

Hands-On Full Stack
Development with Spring
Boot 2 and React
Second Edition

Build modern and scalable full stack applications using
Spring Framework 5 and React with Hooks

Juha Hinkula

BIRMINGHAM - MUMBAI

Hands-On Full Stack Development with
Spring Boot 2 and React
Second Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Shriram Shekhar
Content Development Editor: Divya Vijayan
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Jisha Chirayil
Production Coordinator: Aparna Bhagat

First published: June 2018
Second edition: May 2019

Production reference: 1200519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83882-236-1

www.packtpub.com

http://www.packtpub.com

To my wife, Pirre, and daughter, Anni, for their support and the time that I was able
to spend with this project. To Ms. Riitta Blomster, for proofreading some difficult parts

during the project. To all my motivated students, for inspiring me to continue
the lifelong journey of learning.

- Juha Hinkula

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Juha Hinkula is a software development lecturer at Haaga-Helia University of Applied
Sciences in Finland. He received an MSc degree in computer science from the University of
Helsinki. He has over 15 years of industry experience in software development. Over the
past few years, he has focused on modern full stack development. He is also a passionate
mobile developer with Android-native technology, and nowadays also uses React Native.

About the reviewer
Krunal Patel has over 10 years of experience in enterprise application development using
Java, Spring, Hibernate, and Liferay Portal. He has expertise in domains such as healthcare,
insurance, and hospitality. He has executed many enterprise projects based on Liferay
Portal that use Elasticsearch and LDAP integration. He was a co-author of Java 9 Dependency
Injection, published by Packt Publishing, and also was a technical reviewer for books such
as Mastering Apache Solr 7.x and Spring 5.0 Blueprints.
He received an ITIL® Foundation Certificate in IT Service Management in 2015, a Liferay
6.1 Developer Certification in 2013, was Brainbench Java 6 certified in 2013, and received a
MongoDB for Java Developers certification in 2013.

I would like to thank my loving wife, Jigna, my son, Dirgh, and my friends. Thanks to the Packt
team, especially Heta and Prajakta, for giving me this opportunity.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Backend Programming with Spring Boot
Chapter 1: Setting Up the Environment and Tools - Backend 7

Technical requirements 7
Setting up the environment and tools 8

Installing Eclipse 8
The basics of Eclipse and Maven 8
Creating a project with Spring Initializr 11
How to run the project 13
Spring Boot development tools 19
Logs and problem solving 19
Installing MariaDB 22

Summary 25
Questions 26
Further reading 26

Chapter 2: Dependency Injection 27
Technical requirements 27
Introducing DI 27

DI in Spring Boot 29
Summary 30
Questions 31
Further reading 31

Chapter 3: Using JPA to Create and Access a Database 32
Technical requirements 32
Basics of ORM, JPA, and Hibernate 33

Creating the entity classes 33
Creating CRUD repositories 41
Relationships between tables 47
Setting up the MariaDB database 55

Summary 57
Questions 58
Further reading 58

Chapter 4: Creating a RESTful Web Service with Spring Boot 59
Technical requirements 59
Basics of REST 59

Table of Contents

[ii]

Creating a RESTful web service 61
Using Spring Data REST 67

Summary 75
Questions 75
Further reading 75

Chapter 5: Securing and Testing Your Backend 76
Technical requirements 76
Spring Security 77
Securing your backend using JWT 87
Testing in Spring Boot 96
Creating unit tests 97
Summary 101
Questions 102
Further reading 102

Section 2: Frontend Programming with React
Chapter 6: Setting Up the Environment and Tools - Frontend 104

Technical requirements 104
Installing Node.js 105
Installing VS Code 106

VS Code extension 108
Creating and running a React app 110

Modifying a React app 111
Summary 114
Questions 114
Further reading 114

Chapter 7: Getting Started with React 115
Technical requirements 115
Basic React components 116
Basics of ES6 121

Understanding constants 121
Arrow functions 122
Template literals 123
Classes and inheritance 123

JSX and styling 124
Props and the state 125
Component life cycle methods 128
Stateless components 129
React hooks 130
Handling lists with React 134
Handling events with React 135
Handling forms with React 136

Table of Contents

[iii]

Summary 140
Questions 141
Further reading 141

Chapter 8: Consuming the REST API with React 142
Technical requirements 142
Using promises 143
Using the fetch API 145
Using the axios library 146
Practical examples 147
Summary 157
Questions 158
Further reading 158

Chapter 9: Useful Third-Party Components for React 159
Technical requirements 159
Using third-party React components 160
React Table 165
Material-UI component library 170
Routing 177
Summary 180
Questions 180
Further reading 180

Section 3: Full Stack Development
Chapter 10: Setting Up the Frontend for Our Spring Boot RESTful Web
Service 182

Technical requirements 182
Mocking up the UI 183
Preparing the Spring Boot backend 184
Creating the React project for the frontend 186
Summary 187
Questions 188
Further reading 188

Chapter 11: Adding CRUD Functionalities 189
Technical requirements 189
Creating the list page 190
The delete functionality 198
The add functionality 203
The edit functionality 209
Other functionalities 213
Summary 215

Table of Contents

[iv]

Questions 215
Further reading 215

Chapter 12: Styling the Frontend with React Material-UI 216
Technical requirements 216
Using the Button component 217
Using the Grid component 220
Using the TextField components 221
Summary 223
Questions 223
Further reading 223

Chapter 13: Testing Your Frontend 224
Technical requirements 224
Using Jest 225
Snapshot testing 227
Using Enzyme 230
Summary 232
Questions 232
Further reading 232

Chapter 14: Securing Your Application 233
Technical requirements 233
Securing the backend 234
Securing the frontend 235
Summary 246
Questions 246
Further reading 246

Chapter 15: Deploying Your Application 247
Technical requirements 247
Deploying the backend 248
Deploying the frontend 257
Using Docker containers 259
Summary 264
Questions 265
Further reading 265

Chapter 16: Best Practices 266
What to learn next 266

HTML 267
CSS 267
HTTP 267
JavaScript 267
A backend programming language 267

Table of Contents

[v]

Some frontend libraries and frameworks 268
Databases 268
Version control 268
Useful tools 268
Security 268

Best practices 269
Coding conventions 269
Choosing the proper tools 269
Choosing the proper technologies 270
Minimizing the amount of coding 270

Summary 270
Questions 271
Further reading 271

Assessments 272

Other Books You May Enjoy 280

Index 283

Preface
In this book, we will create a modern web application using Spring Boot 2.0 and React. We
will start from the backend and develop a RESTful web service using Spring Boot and
MariaDB. We will also secure the backend and create unit tests for it. The frontend will be
developed using the React JavaScript library. Different third-party React components will
be used to make the frontend more user friendly. Finally, the application will be deployed
to Heroku. The book also demonstrates how to Dockerize our backend.

Who this book is for
This book is written for the following audiences:

Frontend developers who want to learn full stack development
Backend developers who want to learn full stack development
Full stack developers who have used some other technologies
Java developers who are familiar with Spring, but haven't ever built a full-stack
application

What this book covers
Chapter 1, Setting Up the Environment and Tools – Backend, explains how to install the
software needed for backend development and how to create your first Spring Boot
application.

Chapter 2, Dependency Injection, introduces dependency injection and explains how to use
it with Spring Boot.

Chapter 3, Using JPA to Create and Access a Database, introduces Java Persistence API
(JPA)and explains how to create and access databases with Spring Boot.

Chapter 4, Creating a RESTful Web Service with Spring Boot, shows how to create RESTful
web services using Spring Data REST.

Preface

[2]

Chapter 5, Securing and Testing Your Backend, explains how to secure your backend using
Spring Security and JSON Web Token (JWT).

Chapter 6, Setting Up the Environment and Tools – Frontend, explains how to install the
software needed for frontend development.

Chapter 7, Getting Started with React, introduces the basics of the React library.

Chapter 8, Consuming the REST API with React, shows how to use REST APIs with React
using the fetch API.

Chapter 9, Useful Third-Party Components for React, demonstrates some handy components
that we'll use in our frontend development.

Chapter 10, Setting Up the Frontend for Our Spring Boot RESTful Web Service, explains how to
set up the React app and Spring Boot backend for frontend development.

Chapter 11, Adding CRUD Functionalities, shows how to implement CRUD functionalities
with the React frontend.

Chapter 12, Styling the Frontend with React Material-UI, shows how to polish the user
interface using the React Material-UI component library.

Chapter 13, Testing Your Frontend, explains the basics of React frontend testing.

Chapter 14, Securing Your Application, explains how to secure the frontend using JWT.

Chapter 15, Deploying Your Application, demonstrates how to deploy an application to
Heroku and how to use Docker containers.

Chapter 16, Best Practices, explains the basic technologies that are needed to become a full
stack developer, and covers some basic best practices for software development.

To get the most out of this book
The reader should possess the following:

Basic knowledge of using a terminal, such as PowerShell
Basic knowledge of Java and JavaScript programming
Basic knowledge of SQL databases
Basic knowledge of HTML and CSS

Preface

[3]

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Hands- ​On- ​Full- ​Stack- ​Development- ​with- ​Spring- ​Boot- ​2- ​and-​React-
Second-​Edition. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​9781838822361_ ​ColorImages. ​pdf.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838822361_ColorImages.pdf

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "You can change the port in the application.properties file."

A block of code is set as follows:

@SpringBootApplication
public class CardatabaseApplication {
 private static final Logger logger =
LoggerFactory.getLogger(CardatabaseApplication.class);
 public static void main(String[] args) {
 SpringApplication.run(CardatabaseApplication.class, args);
 logger.info("Hello Spring Boot");
 }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import React from 'react';

const MyComponent = () => {
 // This is called when the button is pressed
 const buttonPressed = () => {
 alert('Button pressed');
 }

Any command-line input or output is written as follows:

npx create-react-app myapp

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Download the latest Long-Term Support (LTS) version for your operating system."

Preface

[5]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Backend

Programming with Spring Boot
The reader will be familiar with the basics of Spring Boot. This section focuses on the
knowledge and skills required to use databases and create RESTful web services.

This section covers the following chapters:

Chapter 1, Setting Up the Environment and Tools – Backend
Chapter 2, Dependency Injection
Chapter 3, Using JPA to Create and Access a Database
Chapter 4, Creating a RESTful Web Service with Spring Boot
Chapter 5, Securing and Testing Your Backend

1
Setting Up the Environment and

Tools - Backend
In this chapter, we will set up the environment and tools needed for backend programming
with Spring Boot. Spring Boot is a modern Java-based backend framework that makes
development faster than traditional Java-based frameworks. With Spring Boot, you can
make a standalone web application that has an embedded application server.

In this chapter, we will look into the following topics:

Building an environment for Spring Boot development
The basics of the Eclipse IDE and Maven
Creating and running Spring Boot projects
Problem solving when running Spring Boot applications

Technical requirements
The Java SDK, version 8 or higher, is necessary to use the Eclipse IDE. In this book, we are
using the Windows operating system, but all tools are available for Linux and macOS as
well.

Download the code for this chapter from GitHub: https:/ ​/​github. ​com/ ​PacktPublishing/
Hands-​On-​Full-​Stack- ​Development- ​with- ​Spring- ​Boot- ​2-​and- ​React- ​Second- ​Edition/
tree/​master/​Chapter01.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter01

Setting Up the Environment and Tools - Backend Chapter 1

[8]

Setting up the environment and tools
There are a lot of different integrated development environment (IDE) tools that you can
use to develop Spring Boot applications. In this book, we are using Eclipse, which is an
open source IDE for multiple programming languages. We will create our first Spring Boot
project by using the Spring Initializr project starter page. The project is then imported into
Eclipse and executed. Reading the console log is a crucial skill when developing Spring
Boot applications.

Installing Eclipse
Eclipse is an open source programming IDE developed by the Eclipse Foundation. An
installation package can be downloaded from https:/ ​/​www. ​eclipse. ​org/​downloads.
Eclipse is available for Windows, Linux, and macOS. You should download the latest
version of the Eclipse IDE for Java EE developers.

You can either download a ZIP package of Eclipse or an installer package that executes the
installation wizard. If using the ZIP package, you just have to extract the package to your
local disk and it will contain an executable Eclipse.exe file that you can run by double-
clicking on the file.

The basics of Eclipse and Maven
Eclipse is an IDE for multiple programming languages, such as Java, C++, and Python.
Eclipse contains different perspectives for your needs. A perspective is a set of views and
editors in the Eclipse workbench. The following screenshot shows common perspectives for
Java development:

https://www.eclipse.org/downloads
https://www.eclipse.org/downloads
https://www.eclipse.org/downloads
https://www.eclipse.org/downloads
https://www.eclipse.org/downloads
https://www.eclipse.org/downloads
https://www.eclipse.org/downloads
https://www.eclipse.org/downloads
https://www.eclipse.org/downloads
https://www.eclipse.org/downloads
https://www.eclipse.org/downloads

Setting Up the Environment and Tools - Backend Chapter 1

[9]

On the left-hand side, we have Project Explorer, where we can see our project structure and
resources. Project Explorer is also used to open files by double-clicking on them. The files
will be opened in the editor, which is located in the middle of the workbench. The Console
view can be found in the lower section of the workbench. The Console view is really
important because it shows application logging messages.

You can get Spring Tool Suite (STS) for Eclipse if you want, but we are not going to use it
in this book, because the plain Eclipse installation is enough for our purposes. STS is a set of
plugins that makes Spring application development simpler (https:/ ​/ ​spring. ​io/ ​tools).

Apache Maven is a software project management tool. The basis of Maven is the Project
Object Model (POM). Maven makes the software development process simpler and it also
unifies the development process. You can also use another project management tool, called
Gradle, with Spring Boot, but in this book, we will focus on using Maven.

The POM is a pom.xml file that contains basic information about the project. There are also
all the dependencies that Maven should download to be able to build the project.

Basic information about the project can be found at the beginning of the pom.xml file,
which defines, for example, the version of the application, packaging format, and so on.

https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools

Setting Up the Environment and Tools - Backend Chapter 1

[10]

The minimum version of the pom.xml file should contain the project root, modelVersion,
groupId, artifactId, and version.

Dependencies are defined in the dependencies section, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.packt</groupId>
 <artifactId>cardatabase</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>cardatabase</name>
 <description>Demo project for Spring Boot</description>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.1.3.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Maven is normally used from the command line. Eclipse contains embedded Maven, and
that handles all the Maven operations we need. Therefore, we are not focusing on Maven
command-line usage here. The most important thing is to understand the structure of
the pom.xml file and how to add new dependencies to it.

Setting Up the Environment and Tools - Backend Chapter 1

[11]

Creating a project with Spring Initializr
We will create our backend project with Spring Initializr, which is a web-based tool that's
used to create Spring Boot projects. Spring Initializr can be found at https:/ ​/​start.
spring.​io:

We will generate a Maven Project with Java and the latest Spring Boot version. In
the Group field, we will define our group ID, which will also become a base package in our
Java project. In the Artifact field, we will define the artifact ID, which will also be the name
of our project in Eclipse.

https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io

Setting Up the Environment and Tools - Backend Chapter 1

[12]

In the Dependencies section, we will select the starters and dependencies that are needed
in our project. Spring Boot provides starter packages that simplify your Maven
configuration. Spring Boot starters are actually a set of dependencies that you can include
in your project. You can either type the keyword of the dependency into the search field, or
you can see all the available dependencies by clicking on the See all link. We will start our
project by selecting two dependencies – Web and DevTools. You can type the
dependencies into the search field or switch to the full version and see all the starter
packages and dependencies available:

Setting Up the Environment and Tools - Backend Chapter 1

[13]

The DevTools dependency provides us with the Spring Boot development tools, which
provide automatic restart functionality. It makes development much faster, because the
application is automatically restarted when changes have been saved. The web starter pack
is a base for full-stack development and provides embedded Tomcat.

Finally, you have to click on the Generate Project button, which generates the project
starter ZIP package for us.

How to run the project
Perform the following steps to run a Maven project in the Eclipse IDE:

Extract the project ZIP package that we created in the previous topic and open1.
Eclipse.
We are going to import our project into the Eclipse IDE. To start the import2.
process, select the File | Import menu and the import wizard will be opened. The
following screenshot shows the first page of the wizard:

Setting Up the Environment and Tools - Backend Chapter 1

[14]

In the first phase, you should select Existing Maven Projects from the list under3.
the Maven folder, and then go to the next phase by pressing the Next button. The
following screenshot shows the second step of the import wizard:

In this phase, select the extracted project folder by pressing the Browse... button.4.
Then, Eclipse finds the pom.xml file from the root of your project folder and
shows it inside the Projects section of the window.

Setting Up the Environment and Tools - Backend Chapter 1

[15]

Press the Finish button to finalize the import. If everything went correctly, you5.
should see the cardatabase project in the Eclipse Project Explorer. It takes a
while before the project is ready because all the dependencies will be loaded by
Maven after importing. You can see the progress of the dependency download at
the bottom-right corner of Eclipse. The following screenshot shows the Eclipse
Project Explorer after a successful import:

The Project Explorer also shows the package structure of our project, and now, at
the beginning, there is only one package called com.packt.cardatabase. Under
that package, is our main application class, called
CardatabaseApplication.java.

Setting Up the Environment and Tools - Backend Chapter 1

[16]

Now, we don't have any functionality in our application, but we can run it and6.
see whether everything has started successfully. To run the project, open the
main class by double-clicking on it and then pressing the Run button in the
Eclipse toolbar, or select the Run menu and press Run as | Java Application:

You can see the Console view open in Eclipse, and that contains important information
about the execution of the project. This is the view where all log texts and error messages
appear, so it is really important to check the content of the view when something goes
wrong.

Now, if the project was executed correctly, you should see the Started
CardatabaseApplication in... text at the end of the console. The following screenshot
shows the content of the Eclipse console after our Spring Boot project has been started:

Setting Up the Environment and Tools - Backend Chapter 1

[17]

In the root of our project, there is the pom.xml file, which is the Maven configuration file
for our project. If you look at the dependencies inside the file, you can see that there are
now dependencies that we selected on the Spring Initializr page. There is also a test
dependency included automatically without any selection. In the following chapters, we
are going to add more functionality to our application, and then we will add more
dependencies manually to the pom.xml file:

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

Setting Up the Environment and Tools - Backend Chapter 1

[18]

Let's look at the Spring Boot main class more carefully. At the beginning of the class, there
is the @SpringBootApplication annotation. It is actually a combination of multiple
annotations, such as the following:

Annotation Description

@EnableAutoConfiguration

This enables Spring Boot automatic configuration. Spring Boot will
automatically configure your project based on dependencies. For
example, if you have the spring-boot-starter-web
dependency, Spring Boot assumes that you are developing a web
application and configures your application accordingly.

@ComponentScan This enables the Spring Boot component scan to find all the
components of your application.

@Configure This defines the class that can be used as a source of bean definitions.

The following code shows the Spring Boot application's main class:

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class CardatabaseApplication {

 public static void main(String[] args) {
 SpringApplication.run(CardatabaseApplication.class, args);
 }
}

The execution of the application starts from the main method, as in standard Java
applications.

It is recommended that you locate the main application class in the root
package above other classes. A common reason for an application to not
work correctly is due to Spring Boot being unable to find some critical
classes.

Setting Up the Environment and Tools - Backend Chapter 1

[19]

Spring Boot development tools
Spring Boot development tools make the application development process simpler. Projects
will include the developer tools if the following dependency is added to the Maven
pom.xml file:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
<scope>runtime</scope>
</dependency>

Development tools are disabled when you create a fully-packed production version of your
application.

The application is automatically restarted when you make changes to your project's
classpath files. You can test that by adding one comment line to your main class:

package com.packt.cardatabase;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class CardatabaseApplication {

 public static void main(String[] args) {
 // After adding this comment the application is restarted
 SpringApplication.run(CardatabaseApplication.class, args);
 }
}

After saving the file, you can see in the console that the application has restarted.

Logs and problem solving
Spring Boot starter packages provide a logback that we can use for logging without any
configuration. The following sample code shows how you can use logging:

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

Setting Up the Environment and Tools - Backend Chapter 1

[20]

public class CardatabaseApplication {
 private static final Logger logger =
LoggerFactory.getLogger(CardatabaseApplication.class);
 public static void main(String[] args) {
 SpringApplication.run(CardatabaseApplication.class, args);
 logger.info("Hello Spring Boot");
 }
}

Logging messages can be seen in the console after you run the project:

There are seven different levels of logging—TRACE, DEBUG, INFO, WARN, ERROR, FATAL, and
OFF. You can configure the level of logging in your Spring Boot
application.properties file. The file can be found in the resources folder inside your
project:

Setting Up the Environment and Tools - Backend Chapter 1

[21]

If we set the logging level to INFO, we can see log messages from levels that are under INFO
(INFO, WARN, ERROR, and FATAL). In the following example, we set the log level for the root,
but you can also set it at the package level:

logging.level.root=INFO

Now, when you run the project, you can't see the TRACE and DEBUG messages anymore.
That might be a good setting for a production version of your application:

Spring Boot uses Apache Tomcat (http:/ ​/​tomcat. ​apache. ​org/ ​) as an application server by
default. As a default, Tomcat is running on port 8080. You can change the port in
the application.properties file. The following setting will start Tomcat on port 8081:

server.port=8081

If the port is occupied, the application won't start, and you will see the following message
in the console:

If this happens, you will have to stop the process that is listening on port 8080 or use
another port in your Spring Boot application.

http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/

Setting Up the Environment and Tools - Backend Chapter 1

[22]

Installing MariaDB
In Chapter 3, Using JPA to Create and Access a Database, we are going to use MariaDB, so
you will need to install it locally on your computer. MariaDB is a widely used open source
relational database. MariaDB is available for Windows and Linux, and you can download
the latest stable version from https:/ ​/​downloads. ​mariadb. ​org/ ​. MariaDB is developed
under a GNU GPLv2 license.

For Windows, there is the MSI installer, which we will use here. Download the installer and
execute it. Install all features from the installation wizard:

https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/

Setting Up the Environment and Tools - Backend Chapter 1

[23]

In the next step, you should give the password for the root user. This password is needed
in the next chapter, when we'll connect our application to the database:

Setting Up the Environment and Tools - Backend Chapter 1

[24]

In the next phase, we can use the default settings:

Now the installation will start, and MariaDB will be installed on your local computer. The
installation wizard will install HeidiSQL for us. This is a graphically easy-to-use database
client. We will use this to add a new database and make queries to our database. You can
also use the Command Prompt included in the installation package:

Setting Up the Environment and Tools - Backend Chapter 1

[25]

Now, we have everything that is needed to start the implementation of the backend.

Summary
In this chapter, we installed the tools that are needed for backend development with Spring
Boot. For Java development, we used the Eclipse IDE, which is a widely used programming
IDE. We created a new Spring Boot project by using the Spring Initializr page. After
creating the project, it was imported to Eclipse and, finally, executed. We also covered how
to solve common problems with Spring Boot and how to find important error and log
messages. Finally, we installed a MariaDB database, which we are going to use in the
following chapters.

In the next chapter, we will understand what dependency injection is and how it can be
used with the Spring Boot framework.

Setting Up the Environment and Tools - Backend Chapter 1

[26]

Questions
What is Spring Boot?1.
What is the Eclipse IDE?2.
What is Maven?3.
How do we create a Spring Boot project?4.
How do we run a Spring Boot project?5.
How do we use logging with Spring Boot?6.
How do we find error and log messages in Eclipse?7.

Further reading
Packt has other great resources for learning about Spring Boot:

Learning Spring Boot 2.0 – Second Edition by Greg L. Turnquist (https:/ ​/​www.
packtpub. ​com/ ​application- ​development/ ​learning- ​spring- ​boot- ​20-​second-
edition)
Spring Boot – Getting Started [Integrated Course] by Patrick Cornelissen (https:/ ​/
www.​packtpub. ​com/ ​web- ​development/ ​spring- ​boot- ​getting- ​started-
integrated- ​course)

https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course

2
Dependency Injection

In this chapter, we will learn what Dependency Injection (DI) means and how we can use
it with the Spring Boot framework. The Spring Boot framework provides DI; therefore it is
good to understand the basics of DI. DI reduces component dependencies and makes your
code easier to test and maintain.

In this chapter, we will look into the following:

The basics of DI
How to use DI with Spring Boot

Technical requirements
Java SDK version 8 or higher is necessary to use Eclipse IDE. In this book, we are using the
Windows operating system, but all the tools are available for Linux and macOS as well.

All of the code for this chapter can be found at the following GitHub link: https:/ ​/​github.
com/​PacktPublishing/ ​Hands- ​On- ​Full- ​Stack- ​Development- ​with- ​Spring- ​Boot- ​2-​and-
React-​Second-​Edition/ ​tree/ ​master/ ​Chapter02.

Introducing DI
DI is a software development technique where we can create objects that depend on other
objects. DI helps the interaction between classes, but at the same time keeps the classes
independent.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter02

Dependency Injection Chapter 2

[28]

There are three types of classes in DI:

A Service is a class that can be used (dependency).
The Client is a class that uses dependency.
The Injector passes the dependency (Service) to the dependent class (Client).

The three types of classes in DI are shown in the following diagram:

DI makes classes loosely coupled. This means that the creation of client dependencies is
separated from the client's behavior, which makes unit testing easier.

Let's take a look at a simplified example of DI using Java code. In the following code, we
don't have DI, because the client Car class is creating an object of the service class:

public class Car {
 private Owner owner;
 public Car() {
 owner = new Owner();
 }
}

In the following code, the service object is not directly created in the client class. It is passed
as a parameter in the class constructor:

public class Car {
 private Owner owner;
 public Car(Owner owner) {
 this.owner = owner;
 }
}

The service class can also be some abstract class, then we can use any implementation of
that in our client class and use mocks when testing.

Dependency Injection Chapter 2

[29]

There are different types of DI, for example, the following two types:

Constructor injection: Dependencies are passed to a client class constructor. An
example of the constructor injection was already shown in the preceding Car
example code.
Setter injection: Dependencies are provided through setters. The following
example code shows an example of the setter injection:

public class Car {
 private Owner owner;
 public void setOwner(Owner owner) {
 this.owner = owner;
 }
}

DI in Spring Boot
Spring Boot scans your application classes and register classes with certain annotations
(@Service, @Repository, @Controller) as Spring Beans. These beans can then be
injected using an @Autowired annotation:

public class Car {
 @Autowired
 private Owner owner;
 ...
}

A fairly common situation is where we need database access for some operations, and, in
Spring Boot, we are using repository classes for that. In this situation, we can inject
repository class and start to use its methods:

public class Car {
 @Autowired
 private CarRepository carRepository;
 // Fetch all cars from db
 carRepositoty.findAll();
 ...
}

Dependency Injection Chapter 2

[30]

Java (javax.annotation) also provides a @Resource annotation that can be used to inject
resources. You can define the name or type of the injected bean when using resource
annotation. For example, the following code shows some use cases. Imagine that we have a
resource that is defined as this code:

@Configuration
public class ConfigFileResource {

 @Bean(name="configFile")
 public File configFile() {
 File configFile = new File("configFile.xml");
 return configFile;
 }
}

We can then inject the bean by using a @Resource annotation:

// By bean name
@Resource(name="configFile")
private ConfigFile cFile

OR

// Without name
@Resource
private ConfigFile cFile

We have now gone through the basics of DI. We will put this into practice in the following
chapters.

Summary
In this chapter, we learned what DI means. We also learned how to use DI in the Spring
Boot framework that we are using in our backend.

In the next chapter, we will look at how we can use Java Persistent API (JPA) with Spring
Boot and how to set up the MariaDB database. We will also learn about the creation of
CRUD repositories and the one-to-many connection between database tables.

Dependency Injection Chapter 2

[31]

Questions
What is DI?1.
How do you use DI in Spring Boot?2.

Further reading
Packt has other great resources for learning about Spring Boot:

Learning Spring Boot 2.0 – Second Edition by Greg L. Turnquist (https:/ ​/​www.
packtpub. ​com/ ​application- ​development/ ​learning- ​spring- ​boot- ​20-​second-
edition)
Spring Boot – Getting Started by Patrick Cornelissen (https:/ ​/​www. ​packtpub. ​com/
web-​development/ ​spring- ​boot- ​getting- ​started- ​integrated- ​course)

https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course

3
Using JPA to Create and

Access a Database
This chapter covers how to use Java Persistent API (JPA) with Spring Boot and how
to define a database by using entity classes. In the first phase, we will be using the H2 in-
memory database for development and demonstration purposes. H2 is an in-memory SQL
database that is really good for fast development or demonstration purposes. In the second
phase, we will move from H2 to use MariaDB. This chapter also describes the creation of
CRUD repositories and a one-to-many connection between database tables.

In this chapter, we will cover the following topics:

Basics of Object-Relational Mapping (ORM), JPA, and Hibernate
Creating the entity classes
Creating CRUD repositories
Relationships between tables
Setting up the MariaDB database

Technical requirements
Java SDK version 8 or higher is necessary to use Spring Boot (http:/ ​/​www. ​oracle. ​com/
technetwork/​java/ ​javase/ ​downloads/ ​index. ​html). A MariaDB installation
is necessary for the creation of the database application which can be downloaded
from: https:/​/​downloads. ​mariadb. ​org/ ​.

The code for this chapter can be found at the following GitHub link: https:/ ​/​github. ​com/
PacktPublishing/​Hands- ​On- ​Full- ​Stack- ​Development- ​with- ​Spring- ​Boot- ​2. ​0-​and- ​React-
Second-​Edition/​tree/ ​master/ ​Chapter03

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter03

Using JPA to Create and Access a Database Chapter 3

[33]

Basics of ORM, JPA, and Hibernate
ORM is a technique that allows you to fetch from and manipulate a database by using an
object-oriented programming paradigm. ORM is really good for programmers, because it
relies on object-oriented concepts rather than database structure. It also makes development
much faster and reduces the amount of source code. ORM is mostly independent of
databases, and developers don't have to worry about vendor-specific SQL statements.

JPA provides object-relational mapping for Java developers. The JPA entity is a Java class
that presents the structure of a database table. The fields of an entity class present the
columns of the database tables.

Hibernate is the most popular Java-based JPA implementation, and is used in Spring Boot
as a default. Hibernate is a mature product, and is widely used in large-scale applications.

Creating the entity classes
An entity class is a simple Java class that is annotated with JPA's @Entity annotation.
Entity classes use the standard JavaBean naming convention and have proper getter and
setter methods. The class fields have private visibility.

JPA creates a database table called by the name of the class when the application is
initialized. If you want to use some other name for the database table, you can use
the @Table annotation.

To be able to use JPA and the H2 database, we have to add the following dependencies to
the pom.xml file:

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
 </dependency>

Using JPA to Create and Access a Database Chapter 3

[34]

Let's look at the following steps to create entity classes:

To create an entity class in Spring Boot, we will first create our own package for1.
entities. The package should be created under the root package.
Activate the root package in Eclipse Project Explorer and right-click to show a2.
menu.
From the menu, select New | Package. The following screenshot shows the3.
creation of a package for entity classes:

Using JPA to Create and Access a Database Chapter 3

[35]

We will name our package com.packt.cardatabase.domain:4.

Next, we create our entity class. Activate a new entity package, right-click, and5.
select New | Class from the menu. Because we are going to create a car database,
the name of the entity class is Car. Type Car in the Name field and then press
the Finish button, as shown in the following screenshot:

Using JPA to Create and Access a Database Chapter 3

[36]

Open the Car class file in the editor by double-clicking it in the project explorer.6.
First, we have to annotate the class with the @Entity annotation. The Entity
annotation is imported from the javax.persistence package:

 package com.packt.cardatabase.domain;

 import javax.persistence.Entity;

 @Entity
 public class Car {

 }

Using JPA to Create and Access a Database Chapter 3

[37]

You can use the Ctrl + Shift + O shortcut in Eclipse IDE to import missing
packages automatically.

Next, we add some fields to our class. The entity class fields are mapped to7.
database table columns. The entity class must also contain a unique ID that is
used as a primary key in the database:

 package com.packt.cardatabase.domain;

 import javax.persistence.Entity;
 import javax.persistence.GeneratedValue;
 import javax.persistence.GenerationType;
 import javax.persistence.Id;

 @Entity
 public class Car {
 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private long id;
 private String brand, model, color, registerNumber;
 private int year, price;
 }

The primary key is defined by using the @Id annotation. The @GeneratedValue
annotation defines that the ID is automatically generated by the database. We can
also define our key generation strategy. The AUTO type means that the JPA
provider selects the best strategy for a particular database. You can also create a
composite primary key by annotating multiple attributes with the @Id annotation.

The database columns are named according to class field naming by default. If
you want to use some other naming convention, you can use the @Column
annotation. With the @Column annotation, you can also define the column's
length and whether the column is nullable. The following code shows an
example of using the @Column annotation. With this definition, the column's
name in the database is explanation, the length of the column is 512, and it is
not nullable:

@Column(name="explanation", nullable=false, length=512)
private String description

Using JPA to Create and Access a Database Chapter 3

[38]

Finally, we add getters, setters, and constructors with attributes to the entity8.
class. We don't need an ID field in our constructor due to automatic ID
generation. The source code of the Car entity class constructors is as follows:

Eclipse provides the automatic addition of getters, setters, and
constructors. Activate your cursor inside the class and right-click. From
the menu, select Source | Generate Getters and Setters... or Source |
Generate Constructor using fields....

package com.packt.cardatabase.domain;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class Car {
 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private long id;
 private String brand, model, color, registerNumber;
 private int year, price;
 public Car() {}
 public Car(String brand, String model, String color,
 String registerNumber, int year, int price) {
 super();
 this.brand = brand;
 this.model = model;
 this.color = color;
 this.registerNumber = registerNumber;
 this.year = year;
 this.price = price;
 }

The following is the source code of the Car entity class getters and setters:

 public String getBrand() {
 return brand;
 }
 public void setBrand(String brand) {
 this.brand = brand;
 }
 public String getModel() {
 return model;
 }

Using JPA to Create and Access a Database Chapter 3

[39]

 public void setModel(String model) {
 this.model = model;
 }
 public String getColor() {
 return color;
 }
 public void setColor(String color) {
 this.color = color;
 }
 public String getRegisterNumber() {
 return registerNumber;
 }
 public void setRegisterNumber(String registerNumber) {
 this.registerNumber = registerNumber;
 }
 public int getYear() {
 return year;
 }
 public void setYear(int year) {
 this.year = year;
 }
 public int getPrice() {
 return price;
 }
 public void setPrice(int price) {
 this.price = price;
 }
}

The table called car must be created in the database when we run the application. To
ensure that, we will add one new property to the application.properties file. This
allows us to log the SQL statements to the console:

spring.jpa.show-sql=true

We can now see the table creation statements when running the application:

Using JPA to Create and Access a Database Chapter 3

[40]

H2 provides a web-based console that can be used to explore a database and execute SQL
statements. To enable the console, we have to add the following lines to the
application.properties file. The first setting enables the H2 console and the second
setting defines the endpoint that we can use to access the console:

spring.h2.console.enabled=true
spring.h2.console.path=/h2-console

You can access the H2 console by navigating to localhost:8080/h2-console with the
web browser. Use jdbc:h2:mem:testdb as the JDBC URL and leave the Password field
empty in the Login window. Press the Connect button to log in to the console, as shown in
the following screenshot:

Using JPA to Create and Access a Database Chapter 3

[41]

Now, you can see our CAR table in the database. You may notice that the register number
has an underscore between the words:

The reason for the underscore is the camel case naming of the attribute (registerNumber):

Creating CRUD repositories
The Spring Boot Data JPA provides a CrudRepository interface for CRUD operations. It
provides CRUD functionalities to our entity class.

We will now create our repository in the domain package as follows:

Create a new class called CarRepository in the domain package and modify the1.
file according to the following code snippet:

 package com.packt.cardatabase.domain;

 import org.springframework.data.repository.CrudRepository;

Using JPA to Create and Access a Database Chapter 3

[42]

 public interface CarRepository extends CrudRepository <Car, Long> {

 }

Our CarRepository now extends the Spring Boot JPA CrudRepository
interface. The <Car, Long> type arguments define that this is the repository for
the Car entity class and the type of the ID field is Long.

CrudRepository provides multiple CRUD methods that we can now start to use.
The following table lists the most commonly used methods:

Method Description
long count() Returns the number of entities
Iterable<T> findAll() Returns all items of a given type
Optional<T> findById(ID Id) Returns one item by id
void delete(T entity) Deletes an entity
void deleteAll() Deletes all entities of the repository
<S extends T> save(S entity) Saves an entity

If the method returns only one item, the Optional<T> is returned instead of T.
The Optional class gets introduced in Java 8 SE. Optional is a type of single
value container that either has value or doesn't. By using Optional, we can
prevent null pointer exceptions.

Now, we are ready to add some demonstration data to our H2 database. For that,2.
we will use the Spring Boot CommandLineRunner interface.
The CommandLineRunner interface allows us to execute additional code before
the application has fully started. Therefore, it is a good point to add demo data to
your database. CommandLineRunner is located inside the main class:

 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;

 @SpringBootApplication
 public class CardatabaseApplication {

 public static void main(String[] args) {
 SpringApplication.run(CardatabaseApplication.class, args);
 }
 @Bean

 CommandLineRunner runner(){

Using JPA to Create and Access a Database Chapter 3

[43]

 return args -> {
 // Place your code here
 };
 }
 }

Next, we have to inject our car repository into the main class to be able to save3.
new car objects to the database. An @Autowired annotation is used to enable
dependency injection. The dependency injection allows us to pass dependencies
into an object. After we have injected the repository class, we can use the CRUD
methods it provides. The following sample code shows how to insert a few cars
to the database:

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.boot.CommandLineRunner;
 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 import org.springframework.context.annotation.Bean;

 import com.packt.cardatabase.domain.Car;
 import com.packt.cardatabase.domain.CarRepository;

 @SpringBootApplication
 public class CardatabaseApplication {
 @Autowired
 private CarRepository repository;
 public static void main(String[] args) {
 SpringApplication.run(CardatabaseApplication.class, args);
 }
 @Bean

 CommandLineRunner runner(){
 return args -> {
 // Save demo data to database
 repository.save(new Car("Ford", "Mustang", "Red",
 "ADF-1121", 2017, 59000));
 repository.save(new Car("Nissan", "Leaf", "White",
 "SSJ-3002", 2014, 29000));
 repository.save(new Car("Toyota", "Prius", "Silver",
 "KKO-0212", 2018, 39000));
 };
 }
 }

Using JPA to Create and Access a Database Chapter 3

[44]

The Insert statements can be seen in the Eclipse console after the application has been
executed:

You can also use the H2 console to fetch cars from the database, as seen in the
following screenshot:

You can define your own queries in the Spring Data repositories. The query must start with
a prefix; for example, findBy. After the prefix, you define the entity class fields that are
used in the query. The following is a sample code of three simple queries:

import java.util.List;

import org.springframework.data.repository.CrudRepository;

public interface CarRepository extends CrudRepository <Car, Long> {
 // Fetch cars by brand
 List<Car> findByBrand(String brand);

Using JPA to Create and Access a Database Chapter 3

[45]

 // Fetch cars by color
 List<Car> findByColor(String color);

 // Fetch cars by year
 List<Car> findByYear(int year);

}

There can be multiple fields after the By keyword, concatenated with the And or Or
keywords:

package com.packt.cardatabase.domain;

import java.util.List;

import org.springframework.data.repository.CrudRepository;

public interface CarRepository extends CrudRepository <Car, Long> {
 // Fetch cars by brand and model
 List<Car> findByBrandAndModel(String brand, String model);

 // Fetch cars by brand or color
 List<Car> findByBrandOrColor(String brand, String color);
}

Queries can be sorted by using the OrderBy keyword in the query method:

package com.packt.cardatabase.domain;

import java.util.List;

import org.springframework.data.repository.CrudRepository;

public interface CarRepository extends CrudRepository <Car, Long> {
 // Fetch cars by brand and sort by year
 List<Car> findByBrandOrderByYearAsc(String brand);
}

You can also create queries by using SQL statements via the @Query annotation. The
following example shows the usage of a SQL query in CrudRepository:

package com.packt.cardatabase.domain;

import java.util.List;

import org.springframework.data.repository.CrudRepository;

public interface CarRepository extends CrudRepository <Car, Long> {

Using JPA to Create and Access a Database Chapter 3

[46]

 // Fetch cars by brand using SQL
 @Query("select c from Car c where c.brand = ?1")
 List<Car> findByBrand(String brand);
}

You can also use more advanced expressions with the @Query annotation; for
example, like. The following example shows the usage of the like query in
CrudRepository:

package com.packt.cardatabase.domain;

import java.util.List;

import org.springframework.data.repository.CrudRepository;

public interface CarRepository extends CrudRepository <Car, Long> {
 // Fetch cars by brand using SQL
 @Query("select c from Car c where c.brand like %?1")
 List<Car> findByBrandEndsWith(String brand);
}

Spring Data JPA also provides PagingAndSortingRepository, which extends
CrudRepository. This offers methods to fetch entities using pagination and sorting. This
is a good option if you are dealing with larger amounts of data.
PagingAndSortingRepository can be created in a similar way to how we
created CrudRepository:

package com.packt.cardatabase.domain;

import org.springframework.data.repository.PagingAndSortingRepository;

public interface CarRepository extends PagingAndSortingRepository<Car,
Long> {

}

In this case, you now have the two new additional methods that the repository provides:

Method Description
Iterable<T> findAll(Sort sort) Returns all entities sorted by the given options
Page<T> findAll(Pageable
pageable)

Returns all entities according to given paging
options

Using JPA to Create and Access a Database Chapter 3

[47]

Now, we have completed our first database table and we are ready to add relationships
between the database tables.

Relationships between tables
Next, we create a new table called owner that has a one-to-many relationship with the car
table. The owner can own multiple cars, but a car can have only one owner. The following
Unified Modeling Language (UML) diagram shows the relationship between the tables:

The following are the steps to create a new table:

First, we create the Owner entity and repository in the domain package. The1.
Owner entity and repository are created in a similar way to the Car class. The
following is the source code of the Owner entity class and OwnerRepository:

 // Owner.java

 package com.packt.cardatabase.domain;

 import javax.persistence.Entity;
 import javax.persistence.GeneratedValue;
 import javax.persistence.GenerationType;
 import javax.persistence.Id;

 @Entity

Using JPA to Create and Access a Database Chapter 3

[48]

 public class Owner {
 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private long ownerid;
 private String firstname, lastname;
 public Owner() {}
 public Owner(String firstname, String lastname) {
 super();
 this.firstname = firstname;
 this.lastname = lastname;
 }

 public long getOwnerid() {
 return ownerid;
 }
 public void setOwnerid(long ownerid) {
 this.ownerid = ownerid;
 }
 public String getFirstname() {
 return firstname;
 }
 public void setFirstname(String firstname) {
 this.firstname = firstname;
 }
 public String getLastname() {
 return lastname;
 }
 public void setLastname(String lastname) {
 this.lastname = lastname;
 }
 }

The following is the source code of the OwnerRepository:

 // OwnerRepository.java

 package com.packt.cardatabase.domain;

 import org.springframework.data.repository.CrudRepository;
 public interface OwnerRepository extends CrudRepository<Owner, Long>
 {

 }

Using JPA to Create and Access a Database Chapter 3

[49]

In this phase, it is good to check that everything is done correctly. Run the project2.
and check that both database tables are created and that there are no errors in the
console. The following screenshot shows the console messages when tables are
created:

Now, our domain package contains two entity classes and repositories:

Using JPA to Create and Access a Database Chapter 3

[50]

The one-to-many relationship can be added by using the @ManyToOne and3.
@OneToMany annotations. In the car entity class, which contains a foreign key,
you will define the relationship with the @ManyToOne annotation. You should
also add the getter and setter for the owner field. It is recommended that you
use FetchType.LAZY for all associations. For the toMany relationships, that is
the default value, but for the toOne relationships, you should define it.
FetchType defines the strategy for fetching data from the database. The value
can be either EAGER or LAZY. In our case, the lazy strategy means that when the
owner is fetched from the database, all the cars associated with the owner will be
fetched when needed. Eager means that the cars will be fetched immediately
with the owner. The following source code shows how to define a one-to-many
relationship in the Car class:

 // Car.java

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "owner")
 private Owner owner;

 //Getter and setter
 public Owner getOwner() {
 return owner;
 }

 public void setOwner(Owner owner) {
 this.owner = owner;
 }

In the owner entity site, the relationship is defined with the @OneToMany
annotation. The type of the field is List<Car>, because the owner may have
multiple cars. You can now add the getter and setter for that as follows:

 // Owner.java

 @OneToMany(cascade = CascadeType.ALL, mappedBy="owner")
 private List<Car> cars;

 //Getter and setter
 public List<Car> getCars() {
 return cars;
 }
 public void setCars(List<Car> cars) {
 this.cars = cars;
 }

Using JPA to Create and Access a Database Chapter 3

[51]

The @OneToMany annotation has two attributes that we are using. The cascade
attribute defines how cascading affects the entities. The ALL attribute
setting means that, if the owner is deleted, the cars linked to that owner are
deleted as well. The mappedBy="owner" attribute setting tells us that the Car
class has the owner field, which is the foreign key for this relationship.

When you run the project, you can see from the console that the relationship is
now created:

Now, we can add some owners to the database with CommandLineRunner. Let's4.
also modify the Car entity classes constructor and add an owner object there:

 // Car.java constructor

 public Car(String brand, String model, String color,
 String registerNumber, int year, int price, Owner owner) {
 super();
 this.brand = brand;
 this.model = model;
 this.color = color;
 this.registerNumber = registerNumber;
 this.year = year;
 this.price = price;
 this.owner = owner;
 }

Using JPA to Create and Access a Database Chapter 3

[52]

We first create two owner objects and save these to the database. In order to save5.
the owners, we also have to inject the OwnerRepository into the main class.
Then, we will connect the owners to the cars by using the Car constructor. The
following is the source code of the application's
main CardatabaseApplication class:

 @SpringBootApplication
 public class CardatabaseApplication {
 // Inject repositories
 @Autowired
 private CarRepository repository;

 @Autowired
 private OwnerRepository orepository;
 public static void main(String[] args) {
 SpringApplication.run(CardatabaseApplication.class, args);
 }
 @Bean

 CommandLineRunner runner() {
 return args -> {
 // Add owner objects and save these to db
 Owner owner1 = new Owner("John" , "Johnson");
 Owner owner2 = new Owner("Mary" , "Robinson");
 orepository.save(owner1);
 orepository.save(owner2);
 // Add car object with link to owners and save these to db.
 Car car = new Car("Ford", "Mustang", "Red",
 "ADF-1121", 2017, 59000, owner1);
 repository.save(car);
 car = new Car("Nissan", "Leaf", "White",
 "SSJ-3002", 2014, 29000, owner2);
 repository.save(car);
 car = new Car("Toyota", "Prius", "Silver",
 "KKO-0212", 2018, 39000, owner2);
 repository.save(car);
 };
 }
 }

Using JPA to Create and Access a Database Chapter 3

[53]

If you now run the application and fetch cars from the database, you can see that the
owners are now linked to the cars:

If you want to create a many-to-many relationship instead, which means, in practice, that
an owner can have multiple cars and a car can have multiple owners, you should use
the @ManyToMany annotation. In our example application, we will use a one-to-many
relationship, and learn how to change the relationship to many-to-many. In a many-to-
many relationship, it is recommended what you use Set instead of List with Hibernate:

In the Car entity class many-to-many relationship, define the getters and setters1.
in the following way:

 @ManyToMany(mappedBy = "cars")
 private Set<Owner> owners;

 public Set<Owner> getOwners() {
 return owners;
 }

 public void setOwners(Set<Owner> owners) {
 this.owners = owners;
 }

Using JPA to Create and Access a Database Chapter 3

[54]

In the owner entity, the definition is as follows:

 @ManyToMany(cascade = CascadeType.MERGE)
 @JoinTable(name = "car_owner", joinColumns = { @JoinColumn(name =
 "ownerid") }, inverseJoinColumns = { @JoinColumn(name = "id") })
 private Set<Car> cars = new HashSet<Car>(0);

 public Set<Car> getCars() {
 return cars;
 }

 public void setCars(Set<Car> cars) {
 this.cars = cars;
 }

Now, if you run the application, there will be a new join table that is created2.
between the car and owner tables. The join table is defined by using
the @JoinTable annotation. With this annotation, we can set the name of the join
table and join columns. The following is a screenshot of the database structure
when using a many-to-many relationship:

We have now used an in-memory H2 database, and we are now going to use a proper
database instead of H2.

Using JPA to Create and Access a Database Chapter 3

[55]

Setting up the MariaDB database
Now, we will switch our database from H2 to MariaDB. The database tables are still created
automatically by JPA. But, before we run our application, we have to create a database for
it. The database can be created by using HeidiSQL. Open HeidiSQL, and follow these steps:

Right-click your mouse inside the database list.1.
Then, select Create new | Database:2.

Using JPA to Create and Access a Database Chapter 3

[56]

Let's name our database cardb. After you click OK, you should see the new3.
cardb database in the database list:

In the application, we add a MariaDB dependency to the pom.xml file and4.
remove the H2 dependency injection that we don't need anymore:

 <dependency>
 <groupId>org.mariadb.jdbc</groupId>
 <artifactId>mariadb-java-client</artifactId>
 </dependency>

In the application.properties file, you will now define the database5.
connection. First, you will define the database's url, username, password, and
database driver class. The spring.jpa.generate-ddl setting defines whether
JPA should initialize the database (true/false).
The spring.jpa.hibernate.ddl-auto setting defines the behavior of the
database initialization. The possible values are none, validate, update,
create, and create-drop. create-drop means that the database is created
when an application starts and it is dropped when the application is stopped.
create-drop is also the default value if you don't define any. The create value
only creates the database when the application is started. The update value
creates the database and updates the schema if it is changed:

 spring.datasource.url=jdbc:mariadb://localhost:3306/cardb
 spring.datasource.username=root
 spring.datasource.password=YOUR_PASSWORD
 spring.datasource.driver-class-name=org.mariadb.jdbc.Driver

 spring.jpa.generate-ddl=true
 spring.jpa.hibernate.ddl-auto=create-drop

Using JPA to Create and Access a Database Chapter 3

[57]

After running the application, you should see the tables in MariaDB. The6.
following screenshot shows the HeidiSQL user interface after the database has
been created:

Now, your application is now ready to be used with MariaDB.

Summary
In this chapter, we used JPA to create our Spring Boot application database. First, we
created entity classes, which are mapped to database tables. Then, we created
CrudRepository for our entity class, which provides CRUD operations for the entity.
After that, we managed to add some demo data to our database by using
CommandLineRunner. We also created one-to-many relations between two entities. At the
beginning of the chapter, we used the H2 in-memory database, while, at the end, we
switched the database to MariaDB.

In the next chapter, we will create a RESTful web service for our backend. We will also look
at testing the RESTful web service with the curl command-line tool, and also by using
Postman GUI.

Using JPA to Create and Access a Database Chapter 3

[58]

Questions
What are ORM, JPA, and Hibernate?1.
How can you create an entity class?2.
How can you create CrudRepository?3.
How does CrudRepository provide for your application?4.
How can you create a one-to-many relationship between tables?5.
How can you add demo data to a database with Spring Boot?6.
How can you access the H2 console?7.
How can you connect your Spring Boot application to MariaDB?8.

Further reading
Packt has other great resources for Spring Boot:

Learning Spring Boot 2.0 – Second Edition by Greg L. Turnquist (https:/ ​/​www.
packtpub. ​com/ ​application- ​development/ ​learning- ​spring- ​boot- ​20-​second-
edition)
Spring Boot – Getting Started by Patrick Cornelissen (https:/ ​/​www. ​packtpub. ​com/
web-​development/ ​spring- ​boot- ​getting- ​started- ​integrated- ​course)

https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course

4
Creating a RESTful Web
Service with Spring Boot

In this chapter, we will first create a RESTful web service using the controller class. After
that, we will demonstrate how to use Spring Data REST to create a RESTful web service
that also covers all CRUD functionalities automatically. After you have created a RESTful
API for your application, you can implement the frontend using a JavaScript library such as
React. We are using the database application that we created in the previous chapter as a
starting point.

Web services are applications that communicate over the internet using the HTTP protocol.
There are many different types of web service architectures, but the principal idea across all
designs is the same. In this book, we are creating a RESTful web service from what is
nowadays a really popular design.

In this chapter, we will cover the following topics:

Basics of a RESTful web service
Creating a RESTful web service with Spring Boot
Testing a RESTful web service

Technical requirements
The Spring Boot application created in previous chapters is required. Postman, cURL, or
another suitable tool for transferring data using various HTTP methods is also necessary.

The following GitHub link will also be required: https:/ ​/ ​github. ​com/ ​PacktPublishing/
Hands-​On-​Full-​Stack- ​Development- ​with- ​Spring- ​Boot- ​2-​and- ​React- ​Second- ​Edition/
tree/​master/​Chapter04.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter04

Creating a RESTful Web Service with Spring Boot Chapter 4

[60]

Basics of REST
Representational State Transfer (REST) is an architectural style for creating web services.
REST is not standard, but it defines a set of constraints defined by Roy Fielding. The six
constraints are as follows:

Stateless: The server doesn't hold any information about the client state.
Client server: The client and server act independently. The server does not send
any information without a request from the client.
Cacheable: Many clients often request the same resources; therefore, it is useful
to cache responses in order to improve performance.
Uniform interface: Requests from different clients look the same. Clients may
include, for example, a browser, a Java application, and a mobile application.
Layered system: REST allows us to use a layered system architecture.
Code on demand: This is an optional constraint.

The uniform interface is an important constraint and it stipulates that every REST
architecture should have the following elements:

Identification of resources: There are resources with their unique identifiers, for
example, URIs in web-based REST services. REST resources should expose easily
understood directory structure URIs. Therefore, a good resource naming strategy
is very important.
Resource manipulation through representation: When making a request to a
resource, the server responds with a representation of the resource. Typically, the
format of the representation is JSON or XML.
Self descriptive messages: Messages should have sufficient information that the
server knows how to process them.
Hypermedia and the Engine of Application State (HATEOAS): Responses can
contain links to other areas of service.

The RESTful web service that we are going to develop in the following topics follows the
REST architectural principles.

Creating a RESTful Web Service with Spring Boot Chapter 4

[61]

Creating a RESTful web service
In Spring Boot, all the HTTP requests are handled by controller classes. To be able to create
a RESTful web service, first, we have to create a controller class. We will create our own
Java package for our controller:

Activate the root package in the Eclipse Project Explorer and right-click. Select1.
New | Package from the menu. We will name our new
package com.packt.cardatabase.web:

Creating a RESTful Web Service with Spring Boot Chapter 4

[62]

Next, we will create a new controller class in a new web package. Activate2.
the com.packt.cardatabase.web package in the Eclipse project explorer and
right-click. Select New | Class from the menu. We will name our
class CarController:

Creating a RESTful Web Service with Spring Boot Chapter 4

[63]

Now, your project structure should look like the following screenshot:3.

If you create classes in a wrong package accidentally, you can drag and
drop the files between packages in the Eclipse Project Explorer.
Sometimes, the Eclipse Project Explorer view might not be rendered
correctly when you make some changes. Refreshing the project explorer
helps (activate Project Explorer and press F5).

Open your controller class in the editor window and add the @RestController4.
annotation before the class definition. Refer to the following source code.
The @RestController annotation identifies that this class will be the controller
for the RESTful web service:

 package com.packt.cardatabase.web;

 import org.springframework.web.bind.annotation.RestController;

 @RestController
 public class CarController {
 }

Creating a RESTful Web Service with Spring Boot Chapter 4

[64]

Next, we add a new method inside our controller class. The method is annotated5.
with the @RequestMapping annotation, which defines the endpoint that the
method is mapped to. In the following code snippet, you can see the sample
source code. In this example, when a user navigates to the /cars endpoint, the
getCars() method is executed:

 package com.packt.cardatabase.web;

 import org.springframework.web.bind.annotation.RestController;

 @RestController
 public class CarController {
 @RequestMapping("/cars")
 public Iterable<Car> getCars() {
 }
 }

The getCars() method returns all the car objects, which are then marshaled to
JSON objects by the Jackson library.

By default, @RequestMapping handles all the HTTP method (GET, PUT,
POST, and more) requests. You can define which method is accepted using
the following @RequestMapping("/cars", method=GET) parameter.
Now, this method handles only GET requests from the /cars endpoint.

To be able to return cars from the database, we have to inject our6.
CarRepository into the controller. Then, we can use the findAll() method
that the repository provides to fetch all cars. The following source code shows
the controller code:

 package com.packt.cardatabase.web;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RestController;

 import com.packt.cardatabase.domain.Car;
 import com.packt.cardatabase.domain.CarRepository;

 @RestController
 public class CarController {
 @Autowired
 private CarRepository repository;
 @RequestMapping("/cars")
 public Iterable<Car> getCars() {
 return repository.findAll();

Creating a RESTful Web Service with Spring Boot Chapter 4

[65]

 }
 }

Now, we are ready to run our application and navigate to7.
localhost:8080/cars. We can see that there is something wrong, and the
application seems to be in an infinite loop. This happens on account of our one-
to-many relationship between the car and owner tables. So, what happens in
practice? First, the car is serialized, and it contains an owner who is then
serialized, and that, in turn, contains cars that are then serialized and so on. To
avoid this, we have to add the @JsonIgnore annotation to the cars field in
the Owner class:

 // Owner.java
 // ...
 import com.fasterxml.jackson.annotation.JsonIgnore;
 import com.fasterxml.jackson.annotation.JsonIgnoreProperties;

 @Entity
 @JsonIgnoreProperties({"hibernateLazyInitializer", "handler"})
 public class Owner {
 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private long ownerid;
 private String firstname, lastname;

 @OneToMany(cascade = CascadeType.ALL, mappedBy="owner")
 @JsonIgnore
 private List<Car> cars;
 // continues...

Creating a RESTful Web Service with Spring Boot Chapter 4

[66]

Now, when you run the application and navigate to localhost:8080/cars,8.
everything should go as expected and you will get all the cars from the database
in JSON format, as shown in the following screenshot:

We have done our first RESTful web service, which returns all the cars. Spring Boot
provides a much more powerful way of creating RESTful web services and this is
investigated in the next topic.

Creating a RESTful Web Service with Spring Boot Chapter 4

[67]

Using Spring Data REST
Spring Data REST is part of the Spring Data project. It offers an easy and fast way to
implement RESTful web services with Spring. To start using Spring Data REST, you have to
add the following dependency to the pom.xml file:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
</dependency>

By default, Spring Data REST finds all public repositories from the application and creates
RESTful web services for your entities automatically.

You can define the endpoint of service in your application.properties file as follows:

spring.data.rest.basePath=/api

Now, you can access the RESTful web service from the localhost:8080/api endpoint.
By calling the root endpoint of the service, it returns the resources that are available. Spring
Data REST returns JSON data in the Hypertext Application Language (HAL) format. The
HAL format provides a set of conventions for expressing hyperlinks in JSON and it makes
your RESTful web service easier to use for frontend developers:

We can see that there are links to the car and owner entity services. The Spring Data REST
service path name is derived from the entity name. The name will then be pluralized and
uncapitalized. For example, the entity Car service path name will be named cars. The
profile link is generated by Spring Data REST and contains application-specific metadata.

Creating a RESTful Web Service with Spring Boot Chapter 4

[68]

Now, we start to examine different services more carefully. There are multiple tools
available for testing and consuming RESTful web services. In this book, we are using
Postman, but you can use tools that you are familiar with, such as cURL. Postman can be
acquired as a desktop application or as a browser plugin. cURL is also available for
Windows 10 by using Windows Ubuntu Bash.

If you make a request to the cars endpoint, http://localhost:8080/api/cars, using
the GET method, you will get a list of all the cars, as shown in the following screenshot:

Creating a RESTful Web Service with Spring Boot Chapter 4

[69]

In the JSON response, you can see that there is an array of cars and each car contains car-
specific data. All the cars also have the "_links" attribute, which is a collection of links,
and with these you can access the car itself or get the owner of the car. To access one
specific car, the path will be http://localhost:8080/api/cars/{id}.

The request to http://localhost:8080/api/cars/3/owner returns the owner of the
car. The response now contains owner data, a link to the owner, and links to other cars
that the user owns:

Spring Data REST service provides all CRUD operations. The following table shows which
HTTP methods you can use for different CRUD operations:

HTTP Method CRUD
GET Read

POST Create

PUT/PATCH Update

DELETE Delete

Creating a RESTful Web Service with Spring Boot Chapter 4

[70]

Next, we will look at how to delete a car from the database by using our RESTful web
service. In a delete operation, you have to use the DELETE method and the link to the car
that will be deleted (http://localhost:8080/api/cars/{id}). The following
screenshot shows how you can delete one car with the ID 4 by using cURL. After the delete
request, you can see that there are now two cars left in the database:

When we want to add a new car to the database, we have to use the POST method, and the
link is http://localhost:8080/api/cars. The header must contain the Content-Type
field with the value Content-Type:application/json, and the new car object will be
embedded in the request body:

Creating a RESTful Web Service with Spring Boot Chapter 4

[71]

The response will send a newly created car object back. Now, if you again make a GET
request to the http://localhost:8080/api/cars path, you can see that the new car
exists in the database:

To update entities, we have to use the PATCH method and the link to the car that we want to
update (http://localhost:8080/api/cars/{id}). The header must contain
the Content-Type field with the value Content-Type:application/json, and the car
object, with edited data, will be given inside the request body. If you are using PATCH, you
have to send only fields that are updates. If you are using PUT, you have to include all fields
to request. Let's edit our car that we created in the previous example. We will change the
color to white and fill in the register number that we left empty.

Creating a RESTful Web Service with Spring Boot Chapter 4

[72]

We will also link an owner to the car by using the owner field. The content of the owner
field is the link to the owner (http://localhost:8080/api/owners/{id}). The
following screenshot shows the PATCH request content:

You can see that the car is updated after you fetch all cars by using the GET request:

Creating a RESTful Web Service with Spring Boot Chapter 4

[73]

In the previous chapter, we created queries to our repository. These queries can also be
included in our service. To include queries, you have to add
the @RepositoryRestResource annotation to the repository class. Query parameters are
annotated with the @Param annotation. The following source code shows our
CarRepository with these annotations:

package com.packt.cardatabase.domain;

import java.util.List;

import org.springframework.data.repository.CrudRepository;
import org.springframework.data.repository.query.Param;
import
org.springframework.data.rest.core.annotation.RepositoryRestResource;

@RepositoryRestResource
public interface CarRepository extends CrudRepository <Car, Long> {
 // Fetch cars by brand
 List<Car> findByBrand(@Param("brand") String brand);

 // Fetch cars by color
 List<Car> findByColor(@Param("color") String color);
}

Now, when you make a GET request to the http://localhost:8080/api/cars path,
you can see that there is a new endpoint called /search. Calling
the http://localhost:8080/api/cars/search path returns the following response:

Creating a RESTful Web Service with Spring Boot Chapter 4

[74]

From the response, you can see that both queries are now available in our service. The
following URL demonstrates how to fetch cars by brand:

http://localhost:8080/api/cars/search/findByBrand?brand=Ford

The following screenshot is the output of the preceding URL:

We have now created the RESTful API to our backend and we will consume that later with
our React frontend.

Creating a RESTful Web Service with Spring Boot Chapter 4

[75]

Summary
In this chapter, we created a RESTful web service with Spring Boot. First, we created a
controller and one method that returns all cars in JSON format. Next, we used Spring Data
REST to get a fully functional web service with all CRUD functionalities. We covered
different types of requests that are needed to use CRUD functionalities of the service that
we created. Finally, we also included our queries to service.

In the next chapter, we will secure our backend using Spring Security.

Questions
What is REST?1.
How can you create a RESTful web service with Spring Boot?2.
How can you fetch items using our RESTful web service?3.
How can you delete items using our RESTful web service?4.
How can you add items using our RESTful web service?5.
How can you update items using our RESTful web service?6.
How can you use queries with our RESTful web service?7.

Further reading
Pack has other great resources available for learning about Spring Boot RESTful web
services. These are as follows:

Learning Spring Boot 2.0 – Second Edition, by Greg L. Turnquist (https:/ ​/​www.
packtpub. ​com/ ​application- ​development/ ​learning- ​spring- ​boot- ​20-​second-
edition)
Spring Boot – Getting Started [Integrated Course], by Patrick Cornelissen (https:/
/​www.​packtpub. ​com/ ​web- ​development/ ​spring- ​boot- ​getting- ​started-
integrated- ​course)
Building a RESTful Web Service with Spring, by Ludovic Dewailly (https:/ ​/ ​www.
packtpub. ​com/ ​web- ​development/ ​building- ​restful- ​web- ​service- ​spring)

https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/spring-boot-getting-started-integrated-course
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring

5
Securing and Testing Your

Backend
This chapter explains how to secure and test your Spring Boot backend. Securing your
backend is a crucial part of backend development. In the testing part of this chapter we will
create some unit tests in relation to our backend. Unit tests make your backend code easier
to maintain. We will use the database application that we created in the previous chapter as
a starting point.

In this chapter, we will cover the following topics:

How to secure your Spring Boot backend with Spring Boot
How to secure your Spring Boot backend with JWT
How to test your backend

Technical requirements
The Spring Boot application that we created in the previous chapters is required.

The following GitHub link will also be required: https:/ ​/ ​github. ​com/ ​PacktPublishing/
Hands-​On-​Full-​Stack- ​Development- ​with- ​Spring- ​Boot- ​2-​and- ​React- ​Second- ​Edition/
tree/​master/​Chapter05.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05

Securing and Testing Your Backend Chapter 5

[77]

Spring Security
Spring Security (https:/ ​/​spring. ​io/ ​projects/ ​spring- ​security) provides security
services for Java-based web applications. The Spring Security project was started in 2003
and was previously named The Acegi Security System for Spring.

By default, Spring Security enables the following features:

An AuthenticationManager bean with an in-memory single user. The
username is user and the password is printed to the console output.
Ignored paths for common static resource locations, such as /css and /images.
HTTP basic security for all other endpoints.
Security events published to Spring's ApplicationEventPublisher.
Common low-level features are on by default (HSTS, XSS, CSRF, and so forth).

You can include Spring Security in your application by adding the following dependency to
the pom.xml file:

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>

When you start your application, you can see from the console that Spring Security has
created an in-memory user with the username user. The user's password can be seen in the
console output:

If you make a GET request to your API endpoint, you will see that it is now secure, and you
will get a 401 Unauthorized error:

https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security

Securing and Testing Your Backend Chapter 5

[78]

To be able to make a successful GET request, we have to use basic authentication. The
following screenshot shows how to do this with Postman. With authentication, we can see
that the status is 200 OK and that the response has been sent:

To configure how Spring Security behaves, we have to add a new configuration class that
extends WebSecurityConfigurerAdapter. Create a new class called SecurityConfig in
your application root package. The following source code shows the structure of the
security configuration class. The @Configuration and @EnableWebSecurity annotations
switch off the default web security configuration, and we can define our own configuration
in this class. Inside the configure(HttpSecurity http) method, we can define which
endpoints in our application are secure and which are not. We actually don't need this
method yet because we can use the default settings where all the endpoints are secured:

package com.packt.cardatabase;

import org.springframework.context.annotation.Configuration;
import
org.springframework.security.config.annotation.web.builders.HttpSecurity;
import
org.springframework.security.config.annotation.web.configuration.EnableWebS
ecurity;

Securing and Testing Your Backend Chapter 5

[79]

import
org.springframework.security.config.annotation.web.configuration.WebSecurit
yConfigurerAdapter;

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {
 @Override
 protected void configure(HttpSecurity http) throws Exception {

 }

}

We can also add in-memory users to our application by adding
the userDetailsService() method to our SecurityConfig class. The following is the
source code of the method, and it will create an in-memory user with the username
user and the password password:

 @Bean
 @Override
 public UserDetailsService userDetailsService() {
 UserDetails user =
 User.withDefaultPasswordEncoder()
 .username("user")
 .password("password")
 .roles("USER")
 .build();

 return new InMemoryUserDetailsManager(user);
 }

The use of in-memory users is good in the development phase, but the real application
should save the users in the database. To save the users to the database, you have to create
a user entity class and repository. Passwords shouldn't be saved to the database in plain
text format. Spring Security provides multiple hashing algorithms, such as BCrypt, that you
can use to hash passwords. The following steps show you how to implement this:

Create a new class called User in the domain package. Activate the domain1.
package and right-click it. Select New | Class from the menu and give the name
User to a new class. After that, your project structure should look like the
following screenshot:

Securing and Testing Your Backend Chapter 5

[80]

Annotate the User class with the @Entity annotation. Add the id, username,2.
password, and role class fields. Finally, add the constructors, getters, and
setters. We will set all the fields to be nullable, and specify that the username
must be unique by using the @Column annotation. Refer to the
following User.java source code of the fields and constructors:

package com.packt.cardatabase.domain;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class User {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Column(nullable = false, updatable = false)
 private Long id;

 @Column(nullable = false, unique = true)
 private String username;

Securing and Testing Your Backend Chapter 5

[81]

 @Column(nullable = false)
 private String password;

 @Column(nullable = false)
 private String role;

 public User() {
 }
 public User(String username, String password, String role) {
 super();
 this.username = username;
 this.password = password;
 this.role = role;
 }

The following is the rest of the User.java source code with the getters and
setters:

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getUsername() {
 return username;
 }

 public void setUsername(String username) {
 this.username = username;
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public String getRole() {
 return role;
 }

 public void setRole(String role) {
 this.role = role;

Securing and Testing Your Backend Chapter 5

[82]

 }
}

Create a new class called UserRepository in the domain package. Activate3.
the domain package and right-click it. Select New | Class from the menu and
give the name UserRepository to the new class.
The source code of the repository class is similar to what we made in the4.
previous chapter, but there is one query method, findByUsername, that we need
for the steps that follow. Refer to the following UserRepository source code:

package com.packt.cardatabase.domain;

import org.springframework.data.repository.CrudRepository;
import org.springframework.stereotype.Repository;

@Repository
public interface UserRepository extends CrudRepository<User, Long>
{
 User findByUsername(String username);
}

Next, we will create a class that implements the UserDetailsService interface5.
that's provided by Spring Security. Spring Security uses this for user
authentication and authorization. Create a new package in the root package
called service. Activate the root package and right-click it. Select New |
Package from the menu and give the name service to a new package:

Securing and Testing Your Backend Chapter 5

[83]

Create a new class called UserDetailServiceImpl in the service package we6.
just created. Now, your project structure should look like the following:

We have to inject the UserRepository class into7.
the UserDetailServiceImpl class because that is needed to fetch the user from
the database when Spring Security handles authentication.
The loadByUsername method returns the UserDetails object, which is
required for authentication. The following is the source code
of UserDetailServiceImpl.java:

package com.packt.cardatabase.service;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.security.core.authority.AuthorityUtils;
import org.springframework.security.core.userdetails.UserDetails;
import
org.springframework.security.core.userdetails.UserDetailsService;
import
org.springframework.security.core.userdetails.UsernameNotFoundExcep
tion;
import org.springframework.stereotype.Service;

import com.packt.cardatabase.domain.User;

Securing and Testing Your Backend Chapter 5

[84]

import com.packt.cardatabase.domain.UserRepository;

@Service
public class UserDetailServiceImpl implements UserDetailsService {
 @Autowired
 private UserRepository repository;

 @Override
 public UserDetails loadUserByUsername(String username) throws
UsernameNotFoundException
 {
 User currentUser = repository.findByUsername(username);
 UserDetails user = new org.springframework.security.core
 .userdetails.User(username, currentUser.getPassword()
 , true, true, true, true,
AuthorityUtils.createAuthorityList(currentUser.getRole()));
 return user;
 }
}

In our security configuration class, we have to stipulate that Spring Security8.
should use users from the database instead of in-memory users. Delete
the userDetailsService() method from the SecurityConfig class to disable
in-memory users. Add a new configureGlobal method to enable users from
the database. We should never save the password as plain text to the database.
Therefore, we will define a password hashing algorithm in
the configureGlobal method. In this example, we are using the BCrypt
algorithm. This can be easily implemented with the Spring
Security BCryptPasswordEncoder class. The following is
the SecurityConfig.java source code. Now, the password must be hashed
using BCrypt before it's saved to the database:

package com.packt.cardatabase;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import
org.springframework.security.config.annotation.authentication.build
ers.AuthenticationManagerBuilder;
import
org.springframework.security.config.annotation.web.builders.HttpSec
urity;
import
org.springframework.security.config.annotation.web.configuration.En
ableWebSecurity;

Securing and Testing Your Backend Chapter 5

[85]

import
org.springframework.security.config.annotation.web.configuration.We
bSecurityConfigurerAdapter;
import
org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

import com.packt.cardatabase.service.UserDetailServiceImpl;

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {
 @Autowired
 private UserDetailServiceImpl userDetailsService;

 @Autowired
 public void configureGlobal(AuthenticationManagerBuilder auth)
throws Exception {
 auth.userDetailsService(userDetailsService)
 .passwordEncoder(new BCryptPasswordEncoder());
 }
}

Finally, we can save a couple of test users to the database in9.
our CommandLineRunner. Open the CardatabaseApplication.java file and
add the following code at the beginning of the class to inject
UserRepository into the main class:

@Autowired
private UserRepository urepository;

Save the users to the database with hashed passwords. You can use any BCrypt10.
calculator on the internet to do so:

 @Bean
 CommandLineRunner runner() {
 return args -> {
 Owner owner1 = new Owner("John" , "Johnson");
 Owner owner2 = new Owner("Mary" , "Robinson");
 orepository.save(owner1);
 orepository.save(owner2);
 repository.save(new Car("Ford", "Mustang", "Red", "ADF-1121",
 2017, 59000, owner1));
 repository.save(new Car("Nissan", "Leaf", "White", "SSJ-3002",
 2014, 29000, owner2));
 repository.save(new Car("Toyota", "Prius", "Silver", "KKO-0212",
 2018, 39000, owner2));
 // username: user password: user

Securing and Testing Your Backend Chapter 5

[86]

 urepository.save(new User("user",
 "$2a$04$1.YhMIgNX/8TkCKGFUONWO1waedKhQ5KrnB30fl0Q01QKqmzLf.Zi",
 "USER"));
 // username: admin password: admin
 urepository.save(new User("admin",
 "$2a$04$KNLUwOWHVQZVpXyMBNc7JOzbLiBjb9Tk9bP7KNcPI12ICuvzXQQKG",
 "ADMIN"));
 };
 }

After running your application, you will see that there is now a user table in the database
and that two user records are saved:

Now, you will get a 401 Unauthorized error if you try to send a GET request to the /api
endpoint without authentication. You should authenticate to be able to send a successful
request. The difference, when compared with the previous example, is that we are using the
users from the database to authenticate.

Securing and Testing Your Backend Chapter 5

[87]

You can see a GET request to the /api endpoint using the admin user in the following
screenshot:

Next, we will start to implement authentication using JSON web tokens.

Securing your backend using JWT
In the previous section, we covered how to use basic authentication with the RESTful web
service. This method cannot be used when we develop our own frontend with React, so we
are going to use JSON Web Token (JWT) authentication instead. JWT is a compact way to
implement authentication in modern web applications. JWT is really small in size and can
therefore be sent in the URL, in the POST parameter, or inside the header. It also contains all
the necessary information pertaining to the user.

The JSON web token contains three different parts, separated by dots:

The first part is the header that defines the type of the token and the hashing
algorithm.
The second part is the payload that, typically, in the case of authentication,
contains information pertaining to the user.

Securing and Testing Your Backend Chapter 5

[88]

The third part is the signature that is used to verify that the token hasn't been
changed along the way. The following is an example of a JWT token:

eyJhbGciOiJIUzI1NiJ9.
eyJzdWIiOiJKb2UifD.
ipevRNuRP6HflG8cFKnmUPtypruRC4fc1DWtoLL62SY

The following diagram shows the main idea of the JWT authentication process:

After successful authentication, the requests sent by the user should always contain the
JWT token that was received in the authentication.

We will use the Java JWT library (https:/ ​/​github. ​com/ ​jwtk/ ​jjwt), which is the JWT
library for Java and Android. Therefore, we have to add the following dependency to
the pom.xml file. The JWT library is used for creating and parsing JWT tokens:

<dependency>
 <groupId>io.jsonwebtoken</groupId>
 <artifactId>jjwt</artifactId>
 <version>0.9.1</version>
</dependency>

https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt

Securing and Testing Your Backend Chapter 5

[89]

If you are using Java version 9 or greater, add the following dependency
to the pom.xml file:
<dependency>
 <groupId>javax.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
</dependency>

The following steps demonstrate how to enable JWT authentication in our backend:

 Create a new class called AuthenticationService in the service package. At1.
the beginning of the class, we will define a few constants—EXPIRATIONTIME

defines the expiration time of the token in milliseconds, while SIGNINGKEY is an
algorithm-specific signing key that's used to digitally sign the JWT. You should
use a base64-encoded string to do this. PREFIX defines the prefix of the token,
and the Bearer schema is typically used. The addToken method creates the
token and adds it to the request's Authorization header. The signing key is
encoded using the SHA-512 algorithm. The method also adds Access-Control-
Expose-Headers to the header with the Authorization value. This is needed
because we are unable to access the Authorization header through a JavaScript
frontend by default. The getAuthentication method gets the token from the
response Authorization header using the parser() method provided by
the jjwt library. The whole AuthenticationService source code can be seen
here:

package com.packt.cardatabase.service;

import io.jsonwebtoken.Jwts;
import io.jsonwebtoken.SignatureAlgorithm;
import
org.springframework.security.authentication.UsernamePasswordAuthent
icationToken;
import org.springframework.security.core.Authentication;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.util.Date;

import static java.util.Collections.emptyList;

public class AuthenticationService {
 static final long EXPIRATIONTIME = 864_000_00; // 1 day in
milliseconds
 static final String SIGNINGKEY = "SecretKey";
 static final String PREFIX = "Bearer";

Securing and Testing Your Backend Chapter 5

[90]

 // Add token to Authorization header
 static public void addToken(HttpServletResponse res, String
username) {
 String JwtToken = Jwts.builder().setSubject(username)
 .setExpiration(new Date(System.currentTimeMillis()
 + EXPIRATIONTIME))
 .signWith(SignatureAlgorithm.HS512, SIGNINGKEY)
 .compact();
 res.addHeader("Authorization", PREFIX + " " + JwtToken);
 res.addHeader("Access-Control-Expose-Headers", "Authorization");
 }

 // Get token from Authorization header
 static public Authentication getAuthentication(HttpServletRequest
request) {
 String token = request.getHeader("Authorization");
 if (token != null) {
 String user = Jwts.parser()
 .setSigningKey(SIGNINGKEY)
 .parseClaimsJws(token.replace(PREFIX, ""))
 .getBody()
 .getSubject();

 if (user != null)
 return new UsernamePasswordAuthenticationToken(user, null,
 emptyList());
 }
 return null;
 }
}

Next, we will add a new simple POJO class to keep credentials for2.
authentication. Create a new class called AccountCredentials in the domain
package. The class has two fields—username and password. The following is
the source code of the class. This class doesn't have the @Entity annotation
because we don't have to save credentials to the database:

package com.packt.cardatabase.domain;

public class AccountCredentials {
 private String username;
 private String password;
 public String getUsername() {
 return username;
 }
 public void setUsername(String username) {
 this.username = username;

Securing and Testing Your Backend Chapter 5

[91]

 }
 public String getPassword() {
 return password;
 }
 public void setPassword(String password) {
 this.password = password;
 }
}

We will use filter classes for login and authentication. Create a new class3.
called LoginFilter in the root package that handles POST requests to
the /login endpoint. The LoginFilter class extends Spring
Security's AbstractAuthenticationProcessingFilter interface, which
requires that you set the authenticationManager property. Authentication is
performed by the attemptAuthentication method. If authentication is
successful, the succesfulAuthentication method is executed. This method
will then call the addToken method in our service class, and the token will be
added to the Authorization header:

package com.packt.cardatabase;

import java.io.IOException;
import java.util.Collections;

import javax.servlet.FilterChain;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import
org.springframework.security.authentication.AuthenticationManager;
import
org.springframework.security.authentication.UsernamePasswordAuthent
icationToken;
import org.springframework.security.core.Authentication;
import org.springframework.security.core.AuthenticationException;
import
org.springframework.security.web.authentication.AbstractAuthenticat
ionProcessingFilter;
import
org.springframework.security.web.util.matcher.AntPathRequestMatcher
;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.packt.cardatabase.domain.AccountCredentials;
import com.packt.cardatabase.service.AuthenticationService;

Securing and Testing Your Backend Chapter 5

[92]

public class LoginFilter extends
AbstractAuthenticationProcessingFilter {

 public LoginFilter(String url, AuthenticationManager authManager)
{
 super(new AntPathRequestMatcher(url));
 setAuthenticationManager(authManager);
 }

 @Override
 public Authentication attemptAuthentication(
 HttpServletRequest req, HttpServletResponse res)
 throws AuthenticationException, IOException, ServletException
{
 AccountCredentials creds = new ObjectMapper()
 .readValue(req.getInputStream(), AccountCredentials.class);
 return getAuthenticationManager().authenticate(
 new UsernamePasswordAuthenticationToken(
 creds.getUsername(),
 creds.getPassword(),
 Collections.emptyList()
)
);
 }

 @Override
 protected void successfulAuthentication(
 HttpServletRequest req,
 HttpServletResponse res, FilterChain chain,
 Authentication auth) throws IOException, ServletException {
 AuthenticationService.addToken(res, auth.getName());
 }
}

Create a new class called AuthenticationFilter in the root package. The class4.
extends GenericFilterBean, which is a generic superclass for any type of filter.
This class will handle authentication in all other endpoints, except
/login. AuthenticationFilter uses the getAuthentication method from
our service class to get a token from the request Authorization header:

package com.packt.cardatabase;

import java.io.IOException;

import javax.servlet.FilterChain;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;

Securing and Testing Your Backend Chapter 5

[93]

import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;

import org.springframework.security.core.Authentication;
import
org.springframework.security.core.context.SecurityContextHolder;
import org.springframework.web.filter.GenericFilterBean;

import com.packt.cardatabase.service.AuthenticationService;

public class AuthenticationFilter extends GenericFilterBean {
 @Override
 public void doFilter(ServletRequest request, ServletResponse
response, FilterChain filterChain) throws IOException,
ServletException {
 Authentication authentication =
AuthenticationService.getAuthentication((HttpServletRequest)request
);
 SecurityContextHolder.getContext().
 setAuthentication(authentication);
 filterChain.doFilter(request, response);
 }
}

Finally, we have to make changes to our SecurityConfig class's configure5.
method. There, we stipulate that the POST method request to the /login
endpoint is allowed without authentication and that requests to all other
endpoints require authentication. We also define the filters to be used in
the /login and other endpoints by using the addFilterBefore method:

 //SecurityConfig.java
 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.csrf().disable().cors().and().authorizeRequests()
 .antMatchers(HttpMethod.POST, "/login").permitAll()
 .anyRequest().authenticated()
 .and()
 // Filter for the api/login requests
 .addFilterBefore(new LoginFilter("/login",
 authenticationManager()),
 UsernamePasswordAuthenticationFilter.class)
 // Filter for other requests to check JWT in header
 .addFilterBefore(new AuthenticationFilter(),
 UsernamePasswordAuthenticationFilter.class);
 }

Securing and Testing Your Backend Chapter 5

[94]

We will also add a CORS (short for Cross-Origin Resource Sharing) filter in our6.
security configuration class. This is needed for the frontend, which is sending
requests from the other origin. The CORS filter intercepts requests, and if these
are identified as cross-origin, it adds proper headers to the request. For that, we
will use Spring Security's CorsConfigurationSource interface. In this
example, we will allow all HTTP methods and headers (using "*"). You can
define the list of permissible origins, methods, and headers here if you require a
more finely graded definition. Add the following source code to your
SecurityConfig class to enable the CORS filter:

 // SecurityConfig.java
 @Bean
 CorsConfigurationSource corsConfigurationSource() {
 UrlBasedCorsConfigurationSource source =
 new UrlBasedCorsConfigurationSource();
 CorsConfiguration config = new CorsConfiguration();
 config.setAllowedOrigins(Arrays.asList("*"));
 config.setAllowedMethods(Arrays.asList("*"));
 config.setAllowedHeaders(Arrays.asList("*"));
 config.setAllowCredentials(true);
 config.applyPermitDefaultValues();
 source.registerCorsConfiguration("/**", config);
 return source;
 }

Now, after we run the application, we can call the /login endpoint with the POST method
and, in the case of a successful login, we will receive a JWT token in the Authorization
header:

Securing and Testing Your Backend Chapter 5

[95]

Following a successful login, we can call the other RESTful service endpoints by sending
the JWT token that was received from the login in the Authorization header. Refer to the
example in the following screenshot:

Now, all the functionalities that are required have been implemented to our backend. Next,
we will continue with backend unit testing.

Securing and Testing Your Backend Chapter 5

[96]

Testing in Spring Boot
The Spring Boot test starter package is added to pom.xml by Spring Initializr when we
create our project. This is added automatically without any selection in the Spring Initializr
page:

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>

The Spring Boot test starter provides lots of handy libraries for testing, such as JUnit,
Mockito, and AssertJ. If you take a look, your project structure already has its own package
created for test classes:

By default, Spring Boot uses an in-memory database for testing. We are now using
MariaDB, but H2 can also be used for testing if we add the following dependency to
the pom.xml file. The scope defines that the H2 database will only be used for running
tests; otherwise, the application will use the MariaDB database:

 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>test</scope>
 </dependency>

If you also want to use the default database for testing, you can use
the @AutoConfigureTestDatabase annotation.

Securing and Testing Your Backend Chapter 5

[97]

Creating unit tests
For unit testing, we are using a JUnit, which is a popular Java-based unit testing library.
The following source code shows the example skeleton of the Spring Boot test class.
The @SpringBootTest annotation specifies that the class is a regular test class that runs
Spring Boot-based tests. The @Test annotation before the method specifies to JUnit that the
method can be run as a test case. The @RunWith(SpringRunner.class) annotation
provides Spring's ApplicationContext and gets beans injected into your test instance:

@RunWith(SpringRunner.class)
@SpringBootTest
public class MyTestsClass {

 @Test
 public void testMethod() {
 ...
 }

}

First, we will create our first test case, which will test the major functionality of our
application before we create any formal test cases. Open
the CardatabaseApplicationTest test class that has already been made for your
application. There is one test method called contextLoads here, and is where we will add
the test. The following test checks that the instance of the controller was created and
injected successfully:

package com.packt.cardatabase;

import static org.assertj.core.api.Assertions.assertThat;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;

import com.packt.cardatabase.web.CarController;

@RunWith(SpringRunner.class)
@SpringBootTest
public class CardatabaseApplicationTests {
 @Autowired
 private CarController controller;

 @Test

Securing and Testing Your Backend Chapter 5

[98]

 public void contextLoads() {
 assertThat(controller).isNotNull();
 }

}

To run tests in Eclipse, activate the test class in the Project Explorer and right-click. Select
Run As | JUnit test from the menu. You should now see the JUnit tab in the lower part of
the Eclipse workbench. The test results are shown in this tab and the test case has been
passed:

Next, we will create unit tests for our car repository to test CRUD operations. Create a new
class called CarRepositoryTest in the root test package. Instead of
the @SpringBootTest annotation, @DataJpaTest can be used if the test focuses only on
JPA components. When using this annotation, the H2 database, Hibernate, and Spring Data
are configured automatically for testing. SQL logging is also turned on. The tests are
transactional by default and roll back at the end of the test case. TestEntityManager is
used to handle the persist entities and is designed to be used in testing. You can see the
source code of the JPA test class skeleton in the following code snippet:

package com.packt.cardatabase;

import static org.assertj.core.api.Assertions.assertThat;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.orm.jpa.DataJpaTest;
import
org.springframework.boot.test.autoconfigure.orm.jpa.TestEntityManager;
import org.springframework.test.context.junit4.SpringRunner;

import com.packt.cardatabase.domain.Car;
import com.packt.cardatabase.domain.CarRepository;

@RunWith(SpringRunner.class)
@DataJpaTest
public class CarRepositoryTest {
 @Autowired

Securing and Testing Your Backend Chapter 5

[99]

 private TestEntityManager entityManager;
 @Autowired
 private CarRepository repository;
 // Test cases..
}

We will add out first test case to test the addition of a new car to the database. A new car
object is created and saved to the database with the persistAndFlush method provided
by TestEntityManager. Then, we check that the car ID cannot be null if it is saved
successfully. The following source code shows the test case method. Add the following
method code to your CarRepositoryTest class:

 @Test
 public void saveCar() {
 Car car = new Car("Tesla", "Model X", "White", "ABC-1234",
 2017, 86000);
 entityManager.persistAndFlush(car);
 assertThat(car.getId()).isNotNull();
 }

The second test case will test the deletion of cars from the database. A new car object is
created and saved to the database. Then, all cars are deleted from the database, and finally,
the findAll() query method should return an empty list. The following source code
shows the test case method. Add the following method code to
your CarRepositoryTest class:

 @Test
 public void deleteCars() {
 entityManager.persistAndFlush(new Car("Tesla", "Model X", "White",
 "ABC-1234", 2017, 86000));
 entityManager.persistAndFlush(new Car("Mini", "Cooper", "Yellow",
 "BWS-3007", 2015, 24500));
 repository.deleteAll();
 assertThat(repository.findAll()).isEmpty();
 }

Securing and Testing Your Backend Chapter 5

[100]

Run the test cases and check the Eclipse JUnit tab to find out whether the tests passed:

Next, we will demonstrate how to test your RESTful web service JWT authentication
functionality. To test the controllers or any endpoint that is exposed, we can use
a MockMvc object. By using the MockMvc object, the server is not started, but the tests are
performed in the layer where Spring handles HTTP requests, and therefore it mocks the
real situation. MockMvc provides the perform method to send these requests. To test
authentication, we have to add credentials to the request body. We will perform two
requests—the first has the correct credentials, and we check that the status is OK. The
second request contains incorrect credentials and we check that we get a 4XX HTTP error:

package com.packt.cardatabase;

import static
org.springframework.test.web.servlet.request.MockMvcRequestBuilders.post;
import static
org.springframework.test.web.servlet.result.MockMvcResultHandlers.print;
import static
org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import
org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMockMv
c;
import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.test.web.servlet.MockMvc;

@RunWith(SpringRunner.class)
@SpringBootTest
@AutoConfigureMockMvc
public class CarRestTest {
 @Autowired
 private MockMvc mockMvc;
 @Test
 public void testAuthentication() throws Exception {

Securing and Testing Your Backend Chapter 5

[101]

 // Testing authentication with correct credentials
 this.mockMvc.perform(post("/login")
 .content("{\"username\":\"admin\", \"password\":\"admin\"}")).
 andDo(print()).andExpect(status().isOk());

 // Testing authentication with wrong credentials
 this.mockMvc.perform(post("/login")
 .content("{\"username\":\"admin\", \"password\":\"wrongpwd\"}")).
 andDo(print()).andExpect(status().is4xxClientError());
 }

}

Now, when we run the authentication tests, we will see that the test passed:

At this point, we have covered the basics of testing in the Spring Boot application, and you
have gained the knowledge that's required to implement more test cases for your
application.

Summary
In this chapter, we focused on securing and testing the Spring Boot backend. First, securing
was done with Spring Security. The frontend will be developed with React in upcoming
chapters; therefore, we implemented JWT authentication, which is a lightweight
authentication method suitable for our needs.

We also covered the basics of testing a Spring Boot application. We used JUnit for unit
testing and implemented test cases for JPA and RESTful web service authentication.

In the next chapter, we will set up the environment and tools related to frontend
development.

Securing and Testing Your Backend Chapter 5

[102]

Questions
What is Spring Security?1.
How can you secure your backend with Spring Boot?2.
What is JWT?3.
How can you secure your backend with JWT?4.
How can you create unit tests with Spring Boot?5.
How can you run and check the results of unit tests?6.

Further reading
Packt has other great resources available so that you can learn about Spring Security and
testing. These are as follows:

Spring Security – Third Edition, by Peter Mularien, Mick Knutson and et al
(https:/ ​/ ​www. ​packtpub. ​com/ ​application- ​development/ ​spring- ​security-
third-​edition)
Mastering Software Testing with JUnit 5, by Boni García (https:/ ​/​www. ​packtpub.
com/​web- ​development/ ​mastering- ​software- ​testing- ​junit- ​5)

https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5
https://www.packtpub.com/web-development/mastering-software-testing-junit-5

2
Section 2: Frontend

Programming with React
The reader will be familiar with the basics of React. This section focuses on how to consume
a RESTful web service with React and how to test the frontend.

This section covers the following chapters:

Chapter 6, Setting Up the Environment and Tools – Frontend
Chapter 7, Getting Started with React
Chapter 8, Consuming the REST API with React
Chapter 9, Useful Third-Party Components for React

6
Setting Up the Environment and

Tools - Frontend
This chapter describes the development environment and tools that are needed for React,
and is required so that you can start frontend development. In this chapter, we will create a
simple starter React app by using the Create React App starter kit that's developed by
Facebook.

In this chapter, we will cover the following topics:

Installing Node.js
Installing VS Code
VS Code extensions
Creating a React.js app using create-react-app
Running a React app

Technical requirements
In this book, we are using the Windows OS, but all the tools we use are available for Linux
and macOS as well.

The following GitHub link will also be required: https:/ ​/ ​github. ​com/ ​PacktPublishing/
Hands-​On-​Full-​Stack- ​Development- ​with- ​Spring- ​Boot- ​2-​and- ​React- ​Second- ​Edition/
tree/​master/​Chapter06.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter06

Setting Up the Environment and Tools - Frontend Chapter 6

[105]

Installing Node.js
Node.js is an open source, JavaScript-based server-side environment. Node.js is available
for multiple operating systems, such as Windows, macOS, and Linux, and is required to
develop React apps.

The Node.js installation package can be found at https:/ ​/​nodejs. ​org/​en/ ​download/ ​.
Download the latest Long Term Support (LTS) version for your operating system. In this
book, we are using the Windows 10 operating system, and you can get the Node.js MSI
installer for it, which makes installation really straightforward. When you execute the
installer, you will go through the installation wizard, and you can do so using the default
settings:

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/

Setting Up the Environment and Tools - Frontend Chapter 6

[106]

Once the installation is complete, we can check that everything proceeded correctly. Open
PowerShell, or whatever terminal you are using, and type the following commands:

node -v
npm -v

These commands should show you the installed versions of Node.js and Npm:

Npm comes with the Node.js installation, and is a package manager for JavaScript. We will
use this a lot in the following chapters when we install different node modules on our React
app. There is also another package manager called Yarn that you can use as well.

Installing VS Code
Visual Studio Code (VS Code) is an open source code editor for multiple programming
languages. VS Code was developed by Microsoft. There are a lot of different code editors
available, such as Atom and Brackets, and you can use something other than VS Code if
you are familiar with it. VS Code is available for Windows, macOS, and Linux, and you can
download it from https:/ ​/ ​code. ​visualstudio. ​com/ ​.

Installation for Windows is done with the MSI installer, and you can execute the
installation with default settings. The following screenshot shows the workbench of VS
Code. On the left-hand side is the activity bar, which you can use to navigate between
different views. Next to the activity bar is a sidebar, that contains different views, such as
the project file explorer.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

Setting Up the Environment and Tools - Frontend Chapter 6

[107]

The editor takes up the rest of the workbench:

VS Code also has an integrated terminal that you can use to create and run React apps. The
terminal can be found in the View | Integrated Terminal menu. You will use this in later
chapters when we create more React apps.

Setting Up the Environment and Tools - Frontend Chapter 6

[108]

VS Code extension
There are a lot of extensions available for different programming languages and
frameworks. If you open Extension Manager from the activity bar, you can search for
different extensions. One really handy extension for React development is Reactjs code
snippets, which we recommend installing. It has multiple code snippets available for the
React.js app, which makes your development process faster. We will show you how to use
that extension later:

Setting Up the Environment and Tools - Frontend Chapter 6

[109]

The ESLint extension helps you find typos and syntax errors quickly and makes formatting
the source code easier:

Prettier is a code formatter. With the Prettier extension, you can get automatic code
formatting. You can also set this from the VS Code settings so that you can format code
automatically after saving your code:

Setting Up the Environment and Tools - Frontend Chapter 6

[110]

These are just a few examples of the great extensions you can get for VS Code.

Creating and running a React app
Now that we have Node.js and the code editor installed, we are ready to create our first
React.js app. We are using Facebook's create-react-app command (https:/ ​/​github.
com/​facebook/​create- ​react- ​app) for this. Here are the steps you need to follow in order
to make your first app:

Open PowerShell or the Command Prompt tool and type the following1.
command:

npx create-react-app myapp

This command creates a React app named myapp. Npx is the npm package runner
and, when you're using it, you don't have to install the package before running it:

Once the app has been created, move it into your app folder:2.

cd myapp

Then, we can run the app with the following command. This command runs the3.
app in port 3000 and opens the app in a browser:

npm start

https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app

Setting Up the Environment and Tools - Frontend Chapter 6

[111]

Now, your app is running, and you should see the following page in your4.
browser. The npm start command starts the app in development mode:

You can stop the development server by pressing Ctrl + C in PowerShell.

To build a minified version of your app for production, you can use the npm run
build command, which builds your app in the build folder.

Modifying a React app
Open your React app folder with VS Code by selecting File | Open folder. You should see
the app's structure in the file explorer. The most important folder in this phase is the
src folder, which contains the JavaScript source codes:

Setting Up the Environment and Tools - Frontend Chapter 6

[112]

You can also open VS Code by typing the code . command into the
terminal. This command opens VS Code and the folder where you are
located.

Open the App.js file from the src folder in the code editor. Remove the line that is shown
in the following screenshot and save the file. You don't need to know anything else about
this file at the moment. We will go deeper into this topic in the next chapter:

Setting Up the Environment and Tools - Frontend Chapter 6

[113]

Now, if you look at the browser, you should immediately see that the image has
disappeared from the page:

To debug React apps, we should also install React developer tools, which are available for
Chrome or Firefox browsers. Chrome plugins can be installed from the chrome web store
(https:/​/​chrome.​google. ​com/ ​webstore/ ​category/ ​extensions), while Firefox add-ons can
be installed from the Firefox add-ons site (https:/ ​/​addons. ​mozilla. ​org). After you have
installed the React developer tools, you should see a new React tab in your browser's
developer tools once you navigate to your React app:

https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://addons.mozilla.org/
https://addons.mozilla.org/
https://addons.mozilla.org/
https://addons.mozilla.org/
https://addons.mozilla.org/
https://addons.mozilla.org/
https://addons.mozilla.org/
https://addons.mozilla.org/
https://addons.mozilla.org/

Setting Up the Environment and Tools - Frontend Chapter 6

[114]

The preceding screenshot shows the developer tools in the Chrome browser.

Summary
In this chapter, we installed everything that is needed to embark on our frontend
development with React.js. First, we installed Node.js and the VS Code editor. Then, we
used the create-react-app starter kit to create our first React.js app. Finally, we ran the
app and demonstrated how to modify it. This is just an overview of the app's structure and
modification, and we will continue this in the following chapters.

In the next chapter, we will familiarize ourselves with the basics of React programming. In
JavaScript, we will be using ES6 syntax because it provides several features that makes
coding cleaner.

Questions
What is Node.js and Npm?1.
How do you install Node.js?2.
What is VS Code?3.
How do you install VS Code?4.
How do you create a React.js app with create-react-app?5.
How do you run a React.js app?6.
How do you make basic modifications to your app?7.

Further reading
Packt has other great resources available for learning about React. These are as follows:

Getting Started with React, by Doel Sengupta, Manu Singhal, Et al (https:/ ​/​www.
packtpub. ​com/ ​web- ​development/ ​getting- ​started- ​react)
React 16 Tooling, by Adam Boduch (https:/ ​/​www. ​packtpub. ​com/ ​web-
development/ ​react- ​16- ​tooling)

https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling

7
Getting Started with React

This chapter describes the basics of React programming. We will cover the skills that are
required to create basic functionalities for the React frontend. In JavaScript, we use the ES6
syntax because it provides many features that make coding cleaner.

In this chapter, we will look at the following topics:

How to create React components
Useful ES6 features
What JSX is
How to use state and props in components
Stateless components
React hooks
How to handle events and forms in React

Technical requirements
In this book, we will be using the Windows OS, but all of the tools can be used with Linux
and macOS as well. For our work with React hooks, React version 16.8 or higher will be
required.

You can find more resources at the GitHub link at https:/ ​/ ​github. ​com/ ​PacktPublishing/
Hands-​On-​Full-​Stack- ​Development- ​with- ​Spring- ​Boot- ​2-​and- ​React- ​Second- ​Edition/
tree/​master/​Chapter07.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter07

Getting Started with React Chapter 7

[116]

Basic React components
According to Facebook, Inc., React is a JavaScript library for user interfaces. Since version
15, React has been developed under the MIT license. React is component-based and the
components are independent and reusable. The components are the basic building blocks of
React. When you start to develop a UI with React, it is good to start by creating mock
interfaces. That way, it will be easy to identify what kind of components you have to create
and how they interact.

From the following screenshot of the mock, we can see how the UI can be split into
components. In this case, there will be an application root component, a search bar
component, a table component, and a table row component:

The components can then be arranged in the following tree hierarchy. The important thing
to understand with React is that the dataflow is going from the parent component to the
child:

Getting Started with React Chapter 7

[117]

React uses the virtual DOM (VDOM) for selective re-rendering of the UI, which makes it
more cost effective. The VDOM is a lightweight copy of the DOM, and manipulation of the
VDOM is much faster than it is with the real DOM. After the VDOM is updated, React
compares it to a snapshot that was taken from the VDOM before updates were run. After
the comparison, React will know which parts have been changed, and only these parts will
be updated to the real DOM.

The React component can be defined by using a JavaScript function or the ES6 JavaScript
class. We will go more deeply into ES6 in the next section. The following is a simple
component source code that renders the Hello World text. The first code block uses the
JavaScript function:

// Using JavaScript function
function Hello() {
 return <h1>Hello World</h1>;
}

The following code block uses the ES6 function to create a component:

// Using ES6 arrow function
const Hello = () => {
 return <h1>Hello World</h1>;
}

The following code uses the class to create a component:

// Using ES6 class
class Hello extends React.Component {
 render() {

Getting Started with React Chapter 7

[118]

 return <h1>Hello World</h1>;
 }
}

The component that was implemented using the class contains the required render()
method. This method shows and updates the rendered output of the component. The name
of the user-defined component should start with a capital letter.

Let's make changes to our component's render method and add a new header element to
it, as follows:

function App extends Component {
 render() {
 return (
 <h1>Hello World!</h1>
 <h2>From my first React app</h2>
);
 }
}

When you run the app, you get the Adjacent JSX elements must be wrapped in an
enclosing tag error. To fix this error, we have to wrap the headers in one element, such
as div; since React version 16.2, we can also use Fragments, which look like empty JSX
tags, as shown in the following code:

// Wrap headers in div
class App extends Component {
 render() {
 return (
 <div>
 <h1>Hello World!</h1>
 <h2>From my first React app</h2>
 </div>
);
 }
}

// Or using fragments
class App extends Component {
 render() {
 return (
 <>
 <h1>Hello World!</h1>
 <h2>From my first React app</h2>
 </>
);
 }

Getting Started with React Chapter 7

[119]

}

Let's look more carefully at the first React app that we created in Chapter 6, Setting Up the
Environment and Tools – Frontend, using create-react-app. The source code of the
index.js file in the root folder appears as follows:

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';

ReactDOM.render(<App />, document.getElementById('root'));
serviceWorker.unregister();

At the beginning of the file, there are import statements that load components or assets to
our file. For example, the second line imports the react-dom package from
the node_modules folder, and the fourth line imports the App component (the App.js file
in the root folder). The third line imports the index.css style sheet that is in the same
folder as the index.js file. The react-dom package provides DOM-specific methods for
us. To render the React component to the DOM, we can use the render method from
the react-dom package.

The first argument is the component that will be rendered, and the second argument is the
element or container in which the component will be rendered. In this case,
the root element is <div id="root"></div>, which can be found in the index.html file
inside the public folder. Look at the following index.html file:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <link rel="shortcut icon" href="%PUBLIC_URL%/favicon.ico" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <meta name="theme-color" content="#000000" />
 <link rel="manifest" href="%PUBLIC_URL%/manifest.json" />
 <title>React App</title>
 </head>
 <body>
 <noscript>You need to enable JavaScript to run this app.</noscript>
 <div id="root"></div>
 </body>
</html>

Getting Started with React Chapter 7

[120]

The following source code shows the App.js component from our first React app. You can
see that import also applies to assets, such as images and style sheets. At the end of the
source code, there is an export statement that exports the component, and it can be made
available to other components by using import. There can be only one default export per
file, but there can be multiple named exports:

import React from 'react';
import logo from './logo.svg';
import './App.css';

function App() {
 return (
 <div className="App">
 <header className="App-header">

 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 <a
 className="App-link"
 href="https://reactjs.org"
 target="_blank"
 rel="noopener noreferrer"
 >
 Learn React

 </header>
 </div>
);
}

export default App;

The following example shows how to import default and named exports:

import React from 'react' // Import default value
import { Component } from 'react' // Import named value

The exports look like the following:

export default React // Default export
export {Component} // Named export

Now that we have covered the basic React components, let's take a look at the basic features
of ES6.

Getting Started with React Chapter 7

[121]

Basics of ES6
ES6 (short for ECMAScript 2015) was released in 2015, and it introduced a lot of new
features. ECMAScript is a standardized scripting language, and JavaScript is one
implementation of it. In this section, we will go through the most important features
released in ES6 that we will be using in the following sections.

Understanding constants
Constants, or immutable variables, can be defined by using a const keyword, as shown in
the following code. When using the const keyword, the variable content cannot be
reassigned:

const PI = 3.14159;

The scope of const is block scoped, which is the same as the scope for let. This means that
the const variable can only be used inside the block in which it is defined. In practice, the
block is the area between curly brackets { }. The following sample code shows how the
scope works:

var count = 10;
if(count > 5) {
 const total = count * 2;
 console.log(total); // Prints 20 to console
}
console.log(total); // Error, outside the scope

The second console.log statement gives an error because we are trying to use
the total variable outside the scope.

The following example demonstrates what happens when const is an object or array:

const myObj = {foo : 3};
myObj.foo = 5; // This is ok

When const is an object or array, the content can be changed.

Getting Started with React Chapter 7

[122]

Arrow functions
The traditional way of defining a function in JavaScript is by using
a function keyword. The following function gets one argument and just returns the
argument value:

function hello(greeting) {
 return greeting;
}

But when we use the ES6 arrow function, the function looks as follows:

const hello = greeting => { greeting }

// function call
hello('Hello World'); // returns Hello World

As we can see, by using the arrow function, we have made the declaration of the same
function more compact.

When you have more than one argument, you have to wrap the arguments in parentheses
and separate the arguments with a comma to use the arrow function effectively. For
example, the following function gets two parameters and returns the sum of the
parameters:

const calcSum = (x, y) => { x + y }

// function call
calcSum(2, 3); // returns 5

If the function body is an expression, then you don't need to use the return keyword: the
expression is always implicitly returned from the function.

However, if the function doesn't have any arguments, then you should use the following
syntax:

() => { ... }

We are going to use lots of arrow functions in our frontend implementation, and so it is
important to first understand the basics.

Getting Started with React Chapter 7

[123]

Template literals
Template literals can be used to concatenate strings. The traditional way to concatenate
strings is to use the + operator, as follows:

var person = {firstName: 'John', lastName: 'Johnson'};
var greeting = "Hello " + ${person.firstName} + " " + ${person.lastName};

With the template literals, the syntax is the following. You have to use backticks (` `)
instead of single or double quotes:

var person = {firstName: 'John', lastName: 'Johnson'};
var greeting = `Hello ${person.firstName} ${person.lastName}`;

Next, we will learn how to create classes using JavaScript ES6 syntax.

Classes and inheritance
Class definition in ES6 is similar to other object-oriented languages, such as Java or C#. The
keyword for defining the classes is class. The class can have fields, constructors, and class
methods. The following sample code shows the ES6 class:

class Person {
 constructor(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }
}

Inheritance is performed with an extends keyword. The following sample code shows
an Employee class that inherits a Person class. This means that it inherits all fields from
the parent class and can have its own fields that are specific to the Employee. In the
constructor, we first call the parent class constructor by using the super keyword. That call
is required by the rest of the code, and you will get an error if it is missing:

class Employee extends Person {
 constructor(firstName, lastName, title, salary) {
 super(firstName, lastName);
 this.title= title;
 this.salary = salary;
 }
}

Getting Started with React Chapter 7

[124]

Although ES6 is already quite old, it is still only partially supported by modern web
browsers. Babel is a JavaScript compiler that is used to compile ES6 to an older version that
is compatible with all browsers. You can test the compiler on the Babel website (https:/ ​/
babeljs.​io). The following screenshot shows the arrow function compiling back to the
older JavaScript syntax:

Now that we have learned about the basics of ES6, let's take a look at what JSX and styling
is all about.

JSX and styling
JSX is the syntax extension for JavaScript. It is not mandatory to use JSX with React, but
there are some benefits that make development easier. JSX, for example, prevents injection
attacks because all values are escaped in the JSX before they are rendered. The most useful
feature is that you can embed JavaScript expressions in the JSX by wrapping it with curly
brackets; this technique will be used a lot in the following chapters. In the following
example, we can access the component props when using JSX. The component props are
covered in the next section:

class Hello extends React.Component {
 render() {
 return <h1>Hello World {this.props.user}</h1>;
 }
}

You can also pass a JavaScript expression as props, as shown in the following code:

<Hello count={2+2} />

https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io

Getting Started with React Chapter 7

[125]

JSX is compiled to the React.createElement() calls by Babel. You can use both internal
or external styling with the React JSX elements. The following are two examples of inline
styling. The first one defines the style inside the div element, as shown in the following
code:

<div style={{height: 20, width: 200}}>
 Hello
</div>

The second example creates the style object first, which is then used in the div element, as
shown in the following code. The object name should use the camelCase naming
convention:

const divStyle = {
 color: 'red',
 height: 30
};

const MyComponent = () => (
 <div style={divStyle}>Hello</div>
);

As shown in the previous section, you can import a style sheet to the React component. To
reference classes from the external CSS file, you should use a className attribute, as
shown in the following code:

import './App.js';

...

<div className="App-header">
 This is my app
</div>

In the next section, we will learn about React props and the state.

Props and the state
Props and the state are the input data for rendering the component. Both props and the
state are actually JavaScript objects, and the component is re-rendered when the props or
the state change.

Getting Started with React Chapter 7

[126]

The props are immutable, so the component cannot change its props. The props are
received from the parent component. The component can access the props through
the this.props object. For example, let's take a look at the following component:

class Hello extends React.Component {
 render() {
 return <h1>Hello World {this.props.user}</h1>;
 }
}

The parent component can send props to the Hello component in the following way:

<Hello user="John" />

When the Hello component is rendered, it shows the Hello World John text.

The state can be changed inside the component. The initial value of the state is given in the
component's constructor. The state can be accessed by using the this.state object. The
scope of the state is the component, so it cannot be used outside the component in which it
is defined. As you can see in the following example, the props are passed to the
constructor as an argument, and the state is initialized in the constructor. The value of the
state can then be rendered in JSX using curly brackets, {this.state.user}:

class Hello extends React.Component {
 constructor(props) {
 super(props);
 this.state = {user: 'John'}
 }

 render() {
 return <h1>Hello World {this.state.user}</h1>;
 }
}

The state can contain multiple values of different types because it is a JavaScript object, as
shown in the following example:

 constructor(props) {
 super(props);
 this.state = {firstName: 'John', lastName: 'Johnson', age: 30}
 }

Getting Started with React Chapter 7

[127]

The value of the state is changed using the setState method, as shown in the following
code:

this.setState({firstName: 'Jim', age: 31}); // Change state value

You should never update the state by using the = operator because then, React won't re-
render the component. The only way to change the state is to use the setState method,
which triggers re-rendering, as shown in the following code:

this.state.firstName = 'Jim'; // WRONG

The setState method is asynchronous, and so you cannot be sure when the state will be
updated. The setState method has a callback function that is executed when the state has
been updated.

Using the state is always optional, and it increases the complexity of the component. The
components that only have the props are called stateless components. It will always render
the same output when it has the same input, which means they are really easy to test. The
components that have both state and props are called stateful components. The following is
an example of a simple stateless component, and it is defined using a class. You can also
define it by using a function:

export default class MyTitle extends Component {
 render() {
 return (
 <div>
 <h1>{this.props.text}</h1>
 </div>
);
 };
};

// The MyTitle component can be then used in other component and text value
is passed to props
<MyTitle text="Hello" />
// Or you can use other component's state
<MyTitle text={this.state.username} />

If you are updating the state values that depend on the current state, you should pass an
update function to the setState() method instead of the object. A common way of
demonstrating this situation is the counter example shown in the following code:

// This solution might not work correctly
incrementCounter = () => {
 this.setState({count: this.state.count + 1});
}

Getting Started with React Chapter 7

[128]

// The correct way is the following
incrementCounter = () => {
 this.setState((prevState) => {
 return {count: prevState.count + 1}
 });
}

In the next section, we will learn more about React component life cycle methods

Component life cycle methods
The React component has many life cycle methods that you can override. These methods
are executed at certain phases of the component's life cycle. The names of the life cycle
methods are logical and you can almost guess when they are going to be executed—the life
cycle methods that have a will prefix are executed before an action is performed, and the
methods with a did prefix are executed right after an action is performed.

Mounting is one phase of the component life cycle. It is the moment when the component is
created and inserted into the DOM. Two life cycle methods that we have already covered
are executed when the component mounts constructor() and render().

A useful method in the mounting phase is componentDidMount(), which is called after
the component has been mounted. This method is suitable for calling some REST APIs to
get data, for example. The following sample code gives an example of using the
componentDidMount() method.

In the following example code, we first set the initial value of this.state.user to John.
Then, when the component is mounted, we change the value to Jim:

class Hello extends React.Component {
 constructor(props) {
 super(props);
 this.state = {user: 'John'}
 }

 componentDidMount() {
 this.setState({user: 'Jim'});
 }

 render() {
 return <h1>Hello World {this.state.user}</h1>;
 }
}

Getting Started with React Chapter 7

[129]

There is also a componentWillMount() life cycle method that is called before the
component is mounted, but Facebook recommends that you do not use this because it
might be used for internal development purposes.

A shouldComponentUpdate() method is called when the state or props have been
updated and before the component is rendered. The method gets new props as the first
argument and a new state as the second argument, and it returns the Boolean value, as
shown in the following code. If the returned value is true, the component will be re-
rendered; otherwise, it won't be re-rendered. This method allows you to avoid useless
renders and improves performance:

shouldComponentUpdate(nextProps, nextState) {
 // This function should return a boolean, whether the component should
re-render.
 return true;
}

A componentWillUnmount() life cycle method is called before the component is removed
from the DOM. This is a good point at which to clean resources, clear timers, or cancel
requests.

Error boundaries are the components that catch JavaScript errors in their child component
tree. They should also log these errors and show fallback in the UI. For this, there is a life
cycle method called componentDidCatch(). It works with the React components in the
same way as the standard JavaScript catch block.

Stateless components
The React stateless component (a functional component) is just a pure JavaScript function
that takes props as an argument and returns a react element. The following example
shows how a stateless component is used by using the arrow function:

import React from 'react';

const HeaderText = (props) => {
 return (
 <h1>
 {props.text}
 </h1>
)
}

export default HeaderText;

Getting Started with React Chapter 7

[130]

Now, when you use functions to define a React component, you don't have to use the this
keyword. A stateless component defined using a function doesn't have life cycle methods.
For example, in the previous HeaderText example, you can see that there is no render()
method.

Our HeaderText example component is called a pure component. A component is said to
be pure if its return value is consistently the same given the same input values. React has
introduced React.memo(), which optimizes the performance of the pure functional
components. In the following code, we wrap our component using memo():

import React, { memo } from 'react';

const HeaderText = (props) => {
 return (
 <h1>
 {props.text}
 </h1>
)
}

export default memo(HeaderText);

Now, the component is rendered only if the value of the props is changed.
The React.memo() phrase also has a second argument, arePropsEqual(), which you can
use to customize rendering conditions, but we will not cover that here.

The benefits of the functional classes are that you write less code and they are easier to read
and understand. Unit testing is also straightforward with pure components.

React hooks
React hooks let you use the state in your components without using a class. You can write
your components by using ES6 arrow functions. Let's take a look at how the previous
counter example (mentioned in Props and the state section) can be performed using React
hooks. The hook function that lets you set a state value is called useState. It takes one
argument, which is the initial value of the state. The following example code creates a state
variable called count, and the initial value is zero.

Getting Started with React Chapter 7

[131]

The value of the state can now be updated by using the setCount function:

// count state with initial value 0
const [count, setCount] = useState(0);

The counter example now looks like the following when using setState. Here, we don't
use the render() method because we are using a function instead of a component. The
function just returns what we want to render:

import React, {useState} from 'react';

const Counter = () => {
 const [count, setCount] = useState(0);

 return (
 <div>
 <p>{count}</p>
 <button onClick={() => setCount(count + 1)}>Increment</button>
 </div>
);
};

export default Counter;

If you have multiple states, you can call the useState function multiple times, as shown in
the following code:

const [firstName, setFirstName] = useState('John');
const [lastName, setLastName] = useState('Johnson');

Now, you can update states using the setFirstName and setLastName functions, as
shown in the following code:

// Update state values
setFirstName('Jim');
setLastName('Palmer');

You can also define the state using an object, as follows:

const [name, setName] = useState({firstName: 'John', lastName: 'Johnson'});

Now, you can update both the firstName and lastName states using the setName
function, as follows:

setName({firstName: 'Jim', lastName: 'Palmer'})

Getting Started with React Chapter 7

[132]

In the following example, we use the object spread syntax (...) that was introduced in
ES2018. It copies the name of the state object and updates the firstName value to be Jim:

setName({...name, firstName: 'Jim'})

When using functions, we don't have class component life cycle methods. Instead, there is a
hook called useEffect that we can use to get
the componentDidMount, componentDidUpdate, and componentWillUnmount
mechanisms. When used, the useEffect hook runs after every render.

The following code shows the previous counter example, but we have added
the useEffect hook. Now, when the button is pressed, the count state value increases and
the UI is re-rendered. After each render, useEffect is invoked and we can see the value of
count in the console:

import React, {useState, useEffect} from 'react';

const Counter = () => {
 const [count, setCount] = useState(0);

 // Called after every render
 useEffect(() => {
 console.log('Counter value is now ' + count)
 });

 return (
 <div>
 <p>{count}</p>
 <button onClick={() => setCount(count + 1)}>Increment</button>
 </div>
);
};

export default Counter;

The useEffect hook has a second optional argument that you can use to prevent it from
running in every render. In the following code, we are stipulating that if the count state
value is changed (meaning that the previous and current values differ),
the useEffect function will be invoked. We can also define multiple states in the second
argument. If any of these state values are changed, the useEffect will be invoked:

// Called when count value is changed
 useEffect(() => {
 console.log('Counter value is now ' + count);
 }, [count]);

Getting Started with React Chapter 7

[133]

If you pass an empty array as a second argument, the useEffect function runs only after
the first render, as shown in the following code:

 useEffect(() => {
 console.log('Counter value is now ' + count);
 }, []);

The useEffect method can also return a function that will run before every effect, as
shown in the following code. With this mechanism, you can clean up each effect from the
previous render before running the effect next time:

 useEffect(() => {
 console.log('Counter value is now ' + count);

 return () => {
 console.log('Clean up function');
 }
 }, [count]);

Now, if you run a counter app with these changes, you can see what happens in the
console, as shown in the following screenshot:

In this section, we learned about React hooks, and we will use them in practice when we
start to implement our frontend.

Getting Started with React Chapter 7

[134]

Handling lists with React
For list handling, we introduce a new JavaScript method, map(), which is handy when you
have to manipulate a list. The map() method creates a new array containing the results of
calling a function to each element in the original array. In the following example, each array
element is multiplied by two:

const arr = [1, 2, 3, 4];

const resArr = arr.map(x => x * 2); // resArr = [2, 4, 6, 8]

The map() method also has the index second argument, which is useful when handling
lists in React. The list items in React need a unique key that is used to detect rows that have
been changed, added, or deleted.

The following example shows components that transform the array of integers to the array
of list items and render these in the ul element. The component is now defined using the
ES6 function:

import React from 'react';

const MyList = () => {
 const data = [1, 2, 3, 4, 5];
 const rows = data.map((number, index) =>
 <li key={index}>Listitem {number}
);

 return (
 <div>
 {rows}
 </div>
);
};

export default MyList;

The following screenshot shows what the component looks like when it is rendered:

Getting Started with React Chapter 7

[135]

If the data is an array of objects, it would be nicer to present the data in table format. We do
this in roughly the same way as we did with the list, but now we just map the array to table
rows and render these in the table element, as shown in the following component code:

import React from 'react';

const MyList = () => {
 const data = [{brand: 'Ford', model: 'Mustang'},
 {brand:'VW', model: 'Beetle'}, {brand: 'Tesla', model: 'Model S'}];
 const tableRows = data.map((item, index) =>
 <tr key={index}><td>{item.brand}</td><td>{item.model}</td></tr>
);

 return (
 <div>
 <table><tbody>{tableRows}</tbody></table>
 </div>
);
};

export default MyList;

The following screenshot shows what the component looks like when it is rendered:

Now, you should see the data in the HTML table.

Handling events with React
Event handling in React is similar to handling DOM element events. The difference
compared to HTML event handling is that event naming uses camelCase in React. The
following sample component code adds an event listener to the button and shows an alert
message when the button is pressed:

import React from 'react';

const MyComponent = () => {
 // This is called when the button is pressed
 const buttonPressed = () => {

Getting Started with React Chapter 7

[136]

 alert('Button pressed');
 }
 return (
 <div>
 <button onClick={buttonPressed}>Press Me</button>
 </div>
);
};

export default MyComponent;

In React, you cannot return false from the event handler to prevent default behavior.
Instead, you should call the preventDefault() method. In the following example, we are
using a form, and we want to prevent form submission:

import React from 'react';

const MyForm = () => {
 // This is called when the form is submitted
 const handleSubmit = (event) => {
 alert('Form submit');
 event.preventDefault(); // Prevents default behavior
 }

 return (
 <form onSubmit={handleSubmit}>
 <input type="submit" value="Submit" />
 </form>
);
};

export default MyForm;

Now, when you press the Submit button, you can see the alert and the form will not be
submitted.

Handling forms with React
Form handling is a little bit different with React. An HTML form will navigate to the next
page when it is submitted. Oftentimes, we will want to invoke a JavaScript function that
has access to form data after submission and avoid navigating to the next page. We already
covered how to avoid using submit in the previous section using preventDefault().

Getting Started with React Chapter 7

[137]

Let's first create a minimalistic form with one input field and the Submit button. In order to
get the value of the input field, we use the onChange event handler. We use
the useState hook to create a state variable called text. When the value of the input field
is changed, the new value will be saved to the state.

The setText(event.target.value) statement gets the value from the input field and
saves it to the state. Finally, we will show the typed value when a user presses the Submit
button. The following is the source code for our first form:

import React, { useState } from 'react';

const MyList = () => {
 const [text, setText] = useState('');

 // Save input box value to state when it has been changed
 const inputChanged = (event) => {
 setText(event.target.value);
 }

 const handleSubmit = (event) => {
 alert(`You typed: ${text}`);
 event.preventDefault();
 }

 return (
 <form onSubmit={handleSubmit}>
 <input type="text" onChange={inputChanged}
 value={text}/>
 <input type="submit" value="Press me"/>
 </form>
);
};

export default MyList;

Getting Started with React Chapter 7

[138]

The following is a screenshot of our form component after the Submit button has been
pressed:

Now is a good time to look at the React developer tools, which are handy tools for
debugging React apps. If we open the React developer tools with our React form app and
type something into the input field, we can see how the value of the state changes. We can
inspect the current value of both the props and the state. The following screenshot shows
how the state changes when we type something into the input field:

Getting Started with React Chapter 7

[139]

Typically, we have more than one input field in the form. One way to handle multiple input
fields is to add as many change handlers as we have input fields, but this creates a lot of
boilerplate code, which we want to avoid. Therefore, we add the name attributes to our
input fields. We can utilize this in the change handler to identify which input field triggers
the change handler. The name attribute value of the input field must be the same as the
name of the state in which we want to save the value.

First, we introduce a state called user using the useState hook, as shown in the following
code. The user state is an object with three attributes: firstName, lastName, and email:

const [user, setUser] = useState({firstName: '', lastName: '', email: ''});

The input change handler now looks like the following code. If the input field that triggers
the handler is the first name field, then event.target.name is firstName, and the typed
value will be saved to the state object's firstName field. Here, we also use the object
spread syntax that was introduced in the React hooks section. In this way, we can handle all
input fields with the one change handler:

 const inputChanged = (event) => {
 setUser({...user, [event.target.name]: event.target.value});
 }

The following is the full source code of the component:

import React, { useState } from 'react';

const MyForm = () => {
 const [user, setUser] = useState({firstName: '', lastName: '', email:
''});

 // Save input box value to state when it has been changed
 const inputChanged = (event) => {
 setUser({...user, [event.target.name]: event.target.value});
 }

 const handleSubmit = (event) => {
 alert(`Hello ${user.firstName} ${user.lastName}`);
 event.preventDefault();
 }

 return (
 <form onSubmit={handleSubmit}>
 <label>First name </label>
 <input type="text" name="firstName" onChange={inputChanged}
 value={user.firstName}/>

 <label>Last name </label>

Getting Started with React Chapter 7

[140]

 <input type="text" name="lastName" onChange={inputChanged}
 value={user.lastName}/>

 <label>Email </label>
 <input type="email" name="email" onChange={inputChanged}
 value={user.email}/>

 <input type="submit" value="Press me"/>
 </form>
);
};

export default MyForm;

The following is a screenshot of our form component after the Submit button has been
pressed:

Now, we know how to handle forms with React, and we will use these skills later when we
implement our frontend.

Summary
In this chapter, we started to learn about React, which we will be using to build our
frontend. Before starting to develop with React, we covered the basics, such as the React
component, JSX, props, the state, and hooks. In our frontend development, we use ES6,
which makes our code cleaner. We then went through the features that we need for further
development. We also learned how to handle forms and events with React.

In the next chapter, we will focus on networking with React. We will also be using the
GitHub REST API to learn how to consume a RESTful web service with React.

Getting Started with React Chapter 7

[141]

Questions
What is the React component?1.
What are the state and props?2.
How does data flow in the React app?3.
What is the difference between stateless and stateful components?4.
What is JSX?5.
What are component life cycle methods?6.
How should we handle events in React?7.
How should we handle forms in React?8.

Further reading
Packt has the following great resources for learning about React:

Getting Started with React, by Doel Sengupta, Manu Singhal, Et
al: https://www.packtpub.com/web-development/getting-started-react
React 16 Essentials - Second Edition, by Adam Boduch and Artemij
Fedosejev: https:/ ​/ ​www. ​packtpub. ​com/ ​web- ​development/ ​react- ​16-
essentials- ​second- ​edition

https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition

8
Consuming the REST API with

React
This chapter explains networking with React. We will learn about promises, which make
asynchronous code cleaner and more readable. For networking, we will use the fetch and
axios libraries. As an example, we use the GitHub REST API to demonstrate how to
consume RESTful web services with React.

In this chapter, we will cover the following topics:

Using promises
Using the fetch API
Using the axios library
Practical examples
How to handle responses from the REST API

Technical requirements
In this book, we are using the Windows operating system, but all tools are available for
Linux and macOS as Node.js.

The following GitHub link will also be required: https:/ ​/ ​github. ​com/ ​PacktPublishing/
Hands-​On-​Full-​Stack- ​Development- ​with- ​Spring- ​Boot- ​2-​and- ​React- ​Second- ​Edition/
tree/​master/​Chapter08.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter08

Consuming the REST API with React Chapter 8

[143]

Using promises
The traditional way to handle an asynchronous operation is to use callback functions for
the success or failure of the operation. One of the callback functions is called,
depending on the result of the call. The following example shows the idea of using the
callback function:

function doAsyncCall(success, failure) {
 // Do some api call
 if (SUCCEED)
 success(resp);
 else
 failure(err);
}

success(response) {
 // Do something with response
}

failure(error) {
 // Handle error
}

doAsyncCall(success, failure);

A promise is an object that represents the result of an asynchronous operation. The use of
promises simplifies the code when executing asynchronous calls. Promises are non-
blocking.

A promise can be in one of three states:

Pending: Initial state
Fulfilled: Successful operation
Rejected: Failed operation

With promises, we can execute asynchronous calls if the API we are using supports
promises. In the next example, the asynchronous call is done and, when the response is
returned, the function inside then is executed and takes the response as an argument:

doAsyncCall()
.then(response => // Do something with the response);

Consuming the REST API with React Chapter 8

[144]

You can chain many instances of then together, which means that you can run multiple
asynchronous operations one after another:

doAsyncCall()
.then(response => // Get some result from the response)
.then(result => // Do something with the result);

You can also add error handling to promises by using catch():

doAsyncCall()
.then(response => // Get some result from the response)
.then(result => // Do something with result);
.catch(error => console.error(error))

There is a more modern way to handle asynchronous calls, involving async/await, which
was introduced in ECMAScript 2017. As yet, it is not as widely supported by browsers as
promises. async/await is actually based on the promises. To use async/await, you have
to define an async function that can contain await expressions. The following is an
example of an asynchronous call with async/await. As you can see, you can write the code
in a similar way to synchronous code:

doAsyncCall = async () => {
 const response = await fetch('http://someapi.com');
 const result = await response.json();
 // Do something with the result
}

For error handling, you can use try…catch with async/await, as shown in the following
example:

doAsyncCall = async () => {
 try {
 const response = await fetch('http://someapi.com');
 const result = await response.json();
 // Do something with the result
 }
 catch(err) {
 console.error(err);
 }
}

Now, we can start to learn about the fetch API, which we can use to make requests in our
React apps.

Consuming the REST API with React Chapter 8

[145]

Using the fetch API
With the fetch API, you can make web requests. The idea of the fetch API is similar to
traditional XMLHttpRequest, but the fetch API also supports promises, which makes it
more straightforward to use. You don't have to install any libraries if you are using fetch.

The fetch API provides a fetch() method that has one mandatory argument, which is
the path of the resource you are calling. In the case of a web request, it will be the URL of
the service. For a simple GET method call, which returns a JSON response, the syntax is the
following. The fetch() method returns a promise that contains the response. You can use
the json() method to parse the JSON body from the response:

fetch('http://someapi.com')
.then(response => response.json())
.then(result => console.log(result));
.catch(error => console.error(error))

To use another HTTP method, such as POST, you can define it in the second argument of
the fetch method. The second argument is the object where you can define multiple
request settings. The following source code makes the request using the POST method:

fetch('http://someapi.com', {method: 'POST'})
.then(response => response.json())
.then(result => console.log(result))
.catch(error => console.error(error));

You can also add headers inside the second argument. The following fetch call contains
the 'Content-Type' : 'application/json' header:

fetch('http://someapi.com',
 {
 method: 'POST',
 headers:{'Content-Type': 'application/json'}
 }
.then(response => response.json())
.then(result => console.log(result))
.catch(error => console.error(error));

If you have to send JSON-encoded data inside the request body, the syntax is the following:

fetch('http://someapi.com',
 {
 method: 'POST',
 headers:{'Content-Type': 'application/json'},
 body: JSON.stringify(data)
 }

Consuming the REST API with React Chapter 8

[146]

.then(response => response.json())

.then(result => console.log(result))

.catch(error => console.error(error));

The fetch API is not the only way to execute requests in the React app. There are other
libraries that you can use as well, and, in the next topic, we will learn how to use one such
popular library called axios.

Using the axios library
You can also use other libraries for network calls. One very popular library
is axios (https:/​/ ​github. ​com/ ​axios/ ​axios), which you can install to your React app with
npm:

npm install axios

You have to execute the following import axios command in your React component
before using it:

import axios from 'axios';

The axios library has some benefits, such as automatic transformation for JSON data. The
following code shows the example call with axios:

axios.get('http://someapi.com')
.then(response => console.log(response))
.catch(error => console.log(error));

The axios library has its own call methods for the different HTTP methods. For example, if
you want to make a POST request and send an object in the body, axios provides
the axios.post method:

axios.post('http://someapi.com', {newObject})
.then(response => console.log(response))
.catch(error => console.log(error));

Now, we are ready to move on to practical examples involving networking with React.

https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios

Consuming the REST API with React Chapter 8

[147]

Practical examples
We will go through two examples of using some open REST APIs. First, we will make a
React app that shows the current weather in London. The weather is fetched from
OpenWeatherMap (https:/ ​/​openweathermap. ​org/ ​). You need to register
with OpenWeatherMap to get an API key. We will use a free account as that is sufficient
for our needs. When you have registered, navigate to your account info to find the API
keys tab. There, you'll see the API key that you need for your React weatherapp:

Let's create a new React app with create-react-app. Open PowerShell, or another
terminal you are using, and type the following command:

npx create-react-app weatherapp

Move to the weatherapp folder:

cd weatherapp

Start your app with the following command:

npm start

https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/

Consuming the REST API with React Chapter 8

[148]

Open your project folder with VS Code and open the App.js file in the editor view.
Remove all code inside the <div className="App"></div> divider. Now, your source
code should look like the following:

import React from 'react';
import './App.css';

function App() {
 return (
 <div className="App">
 </div>
);
}

export default App;

Next, create a new component called WeatherApp in the src folder. We will use now class-
based component for fetching but you can also use functional component and use
useEffect hook for fetching. The following is the starter code of the WeatherApp
component.

import React, { Component } from 'react';
import './App.css';

class WeatherApp extends Component {
 render() {
 return (
 <div className="App">
 </div>
);
 }
}

export default WeatherApp;

First, we add a necessary constructor and state in the WeatherApp component. We will
show the temperature, description, and weather icon in our app. Therefore, we have to
define three state values. We will also add one boolean state to indicate the status of fetch
loading. The following is the source code of the constructor:

 constructor(props) {
 super(props);
 this.state = {temp: 0, desc: '', icon: '', loading: true}
 }

Consuming the REST API with React Chapter 8

[149]

If you have installed Reactjs code snippets to VS Code, you can create a
default constructor automatically by typing con. There are lots of different
shortcuts for typical React methods, such
as cdm for componentDidMount().

When you are using a REST API, you should first inspect the response to be able to get
values from the JSON data. In the following example, you can see the address that returns
the current weather for London. Copy the address to a browser and you can see the JSON
response data:

api.openweathermap.org/data/2.5/weather?q=London&units=Metric&APIkey=YOUR_K
EY

From the response, you can see that temp can be accessed using main.temp. Then, you can
see that description and icon are inside the weather array, which has only one
element, and we can access it using weather[0].description and weather[0].icon:

Consuming the REST API with React Chapter 8

[150]

The REST API call is executed using fetch in the componentDidMount() life cycle
method. After the successful response, we save the weather data to the state and change
the loading state to false. After the state has been changed, the component will be re-
rendered. We will implement the render() method in the next step. The following is the
source code of the componentDidMount() method:

 componentDidMount() {
 fetch('http://api.openweathermap.org/data/2.5/weather?
 q=London&units=Metric
 &APIkey=YOUR_KEY')
 .then(response => response.json())
 .then(responseData => {
 this.setState({
 temp: responseData.main.temp,
 desc: responseData.weather[0].description,
 icon: responseData.weather[0].icon,
 loading: false
 })
 })
 .catch(err => console.error(err));
 }

After you have added the componentDidMount() method, the request is executed when
the component is mounted. We can check that everything is done correctly using the React
developer tool. Open your app in a browser and open your browser developer tool's React
tab. Now, you can see that the state is updated with the values from the response:

Consuming the REST API with React Chapter 8

[151]

You can also check from the Network tab that the request status is 200 OK. Finally, we
implement the render() method to show the weather values. We are using conditional
rendering; otherwise, we get an error because we don't have image code in the first render
call and the image upload won't succeed. To show the weather icon, we have to
add http://openweathermap.org/img/w/ before the icon code, and .png after the icon
code. Then, we can set the concatenated image URL to the img element's src attribute.
Temperature and Description are shown in the paragraph element. The °C HTML entity
shows the degree Celsius symbol:

 render() {
 const imgSrc =
`http://openweathermap.org/img/w/${this.state.icon}.png`;

 if (this.state.loading) {
 return <p>Loading</p>;
 }
 else {
 return (
 <div className="App">
 <p>Temperature: {this.state.temp} °C</p>
 <p>Description: {this.state.desc}</p>

 </div>
);
 }
 }

Finally, import WeatherApp to App.js file and render it:

import React from 'react';
import './App.css';
import WeatherApp from './WeatherApp';

function App() {
 return (
 <div className="App">
 <WeatherApp />
 </div>
);
}

export default App;

Consuming the REST API with React Chapter 8

[152]

Now, your app should be ready. When you open it in a browser, it should look like the
following screenshot:

The source code for the entire WeatherApp.js file appears as follows:

import React, { Component } from 'react';
import './App.css';

class WeatherApp extends Component {
 constructor(props) {
 super(props);
 this.state = {temp: 0, desc: '', icon: '', loading: true}
 }

 componentDidMount() {
 fetch('http://api.openweathermap.org/data/2.5/weather?
 q=London&units=Metric&APIkey=YOUR_KEY')
 .then(response => response.json())
 .then(responseData => {
 this.setState({
 temp: responseData.main.temp,
 desc: responseData.weather[0].description,
 icon: responseData.weather[0].icon,
 loading: false
 });
 });
 }
 render() {
 const imgSrc = 'http://openweathermap.org/img/w/' +
 this.state.icon + '.png';

 if (this.state.loading) {
 return <p>Loading</p>;
 }
 else {
 return (
 <div className="App">
 <p>Temperature: {this.state.temp} °C</p>
 <p>Description: {this.state.desc}</p>

Consuming the REST API with React Chapter 8

[153]

 </div>
);
 }
 }
}

export default WeatherApp;

In this second example, we are going to use the GitHub API to fetch repositories according
to a keyword. Following the same steps as in the previous example, create a new React app
called restgithub. Start the app and open the project folder with VS Code.

Remove the extra code inside the <div className="App"></div> divider from the
App.js file and, again, your App.js code should look like the following sample code:

import React from 'react';
import './App.css';

function App() {
 return (
 <div className="App">
 </div>
);
}

export default App;

The URL of the GitHub REST API is the following:

https://api.github.com/search/repositories?q=KEYWORD

Let's inspect the JSON response by typing the URL into a browser and using the react
keyword. From the response, we can see that repositories are returned as a JSON array
called items. From the individual repositories, we will show the full_name
and html_url values.

Consuming the REST API with React Chapter 8

[154]

We will present the data in the table and use the map function to transform the values to
table rows, as shown in the previous chapter:

We are going to make the REST API call with the keyword from the user input. Therefore,
we can't make the REST API call after the first render because, in that phase, we don't have
the user input available. One way to implement this is to create an input field and button.
The user types the keyword into the input field and the REST API call is done when the
button is pressed. We need two states, one for the user input, and one for the data from the
JSON response. Now, we are using functional component. The following is the source code
that introduce two states called data and keyword using useState hook. The type of data
state is an array because repositories are returned as JSON arrays in the response:

const [data, setData] = useState([]);
const [keyword, setKeyword] = useState('');

Consuming the REST API with React Chapter 8

[155]

Next, we implement the input field and the button in the return statement. We also have
to add a change listener to our input field to be able to save the input value to state, called
keyword. The button has a click listener that invokes the function that will do the REST API
call with the given keyword. Note, we don't have to use this keyword in the functional
component:

const fetchData = () => {
 // REST API call comes here
}
const handleChange = (e) => {
 setKeyword(e.target.value);
}

return (
 <div className="App">
 <input type="text" onChange={handleChange} />
 <button onClick={fetchData} value={keyword} >fetch</button>
 </div>
);

In the fetchData function, we concatenate the url and keyword state by using template
literals. Then, we save the items array from the response to the state, called data. The
following is the source code of the fetchData function:

const fetchData = () => {
 const url = `https://api.github.com/search/repositories?q=${keyword}`;
 fetch(url)
 .then(response => response.json())
 .then(responseData => {
 setData(responseData.items);
 });
}

We first use the map function to transform the data state to table rows. The url repository
will be the href value of the link element. The html table is also added to the return
statement:

const tableRows = data.map((item, index) =>
 <tr key={index}><td>{item.full_name}</td>
 <td>{item.html_url}</td></tr>);

return (
 <div className="App">
 <input type="text" onChange={handleChange} />
 <button onClick={fetchData} value={keyword} >fetch</button>
 <table><tbody>{tableRows}</tbody></table>

Consuming the REST API with React Chapter 8

[156]

 </div>
);

The following screenshot shows the final app when using the React keyword in the REST
API call:

The source code of the whole App.js file looks like the following:

import React, { useState } from 'react';
import './App.css';

function App() {
 const [data, setData] = useState([]);
 const [keyword, setKeyword] = useState('');

 const fetchData = () => {
 const url = `https://api.github.com/search/repositories?q=${keyword}`;
 fetch(url)
 .then(response => response.json())
 .then(responseData => {
 setData(responseData.items);

Consuming the REST API with React Chapter 8

[157]

 });
 }

 const handleChange = (e) => {
 setKeyword(e.target.value);
 }

 const tableRows = data.map((item, index) =>
 <tr key={index}><td>{item.full_name}</td>
 <td>{item.html_url}</td></tr>);

 return (
 <div className="App">
 <input type="text" onChange={handleChange} />
 <button onClick={fetchData} value={keyword} >fetch</button>
 <table><tbody>{tableRows}</tbody></table>
 </div>
);
}

export default App;

Now, we have learned about networking with React and we will utilize these skills in the
frontend implementation.

Summary
In this chapter, we focused on networking with React. We started with promises, which
make asynchronous network calls easier to implement. This a cleaner way to handle calls,
and much better than using traditional callback functions.

In this book, we are using the fetch API for networking. Therefore, we went through the
basics of using fetch. We implemented two practical React apps using the fetch API to
call REST APIs and we presented the response data in the browser.

In the next chapter, we will look at some useful React components that we are going to use
in our frontend.

Consuming the REST API with React Chapter 8

[158]

Questions
What is a promise?1.
What is fetch?2.
How should you call the REST API from the React app?3.
How should you handle the response of the REST API call?4.

Further reading
Packt has other great resources available for learning about React. These are as follows:

Getting Started with React, by Doel Sengupta, Manu Singhal, et al (https:/ ​/ ​www.
packtpub. ​com/ ​web- ​development/ ​getting- ​started- ​react)
React 16 Essentials – Second Edition, by Adam Boduch, and Artemij Fedosejev
(https:/ ​/ ​www. ​packtpub. ​com/ ​web- ​development/ ​react- ​16-​essentials- ​second-
edition)

https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition

9
Useful Third-Party Components

for React
React is component-based, and we can find a lot of useful third-party components that we
can use in our apps. In this chapter, we are going to look at several components that we are
going to use in our frontend. We will examine how to find suitable components and how
you can then use these in your own apps.

In this chapter, we will cover the following topics:

How to find third-party React components
How to install components
How to use the React Table component
How to use the Material-UI component library
How to manage routing in React

Technical requirements
In this book, we will be using the Windows operating system, but all the tools are available
for Linux and macOS as well.

Node.js also has to be installed, and the following GitHub link will be required: https:/ ​/
github.​com/​PacktPublishing/ ​Hands- ​On- ​Full-​Stack- ​Development- ​with- ​Spring- ​Boot- ​2-
and-​React-​Second- ​Edition/ ​tree/ ​master/ ​Chapter09.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter09

Useful Third-Party Components for React Chapter 9

[160]

Using third-party React components
There are lots of nice React components available for different purposes. Our first task is to
find a suitable component for your needs. One good site for searching components is
JS.coach (https:/ ​/​js. ​coach/ ​). You just have to type in a keyword, search, and select React
from the list of frameworks. In the following screenshot, you can see a search of the table
components for React:

https://js.coach/
https://js.coach/
https://js.coach/
https://js.coach/
https://js.coach/
https://js.coach/
https://js.coach/
https://js.coach/

Useful Third-Party Components for React Chapter 9

[161]

Another good source for React components is awesome-react-components (https:/ ​/
github.​com/​brillout/ ​awesome- ​react- ​components).

Components often have good documentation that helps you to utilize them in your own
React app. Let's see how we can install a third-party component to our app and start to use
it. Navigate to the JS.coach site, type list to search the input field, and filter by React.
From the search results, you can find the list component, called react-tiny-virtual-list:

https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components

Useful Third-Party Components for React Chapter 9

[162]

Click the component link to see more detailed information pertaining to the component.
Quite often, you can find the installation instructions there and some simple examples of
how to use the component. The info page often provides the address of a component's
website or GitHub repository, where you can find the full documentation:

As you can see from the component's info page, components are installed using npm. The
syntax of the command is as follows:

npm install component_name

Or, if you are using yarn, it is as follows:

yarn add component_name

Useful Third-Party Components for React Chapter 9

[163]

The npm install and yarn add commands save the component's dependency to
the package.json file that is in the root folder of your React app.

Now, we install the react-tiny-virtual-list component to the myapp React app that
we created in Chapter 6, Setting Up the Environment and Tools - Frontend. You then have to
move to your app root folder and type the following command:

npm install react-tiny-virtual-list

If you open the package.json file from your app root folder, you can see that the
component is now added to the dependencies:

{
 "name": "myapp",
 "version": "0.1.0",
 "private": true,
 "dependencies": {
 "react": "^16.8.6",
 "react-dom": "^16.8.6",
 "react-scripts": "3.0.1",
 "react-tiny-virtual-list": "^2.2.0"
 },
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject"
 },
 "eslintConfig": {
 "extends": "react-app"
 },
 "browserslist": {
 "production": [
 ">0.2%",
 "not dead",
 "not op_mini all"
],
 "development": [
 "last 1 chrome version",
 "last 1 firefox version",
 "last 1 safari version"
]
 }
}

Useful Third-Party Components for React Chapter 9

[164]

Installed components are saved to the node_modules folder in your app. If you open that
folder, you should find the react-tiny-virtual-list folder:

Now, if you push your React app source code to GitHub, you should not include
node_modules because that folder is large. create-react-app contains the .gitignore
file, which excludes the node_modules folder from the repository. The content of the
.gitignore file appears as follows:

See https://help.github.com/ignore-files/ for more about ignoring files.

dependencies
/node_modules

testing
/coverage

production
/build

misc
.DS_Store
.env.local
.env.development.local
.env.test.local
.env.production.local

npm-debug.log*
yarn-debug.log*
yarn-error.log*

Useful Third-Party Components for React Chapter 9

[165]

The idea is that when you clone your app from the GitHub, you type the npm
install command, which reads dependencies from the package.json file and
downloads these to your app.

The final step to start using your installed component is to import it into the files where you
are using it:

import VirtualList from 'react-tiny-virtual-list';

You have now learned how to install and start to use React components.

React Table
React Table (https:/ ​/​react- ​table. ​js. ​org) is a flexible table component for React apps. It
has many useful features, such as filtering, sorting, and pivoting. Let's use the GitHub REST
API app that we created in Chapter 8, Consuming the REST API with React:

To install the react-table component, open PowerShell and move to the1.
restgithub folder, which is the root folder of the app. Install the component by
typing the following command:

 npm install react-table

Open the App.js file with VS Code and remove tablerows and the table2.
inside the return. Now, the App.js file should appear as follows:

import React, { useState } from 'react';
import './App.css';

function App() {
 const [data, setData] = useState([]);
 const [keyword, setKeyword] = useState('');

 const fetchData = () => {
 const url =
`https://api.github.com/search/repositories?q=${keyword}`;
 fetch(url)
 .then(response => response.json())
 .then(responseData => {
 setData(responseData.items);
 });
 }
 const handleChange = (e) => {
 setKeyword(e.target.value);

https://react-table.js.org
https://react-table.js.org
https://react-table.js.org
https://react-table.js.org
https://react-table.js.org
https://react-table.js.org
https://react-table.js.org
https://react-table.js.org
https://react-table.js.org
https://react-table.js.org
https://react-table.js.org

Useful Third-Party Components for React Chapter 9

[166]

 }

 return (
 <div className="App">
 <input type="text" onChange={handleChange} />
 <button onClick={fetchData} value={keyword}
>fetch</button>
 </div>
);
}

export default App;

Import the react-table component and style sheet by adding the following3.
lines at the beginning of the App.js file:

 import ReactTable from "react-table";
 import 'react-table/react-table.css';

To fill the React Table with data, you have to pass the data prop to the4.
component. Data can be an array or object and therefore we can use our state,
called data. Columns are defined using the columns prop, and this prop is
required:

 <ReactTable
 data={data}
 columns={columns}
 />

We will define our columns by creating an array of column objects. In a column5.
object, you have to define at least the header of the column and the data accessor.
The data accessor values come from our REST API response data. You can see
that our response data contains an object called owner, and we can show these
values using the owner.field_name syntax:

 const columns = [{
 Header: 'Name', // Header of the column
 accessor: 'full_name' // Value accessor
 }, {
 Header: 'URL',
 accessor: 'html_url',
 }, {
 Header: 'Owner',
 accessor: 'owner.login',
 }]

Useful Third-Party Components for React Chapter 9

[167]

Add the React Table component to our return statement, and then the source6.
code looks like the following:

const columns = [{
 Header: 'Name', // Header of the column
 accessor: 'full_name' // Value accessor
 }, {
 Header: 'URL',
 accessor: 'html_url',
 }, {
 Header: 'Owner',
 accessor: 'owner.login',
 }]

return (
 <div className="App">
 <input type="text" onChange={handleChange} />
 <button onClick={fetchData} value={keyword} >fetch</button>
 <ReactTable data={data} columns={columns} />
 </div>
);

Run the app and navigate to localhost:3000. The table looks quite nice. It has 7.
sorting and paging available by default, as demonstrated in the following
screenshot:

Useful Third-Party Components for React Chapter 9

[168]

Filtering is disabled by default, but you can enable it using the filterable prop in
the ReactTable component. You can also set the page size of the table:

<ReactTable
 data={this.state.data}
 columns={columns}
 filterable={true}
 defaultPageSize = {10}
/>

Now, you should see the filter element in your table. You can filter using any column, but
there is also an option to set the filtering and sorting at the column level:

You can find different props for the table and columns from the React Table website.

Cell renderers can be used to customize the content of the table cell. The following example
shows how you can render a button to a table cell. The function in the cell renderer passes
value as the argument and, in this case, the value will be full_name, which is defined in
the accessor of the column. The other option is to pass a row, which passes the whole row
object to the function. Then, you have to define the btnClick function, which is invoked
when the button is pressed and you can do something with the value that is sent to the
function:

const btnClick = (value) => {
 alert(value);
}

const columns = [{
 Header: 'Name', // Header of the column
 accessor: 'full_name' // Value accessor
}, {
 Header: 'URL',
 accessor: 'html_url',
}, {
 Header: 'Owner',

Useful Third-Party Components for React Chapter 9

[169]

 accessor: 'owner.login',
}, {
 id: 'button',
 sortable: false,
 filterable: false,
 width: 100,
 accessor: 'full_name',
 Cell: ({value}) => (<button onClick={() => {btnClick(value)}}>Press
me</button>)
}]

The following is the screenshot of the table with buttons:

Next, we will start to use the Material-UI component library, which is one of the most
popular React component libraries.

Useful Third-Party Components for React Chapter 9

[170]

Material-UI component library
Material-UI is the React component library that implements Google's material design. It
contains a lot of different components, such as buttons, lists, tables, and cards, that you can
use to achieve a nice and uniform UI. We will create a small shopping list app and style the
user interface using Material-UI components:

Create a new React app called shoppinglist :1.

npx create-react-app shoppinglist

Open the shopping list app with VS Code. Install Material-UI by typing the2.
following command in the project root folder to PowerShell or any suitable
terminal you are using:

npm install @material-ui/core

OR with yarn

yarn add @material-ui/core

Open the App.js file and remove all the code inside the App div. Now, your3.
App.js file should look like the following and you should see an empty page in
the browser:

import React from 'react';
import './App.css';

function App() {
 return (
 <div className="App">
 </div>
);
}

export default App;

We will use the Material-UI AppBar component to show the toolbar in our app.4.
Import the AppBar , ToolBar, and Typography components to your App.js file:

import AppBar from '@material-ui/core/AppBar';
import Toolbar from '@material-ui/core/Toolbar';
import Typography from '@material-ui/core/Typography';

Useful Third-Party Components for React Chapter 9

[171]

Add the following code to your App.js return statement.5.
The Typography component provides predefined type sizes and we will use this
in our toolbar text:

return (
 <div className="App">
 <AppBar position="static" color="default">
 <Toolbar>
 <Typography variant="h6" color="inherit">
 SHOPPINGLIST
 </Typography>
 </Toolbar>
 </AppBar>
 </div>
);

Now, your app should appear as follows:

In the App.js component, we only require one state to keep the shopping list6.
items. One shopping list item contains two fields—product and amount. We
also need a method to add new items to the list. The following is the source code
of the state using useState hook and the method for adding new items to the
list. In the addItem method, we are using a spread notation (...), that is used to
add a new item at the beginning of the existing array:

const [items, setItems] = React.useState([]);

const addItem = (item) => {
 setItems([item, ...items]);
}

Add a new component for adding shopping items. Create a new file7.
called AddItem.js to the root folder of the app. Let's use React Hooks in the new
component. Therefore, we use the arrow function to define our component. Add
the following code to your AddItem.js file:

import React from 'react';

const AddItem = (props) => {

Useful Third-Party Components for React Chapter 9

[172]

 return (
 <div>
 </div>
);
}

export default AddItem;

The AddItem component will use the Material-UI modal dialog for collecting the data. In
the form, we will add two input fields (product and amount) and a button that calls
the addItem function. To be able to call the addItem function, which is in
the App.js component, we have to pass it in a prop when rendering
the AddItem component. Outside the modal Dialog component, we will add a button that
opens the modal form when it is pressed. This button is the only visible element when the
component is rendered initially.

The Dialog component has one prop called open and, if the value is true, the dialog is
visible. The default value of that prop will be false and the dialog is hidden. The button
that opens the modal dialog sets the open state value to true and the dialog opens. We also
have to handle the change event of the input fields, so that we can access the values that
have been typed. When the button inside the modal form is clicked, the addItem function
is called and the modal form is closed by setting open value to false. The function creates
an object from the input field values and calls the App.js component's addItem function,
which finally adds a new item to the state array and re-renders the UI. The following steps
describe the implementation of the modal form:

We have to import the following Material-UI components for the modal1.
form: Dialog, DialogActions, DialogContent, and DialogTitle. And, as
regards the UI of the modal form, we require the following components: Button
and TextField. Add the following imports to your AddItem.js file:

import Button from '@material-ui/core/Button';
import TextField from '@material-ui/core/TextField';
import Dialog from '@material-ui/core/Dialog';
import DialogActions from '@material-ui/core/DialogActions';
import DialogContent from '@material-ui/core/DialogContent';
import DialogTitle from '@material-ui/core/DialogTitle';

Next, we will introduce one state called open by using React Hooks and two2.
functions for opening and closing the modal dialog. The default value of the
open state is false. The handleOpen function sets the open state to true, and
the handleClose function sets it to false:

const AddItem = (props) => {

Useful Third-Party Components for React Chapter 9

[173]

 const [open, setOpen] = React.useState(false);

 const handleOpen = () => {
 setOpen(true);
 }

 const handleClose = () => {
 setOpen(false);
 }

 return (
 <div>
 </div>
);
}

We will add Dialog and Button components inside the return statement. We3.
have one button outside the dialog that will be visible when the component is
rendered for the first time. When the button is pressed, it calls the handleOpen
function, which opens the dialog. Inside the dialog, we have two buttons—one
for canceling and one for adding a new item. The add button calls the addItem
function, which we will implement later.

 return (
 <div>
 <Button style={{marginTop: 10}} variant="outlined"
color="primary" onClick={handleOpen}>
 Add Item
 </Button>
 <Dialog open={open} onClose={handleClose} aria-
labelledby="form-dialog-title">
 <DialogTitle id="form-dialog-title">New Item</DialogTitle>
 <DialogContent>
 </DialogContent>
 <DialogActions>
 <Button onClick={handleClose} color="primary">
 Cancel
 </Button>
 <Button onClick={addItem} color="primary">
 Add
 </Button>
 </DialogActions>
 </Dialog>
 </div>
);

Useful Third-Party Components for React Chapter 9

[174]

To collect data from a user, we have to introduce one more state. The state is an4.
object with two attributes—product and amount. Add the following line after
the line where you introduced the open state:

 const [item, setItem] = React.useState({product: '', amount:
''});

Inside the DialogContent component, we will add two inputs to collect data5.
from a user. There, we use the TextField Material-UI component that we have
already imported. The value attributes of text fields must be the same as the state
where we want to save the typed value. In the product field, it is item.product,
and, in the amount field, it is item.amount:

<DialogContent>
 <TextField autoFocus margin="dense" value={item.product}
 onChange={handleChange} name="product" label="Product"
fullWidth />
 <TextField autoFocus margin="dense" value={item.amount}
 onChange={handleChange} name="amount" label="Amount" fullWidth
/>
</DialogContent>

Next, we have to implement the handleChange function, which is invoked when6.
we type something to the input fields. As we have already learned in Chapter 7,
Getting Started with React, the following function saves values from the input field
to the item state:

// Handle the change of input field values
const handleChange = (e) => {
 setItem({...item, [e.target.name]:e.target.value})
}

Finally, we have to add a function that calls the addItem function that we get in7.
the props and pass a new item into that function. The new item is now the item
state that contains the shopping item that the user typed in. Because we get
the addItem function from the props, we can call it using the props keyword.
Then, we will also call the handleClose function, which closes the modal dialog:

// Calls addItem function (in props) and pass item state into it.
const addItem = () => {
 props.addItem(item);
 handleClose();
}

Useful Third-Party Components for React Chapter 9

[175]

Now, our AddItem component is ready and we have to import it to our App.js8.
file and render it there. Add the following import to your App.js file:

import AddItem from './AddItem';

Add the AddItem component to the return statement in the App.js file. Pass9.
the addItem function in a prop to the AddItem component:

// App.js return
return (
 <div className="App">
 <AppBar position="static" color="default">
 <Toolbar>
 <Typography variant="h6" color="inherit">
 SHOPPINGLIST
 </Typography>
 </Toolbar>
 </AppBar>
 <AddItem addItem={addItem} />
 </div>
);

Now, if you open your app in the browser and press the Add Item button, you
will see the modal form opening and you can type a new item. The modal form is
closed when you press the ADD button:

Useful Third-Party Components for React Chapter 9

[176]

Next, we will add a list to the main page that shows our shopping items. For that,10.
we will use the Material-UI List and ListItem components. Import the
components and use ListItem in the map function where listItems are
created and render the List component. We will show the amount of product in
the secondary text of the ListItemText component:

// App.js
// Import List, ListItem and ListItemText components
import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemText from '@material-ui/core/ListItemText';

// Use List and ListItem in return
return (
 <div className="App">
 <AppBar position="static" color="default">
 <Toolbar>
 <Typography variant="h6" color="inherit">
 SHOPPINGLIST
 </Typography>
 </Toolbar>
 </AppBar>
 <AddItem addItem={addItem} />
 <List>{listItems}</List>
 </div>
);

Now, the user interface looks like the following:

Next, we will learn how to use React Router, a popular routing library.

Useful Third-Party Components for React Chapter 9

[177]

Routing
There are multiple solutions available for routing in React. The most popular one, which we
are using, is React Router (https:/ ​/ ​github. ​com/ ​ReactTraining/ ​react- ​router). For web
applications, React Router provides a package called react-router-dom.

To start using React Router, we have to install it with the following command:

npm install react-router-dom

There are four different components in react-router-dom that are required to implement
routing. BrowserRouter is the router for web-based applications. The Route component
renders the defined component if the given locations match. The following are two
examples of the Route component. The first one renders the Contact component when the
user navigates to the /contact end path. You can also use inline rendering with the Route
component, as shown in the following example:

<Route path="/contact" component={Contact} />
// Route with inline rendering
<Route path="/links" render={() => <h1>Links</h1>} />

The Switch component wraps multiple Route components. The Link component provides
navigation to your application. The following example shows the Contact link and
navigates to the /contact endpoint when the link is clicked:

<Link to="/contact">Contact</Link>

The following example shows how to use these components in practice. Let's create a new
React app, called routerapp, using create-react-app. Open the app folder with VS
Code and open the App.js file to editor view. Import components from the react-
router-dom package and remove extra code from the return statement. Following these
modifications, your App.js source code should appear as follows:

import React from 'react';
import './App.css';
import { BrowserRouter, Switch, Route, Link } from 'react-router-dom'

function App() {
 return (
 <div className="App">
 </div>
);
}

export default App;

https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router

Useful Third-Party Components for React Chapter 9

[178]

Let's first create two simple components that we can use in routing. Create two new
files, called Home.js and Contact.js, in the application root folder. Then, add headers to
the return statements to show the name of the component. The code of the component is
as follows:

// Contact.js
import React from 'react';

const Contact = () => {
 return (
 <div>
 <h1>Contact.js</h1>
 </div>
);
}

export default Contact;

// Home.js
import React from 'react';

const Home = () => {
 return (
 <div>
 <h1>Home.js</h1>
 </div>
);
}

export default Home;

Open the App.js file, and then add a router that allows us to navigate between the
components:

import React from 'react';
import './App.css';
import { BrowserRouter, Switch, Route, Link } from 'react-router-dom'
import Contact from './Contact';
import Home from './Home';

function App() {
 return (
 <div className="App">
 <BrowserRouter>
 <div>
 <Link to="/">Home</Link>{' '}
 <Link to="/contact">Contact</Link>{' '}

Useful Third-Party Components for React Chapter 9

[179]

 <Link to="/links">Links</Link>{' '}
 <Switch>
 <Route exact path="/" component={Home} />
 <Route path="/contact" component={Contact} />
 <Route path="/links" render={() => <h1>Links</h1>} />
 <Route render={() => <h1>Page not found</h1>} />
 </Switch>
 </div>
 </BrowserRouter>
 </div>
);
}

export default App;

Now, when you start the app, you will see the links and the Home component, which is
shown in the root end path (localhost:3000/) as defined in the first Route component.
The exact keyword in the first Route component means that the path must match exactly.
If you remove that, then the routing always goes to the Home component:

When you press the Contact link, the Contact component is rendered:

At this point, you have learned how to install and use third-party components with React.
These skills will be required in the following chapters when we start to build our frontend.

Useful Third-Party Components for React Chapter 9

[180]

Summary
In this chapter, we learned how to use third-party React components. We familiarized
ourselves with several components that we are going to use in our frontend. React Table is
the table component with built-in features, such as sorting, paging, and filtering. React
Skylight is the modal form component that we will use in our frontend to create forms for
adding and editing items.

Material-UI is the component library that provides multiple user interface components that
implement Google's material design. We also learned how to use React Router for routing
in React applications.

In the next chapter, we will build an environment for frontend development.

Questions
How should you find components for React?1.
How should you install components?2.
How should you use the React Table component?3.
How should you use the Material-UI component library?4.
How should you implement routing in a React application?5.

Further reading
Packt has other great resources available for learning about React. These are as follows:

Getting Started with React, by Doel Sengupta, Manu Singhal, et al (https:/ ​/ ​www.
packtpub. ​com/ ​web- ​development/ ​getting- ​started- ​react)
React 16 Essentials – Second Edition, by Adam Boduch, and Artemij Fedosejev
(https:/ ​/ ​www. ​packtpub. ​com/ ​web- ​development/ ​react- ​16-​essentials- ​second-
edition)

https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition

3
Section 3: Full Stack

Development
In this section, we will combine the Spring Boot backend and the React frontend. We will
use the Spring Boot backend that we created in Section 1, Backend Programming with Spring
Boot, to create a frontend with React. The frontend provides us with all of the
CRUD operations.

This section covers the following chapters:

Chapter 10, Setting Up the Frontend for Our Spring Boot Restful Web Service
Chapter 11, Adding CRUD Functionalities
Chapter 12, Styling the Frontend with React Material-UI
Chapter 13, Testing Your Frontend
Chapter 14, Securing Your Application
Chapter 15, Deploying Your Application
Chapter 16, Best Practices

10
Setting Up the Frontend for Our

Spring Boot RESTful Web
Service

This chapter explains the steps that are required to start the development of the frontend
part. We will first define the functionalities that we are developing. Then, we will do a
mock-up of the UI. As a backend, we will use our Spring Boot application from Chapter 5,
Securing and Testing Your Backend. We will begin development using the unsecured version
of the backend. Finally, we will create the React app, which we will use in our frontend
development.

In this chapter, we will cover the following topics:

Why a mock-up is necessary and how to go about it
Preparing our Spring Boot backend for frontend development
Creating the React app for the frontend

Technical requirements
The Spring Boot application that we created in Chapter 5, Securing and Testing Your
Backend, is required.

Node.js also has to be installed, and the code samples available at the following
GitHub link will be required to follow along with the examples in this chapter: https:/ ​/
github.​com/​PacktPublishing/ ​Hands- ​On- ​Full-​Stack- ​Development- ​with- ​Spring- ​Boot- ​2.
0-​and-​React-​Second- ​Edition/ ​tree/ ​master/ ​Chapter10.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2.0-and-React-Second-Edition/tree/master/Chapter10

Setting Up the Frontend for Our Spring Boot RESTful Web Service Chapter 10

[183]

Mocking up the UI
In the first few chapters of this book, we created a car database backend that provides the
RESTful API. Now, it is time to start building the frontend to our application. We will
create a frontend that lists cars from the database and provides paging, sorting, and
filtering. There is a button that opens the modal form to add new cars to the database. In
each row of the car table, there is a button to delete the car from the database. Table rows
are also editable, and modifications can be saved to the database by clicking the Save
button for that row. The frontend contains a link or button to export data from the table to a
CSV file.

Let's create a mock-up from our UI. There are lots of different applications for creating
mock-ups, or you could even use a pencil and paper. You can also create interactive mock-
ups to demonstrate a number of functionalities. If you have done the mock-up, it is much
easier to discuss requirements with the client before you start to write any actual code. With
the mock-up, it is also easier for the client to understand the idea of the frontend and
suggest corrections for it. Changes to the mock-up are really easy and fast to implement,
compared to modifications involving actual frontend source code.

The following screenshot shows the mock-up of our car list frontend:

Setting Up the Frontend for Our Spring Boot RESTful Web Service Chapter 10

[184]

The modal form that is opened when the user presses the New Car button looks like
the following:

Now that we have our mock-up from our UI ready, let's look at how we can prepare our
Spring Boot backend.

Preparing the Spring Boot backend
We are beginning frontend development with the unsecured version of our backend. In the
first phase, we will implement all CRUD functionalities and test that these are working
correctly. In the second phase, we will enable security in our backend and make the
modifications that are required, and finally, we will implement authentication.

Open the Spring Boot application with Eclipse, which we created in Chapter 5, Securing and
Testing Your Backend. Open the SecurityConfig.java file that defines the Spring Security
configuration. Temporarily comment out the current configuration and give everyone
access to all endpoints. Refer to the following modifications:

@Override
 protected void configure(HttpSecurity http) throws Exception {

Setting Up the Frontend for Our Spring Boot RESTful Web Service Chapter 10

[185]

 // Add this row to allow access to all endpoints
http.csrf().disable().cors().and().authorizeRequests().anyRequest().permitA
ll();
 /* Comment this out
 http.csrf().disable().cors().and().authorizeRequests()
 .antMatchers(HttpMethod.POST, "/login").permitAll()
 .anyRequest().authenticated()
 .and()
 // Filter for the api/login requests
 .addFilterBefore(new LoginFilter("/login", authenticationManager()),
 UsernamePasswordAuthenticationFilter.class)
 // Filter for other requests to check JWT in header
 .addFilterBefore(new AuthenticationFilter(),
 UsernamePasswordAuthenticationFilter.class);
 */
 }

Now, if you run the backend and test the http:/localhost:8080/api/cars endpoint
with Postman, you should get all cars in the response, as shown in the following
screenshot:

Setting Up the Frontend for Our Spring Boot RESTful Web Service Chapter 10

[186]

Now, we are ready to create our React project for the frontend.

Creating the React project for the frontend
Before we start coding the frontend, we have to create a new React app:

Open PowerShell, or any other suitable Terminal. Create a new React app by1.
typing the following command:

npx create-react-app carfront

Install the Material-UI component library by typing the following command in2.
the project's root folder:

npm install @material-ui/core

Run the app by typing the following command in the project's root folder:3.

npm start

Or, if you are using yarn, type in the following:

yarn start

Open the src folder with VS Code, remove any superfluous code, and use the4.
Material-UI Appbar in the App.js file to get the toolbar for your app. Following
the modifications, your App.js file source code should appear as follows:

import React from 'react';
import './App.css';
import AppBar from '@material-ui/core/AppBar';
import Toolbar from '@material-ui/core/Toolbar';
import Typography from '@material-ui/core/Typography';

function App() {
 return (
 <div className="App">
 <AppBar position="static" color="default">
 <Toolbar>
 <Typography variant="h6" color="inherit">
 CarList
 </Typography>
 </Toolbar>
 </AppBar>
 </div>

Setting Up the Frontend for Our Spring Boot RESTful Web Service Chapter 10

[187]

);
}

export default App;

And your frontend starting point will look like the following:

We have now created the React project for our frontend and can continue with
further development.

Summary
In this chapter, we started the development of our frontend using the backend that we
created in Chapter 5, Securing and Testing Your Backend. We defined the functionalities of
the frontend and created a mock-up of the user interface. We started frontend development
with an unsecured version of the backend, and we therefore made some modifications to
our Spring Security configuration class. We also created the React app that we are going to
use during development.

In the next chapter, we will start to add CRUD functionalities to our frontend.

Setting Up the Frontend for Our Spring Boot RESTful Web Service Chapter 10

[188]

Questions
Why should you do a mock-up of the UI?1.
How should you disable Spring Security from the backend?2.

Further reading
Packt has other great resources available for learning about React. These are as follows:

Getting Started with React, by Doel Sengupta, Manu Singhal, et al (https:/ ​/ ​www.
packtpub. ​com/ ​web- ​development/ ​getting- ​started- ​react)
React 16 Essentials – Second Edition, by Adam Boduch, and Artemij Fedosejev
(https:/ ​/ ​www. ​packtpub. ​com/ ​web- ​development/ ​react- ​16-​essentials- ​second-
edition)

https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition

11
Adding CRUD Functionalities

This chapter describes how we can implement CRUD functionalities to our frontend. We
are going to use the components that we learned about in Chapter 9, Useful Third-Party
Components for React. We will fetch data from our backend and present the data in a table.
Then, we will implement the delete, edit, and add functionalities. In the final part of this
chapter, we will add features so that we can export data to a CSV file.

In this chapter, we will cover the following topics:

Creating the list page
How to delete, add, and update data using the REST API
How to show toast messages to the user
How to export data to the CSV file from the React app

Technical requirements
The Spring Boot application that we created in Chapter 10, Setting Up the Frontend for Our
Spring Boot RESTful Web Service (the unsecured backend), is required, as is the React app
that we created in Chapter 10, Setting Up the Frontend for Our Spring Boot RESTful Web
Service (carfront).

The following GitHub link will also be required: https:/ ​/ ​github. ​com/ ​PacktPublishing/
Hands-​On-​Full-​Stack- ​Development- ​with- ​Spring- ​Boot- ​2-​and- ​React- ​Second- ​Edition/
tree/​master/​Chapter11.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter11

Adding CRUD Functionalities Chapter 11

[190]

Creating the list page
In the first phase, we will create the list page to show cars with paging, filtering, and
sorting features. Run your Spring Boot backend. The cars can be fetched by sending the GET
request to the http://localhost:8080/api/cars URL, as shown in Chapter 4, Creating
a RESTful Web Service with Spring Boot.

Now, let's inspect the JSON data from the response. The array of cars can be found in the
_embedded.cars node of the JSON response data:

Adding CRUD Functionalities Chapter 11

[191]

Once we know how to fetch cars from the backend, we are ready to implement the list page
to show the cars. The following steps describe this in practice:

Open the carfront React app with VS Code (the React app we created in the1.
previous chapter).
When the app has multiple components, it is recommended that you create a2.
folder for them. Create a new folder called components in the src folder. With
VS Code, you can create a folder by right-clicking the folder in the sidebar file
explorer and selecting New Folder from the menu:

Adding CRUD Functionalities Chapter 11

[192]

Create a new file called Carlist.js in the components folder. Your project3.
structure should look like the following:

Open the Carlist.js file in the editor view and write the base code of the4.
component, as follows:

import React, { Component } from 'react';

class Carlist extends Component {
 render() {
 return (
 <div></div>
);
 }
}

export default Carlist;

Adding CRUD Functionalities Chapter 11

[193]

We need a state for the cars that are fetched from the REST API. Therefore, we5.
have to add the constructor and define a one array-type state value:

constructor(props) {
 super(props);
 this.state = { cars: [] };
}

Execute fetch in the componentDidMount() life cycle method. The cars from6.
the JSON response data will be saved to the state, called cars:

 componentDidMount() {
 fetch('http://localhost:8080/api/cars')
 .then((response) => response.json())
 .then((responseData) => {
 this.setState({
 cars: responseData._embedded.cars,
 });
 })
 .catch(err => console.error(err));
 }

Use the map function to transform car objects into table rows in the render()7.
method and add the table element:

render() {
 const tableRows = this.state.cars.map((car, index) =>
 <tr key={index}>
 <td>{car.brand}</td>
 <td>{car.model}</td>
 <td>{car.color}</td>
 <td>{car.year}</td>
 <td>{car.price}</td>
 </tr>
);

 return (
 <div className="App">
 <table>
 <tbody>{tableRows}</tbody>
 </table>
 </div>
);
}

Adding CRUD Functionalities Chapter 11

[194]

Finally, we have to import and render the Carlist component in our App.js8.
file. In the App.js file, add the import statement and then add the Carlist
component to the return statement:

import React from 'react';
import './App.css';
import AppBar from '@material-ui/core/AppBar';
import Toolbar from '@material-ui/core/Toolbar';
import Typography from '@material-ui/core/Typography';
import Carlist from './components/Carlist';

function App() {
 return (
 <div className="App">
 <AppBar position="static" color="default">
 <Toolbar>
 <Typography variant="h6" color="inherit">
 CarList
 </Typography>
 </Toolbar>
 </AppBar>
 <Carlist />
 </div>
);
}

export default App;

Now, if you start the React app with the npm start command, you should see the
following list page:

Adding CRUD Functionalities Chapter 11

[195]

The server URL address can repeat multiple times when we create more CRUD
functionalities, and it will change when the backend is deployed to a server other than the
localhost. Therefore, it is better to define it as a constant. Then, when the URL value
changes, we have to modify it in one place.

Let's create a new file, constants.js, in the root folder of our app:

Open the file in the editor and add the following line to the file:1.

export const SERVER_URL = 'http://localhost:8080/'

Then, we will import it to our Carlist.js file and use it in the fetch method:2.

//Carlist.js
// Import server url (named import)
import {SERVER_URL} from '../constants.js'

// Use imported constant in the fetch method
fetch(SERVER_URL + 'api/cars')

Finally, your Carlist.js file source code should appear as follows:3.

import React, { Component } from 'react';
import {SERVER_URL} from '../constants.js'

class Carlist extends Component {
 constructor(props) {
 super(props);
 this.state = { cars: []};
 }

 componentDidMount() {
 fetch(SERVER_URL + 'api/cars')
 .then((response) => response.json())
 .then((responseData) => {
 this.setState({

Adding CRUD Functionalities Chapter 11

[196]

 cars: responseData._embedded.cars,
 });
 })
 .catch(err => console.error(err));
 }
 render() {
 const tableRows = this.state.cars.map((car, index) =>
 <tr key={index}><td>{car.brand}</td>
 <td>{car.model}</td><td>{car.color}</td>
 <td>{car.year}</td><td>{car.price}</td></tr>);

 return (
 <div className="App">
 <table><tbody>{tableRows}</tbody></table>
 </div>
);
 }
}

export default Carlist;

Now, we will use React Table to get the paging, filtering, and sorting features out of the
box. Stop the development server by pressing Ctrl + C in the Terminal and type the
following command to install React Table. Post installation, restart the app:

npm install react-table

Then, import react-table and the style sheet to your Carlist.js file:

import ReactTable from "react-table";
import 'react-table/react-table.css';

Then, remove table and tableRows from the render() method. The data prop of React
Table is this.state.cars, which contains fetched cars. We also have to define the
columns of the table, where accessor is the field of the car object and header is the text
of the header. To enable filtering, we set the filterable prop of the table to true. Refer to
the source code of the following render() method:

 render() {
 const columns = [{
 Header: 'Brand',
 accessor: 'brand'
 }, {
 Header: 'Model',
 accessor: 'model',
 }, {
 Header: 'Color',

Adding CRUD Functionalities Chapter 11

[197]

 accessor: 'color',
 }, {
 Header: 'Year',
 accessor: 'year',
 }, {
 Header: 'Price €',
 accessor: 'price',
 },]

 return (
 <div className="App">
 <ReactTable data={this.state.cars} columns={columns}
 filterable={true}/>
 </div>
);
 }

With the React Table component, we acquired all the necessary features for our table with a
small amount of coding. Now, the list page looks like the following:

Next, we will implement the delete functionality.

Adding CRUD Functionalities Chapter 11

[198]

The delete functionality
Items can be deleted from the database by sending the DELETE method request to the
http://localhost:8080/api/cars/[carid] endpoint. If we look at the JSON response
data, we can see that each car contains a link to itself and that it can be accessed from the
_links.self.href node, as shown in the following screenshot:

Adding CRUD Functionalities Chapter 11

[199]

The following steps demonstrate how to implement the delete functionality:

Here, we will create a button for each row in the table. The accessor of the button1.
will be _links.self.href, which we can use to call the delete function that we
will create soon. But first, add a new column to the table using Cell to render the
button. Refer to the following source code. We don't want to enable sorting and
filtering for the button column. Therefore, these props are set to false. The
button invokes the onDelClick function when pressed and sends a link to the
car as an argument:

 const columns = [{
 Header: 'Brand',
 accessor: 'brand'
 }, {
 Header: 'Model',
 accessor: 'model',
 }, {
 Header: 'Color',
 accessor: 'color',
 }, {
 Header: 'Year',
 accessor: 'year',
 }, {
 Header: 'Price €',
 accessor: 'price',
 }, {
 id: 'delbutton',
 sortable: false,
 filterable: false,
 width: 100,
 accessor: '_links.self.href',
 Cell: ({value}) => (<button
onClick={()=>{this.onDelClick(value)}}>Delete</button>)
 }]

Implement the onDelClick function. But first, let's take the fetchCars function2.
out of the componentDidMount() method. This is necessary because we also
want to call the fetchCars function after the car has been deleted in order to
show an updated list of cars to the user. Create a new function called
fetchCars() and copy the code from the componentDidMount() method into
a new function. Then, call the fetchCars() function from the
componentDidMount() function to fetch cars:

componentDidMount() {
 this.fetchCars();

Adding CRUD Functionalities Chapter 11

[200]

}

fetchCars = () => {
 fetch(SERVER_URL + 'api/cars')
 .then((response) => response.json())
 .then((responseData) => {
 this.setState({
 cars: responseData._embedded.cars,
 });
 })
 .catch(err => console.error(err));
}

Implement the onDelClick function. We send the DELETE request to a car link,3.
and when the DELETE request succeeds, we refresh the list page by calling the
fetchCars() function:

// Delete car
onDelClick = (link) => {
 fetch(link, {method: 'DELETE'})
 .then(res => this.fetchCars())
 .catch(err => console.error(err))
}

When you start your app, the frontend should look like the following screenshot. The car
disappears from the list when the Delete button is pressed:

Adding CRUD Functionalities Chapter 11

[201]

It would be nice to show the user some feedback in the event of successful deletion, or if
there are any errors. Let's implement a toast message to show the status of deletion. For
that, we are going to use the react-toastify component (https:/ ​/​github. ​com/ ​fkhadra/
react-​toastify). Install the component by typing the following command into the
Terminal you are using:

npm install react-toastify

Once installation is complete, start your app and open the Carlist.js file in the editor.
We have to import ToastContainer, toast, and the style sheet so that we can start using
react-toastify. Add the following import statements to your Carlist.js file:

import { ToastContainer, toast } from 'react-toastify';
import 'react-toastify/dist/ReactToastify.css';

ToastContainer is the container component for showing toast messages, and it should be
inside the render() method. In ToastContainer, you can define the duration of the toast
message in milliseconds using the autoClose prop. Add the ToastContainer component
inside the return statement in the render() method, just after ReactTable:

return (
 <div className="App">
 <ReactTable data={this.state.cars} columns={columns}
 filterable={true}/>
 <ToastContainer autoClose={1500} } />
 </div>
);

Then, we will call the toast method in the onDelClick() function to show the toast
message. You can define the type and position of the message. The success message is
shown when deletion succeeds, and the error message is shown in the case of an error:

// Delete car
onDelClick = (link) => {
 fetch(link, {method: 'DELETE'})
 .then(res => {
 toast.success("Car deleted", {
 position: toast.POSITION.BOTTOM_LEFT
 });
 this.fetchCars();
 })
 .catch(err => {
 toast.error("Error when deleting", {
 position: toast.POSITION.BOTTOM_LEFT
 });
 console.error(err)

https://github.com/fkhadra/react-toastify
https://github.com/fkhadra/react-toastify
https://github.com/fkhadra/react-toastify
https://github.com/fkhadra/react-toastify
https://github.com/fkhadra/react-toastify
https://github.com/fkhadra/react-toastify
https://github.com/fkhadra/react-toastify
https://github.com/fkhadra/react-toastify
https://github.com/fkhadra/react-toastify
https://github.com/fkhadra/react-toastify
https://github.com/fkhadra/react-toastify
https://github.com/fkhadra/react-toastify

Adding CRUD Functionalities Chapter 11

[202]

 })
 }

Now, you will see the toast message when the car is deleted, as shown in the following
screenshot:

To avoid accidental deletion of the car, it would be nice to have a confirmation dialog after
the delete button has been pressed. We will implement this using the window
object's confirm method. Add confirm to the onDelClick method:

 // Delete car
 onDelClick = (link) => {
 if (window.confirm('Are you sure to delete?')) {
 fetch(link, {method: 'DELETE'})
 .then(res => {
 toast.success("Car deleted", {
 position: toast.POSITION.BOTTOM_LEFT
 });
 this.fetchCars();
 })
 .catch(err => {
 toast.error("Error when deleting", {

Adding CRUD Functionalities Chapter 11

[203]

 position: toast.POSITION.BOTTOM_LEFT
 });
 console.error(err)
 })
 }
 }

If you press the Delete button now, the confirmation dialog will be opened and the car will
only be deleted if you press the OK button:

Next, we will begin implementation of the functionality to add a new car.

The add functionality
The next step is to create an add functionality for the frontend. We will implement this
using the Material-UI modal dialog. We already went through the utilization of Material-UI
modal form in Chapter 9, Useful Third-Party React Components for React. We will add the
New Car button to the user interface, which opens the modal form when it is pressed. The
modal form contains all the fields that are required to save the car, as well as the button for
saving and canceling.

We already installed the Material-UI component library to our frontend app in Chapter
10, Setting Up the Frontend for Our Spring Boot RESTful Web Service.

Adding CRUD Functionalities Chapter 11

[204]

The following steps show you how to create add functionality using the modal dialog
component:

Create a new file called AddCar.js in the components folder and write some1.
function-class base code to the file, as shown here. Add the imports for the
Material-UI Dialog component:

import React from 'react';
import Dialog from '@material-ui/core/Dialog';
import DialogActions from '@material-ui/core/DialogActions';
import DialogContent from '@material-ui/core/DialogContent';
import DialogContentText from '@material-
ui/core/DialogContentText';
import DialogTitle from '@material-ui/core/DialogTitle';

const AddCar = (props) => {
 return (
 <div>
 </div>
);
};

export default AddCar;

Introduce an object typed state that contains all car fields using the useState2.
hook. For the dialog, we also need a Boolean typed state to define the visibility of
the dialog form:

import React, { useState } from 'react';
import Dialog from '@material-ui/core/Dialog';
import DialogActions from '@material-ui/core/DialogActions';
import DialogContent from '@material-ui/core/DialogContent';
import DialogTitle from '@material-ui/core/DialogTitle';

const AddCar = (props) => {
 const [open, setOpen] = useState(false);
 const [car, setCar] = useState({
 brand: '', model: '', color: '', year: '', fuel:'', price: ''
 });

 return (
 <div>
 </div>
);
};

export default AddCar;

Adding CRUD Functionalities Chapter 11

[205]

Add a dialog form inside the return statement. The form contains the3.
Dialog Material-UI component with buttons and the input fields that are
required to collect the car data. The button that opens the modal window, which
will be shown in the car list page, must be outside of the Dialog component. All
input fields should have the name attribute with a value that is the same as the
name of the state the value will be saved to. Input fields also have the onChange
handler, which saves the value to state by invoking the handleChange function.
The handleClose and handleOpen functions set the value of the open state,
which affects the visibility of the modal form:

const [open, setOpen] = useState(false);
const [car, setCar] = useState({
 brand: '', model: '', color: '', year: '', fuel:'', price: ''
});

// Open the modal form
const handleClickOpen = () => {
 setOpen(true);
};

// Close the modal form
const handleClose = () => {
 setOpen(false);
};

const handleChange = (event) => {
 setCar({...car, [event.target.name]: event.target.value});
}

return (
 <div>
 <button style={{margin: 10}} onClick={handleClickOpen}>New
Car</button>
 <Dialog open={open} onClose={handleClose}>
 <DialogTitle>New car</DialogTitle>
 <DialogContent>
 <input type="text" placeholder="Brand" name="brand"
 value={car.brand} onChange={handleChange}/>

 <input type="text" placeholder="Model" name="model"
 value={car.model} onChange={handleChange}/>

 <input type="text" placeholder="Color" name="color"
 value={car.color} onChange={handleChange}/>

 <input type="text" placeholder="Year" name="year"
 value={car.year} onChange={handleChange}/>

 <input type="text" placeholder="Price" name="price"
 value={car.price} onChange={handleChange}/>

Adding CRUD Functionalities Chapter 11

[206]

 </DialogContent>
 <DialogActions>
 <button onClick={handleClose}>Cancel</button>
 <button onClick={handleClose}>Save</button>
 </DialogActions>
 </Dialog>
 </div>
);

Implement the addCar function to the Carlist.js file, which will send the4.
POST request to the backend api/cars endpoint. The request will include the
new car object inside the body and the 'Content-Type':
'application/json' header. The header is required because the car object is
converted into JSON format using the JSON.stringify() method:

// Add new car
addCar(car) {
 fetch(SERVER_URL + 'api/cars',
 { method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 },
 body: JSON.stringify(car)
 })
 .then(res => this.fetchCars())
 .catch(err => console.error(err))
}

Import the AddCar component into the Carlist.js file:5.

import AddCar from './AddCar';

Adding CRUD Functionalities Chapter 11

[207]

Add the AddCar component to the Carlist.js file's render() method and6.
pass the addCar and fetchCars functions as props to the AddCar component.
This allows us to call these functions from the AddCar component. Now, the
return statement of the CarList.js file should appear as follows:

// Carlist.js
return (
 <div className="App">
 <AddCar addCar={this.addCar} fetchCars={this.fetchCars} />
 <ReactTable data={this.state.cars} columns={columns}
 filterable={true} pageSize={10}/>
 <ToastContainer autoClose={1500}/>
 </div>
);

If you start the frontend app, it should now look like the following, and if you7.
press the New Car button, it should open the modal form:

Create a function called handleSave in the AddCar.js file. The8.
handleSave function calls the addCar function, which can be accessed using
props, and pass the car state object to it. Finally, the modal form is closed and the
car list is updated:

// Save car and close modal form
const handleSave = () => {
 props.addCar(car);
 handleClose();
}

Adding CRUD Functionalities Chapter 11

[208]

Finally, you have to change the button's onClick to call the handleSave9.
function, onClick={handleSave}. Now, you can open the modal form by
pressing the New Car button. Then, you can fill the form with data and press the
Save button. At this point, the form doesn't have a nice appearance, but we are
going to style it in the next chapter:

The list page is refreshed, and the new car can be seen in the list:

Next, we will begin to implement edit functionality in relation to our frontend.

Adding CRUD Functionalities Chapter 11

[209]

The edit functionality
We will implement the edit functionality by adding the Edit button to each table row.
When the row edit button is pressed, it opens the modal form, where the user can edit the
existing car and finally save their changes:

First, we will create a skeleton of the EditCar component, which will be the1.
form for editing an existing car. Create a new file called EditCar.js in the
components folder. The EditCar component code is similar to the AddCar
component, but for now, in the handleSave function, we should call the update
function that we will implement later:

import React, { useState } from 'react';
import Dialog from '@material-ui/core/Dialog';
import DialogActions from '@material-ui/core/DialogActions';
import DialogContent from '@material-ui/core/DialogContent';
import DialogTitle from '@material-ui/core/DialogTitle';

const EditCar = (props) => {
 const [open, setOpen] = useState(false);
 const [car, setCar] = useState({brand: '', model: '', year: '',
color: '', price: ''});

 const handleClickOpen = () => {
 setOpen(true);
 };

 const handleClose = () => {
 setOpen(false);
 };

 const handleChange = (event) => {
 setCar({...car, [event.target.name]: event.target.value});
 }

 // Update car and close modal form
 const handleSave = () => {
 }

 return (
 <div>
 <button onClick={handleClickOpen}>Edit</button>
 <Dialog open={open} onClose={handleClose}>
 <DialogTitle>Edit car</DialogTitle>
 <DialogContent>
 <input type="text" placeholder="Brand" name="brand"

Adding CRUD Functionalities Chapter 11

[210]

 value={car.brand} onChange={handleChange}/>

 <input type="text" placeholder="Model" name="model"
 value={car.model} onChange={handleChange}/>

 <input type="text" placeholder="Color" name="color"
 value={car.color} onChange={handleChange}/>

 <input type="text" placeholder="Year" name="year"
 value={car.year} onChange={handleChange}/>

 <input type="text" placeholder="Price" name="price"
 value={car.price} onChange={handleChange}/>

 </DialogContent>
 <DialogActions>
 <button onClick={handleClose}>Cancel</button>
 <button onClick={handleSave}>Save</button>
 </DialogActions>
 </Dialog>
 </div>
);
};

export default EditCar;

To update the car data, we have to send the PUT request to the2.
http://localhost:8080/api/cars/[carid] URL. The link will be the same
as it is for the delete functionality. The request contains the updated car object
inside the body, and the 'Content-Type': 'application/json' header that
we had in the add functionality. Create a new function called updateCar in the
Carlist.js file. The source code of the function is shown in the following code
snippet. The function gets two arguments—the updated car object and the
request URL. Following a successful update, we will show a toast message to the
user:

// Carlist.js file
// Update car
updateCar(car, link) {
 fetch(link,
 { method: 'PUT',
 headers: {
 'Content-Type': 'application/json',
 },
 body: JSON.stringify(car)
 })
 .then(res => {
 toast.success("Changes saved", {
 position: toast.POSITION.BOTTOM_LEFT
 });
 this.fetchCars();

Adding CRUD Functionalities Chapter 11

[211]

 })
 .catch(err =>
 toast.error("Error when saving", {
 position: toast.POSITION.BOTTOM_LEFT
 })
)
}

Next, we will import the EditCar component into the CarList component so3.
that we are able to show it in the car list. Add the following import to
the CarList.js file:

import EditCar from './EditCar';

Now, add the EditCar component to the table columns in the same way that we4.
did with the delete functionality. Now, the EditCar component is rendered to
table cells and it only shows the Edit button. This is because the modal form is
not visible before the button is pressed. When the user presses the Edit button, it
sets the open state value to true in the EditCar component, and the modal form
is shown. We pass four props to the EditCar component. The first props is row,
which contains all the values from the row as an object (=car object). The
second argument is value, which is set to be _links.href.self, which will be
the URL of the car that we need in the request. The third one is the updateCar
function, which we have to call from the EditCar component in order to be able
to save changes. The last one is the fetchCars function which is used for
refreshing the car list following an update:

 const columns = [{
 Header: 'Brand',
 accessor: 'brand'
 }, {
 Header: 'Model',
 accessor: 'model'
 }, {
 Header: 'Color',
 accessor: 'color'
 }, {
 Header: 'Year',
 accessor: 'year'
 }, {
 Header: 'Fuel',
 accessor: 'fuel'
 }, {
 Header: 'Price (€)',
 accessor: 'price'

Adding CRUD Functionalities Chapter 11

[212]

 }, {
 sortable: false,
 filterable: false,
 width: 100,
 accessor: '_links.self.href',
 Cell: ({value, row}) => (<EditCar car={row} link={value}
 updateCar={this.updateCar} fetchCars={this.fetchCars} />),
 width: 100
 }, {
 sortable: false,
 filterable: false,
 width: 100,
 accessor: '_links.self.href',
 Cell: ({value}) => (<button
onClick={()=>{this.onDelClick(value)}}>Delete</button>)
 }]

Next, we will perform the final modifications to the EditCar.js file. We get the5.
car to be edited from the car props, which we use to populate the form with the
existing car values. Change the handleClickOpen function in the EditCar.js
file. Now, when the form is opened, the car state is updated with the values
from the car props:

 const handleClickOpen = () => {
 setCar({brand: props.car.brand, model: props.car.model, color:
props.car.color,
 year: props.car.year, fuel: props.car.fuel, price:
props.car.price })
 setOpen(true);
 }

Finally, we will change the handleSave function and call the updateCar6.
function using props:

// Update car and close modal form
const handleSave = () => {
 props.updateCar(car, props.link);
 handleClose();
 }

If you press the Edit button in the table, it opens the modal edit form and shows7.
the car from that row. The updated values are saved to the database when you
press the Save button:

Adding CRUD Functionalities Chapter 11

[213]

Now, we have implemented all CRUD functionalities in relation to our frontend. In
Chapter 12, Styling the Frontend with React Material-UI, we will focus on styling the
frontend.

Other functionalities
One feature that we will also implement is a Comma-Separated Values (CSV) export of the
data. There's a package called react-csv (https:/ ​/​github. ​com/ ​abdennour/ ​react- ​csv)
that can be used to export an array of data to the CSV file.

If your app is running, stop the development server by pressing Ctrl + C in the Terminal,
and type the following command to install react-csv. Post installation, restart the app:

npm install react-csv

The react-csv package contains two components—CSVLink and CSVDownload. We will
use the first one in our app, so add the following import to the Carlist.js file:

import { CSVLink } from 'react-csv';

The CSVLink component takes the data prop, which contains the data array that will be
exported to the CSV file. You can also define the data separator using the separator prop
(the default separator is a comma). Add the CSVLink component inside the return
statement in the render() method.

https://github.com/abdennour/react-csv
https://github.com/abdennour/react-csv
https://github.com/abdennour/react-csv
https://github.com/abdennour/react-csv
https://github.com/abdennour/react-csv
https://github.com/abdennour/react-csv
https://github.com/abdennour/react-csv
https://github.com/abdennour/react-csv
https://github.com/abdennour/react-csv
https://github.com/abdennour/react-csv
https://github.com/abdennour/react-csv
https://github.com/abdennour/react-csv
https://github.com/abdennour/react-csv

Adding CRUD Functionalities Chapter 11

[214]

The value of the data prop will now be this.state.cars:

// Carlist.js render() method
return (
 <div className="App">
 <AddCar addCar={this.addCar} fetchCars={this.fetchCars} />
 <CSVLink data={this.state.cars} separator=";">Export CSV</CSVLink>
 <ReactTable data={this.state.cars} columns={columns}
 filterable={true}/>
 <ToastContainer autoClose={1500} />
 </div>
);

Open the app in your browser. You should see the Export CSV link in your app. The
styling is not nice, but we will handle that in the next chapter. If you press the link, you will
get the data in the CSV file:

Adding CRUD Functionalities Chapter 11

[215]

Now, all the functionalities have been implemented.

Summary
In this chapter, we implemented all the functionalities for our app. We started with fetching
the cars from the backend and showing these in React Table, which provides paging,
sorting, and filtering features. Then, we implemented the delete functionality and used the
toast component to give feedback to the user.

The add and edit functionalities were implemented using the Material-UI modal dialog
component. Finally, we implemented the ability to export data to a CSV file.

In the next chapter, we are going to style our frontend using the React Material-UI
component library.

Questions
How do you fetch and present data using the REST API with React?1.
How would you delete data using the REST API with React?2.
How do you add data using the REST API with React?3.
How would you update data using the REST API with React?4.
How do you show toast messages with React?5.
How would you export data to a CSV file with React?6.

Further reading
Packt has other great resources available for learning about React. These are as follows:

Getting Started with React, by Doel Sengupta, Manu Singhal, and et
al (https://www.packtpub.com/web-development/getting-started-react)
React 16 Essentials – Second Edition, by Adam Boduch, and Artemij
Fedosejev (https:/ ​/​www. ​packtpub. ​com/​web- ​development/ ​react- ​16-
essentials- ​second- ​edition)

https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition

12
Styling the Frontend with React

Material-UI
This chapter explains how to use Material-UI components in our frontend. We will use the
Button component to show the styled buttons. The modal form input fields are replaced
by TextField components, which have many nice features. We will also use the Material-
UI Grid component, which provides a responsive grid layout.

In this chapter, we will cover the following topics:

Using the Material-UI Button component in our frontend
Using the Material-UI Grid component in our frontend
Using the Material-UI TextField component in our frontend

Technical requirements
The Spring Boot application that we created in Chapter 5, Securing and Testing Your
Backend, is required, together with the modification from Chapter 10, Setting Up the
Frontend for Our Spring Boot RESTful Web Service (the unsecured backend).

We also need the React app that we used in Chapter 11, Adding CRUD
Functionalities (carfront).

The following code samples available at the GitHub link will also be required: https:/ ​/
github.​com/​PacktPublishing/ ​Hands- ​On- ​Full-​Stack- ​Development- ​with- ​Spring- ​Boot- ​2-
and-​React-​Second- ​Edition/ ​tree/ ​master/ ​Chapter12.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12

Styling the Frontend with React Material-UI Chapter 12

[217]

Using the Button component
Let's first change all the buttons to use the Material-UI Button component. Import Button
to the AddCar.js file:

// AddCar.js
import Button from '@material-ui/core/Button';

Change the buttons to use the Button component. In the list page, we are using the
outlined button and in the modal form, we use buttons without any borders. The following
code shows the AddCar component:

return (
 <div>
 <Button variant="outlined" color="primary" style={{margin: 10}}
onClick={handleClickOpen}>
 New Car
 </Button>
 <Dialog open={open} onClose={handleClose}>
 <DialogTitle>New car</DialogTitle>
 <DialogContent>
 <input type="text" placeholder="Brand" name="brand"
 value={car.brand} onChange={handleChange}/>

 <input type="text" placeholder="Model" name="model"
 value={car.model} onChange={handleChange}/>

 <input type="text" placeholder="Color" name="color"
 value={car.color} onChange={handleChange}/>

 <input type="text" placeholder="Year" name="year"
 value={car.year} onChange={handleChange}/>

 <input type="text" placeholder="Price" name="price"
 value={car.price} onChange={handleChange}/>

 </DialogContent>
 <DialogActions>
 <Button color="secondary" onClick={handleClose}>Cancel</Button>
 <Button color="primary" onClick={handleSave}>Save</Button>
 </DialogActions>
 </Dialog>
 </div>
);

Styling the Frontend with React Material-UI Chapter 12

[218]

Now, the list page button should look like the following:

And the modal form buttons should look like the following:

We also need to change the buttons in the EditCar component. The button that opens the
modal form is the Edit button, which is shown in the table. Therefore, we use the button
without borders and set the size to small. Refer to the following source code of the EditCar
component:

return (
 <div>
 <Button color="primary" size="small"
onClick={handleClickOpen}>Edit</Button>
 <Dialog open={open} onClose={handleClose}>
 <DialogTitle>Edit car</DialogTitle>
 <DialogContent>
 <input type="text" placeholder="Brand" name="brand"
 value={car.brand} onChange={handleChange}/>

 <input type="text" placeholder="Model" name="model"
 value={car.model} onChange={handleChange}/>

 <input type="text" placeholder="Color" name="color"
 value={car.color} onChange={handleChange}/>

 <input type="text" placeholder="Year" name="year"
 value={car.year} onChange={handleChange}/>

 <input type="text" placeholder="Price" name="price"
 value={car.price} onChange={handleChange}/>

Styling the Frontend with React Material-UI Chapter 12

[219]

 </DialogContent>
 <DialogActions>
 <Button color="secondary" onClick={handleClose}>Cancel</Button>
 <Button color="primary" onClick={handleSave}>Save</Button>
 </DialogActions>
 </Dialog>
 </div>
);

We also use the Button component in the car table and define the button size as small for
the Delete button in carlist.js. Refer to the following source code for the table
columns:

// Carlist.js render() method
const columns = [{
 Header: 'Brand',
 accessor: 'brand'
 }, {
 Header: 'Model',
 accessor: 'model',
 }, {
 Header: 'Color',
 accessor: 'color',
 }, {
 Header: 'Year',
 accessor: 'year',
 }, {
 Header: 'Price €',
 accessor: 'price',
 }, {
 sortable: false,
 filterable: false,
 width: 100,
 accessor: '_links.self.href',
 Cell: ({value, row}) => (<EditCar car={row} link={value}
updateCar={this.updateCar}
 fetchCars={this.fetchCars} />),
 }, {
 sortable: false,
 filterable: false,
 width: 100,
 accessor: '_links.self.href',
 Cell: ({value}) => (<Button size="small" color="secondary"
 onClick={()=>{this.onDelClick(value)}}>Delete</Button>)
 }]

Styling the Frontend with React Material-UI Chapter 12

[220]

Now, the table should look like the following:

The table is now ready, with the styled buttons and the filtering and sorting functionalities.

Using the Grid component
Material-UI provides a Grid component that can be used to get a grid layout to your React
app. We will use Grid to get the New Item button and the Export CSV link on the same
line.

Add the following import to the Carlist.js file to import the Grid component:

import Grid from '@material-ui/core/Grid';

Next, we wrap AddCar and CSVLink inside the Grid components. There are two types of
Grid components—a container and an item. AddCar and CSVLink are wrapped inside the
item type Grid components. Then, both item Grid components are wrapped inside the
container type Grid component:

// Carlist.js render() method
return (
 <div className="App">
 <Grid container>
 <Grid item>
 <AddCar addCar={this.addCar} fetchCars={this.fetchCars} />
 </Grid>
 <Grid item style={{padding: 15}}>
 <CSVLink data={this.state.cars} separator=";">Export CSV</CSVLink>
 </Grid>
 </Grid>
 <ReactTable data={this.state.cars} columns={columns}
 filterable={true}/>
 <ToastContainer autoClose={1500} />
 </div>
);

Styling the Frontend with React Material-UI Chapter 12

[221]

Now, your app should look like the following:

The button and CSV link are now placed in one row.

Using the TextField components
In this section, we'll change the text input in the modal form using the Material-UI
TextField component. Add the following import statement to the AddCar.js and
EditCar.js files:

import TextField from '@material-ui/core/TextField';

Then, change the input to the TextField components in the add and edit forms. We are
using the label props to set the labels of the TextField components. The first TextField
component contains autoFocus props, and the input will be focused on this field:

return (
 <div>
 <Button variant="outlined" color="primary" style={{margin: 10}}
onClick={handleClickOpen}>
 New Car
 </Button>
 <Dialog open={open} onClose={handleClose}>
 <DialogTitle>New car</DialogTitle>
 <DialogContent>
 <TextField autoFocus fullWidth label="Brand" name="brand"
 value={car.brand} onChange={handleChange}/>
 <TextField fullWidth label="Model" name="model"
 value={car.model} onChange={handleChange}/>
 <TextField fullWidth label="Color" name="color"

Styling the Frontend with React Material-UI Chapter 12

[222]

 value={car.color} onChange={handleChange}/>
 <TextField fullWidth label="Year" name="year"
 value={car.year} onChange={handleChange}/>
 <TextField fullWidth label="Price" name="price"
 value={car.price} onChange={handleChange}/>
 </DialogContent>
 <DialogActions>
 <Button color="secondary" onClick={handleClose}>Cancel</Button>
 <Button color="primary" onClick={handleSave}>Save</Button>
 </DialogActions>
 </Dialog>
 </div>
);

After the modifications, the modal form should look like the following:

Now, we have completed the styling of our frontend using Material-UI components.

Styling the Frontend with React Material-UI Chapter 12

[223]

Summary
In this chapter, we finalized our frontend using Material-UI. Material-UI is the React
component library that implements Google's Material Design. We replaced all the buttons
with the Material-UI Button components.

Our modal form got a new look by using the Material-UI TextField component. After
these modifications, our frontend looks more professional and uniform.

In the next chapter, we will focus on frontend testing.

Questions
What is Material-UI?1.
How should you use different Material-UI components?2.
How should you remove unused components?3.

Further reading
Packt has other great resources available for learning about React. These are as follows:

Getting Started with React, by Doel Sengupta, Manu Singhal, Et al
(https://www.packtpub.com/web-development/getting-started-react)
React 16 Essentials – Second Edition, by Adam Boduch and Artemij Fedosejev
(https:/ ​/ ​www. ​packtpub. ​com/ ​web- ​development/ ​react- ​16-​essentials- ​second-
edition)

https://www.packtpub.com/web-development/getting-started-react
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition

13
Testing Your Frontend

This chapter explains the basics of testing React apps. It will give us an overview of using
Jest, which is a JavaScript test library developed by Facebook. We will cover Enzyme,
which is a testing utility for React, developed by Airbnb. We will look at how you can
create new test suites and tests, and also how to run the test and work with the results.

In this chapter, we will cover the following topics:

Using Jest
Snapshot testing
Using Enzyme

Technical requirements
The Spring Boot application that we created in Chapter 5, Securing and Testing Your
Backend, is required (GitHub: https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Hands- ​On-​Full-
Stack-​Development- ​with- ​Spring- ​Boot- ​2- ​and-​React- ​Second- ​Edition/ ​tree/ ​master/
Chapter05), as is the React app that we used in Chapter 12, Styling the Frontend with React
Material-UI (GitHub: https:/ ​/​github. ​com/​PacktPublishing/ ​Hands- ​On-​Full- ​Stack-
Development-​with- ​Spring- ​Boot- ​2- ​and- ​React- ​Second- ​Edition/ ​tree/ ​master/ ​Chapter12).

The code samples available at the following GitHub link will also be required to follow
along with this chapter: https:/ ​/​github. ​com/​PacktPublishing/ ​Hands- ​On-​Full- ​Stack-
Development-​with- ​Spring- ​Boot- ​2- ​and- ​React- ​Second- ​Edition/ ​tree/ ​master/ ​Chapter13.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13

Testing Your Frontend Chapter 13

[225]

Using Jest
Jest is a test library for JavaScript developed by Facebook (https:/ ​/​jestjs. ​io/ ​). Jest is
widely used with React and provides lots of useful features for testing. You can create a
snapshot test, where you can take snapshots from React trees and investigate how states are
changing. Jest also has mock functionalities that you can use to test, for example, your
asynchronous REST API calls. Jest also provides functions that are required for the
assertions in your test cases.

We will first see how you can create a simple test case for a basic JavaScript function that
performs some simple calculations. The following function takes two numbers as
arguments and returns the product of the numbers:

// multi.js
export const calcMulti = (x, y) => {
 x * y;
}

The following code shows a Jest test for the preceding function. The test case starts with a
test method that runs the test case. The test method has an alias, called it, which we
will use in the React examples later. The test method gets the two required arguments—the
test name and the function that contains the test. expect is used when you want to test
values. The toBe function is the so-called matcher that checks whether the result from the
function equals the value in the matcher. There are many different matchers available in
Jest and you can find these from their documentation:

// multi.test.js
import {calcMulti} from './multi';

test('2 * 3 equals 6', () => {
 expect(calcMulti(2, 3)).toBe(6);
});

Jest comes with create-react-app, so we don't have to do any installations or
configurations to start testing. It is recommended to create a folder called _test_ for your
test files. The test files should have the .test.js extension. If you look at your React
frontend in the VS Code file explorer, you can see that in the src folder, there is already
one test file automatically created, and it is called App.test.js:

https://jestjs.io/
https://jestjs.io/
https://jestjs.io/
https://jestjs.io/
https://jestjs.io/
https://jestjs.io/
https://jestjs.io/
https://jestjs.io/

Testing Your Frontend Chapter 13

[226]

The source code of the test file is as follows:

import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';

it('renders without crashing', () => {
 const div = document.createElement('div');
 ReactDOM.render(<App />, div);
 ReactDOM.unmountComponentAtNode(div);
});

The following test file creates a div element to the DOM and mounts the App component
to it. Finally, the component is unmounted from div. So, it just tests that your App
component can be rendered and that the test runner is working. it is an alias for the test
function in Jest; the first argument is the name of the test; and the second argument is the
function that is executed and tested.

You can run your tests by typing the following command into your Terminal:

npm test

Or, if you are using Yarn, type the following:

yarn test

Testing Your Frontend Chapter 13

[227]

After your tests have been executed, and everything is working correctly, you will see the
following information in the Terminal:

We have now executed our first test case and it has passed.

Snapshot testing
Snapshot testing is a useful tool to test that there are no unwanted changes in your user
interface. Jest generates snapshot files when the snapshot tests are executed. The next time
the tests are executed, the new snapshot is compared to the previous one. If there are
changes between the content of the files, the test case fails and an error message is shown in
the Terminal.

To start snapshot testing, perform the following steps:

Install the react-test-renderer package. The --save-dev parameter means1.
that this dependency is saved to the package.json file's devDependencies
part and it is only used for development purposes. If you type the npm install
--production command in the installation phase, dependencies in the
devDependencies part are not installed. So, all dependencies that are only
required in the development phase should be installed using the --save-dev
parameter:

npm install react-test-renderer --save-dev

Your package.json file should appear as follows once the new2.
devDependecies part has been added to the file:

{
 "name": "carfront",
 "version": "0.1.0",
 "private": true,
 "dependencies": {
 "@material-ui/core": "^3.9.3",

Testing Your Frontend Chapter 13

[228]

 "react": "^16.8.6",
 "react-csv": "^1.1.1",
 "react-dom": "^16.8.6",
 "react-scripts": "2.1.8",
 "react-table": "^6.9.2",
 "react-toastify": "^5.0.1"
 },
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject"
 },
 "eslintConfig": {
 "extends": "react-app"
 },
 "browserslist": [
 ">0.2%",
 "not dead",
 "not ie <= 11",
 "not op_mini all"
],
 "devDependencies": {
 "react-test-renderer": "^16.8.6"
 }
}

Import TestRenderer to your test file:3.

import TestRenderer from 'react-test-renderer';

Let's now add a new snapshot test case to our App.test.js file. The test case will create a
snapshot test of our AddCar component:

Import the AddCar component to our test file:1.

import AddCar from './components/AddCar';

Add the following test code after the first test case, which already exists in the2.
file. The test case takes a snapshot from our App component and then compares
whether the snapshot differs from the previous snapshot:

it('renders a snapshot', () => {
 const tree = TestRenderer.create(<AddCar/>).toJSON();
 expect(tree).toMatchSnapshot();
});

Testing Your Frontend Chapter 13

[229]

Run the test cases again by typing the following command in your Terminal:3.

npm test

Now, you can see the following message in the Terminal. The test suite tells us4.
the number of test files, and the tests tell us the number of test cases:

When the test is executed for the first time, a _snapshots_ folder is created. This folder
contains all the snapshot files that are generated from the test cases. Now, you can see that
there is one snapshot file generated, as shown in the following screenshot:

Testing Your Frontend Chapter 13

[230]

The snapshot file now contains the React tree of our AddCar component. You can see part
of the snapshot file from the beginning in the following code block:

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`renders a snapshot 1`] = `
<div>
 <button
 className="MuiButtonBase-root-252 MuiButton-root-226 MuiButton-
outlined-234
 MuiButton-outlinedPrimary-235"
 disabled={false}
 onBlur={[Function]}
 onClick={[Function]}
 onContextMenu={[Function]}
 onFocus={[Function]}
 onKeyDown={[Function]}
 onKeyUp={[Function]}
 onMouseDown={[Function]}
 onMouseLeave={[Function]}
 onMouseUp={[Function]}
 onTouchEnd={[Function]}
 onTouchMove={[Function]}
 onTouchStart={[Function]}
 style={
 Object {
 "margin": 10,
 }
 }
 tabIndex="0"
 type="button"
 >
...continue

Now, let's look at how we can use Enzyme to test our React components.

Using Enzyme
Enzyme is a JavaScript library for testing React components' output, and was developed by
Airbnb. Enzyme has a really nice API for DOM manipulation and traversing. If you have
used jQuery, it is really easy to understand the idea of the Enzyme API.

Testing Your Frontend Chapter 13

[231]

To start using Enzyme, perform the following steps:

Install it by typing the following command in your Terminal. This will install the1.
enzyme library and the adapter library for React version 16. There is an adapter
available for older React versions:

npm install enzyme enzyme-adapter-react-16 --save-dev

Create a new test file (test suite) called AddCar.test.js in the src folder. Now,2.
we are going to create an Enzyme shallow rendering test for our AddCar
component. The first test case renders the component and checks that there are
five TextInput components, as there should be. wrapper.find finds every
node in the render tree that matches TextInput. With Enzyme tests, we can use
Jest for assertions, and here, we are using toHaveLength to check that the
established node count equals five. Shallow rendering tests the component as a
unit and does not render any child components. For this case, shallow rendering
is enough. Otherwise, you can also use the full DOM rendering by using mount:

import React from 'react';
import AddCar from './components/AddCar';
import Enzyme, { shallow } from 'enzyme';
import Adapter from 'enzyme-adapter-react-16';

Enzyme.configure({ adapter: new Adapter() });

describe('<AddCar />', () => {
 it('renders five <TextInput /> components', () => {
 const wrapper = shallow(<AddCar />);
 expect(wrapper.find('TextField')).toHaveLength(5);
 });
});

Now, if you run the tests, you can see the following message in the Terminal.3.
You can also see that the number of test suites is two, because the new test file
and all tests passed:

Testing Your Frontend Chapter 13

[232]

We have now learned the basics of frontend testing. Next, we will learn how to secure our
app.

Summary
In this chapter, we provided a basic overview of how to test React apps. Jest is a testing
library developed by Facebook, and it is already available in our frontend because we
created our app with create-react-app.

We created a couple of tests with Jest and ran those tests to see how you can check the
results of tests. We installed Enzyme, which is a test utility for React. With Enzyme, you can
easily test your React component rendering and events.

In the next chapter, we will secure our application, and add the login functionality to the
frontend.

Questions
What is Jest?1.
How should you create test cases using Jest?2.
How should you create a snapshot test using Jest?3.
What is Enzyme?4.
How should you install Enzyme?5.
How should you test rendering with Enzyme?6.

Further reading
Packt has other great resources available for learning about React and testing. These are as
follows:

React 16 Tooling, by Adam Boduch (https:/ ​/​www. ​packtpub. ​com/ ​web-
development/ ​react- ​16- ​tooling)
Jasmine JavaScript Testing – Second Edition, by Paulo Ragonha (https:/ ​/​www.
packtpub. ​com/ ​web- ​development/ ​jasmine- ​javascript- ​testing- ​second-
edition)

https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition
https://www.packtpub.com/web-development/jasmine-javascript-testing-second-edition

14
Securing Your Application

This chapter will explain how to implement authentication to our frontend when we are
using JWT authentication in the backend. At the beginning, we will switch on security in
our backend to enable JWT authentication. Then, we will create a component for the login
functionality. Finally, we will modify our CRUD functionalities to send the token in the
request's Authorization header to the backend.

In this chapter, we will cover the following topics:

Securing the backend
Securing the frontend

Technical requirements
The Spring Boot application that we created in Chapter 5, Securing and Testing Your
Backend, is required (is located on GitHub at: https:/ ​/​github. ​com/ ​PacktPublishing/
Hands-​On-​Full-​Stack- ​Development- ​with- ​Spring- ​Boot- ​2-​and- ​React- ​Second- ​Edition/
tree/​master/​Chapter05), as is the React app that we used in Chapter 12, Styling the
Frontend with React Material-UI (is located on GitHub at: https:/ ​/​github. ​com/
PacktPublishing/​Hands- ​On- ​Full- ​Stack- ​Development- ​with- ​Spring- ​Boot- ​2- ​and-​React-
Second-​Edition/​tree/ ​master/ ​Chapter12).

The following GitHub link will also be required: https:/ ​/ ​github. ​com/ ​PacktPublishing/
Hands-​On-​Full-​Stack- ​Development- ​with- ​Spring- ​Boot- ​2-​and- ​React- ​Second- ​Edition/
tree/​master/​Chapter14.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter14

Securing Your Application Chapter 14

[234]

Securing the backend
We have implemented CRUD functionalities in our frontend using an unsecured backend.
Now, it is time to switch on security for our backend and go back to the version that we
created in Chapter 5, Securing and Testing Your Backend:

Open your backend project with the Eclipse IDE and open the1.
SecurityConfig.java file in the editor view. We have commented the security
out and have allowed everyone access to all endpoints. Now, we can remove that
line and also remove the comments from the original version. Now, your
SecurityConfig.java file's configure method should look like the following:

@Override
 protected void configure(HttpSecurity http) throws Exception {
 http.csrf().disable().cors().and().authorizeRequests()
 .antMatchers(HttpMethod.POST, "/login").permitAll()
 .anyRequest().authenticated()
 .and()
 // Filter for the api/login requests
 .addFilterBefore(new LoginFilter("/login",
authenticationManager()),
 UsernamePasswordAuthenticationFilter.class)
 // Filter for other requests to check JWT in header
 .addFilterBefore(new AuthenticationFilter(),
 UsernamePasswordAuthenticationFilter.class);
}

Let's test what happens when the backend is secured again.

Run the backend by pressing the Run button in Eclipse and check from the2.
Console view that the application started correctly. Run the frontend by typing
the npm start command into your Terminal, and the browser should be opened
to the address localhost:3000.
You should now see that the list page and the table are empty. If you open the3.
developer tools, you will notice that the request ends in a 403 Forbidden HTTP
error. This is actually what we wanted, because we haven't yet executed
authentication in relation to our frontend:

Securing Your Application Chapter 14

[235]

Now, we are ready to work with the frontend.

Securing the frontend
The authentication was implemented to the backend using JWT. In Chapter 5, Securing and
Testing Your Backend, we created JWT authentication, and the /login endpoint is allowed
to everyone without authentication. In the frontend's login page, we have to first call
the /login endpoint to get the token. After that, the token will be included in all requests
we are sending to the backend, as demonstrated in Chapter 5, Securing and Testing Your
Backend.

Securing Your Application Chapter 14

[236]

Let's first create a login component that asks for credentials from the user to get a token
from the backend:

Create a new file, called Login.js, in the components folder. Now, the file1.
structure of the frontend should be the following:

Open the file in the VS Code editor view and add the following base code to the2.
login component. We are also importing SERVER_URL, because it is required in a
login request:

import React, { useState } from 'react';
import {SERVER_URL} from '../constants.js';

const Login = () => {
 return (
 <div>
 </div>

Securing Your Application Chapter 14

[237]

);
}

export default Login;

We need three state values for the authentication, two for the credentials3.
(username and password), and one Boolean value to indicate the status of the
authentication. The default value of the authentication status state is false.
We introduce states using the useState function:

const [user, setUser] = useState({username: '', password: ''})
const [isAuthenticated, setAuth] = useState(false);

In the user interface, we are going to use the Material-UI component library, as4.
we did with the rest of the user interface. We need text field components for the
credentials and a button to call a login function. Add imports for the components
to the login.js file:

import TextField from '@material-ui/core/TextField';
import Button from '@material-ui/core/Button';

Add imported components to a user interface by adding these to the5.
return statement. We need two TextField components, one for the username
and one for the password. One Button component is needed to call the login
function that we are going to implement later in this section:

return (
 <div>
 <TextField name="username"
 label="Username" onChange={handleChange} />

 <TextField type="password" name="password"
 label="Password" onChange={handleChange} />

 <Button variant="outlined" color="primary"
 onClick={login}>
 Login
 </Button>
 </div>
);

Implement the change handler for the TextField components, in order to save6.
typed values to the states:

const handleChange = (event) => {
 setUser({...user, [event.target.name] : event.target.value})
}

Securing Your Application Chapter 14

[238]

As shown in Chapter 5, Securing and Testing Your Backend, the login is done by7.
calling the /login endpoint using the POST method and sending the user object
inside the body. If authentication succeeds, we get a token in a response
Authorization header. We will then save the token to session storage and set
the isAuthenticated state value to true. The session storage is similar to local
storage, but it is cleared when a page session ends. When the isAuthenticated
state value is changed, the user interface is rerendered:

const login = () => {
 fetch(SERVER_URL + 'login', {
 method: 'POST',
 body: JSON.stringify(user)
 })
 .then(res => {
 const jwtToken = res.headers.get('Authorization');
 if (jwtToken !== null) {
 sessionStorage.setItem("jwt", jwtToken);
 setAuth(true);
 }
 })
 .catch(err => console.error(err))
}

We can implement conditional rendering, which renders the Login component if8.
the isAuthenticated state is false, or the Carlist component if
the isAuthenticated state is true. We first have to import the Carlist
component to the Login component:

import Carlist from './Carlist';

Then, we have to implement the following changes to the return statement:

if (isAuthenticated === true) {
 return (<Carlist />)
}
else {
 return (
 <div>
 <TextField name="username"
 label="Username" onChange={handleChange} />

 <TextField type="password" name="password"
 label="Password" onChange={handleChange} />

 <Button variant="outlined" color="primary"
 onClick={login}>
 Login
 </Button>

Securing Your Application Chapter 14

[239]

 </div>
);
}

To show the login form, we have to render the Login component instead of9.
the Carlist component in the App.js file:

// App.js
import React from 'react';
import './App.css';
import AppBar from '@material-ui/core/AppBar';
import Toolbar from '@material-ui/core/Toolbar';
import Typography from '@material-ui/core/Typography';
import Login from './components/Login';

function App() {
 return (
 <div className="App">
 <AppBar position="static" color="default">
 <Toolbar>
 <Typography variant="h6" color="inherit">
 CarList
 </Typography>
 </Toolbar>
 </AppBar>
 <Login />
 </div>
);
}

export default App;

Now, when your frontend and backend are running, your frontend should look like the
following screenshot:

Securing Your Application Chapter 14

[240]

If you log in using the user/user or admin/admin credentials, you should see the CarList
page. If you open the developer tools, you can see that the token is now saved to session
storage:

The car list is still empty, but that is correct, because we haven't included the token to the
request yet. That is required for JWT authentication, which we will implement in the next
phase:

Open the Carlist.js file in the VS Code editor view. To fetch the cars, we first1.
have to read the token from the session storage and then add
the Authorization header with the token value to the request. You can see the
source code of the fetch function here:

// Carlist.js
// Fetch all cars
fetchCars = () => {
 // Read the token from the session storage
 // and include it to Authorization header
 const token = sessionStorage.getItem("jwt");
 fetch(SERVER_URL + 'api/cars',
 {
 headers: {'Authorization': token}
 })
 .then((response) => response.json())
 .then((responseData) => {
 this.setState({
 cars: responseData._embedded.cars,
 });
 })

Securing Your Application Chapter 14

[241]

 .catch(err => console.error(err));
}

If you log in to your frontend, you should see the car list populated with cars2.
from the database:

Check the request content from the developer tools; you can see that it contains3.
the Authorization header with the token value:

Securing Your Application Chapter 14

[242]

All other CRUD functionalities require the same modification to work correctly. The source
code of the delete function appears as follows, after the modifications:

// Delete car
onDelClick = (link) => {
 if (window.confirm('Are you sure to delete?')) {
 const token = sessionStorage.getItem("jwt");
 fetch(link,
 {
 method: 'DELETE',
 headers: {'Authorization': token}
 })
 .then(res => {
 toast.success("Car deleted", {
 position: toast.POSITION.BOTTOM_LEFT
 });
 this.fetchCars();
 })
 .catch(err => {
 toast.error("Error when deleting", {
 position: toast.POSITION.BOTTOM_LEFT
 });
 console.error(err)
 })
 }
}

The source code of the add function appears as follows, after the modifications:

// Add new car
addCar(car) {
 const token = sessionStorage.getItem("jwt");
 fetch(SERVER_URL + 'api/cars',
 { method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 'Authorization': token
 },
 body: JSON.stringify(car)
 })
 .then(res => this.fetchCars())
 .catch(err => console.error(err))
}

Securing Your Application Chapter 14

[243]

Finally, the source code of the update function looks like this:

// Update car
updateCar(car, link) {
 const token = sessionStorage.getItem("jwt");
 fetch(link,
 { method: 'PUT',
 headers: {
 'Content-Type': 'application/json',
 'Authorization': token
 },
 body: JSON.stringify(car)
 })
 .then(res => {
 toast.success("Changes saved", {
 position: toast.POSITION.BOTTOM_LEFT
 });
 this.fetchCars();
 })
 .catch(err =>
 toast.error("Error when saving", {
 position: toast.POSITION.BOTTOM_LEFT
 })
)
}

Now, all the CRUD functionalities will be working after you have logged in to the
application.

In the final phase, we are going to implement an error message that is shown to an end user
if authentication fails. We are using the react-toastify component to show the message:

Add the following import to the Login.js file:1.

import { ToastContainer, toast } from 'react-toastify';
import 'react-toastify/dist/ReactToastify.css';

Add ToastContainer to the render() method:2.

<ToastContainer autoClose={1500} />

Show the toast message if authentication fails:3.

const login = () => {
 fetch(SERVER_URL + 'login', {
 method: 'POST',
 body: JSON.stringify(user)
 })

Securing Your Application Chapter 14

[244]

 .then(res => {
 const jwtToken = res.headers.get('Authorization');
 if (jwtToken !== null) {
 sessionStorage.setItem("jwt", jwtToken);
 setAuth(true);
 }
 else {
 toast.warn("Check your username and password", {
 position: toast.POSITION.BOTTOM_LEFT
 })
 }
 })
 .catch(err => console.error(err))
}

If you now log in with the wrong credentials, you will see the toast message:

Securing Your Application Chapter 14

[245]

The logout functionality is much more straightforward to implement. You basically just
have to remove the token from session storage and change the isAuthenticated state
value to false, as shown in the following source code:

const logout = () => {
 sessionStorage.removeItem("jwt");
 setAuth(false);
}

Then, with conditional rendering, you can render the Login component instead of
Carlist.

If you want to implement a menu using React Router, it is possible to implement so-called
secured routes that can be accessed only when a user is authenticated. The following source
code shows the secured route that presents the routed component if the user is
authenticated; otherwise, it redirects to a login page:

const SecuredRoute = ({ component: Component, ...rest, isAuthenticated })
=> (
 <Route {...rest} render={props => (
 isAuthenticated ? (
 <Component {...props}/>
) : (
 <Redirect to={{
 pathname: '/login',
 state: { from: props.location }
 }}/>
)
)}/>
)

Here is an example of a Switch router that is using SecuredRoute, which we defined in
the previous example:

 <Switch>
 <Route path="/login" component={Login} />
 <Route path="/contact" component={Contact} />
 <SecuredRoute isAuthenticated={this.state.isAuthenticated}
 path="/shop" component={Shop} />
 <Route render={() => <h1>Page not found</h1>} />
 </Switch>

Now, the Login and Contact components can be accessed without authentication,
but Shop requires authentication.

Securing Your Application Chapter 14

[246]

Summary
In this chapter, you learned how to implement a login functionality for our frontend when
you are using JWT authentication. Following successful authentication, we used session
storage to save the token that we received from the backend. The token was then used in all
requests that we sent to the backend. Therefore, we had to modify our CRUD
functionalities to work with authentication properly.

In the next chapter, we will deploy our application to Heroku, as we demonstrate how to
create Docker containers.

Questions
How should you create a login form?1.
How should you log in to the backend using JWT?2.
How should you store tokens in session storage?3.
How should you send a token to the backend in CRUD functions?4.

Further reading
Packt has other great resources available for learning about React. These are as follows:

React 16 Tooling, by Adam Boduch (https:/ ​/​www. ​packtpub. ​com/ ​web-
development/ ​react- ​16- ​tooling)
React 16 Essentials – Second Edition, by Adam Boduch and Artemij Fedosejev
(https:/ ​/ ​www. ​packtpub. ​com/ ​web- ​development/ ​react- ​16-​essentials- ​second-
edition)

https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition

15
Deploying Your Application

This chapter will explain how to deploy your backend and frontend to a server. There's a
variety of cloud servers, or PaaS (short for Platform as a Service) providers, available, such
as Amazon Web Services (AWS), DigitalOcean, and Microsoft Azure. In this book, we are
using Heroku, which supports multiple programming languages that are used in web
development. We will also show you how to use Docker containers in deployment.

In this chapter, we will cover the following topics:

Different options for deploying the Spring Boot application
How to deploy the Spring Boot application to Heroku
How to deploy the React app to Heroku
How to create the Spring Boot and MariaDB Docker container

Technical requirements
The Spring Boot application that we created in Chapter 5, Securing and Testing Your
Backend, is required (it is available on GitHub at: https:/ ​/​github. ​com/ ​PacktPublishing/
Hands-​On-​Full-​Stack- ​Development- ​with- ​Spring- ​Boot- ​2-​and- ​React- ​Second- ​Edition/
tree/​master/​Chapter05), as is the React app that we used in Chapter 13, Testing Your
Frontend (it is available on GitHub at: https:/ ​/​github. ​com/ ​PacktPublishing/ ​Hands- ​On-
Full-​Stack-​Development- ​with- ​Spring- ​Boot- ​2- ​and-​React- ​Second- ​Edition/ ​tree/ ​master/
Chapter13).

Docker installation is necessary, and the following GitHub link will also be
required: https:/ ​/​github. ​com/ ​PacktPublishing/ ​Hands- ​On- ​Full- ​Stack- ​Development-
with-​Spring-​Boot- ​2- ​and- ​React- ​Second- ​Edition/ ​tree/ ​master/ ​Chapter15.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Spring-Boot-2-and-React-Second-Edition/tree/master/Chapter15

Deploying Your Application Chapter 15

[248]

Deploying the backend
If you are going to use your own server, the easiest way to deploy the Spring Boot
application is to use an executable JAR file. If you use Maven, an executable JAR file is
generated by typing the mvn clean install command in the command line. That
command creates the JAR file in the build folder. In this case, you don't have to install a
separate application server, because it is embedded in your JAR file. Then, you just have to
run the JAR file using the java command, java -jar your_appfile.jar. The
embedded Tomcat version can be defined in the pom.xml file, with the following lines:

<properties>
 <tomcat.version>8.0.52</tomcat.version>
</properties>

If you are using a separate application server, you have to create a WAR package. This is
slightly more complicated, and you have to make some modifications to your application.
The following are the steps that have to be observed in order to create the WAR file:

Modify an application's main class by extending1.
SpringBootServletIntializer and overriding the configure method:

@SpringBootApplication
public class Application extends SpringBootServletInitializer {
 @Override
 protected SpringApplicationBuilder configure
 (SpringApplicationBuilder application) {
 return application.sources(Application.class);
 }

 public static void main(String[] args) throws Exception {
 SpringApplication.run(Application.class, args);
 }
}

Change the packaging from JAR to WAR in the pom.xml file:2.

<packaging>war</packaging>

Deploying Your Application Chapter 15

[249]

Add the following dependency to the pom.xml file. Then, the Tomcat application3.
is no longer embedded:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 <scope>provided</scope>
</dependency>

Now, when you build your application, the WAR file is generated. It can be deployed to the
existing Tomcat by copying the file to Tomcat's /webapps folder.

Nowadays, cloud servers are the principal means of providing your application to end
users. Next, we are going to deploy our backend to the Heroku cloud server (https:/ ​/​www.
heroku.​com/​). Heroku offers a free account that you can use to deploy your own
applications. With the free account, your applications go to sleep after 30 minutes of
inactivity, and it takes a little bit more time to restart the application. However, the free
account is sufficient for testing and hobby purposes.

For deployment, you can use Heroku's web-based user interface. The following steps will
take you through the deployment process:

After you have created an account with Heroku, log in to the Heroku website.1.
Navigate to the dashboard that shows a list of your applications. There is a
button called New that opens a menu. Select Create new app from the menu:

https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/

Deploying Your Application Chapter 15

[250]

Name your app, select a region, and press the Create app button:2.

Select a deployment method. There are several options; we are using the GitHub3.
option. In this method, you first have to push your application to GitHub, and
then link your GitHub repository to Heroku:

Deploying Your Application Chapter 15

[251]

Search for a repository you want to deploy to, and then press4.
the Connect button:

Choose between an automatic and manual deployment. The automatic option5.
deploys your app automatically when you push a new version to connect to the
GitHub repository. You also have to select a branch you want to deploy. We will
use the manual option that deploys the app when you press the Deploy
branch button:

Deploying Your Application Chapter 15

[252]

Deployment starts, and you can see a build log. You should see a message that6.
says Your app was successfully deployed:

Deploying Your Application Chapter 15

[253]

Now, your application is deployed to the Heroku cloud server. If you are using the H2 in-
memory database, this will be enough, and your application should work. We are using
MariaDB. Therefore, we have to install the database.

In Heroku, we can use JawsDB, which is available in Heroku as an add-on. JawsDB is a
Database as a Service (DBaaS) provider that offers the MariaDB database, which can be
used in Heroku. The following steps describe how to start using the database:

Open a Resources tab in your Heroku app page and type JawsDB into the Add-1.
ons search field:

Deploying Your Application Chapter 15

[254]

Select JawsDB Maria from the drop-down list. Click on JawsDB, and you will2.
see the connection information of your database:

Change the database connection definition in the application.properties3.
file with the values from the JawsDB Connection Info page. In this example, we
use a plain password, but it is recommended that you encrypt a password using,
for example, the Java Simplified Encryption (JASYPT) library:

spring.datasource.url=jdbc:mariadb://n7qmaptgs6baip9z.chr7pe7iynqr.
eu-west-1.rds.amazonaws.com:3306/ebp6gq2544v5gcpc
spring.datasource.username=bdcpogfxxxxxxx
spring.datasource.password=ke68n28xxxxxxx
spring.datasource.driver-class-name=org.mariadb.jdbc.Driver

With the free account, we can have a maximum of 10 concurrent connections to4.
our database; therefore, we also have to add the following line to the
application.properties file:

spring.datasource.max-active=10

Deploying Your Application Chapter 15

[255]

Push your changes to GitHub and deploy your app in Heroku. Now, your5.
application is ready, and you can test that with Postman. The URL of the app
is https://carbackend.herokuapp.com/, but you can also use your own
domain. If we send the POST request to the /login endpoint with the credential,
we can get the token in the response header. So, everything seems to work
properly:

We can also connect to the JawsDB database with HeidiSQL, and we can see that our car
database has been created:

Deploying Your Application Chapter 15

[256]

We can watch application logs by selecting View logs from the More menu:

The application log view looks like the following:

Now, we are ready to deploy our frontend.

Deploying Your Application Chapter 15

[257]

Deploying the frontend
In this section, we will deploy our React frontend to Heroku. The easiest way to deploy the
React app to Heroku is to use the Heroku Buildpack for create-react-app (https:/ ​/
github.​com/​mars/ ​create- ​react- ​app- ​buildpack). For deployment, we have to install the
Heroku CLI, which is the command-line tool for Heroku. You can download the
installation package from https://devcenter.heroku.com/articles/heroku-cli.
Once installation is complete, you can use the Heroku CLI from PowerShell or the Terminal
you're using. The following steps describe the deployment process:

Open your frontend project with VS Code and open the constant.js file in the1.
editor. Change the SERVER_URL constant to match our backend's URL, and save
the changes:

export const SERVER_URL = 'https://carbackend.herokuapp.com/'

Create a local Git repository for your project and commit the files, if you haven't2.
done that yet. Navigate to your project folder with the Git command-line tool
and type the following commands:

git init
git add .
git commit -m "Heroku deployment"

The following command creates a new Heroku app and asks for credentials to3.
log in to Heroku. Replace [APPNAME] with your own app name. Once the
command has been executed, you should see the new app in your Heroku
dashboard:

heroku create [APPNAME] --buildpack
https://github.com/mars/create-react-app-buildpack.git

Deploy your code to Heroku by typing the following command in PowerShell:4.

git push heroku master

https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack

Deploying Your Application Chapter 15

[258]

Once the deployment is ready, you should see the Verifying deploy... done message
in PowerShell, as shown in the following screenshot:

Now, you can go to your Heroku dashboard and see the URL of your frontend; you can
also open it from the Heroku CLI by typing the heroku open command. If you navigate to
your frontend, you should see the login form, as follows:

Deploying Your Application Chapter 15

[259]

In the next section, you will learn how to use Docker containers.

Using Docker containers
Docker is a container platform that makes software development, deployment, and
shipping easier. Containers are lightweight and executable software packages that include
everything that is needed to run software. In this section, we are creating a container from
our Spring Boot backend, as follows:

Install Docker on your workstation. You can find the installation packages1.
at https:/ ​/​www. ​docker. ​com/ ​get-​docker. There are installation packages for
multiple platforms, and if you have a Windows operating system, you can go
through the installation wizard using the default settings.
The Spring Boot application is just an executable JAR file that can be executed2.
with Java. The JAR file can be created with the following Maven command:

mvn clean install

https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker

Deploying Your Application Chapter 15

[260]

You can also use Eclipse to run Maven goals by opening the Run | Run
configurations... menu. Select your project in the Base directory field, using
the Workspace button. Type clean install into the Goals field and press
the Run button:

Once the build is finished, you can find the executable JAR file from the /target3.
folder:

Deploying Your Application Chapter 15

[261]

You can test that the build has executed correctly by running the JAR file with4.
the following command:

 java -jar .\cardatabase-0.0.1-SNAPSHOT.jar

You'll see the application's starting messages, and finally, your application will5.
be running:

Containers are defined by using Dockerfiles.

Create a new Dockerfile in the root folder of your project and name it6.
Dockerfile. The following lines show the contents of the Dockerfile. We are
using Alpine Linux. EXPOSE defines the port that should be published outside of
the container. COPY copies the JAR file to the container's filesystem and renames
it app.jar. ENTRYPOINT defines the command-line arguments that the Docker
container runs.

There is also a Maven plugin available to build Docker images. It is
developed by Spotify and can be found at https:/ ​/​github. ​com/ ​spotify/
docker- ​maven- ​plugin.

https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin

Deploying Your Application Chapter 15

[262]

The following lines show the contents of Dockerfile:

FROM openjdk:8-jdk-alpine
VOLUME /tmp
EXPOSE 8080
ARG JAR_FILE
COPY target/cardatabase-0.0.1-SNAPSHOT.jar app.jar
ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./urandom","-
jar","/app.jar"]

Create the container with the following command. With the -t argument, we can7.
give a friendly name to our container:

docker build -t carbackend .

At the end of the build command, you should see the Successfully
built message:

Check the list of the container using the docker image ls command:8.

Deploying Your Application Chapter 15

[263]

Run the container with the following command:9.

docker run -p 4000:8080 carbackend

The Spring Boot application starts, but it ends with an error, because we are
trying to access the localhost database. The localhost now points to the container
itself, and there is no MariaDB installed.

We will create our own container for MariaDB. You can pull the latest MariaDB10.
container from the Docker Hub using the following command:

docker pull mariadb:lates

Run the MariaDB container. The following command sets the root user password11.
and creates a new database, called cardb, that we need for our Spring Boot
application:

docker run --name cardb -e MYSQL_ROOT_PASSWORD=pwd -e
MYSQL_DATABASE=cardb mariadb

We have to make one change to our Spring Boot application.properties file.12.
Change the datasource URL to the following. In the next step, we will specify
that our application can access the database container using the mariadb name.
Once this change has been made, you have to build your application and recreate
the Spring Boot container:

spring.datasource.url=jdbc:mariadb://mariadb:3306/cardb

We can run our Spring Boot container and link the MariaDB container to it using13.
the following command. This command now stipulates that our Spring Boot
container can access the MariaDB container using the mariadb name:

docker run -p 8080:8080 --name carapp --link cardb:mariadb -d
carbackend

Deploying Your Application Chapter 15

[264]

We can also access our application logs by typing the docker logs14.
carapp command:

We can see that our application has started successfully, and the demo data has been
inserted into the database that exists in the MariaDB container.

Summary
In this chapter, you learned how to deploy the Spring Boot application. We went through
the different deployment options for the Spring Boot application and deployed the
application to Heroku. Next, we deployed our React frontend to Heroku using the Heroku
Buildpack for create-react-app, which makes the deployment process faster. Finally,
we used Docker to create containers from our Spring Boot application and the MariaDB
database.

In the next chapter, we will cover some more technologies and best practices that you
should explore.

Deploying Your Application Chapter 15

[265]

Questions
How should you create a Spring Boot executable JAR file?1.
How should you deploy the Spring Boot application to Heroku?2.
How should you deploy the React app to Heroku?3.
What is Docker?4.
How should you create the Spring Boot application container?5.
How should you create the MariaDB container?6.

Further reading
Packt has other great resources available for learning about React, Spring Boot, and Docker.
These are as follows:

React 16 Tooling, by Adam Boduch (https:/ ​/​www. ​packtpub. ​com/ ​web-
development/ ​react- ​16- ​tooling)
React 16 Essentials – Second Edition, by Adam Boduch and Artemij Fedosejev
(https:/ ​/ ​www. ​packtpub. ​com/ ​web- ​development/ ​react- ​16-​essentials- ​second-
edition)
Deployment with Docker, by Srdjan Grubor (https:/ ​/ ​www.​packtpub. ​com/
virtualization- ​and- ​cloud/ ​deployment- ​docker)
Docker Fundamentals, by Sreeprakash Neelakantan (https:/ ​/​www. ​packtpub. ​com/
virtualization- ​and- ​cloud/ ​docker- ​fundamentals- ​integrated- ​course)

https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-tooling
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/web-development/react-16-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/deployment-docker
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course
https://www.packtpub.com/virtualization-and-cloud/docker-fundamentals-integrated-course

16
Best Practices

This chapter will go through some points that you should know if you want to become a
full stack developer, or if you want to progress further in your software development
career. We will also go over some best practices that are worth keeping in mind when
you're working in the field of software development.

In this chapter, we will cover the following topics:

What kind of technologies you should know
What kinds of best practices are important to you?

What to learn next
To become a full stack developer, you have to be able to work with both the backend and
the frontend. That sounds like quite a challenging task, but if you focus on the right things
and don't try to master everything, it is possible. Nowadays, the technology stack available
is huge, and you might often wonder what you should learn next. There are multiple
factors that may give you a few hints about where to go next. One way to find out is to
browse job opportunities and see which technologies companies are looking for.

There are multiple approaches, and no single right path, when it comes to setting out on
learning a new technology. The use of programming web courses is a really popular
starting point and it gives you the basic knowledge to start the learning process. The
process is never-ending, because technologies are developing and changing all the time.

An understanding of the following technologies is necessary if you want to become a full
stack developer. This is not a complete list, but it is a good starting point.

Best Practices Chapter 16

[267]

HTML
HTML is the most fundamental thing that you should learn in web development. You don't
have to master all the details of HTML, but you should have a good basic knowledge of it.
HTML 5 introduced a lot of new features that are also worth learning.

CSS
CSS is also a very basic thing to learn. One good aspect is the fact that there are lots of good
tutorials available for both HTML and CSS. It is a good idea to learn about the use of some
CSS libraries, such as Bootstrap, which is widely used. CSS preprocessors, such as SASS
and LESS, are also worth learning.

HTTP
The HTTP protocol is key when developing web applications and RESTful web services.
You have to understand the basics of HTTP and know its limitations. You should also
know what kinds of methods exist, and how to use these with different programming
languages.

JavaScript
JavaScript is definitely a programming language that you should master. Without
JavaScript skills, it is really hard to work with modern frontend development. ES6 is also
good to learn, because that makes JavaScript coding cleaner and more efficient.

A backend programming language
It's hard to survive without knowing a few programming languages. If JavaScript is used
for frontend development, it can also be used in the backend with Node.js. That is the
benefit of Node.js; you can use one programming language in the frontend and the
backend. Other popular languages for backend development are Java, C#, Python, and
PHP. All these languages also have good backend frameworks you can use.

Best Practices Chapter 16

[268]

Some frontend libraries and frameworks
In this book, we used React.js in the frontend, which is currently a popular option, but there
are many other options that are also good, such as Angular and Vue.js.

Databases
You should also know how to use databases with your backend programming language.
The database can be either an SQL or a NoSQL database, and it is good to know both
options. You should also know how performance can be optimized with the database you
are using and the queries you are executing.

Version control
Version control is something that you can't live without. Nowadays, Git is a really popular
version control system and it's really important to know how to use it. It is also worthwhile
to be familiar with repository management services, such as GitHub and GitLab.

Useful tools
There are also many different tools that can help to make your development process more
efficient. Here, we are just mentioning a number of tools that might be useful for you.
Gulp.js is an open source JavaScript toolkit to automate your tasks in the development
process. Grunt is similar to the JavaScript task runner, which you can use to automate your
process. Webpack is a JavaScript module bundler that creates static assets from your
dependencies. The create-react-app, which we used in the previous chapters, actually
uses Webpack under the hood.

Security
You have to know the basics of web security and how to handle these issues in web
development. A good way to start learning is to read the OWASP Top 10 Most Critical Web
Application Security Risks (https:/ ​/ ​www. ​owasp. ​org/ ​index. ​php/ ​Category:OWASP_ ​Top_ ​Ten_
Project). Then, you have to learn how to handle these issues with the frameworks you are
using.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Best Practices Chapter 16

[269]

Best practices
Software development always involves teamwork, and therefore, it is really important that
everyone in a team is using common best practices. Here, we will go through some basic
things that you have to take into account. This is not the whole list, but we will try to
concentrate on some basic things that you should know.

Coding conventions
Coding conventions are guidelines that describe how the code should be written in a
specific programming language. It makes the code more readable and easier to maintain.
Naming conventions define how variables, methods, and more should be named. Naming
is really important, because that helps developers understand the purpose of a certain unit
in the program. The layout convention defines how the structure of the source code should
look; for example, indenting and the use of spaces. The commenting convention defines
how the source code should be commented on. Quite often, it is good to use some
standardized ways of commenting, such as Javadoc with Java.

Most of the software development environments and editors offer tools that help you with
code conventions. You can also use code formatters, such as Prettier for JavaScript.

Choosing the proper tools
You should always choose the proper tools that best fit your software development process.
This makes your process more efficient and also helps you in the development life cycle.
There are many tools to automate tasks in the development process, and it is a good way of
avoiding mistakes that occur in repetitive tasks. Of course, the tools you use will depend on
the process and the technologies you're using.

Best Practices Chapter 16

[270]

Choosing the proper technologies
When starting to develop an application, one of the first things to decide is which
technologies (programming language, frameworks, databases, and so on) you should use.
Quite often, it feels safe to select technologies that you have always used, but that's not
always the optimal choice. The application itself normally imposes a number of limitations
in relation to the technologies that you can use. For example, if you have to create a mobile
application, there are several technologies that you can use; but if you have to develop a
similar application that you have made many times, it might be wiser to use technologies
that you are already very familiar with.

Minimizing the amount of coding
A common good practice is to minimize the amount of coding. This is really sensible
because it makes code maintenance and testing much easier. DRY (short for Don't Repeat
Yourself) is a common principle in software development. The basic idea of DRY is to
reduce the amount of code by avoiding repetition in the code. It is always a good practice to
split your source code into smaller components because smaller units are always easier to
manage. Of course, the optimal structure depends on the programming language you are
using. One good statement is also Keep it Simple, Stupid (KISS), which should guide you
in the right direction.

Summary
In this chapter, we covered the technologies that you should be familiar with if you want to
become a full stack developer. The amount of knowledge that you should have might
sound like a lot, but you don't have to be the master of all the technologies that we
described. It is also good to understand some best practices of software development,
because then, you can avoid common mistakes and your source code will be more readable
and easier to maintain.

Best Practices Chapter 16

[271]

Questions
Why are coding conventions important?1.
Why should you try to avoid excessive coding?2.
Why are naming conventions important?3.

Further reading
Packt has other great resources available for learning about full stack development. These
are as follows:

The Complete JavaScript Developer: A Primer to Full Stack JS [Video], by Full Stack
Training Ltd (https:/ ​/​www. ​packtpub. ​com/ ​application- ​development/ ​complete-
javascript- ​developer- ​primer- ​full- ​stack- ​js- ​video)
Full Stack Development with JHipster, by Deepu K Sasidharan, and Sendil Kumar N
(https:/ ​/ ​www. ​packtpub. ​com/ ​application- ​development/ ​full- ​stack-
development- ​jhipster)
Fundamentals of Continuous Delivery Pipeline [Video], by Rafał Leszko (https:/ ​/
www.​packtpub. ​com/ ​networking- ​and- ​servers/ ​fundamentals- ​continuous-
delivery- ​pipeline- ​video)

https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/complete-javascript-developer-primer-full-stack-js-video
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/application-development/full-stack-development-jhipster
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video
https://www.packtpub.com/networking-and-servers/fundamentals-continuous-delivery-pipeline-video

Assessments

Chapter 1
Spring Boot is a Java-based web application framework that is based on Spring.1.
With Spring Boot, you can develop standalone web applications with embedded
application servers.
Eclipse is an open source integrated development environment (IDE), and it is2.
mostly used for Java programming, but it supports multiple other programming
languages as well.
Maven is an open source software project-management tool. Maven can manage3.
builds, documentation, testing, and more in the software development project.
The easiest way to start a new Spring Boot project is to create it with the Spring4.
Initializr web page. This creates a skeleton for your project with the modules that
you need.
If you are using the Eclipse IDE, you just activate your main class and press5.
the Run button. You can also use the mvn spring-boot:run Maven
command to run an application.
The Spring Boot starter package provides logging features for you. You can6.
define the level of logging in the application.properties settings file.
The error and log messages can be seen in the Eclipse IDE console after you run7.
the application.

Chapter 2
Depenency Injection (DI) is software development technology that helps the1.
interaction between the classes, but at the same time keeps the classes
independent.
The easiest way to utilize DI in Spring Boot is to use @Autowired annotation.2.

Assessments

[273]

Chapter 3
Object-relational mapping (ORM) is a technique that allows you to fetch and1.
manipulate data from a database using an object-oriented programming
paradigm. Java Persistence API (JPA) provides object-relational mapping for
Java developers. Hibernate is a Java-based JPA implementation.
The entity class is just a standard Java class that is annotated with the @Entity2.
annotation. You have to implement constructors, fields, getters, and setters inside
the class. The unique ID field(s) are annotated with the @Id annotation.
You have to create a new interface that extends the Spring Data3.
CrudRepository interface. You define the entity and the type of the id field in
the type arguments—for example, <Car, Long>.
CrudRepository provides all CRUD operations to your entity. You can create,4.
read, update, and delete your entities using CrudRepository.
You have to create entity classes and link the entities using the @OneToMany5.
and @ManyToOne annotations.
You can add demo data to your main application class using6.
CommandLineRunner.
Define the endpoint for the H2 console in your application.properties file7.
and enable it. Then, you can access the H2 console by navigating to the defined
endpoint with a web browser.
You have to add the MariaDB dependency to the pom.xml file and define the8.
database connection settings in the application.properties file. Remove the
H2 database dependency from the pom.xml file if you have used that.

Chapter 4
REST is an architectural style for creating web services, and it defines a set of1.
constraints.
The easiest way to create a RESTful web service with Spring Boot is to use the2.
Spring Data REST starter package. By default, the Spring Data REST package
finds all public repositories and creates automatically RESTful web services for
your entities.
You can send a GET request to the endpoint of the entity. For example, if you3.
have an entity class called Car, the Spring Data REST package creates an
endpoint called /cars that can be used to fetch all cars.

Assessments

[274]

You can send a DELETE request to the endpoint of the individual entity item. For4.
example, /cars/1 deletes a car with the ID 1.
You can send a POST request to the endpoint of the entity. The header must5.
contain the Content-Type field with the application/json value. The new
item will be embedded in the request body.
You can send a PATCH request to the endpoint of the entity. The header must6.
contain the Content-Type field with the application/json value. The
updated item will be embedded in the request body.
You have to annotate your repository using the @RepositoryRestResource7.
annotation. The query parameters are annotated using the @Param annotation.

Chapter 5
Spring Security provides security services for Java-based web applications. 1.
You have to add the Spring Security starter package dependency to your2.
pom.xml file. You can configure Spring Security by creating a security
configuration class.
JSON Web Token (JWT) is a compact way to implement authentication in3.
modern web applications. The size of the token is small, and so it can be sent in
the URL, either in the POST parameter or inside the header.
You can use the Java JWT library, that is, the JWT library for Java. The4.
authentication service class adds and reads the token. The filter classes handle
the login and authentication process.
You have to add the Spring Boot test starter package to your pom.xml file. The5.
Spring Boot test starter package provides a lot of nice testing utilities—for
example, JUnit, AssertJ, and Mockito. When using the JUnit, the basic test classes
are annotated with the @SpringBootTest annotation, and the test methods
should start with the @Test annotation.
The test cases can be easily executed with the Eclipse IDE by running the test6.
classes (Run | JUnit test). The test results can be seen in the JUnit tab.

Chapter 6
Node.js is an open source, JavaScript-based, server-side environment. Npm is a1.
package manager for JavaScript.
You can find the installation packages and instructions for installing these on2.
multiple operating systems at https:/ ​/​nodejs. ​org/ ​en/ ​download.

https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download

Assessments

[275]

Visual Studio Code (VS Code) is an open source code editor for multiple3.
programming languages.
You can find the installation packages and instructions for installing this on4.
multiple operating systems at https:/ ​/​code. ​visualstudio. ​com.
You can create an app using the npx create-react-app5.
projectname command.
You can run the app using the npm start or yarn start command.6.
You can start by modifying the App.js file, and when you save the modification,7.
you will see the changes immediately in the web browser.

Chapter 7
Components are the basic building blocks of React apps. The React component1.
can be created using a JavaScript function or the ES6 class.
The props and state are the input data for rendering the component. They are2.
JavaScript objects, and the component is rerendered when the props or state
change.
The data flow goes from the parent component to the child.3.
The components that only have props are called stateless components. The4.
components that have both props and a state are called stateful components.
JSX is the syntax extension for JavaScript, and it is recommended that you use it5.
with React.
The component life cycle methods are executed at certain phases of the6.
component's life cycle.
Handling events in React is similar to handling DOM element events. The7.
difference in React is that event naming uses the camelCase naming
convention—for example, onClick or onSubmit.
We will often want to invoke a JavaScript function that has access to form data8.
after the form submission. Therefore, we have to disable the default behavior
using the preventDefault() function. You can use the input field's onChange
event handler to save the values from the input field to the state.

https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com

Assessments

[276]

Chapter 8
A promise is an object that represents the result of an asynchronous operation.1.
The use of promises simplifies the code when performing asynchronous calls.
The fetch API provides the fetch(), which method that you can use to make2.
asynchronous calls using JavaScript.
When using the REST API, it is recommended that you use the fetch() call3.
inside the componentDidMount() life cycle method that is invoked when the
component has been mounted.
You can access the response data using the promises with the fetch() method.4.
The data from the response is saved to the state and the component is rerendered
when the state changes.

Chapter 9
You can download React components from multiple sources—for example,1.
https:/​/ ​js. ​coach/ ​ or https:/ ​/​github. ​com/ ​brillout/ ​awesome- ​react-
components.
You can install React components using the npm or yarn package managers. If2.
you are using npm, use the npm install <componentname> command.
You have to install the ReactTable component. After the installation, you can3.
use the ReactTable component in the render() method. You have to define
the data and the columns using the ReactTable props. The data can be an object
or an array.
You have to install the Material-UI component library using the npm install4.
@material-ui/core command. After the library is installed, you can start to
use the components. The documentation of the different components can be
found at https:/ ​/​material- ​ui. ​com.
Routing can be implemented using the React Router component, which can be5.
found at https:/ ​/​github. ​com/ ​ReactTraining/ ​react- ​router.

https://js.coach/
https://js.coach/
https://js.coach/
https://js.coach/
https://js.coach/
https://js.coach/
https://js.coach/
https://js.coach/
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://material-ui.com
https://material-ui.com
https://material-ui.com
https://material-ui.com
https://material-ui.com
https://material-ui.com
https://material-ui.com
https://material-ui.com
https://material-ui.com
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router

Assessments

[277]

Chapter 10
With the mock up, it is much easier to discuss the needs with the client before1.
you start to write any actual code. Changes to the mock up are really easy and
quick to make, compared to modifications with real frontend source code.
You can modify the security configuration class to allow access to all endpoints2.
without authentication.

Chapter 11
First, you have to call the REST API using the fetch() method. Then, you can1.
access the response data using the promises with the fetch() method. The data
from the response is saved to the state and the component is rerendered when
the state changes.
You have to send a DELETE method request using the fetch() method. The2.
endpoint of the call is the link to the item that you want to delete.
You have to send a POST method request to the entity endpoint using3.
the fetch() method. The added item should be embedded in the body. You
have to add the Content-Type header with the application/json value.
You have to send a PATCH method request using the fetch() method. The4.
endpoint of the call is the link to the item that you want to update. The updated
item should be embedded in the body. You have to add the Content-Type
header with the application/json value.
You can use a third-party React component, such as React Toastify, to show toast5.
messages.
You can use a third-party React component, such as React CSV, to export data to6.
a CSV file.

Chapter 12
Material-UI is the component library for React, and it implements Google's1.
material design.
First, you have to install the Material-UI library using the npm install2.
@material-ui/core command. Then, you can start to use components from
the library. The documentation of the different components can be found
at https:/ ​/​material- ​ui. ​com/ ​.

https://material-ui.com/
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/
https://material-ui.com/

Assessments

[278]

You can remove a component using the npm command npm remove3.
<componentname>.

Chapter 13
Jest is a test library for JavaScript developed by Facebook.1.
Create a test file using the .test.js extension. Implement your test cases inside2.
the file. You can run the tests using the npm test command.
For snapshot testing, you have to install the react-test-render package and3.
import renderer to your test file. Implement your snapshot test cases inside the
file and run the tests using the npm test command.
Enzyme is a JavaScript library for testing the React component's output.4.
Using the following npm command, npm install enzyme enzyme-adapter-5.
react-16 --save-dev, we can install Enzyme.
You have to import the Enzyme and Adapter components to your test file. Then,6.
you can create your test cases to render a component. With Enzyme, you can use
Jest for assertions. Enzyme provides the simulate method that can be used to
test events.

Chapter 14
You have to create a new component that renders input fields for the username1.
and the password. The component also contains a button that calls the /login
endpoint when the button is pressed.
The call from the login component is made using the POST method and a user2.
object is embedded in the body. If the authentication succeeds, the backend sends
the token back in the Authorization header.
The token can be saved to session storage using the3.
sessionStorage.setItem() method.
The token has to be included in the request's Authorization header.4.

Assessments

[279]

Chapter 15
You can create an executable JAR file by using the mvn clean install Maven1.
command.
The easiest way to deploy a Spring Boot application is to push your application2.
source code to GitHub and use the GitHub link from Heroku.
The easiest way to deploy the React app to Heroku is to use the Heroku3.
Buildpack for create-react-app, which can be found at https:/ ​/ ​github. ​com/
mars/​create- ​react- ​app- ​buildpack.
Docker is a container platform that makes software development, deployment,4.
and shipping easier. Containers are lightweight and executable software
packages that include everything that is needed to run software.
The Spring Boot application is just an executable JAR file that can be executed5.
with Java. You can use it to create a Docker container for your Spring Boot
application in a similar way to creating one for any Java JAR application.
You can pull the latest MariaDB container from the Docker Hub using6.
the docker pull mariadb:latest Docker command.

Chapter 16
It makes code more readable and easier to maintain. It also makes teamwork1.
much easier because everyone is using the same structure in the coding.
It makes code more readable and easier to maintain. The testing of the code is2.
easier.
It makes code more readable and easier to maintain. It also makes teamwork3.
much easier because everyone is using the same naming convention in the
coding.

https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack
https://github.com/mars/create-react-app-buildpack

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Spring Boot 2 Fundamentals
Patrick Cornelißen

ISBN: 9781789804980

Create your own Spring Boot application from scratch
Write comprehensive unit tests for your applications
Store data in a relational database
Build your own RESTful API with Spring Boot
Developa rich web interface for your applications
Secure your application with Spring Security

https://www.packtpub.com/application-development/spring-boot-2-fundamentals

Other Books You May Enjoy

[281]

Spring 5.0 Projects
Nilang Patel

ISBN: 9781788390415

Build Spring based application using Bootstrap template and JQuery
Understand the Spring WebFlux framework and how it uses Reactor library
Interact with Elasticsearch for indexing, querying, and aggregating data
Create a simple monolithic application using JHipster
Use Spring Security and Spring Security LDAP and OAuth libraries for
Authentication
Develop a microservice-based application with Spring Cloud and Netflix
Work on Spring Framework with Kotlin

https://www.packtpub.com/application-development/spring-50-projects

Other Books You May Enjoy

[282]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
add functionality 205, 207, 208
Amazon Web Services (AWS) 247
Apache Maven 9
arrow function 122
axios library
 reference link 146
 using 146

B
backend programming language 267
backend
 deploying 248, 249, 250, 251, 252, 254, 256
 securing 234, 235
 securing, JWT used 87, 90, 92, 94

C
Chrome plugins
 reference link 113
Comma Separated Values (CSV) 213
constants 121
create-react-app command
 reference link 110
Cross Origin Resource Sharing (CORS) 94
CRUD functionalities
 about 213, 214
 add functionality 203, 205, 207, 208
 delete functionality 198, 199, 200, 201, 203
 edit functionality 210, 212
 list page, creating 190, 191, 192, 195, 197
CRUD repositories
 creating 41, 43, 44
CSS 267

D
Database as a Service (DBaaS) 253
databases 268
delete functionality 198, 199, 200, 201, 203
Dependency Injection (DI), types
 constructor injection 29
 setter injection 29
Dependency Injection (DI)
 about 27
 in Spring Boot 29
Docker container
 using 259, 260, 261, 263, 264
Docker, installation package
 reference link 259
Don't Repeat Yourself (DRY) 270

E
Eclipse
 basics 8
 installing 8
 URL 8
ECMAScript 2015 (ES6)
 about 121
 arrow functions 122
 basics 121
 classes 123
 constants 121
 inheritance 123
 template literals 123
edit functionality 209, 210, 212
entity classes
 creating 33, 35, 37, 41
Enzyme
 using 230, 231
event handling
 with React 135

[284]

F
fetch API
 using 145
form handling
 with React 136, 140
frontend frameworks 268
frontend libraries 268
frontend
 securing 235, 237, 238, 240, 241, 242, 245
full-stack developer
 backend programming language 267
 CSS 267
 databases 268
 frontend frameworks 268
 frontend libraries 268
 HTML 267
 HTTP 267
 JavaScript 267
 learning 266
 security 268
 tools 268
 version control 268

G
Gradle 9
Grid component
 using 220, 221

H
HeidiSQL 24
Heroku Buildpack
 reference link 257
Heroku cloud server
 reference link 249
hibernate 33
HTML 267
HTTP 267
Hypertext Application Language (HAL) 67

I
integrated development environment (IDE) 8

J
Java JWT library
 reference link 88
Java Persistent API (JPA)
 about 32, 33
 basics 33
Java Simplified Encryption (JASYPT) 254
JavaScript 267
Jest
 using 225, 226
JS.coach
 URL 160
JSON Web Tokens (JWT)
 about 87
 used, for securing backend 87
JSX 124

K
Keep it Simple, Stupid (KISS) 270

L
list handling
 with React 134, 135
list page
 creating 190, 191, 192, 195, 197
Long-term Support (LTS) 105

M
MariaDB
 database, setting up 55, 56
 installing 22, 24
 URL 22
 URL, for installation 32
Material-UI Button component
 using 217, 219, 220
Material-UI component library 170, 171, 173, 175,

176

Maven
 basics 8

N
Node.js installation package
 reference link 105
Node.js

[285]

 installing 105, 106

O
Object-Relational Mapping (ORM) 32, 33
OpenWeatherMap
 URL 147

P
Platform as a Service (PaaS) 247
Project Object Model (POM) 9
promises, states
 fulfilled 143
 pending 143
 rejected 143
promises
 using 143
props 125, 127
pure component 130

R
React app
 creating 110
 executing 110
 modifying 111, 112, 113
React component
 life cycle methods 128
 reference link 161
React frontend
 deploying 257
 using 258
React hooks 130, 133
React project
 creating, for frontend 186, 187
React Router
 reference link 177
React stateless component 129
React Table
 about 165, 167, 169
 URL 165
React
 components 116, 117, 119
 used, in event handling 135
 used, in form handling 137, 140
 used, in list handling 134, 135
Representational State Transfer (REST)

 about 60
 basics 60
 cacheable 60
 client server 60
 code on demand 60
 layered system 60
 stateless 60
 uniform interface 60
REST APIs
 examples 147, 148, 150, 151, 153, 154, 155
REST architecture
 Hypermedia and the Engine of Application State

(HATEOAS) 60
 resource manipulation, through representation

60

 resources, identification 60
 self descriptive messages 60
RESTful web service
 creating 61, 63, 64, 66
routing 177, 178

S
snapshot
 testing 227, 229, 230
software development
 best practices 269
 code, minimizing 270
 coding conventions 269
 technologies, selecting 270
 tools, selecting 269
Spring Boot applications
 environment, setting up 8
 tools, setting up 8
Spring Boot backend
 preparing 184, 186
Spring Boot development tools 19
Spring Boot
 Dependency Injection (DI) 29
 testing 96
Spring Data REST
 using 67, 68, 70, 71, 72, 73, 74
Spring Initializr
 project, creating with 11
 reference link 11
Spring Security

 about 77, 78, 79, 82, 84, 87
 features 77
 URL 77
Spring Tool Suite (STS)
 about 9
 reference link 9
state 125, 127
stateful components 127
stateless components 127
styling 124

T
tables
 relationship between 47, 49, 51, 53
template literals 123
TextField component
 using 221
third-party React components
 using 160, 163, 165
tools 268
tools, Spring Boot applications
 Eclipse, basics 8
 Eclipse, installing 8
 logs, solving 19, 21
 MariaDB, installing 22, 24

 Maven, basics 8
 problem, solving 19, 21
 project, creating with Spring Initializr 11
 project, executing 13, 14, 15, 16, 18
 Spring Boot development tools 19

U
unit test
 creating 97, 98, 100
user interface (UI)
 mocking up 183, 184
useState 130

V
version control 268
virtual DOM (VDOM) 117
Visual Studio Code (VS Code)
 about 106
 extension 108
 installing 106, 107
 URL, for downloading 106

W
web security 268

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Backend Programming with Spring Boot
	Chapter 1: Setting Up the Environment and Tools - Backend
	Technical requirements
	Setting up the environment and tools
	Installing Eclipse
	The basics of Eclipse and Maven
	Creating a project with Spring Initializr
	How to run the project
	Spring Boot development tools
	Logs and problem solving
	Installing MariaDB

	Summary
	Questions
	Further reading

	Chapter 2: Dependency Injection
	Technical requirements
	Introducing DI
	DI in Spring Boot

	Summary
	Questions
	Further reading

	Chapter 3: Using JPA to Create and Access a Database
	Technical requirements
	Basics of ORM, JPA, and Hibernate
	Creating the entity classes
	Creating CRUD repositories
	Relationships between tables
	Setting up the MariaDB database

	Summary
	Questions
	Further reading

	Chapter 4: Creating a RESTful Web Service with Spring Boot
	Technical requirements
	Basics of REST
	Creating a RESTful web service
	Using Spring Data REST

	Summary
	Questions
	Further reading

	Chapter 5: Securing and Testing Your Backend
	Technical requirements
	Spring Security
	Securing your backend using JWT
	Testing in Spring Boot
	Creating unit tests
	Summary
	Questions
	Further reading

	Section 2: Frontend Programming with React
	Chapter 6: Setting Up the Environment and Tools - Frontend
	Technical requirements
	Installing Node.js
	Installing VS Code
	VS Code extension

	Creating and running a React app
	Modifying a React app

	Summary
	Questions
	Further reading

	Chapter 7: Getting Started with React
	Technical requirements
	Basic React components
	Basics of ES6
	Understanding constants
	Arrow functions
	Template literals
	Classes and inheritance

	JSX and styling
	Props and the state
	Component life cycle methods
	Stateless components
	React hooks
	Handling lists with React
	Handling events with React
	Handling forms with React
	Summary
	Questions
	Further reading

	Chapter 8: Consuming the REST API with React
	Technical requirements
	Using promises
	Using the fetch API
	Using the axios library
	Practical examples
	Summary
	Questions
	Further reading

	Chapter 9: Useful Third-Party Components for React
	Technical requirements
	Using third-party React components
	React Table
	Material-UI component library
	Routing
	Summary
	Questions
	Further reading

	Section 3: Full Stack Development
	Chapter 10: Setting Up the Frontend for Our Spring Boot RESTful Web Service
	Technical requirements
	Mocking up the UI
	Preparing the Spring Boot backend
	Creating the React project for the frontend
	Summary
	Questions
	Further reading

	Chapter 11: Adding CRUD Functionalities
	Technical requirements
	Creating the list page
	The delete functionality
	The add functionality
	The edit functionality
	Other functionalities
	Summary
	Questions
	Further reading

	Chapter 12: Styling the Frontend with React Material-UI
	Technical requirements
	Using the Button component
	Using the Grid component
	Using the TextField components
	Summary
	Questions
	Further reading

	Chapter 13: Testing Your Frontend
	Technical requirements
	Using Jest
	Snapshot testing
	Using Enzyme
	Summary
	Questions
	Further reading

	Chapter 14: Securing Your Application
	Technical requirements
	Securing the backend
	Securing the frontend
	Summary
	Questions
	Further reading

	Chapter 15: Deploying Your Application
	Technical requirements
	Deploying the backend
	Deploying the frontend
	Using Docker containers
	Summary
	Questions
	Further reading

	Chapter 16: Best Practices
	What to learn next
	HTML
	CSS
	HTTP
	JavaScript
	A backend programming language
	Some frontend libraries and frameworks
	Databases
	Version control
	Useful tools
	Security

	Best practices
	Coding conventions
	Choosing the proper tools
	Choosing the proper technologies
	Minimizing the amount of coding

	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

