need to add a backend API that returns the list of users
not followed by the currently signed-in user, and then update the frontend by adding
a component that loads and displays this list of users.

Fetching users not followed
We will implement a new API on the server to query the database and fetch the list of
users the current user is not following. This route will be defined as follows.

mern-social/server/routes/user.routes.js:

router.route('/api/users/findpeople/:userId')
 .get(authCtrl.requireSignin, userCtrl.findPeople)

Growing the Skeleton into a Social Media Application Chapter 5

[173]

In the findPeople controller method, we will query the User collection in the
database to find the users that are not in the current user's following list.

mern-social/server/controllers/user.controller.js:

const findPeople = async (req, res) => {
 let following = req.profile.following
 following.push(req.profile._id)
 try {
 let users = await User.find({ _id:{ $nin : following }})
 .select('name')
 res.json(users)
 }catch(err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

This query will return an array of users that are not followed by the current user. To
use this list of users in the frontend, we will update the api-user.js file and add a
fetch for this API. The findPeople fetch method is defined as follows.

 mern-social/client/user/api-user.js:

const findPeople = async (params, credentials, signal) => {
 try {
 let response = await fetch('/api/users/findpeople/' +
params.userId, {
 method: 'GET',
 signal: signal,
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 }
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

We can use this findPeople fetch method in the component that will display this list
of users. In the next section, we will create the FindPeople component for this
purpose.

Growing the Skeleton into a Social Media Application Chapter 5

[174]

The FindPeople component
To display the who to follow feature, we will create a component called FindPeople,
which can be added to any of the views or rendered on its own. In this component,
we will fetch the users not being followed by calling the findPeople method in
useEffect, as shown in the following code.

mern-social/client/user/FindPeople.js:

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal

 findPeople({
 userId: jwt.user._id
 }, {
 t: jwt.token
 }, signal).then((data) => {
 if (data && data.error) {
 console.log(data.error)
 } else {
 setValues({...values, users:data})
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [])

The fetched list of users will be iterated over and rendered in a Material-UI List
component, with each list item containing the user's avatar, name, a link to the profile
page, and a Follow button, as shown in the following code.

mern-social/client/user/FindPeople.js:

<List>
 {values.users.map((item, i) => {
 return
 <ListItem>
 <ListItemAvatar className={classes.avatar}>
 <Avatar src={'/api/users/photo/'+item._id}/>
 </ListItemAvatar>
 <ListItemText primary={item.name}/>
 <ListItemSecondaryAction className={classes.follow}>
 <Link to={"/user/" + item._id}>
 <IconButton variant="contained" color="secondary"
 className={classes.viewButton}>

Growing the Skeleton into a Social Media Application Chapter 5

[175]

 <ViewIcon/>
 </IconButton>
 </Link>
 <Button aria-label="Follow" variant="contained"
 color="primary"
 onClick={()=> {clickFollow(item, i)}}>
 Follow
 </Button>
 </ListItemSecondaryAction>
 </ListItem>

 })
 }
</List>

Clicking the Follow button will make a call to the follow API and update the list of
users to follow by splicing out the newly followed user. The clickFollow method
implements this behavior as follows.

mern-social/client/user/FindPeople.js:

const clickFollow = (user, index) => {
 follow({
 userId: jwt.user._id
 }, {
 t: jwt.token
 }, user._id).then((data) => {
 if (data.error) {
 console.log(data.error)
 } else {
 let toFollow = values.users
 toFollow.splice(index, 1)
 setValues({...values, users: toFollow, open: true,
 followMessage: `Following ${user.name}!`})
 }
 })
}

We will also add a Material-UI Snackbar component that will open temporarily
when the user is successfully followed in order to tell the user that they started
following this new user. Snackbar will be added to the view code as follows.

mern-social/client/user/FindPeople.js:

<Snackbar
 anchorOrigin={{
 vertical: 'bottom',

Growing the Skeleton into a Social Media Application Chapter 5

[176]

 horizontal: 'right',
 }}
 open={values.open}
 onClose={handleRequestClose}
 autoHideDuration={6000}
 message={{values.followMessage}}
/>

As shown in the following screenshot, Snackbar will display the message containing
the followed user's name at the bottom-right corner of the page, and then auto-hide it
after the set duration:

MERN Social users can now follow each other, view lists of followings and followers
for each user, and also see a list of people they can follow. The main purpose of
following another user in MERN Social is to see and interact with their shared posts.
In the next section, we will look at the implementation of the post feature.

Posting on MERN Social
The post feature in MERN Social will allow users to share content on the MERN
Social application platform and also interact with each other over the content by
commenting on or liking a post, as shown in the following screenshot:

Growing the Skeleton into a Social Media Application Chapter 5

[177]

For this feature, we will implement a complete full-stack slice containing the post
backend and frontend. The post backend will be comprised of a new Mongoose
model for structuring the post data to be stored in the database, while the post CRUD
API endpoints will allow the frontend to interact with the Post collection in the
database. The post frontend will consist of post-related React components that will
allow users to view posts, add new posts, interact with posts, and delete their own
posts. In the following sections, we will define the data structure for posts in the Post
schema, and then learn how to incrementally add the post backend APIs and
frontend components according to the specific post-related feature we are
implementing.

Growing the Skeleton into a Social Media Application Chapter 5

[178]

Mongoose schema model for Post
To define the structure for storing details about each post and to store each post as a
document in a collection in MongoDB, we will define the Mongoose schema for a post
in server/models/post.model.js. The Post schema will store a post's text content,
a photo, a reference to the user who posted, time of creation, likes on the post from
users, and comments on the post by users. The schema will store these details in the
following fields, each defined as shown with the corresponding code.

Post text: text will be a required field that needs to be provided by the
user on new post creation from the view:

text: {
 type: String,
 required: 'Text is required'
}

Post photo: photo will be uploaded from the user's local files during post
creation and stored in MongoDB, similar to the user profile photo upload
feature. The photo will be optional for each post:

photo: {
 data: Buffer,
 contentType: String
}

Post by: Creating a post will require a user to be signed-in first so that we
can store a reference to the user who is posting in the postedBy field:

postedBy: {type: mongoose.Schema.ObjectId, ref: 'User'}

Created time: The created time will be generated automatically at the
time of post creation in the database:

created: { type: Date, default: Date.now }

Likes: References to the users who liked a specific post will be stored in a
likes array:

likes: [{type: mongoose.Schema.ObjectId, ref: 'User'}]

Growing the Skeleton into a Social Media Application Chapter 5

[179]

Comments: Each comment on a post will contain text content, the time of
creation, and a reference to the user who posted the comment. Each post
will have an array of comments:

comments: [{
 text: String,
 created: { type: Date, default: Date.now },
 postedBy: { type: mongoose.Schema.ObjectId, ref: 'User'}
 }]

This schema definition will enable us to implement all the post-related features in
MERN Social. Next, we will start with a discussion of the Newsfeed feature to learn
how to compose frontend React components.

The Newsfeed component
On MERN Social, each user will see posts that have been shared by people they
follow, along with posts that they themselves share, all aggregated in a Newsfeed
view. Before delving further into the implementations of the post-related features in
MERN Social, we will look at the composition of this Newsfeed view to showcase a
basic example of how to design nested UI components that share state. The Newsfeed
component will contain two main child components – a new post form and a list of
posts from followed users, as shown in the following screenshot:

Growing the Skeleton into a Social Media Application Chapter 5

[180]

The basic structure of the Newsfeed component will be as follows, with the NewPost
component and the PostList component inside it.

mern-social/client/post/Newsfeed.js:

<Card>
 <Typography type="title"> Newsfeed </Typography>
 <Divider/>
 <NewPost addUpdate={addPost}/>
 <Divider/>
 <PostList removeUpdate={removePost} posts={posts}/>
</Card>

As the parent component, Newsfeed will control the state of the posts' data that's
rendered in the child components. It will provide a way to update the state of posts
across the components when the post data is modified within the child components,
such as the addition of a new post in the NewPost component or the removal of a post
from the PostList component.

Here specifically, in the Newsfeed component we initially make a call to the server to
fetch a list of posts from people that the currently signed-in user follows. Then we set
this list of posts to the state to be rendered in the PostList component.. The
Newsfeed component provides the addPost and removePost functions to NewPost
and PostList, which will be used when a new post is created or an existing post is
deleted to update the list of posts in the Newsfeed's state and ultimately reflect it in
the PostList.

The addPost function defined in the Newsfeed component will take the new post
that was created in the NewPost component and add it to the posts in the state. The
addPost function will look as follows.

mern-social/client/post/Newsfeed.js:

const addPost = (post) => {
 const updatedPosts = [...posts]
 updatedPosts.unshift(post)
 setPosts(updatedPosts)
}

The removePost function defined in the Newsfeed component will take the deleted
post from the Post component in PostList and remove it from the posts in the state.
The removePost function will look as follows.

Growing the Skeleton into a Social Media Application Chapter 5

[181]

mern-social/client/post/Newsfeed.js:

const removePost = (post) => {
 const updatedPosts = [...posts]
 const index = updatedPosts.indexOf(post)
 updatedPosts.splice(index, 1)
 setPosts(updatedPosts)
}

As the posts are updated in the Newsfeed's state this way, the PostList will render
the changed list of posts to the viewer. This mechanism of relaying state updates from
parent to child components and back will be applied across other features, such as
comment updates in a post and when a PostList is rendered for an individual user
in the Profile component.

To begin the complete implementation of the Newsfeed, we need to be able to fetch a
list of posts from the server and display it in the PostList. In the next section, we
will make this PostList component for the frontend and add PostList API endpoints
to the backend.

Listing posts
In MERN Social, we list posts in the Newsfeed and in the profile of each user. We will
create a generic PostList component that will render any list of posts provided to it,
which we can use in both the Newsfeed and the Profile components.
The PostList component is defined as follows.

mern-social/client/post/PostList.js:

export default function PostList (props) {
 return (
 <div style={{marginTop: '24px'}}>
 {props.posts.map((item, i) => {
 return <Post post={item} key={i}
 onRemove={props.removeUpdate}/>
 })
 }
 </div>
)
}
PostList.propTypes = {
 posts: PropTypes.array.isRequired,
 removeUpdate: PropTypes.func.isRequired
}

Growing the Skeleton into a Social Media Application Chapter 5

[182]

The PostList component will iterate through the list of posts passed to it as props
from the Newsfeed or the Profile, and pass the data of each post to a Post
component that will render details of the post. PostList will also pass the
removeUpdate function that was sent as a prop from the parent component to the
Post component so that the state can be updated when a single post is deleted. Next,
we will complete the post lists in the Newsfeed view after fetching the relevant posts
from the backend.

Listing posts in Newsfeed
We will set up an API on the server that queries the Post collection and returns a list
of posts from the people a specified user is following. Then, to populate the Newsfeed
view, these posts will be retrieved in the frontend by calling this API and they will
be displayed in the PostList in Newsfeed.

Newsfeed API for posts
To implement the Newsfeed-specific API, we need to add the route endpoint that will
receive the request for Newsfeed posts and respond accordingly to the requesting
client- side.

On the backend, we need to define the route path that will receive the request for
retrieving Newsfeed posts for a specific user, as shown in the following code.

server/routes/post.routes.js

router.route('/api/posts/feed/:userId')
 .get(authCtrl.requireSignin, postCtrl.listNewsFeed)

We are using the :userID parameter in this route to specify the currently signed-in
user. We will utilize the userByID controller method in user.controller to fetch
the user details, as we did previously, and append these to the request object that is
accessed in the listNewsFeed post controller method. Add the following to mern-
social/server/routes/post.routes.js:

router.param('userId', userCtrl.userByID)

The post.routes.js file will be very similar to the user.routes.js file. To load
these new routes in the Express app, we need to mount the post routes in
express.js, just like we did for the auth and user routes. The post-related routes are
mounted as follows.

Growing the Skeleton into a Social Media Application Chapter 5

[183]

mern-social/server/express.js:

app.use('/', postRoutes)

The listNewsFeed controller method in post.controller.js will query the Post
collection in the database to get the matching posts. The listNewsFeed controller
method is defined as follows.

mern-social/server/controllers/post.controller.js:

const listNewsFeed = async (req, res) => {
 let following = req.profile.following
 following.push(req.profile._id)
 try {
 let posts = await Post.find({postedBy:{ $in :
req.profile.following }})
 .populate('comments.postedBy', '_id name')
 .populate('postedBy', '_id name')
 .sort('-created')
 .exec()
 res.json(posts)
 } catch(err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

In the query to the Post collection, we find all the posts that have postedBy user
references that match the current user's followings and the current user. The posts
that are returned will be sorted by the created timestamp, with the most recent post
listed first. Each post will also contain the id and name of the user who created the
post and of the users who left comments on the post. Next, we will fetch this API in
the frontend Newsfeed component and render the list details.

Fetching Newsfeed posts in the view
We will use the Newsfeed API in the frontend to fetch the related posts and display
these posts in the Newsfeed view. First, we will add a fetch method to make a request
to the API, as shown in the following code.

client/post/api-post.js:

const listNewsFeed = async (params, credentials, signal) => {
 try {
 let response = await fetch('/api/posts/feed/'+ params.userId, {

Growing the Skeleton into a Social Media Application Chapter 5

[184]

 method: 'GET',
 signal: signal,
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 }
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

This is the fetch method that will load the posts that are rendered in PostList, which
is added as a child component to the Newsfeed component. So, this fetch needs to be
called in the useEffect hook in the Newsfeed component, as shown in the following
code.

mern-social/client/post/Newsfeed.js:

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal

 listNewsFeed({
 userId: jwt.user._id
 }, {
 t: jwt.token
 }, signal).then((data) => {
 if (data.error) {
 console.log(data.error)
 } else {
 setPosts(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }

 }, [])

Growing the Skeleton into a Social Media Application Chapter 5

[185]

This will retrieve the list of posts from the backend and set it to the state of the
Newsfeed component to initially load the posts that are rendered in the PostList
component, as shown in the following screenshot:

The implementation of how the individual post details are rendered in this list will be
discussed later in this chapter. In the next section, we will render this same PostList
for the Profile component and render the posts that are shared by a specific user.

Growing the Skeleton into a Social Media Application Chapter 5

[186]

Listing posts by user in Profile
The implementation of getting a list of posts created by a specific user and showing it
in Profile will be similar to what we discussed in the previous section regarding
listing posts in the Newsfeed. First, we will set up an API on the server that queries
the Post collection and returns posts from a specific user to the Profile view.

API for posts by a user
To retrieve posts that have been shared by a specific user, we need to add a route
endpoint that will receive the request for these posts and respond accordingly to the
requesting client- side.

On the backend, we will define another post-related route that will receive a query to
return posts by a specific user, as follows.

mern-social/server/routes/post.routes.js:

router.route('/api/posts/by/:userId')
 .get(authCtrl.requireSignin, postCtrl.listByUser)

The listByUser controller method in post.controller.js will query the Post
collection to find posts that have a matching reference in the postedBy field to the
user specified in the userId param in the route. The listByUser controller method
will look as follows.

mern-social/server/controllers/post.controller.js:

const listByUser = async (req, res) => {
 try {
 let posts = await Post.find({postedBy: req.profile._id})
 .populate('comments.postedBy', '_id name')
 .populate('postedBy', '_id name')
 .sort('-created')
 .exec()
 res.json(posts)
 } catch(err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

This query will return the list of posts that were created by a specific user. We need to
call this API from the frontend, which we will do in the next section.

Growing the Skeleton into a Social Media Application Chapter 5

[187]

Fetching user posts in the view
We will use the list-posts-by-user API in the frontend to fetch the related posts and
display these posts in the profile view. To use this API, we will add a fetch method to
the frontend, as follows.

mern-social/client/post/api-post.js:

const listByUser = async (req, res) => {
 try {
 let posts = await Post.find({postedBy: req.profile._id})
 .populate('comments.postedBy', '_id name')
 .populate('postedBy', '_id name')
 .sort('-created')
 .exec()
 res.json(posts)
 } catch(err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

This fetch method will load the required posts for PostList, which is added to the
Profile view. We will update the Profile component so that it defines a
loadPosts method that calls the listByUser fetch method. The loadPosts method
will look as follows.

mern-social/client/user/Profile.js:

const loadPosts = (user) => {
 listByUser({
 userId: user
 }, {
 t: jwt.token
 }).then((data) => {
 if (data.error) {
 console.log(data.error)
 } else {
 setPosts(data)
 }
 })
}

Growing the Skeleton into a Social Media Application Chapter 5

[188]

In the Profile component, the loadPosts method will be called with the user ID of
the user whose profile is being loaded, after the user details have been fetched from
the server in the useEffect() hook function. The posts that are loaded for the
specific user are set to the state and rendered in the PostList component that's
added to the Profile component. The Profile component also provides a
removePost function, similar to the Newsfeed component, as a prop to the
PostList component so that the list of posts can be updated if a post is removed.
The resulting PostList in the Profile component will render similar to what can
be seen in the following screenshot:

Growing the Skeleton into a Social Media Application Chapter 5

[189]

The features that list posts that have been shared on MERN Social are now complete.
But before these can be tested out, we need to implement the feature that will allow
users to create new posts. We will do this in the next section.

Creating a new post
The create new post feature will allow a signed-in user to post a message and
optionally add an image to the post by uploading it from their local files. To
implement this feature, in the following sections, we will add a create post API
endpoint to the backend that allows uploading an image file, as well as add a
NewPost component to the frontend that will utilize this endpoint to let users create
new posts.

Creating the post API
On the server, we will define an API to create the post in the database, starting by
declaring a route to accept a POST request at /api/posts/new/:userId in mern-
social/server/routes/post.routes.js:

router.route('/api/posts/new/:userId')
 .post(authCtrl.requireSignin, postCtrl.create)

The create method in post.controller.js will use the formidable module to
access the fields and the image file, if any, as we did for the user profile photo
update. The create controller method will look as follows.

mern-social/server/controllers/post.controller.js:

const create = (req, res, next) => {
 let form = new formidable.IncomingForm()
 form.keepExtensions = true
 form.parse(req, async (err, fields, files) => {
 if (err) {
 return res.status(400).json({
 error: "Image could not be uploaded"
 })
 }
 let post = new Post(fields)
 post.postedBy= req.profile
 if(files.photo){
 post.photo.data = fs.readFileSync(files.photo.path)
 post.photo.contentType = files.photo.type
 }

Growing the Skeleton into a Social Media Application Chapter 5

[190]

 try {
 let result = await post.save()
 res.json(result)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
 })
}

Similar to the profile photo upload, the photo that's uploaded with a new post will be
stored in the Post document in binary format. We need to add a route to retrieve and
return this photo to the frontend, which we will do next.

Retrieving a post's photo
To retrieve the uploaded photo, we will also set up a photo route endpoint that, on
request, will return the photo associated with a specific post. The photo URL route
will be defined with the other post-related routes, as follows.

mern-social/server/routes/post.routes.js:

router.route('/api/posts/photo/:postId').get(postCtrl.photo)

The photo controller will return the photo data stored in MongoDB as an image file.
This is defined as follows.

mern-social/server/controllers/post.controller.js:

const photo = (req, res, next) => {
 res.set("Content-Type", req.post.photo.contentType)
 return res.send(req.post.photo.data)
}

Since the photo route uses the :postID parameter, we will set up a postByID
controller method to fetch a specific post by its ID before returning it to the photo
request. We will add the param call to post.routes.js, as shown in the following
code.

mern-social/server/routes/post.routes.js:

 router.param('postId', postCtrl.postByID)

Growing the Skeleton into a Social Media Application Chapter 5

[191]

postByID will be similar to the userByID method, and it will attach the post
retrieved from the database to the request object so that it can be accessed by the next
method. The postByID method is defined as follows.

mern-social/server/controllers/post.controller.js:

const postByID = async (req, res, next, id) => {
 try{
 let post = await Post.findById(id)
 .populate('postedBy', '_id name')
 .exec()
 if (!post)
 return res.status('400').json({
 error: "Post not found"
 })
 req.post = post
 next()
 }catch(err){
 return res.status('400').json({
 error: "Could not retrieve use post"
 })
 }
}

The attached post data in this implementation will also contain the ID and name of
the postedBy user reference since we are invoking populate(). In the next section,
we will add a fetch method to access this API endpoint in the frontend.

Fetching the create post API in the view
We will update api-post.js by adding a create method to make a fetch call to
the create API. The create fetch method will look as follows.

mern-social/client/post/api-post.js:

const create = async (params, credentials, post) => {
 try {
 let response = await fetch('/api/posts/new/'+ params.userId, {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: post
 })
 return await response.json()

Growing the Skeleton into a Social Media Application Chapter 5

[192]

 } catch(err) {
 console.log(err)
 }
}

This method, like the user edit fetch method, will send a multipart form submission
using a FormData object that will contain the text field and the image file. Finally, we
are ready to integrate this create new post feature in the backend with a frontend
component that will allow users to compose a post and submit it to the backend.

Making the NewPost component
The NewPost component that we added in the Newsfeed component will allow users
to compose a new post containing a text message and, optionally, an image, as shown
in the following screenshot:

The NewPost component will be a standard form with a Material-UI TextField and
a file upload button, as implemented in EditProfile, that takes the values and sets
them in a FormData object to be passed in the call to the create fetch method on
post submission. Post submission will invoke the following clickPost method.

mern-social/client/post/NewPost.js:

const clickPost = () => {
 let postData = new FormData()
 postData.append('text', values.text)
 postData.append('photo', values.photo)
 create({
 userId: jwt.user._id
 }, {
 t: jwt.token
 }, postData).then((data) => {
 if (data.error) {
 setValues({...values, error: data.error})

Growing the Skeleton into a Social Media Application Chapter 5

[193]

 } else {
 setValues({...values, text:'', photo: ''})
 props.addUpdate(data)
 }
 })
}

The NewPost component is added as a child component in the Newsfeed and
given the addUpdate method as a prop, as we discussed earlier. On successful post
creation, the form view is emptied and addUpdate is executed so that the post list in
the Newsfeed is updated with the new post. In the next section, we will add the Post
component in order to display each post and its details.

The Post component
Post details in each post will be rendered in the Post component, which will receive
the post data as props from the PostList component, as well as the onRemove prop,
which needs to be applied if a post is deleted. In the following sections, we will look
at the different parts of the Post interface and how to implement each.

Layout
The Post component layout will have a header showing details of the poster, the
content of the post, an actions bar with a count of likes and comments, and a
comments section, as shown in the following screenshot:

Growing the Skeleton into a Social Media Application Chapter 5

[194]

Next, we will look into the implementation details of the header, content, actions, and
comments sections of this Post component.

Header
The header will contain information such as the name, avatar, and link to the profile
of the user who posted, as well as the date the post was created. The code to display
these details in the header section will be as follows.

mern-social/client/post/Post.js:

<CardHeader
 avatar={
 <Avatar src={'/api/users/photo/'+props.post.postedBy._id}/>
 }
 action={ props.post.postedBy._id ===
auth.isAuthenticated().user._id &&
 <IconButton onClick={deletePost}>
 <DeleteIcon />
 </IconButton>
 }
 title={<Link to={"/user/" +
props.post.postedBy._id}>{props.post.postedBy.name}</Link>}
 subheader={(new Date(props.post.created)).toDateString()}
 className={classes.cardHeader}
/>

The header will also conditionally show a delete button if the signed-in user is
viewing their own post. This header section will be above the main content section,
which is discussed next.

Content
The content section will show the text of the post and the image if the post contains a
photo. The code to display these details in the content section will be as follows.

mern-social/client/post/Post.js:

<CardContent className={classes.cardContent}>
 <Typography component="p" className={classes.text}>
 {props.post.text}
 </Typography>
 {props.post.photo &&
 (<div className={classes.photo}>
 <img className={classes.media}
 src={'/api/posts/photo/'+ props.post._id}/>

Growing the Skeleton into a Social Media Application Chapter 5

[195]

 </div>)
 }
</CardContent>

The image is loaded by adding the photo API to the src attribute in the img tag if the
given post contains a photo. Followed by this content section is the actions section.

Actions
The actions section will contain an interactive "like" option with a display of the
total number of likes on the post and a comment icon with the total number of
comments on the post. The code to display these actions will be as follows.

mern-social/client/post/Post.js:

<CardActions>
 { values.like
 ? <IconButton onClick={clickLike} className={classes.button}
 aria-label="Like" color="secondary">
 <FavoriteIcon />
 </IconButton>
 : <IconButton onClick={clickLike} className={classes.button}
 aria-label="Unlike" color="secondary">
 <FavoriteBorderIcon />
 </IconButton> } {values.likes}
 <IconButton className={classes.button}
 aria-label="Comment" color="secondary">
 <CommentIcon/>
 </IconButton> {values.comments.length}
</CardActions>

We will discuss the implementation of the "like" button later in this chapter. The
details of the likes for each post are retrieved within the post object that's received in
the props.

In the Post component, the final section will display the comments that have been left
on the given post. We'll discuss this next.

Comments
The comments section will contain all the comment-related elements in the Comments
component and will get props such as the postId and the comments data, along
with a state updating method that can be called when a comment is added or
deleted in the Comments component.

Growing the Skeleton into a Social Media Application Chapter 5

[196]

The comments section will be rendered in the view with the following code.

mern-social/client/post/Post.js:

<Comments postId={props.post._id}
 comments={values.comments}
 updateComments={updateComments}/>

The implementation of this Comments component will be detailed later in this
chapter. These four sections make up the individual post view that we implemented
in the Post component, which is rendered in PostList component. Each post's
header also shows a delete button to the creator of the post. We will implement this
remove post functionality next.

Deleting a post
The delete button is only visible if the signed-in user and postedBy user are the
same for the specific post being rendered. For the post to be deleted from the
database, we will have to set up a delete post API in the backend which will also have
a fetch method in the frontend that will be applied when delete is clicked. The route
for the delete post API endpoint will be as follows.

mern-social/server/routes/post.routes.js:

router.route('/api/posts/:postId')
 .delete(authCtrl.requireSignin,
 postCtrl.isPoster,
 postCtrl.remove)

The delete route will check for authorization before calling remove on the post by
ensuring the authenticated user and postedBy user are the same users. The
isPoster method, which is implemented in the following code, checks whether the
signed-in user is the original creator of the post before executing the next method.

mern-social/server/controllers/post.controller.js:

const isPoster = (req, res, next) => {
 let isPoster = req.post && req.auth &&
 req.post.postedBy._id == req.auth._id
 if(!isPoster){
 return res.status('403').json({
 error: "User is not authorized"
 })
 }

Growing the Skeleton into a Social Media Application Chapter 5

[197]

 next()
}

The rest of the implementation for the delete API with a remove controller method
and fetch method for the frontend are the same as for the other API implementations.
The important difference here, in the delete post feature, is the call to the onRemove
update method in the Post component when delete succeeds. The onRemove method
is sent as a prop from either Newsfeed or Profile to update the list of posts in the
state when the delete is successful.

The following deletePost method, which is defined in the Post component, is
called when the delete button is clicked on a post.

mern-social/client/post/Post.js:

const deletePost = () => {
 remove({
 postId: props.post._id
 }, {
 t: jwt.token
 }).then((data) => {
 if (data.error) {
 console.log(data.error)
 } else {
 props.onRemove(props.post)
 }
 })
}

This method makes a fetch call to the delete post API and on success, updates the list
of posts in the state by executing the onRemove method, which is received as a prop
from the parent component.

This wraps up the implementation of the Post CRUD features in the backend and the
frontend. However, we have not completed the features that will allow MERN Social
users to interact with these posts. In the next section, we will add the ability to like
posts and comment on posts.

Interacting with Posts
A core feature of any social media platform is the ability for users to interact with
shared content. For the posts that are created in the MERN Social application, we will
add the options to like and leave comments on individual posts.

Growing the Skeleton into a Social Media Application Chapter 5

[198]

To complete the implementation of this feature, first, we will have to modify the
backend so that we can add API endpoints that update an existing post with details of
who liked the post and details of comments left on the post.

Then, in the frontend, we will have to modify the UI so that users can like and leave a
comment on a post.

Likes
The like option in the Post component's action bar section will allow the user to like
or unlike a post, and also show the total number of likes for the post. To record a
"like", we will have to set up like and unlike APIs that can be called in the view when
the user interacts with the action bar that's rendered in each post.

The Like API
The like API will be a PUT request that will update the likes array in the Post
document. The request will be received at the api/posts/like route, which is
defined as follows.

mern-social/server/routes/post.routes.js:

 router.route('/api/posts/like')
 .put(authCtrl.requireSignin, postCtrl.like)

In the like controller method, the post ID that's received in the request body will be
used to find the specific Post document and update it by pushing the current user's
ID to the likes array, as shown in the following code.

mern-social/server/controllers/post.controller.js:

const like = async (req, res) => {
 try {
 let result = await Post.findByIdAndUpdate(req.body.postId,
 {$push: {likes: req.body.userId}},
 {new: true})
 res.json(result)
 } catch(err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

Growing the Skeleton into a Social Media Application Chapter 5

[199]

To use this API, a fetch method called like will be added to api-post.js, which
will be used when the user clicks the like button. The like fetch is defined as
follows.

mern-social/client/post/api-post.js:

const like = async (params, credentials, postId) => {
 try {
 let response = await fetch('/api/posts/like/', {
 method: 'PUT',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: JSON.stringify({userId:params.userId, postId: postId})
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

Similarly, in the next section, we will also implement an unlike API endpoint so that a
user can unlike a previously liked post.

The Unlike API
The unlike API will be implemented similar to the like API, with its own route. This
will be declared as follows.

mern-social/server/routes/post.routes.js:

 router.route('/api/posts/unlike')
 .put(authCtrl.requireSignin, postCtrl.unlike)

The unlike method in the controller will find the post by its ID and update the
likes array by removing the current user's ID using $pull instead of $push. The
unlike controller method will look as follows.

mern-social/server/controllers/post.controller.js:

const unlike = async (req, res) => {
 try {
 let result = await Post.findByIdAndUpdate(req.body.postId,
 {$pull: {likes: req.body.userId}},

Growing the Skeleton into a Social Media Application Chapter 5

[200]

 {new: true})
 res.json(result)
 } catch(err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The unlike API will also have a corresponding fetch method, similar to the like
method in api-post.js.

These APIs will be called when the user interacts with the like button in the view. But
whether the like button should allow a like or an unlike action needs to be
determined first. We will take a look at this in the next section.

Checking if a post has been liked and counting likes
When the Post component is rendered, we need to check if the currently signed-in
user has liked the post or not so that the appropriate like option can be shown. The
following checkLike method checks whether the currently signed-in user is
referenced in the post's likes array or not.

mern-social/client/post/Post.js:

const checkLike = (likes) => {
 let match = likes.indexOf(jwt.user._id) !== -1
 return match
}

This checkLike function can be called while setting the initial value of the like state
variable, which keeps track of whether the current user liked the given post or not.
The following screenshot shows how the like button renders when a post has not
been liked versus when it has been liked by the current user:

Growing the Skeleton into a Social Media Application Chapter 5

[201]

The like value that's set in the state using the checkLike method can be used to
render a heart outline button or a full heart button. A heart outline button will render
if the user has not liked the post; clicking it will make a call to the like API, show the
full heart button, and increment the likes count. The full heart button will indicate
the current user has already liked this post; clicking this will call the unlike API,
render the heart outline button, and decrement the likes count.

The likes count is also set initially when the Post component mounts and props are
received by setting the likes value to the state with props.post.likes.length, as
shown in the following code.

mern-social/client/post/Post.js:

 const [values, setValues] = useState({
 like: checkLike(props.post.likes),
 likes: props.post.likes.length,
 comments: props.post.comments
 })

The likes-related values are updated again when a "like" or "unlike" action takes
place, and the updated post data is returned from the API call. Next, we will look at
how to handle these clicks on the like button.

Handling like clicks
To handle clicks on the like and unlike buttons, we will set up a clickLike
method that will call the appropriate fetch method based on whether it is a "like" or
"unlike" action, and then update the state of the like and likes count for the post.
This clickLike method will be defined as follows.

mern-social/client/post/Post.js:

 const clickLike = () => {
 let callApi = values.like ? unlike : like
 const jwt = auth.isAuthenticated()
 callApi({
 userId: jwt.user._id
 }, {
 t: jwt.token
 }, props.post._id).then((data) => {
 if (data.error) {
 console.log(data.error)
 } else {
 setValues({...values, like: !values.like,

Growing the Skeleton into a Social Media Application Chapter 5

[202]

 likes: data.likes.length})
 }
 })
 }

Which of the like or unlike API endpoints will be called on a click depends on the
value of the like variable in the state. Once the chosen API endpoint is called
successfully, the values are updated in the state so that they can be reflected in the
view.

This completes the likes feature implementation, complete with backend APIs
integrated with the frontend to enable liking and unliking a given post. Next, we will
add the comments feature to complete the social media application features we had
set out for MERN Social.

Comments
The comments section in each post will allow signed-in users to add comments, see
the list of comments, and delete their own comments. Any changes to the comment
list, such as a new addition or removal, will update the comments, as well as the
comment count in the action bar section of the Post component. The resulting
comments section can be seen in the following screenshot:

To implement a functional comments section, we will update the backend with the
corresponding comment and uncomment API endpoints, and also create this
Comments component so that it integrates with the backend update.

Growing the Skeleton into a Social Media Application Chapter 5

[203]

Adding a comment
When a user adds a comment, the Post document will be updated in the database
with the new comment. First, we need to implement an API that receives the
comment details from the client- side and updates the Post document. Then, we need
to create the UI in the frontend, which allows us to compose a new comment and
submit it to the backend API.

The Comment API
To implement the add comment API, we will set up a PUT route as follows to update
the post.

mern-social/server/routes/post.routes.js:

router.route('/api/posts/comment')
 .put(authCtrl.requireSignin, postCtrl.comment)

The comment controller method, which is defined in the following code, will find the
relevant post to be updated by its ID and push the comment object that's received in
the request body to the comments array of the post.

mern-social/server/controllers/post.controller.js:

const comment = async (req, res) => {
 let comment = req.body.comment
 comment.postedBy = req.body.userId
 try {
 let result = await Post.findByIdAndUpdate(req.body.postId,
 {$push: {comments: comment}},
 {new: true})
 .populate('comments.postedBy', '_id name')
 .populate('postedBy', '_id name')
 .exec()
 res.json(result)
 } catch(err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

In the response, the updated post object will be sent back with details of the
postedBy users populated in the post and in the comments.

Growing the Skeleton into a Social Media Application Chapter 5

[204]

To use this API in the view, we will set up a fetch method in api-post.js, which
takes the current user's ID, the post ID, and the comment object from the view, and
sends it with the add comment request. The comment fetch method will look as
follows.

mern-social/client/post/api-post.js:

const comment = async (params, credentials, postId, comment) => {
 try {
 let response = await fetch('/api/posts/comment/', {
 method: 'PUT',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: JSON.stringify({userId:params.userId, postId: postId,
 comment: comment})
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

We can use this fetch method in the UI when the user submits a new comment, as
discussed in the next section.

Writing something in the view
The add comment section in the Comments component will allow the signed-in user to
type in the comment text:

This will contain an avatar showing the user's photo and a text field, which will add
the comment when the user presses the Enter key. This add comment section will be
rendered in the view with the following code.

mern-social/client/post/Comments.js:

<CardHeader
 avatar={
 <Avatar className={classes.smallAvatar}

Growing the Skeleton into a Social Media Application Chapter 5

[205]

 src= {'/api/users/photo/'
 +auth.isAuthenticated().user._id}/>
 }
 title={ <TextField
 onKeyDown={addComment}
 multiline
 value={text}
 onChange={handleChange}
 placeholder="Write something ..."
 className={classes.commentField}
 margin="normal"
 />
 }
 className={classes.cardHeader}
/>

The text will be stored in the state when the value changes, and on the onKeyDown
event, the addComment method will call the comment fetch method if the Enter key is
pressed. The Enter key corresponds to keyCode 13, as shown in the following code.

mern-social/client/post/Comments.js:

const addComment = (event) => {
 if(event.keyCode == 13 && event.target.value){
 event.preventDefault()
 comment({
 userId: jwt.user._id
 }, {
 t: jwt.token
 }, props.postId, {text: text}).then((data) => {
 if (data.error) {
 console.log(data.error)
 } else {
 setText('')
 props.updateComments(data.comments)
 }
 })
 }
}

The Comments component receives the updateComments method (as discussed in the
previous section) as a prop from the Post component. This will be executed when the
new comment is added in order to update the comments list and the comment count
in the Post view. The part of Comments that lists all the comments for the post will be
added in the next section.

Growing the Skeleton into a Social Media Application Chapter 5

[206]

Listing comments
The Comments component receives the list of comments for the specific post as props
from the Post component. Then, it iterates over the individual comments to render
the details of the commenter and the comment content. This view is implemented
with the following code.

mern-social/client/post/Comments.js:

{ props.comments.map((item, i) => {
 return <CardHeader
 avatar={
 <Avatar className={classes.smallAvatar}
src={'/api/users/photo/'+item.postedBy._id}/>
 }
 title={commentBody(item)}
 className={classes.cardHeader}
 key={i}/>
 })
}

commentBody renders the content, including the name of the commenter linked to
their profile, the comment text, and the date of comment creation. commentBody is
defined as follows.

mern-social/client/post/Comments.js:

const commentBody = item => {
 return (
 <p className={classes.commentText}>
 <Link to={"/user/" + item.postedBy._id}>
 {item.postedBy.name} </Link>

 {item.text}

 { (new Date(item.created)).toDateString()} |
 { auth.isAuthenticated().user._id === item.postedBy._id &&
 <Icon onClick={deleteComment(item)}
 className={classes.commentDelete}>delete</Icon> }

 </p>
)
}

commentBody will also render a delete option for the comment if the postedBy
reference of the comment matches the currently signed-in user. We will look at the
implementation of this comment deletion option in the next section.

Growing the Skeleton into a Social Media Application Chapter 5

[207]

Deleting a comment
Clicking the delete button in a comment will update the post in the database by
removing the comment from the comments array in the corresponding post. The
delete button can be seen underneath the comment shown in the following
screenshot:

To implement this delete comment feature, we need to add an uncomment API to the
backend and then use it in the frontend.

The Uncomment API
We will implement an uncomment API at the following PUT route.

mern-social/server/routes/post.routes.js:

router.route('/api/posts/uncomment')
 .put(authCtrl.requireSignin, postCtrl.uncomment)

The uncomment controller method will find the relevant post by ID and pull the
comment with the deleted comment's ID from the comments array in the post, as
implemented in the following code.

mern-social/server/controllers/post.controller.js:

const uncomment = async (req, res) => {
 let comment = req.body.comment
 try{
 let result = await Post.findByIdAndUpdate(req.body.postId,
 {$pull: {comments: {_id:
comment._id}}},
 {new: true})
 .populate('comments.postedBy', '_id name')
 .populate('postedBy', '_id name')
 .exec()
 res.json(result)
 } catch(err) {

Growing the Skeleton into a Social Media Application Chapter 5

[208]

 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The updated post will be returned in the response, similar to the comment API.

To use this API in the view, we will also set up a fetch method in api-post.js,
similar to the addComment fetch method, that takes the current user's ID, the post ID,
and the deleted comment object to send with the uncomment request. Next, we will
learn how to use this fetch method when the delete button is clicked.

Removing a comment from the view
When a comment's delete button is clicked by the commenter, the Comments
component will call the deleteComment method to fetch the uncomment API and
update the comments, along with the comment count, when the comment is
successfully removed from the server. The deleteComment method is defined as
follows.

mern-social/client/post/Comments.js:

const deleteComment = comment => event => {
 uncomment({
 userId: jwt.user._id
 }, {
 t: jwt.token
 }, props.postId, comment).then((data) => {
 if (data.error) {
 console.log(data.error)
 } else {
 props.updateComments(data.comments)
 }
 })
 }

On successfully removing a comment from the backend, the updateComments
method that's sent in the props from the Post component will be invoked. This will
update the state of the Post component to update the view. This will be discussed in
the next section.

Growing the Skeleton into a Social Media Application Chapter 5

[209]

Comment count update
The updateComments method, which will allow the comments and comment count
to be updated when a comment is added or deleted, is defined in the Post
component and passed as a prop to the
Comments component. The updateComments method will look as follows:

mern-social/client/post/Post.js:

const updateComments = (comments) => {
 setValues({...values, comments: comments})
}

This method takes the updated list of comments as a parameter and updates the state
that holds the list of comments rendered in the view. The initial state of comments in
the Post component is set when the Post component mounts and receives the post
data as props. The comments that are set here are sent as props to the Comments
component and used to render the comment count next to the likes action in the
action bar of the Post layout, as follows.

mern-social/client/post/Post.js:

<IconButton aria-label="Comment" color="secondary">
 <CommentIcon/>
</IconButton> {values.comments.length}

This relationship between the comment count in the Post component and the
comments that are rendered and updated in the Comments component gives a simple
demonstration of how changing data is shared among nested components in React to
create dynamic and interactive user interfaces.

The MERN Social application now contains the set of features we defined earlier for
the application. Users are able to update their profiles with a photo and description,
follow each other on the application, and create posts with photos and text, as well as
like and comment on posts. The implementations shown here can be tuned and
extended further to add more features in order to utilize the revealed mechanisms of
working with the MERN stack.

Growing the Skeleton into a Social Media Application Chapter 5

[210]

Summary
The MERN Social application we developed in this chapter demonstrated how the
MERN stack technologies can be used together to build out a fully-featured and
functioning web application with social media features.

We began by updating the user feature in the skeleton application to allow anyone
with an account on MERN Social to add a description about themselves, as well as
upload a profile picture from their local files. In the implementation of uploading a
profile picture, we explored how to upload multipart form data from the client, then
receive it on the server to store the file data directly in the MongoDB database, and
then be able to retrieve it back for viewing.

Next, we updated the user feature further to allow users to follow each other on the
MERN Social platform. In the user model, we added the capability to maintain arrays
of user references to represent lists of followers and followings for each user.
Extending this capability, we incorporated follow and unfollow options in the view
and displayed lists of followers, followings, and even lists of users not followed yet.

Then, we added the ability to allow users to post content and interact over the content
by liking or commenting on the post. On the backend, we set up the Post model and
corresponding APIs, which are capable of storing the post content that may or may
not include an image, as well as maintaining records of likes and comments that are
incurred on a post by any user.

Finally, while implementing the views for the posting, liking, and commenting
features, we explored how to use component composition and share changing state
values across the components to create complex and interactive views.

By completing this MERN Social application implementation, we learned how to
extend and modify the base application code to grow it into a full-fledged web
application according to our desired features. You can apply similar strategies to
grow the skeleton application into any real-world application of your choosing.

In the next chapter, we will expand further on these abilities in the MERN stack and
unlock new possibilities as we develop an online classroom application by extending
the skeleton application.

3
Developing Web Applications

with MERN
In this part, we develop two different web applications using the MERN skeleton
application from the previous section, demonstrating how basic to complex features
can be implemented and added on to growing MERN applications.

This section comprises the following chapters:

Chapter 6, Building a Web-Based Classroom Application
Chapter 7, Exercising MERN Skills with an Online Marketplace
Chapter 8, Extending the Marketplace for Orders and Payments
Chapter 9, Adding Real-Time Bidding Capabilities to the Marketplace

6
Building a Web-Based
Classroom Application

As the world is moving to the internet, so are our tools for learning and acquiring
knowledge in different disciplines. Right now on the web, there is a plethora of online
platforms that offer both educators and students options to teach and learn different
topics remotely, without the necessity to be physically co-located in a classroom.

In this chapter, we will build a simple online classroom application, by extending the
MERN stack skeleton application. This classroom application will support multiple
user roles, the addition of course content and lessons, student enrollments, progress
tracking, and course enrollment statistics. While building out this application, we
will uncover more capabilities of this stack, such as how to implement role-based
access to resources and actions, how to combine multiple schemas, and how to run
different query operations in order to gather stats. By the end of this chapter, you will
be familiar with the techniques that are needed to easily integrate new full-stack
features in any MERN-based application.

We will build out the online classroom application by covering the following topics in
this chapter:

Introducing MERN Classroom
Adding an educator role to users
Adding courses to the classroom
Updating courses with lessons
Publishing courses
Enrolling in courses
Tracking progress and enrollment stats

Building a Web-Based Classroom Application Chapter 6

[213]

Introducing MERN Classroom
MERN Classroom is a simple online classroom application, which allows educators to
add courses that are made up of various lessons, while students can enroll on these
courses. Additionally, the application will allow students to track their progress
throughout the course, whereas instructors can monitor how many students have
enrolled in/on a course, and how many have completed each course. The completed
application, with all these features, will end up with a home page as shown in the
following screenshot:

The code for the complete MERN Classroom application is available
on GitHub in the repository at https:/ ​/​github. ​com/
PacktPublishing/ ​Full- ​Stack- ​React- ​Projects- ​Second- ​Edition/
tree/ ​master/ ​Chapter06/ ​mern- ​classroom. You can clone this code
and run the application as you go through the code explanations for
the rest of this chapter.

https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter06/mern-classroom

Building a Web-Based Classroom Application Chapter 6

[214]

The views needed for the MERN Classroom application will be developed by
extending and modifying the existing React components in the MERN skeleton
application. The component tree in the following diagram lays out all the custom
React components that make up the MERN Classroom frontend, and also exposes the
composition structure that we will use to build out the views in the rest of the
chapter:

We will add new React components that are related to courses, lessons, and
enrollments; and we will also modify existing components such as the EditProfile,
Menu, and Home components as we build out the different features of the MERN
Classroom application in the rest of the chapter. Most of these features in the
Classroom application will depend on the user's ability to become an educator. In the
next section, we will begin implementing the MERN Classroom application by
updating the user in order to give them the option to choose an educator role.

Building a Web-Based Classroom Application Chapter 6

[215]

Updating the user with an educator role
Users who sign up to the MERN Classroom application will have the choice to
become an educator on the platform by selecting this option in the EditProfile
form component. This option in the form will look as follows—showing when the
user isn't an educator, versus when they choose to be an educator:

When a user chooses to be an educator, in contrast to being a regular user, they will
be allowed to create and manage their own courses. As pictured in the
following screenshot, MERN Classroom will display a TEACH option in the
navigation menu for educators only, that is, it won't be shown to regular users:

In the following sections, we will add this educator feature, by first updating the user
model, then the EditProfile view, and finally by adding a TEACH link to the menu
that will only be visible to educators.

Adding a role to the user model
The existing user model in the MERN skeleton application will need an educator
value that will be set to false by default in order to represent regular users, but that
can be set to true to represent the users who are also educators. To add this new field
to the user schema, we will add the following code.

mern-classroom/server/models/user.model.js:

educator: {
 type: Boolean,
 default: false
}

Building a Web-Based Classroom Application Chapter 6

[216]

This educator value must be sent to the frontend, with the user details received once
the user has successfully signed in, so that the view can be rendered accordingly to
show information that is relevant to the educator. To make this change, we need to
update the response that was sent back in the signin controller method as
highlighted in the following code:

mern-classroom/server/controllers/auth.controller.js

...
l
 token,
 user: {
 _id: user._id,
 name: user.name,
 email: user.email,
 educator: user.educator
 }
 })
...
}

By sending this educator field value back in the response, we can render the
frontend views with role-specific authorization considerations.

But before getting to these conditionally rendered views, we first need to implement
the option to select an educator role in the EditProfile view, as discussed in the
next section.

Updating the EditProfile view
In order to become an educator in the MERN Classroom application, a signed-in user
will need to update their profile. They will see a toggle in the EditProfile view, which
will either activate or deactivate the educator feature. To implement this, first, we will
update the EditProfile component in order to add a Material-
UI Switch component in FormControlLabel, as shown in the following code.

mern-classroom/client/user/EditProfile.js:

<Typography variant="subtitle1" className={classes.subheading}>
 I am an Educator
</Typography>
<FormControlLabel
 control={
 <Switch classes={{

Building a Web-Based Classroom Application Chapter 6

[217]

 checked: classes.checked,
 bar: classes.bar,
 }}
 checked={values.educator}
 onChange={handleCheck}
 />}
 label={values.educator? 'Yes' : 'No'}
/>

Any changes to the switch will be set to the value of the educator variable in the
state by calling the handleCheck method, as defined in the following code.

mern-classroom/client/user/EditProfile.js:

const handleCheck = (event, checked) => {
 setValues({...values, 'educator': checked})
}

The handleCheck method receives the checked Boolean value to indicate whether
the switch has been selected or not, and this value is set to educator.

On form submit, the educator value is added to the details that were sent in the
update to the server, as highlighted in the following code.

mern-classroom/client/user/EditProfile.js:

clickSubmit = () => {
 const jwt = auth.isAuthenticated()
 const user = {
 name: this.state.name || undefined,
 email: this.state.email || undefined,
 password: this.state.password || undefined,
 educator: values.educator || undefined
 }
 update({
 userId: this.match.params.userId
 }, {
 t: jwt.token
 }, user).then((data) => {
 if (data.error) {
 this.setState({error: data.error})
 } else {
 auth.updateUser(data, ()=> {
 setValues({...values, userId: data._id, redirectToProfile:
true})
 })
 }

Building a Web-Based Classroom Application Chapter 6

[218]

 })
 }

Once the EditProfile view has been successfully updated, the user details that are
stored in sessionStorage for auth purposes should also be updated. The
auth.updateUser method is called to do this sessionStorage update. It is defined
with the other auth-helper.js methods, and the parameters that are passed are the
updated user data and a callback function that updates the view. This updateUser
method is defined as follows.

mern-classroom/client/auth/auth-helper.js:

updateUser(user, cb) {
 if(typeof window !== "undefined"){
 if(sessionStorage.getItem('jwt')){
 let auth = JSON.parse(sessionStorage.getItem('jwt'))
 auth.user = user
 sessionStorage.setItem('jwt', JSON.stringify(auth))
 cb()
 }
 }
}

Once the updated educator role is available in the frontend, we can use it to render
the frontend accordingly. In the next section, we will see how to render the menu
differently, based on whether an educator or a regular user is viewing the
application.

Rendering an option to teach
In the frontend of the classroom application, we can render different options based on
whether an educator is currently browsing the application. In this section, we will
add the code to conditionally display a link to TEACH on the navigation bar, which
will only be visible to the signed-in users who are also educators.

We will update the Menu component, as follows, within the previous code that only
renders when a user is signed in.

mern-classroom/client/core/Menu.js:

{auth.isAuthenticated() && (
 {auth.isAuthenticated().user.educator &&
 (<Link to="/teach/courses">
 <Button style={isPartActive(history, "/teach/")}>

Building a Web-Based Classroom Application Chapter 6

[219]

 <Library/> Teach </Button>
 </Link>)
 }
 ...
}

This link, which is only visible to educators, will take them to the educator dashboard
view, where they can manage the courses that they are instructing.

This section has taught us how to update a user role to an educator role in the
application, and we can now begin incorporating features that will allow an educator
to add courses to the classroom.

Adding courses to the classroom
Educators in the MERN Classroom can create courses and add lessons to each course.
In this section, we will walk through the implementations of the course-related
features, such as adding new courses, listing courses by a specific instructor, and
displaying the details of a single course. To store the course data and enable course
management, we will start by implementing a Mongoose schema for courses, then
backend APIs to create and list the courses, along with frontend views for both
authorized educators and for regular users interacting with courses in the application.

Defining a Course model
The Course schema—defined in server/models/course.model.js—will have
simple fields to store course details, along with with an image, a category, whether
the course is published or not, and a reference to the user who created the course. The
code defining the course fields are given in the following list with explanations:

Course name and description: name and description fields will have
string types, with name as a required field:

name: {
 type: String,
 trim: true,
 required: 'Name is required'
},
description: {
 type: String,
 trim: true
},

Building a Web-Based Classroom Application Chapter 6

[220]

Course image: The image field will store the course image file to be
uploaded by the user as binary data in the MongoDB database:

image: {
 data: Buffer,
 contentType: String
},

Course category: The category field will store the category value of the
course as a string, and it will be a required field:

category: {
 type: String,
 required: 'Category is required'
},

Course published state: The published field will be a Boolean value,
indicating whether the course is published or not:

published: {
 type: Boolean,
 default: false
},

Course instructor: The instructor field will reference the user who
created the course:

instructor: {
 type: mongoose.Schema.ObjectId,
 ref: 'User'
}

Created and updated at times: The created and updated fields will
be Date types, with created generated when a new course is added,
and updated changed when any course details are modified:

updated: Date,
created: {
 type: Date,
 default: Date.now
},

The fields in this schema definition will enable us to implement the course-related
features in MERN Classroom. To start off these features, in the next section, we will
implement the full-stack slice that will allow educators to create new courses.

Building a Web-Based Classroom Application Chapter 6

[221]

Creating a new course
In MERN Classroom, a user who is signed in—and who is also an educator—will be
able to create new courses. To implement this feature, in the following sections we
will add a create course API in the backend, along with a way to fetch this API in the
frontend, and a create new course form view that takes user input for course fields.

The create course API
In order to start the implementation of the create course API in the backend, we will
add a POST route that verifies that the current user is an educator, and then creates a
new course with the course data passed in the request body. The route is defined as
follows:

mern-classroom/server/routes/course.routes.js:

router.route('/api/courses/by/:userId')
 .post(authCtrl.requireSignin, authCtrl.hasAuthorization,
 userCtrl.isEducator,
 courseCtrl.create)

The course.routes.js file will be very similar to the user.routes file, and to load
these new routes in the Express app, we need to mount the course routes
in express.js, in the same way that we did for the auth and user routes, as shown
in the following code:

mern-classroom/server/express.js:

app.use('/', courseRoutes)

Next, we will update the user controller to add the isEducator method—which will
ensure that the current user is actually an educator—before creating the new course.
The isEducator method is defined as follows:

mern-classroom/server/controllers/user.controller.js:

const isEducator = (req, res, next) => {
 const isEducator = req.profile && req.profile.educator
 if (!isEducator) {
 return res.status('403').json({
 error: "User is not an educator"
 })
 }
 next()

Building a Web-Based Classroom Application Chapter 6

[222]

}

The create method, in the course controller, uses the formidable Node module to
parse the multipart request that may contain an image file that has been uploaded by
the user for the course image. If there is a file, formidable will store it temporarily in
the filesystem, and we will read it using the fs module to retrieve the file type and
data, and then it will be stored to the image field in the course document. The
create controller method will look as shown in the following code:

mern-classroom/server/controllers/course.controller.js:

const create = (req, res) => {
 let form = new formidable.IncomingForm()
 form.keepExtensions = true
 form.parse(req, async (err, fields, files) => {
 if (err) {
 return res.status(400).json({
 error: "Image could not be uploaded"
 })
 }
 let course = new Course(fields)
 course.instructor= req.profile
 if(files.image){
 course.image.data = fs.readFileSync(files.image.path)
 course.image.contentType = files.image.type
 }
 try {
 let result = await course.save()
 res.json(result)
 }catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
 })
}

The image file for the course, if uploaded by the user, is stored in MongoDB as data.
Then, in order to be shown in the views, it is retrieved from the database as an image
file at a separate GET API route. The GET API is set up as an Express route
at /api/courses/photo/:courseId, which gets the image data from MongoDB
and sends it as a file in the response. The implementation steps for file
upload, storage, and retrieval are outlined in detail in the Upload profile photo section
in Chapter 5, Starting with a Simple Social Media Application.

Building a Web-Based Classroom Application Chapter 6

[223]

With the create course API endpoint ready on the server, next, we can add a fetch
method in the frontend in order to utilize it.

Fetching the create API in the view
In order to use the create API in the frontend, we will set up a fetch method on the
client- side to make a POST request to the create API, by passing the multipart form
data, as shown in the following code:

mern-classroom/client/course/api-course.js

const create = async (params, credentials, course) => {
 try {
 let response = await fetch('/api/courses/by/'+ params.userId,
{
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: course
 })
 return response.json()
 } catch(err) {
 console.log(err)
 }
}

This method will be used in the new course form view to submit the user-entered
course details to the backend to create a new course in the database. In the next
section, we will implement this new course form view in a React component.

The NewCourse component
In order to allow educators to create new courses, we will add a React component
that contains a form to the frontend of the application. This form view will look as
shown in the following screenshot:

Building a Web-Based Classroom Application Chapter 6

[224]

The form will contain an option to upload the course image, input fields for entering
the course Name, Description, and Category; and the SUBMIT button, which will
save the details that have been entered into the database.

We will define the NewCourse React component in order to implement this form. As
shown next, we first initialize the state by using the useState hook; with empty
input field values, an empty error message, and a redirect variable that is
initialized to false.

mern-classroom/client/course/NewCourse.js:

export default function NewCourse() {
 ...
 const [values, setValues] = useState({
 name: '',
 description: '',
 image: '',
 category: '',
 redirect: false,
 error: ''
 })
 ...
}

In the form view, we first give the user an option to upload a course image file. To
render this option, we will add the file upload elements using a Material-UI button
and an HTML5 file input element in the return function for NewCourse, as shown in
the following code.

mern-classroom/client/course/NewCourse.js:

<input accept="image/*" onChange={handleChange('image')}
 type="file" style={display:'none'} />

Building a Web-Based Classroom Application Chapter 6

[225]

<label htmlFor="icon-button-file">
 <Button variant="contained" color="secondary" component="span">
 Upload Photo <FileUpload/>
 </Button>
</label>
{values.image ? values.image.name : ''}

Then, we add the name, description, and category form fields using the
TextField components from Material-UI.

mern-classroom/client/course/NewCourse.js:

<TextField
 id="name"
 label="Name"
 value={values.name} onChange={handleChange('name')}/>

<TextField
 id="multiline-flexible"
 label="Description"
 multiline
 rows="2"
 value={values.description}
 onChange={handleChange('description')}/>

<TextField
 id="category"
 label="Category"
 value={values.category}
 onChange={handleChange('category')}/>

We will define a handler function in NewCourse so that we can track changes to these
fields in the form view. The handleChange function will be defined as shown in the
following code:

mern-classroom/client/course/NewCourse.js

const handleChange = name => event => {
 const value = name === 'image'
 ? event.target.files[0]
 : event.target.value
 setValues({...values, [name]: value })
}

This handleChange function takes the new value that has been entered into the input
field and sets it to state, including the name of the file if one is uploaded by the user.

Building a Web-Based Classroom Application Chapter 6

[226]

Finally, in the view, you can add the Submit button, which, when clicked, should call
a click-handling function. We will define a function for this purpose in NewCourse as
follows.

mern-classroom/client/course/NewCourse.js:

const clickSubmit = () => {
 let courseData = new FormData()
 values.name && courseData.append('name', values.name)
 values.description && courseData.append('description',
 values.description)
 values.image && courseData.append('image', values.image)
 values.category && courseData.append('category', values.category)
 create({
 userId: jwt.user._id
 }, {
 t: jwt.token
 }, courseData).then((data) => {
 if (data.error) {
 setValues({...values, error: data.error})
 } else {
 setValues({...values, error: '', redirect: true})
 }
 })
}

This clickSubmit function will be called when the form is submitted. It first takes
the input values from the state and sets it to a FormData object. This ensures that the
data is stored in the correct format that is needed for the multipart/form-
data encoding type that is necessary for sending requests containing file uploads.
Then, the create fetch method is called to create a new course in the backend.
Finally, depending on the response from the server, either an error message is shown,
or the user is redirected to the MyCourses view with the following code.

mern-classroom/client/course/NewCourse.js:

if (values.redirect) {
 return (<Redirect to={'/teach/courses'}/>)
}

Building a Web-Based Classroom Application Chapter 6

[227]

The NewCourse component can only be viewed by a signed-in user who is also an
educator. So, we will add a PrivateRoute to the MainRouter component, which
will render this form only for authorized users at /teach/course/new.

mern-classroom/client/MainRouter.js:

<PrivateRoute path="/teach/course/new" component={NewCourse}/>

This link can be added to any of the view components that may be accessed by the
educator, such as the MyCourses view, which will be implemented in the next section
in order to list the courses that have been created by an educator.

Listing courses by educator
Authorized educators will be able to see a list of the courses that they have created on
the platform. In order to implement this feature, in the following sections we will add
a backend API that retrieves the list of courses for a specific instructor, and then we
will call this API in the frontend to render this data in a React component.

The list course API
In order to implement the API to return the list of courses that have been created by a
specific instructor, first, we will add a route in the backend to retrieve all the courses
that have been created by a given user when the server receives a GET request
at /api/courses/by/:userId. This route will be declared as shown next.

mern-classroom/server/routes/course.routes.js:

router.route('/api/courses/by/:userId')
 .get(authCtrl.requireSignin,
 authCtrl.hasAuthorization,
 courseCtrl.listByInstructor)

Building a Web-Based Classroom Application Chapter 6

[228]

To process the :userId param in the route and retrieve the associated user from the
database, we will utilize the userByID method in our user controller. We will add the
following code to the Course routes in course.routes.js, so that the user is
available in the request object as profile.

mern-classroom/server/routes/course.routes.js:

router.param('userId', userCtrl.userByID)

The listByInstructor controller method in course.controller.js will query
the Course collection in the database in order to get the matching courses, as shown
next.

mern-classroom/server/controllers/course.controller.js:

const listByInstructor = (req, res) => {
 Course.find({instructor: req.profile._id}, (err, courses) => {
 if (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
 res.json(courses)
 }).populate('instructor', '_id name')
}

In the query to the Course collection, we find all the courses that have an
instructor field that matches the user specified with the userId param. Then, the
resulting courses are sent back in the response to the client. In the next section, we
will see how to call this API from the frontend.

Fetching the list API in the view
In order to use the list API in the frontend, we will define a fetch method that can be
used by the React components to load this list of courses. The fetch method that is
needed in order to retrieve a list of courses by a specific instructor will be defined as
follows.

mern-classroom/client/course/api-course.js

const listByInstructor = async (params, credentials, signal) => {
 try {
 let response = await fetch('/api/courses/by/'+params.userId, {
 method: 'GET',
 signal: signal,

Building a Web-Based Classroom Application Chapter 6

[229]

 headers: {
 'Accept': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 }
 })
 return response.json()
 } catch(err) {
 console.log(err)
 }
}

This listByInstructor method will take the userId value in order to generate the
API route to be called, and will receive the list of courses that were created by the
user associated with the provided userId value. In the classroom application, we
will utilize this method in the MyCourses component, which is discussed in the next
section.

The MyCourses component
In the MyCourses component, we will render the list of courses in a Material-UI
List, after fetching the data from the server using the listByInstructor API. This
component, as pictured in the following image, will function as the educator's
dashboard, where their courses are listed and they have an option to add new
courses:

In order to implement this component, we first need to fetch and render the list of
courses. We will make the fetch API call in the useEffect hook, and set the received
courses array in the state, as shown next.

Building a Web-Based Classroom Application Chapter 6

[230]

mern-classroom/client/course/MyCourses.js

export default function MyCourses(){
 const [courses, setCourses] = useState([])
 const [redirectToSignin, setRedirectToSignin] = useState(false)
 const jwt = auth.isAuthenticated()

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal
 listByInstructor({
 userId: jwt.user._id
 }, {t: jwt.token}, signal).then((data) => {
 if (data.error) {
 setRedirectToSignin(true)
 } else {
 setCourses(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [])
 if (redirectToSignin) {
 return <Redirect to='/signin'/>
 }
 ...
}

When the listByInstructor API is fetched, we pass the currently signed-in user's
auth token to check for authorization on the server- side. Users should only be able to
see their own courses, and if the current user is not authorized to make this fetch call,
the view will be redirected to the sign-in page. Otherwise, the list of courses will be
returned and displayed in the view.

In this MyCourses component's view, we will render the retrieved courses array by
iterating over it using map, with each course data rendered in the view in a Material-
UI ListItem. Each ListItem will also be linked to the individual course view, as
shown in the following code:

mern-classroom/client/course/MyCourses.js

{courses.map((course, i) => {
 return <Link to={"/teach/course/"+course._id} key={i}>
 <ListItem button>
 <ListItemAvatar>
 <Avatar src={'/api/courses/photo/'+course._id+"?" +

Building a Web-Based Classroom Application Chapter 6

[231]

 new Date().getTime()}/>
 </ListItemAvatar>
 <ListItemText primary={course.name}
 secondary={course.description}/>
 </ListItem>
 <Divider/>
 </Link>}
)
}

The MyCourses component can only be viewed by a signed-in user who is also an
educator. So, we will add a PrivateRoute in the MainRouter component, which
will render this component only for authorized users, at /seller/courses.

mern-classroom/client/MainRouter.js:

<PrivateRoute path="/seller/courses" component={MyCourses}/>

We use this frontend route in the TEACH link on the menu, which directs a signed-in
educator to this MyCourses view. In this view, users can click on each course in the
list, and go to the page that shows the details of a specific course. In the next section,
we will implement the feature to render an individual course.

Display a course
Users on the MERN Classroom application, including visitors, signed-in students,
and educators alike, will all be able to browse through course pages, with interactions
that are specific to their authorization level. In the following sections, we will start
implementing the individual course view feature by adding a read course API to the
backend, a way to call this API from the frontend, and the React component that will
house the course detail view.

A read course API
In order to implement a read course API in the backend, we will start by declaring the
GET route and the parameter-handling trigger, as shown in the following code.

mern-classroom/server/routes/course.routes.js:

router.route('/api/courses/:courseId')
 .get(courseCtrl.read)
router.param('courseId', courseCtrl.courseByID)

Building a Web-Based Classroom Application Chapter 6

[232]

We are adding this GET route to query the Course collection with an ID and return
the corresponding course in the response. The :courseId param in the route URL
will call the courseByID controller method, which is similar to
the userByID controller method. It retrieves the course from the database, and
attaches it to the request object that is to be used in the next method, as shown in the
following code.

mern-classroom/server/controllers/course.controller.js:

const courseByID = async (req, res, next, id) => {
 try {
 let course = await Course.findById(id)
 .populate('instructor', '_id name')
 if (!course)
 return res.status('400').json({
 error: "Course not found"
 })
 req.course = course
 next()
 } catch (err) {
 return res.status('400').json({
 error: "Could not retrieve course"
 })
 }
}

The course object that is queried from the database will also contain the name and ID
details of the instructor, as we specified in the populate() method. The call to
next() after this course object is attached to the request object invokes the read
controller method. The read controller method then returns this course object in the
response to the client, as shown in the following code.

mern-classroom/server/controllers/course.controller.js:

const read = (req, res) => {
 req.course.image = undefined
 return res.json(req.course)
}

We are removing the image field before sending the response, since images will be
retrieved as files in separate routes. With this API ready in the backend, you can now
add the implementation in order to call it in the frontend, by adding a fetch method
in api-course.js, which is similar to other fetch methods that have already been
added. We will use the fetch method to call the read course API in the React
component that will render the course details, as discussed in the next section.

Building a Web-Based Classroom Application Chapter 6

[233]

The Course component
The Course component will render the individual course-specific details and user
interactions, as pictured in the following screenshot:

The completed Course component will contain the following parts:

A section showing course details, which is visible to all visitors to this page.
We will implement this part in this section.
A Lessons section, which contains a list of lessons and is visible to all
visitors, and the option to add a new lesson, which will be visible only to
the instructor of this course. We will implement the lessons part in the next
section.
Edit, delete, and publish options, which are visible only to the instructor.
This will be discussed later in the chapter.
An Enroll option, not pictured in the previous image, which will only be
visible after the course has been published by the instructor. This will be
implemented later in the chapter.

Building a Web-Based Classroom Application Chapter 6

[234]

To start off the implementation of this Course component, we will first retrieve the
course details with a fetch call to the read API in a useEffect hook, and then we will
set the received values to state, as shown in the following code.

mern-classroom/client/course/Course.js

export default function Course ({match}) {
 const [course, setCourse] = useState({instructor:{}})
 const [values, setValues] = useState({
 error: ''
 })
 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal
 read({courseId: match.params.courseId}, signal).then((data) => {
 if (data.error) {
 setValues({...values, error: data.error})
 } else {
 setCourse(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [match.params.courseId])
...
}

useEffect will only run when courseId changes in the route params.

In the view, we will render the received details, such as course name, description,
category, image, and a link to the instructor's user profile in a Material-UI Card
component, as shown in the following code:

mern-classroom/client/course/Course.js

<Card>
 <CardHeader
 title={course.name}
 subheader={<div>
 <Link to={"/user/"+course.instructor._id}>
 By {course.instructor.name}
 </Link>
 {course.category}
 </div>
 }
 />

Building a Web-Based Classroom Application Chapter 6

[235]

 <CardMedia image={imageUrl} title={course.name} />
 <div>
 <Typography variant="body1">
 {course.description}
 </Typography>
 </div>
</Card>

imageUrl consists of the route that will retrieve the course image as a file response,
and it is constructed as follows:

mern-classroom/client/course/Course.js

const imageUrl = course._id
 ? `/api/courses/photo/${course._id}?${new Date().getTime()}`
 : '/api/courses/defaultphoto'

When the course instructor is signed in and views the course page, we will render the
edit and other course data-modifying options in the Course component. For now, we
will only look at how the edit option is added conditionally to the view code:

mern-classroom/client/course/Course.js

{auth.isAuthenticated().user && auth.isAuthenticated().user._id ==
course.instructor._id &&
 (<Link to={"/teach/course/edit/" + course._id}>
 <IconButton aria-label="Edit" color="secondary">
 <Edit/>
 </IconButton>
 </Link>
)
}

If the current user is signed in, and their ID matches with the course instructor's ID,
only then will the Edit option be rendered. This part will be edited further in
upcoming sections, in order to show the publish and delete options.

In order to load this Course component in the frontend, we will add a route to
MainRouter as follows:

<Route path="/course/:courseId" component={Course}/>

This route URL (/course/:courseId) can now be added into any component to link
to a specific course, with the :courseId param replaced with the course's ID value.
Clicking on the link will take the user to the corresponding Course view.

Building a Web-Based Classroom Application Chapter 6

[236]

We now have the relevant backend model and API endpoints integrated with the
frontend views, meaning that we have a functioning implementation of the new
course creation, a course listing by the instructor, and single-course display features.
We can now move on to extending these implementations further, giving instructors
the ability to add lessons to each course and update the course as desired, before
publishing it.

Updating courses with lessons
Each course in the MERN Classroom will contain a list of lessons that make up the
course content and what the students need to cover when they enroll. We will keep
the lesson structure simple for this application, putting more emphasis on the
implementation of managing lessons and allowing students to go through lessons in
order to complete a course. In the following sections, we will focus on the
implementation of managing lessons for a course, and we will also look at how to
update an existing course—either to edit details or to delete the course. First, we will
look into how to store lesson details, then we will implement the full-stack features to
allow instructors to add lessons, update lessons, update details of the course, and
delete a course.

Storing lessons
We need to define the lesson data structure and associate it with the course data
structure before we can store and retrieve lesson details for each course.

We will start by defining the Lesson model, with a schema containing the title, the
content, and the resource URL fields of the string type, as shown in the following
code.

mern-classroom/server/models/course.model.js

const LessonSchema = new mongoose.Schema({
 title: String,
 content: String,
 resource_url: String
})
const Lesson = mongoose.model('Lesson', LessonSchema)

Building a Web-Based Classroom Application Chapter 6

[237]

These schemas will let educators create and store basic lessons for their courses. To
integrate lessons with the course structure, we will add a field called lessons in the
Course model, which will store an array of lesson documents, as shown in the
following code:

mern-classroom/server/models/course.model.js

lessons: [LessonSchema]

With this updated Course schema and model, we can now proceed with the
implementations that will allow educators to add lessons to their course, as discussed
in the next section.

Adding new lessons
Educators on the MERN Classroom application will be able to add new lessons to the
courses that they are still building and have not yet published. In the following
sections, we will make this feature possible, first by implementing a backend API that
adds lessons to an existing course, then by creating a frontend form view for entering
and sending the new lesson details, and finally, by displaying the newly added
lessons on the Course page.

Adding a lesson API
In order to implement a backend API that will allow us to add and store new lessons
for a given course, we first need to declare a PUT route as follows:

mern-classroom/server/routes/course.routes.js:

router.route('/api/courses/:courseId/lesson/new')
 .put(authCtrl.requireSignin,
 courseCtrl.isInstructor,
 courseCtrl.newLesson)

When this route gets a PUT request with the course ID in the URL, we will first use the
isInstructor method to check whether the current user is the instructor for the
course, and then we will save the lesson in the database with the newLesson method.
The isInstructor controller method will be defined as follows:

mern-classroom/server/controllers/course.controller.js:

const isInstructor = (req, res, next) => {
 const isInstructor = req.course && req.auth &&

Building a Web-Based Classroom Application Chapter 6

[238]

 req.course.instructor._id == req.auth._id
 if(!isInstructor){
 return res.status('403').json({
 error: "User is not authorized"
 })
 }
 next()
}

With the isInstructor method, we first check whether the signed-in user has the
same user ID as the instructor of the given course. If the user is not authorized, an
error is returned in the response, otherwise the next() middleware is invoked in
order to execute the newLesson method. This newLesson controller method is
defined as follows:

mern-classroom/server/controllers/course.controller.js:

const newLesson = async (req, res) => {
 try {
 let lesson = req.body.lesson
 let result = await Course.findByIdAndUpdate(req.course._id,
 {$push: {lessons:
lesson},
 updated: Date.now()},
 {new: true})
 .populate('instructor', '_id name')
 .exec()
 res.json(result)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

In this newLesson controller method, we use findByIdAndUpdate (from MongoDB)
to find the corresponding course document, and we update its lessons array field by
pushing the new lesson object that was received in the request body.

In order to access this API to add a new lesson in the frontend, you will also need to
add a corresponding fetch method, as we did for other API implementations.

This API will be used in a form-based component that will take input from the user
for each new lesson and then send it to the backend. We will implement this form-
based component in the next section.

Building a Web-Based Classroom Application Chapter 6

[239]

The NewLesson component
In each course, while it is still unpublished, the instructor will be able to add a lesson
by filling out a form. In order to implement this form view to add new lessons, we
will create a React component called NewLesson, which will be added to the Course
component. This component will render the following form in a dialog box in the
Course page:

While defining the NewLesson component, we will first initialize the form values in
the state with the useState hook. This component will also receive props from the
Course component, as shown in the following code.

mern-classroom/client/course/NewLesson.js

export default function NewLesson(props) {
 const [open, setOpen] = useState(false)
 const [values, setValues] = useState({
 title: '',
 content: '',
 resource_url: ''
 })
...
}
NewLesson.propTypes = {
 courseId: PropTypes.string.isRequired,
 addLesson: PropTypes.func.isRequired
}

The NewLesson component will receive the courseId value and an addLesson
function as props from the parent component to which it will be added; in this case
from the Course component. We make these required props by adding PropTypes
validation to NewLesson. These props will be needed in this component when the
form is submitted.

Building a Web-Based Classroom Application Chapter 6

[240]

Next, we will add the button to toggle the dialog that will contain the form, as shown
in the following code.

mern-classroom/client/course/NewLesson.js

<Button aria-label="Add Lesson" color="primary" variant="contained"
 onClick={handleClickOpen}>
 <Add/> New Lesson
</Button>
<Dialog open={open} onClose={handleClose} aria-labelledby="form-
dialog- title">
 <div className={classes.form}>
 <DialogTitle id="form-dialog-title">Add New Lesson</DialogTitle>
 ...
 <DialogActions>
 <Button onClick={handleClose}
 color="primary" variant="contained">
 Cancel
 </Button>
 <Button onClick={clickSubmit}
 color="secondary" variant="contained">
 Add
 </Button>
 </DialogActions>
 </div>
</Dialog>

The Material-UI Dialog component stays open or closed, depending on the state of
the open variable. We update the open value in the following functions, which are
called on dialog open and close actions.

mern-classroom/client/course/NewLesson.js

const handleClickOpen = () => {
 setOpen(true)
}

const handleClose = () => {
 setOpen(false)
}

Building a Web-Based Classroom Application Chapter 6

[241]

The form fields for entering the new lesson's title, content, and resource URL values
are added inside the Dialog component using TextFields in DialogContent, as
shown with the following code:

mern-classroom/client/course/NewLesson.js

<DialogContent>
 <TextField label="Title" type="text" fullWidth
 value={values.title} onChange={handleChange('title')}
/>

 <TextField label="Content" type="text" multiline rows="5"
fullWidth
 value={values.content}
onChange={handleChange('content')}/>

 <TextField label="Resource link" type="text" fullWidth
 value={values.resource_url}
 onChange={handleChange('resource_url')} />

</DialogContent>

Values that are entered in the input fields are captured with the handleChange
function, which is defined as follows:

mern-classroom/client/course/NewLesson.js

const handleChange = name => event => {
 setValues({ ...values, [name]: event.target.value })
}

Finally, when the form is submitted, we will send the new lesson details to the server
in the clickSubmit function, as shown in the following code.

mern-classroom/client/course/NewLesson.js

const clickSubmit = () => {
 const jwt = auth.isAuthenticated()
 const lesson = {
 title: values.title || undefined,
 content: values.content || undefined,
 resource_url: values.resource_url || undefined
 }
 newLesson({
 courseId: props.courseId
 }, {
 t: jwt.token
 }, lesson).then((data) => {

Building a Web-Based Classroom Application Chapter 6

[242]

 if (data && data.error) {
 setValues({...values, error: data.error})
 } else {
 props.addLesson(data)
 setValues({...values, title: '',
 content: '',
 resource_url: ''})
 setOpen(false)
 }
 })
 }

The lesson details are sent in the request to the add lesson API with the course ID
received as a prop from the Course component. On a successful update response
from the server, besides emptying the form fields, the addLesson update function,
which was passed as a prop, is executed to render the latest lessons in the Course
component. The addLesson function to be passed in from the Course component is
defined as follows:

mern-classroom/client/course/Course.js

const addLesson = (course) => {
 setCourse(course)
}

The NewLesson component that is added to the Course component should only
render if the current user is the instructor of the course, and if the course is still
unpublished. To do this check and conditionally render the NewLesson component,
we can add the following code to the Course component:

mern-classroom/client/course/Course.js

{ auth.isAuthenticated().user &&
 auth.isAuthenticated().user._id == course.instructor._id &&
 !course.published &&
 (<NewLesson courseId={course._id} addLesson={addLesson}/>)
}

This will allow educators on the application to add lessons to their courses. Next, we
will add the code to render these lessons on the Course page.

Building a Web-Based Classroom Application Chapter 6

[243]

Displaying lessons
The lessons for a specific course will be rendered in a list—along with a tally of the
total number of lessons—on the Course page below the other course details, as
pictured in the following screenshot:

To render this list of lessons, we will update the Course component to iterate over
the array of lessons with a map function, and each lesson will be displayed in a
Material-UI ListItem component, as shown in the following code.

mern-classroom/client/course/Course.js

<List>
 {course.lessons && course.lessons.map((lesson, index) => {
 return(
 <ListItem>
 <ListItemAvatar>
 <Avatar> {index+1} </Avatar>
 </ListItemAvatar>
 <ListItemText primary={lesson.title} />
 </ListItem>
 <Divider variant="inset" component="li" />
)
 })}
</List>

The number beside each list item is calculated using the current index value of the
array. The total number of lessons can also be displayed by accessing
course.lessons.length.

Now that instructors can add and view lessons for each course, in the next section we
will implement the ability to update these added lessons, besides modifying other
course details.

Building a Web-Based Classroom Application Chapter 6

[244]

Editing a course
Once a course has been added by an educator and there are more updates to be
incorporated, the educator will be able to edit the details of the course as its
instructor. Editing a course includes the ability to update its lessons, as well. To
implement this capability in the application, first, we will have to create a backend
API that allows the update operation on a given course.

Then, this updated API needs to be accessed in frontend with the changed details of
the course and its lessons. In the following sections, we will build this backend API
and the EditCourse React component, which will allow instructors to change the
course details and lessons.

Updating the course API
In the backend, we will need an API that allows an existing course to be updated if
the user who is making the request is the authorized instructor of the given course.
We will first declare the PUT route that accepts the update request from the client, as
follows:

mern-classroom/server/routes/course.routes.js:

router.route('/api/courses/:courseId')
 .put(authCtrl.requireSignin, courseCtrl.isInstructor,
 courseCtrl.update)

A PUT request that is received at the /api/courses/:courseId route first checks if
the signed-in user is the instructor of the course that is associated with the courseId
provided in the URL. If the user is found to be authorized, the update controller is
invoked. The update method in the course controller is defined as shown in the
following code.

mern-classroom/server/controllers/course.controller.js:

const update = (req, res) => {
 let form = new formidable.IncomingForm()
 form.keepExtensions = true
 form.parse(req, async (err, fields, files) => {
 if (err) {
 return res.status(400).json({
 error: "Photo could not be uploaded"
 })
 }
 let course = req.course

Building a Web-Based Classroom Application Chapter 6

[245]

 course = extend(course, fields)
 if(fields.lessons){
 course.lessons = JSON.parse(fields.lessons)
 }
 course.updated = Date.now()
 if(files.image){
 course.image.data = fs.readFileSync(files.image.path)
 course.image.contentType = files.image.type
 }
 try {
 await course.save()
 res.json(course)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
 })
}

As the request body may contain a file upload, we are using formidable here to
parse the multipart data. The lessons array is an array of nested objects, and we need
to specifically parse and assign the lessons array to the course before saving it. As we
will see in the next section, the lessons array that is sent from the frontend will be
stringified before sending, so in this controller, we need to additionally check whether
the lessons field was received, and assign it separately after parsing it.

To use this API in the frontend, you will need to define a fetch method that takes the
course ID, user auth credentials, and the updated course details, in order to make the
fetch call to this update course API—as we have done for other API implementations.

We now have a course update API that can be used in the frontend to update details
of a course. We will use this in the EditCourse component, which is discussed next.

The EditCourse component
In the frontend, we will add a view for editing a course and it will have two sections.
The first part will let the user change the course details, including the name, category,
description, and image; and the second part will allow the modification of the lessons
for the course. The first part of this course is pictured in the following screenshot:

Building a Web-Based Classroom Application Chapter 6

[246]

To implement this view, we will define a React component named EditCourse. This
component will first load the course details by calling the read fetch method in the
useEffect hook, as shown in the following code.

mern-classroom/client/course/EditCourse.js

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal
 read({courseId: match.params.courseId}, signal).then((data) => {
 if (data.error) {
 setValues({...values, error: data.error})
 } else {
 setCourse(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [match.params.courseId])

After successfully receiving the course data in the response, it will be set to the
course variable in the state by calling setCourse, and it will be used to populate the
view. The first part of this view will render the course details similar to the Course
view but using TextFields instead, with an option to upload a new image and a
Save button to make the update call, as shown in the following code.

mern-classroom/client/course/EditCourse.js

<CardHeader title={<TextField label="Title" type="text" fullWidth
 value={course.name} onChange={handleChange('name')}/>}

Building a Web-Based Classroom Application Chapter 6

[247]

 subheader={<div><Link to={"/user/"+course.instructor._id}>
 By {course.instructor.name}
 </Link>
 {<TextField label="Category" type="text" fullWidth
 value={course.category}
 onChange={handleChange('category')}/>}
 </div>}
 action={<Button variant="contained" color="secondary"
 onClick={updateCourse}>Save</Button>}
/>
<div className={classes.flex}>
 <CardMedia image={imageUrl} title={course.name}/>
 <div className={classes.details}>
 <TextField multiline rows="5" label="Description" type="text"
 value={course.description}
 onChange={handleChange('description')} />

 <input accept="image/*"
 onChange={handleChange('image')} type="file" />
 <label htmlFor="icon-button-file">
 <Button variant="outlined" color="secondary" component="span">
 Change Photo
 <FileUpload/>
 </Button>
 </label> {course.image ? course.image.name :
''}

 </div>
</div>

The changes to the input fields will be handled in order to capture the newly entered
values with the handleChange method, which is defined as follows.

mern-classroom/client/course/EditCourse.js

 const handleChange = name => event => {
 const value = name === 'image'
 ? event.target.files[0]
 : event.target.value
 setCourse({ ...course, [name]: value })
 }

When the Save button is clicked, we will get all the course details and set it to
FormData, which will be sent in the multipart format to the backend using the course
update API. The clickSubmit function that is called on saving will be defined as
follows:

mern-classroom/client/course/EditCourse.js

const clickSubmit = () => {

Building a Web-Based Classroom Application Chapter 6

[248]

 let courseData = new FormData()
 course.name && courseData.append('name', course.name)
 course.description && courseData.append('description'
 , course.description)
 course.image && courseData.append('image', course.image)
 course.category && courseData.append('category', course.category)
 courseData.append('lessons', JSON.stringify(course.lessons))
 update({
 courseId: match.params.courseId
 }, {
 t: jwt.token
 }, courseData).then((data) => {
 if (data && data.error) {
 console.log(data.error)
 setValues({...values, error: data.error})
 } else {
 setValues({...values, redirect: true})
 }
 })
 }

The course lessons are also sent in this FormData, but as lessons are stored as an
array of nested objects and FormData only accepts simple key-value pairs, we
stringify the lessons value before assigning it.

In order to load EditCourse in the frontend of the application, we need to declare a
frontend route for it. This component can only be viewed by a signed-in user who is
also the instructor of the course. So, we will add a PrivateRoute in
the MainRouter component, which will render this view only for authorized users
at /teach/course/edit/:courseId.

mern-marketplace/client/MainRouter.js:

<PrivateRoute path="/teach/course/edit/:courseId"
component={EditCourse}/>

This link is added in the Course view in order to allow access to the EditCourse
page.

We have looked at how to update and send the course details, along with all the
lessons to the backend on saving, but we are left with the interface for editing the
course lessons. In the following section, we will finish up the EditCourse component
by looking into the implementation for updating course lessons.

Building a Web-Based Classroom Application Chapter 6

[249]

Updating lessons
In order to allow instructors to update the lessons that they have added to a course,
we will add the following section in the EditCourse component, which will allow
the user to edit the lesson details, rearrange the order of the lessons, and delete a
lesson:

The implementation of these lesson update features will mostly rely on array
manipulation techniques. In the following sections, we will add the interface for an
individual lesson in the list, and discuss how the edit, move, and delete
functionalities are implemented.

Editing lesson details
Users will be able to edit the details of each field in a lesson in the EditCourse
component. In the view, each item in the list of lessons will contain three
TextFields for each of the fields in a lesson. These will be prepopulated with the
existing values of the fields as shown in the following code.

mern-classroom/client/course/EditCourse.js

<ListItemText
 primary={<><TextField label="Title" type="text" fullWidth

Building a Web-Based Classroom Application Chapter 6

[250]

 value={lesson.title}
 onChange={handleLessonChange('title', index)}
/>

 <TextField multiline rows="5" label="Content" type="text"
 fullWidth value={lesson.content}
 onChange={handleLessonChange('content',
index)}/>

 <TextField label="Resource link" type="text" fullWidth
 value={lesson.resource_url}
 onChange={handleLessonChange('resource_url',
index)}/>

 </>}
/>

In order to handle the changes made to the values in each field, we will define a
handleLessonChange method, which will take the field name and the
corresponding lesson's index in the array. The handleLessonChange method will be
defined as follows:

mern-classroom/client/course/EditCourse.js

const handleLessonChange = (name, index) => event => {
 const lessons = course.lessons
 lessons[index][name] = event.target.value
 setCourse({ ...course, lessons: lessons })
}

The lessons array in the course is updated in the state, after setting the value in the
specified field of the lesson at the provided index. This updated course with the
modified lesson will get saved to the database when the user clicks Save in the
EditCourse view. Next, we will look at how we can allow the user to rearrange the
order of the lessons.

Moving the lessons to rearrange the order
While updating lessons, the user will also be able to reorder each lesson on the list.
There will be an up arrow button for each lesson, except for the very first lesson. This
button will be added to each lesson item in the view as follows:

mern-classroom/client/course/EditCourse.js

{ index != 0 &&
 <IconButton color="primary" onClick={moveUp(index)}>

Building a Web-Based Classroom Application Chapter 6

[251]

 <ArrowUp />
 </IconButton>
}

When the user clicks this button, the lesson in the current index will be moved up,
and the lesson above it will be moved to its place in the array. The moveUp function
will implement this behavior as follows:

mern-classroom/client/course/EditCourse.js

const moveUp = index => event => {
 const lessons = course.lessons
 const moveUp = lessons[index]
 lessons[index] = lessons[index-1]
 lessons[index-1] = moveUp
 setCourse({ ...course, lessons: lessons })
}

The rearranged lessons array is then updated in the state, and will be saved to the
database when the user saves the changes in the EditCourse page. Next, we will
implement the option to delete a lesson from the list.

Deleting a lesson
In the EditCourse page, each item rendered in the lessons list will have a delete
option. The Delete button will be added in the view to each list item as follows:

mern-classroom/client/course/EditCourse.js

<ListItemSecondaryAction>
 <IconButton edge="end" aria-label="up" color="primary"
 onClick={deleteLesson(index)}>
 <DeleteIcon />
 </IconButton>
</ListItemSecondaryAction>}

When the Delete button is clicked, we will take the index of the lesson that is being
deleted and remove it from the lessons array. The deleteLesson function, which is
called when the button is clicked, is defined as follows:

mern-classroom/client/course/EditCourse.js

const deleteLesson = index => event => {
 const lessons = course.lessons
 lessons.splice(index, 1)
 setCourse({...course, lessons:lessons})
}

Building a Web-Based Classroom Application Chapter 6

[252]

In this function, we are splicing the array to remove the lesson from the given index,
then adding the updated array in the course in the state. This new lesson array will be
sent to the database with the course object when the user clicks the Save button in the
EditCourse page.

This wraps up the three different ways an instructor can change the lessons for their
course. With these implementations using array manipulation techniques integrated
with the React component's features, the users can now edit the details, rearrange the
order, and delete a lesson. In the next section, we will discuss the only remaining
feature for modifying a course, which is the ability to delete it from the database.

Deleting a course
In the MERN Classroom application, instructors will be able to permanently delete
courses if the course has not been published already. In order to allow an instructor to
delete a course, first, we will define a backend API for course deletion from the
database, and then implement a React component that makes use of this API when
the user interacts with the frontend to perform this deletion.

The delete course API
In order to implement a backend API that takes a request to delete a specified course
from the database, we will first define a DELETE route as shown in the following
code.

mern-classroom/server/routes/course.routes.js:

router.route('/api/courses/:courseId')
 .delete(authCtrl.requireSignin, courseCtrl.isInstructor,
 courseCtrl.remove)

This DELETE route takes the course ID as a URL parameter and checks if the current
user is signed in and authorized to perform this delete, before proceeding to the
remove controller method, which is defined in the following code.

mern-classroom/server/controllers/course.controller.js:

const remove = async (req, res) => {
 try {
 let course = req.course
 let deleteCourse = await course.remove()
 res.json(deleteCourse)

Building a Web-Based Classroom Application Chapter 6

[253]

 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The remove method simply deletes the course document that corresponds to the
provided ID from the Courses collection in the database. To access this backend API
in the frontend, you will also need a fetch method with this route; similar to other API
implementations. The fetch method will need to take the course ID and current user's
auth credentials, then call the delete API with these values.

The fetch method will be used when the user performs the delete operation by
clicking a button on the interface. In the next section, we will discuss a React
component called DeleteCourse, which is where this interaction will take place.

The DeleteCourse component
The instructor for a course will see a delete option on the Course page when they are
logged in and they are viewing an unpublished course. This delete option will be
implemented in its own React component called DeleteCourse, and this component
will be added to the Course component. The DeleteCourse component is basically a
button, which, when clicked, opens a Dialog component asking the user to confirm
the delete action, as shown in the following screenshot:

The implementation of the DeleteCourse component is similar to the DeleteUser
component, as discussed in Chapter 4, Adding a React Frontend to Complete MERN.
Instead of a user ID, the DeleteCourse component will take the course ID and the
onRemove function definition from the Course component as props, when it is added
to Course, as shown in the following code:

mern-classroom/client/course/Course.js

<DeleteCourse course={course} onRemove={removeCourse}/>

Building a Web-Based Classroom Application Chapter 6

[254]

With this implementation, course instructors will be able to remove a course from the
platform.

In this section, we added the ability to add lessons to a course by extending the
Course model and implementing a Lesson model. Then, we added the necessary
backend APIs and user interface updates to be able to add lessons, modify course
details and lessons, and delete lessons and courses. The course module is now ready
for us to implement the ability to publish a course and make it available on the
application for enrollment. We will discuss this publishing feature in the next section.

Publishing courses
In the MERN Classroom, only courses that are published will be available to other
users on the platform for enrollment. Once an instructor has created the course and
updated it with lessons, they will have the option to publish it. Published courses will
be listed on the home page, and all visitors will be able to view them. In the rest of
this section, we will look into the implementation of allowing instructors to publish a
course and listing these published courses in the frontend.

Implementing the publish option
Instructors for each course will be given the option to publish their course after they
have added at least one lesson to the course. Publishing a course will also mean that
the course can no longer be deleted, new lessons cannot be added, and existing
lessons cannot be deleted. So, when the instructors choose to publish, they will be
asked to confirm the action. In this section, we will look at how to use and extend the
existing course module in order to integrate this publishing feature.

Publish button states
In the course view, when the instructor is logged in, they will see the PUBLISH
button in three states, depending on whether the course can be published or not, and
whether it is already published, as shown in the following screenshot:

Building a Web-Based Classroom Application Chapter 6

[255]

The states of this button will primarily depend on whether the published attribute
of the course document is set to true or false, and on the length of the lessons
array. The button will be added to the Course component, as shown in the following
code:

mern-classroom/client/course/Course.js

{ !course.published ?
 (<> <Button color="secondary" variant="outlined"
 onClick={clickPublish}>
 { course.lessons.length == 0 ?
 "Add atleast 1 lesson to publish"
 : "Publish" }
 </Button>
 <DeleteCourse course={course}
onRemove={removeCourse}/>
 </>) : (
 <Button color="primary"
 variant="outlined">Published</Button>
)
}

The delete option will only be rendered if the course is not already published. When
the PUBLISH button is clicked, we will open a dialog asking the user for
confirmation. The clickPublish function will be called when the button is clicked,
and is defined as follows:

mern-classroom/client/course/Course.js

const clickPublish = () => {
 if(course.lessons.length > 0){
 setOpen(true)
 }
 }

The clickPublish function will only open the dialog box if the length of the lessons
array is more than zero; preventing the instructor from publishing a course without
any lessons. Next, we will add the dialog box, which will let the instructor publish the
course after confirmation.

Confirm to publish
When the instructor clicks on the PUBLISH button, they will see a dialog box
informing them of the consequences of this action, and giving them the options to
PUBLISH the course or CANCEL the action. The dialog box will look as follows:

Building a Web-Based Classroom Application Chapter 6

[256]

To implement this dialog box, we will use the Material-UI Dialog component with
the title and content text, and the PUBLISH and CANCEL buttons, as shown in the
following code.

mern-classroom/client/course/Course.js

<Dialog open={open} onClose={handleClose} aria-labelledby="form-
dialog-title">
 <DialogTitle id="form-dialog-title">Publish Course</DialogTitle>
 <DialogContent>
 <Typography variant="body1">
 Publishing your course will make it live to students
 for enrollment.
 </Typography>
 <Typography variant="body1">
 Make sure all lessons are added and ready for publishing.
 </Typography>
 </DialogContent>
 <DialogActions>
 <Button onClick={handleClose} color="primary"
variant="contained">
 Cancel
 </Button>
 <Button onClick={publish} color="secondary" variant="contained">
 Publish
 </Button>
 </DialogActions>
</Dialog>

When the PUBLISH button on the dialog is clicked by the user as confirmation to
publish the course, we will make an update API call to the backend, with the
published attribute of the course set to true. The publish function to make this
update will be defined as follows:

mern-classroom/client/course/Course.js

 const publish = () => {
 let courseData = new FormData()
 courseData.append('published', true)

Building a Web-Based Classroom Application Chapter 6

[257]

 update({
 courseId: match.params.courseId
 }, {
 t: jwt.token
 }, courseData).then((data) => {
 if (data && data.error) {
 setValues({...values, error: data.error})
 } else {
 setCourse({...course, published: true})
 setOpen(false)
 }
 })
 }

In this function, we are using the same update API that has already been defined and
used for saving modifications to other course details from the EditCourse view.
Once the backend is successfully updated with the published value, it is also
updated in the state of the Course component.

This published attribute in the course can be used to conditionally hide the options
to add a new lesson, delete a course, and delete a lesson in both the Course and
EditCourse components, in order to prevent the instructor from performing these
actions after the course is already published. As courses are published by instructors,
these courses will be listed in a view for all users on the platform, as discussed in the
following section.

Listing published courses
All visitors to the MERN Classroom application will be able to access the published
courses. In order to present these published courses, we will add the feature to
retrieve all the published courses from the database, and display the courses in a list
on the home page. In the following sections, we will implement this feature by first
defining the backend API, which will take a request and return the list of published
courses. Then, we will implement the frontend component that will fetch this API and
render the courses.

Building a Web-Based Classroom Application Chapter 6

[258]

The published courses API
In order to retrieve the list of published courses from the database, we will implement
an API in the backend, by first declaring the route that will take a GET request at
'/api/courses/published', as shown in the following code:

mern-classroom/server/routes/course.routes.js:

router.route('/api/courses/published')
 .get(courseCtrl.listPublished)

A GET request to this route will invoke the listPublished controller method,
which initiates a query to the Course collection for courses that have the published
attribute's value as true. Then, the resulting courses are returned in the response.
The listPublished controller method is defined as follows:

mern-classroom/server/controllers/course.controller.js:

const listPublished = (req, res) => {
 Course.find({published: true}, (err, courses) => {
 if (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
 res.json(courses)
 }).populate('instructor', '_id name')
}

To use this list API in the frontend, we also need to define a fetch method on the
client- side, as we did for all the other API calls. Then, the fetch method will be used
in the component, which will retrieve and display the published courses. In the next
section, we will look into the implementation of rendering the retrieved course list in
a React component.

Building a Web-Based Classroom Application Chapter 6

[259]

The Courses component
For displaying the list of published courses, we will design a component that takes
the array of courses as props from the parent component that it is added to. In the
MERN Classroom application, we will render the published courses on the home
page, as pictured in the next screenshot:

In the Home component, we will retrieve the list of published courses from the
backend in a useEffect hook, as shown in the following code:

mern-classroom/client/core/Home.js

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal
 listPublished(signal).then((data) => {
 if (data.error) {
 console.log(data.error)
 } else {
 setCourses(data)
 }
 })
 return function cleanup(){
 abortController.abort()

Building a Web-Based Classroom Application Chapter 6

[260]

 }
 }, [])

Once the list of courses is received, it is set to the courses variable in the state. We
will pass this courses array to the Courses component as props when it is added to
the Home component, as follows:

mern-classroom/client/core/Home.js

<Courses courses={courses} />

This Courses component will take these props and iterate through the array to
render each course in a GridList component from Material-UI. The Courses
component is defined as shown in the following code:

mern-classroom/client/course/Courses.js

export default function Courses(props){
 return (
 <GridList cellHeight={220} cols={2}>
 {props.courses.map((course, i) => {
 return (
 <GridListTile key={i} style={{padding:0}}>
 <Link to={"/course/"+course._id}>
 <img src={'/api/courses/photo/'+course._id}
 alt={course.name} />
 </Link>
 <GridListTileBar
 title={<Link to={"/course/"+course._id}>
 {course.name}</Link>}
 subtitle={{course.category}}
 actionIcon={auth.isAuthenticated() ?
 <Enroll courseId={course._id}/> :
 <Link to="/signin">
 Sign in to Enroll</Link>
 }
 />
 </GridListTile>)
 })}
 </GridList>
)
}
Courses.propTypes = {
 courses: PropTypes.array.isRequired
}

Building a Web-Based Classroom Application Chapter 6

[261]

Each course in the list will display its name, category, and image, and will be linked
to the individual course page. The Enroll option, which will be implemented in its
own component, will also be shown for each course, but only to the users who
are signed in, and are browsing through the home page.

With courses now publishable by instructors and viewable by all visitors to the
application, we can now start the implementation for enrollment on courses.

Enrolling on courses
All visitors to the MERN Classroom application will have the option to sign in and
then enroll on any of the published courses. Enrolling on a course would give them
access to the lesson details and would allow them to go through the lessons
systematically to complete the course. In order to implement this feature, in this
section, we will first define an Enrollment model to store enrollment details in the
database. Then, we will add the backend API to create new enrollments when end
users interact with the Enroll component that will be added to the frontend. Finally,
we will implement the view that enables a student to see and interact with the content
from the course on which they are enrolled.

Defining an Enrollment model
We will define an Enrollment schema and model in order to store the details of each
enrollment in the application. It will have fields to store the reference to the course
being enrolled in and the user who is enrolling as a student. It will also store an array
corresponding to the lessons in the associated course, which will store the completion
status of each of the lessons for this student. Additionally, we will store three
timestamp values; the first value will signify when the student enrolled, the second
value will indicate the last time that they completed a lesson or updated the
enrollment, and finally, when they completed the course. This enrollment model will
be defined in server/models/enrollment.model.js, and the code defining the
enrollment fields are given in the following list with explanations:

Course reference: The course field will store the reference to the course
document with which this enrollment is associated:

course: {
 type: mongoose.Schema.ObjectId,
 ref: 'Course'
}

Building a Web-Based Classroom Application Chapter 6

[262]

Student reference: The student field will store the reference to the user
who created this enrollment by choosing to enroll on a course:

student: {
 type: mongoose.Schema.ObjectId,
 ref: 'User'
}

Lesson status: The lessonStatus field will store an array with references
to each lesson that is stored in the associated course in the lessons array.
For each object in this lessonStatus array, we will add a complete field
that will store a Boolean value that indicates whether the corresponding
lesson has been completed or not:

lessonStatus: [{
 lesson: {type: mongoose.Schema.ObjectId, ref: 'Lesson'},
 complete: Boolean
}]

Enrolled at: The enrolled field will be a Date value indicating the time
that the enrollment was created; in other words, when the student enrolled
on the course:

enrolled: {
 type: Date,
 default: Date.now
}

Updated at: The updated field will be another Date value, which will be
updated every time a lesson is completed, indicating when was the last
time that the user worked on the course lessons:

updated: Date

Completed at: The completed field will also be a Date type, which will
only be set when all the lessons in the course have been completed:

completed: Date

The fields in this schema definition will enable us to implement all the enrollment-
related features in MERN Classroom. In the next section, we will implement the
user's ability to enroll on a course, and store details of the enrollment using this
Enrollment model.

Building a Web-Based Classroom Application Chapter 6

[263]

The create Enrollment API
When a user chooses to enroll in a course, we will create a new enrollment and store
it in the backend. To implement this feature, we need to define a create enrollment
API on the server, by first declaring a route that accepts a POST request at
'/api/enrollment/new/:courseId', as shown in the following code:

mern-classroom/server/routes/enrollment.routes.js:

router.route('/api/enrollment/new/:courseId')
 .get(authCtrl.requireSignin, enrollmentCtrl.findEnrollment,
enrollmentCtrl.create)
router.param('courseId', courseCtrl.courseByID)

This route takes the course ID as a parameter in the URL. Hence, we also add the
courseByID controller method from the course controllers in order to process this
parameter and retrieve the corresponding course from the database. The user who
initiates the request from the client- side is identified from the user auth credentials
sent in the request. A POST request received at this route will first check whether the
user is authenticated, and then check whether they are already enrolled on this
course, before creating a new enrollment for this user in this course.

The findEnrollment controller method will query the Enrollments collection in
the database in order to check whether there is already an enrollment with the given
course ID and user ID. The findEnrollment method is defined as follows.

mern-classroom/server/controllers/enrollment.controller.js:

const findEnrollment = async (req, res, next) => {
 try {
 let enrollments = await Enrollment.find({course:req.course._id,
 student: req.auth._id})
 if(enrollments.length == 0){
 next()
 }else{
 res.json(enrollments[0])
 }
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

Building a Web-Based Classroom Application Chapter 6

[264]

If a matching result is returned from the query, then the resulting enrollment will be
sent back in the response, otherwise, the create controller method will be invoked to
create a new enrollment.

The create controller method generates a new enrollment object to be saved into the
database from the course reference, user reference, and the lessons array in the given
course. The create method is defined as shown in the following code.

mern-classroom/server/controllers/enrollment.controller.js:

const create = async (req, res) => {
 let newEnrollment = {
 course: req.course,
 student: req.auth,
 }
 newEnrollment.lessonStatus = req.course.lessons.map((lesson)=>{
 return {lesson: lesson, complete:false}
 })
 const enrollment = new Enrollment(newEnrollment)
 try {
 let result = await enrollment.save()
 return res.status(200).json(result)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The lessons array in course is iterated over to generate the lessonStatus array of
objects for the new enrollment document. Each object in the lessonStatus array has
the complete value initialized to false. On successful saving of the new enrollment
document based on these values, the new document is sent back in the response.

All the routes that are defined for enrollment APIs, such as this create API, are
declared in the enrollment.routes.js file, and it will be similar to the other route
files that have already been created in our application. As with the other routes, we
need to load these new routes in the Express app by mounting the enrollment routes
in express.js. The enrollment-related routes are mounted as follows.

mern-social/server/express.js:

app.use('/', enrollmentRoutes)

Building a Web-Based Classroom Application Chapter 6

[265]

To access the create API in the frontend, you will also need to define a fetch method
similar to other fetch methods that have been defined in the application. Using this
fetch method, the Enroll component that is discussed in the next section will be able
to call this create enrollment API.

The Enroll component
The Enroll component will simply contain a button that initiates the enrollment call
to the backend, and redirects the user if the server returns successfully with the new
enrollment document's ID. This component takes the ID of the associated course as a
prop from the parent component from where it is added. This prop will be used while
making the create enrollment API call. The Enroll component is defined as shown in
the following code.

mern-classroom/client/enrollment/Enroll.js:

export default function Enroll(props) {
 const [values, setValues] = useState({
 enrollmentId: '',
 error: '',
 redirect: false
 })
 if(values.redirect){
 return (<Redirect to={'/learn/'+values.enrollmentId}/>)
 }
 return (
 <Button variant="contained" color="secondary"
 onClick={clickEnroll}> Enroll </Button>
)

When the ENROLL button is clicked, the create enrollment API will be fetched with
the provided course ID to either retrieve an existing enrollment, or to create a new
enrollment and receive it in the response. The clickEnroll function to be invoked
when the button is clicked is defined as follows:

mern-classroom/client/enrollment/Enroll.js:

 const clickEnroll = () => {
 const jwt = auth.isAuthenticated()
 create({
 courseId: props.courseId
 }, {
 t: jwt.token
 }).then((data) => {

Building a Web-Based Classroom Application Chapter 6

[266]

 console.log(data)
 if (data && data.error) {
 setValues({...values, error: data.error})
 } else {
 setValues({...values, enrollmentId: data._id, redirect: true})
 }
 })
 }

When the server sends back an enrollment successfully, the user will be redirected to
the view that will display the details of the specific enrollment.

Since the Enroll component receives the course ID as a prop from the parent
component, we also add PropType validation (as shown in the following code) for
the component, as its functionality and implementation relies on this prop being
passed.

mern-classroom/client/enrollment/Enroll.js:

Enroll.propTypes = {
 courseId: PropTypes.string.isRequired
}

When a server responds successfully on the API call, the user is redirected to the
enrolled course view, where they can go through the lesson content. We will work on
implementing this view in the next section.

The Enrolled Course view
For each course on which the user is enrolled, they will see a view that lists the details
of the course, and each lesson in the course; with the option to complete each lesson.
In the following sections we will implement this view, by first adding a backend API
that returns a given enrollment's details, and then using this API in the frontend to
build the enrolled course view.

Building a Web-Based Classroom Application Chapter 6

[267]

The read enrollment API
The backend API which will return the enrollment details from the database will be
defined as a GET route that accepts the request
at '/api/enrollment/:enrollmentId', and will be declared as follows:

mern-classroom/server/routes/enrollment.routes.js

router.route('/api/enrollment/:enrollmentId')
 .get(authCtrl.requireSignin, enrollmentCtrl.isStudent,
 enrollmentCtrl.read)
router.param('enrollmentId', enrollmentCtrl.enrollmentByID)

A GET request at this route will first invoke the enrollmentByID method, since it
contains the enrollmentId param in the URL declaration. The enrolmentByID
method will query the Enrollments collection by the provided ID, and if a matching
enrollment document is found, we ensure that the referenced course, the nested
course instructor, and the referenced student details are also populated using the
populate method from Mongoose. The enrollmentByID controller method is
defined as shown in the following code:

mern-classroom/server/controllers/enrollment.controller.js:

const enrollmentByID = async (req, res, next, id) => {
 try {
 let enrollment = await Enrollment.findById(id)
 .populate({path: 'course', populate:{
 path:
'instructor'}})
 .populate('student', '_id name')
 if (!enrollment)
 return res.status('400').json({
 error: "Enrollment not found"
 })
 req.enrollment = enrollment
 next()
 } catch (err) {
 return res.status('400').json({
 error: "Could not retrieve enrollment"
 })
 }
}

Building a Web-Based Classroom Application Chapter 6

[268]

The resulting enrollment object is attached to the request object and passed on to the
next controller method. Before returning this enrollment object in the response to the
client, we will check whether the currently signed-in user is the student who is
associated with this specific enrollment in the isStudent method, as defined in the
following code.

mern-classroom/server/controllers/enrollment.controller.js:

const isStudent = (req, res, next) => {
 const isStudent = req.auth && req.auth._id ==
 req.enrollment.student._id
 if (!isStudent) {
 return res.status('403').json({
 error: "User is not enrolled"
 })
 }
 next()
}

The isStudent method checks whether the user who is identified by the auth
credentials that were sent in the request matches the student who is referenced in the
enrollment. If the two users don't match, a 403 status is returned with an error
message, otherwise, the next controller method is invoked in order to return the
enrollment object. The next controller method is the read method, and it is defined as
follows:

mern-classroom/server/controllers/enrollment.controller.js:

const read = (req, res) => {
 return res.json(req.enrollment)
}

To use this read enrollment API in the frontend, you will also need to define a
corresponding fetch method, as implemented for all other APIs in this application.
Then, this fetch method will be used to retrieve the enrollment details to be rendered
in a React component that the student will interact with. We will implement this
Enrollment component in the next section.

Building a Web-Based Classroom Application Chapter 6

[269]

The Enrollment component
The Enrollment component will load the details of the course and the lessons that
were received from the read enrollment API. In this view, students will be able to go
through each lesson in the course and mark each as complete. The lesson titles will be
listed in a drawer, giving the student an overall idea of what the course contains, and
how far they have progressed. Each item in the drawer will extend to reveal the
details of the lesson, as pictured in the following screenshot:

To implement this view, first, we need to make a fetch call to the read enrollment API
in the useEffect hook in order to retrieve the details of the enrollment and set it to
state, as shown in the following code.

mern-classroom/client/enrollment/Enrollment.js:

export default function Enrollment ({match}) {
 const [enrollment, setEnrollment] =
useState({course:{instructor:[]},
 lessonStatus: []})
 const [values, setValues] = useState({
 redirect: false,
 error: '',
 drawer: -1
 })
 const jwt = auth.isAuthenticated()
 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal
 read({enrollmentId: match.params.enrollmentId},

Building a Web-Based Classroom Application Chapter 6

[270]

 {t: jwt.token}, signal).then((data) => {
 if (data.error) {
 setValues({...values, error: data.error})
 } else {
 setEnrollment(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [match.params.enrollmentId])
....

We will implement the drawer layout using Material-UI's Drawer component. In the
drawer, we keep the first item as the Course Overview, which will give the user an
overview of the course details, similar to the single course page. When the user enters
this enrollment view, they will see the Course Overview first.

In the following code, after adding this first drawer item, we create a separate section
for the lessons, where the lessonStatus array is iterated over to list the lesson titles
in the drawer.

mern-classroom/client/enrollment/Enrollment.js:

<Drawer variant="permanent">
 <div className={classes.toolbar} />
 <List>
 <ListItem button onClick={selectDrawer(-1)}
 className={values.drawer == -1 ?
 classes.selectedDrawer : classes.unselected}>
 <ListItemIcon><Info /></ListItemIcon>
 <ListItemText primary={"Course Overview"} />
 </ListItem>
 </List>
 <Divider />
 <List>
 <ListSubheader component="div">
 Lessons
 </ListSubheader>
 {enrollment.lessonStatus.map((lesson, index) => (
 <ListItem button key={index} onClick={selectDrawer(index)}
 className={values.drawer == index ?
 classes.selectedDrawer :
classes.unselected}>
 <ListItemAvatar>
 <Avatar> {index+1} </Avatar>
 </ListItemAvatar>

Building a Web-Based Classroom Application Chapter 6

[271]

 <ListItemText
 primary={enrollment.course.lessons[index].title} />
 <ListItemSecondaryAction> { lesson.complete ?
 <CheckCircle/> : <RadioButtonUncheckedIcon />}
 </ListItemSecondaryAction>
 </ListItem>
))}
 </List>
 <Divider />
</Drawer>

Each of the items in the Lessons section of the drawer will also give the user a visual
indication of whether the lesson has been completed, or is still incomplete. These
check or uncheck icons will be rendered based on the Boolean value of the complete
field in each item in the lessonStatus array.

To determine which drawer is currently selected, we will utilize the initialized
drawer value to state with a -1. The -1 value will be associated with the Course
Overview drawer item and view, whereas the index of each lessonStatus item will
determine which lesson is displayed when selected from the drawer. When a drawer
item is clicked, we will call the selectDrawer method, giving it either -1 or the index
of the lesson clicked as its argument. The selectDrawer method is defined as
follows:

mern-classroom/client/enrollment/Enrollment.js:

const selectDrawer = (index) => event => {
 setValues({...values, drawer:index})
}

This selectDrawer method sets the drawer value in the state according to the item
clicked on the drawer. The actual content view will also render conditionally,
depending on this drawer value, according to the following structure:

{ values.drawer == - 1 && (Overview of course) }
{ values.drawer != - 1 && (Individual lesson content based on the
index value represented in drawer) }

The course overview section can be designed and implemented according to the
Course page. In order to render the individual lesson details, we can use a Card
component as follows:

mern-classroom/client/enrollment/Enrollment.js:

{values.drawer != -1 && (<>
 <Typography variant="h5">{enrollment.course.name}</Typography>

Building a Web-Based Classroom Application Chapter 6

[272]

 <Card> <CardHeader
 title={enrollment.course.lessons[values.drawer].title}
 />
 <CardContent>
 <Typography variant="body1">
{enrollment.course.lessons[values.drawer].content}
 </Typography>
 </CardContent>
 <CardActions>

 <Button variant="contained" color="primary">
 Resource Link</Button>

 </CardActions>
 </Card>
 </>
)}

This will render the details of the lesson that has been selected, which are the title,
content, and resource URL values. With this implementation, we now have a way to
let users enroll on courses and view the details of their enrollment. This enrollment
data is initially created from the course details, but will also store details that are
specific to the student who enrolled, and their progress in the lessons and the course
overall. In order to be able to record and track this progress, and then display the
related statistical information to both students and instructors, we will update this
implementation further in the following section in order to add these capabilities.

Tracking progress and enrollment stats
In a classroom application such as MERN Classroom, it can be valuable to let students
visualize their progress in enrolled courses, and let instructors see how many
students enrolled and completed their courses.

In this application, once a student is enrolled on a course, they will be able to go
through each lesson in it, and mark it complete until all the lessons are done, and the
whole course is complete. The application will leave visual cues to let a student know
the state of their enrollments in courses. For instructors, once they publish a course,
we will show the total number of students who enrolled on the course, and the total
number of students who completed the course.

Building a Web-Based Classroom Application Chapter 6

[273]

In the following sections, we will implement these capabilities, starting with letting
users complete lessons and track their progress in a course, then listing their
enrollments with indicators for which ones are complete and which are in progress,
and finally, showing the enrollment stats for each published course.

Completing lessons
We will have to extend both the enrollment APIs and the enrollment view
implementation to allow students first to complete lessons, and then the whole
course. We will add a lesson complete API in the backend and use this API in the
frontend to mark a lesson as complete when the user performs this action. In the
following sections, we will add this API, then modify the Enrollment component to
use this API, and visually indicate which lessons are complete.

Lessons completed API
We will add a complete API endpoint in the backend for enrollments, which will
mark specified lessons as complete, and will also mark the enrolled course as
completed when all the lessons are done. To implement this API, we will start by
declaring a PUT route, as shown in the following code:

mern-classroom/server/routes/enrollment.routes.js

router.route('/api/enrollment/complete/:enrollmentId')
 .put(authCtrl.requireSignin,
 enrollmentCtrl.isStudent,
 enrollmentCtrl.complete)

When a PUT request is received at the
'/api/enrollment/complete/:enrollmentId' URL, we will first make sure that
the signed-in user is the student who is associated with this enrollment record, and
then we will call the complete enrollment controller method. The complete method
is defined as follows:

mern-classroom/server/controllers/enrollment.controller.js

const complete = async (req, res) => {
 let updatedData = {}
 updatedData['lessonStatus.$.complete']= req.body.complete
 updatedData.updated = Date.now()
 if(req.body.courseCompleted)
 updatedData.completed = req.body.courseCompleted
 try {

Building a Web-Based Classroom Application Chapter 6

[274]

 let enrollment = await
 Enrollment.updateOne({'lessonStatus._id':
req.body.lessonStatusId},
 {'$set': updatedData})
 res.json(enrollment)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

In this complete method, we use the updateOne action from MongoDB to update
the enrollment document, which contains the lessonStatus object with the
corresponding lessonStatusId value provided in the request.

In the resulting enrollment document, we update the complete field of the specific
object in the lessonStatus array, and the updated field of the enrollment
document. If a courseCompleted value is sent in the request, we also update the
completed field in the enrollment document. Once the enrollment document is
updated successfully, it is sent back in the response.

To use this complete API endpoint in the frontend, you also need to define a
corresponding fetch method like we did for other API implementations. This fetch
method should make a PUT request to the complete enrollment route with related
values sent in the request. As discussed in the next section, we will use this
implemented API in the Enrollment component in order to allow students to
complete lessons.

Completed lessons from the view
In the Enrollment component, in which we are rendering each lesson's details in the
drawer view, we will give the student the option to mark the lesson as completed.
This option will render conditionally, depending on whether the given lesson is
already completed or not. This option will be added to the action property in
CardHeader, as shown in the following code:

mern-classroom/client/enrollment/Enrollment.js:

action={<Button
 onClick={markComplete}
 variant={enrollment.lessonStatus[values.drawer].complete ?
 'contained' : 'outlined'}
color="secondary">

Building a Web-Based Classroom Application Chapter 6

[275]

 {enrollment.lessonStatus[values.drawer].complete ?
 "Completed" : "Mark as complete"}
 </Button>}

If the given lessonStatus object has the complete attribute set to true, then we
render a filled-out button with the text Completed, otherwise an outlined button is
rendered with the text Mark as complete. Clicking on this button makes a call to the
markComplete function, which will make the API call to update the enrollment in the
database. This markComplete function is defined as follows:

mern-classroom/client/enrollment/Enrollment.js:

const markComplete = () => {
 if(!enrollment.lessonStatus[values.drawer].complete){
 const lessonStatus = enrollment.lessonStatus
 lessonStatus[values.drawer].complete = true
 let count = totalCompleted(lessonStatus)
 let updatedData = {}
 updatedData.lessonStatusId = lessonStatus[values.drawer]._id
 updatedData.complete = true
 if(count == lessonStatus.length){
 updatedData.courseCompleted = Date.now()
 }
 complete({
 enrollmentId: match.params.enrollmentId
 }, {
 t: jwt.token
 }, updatedData).then((data) => {
 if (data && data.error) {
 setValues({...values, error: data.error})
 } else {
 setEnrollment({...enrollment, lessonStatus: lessonStatus})
 }
 })
 }
}

In this function, before making the API call to the backend, we prepare the values to
be sent with the request in the updatedData object. We send the lessonStatus
details, including the ID value and complete value set to true for the lesson that
was completed by the user. We also calculate if the total number of completed lessons
is equal to the total number of lessons, so that we can set and send
the courseCompleted value in the request, as well.

Building a Web-Based Classroom Application Chapter 6

[276]

The total number of completed lessons is calculated using the totalCompleted
function, which is defined as follows:

mern-classroom/client/enrollment/Enrollment.js:

const totalCompleted = (lessons) => {
 let count = lessons.reduce((total, lessonStatus) => {
 return total + (lessonStatus.complete ? 1 : 0)}, 0)
 setTotalComplete(count)
 return count
}

We use the array reduce function to find and tally the count for the completed
lessons in the lessonStatus array. This count value is also stored in the state, so that
it can be rendered in the view at the bottom of the drawer, as shown in the following
screenshot:

The student's lessons will have a check icon next to them, as an indication of which
lessons are either complete or incomplete. We also give the student a number tally of
how many were completed out of the total. The course is considered completed when
all the lessons are done. This gives the student an idea of their progress in the course.
Next, we will add a feature that will allow users to see the state of all the courses on
which they are enrolled.

Building a Web-Based Classroom Application Chapter 6

[277]

Listing all enrollments for a user
Once they are signed in to MERN Classroom, students will be able to view a list of all
their enrollments on the home page. In order to implement this feature, we will first
define a backend API, which returns the list of enrollments for a given user, and then
use it in the frontend to render the list of enrollments to the user.

The list of enrollments API
The list of enrollments API will take a GET request and query the Enrollments
collection in order to find enrollments that have a student reference that matches with
the user who is currently signed in. To implement this API, we will first declare the
GET route for '/api/enrollment/enrolled', as shown in the following code:

mern-classroom/server/routes/enrollment.routes.js

router.route('/api/enrollment/enrolled')
 .get(authCtrl.requireSignin, enrollmentCtrl.listEnrolled)

A GET request to this route will invoke the listEnrolled controller method, which
will query the database and return the results in the response to the client. The
listEnrolled method is defined as follows:

mern-classroom/server/controllers/enrollment.controller.js

const listEnrolled = async (req, res) => {
 try {
 let enrollments = await Enrollment.find({student: req.auth._id})
 .sort({'completed': 1})
 .populate('course', '_id
name category')
 res.json(enrollments)
 } catch (err) {
 console.log(err)
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

Building a Web-Based Classroom Application Chapter 6

[278]

The query to the Enrollments collection finds all enrollments with the student
reference that matches the user ID that was received in the auth credentials of the
currently signed-in user. The resulting enrollments will be populated with the
referenced course's name and category values, and the list will be sorted so that the
completed enrollments are placed after the incomplete enrollments.

By defining a corresponding fetch method for this API on the client- side, we can call
it in the React component that will render these enrollments. We will look at the
implementation of this component in the next section.

The Enrollments component
The Enrollments component will be rendered on the Home page, and it will take
the list of enrollments as props from the Home component. The received list of
enrollments will be rendered in this component in order to show the user the courses
on which they are enrolled. We will also indicate if an enrolled course in the list has
been completed, or is in progress, using representative icons for each state, as shown
in the following screenshot:

This view for listing enrollments will be very similar to the Courses component,
which lists the published courses. In Enrollments, instead of courses, the
enrollments received from the Home component will be iterated over to render each
enrollment, as shown in the following code:

mern-classroom/client/enrollment/Enrollments.js:

{props.enrollments.map((course, i) => (
 <GridListTile key={i}>
 <Link to={"/learn/"+course._id}>
 <img src={'/api/courses/photo/'+course.course._id}
 alt= {course.course.name} />
 </Link>
 <GridListTileBar
 title={<Link
to={"/learn/"+course._id}>{course.course.name}</Link>}
 actionIcon={<div> {course.completed ?

Building a Web-Based Classroom Application Chapter 6

[279]

 (<CompletedIcon color="secondary"/>)
 : (<InProgressIcon/>)
 }
 </div>}
 />
 </GridListTile>
))}

Based on whether the individual enrollment already has a complete date value or
not, we will render the icons conditionally. This will give the users an idea of which
enrolled courses they have completed, and which they are yet to finish.

Now that we have implemented the features to allow students in this application to
enroll on courses, complete lessons, and also track their progress, we can also provide
enrollment stats about courses by extending on these implementations, as we will see
next.

Enrollment stats
Once the instructor publishes a course, and other users in the application start
enrolling and completing lessons in the course, we will show the total number of
enrollments and course completions as simple enrollment statistics for the course. To
implement this feature, in the following sections we will first implement an API that
returns the enrollment stats, and then show these stats in the view.

The enrollment stats API
In order to implement a backend API that will query the Enrollments collection in
the database to calculate the stats for a specific course, we first need to declare a GET
route at '/api/enrollment/stats/:courseId', as shown in the following code.

mern-classroom/server/routes/enrollment.routes.js

router.route('/api/enrollment/stats/:courseId')
 .get(enrollmentCtrl.enrollmentStats)

A GET request at this URL will return a stats object containing the total enrollments
and total completions for the course, as identified by the courseId provided in the
URL parameter. This implementation is defined in the enrollmentStats controller
method, as shown in the following code.

Building a Web-Based Classroom Application Chapter 6

[280]

mern-classroom/server/controllers/enrollment.controller.js

const enrollmentStats = async (req, res) => {
 try {
 let stats = {}
 stats.totalEnrolled = await
Enrollment.find({course:req.course._id})
 .countDocuments()
 stats.totalCompleted = await
Enrollment.find({course:req.course._id})
 .exists('completed', true)
 .countDocuments()
 res.json(stats)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

In this enrollmentStats method, we run two queries against the Enrollments
collection using the course ID that is provided in the request. In the first query, we
simply find all the enrollments for the given course, and count these results using
MongoDB's countDocuments(). In the second query, we find all the enrollments for
the given course, and also check whether the completed field exists in these
enrollments. Then we finally get the count of these results. These numbers are sent
back in the response to the client.

Similar to other API implementations, you will also need to define a corresponding
fetch method on the client that will make the GET request to this route. Using this
fetch method, we will retrieve and display these stats for each published course, as
discussed in the next section.

Displaying enrollment stats for a published course
The enrollment stats can be retrieved from the backend and rendered in the Course
view, as shown in the following image:

Building a Web-Based Classroom Application Chapter 6

[281]

To retrieve these enrollment stats, we will add a second useEffect hook in the
Course component in order to make a fetch call to the enrollment stats API, as shown
in the following code:

mern-classroom/client/course/Course.js

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal
 enrollmentStats({courseId: match.params.courseId},
 {t:jwt.token}, signal).then((data) => {
 if (data.error) {
 setValues({...values, error: data.error})
 } else {
 setStats(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [match.params.courseId])

This will receive the enrollment stats for the given course and set it to the stats
variable in state, and we can render it in the view, as shown in the following code:

mern-classroom/client/course/Course.js

{course.published &&
 (<div> <PeopleIcon /> {stats.totalEnrolled} enrolled

 <CompletedIcon/> {stats.totalCompleted} completed

 </div>)
}

With this feature added to the Course component, to any visitor who is browsing
through courses in the MERN Classroom application, a published course in the
application will look as shown in the following image:

Building a Web-Based Classroom Application Chapter 6

[282]

This screenshot of the Course page with the course details, enroll option, and
enrollment stats, manages to capture all the features that we have implemented in
this chapter in order to make this view possible. A user who signed up to the
classroom application became an educator to create and publish this course with
lessons. Then, other users enrolled in the course and completed the course lessons to
generate the enrollment stats. We simply extended the MERN skeleton application to
add more models, APIs, and React frontend components, which retrieved and then
rendered the data received in order to build a complete classroom application.

Summary
In this chapter, we developed a simple online classroom application called MERN
Classroom, by extending the skeleton application. We incorporated functionality that
allowed users to have multiple roles, including educator and student; to add and
publish courses with lessons as an instructor; to enroll on courses and complete
lessons as a student; and to keep track of course completion progress and enrollment
statistics.

Building a Web-Based Classroom Application Chapter 6

[283]

While implementing these features, we practiced how to extend the full-stack
component slices that make up the frontend–backend-synced application. We added
new features by simply implementing data schemas and models, adding new
backend APIs, and integrating these with new React components in the frontend to
complete the full-stack slice. By building this application up gradually from smaller
units of implementation to complex and combined features, you should now have a
better grasp of how to combine the different parts of a MERN-based full-stack
application.

In order to learn how to integrate even more complex features, and find solutions to
the tricky problems that you may face when developing advanced real-world
applications with this stack, we will start building a MERN-based, feature-rich online
marketplace application in the next chapter.

7
Exercising MERN Skills with

an Online Marketplace
With more business being conducted over the internet than ever before, the ability to
buy and sell in an online marketplace setting has become a core requirement for
many web platforms. In this and the next two chapters, we will utilize the MERN
stack technologies to develop an online marketplace application complete with
features that enable users to buy and sell.

We will build out everything from simple to advanced features for this application,
starting in this chapter with a reiteration of the full-stack development lessons
learned in previous chapters to set up a base for the marketplace platform. We will be
extending the MERN skeleton application with support for seller accounts and shops
with products, to incrementally integrate marketplace functionalities such as product
search and suggestions. By the end of this chapter, you will have a better grasp of
how to extend, integrate, and combine the different aspects of full-stack
implementations to add complex features to your applications.

In this chapter, we will start building the online marketplace by covering the
following topics:

Introducing the MERN Marketplace app
Users with seller accounts
Adding shops to the marketplace
Adding products to shops
Searching for products by name and category

Exercising MERN Skills with an Online Marketplace Chapter 7

[285]

Introducing the MERN Marketplace app
The MERN Marketplace application will allow users to become sellers, who can
manage multiple shops and add the products they want to sell in each shop. Users
who visit MERN Marketplace will be able to search for and browse products they
want to buy and add products to their shopping cart to place an order. The resulting
marketplace application will look as pictured in the following screenshot:

The code for the complete MERN Marketplace application is
available on GitHub at https:/ ​/ ​github. ​com/ ​PacktPublishing/
Full- ​Stack- ​React- ​Projects- ​Second- ​Edition/ ​tree/ ​master/
Chapter07%20and%2008/ ​mern-​marketplace. The implementations
discussed in this and the next chapter can be accessed in the shop-
cart-order-pay branch of the repository. You can clone this code and
run the application as you go through the code explanations for the
rest of this chapter.

https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace

Exercising MERN Skills with an Online Marketplace Chapter 7

[286]

In this chapter, we will extend the MERN skeleton to build a simple version of the
online marketplace, starting with the following features:

Users with seller accounts
Shop management
Product management
Product search by name and category

The views needed for these features related to seller accounts, shops, and products
will be developed by extending and modifying the existing React components in the
MERN skeleton application. The component tree pictured next shows all the custom
React components that make up the MERN Marketplace frontend developed in this
chapter:

We will add new React components to implement views for managing shops and
products as well as browsing and searching for products. We will also modify
existing components such as the EditProfile, Menu, and Home components to
develop the skeleton code into a marketplace application as we build out the different
features in the rest of the chapter. These marketplace features will depend on the
user's ability to update their accounts into seller accounts. In the next section, we will
begin building the MERN Marketplace application by updating the existing user
implementation to enable seller account features.

Exercising MERN Skills with an Online Marketplace Chapter 7

[287]

Allowing users to be sellers
Any user with an account on the MERN Marketplace application will have the option
to update their accounts to seller accounts by making changes to their profiles. We
will add this option to convert to a seller account in the Edit Profile page, as shown in
the following screenshot:

A user with an active seller account will be allowed to create and manage their own
shops, where they can manage products. Regular users will not have access to a seller
dashboard, whereas users with active seller accounts will see a link to their
dashboard on the menu as MY SHOPS. The following screenshot shows how the
menu looks to a regular user in contrast to a user with an active seller account:

To add this seller account feature, we need to update the user model, the Edit Profile
view and add a MY SHOPS link to the menu that will only be visible to sellers, as
discussed in the following sections.

Updating the user model
We need to store additional detail about each user to determine whether a user is an
active seller or not. We will update the user model that we developed in Chapter 3,
Building a Backend with MongoDB, Express, and Node, to add a seller value that will
be set to false by default to represent regular users and can additionally be set to
true to represent users who are also sellers. We will update the existing user schema
to add this seller field with the following code:

mern-marketplace/server/models/user.model.js:

seller: {

Exercising MERN Skills with an Online Marketplace Chapter 7

[288]

 type: Boolean,
 default: false
}

This seller value for each user must be sent to the client with the user details
received on successful sign-in, so the view can be rendered accordingly to show
information relevant to the seller. We will update the response sent back in
the signin controller method to add this detail, as highlighted in the following code:

mern-marketplace/server/controllers/auth.controller.js:

...
return res.json({
 token,
 user: {
 _id: user._id,
 name: user.name,
 email: user.email,
 seller: user.seller
 }
 })
...
}

Using this seller field value, we can render the frontend based on authorizations
permitted only to seller accounts. Before rendering views based on seller
authorizations, we first need to implement the option to activate seller account
features in the EditProfile view, as discussed in the next section.

Updating the Edit Profile view
A signed-in user will see a toggle in the Edit Profile view, allowing them to either
activate or deactivate the seller feature. We will update the EditProfile component
to add a Material-UI Switch component in FormControlLabel, as shown in the
following code:

mern-marketplace/client/user/EditProfile.js:

<Typography variant="subtitle1" className={classes.subheading}>
 Seller Account
</Typography>
<FormControlLabel
 control={<Switch
 checked={values.seller}
 onChange={handleCheck}

Exercising MERN Skills with an Online Marketplace Chapter 7

[289]

 />}
 label={values.seller? 'Active' : 'Inactive'}
/>

Any changes to the switch will be set to the value of the seller in state by calling the
handleCheck method. The handleCheck method is implemented as shown here:

mern-marketplace/client/user/EditProfile.js:

const handleCheck = (event, checked) => {
 setValues({...values, 'seller': checked})
}

When the form to edit profile details is submitted, the seller value is also added to
details sent in the update to the server, as highlighted in the following code:

mern-marketplace/client/user/EditProfile.js:

const clickSubmit = () => {
 const jwt = auth.isAuthenticated()
 const user = {
 name: values.name || undefined,
 email: values.email || undefined,
 password: values.password || undefined,
 seller: values.seller || undefined
 }
 update({
 userId: match.params.userId
 }, {
 t: jwt.token
 }, user).then((data) => {
 if (data && data.error) {
 setValues({...values, error: data.error})
 } else {
 auth.updateUser(data, ()=>{
 setValues({...values, userId: data._id, redirectToProfile:
true})
 })
 }
 })
 }

On successful update, the user details stored in sessionStorage for auth purposes
should also be updated. The auth.updateUser method is called to do this
sessionStorage update. The implementation for the auth.updateUser method
was discussed in Updating the Edit Profile view section of Chapter 6, Building a Web-
Based Classroom Application.

Exercising MERN Skills with an Online Marketplace Chapter 7

[290]

Once the updated seller value is available in the frontend, we can use it to render
the interface accordingly. In the next section, we will see how to render the menu
differently based on whether the user viewing the application has an active seller
account.

Updating the menu
In the frontend of the marketplace application, we can render different options based
on whether the user currently browsing the application has an active seller account.
In this section, we will add the code to conditionally display a link to MY SHOPS on
the navigation bar, which will only be visible to the signed-in users who have active
seller accounts.

We will update the Menu component within the previous code so that it only renders
when a user is signed in, as follows:

mern-marketplace/client/core/Menu.js:

{auth.isAuthenticated().user.seller &&
 (<Link to="/seller/shops">
 <Button color = {isPartActive(history, "/seller/")}> My Shops
</Button>
 </Link>)
}

This MY SHOPS link on the navigation bar will take users with active seller accounts
to the seller dashboard view where they can manage the shops they own on the
marketplace.

With these updates to the user implementation, it is now possible for users on the
marketplace to update their regular accounts to seller accounts, and we can begin
incorporating features that will allow these sellers to add shops to the marketplace.
We will see how to do this in the following section.

Adding shops to the marketplace
Sellers on MERN Marketplace can create shops and add products to each shop. To
store the shop data and enable shop management, we will implement a Mongoose
Schema for shops, backend APIs to access and modify the shop data, and frontend
views for both the shop owner and buyers browsing through the marketplace.

Exercising MERN Skills with an Online Marketplace Chapter 7

[291]

In the following sections, we will build out the shop module in the application by first
defining the shop model for storing shop data in the database, then implementing the
backend APIs and frontend views for the shop-related features including creating
new shops, listing all shops, listing shops by owner, displaying a single shop, editing
shops, and deleting shops from the application.

Defining a Shop model
We will implement a Mongoose model to define a Shop model for storing the details
of each shop. This model will be defined in server/models/shop.model.js, and
the implementation will be similar to other Mongoose model implementations
covered in previous chapters, like the Course model defined in Chapter 6, Building a
Web-Based Classroom Application. The Shop schema in this model will have simple
fields to store shop details, along with a logo image, and a reference to the user who
owns the shop. The code blocks defining the shop fields are given in the following list
with explanations:

Shop name and description: The name and description fields will be
string types, with name as a required field:

name: {
 type: String,
 trim: true,
 required: 'Name is required'
},
description: {
 type: String,
 trim: true
},

Shop logo image: The image field will store the logo image file uploaded
by the user as data in the MongoDB database:

image: {
 data: Buffer,
 contentType: String
},

Shop owner: The owner field will reference the user who creates the shop:

owner: {
 type: mongoose.Schema.ObjectId,
 ref: 'User'
}

Exercising MERN Skills with an Online Marketplace Chapter 7

[292]

Created at and updated at times: The created and updated fields will be
Date types, with created generated when a new shop is added, and
updated changed when any shop details are modified:

updated: Date,
created: {
 type: Date,
 default: Date.now
},

The fields added in this schema definition will enable us to implement the shop-
related features in MERN Marketplace. In the next section, we will start developing
these features by implementing the full-stack slice that will allow sellers to create new
shops.

Creating a new shop
In MERN Marketplace, a user who is signed in and has an active seller account will be
able to create new shops. To implement this feature, in the following sections we will
add a create shop API in the backend, along with a way to fetch this API in the
frontend, and a create new shop form view that takes user input for shop fields.

The create shop API
For the implementation of the create shop API that will allow creating new shops in
the database, we will first add a POST route, as shown in the following code:

mern-marketplace/server/routes/shop.routes.js:

router.route('/api/shops/by/:userId')
 .post(authCtrl.requireSignin, authCtrl.hasAuthorization,
 userCtrl.isSeller, shopCtrl.create)

A POST request to this route at /api/shops/by/:userId will first ensure the
requesting user is signed in and is also the authorized owner, in other words, it is the
same user associated with the :userId specified in the route param.

Exercising MERN Skills with an Online Marketplace Chapter 7

[293]

To process the :userId param and retrieve the associated user from the database, we
will utilize the userByID method in the user controller. We will add the following to
the Shop routes in shop.routes.js, so the user is available in the request object
as profile:

mern-marketplace/server/routes/shop.routes.js:

router.param('userId', userCtrl.userByID)

The shop.routes.js file containing the shop routes will be very similar to the
user.routes file. To load these new shop routes in the Express app, we need to
mount the shop routes in express.js as shown in the following code, as we did for
the auth and user routes:

mern-marketplace/server/express.js:

app.use('/', shopRoutes)

The request to the create shop route will also verify that the current user is a seller
before creating a new shop with the shop data passed in the request. We will update
the user controller to add the isSeller method, which will ensure that the current
user is actually a seller. The isSeller method is defined as follows:

mern-marketplace/server/controllers/user.controller.js:

const isSeller = (req, res, next) => {
 const isSeller = req.profile && req.profile.seller
 if (!isSeller) {
 return res.status('403').json({
 error: "User is not a seller"
 })
 }
 next()
}

The create method in the shop controller, which is invoked after a seller is verified,
uses the formidable node module to parse the multipart request that may contain
an image file uploaded by the user for the shop logo. If there is a file, formidable
will store it temporarily in the filesystem, and we will read it using the fs module to
retrieve the filetype and data to store it in the image field in the shop document. The
create controller method will look as shown in the following code block:

mern-marketplace/server/controllers/shop.controller.js:

const create = (req, res, next) => {

Exercising MERN Skills with an Online Marketplace Chapter 7

[294]

 let form = new formidable.IncomingForm()
 form.keepExtensions = true
 form.parse(req, (err, fields, files) => {
 if (err) {
 res.status(400).json({
 message: "Image could not be uploaded"
 })
 }
 let shop = new Shop(fields)
 shop.owner= req.profile
 if(files.image){
 shop.image.data = fs.readFileSync(files.image.path)
 shop.image.contentType = files.image.type
 }
 shop.save((err, result) => {
 if (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
 res.status(200).json(result)
 })
 })
}

The logo image file for the shop is uploaded by the user and stored in MongoDB as
data. Then, in order to be shown in the views, it is retrieved from the database as an
image file at a separate GET API. The GET API is set up as an Express route at
/api/shops/logo/:shopId, which gets the image data from MongoDB and sends it
as a file in the response. The implementation steps for file upload, storage, and
retrieval are outlined in detail in the Upload profile photo section of Chapter 5, Starting
with a Simple Social Media Application.

This create shop API endpoint can now be used in the frontend to make a POST
request. Next, we will add a fetch method on the client side to make this request
from the application's client interface.

Exercising MERN Skills with an Online Marketplace Chapter 7

[295]

Fetching the create API in the view
In the frontend, to make a request to this create API, we will set up a fetch method
on the client side to make a POST request to the API route and pass it the multipart
form data containing details of the new shop. This fetch method will be defined as
follows:

mern-marketplace/client/shop/api-shop.js:

const create = (params, credentials, shop) => {
 return fetch('/api/shops/by/'+ params.userId, {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: shop
 })
 .then((response) => {
 return response.json()
 }).catch((err) => console.log(err))
}

We will use this method in the create new shop form view, implemented in the next
section, to send the user-entered shop details to the backend.

The NewShop component
Sellers in the marketplace application will interact with a form view to enter details of
a new shop and create the new shop. We will render this form in the NewShop
component, which will allow a seller to create a shop by entering a name and
description, and uploading a logo image file from their local filesystem, as pictured in
the following screenshot:

Exercising MERN Skills with an Online Marketplace Chapter 7

[296]

We will implement this form in a React component named NewShop. For the view, we
will first add the file upload elements using a Material-UI button and an HTML5 file
input element, as shown in the following code:

mern-marketplace/client/shop/NewShop.js:

<input accept="image/*" onChange={handleChange('image')}
 id="icon-button-file"
 style={display:'none'} type="file" />
<label htmlFor="icon-button-file">
 <Button variant="contained" color="secondary" component="span">
 Upload Logo <FileUpload/>
 </Button>
</label>
{values.image ? values.image.name : ''}

Then, we add the name and description form fields with the TextField components,
as shown next:

mern-marketplace/client/shop/NewShop.js:

<TextField
 id="name"
 label="Name"
 value={values.name}
 onChange={handleChange('name')}/>

<TextField
 id="multiline-flexible"
 label="Description"
 multiline rows="2"
 value={values.description}
 onChange={handleChange('description')}/>

These form field changes will be tracked with the handleChange method when a
user interacts with the input fields to enter values. The handleChange function will
be defined as shown in the following code:

mern-marketplace/client/shop/NewShop.js:

const handleChange = name => event => {
 const value = name === 'image'
 ? event.target.files[0]
 : event.target.value
 setValues({ ...values, [name]: value })
}

Exercising MERN Skills with an Online Marketplace Chapter 7

[297]

The handleChange method updates the state with the new values, including the
name of the image file, should one be uploaded by the user.

Finally, you can complete this form view by adding a submit button that when
clicked, should send the form data to the server. We will define a clickSubmit
method, as shown next, which will be called when the submit button is clicked by the
user:

mern-marketplace/client/shop/NewShop.js:

const clickSubmit = () => {
 const jwt = auth.isAuthenticated()
 let shopData = new FormData()
 values.name && shopData.append('name', values.name)
 values.description && shopData.append('description',
values.description)
 values.image && shopData.append('image', values.image)
 create({
 userId: jwt.user._id
 }, {
 t: jwt.token
 }, shopData).then((data) => {
 if (data.error) {
 setValues({...values, error: data.error})
 } else {
 setValues({...values, error: '', redirect: true})
 }
 })
}

This clickSubmit function will take the input values and populate shopData,
which is a FormData object that ensures the data is stored in the correct format
needed for the multipart/form-data encoding type. Then the create fetch
method is called to create the new shop in the backend with this form data. On
successful shop creation, the user is redirected back to the MyShops view with the
following code:

mern-marketplace/client/shop/NewShop.js:

if (values.redirect) {
 return (<Redirect to={'/seller/shops'}/>)
}

Exercising MERN Skills with an Online Marketplace Chapter 7

[298]

The NewShop component can only be viewed by a signed-in user who is also a seller.
So we will add a PrivateRoute in the MainRouter component, as shown in the
following code block, that will render this form only for authenticated users at
/seller/shop/new:

mern-marketplace/client/MainRouter.js:

<PrivateRoute path="/seller/shop/new" component={NewShop}/>

This link can be added to any of the view components that may be accessed by the
seller, for example in a view where a seller manages their shops in the marketplace.
Now that it is possible to add new shops in the marketplace, in the next section we
will discuss the implementations to fetch and list these shops from the database in the
backend to the application views in the frontend.

Listing shops
In MERN Marketplace, regular users will be able to browse through a list of all the
shops on the platform, and each shop owner will manage a list of their own shops. In
the following sections, we will implement the full-stack slices for retrieving and
displaying two different lists of shops – a list of all the shops, and the list of shops
owned by a specific user.

Listing all shops
Any user browsing through the marketplace will be able to see a list of all the shops
on the marketplace. In order to implement this feature, we will have to query the
shops collection to retrieve all the shops in the database and display it in a view to
the end user. We achieve this by adding a full-stack slice with the following:

A backend API to retrieve the list of shops
A fetch method in the frontend to make a request to the API
A React component to display the list of shops

Exercising MERN Skills with an Online Marketplace Chapter 7

[299]

The shops list API
In the backend, we will define an API to retrieve all the shops from the database, so
the shops in the marketplace can be listed in the frontend. This API will accept a
request from the client to query the shops collection and return the resulting shop
documents in the response. First, we will add a route to retrieve all the shops stored
in the database when the server receives a GET request at '/api/shops'. This route
is declared as shown in the following code:

 mern-marketplace/server/routes/shop.routes.js

router.route('/api/shops')
 .get(shopCtrl.list)

A GET request received at this route will invoke the list controller method, which
will query the shops collection in the database to return all the shops. The list
method is defined as follows:

mern-marketplace/server/controllers/shop.controller.js:

const list = async (req, res) => {
 try {
 let shops = await Shop.find()
 res.json(shops)
 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

This method will return all the shops in the database in response to the requesting
client. Next, we will see how to make a request to this shop list API from the client
side.

Fetch all shops for the view
In order to use the shop list API in the frontend, we will define a fetch method that
can be used by React components to load this list of shops. The list method on the
client side will use fetch to make a GET request to the API, as shown in the following
code:

mern-marketplace/client/shop/api-shop.js:

const list = async (signal) => {

Exercising MERN Skills with an Online Marketplace Chapter 7

[300]

 try {
 let response = await fetch('/api/shops', {
 method: 'GET',
 signal: signal
 })
 return response.json()
 }catch(err) {
 console.log(err)
 }
}

As we will see in the next section, this list method can be used in the React
component to display the list of shops.

The Shops component
In the Shops component, we will render the list of shops in a Material-UI List, after
fetching the data from the server and setting the data in a state to be displayed as
shown in the following screenshot:

To implement this component, we first need to fetch and render the list of shops. We
will make the fetch API call in the useEffect hook, and set the received shops array
in the state, as shown here:

mern-marketplace/client/shop/Shops.js:

export default function Shops(){
 const [shops, setShops] = useState([])

Exercising MERN Skills with an Online Marketplace Chapter 7

[301]

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal
 list(signal).then((data) => {
 if (!data.error) {
 setShops(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }

 }, [])
...
}

In the Shops component view, this retrieved shops array is iterated over using map,
with each shop's data rendered in the view in a Material-UI ListItem, and each
ListItem is also linked to the individual shop's view, as shown in the following
code:

mern-marketplace/client/shop/Shops.js:

{shops.map((shop, i) => {
 return <Link to={"/shops/"+shop._id} key={i}>
 <Divider/>
 <ListItem button>
 <ListItemAvatar>
 <Avatar src={'/api/shops/logo/'+shop._id+"?" + new
Date().getTime()}/>
 </ListItemAvatar>
 <div className={classes.details}>
 <Typography type="headline"
 component="h2" color="primary">
 {shop.name}
 </Typography>
 <Typography type="subheading" component="h4">
 {shop.description}
 </Typography>
 </div>
 </ListItem>
 <Divider/>
 </Link>
})}

Exercising MERN Skills with an Online Marketplace Chapter 7

[302]

The Shops component will be accessed by the end user at /shops/all, which is set
up with React Router and declared in MainRouter.js as follows:

mern-marketplace/client/MainRouter.js:

 <Route path="/shops/all" component={Shops}/>

Adding this link to any view in the application will redirect the user to a view
displaying all the shops in the marketplace. Next, we will similarly implement the
feature to list the shops owned by a specific user.

Listing shops by owner
Authorized sellers on the marketplace will see a list of the shops they created, which
they can manage by editing or deleting any shop on the list. In order to implement
this feature, we will have to query the shops' collection to retrieve all the shops with
the same owner and display it only to the authorized owner of the shops. We achieve
this by adding a full-stack slice with the following:

A backend API that ensures the requesting user is authorized and retrieves
the relevant list of shops
A fetch method in the frontend to make a request to this API
A React component to display the list of shops to the authorized user

The shops by owner API
We will implement an API in the backend to return the list of shops of a specific
owner, so it can be rendered in the frontend for the end user. We will start by adding
a route in the backend to retrieve all the shops created by a given user when the
server receives a GET request at /api/shops/by/:userId. This route is declared as
shown in the following code:

mern-marketplace/server/routes/shop.routes.js:

router.route('/api/shops/by/:userId')
 .get(authCtrl.requireSignin, authCtrl.hasAuthorization,
shopCtrl.listByOwner)

Exercising MERN Skills with an Online Marketplace Chapter 7

[303]

A GET request to this route will first ensure the requesting user is signed in and is also
the authorized owner, before invoking the listByOwner controller method in
shop.controller.js. This method will query the Shop collection in the database to
get the matching shops. This listByOwner method is defined as follows:

mern-marketplace/server/controllers/shop.controller.js:

const listByOwner = async (req, res) => {
 try {
 let shops = await Shop.find({owner:
req.profile._id}).populate('owner', '_id name')
 res.json(shops)
 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

In the query to the Shop collection, we find all the shops where the owner field
matches the user-specified with the userId param, then populate the referenced
user's ID and name in the owner field, and return the resulting shops in an array in
the response to the client. Next, we will see how to make a request to this API from
the client side.

Fetch all shops owned by a user for the view
In the frontend, to fetch the shops for a specific user using this list by owner API, we
will add a fetch method that takes the signed-in user's credentials to make a GET
request to the API route with the specific user ID passed in the URL. This fetch
method is defined as shown in the following code:

mern-marketplace/client/shop/api-shop.js:

const listByOwner = async (params, credentials, signal) => {
 try {
 let response = await fetch('/api/shops/by/'+params.userId, {
 method: 'GET',
 signal: signal,
 headers: {
 'Accept': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 }
 })
 return response.json()

Exercising MERN Skills with an Online Marketplace Chapter 7

[304]

 } catch(err){
 console.log(err)
 }
}

The shops returned in the response from the server using this method can be
rendered in a React component to display the shops to the authorized user, as
discussed in the next section.

The MyShops component
The MyShops component is similar to the Shops component. It fetches the list of
shops owned by the current user, and renders each shop in a ListItem, as pictured
in the following screenshot:

Additionally, each shop has an edit and a delete option, unlike the list of items in
Shops. The implementation for the MyShops component is the same as Shops, except
for these edit and delete buttons, which are added as follows:

mern-marketplace/client/shop/MyShops.js:

<ListItemSecondaryAction>
 <Link to={"/seller/shop/edit/" + shop._id}>
 <IconButton aria-label="Edit" color="primary">
 <Edit/>
 </IconButton>
 </Link>
 <DeleteShop shop={shop} onRemove={removeShop}/>
</ListItemSecondaryAction>

Exercising MERN Skills with an Online Marketplace Chapter 7

[305]

The Edit button links to an Edit Shop view, whereas the DeleteShop component,
which is discussed later in the chapter, handles the delete action.
The DeleteShop component updates the list by calling the removeShop method
passed from MyShops. This removeShop method allows us to update the state with
the modified list of shops for the current user and is defined in the MyShops
component, as shown here:

mern-marketplace/client/shop/MyShops.js:

const removeShop = (shop) => {
 const updatedShops = [...shops]
 const index = updatedShops.indexOf(shop)
 updatedShops.splice(index, 1)
 setShops(updatedShops)
}

The MyShops component can only be viewed by a signed-in user who is also a seller.
So we will add a PrivateRoute in the MainRouter component, which will render
this component only for authenticated users at /seller/shops, as shown in the
following code:

mern-marketplace/client/MainRouter.js:

<PrivateRoute path="/seller/shops" component={MyShops}/>

In the marketplace application, we add this link to the navigation menu to redirect a
signed-in seller to the view where they can manage the shops they own by editing or
deleting a shop. Before adding the ability to edit or delete shops, next we will look
into how to retrieve a single shop from the backend and display it to the end user.

Displaying a shop
Any users visiting MERN Marketplace will be able to browse through each individual
shop. In the following sections, we will implement the individual shop view by
adding a read shop API to the backend, a way to call this API from the frontend, and
the React component that will display the shop details in the view.

Exercising MERN Skills with an Online Marketplace Chapter 7

[306]

The read a shop API
In order to implement the read shop API in the backend, we will start by adding
a GET route that queries the Shop collection with an ID and returns the shop in the
response. The route is declared along with a route parameter handler, as shown in the
following code:

mern-marketplace/server/routes/shop.routes.js:

router.route('/api/shop/:shopId')
 .get(shopCtrl.read)
router.param('shopId', shopCtrl.shopByID)

The:shopId param in the route URL will invoke the shopByID controller method,
which is similar to the userByID controller method. It retrieves the shop from the
database and attaches it to the request object to be used in the next method. The
shopByID method is defined as follows:

mern-marketplace/server/controllers/shop.controller.js:

const shopByID = async (req, res, next, id) => {
 try {
 let shop = await Shop.findById(id).populate('owner', '_id
name').exec()
 if (!shop)
 return res.status('400').json({
 error: "Shop not found"
 })
 req.shop = shop
 next()
 } catch (err) {
 return res.status('400').json({
 error: "Could not retrieve shop"
 })
 }
}

Exercising MERN Skills with an Online Marketplace Chapter 7

[307]

The shop object queried from the database will also contain the name and ID details
of the owner, as we specified in the populate() method. The read controller
method then returns this shop object in response to the client. The read controller
method is defined as shown in the following code:

mern-marketplace/server/controllers/shop.controller.js:

const read = (req, res) => {
 req.shop.image = undefined
 return res.json(req.shop)
}

We are removing the image field before sending the response since images will be
retrieved as files in separate routes. With this API ready in the backend, you can now
add the implementation to call it in the frontend by adding a fetch method in api-
shop.js, similar to other fetch methods already added for other API
implementations. We will use the fetch method to call the read shop API in the
React component that will render the shop details, as discussed in the next section.

The Shop component
The Shop component will render the shop details and also a list of products in the
specified shop using a product list component, which will be discussed in
the Products section. The completed single Shop view will look as pictured in the
following screenshot:

Exercising MERN Skills with an Online Marketplace Chapter 7

[308]

To implement this Shop component, we will first retrieve the shop details with a fetch
call to the read API in a useEffect hook, and set the received values to state, as
shown in the following code:

mern-marketplace/client/shop/Shop.js:

export default function Shop({match}) {
 const [shop, setShop] = useState('')
 const [error, setError] = useState('')

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal

 read({
 shopId: match.params.shopId
 }, signal).then((data) => {
 if (data.error) {
 setError(data.error)
 } else {
 setShop(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }

 }, [match.params.shopId])
...
}

This useEffect hook will only run when the shopId changes in the route params.

The retrieved shop data is set to state and rendered in the view to display the shop's
name, logo, and description with the following code:

mern-marketplace/client/shop/Shop.js:

<CardContent>
 <Typography type="headline" component="h2">
 {shop.name}
 </Typography>

 <Avatar src={logoUrl}/>

 <Typography type="subheading" component="h2">
 {shop.description}
 </Typography>

</CardContent>

Exercising MERN Skills with an Online Marketplace Chapter 7

[309]

The logoUrl points to the route from where the logo image can be retrieved from the
database (if the image exists), and it's defined as follows:

mern-marketplace/client/shop/Shop.js:

const logoUrl = shop._id
 ? `/api/shops/logo/${shop._id}?${new Date().getTime()}`
 : '/api/shops/defaultphoto'

The Shop component will be accessed in the browser at the /shops/:shopId route,
which is defined in MainRouter as follows:

mern-marketplace/client/MainRouter.js:

<Route path="/shops/:shopId" component={Shop}/>

This route can be used in any component to link to a specific shop, and this link will
take the user to the corresponding Shop view with the shop details loaded. In the next
section, we will add the ability to allow the shop owners to edit these shop details.

Editing a shop
Authorized sellers in the application will be able to update the shops they have
already added to the marketplace. To implement this capability, we will have to
create a backend API that allows the update operation on a given shop after ensuring
that the requesting user is authenticated and authorized. Then this updated API
needs to be called from the frontend with the changed details of the shop. In the
following sections, we will build this backend API and the React component to allow
sellers to make changes to their shops.

The edit shop API
In the backend, we will need an API that allows updating an existing shop in the
database if the user making the request is the authorized seller of the given shop. We
will first declare the PUT route that accepts the update request from the client as
follows:

mern-marketplace/server/routes/shop.routes.js:

router.route('/api/shops/:shopId')
 .put(authCtrl.requireSignin, shopCtrl.isOwner, shopCtrl.update)

Exercising MERN Skills with an Online Marketplace Chapter 7

[310]

A PUT request received at the /api/shops/:shopId route first checks if the signed-
in user is the owner of the shop associated with the shopId provided in the URL
using the isOwner controller method, which is defined as follows:

mern-marketplace/server/controllers/shop.controller.js:

const isOwner = (req, res, next) => {
 const isOwner = req.shop && req.auth
 && req.shop.owner._id == req.auth._id
 if(!isOwner){
 return res.status('403').json({
 error: "User is not authorized"
 })
 }
 next()
}

In this method, if the user is found to be authorized, the update controller is invoked
with a call to next().

The update controller method will use the formidable and fs modules as in the
create controller method discussed earlier, to parse the form data and update the
existing shop in the database. The update method in the shop controllers is defined
as shown in the following code:

mern-marketplace/server/controllers/shop.controller.js:

const update = (req, res) => {
 let form = new formidable.IncomingForm()
 form.keepExtensions = true
 form.parse(req, async (err, fields, files) => {
 if (err) {
 res.status(400).json({
 message: "Photo could not be uploaded"
 })
 }
 let shop = req.shop
 shop = extend(shop, fields)
 shop.updated = Date.now()
 if(files.image){
 shop.image.data = fs.readFileSync(files.image.path)
 shop.image.contentType = files.image.type
 }
 try {
 let result = await shop.save()
 res.json(result)
 } catch (err){

Exercising MERN Skills with an Online Marketplace Chapter 7

[311]

 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
 })
}

To use this update API in the frontend, you will need to define a fetch method that
takes the shop ID, user auth credentials, and the updated shop details to make the
fetch call to this update shop API, as we have done for other API implementations
including the create shop API in the Creating a new shop section.

We now have a shop update API that can be used in the frontend to update the
details of a shop. We will use this in the EditShop component, which is discussed
next.

The EditShop component
The EditShop component will show a form similar to the create new shop form, pre-
populated with the existing shop details. This component will also show a list of the
products in this shop, to be discussed in the Products section. The completed Edit
Shop view is pictured in the following screenshot:

Exercising MERN Skills with an Online Marketplace Chapter 7

[312]

The form part of this view for editing shop details is similar to the form in
the NewShop component, with the same form fields and a formData object that holds
the multipart form data to be sent with the update fetch method. In contrast to the
NewShop component, in this component, we will need to utilize the read shop API to
fetch the given shop's details in an useEffect hook and pre-populate the form fields.
You can combine the implementations discussed for the NewShop component and
Shop component to complete the EditShop component.

The EditShop component will only be accessible by authorized shop owners. So we
will add a PrivateRoute in the MainRouter component as shown next, which will
render this component only for authenticated users at
/seller/shop/edit/:shopId:

mern-marketplace/client/MainRouter.js:

<PrivateRoute path="/seller/shop/edit/:shopId" component={EditShop}/>

This link is added with an edit icon for each shop in the MyShops component,
allowing a seller to access the edit page for each of their shops. In the MyShops view,
sellers are also able to delete their shops, as implemented in the next section.

Deleting a shop
As a part of managing the shops they own, authorized sellers will have the option to
delete any of their own shops. In order to allow a seller to remove a shop from the
marketplace, in the following sections, first we will define a backend API for shop
deletion from the database, and then implement a React component that makes use of
this API when the user interacts with the frontend to perform this deletion.

The delete shop API
In order to delete a shop from the database, we will implement a delete shop API in
the backend, which will accept a DELETE request from the client
at /api/shops/:shopId. We will add the DELETE route for this API as shown in the
following code, which will allow an authorized seller to delete one of their own
shops:

mern-marketplace/server/routes/shop.routes.js:

router.route('/api/shops/:shopId')
 .delete(authCtrl.requireSignin, shopCtrl.isOwner, shopCtrl.remove)

Exercising MERN Skills with an Online Marketplace Chapter 7

[313]

When a DELETE request is received at this route, if the isOwner method confirms
that the signed-in user is the owner of the shop, then the remove controller method
deletes the shop specified by the shopId in the param. The remove method is defined
as follows:

mern-marketplace/server/controllers/shop.controller.js:

const remove = async (req, res) => {
 try {
 let shop = req.shop
 let deletedShop = shop.remove()
 res.json(deletedShop)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

This remove method simply deletes the shop document that corresponds to the
provided ID from the Shops collection in the database. To access this backend API in
the frontend, you will also need a fetch method with this route, similar to other API
implementations. The fetch method will need to take the shop ID and current user's
auth credentials then call the delete shop API with these values.

The fetch method will be used when the user performs the delete operation by
clicking a button in the frontend interface. In the next section, we will discuss a React
component called DeleteShop, where this delete shop action will be performed by
the user.

The DeleteShop component
The DeleteShop component is added to the MyShops component for each shop in
the list. It takes the shop object and a onRemove method as props from MyShops.
This component is basically a button that, when clicked, opens a Dialog component
asking the user to confirm the delete action, as shown in the following screenshot:

Exercising MERN Skills with an Online Marketplace Chapter 7

[314]

The implementation of the DeleteShop component is similar to the DeleteUser
component discussed in Chapter 4, Adding a React Frontend to Complete MERN.
Instead of a user ID, the DeleteShop component will take the shop object and
onRemove function definition from the MyShops component as props when it is
added to MyShops, as shown in the following code:

mern-marketplace/client/shop/MyShops.js:

<DeleteShop shop={shop} onRemove={removeShop}/>

With this implementation, authorized sellers will be able to remove a shop that they
own from the marketplace.

We have implemented the shop module for the marketplace by first defining the
Shop model for storing shop data, and then integrating the backend APIs and
frontend views to be able to perform CRUD operations on shops from the
application. These shop features, with the ability to create new shops, display a shop,
edit and delete shops, will allow both buyers and sellers to interact with the shops in
the marketplace. The shops will also have products, discussed next, which the owners
will manage and the buyers will be able to browse through, with an option to add
products to their cart.

Adding products to shops
Products are the most crucial aspect of a marketplace application. In the MERN
Marketplace, sellers can manage products in their shops, and visitors can search for
and browse products. While we will implement the features to allow authorized
sellers to add, modify, and delete products from their shops, we will also incorporate
features to list products in ways that are meaningful to the end user. In the
application, we will retrieve and display products by a specific shop, products related
to a given product, and the latest products added to the marketplace. In the following
sections, we will build out the product module incorporating these features by first
defining a product model for storing product data in the database, and
then implementing the backend APIs and frontend views for the product-related
features including adding new products to a shop, rendering different lists of
products, displaying a single product, editing products, and deleting products.

Exercising MERN Skills with an Online Marketplace Chapter 7

[315]

Defining a Product model
Products will be stored in a product collection in the database. To implement this, we
will add a Mongoose model to define a Product model for storing the details of each
product. This model will be defined in server/models/product.model.js, and
the implementation will be similar to other Mongoose model implementations
covered in previous chapters, like the Course model defined in Chapter 6, Building a
Web-Based Classroom Application.

For MERN Marketplace, we will keep the product schema simple with support for
fields such as product name, description, image, category, quantity, price,
created at, updated at, and a reference to the shop. The code defining the
product fields in the product schema are given in the following list, along with
explanations:

Product name and description: The name and description fields will be
String types, with name as a required field:

name: {
 type: String,
 trim: true,
 required: 'Name is required'
},
description: {
 type: String,
 trim: true
},

Product image: The image field will store an image file to be uploaded by
the user as data in the MongoDB database:

image: {
 data: Buffer,
 contentType: String
},

Product category: The category value will allow grouping products of the
same type together:

category: {
 type: String
},

Exercising MERN Skills with an Online Marketplace Chapter 7

[316]

Product quantity: The quantity field will represent the amount available
for selling in the shop:

quantity: {
 type: Number,
 required: "Quantity is required"
},

Product price: The price field will hold the unit price this product will
cost the buyer:

price: {
 type: Number,
 required: "Price is required"
},

Product shop: The shop field will reference the shop to which the product
was added:

shop: {
 type: mongoose.Schema.ObjectId,
 ref: 'Shop'
}

Created and updated at times: The created and updated fields will be
Date types, with created generated when a new product is added, and
the updated time changed when the product's details are modified:

updated: Date,
created: {
 type: Date,
 default: Date.now
},

The fields in this schema definition will enable us to implement the product-related
features in MERN Marketplace. To begin the implementation of these features, in the
next section, we will implement the full-stack slice that will allow sellers to add new
products to their existing shops in the marketplace.

Exercising MERN Skills with an Online Marketplace Chapter 7

[317]

Creating a new product
Sellers in MERN Marketplace will be able to add new products to the shops they own
on the platform. To implement this feature, in the following sections we will add a
create product API in the backend, along with a way to fetch this API in the frontend,
and a create new product form view that takes user input for product fields.

The create product API
We will add a backend API that will let authorized shop owners save new products
to the database with a POST request from the client side. In order to implement this
create product API in the backend, we will first add a route
at /api/products/by/:shopId, which accepts a POST request containing the
product data. Sending a request to this route will create a new product associated
with the shop identified by the :shopId param. This create product API route is
declared as shown in the following code:

mern-marketplace/server/routes/product.routes.js:

router.route('/api/products/by/:shopId')
 .post(authCtrl.requireSignin, shopCtrl.isOwner, productCtrl.create)
router.param('shopId', shopCtrl.shopByID)

The product.routes.js file containing this route declaration will be very similar to
the shop.routes.js file, and to load these new routes in the Express app, we need
to mount the product routes in express.js, as shown next:

mern-marketplace/server/express.js:

app.use('/', productRoutes)

The code to handle a request to the create product API route will first check that the
current user is the owner of the shop to which the new product will be added before
creating the new product in the database. This API utilizes
the shopByID and isOwner methods from the shop controller to process
the :shopId param and to verify that the current user is the shop owner, before
invoking the create controller method. The create method is defined as follows:

mern-marketplace/server/controllers/product.controller.js:

const create = (req, res, next) => {
 let form = new formidable.IncomingForm()
 form.keepExtensions = true

Exercising MERN Skills with an Online Marketplace Chapter 7

[318]

 form.parse(req, async (err, fields, files) => {
 if (err) {
 return res.status(400).json({
 message: "Image could not be uploaded"
 })
 }
 let product = new Product(fields)
 product.shop= req.shop
 if(files.image){
 product.image.data = fs.readFileSync(files.image.path)
 product.image.contentType = files.image.type
 }
 try {
 let result = await product.save()
 res.json(result)
 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
 })
}

This create method, in the product controller, uses the formidable node module to
parse the multipart request that may contain an image file uploaded by the user along
with the product fields. The parsed data is then saved to the Products collection as a
new product.

In the frontend, to use this create product API, you will also need to set up a fetch
method in client/product/api-product.js to make a POST request to the create
API by passing the multipart form data from the view. This fetch method can then
be utilized in the React component, which takes the product details from the user and
sends the request to create a new product. The implementation of this form-based
React component to create new products is discussed in the next section.

Exercising MERN Skills with an Online Marketplace Chapter 7

[319]

The NewProduct component
An authorized seller who already has a shop created in the marketplace will see a
form view for adding new products to the shop. We will implement this form view in
a React component named NewProduct. The NewProduct component will be similar
to the NewShop component. It will contain a form that allows a seller to create a
product by entering a name, description, category, quantity, and price, and to upload
a product image file from their local filesystem, as pictured in the following
screenshot:

Exercising MERN Skills with an Online Marketplace Chapter 7

[320]

The NewProduct component can be implemented almost exactly the same as the
NewShop component, with the exception of retrieving the shop ID from the frontend
route URL that will render the NewProduct component. This component will load at
a route that is associated with a specific shop, so only signed-in users who are sellers
can add a product to a shop they own. To define this route, we add a PrivateRoute
in the MainRouter component as shown next, which will render this form only for
authorized users at the URL /seller/:shopId/products/new:

mern-marketplace/client/MainRouter.js:

<PrivateRoute path="/seller/:shopId/products/new"
component={NewProduct}/>

Adding this link for a specific shop to any view in the frontend will render the
NewProduct component for the signed-in user. In this view, the users will be able to
fill out the new product details in the form and then save the product to the database
in the backend, only if they are the authorized owner of the given shop. Next, we will
look into the implementations for retrieving and displaying these products on
different lists.

Listing products
In MERN Marketplace, products will be presented to users in multiple ways. The two
main distinctions will be in the way products are listed for sellers and the way they
are listed for buyers. In the following sections, we will see how to list products in a
shop for both sellers and buyers, then also discuss how to list product suggestions for
buyers, featuring products that are related to a specific product, along with the latest
products added to the marketplace.

Listing by shop
Visitors to the marketplace will browse products in each shop, and sellers will
manage a list of products in each of their shops. Both these features will share the
same backend API that will retrieve all the products for a specific shop but will be
rendered differently for the two types of users. In the following sections, first, we will
implement the backend API for fetching the products in a specific shop. Then, we will
use the API in two different React components to render the list of products to the
seller of the shop in one component, and to the buyers in another component.

Exercising MERN Skills with an Online Marketplace Chapter 7

[321]

The products by shop API
In order to implement the backend API to retrieve products from a specific shop in
the database, we will set up a GET route at /api/products/by/:shopId, as shown
in the following code:

mern-marketplace/server/routes/product.routes.js:

router.route('/api/products/by/:shopId')
 .get(productCtrl.listByShop)

The listByShop controller method executed in response to this request will query
the Product collection to return the products matching the given shop's
reference. The listByShop method is defined as shown in the following code:

mern-marketplace/server/controllers/product.controller.js:

const listByShop = async (req, res) => {
 try {
 let products = await Product.find({shop: req.shop._id})
 .populate('shop', '_id name').select('-
image')
 res.json(products)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

Each product in the resulting products array will contain the name and ID details of
the associated shop, and we will omit the image field since images can be retrieved
via separate API routes.

In the frontend, to fetch the products in a specific shop using this API to list by shop,
we will also need to add a fetch method in api-product.js, similar to our other
API implementations. Then, the fetch method can be called in any React component
to render the products, for example, to display products in a shop to all buyers, as
discussed in the next section.

Exercising MERN Skills with an Online Marketplace Chapter 7

[322]

Products component for buyers
We will build a Products component, mainly for displaying the products to visitors
who may buy the products. We can reuse this component across the application to
render different product lists relevant to the buyer. It will receive the product list as
props from a parent component that displays a list of products. A rendered Products
view may look as shown in the following screenshot:

In the marketplace application, the list of products in a shop will be displayed to the
user in an individual Shop view. So this Products component is added to the Shop
component and given the list of relevant products as props, as shown next:

mern-marketplace/client/shop/Shop.js:

<Products products={products} searched={false}/></Card>

The searched prop relays whether this list is a result of a product search, so
appropriate messages can be rendered.

In the Shop component, we need to add a call to the listByShop fetch method in
a useEffect hook to retrieve the relevant products and set it to state, as shown in the
following code:

mern-marketplace/client/shop/Shop.js:

useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal

 listByShop({
 shopId: match.params.shopId
 }, signal).then((data)=>{
 if (data.error) {
 setError(data.error)
 } else {

Exercising MERN Skills with an Online Marketplace Chapter 7

[323]

 setProducts(data)
 }
 })

 return function cleanup(){
 abortController.abort()
 }
}, [match.params.shopId])

In the Products component, if the product list sent in the props contains products,
the list is iterated over and the relevant details of each product are rendered in a
Material-UI GridListTile, with a link to the individual product view and
an AddToCart component (the implementation for which is discussed in Chapter 8,
Extending the Marketplace for Orders and Payments. The code to render the list of
products is added as follows:

mern-marketplace/client/product/Products.js:

{props.products.length > 0 ?
 (<div>
 <GridList cellHeight={200} cols={3}>
 {props.products.map((product, i) => (
 <GridListTile key={i}>
 <Link to={"/product/"+product._id}>
 <img src={'/api/product/image/'+product._id}
 alt={product.name} />
 </Link>
 <GridListTileBar
 title={<Link to={"/product/"+product._id}>
 {product.name}</Link>}
 subtitle={$ {product.price} }
 actionIcon={
 <AddToCart item={product}/>
 }
 />
 </GridListTile>))
 }
 </GridList>
 </div>) : props.searched && (<Typography component="h4">
 No products found!
:(</Typography>)}

If the products array sent in the props is found to be empty, and this was a result of
a search action by the user, we render an appropriate message to inform the user that
no products were found.

Exercising MERN Skills with an Online Marketplace Chapter 7

[324]

This Products component can be used to render different lists of products for
buyers, including products in a shop, products by category, and products in search
results. In the next section, we will implement a MyProducts component that will
render a list of products only for shop owners, giving them a different set of
interaction options.

MyProducts component for shop owners
In contrast to the Products component, the MyProducts component in
client/product/MyProducts.js is only for displaying products to sellers so they
can manage the products in each shop they own and will be displayed to the end user
as pictured in the following screenshot:

The MyProducts component is added to the EditShop view as shown in the
following code, so sellers can manage a shop and its contents in one place. It is
provided with the shop's ID in a prop so that relevant products can be fetched:

mern-marketplace/client/shop/EditShop.js:

<MyProducts shopId={match.params.shopId}/>

Exercising MERN Skills with an Online Marketplace Chapter 7

[325]

In MyProducts, the relevant products are first loaded in a state with an useEffect
hook using the listByShop fetch method, as shown in the following code:

mern-marketplace/client/product/MyProducts.js:

export default function MyProducts (props){
 const [products, setProducts] = useState([])
 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal
 listByShop({
 shopId: props.shopId
 }, signal).then((data)=>{
 if (data.error) {
 console.log(data.error)
 } else {
 setProducts(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [])
...
}

This list of products is then iterated over with each product rendered in
the ListItem components along with edit and delete options, similar to the MyShops
list view. The edit button links to the Edit Product view. The DeleteProduct
component handles the delete action, and reloads the list by calling an onRemove
method passed from MyProducts to update the state with the updated list of
products for the current shop.

The removeProduct method, defined in MyProducts, is provided as the onRemove
prop to the DeleteProduct component. The removeProduct method is defined as
follows:

mern-marketplace/client/product/MyProducts.js:

const removeProduct = (product) => {
 const updatedProducts = [...products]
 const index = updatedProducts.indexOf(product)
 updatedProducts.splice(index, 1)
 setProducts(updatedProducts)
}

Exercising MERN Skills with an Online Marketplace Chapter 7

[326]

Then it is passed as a prop to the DeleteProduct component when it is added to
MyProducts as shown next:

mern-marketplace/client/product/MyProducts.js:

<DeleteProduct
 product={product}
 shopId={props.shopId}
 onRemove={removeProduct}/>

Implementing a separate MyProducts component this way gives the shop owner the
ability to see the list of products in their shop with the option to edit and delete each.
In the next section, we will complete the implementation for retrieving different types
of product lists from the backend and rendering them as product suggestions for
buyers in the frontend.

Listing product suggestions
Visitors to MERN Marketplace will see product suggestions, such as the latest
products added to the marketplace and products related to the product they are
currently viewing. In the following sections, we will first look at the implementation
of the backend APIs for retrieving the latest products and a list of products related to
a given product, and then implement a React component called Suggestions to render
these lists of products.

Latest products
On the home page of the MERN Marketplace, we will display five of the latest
products added to the marketplace. To fetch the latest products, we will set up a
backend API that will receive a GET request at /api/products/latest, as shown in
the following code:

mern-marketplace/server/routes/product.routes.js:

router.route('/api/products/latest')
 .get(productCtrl.listLatest)

Exercising MERN Skills with an Online Marketplace Chapter 7

[327]

A GET request received at this route will invoke the listLatest controller method.
This method will find all products, sort the list of products in the database with the
created date field from newest to oldest, and return the first five from the sorted list
in the response. This listLatest controller method is defined as follows:

mern-marketplace/server/controllers/product.controller.js:

const listLatest = async (req, res) => {
 try {
 let products = await Product.find({}).sort('-created')
 .limit(5).populate('shop', '_id name').exec()
 res.json(products)
 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

To use this API in the frontend, you will also need to set up a corresponding fetch
method in api-product.js for this latest products API, similar to other API
implementations. This retrieved list will then be rendered in the Suggestions
component to be added to the home page. Next, we will discuss a similar API for
retrieving a list of related products.

Related products
In each individual product view, we will show five related products as suggestions.
To retrieve these related products, we will set up a backend API that accepts a request
at /api/products/related, as shown in the following code.

mern-marketplace/server/routes/product.routes.js:

router.route('/api/products/related/:productId')
 .get(productCtrl.listRelated)
router.param('productId', productCtrl.productByID)

The:productId param in the route URL route will call the productByID controller
method, which is similar to the shopByID controller method, and retrieves the
product from the database and attaches it to the request object to be used in the next
method. The productByID controller method is defined as follows:

mern-marketplace/server/controllers/product.controller.js:

const productByID = async (req, res, next, id) => {

Exercising MERN Skills with an Online Marketplace Chapter 7

[328]

 try {
 let product = await Product.findById(id)
 .populate('shop', '_id name').exec()
 if (!product)
 return res.status('400').json({
 error: "Product not found"
 })
 req.product = product
 next()
 } catch (err) {
 return res.status('400').json({
 error: "Could not retrieve product"
 })
 }
}

Once the product is retrieved, the listRelated controller method is invoked. This
method queries the Product collection in the database to find other products with
the same category as the given product, excluding the given product, and returns the
first five products in the resulting list. This listRelated controller method is
defined as follows:

mern-marketplace/server/controllers/product.controller.js:

const listRelated = async (req, res) => {
 try{
 let products = await Product.find({ "_id": { "$ne": req.product },
 "category": req.product.category})
 .limit(5).populate('shop', '_id name').exec()
 res.json(products)
 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

In order to utilize this related products API in the frontend, we will set up a
corresponding fetch method in api-product.js. The fetch method will be called
in the Product component with the product ID to populate the Suggestions
component rendered in the product view. We will look at the implementation of this
Suggestions component in the next section.

Exercising MERN Skills with an Online Marketplace Chapter 7

[329]

The Suggestions component
The Suggestions component will be rendered on the home page and on an
individual product page to show the latest products and related products,
respectively. Once rendered, the Suggestions component may look as shown in the
following screenshot:

This component will receive the relevant list of products from the parent component
as props, along with a title for the list:

<Suggestions products={suggestions} title={suggestionTitle}/>

In the Suggestions component, the received list is iterated over and individual
products are rendered with relevant details, a link to the individual product page,
and an AddToCart component, as shown in the following code.

mern-marketplace/client/product/Suggestions.js:

<Typography type="title"> {props.title} </Typography>
{props.products.map((item, i) => {
 return
 <Card>
 <CardMedia image={'/api/product/image/'+item._id}

Exercising MERN Skills with an Online Marketplace Chapter 7

[330]

 title={item.name}/>
 <CardContent>
 <Link to={'/product/'+item._id}>
 <Typography type="title" component="h3">
 {item.name}</Typography>
 </Link>
 <Link to={'/shops/'+item.shop._id}>
 <Typography type="subheading">
 <Icon>shopping_basket</Icon> {item.shop.name}
 </Typography>
 </Link>
 <Typography component="p">
 Added on {(new
 Date(item.created)).toDateString()}
 </Typography>
 </CardContent>
 <Typography type="subheading" component="h3">$
 {item.price}</Typography>
 <Link to={'/product/'+item._id}>
 <IconButton color="secondary" dense="dense">
 <ViewIcon className={classes.iconButton}/>
 </IconButton>
 </Link>
 <AddToCart item={item}/>
 </Card>
 })}

This Suggestions component can be reused to render any list of products to buyers,
and in this section, we have discussed how to retrieve and display two different lists
of products. Each product in the lists is linked to a view that will render details of the
individual product. In the next section, we will look at the implementation of reading
and displaying a single product to the end user.

Displaying a product
Visitors to the MERN Marketplace will be able to view more details of each product
in a separate view. In the following sections, we will implement a backend API to
retrieve a single product from the database and then use it in the frontend to render
the single product in a React component.

Exercising MERN Skills with an Online Marketplace Chapter 7

[331]

Read a product API
In the backend, we will add an API with a GET route that queries the Products
collection with an ID and returns the product in the response. The route will be
declared as shown in the following code:

mern-marketplace/server/routes/product.routes.js:

router.route('/api/products/:productId')
 .get(productCtrl.read)

The:productId param in the URL invokes the productByID controller method,
which retrieves the product from the database and appends it to the request object.
The product in the request object is used by the read controller method to respond to
the GET request. The read controller method is defined as follows:

mern-marketplace/server/controllers/product.controller.js:

const read = (req, res) => {
 req.product.image = undefined
 return res.json(req.product)
}

To use this read product API in the frontend, we will need to add a fetch method
in client/product/api-product.js, similar to other API implementations. Then
this fetch method can be used in the React component, which will render the
individual product details, as discussed in the next section.

Product component
We will add a React component named Product to render the individual product
details, along with an add to cart option. In this single product view, we will also
show a list of related products, as pictured in the following screenshot:

Exercising MERN Skills with an Online Marketplace Chapter 7

[332]

The Product component can be accessed in the browser at the
/product/:productID route, which is defined in MainRouter as follows:

mern-marketplace/client/MainRouter.js:

<Route path="/product/:productId" component={Product}/>

The product details and the related product list data will be fetched by calling the
relevant APIs with useEffect hooks using the productId specified in the route
param, as shown in the following code:

mern-marketplace/client/product/Product.js:

export default function Product ({match}) {
 const [product, setProduct] = useState({shop:{}})
 const [suggestions, setSuggestions] = useState([])
 const [error, setError] = useState('')
 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal
 read({productId: match.params.productId}, signal).then((data) =>
{
 if (data.error) {
 setError(data.error)
 } else {
 setProduct(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [match.params.productId])

 useEffect(() => {

Exercising MERN Skills with an Online Marketplace Chapter 7

[333]

 const abortController = new AbortController()
 const signal = abortController.signal

 listRelated({
 productId: match.params.productId}, signal).then((data) => {
 if (data.error) {
 setError(data.error)
 } else {
 setSuggestions(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
}, [match.params.productId])

In the first useEffect hook, we call the read API to retrieve the specified product
and set it to state. In the second hook, we call the listRelated API to get the list of
related products and set it to the state to be passed as a prop to a Suggestions
component added in the product view.

The product details part of the component displays relevant information about the
product and an AddToCart component in a Material-UI Card component, as shown
in the following code:

mern-marketplace/client/product/Product.js:

<Card>
 <CardHeader
 action={<AddToCart cartStyle={classes.addCart}
 item={product}/>}
 title={product.name}
 subheader={product.quantity > 0? 'In Stock': 'Out of
 Stock'}
 />
 <CardMedia image={imageUrl} title={product.name}/>
 <Typography component="p" variant="subtitle1">
 {product.description}

 $ {product.price}
 <Link to={'/shops/'+product.shop._id}>
 <Icon>shopping_basket</Icon> {product.shop.name}
 </Link>
 </Typography>
</Card>

Exercising MERN Skills with an Online Marketplace Chapter 7

[334]

The Suggestions component is added in the Product view with the related list data
passed as a prop, as shown next:

mern-marketplace/client/product/Product.js:

<Suggestions products={suggestions} title='Related Products'/>

With this view complete, visitors to the marketplace application will be able to find
out more about a specific product as well as explore other similar products. In the
next section, we will discuss how to add the ability for shop owners to edit and delete
the products they added to the marketplace.

Editing and deleting a product
Implementations to edit and delete products in the application are similar to editing
and deleting shops, as covered in the previous sections, Editing a shop and Deleting a
shop. These functionalities will require the corresponding APIs in the backend, fetch
methods in the frontend, and React component views with forms and actions. In the
following sections, we will highlight the frontend view, route, and backend API
endpoints for editing and deleting a product from the marketplace.

Edit
The edit functionality is very similar to the create product functionality we
implemented earlier. The EditProduct form component, which can be implemented
to render a form that allows product detail modification, will also only be accessible
by verified sellers at /seller/:shopId/:productId/edit.

To restrict access to this view, we can add a PrivateRoute in MainRouter to declare
the route to the EditProduct view as follows:

mern-marketplace/client/MainRouter.js:

<PrivateRoute path="/seller/:shopId/:productId/edit"
component={EditProduct}/>

Exercising MERN Skills with an Online Marketplace Chapter 7

[335]

The EditProduct component contains the same form as NewProduct, but with
populated values of the product retrieved using the read product API. On form
submit, it uses a fetch method to send multipart form data with a PUT request to the
edit product API in the backend at /api/products/by/:shopId. This backend
route declaration for the edit product API will be as follows:

mern-marketplace/server/routes/product.routes.js:

router.route('/api/product/:shopId/:productId')
 .put(authCtrl.requireSignin, shopCtrl.isOwner,
productCtrl.update)

The update controller method is invoked when an authorized user sends a PUT
request to this API. It is similar to the product create method and the shop update
method. It handles the multipart form data using formidable and extends the
product details to save the updates to the database.

This implementation of an edit product form view integrated with an update API in
the backend will allow shop owners to modify the details of products in their shops.
Next, we will look at the highlights for integrating product deletion functionality to
the application.

Delete
In order to implement the delete product functionality, we can implement
a DeleteProduct component similar to the DeleteShop component, and add it to
the MyProducts component for each product in the list. It can take the product
object, shopID, and an onRemove method as a prop from MyProducts, as discussed
in the MyProducts component for shop owners section.

The component will function the same as DeleteShop, opening a dialog for
confirmation on button-click and then, when the delete intent is confirmed by the
user, calling the fetch method for delete, which makes the DELETE request to the
server at /api/product/:shopId/:productId. This backend API for deleting a
product from the database will be declared as follows with the other product routes:

mern-marketplace/server/routes/product.routes.js:

router.route('/api/product/:shopId/:productId')
 .delete(authCtrl.requireSignin, shopCtrl.isOwner,
productCtrl.remove)

Exercising MERN Skills with an Online Marketplace Chapter 7

[336]

The remove controller method will be invoked if an authorized user makes the
DELETE request to this API, and it will delete the specified product from the
database, like the remove controller method for shops.

We started the implementation of the product-related features for the marketplace in
this section by first defining a schema for storing product details and then discussing
the full-stack slices for creating, listing, reading, updating, and deleting products in
the application. In the next section, we will look into how to allow users in the
marketplace to search for products in varied ways, so they can easily find the
products they are looking for.

Searching for products with name and
category
In MERN Marketplace, visitors will be able to search for specific products by name
and also in a specific category. In the following sections, we will discuss how this
search functionality can be added by first looking at backend APIs that will retrieve
the distinct categories from the Products collection, and perform the search query
against the products stored. Then, we will discuss different cases for utilizing these
APIs, such as a view to perform the search action and a view for displaying products
by categories.

The categories API
To allow users to select a specific category to search in, we will first set up an API that
retrieves all the distinct categories present in the Products collection in the database.
A GET request to /api/products/categories will return an array of unique
categories, and this route is declared as shown here:

mern-marketplace/server/routes/product.routes.js:

router.route('/api/products/categories')
 .get(productCtrl.listCategories)

The listCategories controller method queries the Products collection with a
distinct call against the category field, as shown in the following code:

mern-marketplace/server/controllers/product.controller.js:

const listCategories = async (req, res) => {

Exercising MERN Skills with an Online Marketplace Chapter 7

[337]

 try {
 let products = await Product.distinct('category',{})
 res.json(products)
 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

This categories API can be used in the frontend with a corresponding fetch method
to retrieve the array of distinct categories and displayed in the view. This can be
paired with a search API to allow users to search for products by its name in a specific
category. In the next section, we will discuss this search API.

The search products API
We can define a search products API that will take a GET request at
/api/products?search=value&category=value, with query parameters in the
URL to query the Products collection with the provided search text and category
values. The route for this search API will be defined as follows:

mern-marketplace/server/routes/product.routes.js:

router.route('/api/products')
 .get(productCtrl.list)

The list controller method will first process the query parameters in the request,
then find products in the given category, if any, with names that partially match with
the provided search text. This list method is defined as shown in the following
code:

mern-marketplace/server/controllers/product.controller.js:

const list = async (req, res) => {
 const query = {}
 if(req.query.search)
 query.name = {'$regex': req.query.search, '$options': "i"}
 if(req.query.category && req.query.category != 'All')
 query.category = req.query.category
 try {
 let products = await Product.find(query)
 .populate('shop', '_id name')
 .select('-image').exec()
 res.json(products)

Exercising MERN Skills with an Online Marketplace Chapter 7

[338]

 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The resulting products returned against the provided query parameters in the request
are populated with shop details and downsized by removing the image field value,
before being sent back in the response. To use this API in the frontend to perform a
product search, we will need a fetch method that can construct the query
parameters in the request URL, as discussed in the next section.

Fetch search results for the view
To utilize this search API in the frontend, we will set up a method that constructs the
URL with query parameters and calls a fetch to make a request to the search product
API. This fetch method will be defined as follows.

mern-marketplace/client/product/api-product.js:

import queryString from 'query-string'
const list = (params) => {
 const query = queryString.stringify(params)
 return fetch('/api/products?'+query, {
 method: 'GET',
 }).then(response => {
 return response.json()
 }).catch((err) => console.log(err))
}

In order to construct the query parameters in the correct format, we will use the
query-string node module, which will help stringify the params object into a query
string that can be attached to the request route URL. The keys and values in this
params object will be defined by the React component where we call this list
method. Next, we will look at the Search component, which will utilize this method
to enable the end user to search for products in the marketplace.

Exercising MERN Skills with an Online Marketplace Chapter 7

[339]

The Search component
The first use case for applying the categories API and search API together to perform
a search action is in the Search component. This component, once implemented and
functional, will render as shown in the following screenshot:

This Search component provides the user with a simple form containing a search
input text field and a dropdown of the category options received from a parent
component that will retrieve the list using the distinct categories API. The code to
render this search form view will be as follows:

mern-marketplace/client/product/Search.js:

<TextField id="select-category" select label="Select category"
value={category}
 onChange={handleChange('category')}
 selectProps={{ MenuProps: { className: classes.menu, } }}>
 <MenuItem value="All"> All </MenuItem>
 {props.categories.map(option => (
 <MenuItem key={option} value={option}> {option} </MenuItem>
))}
</TextField>
<TextField id="search" label="Search products" type="search"
onKeyDown={enterKey}
 onChange={handleChange('search')}
/>
<Button raised onClick={search}> Search </Button>

Exercising MERN Skills with an Online Marketplace Chapter 7

[340]

Once the user enters a search text and hits Enter, we will make a call to the search
method. To detect that the Enter key was pressed, we use the onKeyDown attribute on
the TextField and define the enterKey handler method as follows:

mern-marketplace/client/product/Search.js:

const enterKey = (event) => {
 if(event.keyCode == 13){
 event.preventDefault()
 search()
 }
}

The search method makes a call to the search API using the list fetch method,
providing it with the necessary search query parameters and values. This search
method is defined as shown in the following code:

mern-marketplace/client/product/Search.js:

const search = () => {
 if(values.search){
 list({
 search: values.search || undefined, category: values.category
 }).then((data) => {
 if (data.error) {
 console.log(data.error)
 } else {
 setValues({...values, results: data, searched:true})
 }
 })
 }
}

In this method, the query parameters provided to the list method are the search text
value, if any, and the selected category value. Then the results array received from the
backend is set to the values in state and passed as a prop to the Products
component, as shown next, to render the matching products underneath the search
form:

mern-marketplace/client/product/Search.js:

<Products products={results} searched={searched}/>

Exercising MERN Skills with an Online Marketplace Chapter 7

[341]

This search view gives visitors a useful tool to look for the specific product they want
among many that may be stored in the database for the complete marketplace. In the
next section, we will look at another simple use case for utilizing the categories and
search APIs in the frontend.

The Categories component
The Categories component is the second use case for the distinct categories and
search APIs. For this component, we first fetch the list of categories in a parent
component and send it as props to display the categories to the user, as shown in the
following screenshot:

When the user selects a category in the displayed list, a call is made to the Search API
with just a category value, and the backend returns all the products in the selected
category. The returned products are then rendered in a Products component. This
can be a simple way to combine these APIs and display meaningful products to
buyers browsing through the marketplace.

In this first version of the MERN Marketplace, users can become sellers to create
shops and add products, and visitors can browse shops and search for products,
while the application also suggests products to the visitors.

Exercising MERN Skills with an Online Marketplace Chapter 7

[342]

Summary
In this chapter, we started building an online marketplace application using the
MERN stack. The MERN skeleton was extended to allow users to have active seller
accounts, so they can create shops and add products to each shop with the intention
to sell to other users. We also explored how to utilize the stack to implement features
such as product browsing, searching, and suggestions for regular users who are
interesting in buying.

While going through the implementations in this chapter, we explored how to lay
down the foundations with full-stack implementations to be able to combine and
extend interesting features such as search and suggestions. You can apply these same
approaches while building out other full-stack applications that may require these
features.

Even with these features incorporated, a marketplace application is still incomplete
without a shopping cart for checkout, order management, and payment processing.
In the next chapter, we will grow our marketplace application to add these advanced
features and learn more about how the MERN stack can be used to implement these
core aspects of an e-commerce application.

8
Extending the Marketplace for

Orders and Payments
Processing payments from customers when they place orders and allowing sellers to
manage these orders are key aspects of e-commerce applications. In this chapter, we'll
extend the online marketplace we built in the previous chapter by implementing
capabilities for buyers to add products to a shopping cart, a checkout, and place
orders, and for sellers to manage these orders and have payments processed from the
marketplace application. Once you've gone through this chapter and added these
features, besides extending the marketplace application with advanced features, you
will be able to utilize browser storage, process payments using Stripe, and integrate
other technologies into this stack.

In this chapter, we will extend the online marketplace by covering the following
topics:

Introducing a cart, payments, and orders in the MERN Marketplace
Implementing a shopping cart
Using Stripe for payments
Integrating the checkout process
Creating a new order
Listing orders for each shop
Viewing single-order details

Extending the Marketplace for Orders and Payments Chapter 8

[344]

Introducing cart, payments, and orders in
the MERN Marketplace
The MERN Marketplace application we developed in Chapter 7, Exercising MERN
Skills with an Online Marketplace, has very simple features and is missing core e-
commerce functionality. In this chapter, we will extend this marketplace application
so that it includes a shopping cart feature for the buyer, Stripe integration for
processing credit card payments, and a basic order-management flow for the seller.
The implementations that follow are kept simple to serve as starting points for
developing more complex versions of these features for your own applications.

The code for the complete MERN Marketplace application is
available on GitHub at https:/ ​/ ​github. ​com/ ​PacktPublishing/
Full- ​Stack- ​React- ​Projects- ​Second- ​Edition/ ​tree/ ​master/
Chapter07%20and%2008/ ​mern-​marketplace. You can clone this code
and run the application as you go through the code explanations in
the rest of this chapter. To get the code for Stripe payments working,
you will need to create your own Stripe account and update
the config/config.js file with your testing values for the Stripe
API key, secret key, and Stripe Connect client ID.

The following component tree diagram shows the custom components that make up
the MERN Marketplace frontend, including the components for the shopping cart,
payments, and order-related features that will be implemented in the rest of this
chapter:

https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter07%20and%2008/mern-marketplace

Extending the Marketplace for Orders and Payments Chapter 8

[345]

The features that will be discussed in this chapter modify some of the existing
components, such as Profile, MyShops, Products, and Suggestions, and also add
new components, such as AddToCart, MyOrders, Cart, and ShopOrders. In the next
section, we will begin extending the online marketplace with the implementation of
the shopping cart.

Implementing a shopping cart
Visitors to the MERN Marketplace can add products they wish to buy to a shopping
cart by clicking the add to cart button on each product. A cart icon on the menu will
indicate the number of products that have already been added to their cart as the user
continues to browse through the marketplace. They can also update the cart's
contents and begin the checkout process by opening the cart view. But to complete
the checkout process and place an order, users will be required to sign in.

The shopping cart is mainly a frontend feature, so the cart details will be stored
locally on the client side until the user places the order at checkout. To implement the
shopping cart features, we will set up helper methods in client/cart/cart-
helper.js that will help manipulate the cart details from relevant React
components.

In the following sections, we will look at how to add products to the cart, update the
menu to indicate the status of the cart, and implement the cart view where users can
see and modify all the items that have already been added to their cart before
checking out.

Adding to the cart
While browsing the products in the marketplace, users will see the option on each
product to add it to their cart. This option will be implemented with a React
component named AddToCart. This AddToCart component in
client/Cart/AddToCart.js takes a product object and a CSS style object as props
from the parent component it is added to. For example, in the MERN Marketplace, it
is added to a Product view as follows:

<AddToCart cartStyle={classes.addCart} item={product}/>

Extending the Marketplace for Orders and Payments Chapter 8

[346]

The AddToCart component, when rendered, displays a cart icon button depending
on whether the passed item is in stock or not, as shown in the following screenshot:

For example, if the item quantity is more than 0, AddCartIcon is displayed;
otherwise, DisabledCartIcon is rendered. The appearance of the icon depends on
the CSS style object that's passed in the props. The code to render these variations of
the AddToCart button is as follows.

mern-marketplace/client/cart/AddToCart.js:

{ props.item.quantity >= 0 ?
 <IconButton color="secondary" dense="dense" onClick={addToCart}>
 <AddCartIcon className={props.cartStyle ||
classes.iconButton}/>
 </IconButton> :
 <IconButton disabled={true} color="secondary" dense="dense">
 <DisabledCartIcon className={props.cartStyle ||
classes.disabledIconButton}/>
 </IconButton>
}

The AddCartIcon button calls an addToCart method when it is clicked.
The addToCart method is defined as follows.

mern-marketplace/client/cart/AddToCart.js:

const addToCart = () => {
 cart.addItem(props.item, () => {
 setRedirect({redirect:true})
 })
}

The addToCart method invokes the addItem helper method defined in cart-
helper.js. This addItem method takes the product item and a state-updating
callback function as parameters and stores the updated cart details in
localStorage and executes the callback that was passed, as shown in the following
code.

mern-marketplace/client/cart/cart-helper.js:

addItem(item, cb) {
 let cart = []
 if (typeof window !== "undefined") {

Extending the Marketplace for Orders and Payments Chapter 8

[347]

 if (localStorage.getItem('cart')) {
 cart = JSON.parse(localStorage.getItem('cart'))
 }
 cart.push({
 product: item,
 quantity: 1,
 shop: item.shop._id
 })
 localStorage.setItem('cart', JSON.stringify(cart))
 cb()
 }
}

The cart data stored in localStorage contains an array of cart item objects, each
containing product details, the quantity of the product that was added to the cart
(which is set to 1 by default), and the ID of the shop the product belongs to. As
products get added to the cart and stored in localStorage, we will also display the
updated item count on the navigation menu, as discussed in the next section.

Cart icon in the menu
In the menu, we will add a link to the cart view, as well as a badge that displays the
length of the cart array stored in localStorage in order to visually inform the user
of how many items are currently in their cart. The rendered link and badge will look
as follows:

The link for the cart will be similar to the other links in the menu, with the exception
of the Material-UI Badge component, which displays the cart length. It will be added
as follows:

mern-marketplace/client/core/Menu.js:

<Link to="/cart">
 <Button color={isActive(history, "/cart")}>
 Cart
 <Badge invisible={false} color="secondary"
 badgeContent= {cart.itemTotal()}>
 <CartIcon />
 </Badge>
 </Button>
</Link>

Extending the Marketplace for Orders and Payments Chapter 8

[348]

The cart length is returned by the itemTotal helper method in cart-helper.js,
which reads the cart array stored in localStorage and returns the length of the
array. The itemTotal method is defined as follows.

mern-marketplace/client/cart/cart-helper.js:

itemTotal() {
 if (typeof window !== "undefined") {
 if (localStorage.getItem('cart')) {
 return JSON.parse(localStorage.getItem('cart')).length
 }
 }
 return 0
}

Clicking on this cart link, with the item total displayed on the menu, will take the user
to the cart view and reveal details of the items that have already been added to the
cart. In the next section, we will discuss the implementation of this cart view.

The cart view
The cart view will contain the cart items and checkout details. But initially, only the
cart details will be displayed until the user is ready to check out. The code to render
this cart view will be added as follows.

mern-marketplace/client/cart/Cart.js:

<Grid container spacing={24}>
 <Grid item xs={6} sm={6}>
 <CartItems checkout={checkout}
 setCheckout={showCheckout}/>
 </Grid>
 {checkout &&
 <Grid item xs={6} sm={6}>
 <Checkout/>
 </Grid>}
</Grid>

The CartItems component, which displays the items in the cart, is passed a
checkout Boolean value and a state update method for this checkout value so that
the Checkout component and its options can be rendered conditionally based on user
interaction.

Extending the Marketplace for Orders and Payments Chapter 8

[349]

The showCheckout method to update the checkout value is defined as follows.

mern-marketplace/client/cart/Cart.js:

const showCheckout = val => {
 setCheckout(val)
}

The Cart component will be accessed at the /cart route, so we need to add a Route
to the MainRouter component as follows.

mern-marketplace/client/MainRouter.js:

<Route path="/cart" component={Cart}/>

This is the link we use on the Menu to redirect the user to the cart view, which
contains cart details. In the next section, we will look at the implementation of the
CartItems component, which will render details of each item in the cart and allow
modifications.

The CartItems component
The CartItems component will allow the user to view and update the items
currently in their cart. It will also give them the option to start the checkout process if
they are signed in, as shown in the following screenshot:

Extending the Marketplace for Orders and Payments Chapter 8

[350]

If the cart contains items, the CartItems component iterates over the items and
renders the products in the cart. If no items have been added, the cart view just
displays a message stating that the cart is empty. The code for this implementation is
as follows.

mern-marketplace/client/cart/CartItems.js:

{cartItems.length > 0 ?
 {cartItems.map((item, i) => {
 ...
 … Display product details
 … Edit quantity
 … Remove product option
 ...
 })
 }
 … Show total price and Checkout options …
 :
 <Typography variant="subtitle1" component="h3" color="primary">
 No items added to your cart.
 </Typography>
}

For each product item, we show the details of the product and an editable quantity
text field, along with a remove item option. Finally, we show the total price of the
items in the cart and the option to start the checkout operation. In the following
sections, we will look into the implementations of these cart item display and
modification options.

Retrieving cart details
Before the cart item details can be displayed, we need to retrieve the cart details
stored in localStorage. For this purpose, we implement the getCart helper
method in cart-helper.js, which retrieves and returns the cart details from
localStorage, as shown in the following code.

mern-marketplace/client/cart/cart-helper.js:

getCart() {
 if (typeof window !== "undefined") {
 if (localStorage.getItem('cart')) {
 return JSON.parse(localStorage.getItem('cart'))
 }
 }
 return []
}

Extending the Marketplace for Orders and Payments Chapter 8

[351]

In the CartItems component, we will retrieve the cart items using the getCart
helper method and set it to the state of the initial value of cartItems, as shown in the
following code.

mern-marketplace/client/cart/CartItems.js:

const [cartItems, setCartItems] = useState(cart.getCart())

Then, this cartItems array that was retrieved from localStorage is iterated over
using the map function to render the details of each item, as shown in the following
code.

mern-marketplace/client/cart/CartItems.js:

 <Card>
 <CardMedia image={'/api/product/image/'+item.product._id}
 title={item.product.name}/>
 <CardContent>
 <Link to={'/product/'+item.product._id}>
 <Typography type="title" component="h3"
 color="primary">
 {item.product.name}</Typography>
 </Link>
 <Typography type="subheading" component="h3"
 color="primary">
 $ {item.product.price}
 </Typography>
 ${item.product.price * item.quantity}
 Shop: {item.product.shop.name}
 </CardContent>
 <div>
 … Editable quantity …
 … Remove item option ...
 </div>
 </Card>
 <Divider/>

For each rendered cart item, we will also give the user the option to change the
quantity, as discussed in the next section.

Extending the Marketplace for Orders and Payments Chapter 8

[352]

Modifying quantity
Each cart item displayed in the cart view will contain an editable TextField that will
allow the user to update the quantity for each product they are buying, with a
minimum allowed value of 1, as shown in the following code.

mern-marketplace/client/cart/CartItems.js:

Quantity: <TextField
 value={item.quantity}
 onChange={handleChange(i)}
 type="number"
 inputProps={{ min:1 }}
 InputLabelProps={{
 shrink: true,
 }}
 />

When the user updates this value, the handleChange method is called to enforce the
minimum value validation, update the cartItems in the state, and update the cart in
localStorage using a helper method. The handleChange method is defined as
follows.

mern-marketplace/client/cart/CartItems.js:

const handleChange = index => event => {
 let updatedCartItems = cartItems
 if(event.target.value == 0){
 updatedCartItems[index].quantity = 1
 }else{
 updatedCartItems[index].quantity = event.target.value
 }
 setCartItems([...updatedCartItems])
 cart.updateCart(index, event.target.value)
}

The updateCart helper method takes the index of the product being updated in the
cart array and the new quantity value as parameters and updates the details stored in
localStorage. This updateCart helper method is defined as follows.

mern-marketplace/client/cart/cart-helper.js:

updateCart(itemIndex, quantity) {
 let cart = []
 if (typeof window !== "undefined") {
 if (localStorage.getItem('cart')) {
 cart = JSON.parse(localStorage.getItem('cart'))

Extending the Marketplace for Orders and Payments Chapter 8

[353]

 }
 cart[itemIndex].quantity = quantity
 localStorage.setItem('cart', JSON.stringify(cart))
 }
}

Besides updating the item quantity in the cart, users will also have the option to
remove the item from the cart, as discussed in the next section.

Removing items
Each item in the cart will have a remove option next to it. This remove item option is
a button that, when clicked, passes the array index of the item to the removeItem
method so that it can be removed from the array. This button is rendered with the
following code.

mern-marketplace/client/cart/CartItems.js:

<Button color="primary" onClick={removeItem(i)}>x Remove</Button>

The removeItem click handler method uses the removeItem helper method to
remove the item from the cart in localStorage, then updates the cartItems in the
state. This method also checks whether the cart has been emptied so that checkout can
be hidden by using the setCheckout function passed as a prop from the Cart
component. The removeItem click handler method is defined as follows.

mern-marketplace/client/cart/CartItems.js:

const removeItem = index => event =>{
 let updatedCartItems = cart.removeItem(index)
 if(updatedCartItems.length == 0){
 props.setCheckout(false)
 }
 setCartItems(updatedCartItems)
}

The removeItem helper method in cart-helper.js takes the index of the product
to be removed from the array, splices it out, and updates localStorage before
returning the updated cart array. This removeItem helper method is defined as
follows.

mern-marketplace/client/cart/cart-helper.js:

removeItem(itemIndex) {
 let cart = []

Extending the Marketplace for Orders and Payments Chapter 8

[354]

 if (typeof window !== "undefined") {
 if (localStorage.getItem('cart')) {
 cart = JSON.parse(localStorage.getItem('cart'))
 }
 cart.splice(itemIndex, 1)
 localStorage.setItem('cart', JSON.stringify(cart))
 }
 return cart
}

As users modify the items in their cart by either changing the quantity or removing
an item, they will also see the updated total price of all the items currently in the cart,
as discussed in the next section.

Showing the total price
At the bottom of the CartItems component, we will display the total price of the
items in the cart. It will be rendered with the following code.

mern-marketplace/client/cart/CartItems.js:

Total: ${getTotal()}

The getTotal method will calculate the total price while taking the unit price and
quantity of each item in the cartItems array into consideration. This method is
defined as follows.

mern-marketplace/client/cart/CartItems.js:

const getTotal = () => {
 return cartItems.reduce((a, b) => {
 return a + (b.quantity*b.product.price)
 }, 0)
}

With this, the users will have an overview of what they are buying and how much it
will cost before they are ready to check out and place the order. In the next section,
we will look at how to render the checkout option conditionally, depending on the
state of the cart and whether the user is signed in.

Option to check out
The user will see the option to perform the checkout depending on whether they are
signed in and whether the checkout has already been opened, as implemented in the
following code.

Extending the Marketplace for Orders and Payments Chapter 8

[355]

mern-marketplace/client/cart/CartItems.js:

{!props.checkout && (auth.isAuthenticated() ?
 <Button onClick={openCheckout}>
 Checkout
 </Button> :
 <Link to="/signin">
 <Button>Sign in to checkout</Button>
 </Link>)
}

When the checkout button is clicked, the openCheckout method will use the
setCheckout method passed as a prop to set the checkout value to true in the Cart
component. The openCheckout method is defined as follows.

mern-marketplace/client/cart/CartItems.js:

const openCheckout = () => {
 props.setCheckout(true)
}

Once the checkout value is set to true in the Cart view, the Checkout component
will be rendered to allow the user to enter the checkout details and place an order.

This will complete the buying process for a user, who is now able to add items to
their shopping cart and modify each item until they are ready to checkout. But before
getting into the implementation of the checkout functionality, which will involve
gathering and processing payment information, in the next section, we will discuss
how to use Stripe in our application to add the intended payment-related features.

Using Stripe for payments
Payment processing is required across implementations of the checkout, order
creation, and order management processes. It also involves making updates to both
the buyer's and seller's user data. Before we delve into the implementations of the
checkout and order features, we will briefly discuss payment processing options and
considerations using Stripe and learn how to integrate it in the MERN Marketplace.

Stripe provides an extensive set of tools that are necessary to integrate payments in
any web application. These tools can be selected and used in different ways,
depending on the specific type of application and the payment use case being
implemented.

Extending the Marketplace for Orders and Payments Chapter 8

[356]

In the case of the MERN Marketplace setup, the application itself will have a platform
on Stripe and will expect sellers to have connected Stripe accounts on the platform so
that the application can charge users who enter their credit card details at checkout on
behalf of the sellers. In the MERN Marketplace, a user can add products from
different shops to their shopping cart so that charges on their cards will only be
created by the application for the specific product that was ordered when it is
processed by the seller. Additionally, sellers will have complete control over the
charges that are created on their behalf from their own Stripe dashboards. We will
demonstrate how to use the tools provided by Stripe to get this payment setup
working.

Stripe provides a complete set of documentation and guidelines for each tool and also
exposes testing data for accounts and platforms that are set up on Stripe. For the
purpose of implementing payments in the MERN Marketplace, we will be using
testing keys and leave it up to you to extend the implementation for live payments.

In the following sections, we will discuss how to connect a Stripe account for each
seller, collect credit card details from the user with Stripe Card Elements, use Stripe
Customer to record the user's payment information securely, and create a charge with
Stripe for processing a payment.

Stripe-connected account for each seller
To create charges on behalf of sellers, the application will let a user, who is a seller,
connect their Stripe account to their MERN Marketplace user account. In the
following sections, we will implement this functionality by updating the user model
so that it can store Stripe credentials, add the view components to allow users to
connect to Stripe, and add a backend API to complete Stripe OAuth before updating
the database with the retrieved credentials from Stripe.

Updating the user model
When a seller connects their Stripe account to the marketplace, we will need to store
their Stripe credentials with their other user details so that they can be used later for
payment processing when they sell products. To store the Stripe OAuth credentials
after a user's Stripe account is successfully connected, we will update the user
model that we developed in Chapter 3, Building a Backend with MongoDB, Express, and
Node, with the following field.

Extending the Marketplace for Orders and Payments Chapter 8

[357]

mern-marketplace/server/models/user.model.js:

stripe_seller: {}

This stripe_seller field will store the seller's Stripe account credentials that were
received from Stripe on authentication. This will be used when a charge needs to be
processed via Stripe for a product they sold from their shop. Next, we will look at the
frontend component that will allow the user to connect to Stripe from our application.

Button to connect with Stripe
In the user profile page of a seller, if the user has not connected their Stripe account
yet, we will show a button that will take the user to Stripe to authenticate and connect
their Stripe account. The Connect with Stripe button will be rendered in the Profile
view as follows:

If the user has successfully connected their Stripe account already, we will show a
disabled STRIPE CONNECTED button instead, as shown in the following
screenshot:

The code that's added to the Profile component will check whether the user is a
seller before rendering the Stripe-related button. Then, a second check will confirm
whether Stripe credentials already exist in the stripe_seller field for the given
user. If Stripe credentials already exist for the user, then the disabled STRIPE
CONNECTED button is shown; otherwise, a link to connect to Stripe using their OAuth
link is displayed instead, as implemented in the following code.

mern-marketplace/client/user/Profile.js:

{user.seller && (user.stripe_seller ?
 (<Button variant="contained" disabled

Extending the Marketplace for Orders and Payments Chapter 8

[358]

className={classes.stripe_connected}>
 Stripe connected
 </Button>)
 : (<a href={"https://connect.stripe.com/oauth/authorize?
response_type=code&client_id="
+config.stripe_connect_test_client_id+"&scope=read_write"}
 className={classes.stripe_connect}>

)
)
}

The OAuth link takes the platform's client ID, which we will set in a config variable,
and other option values as query parameters. This link takes the user to Stripe and
allows the user to connect an existing Stripe account or create a new one. Once
Stripe's auth process has completed, it returns to our application using a redirect URL
set in the platform's Connect settings in the dashboard on Stripe. Stripe attaches either
an auth code or an error message as query parameters to the redirect URL.

The MERN Marketplace redirect URI is set to /seller/stripe/connect, which will
render the StripeConnect component. We will declare this route as follows.

mern-marketplace/client/MainRouter.js:

<Route path="/seller/stripe/connect" component={StripeConnect}/>

When Stripe redirects the user to this URL, we will render the StripeConnect
component so that it handles Stripe's response to authentication, as discussed in the
next section.

The StripeConnect component
The StripeConnect component will basically complete the remaining auth process
steps with Stripe and render the relevant messages based on whether the Stripe
connection was successful, as shown in the following screenshot:

Extending the Marketplace for Orders and Payments Chapter 8

[359]

When the StripeConnect component loads, we will use a useEffect hook to parse
the query parameters attached to the URL from the Stripe redirect, as shown in the
following code.

mern-marketplace/client/user/StripeConnect.js:

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal
 const jwt = auth.isAuthenticated()
 const parsed = queryString.parse(props.location.search)
 if(parsed.error){
 setValues({...values, error: true})
 }
 if(parsed.code){
 setValues({...values, connecting: true, error: false})
 //post call to stripe, get credentials and update user data
 stripeUpdate({
 userId: jwt.user._id
 }, {
 t: jwt.token
 }, parsed.code, signal).then((data) => {
 if (data.error) {
 setValues({...values, error: true, connected: false,
 connecting: false})
 } else {
 setValues({...values, connected: true,
 connecting: false, error: false})
 }
 })
 }
 return function cleanup(){
 abortController.abort()
 }
 }, [])

For parsing, we use the same query-string node module that we used previously
to implement a product search. Then, if the URL query parameter contains an auth
code and not an error, we make an API call in order to complete the Stripe OAuth
from our server with the stripeUpdate fetch method.

Extending the Marketplace for Orders and Payments Chapter 8

[360]

The stripeUpdate fetch method is defined in api-user.js and passes the auth
code retrieved from Stripe to an API we will set up in our server at
'/api/stripe_auth/:userId'. This stripeUpdate fetch method is defined as
follows.

mern-marketplace/client/user/api-user.js:

const stripeUpdate = async (params, credentials, auth_code, signal) =>
{
 try {
 let response = await fetch ('/api/stripe_auth/'+params.userId, {
 method: 'PUT',
 signal: signal,
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: JSON.stringify({stripe: auth_code})
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

This fetch method is calling a backend API that we have to add on our server to
complete the OAuth process and save the retrieved credentials to the database. We
will implement this API in the next section.

The stripe auth update API
Once the Stripe account has been connected, to complete the OAuth process, we need
to make a POST API call to Stripe OAuth from our server. We need to send the
previously retrieved auth code to Stripe OAuth with the POST API call and receive
the credentials to be stored in the seller's user account for processing charges. We will
achieve this Stripe auth update by implementing an update API in the backend.
This Stripe auth update API will receive a PUT request at
/api/stripe_auth/:userId and initiate the POST API call to retrieve the
credentials from Stripe.

Extending the Marketplace for Orders and Payments Chapter 8

[361]

The route for this Stripe auth update API will be declared on the server in user routes,
as follows.

mern-marketplace/server/routes/user.routes.js:

router.route('/api/stripe_auth/:userId')
 .put(authCtrl.requireSignin, authCtrl.hasAuthorization,
 userCtrl.stripe_auth, userCtrl.update)

A request to this route uses the stripe_auth controller method to retrieve the
credentials from Stripe and passes it to the existing user update method so that it can
be stored in the database.

To make a POST request to the Stripe API from our server, we will use the request
node module, which needs to be installed with the following command from the
command line:

yarn add request

The stripe_auth controller method in the user controller will be defined as follows.

mern-marketplace/server/controllers/user.controller.js:

const stripe_auth = (req, res, next) => {
 request({
 url: "https://connect.stripe.com/oauth/token",
 method: "POST",
 json: true,
 body: { client_secret:config.stripe_test_secret_key,
 code:req.body.stripe,
 grant_type:'authorization_code'}
 }, (error, response, body) => {
 if(body.error){
 return res.status('400').json({
 error: body.error_description
 })
 }
 req.body.stripe_seller = body
 next()
 })
}

The POST API call to Stripe takes the platform's secret key and the retrieved auth
code to complete the authorization. Then, it returns the credentials for the connected
account in body, which is then appended to the request body so that the user's details
can be updated in the next() call to the update controller method.

Extending the Marketplace for Orders and Payments Chapter 8

[362]

These auth credentials retrieved from Stripe can be used in our application to create
charges on customer credit cards on behalf of the seller when they sell products from
their shops. In the next section, we will learn how to collect the customer credit card
details during checkout using Stripe.

Stripe Card Elements for checkout
During checkout, to collect credit card details from the user, we will use Stripe's Card
Elements to add the credit card field to the checkout form. To integrate Card
Elements with our React interface, we will utilize the react-stripe-
elements node module, which can be installed by running the following command
from the command line:

yarn add react-stripe-elements

We will also need to inject the Stripe.js code into template.js to access Stripe in
the frontend code, as shown here.

mern-marketplace/template.js:

<script id="stripe-js" src="https://js.stripe.com/v3/"></script>

For the MERN Marketplace, Stripe will be required in the Cart view, where the
Checkout component needs it to render Card Elements and process card detail
input. We will wrap the Checkout component we added to Cart.js with the
StripeProvider component from react-stripe-elements so that the Elements
component in Checkout has access to the Stripe instance.

mern-marketplace/client/cart/Cart.js:

<StripeProvider apiKey={config.stripe_test_api_key}>
 <Checkout/>
</StripeProvider>

Then, within the Checkout component, we will use Stripe's Elements component.
Using Stripe's Card Elements will enable the application to collect the user's credit
card details and use the Stripe instance to tokenize card information rather than
handle it on our own servers. The implementation details for this part of collecting
the card details and generating the card token during the checkout process will be
discussed in the Integrating the checkout process and Creating a new order sections. In the
next section, we will discuss how to use Stripe to securely record the card details that
will be received from a user with Card Elements.

Extending the Marketplace for Orders and Payments Chapter 8

[363]

Stripe Customer for recording card details
When an order is being placed at the end of the checkout process, the generated card
token will be used to create or update a Stripe Customer (https:/ ​/ ​stripe. ​com/ ​docs/
api#customers) representing our user. This is a good way to store credit card
information (https:/ ​/​stripe. ​com/ ​docs/ ​saving- ​cards) with Stripe for further use,
such as for creating charges against specific products in the cart when a seller
processes the ordered product from their shop. This eliminates the complications of
having to store user credit card details securely on your own server. To integrate
Stripe Customer with our application, in the following sections, we will update the
user model so that it stores Stripe Customer details and update the user controller
methods so that we can create or update Stripe Customer information using the Stripe
node module in the backend.

Updating the user model
To use Stripe Customer to securely store the credit card information of each user and
process payments as needed in the application, we need to store details of the Stripe
Customer associated with each user. To keep track of the corresponding Stripe
Customer information for a user in our database, we will update the user model with
the following field:

stripe_customer: {},

This field will store a Stripe Customer object that will allow us to create recurring
charges and track multiple charges associated with the same user in our platform. To
be able to create or update a Stripe Customer, we need to utilize Stripe's Customer
API. In the next section, we will update the user controller so that we can integrate
and use this Customer API from Stripe.

Updating the user controller
We will create a new, or update an existing, Stripe Customer when the user places an
order after entering their credit card details. To implement this, we will update the
user controllers with a stripeCustomer method that will be called before the order
is created when our server receives a request to the create order API (as discussed in
the Creating a new order section).

https://stripe.com/docs/api#customers
https://stripe.com/docs/api#customers
https://stripe.com/docs/api#customers
https://stripe.com/docs/api#customers
https://stripe.com/docs/api#customers
https://stripe.com/docs/api#customers
https://stripe.com/docs/api#customers
https://stripe.com/docs/api#customers
https://stripe.com/docs/api#customers
https://stripe.com/docs/api#customers
https://stripe.com/docs/saving-cards
https://stripe.com/docs/saving-cards
https://stripe.com/docs/saving-cards
https://stripe.com/docs/saving-cards
https://stripe.com/docs/saving-cards
https://stripe.com/docs/saving-cards
https://stripe.com/docs/saving-cards
https://stripe.com/docs/saving-cards
https://stripe.com/docs/saving-cards
https://stripe.com/docs/saving-cards
https://stripe.com/docs/saving-cards
https://stripe.com/docs/saving-cards
https://stripe.com/docs/saving-cards

Extending the Marketplace for Orders and Payments Chapter 8

[364]

In the stripeCustomer controller method, we will need to use the stripe node
module, which can be installed with the following command:

yarn add stripe

After installing the stripe module, it needs to be imported into the user controller
file. Then, the stripe instance needs to be initialized with the application's Stripe
secret key.

mern-marketplace/server/controllers/user.controller.js:

import stripe from 'stripe'
const myStripe = stripe(config.stripe_test_secret_key)

The stripeCustomer controller method will check whether the current user already
has a corresponding Stripe Customer stored in the database, and then use the card
token received from the frontend to either create a new Stripe Customer or update the
existing one, as discussed in the following sections.

Creating a new Stripe Customer
If the current user does not have a corresponding Stripe Customer – in other words, a
value is not stored for the stripe_customer field – we will use the create a customer
API (https:/​/​stripe. ​com/ ​docs/ ​api#create_ ​customer) from Stripe, as follows.

mern-marketplace/server/controllers/user.controller.js:

myStripe.customers.create({
 email: req.profile.email,
 source: req.body.token
 }).then((customer) => {
 User.update({'_id':req.profile._id},
 {'$set': { 'stripe_customer': customer.id }},
 (err, order) => {
 if (err) {
 return res.status(400).send({
 error: errorHandler.getErrorMessage(err)
 })
 }
 req.body.order.payment_id = customer.id
 next()
 })
})

https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer

Extending the Marketplace for Orders and Payments Chapter 8

[365]

If the Stripe Customer is successfully created, we will update the current user's data
by storing the Stripe Customer ID reference in the stripe_customer field. We will
also add this Customer ID to the order being placed so that it is simpler to create a
charge related to the order. Once a Stripe Customer has been created, we can update
the Stripe Customer the next time a user enters credit card details for a new order, as
discussed in the next section.

Updating an existing Stripe Customer
For an existing Stripe Customer – in other words, where the current user already has
a value stored for the stripe_customer field – we will use the Stripe API to update
a Stripe Customer, as follows.

mern-marketplace/server/controllers/user.controller.js:

 myStripe.customers.update(req.profile.stripe_customer, {
 source: req.body.token
 },
 (err, customer) => {
 if(err){
 return res.status(400).send({
 error: "Could not update charge details"
 })
 }
 req.body.order.payment_id = customer.id
 next()
 })

Once the Stripe Customer has been successfully updated, we will add the Customer
ID to the order being created in the next() call. Though not covered here, the Stripe
Customer feature can be used to allow users to store and update their credit card
information from the application. With the user's payment information securely
stored and accessible, we can look into how to use this information to process a
payment when an ordered product is processed by the seller.

Creating a charge for each product that's
processed
When a seller updates an order by processing the product that was ordered in their
shop, the application will create a charge on behalf of the seller on the customer's
credit card for the cost of the product ordered.

Extending the Marketplace for Orders and Payments Chapter 8

[366]

To implement this, we will update the user.controller.js file with a
createCharge controller method that will use Stripe's create a charge API and needs
the seller's Stripe account ID, along with the buyer's Stripe Customer ID.
The createCharge controller method will be defined as follows.

mern-marketplace/server/controllers/user.controller.js:

const createCharge = (req, res, next) => {
 if(!req.profile.stripe_seller){
 return res.status('400').json({
 error: "Please connect your Stripe account"
 })
 }
 myStripe.tokens.create({
 customer: req.order.payment_id,
 }, {
 stripeAccount: req.profile.stripe_seller.stripe_user_id,
 }).then((token) => {
 myStripe.charges.create({
 amount: req.body.amount * 100, //amount in cents
 currency: "usd",
 source: token.id,
 }, {
 stripeAccount: req.profile.stripe_seller.stripe_user_id,
 }).then((charge) => {
 next()
 })
 })
}

If the seller has not connected their Stripe account yet, the createCharge method
will return a 400 error response to indicate that a connected Stripe account is
required.

To be able to charge the Stripe Customer on behalf of the seller's Stripe account, we
need to generate a Stripe token with the Customer ID and the seller's Stripe account
ID and then use that token to create a charge.

The createCharge controller method will be called when the server receives a
request to update an order with a product status change to Processing (the API
implementation for this order update request will be discussed in the Listing orders by
shop section).

Extending the Marketplace for Orders and Payments Chapter 8

[367]

This covers all the Stripe-related concepts that are relevant to the implementation of
payment processing for the specific use cases of the MERN Marketplace. Now, we
will continue with our implementations in order to allow a user to complete the
checkout process and place their order from their shopping cart.

Integrating the checkout process
Users who are signed in and have items added to their cart will be able to start the
checkout process. We will add a Checkout form to collect customer details, delivery
address information, and credit card information, as shown in the following
screenshot:

This checkout view will consist of two parts, with the first part for collecting buyer
details including name, email, and delivery address, and the second part for entering
credit card details and placing the order. In the following sections, we will complete
the implementation of the checkout process by initializing the checkout form details
and adding the fields for collecting buyer details. Then, we will collect the buyer's
credit card details to allow them to place the order and finish the checkout process.

Extending the Marketplace for Orders and Payments Chapter 8

[368]

Initializing checkout details
In this section, we will create the checkout view, which contains the form fields and
the place order option in a Checkout component. In this component, we will
initialize the checkoutDetails object in the state before collecting the details from
the form. We will prepopulate the customer details based on the current user's details
and add the current cart items to checkoutDetails, as shown in the following code.

mern-marketplace/client/cart/Checkout.js:

 const user = auth.isAuthenticated().user
 const [values, setValues] = useState({
 checkoutDetails: {
 products: cart.getCart(),
 customer_name: user.name,
 customer_email:user.email,
 delivery_address: { street: '', city: '', state: '',
 zipcode: '', country:''}
 },
 error: ''
})

These customer information values, which are initialized in checkoutDetails, will
be updated when the user interacts with the form fields. In the following sections, we
will add the form fields and the change-handling functions for the customer
information and delivery address details to be collected in this checkout view.

Customer information
In the checkout form, we will have fields for collecting the customer's name and email
address. To add these text fields to the Checkout component, we will use the
following code.

mern-marketplace/client/cart/Checkout.js:

<TextField id="name" label="Name"
value={values.checkoutDetails.customer_name}
onChange={handleCustomerChange('customer_name')}/>
<TextField id="email" type="email" label="Email"
value={values.checkoutDetails.customer_email}
onChange={handleCustomerChange('customer_email')}/>

Extending the Marketplace for Orders and Payments Chapter 8

[369]

When the user updates the values in these two fields,
the handleCustomerChange method will update the relevant details in the state.
The handleCustomerChange method is defined as follows.

mern-marketplace/client/cart/Checkout.js:

const handleCustomerChange = name => event => {
 let checkoutDetails = values.checkoutDetails
 checkoutDetails[name] = event.target.value || undefined
 setValues({...values, checkoutDetails: checkoutDetails})
}

This will allow the user to update the name and email of the customer that this order
is associated with. Next, we will look at the implementation for collecting the delivery
address details for this order.

Delivery address
To collect the delivery address from the user, we will add fields to collect address
details such as the street address, city, state, zip code, and country name to the
checkout form. We will use the following code to add the text fields to allow a user to
enter these address details.

mern-marketplace/client/cart/Checkout.js:

<TextField id="street" label="Street Address" value=
{values.checkoutDetails.delivery_address.street}
onChange={handleAddressChange('street')}/>
<TextField id="city" label="City"
value={values.checkoutDetails.delivery_address.city}
onChange={handleAddressChange('city')}/>
<TextField id="state" label="State"
value={values.checkoutDetails.delivery_address.state}
onChange={handleAddressChange('state')}/>
<TextField id="zipcode" label="Zip Code"
value={values.checkoutDetails.delivery_address.zipcode}
onChange={handleAddressChange('zipcode')}/>
<TextField id="country" label="Country"
value={values.checkoutDetails.delivery_address.country}
onChange={handleAddressChange('country')}/>

Extending the Marketplace for Orders and Payments Chapter 8

[370]

When the user updates these address fields, the handleAddressChange method will
update the relevant details in the state, as follows.

mern-marketplace/client/cart/Checkout.js:

const handleAddressChange = name => event => {
 let checkoutDetails = values.checkoutDetails
 checkoutDetails.delivery_address[name] =
 event.target.value || undefined
 setValues({...values, checkoutDetails: checkoutDetails})
}

With these text fields and handle change functions in place, the checkoutDetails
object in the state will contain the customer information and delivery address that
was entered by the user. In the next section, we will collect payment information from
the buyer and use it with the other checkout details to complete the checkout process
and place the order.

Placing an order
The remaining steps of the checkout process will involve collecting the user's credit
card details securely, thus allowing the user to place the order, emptying the cart
from storage, and redirecting the user to a view with the order details. We will
implement these steps by building a PlaceOrder component that consists of the
remaining elements in the checkout view, which are the credit card field and the place
order button. In the following sections, as we develop this component, we will use
Stripe Card Elements to collect credit card details, add a place order button for the
user to complete the checkout process, utilize a cart helper method to empty the cart,
and redirect the user to an order view.

Using Stripe Card Elements
In order to use Stripe's CardElement component from react-stripe-elements to
add the credit card field to the PlaceOrder component, we need to wrap the
PlaceOrder component using the injectStripe higher-order component (HOC)
from Stripe.

This is because the CardElement component needs to be part of a payment form
component that is built with injectStripe and also wrapped with the Elements
component. So, when we create a component called PlaceOrder, we will wrap it
with injectStripe before exporting it, as shown in the following code.

Extending the Marketplace for Orders and Payments Chapter 8

[371]

mern-marketplace/client/cart/PlaceOrder.js:

const PlaceOrder = (props) => { … }
PlaceOrder.propTypes = {
 checkoutDetails: PropTypes.object.isRequired
}
export default injectStripe(PlaceOrder)

Then, we will add this PlaceOrder component in the Checkout form, pass it the
checkoutDetails object as a prop, and wrap it with the Elements component from
react-stripe-elements, as shown here.

mern-marketplace/client/cart/Checkout.js:

<Elements> <PlaceOrder checkoutDetails={values.checkoutDetails} />
</Elements>

The injectStripe HOC provides the props.stripe property that manages the
Elements group. This will allow us to call props.stripe.createToken within
PlaceOrder to submit card details to Stripe and get back the card token. Next, we
will learn how to use the Stripe CardElement component to collect credit card details
from within the PlaceOrder component.

The CardElement component
Stripe's CardElement is self-contained, so we can just add it to the PlaceOrder
component, then incorporate styles as desired, and the card detail input will be taken
care of. We will add the CardElement component to PlaceOrder as follows.

mern-marketplace/client/cart/PlaceOrder.js:

<CardElement className={classes.StripeElement}
 {...{style: {
 base: {
 color: '#424770',
 letterSpacing: '0.025em',
 '::placeholder': {
 color: '#aab7c4',
 },
 },
 invalid: {
 color: '#9e2146',
 },
 }}}/>

Extending the Marketplace for Orders and Payments Chapter 8

[372]

This will render the credit card details field in the checkout form view. In the next
section, we will learn how to securely validate and store the credit card details that
are entered in this field when the user clicks on a button to place an order and
complete the checkout process.

Adding a button to place an order
The final element in the checkout view is the Place Order button, which will complete
the checkout process if all the details are entered correctly. We will add this button to
the PlaceOrder component after CardElement, as shown in the following code.

mern-marketplace/client/cart/PlaceOrder.js:

<Button color="secondary" variant="raised" onClick={placeOrder}>Place
Order</Button>

Clicking on the Place Order button will call the placeOrder method, which will
attempt to tokenize the card details using stripe.createToken. If this is
unsuccessful, the user will be informed of the error, but if this is successful, then the
checkout details and generated card token will be sent to our server's create order API
(covered in the next section). The placeOrder method is defined as follows.

mern-marketplace/client/cart/PlaceOrder.js:

const placeOrder = ()=>{
 props.stripe.createToken().then(payload => {
 if(payload.error){
 setValues({...values, error: payload.error.message})
 }else{
 const jwt = auth.isAuthenticated()
 create({userId:jwt.user._id}, {
 t: jwt.token
 }, props.checkoutDetails, payload.token.id).then((data) => {
 if (data.error) {
 setValues({...values, error: data.error})
 } else {
 cart.emptyCart(()=> {
 setValues({...values, 'orderId':data._id,'redirect':
true})
 })
 }
 })
 }
 })
}

Extending the Marketplace for Orders and Payments Chapter 8

[373]

The create fetch method that we invoked here to make a POST request to the create
order API in the backend is defined in client/order/api-order.js. It takes the
checkout details, the card token, and user credentials as parameters and sends them
to the API, as seen in previous API implementations. When the new order is
successfully created, we will also empty the cart in localStorage, as discussed in
the next section.

Empty cart
If the request to the create order API is successful, we will empty the cart in
localStorage so that the user can add new items to the cart and place a new order if
desired. To empty the cart in browser storage, we will use the emptyCart helper
method in cart-helper.js, which is defined as follows.

mern-marketplace/client/cart/cart-helper.js:

emptyCart(cb) {
 if(typeof window !== "undefined"){
 localStorage.removeItem('cart')
 cb()
 }
}

The emptyCart method removes the cart object from localStorage and updates the
state of the view by executing the callback passed to it from the placeOrder method,
where it is invoked. With the checkout process completed, we can now redirect the
user out of the cart and checkout view, as discussed in the next section.

Redirecting to the order view
With the order placed and the cart emptied, we can redirect the user to the order
view, which will show them the details of the order that was just placed. To
implement this redirect, we can use the Redirect component from React Router, as
shown in the following code.

mern-marketplace/client/cart/PlaceOrder.js:

if (values.redirect) {
 return (<Redirect to={'/order/' + values.orderId}/>)
}

Extending the Marketplace for Orders and Payments Chapter 8

[374]

This redirection also works as an indication to the user that the checkout process has
been completed. A completed checkout process will also result in a new order being
created in the application's backend. In the next section, we will look into the
implementation of creating and storing these new orders in the database.

Creating a new order
When a user places an order, the details of the order that were confirmed at checkout
will be used to create a new order record in the database, update or create a Stripe
Customer for the user, and decrease the stock quantities of products ordered. In the
following sections, we will add an order model to define the details of the orders to
be stored in the database and discuss the implementation of the backend API that will
be called from the frontend to create the new order record.

Defining an Order model
To store the orders in the backend, we will define a Schema for the order model that
will record order details including the customer details, payment information, and an
array of the products ordered. The structure of each product in this array of products
ordered will be defined in a separate subschema called CartItemSchema. In the
following sections, we will define these schemas so that we can store orders and cart
items in the database.

The Order schema
The Order schema defined in server/models/course.model.js will contain fields
for storing the customer's name and email, along with their user account reference,
delivery address information, payment reference, created and updated-at
timestamps, and an array of products ordered. The pieces of code for defining the
order fields are as follows:

Customer name and email: To record the details of the customer who the
order is meant for, we will add the customer_name and customer_email
fields to the Order schema:

customer_name: { type: String, trim: true, required: 'Name is
required' },
customer_email: { type: String, trim: true,
 match: [/.+\@.+\..+/, 'Please fill a valid email

Extending the Marketplace for Orders and Payments Chapter 8

[375]

address'],
 required: 'Email is required' }

User who placed the order: To reference the signed-in user who placed the
order, we will add an ordered_by field:

ordered_by: {type: mongoose.Schema.ObjectId, ref: 'User'}

Delivery address: The delivery address information for the order will be
stored in the delivery address subdocument with the street, city, state,
zipcode, and country fields:

delivery_address: {
 street: {type: String, required: 'Street is required'},
 city: {type: String, required: 'City is required'},
 state: {type: String},
 zipcode: {type: String, required: 'Zip Code is required'},
 country: {type: String, required: 'Country is required'}
 },

Payment reference: The payment information will be relevant when the
order is updated and a charge needs to be created after an ordered product
has been processed by the seller. We will record the Stripe Customer ID
that's relevant to the credit card details in a payment_id field as a reference
to the payment information for this order:

payment_id: {},

Products ordered: The main content of the order will be the list of products
ordered, along with details such as the quantity of each. We will record this
list in a field called products in the Order schema. The structure of each
product will be defined separately in CartItemSchema.

mern-marketplace/server/models/order.model.js:

products: [CartItemSchema],

The fields in this schema definition will enable us to store the necessary details for
each order. CartItemSchema, which is used to record the details of each product that
was ordered, will be discussed in the next section.

Extending the Marketplace for Orders and Payments Chapter 8

[376]

The CartItem schema
The CartItem schema will represent each product that was ordered when an order
was placed. It will contain a reference to the product, the quantity of the product that
was ordered by the user, a reference to the shop the product belongs to, and its status,
as shown in the following code.

mern-marketplace/server/models/order.model.js:

const CartItemSchema = new mongoose.Schema({
 product: {type: mongoose.Schema.ObjectId, ref: 'Product'},
 quantity: Number,
 shop: {type: mongoose.Schema.ObjectId, ref: 'Shop'},
 status: {type: String,
 default: 'Not processed',
 enum: ['Not processed' , 'Processing', 'Shipped', 'Delivered',
 'Cancelled']}
})
const CartItem = mongoose.model('CartItem', CartItemSchema)

The status of the product can only have the values defined in the enums, with the
default value set to "Not Processed". This represents the current state of the product
order, as updated by the seller.

The Order schema and CartItem schema defined here will allow us to record details
about the customer and products that were ordered as required to complete the
purchase steps for the products that were bought by a user. Next, we will discuss the
backend API implementation that allows the frontend to create an order document in
the Orders collection in the database.

Create order API
The create order API in the backend will take a POST request from the frontend to
create the order in the database. The API route will be declared in
server/routes/order.routes.js, along with the other order routes. These order
routes will be very similar to the user routes. To load the order routes in the Express
app, we need to mount the routes in express.js, just like we did for the auth and
user routes.

mern-marketplace/server/express.js:

app.use('/', orderRoutes)

Extending the Marketplace for Orders and Payments Chapter 8

[377]

A number of actions, in the following sequence, take place when the create order API
receives a POST request at /api/orders/:userId:

It is ensured that the current user is signed in.
A Stripe Customer is either created or updated using the stripeCustomer
user controller method, which we discussed earlier in the Stripe Customer to
record card details section.
The stock quantities are updated for all the ordered products using the
decreaseQuanity product controller method.
The order is created in the Order collection with the create order
controller method.

The route for this create order API is defined as follows.

mern-marketplace/server/routes/order.routes.js:

router.route('/api/orders/:userId')
 .post(authCtrl.requireSignin, userCtrl.stripeCustomer,
 productCtrl.decreaseQuantity, orderCtrl.create)

To retrieve the user associated with the :userId parameter in the route, we will use
the userByID user controller method. We will write the code to handle this
parameter in the route URL, along with the other order route declaration.

mern-marketplace/server/routes/order.routes.js:

router.param('userId', userCtrl.userByID)

The userByID method gets the user from the User collection and attaches it to the
request object so that it can be accessed by the next few methods. Among the next few
methods that are invoked when this API receives a request includes the product
controller method to decrease stock quantities and the order controller method to
save a new order to the database. We will discuss the implementation of these two
methods in the following sections.

Extending the Marketplace for Orders and Payments Chapter 8

[378]

Decrease product stock quantity
When an order is placed, we will decrease the stock quantity of each product ordered
according to the quantity ordered by the user. This will automatically reflect the
updated quantities of the products in the associated shops after an order is placed.
We will implement this decrease product quantity update in
the decreaseQuantity controller method, which will be added with the other
product controller methods, as follows.

mern-marketplace/server/controllers/product.controller.js:

const decreaseQuantity = async (req, res, next) => {
 let bulkOps = req.body.order.products.map((item) => {
 return {
 "updateOne": {
 "filter": { "_id": item.product._id } ,
 "update": { "$inc": {"quantity": -item.quantity} }
 }
 }
 })
 try {
 await Product.bulkWrite(bulkOps, {})
 next()
 } catch (err){
 return res.status(400).json({
 error: "Could not update product"
 })
 }
}

Since the update operation, in this case, involves a bulk update of multiple products
in the collection after matching with an array of products ordered, we use the
bulkWrite method in MongoDB to send multiple updateOne operations to the
MongoDB server with one command. The multiple updateOne operations that are
required are listed in bulkOps using the map function. This will be faster than
sending multiple independent save or update operations because with bulkWrite(),
there is only one round trip to MongoDB.

Once the product quantities have been updated by this method, the next method is
invoked to save the new order in the database. In the next section, we will see the
implementation of this method, which creates this new order.

Extending the Marketplace for Orders and Payments Chapter 8

[379]

Create controller method
The create controller method, defined in the order controllers, is the last method
that's invoked when the create order API receives a request. This method takes the
order details, creates a new order, and saves it to the Order collection in
MongoDB. The create controller method is implemented as follows.

mern-marketplace/server/controllers/order.controller.js:

const create = async (req, res) => {
 try {
 req.body.order.user = req.profile
 let order = new Order(req.body.order)
 let result = await order.save()
 res.status(200).json(result)
 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

With this implemented, orders can be created and stored in the backend by any
signed-in user on the MERN Marketplace. Now, we can set up APIs to fetch lists of
orders by user, orders by shop, or read an individual order and display the fetched
data to views in the frontend. In the next section, we will learn how to list the orders
per shop so that shop owners can process and manage the orders they receive for
their products.

Listing orders by shop
An important feature of the marketplace is allowing sellers to see and update the
status of orders they've received for products in their shops. To implement this, we
will set up backend APIs to list orders by shop and update an order as a seller
changes the status of a purchased product. Then, we will add some frontend views
that will display the orders and allow the seller to interact with each order.

Extending the Marketplace for Orders and Payments Chapter 8

[380]

The list by shop API
In this section, we will implement an API to get orders for a specific shop so that
authenticated sellers can view the orders for each of their shops in one place. The
request for this API will be received at /api/orders/shop/:shopId, with the route
defined in order.routes.js, as follows.

mern-marketplace/server/routes/order.routes.js:

router.route('/api/orders/shop/:shopId')
 .get(authCtrl.requireSignin, shopCtrl.isOwner,
orderCtrl.listByShop)
router.param('shopId', shopCtrl.shopByID)

To retrieve the shop associated with the :shopId parameter in the route, we will use
the shopByID shop controller method, which gets the shop from the Shop collection
and attaches it to the request object so that it can be accessed by the next methods.

The listByShop controller method will retrieve the orders that have products
purchased with the matching shop ID, then populate the ID, name, and price fields
for each product, with orders sorted by date from most recent to
oldest. The listByShop controller method is defined as follows.

mern-marketplace/server/controllers/order.controller.js:

const listByShop = async (req, res) => {
 try {
 let orders = await Order.find({"products.shop": req.shop._id})
 .populate({path: 'products.product', select: '_id name price'})
 .sort('-created')
 .exec()
 res.json(orders)
 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

To fetch this API in the frontend, we will add a corresponding listByShop method
in api-order.js, similar to our other API implementations. This fetch method will
be used in the ShopOrders component to show the orders for each shop. We will
look at the implementation of the ShopOrders component in the next section.

Extending the Marketplace for Orders and Payments Chapter 8

[381]

The ShopOrders component
The ShopOrders component will be the view where sellers will be able to see the list
of orders that have been received for a given shop. In this view, each order will only
show the purchased products that are relevant to the shop and allow the seller to
change the status of the ordered product with a dropdown of possible status values,
as shown in the following screenshot:

To render this view at a frontend route, we will update MainRouter with
a PrivateRoute in order to load the ShopOrders component at
the /seller/orders/:shop/:shopId route, as shown in the following code.

mern-marketplace/client/MainRouter.js:

<PrivateRoute path="/seller/orders/:shop/:shopId"
component={ShopOrders}/>

Going to this link will load the ShopOrders component in the view. In the
ShopOrders component, we will fetch and list the orders for the given shop, and for
each order, we'll render the order details along with the list of products that were
ordered in a React component named ProductOrderEdit. In the following sections,
we will learn how to load the list of orders and discuss the implementation of the
ProductOrderEdit component.

Extending the Marketplace for Orders and Payments Chapter 8

[382]

List orders
When the ShopOrders component mounts in the view, we will retrieve the list of
orders for the provided shop ID from the database and set it to the state to be
rendered in the view. We will make a request to the backend API to list orders by
shop using the listByShop fetch method and set the retrieved orders to the state in a
useEffect hook, as shown in the following code.

mern-marketplace/client/order/ShopOrders.js:

useEffect(() => {
 const jwt = auth.isAuthenticated()
 const abortController = new AbortController()
 const signal = abortController.signal
 listByShop({
 shopId: match.params.shopId
 }, {t: jwt.token}, signal).then((data) => {
 if (data.error) {
 console.log(data)
 } else {
 setOrders(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
}, [])

In the view, we will iterate through the list of orders and render each order in a
collapsible list from Material-UI, which will expand when it's clicked. The code for
this view will be added as follows.

mern-marketplace/client/order/ShopOrders.js:

<Typography type="title"> Orders in {match.params.shop} </Typography>
<List dense> {orders.map((order, index) => { return

 <ListItem button onClick={handleClick(index)}>
 <ListItemText primary={'Order # '+order._id}
 secondary={(new
Date(order.created)).toDateString()}/>
 {open == index ? <ExpandLess /> : <ExpandMore />}
 </ListItem>
 <Collapse component="li" in={open == index}
 timeout="auto" unmountOnExit>
 <ProductOrderEdit shopId={match.params.shopId}
 order={order} orderIndex={index}

Extending the Marketplace for Orders and Payments Chapter 8

[383]

 updateOrders={updateOrders}/>
 <Typography type="subheading"> Deliver to:</Typography>
 <Typography type="subheading" color="primary">
 {order.customer_name} ({order.customer_email})
 </Typography>
 <Typography type="subheading" color="primary">
 {order.delivery_address.street}</Typography>
 <Typography type="subheading" color="primary">
 {order.delivery_address.city},
 {order.delivery_address.state}
 {order.delivery_address.zipcode}</Typography>
 <Typography type="subheading" color="primary">
 {order.delivery_address.country}</Typography>
 </Collapse>
 })}
</List>

Each expanded order will show the order details and the ProductOrderEdit
component. The ProductOrderEdit component will display the purchased products
and allow the seller to edit the status of each product. The updateOrders method is
passed as a prop to the ProductOrderEdit component so that the status can be
updated when a product status is changed. The updateOrders method is defined as
follows.

mern-marketplace/client/order/ShopOrders.js:

 const updateOrders = (index, updatedOrder) => {
 let updatedOrders = orders
 updatedOrders[index] = updatedOrder
 setOrders([...updatedOrders])
 }

In the ProductOrderEdit component, we will invoke this updateOrders method
when the seller interacts with the status update dropdown for any product that will
be rendered in the ProductOrderEdit component. In the next section, we will look
into the implementation of this ProductOrderEdit component.

Extending the Marketplace for Orders and Payments Chapter 8

[384]

The ProductOrderEdit component
In this section, we will implement a ProductOrderEdit component to render all the
products in the order with an edit status option. This ProductOrderEdit component
will take an order object as a prop and iterate through the order's products array to
display only the products that have been purchased from the current shop, along
with a dropdown to change the status value of each product. The code for this view,
which renders the products for each order, will be added as follows.

mern-marketplace/client/order/ProductOrderEdit.js:

{props.order.products.map((item, index) => { return
 { item.shop == props.shopId &&
 <ListItem button>
 <ListItemText primary={ <div>
 <img src=
 {'/api/product/image/'+item.product._id}/>
 {item.product.name}
 <p>{"Quantity: "+item.quantity}</p>
 </div>}/>
 <TextField id="select-status" select
 label="Update Status" value={item.status}
 onChange={handleStatusChange(index)}
 SelectProps={{
 MenuProps: { className: classes.menu },
 }}>
 {statusValues.map(option => (
 <MenuItem key={option} value={option}>
 {option}
 </MenuItem>
))}
 </TextField>
 </ListItem>}

To be able to list the valid status values in the dropdown option for updating an
ordered product's status, we will retrieve the list of possible status values from the
server in a useEffect hook in the ProductOrderEdit component, as shown in the
following code.

mern-marketplace/client/order/ProductOrderEdit.js:

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal
 getStatusValues(signal).then((data) => {
 if (data.error) {

Extending the Marketplace for Orders and Payments Chapter 8

[385]

 setValues({...values, error: "Could not get status"})
 } else {
 setValues({...values, statusValues: data, error: ''})
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [])

The status values that are retrieved from the server are set to state and rendered in the
dropdown as a MenuItem. When an option is selected from the possible status values
in the dropdown, the handleStatusChange method is called to update the orders in
the state, as well as to send a request to the appropriate backend API based on the
value that's selected. The handleStatusChange method will be structured as
follows, with a different backend API invoked, depending on the selected status
value.

mern-marketplace/client/order/ProductOrderEdit.js:

const handleStatusChange = productIndex => event => {
 let order = props.order
 order.products[productIndex].status = event.target.value
 let product = order.products[productIndex]

 if (event.target.value == "Cancelled") {
 // 1. ... call the cancel product API ..
 } else if (event.target.value == "Processing") {
 // 2. ... call the process charge API ...
 } else {
 // 3. ... call the order update API ...
 }

Updating the status of an ordered product will have different implications,
depending on the value that's selected from the dropdown. Selecting to cancel or
process a product order will invoke separate APIs in the backend rather than the API
called when selecting any of the other status values. In the following sections, we will
learn how each of these actions is handled in
the handleStatusChange method when a user interacts with the dropdown and
selects a status value.

Extending the Marketplace for Orders and Payments Chapter 8

[386]

Handling actions to cancel a product order
If the seller wishes to cancel the order for a product and selects Cancelled from the
status values dropdown for a specific product in the order, we will call the
cancelProduct fetch method inside the handleStatusChange method, as shown in
the following code.

mern-marketplace/client/order/ProductOrderEdit.js:

cancelProduct({
 shopId: props.shopId,
 productId: product.product._id
 }, {
 t: jwt.token
 }, {
 cartItemId: product._id,
 status: event.target.value,
 quantity: product.quantity
 })
 .then((data) => {
 if (data.error) {
 setValues({
 ...values,
 error: "Status not updated, try again"
 })
 } else {
 props.updateOrders(props.orderIndex, order)
 setValues({
 ...values,
 error: ''
 })
 }
 })

The cancelProduct fetch method will take the corresponding shop ID, product ID,
cartItem ID, selected status value, ordered quantity for the product, and user
credentials to send, along with the request to the cancel product API in the backend.
On a successful response from the backend, we will update the orders in the view.

This cancel product API will update the database for the order and the product
affected by this action. Before getting into the implementation for this cancel product
order API, next, we will look at how the process charge API is invoked if the seller
chooses to process a product order instead of canceling it.

Extending the Marketplace for Orders and Payments Chapter 8

[387]

Handling the action to process charge for a product
If a seller chooses to process the order for a product, we will need to invoke an API
that will charge the customer for the total cost of the product ordered. So, when a
seller selects Processing from the status values dropdown for a specific product in the
order, we will call the processCharge fetch method inside
the handleStatusChange method, as shown in the following code.

mern-marketplace/client/order/ProductOrderEdit.js:

processCharge({
 userId: jwt.user._id,
 shopId: props.shopId,
 orderId: order._id
 }, {
 t: jwt.token
 }, {
 cartItemId: product._id,
 status: event.target.value,
 amount: (product.quantity * product.product.price)
 })
 .then((data) => {
 if (data.error) {
 setValues({
 ...values,
 error: "Status not updated, try again"
 })
 } else {
 props.updateOrders(props.orderIndex, order)
 setValues({
 ...values,
 error: ''
 })
 }
 })

The processCharge fetch method will take the corresponding order ID, shop ID,
customer's user ID, cartItem ID, selected status value, total cost for the ordered
product, and user credentials to send, along with the request to the process charge
API in the backend. On a successful response from the backend, we will update the
orders in the view accordingly.

This process charge API will update the database for the order and the user affected
by this action. Before getting into the implementation for this API, next, we will look
at how the update order API is invoked if the seller chooses to update the status of a
product that's been ordered to any value other than Cancelled or Processing.

Extending the Marketplace for Orders and Payments Chapter 8

[388]

Handling the action to update the status of a product
If a seller chooses to update the status of an ordered product so that it has a value
other than Cancelled or Processing, we will need to invoke an API that will update
the order in the database with this changed product status. So, when a seller selects
other status values from the dropdown for a specific product in the order, we will call
the update fetch method inside the handleStatusChange method, as shown in the
following code.

mern-marketplace/client/order/ProductOrderEdit.js:

update({
 shopId: props.shopId
 }, {
 t: jwt.token
 }, {
 cartItemId: product._id,
 status: event.target.value
 })
 .then((data) => {
 if (data.error) {
 setValues({
 ...values,
 error: "Status not updated, try again"
 })
 } else {
 props.updateOrders(props.orderIndex, order)
 setValues({
 ...values,
 error: ''
 })
 }
 })

The update fetch method will take the corresponding shop ID, cartItem ID, selected
status value, and user credentials to send, along with the request to the update order
API in the backend. On a successful response from the backend, we will update the
orders in the view.

The cancelProduct, processCharge, and update fetch methods are defined in
api-order.js so that they can call the corresponding APIs in the backend to update
a canceled product's stock quantity, to create a charge on the customer's credit card
when the order for a product is processing, and to update the order with the product
status change, respectively. We will look at the implementation of these APIs in the
following section.

Extending the Marketplace for Orders and Payments Chapter 8

[389]

APIs for products ordered
Allowing sellers to update the status of a product will require having to set up four
different APIs, including an API to retrieve the possible status values. Then, the
actual status update actions will need APIs to handle updates to the order itself as the
status is changed in order to initiate related actions, such as increasing the stock
quantity of a canceled product, and to create a charge on the customer's credit card
when a product is being processed. In the following sections, we will look at the API
implementations for retrieving possible status values, updating an order status,
canceling a product order, and processing a charge for an ordered product.

Get status values
The possible status values of an ordered product are set as enums in the CartItem
schema. To show these values as options in the dropdown view, we will set up a GET
API route at /api/order/status_values that retrieves these values. This API route
will be declared as follows.

mern-marketplace/server/routes/order.routes.js:

router.route('/api/order/status_values')
 .get(orderCtrl.getStatusValues)

The getStatusValues controller method will return the enum values for the
status field from the CartItem schema. The getStatusValues controller method
is defined as follows.

mern-marketplace/server/controllers/order.controller.js:

const getStatusValues = (req, res) => {
 res.json(CartItem.schema.path('status').enumValues)
}

We will also need to set up a corresponding fetch method in api-order.js, which
is used in the view, in the ProductOrderEdit component, to make a request to this
API, retrieve the status values, and render these as options in the dropdown. In the
next section, we will look at the update order API endpoint, which needs to be called
when the seller selects a relevant status value from the dropdown.

Extending the Marketplace for Orders and Payments Chapter 8

[390]

Update order status
When a product's status is changed to any value other than Processing or Cancelled,
a PUT request to '/api/order/status/:shopId' will directly update the order in
the database, given that the current user is the verified owner of the shop with the
ordered product. We will declare the route for this update API like so.

mern-marketplace/server/routes/order.routes.js:

router.route('/api/order/status/:shopId')
 .put(authCtrl.requireSignin, shopCtrl.isOwner, orderCtrl.update)

The update controller method will query the Order collection and find the order with
the CartItem object that matches the updated product and set the status value of
this matched CartItem in the products array of the order. The update controller
method is defined as follows.

mern-marketplace/server/controllers/order.controller.js:

const update = async (req, res) => {
 try {
 let order = await Order.updateOne({'products._id':
req.body.cartItemId}, {
 'products.$.status': req.body.status
 })
 res.json(order)
 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

To access this API from the frontend, we will add an update fetch method in api-
order.js to make a call to this update API with the required parameters passed
from the view. The update fetch method will be defined as follows.

mern-marketplace/client/order/api-order.js:

const update = async (params, credentials, product) => {
 try {
 let response = await fetch('/api/order/status/' + params.shopId, {
 method: 'PUT',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',

Extending the Marketplace for Orders and Payments Chapter 8

[391]

 'Authorization': 'Bearer ' + credentials.t
 },
 body: JSON.stringify(product)
 })
 return response.json()
 } catch(err){
 console.log(err)
 }
}

This update fetch method is called in the ProductOrderEdit view when the seller
selects any value other than Processing or Cancelled from the options in the
dropdown for an ordered product. In the next section, we will look at the cancel
product order API, which is invoked if the seller selects Cancelled as a value instead.

Cancel product order
When a seller decides to cancel the order for a product, a PUT request will be sent to
/api/order/:shopId/cancel/:productId so that the product's stock quantity
can be increased and the order can be updated in the database. To implement this
cancel product order API, we will declare the API route as follows.

mern-marketplace/server/routes/order.routes.js:

router.route('/api/order/:shopId/cancel/:productId')
 .put(authCtrl.requireSignin, shopCtrl.isOwner,
 productCtrl.increaseQuantity, orderCtrl.update)
router.param('productId', productCtrl.productByID)

To retrieve the product associated with the productId parameter in the route, we
will also use the productByID product controller method. This will retrieve the
product and attach it to the request object for the next methods.

To update the product's stock quantity when this API receives a request, we will use
the increaseQuantity controller method, which is added to
product.controller.js, as follows.

mern-marketplace/server/controllers/product.controller.js:

const increaseQuantity = async (req, res, next) => {
 try {
 await Product.findByIdAndUpdate(req.product._id,
 {$inc: {"quantity": req.body.quantity}}, {new: true})
 .exec()
 next()

Extending the Marketplace for Orders and Payments Chapter 8

[392]

 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The increaseQuantity controller method finds the product by the matching ID in
the Product collection and increases the quantity value by the quantity that was
ordered by the customer. It does this now that the order for this product has been
canceled.

From the view, we will use the corresponding fetch method, which is added in api-
order.js, to call this cancel product order API. The cancelProduct fetch method is
defined as follows.

mern-marketplace/client/order/api-order.js:

const cancelProduct = async (params, credentials, product) => {
 try {
 let response = await
fetch('/api/order/'+params.shopId+'/cancel/'+params.productId, {
 method: 'PUT',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: JSON.stringify(product)
 })
 return response.json()
 }catch(err){
 console.log(err)
 }
}

This cancelProduct fetch method is called in the ProductOrderEdit view when
the seller selects Cancelled from the dropdown for an ordered product. In the next
section, we will look at the process charge API, which is invoked if the seller
selects Processing as a status value instead.

Extending the Marketplace for Orders and Payments Chapter 8

[393]

Process charge for a product
When a seller changes the status of an ordered product to Processing, we will set up a
backend API to not only update the order but to also create a charge on the
customer's credit card for the price of the product multiplied by the quantity ordered.
The route for this API will be declared as follows.

mern-marketplace/server/routes/order.routes.js:

router.route('/api/order/:orderId/charge/:userId/:shopId')
 .put(authCtrl.requireSignin, shopCtrl.isOwner,
 userCtrl.createCharge, orderCtrl.update)
router.param('orderId', orderCtrl.orderByID)

To retrieve the order associated with the orderId parameter in the route, we will use
the orderByID order controller method, which gets the order from the Order
collection and attaches it to the request object so that it can be accessed by the next
methods. This orderByID method is defined as follows.

mern-marketplace/server/controllers/order.controller.js:

const orderByID = async (req, res, next, id) => {
 try {
 let order = await Order.findById(id)
 .populate('products.product', 'name price')
 .populate('products.shop', 'name').exec()
 if (!order)
 return res.status('400').json({
 error: "Order not found"
 })
 req.order = order
 next()
 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The process charge API will receive a PUT request at
/api/order/:orderId/charge/:userId/:shopId. After successfully
authenticating the user, it will create the charge by calling the createCharge user
controller, as we discussed in the Using Stripe for payments section. Finally, the
corresponding order will be updated with the update controller method, as
discussed in the Update order status section.

Extending the Marketplace for Orders and Payments Chapter 8

[394]

From the view, we will use the processCharge fetch method in api-order.js and
provide the required route parameter values, credentials, and product details,
including the amount to charge. The processCharge fetch method is defined as
follows.

mern-marketplace/client/order/api-order.js:

const processCharge = async (params, credentials, product) => {
 try {
 let response = await fetch('/api/order/'+params.orderId+
 '/charge/'+params.userId+'/'+params.shopId, {
 method: 'PUT',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: JSON.stringify(product)
 })
 return response.json()
 } catch(err) {
 console.log(err)
 }
}

This processCharge fetch method is called in the ProductOrderEdit view when
the seller selects Processing from the dropdown for an ordered product.

With these implementations in place, sellers can view orders that have been received
for their products in each of their shops and easily update the status of each product
ordered while the application takes care of additional tasks, such as updating stock
quantity and initiating payment. This covers the basic order management features for
the MERN Marketplace application, which can be extended further as required. In the
next section, we will discuss how the current implementations can be easily extended
to implement other views for displaying order details.

Viewing single-order details
With the Order collection and the database access all set up, moving forward, it is
easy to add the features of listing orders for each user and showing details of a single
order in a separate view where the user can track the status of each ordered product.
A view to render the details of a single order to the customer can be designed and
implemented to look as follows:

Extending the Marketplace for Orders and Payments Chapter 8

[395]

Following the steps that have been repeated throughout this book to set up backend
APIs to retrieve data and use it in the frontend to construct frontend views, you can
develop order-related views as desired. For example, a view to display the orders that
have been placed by a single user can be rendered as follows:

Extending the Marketplace for Orders and Payments Chapter 8

[396]

You can apply the lessons you learned while building out the full-stack features of the
MERN Marketplace application to implement these order detail views, taking
inspiration from the snapshots of these sample views from the MERN Marketplace
application.

The MERN Marketplace application that we developed in this chapter and Chapter
7, Exercising MERN Skills with an Online Marketplace, by building on the MERN
skeleton application covered the crucial features for a standard online marketplace
application. This, in turn, demonstrated how the MERN stack can be extended to
incorporate complex features.

Summary
In this chapter, we extended the MERN Marketplace application and explored how to
add a shopping cart for buyers, a checkout process with credit card payments, and
order management for the sellers in an online marketplace application.

We discovered how the MERN stack technologies can work well with third-party
integrations as we implemented the cart checkout flow and processed credit card
charges on ordered products using the tools provided by Stripe for managing online
payments.

We also unlocked more of what is possible with MERN, such as optimized bulk write
operations in MongoDB for updating multiple documents in response to a single API
call. This allowed us to decrease the stock quantities of multiple products in one go,
such as when a user placed an order for multiple products from different stores.

With these new approaches and implementations that we explored, you can easily
integrate payment processing, use offline storage in browsers, and perform
bulk database operations for any MERN-based application you choose to build.

The marketplace features that you developed in the MERN Marketplace application
revealed how this stack and structure can be utilized to design and build growing
applications by adding features that may be simple or more complex in nature.

In the next chapter, we will take the lessons we've learned so far in this book and
explore more advanced possibilities with this stack by extending this MERN
Marketplace application so that it incorporates real-time bidding capabilities.

9
Adding Real-Time Bidding

Capabilities to the
Marketplace

In a world more connected than ever before, instant communication and real-time
updates are expected behaviors in any application that enables interaction between
users. Adding real-time features to your application can keep your users engaged,
and because of that, they will be spending more time on your platform. In this
chapter, we will learn how to use the MERN stack technologies, along with Socket.IO,
to easily integrate real-time behavior in a full-stack application. We will do this
by incorporating an auctioning feature with real-time bidding capabilities in the
MERN Marketplace application that we developed in Chapter 7, Exercising MERN
Skills with an Online Marketplace, and Chapter 8, Extending the Marketplace for Orders
and Payments. After going through the implementation of this auction and bidding
feature, you will know how to utilize sockets in a MERN stack application to add
real-time features of your choice.

In this chapter, we will extend the online marketplace application by covering the
following topics:

Introducing real-time bidding in the MERN Marketplace
Adding auctions to the marketplace
Displaying the auction view
Implementing real-time bidding with Socket.IO

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[398]

Introducing real-time bidding in the
MERN Marketplace
The MERN Marketplace application already allows its users to become sellers and
maintain shops with products that can be bought by regular users. In this chapter, we
will extend these functionalities to allow sellers to create auctions for items that other
users can place bids on in a fixed duration of time. The auction view will describe the
item for sale and let signed in users place bids when the auction is live. Different
users can place their own bids, and also see other users placing bids in real-time, with
the view updating accordingly. The completed auction view, with an auction in a live
state, will render as follows:

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[399]

The code for the complete MERN Marketplace application is
available on GitHub at https:/ ​/ ​github. ​com/ ​PacktPublishing/
Full- ​Stack- ​React- ​Projects- ​Second- ​Edition/ ​tree/ ​master/
Chapter09/ ​mern- ​marketplace- ​bidding. The implementations
discussed in this chapter can be accessed in the bidding branch of the
repository. You can clone this code and run the application as you
go through the code explanations in the rest of this chapter.

The following component tree diagram shows the custom components that make up
the entire MERN Marketplace frontend, including components for the auction and
bidding-related features that will be implemented in the rest of this chapter:

The features that will be discussed in this chapter modify some of the existing
components, such as Profile and Menu, and also add new components, such
as NewAuction, MyAuctions, Auction, and Bidding. In the next section, we will
begin extending this online marketplace by integrating the option to add auctions to
the platform.

https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter09/mern-marketplace-bidding

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[400]

Adding auctions to the marketplace
In the MERN Marketplace, we will allow a user who is signed in and has an active
seller account to create auctions for items that they want other users to place bids on.
To enable the features of adding and managing auctions, we will need to define how
to store auction details and implement the full-stack slices that will let users create,
access and update auctions on the platform. In the following sections, we will build
out this auction module for the application. First, we will define the auction model
with a Mongoose Schema for storing details about each auction. Then, we will
discuss implementations for the backend APIs and frontend views that are needed to
create new auctions, list auctions that are ongoing, created by the same seller and bid
on by the same user, and modify existing auctions by either editing details of, or
deleting an auction from the application.

Defining an Auction model
We will implement a Mongoose model that will define an Auction model for storing
the details of each auction. This model will be defined
in server/models/auction.model.js, and the implementation will be similar
to other Mongoose model implementations we've covered in previous chapters, such
as the Shop model we defined in Chapter 7, Exercising MERN Skills with an Online
Marketplace. The Auction Schema in this model will have fields to store auction details
such as the name and description of the item being auctioned, along with an image
and a reference to the seller creating this auction. It will also have fields that specify
the start and end time for bidding on this auction, a starting value for bids, and the
list of bids that have been placed for this auction. The code for defining these auction
fields is as follows:

Item name and description: The auction item name and description fields
will be string types, with itemName as a required field:

itemName: {
 type: String,
 trim: true,
 required: 'Item name is required'
},
description: {
 type: String,
 trim: true
},

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[401]

Item image: The image field will store the image file representing the
auction item so that it can be uploaded by the user and stored as data in the
MongoDB database:

image: {
 data: Buffer,
 contentType: String
},

Seller: The seller field will reference the user who is creating the auction:

seller: {
 type: mongoose.Schema.ObjectId,
 ref: 'User'
},

Created and updated at times: The created and updated fields will
be Date types, with created generated when a new auction is added,
and updated changed when any auction details are modified:

updated: Date,
created: {
 type: Date,
 default: Date.now
},

Bidding start time: The bidStart field will be a Date type that will
specify when the auction goes live so that users can start placing bids:

bidStart: {
 type: Date,
 default: Date.now
},

Bidding end time: The bidEnd field will be a Date type that will specify
when the auction ends, after which the users cannot place bids on this
auction:

bidEnd: {
 type: Date,
 required: "Auction end time is required"
},

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[402]

Starting bid: The startingBid field will store values of the Number type,
and it will specify the starting price for this auction:

startingBid: {
 type: Number,
 default: 0
},

List of bids: The bids field will be an array containing details of each bid
placed against the auction. When we store bids in this array, we will push
the latest bid to the beginning of the array. Each bid will contain a reference
to the user placing the bid, the bid amount the user offered, and the
timestamp when the bid was placed:

bids: [{
 bidder: {type: mongoose.Schema.ObjectId, ref: 'User'},
 bid: Number,
 time: Date
}]

These auction-related fields will allow us to implement auction and bidding-related
features for the MERN Marketplace application. In the next section, we will start
developing these features by implementing the full-stack slice, which will allow
sellers to create new auctions.

Creating a new auction
For a seller to be able to create a new auction on the platform, we will need to
integrate a full-stack slice that allows the user to fill out a form view in the frontend,
and then save the entered details to a new auction document in the database in the
backend. To implement this feature, in the following sections, we will add a create
auction API in the backend, along with a way to fetch this API in the frontend, and a
create new auction form view that takes user input for auction fields.

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[403]

The create auction API
For the implementation of the backend API, which will allow us to create a new
auction in the database, we will declare a POST route, as shown in the following
code.

mern-marketplace/server/routes/auction.routes.js:

router.route('/api/auctions/by/:userId')
 .post(authCtrl.requireSignin, authCtrl.hasAuthorization,
 userCtrl.isSeller, auctionCtrl.create)

A POST request to this route at /api/auctions/by/:userId will ensure the
requesting user is signed in and is also authorized. In other words, it is the same user
associated with the :userId specified in the route param. Then, before creating the
auction, it is checked if this given user is a seller using the isSeller method that's
defined in the user controller methods.

To process the :userId parameter and retrieve the associated user from the database,
we will utilize the userByID method from the user controller methods. We will add
the following to the Auction routes in auction.routes.js so that the user is
available in the request object as profile.

mern-marketplace/server/routes/auction.routes.js:

router.param('userId', userCtrl.userByID)

The auction.routes.js file, which contains the auction routes, will be very similar
to the user.routes file. To load these new auction routes in the Express app, we
need to mount the auction routes in express.js, as we did for the auth and user
routes.

mern-marketplace/server/express.js:

app.use('/', auctionRoutes)

The create method in the auction controller, which is invoked after a seller is
verified, uses the formidable node module to parse the multipart request that may
contain an image file uploaded by the user for the item image. If there is a
file, formidable will store it temporarily in the filesystem, and we will read it using
the fs module to retrieve the file type and data so that we can store it in
the image field in the auction document.

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[404]

The create controller method will look as follows.

mern-marketplace/server/controllers/auction.controller.js:

const create = (req, res) => {
 let form = new formidable.IncomingForm()
 form.keepExtensions = true
 form.parse(req, async (err, fields, files) => {
 if (err) {
 res.status(400).json({
 message: "Image could not be uploaded"
 })
 }
 let auction = new Auction(fields)
 auction.seller= req.profile
 if(files.image){
 auction.image.data = fs.readFileSync(files.image.path)
 auction.image.contentType = files.image.type
 }
 try {
 let result = await auction.save()
 res.status(200).json(result)
 }catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
 })
}

The item image file for the auction is uploaded by the user and stored in MongoDB as
data. Then, in order to be shown in the views, it is retrieved from the database as an
image file at a separate GET API. The GET API is set up as an Express route
at /api/auctions/image/:auctionId, which gets the image data from MongoDB
and sends it as a file in the response. The implementation steps for file
upload, storage, and retrieval are outlined in detail in the Upload profile photo section
in Chapter 5, Growing the Skeleton into a Social Media Application.

This create auction API endpoint can now be used in the frontend to make a POST
request. Next, we will add a fetch method on the client-side to make this request from
the application's client interface.

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[405]

Fetching the create API in the view
In the frontend, to make a request to this create API, we will set up a fetch method
on the client-side to make a POST request to the API route and pass it the multipart
form data containing details of the new auction in the body. This fetch method will be
defined as follows.

mern-marketplace/client/auction/api-auction.js:

const create = (params, credentials, auction) => {
 return fetch('/api/auctions/by/'+ params.userId, {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: auction
 })
 .then((response) => {
 return response.json()
 }).catch((err) => console.log(err))
}

The response that's received from the server will be returned to the component calling
this fetch method. We will use this method in the new auction form view to send the
user-entered auction details to the backend and create a new auction in the database.
In the next section, we will implement this new auction form view in a React
component.

The NewAuction component
Sellers in the marketplace application will interact with a form view to enter details of
a new auction and create the new auction. We will render this form in
the NewAuction component, which will allow a seller to create an auction by entering
an item name and description, uploading an image file from their local filesystem,
specifying the starting bid value, and creating date-time values for starting and
ending bidding on this auction.

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[406]

This form view will render as follows:

The implementation for this NewAuction component is similar to other create form
implementations that we have discussed previously, such as the NewShop component
implementation from Chapter 7, Exercising MERN Skills with an Online Marketplace.
The fields that are different in this form component are the date-time input options
for the auction start and end timings. To add these fields, we'll use Material-UI
TextField components with type set to datetime-local, as shown in the
following code.

mern-marketplace/client/auction/NewAuction.js:

<TextField
 label="Auction Start Time"
 type="datetime-local"
 defaultValue={defaultStartTime}
 onChange={handleChange('bidStart')}
/>
<TextField
 label="Auction End Time"

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[407]

 type="datetime-local"
 defaultValue={defaultEndTime}
 onChange={handleChange('bidEnd')}
/>

We also assign default date-time values for these fields in the format expected by this
input component. We set the default start time to the current date-time and the
default end time to an hour after the current date-time, as shown here.

mern-marketplace/client/auction/NewAuction.js:

const currentDate = new Date()
const defaultStartTime = getDateString(currentDate)
const defaultEndTime = getDateString(new
Date(currentDate.setHours(currentDate.getHours()+1)))

The TextField with the type as datetime-local takes dates in the format yyyy-
mm-ddThh:mm. So, we define a getDateString method that takes a JavaScript date
object and formats it accordingly. The getDateString method is implemented as
follows.

mern-marketplace/client/auction/NewAuction.js:

const getDateString = (date) => {
 let year = date.getFullYear()
 let day = date.getDate().toString().length === 1 ? '0' +
date.getDate() : date.getDate()
 let month = date.getMonth().toString().length === 1 ? '0' +
(date.getMonth()+1) : date.getMonth() + 1
 let hours = date.getHours().toString().length === 1 ? '0' +
date.getHours() : date.getHours()
 let minutes = date.getMinutes().toString().length === 1 ? '0' +
date.getMinutes() : date.getMinutes()
 let dateString = `${year}-${month}-${day}T${hours}:${minutes}`
 return dateString
}

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[408]

In order to ensure the user has entered the dates correctly, with the start time set to a
value before the end time, we need to add a check before submitting the form details
to the backend. The validation of the date combination can be confirmed with the
following code.

mern-marketplace/client/auction/NewAuction.js:

if(values.bidEnd < values.bidStart){
 setValues({...values, error: "Auction cannot end before it
starts"})
}

If the date combination is found to be invalid, then the user will be informed and
form data will not be sent to the backend.

This NewAuction component can only be viewed by a signed-in user who is also a
seller. Therefore, we will add a PrivateRoute in the MainRouter component. This
will render this form for authenticated users at /auction/new.

mern-marketplace/client/MainRouter.js:

<PrivateRoute path="/auction/new" component={NewAuction}/>

This link can be added to any of the view components that may be accessed by the
seller, for example, in a view where a seller manages their auctions in the
marketplace. Now that it is possible to add new auctions in the marketplace, in the
next section, we will discuss how to fetch these auctions from the database in the
backend so that they can be listed in the views in the frontend.

Listing auctions
In the MERN Marketplace application, we will display three different lists of auctions
to the users. All users browsing through the platform will be able to view the
currently open auctions, in other words, auctions that are live or are going to start at a
future date. The sellers will be able to view a list of auctions that they created, while
signed in users will be able to view the list of auctions they placed bids in. The list
displaying the open auctions to all the users will render as follows, providing a
summary of each auction, along with an option so that the user can view further
details in a separate view:

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[409]

In the following sections, in order to implement these different auction lists so that
they're displayed in the application, we will define the three separate backend APIs to
retrieve open auctions, auctions by a seller, and auctions by a bidder, respectively.
Then, we will implement a reusable React component that will take any list of
auctions provided to it as a prop and render it to the view. This will allow us to
display all three lists of auctions while utilizing the same component.

The open Auctions API
To retrieve the list of open auctions from the database, we will define a backend API
that accepts a GET request and queries the Auction collection to return the open
auctions that are found in the response. To implement this open auctions API, we will
declare a route, as shown here.

 mern-marketplace/server/routes/auction.routes.js:

router.route('/api/auctions')
 .get(auctionCtrl.listOpen)

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[410]

A GET request that's received at the /api/auctions route will invoke the listOpen
controller method, which will query the Auction collection in the database so that it
returns all the auctions with ending dates greater than the current date.
The listOpen method is defined as follows.

mern-marketplace/server/controllers/auction.controller.js:

const listOpen = async (req, res) => {
 try {
 let auctions = await Auction.find({ bidEnd: { $gt: new Date() }})
 .sort('bidStart')
 .populate('seller', '_id name')
 .populate('bids.bidder', '_id name')
 res.json(auctions)
 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The auctions that are returned by the query in this listOpen method will be sorted
by the starting date, with auctions that start earlier shown first. These auctions will
also contain the ID and name details of the seller and each bidder. The resulting array
of auctions will be sent back in the response to the requesting client.

To fetch this API in the frontend, we will add a corresponding listOpen method
in api-auction.js, similar to other API implementations. This fetch method will be
used in the frontend component that displays the open auctions to the user. Next, we
will implement another API to list all the auctions that a specific user placed bids in.

The Auctions by bidder API
To be able to display all the auctions that a given user placed bids in, we will define a
backend API that accepts a GET request and queries the Auction collection so that it
returns the relevant auctions in the response. To implement this auctions by bidder
API, we will declare a route, as shown here.

 mern-marketplace/server/routes/auction.routes.js

router.route('/api/auctions/bid/:userId')
 .get(auctionCtrl.listByBidder)

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[411]

A GET request, when received at the /api/auctions/bid/:userId route, will
invoke the listByBidder controller method, which will query the Auction collection
in the database so that it returns all the auctions that contain bids with a bidder
matching the user specified by the userId parameter in the route.
The listByBidder method is defined as follows.

mern-marketplace/server/controllers/auction.controller.js:

const listByBidder = async (req, res) => {
 try {
 let auctions = await Auction.find({'bids.bidder':
req.profile._id})
 .populate('seller', '_id name')
 .populate('bids.bidder', '_id name')
 res.json(auctions)
 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

This method will return the resulting auctions in response to the requesting client,
and each auction will also contain the ID and name details of the seller and each
bidder. To fetch this API in the frontend, we will add a
corresponding listByBidder method in api-auction.js, similar to other API
implementations. This fetch method will be used in the frontend component that
displays the auctions related to a specific bidder. Next, we will implement an API that
will list all the auctions that a specific seller created in the marketplace.

The Auctions by seller API
Sellers in the marketplace will see a list of auctions that they created. To retrieve these
auctions from the database, we will define a backend API that accepts a GET request
and queries the Auction collection so that it returns the auctions by a specific seller.
To implement this auctions by seller API, we will declare a route, as shown here.

mern-marketplace/server/routes/auction.routes.js:

router.route('/api/auctions/by/:userId')
 .get(authCtrl.requireSignin, authCtrl.hasAuthorization,
 auctionCtrl.listBySeller)

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[412]

A GET request, when received at the /api/auctions/by/:userId route, will
invoke the listBySeller controller method, which will query the Auction collection
in the database so that it returns all the auctions with sellers matching the user
specified by the userId parameter in the route. The listBySeller method is
defined as follows.

mern-marketplace/server/controllers/auction.controller.js:

const listBySeller = async (req, res) => {
 try {
 let auctions = await Auction.find({seller: req.profile._id})
 .populate('seller', '_id name')
 .populate('bids.bidder', '_id name')
 res.json(auctions)
 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

This method will return the auctions for the specified seller in response to the
requesting client, and each auction will also contain the ID and name details of the
seller and each bidder.

To fetch this API in the frontend, we will add a
corresponding listBySeller method in api-auction.js, similar to other API
implementations. This fetch method will be used in the frontend component that
displays the auctions related to a specific seller. In the next section, we will look at the
implementation of the Auctions component, which will take any of these lists of
auctions and display it to the end user.

The Auctions component
The different auction lists in the application will be rendered using a React
component that takes an array of auction objects as props. We will implement this
reusable Auctions component and add it to the views that will retrieve and display
either the open auctions, auctions by a bidder, or auctions by a seller. The view that
retrieves and renders the list of auctions created by a specific seller using the
Auctions component will look as follows:

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[413]

The Auctions component will iterate over the array of auctions received as a
prop and display each auction in a Material-UI ListItem component, as shown in
the following code.

mern-marketplace/client/auction/Auctions.js:

export default function Auctions(props){
 return (
 <List dense>
 {props.auctions.map((auction, i) => {
 return
 <ListItem button>
 <ListItemAvatar>
 <Avatar src={'/api/auctions/image/'+auction._id+"?"
 + new Date().getTime()}/>
 </ListItemAvatar>
 <ListItemText primary={auction.itemName}
 secondary={auctionState(auction}/>
 <ListItemSecondaryAction>
 <Link to={"/auction/" + auction._id}>
 <IconButton aria-label="View" color="primary">
 <ViewIcon/>
 </IconButton>
 </Link>
 </ListItemSecondaryAction>
 </ListItem>
 <Divider/>
 })}
 </List>
)
}

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[414]

For each auction item, besides displaying some basic auction details, we give the
users an option to open each auction in a separate link. We also conditionally render
details such as when an auction will start, whether bidding has started or ended, how
much time is left, and what the latest bid is. These details of each auction's state are
determined and rendered with the following code.

mern-marketplace/client/auction/Auctions.js:

const currentDate = new Date()
const auctionState = (auction)=>{
 return (
 {currentDate < new Date(auction.bidStart) &&
 `Auction Starts at ${new
Date(auction.bidStart).toLocaleString()}`}
 {currentDate > new Date(auction.bidStart) &&
 currentDate < new Date(auction.bidEnd) && <>
 {`Auction is live | ${auction.bids.length} bids |`}
 {showTimeLeft(new Date(auction.bidEnd))}
 </>}
 {currentDate > new Date(auction.bidEnd) &&
 `Auction Ended | ${auction.bids.length} bids `}
 {currentDate > new Date(auction.bidStart) &&
auction.bids.length> 0 && `
 | Last bid: $ ${auction.bids[0].bid}`}

)
}

To calculate and render the time left for auctions that have already started, we define
a showTimeLeft method, which takes the end date as an argument and uses
the calculateTimeLeft method to construct the time string rendered in the view.
The showTimeLeft method is defined as follows.

mern-marketplace/client/auction/Auctions.js:

const showTimeLeft = (date) => {
 let timeLeft = calculateTimeLeft(date)
 return !timeLeft.timeEnd &&
 {timeLeft.days != 0 && `${timeLeft.days} d `}
 {timeLeft.hours != 0 && `${timeLeft.hours} h `}
 {timeLeft.minutes != 0 && `${timeLeft.minutes} m `}
 {timeLeft.seconds != 0 && `${timeLeft.seconds} s`} left

}

This method uses the calculateTimeLeft method to determine the breakdown of
the time left in days, hours, minutes, and seconds.

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[415]

The calculateTimeLeft method takes the end date and compares it with the
current date to calculate the difference and makes a timeLeft object that records the
remaining days, hours, minutes, and seconds, as well as a timeEnd state. If the time
has ended, the timeEnd state is set to true. The calculateTimeLeft method is
defined as follows.

mern-marketplace/client/auction/Auctions.js:

const calculateTimeLeft = (date) => {
 const difference = date - new Date()
 let timeLeft = {}

 if (difference > 0) {
 timeLeft = {
 days: Math.floor(difference / (1000 * 60 * 60 * 24)),
 hours: Math.floor((difference / (1000 * 60 * 60)) % 24),
 minutes: Math.floor((difference / 1000 / 60) % 60),
 seconds: Math.floor((difference / 1000) % 60),
 timeEnd: false
 }
 } else {
 timeLeft = {timeEnd: true}
 }
 return timeLeft
}

This Auctions component, which renders a list of auctions with the details and a
status of each, can be added to other views that will display different auction lists. If
the user who's currently viewing an auction list happens to be a seller for a given
auction in the list, we also want to render the option to edit or delete the auction to
this user. In the next section, we will learn how to incorporate these options to edit or
delete an auction from the marketplace.

Editing and deleting auctions
A seller in the marketplace will be able to manage their auctions by either editing or
deleting an auction that they've created. The implementations of the edit and delete
features will require building backend APIs that save changes to the database and
remove an auction from the collection. These APIs will be used in frontend views to
allow users to edit auction details using a form and initiate delete with a button click.
In the following sections, we will learn how to add these options conditionally to the
auction list and discuss the full-stack implementation to complete these edit and
delete functions.

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[416]

Updating the list view
We will update the code for the auctions list view to conditionally show the edit and
delete options to the seller. In the Auctions component, which is where a list of
auctions is iterated over to render each item in ListItem, we will add two more
options in the ListItemSecondaryAction component, as shown in the following
code.

mern-marketplace/client/auction/Auctions.js:

<ListItemSecondaryAction>
 <Link to={"/auction/" + auction._id}>
 <IconButton aria-label="View" color="primary">
 <ViewIcon/>
 </IconButton>
 </Link>
 { auth.isAuthenticated().user &&
 auth.isAuthenticated().user._id == auction.seller._id &&
 (<>
 <Link to={"/auction/edit/" + auction._id}>
 <IconButton aria-label="Edit" color="primary">
 <Edit/>
 </IconButton>
 </Link>}
 <DeleteAuction auction={auction}
onRemove={props.removeAuction}/>
 </>)
 }
</ListItemSecondaryAction>

The link to the edit view and the delete component are rendered conditionally if the
currently signed in user's ID matches the ID of the auction seller. The implementation
for the Edit view component and Delete component is similar to the EditShop
component and DeleteShop component we discussed in Chapter 7, Exercising
MERN Skills with an Online Marketplace. These same components will call backend
APIs to complete the edit and delete actions. We will look at the required backend
APIs in the next section.

Edit and delete auction APIs
To complete the edit auction and delete auction operations initiated by sellers from
the frontend, we need to have the corresponding APIs in the backend. The route for
these API endpoints, which will accept the update and delete requests, can be
declared as follows.

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[417]

 mern-marketplace/server/routes/auction.routes.js:

router.route('/api/auctions/:auctionId')
 .put(authCtrl.requireSignin, auctionCtrl.isSeller,
auctionCtrl.update)
 .delete(authCtrl.requireSignin, auctionCtrl.isSeller,
auctionCtrl.remove)
router.param('auctionId', auctionCtrl.auctionByID)

The :auctionId param in the /api/auctions/:auctionId route URL will invoke
the auctionByID controller method, which is similar to the userByID controller
method. It retrieves the auction from the database and attaches it to the request object
so that it can be used in the next method. The auctionByID method is defined as
follows.

mern-marketplace/server/controllers/auction.controller.js:

const auctionByID = async (req, res, next, id) => {
 try {
 let auction = await Auction.findById(id)
 .populate('seller', '_id name')
 .populate('bids.bidder', '_id
name').exec()
 if (!auction)
 return res.status('400').json({
 error: "Auction not found"
 })
 req.auction = auction
 next()
 } catch (err) {
 return res.status('400').json({
 error: "Could not retrieve auction"
 })
 }
}

The auction object that's retrieved from the database will also contain the name and
ID details of the seller and bidders, as we specified in the populate() methods. For
these API endpoints, the auction object is used next to verify that the currently
signed-in user is the seller who created this given auction by invoking the isSeller
method, which is defined in the auction controller as follows.

mern-marketplace/server/controllers/auction.controller.js:

const isSeller = (req, res, next) => {
 const isSeller = req.auction && req.auth && req.auction.seller._id

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[418]

== req.auth._id
 if(!isSeller){
 return res.status('403').json({
 error: "User is not authorized"
 })
 }
 next()
}

Once the seller has been verified, the next method is invoked to either update or
delete the auction, depending on whether a PUT or DELETE request was received.
The controller methods for updating and deleting auctions are similar to the previous
implementations for update and delete, as we discussed for the edit shop API and
delete shop API in Chapter 7, Exercising MERN Skills with an Online Marketplace.

We have the auction module for the marketplace ready with an Auction model for
storing auction and bidding data and backend APIs and frontend views for creating
new auctions, displaying different auction lists, and modifying an existing auction. In
the next section, we will extend this module further and implement a view for
individual auctions where, besides learning more about the auction, users will also be
able to see live bidding updates.

Displaying the auction view
 The view for displaying a single auction will contain the core functionality of the
real-time auction and bidding features for the marketplace. Before getting into the
implementation of real-time bidding, we will set up the full-stack slice for retrieving
details of a single auction and display these details in a React component that will
house the auction display, timer, and bidding capabilities. In the following sections,
we will start by discussing the backend API for fetching a single auction. Then,
we will look at the implementation of an Auction component, which will use this API
to retrieve and display the auction details, along with the state of the auction. To give
users a real-time update of the state of the auction, we will also implement a timer in
this view to indicate the time left until a live auction ends.

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[419]

The read auction API
To display the details of an existing auction in a view of its own, we need to add a
backend API that will receive a request for the auction from the client and return its
details in the response. Therefore, we will implement a read auction API in the
backend that will accept a GET request with a specified auction ID and return the
corresponding auction document from the Auction collection in the database. We
will start adding this API endpoint by declaring a GET route, as shown in the
following code.

mern-marketplace/server/routes/auction.routes.js:

router.route('/api/auction/:auctionId')
 .get(auctionCtrl.read)

The :auctionId param in the route URL invokes the auctionByID controller
method when a GET request is received at this route. The auctionByID controller
method retrieves the auction from the database and attaches it to the request object to
be accessed in the read controller method, which is called next. The read controller
method, which returns this auction object in response to the client, is defined as
follows.

mern-marketplace/server/controllers/auction.controller.js:

const read = (req, res) => {
 req.auction.image = undefined
 return res.json(req.auction)
}

We are removing the image field before sending the response, since images will be
retrieved as files in separate routes. With this API ready in the backend, we can now
add the implementation to call it in the frontend by adding a fetch method in api-
auction.js, similar to the other fetch methods we've discussed for completing API
implementations. We will use the fetch method to call the read auction API in a React
component that will render the retrieved auction details. The implementation of this
React component is discussed in the next section.

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[420]

The Auction component
We will implement an Auction component to fetch and display the details of a single
auction to the end user. This view will also have real-time update functionalities that
will render based on the current state of the auction and on whether the user viewing
the page is signed in. For example, the following screenshot shows how the Auction
component renders to a visitor when a given auction has not started yet. It only
displays the description details of the auction and specifies when the auction will
start:

The implementation of the Auction component will retrieve the auction details by
calling the read auction API in a useEffect hook. This part of the component
implementation is similar to the Shop component we discussed in Chapter
7, Exercising MERN Skills with an Online Marketplace.

The completed Auction component will be accessed in the browser at
the /auction/:auctionId route, which is defined in MainRouter as follows.

mern-marketplace/client/MainRouter.js:

<Route path="/auction/:auctionId" component={Auction}/>

This route can be used in any component to link to a specific auction, as we did in the
auction lists. This link will take the user to the corresponding Auction view with the
auction details loaded.

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[421]

In the component view, we will render the auction state by considering the current
date and the given auction's bidding start and end timings. The code to generate these
states, which will be shown in the view, can be added as follows.

mern-marketplace/client/auction/Auction.js:

const currentDate = new Date()
...

 {currentDate < new Date(auction.bidStart) && 'Auction Not
Started'}
 {currentDate > new Date(auction.bidStart) && currentDate < new
Date(auction.bidEnd) && 'Auction Live'}
 {currentDate > new Date(auction.bidEnd) && 'Auction Ended'}

In the preceding code, if the current date is before the bidStart date, we show a
message indicating that the auction has not started yet. If the current date is between
the bidStart and bidEnd dates, then the auction is live. If the current date is after
the bidEnd date, then the auction has ended.

The Auction component will also conditionally render a timer and a bidding section,
depending on whether the current user is signed in, and also on the state of the
auction at the moment. The code to render this part of the view will be as follows.

mern-marketplace/client/auction/Auction.js:

<Grid item xs={7} sm={7}>
 {currentDate > new Date(auction.bidStart)
 ? (<>
 <Timer endTime={auction.bidEnd} update={update}/>
 { auction.bids.length > 0 &&
 <Typography component="p" variant="subtitle1">
 {` Last bid: $ ${auction.bids[0].bid}`}
 </Typography>
 }
 { !auth.isAuthenticated() &&
 <Typography>
 Please, <Link to='/signin'>
 sign in</Link> to place your bid.
 </Typography>
 }
 { auth.isAuthenticated() &&
 <Bidding auction={auction} justEnded=
 {justEnded} updateBids={updateBids}/>
 }
 </>)

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[422]

 : <Typography component="p" variant="h6">
 {`Auction Starts at ${new
Date(auction.bidStart).toLocaleString()}`}
 </Typography>
 }
</Grid>

If the current date happens to be after the bid starting time, instead of showing the
start time, we render the Timer component to show the time remaining until bidding
ends. Then, we show the last bid amount, which will be the first item in the auction
bids array if some bids were already placed. If the current user is signed in when the
auction is in this state, we also render a Bidding component, which will allow them
to bid and see the bidding history. In the next section, we will learn how to
implement the Timer component we added in this view to show the remaining time
for the auction.

Adding the Timer component
When the auction is live, we will give the users a real-time update of how long they
have before bidding ends on this given auction. We will implement a Timer
component and conditionally render it in the Auction component to achieve this
feature. The timer will count down the seconds and show how much time is left to the
users viewing the live auction. The following screenshot shows what the Auction
component looks like when it renders a live auction to a user who is not signed in yet:

The remaining time decreases per second as the user is viewing the live auction. We
will implement this countdown feature in the Timer component, which is added to
the Auction component. The Auction component provides it with props containing
the auction end time value, as well as a function to update the auction view when the
time ends, as shown in the following code.

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[423]

mern-marketplace/client/auction/Auction.js:

<Timer endTime={auction.bidEnd} update={update}/>

The update function that's provided to the Timer component will help set the value
of the justEnded variable from false to true. This justEnded value is passed to
the Bidding component so that it can be used to disable the option to place bids
when the time ends. The justEnded value is initialized and the update function is
defined as follows.

mern-marketplace/client/auction/Auction.js:

const [justEnded, setJustEnded] = useState(false)
const updateBids = () => {
 setJustEnded(true)
}

These props will be used in the Timer component to calculate time left and to update
the view when time is up.

In the Timer component definition, we will initialize the timeLeft variable in the
state, using the end time value sent in the props from the Auction component, as
shown in the following code.

mern-marketplace/client/auction/Timer.js:

export default function Timer (props) {
 const [timeLeft, setTimeLeft] = useState(calculateTimeLeft(new
Date(props.endTime)))
 ...
}

To calculate the time left until the auction ends, we utilize the calculateTimeLeft
method we discussed previously in the The Auctions component section of this chapter.

To implement the time countdown functionality, we will use setTimeout in a
useEffect hook in the Timer component, as shown in the following code.

mern-marketplace/client/auction/Timer.js:

useEffect(() => {
 let timer = null
 if(!timeLeft.timeEnd){
 timer = setTimeout(() => {
 setTimeLeft(calculateTimeLeft(new
Date(props.endTime)))

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[424]

 }, 1000)
 }else{
 props.update()
 }
 return () => {
 clearTimeout(timer)
 }
})

If the time has not ended already, we will use setTimeout to update the timeLeft
value after 1 second has passed. This useEffect hook will run after every render
caused by the state update with setTimeLeft.

As a result, the timeLeft value will keep updating every second until the timeEnd
value is true. When the timeEnd value does become true as the time is up, we will
execute the update function that's sent in the props from the Auctions component.

To avoid a memory leak and to clean up in the useEffect hook, we will use
clearTimeout to stop any pending setTimeout calls. To show this updating
timeLeft value, we just need to render it in the view, as shown in the following
code.

mern-marketplace/client/auction/Timer.js:

 return (<div className={props.style}>
 {!timeLeft.timeEnd ?
 <Typography component="p" variant="h6" >
 {timeLeft.days != 0 && `${timeLeft.days} d `}
 {timeLeft.hours != 0 && `${timeLeft.hours} h `}
 {timeLeft.minutes != 0 && `${timeLeft.minutes} m `}
 {timeLeft.seconds != 0 && `${timeLeft.seconds} s`} left

 {`(ends at ${new
Date(props.endTime).toLocaleString()})`}

 </Typography> :
 <Typography component="p" variant="h6">Auction
ended</Typography>
 }
 </div>
)

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[425]

If there is time left, we render the days, hours, minutes, and seconds remaining until
the auction ends using the timeLeft object. We also indicate the exact date and time
when the auction ends. If the time is up, we just indicate that the auction ended.

In the Auction component we've implemented so far, we are able to fetch the auction
details from the backend and render it along with the state of the auction. If an
auction is in a live state, we are able to indicate the time left until it ends. When an
auction is in this live state, users will also be able to place bids against the auction and
see the bids being placed by other users on the platform from within this view in real-
time. In the next section, we will discuss how to use Socket.IO to integrate this real-
time bidding feature for all live auctions on the platform.

Implementing real-time bidding with
Socket.IO
Users who are signed in to the marketplace platform will be able to take part in live
auctions. They will be able to place their bids and get real-time updates in the same
view while other users on the platform are countering their bids. To implement this
functionality, we will integrate Socket.IO with our full-stack MERN application
before implementing the frontend interface to allow users to place their bids and see
the changing bidding history.

Integrating Socket.IO
Socket.IO will allow us to add the real-time bidding feature to auctions in the
marketplace application. Socket.IO is a JavaScript library with a client-side module
that runs in the browser and a server-side module that integrates with Node.js.
Integrating these modules with our MERN-based application will enable bidirectional
and real-time communication between the clients and the server.

The client-side part of Socket.IO is available as the Node module
socket.io-client, while the server-side part is available as the
Node module socket.io. You can learn more about Socket.IO and
try their getting started tutorials at https:/ ​/​socket. ​io.

https://socket.io
https://socket.io
https://socket.io
https://socket.io
https://socket.io
https://socket.io
https://socket.io

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[426]

Before we can start using socket.io in our code, we will install the client and server
libraries with Yarn by running the following command from the command line:

yarn add socket.io socket.io-client

With the Socket.IO libraries added to the project, we will update our backend to
integrate Socket.IO with the server code. We need to initialize a new instance of
socket.io using the same HTTP server that we are using for our application.

In our backend code, we are using Express to start the server. Therefore, we will
update the code in server.js to get a reference to the HTTP server that our Express
app is using to listen for requests from clients, as shown in the following code.

mern-marketplace/server/server.js:

import bidding from './controllers/bidding.controller'

const server = app.listen(config.port, (err) => {
 if (err) {
 console.log(err)
 }
 console.info('Server started on port %s.', config.port)
})

bidding(server)

Then, we will pass the reference for this server to a bidding controller function. This
bidding.controller function will contain the Socket.IO code that's needed on the
server-side to implement real-time features. The bidding.controller function will
initialize socket.io and then listen on the connection event for incoming socket
messages from clients, as shown in the following code.

mern-marketplace/server/controllers/bidding.controller.js:

export default (server) => {
 const io = require('socket.io').listen(server)
 io.on('connection', function(socket){
 socket.on('join auction room', data => {
 socket.join(data.room);
 })
 socket.on('leave auction room', data => {
 socket.leave(data.room)
 })
 })
}

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[427]

When a new client first connects and then disconnects to the socket connection, we
will subscribe and unsubscribe the client socket to a given channel. The channel will
be identified by the auction ID that will be passed in the data.room property from
the client. This way, we will have a different channel or room for each auction.

With this code, the backend is ready to receive communication from clients over
sockets, and we can now add the Socket.IO integration to our frontend. In the
frontend, only the auction view – specifically, the bidding section – will be using
sockets for real-time communication. Therefore, we will only integrate Socket.IO in
the Bidding component that we add to the Auction component in the frontend, as
shown in the following code.

mern-marketplace/client/auction/Auction.js:

<Bidding auction={auction} justEnded={justEnded}
updateBids={updateBids}/>

The Bidding component takes the auction object, the justEnded value, and an
updateBids function as props from the Auction component, and uses these in the
bidding process. To start implementing the Bidding component, we will integrate
sockets using the Socket.IO client-side library, as shown in the following code.

mern-marketplace/client/auction/Bidding.js:

const io = require('socket.io-client')
const socket = io()

export default function Bidding (props) {
 useEffect(() => {
 socket.emit('join auction room', {room: props.auction._id})
 return () => {
 socket.emit('leave auction room', {
 room: props.auction._id
 })
 }
 }, [])
 ...
}

In the preceding code, we require the socket.io-client library and initialize the
socket for this client. Then, in our Bidding component definition, we utilize the
useEffect hook and the initialized socket to emit the auction room joining
and auction room leaving socket events when the component mounts and unmounts,
respectively. We pass the current auction's ID as the data.room value with these
emitted socket events.

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[428]

These events will be received by the server socket connection, resulting in
subscription or unsubscription of the client to the given auction room. Now that the
clients and the server are able to communicate in real-time over sockets, in the next
section, we will learn how to use this capability to let users place instant bids on the
auction.

Placing bids
When a user on the platform is signed in and viewing an auction that is currently live,
they will see an option to place their own bid. This option will be rendered within the
Bidding component, as shown in the following screenshot:

To allow users to place their bids, in the following sections, we will add a form that
lets them enter a value more than the last bid and submit it to the server using socket
communication. Then, on the server, we will handle this new bid that's been sent over
the socket so that the changed auction bids can be saved in the database and the view
can be updated instantly for all connected users when the server accepts this bid.

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[429]

Adding a form to enter a bid
We will add the form to place a bid for an auction in the Bidding component that we
started building in the previous section. Before we add the form elements in the view,
we will initialize the bid value in the state, add a change handling function for the
form input, and keep track of the minimum bid amount allowed, as shown in the
following code.

mern-marketplace/client/auction/Bidding.js:

const [bid, setBid] = useState('')

const handleChange = event => {
 setBid(event.target.value)
}
const minBid = props.auction.bids && props.auction.bids.length> 0
 ? props.auction.bids[0].bid
 : props.auction.startingBid

The minimum bid amount is determined by checking the latest bid placed. If any bids
were placed, the minimum bid needs to be higher than the latest bid; otherwise, it
needs to be higher than the starting bid that was set by the auction seller.

The form elements for placing a bid will only render if the current date is before the
auction end date. We also check if the justEnded value is false so that the form can
be hidden when the time ends in real-time as the timer counts down to 0. The form
elements will contain an input field, a hint at what minimum amount should be
entered, and a submit button, which will remain disabled unless a valid bid amount is
entered. These elements will be added to the Bidding component view as follows.

mern-marketplace/client/auction/Bidding.js:

{!props.justEnded && new Date() < new Date(props.auction.bidEnd) && <>
 <TextField label="Your Bid ($)"
 value={bid} onChange={handleChange}
 type="number" margin="normal"
 helperText={`Enter $${Number(minBid)+1} or
more`}/>

 <Button variant="contained" color="secondary"
 disabled={bid < (minBid + 1)}
 onClick={placeBid}>Place Bid
 </Button>

</>}

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[430]

When the user clicks on the submit button, the placeBid function will be called. In
this function, we construct a bid object containing the new bid's details, including the
bid amount, bid time, and the bidder's user reference. This new bid is emitted to the
server over the socket communication that's already been established for this auction
room, as shown in the following code:

const placeBid = () => {
 const jwt = auth.isAuthenticated()
 let newBid = {
 bid: bid,
 time: new Date(),
 bidder: jwt.user
 }
 socket.emit('new bid', {
 room: props.auction._id,
 bidInfo: newBid
 })
 setBid('')
}

Once the message has been emitted over the socket, we will empty the input field
with setBid(''). Then, we need to update the bidding controller in the backend to
receive and handle this new bid message that's been sent from the client. In the next
section, we will add the socket event handling code to complete this process to place a
bid.

Receiving a bid on the server
When a new bid is placed by a user and emitted over a socket connection, it will be
handled on the server so that it's stored in the corresponding auction in the database.

In the bidding controller, we will update the socket event handlers in the socket
connection listener code in order to add a handler for the new bid socket message, as
shown in the following code.

mern-marketplace/server/controllers/bidding.controller.js:

io.on('connection', function(socket){
 ...
 socket.on('new bid', data => {
 bid(data.bidInfo, data.room)
 })
})

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[431]

In the preceding code, when the socket receives the emitted new bid message, we use
the attached data to update the specified auction with the new bid information in a
function called bid. The bid function is defined as follows.

mern-marketplace/server/controllers/bidding.controller.js:

const bid = async (bid, auction) => {
 try {
 let result = await Auction.findOneAndUpdate({_id:auction, $or:
[{'bids.0.bid':{$lt:bid.bid}},{bids:{$eq:[]}}]},
 {$push: {bids: {$each:[bid], $position:
0}}},
 {new: true})
 .populate('bids.bidder', '_id name')
 .populate('seller', '_id name')
 .exec()
 io.to(auction).emit('new bid', result)
 } catch(err) {
 console.log(err)
 }
}

The bid function takes the new bid details and the auction ID as arguments and
performs a findOneAndUpdate operation on the Auction collection. To find the
auction to be updated, besides querying with the auction ID, we also ensure that the
new bid amount is larger than the last bid placed at position 0 of the bids array in
this auction document. If an auction is found that matches the provided ID and also
meets this condition of the last bid being smaller than the new bid, then this auction is
updated by pushing the new bid into the first position of the bids array.

After the update to the auction in the database, we emit the new bid message over the
socket.io connection to all the clients currently connected to the corresponding
auction room. On the client-side, we need to capture this message in a socket event
handler code and update the view with the latest bids. In the next section, we will
learn how to handle and display this updated list of bids for all the clients viewing
the live auction.

Displaying the changing bidding history
After a new bid is accepted on the server and stored in the database, the new array of
bids will be updated in the view for all the clients currently on the auctions page. In
the following sections, we will extend the Bidding component so that it handles the
updated bids and displays the complete bidding history for the given auction.

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[432]

Updating the view state with a new bid
Once the placed bid has been handled on the server, the updated auction containing
the modified array of bids is sent to all the clients connected to the auction room. To
handle this new data on the client-side, we need to update the Bidding component to
add a listener for this specific socket message.

We will use an useEffect hook to add this socket listener to the Bidding
component when it loads and renders. We will also remove the listener
with socket.off() in the useEffect cleanup when the component unloads.
This useEffect hook with the socket listener for receiving the new bid data will be
added as follows.

mern-marketplace/client/auction/Bidding.js:

useEffect(() => {
 socket.on('new bid', payload => {
 props.updateBids(payload)
 })
 return () => {
 socket.off('new bid')
 }
})

When the new auction with updated bids is received from the server in the socket
event, we execute the updateBids function that was sent as a prop from the Auction
component. The updateBids function is defined in the Auction component as
follows:

const updateBids = (updatedAuction) => {
 setAuction(updatedAuction)
}

This will update the auction data that was set in the state of the Auction component
and, as a result, rerender the complete auction view with the updated auction
data. This view will also include the bidding history table, which we'll discuss in the
next section.

Rendering the bidding history
In the Bidding component, we will render a table that displays the details of all the
bids that were placed for the given auction. This will inform the user of the bids that
were already placed and are being placed in real-time as they are viewing a live
auction. The bidding history for an auction will render in the view as follows:

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[433]

This bidding history view will basically iterate over the bids array for the auction
and display the bid amount, bid time, and bidder name for each bid object that's
found in the array. The code for rendering this table view will be added as follows:

<div>
 <Typography variant="h6"> All bids </Typography>
 <Grid container spacing={4}>
 <Grid item xs={3} sm={3}>
 <Typography variant="subtitle1"
 color="primary">Bid Amount</Typography>
 </Grid>
 <Grid item xs={5} sm={5}>
 <Typography variant="subtitle1"
 color="primary">Bid Time</Typography>
 </Grid>
 <Grid item xs={4} sm={4}>
 <Typography variant="subtitle1"
 color="primary">Bidder</Typography>
 </Grid>
 </Grid>
 {props.auction.bids.map((item, index) => {
 return <Grid container spacing={4} key={index}>
 <Grid item xs={3} sm={3}>
 <Typography variant="body2">${item.bid}
</Typography>
 </Grid>
 <Grid item xs={5} sm={5}>
 <Typography variant="body2">
 {new Date(item.time).toLocaleString()}
 </Typography></Grid>
 <Grid item xs={4} sm={4}>
 <Typography variant="body2">{item.bidder.name}
</Typography>
 </Grid>
 </Grid>
 })}
</div>

Adding Real-Time Bidding Capabilities to the Marketplace Chapter 9

[434]

We added table headers using Material-UI Grid components, before iterating over
the bids array to generate the table rows with individual bid details.

When a new bid is placed by any user viewing this auction and the updated auction
is received in the socket and set to state, this table containing the bidding history will
update for all its viewers and show the latest bid at the top of the table. By doing this,
it gives all the users in the auction room a real-time update of bidding. With that, we
have a complete auction and real-time bidding feature integrated with the MERN
Marketplace application.

Summary
In this chapter, we extended the MERN Marketplace application and added an
auctioning feature with real-time bidding capabilities. We designed an auction model
for storing auction and bidding details and implemented the full-stack CRUD
functionalities that allow users to create new auctions, edit and delete auctions, and
see different lists of auctions, along with individual auctions.

We added an auction view representing a single auction where users can watch and
participate in the auction. In the view, we calculated and rendered the current state of
the given auction, along with a countdown timer for live auctions. While
implementing this timer that counts down seconds, we learned how to use
setTimeout in a React component with the useEffect hook.

For each auction, we implemented real-time bidding capabilities using Socket.IO. We
discussed how to integrate Socket.IO on both the client-side and the server-side of the
application to establish real-time and bidirectional communication between clients
and servers. With these approaches for extending the MERN stack to incorporate real-
time communication functionalities, you can implement even more exciting real-time
features using sockets in your own full-stack applications.

Using the experiences you've gained here building out the different features for the
MERN Marketplace application, you can also grow the auctioning feature that was
covered in this chapter and integrate it with the existing order management and
payment processing functionalities in this application.

In the next chapter, we will expand our options with the MERN stack technologies by
building an expense tracking application with data visualization features by
extending the MERN skeleton.

4
Advancing to Complex MERN

Applications
In this part, we explore how to implement MERN applications with advanced and
complex features, including data visualization, media streaming, and VR capabilities.

This section comprises the following chapters:

Chapter 10, Integrating Data Visualization with an Expense Tracking
Application
Chapter 11, Building a Media Streaming Application
Chapter 12, Customizing the Media Player and Improving SEO
Chapter 13, Developing a Web-Based VR Game
Chapter 14, Making the VR Game Dynamic using MERN

10
Integrating Data Visualization

with an Expense Tracking
Application

These days, it is easy to collect and add data to applications on the internet. As more
and more data becomes available, it becomes necessary to process the data and
present insights extracted from this data in meaningful and appealing visualizations
to end users. In this chapter, we will learn how to use MERN stack technologies along
with Victory—a charting library for React—to easily integrate data visualization
features in a full-stack application. We will extend the MERN skeleton application to
build an expense tracking application, which will incorporate data processing and
visualization features for expense data recorded by a user over time.

After going through the implementation of these features, you should have a grasp of
how to utilize the MongoDB aggregation framework and the Victory charting library
to add data visualization features of your choice to any full-stack MERN web
application.

In this chapter, we will build an expense tracking application integrated with data
visualization features by covering the following topics:

Introducing MERN Expense Tracker
Adding expense records
Visualizing expense data over time

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[437]

Introducing MERN Expense Tracker
The MERN Expense Tracker application will allow users to keep track of their day-to-
day expenses. Users who are signed in to their accounts will be able to add their
expense records with details such as expense description, category, amount, and
when the given expense was incurred or paid. The application will store these
expense records and extract meaningful data patterns to give the user a visual
representation of how their expense habits fare as time progresses. The following
screenshot shows the home page view for a signed-in user on the MERN Expense
Tracker application, and it gives the user an overview of their expenses for the
current month:

The code for the complete MERN Expense Tracker application is
available on GitHub at: https:/ ​/ ​github. ​com/ ​PacktPublishing/
Full- ​Stack- ​React- ​Projects- ​Second- ​Edition/ ​tree/ ​master/
Chapter10/ ​mern- ​expense- ​tracker. You can clone this code and run
the application as you go through the code explanations for the rest
of this chapter.

https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter10/mern-expense-tracker

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[438]

In this chapter, we will extend the MERN skeleton to build the expense tracking
application with data visualization features. The views required for these expense
tracking and visualization features will be developed by extending and modifying the
existing React components in the MERN skeleton application. The component tree in
the following screenshot shows all the custom React components that make up the
MERN Expense Tracker frontend developed in this chapter:

We will add new React components to implement views for creating expense records,
listing and modifying already recorded expenses, and displaying reports giving
insights into expenses incurred by a user over time. We will also modify existing
components such as the Home component to render an overview of current expenses
by a user. Before we can implement visualizations for the user's expense data, we
need to start by adding the capability to record day-to-day expenses on the
application. In the next section, we will discuss how to implement this feature
allowing signed-in users to create and modify their expense records on the
application.

Adding expense records
In the MERN Expense Tracker application, a user who is signed in will be able to
create and manage their expense records. To enable these features of adding and
managing expense records, we will need to define how to store expense details, and
implement the full-stack slices that will let users create new expenses, view these
expenses, and update or delete existing expenses on the application.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[439]

In the following sections, first, we will define the Expense model with a Mongoose
Schema to store the details of each expense record. Then, we will discuss
implementations for the backend APIs and frontend views that are needed to allow a
user to create new expenses, view a list of their expenses, and modify existing
expenses by either editing details of or deleting an expense from the application.

Defining an Expense model
We will implement a Mongoose model to define an Expense model for storing the
details of each expense record. This model will be defined
in server/models/expense.model.js, and the implementation will be similar
to other Mongoose Model implementations covered in previous chapters, such as the
Course model defined in Chapter 6, Building a Web-Based Classroom Application. The
Expense schema in this model will have simple fields to store details about each
expense, such as a title, the amount, category, and date when it was incurred, along
with a reference to the user who created the record. The code defining the expense
fields are given in the following list with explanations:

Expense title: The title field will describe the expense. It is declared to be
a String type and will be a required field:

title: {
 type: String,
 trim: true,
 required: 'Title is required'
},

Expense amount: The amount field will store the monetary cost of the
expense as a value of the Number type, and it will be a required field with a
minimum allowed value of 0:

amount: {
 type: Number,
 min: 0,
 required: 'Amount is required'
},

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[440]

Expense category: The category field will define the expense type, so
expenses can be grouped by this value. It is declared to be a String type
and will be a required field:

category: {
 type: String,
 trim: true,
 required: 'Category is required'
},

Incurred on: The incurred_on field will store the date-time when the
expense was incurred or paid. It is declared to be a Date type and will
default to the current date-time if no value is provided:

incurred_on: {
 type: Date,
 default: Date.now
},

Notes: The notes field, defined as a String type, will allow
the recording of additional details or notes for a given expense record:

notes: {
 type: String,
 trim: true
},

Expense recorded by: The recorded_by field will reference the user who
is creating the expense record:

recorded_by: {
 type: mongoose.Schema.ObjectId,
 ref: 'User'
}

Created and updated at times: The created and updated fields will
be Date types, with created generated when a new expense is added,
and updated changed when any expense details are modified:

updated: Date,
created: {
 type: Date,
 default: Date.now
},

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[441]

The fields added to this schema definition will enable us to implement all the
expense-related features in MERN Expense Tracker. In the next section, we will start
developing these features by implementing the full-stack slice that will allow users to
create new expense records.

Creating a new expense record
In order to create a new expense record on the application, we will need to integrate a
full-stack slice that allows the user to fill out a form view in the frontend, and then
save the entered details to a new expense document in the database in the
backend. To implement this feature, in the following sections, we will add a create
expense API in the backend, along with a way to fetch this API in the frontend, and a
create new expense form view that takes user input for expense details.

The create expense API
For the implementation of the create expense API that will allow creating new
expenses in the database, we will first add a POST route, as shown in the following
code.

mern-expense-tracker/server/routes/expense.routes.js:

router.route('/api/expenses')
 .post(authCtrl.requireSignin, expenseCtrl.create)

A POST request to this route at /api/expenses will first ensure that the requesting
user is signed in with the requireSignin method from the auth controllers, before
invoking the create method to add a new expense record in the database.
This create method is defined in the following code.

mern-expense-tracker/server/controllers/expense.controller.js:

const create = async (req, res) = {
 try {
 req.body.recorded_by = req.auth._id
 const expense = new Expense(req.body)
 await expense.save()
 return res.status(200).json({
 message: "Expense recorded!"
 })
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[442]

 })
 }
}

In this create method, we set the recorded_by field to the user currently signed in,
before using the expense data provided in the request body to save the new expense
in the Expense collection in the database.

The expense.routes.js file containing the expense routes will be very similar to
the user.routes file. To load these new expense routes in the Express app, we need
to mount the expense routes in express.js, as shown in the following code, in the
same way that we did for the auth and user routes.

mern-expense-tracker/server/express.js:

app.use('/', expenseRoutes)

This create expense API endpoint is now ready in the backend and can be used in the
frontend to make a POST request. To fetch this API in the frontend, we will add a
corresponding create method in api-expense.js, similar to the other API
implementations that we discussed in previous chapters, such as the Creating a new
auction section from Chapter 9, Adding Real-Time Bidding Capabilities to the Marketplace.

This fetch method will be used in the frontend component that will display a form
where the user can enter details of the new expense and save it on the application. In
the next section, we will implement the React component that will render the form for
recording a new expense.

The NewExpense component
Signed-in users on this expense tracking application will interact with a form view in
order to enter details of a new expense record. This form view will be rendered in the
NewExpense component, which will allow users to create a new expense by entering
the expense title, the amount spent, the category of the expense, the date-time of
when the expense was incurred, and any additional notes.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[443]

This form will render as follows:

The implementation for this NewExpense component is similar to other form
implementations that we have discussed previously, such as the Signup component
implementation from Chapter 4, Adding a React Frontend to Complete MERN. The only
different field in this form component is the date-time input for the Incurred on
timing. Clicking on this field will render a date-time picker widget, as shown in the
following screenshot:

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[444]

To implement this date-time picker for the form, we will use Material-UI Pickers
along with a date management library. Before we can integrate these libraries, we first
need to install the following Material-UI Pickers and date-fns modules by running
the following yarn command from the command line:

yarn add @material-ui/pickers @date-io/date-fns@1.x date-fns

Once these modules are installed, we can import the required components and
modules in the NewExpense component and add the date-time picker widget to the
form, as shown in the following code.

mern-expense-tracker/client/expense/NewExpense.js:

import DateFnsUtils from '@date-io/date-fns'
import { DateTimePicker, MuiPickersUtilsProvider} from "@material-
ui/pickers"
...
 <MuiPickersUtilsProvider utils={DateFnsUtils}>
 <DateTimePicker
 label="Incurred on"
 views={["year", "month", "date"]}
 value={values.incurred_on}

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[445]

 onChange={handleDateChange}
 showTodayButton
 />
 </MuiPickersUtilsProvider>

This widget will render options to pick a year, month, date, and time along with a
TODAY button to set the current time as the selected value. When the user is done
picking a date-time, we will capture the value with the handleDateChange method
and set it to state with the other expense-related values collected from the form. The
handleDateChange method is defined as follows.

mern-expense-tracker/client/expense/NewExpense.js:

 const handleDateChange = date = {
 setValues({...values, incurred_on: date })
 }

Using this, we will have a date value set for the incurred_on field in the new
expense record.

This NewExpense component can only be viewed by signed-in users. So, we will add
a PrivateRoute in the MainRouter component, which will render this form only for
authenticated users at /expenses/new.

mern-expense-tracker/client/MainRouter.js:

 PrivateRoute path="/expenses/new" component={NewExpense}/

This link can be added to any view, such as the Menu component, to be rendered
conditionally when users are signed in. Now that it is possible to add new expense
records in this expense tracking application, in the next section, we will discuss the
implementation to fetch and list these expenses from the database in the backend to
the views in the frontend.

Listing expenses
In MERN Expense Tracker, users will be able to view the list of expenses that they
already recorded on the application and incurred within a provided date range. In the
following sections, we will add this ability by implementing a backend API to retrieve
the list of expenses recorded by the currently signed-in user, and add a frontend view
that will use this API to render the returned list of expenses to the end user.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[446]

The expenses by user API
We will implement an API to get the expenses recorded by a specific user and
incurred between a provided date range. The request for this API will be received at
'/api/expenses', with the route defined in expense.routes.js as follows.

mern-expense-tracker/server/routes/expense.routes.js:

router.route('/api/expenses')
 .get(authCtrl.requireSignin, expenseCtrl.listByUser)

A GET request to this route will first ensure that the requesting user is signed in,
before invoking the controller method to fetch the expenses from the database. In this
application, users will only be able to view their own expenses. After the user
authentication is confirmed, in the listByUser controller method we query the
Expense collection in the database using date range specified in the request and the
ID of the user who is signed in. The listByUser method is defined in the following
code.

mern-expense-tracker/server/controllers/expense.controller.js:

const listByUser = async (req, res) = {
 let firstDay = req.query.firstDay
 let lastDay = req.query.lastDay
 try {
 let expenses = await Expense.find({'$and':[{'incurred_on':
 { '$gte': firstDay, '$lte':lastDay }},
 {'recorded_by': req.auth._id } }).sort('incurred_on')
 .populate('recorded_by', '_id name')
 res.json(expenses)
 } catch (err){
 console.log(err)
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

In this method, we start by gathering the first day and the last day of the date range
specified in the request query. From the database, we then retrieve the expenses
incurred by the signed-in user within these dates. The signed-in user is matched
against the user referenced in the recorded _by field. The find query against the
Expense collection using these values will return matching expenses sorted by the
incurred_on field, with the recently incurred expenses listed first.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[447]

The API to retrieve expenses recorded by a specific user can be used in the frontend
to retrieve and display the expenses to the end user. To fetch this API in the frontend,
we will add a corresponding listByUser method in api-expense.js, as shown in
the following code.

mern-expense-tracker/client/expense/api-expense.js:

 const listByUser = async (params, credentials, signal) = {
 const query = queryString.stringify(params)
 try {
 let response = await fetch('/api/expenses?'+query, {
 method: 'GET',
 signal: signal,
 headers: {
 'Accept': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 }
 })
 return await response.json()
 }catch(err){
 console.log(err)
 }
 }

In this method, before making the request to the list expenses API, we form the query
string containing the date range with the queryString library. Then, this query
string is attached to the request URL.

This fetch method will be used in the Expenses component to retrieve and show the
expenses to the user. We will take a look at the implementation of
the Expenses component in the next section.

The Expenses component
The list of expenses retrieved from the database will be rendered using a React
component called Expenses. This component, on the initial load, will render the
expenses incurred by the signed-in user in the current month. In this view, the user
will also have the option to pick a date range to retrieve expenses incurred within
specific dates, as shown in the following screenshot:

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[448]

While defining the Expenses component, we first use a useEffect hook to make a
fetch call to the list expenses API in order to retrieve the initial list of expenses. We
also initialize the values that are necessary for making this request and for rendering
the response to be received from the server, as shown in the following code.

mern-expense-tracker/client/expense/Expenses.js:

export default function Expenses() {
 const date = new Date(), y = date.getFullYear(), m =
date.getMonth()
 const [firstDay, setFirstDay] = useState(new Date(y, m, 1))
 const [lastDay, setLastDay] = useState(new Date(y, m + 1, 0))
 const jwt = auth.isAuthenticated()
 const [redirectToSignin, setRedirectToSignin] = useState(false)
 const [expenses, setExpenses] = useState([])

 useEffect(() = {
 const abortController = new AbortController()
 const signal = abortController.signal
 listByUser({firstDay: firstDay, lastDay: lastDay},
 {t: jwt.token}, signal)
 .then((data) = {
 if (data.error) {
 setRedirectToSignin(true)
 } else {
 setExpenses(data)
 }
 })
 return function cleanup(){
 abortController.abort()

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[449]

 }
 }, [])
...
}

We first determine the dates of the first day and the last day of the current month.
These dates are set in the state to be rendered in the search form fields and provided
as the date range query parameters in the request to the server. Because we will only
fetch the expenses associated with the current user, we retrieve the signed-in
user's auth credentials to be sent with the request. If the request to the server results
in an error, we will redirect the user to the login page. Otherwise, we will set the
received expenses in the state to be rendered in the view.

In the view part of the Expenses component, we will add a form to search by date
range, before iterating through the resulting expenses array to render individual
expense details. In the following sections, we will look at the implementation of the
search form and expenses list in the component view.

Searching by date range
In the Expenses view, users will have the option to view a list of expenses incurred
within a specific date range. To implement a search form that allows users to pick a
start and end date for the range, we will use DatePicker components from Material-
UI Pickers.

In the view, we will add two DatePicker components to collect the first day and the
last day of the query range, and also add a button to initiate the search, as shown in
the following code.

mern-expense-tracker/client/expense/Expenses.js:

 div className={classes.search}
 <MuiPickersUtilsProvider utils={DateFnsUtils}
 <DatePicker
 disableFuture
 format="dd/MM/yyyy"
 label="SHOWING RECORDS FROM"
 views={["year", "month", "date"]}
 value={firstDay}
 onChange={handleSearchFieldChange('firstDay')}
 />
 <DatePicker
 format="dd/MM/yyyy"
 label="TO"
 views={["year", "month", "date"]}

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[450]

 value={lastDay}
 onChange={handleSearchFieldChange('lastDay')}
 />
 </MuiPickersUtilsProvider>
 Button variant="contained" color="secondary"
 onClick= {searchClicked} GO </Button>
 </div>

When a user interacts with the DatePicker components to select a date, we will
invoke the handleSearchFieldChange method to get the selected date value. This
method gets the date value and sets it to either the firstDay or lastDay value in
the state accordingly. The handleSearchFieldChange method is defined in the
following code.

mern-expense-tracker/client/expense/Expenses.js:

const handleSearchFieldChange = name = date = {
 if(name=='firstDay'){
 setFirstDay(date)
 }else{
 setLastDay(date)
 }
}

After the two dates are selected and set in state, when the user clicks on the Search
button, we will invoke the searchClicked method. In this method, we make
another call to the list expenses API with the new dates sent in the query parameters.
The searchClicked method is defined as follows.

mern-expense-tracker/client/expense/Expenses.js:

const searchClicked = () = {
 listByUser({firstDay: firstDay, lastDay: lastDay},{t:
jwt.token}).then((data) = {
 if (data.error) {
 setRedirectToSignin(true)
 } else {
 setExpenses(data)
 }
 })
}

Once the expenses resulting from this new query are received from the server, we set
it to the state to be rendered in the view. In the next section, we will look at the
implementation for displaying this retrieved list of expenses.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[451]

Rendering expenses
In the Expenses component view, we iterate through the list of expenses retrieved
from the database and display each expense record to the end user in a Material-UI
ExpansionPanel component. In the ExpansionPanel component, we show details
of the individual expense record in the Summary section. Then, on the expansion of
the panel, we will give the user the option to edit details of the expense or delete the
expense, as discussed in the next section.

In the following code added to the view code after the search form elements, we use
map to iterate through the expenses array and render each expense in an
ExpansionPanel component.

mern-expense-tracker/client/expense/Expenses.js:

{expenses.map((expense, index) = {
 return span key={index}
 <ExpansionPanel className={classes.panel}>
 <ExpansionPanelSummary
 expandIcon={ Edit / } >
 <div className={classes.info}
 Typography className={classes.amount} $ {expense.amount}
</Typography>
 <Divider style={{marginTop: 4, marginBottom: 4}}/>
 <Typography {expense.category} </Typography>
 <Typography className={classes.date}
 {new Date(expense.incurred_on).toLocaleDateString()}
 </Typography>
 </div>
 <div>
 <Typography className={classes.heading} {expense.title}
</Typography>
 <Typography className={classes.notes} {expense.notes}
</Typography>
 </div>
 </ExpansionPanelSummary>
 <Divider/>
 <ExpansionPanelDetails style={{display: 'block'}}
 ...
 </ExpansionPanelDetails>
 </ExpansionPanel>

 })
}

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[452]

The expense details are rendered in the ExpansionPanelSummary component,
giving the user an overview of the expense that they recorded on the application. The
ExpansionPanelDetails component will contain the options to modify the given
expense and complete the feature allowing users to manage the expenses they have
recorded on the application. In the next section, we will discuss the implementation
of these options to modify the recorded expense.

Modifying an expense record
Users on MERN Expense Tracker will be able to modify the expenses they have
already recorded on the application by either updating the details of an expense or
deleting the expense record altogether.

In the frontend of the application, they will receive these modification options in the
expenses list after expanding to see details of an individual expense in the list, as
shown in the following screenshot:

To implement these expense modification features, we will have to update the view
to render this form and the delete option. Additionally, we will add edit and delete
expense API endpoints on the server. In the following sections, we will discuss how
to render these edit and delete elements in the frontend, and then implement the edit
and delete APIs in the backend.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[453]

Rendering the edit form and delete option
We will render the edit expense form and delete option in the Expenses component
view. For each expense record rendered in a Material-UI ExpansionPanel
component in this view, we will add form fields in the ExpansionPanelDetails
section, with each field pre-populated with the corresponding expense detail value.
Users will be able to interact with these form fields to change the values and then
click on the Update button to save the changes to the database. We will add these
form fields in the view along with the Update button and delete option, as shown in
the following code.

mern-expense-tracker/client/expense/Expenses.js:

 <ExpansionPanelDetails style={{display: 'block'}}>
 <div>
 <TextField label="Title" value={expense.title}
 onChange={handleChange('title', index)}/>
 <TextField label="Amount ($)" value={expense.amount}
 onChange={handleChange('amount', index)}
type="number"/>
 </div>
 <div>
 <MuiPickersUtilsProvider utils={DateFnsUtils}>
 <DateTimePicker
 label="Incurred on"
 views={["year", "month", "date"]}
 value={expense.incurred_on}
 onChange={handleDateChange(index)}
 showTodayButton
 />
 </MuiPickersUtilsProvider
 <TextField label="Category" value={expense.category}
 onChange={handleChange('category', index)}/>
 </div>
 <TextField label="Notes" multiline rows="2"
 value={expense.notes}
 onChange={handleChange('notes', index)}
 />
 <div className={classes.buttons}
 { error && (Typography component="p" color="error"
 <Icon color="error" className={classes.error} error </Icon>
 {error}
 </Typography>)
 }
 { saved && Typography component="span" color="secondary" Saved
</Typography> }
 <Button color="primary" variant="contained"

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[454]

 onClick={()= clickUpdate(index)} Update </Button>
 DeleteExpense expense={expense} onRemove={removeExpense}/
 </div>
 </ExpansionPanelDetails>

The form fields added here are similar to the fields added in the NewExpense
component to create new expense records. When the user interacts with these fields to
update the values, we invoke the handleChange method with the corresponding
index of the given expense in the expenses array, the name of the field, and the
changed value. The handleChange method is defined in the following code.

mern-expense-tracker/client/expense/Expenses.js:

const handleChange = (name, index) = event = {
 const updatedExpenses = [...expenses]
 updatedExpenses[index][name] = event.target.value
 setExpenses(updatedExpenses)
}

The expense object at the given index in the expenses array is updated with the
changed value of the specified field and set to state. This will render the view with the
latest values as the user is updating the edit form. When the user is done making
changes and clicks on the Update button, we will invoke the clickUpdate method,
which is defined as follows.

mern-expense-tracker/client/expense/Expenses.js:

const clickUpdate = (index) = {
 let expense = expenses[index]
 update({
 expenseId: expense._id
 }, {
 t: jwt.token
 }, expense)
 .then((data) = {
 if (data.error) {
 setError(data.error)
 } else {
 setSaved(true)
 setTimeout(()= {setSaved(false)}, 3000)
 }
}

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[455]

In this clickUpdate method, we send the updated expense to the backend in a fetch
call to an edit expense API. The implementation of this edit expense API is discussed
in the next section.

The DeleteExpense component added to the edit form renders a Delete button and
uses the expense object passed as a prop to delete the associated expense from the
database by calling the delete expense API. The implementation for this
DeleteExpense is similar to the DeleteShop component discussed in Chapter
7, Exercising MERN Skills with an Online Marketplace. In the next section, we will
discuss the implementation of the edit and delete expense APIs used by the edit form
and delete the option to relay the expense-related updates made by the user to the
Expense collection in the database.

Editing and deleting an expense in the backend
In order to complete the edit and delete expense operations initiated by signed-in
users from the frontend, we need to have the corresponding APIs in the backend. The
route for these API endpoints that will accept the update and delete requests can be
declared in the following code.

mern-expense-tracker/server/routes/expense.routes.js:

router.route('/api/expenses/:expenseId')
 .put(authCtrl.requireSignin, expenseCtrl.hasAuthorization,
expenseCtrl.update)
 .delete(authCtrl.requireSignin, expenseCtrl.hasAuthorization,
expenseCtrl.remove)
router.param('expenseId', expenseCtrl.expenseByID)

A PUT or DELETE request to this route will first ensure that the current user is signed
in with the requireSignin auth controller method, before checking authorization
and performing any operations in the database.

The :expenseId parameter in the route URL, /api/expenses/:expenseId, will
invoke the expenseByID controller method, which is similar to
the userByID controller method. It retrieves the expense from the database and
attaches it to the request object to be used in the next method.
The expenseByID method is defined in the following code.

mern-expense-tracker/server/controllers/expense.controller.js:

const expenseByID = async (req, res, next, id) = {
 try {

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[456]

 let expense = await Expense.findById(id).populate
 ('recorded_by', '_id name').exec()
 if (!expense)
 return res.status('400').json({
 error: "Expense record not found"
 })
 req.expense = expense
 next()
 } catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The expense object retrieved that is from the database will also contain the name and
ID details of the user who recorded the expense, as we specified in
the populate() method. For these API endpoints, next, we verify that this expense
object was actually recorded by the signed-in user with
the hasAuthorization method, which is defined in the expense controller as
follows.

mern-expense-tracker/server/controllers/expense.controller.js:

const hasAuthorization = (req, res, next) = {
 const authorized = req.expense && req.auth &&
 req.expense.recorded_by._id == req.auth._id
 if (!(authorized)) {
 return res.status('403').json({
 error: "User is not authorized"
 })
 }
 next()
}

Once it has been confirmed that the user trying to update the expense is the one who
recorded it and if it is a PUT request, then the update method is invoked next to
update the expense document with the new changes in the Expense collection. The
update controller method is defined in the following code.

mern-expense-tracker/server/controllers/expense.controller.js:

const update = async (req, res) = {
 try {
 let expense = req.expense
 expense = extend(expense, req.body)
 expense.updated = Date.now()

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[457]

 await expense.save()
 res.json(expense)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The method retrieves the expense details from req.expense, then uses
the lodash module to extend and merge the changes that came in the request body to
update the expense data. Before saving this updated expense to the database,
the updated field is populated with the current date to reflect the last updated
timestamp. On the successful save of this update, the updated expense object is sent
back in the response.

If it is a DELETE request instead of a PUT request, the remove method is invoked
instead in order to delete the specified expense document from the collection in the
database. The remove controller method is defined in the following code.

mern-expense-tracker/server/controllers/expense.controller.js:

const remove = async (req, res) = {
 try {
 let expense = req.expense
 let deletedExpense = await expense.remove()
 res.json(deletedExpense)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The remove operation in this method will permanently delete the expense from the
application.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[458]

We have all the features in place for users on the application to start recording and
managing their day-to-day expenses. We defined an Expense model for storing
expense data, and backend APIs and frontend views for creating new expenses,
displaying a list of expenses for a given user, and modifying an existing expense. We
are now ready to implement data visualization features based on the expense data
that will be recorded by users on the application over time. We will discuss these
implementations in the next section.

Visualizing expense data over time
Aside from allowing users to keep logs of their expenses, the MERN Expense Tracker
application will process the collected expense data to give users insights into their
spending habits over time. We will implement simple data aggregation and
visualization features to demonstrate how the MERN stack can accommodate such
requirements in any full-stack application. To enable these features, we will utilize
MongoDB's aggregation framework and also the React-based charting and data
visualization library—Victory—by Formidable.

In the following sections, we will first add features to summarize a user's expenses in
the current month and also show how they are doing compared to previous months.
Then, we will add different Victory charts to give them a visual representation of
their spending patterns over a month, and a year, and per expense category.

Summarizing recent expenses
When a user signs in to their account on the application, they will see a preview of the
expenses they incurred so far in the current month. They will also see a comparison of
how much more or less they are spending in each category in comparison to the
averages from previous months. To implement these features, we will have to add
backend APIs that will run aggregation operations on the relevant expense data in the
database and return the computed results to be rendered in the frontend. In the
following sections, we will implement the full-stack slices—first to show a preview of
all the expenses incurred so far in the current month, and then a comparison of the
average expenses per category with respect to expenditures in the current month.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[459]

Previewing expenses in the current month
After a user signs in to the application, we will show a preview of their current
expenses, including their total expenditure for the current month and how much they
spent on the current date and the day before. This preview will be displayed to the
end user, as shown in the following screenshot:

In order to implement this feature, we need to add a backend API that will process
the existing expense data to return these three values, so it can be rendered in a React
component. In the following sections, we will take a look at the implementation and
integration of this API with a frontend view to complete this preview feature.

The current month preview API
We will add an API to the backend that will return the preview of expenses incurred
so far in the current month. To implement this API, we will first declare a GET route,
as shown in the following code.

mern-expense-tracker/server/routes/expense.routes.js:

router.route('/api/expenses/current/preview')
 .get(authCtrl.requireSignin, expenseCtrl.currentMonthPreview)

A GET request to this route at '/api/expenses/current/preview' will first
ensure the requesting client is a signed-in user, and then it will invoke the
currentMonthPreview controller method. In this method, we will use MongoDB's
aggregation framework to perform three sets of aggregations on the Expense
collection and retrieve the total expenses for the current month, the current date, and
the day before.

The currentMonthPreview controller method will be defined with the following
structure, where we first determine the dates needed to find matching expenses, and
then we perform the aggregations before returning the results in the response.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[460]

mern-expense-tracker/server/controllers/expense.controller.js:

const currentMonthPreview = async (req, res) = {
 const date = new Date(), y = date.getFullYear(), m = date.getMonth()
 const firstDay = new Date(y, m, 1)
 const lastDay = new Date(y, m + 1, 0)

 const today = new Date()
 today.setUTCHours(0,0,0,0)
 const tomorrow = new Date()
 tomorrow.setUTCHours(0,0,0,0)
 tomorrow.setDate(tomorrow.getDate()+1)
 const yesterday = new Date()
 yesterday.setUTCHours(0,0,0,0)
 yesterday.setDate(yesterday.getDate()-1)

 try {
 /* ... Perform aggregation operations on the Expense collection
 to compute current month's numbers ... */
 /* ... Send computed result in response ... */
 } catch (err){
 console.log(err)
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }

}

We first determine the dates for the current month's first day and last day, then the
dates for today, tomorrow, and yesterday with the minutes and seconds set to zero.
We will need these dates to specify the ranges for finding the matching expenses that
were incurred in the current month, today, and yesterday. Then, with these values
and the signed-in user's ID reference, we construct the aggregation pipelines
necessary to retrieve the total expenses for the current month, today, and yesterday.
We group these three different aggregation pipelines using the $facet stage in
MongoDB's aggregation framework, as shown in the following code.

mern-expense-tracker/server/controllers/expense.controller.js:

let currentPreview = await Expense.aggregate([
 { $facet: { month: [
 { $match: { incurred_on: { $gte: firstDay, $lt: lastDay },
 recorded_by: mongoose.Types.ObjectId(req.auth._id)}},
 { $group: { _id: "currentMonth" , totalSpent: {$sum: "$amount"}
}},
],

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[461]

 today: [
 { $match: { incurred_on: { $gte: today, $lt: tomorrow },
 recorded_by: mongoose.Types.ObjectId(req.auth._id) }},
 { $group: { _id: "today" , totalSpent: {$sum: "$amount"} } },
],
 yesterday: [
 { $match: { incurred_on: { $gte: yesterday, $lt: today },
 recorded_by: mongoose.Types.ObjectId(req.auth._id) }},
 { $group: { _id: "yesterday" , totalSpent: {$sum: "$amount"} }
 },
]
 }
 }])
let expensePreview = {month: currentPreview[0].month[0], today:
currentPreview[0].today[0], yesterday: currentPreview[0].yesterday[0]
}
res.json(expensePreview)

For each aggregation pipeline, we first match the expenses using the date range
values for the incurred_on field, and also the recorded_by field with the current
user's reference, so the aggregation is only performed on the expenses recorded by
the current user. Then, the matching expenses in each pipeline are grouped to
calculate the total amount spent.

In the faceted aggregation operation result, each pipeline has its
own field in the output document where the results are stored as an
array of documents.

After the aggregation operations are completed, we access the computed results and
compose the response to be sent back in the response to the requesting client. This
API can be used in the frontend with a fetch request. You can define a corresponding
fetch method to make the request, similar to other API implementations. Then, the
fetch method can be used in a React component to retrieve and render these
aggregated values to the user. In the next section, we will discuss the implementation
of this view to render the preview of current expenses for a user.

Rendering the preview of current expenses
We can give the user a glimpse of their current expenses in any React component,
which is accessible to a signed-in user and added to the frontend of the application.
To retrieve the expense totals and render these in the view, we can call the current
month preview API either in a useEffect hook or when a button is clicked on.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[462]

In the MERN Expense Tracker application, we render these details in a React
component that is added to the home page. We use a useEffect hook, as shown in
the following code, to retrieve the current expense preview data.

mern-expense-tracker/client/expense/ExpenseOverview.js:

 useEffect(() = {
 const abortController = new AbortController()
 const signal = abortController.signal
 currentMonthPreview({t: jwt.token}, signal).then((data) = {
 if (data.error) {
 setRedirectToSignin(true)
 } else {
 setExpensePreview(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [])

Once the data is received from the backend, we set it to state in a variable called
expensePreview, so the information can be displayed in the view. In the view of the
component, we use this state variable to compose an interface with these details as
desired. In the following code, we render the total expenses for the current month, for
the current date, and for the day before.

mern-expense-tracker/client/expense/ExpenseOverview.js:

 <Typography variant="h4" color="textPrimary" You've spent
</Typography>
 <div>
<Typography component="span"
 ${expensePreview.month ? expensePreview.month.totalSpent :
'0'}
 span so far this month
 </Typography>
 <div>
 <Typography variant="h5" color="primary"
 ${expensePreview.today ? expensePreview.today.totalSpent
:'0'}
 span today
 </Typography>
 <Typography variant="h5" color="primary"
 ${expensePreview.yesterday
 ? expensePreview.yesterday.totalSpent: '0'}
 <span className={classes.day} yesterday

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[463]

 </Typography>
 <Link to="/expenses/all" Typography variant="h6"> See more
</Typography> </Link>
 </div>
 </div>

These values are only rendered if the corresponding value is returned in the
aggregation results from the backend; otherwise, we render a "0."

With this current expenses preview feature implemented, we are able to process the
expense data recorded by the user to give them an idea of how much they are
spending currently. In the next section, we will follow similar implementation steps
to inform the user about their spending status for each expense category.

Tracking current expenses by category
In this application, we will give the user an overview of how much they are currently
spending in each expense category in comparison to previous averages. For each
category, we will display the monthly average based on previous expense data, show
the total spent so far in the current month, and show the difference to indicate
whether they are spending extra or are saving money in the current month. The
following screenshot shows what this feature will look like to the end user for their
expense data:

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[464]

To implement this feature, we need to add a backend API that will process the
existing expense data to return the monthly average along with the total spent in the
current month for each category, so it can be rendered in a React component. In the
following sections, we will look at the implementation and integration of this API and
frontend view to complete this feature to track expenses by category.

The current expenses by category API
We will add an API to the backend that will return the average monthly expenses and
the total spent in the current month for each expense category. To implement this
API, we will first declare a GET route, as shown in the following code.

mern-expense-tracker/server/routes/expense.routes.js:

router.route('/api/expenses/by/category')
 .get(authCtrl.requireSignin, expenseCtrl.expenseByCategory)

A GET request to this route at '/api/expenses/by/category' will first ensure that
the requesting client is a signed-in user, and then it will invoke
the expenseByCategory controller method. In this method, we will use different
features of MongoDB's aggregation framework to separately calculate the monthly
expense averages for each category and the total spent in the current month per
category, before combining the two results to return these two values associated with
each category to the requesting client.

The expenseByCategory controller method will be defined with the following
structure, where we first determine the dates required to find matching expenses, and
then we perform the aggregations before returning the results in the response.

mern-expense-tracker/server/controllers/expense.controller.js:

const expenseByCategory = async (req, res) = {
 const date = new Date(), y = date.getFullYear(), m = date.getMonth()
 const firstDay = new Date(y, m, 1)
 const lastDay = new Date(y, m + 1, 0)

 try {
 let categoryMonthlyAvg = await Expense.aggregate([/*...
aggregation ... */]).exec()
 res.json(categoryMonthlyAvg)
 } catch (err) {
 console.log(err)
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[465]

 }
}

In this method, we will use an aggregation pipeline containing a $facet with two
sub-pipelines for calculating the monthly average per category and the total spent per
category in the current month. Then, we take these two resulting arrays from the sub-
pipelines to merge the results. The code for this aggregation pipeline is defined in the
following code.

mern-expense-tracker/server/controllers/expense.controller.js:

[
 { $facet: {
 average: [
 { $match: { recorded_by: mongoose.Types.ObjectId(req.auth._id)
}},
 { $group: { _id: {category: "$category", month: {$month:
"$incurred_on"}},
 totalSpent: {$sum: "$amount"} } },
 { $group: { _id: "$_id.category", avgSpent: { $avg:
"$totalSpent"}}},
 { $project: {
 _id: "$_id", value: {average: "$avgSpent"},
 }
 }
],
 total: [
 { $match: { incurred_on: { $gte: firstDay, $lte: lastDay },
 recorded_by: mongoose.Types.ObjectId(req.auth._id)
}},
 { $group: { _id: "$category", totalSpent: {$sum: "$amount"} } },
 { $project: {
 _id: "$_id", value: {total: "$totalSpent"},
 }
 }
]
 }
 },
 { $project: {
 overview: { $setUnion:['$average','$total'] },
 }
 },
 { $unwind: '$overview' },
 { $replaceRoot: { newRoot: "$overview" } },
 { $group: { _id: "$_id", mergedValues: { $mergeObjects: "$value" } }
}
]

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[466]

While projecting the output of the sub-pipelines in the $facet stage, we make sure
that the keys of the result objects are _id and value in both output arrays, so they
can be merged uniformly. Once the faceted aggregation operations are done, we use a
$setUnion on the results to combine the arrays. Then, we make the resulting
combined array the new root document in order to run a $group aggregation on it to
merge the values for the averages and totals per category.

The final output from this aggregation pipeline will contain an array with an object
for each expense category. Each object in this array will have the category name as the
_id value and a mergedValues object containing the average and total values for the
category. Then, this final output array generated from the aggregation is sent back in
the response to the requesting client.

We can use this API in the frontend with a fetch request. You can define a
corresponding fetch method to make the request, similar to other API
implementations. Then, the fetch method can be used in a React component to
retrieve and render these aggregated values to the user. In the next section, we will
discuss the implementation of this view to render the comparison of expenses in each
category by a user in the current month versus previous months.

Rendering an overview of expenses per category
Besides informing the user of how much they are spending currently, we can give
them an idea of how they are doing in comparison to previous expenditures. We can
tell them whether they are spending more or saving money in the current month for
each category. We can implement a React component, that calls the current expenses
by category API to render the average and total values sent by the backend and also
displays the computed difference between these two values.

The API can be fetched either in a useEffect hook or when a button is clicked on. In
the MERN Expense Tracker application, we render these details in a React component
that is added to the home page. We use a useEffect hook, as shown in the following
code, to retrieve the expenses per category data.

mern-expense-tracker/client/expense/ExpenseOverview.js:

 useEffect(() = {
 const abortController = new AbortController()
 const signal = abortController.signal
 expenseByCategory({t: jwt.token}, signal).then((data) = {
 if (data.error) {
 setRedirectToSignin(true)
 } else {

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[467]

 setExpenseCategories(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [])

We will set the values received from the backend to the state in an
expenseCategories variable, and render its details in the view. This variable will
contain an array, which we will iterate through in the view code to display three
values for each category—the monthly average, the current month's total
expenditure, and the difference between the two with an indication of whether
money was saved or not.

In the following code, we use a map to iterate over the received data array and, for
each item in the array, generate the view to display the average and total values
received with the item. Besides this, we also show a computed value using these two
values.

mern-expense-tracker/client/expense/ExpenseOverview.js:

{expenseCategories.map((expense, index) = {
 return(div key={index}
 <Typography variant="h5" {expense._id} </Typography>
 <Divider style={{ backgroundColor:
 indicateExpense(expense.mergedValues)}}/>
 <div>
 <Typography component="span" past average </Typography>
 <Typography component="span" this month </Typography>
 <Typography component="span" {expense.mergedValues.total
 && expense.mergedValues.total-
 expense.mergedValues.average > 0 ?
 "spent extra" : "saved" }
 </Typography>
 </div>
 <div>
 <Typography component="span" ${expense.mergedValues.average}
</Typography>
 <Typography component="span" ${expense.mergedValues.total ?
 expense.mergedValues.total : 0}
 </Typography>
 <Typography component="span" ${expense.mergedValues.total ?
 Math.abs(expense.mergedValues.total-
 expense.mergedValues.average) :
 expense.mergedValues.average}
 </Typography>

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[468]

 </div>
 <Divider/>
 </div>)
 })
}

For each item in the array, we first render the category name, then the headings of the
three values we will display. The third heading is rendered conditionally depending
on whether the current total is more or less than the monthly average. Then, under
each heading, we render the corresponding values for the monthly average, the
current total—which will be zero if no value was returned—and then the difference
between this average and the total. For the third value, we render the absolute value
of the computed difference between the average and total values using Math.abs().

Based on this difference, we also render the divider under the category name with
different colors to indicate whether money was saved, extra money was spent, or the
same amount of money was spent. To determine the color, we define a method called
indicateExpense, as shown in the following code:

const indicateExpense = (values) = {
 let color = '#4f83cc'
 if(values.total){
 const diff = values.total - values.average
 if(diff 0){
 color = '#e9858b'
 }
 if(diff 0){
 color = '#2bbd7e'
 }
 }
 return color
}

A different color is returned if the current total is more than, less than, or equal to the
monthly average. This gives the user a quick visual indicator of how they are faring in
terms of incurring expenses per category for the current month.

We have added simple data visualization features to the expense tracking application
by utilizing existing capabilities of MERN stack technologies such as the aggregation
framework in MongoDB. In the next section, we will demonstrate how to add even
more complex data visualization features into this application by integrating an
external charting library.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[469]

Displaying expense data charts
Graphs and charts are time-tested mechanisms for visualizing complex data patterns.
In the MERN Expense Tracker application, we will add simple charts using Victory to
report expense patterns over time in graphical representations to the user.

Victory is an open source charting and data visualization library for
React and React Native developed by Formidable. Different types of
charts are available as modular components that can be customized
and added to any React application. To learn more about Victory,
visit https:/ ​/​formidable. ​com/ ​open- ​source/ ​victory.

Before we get started with integrating Victory charts in the code, we will need to
install the module by running the following command from the command line:

yarn add victory

In the expense tracking application, we will add three different charts as a part of the
interactive expense reports presented to the user. The three charts will include a
scatter plot showing the expenses incurred in a given month, a bar chart showing the
total expenses incurred per month in a given year, and a pie chart showing the
average expenditure per category within a provided date range.

For each chart, we will add a corresponding backend API to retrieve the relevant
expense data and a React component to the frontend that will use the retrieved data
to render the associated Victory chart. In the following sections, we will implement
the full-stack slices necessary to add a scatter plot chart for a month's expenses, a bar
chart showing a year's monthly expenses, and a pie chart displaying the average
expenses per category over a given period of time.

A month's expenses in a scatter plot
We will show the expenses incurred by a user over a given month in a scatter plot.
This will provide them with a visual overview of how their expenses pan out over a
month. The following screenshot shows how the scatter plot will render with user
expense data:

https://formidable.com/open-source/victory
https://formidable.com/open-source/victory
https://formidable.com/open-source/victory
https://formidable.com/open-source/victory
https://formidable.com/open-source/victory
https://formidable.com/open-source/victory
https://formidable.com/open-source/victory
https://formidable.com/open-source/victory
https://formidable.com/open-source/victory
https://formidable.com/open-source/victory
https://formidable.com/open-source/victory
https://formidable.com/open-source/victory
https://formidable.com/open-source/victory

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[470]

We plot the expense amounts versus the day of the month when it was incurred on
the y axis and x axis, respectively. Hovering over a plotted bubble displays how much
was spent on which date for that specific expense record. In the following sections,
we will implement this feature by first adding a backend API that will return the
expenses for the given month in the format needed to render it in a Victory Scatter
chart. Then, we will add a React component that will retrieve this data from the
backend and render it in the Victory Scatter chart.

The scatter plot data API
We will add an API to the backend that will return the expenses incurred over a given
month in the data format needed to render the scatter chart in the frontend. To
implement this API, we will first declare a GET route, as shown in the following code.

mern-expense-tracker/server/routes/expense.routes.js:

router.route('/api/expenses/plot')
 .get(authCtrl.requireSignin, expenseCtrl.plotExpenses)

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[471]

A GET request to this route at '/api/expenses/plot' will first ensure that the
requesting client is a signed-in user, and then it will invoke
the plotExpenses controller method. The request will also take the value of the
given month in a URL query parameter, which will be used in the plotExpenses
method to determine the dates of the first day and the last day of the provided
month. We will need these dates to specify the range for finding the matching
expenses that were incurred in the specified month and recorded by the authenticated
user while aggregating the expenses into the data format needed for the chart.
The plotExpenses method is defined in the following code.

mern-expense-tracker/server/controllers/expense.controller.js:

const plotExpenses = async (req, res) = {

 const date = new Date(req.query.month), y = date.getFullYear(), m
= date.getMonth()
 const firstDay = new Date(y, m, 1)
 const lastDay = new Date(y, m + 1, 0)

 try {

 let totalMonthly = await Expense.aggregate([
 { $match: { incurred_on: { $gte : firstDay, $lt: lastDay },
 recorded_by: mongoose.Types.ObjectId(req.auth._id)
}},
 { $project: {x: {$dayOfMonth: '$incurred_on'}, y: '$amount'}}
]).exec()

 res.json(totalMonthly)

 } catch (err){
 console.log(err)
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

We run a simple aggregation operation that finds the matching expenses and returns
an output containing the values in the format needed for the y axis and x axis values
of the scatter chart. The final result of the aggregation contains an array of objects,
with each object containing an x attribute and a y attribute. The x attribute contains
the day of the month value from the incurred_on date. The y attribute contains the
corresponding expense amount. This final output array generated from the
aggregation is sent back in the response to the requesting client.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[472]

We can use this API in the frontend with a fetch request. You can define a
corresponding fetch method to make the request, similar to other API
implementations. Then, the fetch method can be used in a React component to
retrieve and render this array of x and y values in a scatter plot chart. In the next
section, we will discuss the implementation of this view to render a scatter chart
showing the expenses incurred over a given month.

The MonthlyScatter component
We will implement a React component that calls the scatter plot data API to render
the received array of expenses incurred over a given month in a Victory Scatter chart.

The API can be fetched either in a useEffect hook or when a button is clicked on. In
the MERN Expense Tracker application, we render this scatter chart in a React
component called MonthlyScatter. When this component loads, we render a scatter
chart for expenses in the current month. We also add a DatePicker component to
allow users to select the desired month and retrieve data for that month with a button
click. In the following code, we retrieve the initial scatter plot data with
a useEffect hook when the component loads.

mern-expense-tracker/client/report/MonthlyScatter.js:

const [plot, setPlot] = useState([])
const [month, setMonth] = useState(new Date())
const [error, setError] = useState('')
const jwt = auth.isAuthenticated()
useEffect(() = {
 const abortController = new AbortController()
 const signal = abortController.signal

 plotExpenses({month: month},{t: jwt.token},
signal).then((data) = {
 if (data.error) {
 setError(data.error)
 } else {
 setPlot(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [])

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[473]

When the plotted data is received from the backend and set in the state, we can
render it in a Victory Scatter chart. Additionally, we can add the following code in the
component view to render a customized scatter chart with labels.

mern-expense-tracker/client/report/MonthlyScatter.js:

 <VictoryChart
 theme={VictoryTheme.material}
 height={400}
 width={550}
 domainPadding={40}
 <VictoryScatter
 style={{
 data: { fill: "#01579b", stroke: "#69f0ae", strokeWidth: 2
},
 labels: { fill: "#01579b", fontSize: 10, padding:8}
 }}
 bubbleProperty="y"
 maxBubbleSize={15}
 minBubbleSize={5}
 labels={({ datum }) = `$${datum.y} on ${datum.x}th`}
 labelComponent={ VictoryTooltip/ }
 data={plot}
 domain={{x: [0, 31]}}
 />
 <VictoryLabel
 textAnchor="middle"
 style={{ fontSize: 14, fill: '#8b8b8b' }}
 x={270} y={390}
 text={`day of month`}
 />
 <VictoryLabel
 textAnchor="middle"
 style={{ fontSize: 14, fill: '#8b8b8b' }}
 x={6} y={190}
 angle = {270}
 text={`Amount ($)`}
 />
 </VictoryChart>

We place a VictoryScatter component in a VictoryChart component, giving us
the flexibility to customize the scatter chart wrapper and place axis label texts
outside the scatter chart. We pass the data to VictoryScatter, indicate which value
the bubble property is based on, customize the styles, and specify the size range and
labels for each bubble.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[474]

This code plots and renders the scatter chart against the data provided with the
amount spent versus the day of the month on the y axis and x axis, respectively. In the
next section, we will follow similar steps to add a bar chart to graphically display the
monthly expenses in a given year.

Total expenses per month in a year
We will show the user a bar chart representing their total monthly expenses over a
given year. This will give them an overview of how their expenses are spread out
annually. The following screenshot shows how the bar chart will render with user
expense data:

Here, we populate the bar chart with the total expense value corresponding to each
month in a given year. We add the monthly total value as labels to each bar. On the x-
axis, we show the short name of each month. In the following sections, we will
implement this feature by first adding a backend API that will return the total
expenses incurred per month over a given year and in the format needed to render it
in a Victory Bar chart. Then, we will add a React component that will retrieve this
data from the backend and render it in the Victory Bar chart.

The yearly expenses API
We will add an API to the backend that will return the total monthly expenses
incurred over a given year in the data format needed to render the bar chart in the
frontend.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[475]

To implement this API, we will first declare a GET route, as shown in the following
code.

mern-expense-tracker/server/routes/expense.routes.js:

router.route('/api/expenses/yearly')
 .get(authCtrl.requireSignin, expenseCtrl.yearlyExpenses)

A GET request to this route at '/api/expenses/yearly' will first ensure that the
requesting client is a signed-in user, and then it will invoke
the yearlyExpenses controller method. The request will also take the value of the
given year in a URL query parameter, which will be used in
the yearlyExpenses method to determine the dates of the first day and the last day
of the provided year. We will need these dates to specify the range for finding the
matching expenses that were incurred in the specified year and recorded by the
authenticated user while aggregating the total monthly expenses into the data format
needed for the chart. The yearlyExpenses method is defined in the following code.

mern-expense-tracker/server/controllers/expense.controller.js:

 const yearlyExpenses = async (req, res) = {
 const y = req.query.year
 const firstDay = new Date(y, 0, 1)
 const lastDay = new Date(y, 12, 0)
 try {
 let totalMonthly = await Expense.aggregate([
 { $match: { incurred_on: { $gte : firstDay, $lt: lastDay } }},
 { $group: { _id: {$month: "$incurred_on"}, totalSpent: {$sum:
"$amount"} } },
 { $project: {x: '$_id', y: '$totalSpent'}}
]).exec()
 res.json({monthTot:totalMonthly})
 } catch (err){
 console.log(err)
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

We run an aggregation operation that finds the matching expenses, groups the
expenses by month to calculate the total, and returns an output containing the values
in the format needed for the y axis and x axis values of the bar chart. The final result
of the aggregation contains an array of objects, with each object containing
an x attribute and a y attribute.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[476]

The x attribute contains the month value from the incurred_on date. The y attribute
contains the corresponding total expense amount for that month. This final output
array generated from the aggregation is sent back in the response to the requesting
client.

We can use this API in the frontend with a fetch request. You can define a
corresponding fetch method to make the request, similar to other API
implementations. Then, the fetch method can be used in a React component to
retrieve and render this array of x and y values in a bar chart. In the next section, we
will discuss the implementation of this view to render a bar chart showing the total
monthly expenses incurred over a given year.

The YearlyBar component
We will implement a React component that calls the yearly expenses data API to
render the received array of expenses incurred monthly over a given year in a Victory
Bar chart.

The API can be fetched either in a useEffect hook or when a button is clicked on. In
the MERN Expense Tracker application, we render this bar chart in a React
component called YearlyBar. When this component loads, we render a bar chart for
expenses in the current year. We also add a DatePicker component to allow users to
select the desired year and retrieve data for that year with a button click. In the
following code, we retrieve the initial yearly expense data with a useEffect hook
when the component loads.

mern-expense-tracker/client/report/YearlyBar.js:

const [year, setYear] = useState(new Date())
const [yearlyExpense, setYearlyExpense] = useState([])
const [error, setError] = useState('')
const jwt = auth.isAuthenticated()
useEffect(() = {
 const abortController = new AbortController()
 const signal = abortController.signal
 yearlyExpenses({year: year.getFullYear()},{t: jwt.token},
signal).then((data) = {
 if (data.error) {
 setError(data.error)
 }
 setYearlyExpense(data)
 })
 return function cleanup(){
 abortController.abort()

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[477]

 }
}, [])

With the data received from the backend and set in the state, we can render it in a
Victory Bar chart. We can add the following code in the component view to render a
customized bar chart with labels and only the x axis displayed.

mern-expense-tracker/client/report/YearlyBar.js:

const monthStrings = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul',
'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
 <VictoryChart
 theme={VictoryTheme.material}
 domainPadding={10}
 height={300}
 width={450}
 <VictoryAxis/>
 <VictoryBar
 categories={{
 x: monthStrings
 }}
 style={{ data: { fill: "#69f0ae", width: 20 }, labels: {fill:
"#01579b"} }}
 data={yearlyExpense.monthTot}
 x={monthStrings['x']}
 domain={{x: [0, 13]}}
 labels={({ datum }) = `$${datum.y}`}
 />
 </VictoryChart>

The month values returned from the database are zero-based indices, so we define
our own array of month name strings to map to these indices. To render the bar chart,
we place a VictoryBar component in a VictoryChart component, giving us the
flexibility to customize the bar chart wrapper, and also the y axis with
a VictoryAxis component, which is added without any props so that a y axis is not
displayed at all.

We pass the data to VictoryBar and also define the categories for the x axis values
using the month strings so that all months of the year are displayed on the chart, even
if a corresponding total value does not exist yet. We render individual labels for each
bar to show the total expense value for each month. To map the x axis value with the
correct month string, we specify it in the x prop for the VictoryBar component.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[478]

This code plots and renders the bar chart against the data provided, with the monthly
expense totals mapped for each month. In the next section, we will follow similar
steps to add a pie chart to graphically display the average expenses per category in a
given date range.

Average expenses per category in a pie chart
We can render a pie chart showing how much users spend on average per expense
category over a given period of time. This will help users visualize which categories
consume more or less of their wealth over time. The following screenshot shows how
the pie chart will render with user expense data:

We populate the pie chart with each category and its average expenditure value,
showing the corresponding name and amount as labels. In the following sections, we
will implement this feature by first adding a backend API that will return the average
expenses per category over the given date range and in the format needed to render it
in a Victory Pie chart. Then, we will add a React component that will retrieve this
data from the backend and render it in the Victory Pie chart.

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[479]

The average expenses by category API
We will add an API to the backend that will return the average expenses incurred in
each category over a given time period and in the data format needed to render the
pie chart in the frontend. To implement this API, we will first declare a GET route, as
shown in the following code.

mern-expense-tracker/server/routes/expense.routes.js:

router.route('/api/expenses/category/averages')
 .get(authCtrl.requireSignin, expenseCtrl.averageCategories)

A GET request to this route at '/api/expenses/category/averages' will first
ensure that the requesting client is a signed-in user, and then it will invoke
the averageCategories controller method. The request will also take the values of
the given date range in URL query parameters, which will be used in the
averageCategories method to determine the dates of the first day and the last day
of the provided range. We will need these dates to specify the range for finding the
matching expenses that were incurred in the specified date range and recorded by the
authenticated user while aggregating the expense averages per category into the data
format needed for the chart. The averageCategories method is defined in the
following code.

mern-expense-tracker/server/controllers/expense.controller.js:

const averageCategories = async (req, res) = {
 const firstDay = new Date(req.query.firstDay)
 const lastDay = new Date(req.query.lastDay)

 try {
 let categoryMonthlyAvg = await Expense.aggregate([
 { $match : { incurred_on : { $gte : firstDay, $lte: lastDay },
 recorded_by: mongoose.Types.ObjectId(req.auth._id)}},
 { $group : { _id : {category: "$category"},
 totalSpent: {$sum: "$amount"} } },
 { $group: { _id: "$_id.category", avgSpent:
 { $avg: "$totalSpent"}}},
 { $project: {x: '$_id', y: '$avgSpent'}}
]).exec()
 res.json({monthAVG:categoryMonthlyAvg})
 } catch (err){
 console.log(err)
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[480]

}

We run an aggregation operation that finds the matching expenses, groups the
expenses by category to first calculate the total and then the average, and returns an
output containing the values in the format needed for the y and x values of the pie
chart. The final result of the aggregation contains an array of objects, with each object
containing an x attribute and a y attribute. The x attribute contains the category name
as the value. The y attribute contains the corresponding average expense amount for
that category. This final output array generated from the aggregation is sent back in
the response to the requesting client.

We can use this API in the frontend with a fetch request. You can define a
corresponding fetch method to make the request, similar to other API
implementations. Then, the fetch method can be used in a React component to
retrieve and render this array of x and y values in a pie chart. In the next section, we
will discuss the implementation of this view to render a pie chart showing the
average expenses incurred per category over a given date range.

The CategoryPie component
We will implement a React component that calls the average expenses by category
API to render the received array of average expenses incurred per category in a
Victory Pie chart.

The API can be fetched either in a useEffect hook or when a button is clicked on. In
the MERN Expense Tracker application, we render this pie chart in a React
component called CategoryPie. When this component loads, we render a pie chart
for the average expenses incurred per category in the given month. We also add two
DatePicker components to allow users to select the desired date range and retrieve
data for that range with a button click. In the following code, we retrieve the initial
average expense data with a useEffect hook when the component loads.

mern-expense-tracker/client/report/CategoryPie.js:

const [error, setError] = useState('')
const [expenses, setExpenses] = useState([])
const jwt = auth.isAuthenticated()
const date = new Date(), y = date.getFullYear(), m = date.getMonth()
const [firstDay, setFirstDay] = useState(new Date(y, m, 1))
const [lastDay, setLastDay] = useState(new Date(y, m + 1, 0))
useEffect(() = {
 const abortController = new AbortController()
 const signal = abortController.signal
 averageCategories({firstDay: firstDay, lastDay: lastDay},

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[481]

 {t: jwt.token}, signal).then((data) = {
 if (data.error) {
 setError(data.error)
 } else {
 setExpenses(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [])

With the data received from the backend and set in state, we can render it in a Victory
Pie chart. We can add the following code in the component view to render a
customized pie chart with individual text labels for each slice and a center label for
the chart.

mern-expense-tracker/client/report/CategoryPie.js:

 <div style={{width: 550, margin: 'auto'}}>
 <svg viewBox="0 0 320 320">
 <VictoryPie standalone={false} data=
 {expenses.monthAVG} innerRadius={50}
 theme={VictoryTheme.material}
 labelRadius={({ innerRadius }) = innerRadius + 14 }
 labelComponent={ VictoryLabel angle={0} style={[{
 fontSize: '11px',
 fill: '#0f0f0f'
 },
 {
 fontSize: '10px',
 fill: '#013157'
 }]} text={({datum}) = `${datum.x}\n $${datum.y}`}/
}
 />
 <VictoryLabel
 textAnchor="middle"
 style={{ fontSize: 14, fill: '#8b8b8b' }}
 x={175} y={170}
 text={`Spent \nper category`}
 />
 </svg>
 </div>

Integrating Data Visualization with an Expense Tracking Application Chapter 10

[482]

To render the pie chart with a separate center label, we place
a VictoryPie component in an svg element, giving us the flexibility to customize
the pie chart wrapping and a separate circular label using a VictoryLabel outside
the pie chart code.

We pass the data to VictoryPie, define customized labels for each slice, and make
the pie chart standalone so that the center label can be placed over the chart. This
code plots and renders the pie chart against the data provided with the average
expense displayed for each category.

We have added three different Victory charts to the application based on the user-
recorded expense data, which was processed as needed and retrieved from the
database in the backend. The MERN Expense Tracker application is complete with
abilities that allow users to record their day-to-day expenses, and then visualize data
patterns and expenditure habits extracted from the expense data recorded over time.

Summary
In this chapter, we extended the MERN skeleton application to develop an expense
tracking application with data visualization features. We designed an Expense model
for recording expense details and implemented the full-stack CRUD (Create, Read,
Update, Delete) functionalities that allowed signed-in users to record their day-to-
day expenses, see a list of their expenses, and modify existing expense records.

We added data processing and visualization features that gave users an overview of
their current expenses and also an idea of how much more or less they are spending
per expense category. We also incorporated different types of charts to show users
their expenditure patterns over various time ranges.

While implementing these features, we learned about some of the data processing
options with the aggregation framework in MongoDB and also incorporated some of
the customizable chart components from Victory. You can explore the aggregation
framework and the Victory library further to incorporate more complex data
visualization features in your own full-stack applications.

In the next chapter, we will explore even more advanced possibilities with MERN
stack technologies as we build a media streaming application by extending the MERN
skeleton.

11
Building a Media Streaming

Application
Uploading and streaming media content, specifically video content, has been a
growing part of the internet culture for some time now. From individuals sharing
personal video content to the entertainment industry disseminating commercial
content on online streaming services, we all rely on web applications that enable
smooth uploading and streaming. Capabilities within the MERN stack technologies
can be used to build and integrate these core streaming features into any MERN-
based full-stack application. In this chapter, we will extend the MERN skeleton
application to build a media streaming application, while demonstrating how to
utilize MongoDB GridFS and add media streaming features to your web
applications.

In this chapter, we will cover the following topics to implement basic media
uploading and streaming by extending the MERN skeleton application:

Introducing MERN Mediastream
Uploading videos to MongoDB GridFS
Storing and retrieving media details
Streaming videos from GridFS to a basic media player
Listing, displaying, updating, and deleting media

Building a Media Streaming Application Chapter 11

[484]

Introducing MERN Mediastream
We will build the MERN Mediastream application by extending the skeleton
application. This will be a simple video streaming application that allows registered
users to upload videos that can be streamed by anyone browsing the application. The
following screenshot shows the home page view on the MERN Mediastream
application, along with a list of popular videos on the platform:

The code for the complete MERN Mediastream application is
available on GitHub at https:/ ​/ ​github. ​com/ ​PacktPublishing/
Full- ​Stack- ​React- ​Projects- ​Second- ​Edition/ ​tree/ ​master/
Chapter11%20and%2012/ ​mern-​mediastream.
You can clone this code and run the application as you go through
the code explanations in the rest of this chapter.

https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream

Building a Media Streaming Application Chapter 11

[485]

The frontend user interface views that are needed for the features related to media
uploading, editing, and streaming in a simple media player will be developed by
extending and modifying existing React components in the MERN skeleton
application. The component tree shown in the following diagram shows all the
custom React components that make up the MERN Mediastream frontend that will be
developed in this chapter:

We will add new React components to implement views for uploading a new video,
listing already posted media, modifying media post details, and displaying a video
where users can interact with the video content to stream and watch it. We will also
modify existing components such as the Home component so we can render a list of
popular videos and the Profile component so we can list all the videos that are
posted by a given user. These uploading and streaming capabilities in the application
will rely on the user's ability to upload video content. In the next section, we will
discuss how to allow signed-in users to add media to the application.

Building a Media Streaming Application Chapter 11

[486]

Uploading and storing media
Registered users on the MERN Mediastream application will be able to upload videos
from their local files to store each video and related details directly on MongoDB
using GridFS. To enable uploading media content to the application, we need to
define how to store media details and the video content and implement a full-stack
slice that will let users create a new media post and upload a video file. In the
following sections, first we will define a media model for storing the details of each
media post and configure GridFS to store the associated video content. Then, we will
discuss implementations for the backend API, which will receive and store the video
content with other media details, and the frontend form view, which will allow a user
to create a new media post on the application.

Defining a Media model
We will implement a Mongoose model to define a Media model for storing the details
of each piece of media that's posted to the application. This model will be defined in
server/models/media.model.js, and the implementation will be similar to other
Mongoose model implementations we covered in the previous chapters, such as the
Course model we defined in Chapter 6, Building a Web-Based Classroom
Application. The Media schema in this model will have fields to record the media title,
description, genre, number of views, dates of when the media was posted and
updated, and a reference to the user who posted the media. The code for defining the
media fields is as follows:

Media title: The title field is declared to be of the String type and will
be a required field for introducing the media that are uploaded to the
application:

title: {
 type: String,
 required: 'title is required'
}

Media description and genre: The description and genre fields will be
of type String, and these will store additional details about the media
posted. The genre field will also allow us to group the different media
uploaded to the application.

 description: String,
 genre: String,

Building a Media Streaming Application Chapter 11

[487]

Number of views: The views field is defined as a Number type and will
keep track of how many times the uploaded media was viewed by users in
the application:

views: {
 type: Number,
 default: 0
},

Media posted by: The postedBy field will reference the user who created
the media post:

 postedBy: {
 type: mongoose.Schema.ObjectId,
 ref: 'User'
 },

Created and updated at times: The created and updated fields will
be Date types, with created generated when a new media is added
and updated changed when any media details are modified:

updated: Date,
created: {
 type: Date,
 default: Date.now
},

The fields that were added to the schema definition will only store details about each
video that's posted to the application. In order to store the video content itself, we will
use MongoDB GridFS. Before getting into the implementation of uploading a video
file, in the next section we will discuss how GridFS makes it possible to store large
files in MongoDB, and then add initialization code to start using GridFS in this
streaming application.

Using MongoDB GridFS to store large files
In previous chapters, we discussed how files uploaded by users could be stored
directly in MongoDB as binary data; for example, when adding a profile photo in the
Upload profile photo section in Chapter 5, Growing the Skeleton into a Social Media
Application. But this only worked for files smaller than 16 MB. In order to store larger
files in MongoDB, such as video files needed for this streaming application, we will
need to use GridFS.

Building a Media Streaming Application Chapter 11

[488]

GridFS is a specification in MongoDB that allows us to store large files in MongoDB
by dividing a given file into several chunks. Each chunk can be a maximum of 255 KB
in size, and is stored as a separate document. When the file has to be retrieved in
response to a query to GridFS, the chunks are reassembled as needed. This opens up
the option to fetch and load only parts of the file as required, rather than retrieving
the whole file.

In the case of storing and retrieving video files for the MERN Mediastream
application, we will utilize GridFS to store video files and stream parts of the video,
depending on which part the user skips to and starts playing from.

You can learn more about the GridFS specification and its features in
the official MongoDB documentation
at https://docs.mongodb.com/manual/core/gridfs/.

To access and work with MongoDB GridFS from our backend code, we will use
the Node.js MongoDB driver's streaming API by creating a GridFSBucket with the
established database connection.

GridFSBucket is the GridFS streaming interface that gives us access
to the streaming GridFS API. It can be used to interact with files in
GridFS. You can learn more about GridFSBucket and the streaming
API in the Node.js MongoDB Driver API documentation at https:/
/​mongodb. ​github. ​io/ ​node- ​mongodb- ​native/ ​3.​2/ ​api/
GridFSBucket. ​html.

Since we are using Mongoose to establish a connection with the MongoDB database
for our application, we will add the following code to initialize a new GridFSBucket
with this database connection after it has been established.

mern-mediastream/server/controllers/media.controller.js:

import mongoose from 'mongoose'
let gridfs = null
mongoose.connection.on('connected', () => {
 gridfs = new mongoose.mongo.GridFSBucket(mongoose.connection.db)
})

https://docs.mongodb.com/manual/core/gridfs/
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html
https://mongodb.github.io/node-mongodb-native/3.2/api/GridFSBucket.html

Building a Media Streaming Application Chapter 11

[489]

The gridfs object we created here will give us access to the GridFS functionalities
that are required to store the video file when new media is created and to fetch the
file when the media is to be streamed back to the user. In the next section, we will add
a create media form view and an API in the backend, which will use this gridfs
object to save the video file that's uploaded with the request that's sent from the form
view in the frontend.

Creating a new media post
For a user to be able to create a new media post on the application, we will need to
integrate a full-stack slice that allows the user to fill out a form in the frontend and
then save both the provided media details and the associated video file in the
database in the backend. To implement this feature, in the following sections, we will
add a create media API in the backend, along with a way to fetch this API in the
frontend. Then, we will implement a create new media form view that allows the user
to input media details and select a video file from their local filesystem.

The create media API
We will implement a create media API in the backend to allow users to create new
media posts on the application. This API will receive a POST request at
'/api/media/new/:userId' with the multipart body content containing the media
fields and the uploaded video file. First, we will declare the create media route and
utilize the userByID method from the user controller, as shown in the following
code.

mern-mediastream/server/routes/media.routes.js:

router.route('/api/media/new/:userId')
 .post(authCtrl.requireSignin, mediaCtrl.create)
router.param('userId', userCtrl.userByID)

The userByID method processes the :userId parameter that's passed in the URL
and retrieves the associated user from the database. The user object becomes available
in the request object to be used in the next method that will be executed. Similar to the
user and auth routes, we will have to mount the media routes on the Express app in
express.js as follows.

mern-mediastream/server/express.js:

app.use('/', mediaRoutes)

Building a Media Streaming Application Chapter 11

[490]

A POST request to the create route URL, /api/media/new/:userId, will make sure
the user is signed in and then initiate the create method in the media controller. The
create controller method will use the formidable node module to parse the
multipart request body that will contain the media details and video file uploaded by
the user. You can install the module by running the following command from the
command line:

yarn add formidable

In the create method, we will use the media fields that have been received in the
form data and parsed with formidable to generate a new Media object and then
save it to the database. This create controller method is defined as follows.

mern-mediastream/server/controllers/media.controller.js:

const create = (req, res) => {
 let form = new formidable.IncomingForm()
 form.keepExtensions = true
 form.parse(req, async (err, fields, files) => {
 if (err) {
 return res.status(400).json({
 error: "Video could not be uploaded"
 })
 }
 let media = new Media(fields)
 media.postedBy= req.profile
 if(files.video){
 let writestream = gridfs.openUploadStream(media._id, {
 contentType: files.video.type || 'binary/octet-stream'})
 fs.createReadStream(files.video.path).pipe(writestream)
 }
 try {
 let result = await media.save()
 res.status(200).json(result)
 }
 catch (err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
 })
}

Building a Media Streaming Application Chapter 11

[491]

If there is a file in the request, formidable will store it temporarily in the filesystem.
We will use this temporary file and the media object's ID to create a writable stream
with gridfs.openUploadStream. Here, the temporary file will be read and then
written into MongoDB GridFS, while setting the filename value to the media ID.
This will generate the associated chunks and file information documents in
MongoDB, and when it is time to retrieve this file, we will identify it with the media
ID.

To use this create media API in the frontend, we will add a corresponding fetch
method in api-media.js to make a POST request to the API by passing the
multipart form data from the view. This method will be defined as follows.

mern-mediastream/client/media/api-media.js:

const create = async (params, credentials, media) => {
 try {
 let response = await fetch('/api/media/new/'+ params.userId, {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: media
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

This create fetch method will take the current user's ID, user credentials, and the
media form data to make a POST request to the create media API in the backend. We
will use this method when the user submits the new media form to upload a new
video and post it on the application. In the next section, we will look at the
implementation of this form view in the frontend.

The NewMedia component
Registered users on the MERN Mediastream application will interact with a form
view to enter details of a new media post. This form view will be rendered in the
NewMedia component, which will allow a signed-in user to create a media post by
entering the title, description, and genre of the video and uploading a video file from
their local filesystem.

Building a Media Streaming Application Chapter 11

[492]

This form view will render as follows:

We will implement this form in a React component named NewMedia. For the view,
we will add the file upload elements using a Material-UI Button and an HTML5 file
input element, as shown in the following code.

mern-mediastream/client/media/NewMedia.js:

<input accept="video/*"
 onChange={handleChange('video')}
 id="icon-button-file"
 type="file"
 style={{display: none}}/>
<label htmlFor="icon-button-file">
 <Button color="secondary" variant="contained" component="span">
 Upload <FileUpload/>
 </Button>
</label>
{values.video ? values.video.name : ''}

In the file input element, we specify that it accepts video files, so when the user
clicks on Upload and browses through their local folders, they only have the option
to upload a video file.

Then, in the view, we add the title, description, and genre form fields with
the TextField components, as shown in the following code.

mern-mediastream/client/media/NewMedia.js:

<TextField id="title" label="Title" value={values.title}
 onChange={handleChange('title')} margin="normal"/>

Building a Media Streaming Application Chapter 11

[493]

<TextField id="multiline-flexible" label="Description"
 multiline rows="2"
 value={values.description}
 onChange={handleChange('description')}/>

<TextField id="genre" label="Genre" value={values.genre}
 onChange={handleChange('genre')}/>

These form field changes will be tracked with the handleChange method when a
user interacts with the input fields to enter values. The handleChange function will
be defined as follows.

mern-mediastream/client/media/NewMedia.js:

const handleChange = name => event => {
 const value = name === 'video'
 ? event.target.files[0]
 : event.target.value
 setValues({ ...values, [name]: value })
}

The handleChange method updates the state with the new values, including the
name of the video file, if one is uploaded by the user.

Finally, you can complete this form view by adding a Submit button, which, when
clicked, should send the form data to the server. We will define
a clickSubmit method here, which will be called when the Submit button is clicked
by the user.

mern-mediastream/client/media/NewMedia.js:

 const clickSubmit = () => {
 let mediaData = new FormData()
 values.title && mediaData.append('title', values.title)
 values.video && mediaData.append('video', values.video)
 values.description && mediaData.append('description',
 values.description)
 values.genre && mediaData.append('genre', values.genre)
 create({
 userId: jwt.user._id
 }, {
 t: jwt.token
 }, mediaData).then((data) => {
 if (data.error) {
 setValues({...values, error: data.error})
 } else {
 setValues({...values, error: '', mediaId: data._id,
 redirect: true})

Building a Media Streaming Application Chapter 11

[494]

 }
 })
 }

This clickSubmit function will take the input values and populate mediaData,
which is a FormData object that ensures the data is stored in the correct format for
the multipart/form-data encoding type. Then, the create fetch method is called
to create the new media in the backend with this form data. On successful media
creation, the user may be redirected to a different view as desired, for example, to a
Media view with the new media details, as shown in the following code.

mern-mediastream/client/media/NewMedia.js:

if (values.redirect) {
 return (<Redirect to={'/media/' + values.mediaId}/>)
}

The NewMedia component can only be viewed by a signed-in user. Therefore, we will
add a PrivateRoute in the MainRouter component, which will render this form
only for authenticated users at /media/new.

mern-mediastream/client/MainRouter.js:

<PrivateRoute path="/media/new" component={NewMedia}/>

This link can be added to any view, such as in the Menu component, so that it's
rendered conditionally when users are signed in. Now that it is possible to add new
media posts in this media streaming application, in the next section we will discuss
the implementation of retrieving and rendering the video content associated with
each media post. This will allow users to stream and view video files stored in
MongoDB GridFS from the frontend of the application.

Retrieving and streaming media
Any visitor browsing through the MERN Mediastream application will be able to
view the media posted on the application by its users. Implementing this feature will
require streaming the video files stored in MongoDB GridFS to the requesting client
and rendering the stream in a media player. In the following sections, we will set up a
backend API to retrieve a single video file, which we will then use as a source in a
React-based media player to render the streaming video.

Building a Media Streaming Application Chapter 11

[495]

The video API
To retrieve the video file associated with a single media post, we will implement a get
video API that will accept a GET request at '/api/medias/video/:mediaId' and
query both the Media collection and GridFS files. We will start implementing this
video API by declaring the route shown in the following code, along with a way to
handle the :mediaId parameter in the URL.

mern-mediastream/server/routes/media.routes.js:

router.route('/api/medias/video/:mediaId')
 .get(mediaCtrl.video)
router.param('mediaId', mediaCtrl.mediaByID)

The :mediaId parameter in the route URL will be processed in the mediaByID
controller to fetch the associated document from the Media collection and file details
from GridFS. These retrieved results are then attached to the request object so that it
can be used in the video controller method as required. This mediaByID controller
method is defined as follows.

mern-mediastream/server/controllers/media.controller.js:

const mediaByID = async (req, res, next, id) => {
 try{
 let media = await Media.findById(id).populate('postedBy',
 '_id name').exec()
 if (!media)
 return res.status('400').json({
 error: "Media not found"
 })
 req.media = media
 let files = await gridfs.find({filename:media._id}).toArray()
 if (!files[0]) {
 return res.status(404).send({
 error: 'No video found'
 })
 }
 req.file = files[0]
 next()
 }catch(err) {
 return res.status(404).send({
 error: 'Could not retrieve media file'
 })
 }
}

Building a Media Streaming Application Chapter 11

[496]

To retrieve the relevant file details from GridFS, we use find from the MongoDB
streaming API. We query the files stored in GridFS by the filename value, which
should match the corresponding media ID in the Media collection. Then, we receive
the resulting matching file records in an array and attach the first result to the request
object so that it can be used in the next method.

The next method that's invoked when this API receives a request is the video
controller method. In this method, depending on whether the request contains range
headers, we send back the correct chunks of video with the related content
information set as response headers. The video controller method is defined with the
following structure, with the response composed depending on the existence of range
headers in the request.

mern-mediastream/server/controllers/media.controller.js:

const video = (req, res) => {
 const range = req.headers["range"]
 if (range && typeof range === "string") {
 ...
 ... consider range headers and send only relevant chunks in
response ...
 ...
 } else {
 res.header('Content-Length', req.file.length)
 res.header('Content-Type', req.file.contentType)

 let downloadStream = gridfs.openDownloadStream(req.file._id)
 downloadStream.pipe(res)
 downloadStream.on('error', () => {
 res.sendStatus(404)
 })
 downloadStream.on('end', () => {
 res.end()
 })
 }
}

In the preceding code, if the request does not contain range headers, we stream back
the whole video file using gridfs.openDownloadStream, which gives us a readable
stream of the corresponding file stored in GridFS. This is piped with the response sent
back to the client. In the response header, we set the content type and total length of
the file.

Building a Media Streaming Application Chapter 11

[497]

If the request contains range headers – for example, when the user drags to the
middle of the video and starts playing from that point – we need to convert the
received range headers to the start and end positions, which will correspond with the
correct chunks stored in GridFS, as shown in the following code.

mern-mediastream/server/controllers/media.controller.js:

 const parts = range.replace(/bytes=/, "").split("-")
 const partialstart = parts[0]
 const partialend = parts[1]

 const start = parseInt(partialstart, 10)
 const end = partialend ? parseInt(partialend, 10) :
req.file.length - 1
 const chunksize = (end - start) + 1

 res.writeHead(206, {
 'Accept-Ranges': 'bytes',
 'Content-Length': chunksize,
 'Content-Range': 'bytes ' + start + '-' + end + '/' +
req.file.length,
 'Content-Type': req.file.contentType
 })

 let downloadStream = gridfs.openDownloadStream(req.file._id,
{start, end: end+1})
 downloadStream.pipe(res)
 downloadStream.on('error', () => {
 res.sendStatus(404)
 })
 downloadStream.on('end', () => {
 res.end()
 })

We pass the start and end values that have been extracted from the header as a range
to gridfs.openDownloadStream. These start and end values specify the 0-based
offset in bytes to start streaming from and stop streaming before. We also set the
response headers with additional file details, including content length, range, and
type. The content length will now be the total size of the content within the defined
range. Therefore, the readable stream that's piped back to the response, in this case,
will only contain the chunks of file data that fall within the start and end ranges.

The final readable stream that's piped to the response after a request is received at
this get video API can be rendered directly in a basic HTML5 media player or a React-
flavored media player in the frontend view. In the next section, we will look at how to
render this video stream in a simple React media player.

Building a Media Streaming Application Chapter 11

[498]

Using a React media player to render the
video
In the frontend of the application, we can render the video file being streamed from
MongoDB GridFS in a media player. A good option for a React-flavored media player
is the ReactPlayer component, available as a node module, which can be
customized as required. Providing the video stream as a source to a default
ReactPlayer component will render with basic player controls, as shown in the
following screenshot:

To start using ReactPlayer in our frontend code, we need to install the
corresponding node module by running the following Yarn command from the
command line:

yarn add react-player

Once installed, we can import it into any React component and add it to the view. For
basic usage with the default controls provided by the browser, we can add it to any
React view in any application that has access to the ID of the media to be rendered, as
shown in the following code:

<ReactPlayer url={'/api/media/video/'+media._id} controls/>

This will load the player with the video stream that was received from the get video
API and provide the user with basic control options to interact with the stream being
played. ReactPlayer can be customized so that more options are available. We will
explore some of these advanced options for customizing this ReactPlayer with our
own controls in the next chapter.

Building a Media Streaming Application Chapter 11

[499]

To learn more about what is possible with ReactPlayer,
visit cookpete.com/react-player.

Now, it's possible to retrieve a single video file stored in MongoDB GridFS and
stream it to a media player in the frontend for the user to view and play the video as
desired. In the next section, we will discuss how to fetch and display lists of multiple
videos from the backend to the frontend of the streaming application.

Listing media
In MERN Mediastream, we will add list views of relevant media with a snapshot of
each video to give visitors easier access and an overview of the videos on the
application. For example, in the following screenshot, the Profile component
displays a list of media posted by the corresponding user, showing the video preview
and other details of each media:

We will set up list APIs in the backend to retrieve different lists, such as videos
uploaded by a single user and the most popular videos with the highest views in the
application. Then, these retrieved lists can be rendered in a
reusable MediaList component, which will receive a list of media objects as a prop
from a parent component that fetches the specific API. In the following sections, we
will implement the MediaList component and the backend APIs to retrieve the two
different lists of media from the database.

https://cookpete.com/react-player

Building a Media Streaming Application Chapter 11

[500]

The MediaList component
The MediaList component is a reusable component that will take a list of media and
iterate through it to render each media item in the view. In MERN Mediastream, we
use it to render a list of the most popular media in the home view and a list of media
uploaded by a specific user in their profile.

In the view part of the MediaList component, we will iterate through the media
array that's received in props using map, as shown in the following code.

mern-mediastream/client/media/MediaList.js:

<GridList cols={3}>
 {props.media.map((tile, i) => (
 <GridListTile key={i}>
 <Link to={"/media/"+tile._id}>
 <ReactPlayer url={'/api/media/video/'+tile._id}
 width='100%' height='inherit' style=
 {{maxHeight: '100%'}}/>
 </Link>
 <GridListTileBar title={<Link
 to={"/media/"+tile._id}> {tile.title} </Link>}
 subtitle={
 {tile.views} views

 {tile.genre}

 }
 />
 </GridListTile>
))}
</GridList>

This MediaList component uses the Material-UI GridList components as it iterates
through the array of objects sent in the props and renders media details for each item
in the list. It also includes a ReactPlayer component, which renders the video URL
without showing any controls. In the view, this gives the visitor a brief overview of
each piece of media, as well as a glimpse of the video content.

This component can be added to any view that can provide an array of media objects.
In the MERN Mediastream application, we use it to render two different lists of
media: a list of popular media and a list of media posted by a specific user. In the next
section, we will look at how to retrieve a list of popular media from the database to
render it in the frontend.

Building a Media Streaming Application Chapter 11

[501]

Listing popular media
To retrieve specific lists of media from the database, we need to set up the relevant
APIs on the server. For popular media, we will set up a route that receives a GET
request at /api/media/popular. The route will be declared as follows.

mern-mediastream/server/routes/media.routes.js:

 router.route('/api/media/popular')
 .get(mediaCtrl.listPopular)

A GET request to this URL will invoke the listPopular method. The listPopular
controller method will query the Media collection and retrieve nine media documents
that have the highest views in the whole collection. The listPopular method is
defined as follows.

mern-mediastream/server/controllers/media.controller.js:

const listPopular = async (req, res) => {
 try{
 let media = await Media.find({})
 .populate('postedBy', '_id name')
 .sort('-views')
 .limit(9)
 .exec()
 res.json(media)
 } catch(err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The result that's returned by the query to the Media collection is sorted by the
number of views in descending order and limited to nine. Each media document in
this list will also contain the name and ID of the user who posted it since we are
calling populate to add these user attributes.

Building a Media Streaming Application Chapter 11

[502]

This API can be used in the frontend with a fetch request. You can define a
corresponding fetch method in api-media.js to make the request, similarly to other
API implementations. Then, the fetch method can be called in a React component,
such as in the Home component for this application. In the Home component, we will
fetch a list of popular videos in a useEffect hook, as shown in the following code.

mern-mediastream/client/core/Home.js:

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal
 listPopular(signal).then((data) => {
 if (data.error) {
 console.log(data.error)
 } else {
 setMedia(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [])

The list that's fetched from the API in this hook is set in the state so that it can be
passed to a MediaList component in the view. In the Home view, we can add the
MediaList as follows, with the list provided as a prop.

mern-mediastream/client/core/Home.js:

<MediaList media={media}/>

This will render a list of up to nine of the most popular videos from the database on
the home page of the MERN Mediastream application. In the next section, we will
discuss a similar implementation to retrieve and render a list of media that's been
posted by a specific user.

Listing media by users
To be able to retrieve a list of media that's been uploaded by a specific user from the
database, we will set up an API with a route that accepts a GET request at
'/api/media/by/:userId'. The route will be declared as follows.

Building a Media Streaming Application Chapter 11

[503]

mern-mediastream/server/routes/media.routes.js:

router.route('/api/media/by/:userId')
 .get(mediaCtrl.listByUser)

A GET request to this route will invoke the listByUser method. The listByUser
controller method will query the Media collection to find media documents that have
postedBy values matching with the userId attached as a parameter in the URL.
The listByUser controller method is defined as follows.

mern-mediastream/server/controllers/media.controller.js:

const listByUser = async (req, res) => {
 try{
 let media = await Media.find({postedBy: req.profile._id})
 .populate('postedBy', '_id name')
 .sort('-created')
 .exec()
 res.json(media)
 } catch(err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

The result that's returned from the query to the Media collection is sorted by the date
it was created on, with the latest post showing up first. Each media document in this
list will also contain the name and ID of the user who posted it since we are
calling populate to add these user attributes.

This API can be used in the frontend with a fetch request. You can define a
corresponding fetch method in api-media.js to make the request, similar to other
API implementations. Then, the fetch method can be called in a React component. In
our application, we use the fetch method in the Profile component, similar to the
listPopular fetch method we used in the home view, to retrieve the list data, set it
to the state, and then pass it to a MediaList component. This will render a profile
page with a list of media that was posted by the corresponding user.

We are able to retrieve and display multiple videos on the application by utilizing
APIs that have been implemented in the backend to fetch the list data. We can also
utilize a ReactPlayer component without controls to give the user a glimpse of each
video when we render the list in the frontend views. In the next section, we will
discuss the full-stack slices that will display media posts and allow authorized users
to update and delete individual media posts in the application.

Building a Media Streaming Application Chapter 11

[504]

Displaying, updating, and deleting media
Any visitor to MERN Mediastream will be able to view media details and stream
videos, while only registered users will be able to edit the media's details and delete it
any time after they post it on the application. In the following sections, we will
implement full-stack slices, including backend APIs and frontend views, to display a
single media post, update details of a media post, and delete a media post from the
application.

Displaying media
Any visitor to MERN Mediastream will be able to browse to a single media view to
play a video and read the details associated with it. Every time a specific video is
loaded on the application, we will also increment the number of views associated
with the media. In the following sections, we will implement the individual media
view by adding a read media API to the backend, a way to call this API from the
frontend, and the React component that will display the media details in the view.

The read media API
To implement the read media API in the backend, we will start by adding a GET route
that queries the Media collection with an ID and returns the media document in the
response. The route is declared as follows.

mern-mediastream/server/routes/media.routes.js:

router.route('/api/media/:mediaId')
 .get(mediaCtrl.incrementViews, mediaCtrl.read)

The mediaId in the request URL will cause the mediaByID controller method to
execute and attach the retrieved media document to the request object so that it can
be accessed in the next method.

A GET request to this API will execute the incrementViews controller method next,
which will find the matching media record and increment the views value by 1,
before saving the updated record to the database. The incrementViews method is
defined as follows.

mern-mediastream/server/controllers/media.controller.js:

const incrementViews = async (req, res, next) => {

Building a Media Streaming Application Chapter 11

[505]

 try {
 await Media.findByIdAndUpdate(req.media._id,
 {$inc: {"views": 1}}, {new: true}).exec()
 next()
 } catch(err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

This method will increment the number of views for a given media by 1 every time
this read media API is called. After the media is updated from this incrementViews
method, the read controller method is invoked. The read controller method will
simply return the retrieved media document in response to the requesting client, as
shown in the following code.

mern-mediastream/server/controllers/media.controller.js:

const read = (req, res) => {
 return res.json(req.media)
}

To retrieve the media document that was sent in the response, we need to call this
read media API in the frontend using a fetch method. We will set up a corresponding
fetch method in api-media.js, as shown in the following code.

mern-mediastream/client/media/api-media.js:

const read = async (params, signal) => {
 try {
 let response = await fetch('/api/media/' + params.mediaId, {
 method: 'GET',
 signal: signal
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

This method takes the ID of the media to be retrieved and makes a GET request to the
read API route using a fetch.

Building a Media Streaming Application Chapter 11

[506]

The read media API can be used to render individual media details in a view or to
pre-populate a media edit form. In the next section, we will use this fetch method to
call the read media API in the React component to render the media details, as well as
a ReactPlayer that will play the associated video.

The Media component
The Media component will render details of an individual media record and stream
the video in a basic ReactPlayer with default browser controls. The completed
single Media view will look as follows:

The Media component can call the read API to fetch the media data itself or receive
the data as props from a parent component that makes the call to the read API. In the
latter case, the parent component will fetch the media from the server in a useEffect
hook, set it to state, and add it to the Media component, as follows.

Building a Media Streaming Application Chapter 11

[507]

mern-mediastream/client/media/PlayMedia.js:

<Media media={media}/>

In MERN Mediastream, we will add the Media component in a PlayMedia
component that fetches the media content from the server in a useEffect hook using
the read API and passes it to Media as a prop. The composition of the PlayMedia
component will be discussed in more detail in the next chapter.

The Media component will take this data in the props and render it in the view to
display the details and load the video in a ReactPlayer component. The title, genre,
and view count details of the media can be rendered in a Material-UI CardHeader
component in the Media component, as shown in the following code.

mern-mediastream/client/media/Media.js:

<CardHeader
 title={props.media.title}
 action={
 {props.media.views + ' views'}
 }
 subheader={props.media.genre}
/>

Besides rendering these media details, we will also load the video in the Media
component. The video URL, which is basically the get video API route we set up in
the backend, is loaded in a ReactPlayer with default browser controls, as shown in
the following code.

mern-mediastream/client/media/Media.js:

const mediaUrl = props.media._id
 ? `/api/media/video/${props.media._id}`
 : null
 …
<ReactPlayer url={mediaUrl}
 controls
 width={'inherit'}
 height={'inherit'}
 style={{maxHeight: '500px'}}
 config={{ attributes:
 { style: { height: '100%', width: '100%'} }
}}/>

Building a Media Streaming Application Chapter 11

[508]

This will render a simple player that allows the user to play the video stream.

The Media component also renders additional details about the user who posted the
video, a description of the video, and the date it was created, as shown in the
following code.

mern-mediastream/client/media/Media.js:

<ListItem>
 <ListItemAvatar>
 <Avatar>
 {props.media.postedBy.name &&
 props.media.postedBy.name[0]}
 </Avatar>
 </ListItemAvatar>
 <ListItemText primary={props.media.postedBy.name}
 secondary={"Published on " +
 (new Date(props.media.created))
 .toDateString()}/>
</ListItem>
<ListItem>
 <ListItemText primary={props.media.description}/>
</ListItem>

In the details being displayed in the Material-UI ListItem component, we will also
conditionally show edit and delete options if the currently signed-in user is the one
who posted the media being displayed. To render these elements conditionally in the
view, we will add the following code after the ListItemText displaying the date.

mern-mediastream/client/media/Media.js:

{(auth.isAuthenticated().user && auth.isAuthenticated().user._id)
 == props.media.postedBy._id && (<ListItemSecondaryAction>
 <Link to={"/media/edit/" + props.media._id}>
 <IconButton aria-label="Edit" color="secondary">
 <Edit/>
 </IconButton>
 </Link>
 <DeleteMedia mediaId={props.media._id} mediaTitle=
 {props.media.title}/>
 </ListItemSecondaryAction>)}

Building a Media Streaming Application Chapter 11

[509]

This will ensure that the edit and delete options only render when the current user is
signed in and is the uploader of the media being displayed. The edit option links to
the media edit form, while the delete option opens a dialog box that can initiate the
deletion of this particular media document from the database. In the next section, we
will implement the functionality of this option to edit details of the uploaded media
post.

Updating media details
Registered users will have access to an edit form for each of their media uploads.
Updating and submitting this form will save the changes to the given document in
the Media collection. To implement this capability, we will have to create a backend
API that allows the update operation on a given media after ensuring that the
requesting user is authenticated and authorized. Then, this updated API needs to be
called from the frontend with the changed details of the media. In the following
sections, we will build this backend API and the React component to allow users to
make changes to the media they already posted on the application.

The media update API
In the backend, we will need an API that allows us to update existing media in the
database if the user making the request is the authorized creator of the given media
post. First, we will declare the PUT route, which accepts the update request from the
client.

mern-mediastream/server/routes/media.routes.js:

router.route('/api/media/:mediaId')
 .put(authCtrl.requireSignin,
 mediaCtrl.isPoster,
 mediaCtrl.update)

When a PUT request is received at 'api/media/:mediaId', the server will ensure
the signed-in user is the original poster of the media content by calling the isPoster
controller method. The isPoster controller method is defined as follows.

mern-mediastream/server/controllers/media.controller.js:

const isPoster = (req, res, next) => {
 let isPoster = req.media && req.auth
 && req.media.postedBy._id == req.auth._id
 if(!isPoster){

Building a Media Streaming Application Chapter 11

[510]

 return res.status('403').json({
 error: "User is not authorized"
 })
 }
 next()
}

This method ensures the ID of the authenticated user is the same as the user ID
referenced in the postedBy field of the given media document. If the user is
authorized, the update controller method will be called next in order to update the
existing media document with the changes. The update controller method is defined
as follows.

mern-mediastream/server/controllers/media.controller.js:

const update = async (req, res) => {
 try {
 let media = req.media
 media = extend(media, req.body)
 media.updated = Date.now()
 await media.save()
 res.json(media)
 } catch(err){
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

This method extends the existing media document with the changed details that were
received in the request body and saves the updated media to the database.

To access the update API in the frontend, we will add a corresponding fetch method
in api-media.js that takes the necessary user auth credentials and media details as
parameters before making the fetch call to this update media API, as shown in the
following code.

mern-mediastream/client/user/api-media.js:

const update = async (params, credentials, media) => {
 try {
 let response = await fetch('/api/media/' + params.mediaId, {
 method: 'PUT',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t

Building a Media Streaming Application Chapter 11

[511]

 },
 body: JSON.stringify(media)
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

This fetch method will be used in the media edit form when the user makes updates
and submits the form. In the next section, we will discuss the implementation of this
media edit form.

The media edit form
The media edit form, which will allow an authorized user to make changes to the
details of a media post, will be similar to the new media form. However, it will not
have an upload option, and the fields will be pre-populated with the existing values,
as shown in the following screenshot:

The EditMedia component containing this form will fetch the existing values of the
media by calling the read media API in a useEffect hook, as shown in the following
code.

mern-mediastream/client/media/EditMedia.js:

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal

 read({mediaId: match.params.mediaId}).then((data) => {
 if (data.error) {
 setError(data.error)

Building a Media Streaming Application Chapter 11

[512]

 } else {
 setMedia(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [match.params.mediaId])

The retrieved media details are set to state so that the values can be rendered in the
text fields. The form field elements will be the same as in the NewMedia component.
When a user updates any of the values in the form, the changes will be registered in
the media object in state with a call to the handleChange method.
The handleChange method is defined as follows.

mediastream/client/media/EditMedia.js:

 const handleChange = name => event => {
 let updatedMedia = {...media}
 updatedMedia[name] = event.target.value
 setMedia(updatedMedia)
 }

In this method, the specific field that's being updated in the form is reflected in the
corresponding attribute in the media object in state. When the user is done editing
and clicks submit, a call will be made to the update API with the required credentials
and the changed media values. This is done by invoking the clickSubmit method,
which is defined as follows.

mediastream/client/media/EditMedia.js:

 const clickSubmit = () => {
 const jwt = auth.isAuthenticated()
 update({
 mediaId: media._id
 }, {
 t: jwt.token
 }, media).then((data) => {
 if (data.error) {
 setError(data.error)
 } else {
 setRedirect(true)
 }
 })
 }

Building a Media Streaming Application Chapter 11

[513]

The call to the update media API will update the media details in the corresponding
media document in the Media collection, while the video file associated with the
media remains as it is in the database.

This EditMedia component can only be accessed by signed-in users and will be
rendered at '/media/edit/:mediaId'. Due to this, we will add a PrivateRoute in
the MainRouter component, like so.

mern-mediastream/client/MainRouter.js:

<PrivateRoute path="/media/edit/:mediaId" component={EditMedia}/>

This link is added with an edit icon in the Media component, allowing the user who
posted the media to access the edit page. In the Media view, the user can also choose
to delete their media post. We will implement this in the next section.

Deleting media
An authorized user can completely delete the media they uploaded to the application,
including the media document in the Media collection and the file chunks stored in
MongoDB using GridFS. To allow a user to remove the media from the application, in
the following sections, we will define a backend API for media deletion from the
database and implement a React component that makes use of this API when the user
interacts with the frontend to perform this deletion.

The delete media API
To delete media from the database, we will implement a delete media API in the
backend, which will accept a DELETE request from a client at
/api/media/:mediaId. We will add the DELETE route for this API as follows, which
will allow an authorized user to delete their uploaded media records.

mern-mediastream/server/routes/media.routes.js:

router.route('/api/media/:mediaId')
 .delete(authCtrl.requireSignin,
 mediaCtrl.isPoster,
 mediaCtrl.remove)

Building a Media Streaming Application Chapter 11

[514]

When the server receives a DELETE request at '/api/media/:mediaId', it will
make sure the signed-in user is the original poster of the media by invoking the
isPoster controller method. Then, the remove controller method
will completely delete the specified media from the database. The remove method is
defined as follows.

mern-mediastream/server/controllers/media.controller.js:

const remove = async (req, res) => {
 try {
 let media = req.media
 let deletedMedia = await media.remove()
 gridfs.delete(req.file._id)
 res.json(deletedMedia)
 } catch(err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

Besides deleting the media record from the Media collection, we are also
using gridfs to remove the associated file details and chunks stored in the database.

To access this backend API in the frontend, you will also need a fetch method with
this route, similar to other API implementations. The fetch method will need to take
the media ID and the current user's auth credentials in order to call the delete media
API with these values.

The fetch method will be used when the user performs the delete operation by
clicking a button in the frontend interface. In the next section, we will discuss a React
component called DeleteMedia, where by this delete media action will be performed
by the user.

The DeleteMedia component
The DeleteMedia component is added to the Media component and is only visible to
the signed-in user who added this specific media. This component is basically a
button that, when clicked, opens a Dialog component asking the user to confirm
the delete action, as shown in the following screenshot:

Building a Media Streaming Application Chapter 11

[515]

This DeleteMedia component takes the media ID and title as props when it is added
in the Media component. Its implementation will be similar to
the DeleteUser component we discussed in Chapter 4, Adding a React Frontend to
Complete MERN. Once the DeleteMedia component has been added, the user will be
able to remove the posted media completely from the application by confirming their
action.

The MERN Mediastream application that we've developed in this chapter is a
complete media streaming application with the capability to upload video files to the
database, stream stored videos back to the viewers, support CRUD operations such as
media create, update, read, and delete, and support options for listing media by
uploader or popularity.

Summary
In this chapter, we developed a media streaming application by extending the
MERN skeleton application and leveraging MongoDB GridFS.

Besides adding basic add, update, delete, and listing features for media uploads, we
looked into how MERN-based applications can allow users to upload video files,
store these files into MongoDB GridFS as chunks, and stream the video back to the
viewer partially or fully as required. We also covered using ReactPlayer with
default browser controls to stream the video file. You can apply these streaming
capabilities to any full-stack application that may require storing and retrieving large
files from the database.

In the next chapter, we will learn how to customize ReactPlayer with our own
controls and functionality so that users have more options, such as playing the next
video in a list. In addition, we will discuss how to improve the SEO of the media
details by implementing server-side rendering with data for the media view.

12
Customizing the Media Player

and Improving SEO
Users visit a media-streaming application mainly to play media and explore other
related media. This makes the media player—and the view that renders the related
media details—crucial to a streaming application.

In this chapter, we will focus on developing the play media page for the
MERN Mediastream application that we started building in the previous chapter,
Chapter 11, Building a Media Streaming Application. We will address the following
topics to bolster the media-playing functionalities and to help boost the presence of
the media content across the web so that it reaches more users:

Customizing player controls on ReactPlayer
Playing the next video from a list of related videos
Autoplaying a list of related media
Server-side rendering (SSR) of the PlayMedia view with data to improve
search engine optimization (SEO)

After completing these topics, you will be more adept at designing complex
interactions between React components in a frontend user interface, and also at
improving SEO across your full-stack React applications.

Customizing the Media Player and Improving SEO Chapter 12

[517]

Adding a custom media player to MERN
Mediastream
The MERN Mediastream application developed in the previous chapter implemented
a simple media player with default browser controls that played one video at a time.
In this chapter, we will update the view that plays media with a customized
ReactPlayer and a related media list that can be set to play automatically when the
current video ends. The updated view with the custom player and related playlist
will resemble the following screenshot:

The code for the complete MERN Mediastream application is
available on GitHub at https:/ ​/ ​github. ​com/ ​PacktPublishing/
Full- ​Stack- ​React- ​Projects- ​Second- ​Edition/ ​tree/ ​master/
Chapter11%20and%2012/ ​mern-​mediastream. You can clone this code
and run the application as you go through the code explanations for
the rest of this chapter.

https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter11%20and%2012/mern-mediastream

Customizing the Media Player and Improving SEO Chapter 12

[518]

The following component tree diagram shows all the custom components that make
up the MERN Mediastream frontend, including the components that will be
improved or added in this chapter:

Modified components and new components added in this chapter include the
PlayMedia component, which houses all the media player functionalities;
the MediaPlayer component, which adds a ReactPlayer with custom controls; and
a RelatedMedia component, which contains a list of related videos. In the following
section, we will discuss the play media page structure, and how it will
accommodate all the media viewing and interaction features to be extended in the
MERN Mediastream application throughout this chapter.

Customizing the Media Player and Improving SEO Chapter 12

[519]

The play media page
When visitors want to view specific media on MERN Mediastream, they will be taken
to the play media page, which will contain the media details, a media player to
stream the video, and a list of related media that can be played next. We will
implement this PlayMedia view in a React component named PlayMedia. In the
following section, we discuss how this component will be structured to enable these
functionalities.

The component structure
We will compose the component structure in the play media page in a way that
allows the media data to trickle down to the inner components from the parent
component. In this case, the PlayMedia component will be the parent component,
containing the RelatedMedia component and also the Media component, which will
have a nested MediaPlayer component, as sectioned and highlighted in the
following screenshot:

Customizing the Media Player and Improving SEO Chapter 12

[520]

When individual media links are accessed in the frontend of the application, the
PlayMedia component will retrieve and load the corresponding media data and list
of related media from the server. Then, the relevant details will be passed as props to
the Media and RelatedMedia child components.

The RelatedMedia component will list and link other related media, and clicking
any media in this list will re-render the PlayMedia component and its inner
components with the new data.

We will update the Media component we developed in Chapter 11, Building a Media-
Streaming Application, to add a customized media player as a child component. This
customized MediaPlayer component will also utilize the data passed from
PlayMedia to stream the current video and link to the next video in the related media
list.

In the PlayMedia component, we will add an autoplay toggle that will let users
choose to autoplay the videos in the related media list, one after the other. The
autoplay state will be managed from the PlayMedia component, but this feature will
require the data available in the parent component's state to re-render when a video
ends in the MediaPlayer nested child component, so it can be ensured that the next
video starts playing automatically while keeping track of the related list.

To achieve this, the PlayMedia component will need to provide a state updating
method as a prop that will be used in the MediaPlayer component to update the
shared and interdependent state values across these components.

Taking this component structure into consideration, we will extend and update the
MERN Mediastream application to implement a functional play media page. In the
next section, we will start by adding the feature that provides a list of related media
to the user in this PlayMedia view.

Listing related media
When a user is viewing an individual media on the application, they will also see a
list of related media on the same page. The related media list will consist of other
media records that belong to the same genre as the given video and is sorted by the
highest number of views. For this feature, we will need to integrate a full-stack slice
that retrieves the relevant list from the Media collection in the backend and renders it
in the frontend. In the following sections, we will add a related media list API in the
backend, along with a way to fetch this API in the frontend, and a React component
that renders the list of media retrieved by this API.

Customizing the Media Player and Improving SEO Chapter 12

[521]

The related media list API
We will implement an API endpoint in the backend to retrieve the list of related
media from the database. The API will receive a GET request at
'/api/media/related/:mediaId', and the route will be declared with the other
media routes, as follows:

mern-mediastream/server/routes/media.routes.js

router.route('/api/media/related/:mediaId')
 .get(mediaCtrl.listRelated)

The :mediaId parameter in the route path will be processed by the mediaByID
method implemented in The video API section of Chapter 11, Building a Media
Streaming Application. It retrieves the media corresponding to this ID from the
database and attaches it to the request object, so it can be accessed in the next
method. The listRelated controller method is the next method invoked for the GET
request at this API route. This method will query the Media collection to find records
with the same genre as the media provided, and also exclude this given media record
from the results returned. The listRelated controller method is defined as shown
in the following code:

mern-mediastream/server/controllers/media.controller.js

const listRelated = async (req, res) => {
 try {
 let media = await Media.find({ "_id": { "$ne": req.media },
 "genre": req.media.genre})
 .limit(4)
 .sort('-views')
 .populate('postedBy', '_id name')
 .exec()
 res.json(media)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

Customizing the Media Player and Improving SEO Chapter 12

[522]

The results returned from the query will be sorted by the highest number of views
and limited to the top four media records. Each media object in the returned results
will also contain the name and ID of the user who posted the media, as specified in
the populate method.

On the client side, we will set up a corresponding fetch method that will be used in
the PlayMedia component to retrieve the related list of media using this API. This
method will be defined as follows:

mern-mediastream/client/media/api-media.js

const listRelated = async (params, signal) => {
 try {
 let response = await fetch('/api/media/related/'+ params.mediaId,
{
 method: 'GET',
 signal: signal,
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json'
 }
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

This listRelated fetch method will take a media ID and make a GET request to the
related media list API in the backend. We will use this method in the PlayMedia
component to retrieve a list of media related to the current media loaded in the media
player. Then this list will be rendered in the RelatedMedia component. In the next
section, we will look at the implementation of this RelatedMedia component.

Customizing the Media Player and Improving SEO Chapter 12

[523]

The RelatedMedia component
In the play media page, beside the media loaded in the player, we will load a list of
related media in the RelatedMedia component. The RelatedMedia component will
take the list of related media as a prop from the PlayMedia component and render
the details along with a video snapshot of each video in the list, as pictured in the
following screenshot:

In the implementation of the RelatedMedia view, we iterate through the media
array received in the props using the map function and render each media item's
details and video snapshot, as shown in the following code structure:

mern-mediastream/client/media/RelatedMedia.js

{props.media.map((item, i) => {
 return
 ... video snapshot ... | ... media details
...
 })
}

In this structure, to render the video snapshot for each media item, we will use a basic
ReactPlayer without the controls, as follows:

mern-mediastream/client/media/RelatedMedia.js

<Link to={"/media/"+item._id}>
 <ReactPlayer url={'/api/media/video/'+item._id}

Customizing the Media Player and Improving SEO Chapter 12

[524]

 width='160px'
 height='140px'/>
</Link>

We wrap the ReactPlayer with a link to the individual view of this media. So,
clicking on the given video snapshot will re-render the PlayMedia view to load the
linked media's details. Beside the snapshot, we will display the details of each video
including title, genre, created date, and the number of views, with the following code:

mern-mediastream/client/media/RelatedMedia.js

<Typography type="title" color="primary">{item.title}</Typography>
<Typography type="subheading"> {item.genre} </Typography>
<Typography component="p">
 {(new Date(item.created)).toDateString()}
</Typography>
<Typography type="subheading">{item.views} views</Typography>

This will render the details next to the video snapshot for each media in the related
media list that is received in the props.

To render this RelatedMedia component in the play media page, we have to add it
to the PlayMedia component. The PlayMedia component will use the related media
list API implemented earlier in this section to retrieve the related media from the
backend, and then pass it in the props to the RelatedMedia component. In the next
section, we will discuss the implementation of this PlayMedia component.

The PlayMedia component
The PlayMedia component will render the play media page. This component consists
of the Media and RelatedMedia child components along with an autoplay toggle,
and it provides data to these components when it loads in the view.

To render the PlayMedia component when individual media links are accessed by
the user, we will add a Route in MainRouter and mount PlayMedia at
'/media/:mediaId', as follows:

mern-mediastream/client/MainRouter.js

<Route path="/media/:mediaId" component={PlayMedia}/>

Customizing the Media Player and Improving SEO Chapter 12

[525]

When the PlayMedia component mounts, it will fetch the media data and the related
media list from the server with useEffect hooks based on the mediaId parameter in
the route link.

In one useEffect hook, it will fetch the media to be loaded in the media player, as
shown in the following code:

mern-mediastream/client/media/PlayMedia.js

useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal

 read({mediaId: props.match.params.mediaId}, signal).then((data)
=> {
 if (data && data.error) {
 console.log(data.error)
 } else {
 setMedia(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
}, [props.match.params.mediaId])

The media ID from the route path is accessed in the props.match received from the
React Router components. It is used in the call to the read API fetch method to
retrieve the media details from the server. The received media object is set in the state
so that it can be rendered in the Media component.

In another useEffect hook, we use the same media ID to call the listRelated API
fetch method, as shown in the following code.

mern-mediastream/client/media/PlayMedia.js

useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal

 listRelated({
 mediaId: props.match.params.mediaId}, signal).then((data) => {
 if (data.error) {
 console.log(data.error)
 } else {
 setRelatedMedia(data)
 }

Customizing the Media Player and Improving SEO Chapter 12

[526]

 })
 return function cleanup(){
 abortController.abort()
 }
}, [props.match.params.mediaId])

The listRelated API fetch method retrieves the related media list from the server
and sets the values to the state so that it can be rendered in the RelatedMedia
component.

The media and related media list values stored in the state are used to pass relevant
props to these child components that are added in the view. For example, in the
following code, the RelatedMedia component is only rendered if the list of related
media contains any media, and the list is passed to it as a prop:

mern-mediastream/client/media/PlayMedia.js

{relatedMedia.length > 0 &&
 (<RelatedMedia media={relatedMedia}/>)}

Later in the chapter, in the Autoplaying related media section, we will add the
Autoplay toggle component above the RelatedMedia component only if the length
of the related media list is greater than 0. We will also discuss the implementation of
the handleAutoPlay method that will be passed as a prop to the Media component.
It will also receive the media detail object, and the video URL for the first item in the
related media list, which will be treated as the next URL to play. The Media
component is added to PlayMedia, along with these props, as shown in the
following code:

mern-mediastream/client/media/PlayMedia.js

const nextUrl = relatedMedia.length > 0
 ? `/media/${relatedMedia[0]._id}` : ''
<Media media={media}
 nextUrl={nextUrl}
 handleAutoplay={handleAutoplay}/>

This Media component renders the media details on the play media page, and also a
customized media player that allows viewers to control the streaming of the video. In
the next section, we will discuss the implementation of this customized media player
and complete this core feature of the play media page.

Customizing the Media Player and Improving SEO Chapter 12

[527]

Customizing the media player
In MERN Mediastream, we want to provide users with a media player with more
controls than those available in the default browser options, and with a look that
matches the rest of the application. We will customize the player controls on
ReactPlayer to replace these default controls with a custom look and functionality,
as seen in the following screenshot:

The controls will be added below the video and will include the progress seeking bar;
the play, pause, next, volume, loop, and fullscreen options; and will also display full
duration of the video and the amount that's been played. In the following sections, we
will first update the Media component discussed in the previous chapter, Chapter 11,
Building a Media Streaming Application, to accommodate the new player features. Then,
we will initialize a MediaPlayer component that will contain the new player, before
implementing functionality for the custom media controls in this player.

Customizing the Media Player and Improving SEO Chapter 12

[528]

Updating the Media component
The existing Media component contains a basic ReactPlayer with default browser
controls for playing a given video. We will replace this ReactPlayer with a new
MediaPlayer component that we will begin implementing in the next section. The
MediaPlayer component will contain a customized ReactPlayer, and it will be
added to the Media component code as follows:

mern-mediastream/client/media/Media.js

const mediaUrl = props.media._id
 ? `/api/media/video/${props.media._id}`
 : null
...
<MediaPlayer srcUrl={mediaUrl}
 nextUrl={props.nextUrl}
 handleAutoplay={props.handleAutoplay}/>

While adding this MediaPlayer component to the Media component, it will be
passed the current video's source URL, the next video's source URL, and
the handleAutoPlay method, which are received as props in the Media component
from the PlayMedia component. These URL values and the autoplay handling
method will be used in the MediaPlayer component to add various video-playing
options. In the next section, we will begin implementing this MediaPlayer
component by initializing the different values needed for adding functional controls
to the custom media player.

Initializing the media player
We will implement the customized media player in the MediaPlayer component.
This player will render the video streamed from the backend and provide the user
with different control options. We will incorporate this media-playing functionality
and the custom control options in the MediaPlayer using a ReactPlayer
component. The ReactPlayer component, as discussed in the previous chapter,
provides a range of customizations that we will leverage for the media player features
to be added in this application.

While defining the MediaPlayer component, we will begin by initializing
the ReactPlayer component with starting values for the controls, before we add the
custom functionalities and corresponding user-action handling code for each control.

Customizing the Media Player and Improving SEO Chapter 12

[529]

The control values we customize will correspond to the props
allowed in the ReactPlayer component. To see a list of available
props and an explanation of each,
visit github.com/CookPete/react-player#props.

First, we need to set the initial control values in the component's state. We will start
with control values that correspond to the following:

The playing state of the media
The volume of the audio
The muted state
The duration of the video
The seeking state
The playback rate of the video
The loop value
The fullscreen value
Video errors
The played, loaded, and ended states of the video getting streamed

The code to initialize these values in the component will be added as follows:

mern-mediastream/client/media/MediaPlayer.js

 const [playing, setPlaying] = useState(false)
 const [volume, setVolume] = useState(0.8)
 const [muted, setMuted] = useState(false)
 const [duration, setDuration] = useState(0)
 const [seeking, setSeeking] = useState(false)
 const [playbackRate, setPlaybackRate] = useState(1.0)
 const [loop, setLoop] = useState(false)
 const [fullscreen, setFullscreen] = useState(false)
 const [videoError, setVideoError] = useState(false)
 const [values, setValues] = useState({
 played: 0, loaded: 0, ended: false
 })

These values set in the state will allow us to customize the functionalities of the
corresponding controls in the ReactPlayer component, which we discuss in detail in
the next section.

https://github.com/CookPete/react-player#props

Customizing the Media Player and Improving SEO Chapter 12

[530]

In the MediaPlayer component's view code, we will add this ReactPlayer with
these control values and source URL, using the prop sent from the Media component,
as shown in the following code:

mern-mediastream/client/media/MediaPlayer.js

<ReactPlayer
 ref={ref}
 width={fullscreen ? '100%':'inherit'}
 height={fullscreen ? '100%':'inherit'}
 style={fullscreen ? {position:'relative'} : {maxHeight: '500px'}}
 config={{ attributes: { style: { height: '100%', width: '100%'} } }}
 url={props.srcUrl}
 playing={playing}
 loop={loop}
 playbackRate={playbackRate}
 volume={volume}
 muted={muted}
 onEnded={onEnded}
 onError={showVideoError}
 onProgress={onProgress}
 onDuration={onDuration}/>

Besides setting the control values, we will also add styling to the player, depending
on whether it is in fullscreen mode. We also need to get a reference to this player
element rendered in the browser so that it can be used in the change-handling code
for the custom controls. We will use the useRef React hook to initialize the reference
to null and then set it to the corresponding player element using the ref method, as
defined in the following code:

mern-mediastream/client/media/MediaPlayer.js

let playerRef = useRef(null)
const ref = player => {
 playerRef = player
}

Customizing the Media Player and Improving SEO Chapter 12

[531]

The value in playerRef will give access to the player element rendered in the
browser. We will use this reference to manipulate the player as required, to make the
custom controls functional.

As a final step for initializing the media player, we will add code for handling errors
thrown by the player if the specified video source cannot be loaded for any reason.
We will define a showVideoError method that will be invoked when a video error
occurs. The showVideoError method will be defined as follows:

mern-mediastream/client/media/MediaPlayer.js

 const showVideoError = e => {
 console.log(e)
 setVideoError(true)
 }

This method will render an error message in the view above the media player. We
can show this error message conditionally by adding the following code in the view
above the ReactPlayer:

mern-mediastream/client/media/MediaPlayer.js

{videoError && <p className={classes.videoError}>Video Error. Try
again later.</p>}

This will render the video error message when an error occurs. As we will allow users
to play another video in the player from the related media list, we will reset the error
message if a new video is loaded. We can hide the error message when a new video
loads with a useEffect hook, by ensuring the useEffect only runs when the video
source URL changes, as shown in the following code:

mern-mediastream/client/media/MediaPlayer.js

useEffect(() => {
 setVideoError(false)
}, [props.srcUrl])

This will ensure the error message isn't shown when a new video is loaded and
streaming correctly.

With these initial control values set and the ReactPlayer added to the
component, in the next section, we can begin customizing how these controls will
appear and function in our application.

Customizing the Media Player and Improving SEO Chapter 12

[532]

Custom media controls
We will add custom player control elements below the video rendered in the
MediaPlayer component and manipulate their functionality using the options and
events provided by the ReactPlayer library. In the following sections, we will
implement the play, pause, and replay controls; the play next control; the loop
functionality; volume control options; progress control options; fullscreen option, and
also display full duration of the video and the amount that's been played.

Play, pause, and replay
Users will be able to play, pause, and replay the current video. We will implement
these three options using Material-UI components bound to ReactPlayer
attributes and events. The play, pause, and replay options will render as shown in the
following screenshot:

To implement the play, pause, and replay functionality, we will add a play, pause, or
replay icon button conditionally depending on whether the video is playing, is
paused, or has ended, as shown in the following code:

mern-mediastream/client/media/MediaPlayer.js

<IconButton color="primary" onClick={playPause}>
 <Icon>{playing ? 'pause': (ended ? 'replay' :
'play_arrow')}</Icon>
</IconButton>

The play, pause, or replay icons are rendered in this IconButton based on the
outcome of the ternary operator.

When the user clicks the button, we will update the playing value in the state, so
the ReactPlayer is also updated. We achieve this by invoking the playPause
method when this button is clicked. The playPause method is defined as follows:

mern-mediastream/client/media/MediaPlayer.js

const playPause = () => {
 setPlaying(!playing)
}

Customizing the Media Player and Improving SEO Chapter 12

[533]

The updated value of playing in the state will play or pause the video in the
ReactPlayer component accordingly. In the next section, we will see how we can
add a control option that will allow us to play the next video from the list of related
media.

Play next
Users will be able to play the next video in the related media list using a play next
button, which will render depending on whether the next video is available or not.
The two versions of this play next button will display as shown in the following
screenshot:

The play next button will be disabled if the related list does not contain any media.
The play next icon will basically link to the next URL value passed in as a prop from
PlayMedia. This play next button will be added to the MediaPlayer view, as
follows:

mern-mediastream/client/media/MediaPlayer.js

<IconButton disabled={!props.nextUrl} color="primary">
 <Link to={props.nextUrl}>
 <Icon>skip_next</Icon>
 </Link>
</IconButton>

Clicking on this play next button will reload the PlayMedia component with the new
media details and start playing the video. In the next section, we will add a control
option that will allow the current video to be played in a loop.

Loop when a video ends
Users will be able to set the current video to keep playing in a loop, using a loop
button. The loop button will render in two states, set and unset, as shown in the
following screenshot:

Customizing the Media Player and Improving SEO Chapter 12

[534]

This loop icon button will display in a different color to indicate whether it has been
set or unset by the user. The code for rendering this loop button will be added to
the MediaPlayer, as follows:

mern-mediastream/client/media/MediaPlayer.js

<IconButton color={loop ? 'primary' : 'default'}
 onClick={onLoop}>
 <Icon>loop</Icon>
</IconButton>

The loop icon color will change based on the value of loop in the state. When this
loop icon button is clicked, we will update the loop value in the state by invoking the
onLoop method, which is defined as follows:

mern-mediastream/client/media/MediaPlayer.js

const onLoop = () => {
 setLoop(!loop)
}

The video will play on loop when this loop value is set to true. We will need to
catch the onEnded event, to check whether loop has been set to true, so the playing
value can be updated accordingly. When a video reaches the end, the onEnded
method will be invoked. This onEnded method will be defined as follows:

mern-mediastream/client/media/MediaPlayer.js

const onEnded = () => {
 if(loop){
 setPlaying(true)
 } else{
 setValues({...values, ended: true})
 setPlaying(false)
 }
}

So, if the loop value is set to true, when the video ends it will start playing again;
otherwise, it will stop playing and render the replay button. In the next section, we
will add controls for setting the volume of the video.

Customizing the Media Player and Improving SEO Chapter 12

[535]

Volume control
In order to control the volume of the video being played, users will have the option to
increase or decrease the volume, as well as to mute or unmute. The rendered volume
controls will be updated based on the user action and current value of the volume.
The different states of the volume controls will be as follows:

A volume-up icon will be rendered if the volume is raised, as shown in the
following screenshot:

A volume-off icon will be rendered if the user decreases the volume to
zero, as pictured next:

A volume-mute icon button will be shown if the user clicks the icon to
mute the volume, as shown next:

To implement this, we will conditionally render the different icons in an
IconButton, based on the volume, muted, volume_up, and volume_off values, as
shown in the following code:

<IconButton color="primary" onClick={toggleMuted}>
 <Icon> {volume > 0 && !muted && 'volume_up' ||
 muted && 'volume_off' ||
 volume==0 && 'volume_mute'} </Icon>
</IconButton>

When this IconButton is clicked, it will either mute or unmute the volume by
invoking the toggleMuted method, which is defined as follows:

mern-mediastream/client/media/MediaPlayer.js

const toggleMuted = () => {
 setMuted(!muted)
}

Customizing the Media Player and Improving SEO Chapter 12

[536]

The volume will be muted or unmuted, depending on the current value of muted in
the state. To allow users to increase or decrease the volume, we will add an input
element of type range that will allow users to set a volume value between 0 and 1.
This input element will be added to the code, as follows:

mern-mediastream/client/media/MediaPlayer.js

<input type="range"
 min={0}
 max={1}
 step='any'
 value={muted? 0 : volume}
 onChange={changeVolume}/>

Changing the value on the input range will set the volume value in the state
accordingly by invoking the changeVolume method. This changeVolume method
will be defined as follows:

mern-mediastream/client/media/MediaPlayer.js

const changeVolume = e => {
 setVolume(parseFloat(e.target.value))
}

The volume value changed in the state will be applied to the ReactPlayer, and this
will set the volume of the current media being played. In the next section, we will add
options to control the progression of the video being played.

Progress control
In the media player, users will see how much of the video has been loaded and
played in a progress bar. To implement this feature, we will use a Material-UI
LinearProgress component to indicate how much of the video has buffered, and
how much has been played already. Then, we'll combine this component with
an input element of type range to give users the ability to move the time slider to a
different part of the video and play from there.

This time slider and progress bar will render as shown in the following screenshot:

Customizing the Media Player and Improving SEO Chapter 12

[537]

The LinearProgress component will use the played and loaded values in the state
to render these bars. It will take the played and loaded values to show each in a
different color, as shown in the following code:

mern-mediastream/client/media/MediaPlayer.js

<LinearProgress color="primary" variant="buffer"
 value={values.played*100}
valueBuffer={values.loaded*100}
 style={{width: '100%'}}
 classes={{
 colorPrimary: classes.primaryColor,
 dashedColorPrimary : classes.primaryDashed,
 dashed: classes.dashed
 }}
/>

The look and color for each progress bar will be determined by the styles you define
for the primaryColor, dashedColorPrimary, and dashed classes.

To update the LinearProgress component when the video is playing or loading, we
will use the onProgress event listener to set the current values for played and
loaded. The onProgress method will be defined as shown in the following code:

mern-mediastream/client/media/MediaPlayer.js

const onProgress = progress => {
 if (!seeking) {
 setValues({...values, played: progress.played, loaded:
progress.loaded})
 }
}

We only want to update the time slider if we are not currently seeking, so we first
check the seeking value in the state before setting the played and loaded values.

For time-sliding control, we will add the range input element and define styles, as
highlighted in the following code, to place it over the LinearProgress component.
The current value of the range will update as the played value changes, so the range
value seems to be moving with the progression of the video. This input element
representing the time slider will be added to the media player, as shown in the
following code:

mern-mediastream/client/media/MediaPlayer.js

<input type="range" min={0} max={1}

Customizing the Media Player and Improving SEO Chapter 12

[538]

 value={values.played} step='any'
 onMouseDown={onSeekMouseDown}
 onChange={onSeekChange}
 onMouseUp={onSeekMouseUp}
 style={{ position: 'absolute',
 width: '100%',
 top: '-7px',
 zIndex: '999',
 '-webkit-appearance': 'none',
 backgroundColor: 'rgba(0,0,0,0)' }}
/>

In the case where the user drags and sets the range picker on their own, we will add
code to handle the onMouseDown, onMouseUp, and onChange events to start the
video from the desired position.

When the user starts dragging by holding the mouse down, we will set seeking to
true so that the progress values are not set in played and loaded. This will be
achieved with the onSeekMouseDown method, which is defined as follows:

mern-mediastream/client/media/MediaPlayer.js

const onSeekMouseDown = e => {
 setSeeking(true)
}

As the range value change occurs, we will invoke the onSeekChange method to set
the played value and also the ended value, after checking whether the user dragged
the time slider to the end of the video. This onSeekChange method will be defined as
follows:

mern-mediastream/client/media/MediaPlayer.js

const onSeekChange = e => {
 setValues({...values, played:parseFloat(e.target.value),
 ended: parseFloat(e.target.value) >= 1})
}

When the user is done dragging and lifts their click on the mouse, we will set
seeking to false, and set the seekTo value for the media player to the current
value set in the input range. The onSeekMouseUp method will be executed when the
user is done seeking, and it is defined as follows:

mern-mediastream/client/media/MediaPlayer.js

const onSeekMouseUp = e => {

Customizing the Media Player and Improving SEO Chapter 12

[539]

 setSeeking(false)
 playerRef.seekTo(parseFloat(e.target.value))
}

This way, the user will be able to select any part of the video to play from, and also
get visual information on the time progress of the video being streamed. In the next
section, we will add a control that will allow the user to view the video in fullscreen
mode.

Fullscreen
Users will be able to view the video in fullscreen mode by clicking the fullscreen
button in the controls. The fullscreen button for the player will be rendered as shown
in the following screenshot:

In order to implement a fullscreen option for the video, we will use the
screenfull Node module to track when the view is in fullscreen,
and findDOMNode from react-dom to specify which Document Object Model
(DOM) element will be made fullscreen with screenfull.

To set up the fullscreen code, we first install screenfull, by running the
following command from the command line:

yarn add screenfull

Then, we will import screenfull and findDOMNode into the MediaPlayer
component, as shown in the following code:

mern-mediastream/client/media/MediaPlayer.js

import screenfull from 'screenfull'
import { findDOMNode } from 'react-dom'

When the MediaPlayer component mounts, we will use a useEffect hook to add a
screenfull change event listener that will update the fullscreen value in the state
to indicate whether the screen is in fullscreen or not. The useEffect hook will be
added as follows, with the screenfull change listener code:

mern-mediastream/client/media/MediaPlayer.js

 useEffect(() => {

Customizing the Media Player and Improving SEO Chapter 12

[540]

 if (screenfull.enabled) {
 screenfull.on('change', () => {
 let fullscreen = screenfull.isFullscreen ? true : false
 setFullscreen(fullscreen)
 })
 }
 }, [])

This fullscreen value set in the state will be updated when the user interacts with
the button for rendering the video in fullscreen mode. In the view, we will add an
icon button for fullscreen with the other control buttons, as shown in the
following code:

mern-mediastream/client/media/MediaPlayer.js

<IconButton color="primary" onClick={onClickFullscreen}>
 <Icon>fullscreen</Icon>
</IconButton>

When the user clicks this button, we will use screenfull and findDOMNode to make
the video player fullscreen by invoking the onClickFullscreen method, which is
defined as follows:

mern-mediastream/client/media/MediaPlayer.js

 const onClickFullscreen = () => {
 screenfull.request(findDOMNode(playerRef))
 }

We access the element that renders the media player in the browser by using the
playerRef reference in findDOMNode and make it fullscreen by using
screenfull.request. The user can then watch the video in fullscreen, where they
can press Esc at any time to exit fullscreen and get back to the PlayMedia view. In the
next section, we will implement the final customization in the media player controls
to display the total length of the video, and how much of it was already played.

Played duration
In the custom media controls section of the media player, we want to show the time
that has already passed and the total duration of the video in a readable time format,
as shown in the following screenshot:

Customizing the Media Player and Improving SEO Chapter 12

[541]

To show the time, we can utilize the HTML time element, which takes a datetime
value, and add it to the view code in MediaPlayer, as follows:

mern-mediastream/client/media/MediaPlayer.js

<time dateTime={`P${Math.round(duration * played)}S`}>
 {format(duration * played)}
</time> /
<time dateTime={`P${Math.round(duration)}S`}>
 {format(duration)}
</time>

In the dateTime attribute for these time elements, we provide the total rounded-off
seconds that represent the played duration or the total duration of the video. We will
get this total duration value for a video by using the onDuration event and then set
it to the state, so it can be rendered in the time element. The onDuration method is
defined as follows:

mern-mediastream/client/media/MediaPlayer.js

 const onDuration = (duration) => {
 setDuration(duration)
 }

To make the duration and already played time values readable, we will use the
following format function:

mern-mediastream/client/media/MediaPlayer.js

 const format = (seconds) => {
 const date = new Date(seconds * 1000)
 const hh = date.getUTCHours()
 let mm = date.getUTCMinutes()
 const ss = ('0' + date.getUTCSeconds()).slice(-2)
 if (hh) {
 mm = ('0' + date.getUTCMinutes()).slice(-2)
 return `${hh}:${mm}:${ss}`
 }
 return `${mm}:${ss}`
 }

This format function takes the duration value in seconds and converts it to the
hh/mm/ss format, using methods from the JavaScript Date API.

Customizing the Media Player and Improving SEO Chapter 12

[542]

The controls added to this custom media player are all mostly based on some of the
available functionality provided in the ReactPlayer module, and its examples in the
official documentation. While implementing the custom media player for this
application, we updated and added the associated playing controls, looping option,
volume controls, progress seeking control, fullscreen viewing option, and a display of
the video duration. There are more options available for further customizations and
extensions in ReactPlayer that may be explored depending on specific feature
requirements. With the different functionalities of the customized media player
implemented, in the next section, we can start discussing the implementation of
autoplaying videos in this player from a list of available media.

Autoplaying related media
In the play media page, users will have the option to autoplay one video after the
other from the related media list. To make this feature possible, the PlayMedia
component will manage the autoplay state, which will determine the data and how it
will be rendered next in the MediaPlayer and RelatedMedia components after the
current video finishes streaming in the player. In the following sections, we will
complete this autoplay functionality by adding a toggle in the PlayMedia component
and implementing the handleAutoplay method, which needs to be called when a
video ends in the MediaPlayer component.

Toggling autoplay
On the play media page, we will add an autoplay toggle option above the related
media list. Besides letting the user set autoplay, the toggle will also indicate whether
it is currently set or not, as shown in the following screenshot:

Customizing the Media Player and Improving SEO Chapter 12

[543]

To add the autoplay toggle option, we will use a Material-UI Switch component
along with a FormControlLabel, and add it to the PlayMedia component over the
RelatedMedia component. It will only be rendered when there are media in the
related media list. We will add this Switch component representing the autoplay
toggle as shown in the following code:

mern-mediastream/client/media/PlayMedia.js

<FormControlLabel
 control={
 <Switch
 checked={autoPlay}
 onChange={handleChange}
 color="primary"
 />
 }
 label={autoPlay ? 'Autoplay ON':'Autoplay OFF'}
/>

The autoplay toggle label will render according to the current value of autoPlay in
the state. To handle the change to the toggle when the user interacts with it, and to
reflect this change in the state's autoPlay value, we will use the following onChange
handler function:

mern-mediastream/client/media/PlayMedia.js

const handleChange = (event) => {
 setAutoPlay(event.target.checked)
}

This autoPlay value, which represents whether the user chose to autoplay all the
media, will determine what happens when the current video finishes streaming. In
the next section, we will discuss how the autoplay behavior will be integrated with
the child components in PlayMedia, depending on the toggled value set for
autoPlay by the user.

Handling autoplay across components
When a user selects to set the Autoplay toggle to ON, the functionality desired here is
that when a video ends, if autoPlay is set to true and the current related list of
media is not empty, PlayMedia should load the media details of the first video in the
related list.

Customizing the Media Player and Improving SEO Chapter 12

[544]

In turn, the Media and MediaPlayer components should update with the new media
details, start playing the new video, and render the controls on the player
appropriately. The list in the RelatedMedia component should also update with the
current media removed from the list, so only the remaining playlist items are visible.

In order to handle this autoplay behavior across the PlayMedia component and its
child components, PlayMedia passes a handleAutoPlay method to the Media
component as a prop to be used by the MediaPlayer component when a video ends.
The handleAutoPlay method is defined as shown in the following code:

mern-mediastream/client/media/PlayMedia.js

const handleAutoplay = (updateMediaControls) => {
 let playList = relatedMedia
 let playMedia = playList[0]
 if(!autoPlay || playList.length == 0)
 return updateMediaControls()

 if(playList.length > 1){
 playList.shift()
 setMedia(playMedia)
 setRelatedMedia(playList)
 }else{
 listRelated({
 mediaId: playMedia._id}).then((data) => {
 if (data.error) {
 console.log(data.error)
 } else {
 setMedia(playMedia)
 setRelatedMedia(data)
 }
 })
 }
}

This handleAutoplay method takes care of the following when a video ends in the
MediaPlayer component:

It takes a callback function from the onEnded event listener in the
MediaPlayer component. This callback will be executed if autoplay is not
set or the related media list is empty so that the controls on the
MediaPlayer are rendered to show that the video has ended.

Customizing the Media Player and Improving SEO Chapter 12

[545]

If autoplay is set and there are more than one related media in the list, then:
The first item in the related media list is set as the current
media object in the state so it can be rendered.
The related media list is updated by removing this first item,
which will now start playing in the view.

If autoplay is set and there is only one item in the related media list, this
last item is set to media so it can start playing, and the listRelated fetch
method is called to repopulate the RelatedMedia view with the related
media for this last item.

With these steps covered within this handleAutoplay method, all the aspects of the
play media page can be updated accordingly at the end of a video, if autoplay is set to
true. In the next section, we will see how the MediaPlayer component utilizes this
handleAutoplay method when the current video ends, in order to make the
autoplay feature functional.

Updating the state when a video ends in
MediaPlayer
The MediaPlayer component receives the handleAutoplay method as a prop from
PlayMedia. This method will be utilized when the current video finishes playing in
the player. Hence, we will update the listener code for the onEnded event to execute
this method only when the loop is set to false for the current video. We don't want
to play the next video if the user has decided to loop the current video. The onEnded
method in MediaPlayer will be updated with the highlighted code shown in the
following block:

mern-mediastream/client/media/MediaPlayer.js

 const onEnded = () => {
 if(loop){
 setPlaying(true)
 } else{
 props.handleAutoplay(()=>{
 setValues({...values, ended: true})
 setPlaying(false)
 })
 }
 }

Customizing the Media Player and Improving SEO Chapter 12

[546]

In this code, a callback function is passed to the handleAutoplay method, in order to
set the playing value to false and render the replay icon button instead of the play
or pause icon button, after it is determined in PlayMedia that the autoplay has not
been set or that the related media list is empty.

The autoplay functionality will continue playing the related videos one after the other
with this implementation. This implementation demonstrates another way to update
the state across the components when the values are interdependent.

With this autoplay functionality implemented, we have a complete play media page
with a customized media player and a related media list that the user can choose to
autoplay through like a playlist. In the next section, we will make this page SEO-
friendly by SSR of this view with the media data populated in the backend.

Server-side rendering with data
SEO is important for any web application that delivers content to its users and wants
to make the content easy to find. Generally, content on any web page will have a
better chance of getting more viewers if the content is easily readable to search
engines. When a search-engine bot accesses a web URL, it will get the SSR output.
Hence, to make the content discoverable, the content should be part of the SSR
output.

In MERN Mediastream, we will use the case of making media details popular across
search engine results, to demonstrate how to inject data into an SSR view in a MERN-
based application. We will focus on implementing SSR with data injected for the
PlayMedia component that is returned at the '/media/:mediaId' path. The
general implementation steps outlined here can be used to implement SSR with data
for other views.

In the following sections, we will extend the SSR implementation discussed in
Chapter 4, Adding a React Frontend to Complete MERN. We will first define a
static route configuration file and use it to update the existing SSR code in the
backend to inject the necessary media data from the database. Then, we will update
the frontend code to render this server-injected data in the view, and, finally, check if
this SSR implementation works as expected.

Customizing the Media Player and Improving SEO Chapter 12

[547]

Adding a route configuration file
In order to load data for the React views when these are rendered on the server, we
will need to list the frontend routes in a route configuration file. This file may then be
used with the react-router-config module, which provides static route
configuration helpers for React Router.

We will first install the module by running the following command from the
command line:

yarn add react-router-config

Next, we will create a route configuration file that will list frontend React Router
routes. This configuration will be used on the server to match these routes with
incoming request URLs, to check whether data must be injected before the server
returns the rendered markup in response to this request.

For the route configuration in MERN Mediastream, we will only list the route that
renders the PlayMedia component and demonstrate how to server-render a specific
component with data injected from the backend. The route configuration will be
defined as follows:

mern-mediastream/client/routeConfig.js

import PlayMedia from './media/PlayMedia'
import { read } from './media/api-media.js'
const routes = [
 {
 path: '/media/:mediaId',
 component: PlayMedia,
 loadData: (params) => read(params)
 }
]
export default routes

For this frontend route and PlayMedia component, we specify the read fetch
method from api-media.js as the loadData method. This can then be used to
retrieve and inject the data into the PlayMedia view when the server generates the
markup for this component, after receiving a request at /media/:mediaId. In the
next section, we will use this route configuration to update the existing SSR code on
the backend.

Customizing the Media Player and Improving SEO Chapter 12

[548]

Updating SSR code for the Express server
We will update the existing basic SSR code in server/express.js to add the data-
loading functionality for the React views that will get rendered server-side. In the
following sections, we will first see how to use the route configuration to load the
data that needs to be injected when the server renders React components. Then, we
will integrate isomorphic-fetch so the server is able to make the read fetch call to
retrieve the necessary data, using the same API fetching code from the frontend.
Finally, we will inject this retrieved data into the markup generated by the server.

Using route configuration to load data
We will use the routes defined in the route configuration file to look for a matching
route when the server receives any request. If a match is found, we will use the
corresponding loadData method declared for this route in the configuration to
retrieve the necessary data, before it is injected into the server-rendered markup
representing the React frontend. We will perform these route-matching and data-
loading actions in a method called loadBranchData, which is defined as follows:

mern-mediastream/server/express.js

import { matchRoutes } from 'react-router-config'
import routes from './../client/routeConfig'
const loadBranchData = (location) => {
 const branch = matchRoutes(routes, location)
 const promises = branch.map(({ route, match }) => {
 return route.loadData
 ? route.loadData(branch[0].match.params)
 : Promise.resolve(null)
 })
 return Promise.all(promises)
}

This method uses matchRoutes from react-router-config, and the routes
defined in the route configuration file, to look for a route matching the incoming
request URL, which is passed as the location argument. If a matching route is
found, then any associated loadData method will be executed to return a Promise
containing the fetched data, or null if there were no loadData methods. The
loadBranchData defined here will need to be called whenever the server receives a
request, so if any matching route is found, we can fetch the relevant data and inject it
into the React components while rendering server side. In the next section, we will
ensure the fetch methods defined in the frontend code also work on the server side, so
these same methods also load the corresponding data from the server side.

Customizing the Media Player and Improving SEO Chapter 12

[549]

Isomorphic-fetch
We will ensure that any fetch method we defined for the client code can also be used
on the server by using the isomorphic-fetch Node module. We will first install the
module by running the following command from the command line:

yarn add isomorphic-fetch

Then, we will simply import isomorphic-fetch in express.js, as shown in the
following code, to ensure fetch methods now work isomorphically both on the client
and the server side:

mern-mediastream/server/express.js

import 'isomorphic-fetch'

This isomorphic-fetch integration will make sure that the read fetch method, or
any other fetch method that we defined for the client, can now be used on the server
as well. Before this integration becomes functional, we need to ensure the fetch
methods use absolute URLs, as discussed in the next section.

Absolute URLs
One issue with using isomorphic-fetch is that it currently requires the fetch URLs
to be absolute. So, we need to update the URL used in the read fetch method, defined
in api-media.js, into an absolute URL.

Instead of hardcoding a server address in the code, we will set a config variable in
config.js, as follows:

mern-mediastream/config/config.js

serverUrl: process.env.serverUrl || 'http://localhost:3000'

This will allow us to define and use separate absolute URLs for the API routes in
development and in production.

Then, we will update the read method in api-media.js to make sure it uses an
absolute URL to call the read API on the server, as highlighted in the following code:

mern-mediastream/client/media/api-media.js

import config from '../../config/config'
const read = (params) => {
 return fetch(config.serverUrl +'/api/media/' + params.mediaId, {

Customizing the Media Player and Improving SEO Chapter 12

[550]

 method: 'GET'
 }).then((response) => { ... })

This will make the read fetch call compatible with isomorphic-fetch, so it can be
used without a problem on the server side to retrieve the media data while server-
rendering the PlayMedia component with data. In the next section, we will discuss
how to inject this retrieved data into the server-generated markup representing the
rendered React frontend.

Injecting data into the React app
In the existing SSR code in the backend, we use ReactDOMServer to convert the
React app to markup. We will update this code in express.js to inject the retrieved
data into the MainRouter, as shown in the following code:

mern-mediastream/server/express.js

...
loadBranchData(req.url).then(data => {
 const markup = ReactDOMServer.renderToString(
 sheets.collect(
 <StaticRouter location={req.url} context={context}>
 <ThemeProvider theme={theme}>
 <MainRouter data={data}/>
 </ThemeProvider>
 </StaticRouter>
)
)
 ...
 }).catch(err => {
 res.status(500).send({"error": "Could not load React view with
data"})
 })
...

We utilize the loadBranchData method to retrieve the relevant data for the
requested view, then pass this data as a prop to the MainRouter component. For this
data to be added correctly in the rendered PlayMedia component when the server
generates the markup, we need to update the client-side code to consider this server-
injected data, as discussed in the next section.

Customizing the Media Player and Improving SEO Chapter 12

[551]

Applying server-injected data to client code
We will update the React code in the frontend to add considerations for the data that
may be injected from the server if the view is being rendered server-side. For this
MERN Mediastream application, on the client side, we will access the media data
passed from the server, and add it to the PlayMedia view when the server receives a
direct request to render this component. In the following sections, we will see how to
pass the data received in the MainRouter to the PlayMedia component, and render
it accordingly.

Passing data props to PlayMedia from MainRouter
While generating markup with ReactDOMServer.renderToString, we pass the
preloaded data to MainRouter as a prop. We can access this data prop in
the MainRouter component definition, as follows:

mern-mediastream/client/MainRouter.js

const MainRouter = ({data}) => { ... }

To give PlayMedia access to this data from the MainRouter, we will change the
Route component added originally to declare the route for PlayMedia, and pass this
data as a prop, as shown in the following code:

mern-mediastream/client/MainRouter.js

<Route path="/media/:mediaId"
 render={(props) => (
 <PlayMedia {...props} data={data} />
)}
/>

The data prop sent to PlayMedia will need to be rendered in the view, as discussed
next.

Customizing the Media Player and Improving SEO Chapter 12

[552]

Rendering received data in PlayMedia
In the PlayMedia component, we will check for data passed from the server and set
the values to the state so the media details are rendered in the view when the server is
generating the corresponding markup. We will do this checking and assignment as
shown in the following code:

mern-mediastream/client/media/PlayMedia.js

if (props.data && props.data[0] != null) {
 media = props.data[0]
 relatedMedia = []
}

If media data is received in the props from the server, we assign it to the media value
in the state. We also set the relatedMedia value to an empty array, as we do not
intend to render the related media list in the server-generated version. This
implementation will produce server-generated markup with media data injected in
the PlayMedia view when the corresponding frontend route request is received
directly on the server. In the next section, we will see how to ensure this
implementation is actually working and successfully rendering server-generated
markup with the data populated.

Checking the implementation of SSR with data
For MERN Mediastream, any of the links that render PlayMedia should now
generate markup on the server side with media details preloaded. We can verify that
the implementation for SSR with data is working properly by opening the app URL in
a browser, with JavaScript turned off. In the following section, we will look into how
to achieve this check in the Chrome browser, and what the resulting view should
show to the user and to a search engine.

Testing in Chrome
Testing this implementation in Chrome just requires updating the Chrome settings
and loading the application in a tab, with JavaScript blocked. In the following
sections, we will go over the steps to check whether the PlayMedia view renders
with data when it is just server-generated markup.

Customizing the Media Player and Improving SEO Chapter 12

[553]

Loading a page with JavaScript enabled
First, open the MERN Mediastream application in Chrome, then browse to any media
link and let it render normally with JavaScript enabled. This should show the
implemented PlayMedia view with the functioning media player and the related
media list. Leave this tab open as we move on to the next step, to disable JavaScript in
Chrome.

Disabling JavaScript from settings
To test how the server-generated markup is rendered in the view, we need to disable
JavaScript on Chrome. For this, you can go to the advanced settings at
chrome://settings/content/javascript, and use the toggle to block JavaScript,
as shown in the following screenshot:

Now, refresh the media link in the MERN Mediastream tab, and there should be an
icon next to the address URL, as shown in the following screenshot, indicating that
JavaScript is indeed disabled:

The view that will be displayed in the browser at this point will only render the
server-generated markup received from the backend. In the next section, we will
discuss what the expected view is when JavaScript is blocked on the browser.

PlayMedia view with JavaScript blocked
When JavaScript is blocked in the browser, the PlayMedia view should render with
only the media details populated. But the user interface is no longer interactive as
JavaScript is blocked, and only the default browser controls are operational, as shown
in the following screenshot:

Customizing the Media Player and Improving SEO Chapter 12

[554]

This is the markup that a search-engine bot will read for media content, and also what
a user will see when no JavaScript loads on the browser. If this implementation
for SSR with data was not added to the application, then this view would render
without the associated media details in this scenario, and hence the media
information would not be read and indexed by search engines.

MERN Mediastream now has fully operational media-playing tools that will allow
users to browse and play videos with ease. In addition, the media views that display
individual media content items are now search-engine-optimized because of SSR with
preloaded data.

Customizing the Media Player and Improving SEO Chapter 12

[555]

Summary
In this chapter, we completely upgraded the play media page on MERN
Mediastream. We first added custom media player controls, utilizing options
available in the ReactPlayer component. Then, we incorporated the autoplay
functionality for a related media playlist, after retrieving the related media from the
database. Finally, we made the media details search-engine-readable by injecting data
from the server when the view is rendered on the server.

You can apply the techniques explored in this chapter to build the play media page,
to compose and build your own complex user interface with React components that
are interdependent, and to add SSR with data for views that need to be SEO-friendly
in your applications.

We have now explored advanced capabilities, such as streaming and SEO, with the
MERN stack technologies. In the next two chapters, we will test the potential of this
stack further by incorporating virtual reality (VR) elements into a full-stack web
application using React 360.

13
Developing a Web-Based VR

Game
The advent of virtual reality (VR) and augmented reality (AR) technologies is
transforming how users interact with software and, in turn, the world around them.
The possible applications of VR and AR are innumerable, and though the
gaming industry has been an early adopter, these rapidly developing technologies
have the potential to shift paradigms across multiple disciplines and industries.

In order to demonstrate how the MERN stack paired with React 360 can easily add
VR capabilities to any web application, we will discuss and develop a dynamic, web-
based VR game in this and the next chapter. In this chapter, we will focus on defining
the features of the VR game. Additionally, we will go over the key 3D VR concepts
that are relevant to implementing this VR game, before developing the game view
using React 360.

In this chapter, we will build the VR game using React 360 by covering the following
topics:

Introducing the MERN VR Game
Getting started with React 360
Key concepts for developing 3D VR applications
Defining game details
Building the game view in React 360
Bundling the React 360 code to integrate with the MERN skeleton

After going over these topics, you will be able to apply 3D VR concepts and use React
360 to start building your own VR-based applications.

Developing a Web-Based VR Game Chapter 13

[557]

Introducing the MERN VR Game
The MERN VR Game web application will be developed by extending the MERN
skeleton and integrating VR capabilities using React 360. It will be a dynamic, web-
based VR game application, in which registered users can make their own games, and
any visitor to the application can play these games. The home page of this application
will list the games on the platform, as shown in the following screenshot:

The code to implement features of the VR game using React 360 is
available on GitHub at https:/ ​/ ​github. ​com/ ​PacktPublishing/
Full- ​Stack- ​React- ​Projects- ​Second- ​Edition/ ​tree/ ​master/
Chapter13/ ​MERNVR. You can clone this code and run the application
as you go through the code explanations in the rest of this chapter.

The features of the game will be simple enough to reveal the capabilities of
introducing VR into a MERN-based application, without delving too deeply into the
advanced concepts of React 360 that may be used to implement more complex VR
features. In the next section, we will briefly define the features of a game in this
application.

Game features
Each game in the MERN VR Game application will essentially be a different VR
world, where users can interact with 3D objects placed at different locations in a 360-
degree panoramic world.

https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter13/MERNVR

Developing a Web-Based VR Game Chapter 13

[558]

The gameplay will be similar to that of a scavenger hunt, and to complete each game,
users will have to find and collect the 3D objects that are relevant to the clue or
description for each game. This means the game world will contain some VR objects
that can be collected by the player and some VR objects that cannot be collected, but
that may be placed by makers of the game as props or hints. Finally, the game will be
won when all of the relevant 3D objects have been collected by the user.

In this chapter, we will build these game features using React 360, focusing primarily
on VR and React 360 concepts that will be relevant to implementing the features
defined here. Once the game features are ready, we will discuss how the React 360
code can be bundled and prepared for integration with the MERN application code
developed in Chapter 14, Making the VR Game Dynamic Using MERN. Before diving
into the implementation of the game features with React 360, we will first look at
setting up and getting started with React 360 in the next section.

Getting started with React 360
React 360 makes it possible to build VR experiences using the same declarative and
component-based approach as in React. The underlying technology of React 360
makes use of the Three.js JavaScript 3D engine to render 3D graphics with WebGL
within any compatible web browser and also provides us with access to VR headsets
with the Web VR API.

Though React 360 builds on top of React and the apps run in the browser, React 360
has a lot in common with React Native, thus making React 360 apps cross-platform.
This also means that some concepts of React Native are also applicable to React 360.
Covering all of the React 360 concepts is outside the scope of this book; therefore, we
will focus on the concepts that are required to build the game and integrate them with
the MERN stack web application. In the following section, we will begin by setting up
a React 360 project, which will be extended on later in the chapter in order to build
the game features.

Setting up a React 360 project
React 360 provides developer tools that make it easy to start developing a new React
360 project. The steps to get started are detailed in the official React 360
documentation, so we will only summarize the steps here and point out the files that
are relevant to developing the game.

Developing a Web-Based VR Game Chapter 13

[559]

Since we already have Node and Yarn installed for the MERN applications, we can
start by installing the React 360 CLI tool by running the following command in the
command line:

yarn global add react-360-cli

Then, use this React 360 CLI tool to create a new application, and install the required
dependencies by running the following command from the command line:

react-360 init MERNVR

This will add the new React 360 application with all of the necessary files into a
folder, named MERNVR, in the current directory. Finally, we can go into this folder in
the command line, and run the application using the following command:

yarn start

This start command will initialize the local development server, and the default
React 360 application can be viewed in the browser at
http://localhost:8081/index.html.

To update this starter application and implement our game features, we will modify
code mainly in the index.js file with some minor updates in the client.js file,
which can be found in the MERNVR project folder.

The default code in index.js for the starter application generated by React 360
should be as follows. Note that it renders a Welcome to React 360 text in a 360-degree
world in the browser:

import React from 'react'
import { AppRegistry, StyleSheet, Text, View } from 'react-360'

export default class MERNVR extends React.Component {
 render() {
 return (
 <View style={styles.panel}>
 <View style={styles.greetingBox}>
 <Text style={styles.greeting}>
 Welcome to React 360
 </Text>
 </View>
 </View>
)
 }
}

Developing a Web-Based VR Game Chapter 13

[560]

const styles = StyleSheet.create({
 panel: {
 // Fill the entire surface
 width: 1000,
 height: 600,
 backgroundColor: 'rgba(255, 255, 255, 0.4)',
 justifyContent: 'center',
 alignItems: 'center',
 },
 greetingBox: {
 padding: 20,
 backgroundColor: '#000000',
 borderColor: '#639dda',
 borderWidth: 2,
 },
 greeting: {
 fontSize: 30,
 }
})

AppRegistry.registerComponent('MERNVR', () => MERNVR)

This index.js file contains the application's content and the main code,
including the view and style code. The code in client.js contains the boilerplate
that connects the browser to the React application in index.js. The default
client.js file in the starter project folder should look like this:

import {ReactInstance} from 'react-360-web'

function init(bundle, parent, options = {}) {
 const r360 = new ReactInstance(bundle, parent, {
 // Add custom options here
 fullScreen: true,
 ...options,
 })

 // Render your app content to the default cylinder surface
 r360.renderToSurface(
 r360.createRoot('MERNVR', { /* initial props */ }),
 r360.getDefaultSurface()
)

 // Load the initial environment
 r360.compositor.setBackground(r360.getAssetURL('360_world.jpg'))
}

window.React360 = {init}

Developing a Web-Based VR Game Chapter 13

[561]

This code executes the React code defined in index.js, essentially creating a new
instance of React 360 and loading the React code by attaching it to the DOM.

With this, the default React 360 starter project is set up and ready for extension.
Before modifying this code to implement the game, in the next section, we will first
look at some of the key concepts related to developing 3D VR experiences, in the
context of how these concepts are applied with React 360.

Key concepts for developing the VR
game
Before creating VR content and an interactive 360-degree experience for the game, we
will highlight some of the relevant aspects of the virtual world, and how React 360
can be used to work with these VR concepts. Given the wide range of possibilities in
the VR space and the various options available with React 360, we need to identify
and explore the specific concepts that will enable us to implement the interactive VR
features we defined for the game. In the following sections, we will discuss the
images that will make up the 360-degree world of the game, the 3D positioning
system, along with the React 360 components, APIs, and input events that will be
utilized to implement the game.

Equirectangular panoramic images
The VR world for the game will be composed of a panoramic image that is added
to the React 360 environment as a background image.

Panorama images are generally 360-degree images or spherical panoramas projected
onto a sphere that completely surrounds the viewer. A common and popular format
for 360-degree panorama images is the equirectangular format. React 360 currently
supports mono and stereo formats for equirectangular images.

To learn more about the 360 images and video support in React 360,
refer to the React 360
documentation at facebook.github.io/react-360/docs/setup.htm
l.

The photograph shown here is an example of an equirectangular, 360-degree
panoramic image. To set the world background for a game in MERN VR Game, we
will use this kind of image:

https://facebook.github.io/react-360/docs/setup.html
https://facebook.github.io/react-360/docs/setup.html

Developing a Web-Based VR Game Chapter 13

[562]

An equirectangular panoramic image consists of a single image with
an aspect ratio of 2:1, where the width is twice the height. These
images are created with a special 360-degree camera. An excellent
source of equirectangular images is Flickr; you just need to search
for the equirectangular tag.

Creating the game world by setting the background scene using an equirectangular
image in a React 360 environment will make the VR experience immersive and
transport the user to a virtual location. To enhance this experience and add 3D objects
in this VR world effectively, we need to learn more about the layout and coordinate
system relevant to the 3D space, which is discussed next.

3D position – coordinates and transforms
We need to understand positioning and orientation in the VR world space, in order to
place 3D objects at the desired locations and to make the VR experience feel more
real. In the following sections, we will review the 3D coordinate system to help us to
determine the location of a virtual object in the 3D space, and the transform
capabilities in React 360, which will allow us to position, orient, and scale objects as
required.

3D coordinate system
For mapping in a 3D space, React 360 uses a three-dimensional meter-based
coordinate system that is similar to the OpenGL® 3D coordinate system. This allows
individual components to be transformed, moved, or rotated in 3D in relation to the
layout in their parent component.

Developing a Web-Based VR Game Chapter 13

[563]

The 3D coordinate system used in React 360 is a right-handed
system. This means the positive x axis is to the right, the positive y
axis points upward, and the positive z axis is backward. This
provides a better mapping with common coordinate systems of the
world space in assets and 3D world modeling.

If we try to visualize the 3D space, the user starts out at the center of the x-y-z axes
pictured in the following diagram:

The z axis points forward toward the user and the user looks out at the -z axis
direction. The y axis runs up and down, whereas the x axis runs from side to side. The
curved arrow in the diagram shows the direction of the positive rotation values.

While deciding where and how to place 3D objects in the 360-degree world, we will
have to set values according to this 3D coordinate system. In the next section, we will
demonstrate how to place 3D objects using React 360 by setting values in transform
properties.

Transforming 3D objects
The position and orientation of a 3D object will be determined by its transform
properties, which will have values corresponding to the 3D coordinate system. In the
following screenshot, the same 3D book object is placed in two different positions and
orientations by changing the transform properties in the style attribute of a React
360 Entity component that is rendering the 3D object:

Developing a Web-Based VR Game Chapter 13

[564]

This transform feature is based on the transform style used in React, which React 360
extends to be fully 3D, considering the x-y-z axes. The transform properties are
added to the Entity components in the style attribute as an array of keys and
values in the following form:

style={{ ...
 transform: [
 {TRANSFORM_COMMAND: TRANSFORM_VALUE},
 ...
]
... }}

The transform commands and values that are relevant to the 3D objects to be placed
in our games are translate [x, y, z], with values in meters; rotate [x, y,
z], with values in degrees; and scale, to determine the size of the object across all
axes. We can also utilize the matrix command instead, which accepts an array of 16
numbers representing the translation, rotation, and scale values.

To learn more about the React 360 3D coordinates and transforms,
refer to the React 360 documentation
at facebook.github.io/react-360/docs/setup.html.

We will utilize these transform properties to position and orient 3D objects according
to the 3D coordinate system while placing objects in the game world built using React
360. In the next section, we will go over the React 360 components that will allow us
to build the game world.

https://facebook.github.io/react-360/docs/setup.html

Developing a Web-Based VR Game Chapter 13

[565]

React 360 components
React 360 provides a range of components that can be used out of the box to create the
VR user interface for the game. This range consists of basic components available
from React Native and also VR-specific components that will allow you to incorporate
the interactive 3D objects in the VR game. In the following sections, we will
summarize the specific components that will be used to build the game view and
features, including core components, such as View and Text, and VR-specific
components, such as Entity and VrButton.

Core components
The core components in React 360 include two of React Native's built-in components
– the Text and View components. In the game, we will use these two components to
add content to the game world. In the following sections, we will discuss these two
core components.

View
The View component is the most fundamental component for building a user
interface in React Native, and it maps directly to the native view equivalent on
whatever platform React Native is running on. In our case, since the application will
render in the browser, it will map to a <div> element in the browser. The View
component can be added as follows:

<View>
 <Text>Hello</Text>
</View>

The View component is typically used as a container for other components; it can be
nested inside other views and can have zero-to-many children of any type.

We will use View components to hold the game world view and add 3D object
entities and text to the game. Next, we will look at the Text component, which will
allow us to add text to the view.

Developing a Web-Based VR Game Chapter 13

[566]

Text
The Text component is a React Native component for displaying text, and we will
use it to render strings in a 3D space by placing Text components inside View
components, as shown in the following code:

<View>
 <Text>Welcome to the MERN VR Game</Text>
</View>

We will compose the game world using these two React Native components, along
with other React 360 components to integrate VR features into the game. In the next
section, we will go over the React 360 components that will let us add interactive VR
objects in the game world.

Components for the 3D VR experience
React 360 provides a set of its own components to create the VR experience.
Specifically, we will use the Entity component to add 3D objects and a VrButton
component to capture clicks from the user. We will discuss the Entity and
VrButton components in the following sections.

Entity
In order to add 3D objects to the game world, we will use the Entity component,
which allows us to render 3D objects in React 360. The Entity component can be
added in the view as follows:

<Entity
 source={{
 obj: {uri: "http://linktoOBJfile.obj "},
 mtl: {uri: "http://linktoMTLfile.obj "}
 }}
/>

Files containing the specific 3D object's information are added to the Entity
component using a source attribute. The source attribute takes an object of key-
value pairs to map resource file types to their locations. React 360 supports the
Wavefront OBJ file format, which is a common representation for 3D models. So, in
the source attribute, the Entity component supports the following keys:

obj: The location of an OBJ-formatted model
mtl: The location of an MTL-formatted material (the companion to OBJ)

Developing a Web-Based VR Game Chapter 13

[567]

The values for the obj and mtl properties point to the location of these files and can
be static strings, asset() calls, require() statements, or URI strings.

OBJ (or .OBJ) is a geometry definition file format that was first
developed by Wavefront Technologies. It is a simple data format
that represents 3D geometry as a list of vertices and texture vertices.
OBJ coordinates have no units, but OBJ files can contain scale
information in a human-readable comment line. You can learn more
about this format at paulbourke.net/dataformats/obj/.

MTL (or .MTL) are material library files that contains one or more
material definitions, each of which includes the color, texture, and
reflection map of individual materials. These are applied to the
surfaces and vertices of objects. You can learn more about this
format at paulbourke.net/dataformats/mtl/.

The Entity component also takes transform property values in the style attribute,
so the objects can be placed at the desired positions and orientations in the 3D world
space.

In our MERN VR Game application, makers will add URLs pointing to the VR object
files (both .obj and .mtl) for each of their Entity objects in a game, and also specify
the transform property values to indicate where and how the 3D objects should be
placed in the game world.

A good source of 3D objects is https:/ ​/​clara. ​io/ ​, with multiple
file formats available for download and use.

The Entity component will render 3D objects in the 3D world space. In order to
make these objects interactive, we need to use the VrButton component, which is
discussed in the next section.

http://paulbourke.net/dataformats/obj/
http://paulbourke.net/dataformats/mtl/
https://clara.io/
https://clara.io/
https://clara.io/
https://clara.io/
https://clara.io/
https://clara.io/
https://clara.io/
https://clara.io/

Developing a Web-Based VR Game Chapter 13

[568]

VrButton
The VrButton component in React 360 will help us to implement a simple, button-
style onClick behavior for the objects and Text buttons that will be added to the
game. A VrButton component is not visible in the view by default and will only act
as a wrapper to capture events, but it can be styled in the same way as a View
component, as shown in the following code:

<VrButton onClick={this.clickHandler}>
 <View>
 <Text>Click me to make something happen!</Text>
 </View>
 </VrButton>

This component is a helper for managing click-type interactions from the user across
different input devices. Input events that will trigger the click event include a
spacebar press on the keyboard, a left-click on the mouse, and a touch on the screen.

The Entity and VrButton components from React 360 will allow us to render
interactive 3D objects in the game world. To integrate other VR functionalities such as
setting the background scene and playing audio in the game world, we will explore
relevant options from the React 360 API in the next section.

The React 360 API
Besides the React 360 components discussed in the previous section, we will utilize
the APIs provided by React 360 to implement functionality such as setting the
background scene, playing audio, dealing with external links, adding styles,
capturing the current orientation of the user's view, and using static asset files. In the
following sections, we will explore the Environment API, the Audio and Location
native modules, the StyleSheet API, the VrHeadModel module, and the asset
specification options.

Environment
In the game, we will set the world or background scene with equirectangular
panoramic images. We will use the Environment API from React 360 to change this
background scene dynamically from the React code using its setBackgroundImage
method. This method can be used as follows:

Environment.setBackgroundImage({uri: 'http://linktopanoramaimage.jpg'
})

Developing a Web-Based VR Game Chapter 13

[569]

This method sets the current background image with the resource at the specified
URL. When we integrate the React 360 game code with the MERN stack containing
the game application backend, we can use this to set the game world image
dynamically using image links provided by the user. In the next section, we will
explore native modules that will allow us to play audio in this rendered scene in the
browser, and provide access to the browser location.

Native modules
Native modules in React 360 provide us with the ability to access functionality that is
only available in the main browser environment. In the game, we will use
AudioModule in NativeModules, to play sounds in response to user activity, and the
Location module, to give us access to window.location in the browser to handle
external links. These modules can be accessed in index.js, as follows:

import {
 ...
 NativeModules
} from 'react-360'

const { AudioModule, Location } = NativeModules

We can use these imported modules in the code to manipulate the audio and location
URL in the browser. In the following sections, we will explore how these modules can
be used to implement the features of the game.

AudioModule
When the user interacts with the 3D objects in the game, we will play sounds based
on whether the object can be collected or not, and also whether the game has been
completed. The AudioModule in NativeModules allows us to add sound to the VR
world as background environmental audio, one-off sound effects, and spatial audio.
In our game, we will use environmental audio and one-off sound effects:

Environmental audio: To play audio on loop and set the mood when the
game is successfully completed, we will use the playEnvironmental
method, which takes an audio file path as the source attribute, and
the loop option as a playback parameter, as shown in the following code:

AudioModule.playEnvironmental({
 source: asset('happy-bot.mp3'),
 loop: true
})

Developing a Web-Based VR Game Chapter 13

[570]

Sound effects: To play a single sound once when the user clicks on 3D
objects, we will use the playOneShot method that takes an audio file path
as the source attribute, as shown in the following code:

AudioModule.playOneShot({
 source: asset('clog-up.mp3'),
})

The source attribute in the options passed to playEnvironmental and
playOneShot takes a resource file location to load the audio. It can be an asset()
statement or a resource URL declaration in the form of {uri: 'PATH'}.

We will call these AudioModule methods to play specified audio files as needed from
the game implementation code. In the next section, we will look at how we can use
the Location module, which is another native module in React 360.

Location
After we integrate the React 360 code containing the game with the MERN stack
containing the game application backend, the VR game will be launched from the
MERN server at a declared route containing the specific game's ID. Then, once a user
completes a game, they will also have the option to leave the VR space and go to a
URL containing a list of other games. To handle these incoming and outgoing app
links in the React 360 code, we will utilize the Location module in NativeModules.

The Location module is essentially the Location object returned by the read-
only window.location property in the browser. We will use the replace method
and the search property in the Location object to implement features related to
external links. We will handle outgoing and incoming links as follows:

Handling outgoing links: When we want to direct the user out of the VR
application to another link, we can use the replace method in Location,
as shown in the following code:

Location.replace(url)

Developing a Web-Based VR Game Chapter 13

[571]

Handling incoming links: When the React 360 app is launched from an
external URL and after the registered component mounts, we can access the
URL and retrieve its query string part using the search property in
Location, as shown in the following code.

componentDidMount = () => {
 let queryString = Location.search
 let gameId = queryString.split('?id=')[1]
}

For the purpose of integrating this React 360 component with MERN VR Game, and
dynamically loading game details, we will capture this initial URL to parse the game
ID from a query parameter and then use it to make a read API call to the MERN
application server. This implementation is elaborated further in Chapter 11, Making
the VR Game Dynamic Using MERN.

Besides using these native modules from the React 360 API, we will also use the
StyleSheet API to add styling to the components rendered to make the game view.
We will demonstrate how to use the StyleSheet API in the next section.

StyleSheet
The StyleSheet API from React Native can also be used in React 360 to define several
styles in one place rather than adding styles to individual components. The styles can
be defined using StyleSheet, as shown in the following code:

const styles = StyleSheet.create({
 subView: {
 width: 10,
 borderColor: '#d6d7da',
 },
 text: {
 fontSize: '1em',
 fontWeight: 'bold',
 }
})

These style objects defined using StyleSheet.create can be added to components
as required, as shown in the following code:

<View style={styles.subView}>
 <Text style={styles.text}>hello</Text>
</View>

This will apply the CSS styles to the View and Text components accordingly.

Developing a Web-Based VR Game Chapter 13

[572]

The default distance units for CSS properties, such as width and
height, are in meters when mapping to 3D space in React 360,
whereas the default distance units are in pixels for 2D interfaces in
React Native.

We will use StyleSheet in this way to define styles for the components that will make
up the game view. In the next section, we will discuss the VrHeadModel module in
React 360, which will allow us to figure out where the user is currently looking.

VrHeadModel
VrHeadModel is a utility module in React 360 that simplifies the process of obtaining
the current orientation of the headset. Since the user is moving around in a VR space,
when the desired feature requires that an object or piece of text should be placed in
front of or with respect to the user's current orientation, it becomes necessary to know
exactly where the user is currently gazing.

In MERN VR Game, we will use this to show the game completed message to the
user in front of their view, no matter where they end up turning to from their initial
position. For example, the user may be looking up or down when collecting the final
object, and the completed message should pop up wherever the user is gazing.

To implement this, we will retrieve the current head matrix as an array of numbers
using getHeadMatrix() from VrHeadModel, and set it as a value for the transform
property in the style attribute of the View component containing the game completed
message.

This will render the message at the location where the user is currently gazing. We
will see the usage of this getHeadMatrix() function later in the chapter, in the
Building the game view in React 360 section. In the next section, we will discuss how
static assets can be loaded in React 360.

Loading assets
In order to load any static asset files such as image or audio files in the code, we can
utilize the asset method in React 360. This asset() functionality in React 360 allows
us to retrieve external resource files, including audio and image files.

Developing a Web-Based VR Game Chapter 13

[573]

For example, we will place the sound audio files for the game in the static_assets
folder, to be retrieved using asset() for each audio added to the game, as shown in
the following code:

AudioModule.playOneShot({
 source: asset('collect.mp3'),
})

This will load the audio file to be played in the call to playOneShot.

With these different APIs and modules available in React 360, we will integrate
different features for the VR game such as setting the background scene, playing
audio, adding styles, loading static files, and retrieving the user orientation. In the
next section, we will look at some of the input events available in React 360 that will
allow us to make the game interactive.

React 360 input events
In order to make the game interface interactive, we will utilize some of the input
event handlers exposed in React 360. Input events are collected from mouse,
keyboard, touch, and gamepad interactions, and also with the gaze button click on a
VR headset.

The specific input events we will work with are the onEnter, onExit, and onClick
events, as discussed in the following list:

onEnter: This event is fired whenever the platform cursor begins
intersecting with a component. We will capture this event for the VR
objects in the game, so the objects can start rotating around the y axis when
the platform cursor enters the specific object.
onExit: This event is fired whenever the platform cursor stops intersecting
with a component. It has the same properties as the onEnter event and we
will use it to stop rotating the VR object just exited.
onClick: The onClick event is used with the VrButton component, and
is fired when there is click interaction with VrButton. We will use this to
set click event handlers on the VR objects, and also on the game complete
message to redirect the user out of the VR application to a link containing a
list of games.

These events will allow us to add actions to the game, which happens when the user
does something.

Developing a Web-Based VR Game Chapter 13

[574]

While implementing the VR game, we will apply 3D world concepts to determine
how to set the game world with equirectangular panoramic images, and position VR
objects in this world based on the 3D coordinate system. We will use React 360
components such as View, Text, Entity, and VrButton to render the VR game
view. We can also use available React 360 APIs to load audio and external URLs for
the VR game in the browser environment. Finally, we can utilize available React 360
events that capture user interactions to make the VR game interactive. With the VR-
related concepts, React 360 components, APIs, modules, and events discussed in this
section, we are ready to define the specific game data details before we start
implementing the complete VR game using these concepts. In the next section, we
will go over the game data structure and details.

Defining game details
Each game in MERN VR Game will be defined in a common data structure that the
React 360 application will also adhere to when rendering the individual game details.
In the following sections, we will discuss the data structure for capturing a game's
details, and then highlight the difference between using static game data and
dynamically loaded game data.

Game data structure
The game data will consist of details such as the game's name, a URL pointing to the
location of the equirectangular image for the game world, and two arrays containing
details for each VR object to be added to the game world. The following list indicates
the fields corresponding to the game data attributes:

name: A string representing the name of the game
world: A string with the URL pointing to the equirectangular image either
hosted on cloud storage, CDNs, or stored on MongoDB
answerObjects: An array of JavaScript objects containing details of the
VR objects that can be collected by the player
wrongObjects: An array of JavaScript objects containing details of the
other VR objects to be placed in the VR world that cannot be collected by
the player

Developing a Web-Based VR Game Chapter 13

[575]

These details will define each game in the MERN VR Game application. The arrays
containing the VR object details will store properties of each object to be added to the
3D world in the game. In the following section, we will go over the details
representing a VR object in these arrays.

Details of VR objects
The two arrays in the game data structure will store details of the VR objects to be
added in the game world. The answerObjects array will contain details of the 3D
objects that can be collected, and the wrongObjects array will contain details of 3D
objects that cannot be collected. Each object will contain links to the 3D data resource
files and transform style property values. In the following list, we will go over these
specific details to be stored for each object:

OBJ and MTL links: The 3D data information resources for the VR objects
will be added to the objUrl and mtlUrl attributes. These attributes will
contain the following values:

objUrl: The link to the .obj file for the 3D object
mtlUrl: The link to the accompanying .mtl file

The objUrl and mtlUrl links may point to files either hosted on cloud
storage, CDNs, or stored on MongoDB. For MERN VR Game, we will
assume that makers will add URLs to their own hosted OBJ, MTL, and
equirectangular image files.

Translation values: The position of the VR object in the 3D space will be
defined with the translate values in the following attributes:

translateX: The translation value of the object along the x
axis
translateY: The translation value of the object along the y
axis
translateZ: The translation value of the object along the z
axis

All translation values are numbers in meters.

Rotation values: The orientation of the 3D object will be defined with the
rotate values in the following keys:

rotateX: The rotation value of the object around the x axis;
in other words, turning the object up or down

Developing a Web-Based VR Game Chapter 13

[576]

rotateY: The rotation value of the object around the y axis
that would turn the object left or right
rotateZ: The rotation value of the object around the z axis,
making the object tilt forward or backward

All rotation values are in numbers or string representations of a number in
degrees.

Scale value: The scale value will define the relative size and appearance
of the 3D object in the 3D environment:

scale: A number value that defines uniform scale across all
axes

Color: If the 3D object's material texture is not provided in an MTL file, a
color value can be defined to set the default color of the object in the color
attribute:

color: A string value representing color values allowed in
CSS

These attributes will define the details of each VR object to be added to the game.

With this game data structure capable of holding the details of the game and its VR
objects, we can implement the game in React 360 accordingly with sample data
values. In the next section, we will look at sample game data and distinguish between
setting game data statically in contrast to loading it dynamically for different games.

Static data versus dynamic data
While integrating the game developed using React 360 with the MERN-based
application in the next chapter, we will update the React 360 code to fetch game data
dynamically from the backend database. This will render the React 360 game view
with different games stored in the database. For now, we will start developing the
game features here with dummy game data that is set in component state. The sample
game data will be set as follows, using the defined game data structure:

game: {
 name: 'Space Exploration',
 world: 'https://s3.amazonaws.com/mernbook/vrGame/milkyway.jpg',
 answerObjects: [
 {
 objUrl: 'https://s3.amazonaws.com/mernbook/vrGame/planet.obj',
 mtlUrl: 'https://s3.amazonaws.com/mernbook/vrGame/planet.mtl',

Developing a Web-Based VR Game Chapter 13

[577]

 translateX: -50,
 translateY: 0,
 translateZ: 30,
 rotateX: 0,
 rotateY: 0,
 rotateZ: 0,
 scale: 7,
 color: 'white'
 }
],
 wrongObjects: [
 {
 objUrl: 'https://s3.amazonaws.com/mernbook/vrGame/tardis.obj',
 mtlUrl: 'https://s3.amazonaws.com/mernbook/vrGame/tardis.mtl',
 translateX: 0,
 translateY: 0,
 translateZ: 90,
 rotateX: 0,
 rotateY: 20,
 rotateZ: 0,
 scale: 1,
 color: 'white'
 }
]
}

This game object holds the details of a sample game including the name, a link to the
360 world image, and two object arrays with one 3D object detailed in each array. For
initial development purposes, this sample game data can be set in state to be rendered
in the game view. Using this game structure and data, in the next section, we will
implement the game features in React 360.

Building the game view in React 360
We will apply the React 360 concepts and use the game data structure to implement
the game features for each game in the MERN VR Game application. For these
implementations, we will update the default starter code generated in
the index.js and client.js files within the initiated React 360 project.

For a working version of the game, we will start with the MERNVR component's state
that was initialized using the sample game data from the previous section.

Developing a Web-Based VR Game Chapter 13

[578]

The MERNVR component is defined in index.js, and the code will be updated with
the game data in state, as shown in the following code:

/MERNVR/index.js

export default class MERNVR extends React.Component {

 constructor() {
 super()
 this.state = {
 game: sampleGameData
 ...
 }
 }

...
}

This will make the sample game's details available for building the rest of the game
features. In the following sections, we will update the code in the index.js and
client.js files to first mount the game world, define the CSS styles, and load the
360-degree environment for the game. Then, we will add the 3D VR objects to the
game, make these objects interactive, and implement behavior that indicates the game
is completed.

Updating client.js and mounting to Location
The default code in client.js attaches the mount point declared in index.js to the
default Surface in the React 360 app, where Surface is a cylindrical layer that is
used for placing a 2D user interface. In order to use the 3D meter-based coordinate
system for a layout in 3D space, we need to mount to a Location object instead of a
Surface. So, we will update client.js to replace the renderToSurface with a
renderToLocation, as highlighted in the following code:

/MERNVR/client.js

 r360.renderToLocation(
 r360.createRoot('MERNVR', { /* initial props */ }),
 r360.getDefaultLocation()
)

This will mount our game view to a React 360 Location.

Developing a Web-Based VR Game Chapter 13

[579]

You can also customize the initial background scene by updating the
r360.compositor.setBackground(r360.getAssetURL('360_w

orld.jpg')) code in client.js to use your desired image.

With this update added in client.js, we can move on to updating the code in
index.js, which will contain our game functionalities. In the next section, we will
start by defining CSS styles for the elements to be rendered in the game view.

Defining styles with StyleSheet
In index.js, we will update the default styles generated in the initial React 360
project to add our own CSS rules. In the StyleSheet.create call, we will define
style objects to be used with the components in the game, as shown in the following
code:

/MERNVR/index.js

const styles = StyleSheet.create({
 completeMessage: {
 margin: 0.1,
 height: 1.5,
 backgroundColor: 'green',
 transform: [{translate: [0, 0, -5] }]
 },
 congratsText: {
 fontSize: 0.5,
 textAlign: 'center',
 marginTop: 0.2
 },
 collectedText: {
 fontSize: 0.2,
 textAlign: 'center'
 },
 button: {
 margin: 0.1,
 height: 0.5,
 backgroundColor: 'blue',
 transform: [{ translate: [0, 0, -5] }]
 },
 buttonText: {
 fontSize: 0.3,
 textAlign: 'center'
 }
 })

Developing a Web-Based VR Game Chapter 13

[580]

For the game features implemented in this book, we are keeping the styling simple
with CSS declared for only the text and button to be displayed when the game is
completed. In the next section, we will look at how to load the 360 panoramic image
that will represent the 3D world for each game.

World background
In order to set the game's 360-degree world background, we will update the current
background scene using the setBackgroundImage method from the Environment
API. We will call this inside the componentDidMount of the MERNVR component
defined in index.js, as shown in the following code:

/MERNVR/index.js

componentDidMount = () => {
 Environment.setBackgroundImage(
 {uri: this.state.game.world}
)
}

This will replace the default 360-degree background in the starter React 360 project
with our sample game's world image fetched from cloud storage. If you are editing
the default React 360 application and have it running, refreshing
the http://localhost:8081/index.html link in the browser should show an
outer space background, which you can pan across using the mouse:

To generate the preceding screenshot, the View and Text components in the default
code were also updated with custom CSS rules to show this hello text on the screen.

With this, we will have a 360-degree game world that can be explored by the user. In
the next section, we will explore how to place 3D objects in this world.

Developing a Web-Based VR Game Chapter 13

[581]

Adding 3D VR objects
We will add 3D objects to the game world using Entity components from React 360,
along with the sample object details in the answerObjects and wrongObjects
arrays that were defined for the game.

First, we will concatenate the answerObjects and wrongObjects arrays in
componentDidMount to form a single array containing all of the VR objects, as shown
in the following code:

 /MERNVR/index.js

componentDidMount = () => {
 let vrObjects =
this.state.game.answerObjects.concat(this.state.game.wrongObjects)
 this.setState({vrObjects: vrObjects})
 ...
}

This will give us a single array containing all of the VR objects for the game. Then, in
the main view, we will iterate over this merged vrObjects array to render
the Entity components with details of each object. The iteration code will be added
using map, as shown in the following code:

/MERNVR/index.js

{this.state.vrObjects.map((vrObject, i) => {
 return (
 <Entity key={i} style={this.setModelStyles(vrObject,
i)}
 source={{
 obj: {uri: vrObject.objUrl},
 mtl: {uri: vrObject.mtlUrl}
 }}
 />
)
 })
}

The obj and mtl file links are added to the source prop in Entity, and the
transform style details are applied in the Entity component's styles with the call
to setModelStyles. The setModelStyles method constructs the styles for the
specific VR object to be rendered, using values defined in the VR object's details.

Developing a Web-Based VR Game Chapter 13

[582]

The setModelStyles method is implemented as follows:

/MERNVR/index.js

setModelStyles = (vrObject, index) => {
 return {
 display: this.state.collectedList[index] ? 'none' : 'flex',
 color: vrObject.color,
 transform: [
 {
 translateX: vrObject.translateX
 }, {
 translateY: vrObject.translateY
 }, {
 translateZ: vrObject.translateZ
 }, {
 scale: vrObject.scale
 }, {
 rotateY: vrObject.rotateY
 }, {
 rotateX: vrObject.rotateX
 }, {
 rotateZ: vrObject.rotateZ
 }
]
 }
 }

The display property will allow us to show or hide an object based on whether it
has already been collected by the player or not. The translate and rotate values
will render the 3D objects in the desired positions and orientations across the VR
world. Next, we will update the Entity code further to enable user interactions with
these 3D objects.

Interacting with VR objects
In order to make the VR game objects interactive, we will use the React 360 event
handlers, such as onEnter and onExit with Entity, and onClick with VrButton,
to add rotation animation and gameplay behavior. In the following sections, we will
add the implementations for rotating a VR object when a user focuses on it, and for
adding click behavior on the objects to allow a user to collect the correct objects in the
game.

Developing a Web-Based VR Game Chapter 13

[583]

Rotating a VR object
We want to add a feature that starts rotating a 3D object around its y axis whenever a
player focuses on the 3D object, that is, when the platform cursor begins intersecting
with the Entity component rendering the specific 3D object.

We will update the Entity component from the previous section to add the onEnter
and onExit handlers, as shown in the following code:

/MERNVR/index.js

<Entity
 ...
 onEnter={this.rotate(i)}
 onExit={this.stopRotate}
/>

The object rendered with this Entity component will start rotating on a cursor entry
or focus on the object, and it will stop when the platform cursor exits the object and is
no longer in the player's focus. In the following section, we will discuss the
implementation of this rotation animation.

Animation with requestAnimationFrame
The rotation behavior for each 3D object is implemented in the event handlers added
to the Entity component, which is rendering the 3D object. Specifically, in
the rotate(index) and stopRotate() handler methods that are called when the
onEnter and onExit events occur, we will implement rotation animation behavior
using requestAnimationFrame for smooth animations in the browser.

The window.requestAnimationFrame() method asks the
browser to call a specified callback function to update an animation
before the next repaint. With requestAnimationFrame, the
browser optimizes the animations to make them smoother and more
resource-efficient.

Using the rotate method, we will update the rotateY transform value of the given
object at a steady rate on a set time interval with requestionAnimationFrame, as
shown in the following code:

/MERNVR/index.js

this.lastUpdate = Date.now()
rotate = index => event => {

Developing a Web-Based VR Game Chapter 13

[584]

 const now = Date.now()
 const diff = now - this.lastUpdate
 const vrObjects = this.state.vrObjects
 vrObjects[index].rotateY = vrObjects[index].rotateY + diff / 200
 this.lastUpdate = now
 this.setState({vrObjects: vrObjects})
 this.requestID = requestAnimationFrame(this.rotate(index))
}

The requestAnimationFrame method will take the rotate method as a recursive
callback function, then execute it to redraw each frame of the rotation animation with
the new values, and, in turn, update the animation on the screen.

The requestAnimateFrame method returns a requestID, which we will use in the
call to stopRotate, so the animation gets canceled in the stopRotate method.
This stopRotate method is defined as follows:

/MERNVR/index.js

stopRotate = () => {
 if (this.requestID) {
 cancelAnimationFrame(this.requestID)
 this.requestID = null
 }
}

This will implement the functionality of animating the 3D object only when it is in the
viewer's focus. As shown in the following screenshot, the 3D Rubik's cube rotates
clockwise around its y axis while it is in focus:

Developing a Web-Based VR Game Chapter 13

[585]

Though not covered here, it is also worth exploring the React 360
Animated library, which can be used to compose different types of
animations. Core components can be animated natively with this
library, and it is possible to animate other components using
createAnimatedComponent(). This library was originally
implemented from React Native; to learn more, you can refer to the
React Native documentation.

Now the users playing the game will observe motion when they focus on any of the
VR objects placed in the game world. In the next section, we will add the functionality
for capturing user clicks on these objects.

Clicking on the 3D objects
In order to register the click behavior on each 3D object added to the game, we need
to wrap the Entity component with a VrButton component that can call the
onClick handler.

We will update the Entity component added inside the vrObjects array iteration
code, to wrap it with the VrButton component, as shown in the following code:

/MERNVR/index.js

<VrButton onClick={this.collectItem(vrObject)} key={i}>
 <Entity … />
</VrButton>

The VrButton component will call the collectItem method when clicked on, and
pass it the current object's details.

When a 3D object is clicked on by a user, we need the collectItem method to
perform the following actions with respect to the game features:

Check whether the clicked object is an answerObject or a wrongObject.
Based on the object type, play the associated sound.
If the object is an answerObject, it should be collected and removed from
view, then added to a list of collected objects.
Check whether all instances of answerObject were successfully collected
with this click:

If yes, show the game completed message to the player and
play the sound for game completed.

Developing a Web-Based VR Game Chapter 13

[586]

We will implement these actions in the collectItem method with the following
structure and steps:

collectItem = vrObject => event => {
 if (vrObject is an answerObject) {
 ... update collected list ...
 ... play sound for correct object collected ...
 if (all answer objects collected) {
 ... show game completed message in front of user ...
 ... play sound for game completed ...
 }
 } else {
 ... play sound for wrong object clicked ...
 }
}

Any time a VR object is clicked on by the user, in this method, we will first check the
type of the object before taking the related actions. We will discuss the
implementation of these steps and actions in detail in the following section.

Collecting the correct object on click
When a user clicks on a 3D object, we need to first check whether the clicked object is
an answer object. If it is, this object will be collected and hidden from view, and a list
of collected objects will be updated along with the total number to keep track of the
user's progress in the game.

To check whether the clicked VR object is an answerObject, we will use the
indexOf method to find a match in the answerObjects array, as shown in the
following code:

let match = this.state.game.answerObjects.indexOf(vrObject)

If the vrObject is an answerObject, indexOf will return the array index of the
matched object; otherwise, it will return -1 if no match is found.

To keep track of collected objects in the game, we will also maintain an array of
Boolean values in collectedList at corresponding indices, and the total number of
objects collected so far in collectedNum, as shown in the following code:

let updateCollectedList = this.state.collectedList
let updateCollectedNum = this.state.collectedNum + 1
updateCollectedList[match] = true
this.setState({collectedList: updateCollectedList,
 collectedNum: updateCollectedNum})

Developing a Web-Based VR Game Chapter 13

[587]

Using the collectedList array, we will also determine which Entity component
should be hidden from the view because the associated object was collected. The
display style property of the relevant Entity component will be set based on the
Boolean value of the corresponding index in the collectedList array. We set this in
the style for the Entity component using the setModelStyles method, as shown
earlier in the Adding 3D VR objects section. This display style value is set conditionally
with the following line of code:

display: this.state.collectedList[index] ? 'none' : 'flex'

Depending on whether the array index of the rendered VR object is set to true in the
collected list of objects, we hide or show the Entity component in the view.

For example, in the following screenshot, the treasure chest can be clicked on to be
collected as it is an answerObject, whereas the flower pot cannot be collected
because it is a wrongObject:

When the treasure chest is clicked on, it disappears from the view as the
collectedList is updated, and we also play the sound effect for collection using
AudioModule.playOneShot with the following code:

AudioModule.playOneShot({
 source: asset('collect.mp3'),
})

However, when the flower pot is clicked on, and it is identified as a wrong object, we
play another sound effect indicating it cannot be collected, as shown in the following
code:

AudioModule.playOneShot({
 source: asset('clog-up.mp3'),
})

Developing a Web-Based VR Game Chapter 13

[588]

As the flower pot was identified to be a wrong object, the collectedList was not
updated and it remains on the screen, whereas the treasure chest is gone, as shown in
the following screenshot:

The complete code in the collectItem method that executes all of these steps when
an object is clicked on will be as follows.

/MERNVR/index.js:

 collectItem = vrObject => event => {
 let match = this.state.game.answerObjects.indexOf(vrObject)
 if (match != -1) {
 let updateCollectedList = this.state.collectedList
 let updateCollectedNum = this.state.collectedNum + 1
 updateCollectedList[match] = true
 this.checkGameCompleteStatus(updateCollectedNum)
 AudioModule.playOneShot({
 source: asset('collect.mp3'),
 })
 this.setState({collectedList: updateCollectedList,
 collectedNum: updateCollectedNum})
 } else {
 AudioModule.playOneShot({
 source: asset('clog-up.mp3'),
 })
 }
 }

After a clicked object is collected using this method, we will also check whether all of
the answerObjects have been collected and whether the game is complete with a
call to the checkGameCompleteStatus method. We will take a look at the
implementation of this method and the game completed functionality in the next
section.

Developing a Web-Based VR Game Chapter 13

[589]

Game completed state
Every time an answerObject is collected, we will check whether the total number of
collected items is equal to the total number of objects in the answerObjects array to
determine whether the game is complete. We will achieve this by calling
the checkGameCompleteStatus method, which will perform this check, as shown in
the following code:

/MERNVR/index.js

checkGameCompleteStatus = (collectedTotal) => {
 if (collectedTotal == this.state.game.answerObjects.length) {
 AudioModule.playEnvironmental({
 source: asset('happy-bot.mp3'),
 loop: true
 })
 this.setState({hide: 'flex', hmMatrix:
VrHeadModel.getHeadMatrix()})
 }
}

In this method, we first confirm that the game is indeed complete, and then we
perform the following actions:

Play the audio for game completed,
using AudioModule.playEnvironmental.
Fetch the current headMatrix value using VrHeadModel so that it can be
set as the transform matrix value for the View component containing the
game completion message.
Set the display style property of the View message to flex, so the
message renders to the viewer.

The View component containing the message congratulating the player for
completing the game will be added to the parent View component as follows:

/MERNVR/index.js

<View style={this.setGameCompletedStyle}>
 <View style={this.styles.completeMessage}>
 <Text style={this.styles.congratsText}>Congratulations!</Text>
 <Text style={this.styles.collectedText}>
 You have collected all items in {this.state.game.name}
 </Text>
 </View>
 <VrButton onClick={this.exitGame}>

Developing a Web-Based VR Game Chapter 13

[590]

 <View style={this.styles.button}>
 <Text style={this.styles.buttonText}>Play another
game</Text>
 </View>
 </VrButton>
</View>

The call to the setGameCompletedStyle() method will set the styles for the View
message with the updated display value and the transform matrix
value. The setGameCompletedStyle method is defined as follows:

/MERNVR/index.js

setGameCompletedStyle = () => {
 return {
 position: 'absolute',
 display: this.state.hide,
 layoutOrigin: [0.5, 0.5],
 width: 6,
 transform: [{translate: [0, 0, 0]}, {matrix:
this.state.hmMatrix}]
 }
}

These style values will render the View component with the completion message at
the center of the user's current view, regardless of whether they are looking up,
down, behind, or forward in the 360-degree VR world, as shown in the following
screenshot:

Developing a Web-Based VR Game Chapter 13

[591]

The final text in the View message will act as a button, as we wrapped this View in a
VrButton component that calls the exitGame method when clicked.
The exitGame method is defined as follows:

/MERNVR/index.js

exitGame = () => {
 Location.replace('/')
}

The exitGame method will use the Location.replace method to redirect the user
to an external URL that may contain a list of games.

The replace method can be passed any valid URL, and once this React 360 game
code is integrated with the MERN VR Game application in Chapter 14, Making the VR
Game Dynamic Using MERN, replace('/') will take the user to the home page of
the whole application.

The VR game functionalities are complete with these updates to the React 360 project.
It is now possible to set a 360-degree panoramic background as the game world and
add interactive VR objects to this world. These 3D objects will rotate in place and can
be collected based on user interaction if the game rules allow it. In the next section,
we will demonstrate how to bundle this React 360 code so that the game can be
integrated with a MERN-based web application.

Bundling for production and integration
with MERN
Now that we have features of the VR game implemented and are functional with the
sample game data, we can prepare it for production and add it to our MERN-based
application to see how VR can be added to an existing web application. In the
following sections, we will look at how to bundle the React 360 code, integrate it with
a MERN application, and test the integration by running the game from the
application.

Developing a Web-Based VR Game Chapter 13

[592]

Bundling React 360 files
React 360 tools provide a script to bundle all of the React 360 application code into a
few files that we can just place on the MERN web server and serve as content at a
specified route. To create the bundled files, we can run the following command in the
React 360 project directory:

yarn bundle

This generates compiled versions of the React 360 application files in a folder called
build. The compiled bundle files are client.bundle.js and index.bundle.js.
These two files, in addition to the index.html file and the static-assets/ folder,
make up the production version of the whole React 360 application that was
developed. The final production code will be in the following folder and files:

-- static_assets/

-- index.html

-- index.bundle.js

-- client.bundle.js

We will have to take these folders and files over to a MERN project directory to
integrate the game with the MERN application, as discussed in the next section.

Integrating with a MERN application
In order to integrate the game developed in React 360 with a MERN-based web
application, we will first bring the React 360 production files discussed in the
previous section to our MERN application project. Then, we will update the bundle
file references in the generated index.html code to point to the new location of the
bundle files, before loading the index.html code at a specified route in the Express
app.

Developing a Web-Based VR Game Chapter 13

[593]

Adding the React 360 production files
With consideration to the folder structure in the existing MERN skeleton application,
we will add the static_assets folder and the bundle files from the React 360
production files to the dist/ folder. This will keep our MERN code organized with
all the bundles in the same location. The index.html file will be placed in a new
folder, named vr in the server folder, as highlighted in the following folder
structure:

-- ...
-- client/
-- dist/
 --- static_assets/
 --- ...
 --- client.bundle.js
 --- index.bundle.js
-- ...
-- server/
 --- ...
 --- vr/
 ---- index.html
-- ...

This will bring the React 360 code over to the MERN application. However, to make it
functional, we need to update the file references in the index.html code, as
discussed in the next section.

Updating references in index.html
The index.html file, which was generated after bundling the React 360 project,
references the bundle files expecting these files to be in the same folder, as shown in
the following code:

<html>
 <head>
 <title>MERNVR</title>
 <style>body { margin: 0 }</style>
 <meta name="viewport" content="width=device-width, initial-
scale=1, user-scalable=no">
 </head>
 <body>
 <!-- Attachment point for your app -->
 <div id="container"></div>
 <script src="./client.bundle.js"></script>
 <script>

Developing a Web-Based VR Game Chapter 13

[594]

 // Initialize the React 360 application
 React360.init(
 'index.bundle.js',
 document.getElementById('container'),
 {
 assetRoot: 'static_assets/',
 }
)
 </script>
 </body>
</html>

We need to update this index.html code to refer to the correct location of
the client.bundle.js, index.bundle.js, and static_assets folders.

First, update the reference to client.bundle.js as follows, to point to the file we
placed in the dist folder:

<script src="/dist/client.bundle.js" type="text/javascript"></script>

Then, update the React360.init call with the correct reference to
index.bundle.js, and assetRoot set to the correct location of the static_assets
folder, as shown in the following code:

React360.init(
 './../dist/index.bundle.js',
 document.getElementById('container'),
 { assetRoot: '/dist/static_assets/' }
)

The assetRoot specifies where to look for asset files when we use asset() to set
resources in the React 360 components.

The game view implemented with React 360 is now available in the MERN
application. In the next section, we will try out this integration by setting up a route to
load the game from the web application.

Trying out the integration
If we set up an Express route in the MERN application to return the index.html file
in the response, then visiting the route in the browser will render the React 360
game. To test out this integration, we can set up an example route, as follows:

router.route('/game/play')
 .get((req, res) => {

Developing a Web-Based VR Game Chapter 13

[595]

 res.sendFile(process.cwd()+'/server/vr/index.html')
})

This declares a GET route in the '/game/play' path, which will simply return the
index.html file that we placed in the vr folder with the server code, in response to
the requesting client.

Then, we can run the MERN server and open this route in the browser at
localhost:3000/game/play. This should render the complete React 360 game
implemented in this chapter from within the MERN-based web application.

Summary
In this chapter, we used React 360 to develop a web-based VR game that can be easily
integrated into MERN applications.

We began by defining simple VR features for the gameplay. Then, we set up React
360 for development and looked at key VR concepts, such as equirectangular
panoramic images, 3D positions, and coordinate systems in the 360-degree VR world.
We explored the React 360 components and APIs required to implement the game
features, including components such as View, Text, Entity, and VrButton, along
with the Environment, VrHeadModel, and NativeModules APIs.

Finally, we updated the code in the starter React 360 project to implement the game
with sample game data, then we bundled the code files and discussed how to add
these compiled files to an existing MERN application.

With these steps covered, you will now be able to build your own VR interfaces with
React 360, which can be easily integrated with any MERN-based web application.

In the next chapter, we will develop the MERN VR Game application, complete with
a game database and backend APIs. This is so that we can make the game developed
in this chapter dynamic by fetching data from a game collection stored in MongoDB.

14
Making the VR Game
Dynamic using MERN

In this chapter, we will extend the MongoDB, Express.js, React.js, and Node.js
(MERN) skeleton application to build the MERN VR Game application, and use it to
convert the static React 360 game developed in the previous chapter into a dynamic
game. We will achieve this by replacing the sample game data with game details
fetched directly from the database. We will use the MERN stack technologies to
implement a game model and Create, Read, Update, and Delete (CRUD) application
programming interfaces (APIs) in the backend, which will allow storage and
retrieval of games, and frontend views, which will allow users to make their own
games besides playing any of the games on the platform in their browser. We will
update and integrate the game developed with React 360 into the game platform
developed with MERN technologies. After completing these implementations and
integration, you will be able to design and build your own full-stack web applications
with dynamic VR features.

To make MERN VR Game a complete and dynamic game application, we will
implement the following:

A game model schema to store game details in MongoDB
APIs for game CRUD operations
React views for creating, editing, listing, and deleting games
Updating the React 360 game to fetch data with the API
Loading the VR game with dynamic game data

Making the VR Game Dynamic using MERN Chapter 14

[597]

Introducing the dynamic MERN VR Game
application
Throughout this chapter, we will develop the MERN VR Game application with
MERN-stack technologies. On this platform, registered users will be able to make and
modify their own games by providing an equirectangular image for the game world,
and the VR object resources, including transform property values for each object to be
placed in the game world. Any visitor to the application will be able to browse
through all the games added by the makers and play any game, to find and collect the
3D objects in the game world that are relevant to the clue or description of each game.
When a registered user signs into the application, they will see a home page with all
the games listed and an option to make their own game, as pictured in the following
screenshot:

The code for the complete MERN VR Game application is available
on GitHub at https:/ ​/​github. ​com/ ​PacktPublishing/ ​Full- ​Stack-
React- ​Projects- ​Second- ​Edition/ ​tree/ ​master/ ​Chapter14/ ​mern-
vrgame. You can clone this code and run the application as you go
through the code explanations for the rest of this chapter.

https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame
https://github.com/PacktPublishing/Full-Stack-React-Projects-Second-Edition/tree/master/Chapter14/mern-vrgame

Making the VR Game Dynamic using MERN Chapter 14

[598]

The views needed for the MERN VR Game application will be developed by
extending and modifying the existing React components in the MERN skeleton
application. The component tree pictured in the following screenshot shows all the
custom React components that make up the MERN VR Game frontend developed in
this chapter:

We will add new React components related to creating, editing, and listing VR games,
and will also modify existing components such as the Profile, Menu, and Home
components as we build out the features of the MERN VR Game application in the
rest of the chapter. The core features in this game platform depend on the capability
to store specific details of each game. In the next section, we will begin implementing
the MERN VR Game application by defining a game model for storing details of each
game.

Defining a Game model
In order to store details of each game in the platform, we will implement a Mongoose
model to define a Game model, and the implementation will be similar to other
Mongoose model implementations covered in previous chapters, such as the Course
model defined in Chapter 6, Building a Web-Based Classroom Application. In Chapter
13, Developing a Web-Based VR Game, the Game data structure section laid out the details
needed for each game in order to implement the scavenger-hunt features defined for
the gameplay.

Making the VR Game Dynamic using MERN Chapter 14

[599]

We will design the game schema based on these specific details about the game, its
VR objects, and also a reference to the game maker. In the following sections, we will
discuss the specifics of the game schema, the sub-schema for storing individual VR
objects that will be a part of the game, and the validation check to ensure a minimum
number of VR objects are placed in the game.

Exploring the game schema
The game schema, which defines the game model with a structure for the game data,
will specify the fields to store details about each game. These details will include a
game name; a link for the game world image file, text description, or clue; arrays
containing details of 3D objects in the game, timestamps indicating when the game
was created or updated; and a reference to the user who created the game. The
schema for the game model will be defined
in server/models/game.model.js, and the code defining these game fields is
given in the following list, with explanations:

Game name: The name field will store a title for the game. It is declared to
be a String type and will be a required field:

 name: {
 type: String,
 trim: true,
 required: 'Name is required'
 },

World image URL: The world field will contain the URL pointing to the
equirectangular image that makes up the 3D world of the game. It is
declared to be a String type and will be a required fielde:

 world: {
 type: String, trim: true,
 required: 'World image is required'
 },

Clue text: The clue field will store text of String type to give a
description of the game or clues about how to complete the game:

 clue: {
 type: String,
 trim: true
 },

Making the VR Game Dynamic using MERN Chapter 14

[600]

Collectable and other VR objects: The answerObjects field will be an
array containing details of the VR objects to be added to the game as
collectable objects, whereas the wrongObjects field will be an array with
VR objects that cannot be collected in the game. Objects in these arrays will
be defined in a separate VR object schema, as discussed in the next section:

answerObjects: [VRObjectSchema],
wrongObjects: [VRObjectSchema],

Created at and updated at times: The created and updated fields will be
Date types, with created generated when a new game is added, and
updated changed when any game details are modified:

updated: Date,
created: {
 type: Date,
 default: Date.now
},

Game maker: The maker field will be a reference to the user who made the
game:

maker: {type: mongoose.Schema.ObjectId, ref: 'User'}

These fields added in the game schema definition will capture details of each game on
the platform and allow us to implement the game-related features in the MERN VR
Game application. The VR objects to be stored in the answerObjects and
wrongObjects arrays in the game schema will hold details of each VR object to be
placed in the game world. In the next section, we will explore the schema defining the
details to be stored for each VR object.

Specifying the VR object schema
The answerObjects and wrongObjects fields already defined in the game schema
will both be arrays of VR object documents. These documents will represent the VR
objects that are a part of the game. We will define the VR object Mongoose schema for
these documents separately, with fields for storing the URLs of the object (OBJ) file
and Material Template Library (MTL) file, along with the React 360 transform
values, the scale value, and color value for each VR object.

Making the VR Game Dynamic using MERN Chapter 14

[601]

The schema for the VR object will also be defined
in server/models/game.model.js, and the code defining these fields is given in
the following list, with explanations:

OBJ and MTL file URLs: The objUrl and mtlUrl fields will store the
links to the OBJ and MTL files representing the 3D object data. These
fields will be of String type and are required fields for storing a VR object:

 objUrl: {
 type: String, trim: true,
 required: 'OBJ file is required'
 },
 mtlUrl: {
 type: String, trim: true,
 required: 'MTL file is required'
 },

Translation transform values: The translateX, translateY,
and translateZ fields will hold the position values of the VR object in 3D
space. These fields will be of Number type, and the default value for each
will be 0:

translateX: {type: Number, default: 0},
translateY: {type: Number, default: 0},
translateZ: {type: Number, default: 0},

Rotation transform values: The rotateX, rotateY, and rotateZ fields
will hold the orientation values of the VR object in 3D space. These fields
will be of Number type, and the default value for each will be 0:

rotateX: {type: Number, default: 0},
rotateY: {type: Number, default: 0},
rotateZ: {type: Number, default: 0},

Scale: The scale field will represent the relative size appearance of the VR
object. This field will be of Number type, and the default value will be 1:

scale: {type: Number, default: 1},

Color: The color field will specify the default color of the object if it is not
provided in the MTL file. This field will be of String type, and the default
value will be white:

color: {type: String, default: 'white'}

Making the VR Game Dynamic using MERN Chapter 14

[602]

These fields in the VR object schema represent a VR object to be added to the game
world. When a new game document is saved to the database, the answerObjects
and wrongObjects arrays will be populated with VRObject documents that adhere
to this schema definition. When a user is creating a new game using this Game model
with the defined game and VR object schemas, we want to ensure the user adds at
least one VR object to each array in the game data. In the next section, we will take a
look at how to add this validation check to the Game model.

Validating array length in the game schema
In the game schema defining the Game model, we have two arrays for adding VR
objects to the game. These answerObjects and wrongObjects arrays in a game
document must contain at least one VR object in each array when a game is being
saved in the game collection. To add this validation for a minimum array length to
the game schema, we will add the following custom validation checks to the
answerObjects and wrongObjects paths in the GameSchema defined with
Mongoose.

We will use validate to add the array length validation for the answerObjects
field, as shown in the following code:

mern-vrgame/server/models/game.model.js:

GameSchema.path('answerObjects').validate(function(v) {
 if (v.length == 0) {
 this.invalidate('answerObjects',
 'Must add alteast one VR object to collect')
 }
}, null)

In this validation check, if the array length is found to be 0, we throw a validation
error message indicating that at least one object must be added to the array, before
saving the game document in the database.

The same validation code is also added for the wrongObjects field, as shown in the
following code:

mern-vrgame/server/models/game.model.js:

GameSchema.path('wrongObjects').validate(function(v) {
 if (v.length == 0) {
 this.invalidate('wrongObjects',
 'Must add alteast one other VR object')

Making the VR Game Dynamic using MERN Chapter 14

[603]

 }
}, null)

These checks run every time a game is to be saved in the database and help ensure the
game is made with at least two VR objects, including one object that can be collected
and another object that cannot be collected. These schema definitions and validations
used for defining the Game model will allow a game database for the application to
be maintained. This game collection will cater to all the requirements for developing a
dynamic VR game according to the specifications of the MERN VR Game application.
In order to allow users to access the game collection, for both making their own
games and retrieving games made by others, we need to implement corresponding
CRUD APIs in the backend. In the next section, we will implement these CRUD APIs
that will allow users to create, read, list, update, and delete games from the
application.

Implementing game CRUD APIs
In order to build a game platform that allows VR games to be made, managed, and
accessed, we need to extend the backend to accept requests that enable game data
manipulation in the database. To make these features possible, the backend in the
MERN VR Game application will expose a set of CRUD APIs for creating, editing,
reading, listing, and deleting games from the database, which can be used in the
frontend of the application with fetch calls, including in the React 360 game
implementation. In the following sections, we will implement these CRUD API
endpoints in the backend, along with the corresponding fetch methods that will be
deployed in the frontend to use these APIs.

Creating a new game
A user who is signed in to the application will be able to create new games in the
database with the create game API endpoint. For the implementation of this API in
the backend, we will first declare a POST route at /api/games/by/:userId, as
shown in the following code:

mern-vrgame/server/routes/game.routes.js:

router.route('/api/games/by/:userId')
 .post(authCtrl.requireSignin, gameCtrl.create)

Making the VR Game Dynamic using MERN Chapter 14

[604]

A POST request to this route will process the :userId param, verify that the current
user is signed in, and then create a new game with the game data passed in the
request.

The game.routes.js file containing this route declaration will be very similar to the
user.routes file, and to load these new routes in the Express app, we need to
mount the game routes in express.js, just as we did for the auth and user routes.
The game routes can be mounted in the Express app by adding the following line of
code:

mern-vrgame/server/express.js:

app.use('/', gameRoutes)

This will make the declared game routes available for receiving requests when the
server is running.

After a request is received by this create game API, to process the :userId param
and retrieve the associated user from the database we will utilize
the userByID method from the user controller. We will also add the following code
to the game routes, so the user is available in the request object:

mern-vrgame/server/routes/game.routes.js:

router.param('userId', userCtrl.userByID)

Once the user authentication is verified after receiving the POST request containing
the game data in the body, the create controller method is invoked next, to add the
new game to the database. This create controller method is defined as shown in the
following code:

mern-vrgame/server/controllers/game.controller.js

const create = async (req, res, next) => {
 const game = new Game(req.body)
 game.maker = req.profile
 try{
 let result = await game.save()
 res.status(200).json(result)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

Making the VR Game Dynamic using MERN Chapter 14

[605]

In this create method, a new game document is created according to the game
model and the data passed in the request body from the client side. Then, this
document is saved in the Game collection after the user reference is set as the game
maker.

On the frontend, we will add a corresponding fetch method in api-game.js to
make a POST request to the create game API by passing the form data collected from
the signed-in user. This fetch method is defined as shown in the following code:

mern-vrgame/client/game/api-game.js

const create = async (params, credentials, game) => {
 try {
 let response = await fetch('/api/games/by/'+ params.userId, {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: JSON.stringify(game)
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

This fetch method will be used in the frontend and provided the new game data
with the user credentials needed to make the POST request to the create game API.
The response from the fetch method will tell the user if the game was created
successfully.

This create game API endpoint is ready to be used in a form view that can collect the
new game details from the user, so new games can be added to the database. In the
next section, we will implement an API endpoint that will retrieve the games already
added to the database.

Making the VR Game Dynamic using MERN Chapter 14

[606]

Listing all games
In the MERN VR Game application, it will be possible to retrieve a list of all the
games in the Game collection from the database using a list games API in the
backend. We will implement this API endpoint in the backend by adding a GET route
to the game routes, as shown in the following code:

mern-vrgame/server/routes/game.routes.js:

router.route('/api/games')
 .get(gameCtrl.list)

A GET request to /api/games will execute the list controller method, which will
query the Game collection in the database, to return all the games in the response to
the client.

This list controller method will be defined as follows:

mern-vrgame/server/controllers/game.controller.js:

const list = async (req, res) => {
 try {
 let games = await Game.find({}).populate('maker', '_id
name').sort('-created').exec()
 res.json(games)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

In this method, the results retrieved by the query to the Game collection are sorted by
the date of creation, with the latest games listed first. Each game in the list will also
populate the name and ID of the user who created it. The resulting list
of sorted games is returned in the response to the requesting client.

In the frontend, to fetch the games using this list API, we will set up a
corresponding fetch method in api-game.js, as shown in the following code:

mern-vrgame/client/game/api-game.js:

const list = async (signal) => {
 try {
 let response = await fetch('/api/games', {
 method: 'GET',

Making the VR Game Dynamic using MERN Chapter 14

[607]

 signal: signal
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

This fetch method can be used in any frontend interface to make a call to the list
games API. The fetch will make a GET request to the API and receive the list of
games in the response, which can be rendered in the interface. In the next section, we
will implement another listing API that will only return the games made by a specific
user.

Listing games by the maker
In the MERN VR Game application, it will also be possible to retrieve a list of games
made by a specific user. To implement this, we will add another API endpoint in the
backend that accepts a GET request at the /api/games/by/:userId route. This route
will be declared with the other game routes, as shown in the following code:

mern-vrgame/server/routes/game.routes.js:

router.route('/api/games/by/:userId')
 .get(gameCtrl.listByMaker)

A GET request received at this route will invoke the listByMaker controller method,
which will query the Game collection in the database to get the matching games. The
listByMaker controller method will be defined as follows:

mern-vrgame/server/controllers/game.controller.js:

const listByMaker = async (req, res) => {
 try {
 let games = await Game.find({maker:
 req.profile._id}).populate('maker', '_id name')
 res.json(games)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

Making the VR Game Dynamic using MERN Chapter 14

[608]

In the query to the Game collection in this method, we find all the games where the
maker field matches the user specified in the userId route parameter. The retrieved
games will contain the maker name and ID and will be returned in the response to the
requesting client.

In the frontend, to fetch the games for a specific user with this list by the maker API,
we will add a corresponding fetch method in api-game.js, as shown in the
following code:

mern-vrgame/client/game/api-game.js:

const listByMaker = async (params, signal) => {
 try {
 let response = await fetch('/api/games/by/'+params.userId, {
 method: 'GET',
 signal: signal,
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

This fetch method can be invoked in the frontend interface with the user ID to make
a call to the list games by the maker API. The fetch method will make a GET request
to the API and receive the list of games made by the user specified in the URL. In the
next section, we will implement a similar GET API to retrieve details of an individual
game.

Loading a game
In the backend of the MERN VR Game application, we will expose an API that will
retrieve the details of an individual game, specified by its ID in the game collection.
To achieve this, we can add a GET API that queries the Game collection with an ID
and returns the corresponding game document in the response. We will start
implementing this API to fetch a single game by declaring a route that accepts a GET
request at '/api/game/:gameId', as shown in the following code:

mern-vrgame/server/routes/game.routes.js:

router.route('/api/game/:gameId')
 .get(gameCtrl.read)

Making the VR Game Dynamic using MERN Chapter 14

[609]

When a request is received at this route, the :gameId param in the route URL will be
processed first to retrieve the individual game from the database. So, we will also add
the following to the game routes:

router.param('gameId', gameCtrl.gameByID)

The presence of the :gameId param in the route will invoke the gameByID controller
method, which is similar to the userByID controller method. It will retrieve the game
from the database and attach it to the request object to be used in the next method.
This gameByID controller method is defined as shown in the following code:

mern-vrgame/server/controllers/game.controller.js:

const gameByID = async (req, res, next, id) => {
 try {
 let game = await Game.findById(id).populate('maker', '_id
name').exec()
 if (!game)
 return res.status('400').json({
 error: "Game not found"
 })
 req.game = game
 next()
 } catch (err) {
 return res.status('400').json({
 error: "Could not retrieve game"
 })
 }
}

The game queried from the database will also contain the name and ID details of the
maker, as specified in the populate() method. The next method—in this case, the
read controller method—simply returns this retrieved game in response to the client.
This read controller method is defined as follows:

mern-vrgame/server/controllers/game.controller.js:

const read = (req, res) => {
 return res.json(req.game)
}

Making the VR Game Dynamic using MERN Chapter 14

[610]

This API to read a single game's details will be used to load a game in the React 360
implementation of the game world. We can call this API in the frontend code using a
fetch method, to retrieve the details of an individual game according to its ID. A
corresponding fetch method can be defined to call this game API, as shown in the
following code:

mern-vrgame/client/game/api-game.js:

const read = async (params) => {
 try {
 let response = await fetch('/api/game/' + params.gameId, {
 method: 'GET'
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

This read method will take the game ID in the params and make a GET request to the
API, using a fetch method.

This API for loading a single game will be used for the React views fetching a game
detail and also the React 360 game view, which will render the game interface in the
MERN VR Game application. In the next section, we will implement the API that will
allow makers to update the games they already created on the platform.

Editing a game
Authorized users who are signed in—and also the maker of a specific game—will be
able to edit the details of that game in the database. To enable this feature, we will
implement an edit game API in the backend. We will add a PUT route that allows an
authorized user to edit one of their games. The route will be declared as follows:

mern-vrgame/server/routes/game.routes.js:

router.route('/api/games/:gameId')
 .put(authCtrl.requireSignin, gameCtrl.isMaker, gameCtrl.update)

Making the VR Game Dynamic using MERN Chapter 14

[611]

A PUT request to '/api/games/:gameId' will first execute the gameByID controller
method to retrieve the specific game's details. The requireSignin auth controller
method will also be called to ensure the current user is signed in. Then, the isMaker
controller method will determine whether the current user is the maker of this
specific game, before finally running the game update controller method to modify
the game in the database.

The isMaker controller method ensures that the signed-in user is actually the maker
of the game being edited, and it is defined as shown in the following code:

mern-vrgame/server/controllers/game.controller.js:

const isMaker = (req, res, next) => {
 let isMaker = req.game && req.auth && req.game.maker._id ==
req.auth._id
 if(!isMaker){
 return res.status('403').json({
 error: "User is not authorized"
 })
 }
 next()
}

If the isMaker condition is not met, that means the currently signed-in user is not the
maker of the game being edited, and an authorization error is returned in the
response. But if the condition is met, the next method is invoked instead. In this case,
the update controller method is the next method, and it saves the changes to the
game in the database. This update method is defined as shown in the following code:

mern-vrgame/server/controllers/game.controller.js:

const update = async (req, res) => {
 try {
 let game = req.game
 game = extend(game, req.body)
 game.updated = Date.now()
 await game.save()
 res.json(game)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

Making the VR Game Dynamic using MERN Chapter 14

[612]

This update method will take the existing game details and the form data received in
the request body to merge the changes and save the updated game to the Game
collection in the database.

This edit game API can be called in the frontend view using a fetch method that
takes the changes as form data and sends it with the request to the backend, along
with user credentials. The corresponding fetch method is defined as shown in the
following code:

mern-vrgame/client/game/api-game.js:

const update = async (params, credentials, game) => {
 try {
 let response = await fetch('/api/games/' + params.gameId, {
 method: 'PUT',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 },
 body: JSON.stringify(game)
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

This method makes the PUT request to the edit game API, providing the changes to
the game in the request body, the current user's credentials in the request header, and
the ID of the game to be edited in the route URL. This method can be used in the
frontend, which renders a form allowing users to update the game details. In the next
section, we will implement another API in the backend that will allow authorized
users to delete the games that they created on the platform.

Making the VR Game Dynamic using MERN Chapter 14

[613]

Deleting a game
An authenticated and authorized user will be able to delete any of the games they
created on the application. To enable this feature, we will implement a delete game
API in the backend. We will start by adding a DELETE route that allows an authorized
maker to delete one of their own games, as shown in the following code:

mern-vrgame/server/routes/game.routes.js:

router.route('/api/games/:gameId')
 .delete(authCtrl.requireSignin, gameCtrl.isMaker, gameCtrl.remove)

The flow of the controller method execution on the server, after receiving the DELETE
request at api/games/:gameId, will be similar to the edit game API, with the final
call made to the remove controller method instead of update.

The remove controller method deletes the specified game from the database when a
DELETE request is received at /api/games/:gameId, and it has been verified that the
current user is the original maker of the given game. The remove controller method is
defined as shown in the following code:

mern-vrgame/server/controllers/game.controller.js:

const remove = async (req, res) => {
 try {
 let game = req.game
 let deletedGame = await game.remove()
 res.json(deletedGame)
 } catch (err) {
 return res.status(400).json({
 error: errorHandler.getErrorMessage(err)
 })
 }
}

This remove method permanently deletes the specified game from the game
collection in the database.

To use this API from the frontend, we will add a corresponding remove method in
api-game.js to make a fetch request to the delete game API. This fetch method is
defined as follows:

mern-vrgame/client/game/api-game.js:

const remove = async (params, credentials) => {

Making the VR Game Dynamic using MERN Chapter 14

[614]

 try {
 let response = await fetch('/api/games/' + params.gameId, {
 method: 'DELETE',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + credentials.t
 }
 })
 return await response.json()
 } catch(err) {
 console.log(err)
 }
}

This method uses fetch to make a DELETE request to the delete game API. It takes
the game ID in the params and the user credentials that are needed by the API
endpoint in the backend to check if this current user is the authorized maker of the
specified game. If the request is successful and the corresponding game is removed
from the database, a success message is returned in the response.

With these game CRUD APIs functional in the backend, we are ready to implement
the frontend that will use these APIs to allow users to create new games, list the
games, modify existing games, and load a single game in the React 360 game view.
We can start building out this frontend in the next section, starting with the React
views for creating and editing games in the application.

Adding a form for creating and editing
games
Users registered on the MERN VR Game application will be able to make new games
and modify these games from views on the application. To implement these views,
we will add React components that allow users to compose and modify the game
details and VR object details for each game. As the form for creating new and editing
existing games will have similar form fields for composing game details and VR
object details, we will make reusable components that can be used both for creating
and editing purposes. In the following sections, we will discuss the form views for
creating a new game and editing an existing game, and the implementation of the
common form components in these views.

Making the VR Game Dynamic using MERN Chapter 14

[615]

Making a new game
When any user signs into the application, they will be given the option to make their
own VR game. They will see a MAKE GAME link on the menu that will navigate
them to a form where they can fill in the game details to create a new game on the
platform. In the following sections, we will update the frontend code to add this link
on the menu and implement the NewGame component, which will contain the form to
create a new game.

Updating the menu
We will update the navigation menu in the application to add the MAKE GAME
button, which will appear conditionally based on whether the user is signed in, and
redirect the user to a view containing the form to create a new game. The MAKE
GAME button will render on the menu, as shown in the following screenshot:

To add this button to the Menu component, we will use a Link component with the
route for the NewGame component containing the form. To make it render
conditionally, we will place it right before the MY PROFILE link shown in the
preceding screenshot, in the section that renders only when the user is authenticated.
The button code will be added as shown in the following code:

mern-vrgame/client/core/Menu.js:

<Link to="/game/new">
 <Button style={isActive(history, "/game/new")}>
 <AddBoxIcon color="secondary"/> Make Game
 </Button>
</Link>

This will show the MAKE GAME option to signed-in users, and they can click on it to
be redirected to the /game/new route containing the form view for making a new
game on the platform. In the next section, we will look at the component that will
render this form.

The NewGame component
We will implement the form view for creating a new game in the NewGame React
component. This form view will allow users to fill out the fields for a single game.

Making the VR Game Dynamic using MERN Chapter 14

[616]

The NewGame component will render these form elements corresponding to the game
details, including VR object details, as shown in the following screenshot:

The NewGame component will use the GameForm component, which will contain all
the rendered form fields, to compose this new game form. The GameForm component
will be a reusable component that we will use in both the create and edit forms.

When added to the NewGame component, it takes an onSubmit method as a prop,
along with any server-returned error messages, as shown in the following code:

mern-vrgame/client/game/NewGame.js:

<GameForm onSubmit={clickSubmit} errorMsg={error}/>

The method passed in the onSubmit prop will be executed when the user submits the
form. The clickSubmit method passed in this case is defined in the NewGame
component. It uses the create game fetch method from api-game.js to make a
POST request to the create game API with the game form data and user details.

Making the VR Game Dynamic using MERN Chapter 14

[617]

This clickSubmit method is defined as shown in the following code:

mern-vrgame/client/game/NewGame.js:

 const clickSubmit = game => event => {
 const jwt = auth.isAuthenticated()
 create({
 userId: jwt.user._id
 }, {
 t: jwt.token
 }, game).then((data) => {
 if (data.error) {
 setError(data.error)
 } else {
 setError('')
 setRedirect(true)
 }
 })
 }

If the user makes an error while entering the game details in the form, the backend
sends back an error message when this clickSubmit method is called on form
submission. If there are no errors and the game is successfully created in the database,
the user is redirected to another view.

To load this NewGame component at a specified URL and only for authenticated users,
we will add a PrivateRoute in MainRouter, as shown in the following code:

mern-vrgame/client/MainRouter.js:

<PrivateRoute path="/game/new" component={NewGame}/>

This will make the NewGame component load in the browser at the /game/new path
when an authenticated user is accessing it. In the next section, we will see a
similar implementation for rendering the same form to edit an existing game from the
database.

Editing the game
Users will be able to edit the games they made on the platform using a form similar to
the form for creating new games. We will implement this edit game view in the
EditGame component, which will render the game form fields pre-populated with
the existing game's details. We will look at the implementation of this EditGame
component in the following section.

Making the VR Game Dynamic using MERN Chapter 14

[618]

The EditGame component
Just as in the NewGame component, the EditGame component will also use the
GameForm component to render the form elements. But in this form, the fields will
load the current values of the game to be edited, and users will be able to update
these values, as pictured in the following screenshot:

Making the VR Game Dynamic using MERN Chapter 14

[619]

In the case of this EditGame component, the GameForm will take the given game's ID
as a prop so that it can fetch the game details, in addition to the onSubmit method
and server-generated error message, if any. The GameForm component will be added
to the EditGame component with these props, as follows:

mern-vrgame/client/game/EditGame.js:

<GameForm gameId={params.gameId} onSubmit={clickSubmit}
errorMsg={error}/>

The clickSubmit method for the edit form will use the update game fetch method
in api-game.js to make a PUT request to the edit game API with the form data and
user details. The clickSubmit method for this edit form submission will be defined
as shown in the following code:

mern-vrgame/client/game/EditGame.js:

 const clickSubmit = game => event => {
 const jwt = auth.isAuthenticated()
 update({
 gameId: match.params.gameId
 }, {
 t: jwt.token
 }, game).then((data) => {
 if (data.error) {
 setError(data.error)
 } else {
 setError('')
 setRedirect(true)
 }
 })
 }

If the user makes an error while modifying the game details in the form, the backend
sends back an error message when this clickSubmit method is called on form
submission. If there are no errors and the game is successfully updated in the
database, the user is redirected to another view.

To load this EditGame component at a specified URL and only for authenticated
users, we will add a PrivateRoute in MainRouter, as shown in the following code:

mern-vrgame/client/MainRouter.js:

<PrivateRoute path="/game/edit/:gameId" component={EditGame}/>

Making the VR Game Dynamic using MERN Chapter 14

[620]

The EditGame component will load in the browser at the /game/edit/:gameId path
when an authenticated user is accessing it. Both this EditGame component and the
NewGame component use the GameForm component to render the form elements that
allow users to add the details of a game. In the next section, we will discuss the
implementation of this reusable GameForm component.

Implementing the GameForm component
The GameForm component is used in both the NewGame and EditGame components,
and it contains the elements that allow users to enter game details and VR object
details for a single game. It may start with a blank game object or load an existing
game. To begin the implementation of this component, we will first initialize a blank
game object in the component state, as shown in the following code:

mern-vrgame/client/game/GameForm.js:

const [game, setGame] = useState({ name: '',
 clue: '',
 world: '',
 answerObjects: [],
 wrongObjects: []
 })

If the GameForm component receives a gameId prop from the parent
component—such as from the EditGame component—then it will use the load game
API to retrieve the game's details and set it to the state, to be rendered in the form
view. We will make this API call in an useEffect hook, as shown in the following
code:

mern-vrgame/client/game/GameForm.js:

 useEffect(() => {
 if(props.gameId){
 const abortController = new AbortController()
 const signal = abortController.signal
 read({gameId: props.gameId}, signal).then((data) => {
 if (data.error) {
 setReadError(data.error)
 } else {
 setGame(data)
 }
 })
 return function cleanup(){
 abortController.abort()

Making the VR Game Dynamic using MERN Chapter 14

[621]

 }
 }
 }, [])

In the userEffect hook, we first check if the props received from the parent
component contain a gameId prop, and then use the value to make the load game
API call. If the API call returns an error, we set the error to the state; otherwise, we set
the retrieved game to the state. With this code, we will have the initial values for the
game details initialized accordingly, to be used in the form view.

The form view part in the GameForm component will essentially have two parts: one
part that takes simple game details—such as name, world image link, and clue
text—as input, and a second part that allows users to add a variable number of VR
objects to either the answer objects array or the wrong objects array. In the following
sections, we will look at the implementations of these two parts that will make up the
game details form view.

Inputting simple game details
While creating or editing a game, users will first see the form elements for the simpler
details of the game, such as name, world image URL, and the clue text. This form
section with the simple game details will mostly be text input elements added using
the Material-UI TextField component, with a change handling method passed to
the onChange handler. We will build out this section in the GameForm component,
which is implemented in mern-vrgame/client/game/GameForm.js, with the
following elements, as shown in the associated code:

Form title: The form title will be either New Game or Edit Game,
depending on whether an existing game ID is passed as a prop to
GameForm from the parent component to which it is added, as shown in the
following code:

<Typography type="headline" component="h2">
 {props.gameId? 'Edit': 'New'} Game
</Typography>

Making the VR Game Dynamic using MERN Chapter 14

[622]

Game world image input: We will render the background image URL in
an img element at the very top of the form to show users the image they
added as the game world image URL. The image URL input will be taken
in a TextField component below the rendered image, as shown in the
following code:

<TextField id="world" label="Game World Equirectangular Image
(URL)"
 value={game.world}
onChange={handleChange('world')}/>

Game name: The game name will be added in a single TextField of the
default text type, as shown in the following code:

<TextField id="name" label="Name" value={game.name}
onChange={handleChange('name')}/>

Clue text: The clue text will be added to a multiline TextField
component, as shown in the following code:

<TextField id="multiline-flexible" label="Clue Text" multiline
rows="2"
 value={game.clue} onChange={handleChange('clue')}/>

In these form elements added to the GameForm component, the input fields also take
an onChange handler function, which is defined as handleChange.
This handleChange method will update the game values in the state whenever a user
changes a value in an input element. The handleChange method is defined as
follows:

mern-vrgame/client/game/GameForm.js:

const handleChange = name => event => {
 const newGame = {...game}
 newGame[name] = event.target.value
 setGame(newGame)
}

In this method, based on the specific field value being changed, we update the
corresponding attribute in the game object in the state. This captures the values
entered by the user as simple details for their VR game. The form will also give the
option to define arrays of VR objects that will also be a part of the game. In the next
section, we will look at the form implementation that will allow users to manipulate
arrays of VR objects.

Making the VR Game Dynamic using MERN Chapter 14

[623]

Modifying arrays of VR objects
Users will be able to define a dynamic number of VR objects in two different arrays
for each game. In order to allow users to modify these arrays of answerObjects and
wrongObjects that they wish to add to their VR game, GameForm will iterate
through each array and render a VR object form component for each object. With this,
it will become possible to add, remove, and modify VR objects from the GameForm
component, as pictured in the following screenshot:

In the following sections, we will add these array manipulation functionalities in the
GameForm component. We will start by rendering each item in the VR object arrays
and incorporate an option to add a new item or remove an existing item from an
array. Then, since each item in an array will essentially be a form to enter VR object
details, we will also discuss how to handle the input changes made within each item
from the GameForm component.

Iterating and rendering the object details form
We will add the form interface seen in the previous section with Material-UI
ExpansionPanel components to create a modifiable list of VR objects for each type
of VR object array in the given game.

Making the VR Game Dynamic using MERN Chapter 14

[624]

Inside the nested ExpansionPanelDetails component, we will iterate through the
answerObjects array or the wrongObjects array to render a VRObjectForm
component for each VR object, as shown in the following code:

mern-vrgame/client/game/GameForm.js:

<ExpansionPanel>
 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>
 <Typography>VR Objects to collect</Typography>
 </ExpansionPanelSummary>
 <ExpansionPanelDetails> {
 game.answerObjects.map((item, i) => {
 return <div key={i}>
 <VRObjectForm index={i} type={'answerObjects'}
 handleUpdate={handleObjectChange}
 vrObject={item}
 removeObject={removeObject}/>
 </div>
 })
 }
 ...
 </ExpansionPanelDetails>
</ExpansionPanel>

To render each object in the array, we use a VRObjectForm component. We will look
at the specific implementation of the VRObjectForm component later in the chapter.
While adding VRObjectForm in this code, we pass the single vrObject item as a
prop, along with the current index in the array, the type of the array, and two
methods for updating the state in GameForm when the array details are modified by
changing details or deleting an object from within the VRObjectForm component.
This will render a form for each VR object in the arrays associated with the game in
the GameForm component. In the next section, we will see the implementation for
including an option to add new objects to these arrays.

Making the VR Game Dynamic using MERN Chapter 14

[625]

Adding a new object to the array
For each array rendered in the game form, we will add a button that will let users
push new VR objects to the given array. This button to add an object will render a
new VRObjectForm component to take the details of a new VR object. We will add
this button to the ExpansionPanelDetails component after the iteration code, as
shown in the following code:

mern-vrgame/client/game/GameForm.js:

<ExpansionPanelDetails>
...
 <Button color="primary" variant="contained"
 onClick={addObject('answerObjects')}>
 <AddBoxIcon color="secondary"/>
 Add Object
 </Button>
</ExpansionPanelDetails>

This ADD OBJECT button will render at the end of each list of VR object forms.
When clicked on, it will add a new blank VR object form by invoking the addObject
method. This addObject method will be defined as follows:

mern-vrgame/client/game/GameForm.js:

 const addObject = name => event => {
 const newGame = {...game}
 newGame[name].push({})
 setGame(newGame)
 }

The addObject method is passed the array type so we know which array the user
wants to add the new object to. In this method, we will just add an empty object to the
array being iterated, so an empty form is rendered in its place, which users can fill out
to enter new object details. In the next section, we will see how to let users remove
one of these items from a list of VR object forms.

Removing an object from the array
Each of the items rendered in the list of VR object forms can also be removed from the
list by the user. The VRObjectForm component displaying an item will contain a
delete option, which will remove the object from the given array.

Making the VR Game Dynamic using MERN Chapter 14

[626]

To implement the remove item functionality for this DELETE button, we will pass a
removeObject method as a prop to the VRObjectForm component from the
parent GameForm component. This method will allow the array to be updated in the
parent component's state when a user clicks DELETE on a specific VRObjectForm.
This removeObject method will be defined as shown in the following code:

mern-vrgame/client/game/GameForm.js:

 const removeObject = (type, index) => event => {
 const newGame = {...game}
 newGame[type].splice(index, 1)
 setGame(newGame)
 }

In this method, the VR object corresponding to the item clicked will be removed by
slicing at the given index from the array with the specified array type. This updated
object array in the game will be reflected in the view when it is set in the state, with
the deleted VR object removed from the form view. In the next section, we will look at
how to handle changes to the details of a VR object when the user updates values in a
VR object form, which is rendered according to items in the VR object arrays.

Handling the object detail change
The details of any VR object in the game will be updated when the user changes input
values in any of the fields in the corresponding VR object form. To register this
update, the GameForm that houses the forms for the VR objects will pass the
handleObjectChange method to the VRObjectForm component, which will render
the VR object form. This handleObjectChange method will be defined as follows:

mern-vrgame/client/game/GameForm.js:

const handleObjectChange = (index, type, name, val) => {
 var newGame = {...game}
 newGame[type][index][name] = val
 setGame(newGame)
}

This handleObjectChange method will be used in the VRObjectFrom component to
capture the changed input's value and update the corresponding field of the VR
object at the specified index in the array of the given type, so it is reflected in the
game object stored in the state in GameForm.

Making the VR Game Dynamic using MERN Chapter 14

[627]

The GameForm component renders the form elements for modifying the details of a
game, including the lists of VR objects. Using this form, users can add, modify, and
delete VR objects in the lists. The lists render each item in a VR object form that the
users can use to compose the details of the object. In the next section, we will
implement the React component that renders this VR object form for each VR object
in the game.

The VRObjectForm component
We will implement the VRObjectForm component to render the input fields for
modifying an individual VR object's details, which are added to the answerObjects
and wrongObjects arrays of the game in the GameForm component. The
VRObjectForm component will render a form, as pictured in the following
screenshot:

To begin implementation of this VRObjectForm component containing a VR object
form, we will start by initializing the blank details of a VR object in the component's
state with a useState hook, as shown in the following code:

mern-vrgame/client/game/VRObjectForm.js:

 const [values, setValues] = useState({
 objUrl: '',
 mtlUrl: '',
 translateX: 0,
 translateY: 0,
 translateZ: 0,
 rotateX: 0,
 rotateY: 0,
 rotateZ: 0,
 scale: 1,

Making the VR Game Dynamic using MERN Chapter 14

[628]

 color:'white'
 })

These details correspond to the schema defined for storing a VR object. When
a VRObjectForm component is added to the GameForm component, it may receive an
empty VR object or a VR object populated with details, depending on whether an
empty form or a form with details of an existing object is being rendered. In the case
that an existing VR object is passed as a prop, we will set the details of this object in
the component state using an useEffect hook, as shown in the following code:

mern-vrgame/client/game/VRObjectForm.js:

 useEffect(() => {
 if(props.vrObject && Object.keys(props.vrObject).length != 0){
 const vrObject = props.vrObject
 setValues({...values,
 objUrl: vrObject.objUrl,
 mtlUrl: vrObject.mtlUrl,
 translateX: Number(vrObject.translateX),
 translateY: Number(vrObject.translateY),
 translateZ: Number(vrObject.translateZ),
 rotateX: Number(vrObject.rotateX),
 rotateY: Number(vrObject.rotateY),
 rotateZ: Number(vrObject.rotateZ),
 scale: Number(vrObject.scale),
 color:vrObject.color
 })
 }
 }, [])

In this useEffect hook, if the vrObject value passed in the prop is not an empty
object, we set the details of the received VR object in the state. These values will be
used in the input fields that make up the VR object form. We will add the input fields
corresponding to a VR object's details, in the view of VRObjectForm using Material-
UI TextField components, as shown in the code explained with the following list:

3D object file input: The OBJ and MTL file links will be collected for each
VR object as text input using the TextField components, as shown in the
following code:

<TextField label=".obj url" value={values.objUrl}
 onChange={handleChange('objUrl')} />
<TextField label=".mtl url" value={values.mtlUrl}
 onChange={handleChange('mtlUrl')} />

Making the VR Game Dynamic using MERN Chapter 14

[629]

Translate value input: The translate values of the VR object across the x, y,
and z axes will be input in the TextField components of the number type,
as shown in the following code:

<TextField type="number" value={values.translateX}
 label="TranslateX" onChange={handleChange('translateX')}
/>
<TextField type="number" value={values.translateY}
 label="TranslateY" onChange={handleChange('translateY')}
/>
<TextField type="number" value={values.translateZ}
 label="TranslateZ" onChange={handleChange('translateZ')}
/>

Rotate value input: The rotation values of the VR object around the x, y,
and z axes will be input in the TextField components of the number type,
as shown in the following code:

<TextField type="number" value={values.rotateX}
 label="RotateX" onChange={handleChange('rotateX')} />
<TextField type="number" value={values.rotateY}
 label="RotateY" onChange={handleChange('rotateY')} />
<TextField type="number" value={values.rotateZ}
 label="RotateZ" onChange={handleChange('rotateZ')} />

Scale value input: The scale value for the VR object will be input in a
TextField component of the number type, as shown in the following
code:

<TextField type="number" value={values.scale}
 label="Scale" onChange={handleChange('scale')} />

Object color input: The color value for the VR object will be input in a
TextField component of the text type, as shown in the following code:

<TextField value={values.color} label="Color"
 onChange={handleChange('color')} />

These input fields will allow the user to set the details of a VR object in a game. When
any of these VR object details are changed in these input fields by the user, the
handleChange method will be invoked. This handleChange method will be defined
as shown in the following code:

mern-vrgame/client/game/VRObjectForm.js:

const handleChange = name => event => {

Making the VR Game Dynamic using MERN Chapter 14

[630]

 setValues({...values, [name]: event.target.value})
 props.handleUpdate(props.index, props.type, name,
event.target.value)
}

This handleChange method will update the corresponding value in the state of
the VRObjectForm component, and use the handleUpdate method passed as a prop
from GameForm to update the VR object in the GameForm state with the changed
value for the specific object detail.

The VRObjectForm will also contain a DELETE button that will execute
the removeObject method received in the GameForm as a prop, which will allow the
given object to be removed from the list in the game. This delete button will be added
to the view with the following code:

mern-vrgame/client/game/VRObjectForm.js:

<Button onClick={props.removeObject(props.type, props.index)}>
 <Icon style={{marginRight: '5px'}}>cancel</Icon> Delete
</Button>

The removeObject method will take the value of the object array type and the array
index position, to remove the given object from the relevant VR object array in
the GameForm component's state.

With these implementations, the forms for creating and editing games are in place,
complete with VR object input forms for arrays of varying sizes. We used reusable
components to compose the form elements needed for creating and editing games,
along with adding the capability for modifying arrays of VR objects in a game. Any
registered user can use these forms to add and edit game details on the MERN VR
Game application. In the next section, we will discuss the implementation of the
views that will render different lists of games on the platform.

Adding the game list views
Visitors to MERN VR Game will access the games on the application from lists
rendered on the home page and individual user profiles. The home page will list all
the games on the application, and the games by a specific maker will be listed on their
user profile page. These list views will iterate through game data fetched using the
backend APIs for listing games, and render details of each game in a reusable React
component.

Making the VR Game Dynamic using MERN Chapter 14

[631]

In the following sections, we will discuss the implementation for rendering all games
and games only by a specific maker, using a reusable component for rendering each
game on the list.

Rendering lists of games
We will render all the games available on the platform on the home page of the
application. To implement this feature, the Home component will first fetch the list of
all the games from the game collection in the database using the list game API. We
will achieve this in an useEffect hook in the Home component, as shown in the
following code:

mern-vrgame/client/core/Home.js:

 useEffect(() => {
 const abortController = new AbortController()
 const signal = abortController.signal

 list(signal).then((data) => {
 if (data.error) {
 console.log(data.error)
 } else {
 setGames(data)
 }
 })
 return function cleanup(){
 abortController.abort()
 }
 }, [])

The list of games retrieved from the server in this useEffect hook will be set to the
state and iterated over to render a GameDetail component for each game in the list,
as shown in the following code:

mern-vrgame/client/core/Home.js:

{games.map((game, i) => {
 return <GameDetail key={i} game={game}
updateGames={updateGames}/>
})}

Making the VR Game Dynamic using MERN Chapter 14

[632]

The GameDetail component, which will be implemented as a reusable component
that renders details of a single game, will be passed the game details and a
updateGames method. The updateGames method will allow the game list in the
Home component to be updated if any of the games on the list are deleted by the
maker. The updateGames method is defined as shown in the following code:

mern-vrgame/client/core/Home.js:

const updateGames = (game) => {
 const updatedGames = [...games]
 const index = updatedGames.indexOf(game)
 updatedGames.splice(index, 1)
 setGames(updatedGames)
}

The updateGames method will update the list rendered in the Home component by
slicing the specified game from the array of games. This method will be invoked
when a user deletes their game using the EDIT and DELETE options rendered
conditionally in the GameDetail component for the maker of the game, as pictured in
the following screenshot of games listed in the home page of the application:

Making the VR Game Dynamic using MERN Chapter 14

[633]

We can render a similar list view in the user profile page, showing only the games
made by the corresponding user, as pictured in the following screenshot:

Similar to the implementation steps in the Home component, in this Profile
component, we can fetch the list of games by the given user with a call to the
associated list games by the maker API in an useEffect hook. With the retrieved list
of games set in the state, we can iterate over it to render each game in a GameDetail
component, as discussed earlier, for rendering all games on the home page. In the
next section, we will discuss the implementation of this GameDetail component that
will render the details of a single game.

The GameDetail component
We will implement the GameDetail component to render individual games in any
game list view in the application. This GameDetail component takes the game object
as a prop, and renders the details of the game, along with a PLAY GAME button that
links to the VR game view, as pictured in the following screenshot:

Making the VR Game Dynamic using MERN Chapter 14

[634]

This component will also conditionally render EDIT and DELETE buttons if the
current user is the maker of the game.

In the view code of the GameDetail component, we will first add the game
details—such as the name, world image, clue text, and maker name—to give users an
overview of the game. We will use Material-UI components to compose the interface
with these details, as shown in the following code:

mern-vrgame/client/game/GameDetail.js:

<Typography type="headline" component="h2">
 {props.game.name}
</Typography>
<CardMedia image={props.game.world}
 title={props.game.name}/>
<Typography type="subheading" component="h4">
 by
 {props.game.maker.name}
</Typography>
<CardContent>
 <Typography type="body1" component="p">
 {props.game.clue}
 </Typography>
</CardContent>

This code will render the game world image, game name, maker name, and clue text
for the game passed in the props.

Making the VR Game Dynamic using MERN Chapter 14

[635]

The PLAY GAME button rendered in the GameDetail component will simply be a
button wrapped in an HTML link element that points to the route that opens the
React 360-generated index.html file (implementation for this route on the server is
discussed in the Playing the VR game section). This PLAY GAME link is added to
the GameDetail component, as follows:

mern-vrgame/client/game/GameDetail.js:

 <Button variant="contained" color="secondary"
 className={classes.button}>
 Play Game
 </Button>

The route to the game view takes the game ID as a query parameter. We set
target='_self' on the link so React Router skips transitioning to the next state and
lets the browser handle this link. What this will do is allow the browser to directly
make the request to the server at this route when the link is clicked, and render the
index.html file sent by the server in response to this request, allowing the user to
start playing the rendered VR game immediately.

In the final section of the GameDetail component, we will conditionally show EDIT
and DELETE options only if the currently signed-in user is also the maker of the
game being rendered. We will add these options with the following code:

mern-vrgame/client/game/GameDetail.js:

{auth.isAuthenticated().user
 && auth.isAuthenticated().user._id == props.game.maker._id &&
 (<div>
 <Link to={"/game/edit/" + props.game._id}>
 <Button variant="raised" color="primary"
 className={classes.editbutton}>
 Edit
 </Button>
 </Link>
 <DeleteGame game={props.game}
 removeGame={props.updateGames}/>
 </div>)}

After ensuring the current user is actually authenticated, we check if the user ID of
the signed-in user matches the maker ID in the game. Then, accordingly, we render
the EDIT button linking to the edit form view, and the DELETE option with
a DeleteGame component.

Making the VR Game Dynamic using MERN Chapter 14

[636]

The implementation of this DeleteGame component is similar to the DeleteShop
component discussed in Chapter 7, Exercising MERN Skills with an Online Marketplace.
Instead of a shop, the DeleteGame component will take the game to be deleted and
the updateGames function definition received from the parent component as
props. After this implementation is integrated, the maker of a game will be able to
remove the game from the platform.

Users visiting the MERN VR Game application can browse through the list of games
rendered in these views and select to play a game by clicking the PLAY GAME link
rendered in the corresponding GameDetail component. In the next section, we will
see how to update the server to handle a request to play a game.

Playing the VR game
Users on the MERN VR Game application will be able to open and play any of the VR
games from within the application. To enable this, we will add an API on the server
that renders the index.html file, which was generated with React 360, as discussed
in the previous chapter, Chapter 13, Developing a Web-Based VR Game. This API on the
backend will receive a GET request at the following path:

/game/play?id=<game ID>

This path takes a game ID value as a query parameter. The game ID in this URL will
be used in the React 360 code, as elaborated on later in the chapter, to fetch the game's
details using the load game API. In the following section, we will look at the
implementation of the backend API that will handle this GET request to start playing
a game when the user clicks on the PLAY GAME button.

Implementing the API to render the VR game
view
In order to implement the API that will render the VR game in the browser, we will
add a route in the backend that will receive a GET request and open the index.html
page from React 360.

Making the VR Game Dynamic using MERN Chapter 14

[637]

This route will be declared in game.routes.js with the other game routes, as
follows:

mern-vrgame/server/routes/game.routes.js:

router.route('/game/play')
 .get(gameCtrl.playGame)

A GET request received at this route will execute the playGame controller method,
which will return the index.html page in response to the incoming request.
The playGame controller method will be defined as shown in the following code:

mern-vrgame/server/controllers/game.controller.js:

const playGame = (req, res) => {
 res.sendFile(process.cwd()+'/server/vr/index.html')
}

The playGame controller method will simply send the index.html page placed in
the /server/vr/ folder to the requesting client.

In the browser, this will render the React 360 game code, which needs to fetch the
game details from the database using the load game API and render the game world,
along with the VR objects that the user can interact with. In the next section, we will
see how the game view we built previously with React 360 needs to be updated to
load these game details dynamically.

Updating the game code in React 360
With the game backend all set up in the MERN application, we can update the React
360 project code we developed in Chapter 13, Developing a Web-Based VR Game, to
make it render games directly from the game collection in the database.

We will use the game ID in the link that opens the React 360 application to fetch game
details, using the load game API from within the React 360 code. Then, we will set
this retrieved game data to the state so that the game loads details from the database
instead of the static sample data we used in Chapter 13, Developing a Web-Based VR
Game. Once the code is updated, we can bundle it again and place the compiled files
in the MERN application before trying out the integration, as discussed in the
following sections.

Making the VR Game Dynamic using MERN Chapter 14

[638]

Getting the game ID from a link
In order to render the VR game based on the game the user chose to play from the
MERN VR Game application, we need to retrieve the corresponding game ID from
the link that loads the VR game view. In the index.js file of the React 360 project
folder, we will update the componentDidMount method to first retrieve the game ID
from the incoming URL, and then make a fetch call to the load game API, as shown in
the following code:

/MERNVR/index.js:

componentDidMount = () => {
 let gameId = Location.search.split('?id=')[1]
 read({
 gameId: gameId
 }).then((data) => {
 if (data.error) {
 this.setState({error: data.error});
 } else {
 this.setState({
 vrObjects: data.answerObjects.concat(data.wrongObjects),
 game: data
 });
 Environment.setBackgroundImage(
 {uri: data.world}
)
 }
 })
}

Location.search gives us access to the query string in the incoming URL that
loads index.html. The retrieved query string is split to get the gameId value from
the id query parameter attached in the URL. We use this gameId value to fetch the
game details with the load game API on the backend and set it to the state for the
game and vrObjects values. To be able to use the load game API in the React 360
project, we will define a corresponding fetch method in the project, as discussed in
the next section.

Making the VR Game Dynamic using MERN Chapter 14

[639]

Fetching the game data with the load game
API
We want to fetch the game data from within the React 360 code. In the React 360
project folder, we will add an api-game.js file that will contain a read fetch method
that makes a call to the load game API on the server using the provided game ID.
This fetch method will be defined as follows:

/MERNVR/api-game.js:

const read = (params) => {
 return fetch('/api/game/' + params.gameId, {
 method: 'GET'
 }).then((response) => {
 return response.json()
 }).catch((err) => console.log(err))
}
export {
 read
}

This fetch method receives the game ID in the params and makes the API call to
retrieve the corresponding game from the database. It is used
in componentDidMount of the React 360 entry component, which is defined in the
index.js file, to retrieve the game details, as discussed in the previous section.

This updated React 360 code is available in the branch named
dynamic-game-second-edition on the GitHub repository
at github.com/shamahoque/MERNVR/tree/dynamic-game-second-
edition.

With the React 360 code updated and capable of retrieving and rendering game
details based on the game ID specified in the incoming URL, we can bundle and
integrate this updated code with the MERN VR Game application, as discussed in the
next section.

Bundling and integrating the updated code
With the React 360 code updated to fetch and render game details dynamically from
the server, we can bundle this code using the provided bundle script and place the
newly compiled files in the dist folder of the MERN VR Game project directory.

https://github.com/shamahoque/MERNVR/tree/dynamic-game-second-edition
https://github.com/shamahoque/MERNVR/tree/dynamic-game-second-edition

Making the VR Game Dynamic using MERN Chapter 14

[640]

To bundle the React 360 code from the command line, go to the React 360 MERNVR
project folder and run the following code:

yarn bundle

This will generate the client.bundle.js and index.bundle.js bundle files in the
build/ folder with the updated React 360 code. These files, along with the
index.html file and static_assets folders, need to be added to the MERN VR
Game application code, as discussed in Chapter 13, Developing a Web-Based VR Game,
to integrate the latest VR game code.

With this integration completed, if we run the MERN VR Game application and click
the PLAY GAME link on any of the games, it should open up the game view with the
details of the specific game rendered in the VR scene, and allow interaction with the
VR objects, as specified in the gameplay.

Summary
In this chapter, we integrated the capabilities of the MERN stack technologies with
React 360 to develop a dynamic VR game application for the web.

We extended the MERN skeleton application to build a working backend that stores
VR game details and allows us to make API calls to manipulate these details. We
added React views that let users modify games and browse through the games, with
the option to launch and play the VR game at a specified route rendered directly by
the server.

Finally, we updated the React 360 project code to pass data between the MERN
application and the VR game view, by retrieving query parameters from the incoming
URL, and using fetch to retrieve data with the game API.

This integration of the React 360 code with the MERN stack application produced a
fully functioning and dynamic web-based VR game application, demonstrating how
MERN stack technologies can be used and extended to create unique user
experiences. You can apply the capabilities revealed here to build your own VR-
infused full-stack web applications.

In the next chapter, we will reflect on the full-stack MERN applications built in this
book, discussing not just the best practices that were followed but also the scope for
improvements and further development.

5
Going Forward with MERN

In this part, we wrap up the lessons covered in the book with additional concepts that
can further improve MERN stack application development.

This section comprises the following chapter:

Chapter 15, Following Best Practices and Developing MERN Further

15
Following Best Practices and

Developing MERN Further
In this chapter, we will elaborate on some of the best practices to apply when building
the six MERN applications in this book. Additionally, we will explore other practices
that we have not applied in this book but that should be considered for real-world
applications to ensure reliability and scalability as complexity grows. We will review
the decisions behind organizing the project code in modules, the approaches
to applying frontend styling, server-side rendering with data only for selective views,
and how React interfaces may be composed to manage state across components. We
will also look at ways to improve security, add testing to the projects, and optimize
bundling with webpack. Finally, we will wrap up with suggestions for enhancing,
and steps for extending, the applications built. With these insights, you will be better
equipped to prepare your full-stack MERN projects for the real world.

The topics covered in this chapter include the following:

Separation of concerns with modularity in the application structure
Considering the options for CSS styling solutions
Server-side rendering with data for selected views
Using ES6 classes for stateful versus purely functional components
Deciding on whether to use Redux or Flux
Security enhancements for storing user credentials
Writing test code
Optimizing bundle sizes
How to add new features to existing applications

Following Best Practices and Developing MERN Further Chapter 15

[643]

Separation of concerns with modularity
While building the MERN stack applications in this book, we followed a common
folder structure across each application. We employed a modular approach by
dividing and grouping the code based on relevance and common functionality. The
idea behind creating these smaller and distinct sections in the code is to make sure
each section addresses a separate concern, so individual sections can be reused, as
well as developed and updated independently. In the following section, we will
review this structure and its benefits.

Revisiting the application folder structure
In the application folder structure, we kept the client-side and server-side code
separate with further subdivisions within these two sections. This gave us some
freedom to design and build the frontend and backend of the application
independently. At the project root level, the client and server folders were the
main divisions, as shown in the following structure:

| mern_application/
 | -- client/
 | -- server/

In these client and server folders, we divided the code further into subfolders that
mapped to unique functionalities. We did this by dividing models, controllers, and
routes in the server for specific features, and grouping all components related to a
feature in one place on the client side. In the following sections, we will review the
divisions within the server and client folders.

Server-side code
On the server side, we divided the code according to functionality, by separating code
that defines business models from code implementing routing logic, and controller
code that responds to client requests at these routes. Within the server folder, we
maintained three main sections, as shown in the following structure:

 | -- server/
 | --- controllers/
 | --- models/
 | --- routes/

Following Best Practices and Developing MERN Further Chapter 15

[644]

In this structure, each folder contains code with a specific purpose:

models: This folder is meant to contain all of the Mongoose schema model
definitions in separate files, with each file representing a single model.
routes: This folder contains all routes that allow the client to interact with
the server, with routes placed in separate files that may be associated with
a model in the models folder.
controllers: This folder contains all of the controller functions that
define logic to respond to incoming requests at the defined routes. These
controllers are divided into separate files corresponding to the relevant
model and route files.

As demonstrated throughout the book, these specific separations of concerns for the
code on the server side allowed us to extend the server developed for the skeleton
application by just adding the required model, route, and controller files. In the next
section, we will go over the divisions in the client-side code structure.

Client-side code
The client-side code for the MERN applications consists primarily of React
components. In order to organize the component code and related helper code in a
reasonable and understandable manner, we separated the code into folders related to
a feature entity or unique functionality, as shown in the following structure:

 | -- client/
 | --- auth/
 | --- core/
 | --- post/
 | --- user/
 | --- componentFolderN/

In the preceding structure, we placed all of the auth-related components and helper
code in the auth folder; common and basic components, such as the Home and Menu
components, in the core folder; and then we made post and user folders for all of
the post-related or user-related components in the respective folders.

This separation and grouping of components based on features allowed us to extend
the frontend views in the skeleton application for each application that followed, by
adding a new feature-related component code folder, as required, to the client
folder.

Following Best Practices and Developing MERN Further Chapter 15

[645]

Separating the client and server code, and also modularizing the code within these
divisions, made it easier to extend the different applications we developed
throughout the book. In the final section of this chapter, we will
further demonstrate the advantages of this modularized approach of separating the
application code, as we outline the general workflow that can be followed to add a
new feature to any of the existing applications developed in this book. In the next
section, we will explore the different options available for defining and applying
styling to the frontend React components, which will be a necessary decision for
every full-stack MERN project.

Adding CSS styles
When discussing user interface (UI) implementations for the applications in this
book, we chose not to focus on the details of the CSS styling code applied and instead
relied mostly on the default Material-UI stylings. However, given that implementing
any UI requires us to consider styling solutions, we will briefly look at some of the
options that are available.

When it comes to adding CSS styles to the frontend, there are a number of options,
each with pros and cons. In the following sections, we will discuss the two most
common options, which are external style sheets and inline styles, along with the
relatively newer approach of writing CSS in JavaScript, or, more specifically, JSS,
which is used in Material-UI components and hence also for the applications in this
book.

External style sheets
External style sheets allow us to define CSS rules in separate files, which can be
injected into the necessary view. Placing CSS styles in external style sheets this way
was once considered the best practice because it enforced the separation of style and
content, allowing reusability and also maintaining modularity if a separate CSS file
was created for each component.

However, as web development technologies continue evolving, the demands of better
CSS organization and performance are no longer met by this approach. For example,
using external style sheets while developing frontend views with React components
limits our control over updating styles based on the component state. Moreover,
loading external CSS for React applications requires additional webpack
configurations with css-loader and style-loader.

Following Best Practices and Developing MERN Further Chapter 15

[646]

When applications grow and share multiple style sheets, it also becomes impossible
to avoid selector conflicts because CSS has a single global namespace. Hence, though
external style sheets may be enough for simple and trivial applications, as an
application grows, other options for using CSS become more relevant. In the next
section, we will look at the option of adding styles directly inline.

Inline styles
Inline CSS is a style defined and applied directly to individual elements in the view.
Although this takes care of some of the problems faced when using external style
sheets, such as eliminating the issue of selector conflicts and allowing state-dependent
styles, it takes away reusability and introduces a few problems of its own, such as
limiting the CSS features that can be applied.

Using only inline CSS for a React-based frontend has important limitations for
growing applications, such as poor performance because all of the inline styles are
recomputed at each render, and inline styles are slower than class names, to begin
with.

Inline CSS may seem like an easy fix in some cases, but it does not serve as a good
option for overall usage. In the next section, we will explore the option to add CSS
styles using JavaScript, which addresses some of the issues of using inline and
external styles.

JavaScript Style Sheets (JSS)
JSS allows us to write CSS styles using JavaScript in a declarative way. This also
means that all the features of JavaScript are now available for writing CSS, making it
possible to write reusable and maintainable styling code.

JSS works as a JS to CSS compiler that takes JS objects, where keys represent class
names and values represent corresponding CSS rules, and then generates the CSS
along with scoped class names.

In this way, JSS generates unique class names by default when it compiles JSON
representations to CSS, eliminating the chances of selector conflicts that could be
faced with external style sheets. Moreover, unlike inline styles, the CSS rules that are
defined with JSS can be shared across multiple elements and all CSS features can be
used in the definitions.

Following Best Practices and Developing MERN Further Chapter 15

[647]

Material-UI uses JSS to style its components, and, as a result, we used JSS to apply
Material-UI themes and also custom CSS to the components developed for the
frontend views in all of the applications. Based on the utility of each approach, you
can choose to use one or a combination of external style sheets, inline styles, or JSS for
styling the frontend of your full-stack application. In the next section, we will review
the approaches to and relevance of incorporating server-side rendering of the React
frontend in a full-stack MERN application.

Selective server-side rendering with data
When we developed the frontend of the base skeleton application in Chapter 4,
Adding a React Frontend to Complete MERN, we integrated basic server-side rendering
in order to load client-side routes directly from the browser address bar when the
request went to the server. In this server-side rendering implementation, while
rendering the React component's server-side, we did not consider loading the data
from the database for the components that displayed data. The data only loads in
these components when the client-side JavaScript takes over after the initial load of
the server side-rendered markup.

We did update this implementation to add server-side rendering with data for the
individual media detail pages in the MERN Mediastream application, which was
discussed in Chapter 12, Customizing the Media Player and Improving the SEO. In this
case, we decided to render this specific view with data by injecting data into the
server side-generated markup of the React frontend. The reasoning behind this
selective server-side rendering with data only for specific views can be based on
certain desired behaviors for the view in question, as discussed in the following
section.

Following Best Practices and Developing MERN Further Chapter 15

[648]

When is server-side rendering with data
relevant?
Implementing server-side rendering with data for all of the React views in an
application can get complicated, and will be additional work if we need to consider
views with client-side authentication or views consisting of multiple data sources. In
many cases, it may be unnecessary to tackle these complexities if the view does not
require server-side rendering with data. In order to judge whether a view needs to be
server-rendered with data, answer the following questions for the specific view to
make your decision:

Is it important for the data to be displayed in the initial load of the view
when JavaScript may not be available in the browser?
Do the view and its data need to be SEO-friendly?

Loading data in the initial load of the page may be relevant from a usability
perspective, so it really depends on the use case for the specific view. For SEO, server-
side rendering with data will give search engines easier access to the data content in
the view; so, if this is crucial for the view in question, then adding server-side
rendering with data is a good idea. In the next section, we will go over the varied
approaches of composing the React frontend in a full-stack application.

Using stateful versus pure functional
components
While building a UI with React components, composing the views with more stateless
functional components can make the frontend code manageable, clean, and easier to
test. However, some components will require the state or life cycle Hooks to be more
than pure presentational components. In the following sections, we will look at what
it takes to build stateful and stateless functional React components, when to use one
or the other, and how often.

Following Best Practices and Developing MERN Further Chapter 15

[649]

Stateful React components with ES6 classes
or Hooks
We can define stateful React components with ES6 classes or by using Hooks without
writing a class. React components defined using ES6 classes have access to life cycle
methods, the this keyword, and can manage state with setState when building
stateful components. Similarly, React components defined with a function can also
access some of these features using Hooks, such as managing state with the
useState Hook, in order to build stateful components.

Stateful components allow us to build interactive components that can manage to
change data in the state, and propagate any business logic that needs to be applied
across the UI. Generally, for complex UIs, stateful components should be higher-level
container components that manage the state of the smaller, stateless functional
components they are composed of. In comparison, these simpler stateless components
can be defined as pure functions, as discussed in the next section.

Stateless React components as pure
functions
React components can be defined as stateless functional components using the ES6
class syntax or as pure functions. The main idea is that a stateless component does not
modify state and only receives props.

The following code defines a stateless component using the ES6 class syntax:

class Greeting extends React.Component {
 render() {
 return <h1>Hello, {this.props.name}</h1>
 }
}

This component, although defined with a class, does not use state. The same
component can also be defined using JavaScript pure functions, as follows:

function Greeting(props) {
 return <h1>Hello, {props.name}</h1>
}

Following Best Practices and Developing MERN Further Chapter 15

[650]

A pure function always gives the same output when given the same input without
any side effects. Modeling React components as pure functions enforces the creation
of smaller, more defined, and self-contained components that emphasize UI over
business logic as there is no state manipulation in these components. These kinds of
components are composable, reusable, and easy to debug and test. In the next section,
we will discuss how to combine stateful and stateless components when designing
the UI.

Designing the UI with stateful components
and stateless functional components
When thinking about the component composition for a UI, you can design the root or
a parent component as a stateful component that will contain child components or as
the composable components that only receive props and cannot manipulate state. All
the state-changing actions and life cycle issues will be handled by the root or parent
component, and the changes will be propagated to the child components.

In the applications developed for this book, there is a mixture of stateful higher-level
components and smaller stateless components. For example, in the MERN Social
application, the Profile component modifies the state for stateless child
components, such as the FollowProfileButton and FollowGrid components.
There is scope for refactoring some of the larger components that were developed in
this book into smaller, more self-contained components, and this should be
considered before extending the applications to incorporate more features.

The main takeaway that can be applied to new component designs, or when
refactoring existing components, is that as the React application grows and gets more
complex, it is better to have more stateless functional components added to higher-
level stateful components that are in charge of managing state for the inner
components. In the next section, we will briefly discuss popular libraries and patterns
that can be utilized on top of React to handle state management across growing React
applications.

Following Best Practices and Developing MERN Further Chapter 15

[651]

Using Redux or Flux
When React applications begin to grow and become more complex, managing
communication between components can become problematic. When using regular
React, the way to communicate is to pass down values and callback functions as
props to the child components. However, this can be tedious if there are a lot of
intermediary components that the callback must pass through. To address these state
communication and management-related issues as the React application grows,
people turn to use React with libraries and architecture patterns such as Redux and
Flux.

It is outside the scope of this book to delve into the details of integrating React with
the Redux library or the Flux architecture, but you can consider these options for their
growing MERN applications while keeping the following in mind:

Redux and Flux utilize patterns that enforce changing states in a React
application from a central location. A trick to avoid using Redux or Flux in
React applications of manageable sizes is to move all state changes up the
component tree to the parent components.
Smaller applications work just as well without Flux or Redux.

You can learn more about using React with Redux at https:/ ​/
redux. ​js. ​org/ ​, and about using React with Flux at
facebook.github.io/flux/.

You can choose to integrate Flux or Redux based on your application size and
complexity. In the next section, we will discuss the security implementations applied
to the MERN applications developed in this book and the possible enhancements that
could be made.

Enhancing security
In the MERN applications developed for this book, we kept the auth-related security
implementations simple by using JSON web tokens (JWTs) as an authentication
mechanism and by storing hashed passwords in the user collection. The approaches
followed in these implementations are standard practices for adding authentication to
a web application. However, there are advanced options available for adding more
layers of security, if that is required for certain applications. In the following sections,
we will go over the security choices made for building the applications in this book
and point to possible enhancements.

https://redux.js.org/
https://redux.js.org/
https://redux.js.org/
https://redux.js.org/
https://redux.js.org/
https://redux.js.org/
https://redux.js.org/
https://redux.js.org/
https://redux.js.org/
http://facebook.github.io/flux/

Following Best Practices and Developing MERN Further Chapter 15

[652]

JSON web tokens – client-side or server-side
storage
With the JWT authentication mechanism, the client side becomes responsible for
maintaining the user state. Once the user signs in, the token sent by the server is
stored and maintained by the client-side code on browser storage, such
as sessionStorage. Hence, it is also up to the client-side code to invalidate the
token by removing it when a user signs out or needs to be signed out. This
mechanism works out well for most applications that require minimal authentication
to protect access to resources. However, for instances where it may be necessary to
track user sign-ins, sign-outs, and to let the server know that a specific token is no
longer valid for signing in, just the client-side handling of the tokens is not enough.

For these cases, the implementation discussed for handling JWT tokens on the client
side can be extended to storage on the server side as well. In the specific case of
keeping track of invalidated tokens, a MongoDB collection can be maintained by the
server to store these invalidated tokens as a reference, which is moderately similar to
how it is done for storing session data on the server side.

The thing to be cautious about and to keep in mind is that storing and maintaining
auth-related information on both the client and server side may be overkill in most
cases. Therefore, it is entirely up to the specific use case and the related trade-offs to
be considered. In the next section, we will review our options for storing user
passwords securely.

Securing password storage
While storing user credentials for authentication in the user collection, we made sure
that the original password string provided by the user was never stored directly in
the database. Instead, we generated a hash of the password along with a salt value
using the crypto module in Node.

In user.model.js from our applications, we defined the following functions to
generate the hashed password and salt values:

encryptPassword: function(password) {
 if (!password) return ''
 try {
 return crypto
 .createHmac('sha1', this.salt)
 .update(password)

Following Best Practices and Developing MERN Further Chapter 15

[653]

 .digest('hex')
 } catch (err) {
 return ''
 }
 },
 makeSalt: function() {
 return Math.round((new Date().valueOf() * Math.random())) + ''
 }

With this implementation, every time a user enters a password to sign in, a hash is
generated with the salt. If the generated hash matches the stored hash, then the
password is correct; otherwise, the password is wrong. So, in order to check whether
a password is correct, the salt is required, and therefore it is stored with the user
details in the database along with the hash.

This is the standard practice for securing passwords stored for user authentication,
but there are other advanced approaches that may be explored if a specific
application's security requirements demand it. Some options that can be considered
include multi-iteration hashing approaches, other secure hashing algorithms, limiting
the number of login attempts per user account, and multi-level authentication with
additional steps, such as answering security questions or entering security codes.
These options can add more layers of security as needed. In the next section, we will
discuss options for adding test code in full-stack React applications, which is essential
for building sturdy production-ready applications.

Writing test code
Though discussing and writing test code is outside the scope of this book, it is a
crucial part of developing reliable software. As full-stack JavaScript applications
become more mainstream over time, the need for better testing capabilities is
producing a good number of testing tools in this ecosystem. In the following sections,
we will first look at some of the popular testing tools that are available for testing the
different parts of a MERN-based application. Then, to help you get started with
writing test code for the MERN applications developed in this book, we will also
discuss an example of adding a client-side test to the MERN Social application from
Chapter 5, Growing the Skeleton into a Social Media Application.

Following Best Practices and Developing MERN Further Chapter 15

[654]

Testing tools for full-stack JavaScript projects
A whole range of testing tools is available for incorporating testing and maintaining
code quality in full-stack JavaScript projects. These include tools that can help with
performing static analysis on the code to maintain readability, and with integrating
unit testing, integration testing, and end-to-end testing in MERN-based applications.
In the following sections, we will highlight a few of these popular testing tools that
can be used with the projects in this book, such as ESLint for static analysis, Cypress
for frontend testing, and Jest for comprehensive testing in JavaScript applications.

Static analysis with ESLint
A good practice for improving and maintaining code quality is to use a linting tool
with your project. Linting tools perform static analysis on the code to find
problematic patterns or behaviors that violate specified rules and guidelines. Linting
code in a JavaScript project can improve overall code readability and also help you to
find syntax errors before the code is executed. For linting in MERN-based projects,
you can explore ESLint, which is a JavaScript linting utility that allows developers to
create their own lint rules.

You can learn more about using and customizing ESLint at
eslint.org. You can choose to use the Airbnb JavaScript Style
Guide (github.com/airbnb/javascript) to define your lint rules
with eslint-config-airbnb.

You can configure ESLint in your preferred editor and make it a seamless part of your
development workflow. This will help you to maintain standards in your code while
you are writing it. In the next section, we will take a look at Cypress, which can help
to test any code that runs in the browser.

End-to-end testing with Cypress
Cypress provides a complete set of tools for testing the frontend of modern web
applications. Using Cypress, we can write end-to-end tests, unit tests, and integration
tests for the frontend of our MERN-based applications. Cypress also provides its own
locally installed test runner, allowing us to write and run tests, and debug in real time
in the browser as we build the application.

http://esling.org
https://github.com/airbnb/javascript

Following Best Practices and Developing MERN Further Chapter 15

[655]

You can learn more about using Cypress at cypress.io to get
started with setting up end-to-end testing for JavaScript applications
in the browser.

Performing UI testing with Cypress will allow you to ship out your projects more
confidently, as you will be able to catch more bugs early on before they are
encountered by the end users of the application. In the next section, we will discuss
Jest, which can be used to add tests to any JavaScript code base.

Comprehensive testing with Jest
Jest is a comprehensive testing framework for JavaScript. Although it has been more
commonly known for testing React components, it can be used for general-purpose
testing with any JavaScript library or framework. Among the many JavaScript testing
solutions in Jest, it provides support for mocking and snapshot testing, comes with an
assertion library, and tests in Jest are written in the Behavior-Driven Development
(BDD) style.

To learn more about Jest, read the documentation at https:/ ​/
facebook. ​github. ​io/ ​jest/ ​docs/ ​en/ ​getting- ​started. ​html.

Besides testing the React components, Jest can be also be adapted to write test code
for the Node-Express-Mongoose-based backend as required. Hence, it is a solid
testing option to add test code for MERN applications. In the next section, we will
explore how you can use Jest to add a test to the MERN Social application, which was
developed in Chapter 5, Growing the Skeleton into a Social Media Application.

Adding a test to the MERN Social application
In order to demonstrate how to get started with adding tests to MERN applications,
we will set up Jest and use it to add a client-side test to the MERN Social application.
Before defining a test case, followed by writing and running the corresponding test
code, first, we will set up for testing by installing the necessary packages, defining the
test run script, and creating a folder for the test code, as discussed in the following
sections.

https://www.cypress.io/
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html
https://facebook.github.io/jest/docs/en/getting-started.html

Following Best Practices and Developing MERN Further Chapter 15

[656]

Installing the packages
In order to set up Jest and integrate the test code with our projects, we first need to
install the relevant Node packages. The following packages will be required in order
to write the test code and run the tests:

jest: To include the Jest testing framework
babel-jest: To compile JS code for Jest
react-test-renderer: To create a snapshot of the DOM tree rendered by
a React DOM without using a browser

To install these packages as devDependencies, run the following yarn command
from the command line:

yarn add --dev jest babel-jest react-test-renderer

Once these packages are installed, we can start adding tests after configuring the test
runner script, as discussed in the next section.

Defining the script to run tests
In order to run any test code that we write using Jest, we will define a script
command to run the tests. We will update the run scripts defined in
package.json in order to add a script for running tests with the jest command, as
shown in the following code:

 "scripts": {
 "test": "jest"
 }

With this script defined, if we run yarn test from the command line, it will prompt
Jest to find the test code in the application folders and run the tests. In the next
section, we will add the folder that will contain the test code files for the project.

Adding a tests folder
To add the client-side test in the MERN Social application, we will create a folder,
called tests, in the client folder, which will contain test files relevant to testing the
React components. When the test command is run, Jest will look for the test code in
these files.

Following Best Practices and Developing MERN Further Chapter 15

[657]

The test case for this example will be a test on the Post component in the frontend of
the MERN Social application, and we will add tests for the Post component in a file
called post.test.js. This file will be placed in the tests folder. Now that we have
a file ready for adding the test code, in the next section, we will demonstrate how to
add an example test case.

Adding the test
For the MERN Social application, we will write a test to check whether the delete
button on a post is only visible when the signed-in user is also the creator of the post.
This means that the delete button will only be a part of the rendered Post view if the
_id of the authenticated user is the same as the postedby value of the post data
being rendered.

In order to implement this test case, we will add code that takes care of the following:

Defines dummy data for a post and an auth object containing
authenticated user details
Mocks the methods in auth-helper.js
Defines the test, and, within the test definition, does the following:

Declares the post and auth variables
Sets the return value of the mocked isAuthenticated
method to the dummy auth object
Uses renderer.create to create the Post component with
the required dummy props passed and wrapped in
MemoryRouter to provide the props related to react-
router

Generates and matches snapshots

The code in post.test.js to incorporate the steps described for this specific test
will be as follows:

import auth from './../auth/auth-helper.js'
import Post from './../post/Post.js'
import React from 'react'
import renderer from 'react-test-renderer'
import { MemoryRouter } from 'react-router-dom'

jest.mock('./../auth/auth-helper.js')

const dummyPostObject = {"_id":"5a3cb2399bcc621874d7e42f",

Following Best Practices and Developing MERN Further Chapter 15

[658]

 "postedBy":{"_id":"5a3cb1779bcc621874d7e428",
 "name":"Joe"}, "text":"hey!",
 "created":"2017-12-22T07:20:25.611Z",
 "comments":[], "likes":[]}
const dummyAuthObject = {user: {"_id":"5a3cb1779bcc621874d7e428",
 "name":"Joe",
 "email":"abc@def.com"}}

test('delete option visible only to authorized user', () => {
 const post = dummyPostObject
 const auth = dummyAuthObject

 auth.isAuthenticated.mockReturnValue(auth)

 const component = renderer.create(
 <MemoryRouter>
 <Post post={post} key={post._id} ></Post>
 </MemoryRouter>
)

 let tree = component.toJSON()
 expect(tree).toMatchSnapshot()
})

In this code, we first defined dummy posts and auth objects, and then added the test
case for checking the visibility of the delete option. In this test case, we mocked the
isAuthenticated method and rendered the Post component using the dummy
post data. Then, we generated a snapshot with this rendered component, which will
be matched with the expected snapshot. In the next section, we will discuss how
generated snapshots are compared in this test.

Generating a snapshot of the correct Post view
The first time this test is run, we will provide it with the values required to generate
the correct snapshot of the Post view. The correct snapshot for this test case will
contain the delete button when the user._id of the auth object is equal to the
postedBy value of the post object. This snapshot is generated when the test is run
for the first time, and it will be used for comparison in future test executions.

This kind of snapshot testing in Jest basically records snapshots of rendered
component structures to compare them to future renderings. When the recorded
snapshot and the current rendering don't match, the test fails, indicating that
something has changed. In the next section, we will go over the steps of running the
test and checking the test output.

Following Best Practices and Developing MERN Further Chapter 15

[659]

Running and checking the test
In the code that we added to the post.test.js file, the dummy auth object and
the post object refer to the same user; therefore, running this test in the command
line will prompt Jest to generate a snapshot that will contain the delete option and
also pass the test.

To run the test, go into the project folder from the command line:

yarn test

The test output generated when this command runs will show that the test passed, as
portrayed in the following screenshot:

The recorded snapshot that is generated, when this test runs successfully for the first
time, is added automatically to a _snapshots_ folder in the tests folder. This
snapshot represents the state where the delete button is rendered in the view since
the authenticated user is also the creator of the post.

We can now check whether the test actually fails when the component is rendered
with an authenticated user that is not the creator of the post. To perform this check,
we will update the dummy data objects by changing the user._id, so it does not
match the postedBy value, and then run the test again. This will give us a failed test,
as the current rendering will no longer have a delete button that is present in the
recorded snapshot.

As shown in the following test log, the test fails and indicates that the rendered tree
does not match the recorded snapshot since the elements representing the delete
button are missing in the received value:

Following Best Practices and Developing MERN Further Chapter 15

[660]

We have a client-side test for checking whether a signed-in user can view the delete
button on their posts. Using this setup, more tests can be added for the MERN
application utilizing the capabilities of Jest.

Writing test code will make the application you develop reliable and also help ensure
code quality. Using tools such as ESLint, Cypress, and Jest, we can incorporate
different ways of ensuring the overall quality of MERN-based applications. In the
next section, we will move on to discussing ways to optimize the bundling of the
application code.

Optimizing the bundle size
As you develop and grow a MERN application, chances are the size of the bundles
produced with webpack will also grow, especially if large third-party libraries are
used. Larger bundle sizes will affect performance and increase the initial load time of
the application. We can make changes in the code to ensure we don't end up with
large bundles and also utilize features packed in webpack to help optimize bundling.

Following Best Practices and Developing MERN Further Chapter 15

[661]

Before going into the code to update it for bundle size optimization,
you can also get familiar with the default optimization options that
are part of webpack. In the MERN applications, we used the mode
config to utilize the default settings for both development and
production mode. To view an overview of the options that are
available, please refer to the article at https:/ ​/ ​medium. ​com/
webpack/ ​webpack- ​4- ​mode- ​and- ​optimization- ​5423a6bc597a.

In the following section, we will highlight concepts such as code splitting and
dynamic imports, which can give us control over producing smaller bundles and
decreasing load time.

Code splitting
Instead of loading all the code at once in one bundle, we can use the code splitting
feature supported by webpack to lazy-load parts of the application code as currently
needed by the user. After we modify the application code to introduce code-splitting,
webpack can create multiple bundles rather than one large bundle. These bundles can
be loaded dynamically at runtime, allowing us to improve the performance of the
application.

To learn more about code splitting support in webpack and how to
make necessary changes to the setup and configuration, take a look
at the guidelines in the documentation at
https://webpack.js.org/guides/code-splitting/.

There are several ways to introduce code splitting for the application code, but the
most important syntax you will come across for this purpose is the dynamic
import(). In the next section, we will look at how to use import() with our MERN
applications.

https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a
https://webpack.js.org/guides/code-splitting/

Following Best Practices and Developing MERN Further Chapter 15

[662]

Dynamic import()
Dynamic import() is a function-like version of the regular import, and it enables the
dynamic loading of JS modules. Using import(moduleSpecifier) will return a
promise for the module namespace object of the requested module. When using
regular static imports, we import a module at the top of the code and then use it in
the code as follows:

import { convert } from './metric'
...
console.log(convert('km', 'miles', 202))

In contrast, if we were to use dynamic import() instead of adding the static import
at the beginning, the code would look like this:

import('./metric').then({ convert } => {
 console.log(convert('km', 'miles', 202))
})

This allows us to import and load the module when the code requires it. While
bundling the application code, webpack will treat calls to import() as split points
and automatically start code splitting by placing the requested module and its
children into a separate chunk from the main bundle.

In order to optimize the bundling of the frontend React code by applying code
splitting at a given component, we need to pair dynamic import() with React
Loadable – a higher-order component for loading components with promises. As an
example, we will look at the shopping cart developed in Chapter 8, Extending the
Marketplace for Orders and Payments. While building the interface of the cart, we
composed the Cart component by importing and adding the Checkout component
to the view, as follows:

import Checkout from './Checkout'
class Cart extends Component {
 ...
 render(){
 ...
 <Checkout/>
 }
 ...
}

Following Best Practices and Developing MERN Further Chapter 15

[663]

To introduce code splitting here and import the Checkout component dynamically,
we can replace the static import at the beginning with a Loadable Checkout, as
shown in the following code:

import Loadable from 'react-loadable'
const Checkout = Loadable({
 loader: () => import('./Checkout'),
 loading: () => <div>Loading...</div>,
})

Making this change and using webpack to build the code again will produce a
bundle.js file of reduced size, and generate another smaller bundle file representing
the split code, which will now only load when the Cart component is rendered.

Route-based code splitting is also another option besides using
dynamic imports. It can be an effective approach for introducing
code splitting in React apps that use routes to load components in
the view. To learn more about implementing code splitting,
specifically with React Router, view the article at https:/ ​/
tylermcginnis. ​com/ ​react- ​router- ​code- ​splitting/ ​.

We can apply code-splitting mechanisms across our application code as required. The
thing to keep in mind is that effective code splitting will depend on using it correctly
and applying it at the right places in the code – places that will benefit in optimization
from resource-load prioritization. In the next section, we will outline the steps that
can be repeated to add new features to the MERN applications developed in this
book.

Extending the applications
Throughout the chapters of this book, as we developed each application, we added
features by extending the existing code in a common and repeatable number of steps.
In this final section, we will review those steps, setting a guideline for adding more
features to the current versions of the applications.

https://tylermcginnis.com/react-router-code-splitting/
https://tylermcginnis.com/react-router-code-splitting/
https://tylermcginnis.com/react-router-code-splitting/
https://tylermcginnis.com/react-router-code-splitting/
https://tylermcginnis.com/react-router-code-splitting/
https://tylermcginnis.com/react-router-code-splitting/
https://tylermcginnis.com/react-router-code-splitting/
https://tylermcginnis.com/react-router-code-splitting/
https://tylermcginnis.com/react-router-code-splitting/
https://tylermcginnis.com/react-router-code-splitting/
https://tylermcginnis.com/react-router-code-splitting/
https://tylermcginnis.com/react-router-code-splitting/
https://tylermcginnis.com/react-router-code-splitting/
https://tylermcginnis.com/react-router-code-splitting/
https://tylermcginnis.com/react-router-code-splitting/

Following Best Practices and Developing MERN Further Chapter 15

[664]

Extending the server code
For a specific feature that will require data persistence and APIs to allow the views to
manipulate the data, we can start by extending the server code and adding the
necessary models, routes, and controller functions, as outlined in the following
sections.

Adding a model
For the data persistence aspect of the feature, design the data model considering the
fields and values that need to be stored. Then, define and export a Mongoose schema
for this data model in a separate file, and place it in the server/models folder. With
the data structure defined and ready for the database, you can move on to adding the
API endpoints for manipulating this data, as discussed next.

Implementing the APIs
In order to manipulate and access the data that will be stored in the database based
on the model, you need to design the APIs relevant for the desired feature. To start
implementing the APIs, you have to add the corresponding controller methods and
route declarations, as discussed in the following sections.

Adding controllers
With the APIs decided, add the corresponding controller functions that will respond
to the requests to these APIs in a separate file in the server/controllers folder.
The controller functions in this file should access and manipulate the data for the
model defined for this feature. Next, we will look at how to declare the routes that
will invoke these controller methods when the requests come in.

Adding routes
To complete the implementation of the backend APIs, corresponding routes need to
be declared and mounted on the Express app. In a separate file in the
server/routes folder, first, declare and export the routes for these APIs, assigning
the relevant controller functions that should be executed when a specific route is
requested. Then, load these new routes on the Express app in the
server/express.js file, just like the other existing routes in the application.

Following Best Practices and Developing MERN Further Chapter 15

[665]

This will produce a working version of the new backend APIs that can be run and
checked from a REST API client application. Then, these APIs can be used in the
frontend views for the feature being developed, which you will add by extending the
client code, as discussed in the next section.

Extending the client code
On the client side, first, design the views required for the feature, and determine how
these views will incorporate user interaction with the data relevant to the feature.
Then, add the fetch API code to integrate with the new backend APIs, define the new
components that represent these new views, and update the existing code to include
these new components in the frontend of the application, as outlined in the following
sections.

Adding the API fetch methods
Before adding the fetch methods that will make calls to the backend APIs, you will
determine a location for placing the new frontend code. In the client folder, create a
new folder to house the components and helper code relevant to the feature module
being developed. Then, to integrate the new backend APIs with the frontend of the
application, define and export the corresponding fetch methods in a separate file in
this new components folder. Finally, you can populate this folder with the React
components that will be the frontend of this feature, as discussed in the next section.

Adding components
To start adding the UI for the feature, you can create and export new React
components that represent views for the desired feature in separate files in the new
folder. If authentication is required, you can integrate it into these new components
using the existing auth-helper methods. Once the React components are
implemented, they need to be loaded into the main application view, as discussed in
the next section.

Loading new components
In order to incorporate these new components into the frontend, the components
either need to be added into existing components or rendered at their own client-side
routes.

Following Best Practices and Developing MERN Further Chapter 15

[666]

If these new components need to be rendered at individual routes, update the
MainRouter.js code to add new routes that load these components at given URL
paths. Then, these URLs can be used as links to load the components from other
views in the application, or directly by visiting the URL from the browser address
bar.

However, if the new components need to become part of existing views, then import
the components into the existing components to add them to the view as desired.

The new components can also be linked with existing components, such as in the
Menu component, by linking to new components that were added with individual
routes.

With the components integrated and connected to the backend, the new feature
implementation is complete. These steps can be repeated to add on even more new
features to the existing MERN-based applications built throughout this book.

Summary
In this final chapter, we reviewed and elaborated on some of the best practices that
we used while building the MERN applications in this book, highlighted areas of
improvement, gave pointers to address issues that may crop up when applications
grow, and, finally, set down steps to continue developing more features into the
existing applications.

We saw that modularizing the application's code structure helped to extend the
application easily, choosing to use JSS over inline CSS and external style sheets kept
the styling code contained and easy to work with, and only implementing server-side
rendering for specific views as required kept unnecessary complications out of the
code.

We discussed the benefits of creating fewer stateful components that are composed of
smaller and more defined stateless functional components, and how this can be
applied while refactoring existing components or designing new components to
extend the applications. For growing applications that may run into issues with
managing and communicating state across hundreds of components, we pointed to
options such as Redux and Flux, which may be considered to address these issues.

For applications that may have higher demands for stricter security enforcement, we
looked back at our existing implementation of user authentication with JWT and
password encryption and discussed possible extensions for improved security.

Following Best Practices and Developing MERN Further Chapter 15

[667]

We highlighted testing tools such as ESLint, Cypress, and Jest. Then, we used Jest to
demonstrate how test code can be added to the MERN applications and discussed
how good practices, such as writing test code and using a linting tool, can improve
code quality besides ensuring reliability in an application.

We also looked at bundle optimization features, such as code splitting, that can help
to improve performance by reducing the initial bundle size, and by lazy-loading parts
of the application as required.

Finally, we reviewed and set down the repeatable steps that were used throughout
the book, which you can use as a guideline moving forward to extend the MERN
applications by adding more features as desired.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

ASP.NET Core 3 and React
Carl Rippon

ISBN: 978-1-78995-022-9

Build RESTful APIs with .NET Core using API controllers
Create strongly typed, interactive, and function-based React components
using Hooks
Build forms efficiently using reusable React components
Perform client-side state management with Redux and the React Context
API
Secure REST APIs with ASP.NET identity and authorization policies
Run a range of automated tests on the frontend and backend
Implement continuous integration (CI) and continuous delivery (CD)
processes into Azure using Azure DevOps

https://www.packtpub.com/in/web-development/asp-net-core-3-and-react

Other Books You May Enjoy

[669]

Hands-on Full-Stack Web Development with GraphQL and React
Sebastian Grebe

ISBN: 978-1-78913-452-0

Resolve data from multi-table database and system architectures
Build a GraphQL API by implementing models and schemas with Apollo
and Sequelize
Set up an Apollo Client and build front end components using React
Use Mocha to test your full-stack application
Write complex React components and share data across them
Deploy your application using Docker

https://www.packtpub.com/web-development/hands-full-stack-web-development-graphql-and-react

Other Books You May Enjoy

[670]

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us an
honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we can
understand what our customers think about our products, and our authors can see
your feedback on the title that they have worked with Packt to create. It will only take
a few minutes of your time, but is valuable to other potential customers, our authors,
and Packt. Thank you!

Index

3
3D objects
 URL 567

A
Advanced REST Client (ARC) 86
application
 debugging, in real time 48
 developing 48
Atom
 URL 27
augmented reality (AR) 556
auth controller function 81
auth routes 80
auth state, managing
 about 118
 credentials, deleting 119, 120
 credentials, retrieving 119
 credentials, saving 118
authentication, adding in frontend
 about 117
 auth state, managing 118
 PrivateRoute component 120, 121
authentication-authorization (auth) 52
AWS Cloud9
 reference link 27, 30

B
Babel
 configuring 37, 97
backend APIs
 integrating 112
backend components, skeleton application
 API endpoints, for user CRUD 53
 auth, with JSON Web Tokens 54
 user model 53

backend, skeleton application
 Auth, with JSON Web Tokens 54
Behavior-Driven Development (BDD) 655
bidding history
 displaying 431
 rendering 432, 433, 434
bids
 form, adding to enter 429, 430
 placing 428
 receiving, on server 430, 431
 view state, updating with 432
BitBucket 29
bundle React app
 during development 44
bundled frontend code
 loading 100
 static files, serving with Express 100
 template, updating to load bundled script 100

C
CartItems component 349
Cascading Style Sheets (CSS) 537
checkout details, initializing
 about 368
 customer information 368, 369
 delivery address 369, 370
checkout
 integrating 367
Chrome Developer Tools
 reference link 28
client code, MERN application
 API fetch methods, adding 665
 components, adding 665
 components, loading 665, 666
 extending 665
client-side Webpack configuration
 for development 38, 39

[672]

 for production 41
cloud development 27
command-line tool curl
 reference link 86
comments, Post component
 add comment section 204
 adding 203
 comment API 203
 comment count update 209
 comment, deleting 207
 comment, removing from view 208
 comments, listing 206
 uncomment API 207
configured server, MERN skeleton backend
 connecting, to MongoDB 63
 Express, configuring 60, 61
 HTML template, serving to root URL 64
 Mongoose, setting up 63
 server, implementing 62
create auction API 403, 404
create, read, update, delete (CRUD) 52
cross-origin resource sharing (CORS) 61
CSS styles
 adding 645
 external style sheets 645
 inline styles 646
custom media controls
 about 532
 fullscreen 539, 540
 loop on ended 533, 534
 pause 532, 533
 play 532, 533
 play next 533
 played duration 540, 541
 progress control 536, 537, 538, 539
 replay 532, 533
 volume control 535, 536
custom media player
 adding, to MERN Mediastream application

517, 518
Cypress
 reference link 654
 used, for end-to-end testing 654

D
data props
 passing, to PlayMedia from MainRouter 551
DeleteMedia component 515
devDependency modules 33
development setup
 checking 34
development tools
 Chrome Developer Tools 28
 Git 28
 IDE 27
 selecting 26
 text editors 27
 workspace options 27
dist folder
 static files, serving from 45
Document Object Model (DOM) 539

E
Effect Hook 123
equirectangular panoramic images 561, 562
ES6 classes
 used, for defining stateful React components

649

ESLint
 reference link 654
 used, for static analysis 654
Express 14, 15
Express app 44
Express.js
 URL 14
external style sheets 645

F
Fetch API, for auth API
 about 116
 sign-in method 116
 sign-out method 117
Fetch API, for user CRUD
 about 112
 user profile, reading 113
 user's data, updating 114
 user, creating 112
 user, deleting 115

[673]

 users, listing 113
Fetch API
 reference link 112
Flux
 reference link 651
 using 651
frontend views
 with React 42, 43
full-stack JavaScript projects
 testing tools 654

G
Git
 about 28
 download link 28
 installing 28
GitHub 29

H
hasAuthorization method 84
higher-order component (HOC) 106, 370
Home component
 about 107, 108
 CSS styles, defining 108
 defining 110
 libraries and modules, importing 108
home page view
 entry point, at main.js 103
Hooks
 used, for defining stateful React components

649

I
implementation, checking of SSR with data
 about 552
 blocking, JavaScript in browser 553, 554
 JavaScript from settings, disabling 553
 page, loading with JavaScript enabled 553
 testing, in Chrome 552
inline styles 646
isomorphic-fetch
 about 549
 absolute URLs, using 549, 550

J
JavaScript enabled
 page, loading with 553
JavaScript Style Sheets (JSS)
 about 646, 647
 reference link 109
JavaScript, from settings
 disabling 553
JavaScript
 blocking 553, 554
Jest
 about 655
 reference link 655
 used, for comprehensive testing 655
JSON Web Token (JWT)
 about 54, 651
 working 54, 55
JWT authentication mechanism
 using 652

L
likes, Post component
 checkLike method 200
 like API 198
 like clicks, handling 201
 likes, counting 200
 unlike API 199
local development 27

M
MainRouter
 data props, passing to PlayMedia from 551
Material Template Library (MTL) file 600
Material-UI documentation
 reference link 109
MERN application
 about 18
 building 11, 12, 13, 18
 bundle size, optimizing 660
 client code, extending 665
 code splitting 661
 dynamic import() 662, 663
 expense tracking application 22, 23
 extending 663

[674]

 integrating with 592
 media streaming application 23
 online marketplace 21
 React 360 files, bundling to integrate with

592

 React 360 production files, adding 593
 references, updating in index.html 593, 594
 server code, extending 664
 social media platform, building 19
 trying out, integration 594
 VR game, for web 24
 web-based classroom application,

implementing 20
MERN Expense Tracker
 about 437, 438
 average expenses by category API 479, 480
 average expenses per category, in pie chart

478

 CategoryPie component 480, 481, 482
 create expense API 441, 442
 current expenses by category API 464, 465,

466

 current expenses, tracking by category 463,
464

 current month preview API 459, 460, 461
 delete option, rendering 453, 454, 455
 edit expense form, rendering 453, 454, 455
 expense data charts, displaying 469
 expense data, visualizing over time 458
 Expense model, defining 439, 440, 441
 expense record, creating 441
 expense record, modifying 452
 expense records, adding 438
 expenses by user API 446, 447
 expenses component 447, 448, 449
 expenses component, searching by date

range 449, 450
 expenses in current month, previewing 459
 expenses, deleting in backend 455, 456,

457, 458
 expenses, editing in backend 455, 456, 457,

458

 expenses, listing 445
 expenses, rendering from database 451, 452
 expenses, summarizing 458
 month's expenses in scatter plot 469, 470

 MonthlyScatter component 472, 473
 NewExpense component 442, 443, 444, 445
 overview of expenses per category, rendering

466, 467, 468
 preview of current expenses, rendering 461,

463

 scatter plot data API 470, 471
 total expenses per month in year 474
 yearly expenses API 474, 476
 YearlyBar component 476, 477, 478
MERN Marketplace app
 about 285, 286
 Categories component 341
 create product API 317, 318
 create shop API 292, 293, 294
 create shop API, fetching in view 295
 delete shop API 312, 313
 DeleteProduct component 335
 DeleteShop component 313, 314
 Edit Profile view, updating 288, 289
 edit shop API 309, 311
 EditProduct component 334
 EditShop component 311, 312
 latest products 326, 327
 menu, updating 290
 MyProducts component, for shop owners

324, 325, 326
 MyShops component 304, 305
 NewProduct component 319, 320
 NewShop component 295, 296, 297, 298
 Product component 331, 333, 334
 Product model, defining 315, 316
 products component, for buyers 322, 323
 products search, fetching for view 338
 products suggestions, listing 326
 products, adding to shops 314
 products, by shop API 321
 products, categories API 336, 337
 products, creating 317
 products, deleting 334
 products, displaying 330
 products, editing 334
 products, listing 320
 products, listing by shops 320
 products, Search component 339, 340

[675]

 products, searching with category 336
 products, searching with name 336
 read product API 331
 read shop API 306, 307
 related products 327, 328
 search products API 337, 338
 Shop component 300, 302, 307, 308, 309
 Shop model, defining 291, 292
 shops list API 299
 shops, adding 290
 shops, by owner API 302, 303
 shops, creating 292
 shops, deleting 312
 shops, displaying 305
 shops, editing 309
 shops, fetching by user for view 303
 shops, fetching for view 299
 shops, listing 298
 shops, listing by owner 302
 suggestions component 329, 330
 user model, updating 287, 288
 users, allowing to be sellers 287
MERN Marketplace application, auction view
 Auction component 420
 Auction components 420, 421, 422
 read auction API 419
 Timer component, adding 422, 423, 425
MERN Marketplace application, auctions
 auction APIs, deleting 416, 417, 418
 auction APIs, editing 416, 417, 418
 list view, updating 416
MERN Marketplace application
 about 344
 action, handling to process charge for product

387

 action, handling to update status of product
388

 actions, handling to cancel product order 386
 APIs, for products ordered 389
 Auction model, defining 400, 401, 402
 auction view, displaying 418
 auction, creating 402
 Auctions by bidder API 410, 411
 Auctions by seller API 411, 412
 Auctions component 412, 413, 414, 415

 auctions, adding 400
 auctions, deleting 415
 auctions, editing 415
 auctions, listing 408, 409
 button, adding to place order 372, 373
 CardElement component 371
 cart details, retrieving 350, 351
 Cart icon, on menu 347, 348
 Cart view 348
 cart, emptying 373
 CartItem schema 376
 CartItems component 349, 350
 charge, creating for product 365
 charge, processing for product 393, 394
 checkout details, initializing 368
 checkout, integrating 367
 create API, fetching in view 405
 create auction API 403, 404
 create controller method 379
 create order API 376, 377
 items, removing 353
 list by shop API 380
 NewAuction component 405, 406, 408
 open Auctions API 409, 410
 option, to perform checkout 354
 Order model 375
 Order model, defining 374
 Order schema 374
 order status, updating 390, 391
 order, creating 374
 order, placing 370
 orders, listing 382, 383
 orders, listing by shop 379
 product order, cancelling 391, 392
 product stock quantity, decreasing 378
 ProductOrderEdit component 384, 385
 products, adding to cart 345, 346
 quantity, modifying of products 352
 real-time bidding 398, 399
 redirecting, to order view 373
 reference link 344
 ShopOrders component 381
 shopping cart, implementing 345
 single-order details, viewing 394, 395, 396
 status values, obtaining 389

[676]

 Stripe Card Elements, for checkout 362
 Stripe Card Elements, using 370
 Stripe Customer, for recording card details

363

 Stripe, using for payments 355, 356
 Stripe-connected account, for seller 356
 total price, displaying 354
MERN Mediastream application, media player
 custom media controls 532
 Media component, updating 528
MERN Mediastream application, play media

page
 autoplay across components, handling 543,

544, 545
 autoplay toggle option, adding 542, 543
 state, updating when video ends in

MediaPlayer 545
MERN Mediastream application
 building 484, 485
 custom media player, adding 518
 delete media API 513, 514
 DeleteMedia component 514
 media API, creating 489, 490, 491
 media component 506, 507, 508
 media details, updating 509
 media edit form 511, 513
 Media model, defining 486, 487
 media player, customizing 527
 media player, initializing 528, 529, 531
 media post, creating 489
 media update API 509, 510, 511
 media, deleting 504, 513
 media, displaying 504
 media, listing 499, 501, 502
 media, listing by users 502, 503
 media, retrieving 494
 media, storing 486
 media, streaming 494
 media, updating 504
 media, uploading 486
 MediaList component 500
 MongoDB GridFS, using to store large media

files 487, 489
 NewMedia component 491, 492, 494
 read media API 504, 505, 506

 reference link 518
 related media, autoplaying 542
 video API 495, 496, 497
 video, rendering with react media player 498
MERN Mediastream
 custom media player, adding 517
 play media page 519
MERN skeleton backend
 Babel modules, configuring 58
 config variables 59
 configured server, preparing 60
 development dependencies 58
 folder and file structure 56
 Nodemon, using 59
 package.json, adding 57
 project, initializing 57
 scripts, executing 60
 setting up 56
 Webpack, compiling 59
MERN skeleton, home page view
 client code, running in browser 111
 Home component 107, 108
 home route, adding to MainRouter 106
 image assets, bundling 111
 rendering 102, 103
 Root React component 103
MERN Social
 about description, adding for user profile 153,

154

 API calls, accessing in views 166, 167
 API for posts, by user 186
 APIs, adding to follow users 163
 APIs, adding to unfollow users 164
 checking 659, 660
 correct Post view snapshot, generating 658
 create post API, fetching in view 191
 defining 150, 152
 FindPeople component 174, 175
 follow and unfollow buttons 167
 followers, listing 170
 FollowGrid component, making 171
 followings, listing 170
 FollowProfileButton component 167, 168
 interacting, with Posts 197
 Mongoose schema model, for Post 178

[677]

 NewPost component, making 192, 193
 Newsfeed API, for posts 182, 183
 Newsfeed component 179, 180, 181
 Newsfeed posts, fetching in view 183, 185
 packages, installing 656
 people, finding to follow 172
 photo, displaying in view 161
 post API, creating 189, 190
 Post component 193
 Post component layout 193
 post feature 176, 177
 post's photo, retrieving 190, 191
 post, creating 189
 post, deleting 196, 197
 posts, listing 181
 posts, listing by user in Profile 186
 posts, listing in Newsfeed 182
 Profile component, updating 168, 169
 profile photo URL 160, 161
 profile photo, retrieving 160
 profile photo, uploading 154
 running 659
 script command, defining 656
 test, adding 655, 657, 658
 tests folder, adding 656
 user model, updating 162
 user posts, fetching in view 187, 188
 user profile, updating 153
 userByID controller method, updating 163
 users not followed, fetching 172, 173
 users, following 162
 users, unfollowing 162
MERN stack application, folder structure
 about 643
 client-side code 644
 server-side code 643
MERN stack technologies
 about 9, 10, 11, 16
 adopting 17
 advanced applications 10
 benefits 17
 building 10
 deploying 17
 developing 17
 extending 17

 learning 17
 MongoDB 29
 Node.js 30
 setting up 29
 structure 9
 web applications, developing with 10
 working 17
 Yarn 31
MERN stack
 about 13
 Express 14, 15
 MongoDB 15
 Node 13
 React 16
MERN VR Game application, CRUD APIs
 game, creating 603, 604, 605
 games, deleting 613, 614
 games, editing 610, 611, 612
 games, listing 606, 607
 games, listing by maker 607, 608
 games, loading 608, 610
MERN VR Game application, features building

in React 360
 3D VR objects, adding 581, 582
 about 577, 578
 client.js, mounting to Location 578
 client.js, updating 578
 game completed state 589, 590, 591
 interacting, with VR objects 582
 styles, defining with StyleSheet 579, 580
 VR object, animation with

requestAnimationFrame 583, 584, 585
 VR object, clicking on 3D objects 585, 586
 VR object, correct object collecting on click

586, 587, 588
 VR object, rotating 583
 world background 580
MERN VR Game application, form view
 arrays, modifying of VR objects 623
 EditGame component 618, 619, 620
 game, editing 617
 game, making 615
 GameForm component, implementing 620,

621

 inputting, simple game details 621, 622

[678]

 menu, updating 615
 NewGame component 615, 616, 617
 object detail change, handling 626, 627
 object details form, iterating 623
 object details form, rendering 623
 object, adding to array 625
 object, removing from array 625, 626
 VRObjectForm component 627, 628, 629,

630

MERN VR Game application, model
 array length, validating in game schema 602,

603

 game schema, exploring 599, 600
 VR object schema, specifying 600, 601, 602
MERN VR Game application, views
 GameDetail component 633, 634, 635, 636
 list, rendering of games 631, 632, 633
MERN VR Game application
 about 557, 597, 598
 API, implementing to render VR game view

636, 637
 code, updating in React 360 637
 features 557, 558
 form, adding for creating games 614
 form, adding for editing games 614
 game CRUD APIs, implementing 603
 game data structure 574
 game data, fetching with load game API 639
 game details, defining 574
 game ID, obtaining from link 638
 game list views, adding 630
 game model, defining 598
 game, playing 636
 static data, versus dynamic data 576, 577
 updated code, bundling 639
 updated code, integrating 639
 working with 558
 working, with React 360 558
MERN VR Game, data structure
 details, of VR objects 575, 576
MERN, modules
 about 32
 devDependency modules 32, 33
 key modules 32
middleware functionality 14

modules, server-side rendering
 material-UI modules and the custom theme

144

 React modules 144
mongo shell
 running 30
MongoDB Atlas
 URL 30
MongoDB GridFS
 reference link 488
MongoDB
 about 15
 installation guide link 30
 installing 30
 Node server, connecting to 46
 setting up 29
 URL 15
Mongoose error handling 70, 72

N
Node server
 connecting, to MongoDB 46
Node version management
 with nvm 31
Node.js modules
 installing 36
Node.js
 download link 31
 installing 31
 setting up 30
Node
 about 13
 URL 14
Nodemon
 configuring 42
npm registry
 reference link 14
nvm
 setup instructions link 31

O
object (OBJ) file 600

[679]

P
package.json
 initializing 35
password storage
 securing 652
password
 authentication 68, 69
 encryption 68, 69
 field validation 70
 for authentication 67
 handling, as virtual field 68
payment processing 355
photo upload feature, MERN Social
 file input, with Material-UI 156
 form submission, with file attached 157, 158
 photo, uploading from edit form 155
 request, processing with file upload 159
 user model, updating to store photo in

MongoDB 155
play media page
 autoplay across components, handling 543
 component structure 519, 520
 RelatedMedia component, implementing 523,

524

PlayMedia component 524, 525, 526
PlayMedia
 data props, passing from MainRouter to 551
 received data, rendering 552
Post component layout, MERN Social
 actions 195
 comments 195
 content 194
 header 194
Post component, MERN Social
 comments 202
 likes 198
PropTypes
 used, for validating props 140

R
React 360 API 568
React 360 files
 bundling, to integrate it with MERN

application 592

React 360
 components 565
 game code, updating 637
 input events 573, 574
 project, setting up 558, 559, 561
 reference link 564
React app
 data, injecting 550
React dependencies
 adding 101
 Material-UI, installing 102
 React Router, installing 101
 React, installing 101
React development
 Babel, configuring 97
 bundled frontend code, loading 100
 dependencies, adding 101
 setting up 96
 Webpack, configuring 97
React Router
 reference link 663
React
 about 16
 frontend views 42, 43
 URL 16
ReactPlayer
 reference link 498
real-time bidding
 implementing, with Socket.IO 425
 in MERN Marketplace application 398, 399
Redux
 reference link 651
 using 651
related media list API 521, 522
related media
 listing 520
RelatedMedia component
 implementing 523, 524
Remote Development extension, Visual Studio

Code
 reference link 27
remote Git hosting services 29
requireSignin method 84
Root React component
 about 103

[680]

 Material-UI theme, customizing 104
 wrapping, with ThemeProvider and

BrowserRouter 105

S
scripts
 running 47
security
 enhancing 651
separation of concerns
 with modularity 643
server code, MERN application
 APIs, implementing 664
 controllers, adding 664
 extending 664
 model, adding 664
 routes, adding 664
server-injected data
 applying, in client code 551
server-side rendering (SSR), with data
 about 546
 route configuration file, adding 547
server-side rendering (SSR)
 App.js, updating 146
 CSS and markup, generating 144, 145
 hydrate function, using 147
 implementing 143
 modules 144
 template, sending with markup and CSS 145,

146

 template.js, updating 146
 with data 647, 648
server-side Webpack configuration 40
server
 with Express, and Node 44
shopping cart
 implementing 345
sign in controller function 82
sign out controller function 83, 84
single-order details
 viewing 394, 395, 396
skeleton application
 backend components, defining 52
 folder and file structure 95, 96
 frontend, defining 94, 95

 overview 52
 reference link 56
 use cases 52
 user interface components, defining 94
Socket.IO
 integrating 425, 426, 427, 428
 real-time bidding, implementing with 425
 URL 426
SSR code, updating for Express server
 about 548
 data, injecting into React app 550
 isomorphic-fetch 549
 route configuration, using to load data 548
standalone backend
 checking 86
 signing in 90
 single user, fetching 89, 91
 user list, fetching 88
 user, creating 87
stateful React components
 defining, with ES6 classes or Hooks 649
 versus pure functional components 648
stateless React components
 using, as pure functions 649
static files
 serving, from dist folder 45
Stripe auth update API 360
Stripe Customer, for recording card details
 existing Stripe Customer, updating 365
 new Stripe Customer, creating 364
 user controller, updating 363, 364
 user model, updating 363
Stripe Customer
 reference link 363
Stripe-connected account, for seller
 button, creating to connect with Stripe 357,

358

 Stripe auth update API 360, 361, 362
 StripeConnect component 358, 360
 user model, updating 356
Stripe
 about 355
 using, for payments 355
StripeConnect component 358, 360
SublimeText

[681]

 URL 27

T
templates
 rendering, at root 46
test code
 writing 653

U
Uniform Resource Locator (URL) 521
user auth routes
 auth error, handling for express-jwt 86
 protecting 80, 84
 protecting, with express-jwt 84
 sign in, requisites 85
 signed in users, authorizing 85
user auth
 integrating 80
user CRUD APIs
 adding 72
 user controller 74
 user ID, loading to delete 76
 user ID, loading to read 76
 user ID, loading to update 76
 user routes 73
 user, creating 75
 users, listing 76
User frontend
 completing 121
 DeleteUser component 137, 139
 EditProfile component 135, 136
 Menu component 140, 142, 143
 Profile component 131, 132, 133, 134
 Signin component 129, 130
 Signup component 125, 126, 128, 129
 Users component 122, 123, 125
user ID
 deleting 79
 loading 77
 reading 77, 78
 updating 78, 79
user interface (UI)
 about 645
 designing, with stateful and stateless

functional components 650

user model
 implementing 65
 Mongoose error handling 70, 72
 password, for authentication 67
 user schema definition 66
user schema definition
 about 66
 email field 66
 hashed_password field 67
 name field 66
 salt fields 67
 timestamps, creating 67
 timestamps, updating 67
UserSchema methods
 functionality 69

V
virtual reality (VR) 10, 556
Visual Studio Code
 URL 27
VR game application, development concepts
 equirectangular panoramic images 562
VR game application
 developing, key concepts 561
VR game development, 3D position
 3D coordinate system 562, 563
 3D objects, transforming 563, 564
VR game development, concepts
 3D position 562
 equirectangular panoramic images 561
 React 360 API 568
 React 360, components 565
 React 360, input events 573, 574
VR game development, React 360 API
 assets, loading 572
 AudioModule, in NativeModules 569, 570
 environment 568
 location, using in native modules 570, 571
 native modules 569
 StyleSheet API 571, 572
 VrHeadModel 572
VR game development, React 360 components
 components, for 3D VR experience 566
 core components 565
 core components, text 566

[682]

 core components, view 565
 Entity component, used for 3D objects 566,

567

 VrButton component, used for 3D object 568

W
Web-Based Classroom Application
 about 213, 214
 confirm, to publish 255, 256, 257
 course API, updating 244, 245
 Course component 233, 234, 235, 236
 Course model, defining 219, 220
 course, creating 221
 course, deleting 252
 course, display 231
 course, editing 244
 Courses component 259, 261
 courses, adding 219
 courses, enrolling 261
 courses, listing by educator 227
 courses, publishing 254
 courses, updating with lessons 236
 create API, fetching in view 223
 create course API 221, 222, 223
 create Enrollment API 263, 264, 265
 delete course API 252, 253
 DeleteCourse component 253, 254
 Edit Profile view, updating 216, 217, 218
 EditCourse component 245, 246, 247, 248
 Enroll component 265, 266
 Enrolled Course view 266
 Enrollment component 269, 271, 272, 278,

279

 Enrollment model, defining 261, 262
 enrollment stats 279
 enrollment stats API 279
 enrollment stats, displaying for published

course 280, 282
 enrollments API, list 277
 enrollments, listing for user 277
 lesson API, adding 237, 238
 lesson details, editing 249, 250
 lesson, deleting 251, 252
 lessons completed API 273, 274
 lessons, adding 237

 lessons, completing 273
 lessons, completing from view 274, 275
 lessons, displaying 243
 lessons, moving to rearrange order 250, 251
 lessons, storing 236, 237
 lessons, updating 249
 list API, fetching in view 228, 229
 list course API 227, 228
 MyCourses component 229, 230, 231
 NewCourse component 223, 224, 225, 226,

227

 NewLesson component 239, 240, 241, 242
 option, rendering to teach 218, 219
 progress and enrollment stats, tracking 272
 publish button states 254, 255
 publish option, implementing 254
 published courses API 258
 published courses, listing 257
 read course API 231, 232
 read enrollment API 267, 268
 role, adding to user model 215, 216
 user, updating with educator role 215
Webpack middleware
 loading, for development 98, 99
Webpack
 client-side Webpack configuration, for

development 39
 client-side Webpack configuration, for

production 41
 configuring 37, 98
 reference link 661
 server-side Webpack configuration 40
WebStorm
 URL 27
workspace options
 about 27
 cloud development 27
 local development 27

X
XMLHttpRequest (XHR) 112

Y
Yarn
 about 31

 installation link 31 URL 14

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Getting Started with MERN
	Chapter 1: Unleashing React Applications with MERN
	What is new in the second edition?
	Book structure
	Getting started with MERN
	Building MERN applications from the ground up
	Developing web applications with MERN
	Advancing to complex MERN applications
	Going forward with MERN

	Getting the most out of this book
	The MERN stack
	Node
	Express
	MongoDB
	React

	Relevance of MERN
	Consistency across the technology stack
	Takes less time to learn, develop, deploy, and extend
	Widely adopted in the industry
	Community support and growth

	Range of MERN applications
	MERN applications developed in this book
	Social media platform
	Web-based classroom application
	Online marketplace
	Expense tracking application
	Media streaming application
	VR game for the web

	Summary

	Chapter 2: Preparing the Development Environment
	Selecting development tools
	Workspace options
	Local and cloud development

	IDE or text editors
	Chrome Developer Tools
	Git
	Installation
	Remote Git hosting services

	Setting up MERN stack technologies
	MongoDB
	Installation
	Running the mongo shell

	Node.js
	Installation
	Node version management with nvm

	Yarn package manager
	Modules for MERN
	Key modules
	devDependency modules

	Checking your development setup
	Initializing package.json and installing Node.js modules
	Configuring Babel, Webpack, and Nodemon
	Babel
	Webpack
	Client-side Webpack configuration for development
	Server-side Webpack configuration
	Client-side Webpack configuration for production

	Nodemon

	Frontend views with React
	Server with Express and Node
	Express app
	Bundling React app during development
	Serving static files from the dist folder
	Rendering templates at the root

	Connecting the server to MongoDB
	Run scripts
	Developing and debugging in real time

	Summary

	Section 2: Building MERN from the Ground Up
	Chapter 3: Building a Backend with MongoDB, Express, and Node
	Overview of the skeleton application
	Feature breakdown
	Defining the backend components
	User model
	API endpoints for user CRUD
	Auth with JSON Web Tokens
	How JWT works

	Setting up the skeleton backend
	Folder and file structure
	Initializing the project
	Adding package.json
	Development dependencies
	Babel
	Webpack
	Nodemon

	Config variables
	Running scripts

	Preparing the server
	Configuring Express
	Starting the server
	Setting up Mongoose and connecting to MongoDB
	Serving an HTML template at a root URL

	Implementing the user model
	User schema definition
	Name
	Email
	Created and updated timestamps
	Hashed password and salt

	Password for auth
	Handling the password string as a virtual field
	Encryption and authentication
	Password field validation

	Mongoose error handling

	Adding user CRUD APIs
	User routes
	User controller
	Creating a new user
	Listing all users
	Loading a user by ID to read, update, or delete
	Loading
	Reading
	Updating
	Deleting

	Integrating user auth and protected routes
	Auth routes
	Auth controller
	Sign-in
	Signout
	Protecting routes with express-jwt
	Protecting user routes
	Requiring sign-in
	Authorizing signed in users
	Auth error handling for express-jwt

	Checking the standalone backend
	Creating a new user
	Fetching the user list
	Trying to fetch a single user
	Signing in
	Fetching a single user successfully

	Summary

	Chapter 4: Adding a React Frontend to Complete MERN
	Defining the skeleton application frontend
	Folder and file structure

	Setting up for React development
	Configuring Babel and Webpack
	Babel
	Webpack
	Loading Webpack middleware for development

	Loading bundled frontend code
	Serving static files with Express
	Updating the template to load a bundled script

	Adding React dependencies
	React
	React Router
	Material-UI

	Rendering a home page view
	Entry point at main.js
	Root React component
	Customizing the Material-UI theme
	Wrapping the root component with ThemeProvider and BrowserRouter
	Marking the root component as hot-exported

	Adding a home route to MainRouter
	The Home component
	Imports
	Style declarations
	Component definition

	Bundling image assets
	Running and opening in the browser

	Integrating backend APIs
	Fetch for user CRUD
	Creating a user
	Listing users
	Reading a user profile
	Updating a user's data
	Deleting a user

	Fetch for the auth API
	Sign-in
	Sign-out

	Adding auth in the frontend
	Managing auth state
	Saving credentials
	Retrieving credentials
	Deleting credentials

	The PrivateRoute component

	Completing the User frontend
	The Users component
	The Signup component
	The Signin component
	The Profile component
	The EditProfile component
	The DeleteUser component
	Validating props with PropTypes

	The Menu component

	Implementing basic server-side rendering
	Modules for server-side rendering
	Generating CSS and markup
	Sending a template with markup and CSS
	Updating template.js
	Updating App.js
	Hydrate instead of render

	Summary

	Chapter 5: Growing the Skeleton into a Social Media Application
	Introducing MERN Social
	Updating the user profile
	Adding an about description
	Uploading a profile photo
	Updating the user model to store a photo in MongoDB
	Uploading a photo from the edit form
	File input with Material-UI
	Form submission with the file attached

	Processing a request containing a file upload

	Retrieving a profile photo
	Profile photo URL
	Showing a photo in a view

	Following users in MERN Social
	Following and unfollowing
	Updating the user model
	Updating the userByID controller method
	Adding APIs to follow and unfollow
	Accessing the follow and unfollow APIs in views
	Follow and unfollow buttons
	The FollowProfileButton component
	Updating the Profile component

	Listing followings and followers
	Making a FollowGrid component

	Finding people to follow
	Fetching users not followed
	The FindPeople component

	Posting on MERN Social
	Mongoose schema model for Post
	The Newsfeed component
	Listing posts
	Listing posts in Newsfeed
	Newsfeed API for posts
	Fetching Newsfeed posts in the view

	Listing posts by user in Profile
	API for posts by a user
	Fetching user posts in the view

	Creating a new post
	Creating the post API
	Retrieving a post's photo
	Fetching the create post API in the view
	Making the NewPost component

	The Post component
	Layout
	Header
	Content
	Actions
	Comments

	Deleting a post

	Interacting with Posts
	Likes
	The Like API
	The Unlike API
	Checking if a post has been liked and counting likes
	Handling like clicks

	Comments
	Adding a comment
	The Comment API
	Writing something in the view

	Listing comments
	Deleting a comment
	The Uncomment API
	Removing a comment from the view

	Comment count update

	Summary

	Section 3: Developing Web Applications with MERN
	Chapter 6: Building a Web-Based Classroom Application
	Introducing MERN Classroom
	Updating the user with an educator role
	Adding a role to the user model
	Updating the EditProfile view
	Rendering an option to teach

	Adding courses to the classroom
	Defining a Course model
	Creating a new course
	The create course API
	Fetching the create API in the view
	The NewCourse component

	Listing courses by educator
	The list course API
	Fetching the list API in the view
	The MyCourses component

	Display a course
	A read course API
	The Course component

	Updating courses with lessons
	Storing lessons
	Adding new lessons
	Adding a lesson API
	The NewLesson component
	Displaying lessons

	Editing a course
	Updating the course API
	The EditCourse component
	Updating lessons
	Editing lesson details
	Moving the lessons to rearrange the order
	Deleting a lesson

	Deleting a course
	The delete course API
	The DeleteCourse component

	Publishing courses
	Implementing the publish option
	Publish button states
	Confirm to publish

	Listing published courses
	The published courses API
	The Courses component

	Enrolling on courses
	Defining an Enrollment model
	The create Enrollment API
	The Enroll component
	The Enrolled Course view
	The read enrollment API
	The Enrollment component

	Tracking progress and enrollment stats
	Completing lessons
	Lessons completed API
	Completed lessons from the view

	Listing all enrollments for a user
	The list of enrollments API
	The Enrollments component

	Enrollment stats
	The enrollment stats API
	Displaying enrollment stats for a published course

	Summary

	Chapter 7: Exercising MERN Skills with an Online Marketplace
	Introducing the MERN Marketplace app
	Allowing users to be sellers
	Updating the user model
	Updating the Edit Profile view
	Updating the menu

	Adding shops to the marketplace
	Defining a Shop model
	Creating a new shop
	The create shop API
	Fetching the create API in the view
	The NewShop component

	Listing shops
	Listing all shops
	The shops list API
	Fetch all shops for the view
	The Shops component

	Listing shops by owner
	The shops by owner API
	Fetch all shops owned by a user for the view
	The MyShops component

	Displaying a shop
	The read a shop API
	The Shop component

	Editing a shop
	The edit shop API
	The EditShop component

	Deleting a shop
	The delete shop API
	The DeleteShop component

	Adding products to shops
	Defining a Product model
	Creating a new product
	The create product API
	The NewProduct component

	Listing products
	Listing by shop
	The products by shop API
	Products component for buyers
	MyProducts component for shop owners

	Listing product suggestions
	Latest products
	Related products
	The Suggestions component

	Displaying a product
	Read a product API
	Product component

	Editing and deleting a product
	Edit
	Delete

	Searching for products with name and category
	The categories API
	The search products API
	Fetch search results for the view

	The Search component
	The Categories component

	Summary

	Chapter 8: Extending the Marketplace for Orders and Payments
	Introducing cart, payments, and orders in the MERN Marketplace
	Implementing a shopping cart
	Adding to the cart
	Cart icon in the menu
	The cart view
	The CartItems component
	Retrieving cart details
	Modifying quantity
	Removing items
	Showing the total price
	Option to check out

	Using Stripe for payments
	Stripe-connected account for each seller
	Updating the user model
	Button to connect with Stripe
	The StripeConnect component
	The stripe auth update API

	Stripe Card Elements for checkout
	Stripe Customer for recording card details
	Updating the user model
	Updating the user controller
	Creating a new Stripe Customer
	Updating an existing Stripe Customer

	Creating a charge for each product that's processed

	Integrating the checkout process
	Initializing checkout details
	Customer information
	Delivery address

	Placing an order
	Using Stripe Card Elements
	The CardElement component
	Adding a button to place an order
	Empty cart
	Redirecting to the order view

	Creating a new order
	Defining an Order model
	The Order schema

	The CartItem schema
	Create order API
	Decrease product stock quantity
	Create controller method

	Listing orders by shop
	The list by shop API
	The ShopOrders component
	List orders
	The ProductOrderEdit component
	Handling actions to cancel a product order
	Handling the action to process charge for a product
	Handling the action to update the status of a product

	APIs for products ordered
	Get status values
	Update order status
	Cancel product order
	Process charge for a product

	Viewing single-order details
	Summary

	Chapter 9: Adding Real-Time Bidding Capabilities to the Marketplace
	Introducing real-time bidding in the MERN Marketplace
	Adding auctions to the marketplace
	Defining an Auction model
	Creating a new auction
	The create auction API
	Fetching the create API in the view
	The NewAuction component

	Listing auctions
	The open Auctions API
	The Auctions by bidder API
	The Auctions by seller API
	The Auctions component

	Editing and deleting auctions
	Updating the list view
	Edit and delete auction APIs

	Displaying the auction view
	The read auction API
	The Auction component
	Adding the Timer component

	Implementing real-time bidding with Socket.IO
	Integrating Socket.IO
	Placing bids
	Adding a form to enter a bid
	Receiving a bid on the server

	Displaying the changing bidding history
	Updating the view state with a new bid
	Rendering the bidding history

	Summary

	Section 4: Advancing to Complex MERN Applications
	Chapter 10: Integrating Data Visualization with an Expense Tracking Application
	Introducing MERN Expense Tracker
	Adding expense records
	Defining an Expense model
	Creating a new expense record
	The create expense API
	The NewExpense component

	Listing expenses
	The expenses by user API
	The Expenses component
	Searching by date range
	Rendering expenses

	Modifying an expense record
	Rendering the edit form and delete option
	Editing and deleting an expense in the backend

	Visualizing expense data over time
	Summarizing recent expenses
	Previewing expenses in the current month
	The current month preview API
	Rendering the preview of current expenses

	Tracking current expenses by category
	The current expenses by category API
	Rendering an overview of expenses per category

	Displaying expense data charts
	A month's expenses in a scatter plot
	The scatter plot data API
	The MonthlyScatter component

	Total expenses per month in a year
	The yearly expenses API
	The YearlyBar component

	Average expenses per category in a pie chart
	The average expenses by category API
	The CategoryPie component

	Summary

	Chapter 11: Building a Media Streaming Application
	Introducing MERN Mediastream
	Uploading and storing media
	Defining a Media model
	Using MongoDB GridFS to store large files
	Creating a new media post
	The create media API
	The NewMedia component

	Retrieving and streaming media
	The video API
	Using a React media player to render the video

	Listing media
	The MediaList component
	Listing popular media
	Listing media by users

	Displaying, updating, and deleting media
	Displaying media
	The read media API
	The Media component

	Updating media details
	The media update API
	The media edit form

	Deleting media
	The delete media API
	The DeleteMedia component

	Summary

	Chapter 12: Customizing the Media Player and Improving SEO
	Adding a custom media player to MERN Mediastream
	The play media page
	The component structure

	Listing related media
	The related media list API
	The RelatedMedia component

	The PlayMedia component
	Customizing the media player
	Updating the Media component
	Initializing the media player
	Custom media controls
	Play, pause, and replay
	Play next
	Loop when a video ends
	Volume control
	Progress control
	Fullscreen
	Played duration

	Autoplaying related media
	Toggling autoplay
	Handling autoplay across components
	Updating the state when a video ends in MediaPlayer

	Server-side rendering with data
	Adding a route configuration file
	Updating SSR code for the Express server
	Using route configuration to load data
	Isomorphic-fetch
	Absolute URLs

	Injecting data into the React app

	Applying server-injected data to client code
	Passing data props to PlayMedia from MainRouter
	Rendering received data in PlayMedia

	Checking the implementation of SSR with data
	Testing in Chrome
	Loading a page with JavaScript enabled
	Disabling JavaScript from settings
	PlayMedia view with JavaScript blocked

	Summary

	Chapter 13: Developing a Web-Based VR Game
	Introducing the MERN VR Game
	Game features

	Getting started with React 360
	Setting up a React 360 project

	Key concepts for developing the VR game
	Equirectangular panoramic images
	3D position – coordinates and transforms
	3D coordinate system
	Transforming 3D objects

	React 360 components
	Core components
	View
	Text

	Components for the 3D VR experience
	Entity
	VrButton

	The React 360 API
	Environment
	Native modules
	AudioModule
	Location

	StyleSheet
	VrHeadModel
	Loading assets

	React 360 input events

	Defining game details
	Game data structure
	Details of VR objects

	Static data versus dynamic data

	Building the game view in React 360
	Updating client.js and mounting to Location
	Defining styles with StyleSheet
	World background
	Adding 3D VR objects
	Interacting with VR objects
	Rotating a VR object
	Animation with requestAnimationFrame

	Clicking on the 3D objects
	Collecting the correct object on click

	Game completed state

	Bundling for production and integration with MERN
	Bundling React 360 files
	Integrating with a MERN application
	Adding the React 360 production files
	Updating references in index.html
	Trying out the integration

	Summary

	Chapter 14: Making the VR Game Dynamic using MERN
	Introducing the dynamic MERN VR Game application
	Defining a Game model
	Exploring the game schema
	Specifying the VR object schema
	Validating array length in the game schema

	Implementing game CRUD APIs
	Creating a new game
	Listing all games
	Listing games by the maker
	Loading a game
	Editing a game
	Deleting a game

	Adding a form for creating and editing games
	Making a new game
	Updating the menu
	The NewGame component

	Editing the game
	The EditGame component

	Implementing the GameForm component
	Inputting simple game details
	Modifying arrays of VR objects
	Iterating and rendering the object details form
	Adding a new object to the array
	Removing an object from the array
	Handling the object detail change

	The VRObjectForm component

	Adding the game list views
	Rendering lists of games
	The GameDetail component

	Playing the VR game
	Implementing the API to render the VR game view

	Updating the game code in React 360
	Getting the game ID from a link
	Fetching the game data with the load game API
	Bundling and integrating the updated code

	Summary

	Section 15: Going Forward with MERN
	Chapter 15: Following Best Practices and Developing MERN Further
	Separation of concerns with modularity
	Revisiting the application folder structure
	Server-side code
	Client-side code

	Adding CSS styles
	External style sheets
	Inline styles
	JavaScript Style Sheets (JSS)

	Selective server-side rendering with data
	When is server-side rendering with data relevant?

	Using stateful versus pure functional components
	Stateful React components with ES6 classes or Hooks
	Stateless React components as pure functions
	Designing the UI with stateful components and stateless functional components

	Using Redux or Flux
	Enhancing security
	JSON web tokens – client-side or server-side storage
	Securing password storage

	Writing test code
	Testing tools for full-stack JavaScript projects
	Static analysis with ESLint
	End-to-end testing with Cypress
	Comprehensive testing with Jest

	Adding a test to the MERN Social application
	Installing the packages
	Defining the script to run tests
	Adding a tests folder
	Adding the test
	Generating a snapshot of the correct Post view
	Running and checking the test

	Optimizing the bundle size
	Code splitting
	Dynamic import()

	Extending the applications
	Extending the server code
	Adding a model
	Implementing the APIs
	Adding controllers
	Adding routes

	Extending the client code
	Adding the API fetch methods
	Adding components
	Loading new components

	Summary

	Other Books You May Enjoy
	Index

