

React Projects

Build 12 real-world applications from scratch using React,
React Native, and React 360

Roy Derks

BIRMINGHAM - MUMBAI

React Projects
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Ashitosh Gupta
Content Development Editor: Akhil Nair
Senior Editor: Martin Whittemore
Technical Editor: Suwarna Patil
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Arvindkumar Gupta

First published: December 2019

Production reference: 1191219

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-493-7

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Roy Derks is a serial start-up CTO, conference speaker, and developer from Amsterdam.
He has been actively programming since he was a teenager, starting as a self-taught
programmer using online tutorials and books. At the age of 14, he founded his first start-
up, a peer-to-peer platform where users could trade DVDs with other users for free. This
marked the start of his career in web development, which back then primarily consisted of
creating web applications using an MVC architecture with the LAMP stack.

In 2015, he was introduced to React and GraphQL at a hackathon in Berlin, and after
winning a prize for his project, he started to use these technologies professionally. Over the
next few years, he helped multiple start-ups create cross-platform applications using React
and React Native, including a start-up he co-founded. He also started giving workshops
and talks at conferences around the globe. In 2019, he gave over 20 conference talks about
React, React Native, and GraphQL, inspiring over 10,000 developers worldwide.

First, I'd like to thank the creators of React at Facebook for open-sourcing their library and
making it available for everyone. Without their effort, my career would have looked very
different and this book wouldn't have been written.

Second, a shoutout to all the developers that have created, maintained, or contributed to
the packages used in this book. If it wasn't for all the hard work you've put into these
libraries, frameworks, and tools, React would have been way less popular.

Finally, many thanks to the online communities that inspired and motivated me to write
this book. Communities need dedicated people to thrive and trying to mention some of you
personally would mean selling short all the people I might forget. So thank you ALL for
making React great.

About the reviewers
Kirill Ezhemenskii is an experienced software engineer, frontend and mobile developer,
solution architect, and a CTO at a healthcare company. He is also a functional
programming advocate and an expert in React stack, GraphQL, and TypeScript. He is a
React Native mentor.

Emmanuel Demey works with the JavaScript ecosystem on a daily basis. He spends his
time sharing his knowledge with anyone and everyone. His first goal at work is to help the
people he works with. He has spoken at French conferences (such as Devfest Nantes,
Devfest Toulouse, Sunny Tech, and Devoxx France) about topics related to the web
platform, such as JavaScript frameworks (Angular, React.js, Vue.js), accessibility, and
Nest.js. He has been a trainer for 10 years at Worldline and Zenika (two French consulting
companies). He also the co-leader of the Google Developer Group de Lille and the co-
organizer of the Devfest Lille conference.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Creating a Movie List Application in React 7
Project overview 8
Getting started 8
Creating a movie list application 9

Setting up a project 9
Setting up webpack 10
Configuring webpack to work with React 11
Rendering a React project 13
Creating a development server 15

Structuring a project 16
Creating new components 17
Retrieving data 20
Adding styling 25
Adding ESLint 30

Summary 33
Further reading 33

Chapter 2: Creating a Progressive Web Application with Reusable
React Components 34

Project overview 35
Getting started 35
GitHub portfolio application 35

Creating a PWA with Create React App 35
Installing Create React App 36
Creating a PWA 38
Serving the PWA 40

Building reusable React components 43
Structuring our application 44
Reusing components in React 51

Styling in React with styled-components 60
Summary 73
Further reading 73

Chapter 3: Build a Dynamic Project Management Board with React and
Suspense 74

Project overview 75
Getting started 75
Creating a project management board application 77

Handling the data flow 77

Table of Contents

[ii]

Loading and displaying the data 78
Getting started with HOC 83

Creating HOC 83
Using the HOC 89

Making the board dynamic 94
Summary 102
Further reading 103

Chapter 4: Build a SSR-Based Community Feed Using React Router 104
Project overview 104
Getting started 105
Community feed application 107

Declarative routing 107
Routes with parameters 110
Handling query strings 116

Enable SSR 125
Creating an express server with react-router 125
Adding head tags using React Helmet 130

Summary 134
Further reading 135

Chapter 5: Build a Personal Shopping List Application Using Context
API and Hooks 136

Project overview 137
Getting started 137
Personal shopping list 140

Using the context API for state management 141
Creating Context 141
Nesting Context 147

Mutating context with Hooks 150
Using life cycles in functional components 150
Updating the Provider with a Flux pattern 153
Mutating data in the Provider 166

Creating a global Context 174
Summary 178
Further reading 178

Chapter 6: Build an Application Exploring TDD Using Jest and Enzyme 179
Project overview 179
Getting started 180
Hotel review application 182

Unit testing with Jest 182
Creating a unit test 183
Rendering a React component for testing 184
Testing components with assertions 190

Using Enzyme for testing React 193
Shallow rendering with Enzyme 194

Table of Contents

[iii]

Testing assertions with shallow rendering 198
Integration testing with Enzyme 203

Summary 210
Further reading 210

Chapter 7: Build a Full Stack E-Commerce Application with React
Native and GraphQL 211

Project overview 212
Getting started 212

Getting started with the initial React application 212
Getting started with the GraphQL server 214

Building a full stack e-commerce application with React, Apollo,
and GraphQL 218

Adding GraphQL to a React application 218
Sending GraphQL queries with React 220
Handling mutations with Apollo Client 228

Managing local state 233
Using authentication with React and GraphQL 240

React Router and authentication 240
Receiving JWT from the GraphQL server 243
Passing JWT to the GraphQL server 248

Summary 252
Further reading 253

Chapter 8: Build a House Listing Application with React Native and
Expo 254

Project overview 255
Getting started 255
Building a house listing application with React Native and Expo 256

Create a React Native project 256
Setting up routing in React Native 260

Creating routes with React Navigation 261
Transitioning between screens 264
Using multiple navigators together 268

Using life cycles in React Native 273
Styling React Native applications 279

Differences in styling for iOS and Android 285
Summary 294
Further reading 294

Chapter 9: Build an Animated Game Using React Native and Expo 295
Project overview 295
Getting started 296

Checking out the initial project 296
Creating an animated Tic-Tac-Toe game application with React
Native and Expo 300

Table of Contents

[iv]

Using the React Native Animated API 300
Creating a basic animation 300
Combining animations with the Animated API 306

Advanced animations with Lottie 311
Handling gestures with Expo 316

Handling tap gestures 317
Customizing tap gestures 320

Summary 328
Further reading 329

Chapter 10: Creating a Real-Time Messaging Application with React
Native and Expo 330

Project overview 331
Getting started 331

Checking out the initial project 332
Creating a real-time messaging application with React Native and
Expo 336

Using GraphQL in React Native with Apollo 336
Setting up Apollo in React Native 336
Using Apollo in React Native 339

Authentication in React Native 345
Authentication with React Navigation 345
Sending authentication details to the GraphQL server 356

Handling subscriptions in React Native with Apollo 358
Setting up Apollo Client for GraphQL subscriptions 358
Adding subscriptions to React Native 361
Using mutations with subscriptions 366

Summary 370
Further reading 370

Chapter 11: Build a Full Stack Social Media Application with React
Native and GraphQL 371

Project overview 372
Getting started 372

Checking out the initial project 373
Building a full stack social media application with React Native,
Apollo, and GraphQL 378

Using the camera with React Native and Expo 378
Retrieving near real-time data using GraphQL 394
Sending notifications with Expo 400

Handling foreground notifications 403
Summary 412
Further reading 412

Chapter 12: Creating a Virtual Reality Application with React 360 413
Project overview 413
Getting started 414

Table of Contents

[v]

Creating a VR application with React 360 414
Getting started with React 360 414

Setting up React 360 415
React 360 UI components 418

Interactions in React 360 422
Using local state and VrButton 423
Dynamically changing scenes 426

Animations and 3D 434
Animations 434
Rendering 3D objects 439

Summary 445
Further reading 446

Other Books You May Enjoy 447

Index 450

Preface
This book will help you take your React knowledge to the next level by showing how to
apply both basic and advanced React patterns to create cross-platform applications. The
concepts of React are described in a way that's understandable to both new and
experienced developers; no prior experience of React is required, although it would help.

In each of the 12 chapters of this book, you'll create a project with React, React Native, or
React 360. The projects created in these chapters implement popular React features such
as Higher-Order Components (HOCs) for re-using logic, the context API for state-
management, and Hooks for life cycle. Popular libraries, such as React Router and React
Navigation, are used for routing, while the JavaScript testing framework Jest is used to
write unit tests for the applications. Also, some more advanced chapters involve a
GraphQL server, and Expo is used to help you create React Native applications.

Who this book is for
The book is for JavaScript developers who want to explore React tooling and frameworks
for building cross-platform applications. Basic knowledge of web development,
ECMAScript, and React will assist in understanding key concepts covered in this book.

The supported React versions for this book are:

React - v16.10.2
React Native - v0.59
React 360 - v1.1.0

What this book covers
Chapter 1, Creating a Movie List Application in React, will explore the foundation of building
React projects that can scale. Best practices of how to structure your files, packages to use,
and tools will be discussed and practiced. The best way to architect a React project will be
shown by building a list of movies. Also, webpack and Babel are used to compile code.

Chapter 2, Creating a Progressive Web Application with Reusable React Components, will
explain how to set up and re-use styling in React components throughout your entire
application. We will build a GitHub Card application to see how to use CSS in JavaScript
and re-use components and styling in your application.

Preface

[2]

Chapter 3, Build a Dynamic Project Management Board with React and Suspense, will cover
how to create components that determine the dataflow between other components, so
called HOCs. We will build a project management board to see the flow of data throughout
an application.

Chapter 4, Build a SSR-Based Community Feed Using React Router, will discuss routing,
ranging from setting up basic routes, dynamic route handling, and how to set up routes for
server-side rendering.

Chapter 5, Build a Personal Shopping List Application Using Context API and Hooks, will show
you how to use the React context API with Hooks to handle the data flow throughout the
application. We will create a personal shopping list to see how data can be accessed and
changed from parent to child components and vice versa with Hooks and the context API.

Chapter 6, Build an Application Exploring TDD Using Jest and Enzyme, will focus on unit
testing with assertions and snapshots. Also, test coverage will be discussed. We will build a
hotel review application to see how to test components and data flows.

Chapter 7, Build a Full Stack E-Commerce Application with React Native and GraphQL, will use
GraphQL to supply a backend to the application. This chapter will show you how to set up
a basic GraphQL server and access the data on this server. We will build an e-commerce
application to see how to create a server and send requests to it.

Chapter 8, Build a House Listing Application with React Native and Expo, will cover scaling
and structuring React Native applications, which is slightly different from web applications
created with React. This chapter will outline the differences in the development
environment and tools such as Expo. We will build a house listing application to examine
the best practices.

Chapter 9, Build an Animated Game Using React Native and Expo, will discuss animations and
gestures, which are what truly distinguishes a mobile application from a web application.
This chapter will explain how to implement them. Also, the differences in gestures between
iOS and Android will be shown by building a card game application that has animations
and that responds to gestures.

Chapter 10, Creating a Real-Time Messaging Application with React Native and Expo, will cover
notifications, which are important for keeping the users of the application up to date. This
chapter will show how to add notifications and send them from the GraphQL server using
Expo. We will learn how to implement all this by building a message application.

Preface

[3]

Chapter 11, Build a Full Stack Social Media Application with React Native and GraphQL, will
cover building a full-stack application with React Native and GraphQL. The flow of data
between the server and the application will be demonstrated, along with how data are
fetched from the GraphQL server.

Chapter 12, Creating a Virtual Reality Application with React 360, will discuss how to get
started with React 360 by creating a panorama viewer that gives the user the ability to look
around in the virtual world and create components inside it.

To get the most out of this book
All the projects in this book are created with React, React Native, or React 360 and require
you to have prior knowledge of JavaScript. Although all the concepts of React and related
technologies are described in this book, we advise you to refer to React docs if you want to
find out more about a feature. In the following section, you can find some information
about setting up your machine for this book and how to download the code for each
chapter.

Set up your machine
For the applications that are created in this book, you'll need to have at least Node.js
v10.16.3 installed on your machine so that you can run npm commands. If you haven't
installed Node.js on your machine, please go to https:/ /nodejs. org/ en/download/ , where
you can find the download instructions for macOS, Windows, and Linux.

After installing Node.js, run the following commands in your command line to check the
installed versions:

For Node.js (should be v10.16.3 or higher):

node -v

For npm (should be v6.9.0 or higher):

npm -v

Also, you should have installed the React Developer Tools plugin (for Chrome and
Firefox) and added it to your browser. This plugin can be installed from the Chrome Web
Store (https://chrome. google. com/ webstore) or Firefox Addons (https:/ /addons.
mozilla.org).

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://addons.mozilla.org
https://addons.mozilla.org
https://addons.mozilla.org
https://addons.mozilla.org
https://addons.mozilla.org
https://addons.mozilla.org
https://addons.mozilla.org
https://addons.mozilla.org

Preface

[4]

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/React- Projects. In case there's an update to the code, it will be updated
on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it
here: https://static.packt-cdn.com/downloads/9781789954937_ColorImages.pdf.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/React-Projects
https://github.com/PacktPublishing/React-Projects
https://github.com/PacktPublishing/React-Projects
https://github.com/PacktPublishing/React-Projects
https://github.com/PacktPublishing/React-Projects
https://github.com/PacktPublishing/React-Projects
https://github.com/PacktPublishing/React-Projects
https://github.com/PacktPublishing/React-Projects
https://github.com/PacktPublishing/React-Projects
https://github.com/PacktPublishing/React-Projects
https://github.com/PacktPublishing/React-Projects
https://github.com/PacktPublishing/React-Projects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789954937_ColorImages.pdf

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Since you're going to build a Movie List application in this chapter, name this
directory movieList."

A block of code is set as follows:

{
 "name": "movieList",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC"
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import React from 'react';
import ReactDOM from 'react-dom';
+ import List from './containers/List';

const App = () => {
- return <h1>movieList</h1>;
+ return <List />;
};

ReactDOM.render(<App />, document.getElementById('root'));

Any command-line input or output is written as follows:

npm init -y

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"When the user clicks the Close X button, the display styling rule of the component will be
set to none."

Preface

[6]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Creating a Movie List
Application in React

When you bought this book, you'd probably heard of React before and probably even tried
out some of the code examples that can be found online. This book is constructed in such a
way that the code examples in each chapter gradually increase in complexity, so even if you
feel your experience with React is limited, each chapter should be understandable if you've
read the previous one. When you reach the end of this book, you will know how to work
with React and its stable features, up until version 16.11, and you will also have experience
with React Native and React 360.

This first chapter kicks off with us learning how to build a simple movie list application
and provides you with an overview of popular movies that we'll fetch from an external
source. The core concepts for getting started with React will be applied to this project,
which should be understandable if you've got some prior experience in building
applications with React. If you haven't worked with React before, that's no problem either;
this book describes the React features that are used in the code examples along the way.

In this chapter, we'll cover the following topics:

Setting up a new project with webpack and React
Structuring a React project

Let's dive in!

Creating a Movie List Application in React Chapter 1

[8]

Project overview
In this chapter, we will create a movie list application in React that retrieves data from a
local JSON file and runs in the browser with webpack and Babel. Styling will be done using
Bootstrap. The application that you'll build will return a list of the highest-grossing movies
as of 2019, along with some more details and a poster for every movie.

The build time is 1 hour.

Getting started
The application for this chapter will be built from scratch and uses assets that can be found
on GitHub at https:/ / github. com/ PacktPublishing/ React- Projects/ tree/ ch1- assets.
These assets should be downloaded to your computer so that you can use them later on in
this chapter. The complete code for this chapter can be found on GitHub as well: https:/ /
github.com/PacktPublishing/ React- Projects/ tree/ ch1.

For applications that are created in this book, you'll need to have at least Node.js v10.16.3
installed on your machine so that you can run npm commands. If you haven't installed
Node.js on your machine, please go to https:/ /nodejs. org/ en/ download/ , where you can
find the download instructions for macOS, Windows, and Linux.

After installing Node.js, run the following commands in your command line to check the
installed versions:

For Node.js (should be v10.16.3 or higher):

node -v

For npm (should be v6.9.0 or higher):

npm -v

Also, you should have installed the React Developer Tools plugin (for Chrome and
Firefox) and added it to your browser. This plugin can be installed from the Chrome Web
Store (https://chrome. google. com/ webstore) or Firefox Addons (https:/ /addons.
mozilla.org).

https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://github.com/PacktPublishing/React-Projects/tree/ch1
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://chrome.google.com/webstore
https://addons.mozilla.org
https://addons.mozilla.org
https://addons.mozilla.org
https://addons.mozilla.org
https://addons.mozilla.org
https://addons.mozilla.org
https://addons.mozilla.org
https://addons.mozilla.org

Creating a Movie List Application in React Chapter 1

[9]

Creating a movie list application
In this section, we will create a new React application from scratch, starting with setting up
a new project with webpack and Babel. Setting up a React project from scratch will help
you understand the basic needs of a project, which is crucial for any project you create.

Setting up a project
Every time you create a new React project, the first step is to create a new directory on your
local machine. Since you're going to build a movie list application in this chapter, name this
directory movieList.

Inside this new directory, execute the following from the command line:

npm init -y

Running this command will create a package.json file with the bare minimum of
information that npm needs about this project. By adding the -y flag to the command, we
can automatically skip the steps where we set information such as the name, version, and
description. After running this command, the following package.json file will be
created:

{
 "name": "movieList",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC"
}

As you can see, there are no dependencies for npm packages since we haven't installed any
yet. The first package we'll be installing and configuring is webpack, which we'll do in the
next part of this section.

Creating a Movie List Application in React Chapter 1

[10]

Setting up webpack
To run the React application, we need to install webpack 4 (while writing this book, the
current stable version of webpack is version 4) and webpack CLI as devDependencies.
Let's get started:

Install these packages from npm using the following command:1.

npm install --save-dev webpack webpack-cli

The next step is to include these packages inside the package.json file and have2.
them run in our start and build scripts. To do this, add the start and
build scripts to our package.json file:

{
 "name": "movieList",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
_ "start": "webpack --mode development",
+ "build": "webpack --mode production",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC"
}

"+" symbol is used for the line which is added and "-" symbol is used for
the line which is removed in the code.

The preceding configuration will add start and build scripts to our application
using webpack. As you can see, npm start will run webpack in development
mode and npm build will run webpack in production mode. The biggest
difference is that running webpack in production mode will minimize our code to
decrease the size of the project bundle.

Creating a Movie List Application in React Chapter 1

[11]

Create a new directory inside our project called src and create a new file inside3.
this directory called index.js. Later on, we'll configure webpack so that this file
is the starting point for our application. Place the following line of code inside
this newly created file:

console.log("movieList")

If we now run the npm start or npm build command at our command line, webpack will
start up and create a new directory called dist. Inside this directory, there will be a file
called main.js that includes our project code. Depending on whether we've run webpack
in development or production mode, the code will be minimized in this file. You can check
whether your code is working by running the following command:

node dist/main.js

This command runs the bundled version of our application and should return the
movieList string as output in the command line. Now, we're able to run JavaScript code
from the command line. In the next part of this section, we will learn how to configure
webpack so that it works with React.

Configuring webpack to work with React
Now that we've set up a basic development environment with webpack for a JavaScript
application, we can start installing the packages we need in order to run any React
application. These are react and react-dom, where the former is the generic core package
for React and the latter provides an entry point to the browser's DOM and renders React.
Let's get started:

Install these packages by executing the following command in the command line:1.

npm install react react-dom

Merely installing the dependencies for React is not sufficient to run it since, by
default, not every browser can read the format (such as ES2015+ or React) that
your JavaScript code is written in. Therefore, we need to compile the JavaScript
code into a readable format for every browser.

For this, we'll use Babel and its related packages, which can be installed as2.
devDependencies by running the following command:

npm install --save-dev @babel/core @babel/preset-env @babel/preset-
react babel-loader

Creating a Movie List Application in React Chapter 1

[12]

Next to the Babel core, we'll also install babel-loader, which is a helper so that
Babel can run with webpack and two preset packages. These preset packages help
determine which plugins will be used to compile our JavaScript code into a
readable format for the browser (@babel/preset-env) and to compile React-
specific code (@babel/preset-react).

With the packages for React and the correct compilers installed, the next step is to
make them work with webpack so that they are used when we run our
application.

To do this, create a file called webpack.config.js in the root directory of the3.
project. Inside this file, add the following code:

module.exports = {
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 use: {
 loader:'"babel-loader',
 },
 },
],
 },
}

The configuration in this file tells webpack to use babel-loader for every file
that has the .js extension and excludes .js files in the node_modules directory
for the Babel compiler. The actual settings for babel-loader are placed in a
separate file, called .babelrc.

We can also create the .babelrc file in the project's root directory and place the4.
following code inside it, which configures babel-loader to use the
@babel/preset-env and @babel/preset-react presets when it's compiling
our code:

{
 "presets": [
 [
 "@babel/preset-env",
 {
 "targets": {
 "node": "current"
 }

Creating a Movie List Application in React Chapter 1

[13]

 }
],
 "@babel/react"
]
}

We can also declare the configuration for babel-loader directly inside
the webpack.config.js file, but for better readability, we should place it
in a separate .babelrc file. Also, the configuration for Babel can now be
used by other tools that are unrelated to webpack.

The @babel/preset-env preset has options defined in it that make sure that the compiler
uses the latest version of Node.js, so polyfills for features such as async/await will still be
available. Now that we've set up webpack and Babel, we can run JavaScript and React from
the command line. In the next part of this section, we'll create our first React code and make
it run in the browser.

Rendering a React project
Now that we've set up React so that it works with Babel and webpack, we need to create an
actual React component that can be compiled and run. Creating a new React project
involves adding some new files to the project and making changes to the setup for
webpack. Let's get started:

Let's edit the index.js file that already exists in our src directory so that we1.
can use react and react-dom:

import React from 'react';
import ReactDOM from 'react-dom';

const App = () => {
 return <h1>movieList</h1>;
};

ReactDOM.render(<App />, document.getElementById('root'));

As you can see, this file imports the react and react-dom packages, defines a
simple component that returns an h1 element containing the name of your
application, and has this component rendered with react-dom. The last line of
code mounts the App component to an element with the root ID in your
document, which is the entry point of the application.

Creating a Movie List Application in React Chapter 1

[14]

We can create this file by adding a new file called index.html to the src2.
directory with the following code inside it:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
 <meta http-equiv="X-UA-Compatible" content="ie=edge">
 <title>movieList</title>
</head>
<body>
 <section id="root"></section>
</body>
</html>

This adds an HTML heading and body. Within the head tag is the title of our
application and inside the body tag is a section with the id property root. This
matches with the element we've mounted the App component to in the
src/index.js file.

The final step of rendering our React component is extending webpack so that it3.
adds the minified bundle code to the body tags as scripts when running.
Therefore, we should install the html-webpack-plugin package as a
devDependency:

npm install --save-dev html-webpack-plugin

Add this new package to the webpack configuration in the webpack.config.js
file:

const HtmlWebPackPlugin = require('html-webpack-plugin');

const htmlPlugin = new HtmlWebPackPlugin({
 template: './src/index.html',
 filename: './index.html',
});

module.exports = {
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 use: {

Creating a Movie List Application in React Chapter 1

[15]

 loader: 'babel-loader',
 },
 },
],
 },
 plugins: [htmlPlugin],
};

In the configuration for html-webpack-plugin, we've set the entry point of the
application as the index.html. file. That way, webpack knows where to add the bundle to
the body tag.

We can also add the configuration of the plugin directly inside the
exported configuration for webpack by replacing the htmlPlugin
constant in the exported configuration. As our application grows in size,
this may make the webpack configuration less readable, depending on our
preferences.

Now, if we run npm start again, webpack will start in development mode and add the
index.html file to the dist directory. Inside this file, we'll see that, inside your body tag, a
new scripts tag has been inserted that directs us to our application bundle, that is, the
dist/main.js file. If we open this file in the browser or run open dist/index.html
from the command line, it will return the movieList result directly inside the browser. We
can do the same when running the npm build command to start Webpack in production
mode; the only difference is that our code will be minified.

This process can be speeded up by setting up a development server with webpack. We'll do
this in the final part of this section.

Creating a development server
While working in development mode, every time we make changes to the files in our
application, we need to rerun the npm start command. Since this is a bit tedious, we will
install another package called webpack-dev-server. This package adds the option to
force webpack to restart every time we make changes to our project files and manages our
application files in memory instead of by building the dist directory. The webpack-dev-
server package can also be installed with npm:

npm install --save-dev webpack-dev-server

Creating a Movie List Application in React Chapter 1

[16]

Also, we need to edit the start script in the package.json file so that it uses webpack-
dev-server instead of webpack directly when running the start script:

{
 "name": "movieList",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
- "start": "webpack --mode development",
+ "start": "webpack-dev-server --mode development --open",
 "build": "webpack --mode production"
 },
 "keywords": [],
 "author": "",
 "license": "ISC"

 ...
}

The preceding configuration replaces webpack in the start scripts with webpack-dev-
server, which runs webpack in development mode. This will create a local server that
runs the application with the --open flag, which makes sure webpack is restarted every
time an update is made to any of your project files.

To enable hot reloading, replace the --open flag with the --hot flag. This
will only reload files that have been changed instead of the entire project.

Now, we've created the basic development environment for our React application, which
you'll develop and structure further in the next section of this chapter.

Structuring a project
With the development environment set up, it's time to start creating the movie list
application. First let's have a look at the current structure of the project, where two of the
directories within our project's root directory are important:

The first directory is called dist and is where the output from webpack's
bundled version of your application can be found

Creating a Movie List Application in React Chapter 1

[17]

The second one is called src and includes the source code of our application:

movieList
|-- dist
 |-- index.html
 |-- main.js
|-- node_modules
|-- src
 |-- index.js
 |-- index.html
.babelrc
package.json
webpack.config.js

Another directory that can be found in the root directory of our project is
called node_modules. This is where the source files for every package
that we install using npm are placed. It is recommended you don't make
any manual changes to files inside this directory.

In the following subsections, we will learn how to structure our React projects. This
structure will be used in the rest of the chapters in this book as well.

Creating new components
The official documentation for React doesn't state any preferred approach regarding how to
structure our React project. Although two common approaches are popular within the
community: either structuring your files by feature or route or structuring them by file
type.

The movie list application will use a hybrid approach, where files are structured by file
type first and by feature second. In practice, this means that there will be two types of
components: top-level components, which are called containers, and low-level components,
which relate to these top-level components. Creating these components requires that we
add the following files and code changes:

The first step to achieve this structure is creating a new subdirectory of src1.
called containers. Inside this directory, create a file called List.js. This will
be the container for the list containing the movies and contains the following
content:

import React, { Component } from 'react';

class List extends Component {
 render() {

Creating a Movie List Application in React Chapter 1

[18]

 return <h1>movieList</h1>;
 }
};

export default List;

This container should be included in the entry point of our application so that it's2.
visible. Therefore, we need to include it in the index.js file, inside the src
directory, and refer to it:

import React from 'react';
import ReactDOM from 'react-dom';
+ import List from './containers/List';

const App = () => {
- return <h1>movieList</h1>;
+ return <List />;
};

ReactDOM.render(<App />, document.getElementById('root'));

If we still have the development server running (if not, execute the npm3.
start command again), we'll see that our application still returns the same
result. Our application should have the following file structure:

movieList
|-- dist
 |-- index.html
 |-- main.js
|-- src
 |-- containers
 |-- List.js
 |-- index.js
 |-- index.html
.babelrc
package.json
webpack.config.js

Creating a Movie List Application in React Chapter 1

[19]

The next step is to add a component to the List container, which we'll use later4.
to display information about a movie. This component will be called Card and
should be located in a new src subdirectory called components, which will be
placed inside a directory with the same name as the component. We need to
create a new directory called components inside the src directory, which is
where we'll create another new directory called Card. Inside this directory, create
a file called Card.js and add the following code block to the empty
Card component:

import React from 'react';

const Card = () => {
 return <h2>movie #1</h2>;
};

export default Card;

Now, import this Card component into the container for List and return this5.
component instead of the h1 element by replacing the return function with the
following code:

import React, { Component } from 'react';
+ import Card from '../components/Card/Card';

class List extends Component {
 render() {
- return <h1>movieList</h1>;
+ return <Card />;
 }
};

export default List;

Now that we've added these directories and the Card.js file, our application
file's structure will look like this:

movieList
|-- dist
 |-- index.html
 |-- main.js
|-- src
 |-- components
 |-- Card
 |-- Card.js
 |-- containers
 |-- List.js

Creating a Movie List Application in React Chapter 1

[20]

 |-- index.js
 |-- index.html
.babelrc
package.json
webpack.config.js

If we visit our application in the browser again, there will be no visible changes as
our application still returns the same result. But if we open the React Developer
Tools plugin in our browser, we'll notice that the application currently consists of
multiple stacked components:

<App>
 <List>
 <Card>
 <h1>movieList</h1>
 </Card>
 </List>
</App>

In the next part of this section, you will use your knowledge of structuring a React project
and create new components to fetch data about the movies that we want to display in this
application.

Retrieving data
With both the development server and the structure for our project set up, it's time to
finally add some data to it. If you haven't already downloaded the assets in the GitHub
repository from the Getting started section, you should do so now. These assets are needed
for this application and contain a JSON file with data about the five highest-grossing
movies and their related image files.

The data.json file consists of an array with objects containing
information about movies. This object has the title, distributor,
year, amount, img, and ranking fields, where the img field is an object
that has src and alt fields. The src field refers to the image files that are
also included.

Creating a Movie List Application in React Chapter 1

[21]

We need to add the downloaded files to this project's root directory inside a different
subdirectory, where the data.json file should be placed in a subdirectory called assets
and the image files should be placed in a subdirectory called media. After adding these
new directories and files, our application's structure will look like this:

movieList
|-- dist
 |-- index.html
 |-- main.js
|-- src
 |-- assets
 |-- data.json
 |-- components
 |-- Card
 |-- Card.js
 |-- containers
 |-- List.js
 |-- media
 |-- avatar.jpg
 |-- avengers_infinity_war.jpg
 |-- jurassic_world.jpg
 |-- star_wars_the_force_awakens.jpg
 |-- titanic.jpg
 |-- index.js
 |-- index.html
.babelrc
package.json
webpack.config.js

This data will be retrieved in the top-level components only, meaning that we should add a
fetch function in the List container that updates the state for this container and passes it
down as props to the low-level components. The state object can store variables; every
time these variables change, our component will rerender. Let's get started:

Before retrieving the data for the movies, the Card component needs to be1.
prepared to receive this information. To display information about the movies,
we need to replace the content of the Card component with the following code:

import React from 'react';

const Card = ({ movie }) => {
 return (
 <div>
 <h2>{`#${movie.ranking} - ${movie.title}
(${movie.year})`}</h2>
 <img src={movie.img.src} alt={movie.img.alt}

Creating a Movie List Application in React Chapter 1

[22]

width='200' />
 <p>{`Distributor: ${movie.distributor}`}</p>
 <p>{`Amount: ${movie.amount}`}</p>
 </div>
);
};

export default Card;

Now, the logic to retrieve the data can be implemented by adding a2.
constructor function to the List component, which will contain an empty
array as a placeholder for the movies and a variable that indicates whether the
data is still being loaded:

...

class List extends Component {+
+ constructor() {
+ super()
+ this.state = {
+ data: [],
+ loading: true,
+ };
+ }

 return (
 ...

Immediately after setting up the constructor function, we should set up a3.
componentDidMount function, where we'll fetch the data after the
List component is mounted. Here, we should use an async/await function
since the fetch API returns a promise. After fetching the data, state should be
updated by replacing the empty array for data with the movie information and
the loading variable should be set to false:

...

class List extends Component {

 ...

 + async componentDidMount() {
 + const movies = await fetch('../../assets/data.json');
 + const moviesJSON = await movies.json();

 + if (moviesJSON) {
 + this.setState({

Creating a Movie List Application in React Chapter 1

[23]

 + data: moviesJSON,
 + loading: false,
 + });
 + }
 + }

 return (
 ...

The previous method that we use to retrieve information from JSON files
using fetch doesn't take into account that the request to this file may fail.
If the request fails, the loading state will remain true, meaning that the
user will keep seeing the loading indicator. If you want to display an error
message when the request doesn't succeed, you'll need to wrap the
fetch method inside a try...catch block, which will be shown later on
in this book.

Pass this state to the Card component, where it can ultimately be shown in the4.
Card component that we changed in the first step. This component will also get a
key prop, which is required for every component that is rendered within an
iteration. Since this value needs to be unique, the id of the movie is used, as
follows:

class List extends Component {

 ...

 render() {
 _ return <Card />
 + const { data, loading } = this.state;

+ if (loading) {
+ return <div>Loading...</div>
+ }

+ return data.map(movie => <Card key={ movie.id } movie={
movie } />);
 }
}

export default List;

Creating a Movie List Application in React Chapter 1

[24]

If we visit our application in the browser again, we'll see that it now shows a list of movies,
including some basic information and an image. At this point, our application will look
similar to the following screenshot:

Creating a Movie List Application in React Chapter 1

[25]

As you can see, limited styling has been applied to the application and it's only rendering
the information that's been fetched from the JSON file. Styling will be added in the next
part of this section using a package called Bootstrap.

Adding styling
Showing just the movie information isn't enough. We also need to apply some basic styling
to the project. Adding styling to the project is done with the Bootstrap package, which adds
styling to our components based on class names. Bootstrap can be installed from npm and
requires the following changes to be used:

To use Bootstrap, we need to install it from npm and place it in this project:1.

npm install --save-dev bootstrap

Also, import this file into the entry point of our React application, called2.
index.js, so that we can use the styling throughout the entire application:

import React, { Component } from 'react';
import ReactDOM from 'react-dom';
import List from './containers/List';
+ import 'bootstrap/dist/css/bootstrap.min.css';

const App = () => {
 return <List />;
}

ReactDOM.render(<App />, document.getElementById('root'));

If we try and run the development server again, we will receive an error saying
"You may need an appropriate loader to handle this file type.".
Because Webpack is unable to compile CSS files, we need to add the appropriate
loaders to make this happen. We can install these by running the following
command:

npm install --save-dev css-loader style-loader

We need to add these packages as a rule to the webpack configuration:3.

const HtmlWebPackPlugin = require('html-webpack-plugin');

const htmlPlugin = new HtmlWebPackPlugin({
 template: './src/index.html',
 filename: './index.html',
});

Creating a Movie List Application in React Chapter 1

[26]

module.exports = {
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 use: {
 loader: "babel-loader"
 }
 },
+ {
+ test: /\.css$/,
+ use: ['style-loader', 'css-loader']
+ }
]
 },
 plugins: [htmlPlugin]
};

The order in which loaders are added is important since css-loader
handles the compilation of the CSS file and style-loader adds the
compiled CSS files to the React DOM. Webpack reads these settings from
right to left and the CSS needs to be compiled before it's attached to the
DOM.

The application should run in the browser correctly now and should have picked4.
up some small styling changes from the default Bootstrap stylesheet. Let's make
some changes to the index.js file first and style it as the container for the entire
application. We need to change the App component that is rendered to the DOM
and wrap the List component with a div container:

...

const App = () => {
 return (
+ <div className='container-fluid'>
 <List />
 </div>
);
};

ReactDOM.render(<App />, document.getElementById('root'));

Creating a Movie List Application in React Chapter 1

[27]

Inside the List component, we need to set the grid to display the5.
Card components, which display the movie information. Wrap the map function
and the Card component with the following code:

...

class List extends Component {

 ...

 render() {
 const { data, loading } = this.state;

 if (loading) {
 return <div>Loading...</div>;
 }

 return (
 + <div class='row'>
 {data.map(movie =>
 + <div class='col-sm-2'>
 <Card key={ movie.id } movie={ movie } />
 + </div>
)}
 + </div>
);
 }
}

export default List;

The code for the Card component is as follows. This will add styling for6.
the Card component using Bootstrap:

import React from 'react';

const Card = ({ movie }) => {
 return (
 <div className='card'>
 <img src={movie.img.src} className='card-img-top'
alt={movie.img.alt} />
 <div className='card-body'>
 <h2 className='card-title'>{`#${movie.ranking} -
${movie.title} (${movie.year})` }</h2>
 </div>
 <ul className='list-group list-group-flush'>
 <li className='list-group-item'>{`Distributor:

Creating a Movie List Application in React Chapter 1

[28]

${movie.distributor}`}
 <li className='list-group-item'>{`Amount:
${movie.amount}`}

 </div>
);
};

export default Card;

To add the finishing touches, open the index.js file and insert the following7.
code to add a header that will be placed above our list of movies in the
application:

...

const App = () => {
 return (
 <div className='container-fluid'>
_ <h1>movieList</h1>
+ <nav className='navbar sticky-top navbar-light bg-
dark'>
+ <h1 className='navbar-brand text-
light'>movieList</h1>
+ </nav>

 <List />
 </div>
);
};

ReactDOM.render(<App />, document.getElementById('root'));

If we visit the browser again, we'll see that the application has had styling applied
through Bootstrap, which will make it look as follows:

Creating a Movie List Application in React Chapter 1

[29]

The style rules from Bootstrap have been applied to our application, making it look far
more complete then it did before. In the final part of this section, we'll add the ESLint
package to the project, which will make maintaining our code easier by synchronizing
patterns across the project.

Creating a Movie List Application in React Chapter 1

[30]

Adding ESLint
Finally, we will add ESLint to the project to make sure our code meets certain standards, for
instance, that our code follows the correct JavaScript patterns. Adding ESLint requires the
following changes:

Install ESLint from npm by running the following command:1.

npm install --save-dev eslint eslint-loader eslint-plugin-react

The first package, called eslint, is the core package and helps us identify any
potentially problematic patterns in our JavaScript code. eslint-loader is a
package that is used by Webpack to run ESLint every time we update our code.
Finally, eslint-plugin-react adds specific rules to ESLint for React
applications.

To configure ESLint, we need to create a file called .eslintrc.js in the2.
project's root directory and add the following code to it:

module.exports = {
 "env": {
 "browser": true,
 "es6": true
 },
 "parserOptions": {
 "ecmaFeatures": {
 "jsx": true
 },
 "ecmaVersion": 2018,
 "sourceType": "module"
 },
 "plugins": [
 "react"
],
 "extends": ["eslint:recommended", "plugin:react/recommended"]
};

The env field sets the actual environment our code will run in and will use es6
functions in it, while the parserOptions field adds extra configuration for using
jsx and modern JavaScript. Where things get interesting, however, is the
plugins field, which is where we specify that our code uses react as a
framework. The extends field is where the recommended settings for eslint are
used, as well as framework-specific settings for React.

Creating a Movie List Application in React Chapter 1

[31]

We can run the eslint --init command to create custom settings, but
using the preceding settings is recommended, so that we ensure the
stability of our React code.

If we look at our command line or browser, we will see no errors. However, we3.
have to add the eslint-loader package to the webpack configuration. In the
webpack.config.js file, add eslint-loader next to babel-loader:

...

module.exports = {
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
+ use: ['babel-loader', 'eslint-loader']
 },
 {
 test: /\.css$/,
 use: ['style-loader', 'css-loader']
 }
]
 },
 plugins: [htmlPlugin]
};

By restarting the development server, webpack will now use ESLint to check whether our
JavaScript code complies with the configuration of ESLint. In our command line (or
Console tab in the browser), the following error should be visible:

movieList/src/components/Card/Card.js
 3:17 error 'movie' is missing in props validation react/prop-types

When using React, it's recommended that we validate any props we send to components
since JavaScript's dynamic type system may lead to situations where variables are
undefined or have an incorrect type. Our code will work without us having to validate the
props, but to fix this error we have to install the prop-types package, which used to be a
feature of React but was later deprecated. Let's get started:

The package that we use to check for prop types can be installed from npm:1.

npm install --save prop-types

Creating a Movie List Application in React Chapter 1

[32]

Now, we can validate propTypes in our component by importing the package2.
into the Card component and adding the validation to the bottom of this file:

import React from 'react';
+ import PropTypes from 'prop-types';

const Card = ({ movie }) => {
 ...
};

+ Card.propTypes = {
+ movie: PropTypes.shape({}),
+ };

export default Card;

If we look at the command line again, we'll see that the missing propTypes3.
validation error has disappeared. However, the validation for our props still isn't
very specific. We can make this more specific by also specifying the propTypes
of all the fields of the movie prop:

...

Card.propTypes = {
_ movie: PropTypes.shape({}),
+ movie: PropTypes.shape({
+ title: PropTypes.string,
+ distributor: PropTypes.string,
+ year: PropTypes.number,
+ amount: PropTypes.string,
+ img: PropTypes.shape({
+ src: PropTypes.string,
+ alt: PropTypes.string
+ }),
+ ranking: PropTypes.number
+ }).isRequired
};

We can also indicate which props are required for React to render the component by
adding isRequired to the propTypes validation.

Congratulations! You have created a basic React application from scratch using React,
ReactDom, webpack, Babel, and ESLint.

Creating a Movie List Application in React Chapter 1

[33]

Summary
In this chapter, you've created a movie list application for React from scratch and learned
about core React concepts. This chapter started with you creating a new project with
webpack and Babel. These libraries help you compile and run your JavaScript and React
code in the browser with minimal setup. Then, we described how to structure a React
application. This structure will be used throughout this book. The principles that were
applied provided you with the basics from which to create React applications from nothing
and structure them in a scalable way.

If you've been working with React before, then these concepts probably weren't that hard to
grasp. If you haven't, then don't worry if some concepts felt strange to you. The upcoming
chapters will build upon the features that you used in this chapter, giving you enough time
to fully understand them.

The project you'll build in the next chapter will focus on creating reusable React
components with more advanced styling. This will be available offline since it will be set up
as a Progressive Web Application (PWA).

Further reading
Thinking in React https:/ / reactjs. org/ docs/ thinking- in-react. html

Bootstrap https:/ /getbootstrap. com/docs/ 4. 3/getting- started/
introduction/

ESLint https:/ / eslint. org/ docs/ user- guide/ getting- started

https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started

2
Creating a Progressive Web

Application with Reusable
React Components

Do you already feel familiar with React's core concepts after completing the first chapter?
Great! This chapter will be no problem for you! If not, don't worry – most of the concepts
you came across in the previous chapter will be repeated. However, if you want to get more
experience with webpack and Babel, it's recommended that you try creating the project
in Chapter 1, Creating a Movie List Application in React, again since this chapter won't be
covering those topics.

In this chapter, you'll work with Create React App, a starter kit (created by the React core
team to get you started with React quickly) that can be used as a Progressive Web App
(PWA) – a web application that behaves like a mobile application. It will make the
configuration of module bundlers and compilers such as webpack and Babel unnecessary
as this will be taken care of in the Create React App package. This means you can focus on
building your GitHub portfolio application as a PWA that reuses React components and
styling.

Alongside setting up Create React App, the following topics will be covered in this chapter:

Creating a Progressive Web App
Building reusable React components
Styling in React with styled-components

Can't wait? Let's continue!

Creating a Progressive Web Application with Reusable React Components Chapter 2

[35]

Project overview
In this chapter, we will create a PWA that has reusable React components and styling using
Create React App and styled-components. The application will use data fetched from
the public GitHub API.

The build time is 1.5-2 hours.

Getting started
The project you'll create in this chapter will use the public API from GitHub, which you can
find at https://developer. github. com/ v3/. To be able to use this API, you need to have a
GitHub account, since you'll want to retrieve information from a GitHub user account. If
you don't have a GitHub account yet, you can create one by registering on its website. Also,
you need to download the GitHub logo pack from here: https:/ / github- media-
downloads.s3.amazonaws. com/ GitHub- Mark. zip. The complete source code for this
application can also be found on
GitHub: https://github.com/PacktPublishing/React-Projects/tree/ch2.

GitHub portfolio application
In this section, we will learn how to create a new React project using Create React App and
set it up as a PWA that reuses React components and styling with styled-components.

Creating a PWA with Create React App
Having to configure webpack and Babel every time we create a new React project can be
quite time-consuming. Also, the settings for every project can change and it becomes hard
to manage all of these configurations when we want to add new features to our project.

Therefore, the React core team introduced a starter kit known as Create React App and
released a stable version of it, 2.0, in 2018. By using Create React App, we no longer have to
worry about managing compile and build configurations, even when newer versions of
React are released, which means we can focus on coding instead of configurations. Also, it
has features we can use to easily create a PWA.

https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github-media-downloads.s3.amazonaws.com/GitHub-Mark.zip
https://github.com/PacktPublishing/React-Projects/tree/ch2

Creating a Progressive Web Application with Reusable React Components Chapter 2

[36]

A PWA is usually faster and more reliable than regular web applications as it focuses on an
offline/cache-first approach. This makes it possible for users to still open our application
when they have no or a slow internet connection due to its focus on caching. Also, users can
add our application to the home screen of their smartphone or tablet and open it like a
native application.

This section will show us how to create a React application with PWA features, starting
with setting up a new application with Create React App.

Installing Create React App
Create React App can be installed by using the command line, where we should install it
globally so that the package is available everywhere on our local computer and not just in a
specific project:

npm install -g create-react-app

Now that the create-react-app package has been installed, we're ready to create our
first Create React App project. There are multiple ways to set up a new project, but since
we're already familiar with npm, there are only two methods we need to learn about. Let's
get started:

The first method is to create a new project with npm by running the following1.
command:

npm init react-app github-portfolio

You can replace github-portfolio with any other name you want to use for
this project.

Alternatively, we can use npx, a tool that comes preinstalled with npm (v5.2.0 or2.
higher) and simplifies the way we execute npm packages:

npx create-react-app github-portfolio

Both methods will start the installation process for Create React App, which can take
several minutes, depending on your hardware. Although we're only executing one
command, the installer for Create React App will install the packages we need to run our
React application. Therefore, it will install react, react-dom, and react-scripts, where
the last package includes all the configuration for compiling, running, and building React
applications.

Creating a Progressive Web Application with Reusable React Components Chapter 2

[37]

If we move into the project's root directory, which is named after our project name, we will
see that it has the following structure:

github-portfolio
|-- node_modules
|-- public
 |-- favicon.ico
 |-- index.html
 |-- manifest.json
|-- src
 |-- App.css
 |-- App.js
 |-- App.test.js
 |-- index.css
 |-- index.js
 |-- logo.svg
 |-- serviceWorker.js
.gitignore
package.json

This structure looks a lot like the one we set up in the first chapter, although there are some
slight differences. The public directory includes all the files that shouldn't be included in
the compile and build process, and the files inside this directory are the only files that can
be directly used inside the index.html file. The manifest.json file contains the default
configuration for a PWA, which is something we'll learn more about later on in this
chapter.

In the other directory, called src, we will find all the files that will be compiled and built
when we execute any of the scripts inside the package.json file. There is a component
called App, which is defined by the App.js, App.test.js, and App.css files, and a file
called index.js, which is the entry point for Create React App. The
serviceWorker.js file is needed to set up the PWA and is also something that will be
discussed in the next part of this section.

If we open the package.json file, we'll see that three scripts have been defined: start,
build, and test. Since testing is something that isn't yet handled at this point yet, we can
ignore this script for now. To be able to open the project in the browser, we can simply type
in the following command into the command line, which runs package react-
scripts in development mode:

npm start

Creating a Progressive Web Application with Reusable React Components Chapter 2

[38]

If we visit http://localhost:3000/, the default Create React App page will look as
follows:

Since react-scripts supports hot reloading by default, any changes we make to the code
will result in a page reload. If we run the build script, a new directory called build will be
created in the projects' root directory, where the minified bundle of our application can be
found.

With the basic installation of Create React App in place, the next part of this section will
show us how to enable the features that turn this application into a PWA.

Creating a PWA
Create React App comes with a configuration for that supports PWA, generated when we
initiate the build script. We can set up our Create React App project as a PWA by accessing
the src/index.js file and changing the last line, which will register the serviceWorker:

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: http://bit.ly/CRA-PWA

Creating a Progressive Web Application with Reusable React Components Chapter 2

[39]

- //serviceWorker.register();
+ serviceWorker.register();

Now, when we run the build script, the minified bundle of our application will use the
offline/cache first approach. Under the hood, react-scripts uses a package called
workbox-webpack-plugin, which works together with webpack 4 to serve our
application as a PWA. It doesn't only cache local assets placed in the public directory; it
also caches navigation requests so that our application acts more reliably on unstable
mobile networks.

The other file that plays a part in setting up the PWA using Create React App is
manifest.json. Most of the configuration for our PWA is placed here, which we can see if
we open the public/manifest.json file. In this configuration JSON file, we will find the
most important pieces for operating systems and browsers. Let's break this down:

This file contains the short_name and name fields, which describe how our1.
application should be identified to users:

{
 "short_name": "React App",
 "name": "Create React App Sample",

...

The short_name field should be no longer than 12 characters and will be shown
underneath the application icon on the user's home screen. For the name field, we
can use up to 45 characters. This is the main identifier for our application and can
be seen during the process of adding the application to the home screen.

Which particular icon users see when they add our application to the home2.
screen can be configured in the icons field:

 "icons": [
 {
 "src": "favicon.ico",
 "sizes": "64x64 32x32 24x24 16x16",
 "type": "image/x-icon"
 }
],

Creating a Progressive Web Application with Reusable React Components Chapter 2

[40]

As you can see, the favicon.ico file is used as the only icon and is served in
multiple sizes in image/x-icon format. As we mentioned previously, the same
rule for index.html applies to manifest.json. Only files that are placed in the
public directory can be referred to from this file.

Finally, using the theme_color and background_color fields, we can set the3.
colors (in HEX format) for the top bar when our application is opened from the
home screen on a mobile device:

 ...
 "theme_color": "#000000",
 "background_color": "#ffffff"
}

The default toolbar with the URL box isn't displayed; instead, a top bar is shown.
This behavior is similar to native mobile applications.

Another thing we can handle with this configuration file is internalization,
which is useful when our application serves content in different
languages. We can also add versioning to this file if there are multiple
versions of our application in production.

The changes we made here configured the application so that it functions as a PWA, but
don't make these features available to the user just yet. In the next part of this section, we'll
learn how to serve this PWA and make it visible in the browser.

Serving the PWA
With the configuration of our PWA in place, it's time to see how this will affect the
application. If you still have your Create React App running (if not, execute the npm
start command again), visit the project at http://localhost:3000/. We will see that
nothing has changed yet. As we mentioned previously, the PWA will only be visible when
the build version of our application is open. To do this, execute the following command in
the projects' root directory:

npm run build

Creating a Progressive Web Application with Reusable React Components Chapter 2

[41]

This will initiate the build process, which minifies our application to a bundle that's stored
inside the build directory. This built version of our application can be served from our
local machine. If we look at the output of the build process on the command line, we will
see that Create React App suggested how we should serve this build version:

npm install -g serve
serve -s build

The npm install command installs the serve package, which is used to serve built static
sites or, in this case, JavaScript applications. After installing this package, we can use it to
deploy the build directory on our server or local machine by running the following:

serve -s build

The -s flag is used to redirect any navigation requests that aren't found
back to our index.js file.

If we visit our project in the browser at http://localhost:5000/, we'll see that
everything looks exactly like the version we're running on http://localhost:3000/.
There is one big difference, however: the build version is running as a PWA. This means
that if our internet connections fails, the application will still be shown. We can try this out
by disconnecting our internet connection or stopping the serve package from the
command line. If we refresh the browser on http://localhost:5000/, we will see the
exact same application.

How does this work? If we open up the Developer tools in our browser (Chrome or
Firefox) and visit the Application tab, we'll see items in the sidebar. The one we should
open first is called Service Workers. The result will look similar to what's shown in the
following screenshot if you're using Chrome as your browser:

Creating a Progressive Web Application with Reusable React Components Chapter 2

[42]

If we click on the Service Worker sidebar item, we will see a list of all the service workers
that are running. For localhost, there's one active service worker that has service-
worker.js as its source – the same file that is inside our project. This file makes sure that a
cached version of our application is served if there is no or a slow internet connection.

The service worker shouldn't be active when we have a local instance of
our application running with npm start. Since the service worker will
cache our application, we won't be able to see any of the changes that
we've made since the cached version will be a server.

These cache files are stored inside the browser cache and can also be found in this toolbar
under Cache Storage. Here, we may see multiple cache locations, which are created by the
workbox-webpack-plugin package when we build the application.

Creating a Progressive Web Application with Reusable React Components Chapter 2

[43]

The one that's relevant to serving our application is called workbox-precache-v2-
http://localhost:5000/ and consists of all the cached files for our application:

In the preceding screenshot, we can see which files are being cached by the browser for our
application, where the index.html file is the entry point of the application and files
starting with static/ are created during the build process and represent the minified
bundle of our application. As we can see, it consists of minified .js, .css, and .svg files,
which are stored inside the browser cache. Each time a user loads our application, it will try
to serve those files first before looking for an internet connection.

With our first PWA created and with Create React App in place, we will start looking at
creating the components for our project and styling them.

Building reusable React components
Creating React components with JSX was briefly discussed in the previous chapter, but in
this chapter, we'll explore this topic further by creating components that we can reuse
throughout our application. First, let's look at how to structure our application, which
builds upon the contents of the previous chapter.

Creating a Progressive Web Application with Reusable React Components Chapter 2

[44]

Structuring our application
To begin, we'll need to structure our application in the same way that we did in the first
chapter. This means that we need to create two new directories called components and
containers inside the src directory. The files for the App component can be moved to the
container directory, and the App.test.js file can be deleted since testing hasn't been
covered yet.

After creating the directories and moving the files, our application structure will look as
follows:

github-portfolio
|-- node_modules
|-- public
 |-- favicon.ico
 |-- index.html
 |-- manifest.json
|-- src
 |-- components
 |-- containers
 |-- App.css
 |-- App.js
 |-- index.css
 |-- index.js
 |-- serviceWorker.js
.gitignore
package.json

Don't forget to change the location of the import for the App component in src/index.js:

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
- import App from './App';
+ import App from './containers/App';
import * as serviceWorker from './serviceWorker';

ReactDOM.render(<App />, document.getElementById('root'));

...

Do the same for the location of the React logo in src/containers/App.js:

import React, { Component } from 'react';
- import logo from './logo.svg';
+ import logo from '../logo.svg';
import './App.css';

Creating a Progressive Web Application with Reusable React Components Chapter 2

[45]

class App extends Component {

...

If we run npm start again and visit the project in the browser, there will be no visible
changes since we've only changed the structure of the project and none of its content.

Our project still consists of only one component, which doesn't make it very reusable. The
next step will be to divide our App component into Components as well. If we look at the
source code for this component in App.js, we'll see that there's already a CSS
header element in the return function. Let's change that header element into a React
component:

First, create a new directory called Header inside the components directory and1.
copy the styling for classNames, App-header, App-logo, and App-link into a
new file called Header.css:

.App-logo {
 height: 40vmin;
 pointer-events: none;
}

.App-header {
 background-color: #282c34;
 display: flex;
 flex-direction: column;
 align-items: center;
 justify-content: center;
 font-size: calc(10px + 2vmin);
 color: white;
}

.App-link {
 color: #61dafb;
}

@keyframes App-logo-spin {
 from {
 transform: rotate(0deg);
 }
 to {
 transform: rotate(360deg);
 }
}

Creating a Progressive Web Application with Reusable React Components Chapter 2

[46]

Now, create a file called Header.js inside this directory. This file should return2.
the same content as the <header> element:

import React from 'react';
import './Header.css';

const Header = () => (
 <header className='App-header'>

 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 <a
 className='App-link'
 href='https://reactjs.org'
 target='_blank'
 rel='noopener noreferrer'
 >
 Learn React

 </header>
);

export default Header;

Import this Header component inside your App component and add it to the3.
return function:

import React, { Component } from 'react';
+ import Header from '../components/App/Header';
import logo from '../logo.svg';
import './App.css';

class App extends Component {
 render() {
 return (
 <div className='App'>
- <header className='App-header'>
-
- <p>Edit <code>src/App.js</code> and save to reload.</p>
- <a
- className='App-link'
- href='https://reactjs.org'
- target='_blank'
- rel='noopener noreferrer'
- >
- Learn React
-

Creating a Progressive Web Application with Reusable React Components Chapter 2

[47]

- </header>
+ <Header />
 </div>
);
 }
}

export default App;

When we visit our project in the browser again, we'll see an error saying that the value for
the logo is undefined. This is because the new Header component can't reach the
logo constant that's been defined inside the App component. From what we've learned in
the first chapter, we know that this logo constant should be added as a prop to the
Header component so that it can be displayed. Let's do this now:

Send the logo constant as a prop to the Header component1.
in src/container/App.js:

...
class App extends Component {
 render() {
 return (
 <div className='App'>
- <Header />
+ <Header logo={logo} />
 </div>
);
 }
}

export default App;

Get the logo prop so that it can be used by the img element as an src attribute2.
in src/components/App/Header.js:

import React from 'react';

- const Header = () => (
+ const Header = ({ logo }) => (
 <header className='App-header'>

 ...

Creating a Progressive Web Application with Reusable React Components Chapter 2

[48]

In the previous chapter, the use of the prop-types package was
demonstrated but this is something that isn't used in this chapter. If you'd
like to use prop-types in this chapter as well, you can install the package
from npm using npm install prop-types and import it inside the files
where you want to use it.

Here, we won't see any visible changes when we open the project in the browser. But if we
open up the React Developer Tools, we will see that the project is now divided into an
App component and a Header component. This component receives the logo prop in the
form of a .svg file, as shown in the following screenshot:

The Header component is still divided into multiple elements that can be split into separate
components. Looking at the img and p elements, they look pretty simple already. However,
the a element looks more complicated and takes attributes such as url, title, className,
and so in. To change this a element into a component we can reuse, it needs to be moved to
a different location in our project.

Creating a Progressive Web Application with Reusable React Components Chapter 2

[49]

To do this, create a new directory called Link inside the components directory. Inside this
directory, create a new file called Link.js. This file should return the same a element that
we've already got inside our Header component. Also, we can send both the url and
title to this component as a prop. Let's do this now:

Delete the styling for the App-link class from1.
src/components/Header/Header.css and place this inside a file called
Link.css:

.App-link {
 color: #61dafb;
}

Create a new component called Link that takes the url and title props. This2.
component adds these props as attributes to the <a> element in
src/components/Link/Link.js:

import React from 'react';
import './Link.css';

const Link = ({ url, title }) => (
 <a
 className='App-link'
 href={url}
 target='_blank'
 rel='noopener noreferrer'
 >
 {title}

);

export default Link;

Import this Link component and place it inside the Header component3.
in src/components/Header/Header.js:

import React from 'react';
+ import Link from '../Link/Link';

const Header = ({ logo }) => (
 <header className='App-header'>

 <p>Edit <code>src/App.js</code> and save to reload.</p>
- <a
- className='App-link'
- href='https://reactjs.org'

Creating a Progressive Web Application with Reusable React Components Chapter 2

[50]

- target='_blank'
- rel='noopener noreferrer'
- >
- Learn React
-
+ <Link url='https://reactjs.org' title='Learn React' />
 </header>
);

export default Header;

Our code should now look like the following, meaning that we've successfully split the
directories into containers and components, where the components are placed in
separate subdirectories that have been named after the components:

github-portfolio
|-- node_modules
|-- public
 |-- favicon.ico
 |-- index.html
 |-- manifest.json
|-- src
 |-- components
 |-- Header
 |-- Header.js
 |-- Header.css
 |-- Link
 |-- Link.js
 |-- Link.css
 |-- containers
 |-- App.css
 |-- App.js
 |-- index.css
 |-- index.js
 |-- serviceWorker.js
.gitignore
package.json

However, if we take a look at the project in the browser, no visible changes are present. In
React Developer Tools, however, the structure of our application has already taken shape.
The App component is shown as the parent component in the component tree, while the
Header component is a child component that has Link as a child.

In the next part of this section, we'll add more components to the component tree of this
application and make these reusable throughout the application.

Creating a Progressive Web Application with Reusable React Components Chapter 2

[51]

Reusing components in React
The project we're building in this chapter is a GitHub portfolio page; it will show our public
information and a list of public repositories. Therefore, we need to fetch the official GitHub
REST API (v3) and pull information from two endpoints. Fetching data is something we
did in the first chapter, but this time, the information won't come from a local JSON file.
The method to retrieve the information is almost the same. We'll use the fetch API to do
this.

We can retrieve our public GitHub information from GitHub by executing the following
command. Replace the username at the end of the bold section of code with your own
username:

curl 'https://api.github.com/users/username'

If you don't have a GitHub profile or haven't filled out all the necessary
information, you can also use the octocat username. This is the
username of the GitHub mascotte and is already filled with sample data.

This request will return the following output:

{
 "login": "octocat",
 "id": 1,
 "node_id": "MDQ6VXNlcjE=",
 "avatar_url": "https://github.com/images/error/octocat_happy.gif",
 "gravatar_id": "",
 "url": "https://api.github.com/users/octocat",
 "html_url": "https://github.com/octocat",
 "followers_url": "https://api.github.com/users/octocat/followers",
 "following_url":
"https://api.github.com/users/octocat/following{/other_user}",
 "gists_url": "https://api.github.com/users/octocat/gists{/gist_id}",
 "starred_url":
"https://api.github.com/users/octocat/starred{/owner}{/repo}",
 "subscriptions_url":
"https://api.github.com/users/octocat/subscriptions",
 "organizations_url": "https://api.github.com/users/octocat/orgs",
 "repos_url": "https://api.github.com/users/octocat/repos",
 "events_url": "https://api.github.com/users/octocat/events{/privacy}",
 "received_events_url":
"https://api.github.com/users/octocat/received_events",
 "type": "User",
 "site_admin": false,
 "name": "monalisa octocat",

Creating a Progressive Web Application with Reusable React Components Chapter 2

[52]

 "company": "GitHub",
 "blog": "https://github.com/blog",
 "location": "San Francisco",
 "email": "octocat@github.com",
 "hireable": false,
 "bio": "There once was...",
 "public_repos": 2,
 "public_gists": 1,
 "followers": 20,
 "following": 0,
 "created_at": "2008-01-14T04:33:35Z",
 "updated_at": "2008-01-14T04:33:35Z"
}

Multiple fields in the JSON output are highlighted since these are the fields we'll use in the
application. These are avatar_url, html_url, repos_url, name, company, location,
email, and bio, where the value of the repos_url field is actually another API endpoint
that we need to call to retrieve all the repositories of this user. This is something we'll do
later in this chapter.

Since we want to display this result in the application, we need to do the following:

To retrieve this public information from GitHub, create a new container called1.
Profile and add the following code to src/containers/Profile.js:

import React, { Component } from 'react';

class Profile extends Component {
 constructor() {
 super();
 this.state = {
 data: {},
 loading: true,
 }
 }
 async componentDidMount() {
 const profile = await
fetch('https://api.github.com/users/octocat');
 const profileJSON = await profile.json();

 if (profileJSON) {
 this.setState({
 data: profileJSON,
 loading: false,
 })
 }
 }

Creating a Progressive Web Application with Reusable React Components Chapter 2

[53]

 render() {
 return (
 <div></div>
);
 }
}

export default Profile;

This new component contains a constructor, where the initial value for state
is set and a componentDidMount life cycle method, which is used
asynchronously, sets a new value for state when the fetched API returns a
result. No result has been rendered yet since we still need to create new
components to display the data.

Now, import this new component into the App component:

import React, { Component } from 'react';
+ import Profile from './Profile';
import Header from '../components/Header/Header';
import logo from '../logo.svg';
import './App.css';

class App extends Component {
 render() {
 return (
 <div className='App'>
 <Header logo={logo} />
+ <Profile />
 </div>
);
 }
}

export default App;

A quick look at the browser where our project is running shows that this new2.
Profile component isn't visible yet. This is because the Header.css file has
a height attribute with a view-height of 100, meaning that the component
will take up the entire height of the page. To change this, open the
scr/components/App/Header.css file and change the following highlighted
lines:

.App-logo {
- height: 40vmin;
+ height: 64px;

Creating a Progressive Web Application with Reusable React Components Chapter 2

[54]

 pointer-events: none;
}

.App-header {
 background-color: #282c34;
- min-height: 100vh;
+ height: 100%;
 display: flex;
 flex-direction: column;
 align-items: center;
 justify-content: center;
 font-size: calc(10px + 2vmin);
 color: white;
}

...

There should be enough free space on our page to display the3.
Profile component, so we can open the scr/containers/Profile.js file
once more and display the
 avatar_url, html_url, repos_url, name, company, location, email and bi
o fields that were returned by the Github API:

...

render() {
+ const { data, loading } = this.state;

+ if (loading) {
+ return <div>Loading...</div>;
+ }

 return (
 <div>
+
+ avatar_url: {data.avatar_url}
+ html_url: {data.html_url}
+ repos_url: {data.repos_url}
+ name: {data.name}
+ company: {data.company}
+ location: {data.location}
+ email: {data.email}
+ bio: {data.bio}
+
 </div>
);
 }

Creating a Progressive Web Application with Reusable React Components Chapter 2

[55]

}

export default Profile;

Once we've saved this file and visited our project in the browser, we will see a bulleted list
of the GitHub information being displayed, as shown in the following screenshot:

Since this doesn't look very pretty and the header doesn't match with the content of the
page, let's make some changes to the styling files for these two components:

Change the code for the Header component, remove the React logo, and replace1.
it with the GitHub logo. We no longer need to take logo as a prop from the
App component. Also, the Link component can be deleted from here as we'll be
using it in a Profile component later on:

import React from 'react';
- import logo from '../logo.svg';
+ import logo from '../../GitHub-Mark-Light-64px.png';
- import Link from '../components/Link';
import './Header.css';

- const Header = ({ logo }) => (
+ const Header = () => (
 <header className='App-header'>

- <p>
+ <h1>
- Edit <code>src/App.js</code> and save to reload.

Creating a Progressive Web Application with Reusable React Components Chapter 2

[56]

+ My Github Portfolio
- </p>
+ </h1>
- <Link url='https://reactjs.org' title='Learn React' />
 </header>
);

export default Header;

Change the highlighted lines in scr/containers/Profile.js, where we'll2.
separate the avatar image from the bulleted list and add a strong element
around the field names. Remember the Link component we created previously?
This will be used to create a link to our profile on the GitHub website:

import React, { Component } from 'react';
+ import Link from '../components/Link/Link';
+ import './Profile.css';

class Profile extends Component {

 ...

 return (
- <div>
+ <div className='Profile-container'>
+ <img className='Profile-avatar' src={data.avatar_url}
alt='avatar' />
-
- ...
-
+
+ html_url: <Link
url={data.html_url} title='Github URL' />
+ repos_url: {data.repos_url}
+ name: {data.name}
+ company: {data.company}
+ location: {data.location}
+ email: {data.email}
+ bio: {data.bio}
+
+ </div>
);
 }
}

export default Profile;

Creating a Progressive Web Application with Reusable React Components Chapter 2

[57]

Don't forget to create the src/containers/Profile.css file and paste the3.
following code into it. This defines the styling for the Profile component:

.Profile-container {
 width: 50%;
 margin: 10px auto;
}

.Profile-avatar {
 width: 150px;
}

.Profile-container > ul {
 list-style: none;
 padding: 0;
 text-align: left;
}

.Profile-container > ul > li {
 display: flex;
 justify-content: space-between;
}

Finally, we can see that the application is starting to look like a GitHub portfolio page, with
a header showing the GitHub logo icon and a title, followed by our GitHub avatar and a list
of our public information. This results in an application that looks similar to what's shown
in the following screenshot:

Creating a Progressive Web Application with Reusable React Components Chapter 2

[58]

If we take a look at the code in the Profile component, we'll see that there is a lot of
duplicate code, so we need to transform the list that's displaying our public information
into a separate component. Let's get started:

Create a new file called List.js inside the1.
new src/components/List directory:

import React from 'react';

const List = () => (

);

export default List;

In the Profile component, which can be found in the2.
src/containers/Profile.js file, we can import this new List component,
construct a new array containing all the items we want to display inside this list,
and send it as a prop. For the html_url field, we'll be sending
the Link component as a value instead of the value that was returned from the
GitHub API:

import React, { Component } from 'react';
import Link from '../components/Link/Link';
+ import List from '../components/List/List';

class Profile extends Component {

...

render() {
 const { data, loading } = this.state;

 if (loading) {
 return <div>Loading...</div>;
 }

+ const items = [
+ { label: 'html_url', value: <Link url={data.html_url}
title='Github URL' /> },
+ { label: 'repos_url', value: data.repos_url },
+ { label: 'name', value: data.name},
+ { label: 'company', value: data.company },
+ { label: 'location', value: data.location },
+ { label: 'email', value: data.email },
+ { label: 'bio', value: data.bio }

Creating a Progressive Web Application with Reusable React Components Chapter 2

[59]

+]

 return (
 <div className='Profile-container'>
 <img className='Profile-avatar' src={data.avatar_url}
alt='avatar' />
-
- html_url: <Link url={data.html_url}
title='Github URL' />
- repos_url: {data.repos_url}
- name: {data.name}
- company: {data.company}
- location: {data.location}
- email: {data.email}
- bio: {data.bio}
-
+ <List items={items} />
 </div>
);
 }
}

export default Profile;

In the List component, we can now map over the items prop and return the list3.
items with styling:

import React from 'react';

- const List = () => (
+ const List = ({ items }) => (

+ {items.map(item =>
+ <li key={item.label}>
+ {item.label}{item.value}
+
+)}

);

export default List;

Assuming we executed the preceding steps correctly, your application shouldn't have
changed aesthetically. However, if we take a look at the React Developer Tools, we will see
that some changes have been made to the component tree.

Creating a Progressive Web Application with Reusable React Components Chapter 2

[60]

In the next section, we'll style these components using styled-components instead of CSS
and add repositories that are linked to our GitHub account.

Styling in React with styled-components
So far, we've been using CSS files to add styling to our React components. However, this
forces us to import these files across different components, which makes our code less
reusable. Therefore, we'll add the styled-components package to the project, which
allows us to write CSS inside JavaScript (so-called CSS-in-JS) and create components.

By doing this, we'll get more flexibility out of styling our components, will be able to
prevent duplication or overlapping of styles due to classNames, and we'll add dynamic
styling to components with ease. All of this can be done using the same syntax we used for
CSS, right inside our React components.

The first step is installing styled-components using npm:

npm install styled-components

If you look at the official documentation of styled-components, you
will notice that they strongly advise you to use the Babel plugin for this
package as well. But since you're using Create React App to initialize your
project, you don't need to add this plugin as all the compilation your
application needs has already been taken care of by react-scripts.

After installing styled-components, let's try to delete the CSS file from one of our
components. A good start would be the Link component since this is a very small
component with limited functionality:

Start by importing the styled-components package and creating a new styled1.
component called InnerLink. This component extends an a element and takes
the CSS rules we already got for the className App-link:

import React from 'react';
+ import styled from 'styled-components';
import './Link.css';

+ const InnerLink = styled.a`
+ color: #61dafb;
+ `;

const Link = ({ url, title }) => (
 <a className='App-link'

Creating a Progressive Web Application with Reusable React Components Chapter 2

[61]

 href={url}
 target='_blank'
 rel='noopener noreferrer'
 >
 {title}

);

export default Link;

Once we've added this component, we can replace the existing <a> element with2.
this styled component. Also, we no longer have to import the Link.css file since
all the styling is now being done inside this JavaScript file:

import React from 'react';
import styled from 'styled-components';
- import './Link.css';

const InnerLink = styled.a`
 color: #61dafb;
`;

const Link = ({ url, title }) => (
- <a className='App-link'
+ <InnerLink
 href={url}
 target='_blank'
 rel='noopener noreferrer'
 >
 {title}
-
+ </InnerLink>
);

export default Link;

If we visit our project in the browser after running npm start again, we'll see that our
application still looks the same after deleting the CSS file. The next step is to replace all the
other components that import CSS files for styling:

Add styled-components and delete the CSS file for the Header component1.
inside src/components/Header/Header.js:

import React from 'react';
+ import styled from 'styled-components';
import logo from '../../GitHub-Mark-Light-64px.png';
- import './Header.css'

Creating a Progressive Web Application with Reusable React Components Chapter 2

[62]

+ const HeaderWrapper = styled.div`
+ background-color: #282c34;
+ height: 100%;
+ display: flex;
+ flex-direction: column;
+ align-items: center;
+ justify-content: center;
+ font-size: calc(10px + 2vmin);
+ color: white;
+ `;

+ const Logo = styled.img`
+ height: 64px;
+ pointer-events: none;
+ `;

const Header = ({ logo }) => (
- <header className='App-header'>
+ <HeaderWrapper>
 <Logo src={logo} alt='logo' />
 <h1>My Github Portfolio</h1>
- </header>
+ </HeaderWrapper>
);

export default Header;

Add styled-components and delete the CSS file for the App component2.
inside src/containers/App.js:

import React, { Component } from 'react';
+ import styled from 'styled-components';
import Profile from './Profile';
import Header from '../components/App/Header';
- import './App.css';

+ const AppWrapper = styled.div`
+ text-align: center;
+ `;

class App extends Component {
 render() {
 return (
- <div className="App">
+ <AppWrapper>
 <Header />
 <Profile />
- </div>

Creating a Progressive Web Application with Reusable React Components Chapter 2

[63]

+ </AppWrapper>
);
 }
}

export default App;

Add some styled components for the ul, li, and strong elements inside the3.
List component:

import React from 'react';
+ import styled from 'styled-components';

+ const ListWrapper = styled.ul`
+ list-style: none;
+ text-align: left;
+ padding: 0;
+ `;

+ const ListItem = styled.li`
+ display: flex;
+ justify-content: space-between;
+ `;

+ const Label = styled.span`
+ font-weight: strong;
+ `;

const List = ({ items }) => (
-
+ <ListWrapper>
 {items.map(item =>
- <li key={item.label}>
+ <ListItem key={item.label}>
- {item.label}{item.value}
+ <Label>{item.label}</Label>{item.value}
-
+ </ListItem>
)}
-
+ </ListWrapper>
);

export default List;

Creating a Progressive Web Application with Reusable React Components Chapter 2

[64]

Finally, delete the Profile.css file from the Profile component by converting4.
the last two elements with classNames into styled components:

import React, { Component } from 'react';
+ import styled from 'styled-components';
import Link from '../components/Link/Link';
import List from '../components/List/List';
- import './Profile.css';

+ const ProfileWrapper = styled.div`
+ width: 50%;
+ margin: 10px auto;
+ `;

+ const Avatar = styled.img`
+ width: 150px;
+ `;

class Profile extends Component {

...

 return (
- <div className='Profile-container'>
+ <ProfileWrapper>
- <img className='Profile-avatar' src={data.avatar_url}
alt='avatar' />
+ <Avatar src={data.avatar_url} alt='avatar' />
 <List items={items} />
- </div>
+ </ProfileWrapper>
);
 }
}

export default Profile;

Creating a Progressive Web Application with Reusable React Components Chapter 2

[65]

Now, open the project in the browser again; our application should still look the same. All
of our components have been converted so that they use styled-components and no
longer use CSS files and classNames for styling. Don't forget to delete the .css files inside
the containers and components directories and subdirectories.

However, there is still one CSS file in the project located directly inside the src directory.
This CSS file contains the styling for the <body> element, which exists inside the
public/index.html file and has been imported into the src/index.js file. To also
delete this CSS file, we can use the createGlobalStyle function from styled-
components to add styling for the <body> element to our application.

We can create a styled component for global styles inside the App component and paste the
CSS styling for the body element inside it. Since this component should be at the same
hierarchy in the component tree as our AppWrapper component, we need to use React
Fragments since JSX components should be wrapped inside an enclosing tag:

import React, { Component } from 'react';
- import styled from 'styled-components';
+ import styled, { createGlobalStyle } from 'styled-components';
import Profile from './Profile';
import Header from '../components/App/Header';

+ const GlobalStyle = createGlobalStyle`
+ body {
+ margin: 0;
+ padding: 0;
+ font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", "Roboto",
"Oxygen",
+ "Ubuntu", "Cantarell", "Fira Sans", "Droid Sans", "Helvetica Neue",
+ sans-serif;
+ -webkit-font-smoothing: antialiased;
+ -moz-osx-font-smoothing: grayscale;
+ }
+ `;

...

class App extends Component {
 render() {
 return (
+ <>
+ <GlobalStyle />
 <AppWrapper>
 <Header />
 <Profile />
 </AppWrapper>

Creating a Progressive Web Application with Reusable React Components Chapter 2

[66]

+ </>
);
 }
}

export default App;

The <> tag is shorthand for <React.Fragment>. These React Fragments
are used to list children components inside a single enclosing tag without
the need to add extra nodes to the DOM.

Now, we should be able to delete the last CSS file in the project, that is, src/index.css.
We can confirm this by looking at the project in the browser. We will see no changes to the
body font that was being set by the src/index.css file.

The very last step is to display the repositories from our Github profile on this Github
Portfolio page. The API endpoint that retrieves these repositories was also returned by the
endpoint to retrieve our user information. To display these repositories, we can reuse the
List component we created earlier:

1. Load the repository list from the API endpoint and add it to state in
src/containers/Profile.js:

...

class Profile extends Component {
 constructor() {
 super();
 this.state = {
 data: {},
+ repositories: [],
 loading: true,
 }
 }

 async componentDidMount() {
 const profile = await
fetch('https://api.github.com/users/octocat');
 const profileJSON = await profile.json();

 if (profileJSON) {
+ const repositories = await fetch(profileJSON.repos_url);
+ const repositoriesJSON = await repositories.json();

 this.setState({

Creating a Progressive Web Application with Reusable React Components Chapter 2

[67]

 data: profileJSON,
+ repositories: repositoriesJSON,
 loading: false,
 })
 }
 }

 render() {
- const { data, loading } = this.state;
+ const { data, loading, repositories } = this.state;

 if (loading) {
 return <div>Loading...</div>
 }

 const items = [
 ...
];

 + const projects = repositories.map(repository => ({
 + label: repository.name,
 + value: <Link url={repository.html_url} title='Github URL' />
 + }));

...

Next, return a List component for the repositories and send a prop called title2.
to this list. We're doing this since we want to show the difference between the
two lists:

...

 render() {

 ...

 const projects = repositories.map(repository => ({
 label: repository.name,
 value: <Link url={repository.html_url} title='Github URL' />
 }));

 return (
 <ProfileWrapper>
 <Avatar src={data.avatar_url} alt='avatar' />
- <List items={items} />
+ <List title='Profile' items={items} />
+ <List title='Projects' items={projects} />
 </ProfileWrapper>

Creating a Progressive Web Application with Reusable React Components Chapter 2

[68]

);
 }
}

export default Profile;

Make changes to the List component in src/components/List/List.js and3.
display the title at the top of each list. In this scenario, we'll use React Fragments
to prevent unnecessary nodes being added to the DOM:

import React from 'react';
import styled from 'styled-components';

+ const Title = styled.h2`
+ padding: 10px 0;
+ border-bottom: 1px solid lightGrey;
+ `;

...

- const List = ({ items }) => (
+ const List = ({ items, title }) => (
+ <>
+ <Title>{title}</Title>
 <ListWrapper>
 {items.map(item =>
 <ListItem key={item.label}>
 <Label>{item.label}</Label>{item.value}
 </ListItem>
)}
 </ListWrapper>
+ </>
);

export default List;

Creating a Progressive Web Application with Reusable React Components Chapter 2

[69]

Now, if we visit the project in the browser again, we will see the GitHub portfolio page we
created in the chapter. This application will look something like what's shown in the
following screenshot, where the default GitHub user from the previous section is used to
fetch the data:

Now that we've used Create React App and enabled the project to be set up as a PWA, we
should be able to see a cached version when we visit the build version of the project. To
build the project, run the following command:

npm run build

Then, serve the build version by running the following command:

serve -s build

Creating a Progressive Web Application with Reusable React Components Chapter 2

[70]

We can view the build version of our application by going to http://localhost:5000/.
However, we'll probably see the very first version of our application. This is because the
project has been created as a PWA and therefore a cached version of the application will be
shown. We can restart the Service Worker and cache a fresh version of our application by
going to the Application tab in the Developer Tools of our browser:

On this page, select Service Workers in the sidebar. From here, we can update the service
worker for localhost by pressing the Update button. The service-worker.js file will
be called again and the currently cached version will be replaced by a new one. We can also
test how our application will respond when the internet connection fails by checking the
Offline checkbox.

Creating a Progressive Web Application with Reusable React Components Chapter 2

[71]

As we can see, the Header component has been cached properly, but no information from
GitHub is being displayed. Instead, the Profile component displays
a Loading... message since no information is being returned from the API request. If we
open the Developer Tools in our browser and look at the console, we'll see an error
message. We can catch this error to display the reason why our application contains no
content:

To do this, we need to change the src/containers/Profile.js file and add a1.
variable called error to state:

...

class Profile extends Component {
 constructor() {
 super();
 this.state = {
 data: {},
 repositories: [],
 loading: false,
+ error: '',
 }
 }

 async componentDidMount() {
 ...

This variable will either be an empty string or will contain the error message2.
that's returned by the try...catch method:

...

 async componentDidMount() {
+ try {
 const profile = await
fetch('https://api.github.com/users/octocat');
 const profileJSON = await profile.json();

 if (profileJSON) {
 const repositories = await fetch(profileJSON.repos_url);
 const repositoriesJSON = await repositories.json();

 this.setState({
 data: profileJSON,
 repositories: repositoriesJSON,
 loading: false,
 });
 }

Creating a Progressive Web Application with Reusable React Components Chapter 2

[72]

 }
+ catch(error) {
+ this.setState({
+ loading: false,
+ error: error.message,
+ });
+ }
+ }

...

When the component is rendered, the error state should also be taken from the3.
state and displayed instead of the loading state if an error occurs:

...

render() {
- const { data, loading, repositories } = this.state;
+ const { data, loading, repositories, error } = this.state;

- if (loading) {
- return <div>Loading...</div>;
+ if (loading || error) {
+ return <div>{loading ? 'Loading...' : error}</div>;
 }

...

export default Profile;

With these changes, the state now has an initial value for the loading state, which displays
the Loading... message when the application first mounts. The GitHub endpoint is
wrapped in a try...catch statement, meaning that we can catch the error message when
the fetch function fails. If this happens, the value for loading will be replaced by the
error message.

We can check whether these changes are working by building our application again and
running it locally, like so:

npm run build
serve -s build

When we visit the project at http://localhost:5000 and set the application to offline
mode in the Application tab inside the browser's Developer Tools, we will see a Failed
to fetch message being displayed. Now, we know that our users will see this message if
they are using our application without an active internet connection.

Creating a Progressive Web Application with Reusable React Components Chapter 2

[73]

Summary
In this chapter, you used Create React App to create your starter project for a React
application, which comes with an initial configuration for libraries such as Babel and
webpack. By doing this, you didn't have to configure these libraries yourself and don't have
to worry about how your React code will run in the browser. Also, Create React App comes
with a default setup for PWA, which you can use by registering a service worker. This
makes your application run smoothly when there's no internet connection or when it's on a
mobile device. Remember how you had to style your applications with CSS before? This
chapter showed you how the styled-components package can be used to
create components that are reusable and styled without importing any CSS files since it
uses the CSS-in-JS principle.

Upcoming chapters will all feature projects that are created with Create React App,
meaning that these projects don't require you to make changes to webpack or Babel. Did
you enjoy using styled-components in this chapter? Then you're in for a treat as most of
the projects in this book are styled with this package, including the next chapter.

In the next chapter, we will build upon this chapter by creating a dynamic project
management board with React that uses features such as Suspense.

Further reading
Create React App: https:/ /facebook. github. io/create- react- app/

Using npx: https:/ / medium. com/@maybekatz/ introducing- npx- an-npm-
package- runner- 55f7d4bd282b

PWA with Create React App https:/ / facebook. github. io/create- react- app/
docs/making- a- progressive- web-app

About the manifest.json
file: https://developers.chrome.com/apps/manifest
Styled components: https:/ / www.styled- components. com/ docs/ basics

https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app
https://developers.chrome.com/apps/manifest
https://www.styled-components.com/docs/basics
https://www.styled-components.com/docs/basics
https://www.styled-components.com/docs/basics
https://www.styled-components.com/docs/basics
https://www.styled-components.com/docs/basics
https://www.styled-components.com/docs/basics
https://www.styled-components.com/docs/basics
https://www.styled-components.com/docs/basics
https://www.styled-components.com/docs/basics
https://www.styled-components.com/docs/basics
https://www.styled-components.com/docs/basics
https://www.styled-components.com/docs/basics
https://www.styled-components.com/docs/basics
https://www.styled-components.com/docs/basics
https://www.styled-components.com/docs/basics

3
Build a Dynamic Project

Management Board with React
and Suspense

In the first two chapters of this book, you've already created two React projects all by
yourself, and you should, by now, have a solid understanding of the core concepts of React.
The concepts you've used so far will also be used in this chapter to create your third project
with React, including some new and more advanced concepts that will show you the
strength of using React. Again, if you feel you may lack some of the knowledge you'll need
to finalize the contents of this chapter, you can always repeat what you have built so far.

This chapter will once again use Create React App, which you used in the previous chapter.
During the development of the project management board application for this chapter,
you'll use reusable components that have been created using styled-components.
Following this, you'll use more advanced React techniques to control the dataflow
throughout your components. Furthermore, HTML5 Web APIs will be used to dynamically
drag and drop components that function as Higher-Order Components (HOC).

The following topics will be covered in this chapter:

React Suspense and code-splitting
Using HOC
Dynamic data flow

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[75]

Project overview
In this chapter, we will create a Progressive Web Application (PWA) that has reusable
React components and styling using Create React App and styled-components. The
application will feature a dynamic drag and drop interface that uses the HTML5 Drag and
Drop API.

The build time is 1.5-2 hours.

Getting started
The project that we'll create in this chapter builds upon an initial version that you can find
on GitHub: https:/ /github. com/ PacktPublishing/ React- Projects/ tree/ ch3- initial.
The complete source code can also be found on GitHub: https:/ / github. com/
PacktPublishing/React- Projects/ tree/ ch3.

After downloading the initial application from GitHub, we can start by moving into its root
directory and running the npm install command. This will install the core packages from
Create React App (react, react-dom, and react-scripts) next to the styled-
components package, which we used in the previous chapter. After the installation, we can
start the application by executing the npm start command and visit the project in the
browser by visiting http://localhost:3000.

We can also build the application by executing npm run build and subsequently serve -
s build. The minified version of the application can now be visited
at http://localhost:5000. Since it's been set up as a PWA, it will also work without any
internet connection.

It's possible that you'll see a different application than when you ran the
project locally, if you've built and served a Create React App PWA before.
This is due to the service worker of the PWA that has stored a cached
version of that application in the browser. You can delete any previous
application from the browser cache by opening devTools and opening
the Application tab, where you can click on the Clear site data button in
the Clear storage section.

https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3-initial
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3
https://github.com/PacktPublishing/React-Projects/tree/ch3

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[76]

As shown in the following screenshot, the application has a basic header with a title and is
divided into four columns. These columns are the lanes for the Project Management Board
and will contain the individual tickets once we've connected the project to the data file:

As we mentioned in Chapter 2, Creating a Progressive Web Application with
Reusable React Components, we can check whether our application is
running when there is no internet connection by visiting the Service
Workers section of the Application tab. On this page, we can check
the Offline checkbox and try refreshing the browser.

If we look at the project's structure, we'll see that it's structured in the same way as the
projects in the previous chapters. The entry point of the application is the
src/index.js file, which renders a component called App, which holds two other
components called Header and Board. The first one is the actual header of the application,
while the Board component holds the four columns we can see in the application. These
columns are represented by the Lane component.

Also, in the assets directory, we will see a file called data.json, which contains data that
we can display on the project management board:

project-management-board
|-- assets
 |-- data.json
|-- node_modules
|-- public
 |-- favicon.ico

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[77]

 |-- index.html
 |-- manifest.json
|-- src
 |-- components
 |-- Header
 |-- Header.js
 |-- Lane
 |-- Lane.js
 |-- containers
 |-- App.js
 |-- Board.js
 |-- index.js
 |-- serviceWorker.js
.gitignore
package.json

Creating a project management board
application
In this section, we'll create a project management board PWA that uses React APIs such as
Suspense and the HTML5 Drag and Drop API. We're going to use a Create React App,
which we can find in the GitHub repository for this chapter.

Handling the data flow
With the initial version of the application in place, the next step is to fetch the data from the
data file and handle its flow through the components. For this, we will use React Suspense
and memo. With Suspense, we can access the React lazy API to dynamically load
components and, with memo, we can control which components should rerender when
their props change.

The first part of this section will show us how to load data from a data source using React
life cycle methods and display this in React components.

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[78]

Loading and displaying the data
Loading and displaying data that is retrieved from a data source is something we did in the
previous chapter. This section will explore this further. Follow these steps to get started:

We will start by fetching the project data from the data file. To do this, we need1.
to add the necessary functions to the Board component. We need these to access
the React life cycles. These are constructor, where the initial state is set, and
componentDidMount, where the data will be fetched:

...
class Board extends Component {
+ constructor() {
+ super();
+ this.state = {
+ data: [],
+ loading: true,
+ error: '',
+ }
+ }

+ async componentDidMount() {
+ try {
+ const tickets = await fetch('../../assets/data.json');
+ const ticketsJSON = await tickets.json();

+ if (ticketsJSON) {
+ this.setState({
+ data: ticketsJSON,
+ loading: false,
+ });
+ }
+ } catch(error) {
+ this.setState({
+ loading: false,
+ error: error.message,
+ });
+ }
+ }

 render() {
 ...
 }
}

export default Board;

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[79]

In the componentDidMount life cycle function, the data is fetched inside a
try..catch statement. This statement catches any errors that are being returned
from the data fetching process and replaces the error state with this message.

Now, we can distribute the tickets over the corresponding lanes:2.

...
class Board extends Component {
 ...
 render() {
+ const { data, loading, error } = this.state;

 const lanes = [
 { id: 1, title: 'To Do' },
 { id: 2, title: 'In Progress' },
 { id: 3, title: 'Review' },
 { id: 4, title: 'Done' },
];

 return (
 <BoardWrapper>
 {lanes.map(lane =>
 <Lane
 key={lane.id}
 title={lane.title}
+ loading={loading}
+ error={error}
+ tickets={data.filter(ticket => ticket.lane ===
 lane.id)}
 />
)}
 </BoardWrapper>
);
 }
}

export default Board;

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[80]

In the preceding code, we can see that, inside render, the data, loading, and
error constants have been destructured from the state object. Inside the function
that iterates over the lanes constant, these values should be passed as props to
the Lane component. For the data state, something special is going on since the
filter function is being used to only return tickets from the data state that
match the lane ID.

3. Next, we need to make some changes to the Lane component:

import React from 'react';
import styled from 'styled-components';
+ import Ticket from '../Ticket/Ticket';

...

+ const TicketsWrapper = styled.div`
+ padding: 5%;
+ `;

+ const Alert = styled.div`
+ text-align: center;
+ `;

- const Lane = ({ title }) => (
+ const Lane = ({ tickets, loading, error, title }) => (
 <LaneWrapper>
 <Title>{title}</Title>
+ {(loading || error) && <Alert>{loading ? 'Loading...' :
 error}</Alert>}
+ <TicketsWrapper>
+ {tickets.map(ticket => <Ticket key={ticket.id}
 ticket={ticket} />)}
+ </TicketsWrapper>
 </LaneWrapper>
);

export default Lane;

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[81]

The Lane component now takes three other props, that is, tickets, loading,4.
and error, where tickets contains the array of tickets from the data
state, loading indicates whether the loading message should be displayed, and
error contains the error message when there is one. We can see that a wrapper
has been created and that, inside the map function, the Ticket component that
displays the ticket information will be rendered. This Ticket component is also
something we need to create in the src/components directory:

import React from 'react';
import styled from 'styled-components';

const TicketWrapper = styled.div`
 background: darkGray;
 padding: 20px;
 border-radius: 20px;

 &:not(:last-child) {
 margin-bottom: 5%;
 }
`;

const Title = styled.h3`
 width: 100%;
 margin: 0px;
`;

const Body = styled.p`
 width: 100%;
`;

const Ticket = ({ ticket }) => (
 <TicketWrapper>
 <Title>{ticket.title}</Title>
 <Body>{ticket.body}</Body>
 </TicketWrapper>
);

export default Ticket;

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[82]

If we visit our application in a web browser at http://localhost:3000, we will see the
following:

As this application has been set up as a PWA, we can build the project again and restart the
service worker. In offline mode, the project should still display the header and the four
columns, with a message inside these columns that displays Failed to fetch.

To build and serve the PWA, we need to run npm run and serve -s
build after the build process has completed. Now, we can visit the project
at http://localhost:5000. We may need to restart the service worker,
which we can do in the devTools on the Application tab, and select the
Service Worker section. On the right-hand side of this section, next to the
service worker, press Update. To check out the application in offline
mode, we need to check the Offline checkbox.

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[83]

Fetching data from a data source is logic that can be reused throughout our application. In
the next section, we will explore how this logic can be reused across multiple components
with HOC.

Getting started with HOC
HOCs are advanced features in React that focus on the reusability of our components. They
aren't part of the official React APIs, but introduce a pattern that is popular among the core
team and many libraries, such as Redux.

In the first part of this section, we'll create our first HOC, which uses logic to retrieve data
from the data source that we created in the previous section.

Creating HOC
As we mentioned previously, HOCs focus on reusing components. Therefore, it can best be
described as follows:

"A HOC is a function that takes a component and returns a new component."

To explain what this means in practice, let's create an example. Our project has a
Board component, which fetches and renders all the lanes. There is logic in this component
in the form of a constructor, a componentDidMount, and information about how each
Lane component is being rendered. How would we handle a situation where we just want
to show a board without lanes, but only tickets? Do we just send different props to the
Board component? Sure, that's possible, but, in React, that's what HOCs are used for.

A Board component without lanes wouldn't map over all the lanes and render the
corresponding lane with the tickets as a prop. Instead, it would map over all the tickets and
render them directly. Although the rendered components are different, the logic to set the
initial state, fetch the data, and render the component(s) could be reused. The HOC should
be able to add the life cycles to the Board component just by sending this component to it,
along with some additional props.

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[84]

To create the HOC, place a new file called withDataFetching.js inside the src
directory. Now, follow these steps:

First, we need to import React and create a new function for the HOC which1.
becomes the default export. Since this HOC will add the life cycles for data
fetching, let's call this HOC withDataFetching and have it take a component as
a parameter. This function should return another component:

+ import React from 'react';

+ export default function withDataFetching(WrappedComponent) {
+ return class extends React.Component {

+ }

Inside this returned component, add the constructor component, which has2.
almost the same structure as the Board component:

...

export default function withDataFetching(WrappedComponent) {
 return class extends React.Component {
+ constructor(props) {
+ super(props);
+ this.state = {
+ data: [],
+ loading: true,
+ error: '',
+ };
+ }
...

Next, we need to create the componentDidMount function, which is where the3.
data fetching will be done. The dataSource prop is used as the location to fetch
from. Also, notice that the constant names are now more generic and no longer
specify a single use:

export default function withDataFetching(WrappedComponent) {
 return class extends React.Component {

 ...

+ async componentDidMount() {
+ try {
+ const data = await fetch(this.props.dataSource);
+ const dataJSON = await data.json();

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[85]

+ if (dataJSON) {
+ this.setState({
+ data: dataJSON,
+ loading: false,
+ });
+ }
+ } catch(error) {
+ this.setState({
+ loading: false,
+ error: error.message,
+ });
+ }
+ }

 ...

In the render function, we can return the WrappedComponent that was inserted4.
into the function and pass the data, loading, and error state as props. It's
important to understand that it also takes any additional props that are spread
with {...this.props}:

export default function withDataFetching(WrappedComponent) {
 return class extends React.Component {

 ...

+ render() {
+ const { data, loading, error } = this.state;

+ return (
+ <WrappedComponent
+ data={data}
+ loading={loading}
+ error={error}
+ {...this.props}
+ />
+);
+ }
 };
}

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[86]

Congratulations! You've created your very first HOC! However, it needs a component to
return a component that supports data fetching. Therefore, we need to refactor our
Board component into a function component. Let's get started:

Import the HOC from the src/withDataFetching.js file:1.

import React, { Component } from 'react';
import styled from 'styled-components';
+ import withDataFetching from '../withDataFetching';
import Lane from '../components/Lane/Lane';

const BoardWrapper = styled.div`
 display: flex;
 justify-content: space-between;
 flex-direction: row;
 margin: 5%;

 @media (max-width: 768px) {
 flex-direction: column;
 }
`;

...

Subsequently, we can delete the entire class component, that is, Board, from this2.
file and create a new function component that returns the JSX we declared in the
return function for the refactored class component. This function component
will take lanes, loading, error, and data as props:

import React, { Component } from 'react';
import styled from 'styled-components';
import withDataFetching from '../withDataFetching';
import Lane from '../components/Lane/Lane';

const BoardWrapper = ...;

+ const Board = ({ lanes, loading, error, data }) => (
+ <BoardWrapper>
+ {lanes.map(lane =>
+ <Lane
+ key={lane.id}
+ title={lane.title}
+ loading={loading}
+ error={error}
+ tickets={data.filter(ticket => ticket.lane === lane.id)}
+ />
+)}

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[87]

+ </BoardWrapper>
+);

export default Board;

3. Finally, export the function component along with the HOC function:

...
const Board = ({ lanes, loading, error, data }) => (
 <BoardWrapper>
 {boards.map(lane =>
 <Lane
 key={lane.id}
 title={lane.title}
 loading={loading}
 error={error}
 tickets={data.filter(ticket => ticket.lane === lane.id)}
 />
)}
 </BoardWrapper>
);

- export default Board;
+ export default withDataFetching(Board);

But where do these props come from? If we open the application and open up the browser,
we will see the following error:

TypeError: Cannot read property 'map' of undefined

This is because our Board component tries to map over the lanes prop, but, in the HOC,
WrappedComponent receives the data, loading, and error props. Luckily, we've also
added the option to spread over any additional props that are sent to the component. If we
open the App component where the Board component is being opened, we can pass the
lanes prop with the lane constant that was declared in the Board component previously:

...

class App extends Component {
 render() {
+ const lanes = [
+ { id: 1, title: 'To Do' },
+ { id: 2, title: 'In Progress' },
+ { id: 3, title: 'Review' },
+ { id: 4, title: 'Done' },
+]

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[88]

 return (
 <>
 <GlobalStyle />
 <AppWrapper>
 <Header />
- <Board />
+ <Board lanes={lanes} />
 </AppWrapper>
 </>
);
 }
}

export default App;

Now, if we take a look at our project in the browser, we'll see that the application has been
rendered again. However, it displays an error message from the try...catch statement in
the HOC. This HOC needs the dataSource0 prop, which we also need to pass to the
Board component:

...
class App extends Component {
 render() {

 ...

 return (
 <>
 <GlobalStyle />
 <AppWrapper>
 <Header />
- <Board lanes={lanes} />
+ <Board lanes={lanes} dataSource={'../../assets/data.json'} />
 </AppWrapper>
 </>
);
 }
}

export default App;

Finally, we can see the Board component being rendered by the HOC in the browser.
However, as we mentioned previously, a HOC is supposed to reuse logic. In the next
section, we'll learn how to do this by adding the HOC to a different component.

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[89]

Using the HOC
With the very first HOC in place it's time to think of other components you can create with
this HOC, such as a component that is displaying only tickets. The process to create this
component consists of two steps: creating the actual component and importing the
component and passing the required props to it. Let's get started:

Inside the directory containers, we need to create a new file called1.
Tickets.js and place the following code inside it. Where we imported the
HOC, set some basic styling with styled-components and create a function
component that we can export with the HOC:

import React from 'react';
import styled from 'styled-components';
import withDataFetching from '../withDataFetching';
import Ticket from '../components/Ticket/Ticket';

const TicketsWrapper = styled.div`
 display: flex;
 justify-content: space-between;
 flex-direction: row;
 margin: 5%;

 @media (max-width: 768px) {
 flex-direction: column;
 }
`;

const Alert = styled.div`
 text-align: center;
`;

const Tickets = ({ loading, data, error }) => (
 <TicketsWrapper>
 {(loading || error) && <Alert>{loading ? 'Loading... :
 error}</Alert>}
 {data.map(ticket => <Ticket key={ticket.id} ticket={ticket}
/>)}
 </TicketsWrapper>
);

export default withDataFetching(Tickets);

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[90]

In the App component, we can import this component and pass a dataSource2.
prop to it:

import React, { Component } from 'react';
import styled, { createGlobalStyle } from 'styled-components';
import Board from './Board';
+ import Tickets from './Tickets';
import Header from '../components/Header/Header';

...

class App extends Component {
 render() {
 ...
 return (
 <>
 <GlobalStyle />
 <AppWrapper>
 <Header />
 <Board boards={boards}
 dataSource={'../../assets/data.json'} />
+ <Tickets dataSource={'../../assets/data.json'} />
 </AppWrapper>
 </>
);
 }
}

export default App;

Something that seems a bit off is how the tickets are displayed next to each other without
any margin. We could change this in the actual Ticket component, but that would also
change the margin for the tickets that are displayed in the lanes. What we can do to solve
this problem is pass a prop that is being used by styled-components to this component.
To do this, we need to make changes to the Tickets component where we render the
tickets and the Ticket component where the styling is defined. Let's get started:

Pass a new prop called marginRight to the Ticket components inside the1.
map function. This prop is just a Boolean and takes no value:

...

const Tickets = ({ loading, data, error }) => (
 <TicketsWrapper>
 {(loading || error) && <Alert>{loading ? 'Loading...' :
 error}</Alert>}

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[91]

- {data.map(ticket => <Ticket key={ticket.id} ticket={ticket}
/>)}
+ {data.map(ticket => <Ticket key={ticket.id} marginRight
ticket={ticket} />)}
 </TicketsWrapper>
);

export default withDataFetching(Tickets);

In the Ticket component, we need to destructure this prop and pass it to the2.
TicketWrapper we created with styled-components:

import React from 'react';
import styled from 'styled-components';

const TicketWrapper = styled.div`
 background: darkGray;
 padding: 20px;
 border-radius: 20px;

 &:not(:last-child) {
 margin-bottom: 5%;
+ margin-right: ${props => !!props.marginRight ? '1%' : '0'};
 }
`;

...

- const Ticket = ({ ticket }) => (
+ const Ticket = ({ marginRight, ticket }) => (
- <TicketWrapper>
+ <TicketWrapper marginRight={marginRight}>
 <Title>{ticket.title}</Title>
 <Body>{ticket.body}</Body>
 </TicketWrapper>
);

export default Ticket;

Now, we can control the margin-right property for this TicketWrapper just by sending
props to the Ticket component. If we view our application in a browser, we'll see how,
right below our Board component with the four lanes, another component rendering
a Ticket component is being displayed:

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[92]

Another thing we can customize is how the components that are returned by the HOC are
named by the React developer tools. Open up the application in the browser and have a
look at the component tree. Here, we can see the components that we've created without
the HOC have a readable naming convention such as App or Header. The components that
have been created by the HOC are named <_class />. To make this component tree more
clear, we can easily have our HOC add this naming convention to the components it
creates. Usually, we would use the name of the component that is created by the HOC. In
our case, however, the HOC is called withDataFetching and when we insert a
component called Board, the name that's displayed in the React developer tools would
be withDataFetching(Board). To set this up, we need to make a few changes to the
withDataFetching.js file. Let's get started:

Remove return before declaring the class component and give the class1.
component a name. For this, use the name of the HOC and change the first
character to a capital letter. This results in WithDataFetching:

import React from 'react';

export default function withDataFetching(WrappedComponent) {

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[93]

- return class extends React.Component {
+ class WithDataFetching extends React.Component {
 ...

In the last few lines of this file, we can take the name of the WrappedComponent2.
that has been inserted into the HOC and use it to name the HOC by setting the
displayName of the returned component. Don't forget to return the
WithDataFetching class component at the end of this file:

import React from 'react';

export default function withDataFetching(WrappedComponent) {
 class WithDataFetching extends React.Component {
 ...

 render() {
 const { data, loading, error } = this.state;

 return (
 <WrappedComponent
 data={data}
 loading={loading}
 error={error}
 {...this.props}
 />
);
 }
 };

+ WithDataFetching.displayName =
`WithDataFetching(${WrappedComponent.name})`;

+ return WithDataFetching;
}

Looking at the React developer tools again, we can see that these changes have resulted in a
more readable naming convention for the components that have been created by the HOC.

All the tickets that are displayed in the lanes are only in one part of our application since
we want to be able to drag and drop these tickets into different lanes. We'll learn how to do
this in the next section, where we'll add dynamic functionalities to the board.

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[94]

Making the board dynamic
One of the things that usually gives project management boards great user interaction is the
ability to drag and drop tickets from one lane into another. This is something that can easily
be accomplished using the HTML5 Drag and Drop API, which is available in every modern
browser, including IE11.

The HTML5 Drag and Drop API makes it possible for us to drag and drop elements across
our project management board. To make this possible, it uses drag
events. onDragStart, onDragOver, and onDrop will be used for this application. These
events should be placed on both the Lane and the Ticket components. Let's get started:

First, we need to make the Board component a class component instead of a1.
functional component. We're doing this because the ticket data needs to be added
to the state and the Board component is the most logical place to do this since we
may want the Lane component to be reused somewhere else. We can do this by
changing the definition of the Board constant, like so:

...

- const Board = ({ lanes, loading, data, error }) => (
+ class Board extends React.Component {
+ render() {
+ const { lanes, loading, data, error } = this.props;
+ return (
 <BoardWrapper>
 {lanes.map(lane =>
 <Lane
 key={lane.id}
 title={lane.title}
 loading={loading}
 error={error}
 tickets={data.filter(ticket => ticket.lane ===
 lane.id)}
 />
)}
 </BoardWrapper>
);
+ }
+ }

export default withDataFetching(Board);

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[95]

Now, we can add the initial value for the tickets to the state. We're doing this2.
since we want to change the key of the lane it should be placed on. By adding
this data to the state, we can mutate it dynamically with the setState function:

...
class Board extends React.Component {
+ constructor() {
+ super();
+ this.state = {
+ tickets: [],
+ };
+ }

 render() {
 ...

Since the data needs to be loaded from the source and isn't available when the3.
application first mounts, we need to check whether the props for these
components have changed. If they have, we need to add the ticket data to the
state. To do this, use the componentDidUpdate life cycle method, which can
take the previous props as a parameter:

...

class Board extends React.Component {
 constructor() {
 super()
 this.state = {
 tickets: [],
 };
 }

+ componentDidUpdate(prevProps) {
+ if (prevProps.data !== this.props.data) {
+ this.setState({ tickets: this.props.data });
+ }
+ }

 render() {
 ...

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[96]

Finally, show the tickets from the state:4.

...
render() {
- const { lanes, data, loading, error } = this.props;
+ const { lanes, loading, error } = this.props;

 return (
 <BoardWrapper>
 {lanes.map(lane =>
 <Lane
 key={lane.id}
 title={lane.title}
 loading={loading}
 error={error}
- tickets={data.filter(ticket => ticket.lane ===
 lane.id)}
+ tickets={this.state.tickets.filter(ticket =>
 ticket.lane === lane.id)}
 />
)}
 </BoardWrapper>
);
 }
}

export default withDataFetching(Board);

If we take at the project in the browser now, no visible changes should be present. The only
difference is the data for the tickets is now loaded from the state, instead of being loaded
from the props.

In this same file, let's add the functions that respond to the drop events, which need to be
sent to the Lane and Ticket components:

Start by adding the event handler function for the onDragStart event,1.
which fires when the dragging operation is started, to the Board component.
This function needs to be passed to the Lane component, where it can be passed
on to the Ticket component. This function sets an ID for the ticket that is being
dragged to the dataTransfer object of the element, which is used by the
browser to identify the drag element:

...
class Board extends React.Component {
 constructor() {
 super();

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[97]

 this.state = {
 tickets: [],
 };
 }

 componentDidUpdate(prevProps) {
 if (prevProps.data !== this.props.data) {
 this.setState({ tickets: this.props.data });
 }
 }

+ onDragStart = (e, id) => {
+ e.dataTransfer.setData('id', id);
+ };

 render() {
 const { lanes, loading, error } = this.props;

 return (
 <BoardWrapper>
 {lanes.map(lane =>
 <Lane
 key={lane.id}
 title={lane.title}
 loading={loading}
 error={error}
+ onDragStart={this.onDragStart}
 tickets={this.state.tickets.filter(ticket =>
 ticket.lane === lane.id)}
 />
)}
 </BoardWrapper>
);
 }
}

export default withDataFetching(Board);

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[98]

In the Lane component, we need to pass this event handler function to the2.
Ticket component:

...
- const Lane = ({ tickets, loading, error, title }) => (
+ const Lane = ({ tickets, loading, error, onDragStart, title }) =>
(
 <LaneWrapper>
 <Title>{title}</Title>
 {(loading || error) && <Alert>{loading ? 'Loading...' :
 error}</Alert>}
 <TicketsWrapper>
- {tickets.map(ticket => <Ticket key={ticket.id}
 ticket={ticket} />)}
+ {tickets.map(ticket => <Ticket key={ticket.id}
 onDragStart={onDragStart} ticket={ticket} />)}
 </TicketsWrapper>
 </LaneWrapper>
);

export default Lane;

Now, we can invoke this function in the Ticket component, where we also need3.
to add the draggable attribute toTicketWrapper. Here, we send the element
and the ticket ID as a parameter to the event handler:

...
- const Ticket = ({ marginRight, ticket }) => (
+ const Ticket = ({ marginRight, onDragStart, ticket }) => (
 <TicketWrapper
+ draggable
+ onDragStart={e => onDragStart(e, ticket.id)}
 marginRight={marginRight}
 >
 <Title>{ticket.title}</Title>
 <Body>{ticket.body}</Body>
 </TicketWrapper>
);

export default Ticket;

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[99]

After making these changes, we should be able to see each ticket can be dragged around.
But don't drop them anywhere yet—the other drop events and event handlers that update
the state should be added as well. Dragging a ticket from one lane to another can be done
by clicking on a ticket without releasing the mouse and dragging it to another lane, as
shown in the following screenshot:

With the onDragStart event implemented, the onDragOver and onDrop events can be
implemented as well. Let's get started:

By default, it's impossible to drop elements into another element; for example, a1.
Ticket component into the Lane component. This can be prevented by calling
the preventDefault method for the onDragOver event:

...

+ onDragOver = e => {
+ e.preventDefault();
+ };

 render() {
 const { lanes, loading, error } = this.props;

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[100]

 return (
 <BoardWrapper>
 {lanes.map(lane =>
 <Lane
 key={lane.id}
 title={lane.title}
 loading={loading}
 error={error}
 onDragStart={this.onDragStart}
+ onDragOver={this.onDragOver}
 tickets={this.state.tickets.filter(ticket =>
 ticket.lane === lane.id)}
 />
)}
 </BoardWrapper>
);
 }
}

2. This event handler needs to be placed on the Lane component:

...
- const Lane = ({ tickets, loading, error, title }) => (
+ const Lane = ({ tickets, loading, error, onDragOver, title }) =>
(
- <LaneWrapper>
+ <LaneWrapper
+ onDragOver={onDragOver}
+ >
 <Title>{title}</Title>
 {(loading || error) && <Alert>{loading ? 'Loading...' :
 error}</Alert>}
 <TicketsWrapper>
 {tickets.map(ticket => <Ticket onDragStart={onDragStart}
 ticket={ticket} />)}
 </TicketsWrapper>
 </LaneWrapper>
);

export default Lane;

The onDrop event is where things get interesting since, this event makes it possible for us
to mutate the state after we've finished the drag operation.

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[101]

The event handler function for this event should be placed on the Ticket component, but
defined in the Board component, since the setState function can only be invoked in the
same file as the initial value for the state:

...
+ onDrop = (e, laneId) => {
+ const id = e.dataTransfer.getData('id');
+
+ const tickets = this.state.tickets.filter(ticket => {
+ if (ticket.id === id) {
+ ticket.board = boardId;
+ }
+ return ticket;
+ });
+
+ this.setState({
+ ...this.state,
+ tickets,
+ });
+ };

 render() {
 const { lanes, loading, error } = this.props;

 return (
 <BoardWrapper>
 {lanes.map(lane =>
 <Lane
 key={lane.id}
+ laneId={lane.id}
 title={lane.title}
 loading={loading}
 error={error}
 onDragStart={this.onDragStart}
 onDragOver={this.onDragOver}
+ onDrop={this.onDrop}
 tickets={this.state.tickets.filter(ticket => ticket.lane ===
 lane.id)}
 />
)}
 </BoardWrapper>
);
 }
}

export default withDataFetching(Board);

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[102]

This onDrop event handler function takes an element and ID of the lane as a parameter,
because it needs the ID of the dragged element and the new lane it should be placed in.
With this information, the function uses a filter function to find the ticket that needs to
be moved and changes the ID of the lane. This new information will replace the current
object for the tickets in the state with the setState function. Since the onDrop event gets
fired from the Lane component, it is passed as a prop to this component. Also, the ID of the
lane is added as a prop because this needs to be passed to the onDrop event handler
function from the Lane component:

...
- const Lane = ({ tickets, loading, error, onDragStart, onDragOver, title
}) => (
+ const Lane = ({ laneId, tickets, loading, error, onDragStart, onDragOver,
onDrop, title }) => (
 <LaneWrapper
 onDragOver={onDragOver}
+ onDrop={e => onDrop(e, laneId)}
 >
 <Title>{title}</Title>
 {(loading || error) && <Alert>{loading ? 'Loading...' : error}</Alert>}
 <TicketsWrapper>
 { tickets.map(ticket => <Ticket onDragStart={onDragStart}
 ticket={ticket} />)}
 </TicketsWrapper>
 </LaneWrapper>
);

export default Lane;

With this, we're able to drag and drop tickets onto other lanes in our board.

Summary
In this chapter, you created a project management board that lets you move and drag and
drop tickets from one lane to another using React Suspense and the HTML5 Drag and Drop
API. The data flow of this application is handled using local state and life cycles and
determines which tickets are displayed in the different lanes. This chapter also introduced
the advanced React pattern of Higher-Order Components (HOCs). With HOCs, you can
reuse state logic from class components across your applications.

Build a Dynamic Project Management Board with React and Suspense Chapter 3

[103]

This advanced pattern will be also be used in the next chapter, which will handle routing
and Server-Side Rendering (SSR) in React applications. Have you ever tried using Stack
Overflow to find a solution to a programming issue you once had? I have!

In the next chapter, we will be building a community feed that uses Stack Overflow as a
data source and React to render the application.

Further reading
Drag and Drop API: https:/ / developer. mozilla. org/ en-US/ docs/ Web/ API/
HTML_Drag_ and_ Drop_ API.
HOC: https:/ / medium. com/ @dan_ abramov/ mixins- are-dead- long- live-
higher-order- components- 94a0d2f9e750.
DataTransfer: https:/ /developer. mozilla. org/en- US/ docs/ Web/API/
DataTransfer.
React DnD: https:/ / github. com/ react- dnd/ react- dnd.

https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd
https://github.com/react-dnd/react-dnd

4
Build a SSR-Based Community

Feed Using React Router
So far, you've learned how React applications are typically Single-Page Applications
(SPAs) that can be used as a Progressive Web App (PWA). This means the application is
rendered client-side, making it load in the browser when the user visits your application.
But did you know React also supports Server-Side Rendering (SSR), as you might
remember from back in the old days when code only rendered from a server?

In this chapter, you'll add declarative routing to a Create React App using react-
router and have components dynamically loaded from the server instead of the browser.
To enable SSR, the React feature, Suspense, will be used with ReactDOMServer. If you're
interested in Search Engine Optimization (SEO), this chapter will use React Helmet to add
metadata to the page so your application can be better indexed by search engines.

The following topics will be covered in this chapter:

Declarative routing
Server-side rendering
SEO in React

Project overview
In this chapter, we will create a PWA with declarative routing using react-router that
supports SSR and therefore is loaded from the server rather than the browser. Also, the
application is optimized for search engines using React Helmet.

The build time is 2 hours.

Build a SSR-Based Community Feed Using React Router Chapter 4

[105]

Getting started
The project that we'll create in this chapter builds upon an initial version that you can find
on GitHub: https:/ /github. com/ PacktPublishing/ React- Projects/ tree/ ch4- initial.
The complete source code can also be found on GitHub: https:/ / github. com/
PacktPublishing/React- Projects/ tree/ ch4. Also, this project uses the publicly available
Stack Overflow API to fill the application with data. This is done by fetching questions that
are posted to Stack Overflow. More information about this API can be found at: https:/ /
api.stackexchange. com/ docs/ questions#order= desc sort= hottagged= reactjs filter=
defaultsite=stackoverflow run= true.

After downloading the initial project from GitHub, you need to move into the root
directory for this project and run npm install. As this project is built on top of Create
React App, running this command will install react, react-dom, and react-scripts.
Also, styled-components is used to handle the styling of all of the components in the
application. When the installation process has finished, you can execute the
npm command start to be able to visit the project in the browser
at http://localhost:3000.

As the project is set up as a PWA, the service workers are registered to make it possible to
visit the application even when there is no internet connection. You can check this by
running npm run build first and serve -s build once the build process is completed.
The build version of the application can now be visited at http://localhost:5000. As
mentioned in a previous chapter, you can check whether the application is still available
when there is no internet connection by visiting the Application tab in the Developer Tools
of your browser. Inside this tab, you can find Service Workers in the menu on the left; after
clicking this link, you can select the Offline checkbox on the page that appears.

You may see a different application than when you ran the project locally
if you've built and served a Create React App PWA before. You can delete
any previous application from the browser cache by opening the
browser's Developer Tools and open the Application tab where you can
click on the Clear site data button on the Clear Storage section.

https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4-initial
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://github.com/PacktPublishing/React-Projects/tree/ch4
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true

Build a SSR-Based Community Feed Using React Router Chapter 4

[106]

The initial application that is available at http://localhost:3000 consists of a simple
header and a list of cards—as seen in the following screenshot. These cards have a title and
meta information such as view count, answer count, and information about the user who
asked this question:

If you look at the project's structure, it uses the same structure as the projects you've created
before. The entry point of this application is a file called src/index.js, which renders a
container component called App that contains the Header and Feed components.
The Header component only displays the title of the project, while Feed is a class
component that has life cycle methods, calls the Stack Overflow API, and renders
the Card components containing the Stack Overflow questions:

community-feed
|-- node_modules
|-- public
 |-- favicon.ico
 |-- index.html

Build a SSR-Based Community Feed Using React Router Chapter 4

[107]

 |-- manifest.json
|-- src
 |-- components
 |-- Header
 |-- Header.js
 |-- Card
 |-- Card.js
 |-- Owner
 |-- Owner.js
 |-- containers
 |-- App.js
 |-- Feed.js
 |-- index.js
 |-- serviceWorker.js
.gitignore
package.json

Community feed application
In this section, you'll build a community feed application with declarative routing that has
SSR enabled. For SEO, a package called React Helmet will be used. In this community feed,
you can see an overview of recent questions on Stack Overflow that have the reactjs tag,
and click on them to see more information and the answers. The starting point will be a
project that is created using Create React App.

Declarative routing
With the react-router package, you can add declarative routing to a React application,
just by adding components. These components can be divided into three types: router
components, route matching components, and navigation components.

Setting up routing with react-router consists of multiple steps:

To use these components, you need to install the web package of react-router,1.
called react-router-dom, by executing the following:

npm install react-router-dom

Build a SSR-Based Community Feed Using React Router Chapter 4

[108]

After installing react-router-dom, the next step is to import the routing and2.
route matching components from this package in the component that is the entry
point of your application. In this case, that is the App component, which is inside
the src/containers directory:

import React, { Component } from 'react';
import styled, { createGlobalStyle } from 'styled-components';
+ import { BrowserRouter as Router, Route } from 'react-router-
dom';
import Header from '../components/Header/Header';
import Feed from './Feed';

const GlobalStyle = createGlobalStyle`...`;

const AppWrapper = styled.div`...`;

class App extends Component {
 ...

The actual routes must be added to the return function of this component,3.
where all of the route matching components (Route) must be wrapped in a
routing component, Router. When your URL matches a route defined in any of
the iterations of Route, this component will render the JSX component that is
added as a component prop:

...
class App extends Component {
 render() {
 return (
 <>
 <GlobalStyle />
 <AppWrapper>
 <Header />
+ <Router>
+ <Route path='/' component={Feed} />
+ </Router>
 </AppWrapper>
 </>
);
 }
}

export default App;

Build a SSR-Based Community Feed Using React Router Chapter 4

[109]

If you now visit the project in the browser again at http://localhost:3000,4.
the Feed component showing all the questions will be rendered. Also, if you
type http://localhost:3000/feed in the browser, the Feed component will
still be rendered. This is because the / route matches every possible URL, as you
didn't define that an exact match should be made. Therefore, add the
exact attribute to Route:

...
class App extends Component {
 render() {
 return (
 <>
 <GlobalStyle />
 <AppWrapper>
 <Header />
 <Router>
- <Route path='/' component={Feed} />
+ <Route exact path='/' component={Feed} />
 </Router>
 </AppWrapper>
 </>
);
 }
}

export default App;

Now, you shouldn't be able to see the Feed component being rendered if you visit any
route other than /.

If you want these routes to display, for example, a specific question, you'd need to send
parameters to a route. How you can do this is shown in the next part of this section.

Build a SSR-Based Community Feed Using React Router Chapter 4

[110]

Routes with parameters
With the first route in place, other routes can be added to the router component. A logical
one is having a route for individual questions, that has an extra parameter that specifies
which question should be displayed. Therefore, a new container component called
Question must be created, which contains the logic for fetching a question from the Stack
Overflow API. This component is rendered when the path matches /question/:id, where
id stands for the ID of the question that is clicked on from the feed:

Create a new class component called Question in1.
the src/containers directory, and add a constructor and render method to
this file:

import React, { Component } from 'react';
import styled from 'styled-components';

const QuestionWrapper = styled.div`
 display: flex;
 justify-content: space-between;
 flex-direction: column;
 margin: 5%;
`;

const Alert = styled.div`
 text-align: center;
`;

class Question extends Component {
 constructor() {
 super();
 this.state = {
 data: [],
 loading: true,
 error: '',
 };
 }

 render() {
 const { data, loading, error } = this.state;

 if (loading || error) {
 return <Alert>{loading ? 'Loading...' : error}</Alert>;
 }

 return (
 <QuestionWrapper></QuestionWrapper>

Build a SSR-Based Community Feed Using React Router Chapter 4

[111]

);
 }
}

export default Question;

To make this route available, you need to import this component inside the2.
App component and define a route for it:

import React, { Component } from 'react';
import styled, { createGlobalStyle } from 'styled-components';
import { BrowserRouter as Router, Route } from 'react-router-dom';
import Header from '../components/Header/Header';
import Feed from './Feed';
+ import Question from './Question';
...
class App extends Component {
 render() {
 return (
 <>
 <GlobalStyle />
 <AppWrapper>
 <Header />
 <Router>
 <Route exact path='/' component={Feed} />
+ <Route path='/questions/:id' component={Question} />
 </Router>
 </AppWrapper>
 </>
);
 }
}

export default App;

If you now visit http://localhost:3000/questions/55366474, the
Loading... message will be displayed as no data fetching is implemented yet. The
Route component passes props to the component that it renders, in this case, Question;
these props are match, location, and history. You can see this by opening the React
Developer Tools and searching for the Question component, which will return the
following result:

Build a SSR-Based Community Feed Using React Router Chapter 4

[112]

The match prop is the most interesting, as this contains the value of the id parameter. The
location and history props have information about the current and past location of
your application.

You can also access the react-router props by using
the withRouter Higher-Order Component (HOC), which passes
the match, location, and history props to the wrapped component
each time it renders. That way, you can use methods such
as history.goBack or history.push from anywhere in your
application. In Chapter 3, Build a Dynamic Project Management Board with
React and Suspense, you've seen an example of using a HOC;
the withRouter HOC is implemented in the same manner.

Build a SSR-Based Community Feed Using React Router Chapter 4

[113]

To implement data fetching on the Question component, you need to check for the
id parameter and fetch the corresponding question from the Stack Overflow API:

Therefore, a componentDidMount method should be added to Question, which1.
fetches the API using this parameter:

...

+ const ROOT_API = 'https://api.stackexchange.com/2.2/';

class Question extends Component {
 constructor(props) { ... }

+ async componentDidMount() {
+ const { match } = this.props;
+ try {
+ const data = await fetch(
+
`${ROOT_API}questions/${match.params.id}?site=stackoverflow`,
+);
+ const dataJSON = await data.json();

+ if (dataJSON) {
+ this.setState({
+ data: dataJSON,
+ loading: false,
+ });
+ }
+ } catch(error) {
+ this.setState({
+ loading: true,
+ error: error.message,
+ });
+ }
+ }

 render() {
 ...

The data that is being fetched can then be displayed inside a Card component.2.
Bear in mind that the Stack Overflow API returns an array instead of a single
object when making this request:

import React, { Component } from 'react';
import styled from 'styled-components';
+ import Card from '../components/Card/Card';

Build a SSR-Based Community Feed Using React Router Chapter 4

[114]

...

class Question extends Component {
 ...
 render() {
 const { data, loading, error } = this.state;

 if (loading || error) {
 return <Alert>{loading ? 'Loading...' : error}</Alert>;
 }

 return (
 <QuestionWrapper>
+ <Card key={data.items[0].question_id} data={data.items[0]}
/>
 </QuestionWrapper>
);
 }
}

export default Question;

If you now refresh http://localhost:3000/questions/55366474, a3.
Card component showing information about this specific question is displayed.
To be able to navigate to this page from the Feed component, a Link navigation
should be added to wrap Card:

import React, { Component } from 'react';
import styled from 'styled-components';
+ import { Link } from 'react-router-dom';
import Card from '../components/Card/Card';

...

class Feed extends Component {
 ...
 render() {
 const { data, loading, error } = this.state;

 if (loading || error) {
 return <Alert>{loading ? 'Loading...' : error}</Alert>;
 }

 return (
 <FeedWrapper>
 {data.items.map(item =>
+ <Link key={item.question_id}

Build a SSR-Based Community Feed Using React Router Chapter 4

[115]

to={`/questions/${item.question_id}`}>
- <Card key={item.question_id} data={item} />
+ <Card data={item} />
+ </Link>
+)}
 </FeedWrapper>
);
 }
}

export default Feed;

As you might notice when visiting http://localhost:3000/, the4.
Card components are now clickable and link to a new page showing the question
you've just clicked on. The styling for the Card components has also changed, as
the Link navigation component is an a element; it adds an underline and
changes the padding. You must make the following changes to fix these styling
changes:

...
+ const CardLink = styled(Link)`
+ text-decoration: none;
+ color: inherit;
+ `;

const ROOT_API = 'https://api.stackexchange.com/2.2/';

class Feed extends Component {
 ...
 render() {
 const { data, loading, error } = this.state;

 if (loading || error) {
 return <Alert>{loading ? 'Loading...' : error}</Alert>;
 }

 return (
 <FeedWrapper>
 {data.items.map(item => (
- <Link key={item.question_id}
to={`/questions/${item.question_id}`}>
+ <CardLink key={item.question_id}
to={`/questions/${item.question_id}`}>
 <Card data={item} />
- </Link>
+ </CardLink>
))}

Build a SSR-Based Community Feed Using React Router Chapter 4

[116]

 </FeedWrapper>
);
 }
}

export default Feed;

Now, the styling should be restored and you're able to navigate to the question routes to
view individual questions. But next to parameters, there are other ways to use the routes
for filtering or pass data to it, which are query strings. These are investigated in the next
part of this chapter.

Handling query strings
Being able to navigate to individual questions is only one piece of the cake when you want
to add routing a project, and pagination could be another one. For this, it would be a good
idea to move the overview of all of the questions to another route that is called
/questions. To do this, you need to add another Route that refers to the Feed component
within Router in your App component:

...
class App extends Component {
 render() {
 return (
 <>
 <GlobalStyle />
 <AppWrapper>
 <Header />
 <Router>
 <Route exact path='/' component={Feed} />
+ <Route path='/questions' component={Feed} />
 <Route path='/questions/:id' component={Question} />
 </Router>
 </AppWrapper>
 </>
);
 }
 }

 export default App;

Build a SSR-Based Community Feed Using React Router Chapter 4

[117]

However, if you now visit the project and try clicking on any of the questions, you will see
both the rendered component and URL haven't changed. Because of the way react-
router is set up, it will navigate to any route that matches the current URL. To solve this
problem, you need to add a Switch route matching component, which works as a switch
statement and will render the first Route that matches the current location:

You can import Switch from the react-router-dom package in1.
the scr/containers/App.js file:

import React, { Component } from 'react';
import styled, { createGlobalStyle } from 'styled-components';
- import { BrowserRouter as Router, Route } from 'react-router-
dom';
+ import { BrowserRouter as Router, Route, Switch } from 'react-
router-dom';

...

And place this Switch within Router, where the order of the routes must be2.
changed to make sure that, whenever there is an id parameter, this route will be
rendered first:

...
class App extends Component {
 render() {
 return (
 <>
 <GlobalStyle />
 <AppWrapper>
 <Header />
 <Router>
+ <Switch>
 <Route exact path='/' component={Feed} />
- <Route path='/questions' component={Feed} />
 <Route path='/questions/:id' component={Question} />
+ <Route path='/questions' component={Feed} />
+ </Switch>
 </Router>
 </AppWrapper>
 </>
);
 }
 }

 export default App;

Build a SSR-Based Community Feed Using React Router Chapter 4

[118]

Both the /questions and /questions/:id routes will now return the correct component,
which is either the Feed or Question component. With this in place, the next step is to add
the pagination. If you look at the API response, the object that is being returned has a field
called has_more. If this field has the value true, which means you can request more
questions by adding the page query string to the API request.

You can try and add this query string to the URL in the browser, by visiting
http://localhost:3000/questions?page=2. This query string is now available as a
prop on the Feed component in the location object under the search field, which you
can see in the output of the React Developer Tools:

Build a SSR-Based Community Feed Using React Router Chapter 4

[119]

Unfortunately, react-router doesn't come with a standard solution to easily grasp the
value of the location.search prop. Therefore, you need to install the query-
string package using npm:

npm install query-string

This package is created to parse a query string, in this case, location.search, to an object
you can use in your application:

You can do this by importing the package in the Feed component:1.

import React, { Component } from 'react';
import styled from 'styled-components';
+ import queryString from 'query-string';

...

Now, you can parse the value for the page query string in the2.
constructor method, and add this parsed value to state. Make sure to use the
JavaScript parseInt function, so the page will become an integer and not a
string. If there is no page query string available, it's assumed you're visiting the
first page:

...
class Feed extends Component {
- constructor() {
- super();
+ constructor(props) {
+ super(props);
+ const query = queryString.parse(props.location.search);
 this.state = {
 data: [],
+ page: (query.page) ? parseInt(query.page) : 1,
 loading: true,
 error: '',
 };
}
...

Build a SSR-Based Community Feed Using React Router Chapter 4

[120]

And if there is a value for the page query string in state, you can send this to3.
the API to get the questions for the page number you specify:

...
async componentDidMount() {
+ const { page } = this.state;
 try {
- const data = await fetch(
- `${ROOT_API}questions/${match.params.id}?site=stackoverflow`,
-);
+ const data = await fetch(
+
`${ROOT_API}questions?order=desc&sort=activity&tagged=reactjs&site=
stackoverflow${(page) ? `&page=${page}` : ''}`,
+);
 const dataJSON = await data.json();

 if (dataJSON) {
 this.setState({
 data: dataJSON,
 loading: false,
 });
 }
 } catch(error) {
 this.setState({
 loading: false,
 error: error.message,
 });
 }
}
...

You can test whether this is working by changing the query string for page with
different numbers, such as http://localhost:3000/questions?page=1
or http://localhost:3000/questions?page=3. To make the application
more user-friendly, let's add pagination buttons to the bottom of the page.

Create the PaginationBar component, which holds two Button components4.
that are styled Link components from react-router:

...

+ const PaginationBar = styled.div`
+ width: 100%;
+ display: flex;
+ justify-content: space-between;
+ `;

Build a SSR-Based Community Feed Using React Router Chapter 4

[121]

+ const PaginationLink = styled(Link)`
+ padding: 1%;
+ background: lightBlue;
+ color: white;
+ text-decoration: none
+ border-radius: 5px;
+ `;

const ROOT_API = 'https://api.stackexchange.com/2.2/';

class Feed extends Component {
 ...

You can now add these to the bottom of FeedWrapper:5.

...
render() {
 const { data, loading, error } = this.state;

 if (loading || error) {
 return <Alert>{loading ? 'Loading...' : error}</Alert>;
 }

 return (
 <FeedWrapper>
 {data.items.map(item => (
 <CardLink key={item.question_id}
to={`/questions/${item.question_id}`}>
 <Card data={item} />
 </CardLink>
))}
+ <PaginationBar>
+ <PaginationLink>Previous</PaginationLink>
+ <PaginationLink>Next</PaginationLink>
+ </PaginationBar>
 </FeedWrapper>
);
 }
}

export default Feed;

Build a SSR-Based Community Feed Using React Router Chapter 4

[122]

These PaginationLink components should link to somewhere for the user to be6.
able to navigate to different pages. For this, the current URL can be taken from
the match prop and the current page number is available in state. Be aware that
the previous button should only be shown when the page number is above 1, and
the next button only when the API response indicates that there are more results
than the ones that are returned:

...

render() {
- const { data, loading } = this.state;
+ const { data, page, loading } = this.state;
+ const { match } = this.props;

 if (loading || error) {
 return <Alert>{loading ? 'Loading...' : error}</Alert>;
 }

 return (
 <FeedWrapper>
 {data.items.map(item => (
 <CardLink key={item.question_id}
to={`/questions/${item.question_id}`}>
 <Card data={item} />
 </CardLink>
))}
 <PaginationBar>
- <PaginationLink>Previous</PaginationLink>
- <PaginationLink>Next</PaginationLink>
+ {page > 1 && <PaginationLink to={`${match.url}?page=${page
- 1}`}>Previous</PaginationLink>}
+ {data.has_more && <PaginationLink
to={`${match.url}?page=${page + 1}`}>Next</PaginationLink>}
 </PaginationBar>
 </FeedWrapper>
);
 }
}

export default Feed;

Build a SSR-Based Community Feed Using React Router Chapter 4

[123]

However, if you now try and click on the next (or previous) button the URL will
change, the questions that are being displayed don't change. By using the
componentDidMount method, the API will only be called after your application
mounts for the first time. To watch for any changes to props or state when your
application is already mounted, you need to use another life cycle method called
componentDidUpdate. This method can watch for changes to props or state,
as it can access the values of props and state before they were updated. They
are scoped within the componendDidUpdate method as the prevProps and
prevState parameters, which you can compare to check whether you need to
fetch the API again when any props or state have changed.

The first step in achieving this is creating a function that fetches the API and that7.
can also be used outside of the componentDidMount method. This function
should take the page number as a parameter, so it can fetch the correct page:

...
+ async fetchAPI(page) {
+ try {
+ const data = await
fetch(`${ROOT_API}questions?order=desc&sort=activity&tagged=reactjs
&site=stackoverflow${(page) ? `&page=${page}` : ''}`);
+ const dataJSON = await data.json();
+
+ if (dataJSON) {
+ this.setState({
+ data: dataJSON,
+ loading: false,
+ });
+ }
+ } catch(error) {
+ this.setState({
+ loading: false,
+ error: error.message,
+ });
+ }
+ }

async componentDidMount() {
 ...

Build a SSR-Based Community Feed Using React Router Chapter 4

[124]

After creating this function, it can be called in the componentDidMount method,8.
which no longer needs to be an asynchronous function as this is already handled
by the new fetchAPI function. Therefore, the method can be deleted and
replaced by the following:

...

- async componentDidMount() { ... }

+ componentDidMount() {
+ const { page } = this.state;
+ this.fetchAPI(page);
+ }

render() {
 ...

Directly after the componentDidMount method, you need to add the new9.
componentDidUpdate life cycle method. As mentioned before, this can
take prevProps and prevState as parameters, but as navigating to a new URL
only changes props, the prior is used. Here, you need to check whether the
query strings have changed. If they have changed, you need to update state
with the new parsed value for the page query string and call the
fetchAPI function to get the results for this page:

...
componentDidMount() {
 const { page } = this.state;
 this.fetchAPI(page);
}

+ componentDidUpdate(prevProps) {
+ if (prevProps.location.search !== this.props.location.search) {
+ const query = queryString.parse(this.props.location.search);
+ this.setState({ page: parseInt(query.page) }, () =>
+ this.fetchAPI(this.state.page),
+);
+ }
+ }

render() {
...

Build a SSR-Based Community Feed Using React Router Chapter 4

[125]

When using the componentDidUpdate life cycle method, you should
always make sure to compare either prevProps or prevState to the
current props or state. The componentDidUpdate method is invoked
continuously and when you don't compare any values, you could end up
with an infinite loop that crashes your application.

You have now implemented the parsing of the query string to dynamically change the
route for your application. In the next section, you'll explore another thing you can do with
React, which is SRR that enables you to serve your application from the server instead of
rendering it in runtime.

Enable SSR
Using SSR can be helpful if you're building an application that needs to render very quickly
or when you want certain information to be loaded before the web page is visible.
Although most search engines are now able to render SPA, this can still be an improvement
if you want users to share your page on social media.

Creating an express server with react-router
There is no standard pattern to enable SSR for your React application, but the starting point
is to create a Node.js server that's serving the entry for running the build version for your
application. For this, you'll use a minimal API framework for Node.js called express. Also,
the packets that you've already used, such as react-router and styled-components,
can work with SSR as well:

You can start by installing express by running the following:1.

npm install express

Now, you must create a new directory called server in the projects' root2.
directory and place a new file called server.js inside. In this file, you can place
the following code block to import packages you need to run the Node.js server,
react, and react-dom/server—which is used to render your application from
a server:

import path from 'path';
import fs from 'fs';
import express from 'express';
import React from 'react';
import ReactDOMServer from 'react-dom/server';

Build a SSR-Based Community Feed Using React Router Chapter 4

[126]

Directly below these imports, you need to import the entry point of the3.
application that should be rendered by the server:

import path from 'path';
import fs from 'fs';
import express from 'express';
import React from 'react';
import ReactDOMServer from 'react-dom/server';

+ import App from '../src/containers/App';

After having defined the entry point, the code to set up the Node.js server with4.
express and have it listen to all of the endpoints on the server can be added.
First, you need to set a port on which express will be running, after which, you
define that all of the routes matching the /* wildcard should return a static
version of your application that is being rendered by ReactDOMServer as a
string. That is done by getting the contents of the index.html build file and
replacing the <div id="root"></div> tags with new tags that contain the
server-rendered version of the App component:

...
const PORT = 8080;
const app = express();

app.get('/*', (req, res) => {
 const context = {};
 const app = ReactDOMServer.renderToString(<App />);

 const indexFile = path.resolve('./build/index.html');
 fs.readFile(indexFile, 'utf8', (err, data) => {
 if (err) {
 console.error('Something went wrong:', err);
 return res.status(500).send('Oops, better luck next time!');
 }

 data = data.replace('<div id="root"></div>', `<div
id="root">${app}</div>`);

 return res.send(data);
 });
});

Build a SSR-Based Community Feed Using React Router Chapter 4

[127]

And have this express server listen to the 8080 port you've defined, by adding5.
this code block to the bottom of this file:

...
app.listen(PORT, () => {
 console.log(`Server-Side Rendered application running on port
${PORT}`);
});

Finally, you need to change the way your App component is rendered from the6.
entry point of the application in src/index.js. In this
file, ReactDOM.render needs to be replaced by ReactDOM.hydrate as the
Node.js server tries to change the markup of the index.html build file by
injecting the server-rendered version:

import React from 'react';
import ReactDOM from 'react-dom';
import App from './containers/App';
import * as serviceWorker from './serviceWorker';

+ ReactDOM.hydrate(<App />, document.getElementById('root'));

...

However, this Node.js server isn't able to use any of the webpack configuration that is
being used by your React application, as its code isn't placed in the src directory. To be
able to run this Node.js server, you need to configure Babel for the server directory and
install some of the Babel packages. This is something you've done before in the first
chapter:

The Babel packages that should be installed are @babel/polyfill, which1.
compiles functions such as async/await; @babel/register to tell Babel it
should transform files with the .js extension; and @babel/preset-env and
@babel/preset-react to configure Babel to work with React:

npm install @babel/polyfill @babel/register @babel/preset-env
@babel/preset-react

In a new file called index.js inside the server directory, you can now require2.
these packages and have this file serve as an entry point to the server.js file:

require('@babel/polyfill');

require('@babel/register')({
 presets: ['@babel/preset-env', '@babel/preset-react'],

Build a SSR-Based Community Feed Using React Router Chapter 4

[128]

});

require('./server');

You should be able to run the server/index.js file with Node.js, by executing3.
the node server/index.js command. So, let's make a shortcut for this
command in package.json within the scripts field:

...
"scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject",
+ "ssr": "node server/index.js"
},

Before running the npm run ssr command, you should always execute npm run build
before as the Node.js server is using the build version. If you run the npm run ssr
command now, though, you will receive an error saying BrowserRouter needs to a
DOM to render. Because of the way react-router is set up, you need to use the
StaticRouter component when using SSR instead of BrowserRouter:

When the application is running client-side (using npm start), it will still need1.
to use BrowserRouter, so therefore the wrapping of the Route components
should be moved from App to the src/index.js file:

import React from 'react';
import ReactDOM from 'react-dom';
+ import { BrowserRouter as Router } from 'react-router-
dom';
import App from './containers/App';
import * as serviceWorker from './serviceWorker';

ReactDOM.hydrate(
+ <Router>
 <App />
+ </Router>,
 document.getElementById('root'),
);

Build a SSR-Based Community Feed Using React Router Chapter 4

[129]

And, of course, it's deleted from the App component:2.

import React, { Component } from 'react';
import styled, { createGlobalStyle } from 'styled-components';
- import { BrowserRouter as Router, Route, Switch } from 'react-
router-dom';
+ import { Route, Switch } from 'react-router-dom';
import Header from '../components/Header/Header';
import Feed from './Feed';
import Question from './Question';

...

class App extends Component {
 render() {
 return (
 <>
 <GlobalStyle />
 <AppWrapper>
 <Header />
- <Router>
 <Switch>
 <Route exact path='/' component={Feed} />
 <Route path='/questions/:id' component={Question} />
 <Route path='/questions' component={Feed} />
 </Switch>
- </Router>
 </AppWrapper>
 </>
);
 }
}

export default App;

To get the Node.js server to now use the StaticRouter component from3.
react-router, you need to add this in server/index.js and wrap the
App component that is being rendered by ReactDOMServer
with StaticRouter. For react-router to know which route to load, you must
pass the current URL as a location prop, and (in this case) an empty context
prop as StaticRouter should always have this to handle redirects:

import path from 'path';
import fs from 'fs';
import express from 'express';
import React from 'react';
import ReactDOMServer from 'react-dom/server';

Build a SSR-Based Community Feed Using React Router Chapter 4

[130]

+ import { StaticRouter } from 'react-router-dom';

import App from '../src/containers/App';

const PORT = 8080;
const app = express();

app.get('/*', (req, res) => {
 const context = {};
 const app = ReactDOMServer.renderToString(
- <Router>
+ <Router location={req.url} context={context}>
 <App />
 </Router>,
);

 ...

With this last step done, you can go and execute npm run build again. After the build has
finished, you can start the Node.js server by running npm run ssr to view your server-
rendered React application on http://localhost:8080. This application looks the same,
as SSR doesn't change anything to the appearance of your application.

Another advantage of SSR is that your application can be discovered by search engines
more effectively. In the next part of this section, you'll add the tags that make your
application discoverable by these engines.

Adding head tags using React Helmet
Assuming you want your application to be indexed by search engines, you need to set head
tags for the crawlers to identify the content on your page. This is something you want to do
dynamically for each route route, as each route will have different content. A popular
package for setting these head tags in React applications is React Helmet, which has
support for SSR. You can install React Helmet with npm:

npm install react-helmet

Build a SSR-Based Community Feed Using React Router Chapter 4

[131]

React Helmet can define the head tags in any component that is rendered by your
application, and if nested, the lowest definition of a Helmet component in the component
tree will be used. That's why you can create a Helmet component in your
Header component for all routes and in each of the components that are being rendered on
a route, you can overwrite these tags:

Import the react-helmet package in the1.
src/components/App/Header.js file, and create a Helmet component that
sets title and meta description:

import React from 'react';
import styled from 'styled-components';
+ import Helmet from 'react-helmet';

...

const Header = () => (
+ <>
+ <Helmet>
+ <title>Q&A Feed</title>
+ <meta name='description' content='This is a Community Feed
project build with React' />
+ </Helmet>
 <HeaderWrapper>
 <Title>Q&A Feed</Title>
 </HeaderWrapper>
+ </>
);

export default Header;

Also, create a Helmet component in src/containers/Feed.js that only sets a2.
title for this route, so it will use the meta description of Header. This
component is placed within Fragments before the Alert component as this is
available when the application first renders:

import React, { Component } from 'react';
import styled from 'styled-components';
import queryString from 'query-string'
import { Link } from 'react-router-dom';
+ import Helmet from 'react-helmet';
import Card from '../components/Card/Card';

 ...

 render() {

Build a SSR-Based Community Feed Using React Router Chapter 4

[132]

 const { data, page, loading, error } = this.state;
 const { match } = this.props;

 if (loading || error) {
 return
+ <>
+ <Helmet>
+ <title>Q&A Feed - Questions</title>
+ </Helmet>
 <Alert>{loading ? 'Loading...' : error}</Alert>
+ </>
 }
 ...

Do the same for the src/containers/Question.js file, where you can also3.
take the ID of the question from the match props to make the page title more
dynamic:

import React, { Component } from 'react';
import styled from 'styled-components';
+ import Helmet from 'react-helmet';
import Card from '../components/Card/Card';

 ...

 render() {
+ const { match } = this.props;
 const { data, loading, error } = this.state;

 if (loading || error) {
 return
+ <>
+ <Helmet>
+ <title>{`Q&A Feed - Question
#${match.params.id}`}</title>
+ </Helmet>
 <Alert>{loading ? 'Loading...' : error}</Alert>
+ </>
 }

 ...

Build a SSR-Based Community Feed Using React Router Chapter 4

[133]

These head tags will now be used when you're running your application client-4.
side by executing the npm start command. But to support SSR, React Helmet
should also be configured on the Node.js server. For this, you can use the
Helmet.renderStatic method, which transforms the Helmet components in
your code the same way as ReactDOMserver.renderToString does for other
components. Open the server/server.js file and add the following lines of
code:

import path from 'path';
import fs from 'fs';
import express from 'express';
import React from 'react';
import ReactDOMServer from 'react-dom/server';
import { StaticRouter as Router } from 'react-router-dom';
+ import Helmet from 'react-helmet';

...

app.get('/*', (req, res) => {
 const context = {};
 const app = ReactDOMServer.renderToString(
 <Router location={req.url} context={context}>
 <App />
 </Router>,
);
+ const helmet = Helmet.renderStatic();

 const indexFile = path.resolve('./build/index.html');
 fs.readFile(indexFile, 'utf8', (err, data) => {
 if (err) {
 console.error('Something went wrong:', err);
 return res.status(500).send('Oops, better luck next time!');
 }

 data = data.replace('<div id="root"></div>', `<div
id="root">${app}</div>`);
+ data = data.replace('<meta name="helmet"/>',
`${helmet.title.toString()}${helmet.meta.toString()}`);

 return res.send(data);
 });
});

...

Build a SSR-Based Community Feed Using React Router Chapter 4

[134]

On one of the last lines of this file, you've now defined that the <meta5.
name="helmet" /> element should be replaced by the title and meta tags
created by React Helmet. To make it possible to replace this element with these
tags, add this element to index.html in the public directory. Also, you must
delete the title element that is already being created by React Helmet now:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <link rel="shortcut icon" href="%PUBLIC_URL%/favicon.ico" />
 <meta
 name="viewport"
 content="width=device-width, initial-scale=1, shrink-to-
fit=no"
 />
 <meta name="theme-color" content="#000000" />
 <link rel="manifest" href="%PUBLIC_URL%/manifest.json" />
+ <meta name="helmet" />
- <title>React App</title>
 </head>
...

With these last changes, you can now run npm run build again to create a new build
version of your application. After this process has finished, you execute the npm run
ssr command to start the Node.js server and visit your React SSR application in the
browser on http://localhost:8080.

Summary
In this chapter, you've added dynamic routing to a Create React App using react-router,
making it possible for users to open your application on a specific page. By using the React
feature Suspense, components are loaded dynamically on the client-side. This way, you
lower the amount of time before your user first gets in contact with your application. The
project you created in this chapter also supports SSR, and React Helmet is used to add
dynamic head tags to the application for SEO purposes.

After completing this chapter, you must already feel like an expert with React! The next
chapter will for sure take your skill to the next level as you'll learn how to handle state
management using the context API. With the context API, you can share state and data
between multiple components in your application, no matter whether they're direct
children of the parent component or not.

Build a SSR-Based Community Feed Using React Router Chapter 4

[135]

Further reading
React Helmet: https:/ /github. com/ nfl/ react- helmet

ReactDOMServer: https:/ /reactjs. org/ docs/ react- dom- server. html

https://github.com/nfl/react-helmet
https://github.com/nfl/react-helmet
https://github.com/nfl/react-helmet
https://github.com/nfl/react-helmet
https://github.com/nfl/react-helmet
https://github.com/nfl/react-helmet
https://github.com/nfl/react-helmet
https://github.com/nfl/react-helmet
https://github.com/nfl/react-helmet
https://github.com/nfl/react-helmet
https://github.com/nfl/react-helmet
https://github.com/nfl/react-helmet
https://github.com/nfl/react-helmet
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html

5
Build a Personal Shopping List
Application Using Context API

and Hooks
State management is a very important part of modern web and mobile applications and is
something that React is very good at. Handling state management in React applications can
be quite confusing, as there are multiple ways you can handle the current state of your
application. The projects you created in the first four chapters of this book haven't been
focusing on state management too much, something that will be investigated much more in
this chapter.

This chapter will show how you can handle state management in React, by creating a global
state for your application that is accessible from every component. Before React v16.3, you
needed third-party packages to handle global state in React, but with the renewed version
of the context API, this is no longer mandatory. Also, with the release of React Hooks, more
ways to mutate this Context were introduced. Using an example application, the methods
to handle global state management for your application are demonstrated.

The following topics will be covered in this chapter:

Using the context API for state management
Higher-Order Components (HOC) and Context
Mutating Context with Hooks

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[137]

Project overview
In this chapter, we will create a Progressive Web App (PWA) with declarative routing
using react-router, which handles global state management using Context and React
Hooks. Also, HOC is used to access data throughout the application.

Build time is 2.5 hours.

Getting started
The project that we'll create in this chapter builds upon an initial version that you can find
on GitHub: https:/ /github. com/ PacktPublishing/ React- Projects/ tree/ ch5- initial.
The complete source code can also be found on GitHub: https:/ / github. com/
PacktPublishing/React- Projects/ tree/ ch5.

After downloading the initial application, make sure that you run npm install from the
project's root directory. This project is created using Create React App and installs
the react, react-dom, react-scripts, styled-components, and react-
router packages, which you've already seen in previous chapters. After finishing the
installation process, you can run npm start from the same tab in Terminal and view the
project in your browser (http://localhost:3000).

As the project is created with Create React App, the service workers are registered to have
the application run as a PWA. You can check this by running npm run build first
and serve -s build once the build process is completed. The build version of the
application can now be visited at http://localhost:5000. In case you visit the
application on this URL and see a different one, it might be that the built version of an
application you've created in any of the preceding chapters is still being served. This might
be due to the browser cache created by a service worker. You can clear any previous
application from the browser cache by opening Developer Tools on your browse and open
the Application tab, where you can click on the Clear site data button on the Clear
Storage section.

To check whether the application is really still available when there is no
internet connection, you can have the browser simulate an offline
situation. The option to enable this can be found in the Application tab in
the browser's Developer Tools. Inside this tab, you can find Service
Workers in the menu on the left and, after clicking this link, you can select
the Offline checkbox on the page that appears.

https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5-initial
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5
https://github.com/PacktPublishing/React-Projects/tree/ch5

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[138]

The initial application for this section is available at http://localhost:3000 and is a bit
more advanced than in any of the previous chapters. When you open the application, a
screen displaying a header, a subheader, and two lists is being rendered. If you, for
example, click on the first list that is displayed here, a new page will open that displays the
items of this list. On this page, you can click on the Add List button at the top-right to open
a new page, which has a form to add a new list and looks like this:

This form is rendered by the Form component and has no functionality yet, as you'll add
this later on. When you click on the left button, it redirects you to the previously visited
page, using the history.goBack method from react-router.

When you try to submit the form to either add a new list or add a new
item to a list, nothing happens yet. The functionality of these forms will be
added in this section later on, for which you'll use the context API and
React Hooks.

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[139]

The project is structured in the same manner as with the applications you've created before.
A distinction between reusable function components in the components directory and class
components in the containers directory is made. The class components are wrapped with
a HOC called withDataFetching, which adds data fetching and life cycles
(componentDidMount) to these components.

The withDataFetching HOC is a slightly modified version of the HOC
you created in Chapter 2, Creating a Progressive Web Application with
Reusable React Components, which was also called withDataFetching.js.
This modified version is a curried component, meaning it takes multiple
arguments at once. In the case of a HOC, this means that you can't only
use a component as an argument, but you also need to use the props for
this component as an argument.

The following is an overview of the complete structure of the project:

shopping-list
|-- node_modules
|-- public
 |-- favicon.ico
 |-- index.html
 |-- manifest.json
|-- src
 |-- components
 |-- Button
 |-- Button.js
 |-- FormItem
 |-- FormItem.js
 |-- Header
 |-- Header.js
 |-- Subheader.js
 |-- ListItem
 |-- ListItem.js
 |-- containers
 |-- App.js
 |-- Form.js
 |-- List.js
 |-- Lists.js
 |-- index.js
 |-- serviceWorker.js
.gitignore
db.json
package.json

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[140]

The entry point of this application is the src/index.js file that renders the App class
component within a Router component from react-router.
The App component contains a Header component and a Switch router component that
defines four routes. These routes are as follows:

/: Renders Lists, with an overview of all of the lists
/list/:id: Renders List, with an overview of all items from a specific list
/list/:id/new: Renders Form, with a form to add new items to a specific list

The data is fetched from a mock server that was created using the free service, My JSON
Server, which creates a server from the db.json file in the root directory of your project in
GitHub. This file consists of a JSON object that has two fields, items and lists, which
creates multiple endpoints on a mock server. The ones you'll be using in this chapter are as
follows:

https://my-json-server.typicode.com/<your-username>/<your-repo>
/items

https://my-json-server.typicode.com/<your-username>/<your-repo>
/lists

The db.json file must be present in the master branch (or default branch)
of your GitHub repository for the My JSON Server to work. Otherwise,
you'll receive a 404 Not Found message when trying to request the API
endpoints.

Personal shopping list
In this section, you'll build a personal shopping list application that has global state
management using Context and React Hooks. With this application, you can create
shopping lists that you can add items to, along with their quantities and prices. The starting
point of this section is an initial application that has routing and local state management
already enabled.

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[141]

Using the context API for state management
State management is very important, as the current state of the application holds data that
is valuable to the user. In previous chapters, you've already used local state management
by setting an initial state in constructor and updating this with the
this.setState method. This pattern is very useful when the data in the state is only of
importance to the component you're setting the state in. As passing down the state as props
through several components can become confusing, you'd need a way to access props
throughout your application even when you're not specifically passing them as props. For
this, you can use the context API from React, which is also used by packages you've already
used in previous chapters such as styled-components and react-router.

To share state across multiple components, a React feature called Context will be explored,
starting in the first part of this section.

Creating Context
When you want to add Context to your React application, you can do this by creating a new
Context with the createContext method from React. This creates a Context object that
consists of two React components, called Provider and Consumer. The Provider is where
the initial (and subsequently current) value of the Context is placed, which can be accessed
by components that are present within the Consumer.

This is done in the App component in src/containers/App.js, as you want the Contexts
for the lists to be available in every component that is rendered by Route:

Let's start by creating a Context for the lists and make it exportable so that the list1.
data can be used everywhere. For this, you can create a new file
called ListsContextProvider.js inside a new directory, src/Context. In
this file, you can add the following code:

import React from 'react';
import withDataFetching from '../withDataFetching';

export const ListsContext = React.createContext();

const ListsContextProvider = ({ children, data }) => (
 <ListsContext.Provider value={{ lists: data }}>
 {children}
 </ListsContext.Provider>
);

export default withDataFetching({

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[142]

 dataSource:
'https://my-json-server.typicode.com/PacktPublishing/React-Projects
/lists',
})(ListsContextProvider);

The previous code creates a Provider based on a Context component that is
passed as a prop and sets a value based on the return from the
withDataFetching HOC that is fetching all of the lists. Using the children
prop, all of the components that will be wrapped inside the
ListsContextProvider component can retrieve the data for the value from a
Consumer.

This ListsContextProvider component and the Context can be imported2.
inside your App component in src/containers/App.js, where it should
subsequently be placed around the Switch component. The ListsContext
object is also imported, as, you can't create the Consumer later on:

import React from 'react';
import styled, { createGlobalStyle } from 'styled-components';
import { Route, Switch } from 'react-router-dom';
+ import ListsContextProvider, { ListsContext } from
'../Context/ListsContextProvider';

...

const App = () => (
 <>
 <GlobalStyle />
 <AppWrapper>
 <Header />
+ <ListsContextProvider>
 <Switch>
 <Route exact path='/' component={Lists} />
 <Route path='/list/:id/new' component={Form} />
 <Route path='/list/:id' component={List} />
 </Switch>
+ </ListsContextProvider>
 </AppWrapper>
 </>
);

export default App;

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[143]

This way, you're now able to add a Consumer for ListsContext, which is3.
nested within the ListsContextProvider component that holds the Provider
for ListsContext. This Consumer returns the value from the Provider, which
contains the list data that was fetched before:

...

const App = () => (
 <>
 <GlobalStyle />
 <AppWrapper>
 <Header />
 <ListsContextProvider>
+ <ListsContext.Consumer>
+ {({ lists }) => (
 <Switch>
 <Route exact path='/' component={Lists} />
 <Route path='/list/:id/new' component={Form} />
 <Route path='/list/:id' component={List} />
 </Switch>
+)}
+ </ListsContext.Consumer>
 </ListsContextProvider>
 </AppWrapper>
 </>
);

export default App;

To actually pass this list data to any of the components rendered by Route, you4.
should change the way the component is passed to the Route component.
Instead of telling Route which component to render, you can also use the
RenderProps pattern for React. This pattern refers to a technique for sharing
code between React components using a prop whose value is a function that
returns a component. In this case, you want the Route component to render a
component and not just add the react-router props to it but also the list data
from ListsContext:

...
<ListsContextProvider>
 <ListsContext.Consumer>
 {({ lists }) => (
 <Switch>
- <Route exact path='/' component={Lists} />
+ <Route exact path='/' render={props => lists && <Lists
lists={lists} {...props} /> } />

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[144]

 <Route path='/list/:id/new' component={Form} />
 <Route path='/list/:id' component={List} />
 </Switch>
)}
 </ListsContext.Consumer>
</ListsContextProvider>
...

If you now look at the Network tab in the browser's Developer Tools, you can5.
see the API is fetched twice. As the lists are now also being fetched by
ListsContextProvider, the Lists component itself doesn't have to fetch the
API anymore as it's now sent as a prop. Therefore, you can make the following
changes to src/containers/Lists.js:

import React from 'react';
import styled from 'styled-components';
import { Link } from 'react-router-dom';
- import withDataFetching from '../withDataFetching';
import SubHeader from '../components/SubHeader/SubHeader';

...

- const Lists = ({ data, loading, error, match, history }) => (
+ const Lists = ({ lists, loading = false, error = false, match,
history }) => (
 <>
 {history && <SubHeader title='Your Lists' openForm={() =>
history.push('/new')} /> }
 <ListWrapper>
 {(loading || error) && <Alert>{loading ? 'Loading...' :
error}</Alert>}
- {data.lists && data.lists.map(list => (
+ {lists && lists.map(list => (
 <ListLink key={list.id} to={`list/${list.id}`}>
 <Title>{ list.title }</Title>
 </ListLink>
))}
 </ListWrapper>
 </>
);

- export default withDataFetching({
- dataSource:
'https://github.com/PacktPublishing/React-Projects/lists',
})(Lists);
+ export default Lists;

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[145]

Now you've removed the withDataFetching HOC from Lists, no duplicate requests to
the API are sent anymore. The data for the lists is fetched from
ListsContextProvider and is passed by ListsContext.Consumer to Lists. If you
open the application in the browser by going to http://localhost:3000/, you can see
the lists are being rendered just as before.

Something else you can do is to send the list data to the List component as well, so you
could, in the example, display the name of the selected lists when you click on a list from
the home page:

For this, you use the RenderProps pattern again, this time for Route, which1.
renders List. This makes sure lists is available and renders the List
component afterward, which also takes all of the react-router props:

...
<ListsContextProvider>
 <ListsContext.Consumer>
 {({ lists }) => (
 <Switch>
 <Route exact path='/' render={props => lists && <Lists
lists={lists} {...props} /> } />
 <Route path='/list/:id/new' component={Form} />
- <Route path='/list/:id' component={List} />
+ <Route path='/list/:id' render={props => lists && <List
lists={lists} {...props} />} />
 </Switch>
)}
 </ListsContext.Consumer>
</ListsContextProvider>
...

In the List component in the src/containers/List.js file, you can retrieve2.
the lists from the props. This array needs to be filtered for the correct list and
the found object contains title, which can be added to the
SubHeader component so that it will be displayed on the page:

- const List = ({ data, loading, error, match, history }) => {
+ const List = ({ data, loading, error, lists, match, history }) =>
{
 const items = data && data.filter(item => item.listId ===
parseInt(match.params.id))
+ const list = lists && lists.find(list => list.id ===
parseInt(match.params.id));

 return (
 <>

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[146]

- {history && <SubHeader goBack={() => history.goBack()}
openForm={() => history.push(`${match.url}/new`)} />}
+ {history && list && <SubHeader goBack={() =>
history.goBack()} title={list.title} openForm={() =>
history.push(`${match.url}/new`)} />}
 <ListItemWrapper>
 {items && items.map(item => <ListItem key={item.id}
data={item} />)}
 </ListItemWrapper>
 </>
)
};

export default withDataFetching({
 dataSource:
'https://my-json-server.typicode.com/PacktPublishing/React-Projects
/items',
})(List);

With these additions, title of the current list will now be displayed if you visit the project
at http://localhost:3000/list/1. In the SubHeader component, the title Daily
groceries is now visible, which looks similar to the following screenshot:

In the next section, you'll also add a Context object for the items, so the items are also
available to all of the components within the Switch component from react-router.

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[147]

Nesting Context
Just as for the list data, the item data could also be stored in Context and passed to the
components that need this data. That way, data is no longer fetched from any of the
rendered components but from the ContextProvider components in
the src/Providers directory:

Again, start by creating a new component where both a Context and Provider are1.
created. This time, it's called ItemsContextProvider, which can also be added
to the src/Context directory in a file called ItemsContextProvider.js:

import React from 'react';
import withDataFetching from '../withDataFetching';

export const ItemsContext = React.createContext();

const ItemsContextProvider = ({ children, data }) => (
 <ItemsContext.Provider value={{ items: data }}>
 { children }
 </ItemsContext.Provider>
);

export default withDataFetching({
 dataSource:
'https://my-json-server.typicode.com/PacktPublishing/React-Projects
/items',
})(ItemsContextProvider);

Next, import this new Context and ContextProvider in2.
src/containers/App.js, where you can nest this inside the
ListsContextProvider component:

import React from 'react';
import styled, { createGlobalStyle } from 'styled-components';
import { Route, Switch } from 'react-router-dom';
import ListsContextProvider, { ListsContext } from
'../Context/ListsContextProvider';
+ import ItemsContextProvider, { ItemsContext } from
'../Context/ItemsContextProvider';

...

const App = () => (
 <>
 <GlobalStyle />
 <AppWrapper>

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[148]

 <Header />
 <ListsContextProvider>
+ <ItemsContextProvider>
 <ListsContext.Consumer>
 ...

ItemsContextProvider is now nested below ListsContextProvider, which3.
means Consumer for ItemsContext can also be nested below Consumer
for ListsContext. This makes the value
from ItemsContextProvider available to the List component that uses the
RenderProps pattern:

<ListsContextProvider>
 <ItemsContextProvider>
 <ListsContext.Consumer>
 {({ lists }) => (
+ <ItemsContext.Consumer>
+ {({ items }) => (
 <Switch>
 <Route exact path='/' render={props => lists &&
<Lists lists={lists} {...props} />} />
 <Route path='/new' component={Form} />
 <Route path='/list/:id/new' component={Form} />
- <Route path='/list/:id' render={props => lists &&
<List lists={lists} {...props} />
+ <Route path='/list/:id' render={props => lists &&
items && <List lists={lists} listItems={items} {...props} />}/>
 </Switch>
+)}
+ </ItemsContext.Consumer>
)}
 </ListsContext.Consumer>
 </ItemsContextProvider>
 </ListsContextProvider>

After the item data is passed as a prop to List, this can now be used to replace4.
the data fetching that is already in place using the withDataFetching HOC. To
accomplish this, you need to make the following changes to
src/containers/List.js:

import React from 'react';
import styled from 'styled-components';
- import withDataFetching from '../withDataFetching';
import SubHeader from '../components/SubHeader/SubHeader';
import ListItem from '../components/ListItem/ListItem';

...

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[149]

- const List = ({ data, lists, loading, error, match, history }) =>
{
+ const List = ({ lists, listItems, loading = false, error = false,
match, history }) => {
- const items = data && data.filter(item => item.listId ===
parseInt(match.params.id))
+ const items = listItems && listItems.filter(item => item.listId
=== parseInt(match.params.id))

 const list = lists && lists.find(list => list.id ===
parseInt(match.params.id));

 return (
 <>
 {history && <SubHeader goBack={() => history.goBack()}
title={list.title} openForm={() =>
history.push(`${match.url}/new`)} />}
 <ListItemWrapper>
 {items && items.map(item => <ListItem key={item.id}
data={ item } />) }
 </ListItemWrapper>
 </>
)
};

- export default withDataFetching({
 dataSource:
'https://my-json-server.typicode.com/PacktPublishing/React-Projects
/items',
 })(List);
+ export default List;

All of the data fetching is now no longer by the List and Lists components. By nesting
these Context Providers, the return values can be consumed by multiple components. But
this still isn't ideal, as you're now loading all of the lists and all of the items when starting
your application.

In the next section, you'll see how to get only the data you need by combining Context with
Hooks.

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[150]

Mutating context with Hooks
There are multiple ways in which you can get data conditionally from the Context; one of
these is placing the data from the Context in the local state. That could be a solution for a
smaller application but can be inefficient for larger applications, as you'd still need to pass
this state down your component tree. Another solution is using React Hooks to create a
function that is added to the value of your Context and can be invoked from any of the
components that are nested in this Context. Also, this method of getting the data prevents
you from efficiently loading only the data that you'd need.

How this can be used together with React life cycles and state management using Hooks is
demonstrated in the first part of this section.

Using life cycles in functional components
One of the many great additions that came with Hooks is making life cycles available in
functional components. Before Hooks, only class components supported life cycles using to
the container components pattern and the withDataFetching HOC you've used so far.
Follow these steps:

The first step in achieving this is by moving the function to do data fetching from1.
the withDataFetching HOC to the Provider for the lists, in
the src/Context/ListsContextProvider.js file. This function will
take dataSource (which could be a file or an API) and uses fetch to retrieve
data from this source:

import React from 'react';

export const ListsContext = React.createContext();

async function fetchData(dataSource) {
 try {
 const data = await fetch(dataSource);
 const dataJSON = await data.json();

 if (dataJSON) {
 return await ({ data: dataJSON, error: false });
 }
 } catch(error) {
 return ({ data: false, error: error.message });
 }
};

....

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[151]

With this function in place, the next step would be to invoke it with dataSource2.
and add the data to the Provider. But where should you store the data that is
returned by dataSource? Before, you've used the componentDidMount life
cycle method for this and added the results from the source to the local state.
With Hooks, you can use local state management inside a function component
with the useState Hook. You can pass the initial value for the state, which you
set in constructor before, as an argument to this Hook. The returned value will
be an array consisting of the current value for this state and a function to update
this state. Also, Hooks should always be created inside the component in which
it's used—in this case, inside ListsContextProvider:

...
async function fetchData(dataSource) {
 try {
 const data = await fetch(dataSource);
 const dataJSON = await data.json();

 if (dataJSON) {
 return await ({ data: dataJSON, error: false });
 }
 } catch(error) {
 return ({ data: false, error: error.message });
 }
};

- const ListsContextProvider = ({ children, data }) => (
+ const ListsContextProvider = ({ children }) => {
+ const [lists, setLists] = React.useState([]);
+ return (
- <ListsContext.Provider value={{ lists: data }}>
+ <ListsContext.Provider value={{ lists }}>
 {children}
 </ListsContext.Provider>
)
+ };

- export default withDataFetching({
 dataSource:
'https://my-json-server.typicode.com/PacktPublishing/React-Projects
/items',
 })(ListsContextProvider);
+ export default ListsContextProvider;

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[152]

In the preceding code block, you can see the initial value for the state is an empty3.
array, which is passed to the Provider for ListsContext. To fill this state with
data from dataSource, you need to actually invoke the fetchData function.
Normally, this would be done inside a componentDidMount or
componentDidUpdate life cycle method, but as a component is a function
component, you're using a Hook instead. This Hook is called useEffect and is
used to handle side effects, either when the application mounts or when the state
or a prop gets updated. This Hook takes two parameters, where the first one is a
callback and the second one is an array containing all of the variables this Hook
depends on. When any of these changes, the callback for this Hook will be called.
When there are no values in this array, the Hook will only be called on the first
mount. After the data is fetched from the source, the state will be updated with
the results:

...
const ListsContextProvider = ({ children }) => {
 const [lists, setLists] = React.useState([]);
 React.useEffect(() => {
 const asyncFetchData = async dataSource => {
 const result = await fetchData(dataSource);

 setLists([...result.data]);
 };

asyncFetchData('https://my-json-server.typicode.com/PacktPublishing
/React-Projects/lists');

 }, [fetchData, setLists]);

 return (
 <ListsContext.Provider value={{ lists }}>
 {children}
 </ListsContext.Provider>
)
};

export default ListsContextProvider;

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[153]

You can see the fetchData function isn't invoked directly but is wrapped inside a function
called asyncFetchData. As async/await from the fetchData function would return
Promise, you'd need another async/await to retrieve the values and resolve Promise.
However, you can't use async/await directly with the useEffect Hook. The array block
after the callback from the useEffect Hook is called the dependency array, and in here the
values that are used in the Hook are defined. The functions fetchData and setLists are
created on the first mount of this component, meaning the useEffect Hook mimics a
lifecycle that's comparable to componentDidMount. If you want to use this Hook as a
componentDidUpdate life cycle method, the array would consist of all of the state
variables and props that should be watched for updates.

By using other Hooks, you can also directly pass data to the Provider, without having to
use local state management. This will be demonstrated in the next part of this section.

Updating the Provider with a Flux pattern
Another way to use actions to add data to the Provider is by using a pattern similar to Flux,
which was introduced by Facebook. The Flux pattern describes a data flow where actions
are being dispatched that retrieve data from a store and return it to the view. This would
mean that actions need to be described somewhere; there should be a global place where
data is stored and this data can be read by the view. To accomplish this pattern with the
context API, you can use another Hook that is called useReducer. This Hook can be used
to return data not from a local state, but from any data variable:

Just as with the useState Hook, the useReducer Hook needs to be added to the1.
component that is using it. useReducer will take an initial value and a function
that determines which data should be returned. This initial value needs to be
added to the src/Context/ListsContextProvider.js file before adding the
Hook:

import React from 'react';

export const ListsContext = React.createContext();

const initialValue = {
 lists: [],
 loading: true,
 error: '',
},

...

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[154]

Next to initialValue, the useReducer Hook also takes a function that's called2.
reducer. This reducer function should also be created and is a function that
updates initialValue, which was passed and returns the current value, based
on the action that was sent to it. If the action that was dispatched doesn't match
any of those defined in reducer, the reducer will just return the current value
without any changes:

import React from 'react';

export const ListsContext = React.createContext();

const initialValue = {
 lists: [],
 loading: true,
 error: '',
};

const reducer = (value, action) => {
 switch (action.type) {
 case 'GET_LISTS_SUCCESS':
 return {
 ...value,
 lists: action.payload,
 loading: false,
 };
 case 'GET_LISTS_ERROR':
 return {
 ...value,
 lists: [],
 loading: false,
 error: action.payload,
 };
 default:
 return value;
 }
};

...

The two parameters for the useReducer Hook are now added to the file, so you3.
need to add the actual Hook and pass initialValue and reducer to it:

...

const ListsContextProvider = ({ children }) => {
- const [lists, setLists] = React.useState([]);
+ const [value, dispatch] = React.useReducer(reducer,

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[155]

initialValue);

...

As you can see, reducer changes the value it returns when the4.
GET_LISTS_SUCCESS or GET_LISTS_ERROR action is sent to it. Before it was
mentioned, you can call this reducer by using the dispatch function that was
returned by the useReducer Hook. However, as you also have to deal with the
asynchronous fetching of the data, you can't invoke this function directly.
Instead, you need to create an async/await function that calls the
fetchData function and dispatches the correct action afterward:

...
const ListsContextProvider = ({ children }) => {
 const [value, dispatch] = React.useReducer(reducer,
initialValue);

 const getListsRequest = async () => {
 const result = await
fetchData('https://my-json-server.typicode.com/PacktPublishing/Reac
t-Projects/lists');

 if (result.data && result.data.length) {
 dispatch({ type: 'GET_LISTS_SUCCESS', payload: result.data
});
 } else {
 dispatch({ type: 'GET_LISTS_ERROR', payload: result.error });
 }
 }
...

With the preceding getListsRequest function, an async/await call to the
fetchData function is made when this function is invoked. If the data that was
returned by dataSource is not an empty array, the GET_LISTS_SUCCESS action
will be dispatched to the reducer using the dispatch function from the
useReducer Hook. If not, the GET_LISTS_ERROR action will be dispatched,
which returns an error message.

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[156]

This getListsRequest function can now be invoked from the useEffect Hook5.
when your application mounts, so the application will be filled with the list data.
This should be done from the view, so you need to create an action that you can
add to Provider, so it can be used from any of the components that get this
value from Consumer:

...

- React.useEffect(() => {
- const asyncFetchData = async (dataSource) => {
- const result = await fetchData(dataSource);
-
- setLists([...result.data]);
- }
-
-
asyncFetchData('https://my-json-server.typicode.com/PacktPublis
hing/React-Projects/lists');
- }, [setLists]);

 return (
- <ListsContext.Provider value={{ lists: state }}>
+ <ListsContext.Provider value={{ ...value, getListsRequest
}}>
 {children}
 </ListsContext.Provider>
);
};

export default ListsContextProvider;

In the component where the lists are displayed, the Lists component, you can6.
retrieve the data for the lists with the getListsRequest function. Therefore,
you'd need to pass it to this component from RenderProps in Route, in
the src/containers/App.js file. Also, you can add a loading indicator that
will be displayed when the list data isn't retrieved yet or an error message when
some error occurs:

...
const App = () => (
 <>
 <GlobalStyle />
 <AppWrapper>
 <Header />
 <ListsContextProvider>
 <ItemsContextProvider>

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[157]

 <ListsContext.Consumer>
- {({ lists }) => (
+ {({ lists, loading: listsLoading, error: listsError,
getListsRequest }) => (
 <ItemsContext.Consumer>
 {({ items }) => (
 <Switch>
- <Route exact path='/' render={props => lists
&& <Lists lists={lists} {...props} />} />
+ <Route exact path='/' render={props => lists
&& <Lists lists={lists} loading={listsLoading} error={listsError}
getListsRequest={getListsRequest} {...props} />} />
...

And finally, invoke the getListsRequest function from the Lists component7.
when it mounts, and add the loading indicator or error message. The lists should
only be retrieved when there aren't any lists available yet:

- const Lists = ({lists, loading = false, error = '', match,
history}) => !loading && !error ? (
+ const Lists = ({lists, loading, error, getListsRequest, match,
history}) => {
+ React.useEffect(() => {
+ if (!lists.length) {
+ getListsRequest();
+ }
+ }, [lists, getListsRequest]);

+ return !loading && !error ? (
 <>
 {history && <SubHeader title='Your Lists' openForm={() =>
history.push('/new')} /> }
 <ListWrapper>
 {lists && lists.map(list => (
 <ListLink key={list.id} to={`list/${list.id}`}>
 <Title>{list.title}</Title>
 </ListLink>
))}
 </ListWrapper>
 </>
-);
+) : <Alert>{loading ? 'Loading...' : error}</Alert>;
+ }

export default Lists;

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[158]

If you now visit the project in the browser again, you can see the data from the lists is
loaded just as before. The big difference is that the data is fetched using a Flux pattern,
meaning this can be extended to fetch the data in other instances as well. The same can be
done for ItemsContextProvider as well, in
the src/Context/ItemsContextProvider.js file:

First add the initial value for the items, which you'll use with the1.
useReducer Hook:

import React from 'react';
- import withDataFetching from '../withDataFetching';

+ const initialValue = {
+ items: [],
+ loading: true,
+ error: '',
+ }

export const ItemsContext = React.createContext();

- const ItemsContextProvider = ({ children, data }) => (
+ const ItemsContextProvider = ({ children }) => {
 + const [value, dispatch] = React.useReducer(reducer,
initialValue);

+ return (
 <ItemsContext.Provider value={{ items: data }}>
 {children}
 </ItemsContext.Provider>
);
+ };

...

After this, you can add the reducer, which has two actions that are quite similar2.
to the ones for the list reducer. The only difference is that they will add
information about the items to the Provider. Also, add the same
fetchData function that as you added to ListsContextProvider:

import React from 'react';
import withDataFetching from '../withDataFetching';

export const ItemsContext = React.createContext();

const initialValue = {
 items: [],
 loading: true,

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[159]

 error: '',
}

+ const reducer = (value, action) => {
+ switch (action.type) {
+ case 'GET_ITEMS_SUCCESS':
+ return {
+ ...value,
+ items: action.payload,
+ loading: false,
+ };
+ case 'GET_ITEMS_ERROR':
+ return {
+ ...value,
+ items: [],
+ loading: false,
+ error: action.payload,
+ };
+ default:
+ return value;
+ }
+ };

+ async function fetchData(dataSource) {
+ try {
+ const data = await fetch(dataSource);
+ const dataJSON = await data.json();
+
+ if (dataJSON) {
+ return await ({ data: dataJSON, error: false })
+ }
+ } catch(error) {
+ return ({ data: false, error: error.message })
+ }
+ };

const ItemsContextProvider = ({ children }) => {
 ...

Now, you can create the async/await function that will fetch dataSource for3.
the items. This function will also take the id variable of the list that is selected, so
no over-fetching of data will occur. The withDataFetching HOC can be
removed, as it's no longer needed to retrieve the data:

...
const ItemsContextProvider = ({ children }) => {
 const [value, dispatch] = React.useReducer(reducer,

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[160]

initialValue);

+ const getItemsRequest = async (id) => {
+ const result = await fetchData(`
+
https://my-json-server.typicode.com/PacktPublishing/React-Projects/
items/${id}/items
+ `);

+ if (result.data && result.data.length) {
+ dispatch({ type: 'GET_ITEMS_SUCCESS', payload: result.data
});
+ } else {
+ dispatch({ type: 'GET_ITEMS_ERROR', payload: result.error
});
+ }
+ }

 return (
- <ItemsContext.Provider value={{ items: data }}>
+ <ItemsContext.Provider value={{ ...value, getItemsRequest }}>
 {children}
 </ItemsContext.Provider>
);
}

- export default withDataFetching({
 dataSource:
'https://my-json-server.typicode.com/PacktPublishing/React-Projects
/items',
 })(ItemsContextProvider);
+ export default ItemsContextProvider;

As the function to retrieve items is now added to the Provider for the items, the4.
Consumer is src/containers/App.js and can pass this function to the List
component that is displaying the items:

...
const App = () => (
 <>
 <GlobalStyle />
 <AppWrapper>
 <Header />
 <ListsContextProvider>
 <ItemsContextProvider>
 <ListsContext.Consumer>
 {({ lists, loading: listsLoading, error: listsError,
getListsRequest }) => (

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[161]

 <ItemsContext.Consumer>
- {({ items }) => (
+ ({ items, loading: itemsLoading, error:
itemsError, getItemsRequest }) => (
 <Switch>
 <Route exact path='/' render={props => lists
&& <Lists lists={lists} loading={listsLoading} error={listsError}
getListsRequest={getListsRequest} {...props} />} />
 <Route path='/list/:id/new' component={Form}
/>
- <Route path='list/:id' render={props => lists
&& items && <List lists={lists} listItems={items} {...props} />
+ <Route path='/list/:id' render={props =>
lists && items && <List lists={lists} items={items}
loading={itemsLoading} error={itemsError}
getItemsRequest={getItemsRequest} {...props} /> } />
 </Switch>
)}
 </ItemsContext.Consumer>
)}
 </ListsContext.Consumer>
 </ItemsContextProvider>
 </ListsContextProvider>
 </AppWrapper>
 </>
);

export default App;

And finally, call this getItemsRequest function from the List component in5.
src/containers/List.js. This function will take the id variable for the list
that you are displaying from the current route, by using the match prop. It's
important to mention that this function should only be called when the value for
items is empty, to prevent unnecessary data fetching:

...
- const List = ({ listItems, loading = false, error = '', lists,
match, history }) => {
+ const List = ({ items, loading, error, lists, getItemsRequest,
match, history }) => {
- const items = listItems && listItems.filter(item => item.listId
=== parseInt(match.params.id));
 const list = lists && lists.find(list => list.id ===
parseInt(match.params.id));

+ React.useEffect(() => {
+ if (!items.length > 0) {

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[162]

+ getItemsRequest(match.params.id);
+ };
+ }, [items, match.params.id, getItemsRequest]);

 return !loading && !error ? (
 <>
 {(history && list) && <SubHeader goBack={() =>
history.goBack()} title={list.title} openForm={() =>
history.push(`${match.url}/new`)} />}
 <ListItemWrapper>
 {items && items.map(item => <ListItem key={item.id} data={
item } />)}
 </ListItemWrapper>
 </>
) : <Alert>{loading ? 'Loading... : error}</Alert>
};

export default List;

You might notice that the title of the list won't be displayed any longer when you refresh
the page. The information for the lists is only fetched when the Lists component is
mounted, so you'd need to create a new function to always fetch the information for the list
that you're currently displaying in the List component:

In the src/Context/ListsContextProvider.js file, you need to1.
extend initialValue to also have a field called list:

import React from 'react';

export const ListsContext = React.createContext();

const initialValue = {
 lists: [],
+ list: {},
 loading: true,
 erorr: '',
}

const reducer = (value, action) => {
...

In reducer, you now also have to check for two new actions that either add the2.
data about a list to the context or add an error message:

...

const reducer = (value, action) => {

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[163]

 switch (action.type) {
 case 'GET_LISTS_SUCCESS':
 return {
 ...value,
 lists: action.payload,
 loading: false,
 };
 case 'GET_LISTS_ERROR':
 return {
 ...value,
 lists: [],
 loading: false,
 error: action.payload,
 };
+ case 'GET_LIST_SUCCESS':
+ return {
+ ...value,
+ list: action.payload,
+ loading: false,
+ };
+ case 'GET_LIST_ERROR':
+ return {
+ ...value,
+ list: {},
+ loading: false,
+ error: action.payload,
+ };
 default:
 return value;
 }
};

async function fetchData(dataSource) {
...

These actions will be dispatched from an async/await function that3.
calls dataSource with a specific id. If successful, the GET_LIST_SUCCESS action
will be dispatched; otherwise, the GET_LIST_ERROR action is dispatched. Also,
pass the function to the Provider so that it can be used from the List component:

...
const ListsContextProvider = ({ children }) => {
 const [value, dispatch] = React.useReducer(reducer,
initialValue);

 const getListsRequest = async () => {
 const result = await

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[164]

fetchData('https://my-json-server.typicode.com/PacktPublishing/Reac
t-Projects/lists');

 if (result.data && result.data.length) {
 dispatch({ type: 'GET_LISTS_SUCCESS', payload: result.data
});
 } else {
 dispatch({ type: 'GET_LISTS_ERROR', payload: result.error });
 }
 }

+ const getListRequest = async id => {
+ const result = await
fetchData(`https://my-json-server.typicode.com/PacktPublishing/Reac
t-Projects/lists/${id}`);

+ if (result.data && result.data.hasOwnProperty('id')) {
+ dispatch({ type: 'GET_LIST_SUCCESS', payload: result.data
});
+ } else {
+ dispatch({ type: 'GET_LIST_ERROR', payload: result.error });
+ }
+ }

 return (
- <ListsContext.Provider value={{ ...value, getListsRequest }}>
+ <ListsContext.Provider value={{ ...value, getListsRequest,
getListRequest }}>
 ...

And pass this to the List component, by destructuring it from the4.
ListsContext Consumer. Also, take the list data from this Consumer and pass
it to the List component. The lists props can be removed from this
component, as filtering the list data is now done by ListsContextProvider:

<ListsContext.Consumer>
- {({ lists, loading: listsLoading, error: listsError,
getListsRequest }) => (
+ {({ list, lists, loading: listsLoading, error: listsError,
getListsRequest, getListRequest }) => (
 <ItemsContext.Consumer>
 {({ items, loading: itemsLoading, error: itemsError,
getItemsRequest }) => (
 <Switch>
 <Route exact path='/' render={props => lists && <Lists
lists={lists} loading={listsLoading} error={listsError}
getListsRequest={getListsRequest} {...props} />} />

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[165]

 <Route path='/list/:id/new' component={Form} />
- <Route path='/list/:id' render={props => lists && items
&& <List lists={lists} items={items} loading={itemsLoading}
error={itemsError} getItemsRequest={getItemsRequest} {...props} />
} />
+ <Route path='/list/:id' render={props => list && items
&& <List list={list} items={items} loading={itemsLoading}
error={itemsError} getListRequest={getListRequest}
getItemsRequest={getItemsRequest} {...props} /> } />
 </Switch>
)}
 </ItemsContext.Consumer>
)}
</ListsContext.Consumer>

...

Finally, you can invoke the getListRequest function that fetches the list data5.
from the List component. You only want to retrieve the list information when
this isn't already available; the filtering of the lists prop is therefore no longer
needed:

...
- const List = ({ items, loading, error, lists, getItemsRequest,
match, history }) => {
+ const List = ({ items, loading, error, list, getListRequest,
getItemsRequest, match, history }) => {
- const list = lists && lists.find(list => list.id ===
parseInt(match.params.id));

 React.useEffect(() => {
+ if (!list.id) {
+ getListRequest(match.params.id);
+ }

 if (!items.length > 0) {
 getItemsRequest(match.params.id);
 }
- }, [items, match.params.id, getItemsRequest]);
+ }, [items, list, match.params.id, getItemsRequest,
getListRequest]);

 return !loading && !error ? (
 ...

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[166]

All of the data in your application is now being loaded using the Providers, which means
it's now detached from the views. Also, the withDataFetching HOC is completely
removed, making your application structure more readable.

Not only can you use the context API with this pattern to make data available to many
components, but you can also mutate the data. How to mutate this data will be shown in
the next section.

Mutating data in the Provider
Not only can you retrieve data using this Flux pattern, but you can also use it to update
data. The pattern would remain the same: you dispatch an action that would trigger the
request to the server and, based on the outcome, the reducer will mutate the data with this
result. Depending on whether or not it was successful, you could display a success message
or an error message.

The code already has a form for adding a new item to a list—something that is not working
yet. Let's create the mechanism to add items by updating the Provider for items:

The first step is to create a new function that can handle POST requests, as this1.
function should also set the method and a body when handling the
fetch request. You can create this function in
the src/Context/ItemsContextProvider.js file:

...
async function fetchData(dataSource) {
 try {
 const data = await fetch(dataSource);
 const dataJSON = await data.json();

 if (dataJSON) {
 return await ({ data: dataJSON, error: false });
 }
 } catch(error) {
 return ({ data: false, error: error.message });
 }
};

async function postData(dataSource, content) {
 try {
 const data = await fetch(dataSource, {
 method: 'POST',
 body: JSON.stringify(content),
 });

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[167]

 const dataJSON = await data.json();

 if (dataJSON) {
 return await ({ data: dataJSON, error: false });
 }
 } catch(error) {
 return ({ data: false, error: error.message });
 }
};

const ItemsContextProvider = ({ children }) => {
 ...

This function takes not only dataSource but also information that will be posted2.
to this source. Just as for retrieving the items, a case can be added to the switch
statement in reducer. This time, it will look for an action that is called
ADD_ITEM_REQUEST, which has a payload consisting of dataSource
and content that should be added to the value. These actions change the value
for loading and/or error and spread the actual current value in its return as
well. If you don't do this, all of the information that is already available about the
lists will be cleared:

...
const reducer = (value, action) => {
 switch (action.type) {
 case 'GET_ITEMS_SUCCESS':
 return {
 ...value,
 items: action.payload,
 loading: false,
 };
 case 'GET_ITEMS_ERROR':
 return {
 ...value,
 items: [],
 loading: action.payload,
 };
+ case 'ADD_ITEM_SUCCESS':
+ return {
+ ...value,
+ items: [
+ ...value.items,
+ action.payload,
+],
+ loading: false,
+ };
+ case 'ADD_ITEM_ERROR':

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[168]

+ return {
+ ...value,
+ loading: false,
+ error: 'Something went wrong...',
+ };
 default:
 return value;
 }
};

async function fetchData(dataSource) {
...

The mock API from My JSON Server doesn't persist data once it is added,
updated, or deleted with a request. However, you can see whether the
request was successful by checking the request in the Network tab in the
Developer Tools of your browser. That's why the input content is spread
over the value for items, so this data is available from the Consumer.

Also, create an async/await function that handles the POST request. If this3.
request is successful, the data that will be returned has a field called id. So, when
this is the case, the ADD_ITEM_SUCCESS action can be dispatched. Otherwise,
an ADD_ITEM_ERROR action is dispatched. These actions will change the value for
this Provider from reducer:

...
const ItemsContextProvider = ({ children }) => {
 const [value, dispatch] = React.useReducer(reducer,
initialValue);

 const getItemsRequest = async (id) => {
 const result = await fetchData(`
https://my-json-server.typicode.com/PacktPublishing/React-Projects/
items/${id}/items
 `);

 if (result.data && result.data.length) {
 dispatch({ type: 'GET_ITEMS_SUCCESS', payload: result.data
});
 } else {
 dispatch({ type: 'GET_ITEMS_ERROR', payload: result.error });
 }
 }

+ const addItemRequest = async (content) => {
+ const result = await

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[169]

postData('https://my-json-server.typicode.com/PacktPublishing/React
-Projects/items', content);

+ if (result.data && result.data.hasOwnProperty('id')) {
+ dispatch({ type: 'ADD_ITEM_SUCCESS', payload: content });
+ } else {
+ dispatch({ type: 'ADD_ITEM_ERROR' });
+ }
+ }

 return (
- <ItemsContext.Provider value={{ ...value, getItemsRequest }}>
+ <ItemsContext.Provider value={{ ...value, getItemsRequest,
addItemRequest }}>
 ...

Just as for retrieving the list, the actionDispatch function for adding a list can4.
be wrapped inside a helper function. This function would take the content that is
returned from the form later on. Also, pass this function to the Provider so that it
can be used in any of the components that consume this Provider:

...
 const getListsRequest = () => {
 actionDispatch({
 type: 'GET_LISTS_REQUEST',
 payload:
'https://my-json-server.typicode.com/PacktPublishing/React-Projects
/items',
 });
 };

+ const addListRequest = (content) => {
+ actionDispatch({
+ type: 'ADD_LIST_REQUEST',
+ payload: {
+ dataSource:
'https://my-json-server.typicode.com/PacktPublishing/React-Projects
/items',
+ content,
+ }
+ });
+ };

 return (
- <ListsContext.Provider value={{ ...value, getListsRequest }}>
+ <ListsContext.Provider value={{ ...value, getListsRequest,
addListRequest }}>
 {children}

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[170]

 </ListsContext.Provider>
)
};

export default ListsContextProvider;

As the function to add a list is now available from the Provider, you can pass it to5.
the Form component by using RenderProps from its Route. This can be done in
the src/containers/App.js file. Make sure you don't forget to send the match
and history props as well, as these are used by the Form component:

...
<ListsContext.Consumer>
 {({ list, lists, loading: listsLoading, error: listsError,
getListsRequest, getListRequest }) => (
 <ItemsContext.Consumer>
- {({ items, loading: itemsLoading, error: itemsError,
getItemsRequest }) => (
+ {({ items, loading: itemsLoading, error: itemsError,
getItemsRequest, addItemRequest }) => (
 <Switch>
 <Route exact path='/' render={props => lists && <Lists
lists={lists} loading={listsLoading} error={listsError}
getListsRequest={getListsRequest} {...props} />} />
- <Route path='/list/:id/new' component={Form} />
+ <Route path='/list/:id/new' render={props => <Form
addItemRequest={addItemRequest} {...props} />} />
 <Route path='/list/:id' render={props => list && items &&
<List list={list} items={items} loading={itemsLoading}
error={itemsError} getListRequest={getListRequest}
getItemsRequest={getItemsRequest} {...props} /> } />
 </Switch>
)}
 </ItemsContext.Consumer>
)}
</ListsContext.Consumer>

...

The Form component is now able to use the addListRequest function that will dispatch
the action that triggers the POST request that will add an item to dataSource. This function
needs to be triggered when the user submits the form.

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[171]

However, the values of the input fields in the form need to be determined first. Therefore,
the input fields need to be controlled components, meaning their value is controlled by the
local state that encapsulates the value:

For this, you can use the useState Hook, and call it for every state value that1.
you want to create. The Hook will return both the current value of this state
value and a function to update this value and must be added in
src/containers/Form.js:

...
- const Form = ({ match, history }) => (
+ const Form = ({ addItemRequest, match, history }) => {
+ const [title, setTitle] = React.useState('');
+ const [quantity, setQuantity] = React.useState('');
+ const [price, setPrice] = React.useState('');

+ return (
 <>
 {history && <SubHeader goBack={() => history.goBack()}
title='Add Item' />}
 <FormWrapper>
 <form>
 <FormItem id='title' label='Title' placeholder='Insert
title' />
 <FormItem id='quantity' label='Quantity' type='number'
placeholder='0' />
 <FormItem id='price' label='Price' type='number'
placeholder='0.00' />
 <SubmitButton>Add Item</SubmitButton>
 </form>
 </FormWrapper>
 </>
);
+ }

export default Form;

The local state values and the function that triggers an update of the local state2.
values must be set as a prop on the FormItem components:

...

 return (
 <>
 {history && <SubHeader goBack={() => history.goBack()}
title='Add item' /> }
 <FormWrapper>

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[172]

 <form>
- <FormItem id='title' label='Title' placeholder='Insert
title' />
+ <FormItem id='title' label='Title' placeholder='Insert
title' value={title} handleOnChange={setTitle} />
- <FormItem id='quantity' label='Quantity' type='number'
placeholder='0' />
+ <FormItem id='quantity' label='Quantity' type='number'
placeholder='0' value={quantity} handleOnChange={setQuantity} />
- <FormItem id='price' label='Price' type='number'
placeholder='0.00' />
+ <FormItem id='price' label='Price' type='number'
placeholder='0.00' value={price} handleOnChange={setPrice} />
 <SubmitButton>Add Item</SubmitButton>
 </form>
 </FormWrapper>
 </>
)
};

export default Form;

The FormItem component, in the src/components/FormItem.js file, can take3.
these props and have the input field invoke the handleOnChange function. The
element's current target value must be used as the parameter for this function:

...
- const FormItem = ({ id, label, type = 'text', placeholder = '' })
=> (
+ const FormItem = ({ id, label, type = 'text', placeholder = '',
value, handleOnChange }) => (
 <FormItemWrapper>
 <Label htmlFor={id}>{label}</Label>
- <Input type={type} name={id} id={id} placeholder={placeholder}
/>
+ <Input type={type} name={id} id={id} placeholder={placeholder}
value={value} onChange={e => handleOnChange(e.target.value)} />
 </FormItemWrapper>
);

export default FormItem;

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[173]

The last thing you need to do now is to add a function that will be dispatched4.
when the form is submitted by clicking the submit button. This function takes
value for the local state, adds information about the list and a randomly
generated id and uses this to call the addItemRequest function. After this
function is called, the goBack function from the history prop is called:

...
const Form = ({ addItemRequest, match, history }) => {
 ...

+ const handleOnSubmit = e => {
+ e.preventDefault();
+ addItemRequest({
+ title,
+ quantity,
+ price,
+ id: Math.floor(Math.random() * 100),
+ listId: parseInt(match.params.id)
+ });
+ history.goBack();
+ };

 return (
 <>
 {history && <SubHeader goBack={() => history.goBack()}
title={title} />}
 <FormWrapper>
- <form>
+ <form onSubmit={handleOnSubmit}>

...

When you now submit the form, a POST request to the mock server will be sent. You'll be
sent back to the previous page where you can see the result. If successful, the
GET_LIST_SUCCESS action was dispatched and the item you inserted was added to the list.

So far, the information from the Context has been used only separately by using the
Providers, but this can also be combined into one global Context, as shown in the next
section.

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[174]

Creating a global Context
If you look at the current structure of the routes in your App component, you can imagine
this will get messy if you add more Providers and Consumers to your application. State
management packages such as Redux tend to have a global state where all of the data for
the application is stored. When using Context, it's possible to create a global Context that
can be accessed using the useContext Hook. This Hook acts as a Consumer and can
retrieve values from the Provider of the Context that was passed to it. Let's refactor the
current application to have a global Context:

Start by creating a file called GlobalContext.js in the src/Context directory.1.
This file will import both ListsContextProvider and
ItemsContextProvider, nest them, and have them wrap any component that
will be passed to it as children prop:

import React from 'react';
import ListsContextProvider from './ListsContextProvider';
import ItemsContextProvider from './ItemsContextProvider';

const GlobalContext = ({ children }) => {
 return (
 <ListsContextProvider>
 <ItemsContextProvider>
 {children}
 </ItemsContextProvider>
 </ListsContextProvider>
);
};

export default GlobalContext;

In the src/containers/App.js file, you can now import this2.
GlobalContext file in favor of the Providers for the lists and items:

import React from 'react';
import styled, { createGlobalStyle } from 'styled-components';
import { Route, Switch } from 'react-router-dom';
- import ListsContextProvider, { ListsContext } from
'../Context/ListsContextProvider';
- import ItemsContextProvider, { ItemsContext } from
'../Context/ItemsContextProvider';
+ import GlobalContext from '../Context/GlobalContext';
...

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[175]

You can replace ListsContextProvider and ItemsContextProvider3.
with GlobalContext. The Consumer will still be able to retrieve the data
from ListsContext and ItemsContext if you'd still import them:

const App = () => (
 <>
 <GlobalStyle />
 <AppWrapper>
 <Header />
+ <GlobalContext>
- <ListsContextProvider>
- <ItemsContextProvider>
 <ListsContext.Consumer>
 {({ list, lists, loading: listsLoading, error:
listsErorr, getListsRequest, getListRequest }) => (
 <ItemsContext.Consumer>
 {({ items, loading: itemsLoading, error:
itemsError, getItemsRequest, addItemRequest }) => (
 <Switch>
 <Route exact path='/' render={props => lists &&
<Lists lists={lists} loading={listsLoading} error={listsError}
getListsRequest={getListsRequest} {...props} />} />
 <Route path='/list/:id/new' render={props =>
<Form addItemRequest={addItemRequest} {...props} />} />
 <Route path='/list/:id' render={props => list
&& items && <List list={list} items={items} loading={itemsLoading}
error={itemsError} getListRequest={getListRequest}
getItemsRequest={getItemsRequest} {...props} /> } />
 </Switch>
)}
 </ItemsContext.Consumer>
)}
 </ListsContext.Consumer>
- </ItemsContextProvider>
- </ListsContextProvider>
+ </GlobalContext>
 </AppWrapper>
 </>
);

export default App;

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[176]

Next, you can delete the Consumers and the RenderProps pattern from the4.
routes. The value from the Context will no longer be passed from both the
Consumers but will be retrieved by using the useContext Hooks in each of the
routes:

...
 <GlobalContext>
- <ListsContext.Consumer>
- {({ list, lists, loading: listsLoading, error:
listsError, getListsRequest, getListRequest }) => (
- <ItemsContext.Consumer>
- {({ items, loading: itemsLoading, error:
itemsError, getItemsRequest, addItemRequest }) => (
 <Switch>
- <Route exact path='/' render={props => lists &&
<Lists lists={lists} loading={listsLoading} error={listsError}
getListsRequest={getListsRequest} {...props} />} />
+ <Route exact path='/' component={Lists} />
- <Route path='/list/:id/new' render={props =>
<Form addItemRequest={addItemRequest} {...props} />} />
+ <Route path='/list/:id/new' component={Form} />
- <Route path='/list/:id' render={props => list
&& items && <List list={list} items={items} loading={itemsLoading}
error={itemsError} getListRequest={getListRequest}
getItemsRequest={getItemsRequest} {...props} /> } />
+ <Route path='/list/:id' component={List} />
 </Switch>
-)}
- </ItemsContext.Consumer>
-)}
- </ListsContext.Consumer>
 </GlobalContext>
...

In each of the components that are being rendered by Route, the Context that5.
you want to use should be imported. The useContext Hook can then retrieve
the value from this Context. You can start by adding this Hook to the
Lists component in src/containers/Lists.js:

import React from 'react';
import styled from 'styled-components';
import { Link } from 'react-router-dom';
+ import { ListsContext } from '../Context/ListsContextProvider';
import SubHeader from '../components/Header/SubHeader';

...

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[177]

- const Lists = ({lists, loading, error, getListsRequest, match,
history}) => {
+ const Lists = ({ match, history }) => {
+ const { lists, loading, error, getListsRequest } =
React.useContext(ListsContext);
 React.useEffect(() => {
 if (!lists.length) {
 getListsRequest();
 }
 }, [lists, getListsRequest]);

 return !loading && !error ? (
 <>
 {history && <SubHeader title='Your Lists' />}
 <ListWrapper>
 {lists && lists.map((list) => (
 <ListLink key={list.id} to={`list/${list.id}`}>
 <Title>{list.title}</Title>
 </ListLink>
))}
 </ListWrapper>
 </>
) : <Alert>{loading ? 'Loading...' : error}</Alert>;
}
export default Lists;

As you can see, useContext only takes the Context you want to use as an6.
argument. To implement this in the List component, you'd need to import
both ListsContext and ItemsContext in the src/containers/List.js file:

import React from 'react';
import styled from 'styled-components';
import { ListsContext } from '../Context/ListsContextProvider';
import { ItemsContext } from '../Context/ItemsContextProvider';
import SubHeader from '../components/Header/SubHeader';
import ListItem from '../components/ListItem/ListItem';

...

- const List = ({ items, loading, error, list, getListRequest,
getItemsRequest, match, history }) => {
+ const List = ({ match, history }) => {
+ const { list, getListRequest } = React.useContext(ListsContext);
+ const { loading, error, items, getItemsRequest } =
React.useContext(ItemsContext);

 React.useEffect(() => {
 ...

Build a Personal Shopping List Application Using Context API and Hooks Chapter 5

[178]

And do the same for the Form component in the src/containers/Form.js file,7.
where you only use ItemsContext:

import React from 'react';
import styled from 'styled-components';
+ import { ItemsContext } from '../Context/ItemsContextProvider';
import SubHeader from '../components/Header/SubHeader';
import FormItem from '../components/FormItem/FormItem';
import Button from '../components/Button/Button';

...

- const Form = ({ addItemRequest, match, history }) => {
+ const Form = ({ match, history }) => {
+ const { addItemRequest } = React.useContext(ItemsContext);

...

You can now see that your application has a much cleaner structure, while the data is still
being retrieved by the Providers.

Summary
In this chapter, you've created a shopping list application that uses the context API and
Hooks to pass and retrieve data, instead of a HOC. Context is used to store data and Hooks
are used to retrieve and mutate data. With the context API, you can create more advanced
scenarios for state management using the useReducer Hook. Also, you've recreated a
situation where all of the data is stored globally and can be accessed from any component
by creating a shared Context.

The context API will be used in the next chapter as well, which will show you how to build
a hotel review application with automated testing using libraries such as Jest and Enzyme.
It will introduce you to the multiple ways you can test your UI components created with
React, and also show you how to test state management in your application using the
context API.

Further reading
Consuming multiple Context objects: https:/ /reactjs. org/docs/ Context.
html#consuming-multiple- Contexts

https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts
https://reactjs.org/docs/Context.html#consuming-multiple-Contexts

6
Build an Application Exploring
TDD Using Jest and Enzyme

To keep your application maintainable, it is good practice to have testing set up for your
project. Where some developers hate writing tests and therefore try to avoid writing them,
other developers like to make testing the core of their development process by
implementing a test-driven development (TDD) strategy. There are many opinions about
testing your applications and how to do this. Luckily, when building an application with
React, many great libraries can help you with testing.

In this chapter, you'll use two libraries to unit test React applications. The first one is Jest,
which is maintained by Facebook itself and ships with Create React App. The other tool is
called Enzyme, which has more functionality than Jest and can be used to test entire life
cycles within your components. Together, they are a great fit for testing most React
applications if you want to test whether functions or components behave as expected when
they're given a certain input.

The following topics will be covered in this chapter:

Unit testing with Jest
Rendering React components for testing
Testing with Enzyme

Project overview
In this chapter, we will create a hotel review application that has unit and integration
testing in place with Jest and Enzyme. The application has been prebuilt and uses the same
patterns that we've looked at in the previous chapters.

The build time is 2 hours.

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[180]

Getting started
The application for this chapter builds upon an initial version, which can be found
at https://github. com/ PacktPublishing/ React- Projects/ tree/ ch6- initial. The
complete code for this chapter can be found on GitHub: https:/ /github. com/
PacktPublishing/React- Projects/ tree/ ch6.

Start by downloading the initial project from GitHub and move into the root directory for
this project, where you must run the npm install command. Since this project builds
upon Create React App, running this command will install react, react-dom, and react-
scripts. Also, styled-components and react-router-dom will be installed so that
they can handle styling and routing for the application. After finishing the installation
process, you can execute the npm start command to run the application so that you can
visit the project in the browser at http://localhost:3000. Just like with the applications
you've built in the previous chapters, this application functions as a PWA.

The initial application consists of a simple header and a list of hotels. These hotels have a
title and meta information, like a thumbnail. This page will look as follows. If you click on
any of the hotels in the list, a new page will open with a list of reviews for this hotel. By
clicking the button at the top left of this page, you can move back to the previous page, and
with the button at the top right, a page with a form where you can add a review will open.
If you add a new review, this data will be stored in a global Context and sent to a mock API
server:

https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6-initial
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6
https://github.com/PacktPublishing/React-Projects/tree/ch6

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[181]

If you look at the project's structure, you'll see that it's using the same structure as the
projects we created previously. The entry point of this application is a file
called src/index.js, which renders a component called App. In this App component, all
the routes are declared and wrapped within a router component. Also, the component that
holds the global Context and the Providers is declared here. Compared to the applications
you created previously, the container component pattern isn't used in this application.
Instead, all the data fetching is done by the Context components. Life cycles are accessed
using Hooks:

hotel-review
|-- node_modules
|-- public
 |-- assets
 |-- beachfront-hotel.jpg
 |-- forest-apartments.jpg
 |-- favicon.ico
 |-- index.html
 |-- manifest.json
|-- src
 |-- components
 |-- Button
 |-- Button.js
 |-- Detail
 |-- Detail.js
 |-- ReviewItem.js
 |-- Form
 |-- Form.js
 |-- FormItem.js
 |-- Header
 |-- Header.js
 |-- SubHeader.js
 |-- Hotels
 |-- Hotels.js
 |-- HotelItem.js
 |-- App.js
 |-- Context
 |-- GlobalContext.js
 |-- HotelsContextProvider.js
 |-- ReviewsContextProvider.js
 |-- api.js
 |-- index.js
 |-- serviceWorker.js
.gitignore
package.json

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[182]

In the preceding project structure, you can see there are also two files in
the public/assets directory, which are the thumbnails for the hotels. To make them
available in the rendered application, you can place them in the public directory. Also,
there is a file called api.js in src that exports the functions so that GET and POST requests
can be sent to an API.

Hotel review application
In this section, we will add unit and integration testing to the hotel review application that
was created in Create React App. This application lets you add reviews to a list of hotels
and controls this data from a global Context. Jest and Enzyme will be used to render React
components without a DOM and test assertions on these components.

Unit testing with Jest
Unit testing is an important part of your application since you want to know that your
functions and components behave as expected, even when you make code changes. For
this, you're going to use Jest, an open source testing package for JavaScript applications that
was created by Facebook. With Jest, you can test assertions, for example, if the output of a
function matches the value you expected.

To get started with Jest, you don't have to install anything; it's part of Create React App. If
you look at the package.json file, you will see that a script is already there for running
tests.

Let's see what happens if you execute the following command from your Terminal:

npm run test

This will return a message saying No tests found related to files changed
since last commit., which means Jest is running within watch mode and only running
tests for files that have been changed. By pressing the a key, you can run all the tests, even
if you haven't modified any files. If you press this key, the following message will be
displayed:

No tests found
 26 files checked.
 testMatch: /hotel-review/src/**/__tests__/**/*.{js,jsx,ts,tsx},/hotel-
review/src/**/?(*.)(spec|test).{js,jsx,ts,tsx} - 0 matches
 testPathIgnorePatterns: /node_modules/ - 26 matches
Pattern: - 0 matches

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[183]

This message states that 26 files have been investigated, but no tests have been found. It
also states that it's looking for JavaScript or JSX files in directories called __tests__ in
your project and files that have the spec or test suffix. The node_modules directory,
which is where all the npm packages are installed, is ignored. From this message, you may
have noticed that Jest automatically detects files with tests for you.

Creating these tests can be done with Jest, which will be demonstrated in the first part of
this section.

Creating a unit test
Since there are multiple ways Jest can detect which file contains a test, let's choose the
structure where every component has a separate test file. This test file will have the same
name as the file that holds the component, with the .test suffix. If we choose
the SubHeader component, we can create a new file called SubHeader.test.js in the
src/components/Header directory. Add the following code to this file:

describe('the <SubHeader /> component', () => {
 it('should render', () => {
 });
});

Two global functions from Jest are used here:

describe: This is used to define a block of related tests
it: This is used to define a test

Within the definition of a test, you can add assumptions such as toEqual or toBe, which
check whether the value is exactly equal to something or whether just the types match,
respectively. The assumptions can be added within the callback of the it function:

describe('the <SubHeader /> component', () => {
 it('should render', () => {
+ expect(1+2).toBe(3);
 });
});

If you still have the test script running in your Terminal, you will see that Jest has detected
your test. The test succeeds since 1+2 is indeed 3. Let's go ahead and change the
assumption to the following:

describe('the <SubHeader /> component', () => {
 it('should render', () => {
- expect(1+2).toBe(3);

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[184]

+ expect(1+2).toBe('3');
 });
});

Now, the test will fail as the second assumption doesn't match. Although 1+2 still equals 3,
it's assumed that a string type with a value pf 3 is returned, while in fact a number type is
returned. This helps you when you're writing your code as you can make sure that your
application doesn't change the types of its values.

However, this assumption has no actual usage as it doesn't test your component. To test
your component, you need to render it. Rendering components so that you can test them
will be handled in the next part of this section.

Rendering a React component for testing
Jest is based upon Node.js, meaning that it can't use the DOM to render your component
and test its functionality. Therefore, you need to add a React core package to your project,
which can help you render the component without a DOM. Let's take a look at this here:

From your Terminal, execute the following command, which will install react-1.
test-renderer in your project. It can be installed as a devDependency as you
don't need to run tests on the build version of your application:

npm install react-test-renderer --save-dev

With react-test-renderer installed, you can now import this package into2.
the src/components/Header/SubHeader.test.js file. This package returns
a method called ShallowRenderer that lets you render the component.
With Shallow rendering, you only render a component at its first level, thereby
leaving out any possible children components. You also need to import React
and the actual component you want to test since these are used by react-test-
renderer:

+ import React from 'react';
+ import ShallowRenderer from 'react-test-renderer/shallow';
+ import SubHeader from './SubHeader';

describe('the <SubHeader /> component', () => {

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[185]

In your test, you can now render the component with ShallowRenderer and get3.
the output of this component. With the Jest toMatchSnapshot assumption, you
can test the structure of the component. ShallowRenderer will render the
component and toMatchSnapshot will create a snapshot from this render and
compare it to the actual component every time this test is run:

import React from 'react';
import ShallowRenderer from 'react-test-renderer/shallow';
import SubHeader from './SubHeader';

describe('the <SubHeader /> component', () => {
 it('should render', () => {
- expect(1+2).toBe('3');
+ const renderer = new ShallowRenderer();
+ renderer.render(<SubHeader />);
+ const component = renderer.getRenderOutput();

+ expect(component).toMatchSnapshot();
 });
});

In the src/components/Header directory, a new directory called4.
__snapshots__ has now been created by Jest. Inside this directory is a file
called SubHeader.test.js.snap, which includes the snapshot. If you open this
file, you will see that a rendered version of the SubHeader component is stored
here:

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`the <SubHeader /> component should render 1`] = `
<ForwardRef>
 <ForwardRef />
</ForwardRef>
`;

The components that have been created with styled-components cannot be
rendered by react-test-renderer because of how they're exported by
styled-components. If you look at the code for the SubHeader component, you
will see that the ForwardRef components represent SubHeaderWrapper and
Title. Later in this chapter, we will use Enzyme for testing, which handles this
test scenario better.

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[186]

No actual values are being rendered by react-test-renderer since no props5.
have been passed to the SubHeader component. You can inspect how the
snapshot works by passing, for instance, a title prop to the
SubHeader component. To do this, create a new test scenario, which should
render SubHeader with a title. Also, move the creation of the renderer constant
to the describe function, so that it can be used by all the test scenarios:

import React from 'react';
import ShallowRenderer from 'react-test-renderer/shallow';
import SubHeader from './SubHeader';

describe('the <SubHeader /> component', () => {
+ const renderer = new ShallowRenderer();

 it('should render', () => {
- const renderer = new ShallowRenderer();
 renderer.render(<SubHeader />);
 const component = renderer.getRenderOutput();

 expect(component).toMatchSnapshot();
 });

+ it('should render with a dynamic title', () => {
+ renderer.render(<SubHeader title='Test Application' />);
+ const component = renderer.getRenderOutput();

+ expect(component).toMatchSnapshot();
+ });
});

The next time the tests are run, a new snapshot will be added to6.
the src/components/Header/__snapshots__/SubHeader.test.js.snap fil
e. This snapshot has a value rendered for the title prop. If you change
the title prop that is displayed by the SubHeader component in your test file,
the rendered component will no longer match the snapshot. You can try this by
changing the value for the title prop in the test scenario:

import React from 'react';
import ShallowRenderer from 'react-test-renderer/shallow';
import SubHeader from './SubHeader';

describe('the <SubHeader /> component', () => {
 const renderer = new ShallowRenderer();

 ...

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[187]

 it('should render with a dynamic title', () => {
- renderer.render(<SubHeader title='Test Application' />);
+ renderer.render(<SubHeader title='Test Application Test' />);
 const component = renderer.getRenderOutput();

 expect(component).toMatchSnapshot();
 });
});

Jest will return the following message in the Terminal, where it specifies which
lines have changed in comparison to the snapshot. In this case, the title that's
being displayed is no longer Test Application but Test Application Test,
which doesn't match the title in the snapshot:

 • the <SubHeader /> component › should render

 expect(value).toMatchSnapshot()

 Received value does not match stored snapshot "the <SubHeader />
component should render 1".

 - Snapshot
 + Received

 <ForwardRef>
 <ForwardRef>
 - Test Application
 + Test Application Title
 </ForwardRef>
 </ForwardRef>
...

By pressing the u key, you can update the snapshot to handle this new test
scenario. This is an easy way to test the structure of your component and see if the
title has been rendered. With the preceding test, the initially created snapshot still
matches the rendered component for the first test. Also, another snapshot was
created for the second test, where a title prop was added to the
SubHeader component.

You can do the same for the other props that are passed to7.
the SubHeader component, which renders differently if you do or don't pass
certain props to it. Next to title, this component takes goBack and
openForm as props, where the openForm prop has a default value of false.

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[188]

 Just like we did for the title prop, we can also create test scenarios for the
two other props. When there's a value for goBack, a button is created that
takes us back to the previous page, while when there's a value for openForm,
a button is created that allows us to proceed to the next page so that we can
add a new review. You need to add these two new test scenarios to the
src/components/Header/SubHeader.test.js file as well:

import React from 'react';
import ShallowRenderer from 'react-test-renderer/shallow';
import SubHeader from './SubHeader';

describe('the <SubHeader /> component', () => {
 const renderer = new ShallowRenderer();

 ...

+ it('should render with a goback button', () => {
+ renderer.render(<SubHeader goBack={() => {}} />);
+ const component = renderer.getRenderOutput();
+
+ expect(component).toMatchSnapshot();
+ });

+ it('should render with a form button', () => {
+ renderer.render(<SubHeader openForm={() => {}} />);
+ const result = renderer.getRenderOutput();
+
+ expect(component).toMatchSnapshot();
+ });
});

You've now created two more snapshots for the SubHeader component, which leads to a
total of four snapshots. Something else that Jest does is show you how many lines of code
have been covered by your tests. The higher your testing coverage, the more reason to
assume your code is stable. You can check the test coverage of your code by executing the
test script command with the --coverage flag, or use the following command in your
Terminal:

npm run test --coverage

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[189]

This command will run your tests and generate a report with all the test coverage
information about your code per file. After adding the tests for SubHeader, this report will
look as follows:

 PASS src/components/Header/SubHeader.test.js
----------------------------|----------|----------|----------|----------|--
-----------------|
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Line #s
-----------------|
All files | 5 | 6.74 | 4.26 | 5.21 | |
 src | 0 | 0 | 0 | 0 | |
 api.js | 0 | 0 | 0 | 0 |... 20,22,23,26,30 |
 index.js | 0 | 100 | 100 | 0 | 1,2,3,4,5,17 |
 serviceWorker.js | 0 | 0 | 0 | 0 |... 23,130,131,132 |
 src/components | 0 | 100 | 0 | 0 | |
 App.js | 0 | 100 | 0 | 0 |... ,8,10,22,26,27 |
 src/components/Button | 0 | 100 | 0 | 0 | |
 Button.js | 0 | 100 | 0 | 0 | 20 |
 src/components/Detail | 0 | 0 | 0 | 0 | |
 Detail.js | 0 | 0 | 0 | 0 |... 26,27,31,33,35 |
 ReviewItem.js | 0 | 100 | 0 | 0 |... 15,21,26,30,31 |
 src/components/Form | 0 | 0 | 0 | 0 | |
 Form.js | 0 | 0 | 0 | 0 |... 29,30,31,34,36 |
 FormInput.js | 0 | 0 | 0 | 0 |... 17,26,35,40,41 |
 src/components/Header | 100 | 100 | 100 | 100 | |
 Header.js | 100 | 100 | 100 | 100 | |
 SubHeader.js | 100 | 100 | 100 | 100 | |
...

Testing coverage only tells us something about the lines and the functions
of your code that have been tested and not their actual implementation.
Having a test coverage of 100% doesn't mean there aren't any bugs in your
code as there will always be edge cases. Also, getting to a testing coverage
of 100% means you may end up spending more time on writing tests than
on actual code. Usually, a testing coverage above 80% is considered good
practice.

As you can see, the test coverage for the component is 100%, meaning that all the lines are
covered in your test. However, this method of testing with snapshots will create a lot of
new files and lines of code. We'll look at other ways we can test our components in the next
part of this section.

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[190]

Testing components with assertions
In theory, snapshot testing is not necessarily bad practice; however, your files can get quite
big over time. Also, since you're not explicitly telling Jest what part of the component you
want to test, you might need to update your code regularly.

Luckily, using snapshots isn't the only method we can use to test whether our components
are rendering the correct props. Instead, you can also directly compare which props are
being rendered by checking the value of the component and making assertions. The big
advantage of testing with assertions is that you can test a lot without having to dig deeper
into the logic of the component you're testing.

For instance, you can see what the children that are being rendered look like. Let's take a
look at how to do this:

First, let's create a snapshot test for the Button component to compare the1.
impact of test coverage. Create a new file called
src/components/Button/Button.test.js. In this file, you need to insert a
test that creates a snapshot:

import React from 'react';
import ShallowRenderer from 'react-test-renderer/shallow';
import Button from './Button';

describe('the <Button /> component', () => {
 const renderer = new ShallowRenderer();

 it('should render', () => {
 const children = 'This is a button';
 renderer.render(<Button>{children</Button>);
 const result = renderer.getRenderOutput();

 expect(result).toMatchSnapshot();
 });
});

If you run the tests with the --coverage flag, a new test coverage report will be2.
created:

npm run test --coverage

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[191]

This report generates the following report, which shows the coverage for the
Button component, which is 100%:

 PASS src/components/Header/SubHeader.test.js
 PASS src/components/Button/Button.test.js
 › 1 snapshot written.
 PASS src/components/Header/Header.test.js
----------------------------|----------|----------|----------|-----
-----|-------------------|
File | % Stmts | % Branch | % Funcs | % Lines | Uncovered Line #s |
----------------------------|----------|----------|----------|-----
-----|-------------------|
All files | 5.45 | 6.74 | 6.38 | 5.69 | |
 src | 0 | 0 | 0 | 0 | |
 api.js | 0 | 0 | 0 | 0 |... 20,22,23,26,30 |
 index.js | 0 | 100 | 100 | 0 | 1,2,3,4,5,17 |
 serviceWorker.js | 0 | 0 | 0 | 0 |... 23,130,131,132 |
 src/components | 0 | 100 | 0 | 0 | |
 App.js | 0 | 100 | 0 | 0 |... ,8,10,22,26,27 |
 src/components/Button | 100 | 100 | 100 | 100 | |
 Button.js | 100 | 100 | 100 | 100 | |

If you open the snapshot for the Button component, which is in the
src/components/Button/__snapshots__/Button.test.js.snap file, you
will see that the only thing that's been rendered within the button (represented by
ForwardRef) is the children prop:

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`the <Button /> component should render 1`] = `
<ForwardRef>
 This is a button
</ForwardRef>
`;

Although the testing coverage is at 100%, there are other ways to test whether the3.
correct children have been rendered. For this, we can create a new test that also
uses ShallowRenderer and tries to render the Button component with a child.
This test has the assertion that the rendered children prop is equal to the actual
children prop that was rendered by Button. You can remove the snapshot test
since you only want to test the children with assertions:

import React from 'react';
import ShallowRenderer from 'react-test-renderer/shallow';
import Button from './Button';

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[192]

describe('the <Button /> component', () => {
 const renderer = new ShallowRenderer();

- it('should render', () => {
- const children = 'This is a button';
- renderer.render(<Button>{children}</Button>);
- const result = renderer.getRenderOutput();

- expect(result).toMatchSnapshot();
- })

+ it('should render the correct children', () => {
+ const children = 'This is a button';
+ renderer.render(<Button>{children}</Button>);
+ const component = renderer.getRenderOutput();
+ expect(component.props.children).toEqual(children);
+ });
});

From your Terminal, run npm run test --coverage again to check the impact4.
this testing method has on the test coverage:

 PASS src/components/Header/Header.test.js
 PASS src/components/Header/SubHeader.test.js
 PASS src/components/Button/Button.test.js
 › 1 snapshot obsolete.
 • the <Button /> component should render 1
----------------------------|----------|----------|----------|-----
-----|-------------------|
File | % Stmts | % Branch | % Funcs | % Lines | Uncovered Line #s |
----------------------------|----------|----------|----------|-----
-----|-------------------|
All files | 5.45 | 6.74 | 6.38 | 5.69 | |
 src | 0 | 0 | 0 | 0 | |
 api.js | 0 | 0 | 0 | 0 |... 20,22,23,26,30 |
 index.js | 0 | 100 | 100 | 0 | 1,2,3,4,5,17 |
 serviceWorker.js | 0 | 0 | 0 | 0 |... 23,130,131,132 |
 src/components | 0 | 100 | 0 | 0 | |
 App.js | 0 | 100 | 0 | 0 |... ,8,10,22,26,27 |
 src/components/Button | 100 | 100 | 100 | 100 | |
 Button.js | 100 | 100 | 100 | 100 | |
...

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[193]

In the preceding report, you can see that the testing coverage is still 100%,
meaning that this testing method has the same outcome. But this time, you're
specifically testing whether the children are equal to that value. The upside is that
you don't have to update snapshots every time you make code changes.

Also, a message noting 1 snapshot obsolete is shown. By running npm run5.
test with the -u flag, the snapshot for the Button component is removed by
Jest:

npm run test -u

This provides us with the following output, which shows us that the snapshot has
been removed:

 PASS src/components/Button/Button.test.js
 › snapshot file removed.

Snapshot Summary
 › 1 snapshot file removed from 1 test suite.

However, the Button component doesn't just take the children prop – it also takes
the onClick prop. If you want to test whether this onClick prop is triggered when you
click on the button, you need to render the component differently. This can be done by
using react-test-renderer, but the React documentation also notes that you can use
Enzyme for this.

In the next section, we'll use the shallow render function from Enzyme, which has more
options than ShallowRenderer.

Using Enzyme for testing React
The ShallowRenderer from react-test-renderer allows us to render the structure of a
component but doesn't show us how a component interacts in certain scenarios, such as
when an onClick event is being triggered. To simulate this, we'll use a more complex tool
called Enzyme.

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[194]

Shallow rendering with Enzyme
Enzyme is an open source JavaScript testing library that was created by Airbnb and works
with almost every JavaScript library or framework. With Enzyme, you can also shallow
render components to test the first level of the component, as well as render nested
components, and simulate life cycles for integration tests. The Enzyme library can be
installed with npm, and also needs an adapter to simulate React features. Let's get started:

To install Enzyme, you need to run the following command from your Terminal,1.
which installs Enzyme and the specific adapter for the version of React you're
using:

npm install enzyme enzyme-adapter-react-16 --save-dev

After installing Enzyme, you need to create a setup file that tells Enzyme what2.
adapter should be used to run the tests. Normally, you'd need to specify which
file holds this configuration in your package.json file, but, when you're using
Create React App, this is already done for you. The filename that's automatically
being used as the configuration file for testing libraries is called setupTests.js
and should be created in the src directory. Once you've created the file, paste the
following code into it:

import { configure } from 'enzyme';
import Adapter from 'enzyme-adapter-react-16';

configure({ adapter: new Adapter() });

With the installation of Enzyme, you can no longer use the test scenarios that use react-
test-renderer. Therefore, you need to change the tests for the SubHeader and
Button components. As we mentioned previously, Enzyme has a method that allows us to
shallow render components. Let's try this for the SubHeader component first:

Instead of importing react-test-renderer, you need to import shallow from1.
Enzyme. The ShallowRender method should no longer be added to the
renderer constant, so you can delete this line:

import React from 'react';
- import ShallowRenderer from 'react-test-renderer/shallow';
+ import { shallow } from 'enzyme';
import SubHeader from './SubHeader';

describe('the <SubHeader /> component', () => {
- const renderer = new ShallowRenderer();
 it('should render', () => {
 ...

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[195]

Each test scenario should be changed so that it uses the shallow render function2.
from Enzyme. We can do this by replacing renderer.render with shallow.
The function that we use to get the output of this render can be deleted as well.
The shallow render from Enzyme will instantly create a result that can be tested
by Jest:

import React from 'react';
import { shallow } from 'enzyme';
import SubHeader from './SubHeader';

describe('the <SubHeader /> component', () => {
 it('should render', () => {
- renderer.render(<SubHeader />);
- const component = renderer.getRenderOutput();
+ const component = shallow(<SubHeader />);

 expect(component).toMatchSnapshot();
 });

 ...

Just like we did in the first test scenario, we must replace the other test scenarios;3.
otherwise, the tests won't run. This happens because we've already deleted the
setup for react-test-renderer:

import React from 'react';
import { shallow } from 'enzyme';
import SubHeader from './SubHeader';

describe('the <SubHeader /> component', () => {
 ...

 it('should render with a dynamic title', () => {
- renderer.render(<SubHeader title='Test Application' />);
- const component = renderer.getRenderOutput();
+ const component = shallow(<SubHeader title='Test Application'
/>);

 expect(component).toMatchSnapshot();
 });

 it('should render with a goback button', () => {
- renderer.render(<SubHeader goBack={() => {}} />);
- const component = renderer.getRenderOutput();
+ const component = shallow(<SubHeader goBack={() => {}} />);

 expect(component).toMatchSnapshot();

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[196]

 });

 it('should render with a form button', () => {
- renderer.render(<SubHeader openForm={() => {}} />);
- const component = renderer.getRenderOutput();
+ const component = shallow(<SubHeader openForm={() => {}} />);

 expect(component).toMatchSnapshot();
 });
});

In the Terminal, you can now run the test again by running npm run test.4.
Since the tests are running in watch mode, the tests for the Button component
will probably start running as well. You can specify which tests should be run by
pressing the p key and then type SubHeader in the Terminal. Now, Jest will only
run the tests for the SubHeader component.

The tests will fail as your snapshots are no longer the snapshots that were created by
react-test-renderer. Enzyme's shallow render has a better understanding of the
exports from styled-components and no longer renders those components as a
ForwardRef component. Instead, it returns, for instance, a component called
styled.div or styled.h2:

 FAIL src/components/Header/SubHeader.test.js
 the <SubHeader /> component
 Χ should render (27ms)
 Χ should render with a dynamic title (4ms)
 Χ should render with a goback button (4ms)
 Χ should render with a form button (4ms)

 • the <SubHeader /> component › should render

 expect(value).toMatchSnapshot()

 Received value does not match stored snapshot "the <SubHeader />
component should render 1".

 - Snapshot
 + Received

 - <ForwardRef>
 - <ForwardRef />
 - </ForwardRef>
 + <styled.div>
 + <styled.h2 />
 + </styled.div>

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[197]

By pressing the u key, all the snapshots that were created by react-test-renderer will
be replaced by the new snapshots from Enzyme.

The same can be done for the Button component, where no snapshot is used for testing.
Instead, an assertion is used. In your test scenario, in
the src/components/Button/Button.test.js file, replace ShallowRenderer with the
shallow render from Enzyme. Also, the value for component.props.children is no
longer present due to how Enzyme renders the component. Instead, you need to use the
props method, which is available on the shallow rendered component, to get the
children prop:

import React from 'react';
- import ShallowRenderer from 'react-test-renderer/shallow';
+ import { shallow } from 'enzyme';
import Button from './Button';

describe('the <Button /> component', () => {
- const renderer = new ShallowRenderer();

 it('should render the correct children', () => {
 const children = 'This is a button';
- renderer.render(<Button>{children}</Button>);
- const component = renderer.getRenderOutput();
+ const component = shallow(<Button>{children}</Button>)

- expect(component.props.children).toEqual(children)
+ expect(component.props().children).toEqual(children)
 })
})

All the tests should now succeed when you run the tests, and the testing coverage should
be unaffected as you're still testing whether the props are rendered on your components.
However, with the snapshots from Enzyme, you've got more information about the
structure of the component that's being rendered. Now, you can test even more and find
out how, for example, onClick events are being handled.

However, snapshots aren't the only way of testing your React components, as we'll see in
the next part of this section.

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[198]

Testing assertions with shallow rendering
Other than react-test-renderer, Enzyme can handle onClick events on the shallow
rendered component. To test this, you have to create a mocked version of the function,
which should be fired once the component is clicked. After this, Jest can check whether or
not the function was executed.

The Button component that you tested previously doesn't just take children as a prop – it
also takes the onClick function. Let's try and see if this can be tested using Jest and
Enzyme by creating a new test scenario in the file for the Button component:

import React from 'react';
import { shallow } from 'enzyme';
import Button from './Button';

describe('the <Button /> component', () => {
 ...

+ it('should handle the onClick event', () => {
+ const mockOnClick = jest.fn();
+ const component = shallow(<Button onClick={mockOnClick} />);

+ component.simulate('click');

+ expect(mockOnClick).toHaveBeenCalled();
+ });
});

In the preceding test scenario, a mocked onClick function was created with Jest, which is
passed as a prop to the shallow rendered Button component. Then, a simulate method
with a click event handler is invoked on that component. Simulating a click on the
Button component should execute the mocked onClick function, which you can confirm
by checking the test results for this test scenario.

The tests for the SubHeader component can also be updated since two buttons with an
onClick event are rendered by it. Let's get started:

First, you need to make some changes to the file for the SubHeader component1.
in src/components/Header/SubHeader.js since you need to export the
components that have been created with styled-components. By doing this,
they can be used for testing in your test scenario for SubHeader:

import React from 'react';
import styled from 'styled-components';
import Button from '../Button/Button';

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[199]

const SubHeaderWrapper = styled.div`
 width: 100%;
 display: flex;
 justify-content: space-between;
 background: cornflowerBlue;
`;

- const Title = styled.h2`
+ export const Title = styled.h2`
 text-align: center;
 flex-basis: 60%;

 &:first-child {
 margin-left: 20%;
 }

 &:last-child {
 margin-right: 20%;
 }
`;

- const SubHeaderButton = styled(Button)`
+ export const SubHeaderButton = styled(Button)`
 margin: 10px 5%;
`;

...

Once they've been exported, we can import these components into our test file2.
for SubHeader:

import React from 'react';
import { shallow } from 'enzyme';
- import SubHeader from './SubHeader';
+ import SubHeader, { Title, SubHeaderButton } from './SubHeader';

describe('the <SubHeader /> component', () => {
 ...

This makes it possible to find these components from any of our tests. In this3.
scenario, the rendering of the title prop is tested with a snapshot, but you can
also directly test whether the title prop is being rendered by the
Title component in SubHeader. To test this, change the following lines of code:

import React from 'react';
import { shallow } from 'enzyme';
import SubHeader, { Title, SubHeaderButton } from './SubHeader';

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[200]

describe('the <SubHeader /> component', () => {
 it('should render with a dynamic title', () => {
+ const title = 'Test Application';
- const component = shallow(<SubHeader title='Test Application'
/>);
+ const component = shallow(<SubHeader title={title} />);

- expect(component).toMatchSnapshot();

+ expect(component.find(Title).text()).toEqual(title);
 });

 ...

A new constant for the title prop is created here and passed to the
SubHeader component. Instead of using a snapshot as an assertion, a new one is
created that tries to find the Title component and checks whether the text inside
this component is equal to the title prop.

Next to the title prop, you can also test for the goBack (or openForm) prop. If4.
this prop is present, a button will be rendered that has the goBack prop as an
onClick event. This button is rendered as a SubHeaderButton component.
Here, we need to change the second test scenario so that it has a mocked function
for the goBack prop and then create an assertion to check for the existence of
SubHeaderButton in the rendered component:

import React from 'react';
import { shallow } from 'enzyme';
import SubHeader, { Title, SubHeaderButton } from './SubHeader';

describe('the <SubHeader /> component', () => {
 ...

 it('should render with a goback button and handle the onClick
event', () => {
+ const mockGoBack = jest.fn();
- const component = shallow(<SubHeader goBack={() => {}} />);
+ const component = shallow(<SubHeader goBack={mockGoBack} />);

- expect(component).toMatchSnapshot();

+ const goBackButton = component.find(SubHeaderButton);
+ expect(goBackButton.exists()).toBe(true);
 });
 ...

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[201]

Not only do we want to test whether the button with the goBack prop is being5.
rendered, but we also want to test whether this function is being called once we
click on the button. Just like we did for the Button component test, we can
simulate a click event and check whether the mocked goBack function was
called:

import React from 'react';
import { shallow } from 'enzyme';
import SubHeader, { Title, SubHeaderButton } from './SubHeader';

describe('the <SubHeader /> component', () => {
 ...

 it('should render with a goback button and handle the onClick
event', () => {
 const mockGoBack = jest.fn();
 const component = shallow(<SubHeader goBack={mockGoBack} />);

 const goBackButton = component.find(SubHeaderButton);
 expect(goBackButton.exists()).toBe(true);

+ goBackButton.simulate('click');
+ expect(mockGoBack).toHaveBeenCalled();
 })
 ...

The same can be done for the openForm prop if we replace the assertion that's6.
testing the snapshot with two assertions that test for the existence of the button
and if it fired the mocked openForm function. Instead of adding this to the
existing test scenario, we can extend the test scenario for the goBack button:

import React from 'react';
import { shallow } from 'enzyme';
import SubHeader, { Title, SubHeaderButton } from './SubHeader';

describe('the <SubHeader /> component', () => {
 ...

- it('should render with a goback button and handle the onClick
event', () => {
+ it('should render with a buttons and handle the onClick
events', () => {
 const mockGoBack = jest.fn();
+ const mockOpenForm = jest.fn();
- //const component = shallow(<SubHeader goBack={mockGoBack}
/>);
+ const component = shallow(<SubHeader goBack={mockGoBack}

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[202]

openForm={mockOpenForm} />);

 ...
 });

- it('should render with a form button', () => {
- const component = shallow(<SubHeader openForm={() => {}} />);

- expect(component).toMatchSnapshot();
- });
});

The component that is now being rendered for the SubHeader should have both7.
a button to go back to the previous page and a button to open the form.
However, they're both using the SubHeaderButton component to render. The
button to go back is rendered in the component tree first since it's placed on the
left-hand side of SubHeader. Therefore, we need to specify which
rendered SubHeaderButton is which button:

import React from 'react';
import { shallow } from 'enzyme';
import SubHeader, { Title, SubHeaderButton } from './SubHeader';

describe('the <SubHeader /> component', () => {
 ...

 it('should render with buttons and handle the onClick events', ()
=> {
 const mockGoBack = jest.fn();
 const mockOpenForm = jest.fn();
 const component = shallow(<SubHeader goBack={mockGoBack}
openForm={mockOpenForm} />);

- const goBackButton = component.find(SubHeaderButton);
+ const goBackButton = component.find(SubHeaderButton).at(0);
 expect(goBackButton.exists()).toBe(true);

+ const openFormButton = component.find(SubHeaderButton).at(1);
+ expect(openFormButton.exists()).toBe(true)

 goBackButton.simulate('click');
 expect(mockGoBack).toHaveBeenCalled();

+ openFormButton.simulate('click');
+ expect(mockOpenForm).toHaveBeenCalled();
 });
 ...

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[203]

After these changes, all the test scenarios that use snapshots are removed and replaced with
more concrete tests that are less vulnerable once we change any of the code. Apart from
snapshots, these tests will keep working if we change any props that make refactoring
easier.

In this section, we've created unit tests that will test a specific part of our code. However, it
can be interesting to test how different parts of our code work together. For this, we'll add
integration tests to our project.

Integration testing with Enzyme
The tests that we've created all use shallow rendering to render components, but, with
Enzyme, we also have the option to mount components. When using this, we can enable
lifecycles and test larger components deeper than just the first level. When we want to test
multiple components at once, this is called integration testing. In our application, the
components that are rendered directly by the routes are rendering other components as
well. A good example of this is the Hotels component, which renders the list of hotels that
were returned by the Context. Let's get started:

As always, the starting point is to create a new file with the .test suffix in the1.
same directory that the component we want to test is located. Here, we need to
create the Hotels.test.js file in the src/components/Hotels directory. In
this file, we need to import mount from Enzyme, import the component that we
want to test, and create a new test scenario:

import React from 'react';
import { mount } from 'enzyme';
import Hotels from './Hotels';

describe('the <Hotels /> component', () => {

});

2. The Hotels component is using the useContext Hook to get the data it needs
to display the hotels. However, since this is a test for this specific component, that
data needs to be mocked. Before we can mock this data, we need to create a mock
function for the useContext Hook. If we have multiple test scenarios that use
this mock, we also need to use the beforeEach and afterEach methods to
create and reset this mock function for every scenario:

import React from 'react';
import { mount } from 'enzyme';
import Hotels from './Hotels';

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[204]

+ let useContextMock;

+ beforeEach(() => {
+ useContextMock = React.useContext = jest.fn();
+ });

+ afterEach(() => {
+ useContextMock.mockReset();
+ });

describe('the <Hotels /> component', () => {
 ...

We can now use the mocked useContextMock function to generate the data that3.
will be used as a mock for the Context by the Hotels component. The data that
will be returned should also be mocked, which can be done by invoking
the mockReturnValue function, which is available on the mocked function. If we
take a look at the actual code for the Hotels component, we will see that it takes
four values from the Context: loading, error, hotels, and
getHotelsRequest. These values should be mocked and returned
by mockReturnValue in the first test scenario that we will create to check the
behavior when the Context is loading the hotels' data:

import React from 'react';
import { mount } from 'enzyme';
import Hotels from './Hotels';

...

describe('the <Hotels /> component', () => {
 it('should handle the first mount', () => {
+ const mockContext = {
+ loading: true,
+ error: '',
+ hotels: [],
+ getHotelsRequest: jest.fn(),
+ }
+ useContextMock.mockReturnValue(mockContext);
+ const wrapper = mount(<Hotels />);
+
+ expect(mockContext.getHotelsRequest).toHaveBeenCalled();
 });
});

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[205]

This first test scenario checks whether the Hotels component will call the
getHotelsRequest function from the Context when it first mounts. This means
that the useEffect Hook that's used in Hotels has been tested.

Since the data is still loading here, we can also test whether the4.
Alert component is rendering the loading value from the Context and
displaying a loading message. Here, we need to export this component from
Hotels in src/components/Hotels/Hotels.js:

...

- const Alert = styled.span`
+ export const Alert = styled.span`
 width: 100%;
 text-align: center;
`;

const Hotels = ({ match, history }) => {
 ...

Now, we can import this component in the test file and write the assertion to
check whether it's displaying the value from the Context:

import React from 'react';
import { mount } from 'enzyme';
- import Hotels from './Hotels';
+ import Hotels, { Alert } from './Hotels';

...

describe('the <Hotels /> component', () => {
 it('should handle the first mount', () => {
 const mockContext = {
 loading: true,
 error: '',
 hotels: [],
 getHotelsRequest: jest.fn(),
 }
 useContextMock.mockReturnValue(mockContext);
 const wrapper = mount(<Hotels />);

 expect(mockContext.getHotelsRequest).toHaveBeenCalled();
+ expect(wrapper.find(Alert).text()).toBe('Loading...');
 });

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[206]

After the Hotels component has mounted and the data has been fetched, the5.
values for loading, error, and hotels in the Context will be updated. When
the values for loading and error are false, the
HotelItemsWrapper component will be rendered by Hotels. To test this, we
need to export HotelItemsWrapper from Hotels:

import React from 'react';
import styled from 'styled-components';
import { Link } from 'react-router-dom';
import { HotelsContext } from
'../../Context/HotelsContextProvider';
import SubHeader from '../Header/SubHeader';
import HotelItem from './HotelItem';

- const HotelItemsWrapper = styled.div`
+ export const HotelItemsWrapper = styled.div`
 display: flex;
 justify-content: space-between;
 flex-direction: column;
 margin: 2% 5%;
`;

...

In the testing file, this component can now be imported, which means we can add
the new test scenario that checks whether this component is being rendered:

import React from 'react';
import { mount } from 'enzyme';
- import Hotels, { Alert } from './Hotels';
+ import Hotels, { Alert, HotelItemsWrapper } from './Hotels';

describe('the <Hotels /> component', () => {
 ...

+ it('should render the list of hotels', () => {
+ const mockContext = {
+ loading: false,
+ error: '',
+ hotels: [{
+ id: 123,
+ title: 'Test Hotel',
+ thumbnail: 'test.jpg',
+ }],
+ getHotelsRequest: jest.fn(),
+ }
+ useContextMock.mockReturnValue(mockContext);

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[207]

+ const wrapper = mount(<Hotels />);

+ expect(wrapper.find(HotelItemsWrapper).exists()).toBe(true);
+ });
});

Now, when we run the test, we'll get an error saying Invariant failed: You
should not use <Link> outside a <Router> since Enzyme can't render the
Link component, which is used to navigate when we click on a hotel. Due to this,
we need to wrap the Hotels component within a router component from react-
router:

import React from 'react';
import { mount } from 'enzyme';
+ import { BrowserRouter as Router } from 'react-router-dom';
import Hotels, { Alert, HotelItemsWrapper } from './Hotels';

...

describe('the <Hotels /> component', () => {
 ...

 it('should render the list of hotels', () => {
 const mockContext = {
 loading: false,
 alert: '',
 hotels: [{
 id: 123,
 title: 'Test Hotel',
 thumbnail: 'test.jpg',
 }],
 getHotelsRequest: jest.fn(),
 }
 useContextMock.mockReturnValue(mockContext);
- const wrapper = mount(<Hotels />);
+ const wrapper = mount(<Router><Hotels /></Router>);

 expect(wrapper.find(HotelItemsWrapper).exists()).toBe(true);
 });
});

This test will now pass, as Enzyme can render the component, including the
Link to navigate to a hotel.

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[208]

Inside the HotelItemsWrapper component is a map function that iterates over6.
the hotel data from the Context. For every iteration, a HotelItem component
will be rendered. In these HotelItem components, the data will be displayed in,
for instance, a Title component. We can test whether the data that will be
displayed in these components is equal to the mocked Context data. The
component that displays the title of the hotel should be exported
from src/components/Hotels/HotelItem.js:

- const Title = styled.h3`
+ export const Title = styled.h3`
 margin-left: 2%;
`

Along with the HotelItem component, this should be imported into the test for
Hotels. In the test scenario, we can now check for the existence of the
<HotelItem component and check whether this component has a
Title component. The value that's displayed by this component should be equal
to the mocked Context value for the title of the first row in the array of hotels:

import React from 'react';
import { mount } from 'enzyme';
import { BrowserRouter as Router } from 'react-router-dom';
import Hotels, { Alert, HotelItemsWrapper } from './Hotels';
+ import HotelItem, { Title } from './HotelItem';

...

describe('the <Hotels /> component', () => {
 ...

 it('should render the list of hotels', () => {
 const mockContext = {
 loading: false,
 alert: '',
 hotels: [{
 id: 123,
 title: 'Test Hotel',
 thumbnail: 'test.jpg',
 }],
 getHotelsRequest: jest.fn(),
 }
 useContextMock.mockReturnValue(mockContext);
 const wrapper = mount(<Router><Hotels /></Router>);

 expect(wrapper.find(HotelItemsWrapper).exists()).toBe(true);
+ expect(wrapper.find(HotelItem).exists()).toBe(true);

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[209]

+
expect(wrapper.find(HotelItem).at(0).find(Title).text()).toBe(mockC
ontext.hotels[0].title);
 });
});

After running the tests again with the --coverage flag, we will be able to see
what impact writing this integration test has on our coverage. Since an integration
test not only tests one specific component but multiple at once, the testing
coverage for Hotels will be updated. This test also covers the
HotelItem component, which we will be able to see in the coverage report after
running npm run test --coverage:

 PASS src/components/Button/Button.test.js
 PASS src/components/Header/SubHeader.test.js
 PASS src/components/Hotels/Hotels.test.js
----------------------------|----------|----------|----------|-----
-----|-------------------|
File | % Stmts | % Branch | % Funcs | % Lines | Uncovered Line #s |
----------------------------|----------|----------|----------|-----
-----|-------------------|
All files | 13.27 | 11.24 | 12.77 | 13.73 | |
 ...
 src/components/Hotels | 100 | 83.33 | 100 | 100 | |
 HotelItem.js | 100 | 100 | 100 | 100 | |
 Hotels.js | 100 | 83.33 | 100 | 100 | 33 |

The coverage for Hotels is close to 100%. The test coverage for HotelItems has also got to
100%. This means that we can skip writing unit tests for HotelItem, assuming that we only
use this component within the Hotels component.

The only downside of having integration tests over unit tests is that they're harder to write
as they usually contain more complex logic. Also, these integration tests will run slower
than unit tests because of them having more logic and bringing together multiple
components.

Build an Application Exploring TDD Using Jest and Enzyme Chapter 6

[210]

Summary
In this chapter, we covered testing for React applications using Jest in combination with
either react-test-renderer or Enzyme. Both packages are a great resource to every
developer that wants to add test scripts to their application, and they also work well with
React. The advantages of having tests for your application were discussed in this chapter,
and hopefully, you now know how to add test scripts to any project. Also, the differences
between unit tests and integration tests were shown.

Since the application that was tested in this chapter has the same structure as the
applications from the previous chapters, the same testing principles can be applied to any
of the applications we've built in this book.

The next chapter will combine a lot of the patterns and libraries we've already used in this
book as we'll be creating a full-stack e-commerce store with React, GraphQL, and Apollo.

Further reading
Enzyme shallow rendering: https:/ /airbnb. io/enzyme/ docs/ api/shallow.
html

Enzyme mount: https:/ /airbnb. io/ enzyme/ docs/ api/ mount. html

https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/shallow.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html
https://airbnb.io/enzyme/docs/api/mount.html

7
Build a Full Stack E-Commerce

Application with React Native
and GraphQL

If you're reading this, this means you've reached the final part of this book, which uses
React to build web applications. In the preceding chapters, you've already used the core
features of React, such as rendering components, state management with Context, and
Hooks. You've learned how to create a PWA and an SSR application and how to add
routing to your React application. Also, you know how to add testing to a React application
with Jest and Enzyme. Let's add GraphQL to the list of things you've learned about so far.

In this chapter, you will not only build the frontend of an application, but also the backend.
For this, GraphQL will be used, which can best be defined as a query language for APIs.
Using mock data and Apollo Server, you'll extend a GraphQL server that exposes a single
endpoint for your React application. On the frontend side, this endpoint will be consumed
using Apollo Client, which helps you handle sending requests to the server and state
management for this data.

In this chapter, the following topics will be covered:

Querying and mutating data with GraphQL
Consuming GraphQL with Apollo Client
Handling state management with GraphQL

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[212]

Project overview
In this chapter, we will create a full stack e-commerce application that has a GraphQL
server as a backend and consumes this server in React using Apollo Client. For both the
backend and frontend, an initial application is available to get you started quickly.

The build time is 3 hours.

Getting started
The project that we'll create in this chapter builds upon an initial version that you can find
on GitHub: https:/ /github. com/ PacktPublishing/ React- Projects/ tree/ ch7- initial.
The complete source code can also be found on GitHub: https:/ / github. com/
PacktPublishing/React- Projects/ tree/ ch7.

The initial project consists of both a boilerplate application based on Create React App to
get you started quickly and a GraphQL server that you can run locally. You can find the
application in the client directory and the GraphQL server can be found in
the server directory. Both the initial application and the GraphQL server need
dependencies installed and need to be running at all times during development, which you
can do by running the following commands in both the client and server directories:

npm install && npm start

This command will install all of the dependencies that are needed to run both the React
application and the GraphQL server, including react, react-
scripts, graphql, and apollo-server. If you'd like to know about all of the
dependencies that were installed, please have a look at the package.json files in both
the client and server directories.

After the installation process has finished, both the GraphQL server and the React
application will be started.

Getting started with the initial React application
Since the React application is created by Create React App, it will automatically launch in
your browser at http://localhost:3000/. This initial application doesn't show any data
as it still needs to be connected to the GraphQL server, which you'll do later on in this
chapter. At this point, the application will, therefore, render only a header with the
title Ecommerce Store and a subheader as well, which looks something like this:

https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7-initial
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7
https://github.com/PacktPublishing/React-Projects/tree/ch7

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[213]

The structure of this initial React application is as follows:

ecommerce-store
|-- client
 |-- node_modules
 |-- public
 |-- favicon.ico
 |-- index.html
 |-- manifest.json
 |-- src
 |-- components
 |-- Button
 |-- Button.js
 |-- Cart
 |-- Cart.js
 |-- CartButton.js
 |-- Totals.js
 |-- Header
 |-- Header.js
 |-- SubHeader.js
 |-- Products
 |-- ProductItem.js
 |-- Products.js
 |-- App.js
 |-- index.js
 |-- serviceWorker.js
 |-- package.json

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[214]

In the client/src directory, you'll find the entry point to the application, which
is index.js. This file will refer to the App component in App.js. The App component has a
Router component that either renders the Products or Cart component, dependent on
which URL the user is visiting. When no specific route is specified,
the Products component will be rendered which consists of a SubHeader component,
with Button to the Cart component, and a map function that returns a list
of ProductItem components that display product information. The /cart route will
render the Cart component that also has SubHeader, this time with Button to go back to
the previous page. Also, again return a list of products will be returned and
the Totals component will show the total number of products in the cart.

Getting started with the GraphQL server
Although you won't be making any code changes to the GraphQL server, it's important to
know how the server is functioning and what the basic concepts of GraphQL are.

GraphQL is best described as a query language for APIs and is defined as a convention for
retrieving data from an API. Often, GraphQL APIs are compared to RESTful APIs, which is
a well-known convention for sending HTTP requests that are dependant on multiple
endpoints that will all return a separate data collection. As opposed to the well-known
RESTful APIs, a GraphQL API will provide a single endpoint that lets you query and/or
mutate data sources such as a database. You can query or mutate data by sending a
document containing either a query or mutation operation to the GraphQL server.
Whatever data is available can be found in the schema of the GraphQL server, which
consists of types that define what data can be queried or mutated.

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[215]

The GraphQL server can be found in the server directory and provides a backend for the
frontend React application that you'll build in this chapter. This server is created using
Express and Apollo Server, where Express is a framework to create APIs using JavaScript
and Apollo Server is an open source package that helps you create GraphQL servers with a
limited amount of code. After making sure you've run the npm install and npm
start commands in the server directory, the GraphQL API becomes available
on http://localhost:4000/graphql Apollo Server will run your GraphQL server on
port 4000 by default. On this page in the browser, the GraphQL Playground will be
displayed, and is where you can use and explore the GraphQL server. An example of this
playground can be seen in the following screenshot:

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[216]

With this playground, you can send queries and mutations to the GraphQL server, which
you can type on the left-hand side of this page. The queries and mutations that you're able
to send can be found in SCHEMA for this GraphQL server, which you can find by clicking
on the green button labeled SCHEMA. This button will open an overview of SCHEMA,
which shows you all of the possible return values of the GraphQL server:

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[217]

Whenever you describe a query or mutation on the left-hand side of this page, the output
that is returned by the server will be displayed on the right-hand side of the playground.
The way a GraphQL query is constructed will determine the structure of the returned data
since GraphQL follows the principle of ask for what you need, get exactly that. Since GraphQL
queries always return predictable results, this means we can have a query that looks like
this:

query {
 products {
 id
 title
 thumbnail
 }
}

This will return an output that will follow the same structure of the query that's defined in
the document that you sent to the GraphQL server and has the following format:

{
 "data": {
 "products": [
 {
 "id": 16608,
 "title": "Awesome Rubber Shoes",
 "thumbnail": "http://lorempixel.com/400/400/technics"
 },
 {
 "id": 20684,
 "title": "Refined Soft Table",
 "thumbnail": "http://lorempixel.com/400/400/fashion"
 }
]
 }
}

Applications that are using GraphQL are often fast and stable because they control the data
they get, not the server.

In the next section, you'll connect the GraphQL server to the React web application using
Apollo, and send documents to the server from your application.

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[218]

Building a full stack e-commerce application
with React, Apollo, and GraphQL
In this section, you'll connect the React web application to the GraphQL server. Apollo
Server is used to create a single GraphQL endpoint that uses dynamic mock data as a
source. Apollo Client is used by React to consume this endpoint and handle state
management for your application.

Adding GraphQL to a React application
With the GraphQL server in place, let's move on to the part where you make requests to
this server from a React application. For this, you'll use Apollo packages that help you add
an abstraction layer between your application and the server. That way, you don't have to
worry about sending documents to the GraphQL endpoint yourself by using, for
example, fetch, and can send documents directly from a component.

As we mentioned previously, you can use Apollo to connect to the GraphQL server; for
this, Apollo Client will be used. With Apollo Client, you can set up the connection with the
server, handle queries and mutations, and enable caching for data that's been retrieved
from the GraphQL server, among other things. Apollo Client is added to your application
by following these steps:

To install Apollo Client and its related packages, you need in order to run the1.
following command from the client directory where the React application is
initialized:

npm install apollo-client apollo-link-http react-apollo graphql
graphql-tag

This will install not only Apollo Client but also the other dependencies you need
to use Apollo Client and GraphQL in your React application:

apollo-link-http will connect with the GraphQL server
react-apollo will provide the components you need to send queries to
and mutations and handle the data flow
graphql and graphql-tag will handle GraphQL and write in the query
language

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[219]

These packages should be imported into the file where you want to create the2.
Apollo Client, which, in this case, would be client/src/App.js:

import React from 'react';
import styled, { createGlobalStyle } from 'styled-components';
import { Route, Switch } from 'react-router-dom';
import Header from './Header/Header';
import Products from './Products/Products';
import Cart from './Cart/Cart';

import ApolloClient from 'apollo-client';
import { HttpLink } from 'apollo-link-http';
import { ApolloProvider } from 'react-apollo';

const GlobalStyle = createGlobalStyle`
 ...

Now you can define the client constant using the ApolloClient class and use3.
HttpLink to make the connection with the GraphQL server; therefore, create a
client constant like this:

import React from 'react';
import styled, { createGlobalStyle } from 'styled-components';
import { Route, Switch } from 'react-router-dom';
import Header from './Header/Header';
import Products from './Products/Products';
import Cart from './Cart/Cart';

import ApolloClient from 'apollo-client';
import { InMemoryCache } from 'apollo-cache-inmemory';
import { HttpLink } from 'apollo-link-http';
import { ApolloProvider } from 'react-apollo';

const client = () => new ApolloClient({
 link: new HttpLink({
 uri: 'http://localhost:6000',
 }),
});

const GlobalStyle = createGlobalStyle`
 ...

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[220]

Within the return function for the App component, you need to add4.
ApolloProvider and pass client you've just created as a prop:

...
const App = () => (
- <>
+ <ApolloProvider client={client}>
 <GlobalStyle />
 <AppWrapper>
 <Header />
 <Switch>
 <Route exact path='/' component={Products} />
 <Route path='/cart' component={Cart} />
 </Switch>
 </AppWrapper>
- </>
+ </ApolloProvider>
);

export default App;

After these steps, all of the components that are nested within ApolloProvider can access
this client and send documents with queries and/or mutations to the GraphQL server.
The method for getting data from ApolloProvider is similar to how the context API
interacts with the Context value and will be demonstrated in the next part of this section.

Sending GraphQL queries with React
The react-apollo package doesn't only export a Provider but also methods to consume
the value from this Provider. That way, you can easily get any value using the client that
was added to the Provider. One of those methods is Query, which helps you to send a
document containing a query to the GraphQL server, without having to use a
fetch function, for example.

Since a Query component should always be nested inside an ApolloProvider component,
they can be placed in any component that's been rendered within App. One of those is the
Products component in client/src/components/Product/Products.js. This
component is being rendered for the / route and should display products that are available
in the e-commerce store.

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[221]

To send a document from the Products component, follow these steps, which will guide
you in the process of sending documents using react-apollo:

The query to get products from the GraphQL server can be found using the1.
introspection methods in the playground or from the server/typeDefs.js file,
and looks as follows:

query {
 products {
 id
 title
 thumbnail
 }
}

Sending this document with a query to the GraphQL server will return an array
consisting of objects with product information, which has a limit of 10 products
by default. The result will be returned in JSON format and will consist of different
products every time you send the requests, since the data is mocked by the
GraphQL server.

In the Products component, you can import the Query component from react-2.
apollo and define a constant for the named getProducts query. Also, you
need to import gql from graphql-tag to use the GraphQL query language
inside your React file, which is given as follows:

import React from 'react';
import styled from 'styled-components';
import { Query } from 'react-apollo';
import gql from 'graphql-tag';
import SubHeader from '../Header/SubHeader';
import ProductItem from './ProductItem';

const GET_PRODUCTS = gql`
 query getProducts {
 products {
 id
 title
 thumbnail
 }
 }
`;

export const ProductItemsWrapper = styled.div`
 ...

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[222]

The imported Query component can be returned from Products and handle the3.
data fetching process based on the query that you pass to it as a prop. In the same
way as the context API, Query can consume the data from the Provider by
returning a data variable. You can iterate over the products field from this
object and return a list of ProductItem components by adding the Query
component:

...
const Products = ({ match, history, loading, error, products })
=> {
- const isEmpty = products.length === 0 ? 'No products
available' : false;

 return (
 <>
 {history && (
 <SubHeader title='Available products' goToCart={() =>
history.push('/cart')} />
)}

- {!loading && !error && !isEmpty ? (
+ <Query query={GET_PRODUCTS}>
+ {({ data }) => {
+ return (
 <ProductItemsWrapper>
 {data.products && data.products.map(product => (
 <ProductItem key={product.id} data={product}
/>
))}
 </ProductItemsWrapper>
+);
+ }}
+ </Query>
-) : (
- <Alert>{loading ? 'Loading...' : error ||
isEmpty}</Alert>
-)}
 </>
);
};
...

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[223]

Not only will the Query component return a data object, but it will also return4.
the loading and error variables. So, instead of setting a default value for the
loading prop, you can use this value and return a loading message if its value is
true. For the error variable, you apply the same approach. Also, the default
value for the Products prop is hereby no longer used and can be deleted:

- const Products = ({ match, history, loading, error, products })
=> {
- return (
+ const Products = ({ match, history }) => (
 <>
 {history && (
 <SubHeader title='Available products' goToCart={() =>
history.push('/cart')} />
)}
 <Query query={GET_PRODUCTS}>
- {({ data }) => {
+ {({ loading, error, data }) => {
+ if (loading || error) {
+ return <Alert>{loading ? 'Loading...' : error}</Alert>;
+ }
 return (
 <ProductItemsWrapper>
 {data.products && data.products.map(product => (
 <ProductItem key={product.id} data={product} />
))}
 </ProductItemsWrapper>
);
 }}
 </Query>
 </>
);
- };

- Products.defaultProps = {
- loading: false,
- error: '',
- products: [],
- }

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[224]

This will send a document with the GET_PRODUCTS query to the GraphQL server when
your application mounts and subsequently display the product information in the list of
the ProductItem components. After adding the logic to retrieve the product information
from the GraphQL server, your application will look similar to the following:

Since the Cart component on the /cart route also needs to query data from the GraphQL
server, changes to the src/components/Cart/Cart.js file should be made as well. Just
like we did for Products, a Query component should be added to retrieve data from the
server and can be done by following these steps:

Start by importing the dependencies that are needed to send queries to the1.
GraphQL server, which are react-apollo to get the Query component and
graphql-tag to use the GraphQL query language to define the query you want
to send to GraphQL:

import React from 'react';
import styled from 'styled-components';
+ import { Query } from 'react-apollo';

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[225]

+ import gql from 'graphql-tag';
import SubHeader from '../Header/SubHeader';
import ProductItem from '../Products/ProductItem';
import Totals from './Totals';

const CartWrapper = styled.div`
 ...

After this, you can define query, which should be sent in the document. This will2.
retrieve the information for cart, including any products that might be in
cart:

import React from 'react';
import styled from 'styled-components';
import { Query } from 'react-apollo';
import gql from 'graphql-tag';
import SubHeader from '../Header/SubHeader';
import ProductItem from '../Products/ProductItem';
import Totals from './Totals';

+ const GET_CART = gql`
+ query getCart {
+ cart {
+ total
+ products {
+ id
+ title
+ thumbnail
+ }
+ }
+ }
+ `;

const CartWrapper = styled.div`
 ...

Replace the existing code for the Cart component with the following, where the3.
Query component is implemented and the Cart component only receives
the match and history props. Therefore, you'd need to replace the code for this
component with the following:

...

- const Cart = ...

+ const Cart = ({ match, history }) => (
+ <>

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[226]

+ {history && (
+ <SubHeader goBack={() => history.goBack()} title='Cart' />
+)}
+ <Query query={GET_CART}>
+ {({ loading, error, data }) => {
+ if (loading || error) {
+ return <Alert>{loading ? 'Loading...' : error}</Alert>;
+ }
+ return (
+ <CartWrapper>
+ <CartItemsWrapper>
+ {data.cart && data.cart.products.map(product => (
+ <ProductItem key={product.id} data={product} />
+))}
+ </CartItemsWrapper>
+ <Totals count={data.cart.total} />
+ </CartWrapper>
+);
+ }}
+ </Query>
+ </>
+);

export default Cart;

...

This won't show any products yet as the cart is empty; the cart will be filled with4.
products in the next section. However, let's proceed by adding a
Query component to the button to the cart with a placeholder counter
in SubHeader for the / route. Therefore, a new file called CartButton.js can be
created in the client/src/components/Cart directory. In this file, a
Query component will return data from a query that requests the total number of
products in the cart. Also, we can add a value to the Button component by
adding the following code to this file:

import React from 'react'
import { Query } from 'react-apollo';
import gql from 'graphql-tag';
import Button from '../Button/Button';

const GET_CART_TOTAL = gql`
 query getCartTotal {
 cart {
 total
 }
 }

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[227]

`;

const CartButton = ({ onClick }) => (
 <Query query={GET_CART_TOTAL}>
 {({ data, loading, error }) => (
 <Button onClick={onClick}>
 {`Cart (${(loading || error) ? 0 : data &&
data.cart.total})`}
 </Button>
)}
 </Query>
);

export default CartButton

This CartButton component replaces Button, which is now being displayed5.
with a placeholder count for the number of products in the cart, in
the client/src/components/Header/SubHeader.js file:

import React from 'react';
import styled from 'styled-components';
import Button from '../Button/Button';
+ import CartButton from '../Cart/CartButton';

...

const SubHeader = ({ goBack, title, goToCart = false }) => (
 <SubHeaderWrapper>
 {goBack && <SubHeaderButton onClick={goBack}>{`< Go
Back`}</SubHeaderButton>}
 <Title>{ title }</Title>
- {goToCart && <SubHeaderButton onClick={goToCart}>{`Cart
(0)`}</SubHeaderButton>}
+ {goToCart && <CartButton onClick={goToCart} />}
 </SubHeaderWrapper>
);

export default SubHeader;

With all of the components that show either a product or cart information connected to the
GraphQL Client, you can proceed by adding mutations that add products to the cart. How
to add mutations to the application and send document container mutations to the
GraphQL server will be shown in the final part of this section.

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[228]

Handling mutations with Apollo Client
Mutating data makes using GraphQL more interesting because when data is mutated, some
side effects should be executed. For example, when a user adds a product to their cart, the
data for the cart should be updated throughout the component as well. This is quite easy
when you're using Apollo Client since the Provider handles this in the same way the
context API.

Before writing your first mutation, the definitions of the executable queries for the cart
should be moved to a constants file. That way, you can easily import them into other
components to reuse and execute them as a side effect. Creating the new constants file and
moving all the GraphQL queries and mutations to it requires that we make the following
changes:

In the client/src directory, you should create a new file called constants.js1.
and place the two already defined queries here, which can be found in the
Cart and CartButton components. Also, you will need to import graphql-tag
to use the GraphQL query language by adding the following code block to that
newly created file:

import gql from 'graphql-tag';

export const GET_CART_TOTAL = gql`
 query getCartTotal {
 cart {
 total
 }
 }
`;

const GET_CART = gql`
 query getCart {
 cart {
 total
 products {
 id
 title
 thumbnail
 }
 }
 }
`;

export default GET_CART

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[229]

In the Cart component, you can remove the definition to GET_CART, and import2.
that definition from client/src/constants.js
in the client/src/components/Cart/Cart.js file:

import React from 'react';
import styled from 'styled-components';
import { Query } from 'react-apollo';
- import gql from 'graphql-tag';
import SubHeader from '../Header/SubHeader';
import ProductItem from '../Products/ProductItem';
import Totals from './Totals';
+ import { GET_CART } from '../../constants';

- const GET_CART = gql`
- query getCart {
- cart {
- total
- products {
- id
- title
- thumbnail
- }
- }
- }
- `;

const CartWrapper = styled.div`
 ...

For the CartButton component in CartButton.js, you should apply the same3.
changes, but this time for the GET_CART_TOTAL query, which can also be
imported from the constants file and deleted from the CartButton.js file:

import React from 'react'
import { Query } from 'react-apollo';
- import gql from 'graphql-tag';
import Button from '../Button/Button';
+ import { GET_CART_TOTAL } from '../../constants';

- const GET_CART_TOTAL = gql`
- query getCartTotal {
- cart {
- total
- }
- }
- `;

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[230]

const CartButton = ({ onClick }) => (
 ...

Any new definition of a query or mutation that relates to the components in the directory
should be placed in this file from now on.

Since you want your users to be able to add products to the cart, a definition of a mutation
can be added to this file. The mutation to add products to the cart looks as follows, which
takes the productId parameter to add a product to the cart. The following mutation can
return the fields for the cart in return, just like a query can:

mutation addToCart($productId: Int!) {
 addToCart(input: { productId: $productId }) {
 total
 }
 }

You can already test this mutation by trying it out on the GraphQL Playground that's
available at http://localhost:4000/graphql. Here, you'd need to add the mutation in
the upper-left box of this page. The variable that you want to include in this mutation for
productId must be placed in the bottom-left box of this page, called QUERY
VARIABLES. This would result in the following output:

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[231]

To be able to use this mutation from your React application, you will need to make the
following changes to some files:

Create a new exported constant in the client/src/constants.js file and add1.
the mutation to it:

import gql from 'graphql-tag';

+ export const ADD_TO_CART = gql`
+ mutation addToCart($productId: Int!) {
+ addToCart(input: { productId: $productId }) {
+ total
+ }
+ }
+ `;

export const GET_CART_TOTAL = gql`
 ...

Currently, there's no button to add a product to the cart yet, so you can create a2.
new file in the Cart directory and call this AddToCartButton.js. In this file,
you can add the following code:

import React from 'react'
import { Mutation } from 'react-apollo';
import Button from '../Button/Button';
import { ADD_TO_CART } from '../../constants';

const AddToCartButton = ({ productId }) => (
 <Mutation mutation={ADD_TO_CART}>
 {addToCart => (
 <Button onClick={() => addToCart({ variables: { productId
}})}>
 {`+ Add to cart`}
 </Button>
)}
 </Mutation>
);

export default AddToCartButton;

This new AddToCartButton takes productId as a prop and has a
Mutation component from react-apollo, which uses the Mutation you
created in client/src/constants.js. The output of Mutation is the actual
function to call this mutation, which takes an object containing the inputs as a
parameter. Clicking on the Button component will execute the mutation.

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[232]

This button should be displayed next to the products in the list in the3.
Products component, where each product is displayed in a
ProductItem component. This means, you will need to import
AddCartButton in 'src/components/Products/ProductItem.js' and pass
a productId prop to it by using the following code:

import React from 'react';
import styled from 'styled-components';
+ import AddToCartButton from '../Cart/AddToCartButton';

...

const ProductItem = ({ data }) => (
 <ProductItemWrapper>
 <Thumbnail src={data.thumbnail} width={200} />
 <Title>{data.title}</Title>
+ <AddToCartButton productId={data.id} />
 </ProductItemWrapper>
);

export default ProductItem;

Now, when you open the React application in the browser, a button will be
displayed next to the product titles. If you click this button, the mutation will be
sent to the GraphQL server and the product will be added to the cart. However,
you won't see any changes to the button that displays Cart (0) in the
SubHeader component.

To update CartButton, you will need to specify that, when the mutation to the4.
cart takes place, other queries should be executed again. This can be done by
setting the refetchQueries prop on the Mutation component in
client/src/components/Cart/AddToCartButton.js. This prop takes an
array of objects with information about the queries that should be requested.
These queries are the GET_CART_TOTAL query, which is executed by
CartButton, and the GET_CART query from the Cart component. To do this,
make the following changes:

import React from 'react'
import { Mutation } from 'react-apollo';
import Button from '../Button/Button';
- import { ADD_TO_CART, GET_CART_TOTAL } from '../../constants';
+ import { GET_CART, ADD_TO_CART, GET_CART_TOTAL } from
'../../constants';

const AddToCartButton = ({ productId }) => (

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[233]

- <Mutation mutation={ADD_TO_CART}>
+ <Mutation mutation={ADD_TO_CART} refetchQueries={[{ query:
GET_CART }, { query: GET_CART_TOTAL }]}>
 {addToCart => (
 <Button onClick={() => addToCart({ variables: { productId
}})}>
 {`+ Add to cart`}
 </Button>
)}
 </Mutation>
);

export default AddToCartButton;

Now, every time you send a mutation in a document to the GraphQL server from this
component, both the GET_CART and GET_CART_TOTAL queries will be sent as well. If the
results have changed, the CartButton and Cart components will be rendered with this
new output.

In this section, you've added some logic to send queries and mutations to the GraphQL
server, by using the GraphQL client from Apollo. This client has other features as well, such
as local state management, which you'll learn about in the next section.

Managing local state
Not only can you use Apollo Client to manage the data that is fetched from the GraphQL
server, but you can also use it for managing the local state. With Apollo, it becomes easy to
combine local state with data from the GraphQL server since you can also use queries and
mutations to deal with the local state.

A good example of information you might want to put in your local state for this e-
commerce store is the number of products that should be requested from the GraphQL
server. In the first part of this chapter, you already created a query that takes a parameter
called limit, which defines how many products will be returned.

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[234]

To add local state to your application, some changes need to made to the setup of Apollo
Client, after which you need to make the following changes as well:

 In the client/src/App.js file, you need to detach the cache constant; that1.
way, you can use the writeData method to add new values to cache. Also, you
will need to add local resolvers and typeDefs to client, which will be used
next to resolvers and typeDefs from the GraphQL server. To do this, change
the following code:

+ const cache = new InMemoryCache();

const client = new ApolloClient({
 link: new HttpLink({
 uri: 'http://localhost:4000/',
 }),
- cache,
+ resolvers: {},
+ typeDefs: `
+ extend type Query {
+ limit: Int!
+ }
+ `,
});

+ cache.writeData({
+ data: {
+ limit: 5,
+ },
+ });

In the preceding code block, the schema is extended with a Query type that has a
field for limit, meaning you can query client for this value. Also, an initial
value for limit is written to cache. This means the value for limit will always
be 5 when the application first mounts.

Let's also add all of the queries related to products to the2.
client/src/constants.js file. This can be added to
the client/src/components/Products directory by adding the following
code to the file:

import gql from 'graphql-tag';

...

+ export const GET_LIMIT = gql`
+ query getLimit {

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[235]

+ limit @client
+ }
+ `;

+ export const GET_PRODUCTS = gql`
+ query getProducts {
+ products {
+ id
+ title
+ thumbnail
+ }
+ }
+ `;

For the query for products to use limit from the local state, a small change has3.
to be made to the GET_PRODUCTS query:

...

const GET_PRODUCTS = gql`
- query getProducts {
+ query getProducts($limit: Int) {
- products {
+ products(limit: $limit) {
 id
 title
 thumbnail
 }
 }
`;

export default GET_PRODUCTS;

This query will now use the limit variable to request the number of products,
instead of the predefined value of 10 in your GraphQL server. By adding
@client, the Apollo Client will know to get this value from cache, meaning the
local state.

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[236]

In the Products component, these queries should be imported from the4.
constants.js file, and the value for limit should be requested with a
Query component from react-apollo. Also, the value for limit that is
returned by Query should be sent in the variables prop when requesting the
GET_PRODUCTS query. Therefore, make the following changes to use the updated
query and pass the variables to it:

import React from 'react';
import styled from 'styled-components';
import {Query} from 'react-apollo';
- import gql from 'graphql-tag';
import SubHeader from '../Header/SubHeader';
import ProductItem from './ProductItem';
+ import { GET_PRODUCTS, GET_LIMIT } from '../../constants';

- const GET_PRODUCTS = gql`
- query getProducts {
- products {
- id
- title
- thumbnail
- }
- }
- `;

...

const Products = ({ match, history }) => (
 <>
 {history && (
 <SubHeader title='Available products' goToCart={() =>
history.push('/cart')} />
)}
 <Query query={GET_LIMIT}>
 {({ loading, error, data }) => (
- <Query query={GET_PRODUCTS}>
+ <Query query={GET_PRODUCTS} variables={{ limit:
parseInt(data.limit) }}>
 {({ loading, error, data }) => {
 if (loading || error) {
 return <Alert>{loading ? 'Loading...' :
error}</Alert>;
 }
 return (
 <ProductItemsWrapper>
 {data.products && data.products.map(product => (
 <ProductItem key={product.id} data={product} />

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[237]

))}
 </ProductItemsWrapper>
);
 }}
 </Query>
)}
 </Query>
 </>
);

export default Products;

With the previous changes, the returned value from the GET_LIMIT query will be
sent as a variable to the GET_PRODUCTS query, where you need to make sure this
value is an integer by using parseInt. If you look at the application in the
browser now, 5 products will be displayed.

Next, to have an initial value for limit, this value can also be set dynamically.5.
Therefore, you can use the writeData method again to update the cache. This
should be done from a different component that can access the client. To
accomplish this, you need to create a component in the
client/src/components/Products directory in the new Filter.js file. In
this file, you can place the following code:

import React from 'react';
import { ApolloConsumer } from 'react-apollo';

const Filters = ({ limit }) => (
 <ApolloConsumer>
 {client => (
 <>
 <label for='limit'>Number of products: </label>
 <select id='limit' value={limit} onChange={e =>
client.writeData({ data: { limit: e.target.value } })}>
 <option value={5}>5</option>
 <option value={10}>10</option>
 <option value={20}>20</option>
 </select>
 </>
)}
 </ApolloConsumer>
);

export default Filters;

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[238]

This Filter component uses ApolloConsumer to get the value for the client
from ApolloProvider, which is similar to how the React context API works.
From any component that is nested in ApolloProvider, you will be able to get
the client value by using the Consumer from react-apollo. The client will be
used to write data to the cache, and this data is retrieved from the value of the
select drop-down menu.

The Filter component should also be added to the Products component so6.
that it can actually be used to change the value for limit:

import React from 'react';
import styled from 'styled-components';
import { Query } from 'react-apollo';
import SubHeader from '../Header/SubHeader';
import ProductItem from './ProductItem';
+ import Filters from './Filters';
import { GET_PRODUCTS, GET_LIMIT } from '../../constants';

...

const Products = ({ match, history }) => (
 <>
 {history && (
 <SubHeader title='Available products' goToCart={() =>
history.push('/cart')} />
)}
 <Query query={GET_LIMIT}>
 {({ loading, error, data }) => (
+ <>
+ <Filters limit={parseInt(data.limit)} />
 <Query query={GET_PRODUCTS} variables={{ limit:
parseInt(data.limit) }}>
 {({ loading, error, data }) => {
 if (loading || error) {
 return <Alert>{loading ? 'Loading...' :
error}</Alert>;
 }
 return (
 <ProductItemsWrapper>
 {data.products && data.products.map(product => (
 <ProductItem key={product.id} data={product} />
))}
 </ProductItemsWrapper>
);
 }}
 </Query>
+ </>

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[239]

)}
 </Query>
 </>
);

export default Products;

Since the Query component for GET_PRODUCTS is nested in the Query component
for GET_LIMIT, whenever the GET_LIMIT query is sent, this query will also be
sent. So, when you use the select drop-down menu to change limit, the
GET_PRODUCTS query will be sent and the number of products that are displayed
will have changed.

With these changes, your application uses the Apollo Client for getting data from the
GraphQL server and for handling local state management. Also, users can now filter the
number of products that they'll see in your application, which will make your application
look similar to the following:

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[240]

The buttons to add a product to the cart were added in the previous section, while the
functionality of the cart will be handled in the next section, when you add authentication to
the project.

Using authentication with React and GraphQL
When the users have added products to the cart, you want them to be able to checkout, but
before that, the users should be authenticated as you want to know who's buying the
product. Handling authentication in React will also require an interaction with the backend,
since you need to store the user's information somewhere or check whether the user exists.

For authentication in frontend applications, most of the time, JSON Web Tokens (JWTs)
are used, which are encrypted tokens that can easily be used to share user information with
a backend. The JWT will be returned by the backend when the user is successfully
authenticated and often, this token will have an expiration date. With every request that the
user should be authenticated for, the token should be sent so that the backend server can
determine whether the user is authenticated and allowed to take this action. Although
JWTs can be used for authentication since they're encrypted, no private information should
be added to them since the tokens should only be used to authenticate the user. Private
information can only be sent from the server when a document with the correct JWT has
been sent.

React Router and authentication
The GraphQL server for this project has already been set up to handle authentication and
will return a JWT token when the correct user information has been sent to it. When the
user wants to check out the cart, the application will look for a JWT token in the local or
session storage and redirect the user either to the checkout page or the login page. For this,
private routes should be added to react-router, which are only available when the user
is authenticated.

Adding a private route requires that we make the following changes:

New routes for the checkout and the login pages must be added to the Router1.
component in the client/src/components/App.js file, where the user can
either checkout or log in. For this, you must import the Checkout and Login
components that have already been created and a Redirect component from
react-router-dom:

import React from 'react';
import styled, { createGlobalStyle } from 'styled-components';

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[241]

- import { Route, Switch } from 'react-router-dom';
+ import { Route, Switch, Redirect } from 'react-router-dom';
import Header from './Header/Header';
import Products from './Products/Products';
import Cart from './Cart/Cart';
+ import Login from './Checkout/Login';
+ import Checkout from './Checkout/Checkout';

...

After importing these, routes must be added to Switch in Router, making them2.
available to the user:

const App = () => (
 <ApolloProvider client={client}>
 <GlobalStyle />
 <AppWrapper>
 <Header />
 <Switch>
 <Route exact path='/' component={Products} />
 <Route path='/cart' component={Cart} />
+ <Route path='/checkout' component={Checkout} />
+ <Route path='/login/ component={Login} />
 </Switch>
 </AppWrapper>
 </ApolloProvider>
);

export default App;

In the current situation, the user can navigate to the login and checkout pages3.
without being authenticated. To check whether the user is authenticated, the
render props method for the Route component can be used. In this method, you
must check whether or not a JWT is stored in the session storage for this user.
Currently, no token is stored in the session storage since this will be added later
on. But you can still create the function to check for it by adding the following
function:

...

+ const isAuthenticated = sessionStorage.getItem('token');

const cache = new InMemoryCache();

const client = new ApolloClient({
 ...

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[242]

There are many ways to store a JWT, such as using the local storage,
session storage, cookies, or a local state in the form of the apollo-link-
state package. As long as you follow the protocol of JWT, encrypt no
private information in the token, and add an expiration date to it, all of
these places can be considered as a safe place to store the token.

After this, the render props method is used for the checkout route to check4.
whether the user is authenticated or not. If not, the user will be redirected to the
login page using the Redirect component. Otherwise, the user will see the
Checkout component, which will receive the router props that are returned by
the render props method. To make this happen, make the following changes:

const App = () => (
 <ApolloProvider client={client}>
 <GlobalStyle />
 <AppWrapper>
 <Header />
 <Switch>
 <Route exact path='/' component={Products} />
 <Route path='/cart' component={Cart} />
- <Route path='/checkout' component={Checkout} />
+ <Route
+ path='/checkout'
+ render={props =>
+ isAuthenticated()
+ ? <Checkout />
+ : <Redirect to='/login' />
+ }
+ />
 <Route path='/login' component={Login} />
 </Switch>
 <AppWrapper>
 </ApolloProvider>
);

export default App;

When you try to visit the http://localhost:3000/checkout route in your browser,
you'll always be redirected to the /login route since no JWT has been stored in the session
storage yet. In the next part of this section, you'll add the logic to retrieve the JWT from the
GraphQL server by sending a mutation with login information.

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[243]

Receiving JWT from the GraphQL server
The GraphQL server has already been set up to handle authentication since we sent
a document containing a mutation with our login information to it. When you send the
correct username and password, the server will return a JWT containing your username
and expiration date. Sending a query to the GraphQL server can be done by using a
Mutation component from react-apollo or by using the React Apollo Hooks, which
offer you more flexibility. Logging in can be done from the Login component, which you
can find in the client/src/components/Checkout/Login.js file, where the following
changes need to be made to authenticate the user:

The React Apollo Hook for the mutation will need a document that will be sent1.
to the GraphQL server. This mutation can also be defined in the
client/src/constants.js file, which is where you've defined all of the other
queries and mutations as well:

import gql from 'graphql-tag';

...

+ export const LOGIN_USER = gql`
+ mutation loginUser($userName: String!, $password: String!) {
+ loginUser(userName: $userName, password: $password) {
+ userName
+ token
+ }
+ }
+ `;

The Login component in client/src/components/Checkout/Login.js is2.
already using useState Hooks to control the value of the input fields for
userName and password. The useMutation Hook can be imported from
react-apollo and you can use this Hook to replace a Mutation component
and still have the same functionalities. This Hook can also be used from
anywhere within ApolloProvider and returns a login function that will send
the document to the GraphQL server. Adding this is done by importing the Hook
and passing the LOGIN_USER mutation from client/src/constants.js to it:

import React from 'react';
import styled from 'styled-components';
+ import { useMutation } from 'react-apollo';
import Button from '../Button/Button';
+ import { LOGIN_USER } from '../../constants';

...

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[244]

const Login = () => {
+ const [loginUser] = useMutation(LOGIN_USER);
 const [userName, setUserName] = React.useState('');
 const [password, setPassword] = React.useState('');
 return (
 ...

React Apollo Hooks can be used from the react-apollo package, but if
you only want to use the Hooks, you can install @apollo/react-
hooks instead by executing npm install @apollo/react-hooks.
GraphQL components such as Query or Mutation are available in both
the react-apollo and @apollo/react-components packages. Using
these packages will decrease the size of your bundle as you're only
importing the features you need.

After creating the loginUser function, this can be added to the onClick event3.
from Button, and the values for userName and password should be passed to
this function as variables:

return (
 <LoginWrapper>
 <TextInput
 onChange={e => setUserName(e.target.value)}
 value={userName}
 placeholder='Your username'
 />
 <TextInput
 onChange={e => setPassword(e.target.value)}
 value={password}
 placeholder='Your password'
 />
- <Button color='royalBlue'>
+ <Button
+ color='royalBlue'
+ onClick={() => loginUser({ variables: { userName, password }
})}
+ >
 Login
 </Button>
 </LoginWrapper>
);

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[245]

Clicking Button will send the document containing the userName and4.
password values to the GraphQL server and if successful, it returns the JWT for
this user. However, this token should also be stored in the session storage and as
the loginUser function returns a promise, the onClick event should become an
asynchronous function. That way, you can wait for the loginUser function to
resolve and store the token afterward or send an error message if no token was
returned:

...

<Button
 color='royalBlue'
- onClick={() => loginUser({ variables: { userName, password } })}
+ onClick={async () => {
+ const { data } = await loginUser({
+ variables: { userName, password }
+ });
+
+ if (data.loginUser && data.loginUser.token) {
+ sessionStorage.setItem('token', data.loginUser.token);
+ } else {
+ alert('Please provide (valid) authentication details');
+ }
+ }}
>
 Login
</Button>

...

Finally, the user should be redirected to the checkout page if the authentication5.
succeeded. SInce the Login component is rendered by the checkout route using
the render props method, it received the props from react-router. To redirect
the user back, you can use the history prop from react-router to push the
user to the checkout page:

...

- const Login = () => {
+ const Login = ({ history }) => {

 ...

 return (
 ...

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[246]

 <Button
 color='royalBlue'
 onClick={async () => {

 ...

 if (data.loginUser && data.loginUser.token) {
 sessionStorage.setItem('token', data.loginUser.token);
+ return history.push('/checkout');
 } else {
 alert('Please provide (valid) authentication details');
 }
 ...

Every user that has a token stored in their session storage is now able to visit the checkout
page for as long as the token is stored there. You can delete the token from the session
storage by going to the Application tab in the Developer tools of your browser; there,
you'll find another tab called Session Storage.

Since you want your users to be able to navigate from the cart page to the checkout page,
you should add Button in the Cart component that lets the user navigate using a Link
component from react-router-dom. If the user isn't authenticated yet, this will redirect
the user to the login page; otherwise, it will redirect them to the checkout page. Also, the
button should only be displayed when there are products in the cart. To add this Button,
the following changes need to be made in client/src/components/Cart/Cart.js:

import React from 'react';
import styled from 'styled-components';
import { Query } from 'react-apollo';
+ import { Link } from 'react-router-dom';
import SubHeader from '../Header/SubHeader';
import ProductItem from '../Products/ProductItem';
+ import Button from '../Button/Button';
import Totals from './Totals';
import { GET_CART } from '../../constants';

...

const Cart = ({ history }) => (

 ...

 return (
 <CartWrapper>
 <CartItemsWrapper>
 {data.cart && data.cart.products.map(product => (

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[247]

 <ProductItem key={product.id} data={product} />
))}
 </CartItemsWrapper>
 <Totals count={data.cart.total} />
+ {data.cart && data.cart.products.length > 0 && (
+ <Link to='/checkout'>
+ <Button color='royalBlue'>Checkout</Button>
+ </Link>
+)}
 </CartWrapper>
);

 ...

You've now added the functionality to proceed to the final checkout page of your
application, which makes the /cart route look like this in your application after adding a
product to it:

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[248]

In the final part of this section, you'll add this token to the document that you send to the
GraphQL server, where the token is validated to make sure the user is authenticated for a
certain action.

Passing JWT to the GraphQL server
The user's authentication details in the form of the JWT are now stored in the session
storage, and the route to the checkout page is now private. But for the user to check out,
this token should also be sent to the GraphQL server, along with every document for the
server, to validate whether the user is actually authenticated or whether the token has
expired. Therefore, you need to extend the setup of the Apollo Client to also send the token
when you make a request to the server and prefix it with Bearer, since this is how a JWT is
recognized.

Follow these steps to pass the JWT to the GraphQL server:

You need to install an Apollo package to deal with adding values to the Context1.
since you need the setContext method to do this. This method is available from
the apollo-link-Context package, which you can install from npm:

npm install apollo-link-Context

The Apollo Client is created in the client/src/components/App.js file,2.
where you import the setContext method from apollo-link-Context. Also,
the creation of the link to the GraphQL server must be decoupled as this should
also take the authentication details, that is, token:

...

import { ApolloClient } from 'apollo-client';
import { InMemoryCache } from 'apollo-cache-inmemory';
import { HttpLink } from 'apollo-link-http';
import { ApolloProvider } from 'react-apollo';
+ import { setContext } from 'apollo-link-Context';

const isAuthenticated = sessionStorage.getItem('token');

+ const httpLink = new HttpLink({
+ uri: 'http://localhost:4000/graphql',
+ });

const cache = new InMemoryCache();

const client = new ApolloClient({

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[249]

 link: new HttpLink({
 uri: 'http://localhost:4000/graphql',
 }),
 cache,
 resolvers: {

 ...

Now, you can use the setContext method to extend the request headers that3.
are being sent to the GraphQL server so that it also include the token that can be
retrieved from the session storage. The token that you retrieve from the session
storage must be prefixed with Bearer since the GraphQL server expects the JWT
token in that format:

...

const httpLink = new HttpLink({
 uri: 'http://localhost:4000/graphql',
})

+ const authLink = setContext((_, { headers }) => {
+ const token = isAuthenticated;
+
+ return {
+ headers: {
+ ...headers,
+ authorization: token ? `Bearer ${token}` : '',
+ },
+ };
+ });

const cache = new InMemoryCache();

const client = new ApolloClient({
 ...

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[250]

Together with the HttpLink method, the authLink constant must be used in the4.
setup of Apollo Client; this will make sure the Context value from authLink is
being added to the headers being sent by httpLink:

...

const client = new ApolloClient({
- link: new HttpLink({
- uri: 'http://localhost:4000/graphql',
- }),
+ link: authLink.concat(httpLink),
 cache,
 resolvers: {

 ...

If you visit the application in the browser again and make sure you are logged in by either
going to the checkout or login page, you will see that the requests are still sent to the
GraphQL server. The difference can be seen when you open the Developer tools of your
browser and go to the Network tab. The requests to the server now have different header
information since a field called authorization is also sent, which has a value that looks
like Bearer eyAABBB....

When the user goes to the checkout page, there should be a button to finalize the order.
This button will call a function that completes the cart. As the user must be authenticated to
create an order, the token must be sent with this request that sends
the completeCart mutation. This mutation completes the cart and clears its content, after
which the contents of the checkout page change.

Adding this feature to the checkout page requires making the following changes:

The completeCart mutation has the following shape and can be found in1.
client/constants.js:

export const COMPLETE_CART = gql`
 mutation completeCart {
 completeCart {
 complete
 }
 }
`;

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[251]

It must be imported into
the client/src/components/Checkout/Checkout.js file:

import React from 'react';
import styled from 'styled-components';
import Button from '../Button/Button';
+ import { COMPLETE_CART } from '../../constants';

...

const Checkout = () => {
 ...

The mutation can be sent to the GraphQL server by using a useMutation Hook,2.
which can be imported from react-apollo. At the beginning of the Checkout
component, the Hook can be added with the COMPLETE_CART mutation as a
parameter. The Hook returns the function to send the mutation and the data that
was returned from the mutation:

import React from 'react';
import styled from 'styled-components';
+ import { useMutation } from 'react-apollo';
import Button from '../Button/Button';
import { COMPLETE_CART } from '../../constants';

...

const Checkout = () => {
+ [completeCart, { data }] = useMutation(COMPLETE_CART);

 ...

The completeCart function must be added to the Button component as an3.
onClick prop so that when the button is clicked, that function will be called.
Also, you must check whether the COMPLETE_CART mutation returns a value for
the complete field, which indicates whether the cart was completed or not. If it
was, the checkout is complete and a different message can be displayed to the
user:

...

const Checkout = () => {
 const [completeCart, { data }] = useMutation(COMPLETE_CART);
 return (
 <CheckoutWrapper>

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[252]

+ {data && data.completeCart.complete ? (
+ <p>Completed checkout!</p>
+) : (
+ <>
 <p>This is the checkout, press the button below to
complete:</p>
- <Button color='royalBlue'>
+ <Button color='royalBlue' onClick={completeCart}>
 Complete checkout
 </Button>
+ </>
+)}
 </CheckoutWrapper>
);
};

...

This concludes the checkout process for the user and this chapter, where you've used React
and GraphQL to create an e-commerce application.

Summary
In this chapter, you've created a full stack React application that uses GraphQL as its
backend. Using Apollo Server and mock data, the GraphQL server was created, which
takes queries and mutations to provide you with data. This GraphQL server is used by a
React application that uses Apollo Client to send and receive data from the server and to
handle local state management. Authentication is handled by the GraphQL server using
JWT and in the frontend by React and react-router.

That's it! You've completed the seventh chapter of this book and have already created seven
web applications with React. By now, you should feel comfortable with React and its
features and be ready to learn some more. In the next chapter, you'll be introduced to React
Native and learn how you can use your React skills to build a mobile application
by creating a house listing application with React Native and Expo.

Build a Full Stack E-Commerce Application with React Native and GraphQL Chapter 7

[253]

Further reading
Creating an Apollo Server from scratch: https:/ /www. apollographql. com/ docs/
apollo-server/ essentials/ server

GraphQL: https:/ /graphql. org/learn/

JWT tokens: https:/ / jwt. io/ introduction/

https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://www.apollographql.com/docs/apollo-server/essentials/server
https://graphql.org/learn/
https://graphql.org/learn/
https://graphql.org/learn/
https://graphql.org/learn/
https://graphql.org/learn/
https://graphql.org/learn/
https://graphql.org/learn/
https://graphql.org/learn/
https://graphql.org/learn/
https://graphql.org/learn/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/

8
Build a House Listing

Application with React Native
and Expo

One of the taglines for development with React is learn once, write anywhere, which is due to
the existence of React Native. With React Native, you can write native mobile applications
using JavaScript and React while using the same features as React for things such as state
management. Building on the React knowledge that you've already gathered from this
book, you'll start exploring React Native from this chapter on. As React and React Native
share a lot of similarities, it's advised that you have another look at some of the previous
chapters whenever you feel insecure about your React knowledge.

In this chapter, you'll create a mobile application using React Native, which uses the same
syntax and patterns that you've seen in the previous chapters. You'll set up basic routing,
explore the differences between development for iOS and Android, and learn about styling
React Native components with styled-components. Also, a toolchain called Expo will be
used to run and deploy your React Native application.

In this chapter, the following topics will be covered:

Creating a React Native project
Routing for mobile applications
Life cycles in React Native
Styling components in React Native

Build a House Listing Application with React Native and Expo Chapter 8

[255]

Project overview
In this chapter, we will create a house listing application that shows an overview of the
available houses with a detail page of every listing, with styled-components for styling
and React Navigation for routing. The data is fetched from a mock API.

The build time is 1.5 hours.

Getting started
Make sure you have the Expo Client application installed on your iOS or Android device to
be able to run the application that you'll create in this chapter. Expo Client is available in
both the Apple App Store and the Google Play Store.

Once you've downloaded the application, you need to create an Expo account to make the
development process smoother. Make sure you store your account details somewhere safe,
as you'll need these later on in this chapter. Don't forget to verify your email address by
clicking the link that was sent to you by email.

The complete code for this chapter can be found on GitHub: https:/ /github. com/
PacktPublishing/React- Projects/ tree/ ch8.

This application was created using Expo SDK version 33.0.0 and so you
need to make sure the version of Expo you're using on your local machine
is similar. Since React Native and Expo are updated frequently, make sure
that you're working with this version to ensure the patterns described in
this chapter behave as expected. In case your application won't start or
you're receiving errors, make sure to check the Expo documentation to
learn more about updating the Expo SDK.

https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch8
https://github.com/PacktPublishing/React-Projects/tree/ch7

Build a House Listing Application with React Native and Expo Chapter 8

[256]

Building a house listing application with
React Native and Expo
In this section, you'll build a house listing application with React Native and Expo,
which allows you to use the same syntax and patterns you already know from React, as it's
using the React library. Also, Expo makes it possible to prevent having to install and
configure Xcode (for iOS) or Android Studio to start creating native applications on your
machine. Therefore, you can write applications for both the iOS and Android platforms
from any machine.

You can also run a React Native application in the browser using Expo
web to create Progressive Web Applications (PWAs). However,
developing for iOS, Android, and the web at the same time is still
experimental and might need a lot of performance and architectural fixes.
Also, not all the packages that work in React Native on mobile devices
will work on Expo web as well.

Expo combines React APIs and JavaScript APIs with the React Native development process
in order to allow features such as JSX components, Hooks, and native features such as
camera access. Roughly, the Expo toolchain consists of multiple tools that help you with
React Native, such as the Expo CLI, which allows you to create React Native projects from
your Terminal, with all of the dependencies that you need to run React Native. With the
Expo Client, you can open these projects from iOS and Android mobile devices that are
connected to your local network. Expo SDK is the package that contains all of the libraries
that make it possible to run your application on multiple devices and platforms.

Create a React Native project
Previously, the starting point of every new React project in this book was using Create
React App to create a boilerplate for your application. For React Native, a similar
boilerplate is available, which is part of the Expo CLI, and it can be set up just as easily:

You need to globally install the Expo CLI with the following command using npm:

npm install -g expo-cli

This will start the installation process, which can take some time as it will install the Expo
CLI with all of its dependencies that help you develop mobile applications. After this,
you're able to create a new project using the init command from the Expo CLI:

expo init house-listing

Build a House Listing Application with React Native and Expo Chapter 8

[257]

Expo will now create the project for you but, first, it will ask you to answer the following
questions:

It will ask you whether to create just a blank template, a blank template with1.
TypeScript configuration, or a sample template with some example screens set
up. For this chapter, you'll need to choose the first option: blank (expo-
template-blank).
After selecting a template, you need to type in the name of your application,2.
which is house listing in this case. This name will be added to the app.json file
with configuration information about your application.
Expo automatically detects whether you have Yarn installed on your machine. If3.
so, it will ask you to use Yarn to install other dependencies that are needed to set
up your computer. If you have Yarn installed, select yes; otherwise, npm will be
used by default. For this chapter, it's advised to use npm instead of Yarn so that
you're consistent with the previous chapters.

Now, your application will be created using the settings you've selected. This application
can now be started by moving into the directory that was just created by Expo using the
following commands:

cd house-listing
npm start

This will start Expo and give you the ability to start your project both from the Terminal or
from your browser, making it possible to either run the application on your mobile device
or by using the iOS or Android Emulator. In your Terminal, there are multiple ways to
open the application:

Sign in using the username from your Expo Client on Android or iOS. Your
projects will automatically appear in the Projects tab on your mobile device.
Scan the displayed QR Code from your mobile device that runs on Android or
iOS. If you're using an Android device, you can scan the QR Code directly from
the Expo Client application. On iOS, you need to use your camera to scan the
code that will ask you to open Expo Client.
 Press a to open the Android Emulator or i for the iOS Emulator. Keep in mind
that you need to have Xcode and/or Android Studio installed to use either one of
the emulators.
By pressing e to send a link to you by email, this link can be opened from a
mobile device that has the Expo Client application installed on it.

Build a House Listing Application with React Native and Expo Chapter 8

[258]

Alternatively, running the npm start command will open your browser on the
http://localhost:19002/ URL, showing the Expo Developer Tools. This page will look
like this, assuming you have the version of the Expo SDK installed that was mentioned in
the Getting started section:

On this page, you can see a sidebar on the left and the logs from your React Native
application on the right. This sidebar contains buttons so that you can start the iOS or
Android Emulator, for which you need to have either Xcode or Android Studio installed.
Otherwise, you can also find a button to send a link to open the application by email or a
QR Code on your mobile device using the Expo application you've previously installed.

Build a House Listing Application with React Native and Expo Chapter 8

[259]

At this point, your application should look as follows. This screenshot was taken from an
iOS device. It shouldn't matter if you've opened the application using the emulator for iOS
or Android or from an iOS or Android device:

Build a House Listing Application with React Native and Expo Chapter 8

[260]

This application was created using Expo SDK version 33.0.0 and so you
need to make sure the version of Expo you're using on your local machine
is similar. Since React Native and Expo are updated frequently, make sure
that you're working with this version to ensure the patterns described in
this chapter behave as expected. In case your application won't start or
you're receiving errors, make sure to check the Expo documentation to
learn more about updating the Expo SDK.

The project structure from this React Native application, which we created with Expo, is
quite similar to the React projects you've created in the previous chapters. It looks as
follows:

house-listing
|-- .expo
|-- assets
 |-- icon.png
 |-- splash.png
|-- node_modules
.gitignore
App.js
app.json
babel.config.js
package.json

In the assets directory, you can find the images that are used for the application icon on
the home screen once you've installed this application on your mobile device, as well as the
image that will serve as the splash screen, which is displayed when you start the
application. The App.js file is the actual entry point of your application, where you'll
return the component that will be rendered when the application mounts. Configurations
for your application, for example, for the App Store are placed in app.json, while
babel.config.js holds specific Babel configurations.

Setting up routing in React Native
As we mentioned previously, the App.js file is the entry point of your application, which
is defined by Expo. If you open this file, you will see it consists of components and
that StyleSheet has been imported directly from react-native. The syntax of writing
styles in React Native is different from React being used in a browser, so you'll have to
install styled-components later on in this chapter.

Build a House Listing Application with React Native and Expo Chapter 8

[261]

Creating routes with React Navigation
Let's proceed by installing React Navigation. There are many packages available to help
you handle routing in React Native, but this is one of the most popular and advised to use
by Expo. Besides React Navigation, you must also install the related packages, called
react-navigation-stack and react-navigation-tabs, which are needed to create
the navigators for your application. React Navigation and its dependencies can be installed
by running the following command:

npm install react-navigation react-navigation-stack react-navigation-tabs

To add routing to your React Native application, you will need to understand the
difference between routing in a browser and a mobile application. History in React Native
doesn't behave the same way as it does in a browser, where users can navigate to different
pages by changing the URL in the browser and the previously visited URLs will be added
to the browser history. Instead, you will need to keep track of transitions between pages
yourself and store a local history in your application.

With React Navigation, you can use multiple different navigators to help you do this,
including a stack navigator and a tab navigator. The stack navigator behaves in a way that
is very similar to the browser as it stacks pages after transitioning between them and lets
you navigate using native gestures and animations for iOS and Android:

You can set up a stack navigator by passing an object containing routing1.
configuration to the createStackNavigator method, which can be imported
from react-navigation-stack in the App.js file. Also, you will need to
import createAppContainer from react-navigation, which helps you
return a component that wraps all of the routes:

import React from 'react';
import { StyleSheet, Text, View } from 'react-native';
+ import { createAppContainer } from 'react-navigation';
+ import { createStackNavigator } from 'react-navigation-stack';

export default function App() {
 ...

Instead of returning a component called App, you need to return the component2.
that was created with createStackNavigator, which holds all of the routes for
your application. This StackNavigator component needs to be exported using
createAppContainer, as follows:

import React from 'react';
import { StyleSheet, Text, View } from 'react-native';

Build a House Listing Application with React Native and Expo Chapter 8

[262]

import { createAppContainer } from 'react-navigation';
import { createStackNavigator } from 'react-navigation-stack';

- export default function App() {
- return (
+ const Home = () => (
 <View style={styles.container}>
 <Text>Open up App.js to start working on your app!</Text>
 </View>
);
- }

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 alignItems: 'center',
 justifyContent: 'center',
 },
});

+ const StackNavigator = createStackNavigator({
+ Home: {
+ screen: Home,
+ },
+ });

+ export default createAppContainer(StackNavigator);

Your application now has one route, which is Home, and renders the3.
Home component. You can also add title for this screen by setting the
navigationOptions field in the object that's passed to
createStackNavigator using the following code:

...

const AppNavigator = createStackNavigator({
 Home: {
 screen: Home,
+ navigationOptions: { title: 'Home' },
 },
});

export default createAppContainer(AppNavigator);

Build a House Listing Application with React Native and Expo Chapter 8

[263]

To create another route, you can copy this process by adding a4.
Detail component and add a route that renders this component as well:

import React from 'react';
import { StyleSheet, Text, View } from 'react-native';
import { createAppContainer } from 'react-navigation';
import { createStackNavigator } from 'react-navigation-stack';

const Home = () => (
 <View style={styles.container}>
 <Text>Open up App.js to start working on your app!</Text>
 </View>
);

+ const Detail = () => (
+ <View style={styles.container}>
+ <Text>Open up App.js to start working on your app!</Text>
+ </View>
+);

...

const AppNavigator = createStackNavigator({
 Home: {
 screen: Home,
 navigationOptions: { title: 'Home' },
 },
+ Detail: {
+ screen: Detail,
+ navigationOptions: { title: 'Detail' },
+ },
});

export default createAppContainer(AppNavigator);

Now that you have two screens in your application, you will also need to set a5.
default route that will be rendered when the application first mounts. You can do
this by extending the routing configuration object passed to
createStackNavigator using the following code:

...

const AppNavigator = createStackNavigator({
 Home: {
 screen: Home,
 navigationOptions: { title: 'Home' },
 },

Build a House Listing Application with React Native and Expo Chapter 8

[264]

 Detail: {
 screen: Detail,
 navigationOptions: { title: 'Detail' },
 },
+ }, { initialRouteName: 'Home' });
- });

export default createAppContainer(AppNavigator);

You can see that the Detail route is also rendering by changing the value for
initialRouteName to Detail, and checking whether the screen that is rendered in your
application has the title Detail.

In the next part of this section, you'll learn how to transition between the different screens
that are created by this navigator.

Transitioning between screens
Transitioning between screens in React Native also works a bit differently than in the
browser because again, there are no URLs. Instead, you need to use the navigation prop,
which is available from components that are rendered by the stack navigator. The
navigation prop can be used to handle routing by making the following changes:

You can access the navigation prop in this example from the Home and Detail1.
components:

import React from 'react';
import { StyleSheet, Text, View } from 'react-native';
import { createAppContainer } from 'react-navigation';
import { createStackNavigator } from 'react-navigation-stack';

- const Home = () => (
+ const Home = ({ navigation }) => (
 <View style={styles.container}>
 <Text>Open up App.js to start working on your app!</Text>
 </View>
);

...

Build a House Listing Application with React Native and Expo Chapter 8

[265]

The navigation prop holds multiple values, including the navigate function,2.
which takes a route name as a parameter. You can use this function as an event
on, for example, a Button component that you can import from react-native.
Compared to what you're used to with React, you can click a button by calling an
onPress event handler instead of onClick. Also, the Button component doesn't
take any children as a prop but a title prop instead. To do this, change the
following code:

import React from 'react';
- import { StyleSheet, Text, View } from 'react-native';
+ import { Button, StyleSheet, Text, View } from 'react-native';
import { createAppContainer } from 'react-navigation';
import { createStackNavigator } from 'react-navigation-stack';

const Home = ({ navigation }) => (
 <View style={styles.container}>
 <Text>Open up App.js to start working on your app!</Text>
+ <Button onPress={() => navigation.navigate('Detail')} title='Go
to Detail' />
 </View>
);

...

When you press the button with the Go to Detail title, you'll transition to the3.
Detail screen. The header of this screen will also render a Return button, which
will send you back to the Home screen when you press it. You can also create a
custom return button by using the goBack function from the navigation prop,
like this:

...

- const Detail = () => (
+ const Detail = ({ navigation }) => (
 <View style={styles.container}>
 <Text>Open up App.js to start working on your app!</Text>
+ <Button onPress={() => navigation.goBack()} title='Go to back
to Home' />
 </View>
);

...

Build a House Listing Application with React Native and Expo Chapter 8

[266]

Usually, it's good practice to store these components in a different directory and only use
the App.js file to make your application more readable. To achieve this, you need to create
a new directory called Screens in the root directory of your application, where you need to
add a file for each of the two screens you've just created. Let's learn how we can do that:

Create a file called Home.js in the Screens directory and add the1.
Home component to this file, including the imports of the used modules. The code
for the Home component is as follows:

import React from 'react';
import { Button, StyleSheet, Text, View } from 'react-native';

const Home = ({ navigation }) => (
 <View style={styles.container}>
 <Text>Open up App.js to start working on your app!</Text>
 <Button onPress={() => navigation.navigate('Detail')} title='Go
to Detail' />
 </View>
);

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 alignItems: 'center',
 justifyContent: 'center',
 },
});

export default Home;

You need to do the same for the Detail screen by creating2.
the Screens/Detail.js file and adding the code for the Detail component
and the used modules to this file. You can do this by adding the following code
block to that new file:

import React from 'react';
import { Button, StyleSheet, Text, View } from 'react-native';

const Detail = ({ navigation }) => (
 <View style={styles.container}>
 <Text>Open up App.js to start working on your app!</Text>
 <Button onPress={() => navigation.goBack()} title='Go to back
to Home' />
 </View>
);

Build a House Listing Application with React Native and Expo Chapter 8

[267]

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 alignItems: 'center',
 justifyContent: 'center',
 },
});

export default Detail;

In the App.js file, you need to import the Home and Detail components and3.
remove the code blocks that created these two components previously, as
follows:

import React from 'react';
- import { Button, StyleSheet, Text, View } from 'react-native';
import { createAppContainer } from 'react-navigation';
import { createStackNavigator } from 'react-navigation-stack';
+ import Home from './Screens/Home';
+ import Detail from './Screens/Detail';

- const Home = ({ navigation }) => (
- <View style={styles.container}>
- <Text>Open up App.js to start working on your app!</Text>
- <Button onPress={() => navigation.navigate('Detail')}
title='Go to Detail' />
- </View>
-);

- const Detail = ({ navigation }) => (
- <View style={styles.container}>
- <Text>Open up App.js to start working on your app!</Text>
- <Button onPress={() => navigation.goBack()} title='Go to back
to Home' />
- </View>
-);

- const styles = StyleSheet.create({
- container: {
- flex: 1,
- backgroundColor: '#fff',
- alignItems: 'center',
- justifyContent: 'center',
- },
- });

const AppNavigator = createStackNavigator({

Build a House Listing Application with React Native and Expo Chapter 8

[268]

 Home: {
 screen: Home,
 navigationOptions: { title: 'Home' },
 },
 Detail: {
 screen: Detail,
 navigationOptions: { title: 'Detail' },
 },
}, { initialRouteName: 'Home' });

export default createAppContainer(AppNavigator);

Your application only uses the App.js file to create the routes and set up the stack
navigator. Many applications use multiple types of navigators next to each other, which is
something that will be shown in the next part of this section.

Using multiple navigators together
For more complex applications, you don't want all of your routes to be stacked on top of
each other; you only want these stacks to be created for routes that are related to each other.
Luckily, you can use different types of navigators next to each other with React Navigation.
Using multiple navigators for the application can be done as follows:

One of the most common ways of navigation in mobile applications is by using1.
tabs; React Navigation can also create a tab navigator for you. Therefore, you'd
need to pass a routing object to the createBottomTabNavigator method,
which you can import from react-navigation-tabs using the following code:

import React from 'react';
import { Button, StyleSheet, Text, View } from 'react-native';
import { createAppContainer } from 'react-navigation';
import { createStackNavigator } from 'react-navigation-stack';
+ import { createBottomTabNavigator } from 'react-navigation-tabs';

import Home from './Screens/Home';
import Detail from './Screens/Detail';

...

Build a House Listing Application with React Native and Expo Chapter 8

[269]

Suppose you want the Home screen and the adjoining Detail screen to be2.
available on the same tab—you'd need to rename the stack navigator for these
screens. This stack navigator should be added to the routing object that is passed
to createBottomTabNavigator, which creates the tab navigator. The
declaration of the initial route that is loaded is now also linked to the tab
navigator:

import React from 'react';
import { Button, StyleSheet, Text, View } from 'react-native';
import { createAppContainer } from 'react-navigation';
import { createStackNavigator } from 'react-navigation-stack';
import { createBottomTabNavigator } from 'react-navigation-tabs';
import Home from './Screens/Home';
import Detail from './Screens/Detail';

- const AppNavigator = createStackNavigator({
+ const HomeStack = createStackNavigator({
 Home: {
 screen: Home,
 navigationOptions: { title: 'Home' },
 },
 Detail: {
 screen: Detail,
 navigationOptions: { title: 'Detail' },
 },
- }, { initialRouteName: 'Home' });
+ });

+ const AppNavigator = createBottomTabNavigator({
+ Home: HomeStack
+ }, { initialRouteName: 'Home' });

export default createAppContainer(AppNavigator);

The main navigation for your application is now the tab navigator, which has
only one tab, called Home. This tab will render the stack navigator that contains
the Home and Detail routes, meaning you can still navigate to the Detail screen
without having to leave the Home tab.

Build a House Listing Application with React Native and Expo Chapter 8

[270]

You can easily add another tab to the tab navigator that renders either a3.
component or another stack navigator. Let's create a new screen called
Settings, for which you'll first need to create a new component in
the Screens/Settings.js file:

import React from 'react';
import { StyleSheet, Text, View } from 'react-native';

const Settings = ({ navigation }) => (
 <View style={styles.container}>
 <Text>Open up App.js to start working on your app!</Text>
 </View>
);

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 alignItems: 'center',
 justifyContent: 'center',
 },
});

export default Settings;

Import this component in App.js to add the new Screens route to the tab4.
navigator. This screen renders the Settings component after you make these
changes:

import React from 'react';
import { Button, StyleSheet, Text, View } from 'react-native';
import { createAppContainer } from 'react-navigation';
import { createStackNavigator } from 'react-navigation-stack';
import { createBottomTabNavigator } from 'react-navigation-tabs';
import Home from './Screens/Home';
import Detail from './Screens/Detail';
+ import Settings from './Screens/Settings';

...

const AppNavigator = createBottomTabNavigator({
 Home: HomeStack,
+ Settings,
}, { initialRouteName: 'Home' });

export default createAppContainer(AppNavigator);

Build a House Listing Application with React Native and Expo Chapter 8

[271]

Your application now has a tab called Settings, which will render the5.
Settings component. However, it isn't possible to customize, for
example, title of this screen. Therefore, you will need to create another stack
navigator that only has the Settings route by using the following code:

...

+ const SettingsStack = createStackNavigator({
+ Settings: {
+ screen: Settings,
+ navigationOptions: { title: 'Settings' },
+ },
+ });

const AppNavigator = createBottomTabNavigator({
 Home: HomeStack,
- Settings,
+ Settings: SettingsStack,
}, { initialRouteName: 'Home' });

export default createAppContainer(AppNavigator);

You've now added both a stack navigator and a tab navigator to your application, which
allows you to navigate between screens and tabs at the same time. If you're running your
application using the iOS Emulator or on a device that runs iOS, it will look exactly like the
following screenshot. For Android, the application should look very similar at this point:

Build a House Listing Application with React Native and Expo Chapter 8

[272]

In the next section, you'll load data from the mock API and use React life cycles to load this
data in the different screens.

Build a House Listing Application with React Native and Expo Chapter 8

[273]

Using life cycles in React Native
Before you start adding styling to your React Native components, you need to fetch some
data in your application that will be displayed by these components. Therefore, you will
need to use life cycles to retrieve this data and add it to the local state of your application.

To fetch data, you'll use the fetch API again and combine this with the useState and
useEffect Hooks to retrieve this data within the life cycles. Once the data has been
fetched from the mock API, it can be displayed in a React Native FlatList component.
Life cycle methods can be added to your React Native application using Hooks by making
the following additions:

You'll use the useState Hook to set the constants for the loading indicator, error1.
message, and displaying the data, where the loading constant should initially
be true, the error constant should be empty, and the data constant should be an
empty array:

...

- const Home = ({ navigation }) => (
+ const Home = ({ navigation }) => {
+ const [loading, setLoading] = React.useState(true);
+ const [error, setError] = React.useState('');
+ const [data, setData] = React.useState([]);

+ return (
 <View style={styles.container}>
 <Text>Open up App.js to start working on your app!</Text>
 <Button onPress={() => navigation.navigate('Detail')}
title='Go to Detail' />
 </View>
)
+ };

Next, you need to create an asynchronous function to retrieve the data from the2.
mock API and call this function from a useEffect Hook that is invoked when
the application mounts. The fetchAPI function will change both of the constants
for loading, error, and data when the API request is successful. If not, the
error message will be added to the error constant:

...
const Home = ({ navigation }) => {
 const [loading, setLoading] = React.useState(true);
 const [error, setError] = React.useState('');
 const [data, setData] = React.useState([]);

Build a House Listing Application with React Native and Expo Chapter 8

[274]

+ const fetchAPI = async () => {
+ try {
+ const data = await
fetch('https://my-json-server.typicode.com/PacktPublishing/React-Pr
ojects/listings');
+ const dataJSON = await data.json();

+ if (dataJSON) {
+ setData(dataJSON);
+ setLoading(false);
+ }
+ } catch(error) {
+ setLoading(false);
+ setError(error.message);
+ }
+ };

+ React.useEffect(() => {
+ fetchAPI();
+ }, []);

 return (
 ...

This data constant can now be added as a prop to a FlatList component, which3.
iterates over the data and renders components that display this data.
FlatList returns an object that contains a field called item, which contains the
data of each iteration, as follows:

import React from 'react';
- import { Button, StyleSheet, Text, View } from 'react-native';
+ import { FlatList, StyleSheet, Text, View } from 'react-native';

const Home = ({ navigation }) => {

 ...

 return (
 <View style={styles.container}>
- <Text>Open up App.js to start working on your app!</Text>
- <Button onPress={() => navigation.navigate('Detail')}
title='Go to Detail' />
+ {!loading && !error && <FlatList
+ data={data}
+ renderItem={({item}) => <Text>{item.title}</Text>}
+ />}
 </View>
)

Build a House Listing Application with React Native and Expo Chapter 8

[275]

};

...

Just like we can with React, when using a map or forEach function, you need to4.
specify a key prop on each iterated component. FlatList automatically looks
for a key field in your data object, but if you don't have a specific key field, you
need to set this using the keyExtractor prop. It's important to know that the
value that's used for the key should be a string, so you need to transform the id
field that's returned by the mock API into a string:

 ...

 return (
 <View style={styles.container}>
 {!loading && !error && <FlatList
 data={data}
+ keyExtractor={item => String(item.id)}
 renderItem={({item}) => <Text>{item.title}</Text>}
 />}
 </View>
);
};

...

Now, your application will display a list with titles of house listings from the mock API,
without any routing to a specific listing or styling. This will make your application look as
follows, where the differences between Android and iOS should be limited since we
haven't added any significant styling to the application yet:

Build a House Listing Application with React Native and Expo Chapter 8

[276]

Build a House Listing Application with React Native and Expo Chapter 8

[277]

To add the navigation to the Detail route again, you need to return a component from
FlatList, which supports onPress events. These are, for example, the Button component
you used previously and the TouchableOpacity component. This last component can be
used as a replacement for a View component, which doesn't support onPress events.
Creating navigation here is done by making the following changes:

You need to import the TouchableOpacity component from react-1.
native and wrap the Text component returned by FlatList with this
component. The onPress event will call the navigate function from the
navigation prop and navigate to the Detail route if we change the following
code:

import React from 'react';
- import { FlatList, View, Text } from 'react-native';
+ import { FlatList, View, Text, TouchableOpacity } from 'react-
native';

const Home = ({ navigation }) => {
 ...

 return (
 <View style={styles.container>
 {!loading && !error && <FlatList
 data={data}
 keyExtractor={item => String(item.id)}
- renderItem={({item}) => <Text>{item.text}</Text>}
+ renderItem={({item}) => (
+ <TouchableOpacity onPress={() =>
navigation.navigate('Detail')}>
+ <Text>{item.title}</Text>
+ </TouchableOpacity>
+)}
 />}
 </View>
);
};

...

Build a House Listing Application with React Native and Expo Chapter 8

[278]

When you click on any of the titles that are displayed in your application, you'll2.
navigate to the Detail route. However, you want this screen to display the item
you've just pressed. Therefore, you will need to pass parameters to this route
once the TouchableOpacity components are pressed. To do this, you will need
to pass these parameters inside an object to the navigate function:

 ...

 return (
 <View style={styles.container>
 {!loading && !error && <FlatList
 data={data}
 keyExtractor={item => String(item.id)}
 renderItem={({item}) => (
- <TouchableOpacity onPress={() =>
navigation.navigate('Detail')}>
+ <TouchableOpacity onPress={() =>
navigation.navigate('Detail', { item })}>
 <Text>{item.title}</Text>
 </TouchableOpacity>
)}
 />}
 </View>
);
};

...

From the component that is rendered by the Detail route, you can take this3.
parameter object from the navigation prop and use this to display the item. To
get the parameters from the navigation prop, you can use
the getParam function, where you need to specify the name of the parameter
you want to get and a fallback value for this parameter. Just like we did for the
Home route, you can display title of the listing, which in this case should
be title from the item parameter:

import React from 'react';
- import { Button, StyleSheet, Text, View } from 'react-native';
+ import { StyleSheet, Text, View } from 'react-native';

- const Detail = ({ navigation }) => (
+ const Detail = ({ navigation }) => {
+ const item = navigation.getParam('item', {})

+ return (
 <View style={styles.container}>

Build a House Listing Application with React Native and Expo Chapter 8

[279]

- <Text>Open up - App.js to start working on your app!</Text>
- <Button onPress={() => navigation.goBack()} title='Go to
back to Home' />
+ <Text>{item.title}</Text>
 </View>
);
+ };

...

export default Detail;

Instead of passing the entire object containing the data from the item
you've clicked, you could just send the ID of the item. That way, you
could fetch the mock API to get the data for this listing and display it on
the Detail route as well. To get an individual listing, you need to send a
request to the 'listings/:id' route.

You're now able to view both a list of all of the listings from the mock API and a specific
listing from this API. Styling will be added in the next section using styled-components.

Styling React Native applications
The syntax you've used so far to style React Native components in this application looks a
bit different from what you've used already. Therefore, you can install styled-
components to use the syntax for writing styles you're already familiar with. To install this,
you need to run the following command:

npm install styled-components

This will install the styled-components package, after which you can proceed by creating
styling for the components that are already present in your application:

Let's start by transforming the View and FlatList components in the1.
Screens/Home.js file into styled-components. To do this, you need to
import styled from styled-components/native as you only want to import
the specific native parts of the package:

import React from 'react';
- import { FlatList, StyleSheet, Text, View, TouchableOpacity }
from 'react-native';
+ import { FlatList, Text, View, TouchableOpacity } from 'react-
native';
+ import styled from 'styled-components/native';

Build a House Listing Application with React Native and Expo Chapter 8

[280]

const Home = ({ navigation }) => {
 ...

StyleSheet at the bottom of the file creates the styling for the View component,2.
which should be transformed into a component styled with styled-
components. As we saw in the previous chapters, you can extend the style of
existing components as well. Most of the styling rules can be copied and changed
to the styled-components syntax, as seen in the following code block:

...

+ const ListingsWrapper = styled(View)`
+ flex: 1;
+ background-color: #fff;
+ align-items: center;
+ justify-content: center;
+ `

- const styles = StyleSheet.create({
- container: {
- flex: 1,
- backgroundColor: '#fff',
- alignItems: 'center',
- justifyContent: 'center',
- },
- });

const Home = ({ navigation }) => {
 ...
 return (
- <View style={styles.container}>
+ <ListingsWrapper>
 {!loading && !error && <FlatList
 data={data}
 keyExtractor={item => String(item.id)}
 renderItem={({item}) => (
 <TouchableOpacity onPress={() =>
navigation.navigate('Detail', { item })}>
 <Text>{item.title}</Text>
 </TouchableOpacity>
)}
 />}
+ </ListingsWrapper>
- </View>
);
};

Build a House Listing Application with React Native and Expo Chapter 8

[281]

export default Home;

The same can be done for the FlatList component, that is, by extending the3.
style for this component with styled from styled-components and setting
custom styling rules like this:

...

const ListingsWrapper = styled(View)`
 flex: 1;
 background-color: #fff;
 align-items: center;
 justify-content: center;
`

+ const Listings = styled(FlatList)`
+ width: 100%;
+ padding: 5%;
+ `;

const Home = ({ navigation }) => {
 ...
 return (
 <ListingsWrapper>
- {!loading && !error && <FlatList
+ {!loading && !error && <Listings
 data={data}
 keyExtractor={item => String(item.id)}
 renderItem={({item}) => (
 <TouchableOpacity onPress={() =>
navigation.navigate('Detail', { item })}>
 <Text>{item.title}</Text>
 </TouchableOpacity>
)}
 />}
 </ListingsWrapper>
);
};

export default Home;

Build a House Listing Application with React Native and Expo Chapter 8

[282]

FlatList is currently only returning a Text component with title, while more4.
data can be displayed. To do this, you need to create a new component that
returns multiple components containing the listings data from the mock API.
You can do this in a new directory called Components, which contains another
directory called Listing. In this directory, you need to create the
ListingItem.js file and place the following code block in there:

import React from 'react';
import styled from 'styled-components/native';
import { Image, Text, View, TouchableOpacity } from 'react-native';

const ListingItemWrapper = styled(TouchableOpacity)`
 display: flex;
 flex-direction: row;
 padding: 2%;
 background-color: #eee;
 border-radius: 5px;
 margin-bottom: 5%;
`;

export const Title = styled(Text)`
 flex-wrap: wrap;
 width: 99%;
 font-size: 20px;
`

export const Price = styled(Text)`
 font-weight: bold;
 font-size: 20px;
 color: blue;
`

const Thumbnail = styled(Image)`
 border-radius: 5px;
 margin-right: 4%;
 height: 200px;
 width: 200px;
`

const ListingItem = ({ item, navigation }) => (
 <ListingItemWrapper onPress={() => navigation.navigate('Detail', {
item })}>
 <Thumbnail
 source={{uri: item.thumbnail}}
 />
 <View>
 <Title>{item.title}</Title>

Build a House Listing Application with React Native and Expo Chapter 8

[283]

 <Price>{item.price}</Price>
 </View>
 </ListingItemWrapper>
);

export default ListingItem;

In this code block, you import styled from styled-components/native and
the components from React Native that you want to style. The
ListingItem component that is exported at the bottom of the file takes an item
and a navigation prop to display this data within the created components and
handle navigation. As we saw with the styled Image component, a source prop
is been given an object to display the thumbnail from the mock API.

This ListingItem component should now be imported into Screens/Home.js,5.
where it will be used by FlatList to display the listings. This component takes
both item and navigation as props, which is done in the following code block:

import React from 'react';
- import { FlatList, View, Text, TouchableOpacity } from 'react-
native';
+ import { FlatList, View } from 'react-native';
import styled from 'styled-components/native';
+ import ListingItem from '../Components/Listing/ListingItem'

...
const Home = ({ navigation }) => {
 ...

 return (
 <ListingsWrapper>
 {!loading && !error && <Listings
 data={data}
 keyExtractor={item => String(item.id)}
- renderItem={({item}) => (
- <TouchableOpacity onPress={() =>
navigation.navigate('Detail', { item })}>
- <Text>{item.title}</Text>
- </TouchableOpacity>
-)}
+ renderItem={({item}) => <ListingItem item={item} />}
 />}
 </ListingsWrapper>
);
};

export default Home;

Build a House Listing Application with React Native and Expo Chapter 8

[284]

In React Native, styling rules are scoped to components, meaning
a Text component can only take styling rules that are specified for this
component by React Native. When you try to add a styling rule that isn't
supported, you'll receive an error and a list of all the possible styling rules
for this component. Note that styled-components automatically
renames styling rules for you to match the syntax for styling in React
Native.

After these changes, you'll have added the first styled-components to your application.
Your application should look as follows when you're using either the iOS Emulator or a
device that runs on iOS:

Build a House Listing Application with React Native and Expo Chapter 8

[285]

So far, the styling should look similar on both iOS and Android since we haven't added any
platform-specific styling to the application yet. This will be done in the next part of this
section, where you'll explore multiple ways to add styling that differs based on the
platform that your application is running on.

Differences in styling for iOS and Android
When styling your application, you might want to have different styling rules for iOS and
Android, for example, to match the styling of the Android operating system better. There
are multiple ways to apply different styling rules to different platforms; one of them is by
using the Platform module, which can be imported from React Native.

Let's try this by adding icons to the tabs in the navigator tab and have different icons for
iOS and Android:

First, import the icons from Expo into the App.js file. There are a lot of icon sets1.
available from Expo. For this application, you'll import the Ionicons icon set:

import React from 'react';
+ import { Ionicons } from '@expo/vector-icons';
import { createAppContainer } from 'react-navigation';
import { createStackNavigator } from 'react-navigation-stack';
import { createBottomTabNavigator } from 'react-navigation-tabs';
import Home from './Screens/Home';
import Detail from './Screens/Detail';
import Settings from './Screens/Settings';

const HomeStack = createStackNavigator({
 ...

When creating the tab navigator, you can define which icons should be added to2.
the tabs for each route. Therefore, you need to create a
defaultNavigationOptions field in the routing object that should contain a
tabBarIcon field. In this field, you need to take the current route from the
navigation prop and return the icon for this route:

...

const AppNavigator = createBottomTabNavigator({
 Home: HomeStack,
 Settings: SettingsStack,
- }, { initialRouteName: 'Home' });
+ }, {
+ initialRouteName: 'Home',

Build a House Listing Application with React Native and Expo Chapter 8

[286]

+ defaultNavigationOptions: ({ navigation }) => ({
+ tabBarIcon: () => {
+ const { routeName } = navigation.state;

+ let iconName;
+ if (routeName === 'Home') {
+ iconName = `ios-home`;
+ } else if (routeName === 'Settings') {
+ iconName = `ios-settings`;
+ }

+ return <Ionicons name={iconName} size={20} />;
+ }
+ })
});

export default createAppContainer(AppNavigator);

3. To make a distinction between iOS and Android, you need to import the
Platform module from react-native. With this module, you can check
whether your mobile device is running iOS or Android by checking whether the
value of Platform.OS is either ios or android. The module must be imported
into the following code block:

import React from 'react';
+ import { Platform } from 'react-native';
import { Ionicons } from '@expo/vector-icons';
import { createAppContainer } from 'react-navigation';
import { createStackNavigator } from 'react-navigation-stack';
import { createBottomTabNavigator } from 'react-navigation-tabs';
import Home from './Screens/Home';
import Detail from './Screens/Detail';
import Settings from './Screens/Settings';

const HomeStack = createStackNavigator({
 ...

Using the Platform module, you can change the icon that is being rendered for4.
each of the tabs in the navigator. Besides icons designed for iOS, Ionicons also
has icons designed for Android based on Material Design and can be used like
this:

...

const AppNavigator = createBottomTabNavigator({
 Home: HomeStack,
 Settings: SettingsStack,

Build a House Listing Application with React Native and Expo Chapter 8

[287]

}, {
 initialRouteName: 'Home',
 defaultNavigationOptions: ({ navigation }) => ({
 tabBarIcon: () => {
 const { routeName } = navigation.state;

 let iconName;
 if (routeName === 'Home') {
- iconName = `ios-home`;
+ iconName = `${Platform.OS === 'ios' ? 'ios' : 'md'}-home`;
 } else if (routeName === 'Settings') {
- iconName = `ios-settings`;
+ iconName = `${Platform.OS === 'ios' ? 'ios' : 'md'}-
settings`;
 }

 return <Ionicons name={iconName} size={20} />;
 }
 }),
});

export default createAppContainer(AppNavigator);

When you're running the application on a mobile device with Android, the
navigator tab will display the icons based on Material Design. If you're using an
Apple device, it will display different icons; you can change the Platform.OS
=== 'ios' condition to Platform.OS === 'android' to add the Material
Design icons to iOS instead.

The displayed icons are colored black, while the labels for the active and inactive5.
tabs have a different color. You can specify the colors of the icons and the labels
in the active and inactive state by changing the configuration object. After the
tabBarIcon field, you can create a new field called tabBarOptions and add
the activeTintColor and inActiveTintColor fields to them as follows:

...
const AppNavigator = createBottomTabNavigator({
 Home: HomeStack,
 Settings: SettingsStack,
}, {
 initialRouteName: 'Home',
 defaultNavigationOptions: ({ navigation }) => ({
 tabBarIcon: () => {
 const { routeName } = navigation.state;

 let iconName;
 if (routeName === 'Home') {

Build a House Listing Application with React Native and Expo Chapter 8

[288]

 iconName = `${Platform.OS === 'ios' ? 'ios' : 'md'}-home`;
 } else if (routeName === 'Settings') {
 iconName = `${Platform.OS === 'ios' ? 'ios' : 'md'}-
settings`;
 }

 return <Ionicons name={iconName} size={20} />;
 },
+ tabBarOptions: {
+ activeTintColor: 'blue',
+ inactiveTintColor: '#556',
+ },
 })
});

export default createAppContainer(AppNavigator);

This only changes the value for the label, but the values for the active and6.
inactive tint color are also available on the tabBarIcon field it will take the
tintColor prop. This value can be passed to Ionicons to change the color of
the icon as well:

...

const AppNavigator = createBottomTabNavigator({
 Home: HomeStack,
 Settings: SettingsStack,
}, {
 initialRouteName: 'Home',
 defaultNavigationOptions: ({ navigation }) => ({
- tabBarIcon: () => {
+ tabBarIcon: ({ tintColor }) => {
 const { routeName } = navigation.state;

 let iconName;
 if (routeName === 'Home') {
 iconName = `${Platform.OS === 'ios' ? 'ios' : 'md'}-home`;
 } else if (routeName === 'Settings') {
 iconName = `${Platform.OS === 'ios' ? 'ios' : 'md'}-
settings`;
 }

- return <Ionicons name={iconName} size={20} />;
+ return <Ionicons name={iconName} size={20} color={tintColor}
/>;
 },
 tabBarOptions: {

Build a House Listing Application with React Native and Expo Chapter 8

[289]

 activeTintColor: 'blue',
 inactiveTintColor: '#556',
 },
 }),
});

export default createAppContainer(AppNavigator);

Now, when you view the Home screen, both the tab icon and label are colored blue, while
the Settings tab will be colored gray. Also, there will be a difference in the icons that are
displayed on either iOS or Android no matter whether you're running the application on
the emulator or a mobile device. If you're using iOS, the application should look like this:

Build a House Listing Application with React Native and Expo Chapter 8

[290]

Another page that can be styled is the Detail screen. For this screen, you can also choose
to have differences in styling between iOS and Android. As mentioned before, there are
multiple ways to do this; besides using the Platform module, you can also use platform-
specific file extensions. Any file that has the *.ios.js or *.android.js extension will
only be rendered on the platform specified in the extension. Not only can you apply
different styling rules, but also have changes in functionality on different platforms:

To create a specific Detail screen for mobile devices running Android, you need1.
to create a new file called
Components/Listing/ListingDetail.android.js. This file will have the
following code inside:

import React from 'react';
import styled from 'styled-components/native';
import { Image, Text, View, Dimensions } from 'react-native';

const ListingDetailWrapper = styled(View)`
 display: flex;
`;

const Details = styled(View)`
 padding: 5%;
`

export const Title = styled(Text)`
 flex-wrap: wrap;
 width: 99%;
 font-size: 30px;
`

export const Price = styled(Text)`
 font-weight: bold;
 font-size: 20px;
 color: blue;
`

const Thumbnail = styled(Image)`
 width: 100%;
 height: ${Dimensions.get('window').width};
`

const ListingDetail = ({ item }) => (
 <ListingDetailWrapper>
 <Thumbnail
 source={{uri: item.thumbnail}}
 />

Build a House Listing Application with React Native and Expo Chapter 8

[291]

 <Details>
 <Title>{item.title}</Title>
 <Price>{item.price}</Price>
 </Details>
 </ListingDetailWrapper>
);

export default ListingDetail;

As you can see, some components will be rendered by the
ListingDetail component. Also, the Dimensions module is imported from
react-native. This module can help you get the screen size of the device that
which the application is running on. By getting the width, you can display an
image over the entire width of the user's screen.

For devices running iOS, you can do the same, but this time you need to create a2.
new file called Components/Listing/ListingDetail.ios.js. This file will
contain a variant of the code that's running on Android, where the image will be
displayed over the entire height of the screen using the Dimensions module.
The ListingDetail component for iOS can be created by pasting the following
code block into that file:

import React from 'react';
import styled from 'styled-components/native';
import { Image, Text, View, Dimensions } from 'react-native';

const ListingDetailWrapper = styled(View)`
 display: flex;
`;

const Details = styled(View)`
 position: absolute;
 top: 0;
 padding: 5%;
 width: 100%;
 background: rgba(0, 0, 255, 0.1);
`

export const Title = styled(Text)`
 flex-wrap: wrap;
 width: 99%;
 font-size: 30px;
`

export const Price = styled(Text)`
 font-weight: bold;

Build a House Listing Application with React Native and Expo Chapter 8

[292]

 font-size: 20px;
 color: blue;
`

const Thumbnail = styled(Image)`
 width: 100%;
 height: ${Dimensions.get('window').height};
`

const ListingDetail = ({ item }) => (
 <ListingDetailWrapper>
 <Thumbnail
 source={{uri: item.thumbnail}}
 />
 <Details>
 <Title>{item.title}</Title>
 <Price>{item.price}</Price>
 </Details>
 </ListingDetailWrapper>
);

export default ListingDetail;

To display one of these components in your application, some changes need to3.
made to the Screens/Detail.js file. The ListingDetail component should
be imported into this file and returned with the item prop:

import React from 'react';
import { StyleSheet, Text, View } from 'react-native';
+ import ListingDetail from '../Components/Listing/ListingDetail';

const Detail = ({ navigation }) => {
 const item = navigation.getParam('item', {});

 return (
- <View style={styles.container}>
+ <ListingDetail item={item} />
- </View>
)
};

- const styles = StyleSheet.create({
- container: {
- flex: 1,
- backgroundColor: '#fff',
- alignItems: 'center',
- justifyContent: 'center',
- },

Build a House Listing Application with React Native and Expo Chapter 8

[293]

- });

export default Detail;

Your application now has two different versions of the Detail screen for iOS and Android,
and React Native will make sure that the file with the right extension will run on that
operating system. You can check this by comparing the application that runs on your
Android Emulator or mobile device with the following screenshot, which was taken from
an iOS device:

With these last changes, you've created your first React Native application that will run on
both Android and iOS devices and has basic routing and styling implemented.

Build a House Listing Application with React Native and Expo Chapter 8

[294]

Summary
In this chapter, you created a house listing application with React Native for both iOS and
Android mobile devices. Expo was used to create the first version of the application and
provides a lot of functionality to smoothen the developer experience. The react-
navigation package is used to handle different kinds of routing for mobile applications,
while styled-components is utilized to handle styling for this React Native application.

Since this was probably your first introduction to React Native, you shouldn't feel bad if not
everything was clear from the start. The basics you learned about in this chapter should
provide a proper baseline so that we can continue your journey into the world of mobile
app development. The project you'll create in the next chapter will build upon these
principles further and handle features such as animations while we create a Tic-Tac-Toe
game.

Further reading
To find out more about custom headers in React Navigation, check out this
link: https:/ / reactnavigation. org/ docs/ en/ headers. html.
You can find a list of Expo icons here: https:/ /expo. github. io/vector- icons/ .

https://reactnavigation.org/docs/en/headers.html
https://reactnavigation.org/docs/en/headers.html
https://reactnavigation.org/docs/en/headers.html
https://reactnavigation.org/docs/en/headers.html
https://reactnavigation.org/docs/en/headers.html
https://reactnavigation.org/docs/en/headers.html
https://reactnavigation.org/docs/en/headers.html
https://reactnavigation.org/docs/en/headers.html
https://reactnavigation.org/docs/en/headers.html
https://reactnavigation.org/docs/en/headers.html
https://reactnavigation.org/docs/en/headers.html
https://reactnavigation.org/docs/en/headers.html
https://reactnavigation.org/docs/en/headers.html
https://reactnavigation.org/docs/en/headers.html
https://reactnavigation.org/docs/en/headers.html
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/

9
Build an Animated Game Using

React Native and Expo
Most of the projects that you've created in this book focused on displaying data and making
it possible to navigate between pages. In the previous chapter, you explored some of the
differences between creating a web and a mobile application. One other difference when
building a mobile application is that your users expect animations and gestures since they
make using the application easy and familiar. This is something that you'll focus on in this
chapter.

In this chapter, you'll add animations and gestures to a React Native application using the
Animated API from React Native, a package called Lottie, and Expo's GestureHandler.
Together, they make it possible for us to create applications that make the best use of a
mobile's interaction methods, which is perfect for a game such as Tic-Tac-Toe. Also, the
application will show a leaderboard with the high scores for this game next to the game
interface.

To create this game, the following topics will be covered:

Using the React Native Animated API
Advanced animations with Lottie
Handling native gestures with Expo

Project overview
In this chapter, we will be creating an animated Tic-Tac-Toe game build with React Native
and Expo, which uses the Animated API to add basic animations, Lottie for advanced
animations, and Gesture Handler from Expo to handle native gestures. The starting point
will be creating an application with the Expo CLI that has basic routing implemented in it,
so that our users can switch between the game interface and an overview of the high scores
for this game.

Build an Animated Game Using React Native and Expo Chapter 9

[296]

The build time is 1.5 hours.

Getting started
The project that we'll create in this chapter builds upon an initial version that you can find
on GitHub: https:/ /github. com/ PacktPublishing/ React- Projects/ tree/ ch9-
initial. The complete source code can also be found on GitHub: https:/ /github.
com/PacktPublishing/ React- Projects/ tree/ ch9.

You need to have the application Expo Client installed on a mobile iOS or Android device
to run the project on a physical device. Alternatively, you can install either Xcode or
Android Studio on your computer to run the application on a virtual device:

For iOS: Information on how to set up your local machine to run the iOS
simulator can be found here: https:/ /docs. expo. io/versions/ v36. 0.0/
workflow/ ios- simulator/ .
For Android: Information on how to set up your local machine to run the
emulator from Android Studio can be found here: https:/ /docs. expo. io/
versions/ v36. 0.0/ workflow/ android- studio- emulator/ . There's a known issue
when running the emulator, which can be prevented by ensuring that the
following lines are present in your ~/.bash_profile or ~/.bash_rc file:

export ANDROID_SDK=ANDROID_SDK_LOCATION
export PATH=ANDROID_SDK_LOCATION/platform-tools:$PATH
export PATH=ANDROID_SDK_LOCATION/tools:$PATH

The value for ANDROID_SDK_LOCATION is the path to the Android SDK on
your local machine and can be found by opening Android Studio and
going to Preferences | Appearance & Behavior | System
Settings | Android SDK. The path is listed in the box that states the Android
SDK location and looks like this: /Users/myuser/Library/Android/sdk.

This application was created using Expo SDK version 33.0.0, and so, you
need to ensure that the version of Expo you're using on your local
machine is similar. As React Native and Expo are frequently updated,
make sure that you're working with this version so that the patterns
described in this chapter behave as expected. In case your application
doesn’t start or if you encounter errors, refer to the Expo documentation to
learn more about updating the Expo SDK.

https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/

Build an Animated Game Using React Native and Expo Chapter 9

[297]

Checking out the initial project
The application that you'll be working on in this chapter has already been built for you, but
we will need to complete it by adding features such as animations and transitions. After
downloading or cloning the project, you'll need to move into the root directory of the
project, where you can run the following command to install the dependencies and start the
application:

npm install && npm start

This will start Expo and give you the ability to start your project from the Terminal or from
your browser. In the Terminal, you can either use the QR Code to open the application on
your mobile device or select to open the application in a simulator.

No matter whether you've opened the application on a virtual or physical device, at this
point, the application should look something like this:

Build an Animated Game Using React Native and Expo Chapter 9

[298]

The application consists of three screens: Start, Game, and LeaderBoard. The first screen
is Start, where the game can be started by clicking the green button. This will lead to the
Game screen, which is set up as a modal. The Start screen uses tab navigation, from which
you can also visit the LeaderBoard screen, which is where the scores of the players will be
displayed.

The project structure for this React Native application is as follows. This structure is similar
to the projects we've created already in this book:

tic-tac-toe
|-- .expo
|-- assets
 |-- icon.png
 |-- splash.png
 |-- winner.json
|-- Components
 |-- // ...
|-- context
 |-- AppContext.js
|-- node_modules
|-- Screens
 |-- Game.js
 |-- LeaderBoard.js
 |-- Start.js
|-- utils
 |-- arrayContainsArray.js
 |-- checkSlots.js
.gitignore
App.js
AppContainer.js
app.json
babel.config.js
package.json

In the assets directory, you'll find the two images: one that will be used as the
application's icon on the Home screen once you've installed this application on your mobile
device, and one that will serve as the splash screen that is displayed when you start the
application. A Lottie animation file has also been placed here, which you'll use later on in
this chapter. The configurations for your application, for example, the App Store, are placed
in app.json, while babel.config.js holds specific Babel configurations.

Build an Animated Game Using React Native and Expo Chapter 9

[299]

The App.js file is the actual entry point of your application, where
the AppContainer.js file is being imported and returned within a Context Provider that
was created in the context/AppContext.js file. In AppContainer, all the routes for this
application are defined and AppContext will contain information that should be available
in the entire application. In the utils directory, you can find the logic for the game, that is,
the functions that will fill the slots of the Tic-Tac-Toe board and determine which player
won the game.

All the components for this game are located in the Screens and Components directories,
where the former holds the components that are rendered by the Start, Game, and
LeaderBoard routes. The child components for these screens can be found in the
Components directory, which has the following structure:

|-- Components
 |-- Actions
 |-- Actions.js
 |-- Board
 |-- Board.js
 |-- Button
 |-- Button.js
 |-- Player
 |-- Player.js
 |-- Slot
 |-- Slot.js
 |-- Filled.js

The most important components in the preceding structure are Board, Slot, and
Filled, since they construct most of the game. Board is rendered by the Game screen and
holds some logic for the game, while Slot and Filled are components that are rendered
on this board. The Actions component returns two Button components so that we can
either navigate away from the Game screen or restart the game. Player displays the name
of the player whose turn it is, or the player that has won the game.

Build an Animated Game Using React Native and Expo Chapter 9

[300]

Creating an animated Tic-Tac-Toe game
application with React Native and Expo
Mobile games often have flashy animations that make the user want to keep playing and
make the game more interactive. The Tic-Tac-Toe game that is already functioning uses no
animations so far and just has some transitions that have been built in with React
Navigation. In this section, you'll be adding animations and gestures to the application,
which will improve the game interface and make the user feel more comfortable while
playing the game.

Using the React Native Animated API
There are multiple ways to use animations in React Native and one of those is to use the
Animated API, which can be found in the core of React Native. With the Animated API,
you can create animations for View, Text, Image, and ScrollView components from
react-native by default. Alternatively, you can use the
createAnimatedComponent method to create your own.

Creating a basic animation
One of the simplest animations you can add is fading an element in or out by changing the
value for the opacity of that element. In the Tic-Tac-Toe game you created previously, the
slots were filled with either a green or blue color, depending on which player filled that
slot. These colors already show a small transition since you're using the
TouchableOpacity element to create the slot. However, it's possible to add a custom
transition to this by using the Animated API. To add an animation, the following code
blocks must be changed:

Start by creating a new file in the src/Components/Slot directory and calling1.
it Filled.js. This file will contain the following code, which will be used to
construct the Filled component. Inside this file, add the following code:

import React from 'react';
import { View } from 'react-native';

const Filled = ({ filled }) => {
 return (
 <View
 style={{
 position: 'absolute',

Build an Animated Game Using React Native and Expo Chapter 9

[301]

 display: filled ? 'block' : 'none',
 width: '100%',
 height: '100%',
 backgroundColor: filled === 1 ? 'blue' : 'green',
 }}
 />
);
}

export default Filled;

This component displays a View element and is styled using a styling object that's
using the JSS syntax, which is the default for React Native. This element can be
used to fill in another element since its position is absolute with 100% width and
100% height. It also takes the filled prop so that we can set the
backgroundColor and determine whether the component is displayed or not.

You can import this component into the Slot component and display it once the2.
slot has been filled by any of the players. Instead of setting the background color
for the SlotWrapper component, you can pass the color that belongs to player
one or two to the Filled component:

import React from 'react';
import { TouchableOpacity, Dimensions } from 'react-native';
import styled from 'styled-components/native';
+ import Filled from './Filled';

const SlotWrapper = styled(TouchableOpacity)`
 width: ${Dimensions.get('window').width * 0.3};
 height: ${Dimensions.get('window').width * 0.3};
- background-color: ${({ filled }) => filled ? (filled === 1 ?
'blue' : 'green') : 'grey'};
+ background-color: grey;
 border: 1px solid #fff;
`;

const Slot = ({ index, filled, handleOnPress }) => (
- <SlotWrapper filled={filled} onPress={() => !filled &&
handleOnPress(index)} />
+ <SlotWrapper onPress={() => !filled && handleOnPress(index)}>
+ <Filled filled={filled} />
+ </SlotWrapper>
);

export default Slot;

Build an Animated Game Using React Native and Expo Chapter 9

[302]

Now, whenever you click on a slot, nothing visible will change since you'll need3.
to change the clickable element from a TouchableOpacity element to
a TouchableWithoutFeedback element first. That way, the default transition
with the opacity will be gone, so you can replace this with your own.
The TouchableWithoutFeedback element can be imported from react-
native and should be placed around a View element, which will hold the
default styling for the slot:

import React from 'react';
- import { TouchableOpacity, Dimensions } from 'react-native';
+ import { TouchableWithoutFeedback, View, Dimensions } from
'react-native';
import styled from 'styled-components/native';
import Filled from './Filled';

- const SlotWrapper = styled(TouchableOpacity)`
+ const SlotWrapper = styled(View)`
 width: ${Dimensions.get('window').width * 0.3};
 height: ${Dimensions.get('window').width * 0.3};
 background-color: grey;
 border: 1px solid #fff;
`;

const Slot = ({ index, filled, handleOnPress }) => (
- <SlotWrapper onPress={() => !filled && handleOnPress(index)}>
+ <TouchableWithoutFeedback onPress={() => !filled &&
handleOnPress(index)}>
+ <SlotWrapper>
 <Filled filled={filled} />
 </SlotWrapper>
+ <TouchableWithoutFeedback>
);

export default Slot;

Now, the slot that you've just pressed on will be immediately filled in with the
color you've specified in the backgroundColor field for the Filled component,
without any transition whatsoever.

To recreate this transition, you can use the Animated API, which you'll use to4.
change the opacity of the Filled component from the moment it's rendered by a
slot. Therefore, you need to import Animated from react-native in
src/Components/Slot/Filled.js:

import React from 'react';
- import { View } from 'react-native';

Build an Animated Game Using React Native and Expo Chapter 9

[303]

+ import { Animated, View } from 'react-native';

const Filled = ({ filled }) => {
 return (
 ...

A new instance of the Animated API starts by specifying a value that should be5.
changed during the animation that we created with the Animated API. This
value should be changeable by the Animated API in your entire component, so
you can add this value to the top of the component. This value should be created
with a useState Hook since you want this value to be changeable later on:

import React from 'react';
import { Animated, View } from 'react-native';

const Filled = ({ filled }) => {
+ const [opacityValue] = React.useState(new Animated.Value(0));

 return (
 ...

This value can now be changed by the Animated API using any of the three6.
animations types that are built-in. These are decay, spring, and timing, where
you'll be using the timing method from the Animated API to change the
animated value within a specified time frame. The Animated API can be
triggered from any function that is, for example, linked to an onPress event or
from a life cycle method. Since the Filled component should only be displayed
when the slot is filled, you can use a life cycle method that is triggered when the
filled prop component is changed, that is, a useEffect Hook with the filled
prop as a dependency. The styling rule for the display can be removed since the
component will have an opacity of 0 when the filled prop is false:

import React from 'react';
import { Animated, View } from 'react-native';

const Filled = ({ filled }) => {
 const [opacityValue] = React.useState(new Animated.Value(0));

+ React.useEffect(() => {
+ filled && Animated.timing(
+ opacityValue,
+ {
+ toValue: 1,
+ duration: 500,
+ }
+).start();

Build an Animated Game Using React Native and Expo Chapter 9

[304]

+ }, [filled]);

return (
 <View
 style={{
 position: 'absolute',
 - display: filled ? 'block' : 'none',
 width: '100%',
 height: '100%',
 backgroundColor: filled === 1 ? 'blue' : 'green',
 }}
 />
);
}

export default Filled;

The timing method takes the opacityValue that you've specified at the top of
your component and an object with the configuration for the Animated API. One
of the fields is toValue, which will become the value for opacityValue when
the animation has ended. The other field is for the field's duration, which specifies
how long the animation should last.

The other built-in animation types next to timing are decay and spring.
Where the timing method changes gradually over time, the decay type
has animations that change fast in the beginning and gradually slow
down until the end of the animation. With spring, you can create
animations that move a little outside of its edges at the end of the
animations.

Finally, you only need to change the View element into an Animated.View7.
element and add the opacity field and the opacityValue value to the style
object:

import React from 'react';
- import { Animated, View } from 'react-native';
+ import { Animated } from 'react-native';

const Filled = ({ filled }) => {

...

return (
- <View
+ <Animated.View
 style={{

Build an Animated Game Using React Native and Expo Chapter 9

[305]

 position: 'absolute',
 width: '100%',
 height: '100%',
 backgroundColor: filled === 1 ? 'blue : 'green',
+ opacity: opacityValue,
 }}
 />
);
}

export default Filled;

Now, when you press any of the slots, the Filled component will fade in, since the opacity
value transitions for 500 ms. This will make a filled slot look as follows for both players
when you run the application in either the iOS simulator or a device that runs on iOS. On
Android, the application should look similar, since no platform-specific styling has been
added:

Build an Animated Game Using React Native and Expo Chapter 9

[306]

Something else you can do to make the animation appear smoother is add an easing field
to the Animated object. The value for this field comes from the Easing module, which can
be imported from react-native. The Easing module has three standard functions:
linear, quad, and cubic Here, the linear function can be used for smoother timing
animations:

import React from 'react';
- import { Animated } from 'react-native';
+ import { Animated, Easing } from 'react-native';

const Filled = ({ filled }) => {
 const [opacityValue] = React.useState(new Animated.Value(0));

 React.useEffect(() => {
 filled && Animated.timing(
 opacityValue,
 {
 toValue: 1,
 duration: 1000,
+ easing: Easing.linear(),
 }
).start();
 }, [filled]);

 return (
 ...

With this last change, the animation is complete and the game interface already feels
smoother since the slots are being filled using your own custom animation. In the next part
of this section, we will combine some of these animations to make the user experience for
this game even more advanced.

Combining animations with the Animated API
Having the transition by changing the opacity of the Filled component is already an
improvement to the game interface. But there are more animations we can create to make
the game's interaction even more appealing.

Build an Animated Game Using React Native and Expo Chapter 9

[307]

One of the things we can do is add a fade-in animation to the size of the
Filled component. To make this animation work well with the fading in animation we've
just created, we can use the parallel method from the Animated API. This method will
start the animations that are specified within the same moment. To create this effect, we
need to make the following changes:

For this second animation, you want the Filled component to not only have a1.
color that fades in, but also a size that is fading in. To set an initial value for the
opacity, you have to set an initial value for the size of this component:

import React from 'react';
import { Animated, Easing } from 'react-native';

const Filled = ({ filled }) => {
 const [opacityValue] = React.useState(new Animated.Value(0));
+ const [scaleValue] = React.useState(new Animated.Value(0));

 React.useEffect(() => {
 ...

The Animated.timing method that you created in the useEffect Hook needs2.
to be wrapped inside an Animated.parallel function. That way, you can add
another animation that changes the size of the Filled component later on. The
Animated.parallel function takes an array of the Animated method as a
parameter and must be added like this:

import React from 'react';
import { Animated, Easing } from 'react-native';

const Filled = ({ filled }) => {
 const [opacityValue] = React.useState(new Animated.Value(0));
 const [scaleValue] = React.useState(new Animated.Value(0));

 React.useEffect(() => {
+ filled && Animated.parallel([
- filled && Animated.timing(
+ Animated.timing(
 opacityValue,
 {
 toValue: 1,
 duration: 1000,
 easing: Easing.linear(),
 }
-).start();
+),
+]).start();

Build an Animated Game Using React Native and Expo Chapter 9

[308]

 }, [filled]);

 return (
 ...

Next to the parallel function, three other functions help you with
animation composition. These functions are delay, sequence, and
stagger, and can also be used in combination with each other. The
delay function starts any animation after a predefined delay, the
sequence function starts animations in the order you've specified and
waits until an animation is resolved before starting another one, and the
stagger function can start animations both in order and parallel with
specified delays in-between.

Within the parallel function, you need to add the Animated3.
API's spring method, which animates the size of the Filled component. This
time, you won't be using a timing method, but a spring method, which adds a
little bounce effect to the end of the animation. An Easing function is also added
to make the animation look a little smoother:

...
const Filled = ({ filled }) => {
 const [opacityValue] = React.useState(new Animated.Value(0));
 const [scaleValue] = React.useState(new Animated.Value(0));

 React.useEffect(() => {
 filled && Animated.parallel([
 Animated.timing(
 opacityValue,
 {
 toValue: 1,
 duration: 1000,
 easing: Easing.linear(),
 }
),
+ Animated.spring(
+ scaleValue,
+ {
+ toValue: 1,
+ easing: Easing.cubic(),
+ },
+),
]).start();
 }, [filled]);

Build an Animated Game Using React Native and Expo Chapter 9

[309]

 return (
 ...

This spring animation will change the value of scaleValue from 0 to 1 and4.
create a little bounce effect at the end of the animation. scaleValue must also be
added to the style object for the Animated.View component for the animation
to become effective. scaleValue will be added to the scale field within the
transform field, which will change the size of the Filled component:

...

return (
 <Animated.View
 style={{
 position: 'absolute',
 width: '100%',
 height: '100%',
 backgroundColor: filled === 1 ? 'blue' : 'green',
 opacity: opacityValue,
+ transform: [
+ {
+ scale: scaleValue,
+ }
+],
 }}
 />
);
}

export default Filled

When you click on any of the slots, the Filled component won't only fade in by
changing the opacity but also by changing its size. The bounce effect at the end of
the animation adds a nice touch to the fading effect.

However, when you click on the slot that depicts the winner of the game, the5.
animation doesn't have enough time to end while the winning state is rendered
by the component. Therefore, you will also need to add a timeout to the function
that sets the winner of the game. This function can be found in
src/Screens/Game.js, where you can add a constant that sets the number of
ms the animation should last for:

import React from 'react';
import { View } from 'react-native';
import styled from 'styled-components/native';
import Board from '../Components/Board/Board';

Build an Animated Game Using React Native and Expo Chapter 9

[310]

import Actions from '../Components/Actions/Actions';
import Player from '../Components/Player/Player';
import checkSlots from '../utils/checkSlots';
import { AppContext } from '../context/AppContext';

+ export const ANIMATION_DURATION = 1000;

...

This will also wrap the functions that set the winner in a setTimeout function,
which delays the execution of these functions by the same amount of time the
animation lasts for:

...
const checkWinner = (player) => {
 const slots = state[`player${player}`];

 if (slots.length >= 3) {
 if (checkSlots(slots)) {
+ setTimeout(() => {
 setWinner(player);
 setPlayerWins(player);
+ }, ANIMATION_DURATION);
 }
 }

 return false;
}

...

Since the ANIMATION_DURATION constant is exported, you can import this6.
constant in the src/Components/Slot/Filled.js file and use this same
constant for the actual animation. That way, if you change the duration of the
animation at some point, you won't have to make any changes to other
components for these changes to be visible:

import React from 'react';
import { Animated, Easing } from 'react-native';
+ import { ANIMATION_DURATION } from '../../Screens/Game';

const Filled = ({ filled }) => {
 const [opacityValue] = React.useState(new Animated.Value(0));
 const [scaleValue] = React.useState(new Animated.Value(0));

 React.useEffect(() => {

Build an Animated Game Using React Native and Expo Chapter 9

[311]

 filled && Animated.parallel([
 Animated.timing(
 opacityValue,
 {
 toValue: 1,
- duration: 1000,
+ duration: ANIMATION_DURATION,
 easing: Easing.linear(),
 }

Apart from the slots now being filled in with an animated Filled component that executes
two parallel animations, when you click on any of them, the functions that set the winner of
the game will wait until the slot is filled before firing.

The next section will show how to handle even more advanced animations, such as
displaying animated graphics when any of the two players win. For this, we'll use the
Lottie package since it supports more functionalities than the built-in Animated API.

Advanced animations with Lottie
The React Native Animated API is great for building simple animations, but building more
advanced animations can be harder. Luckily, Lottie offers a solution for creating advanced
animations in React Native by making it possible for us to render After Effects animations
in real time for iOS, Android, and React Native. Lottie can be installed as a
separate package using npm, but it is also available from Expo. Since Lottie is still part of
Expo's experimental features, you can use it by retrieving it from the DangerZone
namespace. Therefore, it is currently best to install Lottie from npm and import it in the files
where you want to use it.

When using Lottie, you don't have to create these After Effects animations
yourself; there's a whole library full of resources that you can customize
and use in your project. This library is called LottieFiles and is
available at https://lottiefiles.com/.

Since you've already added animations to the slots of the board game, a nice place to add
more advanced animations would be the screen that is displayed when either of the players
wins the game. On this screen, a trophy can be displayed instead of the board since the
game has ended. Let's do this now:

To get started with Lottie, run the following command, which will install Lottie1.
and its dependencies and add it to your package.json file:

npm install lottie-react-native

Build an Animated Game Using React Native and Expo Chapter 9

[312]

After the installation process has completed, you can proceed by creating a2.
component that will be used to render the After Effects animations that have
been downloaded as Lottie files. This component can be created in the
new src/Components/Winner/Winner.js file. In this file, you will need to
import React and, of course, Lottie from lottie-react-native, which you've
just installed:

import React from 'react';
import Lottie from 'lottie-react-native';

const Winner = () => ();

export default Winner;

The imported Lottie component can render any Lottie file that you either create3.
yourself or that is download from the LottieFiles library. In
the assets directory, you will find a Lottie file that can be used in this project
called winner.json. This file can be rendered by the Lottie component when
you add it to the source, and the width and height of the animation can be set by
passing a style object. Also, you should add the autoPlay prop to start the
animation once the component renders:

import React from 'react';
import Lottie from 'lottie-react-native';

const Winner = () => (
+ <Lottie
+ autoPlay
+ style={{
+ width: '100%',
+ height: '100%',
+ }}
+ source={require('../../assets/winner.json')}
+ />
);

export default Winner;

Build an Animated Game Using React Native and Expo Chapter 9

[313]

This component will now start rendering the trophy animation in any of the4.
screens where you'll include this component. Since this animation should be
displayed instead of the board when either of the players wins the game, the
Board component would be a good place to add this component as you can then
use the wrapper styling for the board. The Board component can be found in
the src/Components/Board/Board.js file, and is where you can import the
Winner component:

import React from 'react';
import { View, Dimensions } from 'react-native';
import styled from 'styled-components/native';
import Slot from '../Slot/Slot';
+ import Winner from '../Winner/Winner';

...

const Board = ({ slots, winner, setSlot }) => (
 ...

In the return function of this component, you can check whether the winner
prop is true or false and, depending on the outcome, display either the
Winner component or iterate over slots:

const Board = ({ slots, winner, setSlot }) => (
 <BoardWrapper>
 <SlotsWrapper>
- {slots.map((slot, index) =>
+ {
+ winner
+ ? <Winner />
+ : slots.map((slot, index) =>
 <Slot
 key={index}
 index={index}
 handleOnPress={!winner ? setSlot : () => { }}
 filled={slot.filled}
 />
)
 }
 </SlotsWrapper>
 </BoardWrapper>
);

Build an Animated Game Using React Native and Expo Chapter 9

[314]

When the Board component receives the winner prop with the true value, instead of the
board, the user will see the trophy animation being rendered. An example of how this will
look when you're running the application with the iOS simulator or on an iOS device can be
seen here:

In case you find the speed of this animation too fast, it's possible to change this by
combining the Animated API with Lottie. The Lottie component can take a progress
prop that determines the speed of the animation. When passing a value that is created by
the Animated API, you can tweak the speed of the animation to your own needs. Adding
this to the Lottie animation can be done as follows:

First, you'll need to import Animated and Easing (which you'll use later on) and1.
create a new value using Animated and the useState Hook at the top of your
component:

import React from 'react';
+ import { Animated, Easing } from 'react-native';
import Lottie from 'lottie-react-native';

- const Winner = () => (
+ const Winner = () => {
+ const [progressValue] = React.useState(new Animated.Value(0));
+ return (
 <Lottie

Build an Animated Game Using React Native and Expo Chapter 9

[315]

 autoPlay
 style={{
 width: '100%',
 height: '100%' ,
 }}
 source={ require('../../assets/winner.json') }
 progress={progressValue}
 />
);
+ };

export default Winner;

Within a useEffect Hook, you can create the Animated.timing method,2.
which will set the progressValue over a time frame that you indicate using the
duration field. The animation should start as soon as the component renders, so
the dependency array for the Hook should be empty. You can also add the
Easing.linear function to the easing field to make the animation run
smoother:

...
const Winner = () => {
 const [progressValue] = React.useState(new Animated.Value(0));

+ React.useEffect(() => {
+ Animated.timing(progressValue, {
+ toValue: 1,
+ duration: 4000,
+ easing: Easing.linear,
+ }).start();
+ }, []);

return (
 ...

Now, the progressValue value can be passed to the Lottie component, which3.
will result in a different behavior for the animation:

...
const Winner = () => {
 const [progressValue] = React.useState(new Animated.Value(0));

 ...

 return (
 <Lottie

Build an Animated Game Using React Native and Expo Chapter 9

[316]

 autoPlay
 style={{
 width: '100%',
 height: '100%' ,
 }}
 source={ require('../../assets/winner.json') }
+ progress={progressValue}
 />
);
};

export default Winner;

Now, the animation is being slowed down. Instead of the default 3,000 ms, the animation
will take 4,000 ms to play from beginning to end. In the next section, you'll add even more
complexity to the user experience of this application by handling gestures that are available
on mobile devices.

Handling gestures with Expo
Gestures are an important feature of mobile applications as they will make the difference
between a mediocre and a good mobile application. In the Tic-Tac-Toe game you've created,
several gestures could be added to make the game more appealing.

Previously, you used the TouchableOpacity element, which gives the user feedback after
they press this element by changing the element. Another element that you could have
used for this was the TouchableHighlight element. Just likeTouchableOpacity, it can
be pressed by the user, but, instead of changing the opacity, it highlights the element. These
feedback or highlight gestures give the user an impression of what happens when they
make decisions within your application, leading to improved user experience. These
gestures can be customized and added to other elements as well, making it possible to have
custom Touchable elements as well.

For this, you can use a package called react-native-gesture-handler, which helps
you access native gestures on every platform. All of these gestures will be run in the native
thread, which means you can add complex gesture logic without having to deal with the
performance limitations of React Native's gesture responder system. Some of the gestures it
supports include tap, rotate, drag, and pan gestures. Any project that's created with the
Expo CLI can already use GestureHandler from react-native-gesture-handler
without you having to manually install the package.

Build an Animated Game Using React Native and Expo Chapter 9

[317]

You can also use gestures directly from React Native, without having to
use an additional package. However, the gesture responder system that
React Native currently uses doesn't run in the native thread. Not only
does this limit the possibilities of creating and customizing gestures, but
you can also run into cross-platform or performance problems. Therefore,
it's advised that you use the react-native-gesture-handler package,
but this isn't necessary for using gestures in React Native.

Handling tap gestures
The first gesture we will implement is a tap gesture, which will be added to the
Slot component, to give the user more feedback on their actions. Instead of filling the slot
when the user taps it, the user will already receive some feedback when the tap event is
started and receive feedback when the event is completed. Here, we'll use
the TouchableWithoutFeedback element from react-native-gesture-handler,
which runs in the native thread, instead of the TouchableWithoutFeedback element from
react-native, which uses the gesture responder system. Replacing the react-native
component with the one from react-native-gesture-handler can be done by
following these steps:

TouchableWithoutFeedback can be imported from react-native-gesture-1.
handler at the top of the src/components/Slot.js file:

import React from 'react';
- import { TouchableWithoutFeedback, View, Dimensions } from
'react-native';
+ import { View, Dimensions } from 'react-native';
+ import { TouchableWithoutFeedback } from 'react-native-gesture-
handler';
import styled from 'styled-components/native';
import Filled from './Filled';

...

const Slot = ({ index, filled, handleOnPress }) => (
 ...

You don't have to change anything in the return function
since TouchableWithoutFeedback uses the same props as the one from react-
native. When you tap the slot, nothing will change. This is because the slot will
be filled by the Filled component, which shows an animation once it appears.

Build an Animated Game Using React Native and Expo Chapter 9

[318]

When you tap any of the slots and hold your finger on it,2.
the handleOnPress function won't be called yet. Only when you complete the
tap gesture by removing your finger will the gesture end and
the handleOnPress function will be called. To start the animation when you
start the tap gesture by touching the slot, you can use the onPressIn callback
from TouchableWithoutFeedback. Once the tap event starts, a value needs to
be passed to the Filled component that indicates it should start the animation.
This value can be created with the useState Hook, so you already have a
function that can be called to change this value. The handleOnPress function
should be called when the tap event ends by removing your finger from the
element. You can do this using the onPressOut callback:

import React from 'react';
import { View, Dimensions } from 'react-native';
import { TapGestureHandler, State } from 'react-native-gesture-
handler';
import styled from 'styled-components/native';
import Filled from './Filled';

...

- const Slot = ({ index, filled, handleOnPress }) => (
+ const Slot = ({ index, filled, handleOnPress }) => {
+ const [start, setStart] = React.useState(false);

+ return (
- <TouchableWithoutFeedback onPress={() => !filled &&
handleOnPress(index)}>
+ <TouchableWithoutFeedback onPressIn={() => setStart()}
onPressOut={() => !filled && handleOnPress(index)}>
 <SlotWrapper>
- <Filled filled={filled} />
+ <Filled filled={filled} start={start} />
 </SlotWrapper>
 </TouchableWithoutFeedback>
);
};

export default Slot;

Build an Animated Game Using React Native and Expo Chapter 9

[319]

In the Filled component in the src/Components/Slot/Filled.js file, you3.
need to check for the start prop and start the animation once this prop has a
value of true. Since you don't want to start the entire animation when the value
for start is true, only the animation that changes opacityValue will start:

import React from 'react';
import { Animated, Easing } from 'react-native';
import { ANIMATION_DURATION } from '../../utils/constants';

- const Filled = ({ filled }) => {
+ const Filled = ({ filled, start }) => {
 const [opacityValue] = React.useState(new Animated.Value(0));
- const [scaleValue] = React.useState(new Animated.Value(0));
+ const [scaleValue] = React.useState(new Animated.Value(.8));

+ React.useEffect(() => {
+ start && Animated.timing(
+ opacityValue,
+ {
+ toValue: 1,
+ duration: ANIMATION_DURATION,
+ easing: Easing.linear(),
+ }
+).start();
+ }, [start]);

 React.useEffect(() => {
 ...

Also, the animation that changes the opacity can be removed from the4.
useEffect Hook that's checking for the filled prop. This useEffect Hook
only handles the animation that changes the scale. The
initial scaleValue should be changed because, otherwise, the size of the
component will be equal to 0:

+ const Filled = ({ filled, start }) => {
 const [opacityValue] = React.useState(new Animated.Value(0));
- const [scaleValue] = React.useState(new Animated.Value(0));
+ const [scaleValue] = React.useState(new Animated.Value(.8));

React.useEffect(() => {

...

React.useEffect(() => {
- filled && Animated.parallel([

Build an Animated Game Using React Native and Expo Chapter 9

[320]

- Animated.timing(
- opacityValue,
- {
- toValue: 1,
- duration: ANIMATION_DURATION,
- easing: Easing.linear(),
- }
-),
- Animated.spring(
+ filled && Animated.spring(
 scaleValue,
 {
 toValue: 1,
 easing: Easing.cubic(),
 }
-)
-]).start()
+).start();
 }, [filled]);

...

When you tap any of the slots after making these changes, the timing animation will be
started and a square will appear in the slot, which indicates that the slot is being tapped.
Once you release your finger from this slot, the square will change in size and fill in the rest
of the slot as the spring animation starts, which happens when the onPress function
changes the value for filled.

Customizing tap gestures
Now, the slot has different animations, depending on the state of the tap event, which can
be useful if the user has second thoughts about which slot to select. The user may remove
their finger from the selected slot, in which case the tap event will follow a different flow of
states. You can even determine whether the user should click on the slot for a longer time to
make the selection definitive or maybe double-tap the slot just like liking a picture on some
social media applications.

Build an Animated Game Using React Native and Expo Chapter 9

[321]

To create more complex tap gestures such as these, you need to know that the tap
event goes through different states.
TouchableWithoutFeedback uses TapGestureHandler under the hood and can go
through the following states: UNDETERMINED, FAILED, BEGAN, CANCELLED, ACTIVE,
and END. The naming of these states is pretty straightforward and, usually, the handler will
have the following flow: UNDETERMINED > BEGAN > ACTIVE > END > UNDETERMINED.
When you add a function to the onPressIn callback on
the TouchableWithoutFeedback element, this function is called when the tap event is in
the BEGAN state. The onPressOut callback is invoked when the state is END, while the
default onPress callback responds to the ACTIVE state.

To create these complex gestures, you can use the react-native-gesture-
handler package by handling the event state yourself, rather than the declarative way of
using a touchable element:

TapGestureHandler can be imported from react-native-gesture-handler1.
and lets you create customized touchable elements that have gestures that you
can define yourself. You'll need to import the State object from react-native-
gesture-handler, which holds the constants you'll need to use to handle
checking for the state of the tap event:

import React from 'react';
- import { TouchableWithoutFeedback } from 'react-native-gesture-
handler';
+ import { TapGestureHandler, State } from 'react-native-gesture-
handler';
import styled from 'styled-components/native';
import Filled from './Filled';

...

const Slot = ({ index, filled, handleOnPress }) => (
 ...

Build an Animated Game Using React Native and Expo Chapter 9

[322]

Instead of event handlers such as onPress,2.
the TouchableWithoutFeedback element has a callback
called onHandlerStateChange. This function will be called every time the state
of TapGestureHandler changes, which is, for example, when the element is
tapped. By using TapGestureHandler to create the touchable element, you no
longer need the TouchableWithoutFeedback element. The functionality of this
element can be moved to the new element that you'll create:

...

const Slot = ({ index, filled, handleOnPress }) => {
...

return (
- <TouchableWithoutFeedback onPressIn={() => setStart()}
onPressOut={() => !filled && handleOnPress(index)}>
+ <TapGestureHandler onHandlerStateChange={onTap}>
 <SlotWrapper>
 <Filled filled={filled} start={start} />
 </SlotWrapper>
- </TouchableWithoutFeedback>
+ </TapGestureHandler>
);
};

...

onHandlerStateChange takes the onTap function, which you still need to3.
create, and checks for the current state of the tap event. When the tap event is in
the BEGAN state, which is similar to the onPressIn handler, the animation from
Filled should start. The completion of the tap event has the END state and is like
the onPressOut handler, where you'll call the handleOnPress function, which
changes the value for the prop regarding the player that tapped the slot. The
setStart function will be called to reset the state that starts the animation:

import React from 'react';
import { View, Dimensions } from 'react-native';
import { TapGestureHandler, State } from 'react-native-gesture-
handler';
import styled from 'styled-components/native';
import Filled from './Filled';

...

const Slot = ({ index, filled, handleOnPress }) => {

Build an Animated Game Using React Native and Expo Chapter 9

[323]

 const [start, setStart] = React.useState(false);

+ const onTap = event => {
+ if (event.nativeEvent.state === State.BEGAN) {
+ setStart(true);
+ }

+ if (event.nativeEvent.state === State.END) {
+ !filled && handleOnPress(index);
+ setStart(false);
+ }
+ }

 return (
 ...

When you tap any of the slots and hold your finger on it, the
handleOnPress function won't be called. Only when you complete the tap
gesture by removing your finger will the gesture end and the
handleOnPress function be called.

These gestures can be customized even more since you can use composition to have
multiple tap events that respond to each other. By creating so-called cross-handler
interactions, you can create a touchable element that supports a double-tap gesture and a
long-press gesture. By setting and passing down a ref that's been created with the React
useRef Hook, you can let the gesture handlers from react-native-gesture-handler
listen to the state life cycle of other handlers. That way, you can sequence events and
respond to gestures like a double-tap event:

To create the ref, you need to place the useRef Hook at the top of your1.
component and pass this ref to TapGestureHandler:

import React from 'react';
import { View, Dimensions } from 'react-native';
import { TapGestureHandler, State } from 'react-native-gesture-
handler';
import styled from 'styled-components/native';
import Filled from './Filled';

...

const Slot = ({ index, filled, handleOnPress }) => {
 const [start, setStart] = React.useState(false);
+ const doubleTapRef = React.useRef(null);

 ...

Build an Animated Game Using React Native and Expo Chapter 9

[324]

 return (
- <TapGestureHandler onHandlerStateChange={onTap}>
+ <TapGestureHandler
+ ref={doubleTapRef}
+ onHandlerStateChange={onTap}
+ >
 <SlotWrapper>
 <Filled filled={filled} start={start} />
 </SlotWrapper>
 </TapGestureHandler>
);
};

export default Slot;

Now, you need to set the number of taps that are needed to start and complete2.
the tap gesture. You don't have to make any changes to the onTap function since
the first time you tap the element, the state of the tap event will be BEGAN. Only
after you've tapped the element twice will the tap event state change to END:

...

return (
 <TapGestureHandler
 ref={doubleTapRef}
 onHandlerStateChange={onTap}
+ numberOfTaps={2}
 >
 <SlotWrapper>
 <Filled filled={filled} start={start} />
 </SlotWrapper>
 </TapGestureHandler>
);

...

Build an Animated Game Using React Native and Expo Chapter 9

[325]

To fill a slot, a user has to tap TapGestureHandler two times for the tap event3.
to complete. However, you can also call a function when TapGestureHandler is
tapped once by adding another TapGestureHandler that takes the existing one
as its child. This new TapGestureHandler should wait for the other handler to
have the double-tap gesture, which it can check using doubleTapRef. The
onTap function should be renamed to onDoubleTap so that you have a new
onTap function that will handle the single tap:

...

const Slot = ({ index, filled, handleOnPress }) => {
 const [start, setStart] = React.useState(false);
 const doubleTapRef = React.useRef(null);

+ const onTap = event => {};

- const onTap = event => {
+ const onDoubleTap = event => {
 ...
 }

 return (
+ <TapGestureHandler
+ onHandlerStateChange={onTap}
+ waitFor={doubleTapRef}
+ >
 <TapGestureHandler
 ref={doubleTapRef}
- onHandlerStateChange={onTap}
+ onHandlerStateChange={onDoubleTap}
 numberOfTaps={2}
 >
 <SlotWrapper>
 <Filled filled={filled} start={start} />
 </SlotWrapper>
 </TapGestureHandler>
+ </TapGestureHandler>
);
}

...

Build an Animated Game Using React Native and Expo Chapter 9

[326]

When you click on a slot just once, the animation will start,4.
since TapGestureHandler will be in the BEGAN state. The animation on the
double-tap gesture should only start when the state is ACTIVE instead of BEGAN,
so the animation won't start on just a single tap. Also, by adding a
setTimeout to the functions that are called when the tap gesture has ended, the
animation will look smoother since both animations will otherwise occur too
soon after each other:

...

const Slot = ({ index, filled, handleOnPress }) => {
 const [start, setStart] = React.useState(false);
 const doubleTapRef = React.useRef(null);

 const onTap = event => {};

 const onDoubleTap = event => {
- if (event.nativeEvent.state === State.BEGAN) {
+ if (event.nativeEvent.state === State.ACTIVE) {
 setStart(true);
 }
 if (event.nativeEvent.state === State.END) {
+ setTimeout(() => {
 !filled && handleOnPress(index);
 setStart(false);
+ }, 100);
 }
 }

...

Next to having a double-tap gesture to fill a slot, having a long-press gesture could also
improve the user's interaction. You can add a long-press gesture by following these steps:

Import LongPressGestureHandler from react-native-gesture-handler.1.

import React from 'react';
import { View, Dimensions } from 'react-native';
- import { TapGestureHandler, State } from 'react-native-gesture-
handler';
+ import { LongPressGestureHandler, TapGestureHandler, State } from
'react-native-gesture-handler';
import styled from 'styled-components/native';
import Filled from './Filled';

...

Build an Animated Game Using React Native and Expo Chapter 9

[327]

On this handler, you can set the minimal duration of the long-press gesture and2.
set the function that should be called after this time frame has passed. The
LongPressGestureHandler handler has a state life cycle, that you can use
together with the onDoubleTap function:

...

const Slot = ({ index, filled, handleOnPress }) => {
 ...

 return (
+ <LongPressGestureHandler
+ onHandlerStateChange={onDoubleTap}
+ minDurationMs={500}
+ >
 <TapGestureHandler
 onHandlerStateChange={onTap}
 waitFor={doubleTapRef}
 >
 ...
 </TapGestureHandler>
+ </LongPressGestureHandler>
)
};

export default Slot;

If you only want to create a long-press gesture, you can use
the onLongPress event handler, which is available on the touchable
elements from react-native and react-native-gesture-handler.
It's advised that you use the touchable elements from react-native-
gesture-handler as they will run in the native thread, instead of using
the React Native gesture responder system.

Maybe not all of your users will understand that they need to use a long-press3.
gesture to fill a slot. Therefore, you can use the onTap function, which is called
on a single tap, to alert the user about this functionality. For this, you can use the
Alert API, which works for both iOS and Android and uses the native alert
message from either of these platforms. In this alert, you can add a small message
for the user:

import React from 'react';
- import { View, Dimensions } from 'react-native';
+ import { Alert, View, Dimensions } from 'react-native';
import { LongPressGestureHandler, TapGestureHandler, State } from

Build an Animated Game Using React Native and Expo Chapter 9

[328]

'react-native-gesture-handler';
import styled from 'styled-components/native';
import Filled from './Filled';

...

const Slot = ({ index, filled, handleOnPress }) => {
 const [start, setStart] = React.useState(false);
 const doubleTapRef = React.useRef(null);

 const onTap = event => {
+ if (event.nativeEvent.state === State.ACTIVE) {
+ Alert.alert(
+ 'Hint',
+ 'You either need to press the slot longer to make your
move',
+);
+ }
 }

 ...

This will show an alert when the user doesn't use the long-press to make a move on the
board, thus making it more understandable for them. With these final additions, the game
interface has been improved even more. Not only will users see animations based on their
actions, but they'll also be notified about which gestures they can use.

Summary
In this chapter, we added animations and gestures to a simple Tic-Tac-Toe game that was
built with React Native and Expo. The animations were created using the React Native
Animated API and Lottie, which is available from the Expo CLI and as a separate package.
We also added basic and more complex gestures to the game, which runs in the native
thread thanks to the react-native-gesture-handler package.

Animations and gestures provide a clear improvement to the user interface of your mobile
application, and there's even more we can do. Still, our application will also need to request
and display data to your users.

Previously, we used GraphQL alongside React. We will build upon this in the next chapter.
The project that you'll create in the next chapter will explore handling real-time data in a
React Native application using WebSockets and GraphQL using Apollo.

Build an Animated Game Using React Native and Expo Chapter 9

[329]

Further reading
Various Lottie files: https:/ /lottiefiles. com/

More on the Animated API: https:/ /facebook. github. io/ react- native/ docs/
animated

https://lottiefiles.com/
https://lottiefiles.com/
https://lottiefiles.com/
https://lottiefiles.com/
https://lottiefiles.com/
https://lottiefiles.com/
https://lottiefiles.com/
https://lottiefiles.com/
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated

10
Creating a Real-Time

Messaging Application with
React Native and Expo

Having a real-time connection with a server is crucial when you're developing a real-time
messaging application as you want your users to receive their messages as soon as they are
sent. What you might have experienced in the previous two chapters is that mobile
applications are more intuitive to use than web applications. When you want users to send
messages back-and-forth, this is best done by building a mobile application, which you'll
do in this chapter.

In this chapter, you'll create a real-time mobile messaging application using React Native
and Expo that connects with a GraphQL server. By using WebSockets, you can create real-
time connections with a server for web and mobile applications and have a two-way data
flow between your application and a GraphQL server. This connection can also be used for
authentication by using OAuth and JWT tokens, which is what you did in the Chapter 7,
Build a Full Stack E-Commerce Application with React Native and GraphQL.

The following topics will be covered in this chapter:

GraphQL with React Native using Apollo
Authentication flows in React Native
GraphQL subscriptions

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[331]

Project overview
In this chapter, we will create a mobile messaging application build with React Native and
Expo that uses a GraphQL server for authentication and to send and receive messages.
Messages can be received in real-time as GraphQL subscriptions are used through a
WebSocket that was created with Apollo. Users need to be logged in to send messages
through the application, for which an authentication flow was built using React Navigation
and AsyncStorage to store authentication details in persistent storage.

The build time is 2 hours.

Getting started
The project that we'll create in this chapter builds upon an initial version that you can find
on GitHub: https:/ /github. com/ PacktPublishing/ React- Projects/ tree/ ch10- initial.
The complete source code can also be found on GitHub: https:/ / github. com/
PacktPublishing/React- Projects/ tree/ ch10.

You need to have the application Expo Client installed on a mobile iOS or Android device
to run the project on a physical device. Alternatively, you can install either Xcode or
Android Studio on your computer to run the application on a virtual device:

For iOS: Information on how to set up your local machine to run the iOS
simulator can be found here: https:/ /docs. expo. io/versions/ v36. 0.0/
workflow/ ios- simulator/ .
For Android: Information on how to set up your local machine to run the
emulator from Android Studio can be found here: https:/ /docs. expo. io/
versions/ v36. 0.0/ workflow/ android- studio- emulator/ . There's a known issue
when running the emulator, which can be prevented by ensuring that the
following lines are present in your ~/.bash_profile or ~/.bash_rc file:

export ANDROID_SDK=ANDROID_SDK_LOCATION
export PATH=ANDROID_SDK_LOCATION/platform-tools:$PATH
export PATH=ANDROID_SDK_LOCATION/tools:$PATH

https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10-initial
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch10
https://github.com/PacktPublishing/React-Projects/tree/ch9
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[332]

The value for ANDROID_SDK_LOCATION is the path to the Android SDK on
your local machine and can be found by opening Android Studio and
going to Preferences | Appearance & Behavior | System
Settings | Android SDK. The path is listed in the box that states the Android
SDK location and looks like this: /Users/myuser/Library/Android/sdk.

This application was created using Expo SDK version 33.0.0, and so, you
need to ensure that the version of Expo you're using on your local
machine is similar. As React Native and Expo are frequently updated,
make sure that you're working with this version so that the patterns
described in this chapter behave as expected. In case your application
doesn’t start or if you encounter errors, refer to the Expo documentation to
learn more about updating the Expo SDK.

Checking out the initial project
This project consists of two parts: a boilerplate React Native application and a GraphQL
server. The React Native application can be found in the client directory, while the
GraphQL server can be found in the server directory. For this chapter, you'll need to have
both the application and the server running at all times, where you'll only make code
changes to the application in the client directory.

To get started with this chapter, you'll need to run the following command in the client
and server directories in order to install all of the dependencies and start both the server
and the application:

npm install && npm start

For the mobile application, this command will start Expo after installing the dependencies
and gives you the ability to start your project from the Terminal or from your browser. In
the Terminal, you can either use the QR code to open the application on your mobile device
or open the application on a virtual device.

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[333]

Regardless of whether you've opened the application using the from a physical or virtual
iOS or Android device, the application should look something like this:

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[334]

The initial application consists of five screens:
AuthLoading, Conversations, Conversation, Login, and Settings. The
Conversations screen will be the initial screen and shows a loading message, while the
Settings screen contains a non-functioning logout button. For now, the
AuthLoading, Conversation, and Login screens aren't visible yet as you'll add the
routing to these screens later on in this chapter.

The project structure from this React Native application in the client directory is as
follows, where the structure is similar to the projects you've created before in this book:

messaging
|-- client
 |-- .expo
 |-- assets
 |-- icon.png
 |-- splash.png
 |-- Components
 |-- // ...
 |-- node_modules
 |-- Screens
 |-- AuthLoading.js
 |-- Conversation.js
 |-- Conversations.js
 |-- Login.js
 |-- Settings.js
 |-- .watchmanconfig
 |-- App.js
 |-- AppContainer.js
 |-- app.json
 |-- babel.config.js
 |-- package.json

In the assets directory, you can find the images that are used for the application icon on
the Home screen. Once you've installed this application on your mobile device, the image
that will serve as the splash screen will be displayed when you start the application. Details
about your application such as its name, description, and version are placed in app.json,
while babel.config.js holds specific Babel configurations.

The App.js file is the actual entry point of your application, where the
AppContainer.js file is being imported and returned. In AppContainer, all of the routes
for this application are defined and AppContext will contain information that should be
available in the entire application.

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[335]

All of the components for this application are located in
the Screens and Components directories, where the first one holds the components that
are rendered by the screens. The child components for these screens can be found in the
Components directory, which has the following structure:

|-- Components
 |-- Button
 |-- Button.js
 |-- Conversation
 |-- ConversationActions.js
 |-- ConversationItem.js
 |-- Message
 |-- Message.js
 |-- TextInput
 |-- TextInput.js

The GraphQL server can be found at: http://localhost:4000/graphql and is where
the GraphQL Playground will be visible. From this playground, you can view the schema
for the GraphQL server and introspect all of the available queries, mutations, and
subscriptions. Although you won't be making any code changes to the server, it's important
to know about the schema and how it works.

The server has two queries to retrieve a list of conversations or a single conversation by
using the userName parameter as the identifier. These queries will return the
Conversation type, which has an id, userName, and a list of messages of
the Message type.

On this GraphQL server, two mutations can be found, which are to either log the user in or
to send a message. The user can be logged in by using the following:

Username: test
Password: test

Finally, there's one subscription that will retrieve messages that are added to the
conversation. This subscription will enhance the query and can be sent in a document to
retrieve a single conversation.

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[336]

Creating a real-time messaging application
with React Native and Expo
One of the reasons why mobile applications are popular is because they usually provide
real-time data, such as updates and notifications. With React Native and Expo, you can
create mobile applications that can handle real-time data using WebSockets that
synchronize with, for example, a GraphQL server. In this chapter, you'll add GraphQL to a
React Native application and add extra features to this application to make it work with
real-time data.

Using GraphQL in React Native with Apollo
In Chapter 7, Build a Full Stack E-Commerce Application with React Native and GraphQL,
you've already set up a connection with the GraphQL server for a web application;
similarly, in this chapter, you'll use a GraphQL server for the data in your mobile
application. To use GraphQL in a React Native application, you can use Apollo to make the
experience of developers smoother.

Setting up Apollo in React Native
The react-apollo package, which you've already used for Apollo in a React web
application, can also be used for Apollo in a React Native mobile application. This fits
perfectly with the tagline of React and React Native: learn once, write everywhere. But before
we add Apollo to the application, it's important to know that when you run your
application using the Expo application on your mobile, localhost requests aren't supported.
The local GraphQL server for this project is running on
http://localhost:4000/graphql, but to be able to use this endpoint in the React
Native application, you need to find the local IP address of your machine.

To find your local IP address, you'll need to do the following depending on your operating
system:

For Windows: Open the Terminal (or command prompt) and run this command:

ipconfig

https://cdp.packtpub.com/react_projects_/wp-admin/post.php?post=33&action=edit#post_30

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[337]

This will return a list, as follows, with data from your local machine. In this list,
you need to look for the field IPv4 Address:

For macOS: Open the Terminal and run this command:

ipconfig getifaddr en0

After running this command, the local Ipv4 Address of your machine gets
returned, which looks like this:

192.168.1.107

After getting the local IP address, you can use this address to set up the Apollo client for
the React Native application. To be able to use Apollo and GraphQL, you need to install
several packages from npm using npm with the following command. You need to do this
from the client directory in a separate Terminal tab:

cd client && npm install graphql apollo-client apollo-link-http apollo-
cache-inmemory react-apollo

In the App.js, file, you can now use apollo-client to create your GraphQL client
using apollo-link-http to set up the connection with the local GraphQL server
and apollo-cache-inmemory to cache your GraphQL requests. Also,
the ApolloProvider component will use the client you've created to make the GraphQL
server available to all of the components that are nested within this Provider. The local IP
address must be used to create the value for API_URL with the prefix http:// and suffix
:4000/graphql that points towards the correct port and endpoint, making it look like
http://192.168.1.107:4000/graphql.

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[338]

To do this, add the following lines to App.js:

import React from 'react';
import AppContainer from './AppContainer';
+ import { ApolloClient } from 'apollo-client';
+ import { InMemoryCache } from 'apollo-cache-inmemory';
+ import { HttpLink } from 'apollo-link-http';
+ import { ApolloProvider } from 'react-apollo';

+ const API_URL = 'http://192.168.1.107:4000/graphql';

+ const cache = new InMemoryCache();
+ const client = new ApolloClient({
+ link: new HttpLink({
+ uri: API_URL,
+ }),
+ cache
+ });

- const App = () => <AppContainer />;

+ const App = () => (
+ <ApolloProvider client={client}>
+ <AppContainer />
+ </ApolloProvider>
+);

export default App;

Now, you're able to send documents with queries and mutations from any of the
components nested within ApolloProvider, but you aren't able to send subscriptions in
your documents yet. Support for subscriptions doesn't come out of the box and requires
setting up a WebSocket for a real-time two-way connection between the client React Native
application and the GraphQL server. This will be done later on in this chapter, after you've
added authentication to the application.

In the next part of this section, you'll use Apollo to get the data from the GraphQL server
that you just linked to the Apollo Client in this section.

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[339]

Using Apollo in React Native
If you look at the application, you will see there are two tabs; one is showing the
Conversations screen and the other is showing the Settings screen. The
Conversations screen is now displaying the text Loading..., where the conversations
that were returned from the GraphQL server should be shown. The components to display
the conversations have already been created and can be found in
the client/Components/Conversation directory, while the logic to request the
conversations still needs to be created.

To add Apollo, follow these steps:

The first step is to import the Query component from react-apollo into the1.
client/Screens/Conversations.js file, which you'll use to send a document
to the GraphQL server. This Query component will use the
GET_CONVERSATIONS query and the ConversationItem component must be
imported as well:

import React from 'react';
import { FlatList, Text, View } from 'react-native';
import styled from 'styled-components/native';
+ import { Query } from 'react-apollo';
+ import { GET_CONVERSATIONS } from '../constants';
+ import ConversationItem from
'../Components/Conversations/ConversationItem';

...

const Conversations = () => (
 ...

The Conversations screen should now request the2.
GET_CONVERSATIONS query using the Query component. When the request
hasn't been resolved, a loading message will be displayed. When the request to
the GraphQL server is resolved, a styled Flatlist will return a list of the
imported ConversationItem components. The styled Flatlist has already
been created and can be found as the ConversationsList component at the
bottom of this file:

...

const Conversations = () => (
 <ConversationsWrapper>

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[340]

- <ConversationsText>Loading...</ConversationsText>
+ <Query query={GET_CONVERSATIONS}>
+ {({ loading, data }) => {
+ if (loading) {
+ return <ConversationsText>Loading...</ConversationsText>
+ }

+ return (
+ <ConversationsList
+ data={data.conversations}
+ keyExtractor={item => item.userName}
+ renderItem={({ item }) => <ConversationItem item={item}
/> }
+ />
+);
+ }}
+ </Query>
 </ConversationsWrapper>
);

export default Conversations;

The Conversations screen initially shows the loading message when the
document with the query is sent; after the query has returned data, the
ConversationsList component will be displayed. This component renders
ConversationItem components that display the data from the query.

When you try to click on any of the conversations, nothing will happen, except3.
that you'll see a small animation that changes the opacity. This is because the
ConversationItem component is a styled TouchableOpacity, which can be
passed as a function that is called when you tap it. The function to navigate to the
conversation can be created from the navigation prop, which is available in the
Conversations screen. This prop should be passed as a prop to
ConversationItem:

...

- const Conversations = () => (
+ const Conversations = ({ navigation) => (
 <ConversationsWrapper>
 <ConversationsText>Loading...</ConversationsText>
 <Query query={GET_CONVERSATIONS}>
 {({ loading, data }) => {
 if (loading) {
 return
<ConversationsText>Loading...</ConversationsText>

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[341]

 }

 return (
 <ConversationsList
 data={data.conversations}
 keyExtractor={item => item.userName}
- renderItem={({ item }) => <ConversationItem
item={item} /> }
+ renderItem={({ item }) => <ConversationItem
item={item} navigation={navigation} />}
 />
);
 }}
 </Query>
 </ConversationsWrapper>
);

export default Conversations;

The ConversationItem component can now navigate to the Conversation4.
screen when TouchableOpacity is being tapped; this component can be found
in the client/Components/Conversation/ConversationItem.js file,
where the navigation prop should be destructured and used to call the
navigate function on the onPress handler. This item is passed with the
navigate function so that this data can be used in the Conversation screen:

import React from 'react';
import { Platform, Text, View, TouchableOpacity } from 'react-
native';
import { Ionicons } from '@expo/vector-icons';
import styled from 'styled-components/native';

...

- const ConversationItem = ({ item }) => (
+ const ConversationItem = ({ item, navigation }) => (
- <ConversationItemWrapper>
+ <ConversationItemWrapper
+ onPress={() => navigation.navigate('Conversation', { item })}
+ >
 <ThumbnailWrapper>
 ...

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[342]

This navigates to the Conversation screen from5.
the client/Screens/Conversation.js file, where the full conversation
should be displayed. To display the conversation, you can either use the item
data that was just passed to this screen or send another document to the
GraphQL server that contains the query to retrieve the conversation. To make
sure the most recent data is displayed, the Query component can be used to send
a query to retrieve the conversation using the userName field from the
navigation prop. To do this, you need to import the Query component, the
GET_CONVERSATION query that is used by Query, and the Message component
to display the messages from the conversation:

import React from 'react';
import { Dimensions, ScrollView, Text, FlatList, View } from
'react-native';
+ import { Query } from 'react-apollo';
import styled from 'styled-components/native';
+ import Message from '../Components/Message/Message';
+ import { GET_CONVERSATION } from '../constants';

...

const Conversation = () => (
 ...

After this, you can add the Query component to the Conversation screen and6.
have it use the GET_CONVERSATION query with userName, which was retrieved
from the navigation prop. Once the query resolves the Query component
returns a data object with a field called messages. This value can be passed to a
FlatList component. In this component, you can iterate over this value and
return Message components that display all of the messages from the
conversation. FlatList is already styled and can be found at the bottom of the
file as MessagesList:

...

- const Conversation = () => {
+ const Conversation = ({ navigation }) => {
+ const userName = navigation.getParam('userName', '');

+ return (
 <ConversationWrapper>
- <ConversationBodyText>Loading...</ConversationBodyText>
+ <Query query={GET_CONVERSATION} variables={{ userName }}>
 <ConversationBody>

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[343]

+ {({ loading, data }) => {
+ if (loading) {
+ return
<ConversationBodyText>Loading...</ConversationBodyText>;
+ }
+ const { messages } = data.conversation;
+ <MessagesList
+ data={messages}
+ keyExtractor={item => String(item.id)}
+ renderItem={({ item }) => (
+ <Message align={item.userName === 'me' ? 'left' :
'right'}>
+ {item.text}
+ </Message>
+)}
+ />
+ }}
 </ConversationBody>
+ </Query>
 <ConversationActions userName={userName} />
 </ConversationWrapper>
);
+ };

export default Conversation;

All of the received messages from this conversation are now being displayed and, using the
form at the bottom of this screen, a new message can be added to the conversation.

Depending on the device that you're running the application on, the Conversation and
Conversation screens should look something like this on a device running on iOS:

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[344]

However, to send a message, a document with a mutation should be sent to the GraphQL
server and, to do so the user must be authenticated. How to handle authentication for this
mutation will be addressed in the next section, where the authentication flow will be
added.

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[345]

Authentication in React Native
Typically, authentication for mobile applications is similar to how you would handle
authentication in web applications, although there are some minor differences. The flow for
authenticating a user on a mobile application would be as follows:

The user opens your application1.
A loading screen is shown that checks for any authentication information in the2.
persistent storage
If authenticated, the user will be forwarded to the main screen for the3.
application; otherwise, they will be forwarded to the login screen, where the user
can log in
Whenever the user signs out, the authentication details will be removed from the4.
persistent storage

One of the biggest caveats of this flow is that the mobile device doesn't support local
storage or session storage as these persistent storage solutions are tied to the browser.
Instead, you'd need to use the AsyncStorage library from React Native to have persistent
storage on both iOS and Android. On iOS, it will use native code blocks to give you the
global persistent storage that AsyncStorage offers, while on devices running Android,
either RockDB- or SQLite-based storage will be used.

For more complex usages, it's recommended to use an abstraction layer on
top of AsyncStorage as encryption isn't supported out of the box
by AsyncStorage. Also, the use of a key-value system can give you
performance issues if you want to store a lot of information for your
application using AsyncStorage. Both iOS and Android will have set
limitations on the amount of storage each application can use.

Authentication with React Navigation
To set up the authentication flow we described earlier, you'll use the React Navigation
package again. Previously, you used the different types of navigators from React
Navigation, but not SwitchNavigator. With this navigator type, you can only display one
screen at once, and you can navigate to other screens using the navigation prop.
SwitchNavigator should be the main navigator of your application and other navigators
such as StackNavigator can be nested inside it.

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[346]

Adding authentication to the React Native application involves performing the following
steps:

The first step to using this navigator type is1.
importing createSwitchNavigator from react-navigation, just like you
imported the other navigators into the client/AppContainer.js file. Also,
import the screen component for the login screen, which can be found
at client/Screens/Login.js:

import React from 'react';
import { Platform } from 'react-native';
import { Ionicons } from '@expo/vector-icons';
import {
+ createSwitchContainer,
 createAppContainer
} from 'react-navigation';
import { createStackNavigator } from 'react-navigation-stack';
import { createBottomTabNavigator } from 'react-navigation-tabs';
import Conversations from './Screens/Conversations';
import Conversation from './Screens/Conversation';
import Settings from './Screens/Settings';
+ import Login from './Screens/Login';

const ConversationsStack = createStackNavigator({
 ...

Instead of wrapping TabNavigator at the bottom of this file2.
with createAppContainer, you need to return SwitchNavigator instead. To
create this, you need to use createSwitchNavigator, which you imported in
the previous step. This navigator contains the Login screen
and TabNavigator, which is the main screen for this application. For the user to
only see the main screen when authenticated, the Login screen needs to be the
initial screen:

...

+ const SwitchNavigator = createSwitchNavigator(
+ {
+ Main: TabNavigator,
+ Auth: Login
+ },
+ {
+ initialRouteName: 'Auth',
+ }
+);

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[347]

- export default createAppContainer(TabNavigator);
+ export default createAppContainer(SwitchNavigator);

The Login screen that is now displayed in the application will only switch to
TabNavigator when the correct authentication details are filled in.

However, this form needs to be connected to the GraphQL server first to receive3.
the JWT token that is needed for authentication. The component for
the Login screen already has a form, but submitting this form doesn't call any
function to authenticate the user yet. Therefore, you need to use
a Mutation component from react-apollo and have this component send a
document with the correct mutation to the GraphQL server. The mutation that
needs to be added to this component can be found in the constants.js file and
is called LOGIN_USER. To submit the form, the loginUser function that is
returned by the Mutation component should be called when the user
presses Button:

import React from 'react';
import { View, TextInput } from 'react-native';
import styled from 'styled-components/native';
+ import { Mutation } from 'react-apollo';
import Button from '../Components/Button/Button';
+ import { LOGIN_USER } from '../constants';

...

const Login = () => {
 const [userName, setUserName] = React.useState('');
 const [password, setPassword] = React.useState('');

 return (
+ <Mutation mutation={LOGIN_USER}>
+ {loginUser => (
 <LoginWrapper>
 <StyledTextInput
 onChangeText={setUserName}
 value={userName}
 placeholder='Your username'
 textContentType='username'
 />
 <StyledTextInput
 onChangeText={setPassword}
 value={password}
 placeholder='Your password'
 textContentType='password'
 />

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[348]

 <Button
 title='Login'
+ onPress={() => loginUser({ variables: { userName,
password } })}
 />
 </LoginWrapper>
+)}
+ </Mutation>
);
};

export default Login;

Both TextInput components are controlled component, and
use useState Hooks to control their values. Both
the userName and password constants that are used by this mutation take two
variables for authentication, which are also userName and password:

...
export const LOGIN_USER = gql`
 mutation loginUser($userName: String!, $password: String!) {
 loginUser(userName: $userName, password: $password) {
 userName
 token
 }
 }
`;
...

Apart from the loginUser function, which sends the mutation in a document,4.
the Mutation component will also return the loading, error, and data
variables that are returned by the GraphQL server. The loading variable can be
used to communicate to the user that the document was sent to the server, while
the data and error variables are returned when the GraphQL server responds
to this document:

import React from 'react';
import { View, TextInput } from 'react-native';
import styled from 'styled-components/native';
import { Mutation } from 'react-apollo';
import Button from '../Components/Button/Button';
import { LOGIN_USER } from '../constants';

...

const Login = () => {

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[349]

 const [userName, setUserName] = React.useState('');
 const [password, setPassword] = React.useState('');

 return (
 <Mutation mutation={LOGIN_USER}>
- {loginUser => (
+ {(loginUser, { loading }) => (
 <LoginWrapper>
 <StyledTextInput
 onChangeText={setUserName}
 value={userName}
 placeholder='Your username'
 textContentType='username'
 />
 <StyledTextInput
 onChangeText={setPassword}
 value={password}
 placeholder='Your password'
 textContentType='password'
 />
 <Button
- title='Login'
+ title={loading ? 'Loading...' : 'Login'}
 onPress={() => loginUser({ variables: { userName,
password } })}
 />
 </LoginWrapper>
 }}
 </Mutation>
);
};

export default Login;

This will change the text of the button at the bottom of the form to
Loading... when the document is sent to the GraphQL server and no response
has been returned yet.

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[350]

To use the error variable to show an error message when the wrong credentials5.
have been filled in, you won't be destructuring the variable from the output of
the Mutation component. Instead, the error variable will be retrieved
from Promise that is returned by the loginUser function. For displaying the
error, you'll use the graphQLErrors method that is available from the error
variable, which returns an array (since there could be multiple errors) and
renders the error within an Alert component from React Native:

import React from 'react';
- import { View, TextInput } from 'react-native';
+ import { Alert, View, TextInput } from 'react-native';
import styled from 'styled-components/native';
import { Mutation } from 'react-apollo';
import Button from '../Components/Button/Button';
import { LOGIN_USER } from '../constants';

...

 <Button
 title={loading ? 'Loading...' : 'Login'}
 onPress={() => {
 loginUser({ variables: { userName, password } })
+ .catch(error => {
+ Alert.alert(
+ 'Error',
+ error.graphQLErrors.map(({ message }) => message)[0]
+);
+ });
 }}
 />

...

When the right username and password combination are used, the data variable6.
should be used to store the JWT token that will be returned by the GraphQL
server. Just like the error variable that was retrieved from the
loginUser function, the data variable can be retrieved from this Promise as
well. This token is available on the data variable and should be stored
somewhere safe, which can be done using the AsyncStorage library:

import React from 'react';
- import { Alert, View, TextInput } from 'react-native';
+ import { AsyncStorage, Alert, View, TextInput } from 'react-
native';
import styled from 'styled-components/native';
import { Mutation } from 'react-apollo';

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[351]

import Button from '../Components/Button/Button';
import { LOGIN_USER } from '../constants';

...

const Login = ({ navigation }) => {
 ...

 <Button
 title={loading ? 'Loading...' : 'Login'}
 onPress={() => {
 loginUser({ variables: { userName, password } })
+ .then(({data}) => {
+ const { token } = data.loginUser;
+ AsyncStorage.setItem('token', token);
+ })
 .catch(error => {
 if (error) {
 Alert.alert(
 'Error',
 error.graphQLErrors.map(({ message }) => message)[0],
);
 }
 });
 }}
 />

 ...

After storing the token, the user should be redirected to the main application,7.
which can be found at the Main route and represents the screens linked
to TabNavigator. To redirect the user, you can use the navigation prop that is
passed to the Login component by SwitchNavigator. Since storing something
with AsyncStorage should be done asynchronously, the navigation function
should be called from within the callback of Promise that is returned by
AsyncStorage:

import React from 'react';
import { AsyncStorage, Alert, View, TextInput } from 'react-
native';
import styled from 'styled-components/native';
import { Mutation } from 'react-apollo';
import Button from '../Components/Button/Button';
import { LOGIN_USER } from '../constants';

...

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[352]

- const Login = () => {
+ const Login = ({ navigation }) => {
 ...

<Button
 title={loading ? 'Loading...' : 'Login'}
 onPress={() => {
 loginUser({ variables: { userName, password } })
 .then(({data}) => {
 const { token } = data.loginUser;
- AsyncStorage.setItem('token', token)
+ AsyncStorage.setItem('token', token).then(value => {
+ navigation.navigate('Main');
+ });
 })
 .catch(error => {
 if (error) {
 Alert.alert(
 'Error',
 error.graphQLErrors.map(({ message }) => message)[0],
);
 }
 });
 }}
/>

...

This, however, only completes a part of the authentication flow since the Login screen will
always be displayed when the application first renders. That way, users always have to log
in with their authentication details, even when their JWT token is stored in the persistent
storage.

To check whether or not the user has logged in before, a third screen has to be added to
SwitchNavigator. This screen will determine whether the user has a token stored in the
persistent storage and if they do, the user will be redirected to the Main route immediately.
If the user hasn't logged in before, the user will be redirected to the Login screen you've
just created:

This intermediate screen that determines whether there is an authentication1.
token stored in the persistent storage, that is the AuthLoading screen, should be
added to SwitchNavigator in App.js. This screen should also become the
initial route that is served by the navigator:

import React from 'react';
import { Platform } from 'react-native';

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[353]

import { Ionicons } from '@expo/vector-icons';
import {
 createSwitchNavigator,
 createAppContainer
} from 'react-navigation';
import { createStackNavigator } from 'react-navigation-stack';
import { createBottomTabNavigator } from 'react-navigation-tabs';
import Conversations from './Screens/Conversations';
import Conversation from './Screens/Conversation';
import Settings from './Screens/Settings';
import Login from './Screens/Login';
+ import AuthLoading from './Screens/AuthLoading';

const ConversationsStack = createStackNavigator({

 ...

const SwitchNavigator = createSwitchNavigator(
 {
 Main: TabNavigator,
 Login,
+ AuthLoading,
 },
 {
- initialRouteName: 'Login',
+ initialRouteName: 'AuthLoading',
 }
);

export default createAppContainer(SwitchNavigator);

In this AuthLoading screen, the authentication token should be retrieved from2.
the persistent storage, and afterward, the navigation to either the Login or Main
screen should be handled. This screen can be found in the
client/Screens/AuthLoading.js file, where nothing but a simple interface
has been added. The token can be retrieved using the getItem method from the
AsyncStorage library and should be called from a useEffect Hook so that it's
retrieved when the AuthLoading screen is first loaded. From callback, and
from Promise returned by getItem, the navigate function from the
navigation prop is used for the actual navigation to either of these screens:

import React from 'react';
- import { Text, View } from 'react-native';
+ import { AsyncStorage, Text, View } from 'react-native';
import styled from 'styled-components/native';

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[354]

...

- const AuthLoading = () => (
+ const AuthLoading = ({ navigation }) => {
+ React.useEffect(() => {
+ AsyncStorage.getItem('token').then(value => {
+ navigation.navigate(value ? 'Main' : 'Auth');
+ });
+ }, [navigation]);

+ return (
 <AuthLoadingWrapper>
 <AuthLoadingText>Loading...</AuthLoadingText>
 </AuthLoadingWrapper>
);
+ };

export default AuthLoading;

The final step in completing the authentication flow is adding the possibility for a3.
user to log out of the application by deleting the token from the persistent
storage. This is done in the client/Screens/Settings.js file. This renders
the Settings screen that can be found in TabNavigator. The Settings screen
has a green button, which you can set an onPress event on.

The removeItem method from AsyncStorage can be used for deleting the token
from the persistent storage and returns Promise. In the callback of this Promise,
you can again handle the navigation to return to the Login screen as you don't
want an unauthenticated user in your application:

import React from 'react';
- import { Text, View } from 'react-native';
+ import { AsyncStorage, Text, View } from 'react-native';
import styled from 'styled-components/native';
import Button from '../Components/Button/Button';

...

- const Settings = () => (
+ const Settings = ({ navigation }) => (
 <SettingsWrapper>
- <Button title='Log out' />
+ <Button
+ title='Log out'
+ onPress={() => {
+ AsyncStorage.removeItem('token').then(() =>

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[355]

navigation.navigate('AuthLoading'));
+ }}
+ />
 </SettingsWrapper>
);

export default Settings;

By adding the logout functionality, you've completed the authentication flow that uses JWT
tokens returned by the GraphQL server. This can be requested by filling in a form on the
Login screen. If the authentication is successful, the user will be redirected to the Main
screen and, by using the Log out button on the Settings screen, the user can log out and
will be directed back to the Login screen. The final authentication flow will now look
something like this, depending on which operating system you're running this application
on. The following screenshots have taken taken from a device that's running on iOS:

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[356]

However, for the GraphQL server to know whether this user is authenticated, you need to
send a validation token to it. In the next part of this section, you'll learn how to do this by
using a JSON Web Token (JWT).

Sending authentication details to the GraphQL server
The authentication details that are now stored in the persistent storage should also be
added to the Apollo Client so that they're sent to the GraphQL server with every document.
This can be done by extending the setup of Apollo Client with the token information. since
the token is a JWT, it should be prefixed with Bearer:

You need to install an Apollo package to deal with adding values to context.1.
The setContext method is available from the apollo-link-context package,
which you can install from npm:

npm install apollo-link-context

The apollo-link-context package should be imported into2.
the client/App.js file, where the Apollo client is created. You need to separate
the construction of the HttpLink object for the client as this one needs to be
combined with the created Context:

import React from 'react';
import { ApolloClient } from 'apollo-client';
import { InMemoryCache } from 'apollo-cache-inmemory';
+ import { setContext } from 'apollo-link-context';
import { HttpLink } from 'apollo-link-http';
import { ApolloProvider } from 'react-apollo';
import AppContainer from './AppContainer';

const API_URL = '..';

+ const httpLink = new HttpLink({
+ uri: API_URL,
+ });

const cache = new InMemoryCache();

const client = new ApolloClient({
- link: new HttpLink({
- uri: API_URL,
- }),
+ link: httpLink,
 cache,
});

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[357]

const App = () => (
 ...

After this, you can use the setContext() method to extend the headers that are3.
being sent to the GraphQL server so that you can also include the token that
can be retrieved from the persistent storage. This method should be used
asynchronously as getting an item from AsyncStorage is also asynchronous.
The token that will be returned must be prefixed with Bearer as the GraphQL
server expects the JWT token in that format:

import React from 'react';
+ import { AsyncStorage } from 'react-native';
import AppContainer from './AppContainer';
import { ApolloClient } from 'apollo-client';
import { InMemoryCache } from 'apollo-cache-inmemory';
import { setContext } from 'apollo-link-context';
import { HttpLink } from 'apollo-link-http';
import { ApolloProvider } from 'react-apollo';

const API_URL = '...';

const httpLink = new HttpLink({
 uri: API_URL,
});

+ const authLink = setContext(async (_, { headers }) => {
+ const token = await AsyncStorage.getItem('token');

+ return {
+ headers: {
+ ...headers,
+ authorization: token ? `Bearer ${token}` : '',
+ }
+ };
+ });

 ...

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[358]

The httpLink that is used for the link field when creating the Apollo Client4.
should now be combined with authLink so that the token that is retrieved from
AsyncStorage will be added to the headers when the request is sent to the
GraphQL server:

...

const cache = new InMemoryCache();

const client = new ApolloClient({
- link: httpLink,
+ link: authLink.concat(httpLink),
 cache
});

const App = () => (
 ...

Now, any document is passed to the GraphQL server will be able to use the token that was
retrieved by using the login form of your application—something that you'll need when a
mutation is used to send a message in the next section.

Handling subscriptions in React Native with
Apollo
Before you can proceed and send documents containing mutations to the GraphQL server,
we need to set up Apollo so that we can handle subscriptions. For handling subscriptions, a
WebSocket needs to be set up for your application, which enables a real-time two-way
connection between the GraphQL server and your application. That way, you'll receive
instant feedback when you, for example, send or receive a message using this mobile
application.

Setting up Apollo Client for GraphQL subscriptions
To use subscriptions in your React Native application, there are more packages you need to
add to the project that, for example, make it possible to add the WebSocket. These packages
are as follows:

npm install apollo-link-ws subscriptions-transport-ws apollo-
utilities

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[359]

The apollo-link-ws package helps you create a link to the GraphQL server running the
subscription, like apollo-link-http does for queries and mutations. subscriptions-
transport-ws is a package that is needed to run apollo-link-ws, while apollo-
utilities is added to use a method that is available on those packages so that you
can separate requests regarding subscriptions from requests for queries or mutations.

After installing these packages, you need to follow these steps to use subscriptions in your
application:

You can add the creation of the link to the GraphQL server using apollo-link-1.
ws. The URL to the GraphQL server should be prefixed with ws:// instead
of http:// as it concerns a connection with a WebSocket. The URL to the
GraphQL server running on your machine would look like
ws://192.168.1.107/graphql instead
of http://192.168.1.107/graphql and must be added to
the SOCKET_URL constant:

import React from 'react';
import { AsyncStorage } from 'react-native';
import { ApolloClient } from 'apollo-client';
import { InMemoryCache } from 'apollo-cache-inmemory';
import { setContext } from 'apollo-link-context';
import { HttpLink } from 'apollo-link-http';
+ import { split } from 'apollo-link';
import { ApolloProvider } from 'react-apollo';
import AppContainer from './AppContainer';

const API_URL = '...';
+ const SOCKET_URL = 'ws://192.168.1.107/graphql';

...

+ const wsLink = new WebSocketLink({
+ uri: SOCKET_URL,
+ options: {
+ reconnect: true,
+ },
+ });

...

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[360]

Using the split and getMainDefinition methods, the distinction between2.
different requests to the GraphQL server can be made by separating queries and
mutations from subscriptions. That way, only documents containing
subscriptions will be sent using the WebSocket, and queries and mutations will
use the default flow:

import React from 'react';
import { AsyncStorage } from 'react-native';
import { ApolloClient } from 'apollo-client';
import { InMemoryCache } from 'apollo-cache-inmemory';
import { setContext } from 'apollo-link-context';
import { HttpLink } from 'apollo-link-http';
import { split } from 'apollo-link';
+ import { WebSocketLink } from 'apollo-link-ws';
+ import { getMainDefinition } from 'apollo-utilities';
import { ApolloProvider } from 'react-apollo';
import AppContainer from './AppContainer';

...

+ const link = split(
+ ({ query }) => {
+ const definition = getMainDefinition(query);
+
+ return (
+ definition.kind === 'OperationDefinition' &&
definition.operation === 'subscription'
+);
+ },
+ wsLink,
+ httpLink,
+);

const cache = new InMemoryCache();

const client = new ApolloClient({
- link: authLink.concat(httpLink),
+ link: authLink.concat(link),
 cache,
});

const App = () => (
 ...

The setup for Apollo now also supports subscriptions, which you'll add in the next part of
this section where the Conversations screen will be filled with real-time data.

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[361]

Adding subscriptions to React Native
The local GraphQL server that is running on your machine supports both a query and a
subscription so that you can return a conversation from a specific user. Where the query
will return the full conversation, the subscription will return any new message that may
have been sent or received in that conversation. At the moment, the Conversation screen
is only sending a document with the query that will return the conversation with a user if
you tap on any of the conversations displayed on the Conversations screen.

Subscriptions can be added to your application in multiple ways; using the Subscription
component from react-apollo is the most simple one. But since you're already retrieving
the conversation using the Query component in client/Screens/Conversation.js, the
Query component can be extended to also support subscriptions:

The first step in adding the subscriptions to the Conversation screen is by1.
splitting the screen into multiple components. You can do this by creating a new
component called ConversationBody in
the client/Components/Conversation directory. This file should be called
ConversationBody.js and contain the following code:

import React from 'react';
import styled from 'styled-components/native';
import { Dimensions, ScrollView, FlatList } from 'react-native';
import Message from '../Message/Message';

const ConversationBodyWrapper = styled(ScrollView)`
 width: 100%;
 padding: 2%;
 display: flex;
 height: ${Dimensions.get('window').height * 0.6};
`;

const MessagesList = styled(FlatList)`
 width: 100%;
`;

const ConversationBody = ({ userName, messages }) => {
 return (
 <ConversationBodyWrapper>
 <MessagesList
 data={messages}
 keyExtractor={item => String(item.id)}
 renderItem={({ item }) => (
 <Message align={item.userName === 'me' ? 'left' :
'right'}>

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[362]

 {item.text}
 </Message>
)}
 />
 </ConversationBodyWrapper>
);
};

export default ConversationBody;

After creating this new component, it should be imported into the2.
Conversation screen in the client/Screens/Conversation.js file, where it
can replace the ContainerBody component that is already present in that file.
This also means that some imports become obsolete and that the
ContainerBody styled component can be deleted as well:

import React from 'react';
- import { Dimensions, ScrollView, Text, FlatList, View } from
'react-native';
+ import { Text, View } from 'react-native';
import { Query } from 'react-apollo';
import styled from 'styled-components/native';
- import Message from '../Components/Message/Message';
+ import ConversationBody from
'../Components/Conversation/ConversationBody';
import { GET_CONVERSATION } from '../constants';

...

const Conversation = ({ navigation }) => {
 const userName = navigation.getParam('userName', '');

 return (
 <ConversationWrapper>
 <Query query={GET_CONVERSATION} variables={{ userName }}>
- <ConversationBody>
 {({ loading, data }) => {
 if (loading) {
 return
<ConversationBodyText>Loading...</ConversationBodyText>;
 }
 const { messages } = data.conversation;

- return (
- <MessagesList
- data={messages}
- keyExtractor={item => String(item.id)}

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[363]

- renderItem={({ item }) => (
- <Message align={item.userName === 'me' ? 'left' :
'right'}>
- {item.text}
- </Message>
-)}
- />
-);
- }}

+ return <ConversationBody messages={messages}
userName={userName} />
 }}
- </ConversationBody>
 </Query>
 <ConversationActions userName={userName} />
 </ConversationWrapper>
);
};

export default Conversation;

Now, the logic for retrieving the subscription can be added to the Query3.
component, by getting the subscribeToMore method from it. This method
should be passed to the ConversationBody component, where it will be called
and thereby retrieve any new messages that are sent or received in the
conversation:

 ...
 return (
 <ConversationWrapper>
 <Query query={GET_CONVERSATION} variables={{ userName }}>
- {({ loading, data }) => {
+ {({ subscribeToMore, loading, data }) => {
 if (loading) {
 return
<ConversationBodyText>Loading...</ConversationBodyText>;
 }
 const { messages } = data.conversation;

- return <ConversationBody messages={messages}
userName={userName} />
+ return (
+ <ConversationBody
+ messages={messages}
+ userName={userName}
+ subscribeToMore={subscribeToMore}

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[364]

+ />
 }}
 </Query>
 <ConversationActions userName={userName} />
 </ConversationWrapper>
);
};

In the ConversationBody component, the subscribeToMore method can now4.
be used to retrieve any new messages that are added to the conversation, by
using a subscription. The subscription to use is called MESSAGES_ADDED and can
be found in the client/constants.js file. It takes userName as a variable:

import React from 'react';
import styled from 'styled-components/native';
import { Dimensions, ScrollView, FlatList } from 'react-native';
import Message from '../Message/Message';
+ import { MESSAGE_ADDED } from '../../constants';

...

- const ConversationBody = ({ userName, messages }) => {
+ const ConversationBody = ({ subscribeToMore, userName, messages
}) => {
 return (
 <ConversationBodyWrapper>
 <MessagesList
 data={messages}
 keyExtractor={item => String(item.id)}
 renderItem={({ item }) => (
 <Message align={item.userName === 'me' ? 'left' :
'right'}>
 {item.text}
 </Message>
)}
 />
 </ConversationBodyWrapper>
);
};

export default ConversationBody;

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[365]

After importing the subscription and destructuring the subscribeToMore5.
method from the props, the logic for retrieving the subscription can be added.
Calling subscribeToMore should be done from a useEffect Hook and only
when the ConversationBody component first mounts. Any newly added
messages will cause the Query component to rerender, which makes the
ConversationBody component rerender as well, so it isn't necessary to check
for any updates in the useEffect Hook:

...
const ConversationBody = ({ subscribeToMore, userName, messages })
=> {
+ React.useEffect(() => {
+ subscribeToMore({
+ document: MESSAGE_ADDED,
+ variables: { userName },
+ updateQuery: (previous, { subscriptionData }) => {
+ if (!subscriptionData.data) {
+ return previous;
+ }
+ const messageAdded = subscriptionData.data.messageAdded;
+
+ return Object.assign({}, previous, {
+ conversation: {
+ ...previous.conversation,
+ messages: [...previous.conversation.messages,
messageAdded]
+ }
+ });
+ }
+ });
+ }, []);

 return (
 <ConversationBodyWrapper>

 ...

The subscribeToMore method will now check for any new messages by using
the MESSAGES_ADDED subscription, and the results from that subscription will be added to
the Query component on an object called previous. The local GraphQL server will return
a new message every few seconds, so you can see that the subscription is working by
opening a conversation and waiting for new messages to appear in that conversation.

Besides queries, you also want to be able to send real-time subscriptions as well. This will
be addressed in the final part of this section.

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[366]

Using mutations with subscriptions
Apart from using a subscription to receive messages in a conversation, they can also be
used to display the messages you send yourself. Previously, you used the
refetchQueries prop on a Mutation component to resend documents with any queries
that would have been affected by the mutation you've executed. By using subscriptions,
you no longer have to refetch, for example, the conversation query, as the subscription will
get the new message you've just sent and add it to the query.

In the previous section, you used a Query component from react-apollo to send a
document to the GraphQL server, while in this section, the new React Apollo Hooks will be
used.

The React Apollo Hooks can be used from the react-apollo package,
but if you only want to use the Hooks, you can install @apollo/react-
hooks instead by executing npm install @apollo/react-hooks. The
GraphQL components such as Query or Mutation are available in both
the react-apollo and @apollo/react-components packages. Using
these packages will decrease the size of your bundle as you're only
importing the features you need.

The Hooks from this package must be used in the ConversationActions component.
This is used in the Conversation screen component, which will consist of the input field
to type a message and a button to send the message. When you press this button, nothing
will happen as the button isn't connected to a mutation. Let's connect this button and see
how the subscription will also display the message you've sent:

The useMutation Hook should be imported into1.
the client/Components/Conversation/ConversationActions.js file,
which will be used to send the message from the input field to the GraphQL
server. The mutation that will be included in the document that you sent must
also be imported and is called SEND_MESSAGE; this can be found in
the client/constants.js file:

import React from 'react';
import { Platform, Text, View } from 'react-native';
import styled from 'styled-components/native';
import { Ionicons } from '@expo/vector-icons';
+ import { useMutation } from 'react-apollo';
import TextInput from '../TextInput/TextInput';
import Button from '../Button/Button';
+ import { SEND_MESSAGE } from '../../constants';

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[367]

...

const ConversationActions = ({ userName }) => {
 ...

This useMutation Hook can now be used to wrap the TextInput and Button2.
components, and the sendMessage prop from the Hook can be used to send a
document with the message to the GraphQL server. The value for TextInput is
controlled by the setMessage function that was created by the useState Hook,
and this function can be used to clear TextInput after the mutation is sent:

...
const ConversationActions = ({ userName }) => {
+ const [sendMessage] = useMutation(SEND_MESSAGE);
 const [message, setMessage] = React.useState('');

 return (
 <ConversationActionsWrapper>
+ <>
 <TextInput
 width={75}
 marginBottom={0}
 onChangeText={setMessage}
 placeholder='Your message'
 value={message}
 />
 <Button
 width={20}
 padding={10}
+ onPress={() => {
+ sendMessage({ variables: { to: userName, text: message
} });
+ setMessage('');
+ }}
 title={
 <Ionicons
 name={`${Platform.OS === 'ios' ? 'ios' : 'md'}-send`}
 size={42}
 color='white'
 />
 }
 />
+ </>
+ </ConversationActionsWrapper>
);
};

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[368]

Sending a message by typing a value into the text field and pressing the send
button afterward will now update the conversation with the message you've just
sent. But you might notice that this component is getting lost behind the
keyboard, depending on the size of the screen of your mobile device. This
behavior can easily be avoided by using the
KeyboardAvoidingView component from react-native. This component will
make sure that the input field is being displayed outside the area of the
keyboard.

The KeyboardAvoidingView component can be imported from react-native3.
and used to replace the View component that is currently being styled into the
ConversationsActionsWrapper component:

import React from 'react';
- import { Platform, Text, View } from 'react-native';
+ import { Platform, Text, KeyboardAvoidingView } from 'react-
native';
import styled from 'styled-components/native';
import { Ionicons } from '@expo/vector-icons';
import { useMutation } from 'react-apollo';
import TextInput from '../TextInput/TextInput';
import Button from '../Button/Button';
import { SEND_MESSAGE } from '../../constants';

- const ConversationActionsWrapper = styled(View)`
+ const ConversationActionsWrapper = styled(KeyboardAvoidingView)`
 width: 100%;
 background-color: #ccc;
 padding: 2%;
 display: flex;
 flex-direction: row;
 align-items: center;
 justify-content: space-around;
`;

const ConversationActions = ({ userName }) => {

 ...

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[369]

Depending on which platform your mobile device is running on, the4.
KeyboardAvoidingView component still might not display the input field
outside the keyboard area. However, the KeyboardAvoidingView component
can be customized using the keyboardVerticalOffset and behavior props.
For iOS and Android, the values for these props should be different; in general,
Android needs a smaller offset than iOS. In this situation,
keyboardVerticalOffset must be set to 190 for iOS and to 140 for Android,
and the behavior of the component for both platforms must be set to padding:

...

const ConversationActions = ({ userName }) => {
 const [sendMessage] = useMutation(SEND_MESSAGE);
 const [message, setMessage] = React.useState('');
 return (
- <ConversationActionsWrapper
+ <ConversationActionsWrapper
+ keyboardVerticalOffset={Platform.OS === 'ios' ? 190 : 140}
+ behavior=;padding'
+ >
 <Mutation mutation={SEND_MESSAGE}>
 ...

KeyboardAvoidingView might not work as expected on the Android
Studio emulator or on devices running Android, as there are a lot of
different possible screen sizes for devices that can run the Android
operating system.

When you press the input field, the keyboard will no longer be hidden behind the keyboard
and you should be able to type and send a message that will send a document with a
mutation to the GraphQL server. Your message will also appear in the conversation that
was being displayed previously.

Creating a Real-Time Messaging Application with React Native and Expo Chapter 10

[370]

Summary
In this chapter, you built a mobile messaging application that can be used to send and
receive messages from a GraphQL server. The messages are received in real time as
GraphQL subscriptions were used to receive the messages through a WebSocket. Also, a
mobile authentication flow was added, meaning users should be logged in to send and
receive messages. For this, AsyncStorage was used to store the JWT token returned by the
GraphQL server in persistent storage.

The project you've built in this chapter was pretty challenging, but the project you'll create
in the next chapter will be even more advanced. So far, you've handled most of the core
features for a React Native mobile application, but there's more to come. The next chapter
will explore how to build a full stack application with React Native and GraphQL as you'll
be adding notifications and more to a social media application.

Further reading
For more information about what was covered in this chapter, check out the following
resources:

WebSockets: https:/ /developer. mozilla. org/en- US/ docs/ Web/API/ WebSocket

Apollo React Hooks: https:/ / www. apollographql. com/ docs/ react/ api/ react-
hooks/

https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/
https://www.apollographql.com/docs/react/api/react-hooks/

11
Build a Full Stack Social Media

Application with React Native
and GraphQL

By now, you can almost call yourself an expert with React Native, as you're about to start
working on the most complex application of the React Native sections. A great advantage
of mobile applications is that you can send direct notifications to the people that have your
application installed. That way, you can target users when there's an important event
taking place in your application or when someone hasn't used the application for a while.
Also, mobile applications can directly use the camera of the device it's running on to take
photos and videos.

In the previous chapter, you created a mobile messaging application that has an
authentication flow and real-time data and uses GraphQL with React Native. These
patterns and techniques will also be used in this chapter to create a mobile social media
application that lets you post images to a social feed and allows you to star and comment
on these posts. Not only will using the camera be an important section in this chapter, but
you'll also add the possibility to send notifications to the user with Expo.

The following topics will be covered in this chapter:

Using the camera with React Native and Expo
Refreshing data with React Native and GraphQL
Sending mobile notifications with Expo

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[372]

Project overview
A mobile social media application that is using a local GraphQL server to request and add
posts to the social feed, including using the camera on the mobile device. Basic
authentication is added using the local GraphQL server and React Navigation, while Expo
is used for access to the camera (roll) and for sending notifications when new comments are
added to your posts.

The build time is 2 hours.

Getting started
The project that we'll create in this chapter builds upon an initial version that you can find
on GitHub: https:/ /github. com/ PacktPublishing/ React- Projects/ tree/ ch11- initial.
The complete source code can also be found on GitHub: https:/ / github. com/
PacktPublishing/React- Projects/ tree/ ch11.

You need to have the application Expo Client installed on a mobile iOS or Android device
to run the project on a physical device.

It's highly recommended to use the Expo Client application to run the
project from this chapter on a physical device. Receiving notifications is
currently only supported on physical devices, and running the project on
either the iOS simulator or Android Studio emulator will result in error
messages.

Alternatively, you can install either Xcode or Android Studio on your computer to run the
application on a virtual device:

For iOS: Information on how to set up your local machine to run the iOS
simulator can be found here: https:/ /docs. expo. io/versions/ v36. 0.0/
workflow/ ios- simulator/ .
For Android: Information on how to set up your local machine to run the
emulator from Android Studio can be found here: https:/ /docs. expo. io/
versions/ v36. 0.0/ workflow/ android- studio- emulator/ . There's a known issue
when running the emulator, which can be prevented by ensuring that the
following lines are present in your ~/.bash_profile or ~/.bash_rc file:

export ANDROID_SDK=ANDROID_SDK_LOCATION
export PATH=ANDROID_SDK_LOCATION/platform-tools:$PATH
export PATH=ANDROID_SDK_LOCATION/tools:$PATH

https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11-initial
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://github.com/PacktPublishing/React-Projects/tree/ch11
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/ios-simulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/
https://docs.expo.io/versions/v36.0.0/workflow/android-studio-emulator/

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[373]

The value for ANDROID_SDK_LOCATION is the path to the Android SDK on your
local machine and can be found by opening Android Studio and
going to Preferences | Appearance & Behavior | System Settings | Android
SDK. The path is listed in the box that states the Android SDK location and looks
like this: /Users/myuser/Library/Android/sdk.

This application was created using Expo SDK version 33.0.0, and so, you
need to ensure that the version of Expo you're using on your local
machine is similar. As React Native and Expo are frequently updated,
make sure that you're working with this version so that the patterns
described in this chapter behave as expected. In case your application
doesn’t start or if you encounter errors, refer to the Expo documentation to
learn more about updating the Expo SDK.

Checking out the initial project
This project consists of two parts, a boilerplate React Native application and a GraphQL
server. The React Native application can be found in the client directory, while the
GraphQL server is placed in the server directory. For this chapter, you'll need to have
both the application and the server running at all times, while you only make code changes
to the application in the client directory.

To get started you'll need to run the following command in both
the client and server directories to install all of the dependencies and start both the
server and application:

npm install && npm start

For the mobile application, this command will start Expo after installing the dependencies,
and it gives you the ability to start your project both from the Terminal or your browser. In
the Terminal, you can now either use the QR code to open the application on your mobile
device or open the application in a simulator.

The local GraphQL server for this project is running
on http://localhost:4000/graphql/, but to be able to use this endpoint in the React
Native application, you need to find the local IP address of your machine.

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[374]

To find your local IP address, you'll need to do the following depending on your operating
system:

For Windows: Open the Terminal (or command prompt) and run this command:

ipconfig

This will return a list like the one you see below with data from your local
machine. In this list, you need to look for the field IPv4 Address:

For macOS: Open the Terminal and run this command:

ipconfig getifaddr en0

After running this command, the local Ipv4 Address of your machine gets
returned, which looks like this:

192.168.1.107

The local IP address must be used to create the value for API_URL in the file
client/App.js, with the prefix http:// and suffix /graphql, making it look
like http://192.168.1.107/graphql:

...

- const API_URL = '';
+ const API_URL = 'http://192.168.1.107/graphql';

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[375]

const httpLink = new HttpLink({
 uri: API_URL,
});
const authLink = setContext(async (_, { headers }) => {

 ...

No matter whether you've opened the application from virtual or physical device, the
application at this point should look something like this:

This application was created using Expo SDK version 33.0.0 and therefore
you need to make sure the version of Expo you're using on your local
machine is similar. As React Native and Expo are updated frequently,
make sure that you're working with this version to ensure the patterns
described in this chapter are behaving as expected. If your application
won't start or you're receiving errors, make sure to check the Expo
documentation to learn more about updating the Expo SDK.

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[376]

The initial application consists of seven screens: AddPost, AuthLoading, Login,
Notifications, Post, Posts, and Settings. The Login screen will be the first screen
you'll see when first starting the application, where you can log in using the following
credentials:

Username: test
Password: test

The Posts screen will be the initial screen when logged in and shows a list of posts on
which you can tap to continue to the Post screen, while the Settings screens shows a
non-functioning logout button. For now, the AddPost and Notification screens aren't
visible yet, as you'll add the routing to these screens later on in this chapter.

The project structure from this React Native application in the directory client is as
follows, where the structure is similar to the projects you've created before in this book:

messaging
|-- client
 |-- .expo
 |-- assets
 |-- icon.png
 |-- splash.png
 |-- Components
 |-- // ...
 |-- node_modules
 |-- Screens
 |-- AddPost.js
 |-- AuthLoading.js
 |-- Login.js
 |-- Notifications.js
 |-- Post.js
 |-- Posts.js
 |-- Settings.js
 |-- .watchmanconfig
 |-- App.js
 |-- AppContainer.js
 |-- app.json
 |-- babel.config.js
 |-- package.json

In the assets directory, you can find the images that are used as the application icon on
the home screen once you've installed this application on your mobile device, and the
image that will serve as the splash screen that is displayed when you start the
application. For example, configurations in the App Store for the name of your application
are placed in app.json, while babel.config.js holds specific Babel configurations.

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[377]

The App.js file is the actual entry point of your application, where the
AppContainer.js file is being imported and returned. In AppContainer, all of the routes
for this application are defined and AppContext will contain information that should be
available in the entire application.

All of the components for this application are located in
the Screens and Components directories, where the first one holds the components that
are rendered by the screens. The child components for these screens can be found in the
Components directory, which has the following structure:

|-- Components
 |-- Button
 |-- Button.js
 |-- Comment
 |-- Comment.js
 |-- CommentForm.js
 |-- Notification
 |-- Notification.js
 |-- Post
 |-- PostContent.js
 |-- PostCount.js
 |-- PostItem.js
 |-- TextInput
 |-- TextInput.js

The GraphQL server can be found at the http://localhost:4000/graphql URL, where
GraphQL Playground will be visible. From this playground, you can view the schema for
the GraphQL server and inspect all of the available queries, mutations, and subscriptions.
Although you won't be making any code changes to the server, it's important to know
about the schema and its workings.

The server has two queries to retrieve a list of posts or a single post by using the
userName parameter as the identifier. These queries will return the Post type that has id,
userName, image, a counted value of stars and comments, a list of stars of the
stars type, and a list of comments with the Comment type. The query to retrieve a single
post will look like this:

export const GET_POST = gql`
 query getPost($userName: String!) {
 post(userName: $userName) {
 id
 userName
 image
 stars {
 userName

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[378]

 }
 comments {
 id
 userName
 text
 }
 }
 }
`;

After this, three mutations can be found for the GraphQL server, which are to either log in
the user, store a push token from Expo, or add a post.

If you're receiving an error stating
Please provide (valid) authentication details, you'll need to
log in to the application again. Probably, the JWT from the previous
application is still available in AsyncStorage of Expo, and this will not
validate on the GraphQL server for this chapter.

Building a full stack social media application
with React Native, Apollo, and GraphQL
The application that you're going to build in this chapter will use a local GraphQL server to
retrieve and mutate data that is available in the application. This application will display
data from a social media feed and let you respond to these social media posts.

Using the camera with React Native and Expo
Next to displaying the posts that were created by the GraphQL server, you can also add a
post yourself using a GraphQL mutation and send a text and an image as variables.
Uploading images to your React Native application can be done by using either the camera
to take an image or by selecting an image from your camera roll. For both use cases, there
are APIs available from React Native and Expo, or numerous packages that are installable
from npm. For this project, you'll use the ImagePicker API from Expo, which combines these
functionalities into just one component.

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[379]

To add the feature to create new posts to your social media application, the following
changes need to be made to create the new screen to add the post:

The GraphQL mutation that can be used to add a post to the feed you see in the1.
Main screen sends the image variable to the GraphQL server. This mutation has
the following form:

mutation {
 addPost(image: String!) {
 image
 }
}

The image variable is String and is the URL to the absolute path of the image for
this post. This GraphQL mutation needs to be added to the bottom of the
client/constants.js file so it can be used from a useMutation Hook later on:

export const GET_POSTS = gql`
 ...
`;

+ export const ADD_POST = gql`
+ mutation addPost($image: String!) {
+ addPost(image: $image) {
+ image
+ }
+ }
+ `;

With Mutation in place, the screen for adding the post must be added2.
to SwitchNavigator in the client/AppContainer.js file. The AddPost
screen component can be found in the client/Screens/AddPost.js file and
should be added as a modal in the navigator:

import React from 'react';
import { Platform } from 'react-native';
import { Ionicons } from '@expo/vector-icons';
import {
 createSwitchNavigator,
 createAppContainer
} from 'react-navigation';
import { createStackNavigator } from 'react-navigation-stack';
import { createBottomTabNavigator } from 'react-navigation-tabs';
import Posts from './Screens/Posts';
import Post from './Screens/Post';
import Settings from './Screens/Settings';

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[380]

import Login from './Screens/Login';
import AuthLoading from './Screens/AuthLoading';
+ import AddPost from './Screens/AddPost';
 ...

const SwitchNavigator = createSwitchNavigator(
 {
 Main: TabNavigator,
 Login,
 AuthLoading,
+ AddPost,
 },
 {
+ mode: 'modal',
 initialRouteName: 'AuthLoading',
 },
);

export default createAppContainer(SwitchNavigator);

And of course, the user must be able to open this modal from somewhere in your3.
application, for example, from the tab navigator at the bottom of the screen or the
header. For this scenario, you can add the navigation link to the AddPost screen
in the header—that way, the user can add a new post from the Posts screen only
by tapping a link in the header. This link can be added by
setting navigationOptions in the client/Screens/Posts.js file:

...

+ Posts.navigationOptions = ({ navigation}) => ({
+ headerRight: (
+ <Button onPress={() => navigation.navigate('AddPost')}
title='Add Post' />
+),
+ });

export default Posts;

By setting the headerRight field in navigationOptions, only the right part of the header
will be changed and the title that has been set from the navigator will keep in place.
Tapping the Add Post link will now navigate to the AddPost screen, where a title and
button to close the modal are displayed.

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[381]

As you've now added the AddPost screen, the ImagePicker API from Expo should be
added to this screen. To add ImagePicker to the AddPost screen, follow the next steps to
enable the selection of photos from the camera roll in
the client/Screens/AddPost.js file:

Before the user can select photos from the camera roll, the right permission1.
should be set for the application when the user is using an iOS device. To request
permissions, you can use the permissions API from Expo, which should request
CAMERA_ROLL permissions. The permissions API used to be available directly
from Expo, but has been moved to a separate package called expo-
permissions that can be installed from the Expo CLI by running this:

expo install expo-permissions

After this, you can import the permissions API and create the function to check2.
whether the right permissions have been granted for the camera roll:

import React from 'react';
import { Dimensions, TouchableOpacity, Text, View } from 'react-
native';
+ import { Dimensions, Platform, TouchableOpacity, Text, View }
from 'react-native';
import styled from 'styled-components/native';
import Button from '../Components/Button/Button';
+ import * as Permissions from 'expo-permissions';

...

const AddPost = ({ navigation }) => {
+ const getPermissionAsync = async () => {
+ if (Platform.OS === 'ios') {
+ const { status } = await
Permissions.askAsync(Permissions.CAMERA_ROLL);
+
+ if (status !== 'granted') {
+ alert('Sorry, you need camera roll permissions! Go to
'Settings > Expo' to enable these.');
+ }
+ }
+ };

 ...

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[382]

This getPermissionAsync function is asynchronous and can be called from a3.
Button or Touchable element. At the bottom of this file, the
UploadImage component can be found, which is a styled TouchableOpacity
element that can take an onPress function. This component must be added to
the return function of AddPost and should call
the getPermissionAsync function when tapped:

...

const AddPost = ({ navigation }) => {
 const getPermissionAsync = async () => {
 if (Platform.OS === 'ios') {
 const { status } = await
Permissions.askAsync(Permissions.CAMERA_ROLL);

 if (status !== 'granted') {
 alert('Sorry, you need camera roll permissions! Go to
'Settings > Expo' to enable these.');
 }
 }
 };

 return (
 <AddPostWrapper>
 <AddPostText>Add Post</AddPostText>

+ <UploadImage onPress={() => getPermissionAsync()}>
+ <AddPostText>Upload image</AddPostText>
+ </UploadImage>

 <Button onPress={() => navigation.navigate('Main')}
title='Cancel' />
 </AddPostWrapper>
);
};

...

When tapped, a popup requesting permission to access the camera roll will be
opened on iOS devices. When you don't accept the request, you can't select
photos from the camera roll.

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[383]

You can't ask the user for permission a second time; instead, you'd need to
manually grant the permission to the camera roll. To set this permission
again, you should go to the setting screen from iOS and select the Expo
application. On the next screen, you're able to add the permission to
access the camera.

When the user has granted permission to access the camera roll, you can call the4.
ImagePicker API from Expo to open the camera roll. Just like the permissions
API, this used to be part of Expo's core, but has now been moved to a separate
package that you can install using the Expo CLI:

expo install expo-image-picker

This is again an asynchronous function that takes some configuration fields such
as the aspect ratio. If the user has selected an image, the ImagePicker API will
return an object containing the field URI, which is the URL to the image on the
users' device that can be used in an Image component. This result can be stored in
a local state by creating one with the useState Hook, so it can be sent to the
GraphQL server later on:

import React from 'react';
import { Dimensions, Platform, TouchableOpacity, Text, View } from
'react-native';
import styled from 'styled-components/native';
import Button from '../Components/Button/Button';
+ import * as ImagePicker from 'expo-image-picker';
import * as Permissions from 'expo-permissions';

...

const AddPost = ({ navigation }) => {
+ const [imageUrl, setImageUrl] = React.useState(false);

+ const pickImageAsync = async () => {
+ const result = await ImagePicker.launchImageLibraryAsync({
+ mediaTypes: ImagePicker.MediaTypeOptions.All,
+ allowsEditing: true,
+ aspect: [4, 4],
+ });
+ if (!result.cancelled) {
+ setImageUrl(result.uri);
+ }
+ };

 return (
 ...

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[384]

And this pickImageAsync function can then be called from the function to get
the users' permissions when they've been granted for the camera roll:

...

const AddPost = ({ navigation }) => {
 ...

 const getPermissionAsync = async () => {
 if (Platform.OS === 'ios') {
 const { status } = await
Permissions.askAsync(Permissions.CAMERA_ROLL);

 if (status !== 'granted') {
 alert('Sorry, you need camera roll permissions! Go to
'Settings > Expo' to enable these.');
+ } else {
+ pickImageAsync();
 }
 }
 };

 return (

As the URL to the image is now stored in the local state to5.
the imageUrl constant, you can display this URL in an Image component. This
Image component takes imageUrl as value for the source and has been set to use
a 100% width and height:

...

 return (
 <AddPostWrapper>
 <AddPostText>Add Post</AddPostText>

 <UploadImage onPress={() => getPermissionAsync()}>
+ {imageUrl ? (
+ <Image
+ source={{ uri: imageUrl }}
+ style={{ width: '100%', height: '100%' }}
+ />
+) : (
 <AddPostText>Upload image</AddPostText>
+)}
 </UploadImage>

 <Button onPress={() => navigation.navigate('Main')}

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[385]

title='Cancel' />
 </AddPostWrapper>
);
};

...

With these changes, the AddPost screen should look something like the following
screenshot, which was taken from a device running iOS. There might be slight differences
in the appearance of this screen if you're using the Android Studio emulator or a device
that runs Android:

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[386]

These changes will make it possible to select a photo from your camera roll, but your users
should also be able to upload an entirely new photo by using their camera. With the
ImagePicker from Expo, you can handle both scenarios, as this component also has
a launchCameraAsync method. This asynchronous function will launch the camera, and
return it the same way as it returns a URL to the image from the camera roll.

To add the functionality to directly use the camera on the user's device to upload an image,
you can make the following changes:

As the user needs to grant your application permission to access the camera roll,1.
the user needs to do the same for using the camera. Permission to use the camera
can be requested by sending Permissions.CAMERA with the
Permissions.askAsync method. The check for the granted permission for the
camera roll must be extended to also check for the camera permission:

...

 const getPermissionAsync = async () => {
 if (Platform.OS === 'ios') {
- const { status } = await
Permissions.askAsync(Permissions.CAMERA_ROLL);
- if (status !== 'granted') {
+ const { status: statusCamera } = await
Permissions.askAsync(Permissions.CAMERA);
+ const { status: statusCameraRoll } = await
Permissions.askAsync(Permissions.CAMERA_ROLL);

+ if (statusCamera !== 'granted' || statusCameraRoll !==
'granted') {
 alert(
 `Sorry, you need camera roll permissions! Go to 'Settings
> Expo' to enable these.`
);
 } else {
 pickImageAsync();
 }
 }
 };

 return (
 ...

This will ask the user for permission to use the camera on iOS, which can also be
granted manually by going to Settings | Expo.

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[387]

With the permission granted, you can continue by creating the function to launch2.
the camera by calling launchCameraAsync from ImagePicker. The
functionality is the same as for the launchCameraAsync function that you
created to open the camera roll; therefore, the pickImageAsync function can be
edited to also be able to launch the camera:

const AddPost = ({ navigation }) => {
 const [imageUrl, setImageUrl] = React.useState(false);
- const pickImageAsync = async () => {
+ const addImageAsync = async (camera = false) => {
- const result = await ImagePicker.launchCameraAsync({
- mediaTypes: ImagePicker.MediaTypeOptions.All,
- allowsEditing: true,
- aspect: [4, 4]
- });

+ const result = !camera
+ ? await ImagePicker.launchImageLibraryAsync({
+ mediaTypes: ImagePicker.MediaTypeOptions.All,
+ allowsEditing: true,
+ aspect: [4, 4]
+ })
+ : await ImagePicker.launchCameraAsync({
+ allowsEditing: true,
+ aspect: [4, 4]
+ })
 if (!result.cancelled) {
 setImageUrl(result.uri);
 }
 };

If you now send a parameter to the addImageAsync function,
launchCameraAsync will be called. Otherwise, the user will be directed to the
camera roll on their device.

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[388]

When the user clicks on the image placeholder, the image roll will be opened by3.
default. But you also want to give the user the option to use their camera.
Therefore, a selection must be made between using the camera or the camera roll
for uploading the image, which is a perfect use case for implementing an
ActionSheet component. React Native and Expo both have an ActionSheet
component; it's advisable to use the one from Expo as it will use the native
UIActionSheet component on iOS and a JavaScript implementation for
Android. The ActionSheet component is available from Expo's react-
native-action-sheet package, which you can install from npm:

npm install @expo/react-native-action-sheet

After this, you need to wrap your top-level component in the
client/App.js file with Provider from the package, which is comparable to
adding ApolloProvider:

import React from 'react';
import { AsyncStorage } from 'react-native';
import { ApolloClient } from 'apollo-client';
import { InMemoryCache } from 'apollo-cache-inmemory';
import { setContext } from 'apollo-link-context';
import { HttpLink } from 'apollo-link-http';
import { ApolloProvider } from '@apollo/react-hooks';
+ import { ActionSheetProvider } from '@expo/react-native-action-
sheet';
import AppContainer from './AppContainer';

...

const App = () => (
 <ApolloProvider client={client}>
+ <ActionSheetProvider>
 <AppContainer />
+ </ActionSheetProvider>
 </ApolloProvider>
);

export default App;

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[389]

And create ActionSheet in client/Screens/AddPost.js by importing
the connectActionSheet function from react-native-action-sheet, which
needs to wrap the AddPost component before you export it. Wrapping the
AddPost component with connectActionSheet() adds the
showActionSheetWithOptions prop to the component, which you'll use in the
next step to create ActionSheet:

import React from 'react';
import {
 Dimensions,
 Image,
 Platform,
 TouchableOpacity,
 Text,
 View
} from 'react-native';
import styled from 'styled-components/native';
import * as ImagePicker from 'expo-image-picker';
import * as Permissions from 'expo-permissions';
+ import { connectActionSheet } from '@expo/react-native-action-
sheet';
import Button from '../Components/Button/Button';

...

- const AddPost = ({ navigation }) => {
+ const AddPost = ({ navigation, showActionSheetWithOptions }) => {
 ...

- export default AddPost;
+ const ConnectedApp = connectActionSheet(AddPost);
+ export default ConnectedApp;

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[390]

To add ActionSheet, a function to open this ActionSheet must be added, and4.
by using the showActionSheetWithOptions prop and the
options, ActionSheet should be constructed. The options are Camera, Camera
roll, and Cancel, where selecting the first option should call the
addImageAsync function with a parameter, the second should call that function
without a parameter, and the last option is to close ActionSheet. The function
to open ActionSheet must be added to the getPermissionsAsync function
and be called when the permissions for both Camera and Camera roll are
granted:

...

+ const openActionSheet = () => {
+ const options = ['Camera', 'Camera roll', 'Cancel'];
+ const cancelButtonIndex = 2;
+
+ showActionSheetWithOptions(
+ {
+ options,
+ cancelButtonIndex
+ },
+ buttonIndex => {
+ if (buttonIndex === 0 || buttonIndex === 1) {
+ addImageAsync(buttonIndex === 0);
+ }
+ },
+);
+ };

 const getPermissionAsync = async () => {
 if (Platform.OS === 'ios') {
 const { status: statusCamera } = await
Permissions.askAsync(Permissions.CAMERA);
 const { status: statusCameraRoll } = await
Permissions.askAsync(Permissions.CAMERA_ROLL);

 if (statusCamera !== 'granted' || statusCameraRoll !==
'granted') {
 alert(
 `Sorry, you need camera roll permissions! Go to 'Settings
> Expo' to enable these.`
);
 } else {
- pickImageAsync();
+ openActionSheet();
 }

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[391]

 }
 };

 return (
 ...

Tapping the image placeholder will give the user the option to either use Camera
or Camera roll to add an image to the AddPost component. This can be done
from ActionSheet, which will look different on iOS and Android. In the
following screenshot, you can see what this will look like when using the iOS
simulator or a device that runs on iOS:

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[392]

This, however, is not all as the image must still be sent to the server to appear in5.
the feed of the application, by adding a useMutation Hook from
@apollo/react-hooks and using the returned addPost function to send the
imageUrl variable in a document to the GraphQL server. The mutation to add
the post has been mentioned at the beginning of this section and can be imported
from the client/constants.js file:

import React from 'react';
import {
 Dimensions,
 Image,
 Platform,
 TouchableOpacity,
 Text,
 View
} from 'react-native';
import styled from 'styled-components/native';
import * as ImagePicker from 'expo-image-picker';
import * as Permissions from 'expo-permissions';
import { connectActionSheet } from '@expo/react-native-action-
sheet';
+ import { useMutation } from '@apollo/react-hooks';
+ import { ADD_POST } from '../constants';
import Button from '../Components/Button/Button';

...

const AddPost = ({ navigation, showActionSheetWithOptions }) => {
+ const [addPost] = useMutation(ADD_POST);
 const [imageUrl, setImageUrl] = React.useState(false);

 ...

 return (
 <AddPostWrapper>
 <AddPostText>Add Post</AddPostText>
 <UploadImage onPress={() => getPermissionAsync()}>
 {imageUrl ? (
 <Image
 source={{ uri: imageUrl }}
 style={{ width: '100%', height: '100%' }}
 />
) : (
 <AddPostText>Upload image</AddPostText>
)}
 </UploadImage>

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[393]

+ {imageUrl && (
+ <Button
+ onPress={() => {
+ addPost({ variables: { image: imageUrl } }).then(()
=>
+ navigation.navigate('Main')
+);
+ }}
+ title='Submit'
+ />
+)}
 <Button onPress={() => navigation.navigate('Main')}
title='Cancel' />
 </AddPostWrapper>
);
 };

export default AddPost;

The image will be added as a post after tapping the Submit button, and the user
will be redirected to the Main screen.

By setting a query on the refetchQueries variable to the useMutation Hook,6.
the posts on the Main screen can be reloaded and the post you've just added will
be displayed in this list. The posts can be retrieved by fetching the GET_POSTS
query from client/constants.js:

import React from 'react';
import {
 Dimensions,
 Image,
 Platform,
 TouchableOpacity,
 Text,
 View
} from 'react-native';
import styled from 'styled-components/native';
import * as ImagePicker from 'expo-image-picker';
import * as Permissions from 'expo-permissions';
import { connectActionSheet } from '@expo/react-native-action-
sheet';
import { useMutation } from '@apollo/react-hooks';
- import { ADD_POST } from '../constants';
+ import { ADD_POST, GET_POSTS } from '../constants';
import Button from '../Components/Button/Button';

...

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[394]

const AddPost = ({ navigation, showActionSheetWithOptions }) => {
- const [addPost] = useMutation(ADD_POST);
+ const [addPost] = useMutation(ADD_POST, {
+ refetchQueries: [{ query: GET_POSTS }]
+ });
 const [imageUrl, setImageUrl] = React.useState(false);

 ...

 return (
 <AddPostWrapper>
 ...

Your post will now be displayed at the top of the Main screen, meaning you've added the
post successfully and other users can view, star, and comment on it. As your users might be
sending posts while the application is opened, you want them to be able to receive these
posts. Therefore, the next section will explore how to achieve near real-time data from
GraphQL.

Retrieving near real-time data using GraphQL
Other than with the messaging application, you don't want the feed with posts to reload
every time a new post has been posted by any of the people in your network. Besides
subscriptions, there are other ways to have (near) real-time data flows with GraphQL and
Apollo, namely, polling. With polling, you can retrieve a query from a useQuery Hook
once every n milliseconds, saving you the complexity of setting up subscriptions.

Polling can be added to the useQuery Hook, like this one in client/Screens/Posts.js.
By setting a pollInterval value on the object parameter from the useQuery Hook, you
can specify how often the document with the GET_POSTS query should be resent by the
Hook:

...

const Posts = ({ navigation }) => {
- const { loading, data } = useQuery(GET_POSTS);
+ const { loading, data } = useQuery(GET_POSTS, { pollInterval: 2000 });

 return (
 <PostsWrapper>
 {loading ? (
 <PostsText>Loading...</PostsText>;
) : (
 ...

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[395]

This causes your Posts component to send a document with the GET_POSTS query every 2
seconds (2,000 milliseconds), and as the GraphQL server is returning mocked data, the
posts that are displayed will be different on every re-fetch. In comparison to subscriptions,
polling will resend the documents to retrieve the posts even when there is no new
data—something that isn't very useful for an application displaying mock data or data that
changes often.

Next to setting a pollInterval variable on the useQuery Hook, you can also manually
call the refetch function that sends a document with the query. A common interaction for
social media feeds is being able to pull down the displayed component to refresh the data
on the screen.

This pattern can also be added to your application by making the following changes to the
Posts screen component:

The pollInterval prop can be set to 0, which disables the polling for now.1.
Besides the loading and data variables, more variables can be retrieved from
the useQuery Hook. One of those variables is the refetch function, which you
can use to manually send the document to the server:

...

const Posts = ({ navigation }) => {
- const { loading, data } = useQuery(GET_POSTS, { pollInterval:
2000 });
+ const { loading, data, refetch } = useQuery(GET_POSTS, {
pollInterval: 0 });
 return (
 <PostsWrapper>
 {loading ? (
 <PostsText>Loading...</PostsText>;
) : (
 ...

There's a React Native component to create the pull-to-refresh interaction, which2.
is called RefreshControl and which you should import from react-native.
Also, you should import a ScrollView component as the RefreshControl
component only works with either a ScrollView or ListView component:

import React from 'react';
import { useQuery } from '@apollo/react-hooks';
- import { FlatList, Text, View } from 'react-native';
+ import { FlatList, Text, View, ScrollView, RefreshControl } from
'react-native';
import styled from 'styled-components/native';

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[396]

import { GET_POSTS } from '../constants';
import PostItem from '../Components/Post/PostItem';

...

const Posts = ({ navigation }) => {
 ...

This ScrollView component should be wrapped around the PostsList3.
component, which is a styled FlatList component that iterates over the posts
created by the GraphQL server. As a value for the refreshControl prop, the
RefreshControl component must be passed to this ScrollView and a style
prop must be set, to lock the width to 100%, which makes sure you can only
scroll vertically:

const Posts = ({ navigation }) => {
 const { loading, data, refetch } = useQuery(GET_POSTS, {
pollInterval: 0 });
 return (
 <PostsWrapper>
 {loading ? (
 <PostsText>Loading...</PostsText>;
) : (
+ <ScrollView
+ style={{ width: '100%' }}
+ refreshControl={
+ <RefreshControl />
+ }
+ >
 <PostsList
 data={data.posts}
 keyExtractor={item => String(item.id)}
 renderItem={({ item }) => (
 <PostItem item={item} navigation={navigation} />
)}
 />
+ </ScrollView>
)}
 </PostsWrapper>
);
};

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[397]

If you now pull down the Posts screen, a loading indicator will be displayed at4.
the top of the screen that keeps spinning. With the refreshing prop, you can
control whether or not the loading indicator should be displayed by passing a
value that is created by a useState Hook. Besides a refreshing prop, the
function that should be called when the refreshing starts can be passed to the
onRefresh prop. You should pass the refetch function to this function, which
should set the refreshing state variable to true and call the refetch function
that was returned by the useQuery Hook. After the refetch function resolves,
the callback can be used to set the refreshing state to false again:

...
const Posts = ({ navigation }) => {
 const { loading, data, refetch } = useQuery(GET_POSTS, {
pollInterval: 0 });
+ const [refreshing, setRefreshing] = React.useState(false);

+ const handleRefresh = (refetch) => {
+ setRefreshing(true);
+
+ refetch().then(() => setRefreshing(false));
+ }

 return(
 <PostsWrapper>
 {loading ? (
 <PostsText>Loading...</PostsText>;
) : (
 <ScrollView
 style={{ width: '100%' }}
 refreshControl={
- <RefreshControl />
+ <RefreshControl
+ refreshing={refreshing}
+ onRefresh={() => handleRefresh(refetch)}
+ />
 }
 >
 <PostsList
 ...

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[398]

Finally, when you pull down the Posts screen, the loading message returned5.
from the useQuery Hook interferes with the loading indicator
from RefreshControl. By also checking for the value of refreshing in the if-
else statement, you can prevent this behavior:

...
const Posts = ({ navigation }) => {
 const { loading, data, refetch } = useQuery(GET_POSTS, {
pollInterval: 0 });
 const [refreshing, setRefreshing] = React.useState(false);

 const handleRefresh = (refetch) => {
 setRefreshing(true);

 refetch().then(() => setRefreshing(false));
 }

 return(
 <PostsWrapper>
- {loading ? (
+ {loading && !refreshing ? (
 <PostsText>Loading...</PostsText>
) : (
 ...

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[399]

After these last changes, the interaction of pulling to refresh the data is implemented for the
Posts screen, making it possible for your users to retrieve the latest data by pulling down
the screen. When you're using iOS as the operating system for the virtual or physical device
that runs the application, this will look something like this screenshot:

In the next section, you'll add notifications to this social media application, by using Expo
and GraphQL servers.

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[400]

Sending notifications with Expo
Another important feature for a mobile social media application is the ability to send users
notifications of important events, for example, when their post gets starred or a friend has
uploaded a new post. Sending notifications can be done with Expo and requires you to add
both server- and client-side code, as the notifications are sent from the server. The client
needs to retrieve a local identifier for the users' device, which is called the Expo push code.
This code is needed to identify which device belongs to the user and how a notification
should be sent to either iOS or Android.

Testing notifications can only be done by using the Expo application on
your mobile device. iOS and Android simulators cannot receive push
notifications, as they don't run on an actual device.

Retrieving the push code is the first step in sending notifications to your users, which
consists of the following steps:

To be able to send notifications, users should permit your application to push1.
these notifications. To ask for this permission, the same permissions API should
be used to get permission for the camera. The function to request this permission
can be added in a new file called registerForPushNotificationsAsync.js.
This file must be created in the new client/utils directory, in which you can
paste the following code that also retrieves the push code using the Notifications
API:

import { Notifications } from 'expo';
import * as Permissions from 'expo-permissions';

async function registerForPushNotificationsAsync() {
 const { status: existingStatus } = await Permissions.getAsync(
 Permissions.NOTIFICATIONS
);
 let finalStatus = existingStatus;

 if (existingStatus !== 'granted') {
 const { status } = await
Permissions.askAsync(Permissions.NOTIFICATIONS);
 finalStatus = status;
 }

 if (finalStatus !== 'granted') {
 return;
 }

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[401]

 const token = await Notifications.getExpoPushTokenAsync();
 return token;
}

export default registerForPushNotificationsAsync;

When you're using an iOS device, the2.
registerForPushNotificationAsync function should be called when the
application opens, as you should ask for permission. On Android devices, the
request for whether or not a user wants you to send them notifications is sent
during the installation process. This function should, therefore, be fired when the
user opens the application, after which this function will return the Expo push
token on Android or launch the popup to ask for permission on iOS. As you only
want to ask registered users for their token, this is done in the
client/Screens/Posts.js file by using an useEffect Hook:

import React from 'react';
import { useQuery } from '@apollo/react-hooks';
import {
 Button,
 FlatList,
 Text,
 View,
 ScrollView,
 RefreshControl
} from 'react-native';
import styled from 'styled-components/native';
import { GET_POSTS } from '../constants';
import PostItem from '../Components/Post/PostItem';
+ import registerForPushNotificationsAsync from
'../utils/registerForPushNotificationsAsync';

...

const Posts = ({ navigation }) => {
 const { loading, data, refetch } = useQuery(GET_POSTS, {
pollInterval: 0 });
 const [refreshing, setRefreshing] = React.useState(false);

+ React.useEffect(() => {
+ registerForPushNotificationsAsync();
+ });

...

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[402]

If you see this error, Error: The Expo push notification service
is supported only for Expo projects. Ensure you are
logged in to your Expo developer account on the computer

from which you are loading your project., it means you need to
make sure you're logged in to your Expo developer account. By running
expo login from the Terminal, you can check whether you're logged in
and otherwise, it will prompt you to log in again.

In the Terminal, the Expo push token for this user will now be displayed, which3.
looks like ExponentPushToken[AABBCC123]. This token is unique for this
device and can be used to send the notification. To test how a notification will
look, you can go to the https://expo.io/dashboard/notifications URL in
the browser to find the Expo dashboard. In here, you can enter the Expo push
token together with a message and a title for the notification; depending on the
mobile operating system, there are different options you can select, such as the
ones that follow:

This will send a notification to your device, with the title Test and the body This is a
test, and try to play a sound when the notification is sent.

However, this notification won't be visible on devices running on iOS when the application
is foregrounded. So, when you're using the Expo application on an Apple device, make
sure the Expo application is running in the background.

The next part of this section will show how you can also receive notifications when the
application is running in the foreground.

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[403]

Handling foreground notifications
Handling notifications when the application is foregrounded is more complex, and requires
us to add a listener that checks for new notifications and afterward, these notifications
should be stored somewhere. Expo's Notifications API has a listener available that can help
you to check for new notifications, while the notifications can be stored using Apollo by
having a local state. This local state extends the data returned by the GraphQL server by
adding any new notifications that were found by the listener.

When the notifications are stored in the local state, this data can be queried and shown in
either a component or a screen in your application. Let's create a notifications screen that
will display these notifications that were sent when the application was loaded in the
foreground.

Adding the support for foreground notifications requires you to make these changes:

The setup for Apollo Client in client/App.js should be extended in a way that1.
you could query for notifications and can add new notifications when these are
spotted by the listener. A new type for Query should be created that is called
notifications and returns a list of the Notification type. Also, an initial
value for this Query must be added in the form of an empty array that will be
written to cache:

...

 const client = new ApolloClient({
 link: authLink.concat(link),
 cache,
+ typeDefs: `
+ type Notification {
+ id: Number!
+ title: String!
+ body: String!
+ }
+ extend type Query {
+ notifications: [Notification]!
+ }
+ `
 });

+ cache.writeData({
+ data: {
+ notifications: []
+ }
+ });

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[404]

const App = () => {
 ...

Now, you're able to send a document with the query to retrieve the list of2.
notifications including the id, title, and body fields. This query must also be
defined in the client/constants.js file so it can be used from a
useQuery Hook in the next step:

...

export const ADD_POST = gql`
 mutation addPost($image: String!) {
 addPost(image: $image) {
 image
 }
 }
`;

+ export const GET_NOTIFICATIONS = gql`
+ query getNotifications {
+ notifications {
+ id @client
+ title @client
+ body @client
+ }
+ }
+ `;

In the client/Screens directory, the Notifications.js file can be found,3.
which must be used as the screen to display the notifications for the user. This
screen component should be imported in the
client/AppContainer.js file where a new StackNavigator object must be
created:

import React from 'react';
import { Platform } from 'react-native';
import { Ionicons } from '@expo/vector-icons';
import {
 createSwitchNavigator,
 createAppContainer
} from 'react-navigation';
import { createStackNavigator } from 'react-navigation-stack';
import { createBottomTabNavigator } from 'react-navigation-tabs';
import Posts from './Screens/Posts';
import Post from './Screens/Post';

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[405]

import Settings from './Screens/Settings';
import Login from './Screens/Login';
import AuthLoading from './Screens/AuthLoading';
import AddPost from './Screens/AddPost';
+ import Notifications from './Screens/Notifications';

...

+ const NotificationsStack = createStackNavigator({
+ Notifications: {
+ screen: Notifications,
+ navigationOptions: { title: 'Notifications' },
+ }
+ });

After StackNavigator for the Notifications screen is created, it needs to be
added to TabNavigator so it will be displayed next to the Posts and Settings
screens:

...

const TabNavigator = createBottomTabNavigator(
 {
 Posts: PostsStack,
+ Notifications: NotificationsStack,
 Settings
 },
 {
 initialRouteName: 'Posts',
 defaultNavigationOptions: ({ navigation }) => ({
 tabBarIcon: ({ tintColor }) => {
 const { routeName } = navigation.state;
 let iconName;
 if (routeName === 'Posts') {
 iconName = `${Platform.OS === 'ios' ? 'ios' : 'md'}-home`;
 } else if (routeName === 'Settings') {
 iconName = `${Platform.OS === 'ios' ? 'ios' : 'md'}-
settings`;
+ } else if (routeName === 'Notifications') {
+ iconName = `${Platform.OS === 'ios' ? 'ios' : 'md'}-
notifications`;
+ }

 return <Ionicons name={iconName} size={20} color={tintColor}
/>;
 },

 ...

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[406]

The Notifications screen is now being displayed in TabNavigator and4.
displays the text Empty! as there aren't any notifications to display. To add any
notifications that have been sent to the user, you need to create a local resolver
for the GraphQL client. This local resolver will be used to create Mutation,
which can be used to add any new notifications to the local state. You create the
local resolver by adding the following code to client/App.js:

...

import AppContainer from './AppContainer';
+ import { GET_NOTIFICATIONS } from './constants';

...

const client = new ApolloClient({
 link: authLink.concat(link),
 cache,
+ resolvers: {
+ Mutation: {
+ addNotification: async (_, { id, title, body }) => {
+ const { data } = await client.query({ query:
GET_NOTIFICATIONS })
+
+ cache.writeData({
+ data: {
+ notifications: [
+ ...data.notifications,
+ { id, title, body, __typename: 'notifications' },
+],
+ },
+ });
+ }
+ }
+ },
 typeDefs: `
 type Notification {
 id: Number!
 title: String!
 body: String!
 }
 extend type Query {
 notifications: [Notification]!
 }
 `
});

...

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[407]

This will create the addNotification mutation, which takes the id, title, and
body variables and adds these values to the data for the Notification type. The
notifications that are currently in the local state are requested using the
GET_NOTIFICATIONS query that you created before. By calling the
query function on the GraphQL client constant, you send the document
containing this query to the server. Together with the notification that has been
sent together with a document containing the mutation, these will be written to
the local state by cache.writeData.

This mutation must be added to the client/constants.js file, where the other5.
GraphQL queries and mutations are also placed. It's important to also add
that client should be used to resolve this mutation, by using the @client tag:

...

export const GET_NOTIFICATIONS = gql`
 query getNotifications {
 notifications {
 id @client
 title @client
 body @client
 }
 }
`;

+ export const ADD_NOTIFICATION = gql`
+ mutation {
+ addNotification(id: $id, title: $title, body: $body) @client
+ }
+ `;

Finally, the listener from the Notifications API is added to6.
the client/App.js file, which will look for new notifications when the
application is foregrounded. New notifications are added to the local state using
the preceding mutation from client/constants.js. The mutate function that
is called on the client will use the information from the Expo notification and
adds this to mutation; the mutation will make sure it's added to the local state by
writing this information to cache:

...

import { ActionSheetProvider } from '@expo/react-native-action-
sheet';
+ import { Notifications } from 'expo';

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[408]

import AppContainer from './AppContainer';
- import { GET_NOTIFICATIONS } from './constants';
+ import { ADD_NOTIFICATIONS, GET_NOTIFICATIONS } from
'./constants';

...

const App = () => {
+ React.useEffect(() => {
+ Notifications.addListener(handleNotification);
+ });

+ const handleNotification = ({ data }) => {
+ client.mutate({
+ mutation: ADD_NOTIFICATION,
+ variables: {
+ id: Math.floor(Math.random() * 500) + 1,
+ title: data.title,
+ body: data.body,
+ },
+ });
+ };

 return (

 ...

In the previous code block, you cannot use the useMutation Hook to
send the ADD_NOTIFICATION mutation in a document, as React Apollo
Hooks can only be used from a component nested within
ApolloProvider. Therefore, the mutate function on the client object is
used, which also provides the functionality to send documents with
queries and mutations without using a Query or Mutation component.

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[409]

By importing the Notifications API from Expo, the7.
handleNotification function can access the data object from the notification
that was sent. This data object is different from the message title and message
body you've sent using the Expo dashboard, therefore you need to also add
JSON data when sending the notification
from https://expo.io/dashboard/notifications. A test notification can
be sent by adding the body in the form:

By submitting the form, a notification with the title Test and the body This is
a test will be sent to the user when the application is foregrounded, but also
when the application is running in the background.

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[410]

In a mobile application that is running in production, you'd expect the notifications to be
sent from the GraphQL server instead of the Expo dashboard. The local GraphQL server
that is handling the data flow for this application is already configured to send notifications
to the user but would need the user's Expo push token to send. This token should be stored
in the server and linked to the current user, as this token is unique for this device. The
token should be sent in a document to the GraphQL server from a mutation that would
take the token and can get information about the user from the headers in the mutation:

First, the mutation that will store the Expo push token on the GraphQL server1.
must be created in the client/constants.js file along with the other queries
and mutations. The only variable this mutation takes is the push token, as the
OAuth token that is sent with every document to the GraphQL server is used to
identify the user:

import gql from 'graphql-tag';

export const LOGIN_USER = gql`
 mutation loginUser($userName: String!, $password: String!) {
 loginUser(userName: $userName, password: $password) {
 userName
 token
 }
 }
`;

+ export const STORE_EXPO_TOKEN = gql`
+ mutation storeExpoToken($expoToken: String!) {
+ storeExpoToken(expoToken: $expoToken) {
+ expoToken
+ }
+ }
+ `;

...

Sending the document with this mutation with the Expo push token must be2.
done from the client/Posts.js file where the token is retrieved by calling the
registerForPushNotificationsAsync function. This function will return the
push token, which you can send along with the mutation's document. To send
this document, the useMutation Hook from @apollo/react-hooks can be
used, which you must import together with the STORE_EXPO_TOKEN constant:

import React from 'react';
- import { useQuery } from '@apollo/react-hooks';
+ import { useQuery, useMutation } from '@apollo/react-hooks';

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[411]

...

- import { GET_POSTS } from '../constants';
+ import { GET_POSTS, STORE_EXPO_TOKEN } from '../constants';
import PostItem from '../Components/Post/PostItem';
import registerForPushNotificationsAsync from
'../utils/registerForPushNotificationsAsync';

...

Before React Apollo Hooks were available, it was complicated to use a
mutation without the usage of a Mutation component, as sending
mutations was only possible from the client object or the Mutation
component. Accessing the client object from a React component is
possible by importing an ApolloConsumer component that can read the
client value from ApolloProvider that wraps your application.

The useMutation Hook can now be called with the STORE_EXPO_TOKEN3.
mutation with expoToken from registerForPushNotificationsAsync as a
parameter, which returns a function to store the token called storeExpoToken.
This function can be called from the callback of the
asynchronous registerForPushNotificationsAsync function with the token
as a variable:

...

const Posts = ({ client, navigation }) => {
+ const [storeExpoToken] = useMutation(STORE_EXPO_TOKEN);
 const [refreshing, setRefreshing] = React.useState(false);

 React.useEffect(() => {
- registerForPushNotificationsAsync();
+ registerForPushNotificationsAsync().then(expoToken => {
+ return storeExpoToken({ variables: { expoToken } });
+ });
 }, []);

...

Build a Full Stack Social Media Application with React Native and GraphQL Chapter 11

[412]

This Expo push token will be sent to the GraphQL server whenever the Posts screen gets
mounted, something you can force by switching between the AddPosts and Posts screens,
for example. When the content of the Posts screen gets requested from the GraphQL
server, the server will send a random notification to your application, which you can view
from the Notifications screen. Also, you're still able to send any notification from the
Expo dashboard, both when the application is in the foreground or the background.

Summary
In this chapter, you've created a mobile social media application with React Native and
Expo that uses a GraphQL server to send and receive data as well for authentication. Using
Expo, you've learned how to have the application request access to use the device's camera
or camera roll to add new photos to posts. Also, Expo is used to receive notifications from
the Expo dashboard or the GraphQL server. These notifications will be received by the user
no matter whether the application is running on the back- or foreground.

In completing this social media application, you've completed the final React Native
chapter of this book and are now ready to start with the very last chapter. In this last
chapter, you'll be exploring another use case of React, which is React 360. With React 360,
you can create 360-degree 2D and 3D experiences by writing React components.

Further reading
Expo camera: https:/ / docs. expo. io/versions/ latest/ sdk/camera/

Notifications: https:/ /docs. expo. io/ versions/ v33.0. 0/sdk/ notifications/

https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/latest/sdk/camera/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/
https://docs.expo.io/versions/v33.0.0/sdk/notifications/

12
Creating a Virtual Reality

Application with React 360
You're almost there—only one more chapter to go and then you can call yourself a React
expert that has experienced React on every platform. Throughout this book, you've built 11
applications with React and React Native, and for the grande dessert, you get to use React
360. The final part of the learn once, write everywhere strategy of React and React Native will
be best demonstrated in this chapter. With React 360, you can create dynamic 3D and
Virtual Reality (VR) experiences using principles from React and, more specifically, React
Native-like life cycles and UI components. Although VR is still an emerging technology, the
best use cases for VR are, for example, retail stores that want their customers to experience
their stores or games online.

In this chapter, you'll explore the very basics of what's possible with React 360 and how it
relates to React and React Native. The application you will build will be able to render 360
degree panorama images and use state management to render between screens. Animated
3D objects will also be displayed inside the scenes you build with React 360.

The following topics will be covered in this chapter:

Getting started with React 360
Creating a panorama viewer with React 360
Building clickable elements

Project overview
In this chapter, you will build a VR application with React 360 that uses principles from
both React and React Native. Both 2D panorama images and 3D objects will be added to
this application and the project can be run in the browser using the Metro bundler.

The build time is 1.5 hours.

Creating a Virtual Reality Application with React 360 Chapter 12

[414]

Getting started
The application for this chapter will be built from scratch and uses assets that can be found
on GitHub at https:/ / github. com/ PacktPublishing/ React- Projects/ tree/ ch12-
assets. These assets should be downloaded to your computer so that you can use them
later on in this chapter. The complete code for this chapter can be found on GitHub
at https://github. com/ PacktPublishing/ React- Projects/ tree/ ch12.

React 360 requires the same versions of Node.js and npm as the React and React Native
projects. If you haven't installed Node.js on your machine, please go
to https://nodejs.org/en/download/, where you can find the download instructions
for macOS, Windows, and Linux.

After installing Node.js, you can run the following commands in your command line to
check the installed versions:

For Node.js (should be v10.16.3 or higher), use the following command:

node -v

For npm (should be v6.9.0 or higher), use the following command:

npm -v

Creating a VR application with React 360
React 360 uses principles from React and is heavily based on React Native. React 360 allows
you to create applications using UI components without having to deal with complex
setups for mobile or VR devices, which is similar to how React Native works.

Getting started with React 360
It doesn't matter whether you're creating a project with React, React Native, or React
360—there are tools to easily get you started with any of these technologies. You've used
Create React App as the starting point for the React web applications in this book and the
Expo CLI for the React Native projects. This React 360 project will be started using the React
360 CLI, which will help you create and manage your React 360 application.

https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12-assets
https://github.com/PacktPublishing/React-Projects/tree/ch1-assets
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12
https://github.com/PacktPublishing/React-Projects/tree/ch12

Creating a Virtual Reality Application with React 360 Chapter 12

[415]

Setting up React 360
The React 360 CLI can be installed from npm by running the following command:

npm install -g react-360-cli

This will globally install the React 360 CLI from the npm package registry. After the
installation process has completed, you can use it to create your first React 360 project by
executing the following command:

react-360 init virtual-reality

By executing this command, a new React 360 project will be created called virtual-
reality. All the packages that are required to run a React 360 application will be installed,
such as react, react-native, react-360, react-360-web, and three. The three
package installs three.js, a lightweight and easy to use JavaScript 3D library that comes
with a default WebGL renderer. This renderer is used by React 360 to render 3D graphics,
which it does by adding a layer that allows you to create declarative UI components.

Also, all the files that you will need to build the project are created in a directory with the
same name. This directory has the following structure, where the following files are of
importance:

virtual-reality
|-- __tests__
 |-- index-test.js
|-- node_modules
|-- static_assets
 |-- 360_world.jpg
.babelrc
client.js
index.html
index.js
package.json

Creating a Virtual Reality Application with React 360 Chapter 12

[416]

The __tests__ directory is where you can create test files using the react-test-
renderer package. The node_modules directory is where your packages are installed,
while the static_assets directory holds the files that are used statically in development
mode that may be transferred to a CND later on. To use React 360 in the browser (or mobile
devices), you need to use Babel, which transpiles your code. The configuration for this can
be found in the .babelrc file. The most important files that were created by react-360-
cli are client.js, index.html, and index.js since these files are where you develop
and serve your application. The client.js file contains the code that you use to execute
the application, while index.js holds the actual code that is rendered by the application
that is mounted to the DOM in index.html.

Instead of webpack, another JavaScript bundler is used for React 360 called Metro. This was
created by Facebook, just like React was. Metro is a bundler for React Native projects and
since React 360 takes a lot of principles from React Native to run on VR devices as well,
Metro is the preferred bundler for React 360 applications. Just like webpack, all your source
code is bundled into one big file in a readable format for web browsers. When you're
developing your application, the Metro bundler will run a local development server that
allows you to view the application in the browser. Files are compiled or processed at
request time and when your application is complete, it can be used to create a production-
ready build. You can start the bundler to initiate the development server with the following
command:

npm start

This starts the Metro bundler and compiles your source code, which will be mounted to the
DOM in the index.html file and makes it available
at http://localhost:8081/index.html.

When you first visit the project in your browser, the bundler may take a longer time to load
as it will need to read your filesystem to get more information on how to render. If you
make changes to the source code of the project, these changes will become visible faster to
increase your development speed. The initial application that was created by the React 360
CLI is now visible at http://localhost:8081/index.html, which shows a 360 degree
viewer that explores the dark landscape that can be found in the
static_assets/360_world.jpg file. It looks as follows:

Creating a Virtual Reality Application with React 360 Chapter 12

[417]

React 360 applications can display a 360 degree (or 3D) image or video as a background and
render both 2D and 3D UI components on top of this background. In the client.js file,
the image from the static_assets directory is used as a 360 degree 2D background
image with the following line of code:

function init(bundle, parent, options = {}) {
 ...
 // Load the initial environment
 r360.compositor.setBackground(r360.getAssetURL('360_world.jpg'))
}

window.React360 = {init};

The getAssetUrl function points to the static_assets directory and can later be used
to point to a CDN or other URL where your background image is hosted when your
application is in production.

Creating a Virtual Reality Application with React 360 Chapter 12

[418]

In case you have 3D glasses in your possession, you can replace the initial
360 degree 2D image with a 3D 360 image to create a 3D effect. NASA's
website is a good source for finding 360 degree 3D images from any of the
Mars missions, for example. Images from this mission can be found
at https://mars.nasa.gov/3d/images and the downloaded files can
be placed in static_assets. This should be used in the client.js file
instead of the 360_world.jpg file.

Your application that was created by react-360 init also displays some UI components;
in the next section we'll explore how to use UI components in React 360 in more detail.

React 360 UI components
Previously, we mentioned that React 360 uses a lot of concepts from React Native. One of
them is the use of UI components that can be rendered. Out of the box, four UI components
are offered by React 360, that is, View, Text, Entity, and VrButton. First, the View and
Text components are 2D and used in the index.js file to create the panel and greeting
message that you can see in the application. The other two components are more complex
and can be used to render 3D objects in the case of the Entity component, or respond to
user actions such as pressing a key down, in the case of the VrButton component.

From the client.js file, these components can be placed on cylinder surfaces from
the index.js file since these are rendered by the renderToSurface from client.js.
Here, the default surface that is declared refers to a 2D cylinder surface showing the UI
components from index.js:

function init(bundle, parent, options = {}) {
 ...
 // Render your app content to the default cylinder surface
 r360.renderToSurface(
 r360.createRoot('virtual_reality', { /* initial props */ }),
 r360.getDefaultSurface()
);
 ...

}

window.React360 = {init};

In the index.js file, we have the View and Text components, which are used to render
the default surface with the welcome message you see when you start the application. The
default export from index.js is called virtual_reality, which refers to the project
name and is the same name that's used by the createRoot function in client.js.

Creating a Virtual Reality Application with React 360 Chapter 12

[419]

The initial structure and naming of the application may get a bit confusing as the
application grows. To combat this, you can split the components and make a distinction
between the entry point of the application in index.js and the actual UI components. The
following changes need to made for this:

Move the index.js file to a new directory called Components and call this1.
file Panel.js. Here, you need to change the name of this class component from
virtual_reality to Panel:

Unfortunately, the current version of React 360 doesn't work well with
React 16.8+, so you need to use a class component to use life cycles.

import React from 'react';
import {
- AppRegistry,
 StyleSheet,
 Text,
 View,
} from 'react-360';

- export default class virtual_reality extends React.Component {
+ export default class Panel extends React.Component {
 render() {
 return (
 <View style={styles.panel}>
 <View style={styles.greetingBox}>
 <Text style={styles.greeting}>Welcome to React
360</Text>
 </View>
 </View>
);
 }
 };

const styles = StyleSheet.create({
 ...
});

- AppRegistry.registerComponent('virtual_reality', () =>
virtual_reality);

Creating a Virtual Reality Application with React 360 Chapter 12

[420]

This newly created Panel component can be imported into the index.js file,2.
where you need to delete all the code that's already in there and replace it with
the following code block:

import {
 AppRegistry,
} from 'react-360';
import Panel from './Components/Panel';

AppRegistry.registerComponent('virtual_reality', () => Panel);

To see the changes you've made, you need to refresh the browser at3.
http://localhost:8081/index.html, after which the Metro bundler will
compile the code again. Since you made no visible changes, you'll need to look at
the output in the Terminal to see if it was successful. To see these changes
directly in the browser, you can make some changes to the text displayed in the
Panel component by changing the value within the Text component:

import React from 'react';
import {
 StyleSheet,
 Text,
 View,
} from 'react-360';

export default class Panel extends React.Component {
 render() {
 return (
 <View style={styles.panel}>
 <View style={styles.greetingBox}>
- <Text style={styles.greeting}>Welcome to React 360</Text>
+ <Text style={styles.greeting}>Welcome to this
world!</Text>
 </View>
 </View>
);
 };
};

...

When you refresh the browser after this change, the text "Welcome to this world!"
will be displayed instead of the initial message.

Creating a Virtual Reality Application with React 360 Chapter 12

[421]

These View and Text components are simple 2D elements that can be styled using
StyleSheet, which you've also used in React Native. By using this method to style your
React 360 components, the learning curve for React 360 becomes less steep and the learn
once, write anywhere principle is applied. The styles for the View and Text components are
placed at the bottom of the scr/Panel.js file. The styling rules that can be used for the
View and Text components are limited since not every style rule applies to each of these
components. You can make some small changes to this styling, such as the ones we've
made in the following code block:

...

const styles = StyleSheet.create({
 panel: {
 // Fill the entire surface
 width: 1000,
 height: 600,
 backgroundColor: 'rgba(255, 255, 255, 0.4)',
 justifyContent: 'center',
 alignItems: 'center',
 },
 greetingBox: {
- padding: 20,
- backgroundColor: '#000000',
- borderColor: '#639dda',
+ padding: 25,
+ backgroundColor: 'black',
+ borderColor: 'green',
 borderWidth: 2,
 },
 greeting: {
 fontSize: 30,
 }
});

Creating a Virtual Reality Application with React 360 Chapter 12

[422]

The following screenshot shows what your application will look like after these changes,
where the box inside the panel that's showing the welcome message has changed a little:

Also, the first view that's using the panel styling is created in client.js and is the default
surface with a cylinder shape and a default width of 1000px and a height of 600px. It's also
possible to change the shape and size of this surface, which we'll do in the upcoming
sections.

In this section, you learned about the basics of how to get started with React 360. Now, we
will learn how to interact with React 360.

Interactions in React 360
In the previous section, you set up the basics of React 360 and made some changes to the
initial surface that was displaying the welcome message. With React 360, it's possible to
create other surfaces that even have some interaction with the user. These surfaces can have
different shapes and sizes, such as a flat or a circular shape, which makes it possible to add
actionable buttons on these surfaces.

Creating a Virtual Reality Application with React 360 Chapter 12

[423]

Using local state and VrButton
In this section, you'll add some buttons to the surface so that your users can close the
welcome message or switch the background image scenery. First, let's start by creating a
button that lets us close the welcome message surface:

The Panel component is a class component that gives you access to life cycles1.
and local state management. Since you want to be able to close the welcome
message, a local state can be used. At the top of the declaration of the Panel
component, you must add a constructor that will have the initial state:

import React from 'react';
import {
 StyleSheet,
 Text,
 View,
} from 'react-360';

export default class Panel extends React.Component {
+ constructor() {
+ super();
+ this.state = {
+ open: true
+ }
+ }

 render() {
 return (

 ...

If you're not very familiar with using class components for life cycles, you
can look back at the few first chapters of this book. In these chapters, class
components are used for life cycles instead of Hooks, which you've
primarily used in the last few chapters.

Creating a Virtual Reality Application with React 360 Chapter 12

[424]

The initial state has now been set, and you can use it to modify the styles of the2.
panel by using an array of styles instead of just a single object. Apart from
passing a style object in this array, you can also directly insert a styling rule by
using a conditional spread. If the open state isn't true, a display:
'none' styling rule will be added to the styling for the panel. Otherwise, an
empty array will be spread into the style array:

...

export default class Panel extends React.Component {
 constructor() {
 super();
 this.state = {
 open: true,
 };
 }

 render() {
+ const { open } = this.state;
 return (
- <View style={styles.panel}>
+ <View style={[styles.panel, ...(!open ? [{ display: 'none' }]
: [])]}>
 <View style={styles.greetingBox}>
 <Text style={styles.greeting}>Welcome to this
world!</Text>
 </View>
 </View>
);
 };
};

After adding this state variable to the style prop of the panel, you can create the3.
button that will change the value of the open state. You may recall that React 360
has four default UI components and that one of them is called VrButton. This
component is similar to TouchableOpacity in React Native and has no styling
whatsoever by default. VrButton can be imported from react-360 and can be
placed inside a Text (or View) component. Clicking on this VrButton will
change the open state since it uses the setState method:

import React from 'react';
import {
 StyleSheet,
 Text,
 View,
+ VrButton,

Creating a Virtual Reality Application with React 360 Chapter 12

[425]

} from 'react-360';

export default class Panel extends React.Component {

 ...

 render() {
 return (
 <View style={[styles.panel, ...(!open ? [{ display: 'none' }]
: [])]}>
 <View style={styles.greetingBox}>
 <Text style={styles.greeting}>Welcome to this
world!</Text>
 </View>
+ <VrButton
+ onClick={() => this.setState({ open: false })}
+ >
+ <Text>Close X</Text>
+ </VrButton>
 </View>
);
 };
};

We can also add some styling to VrButton and Text. The styling for these4.
components can be placed in the same StyleSheet that the styling for the other
components in this file were placed:

 ...

 render() {
 return (
 <View style={[styles.panel, ...(!open ? [{ display: 'none' }]
: [])]}>
 <View style={styles.greetingBox}>
 <Text style={styles.greeting}>Welcome to this
world!</Text>
 </View>
 <VrButton
 onClick={() => this.setState({ open: false })}
+ style={styles.closeButton}
 >
- <Text>Close X</Text>
+ <Text style={styles.close}>Close X</Text>
 </VrButton>
 </View>
);
 };

Creating a Virtual Reality Application with React 360 Chapter 12

[426]

};

const styles = StyleSheet.create({

 ...

+ closeButton: {
+ position: 'absolute',
+ top: 20,
+ right: 20,
+ },
+ close: {
+ fontSize: 40,
+ color: 'black',
+ },
});

Now, when you refresh the application in your browser, the panel will have a button that
says Close X at the top right. When you click this button, the panel will close and you can
freely explore the entire background surface. Besides closing the panel, you can also change
the scenery of the entire application, which will be added in the final part of this section.

Dynamically changing scenes
The application is using a default background that is displayed for the surface, but it's also
possible to dynamically change this background image. The initial application comes with a
default 360 degree background image. To change this, you'd need to either make your own
360 degree panorama images or download some from the internet. Creating your own 360
degree images is possible with special cameras or by downloading an application on your
mobile device. Online images can be found on numerous stock photo websites. In this
book's GitHub repository, in the ch12-assets branch, you can find a selection of 360
degree panorama images.

At the moment, your application only has the one default surface, which is a circular one
that is displaying the welcome panel from the Panel component. It's also possible to add
flat components so that the user can change the scenery using buttons. This requires you to
make the following changes:

Create a component that's displaying the specified buttons
Import and register the component from index.js
Set the new surface in client.js

Creating a Virtual Reality Application with React 360 Chapter 12

[427]

Before making these changes, you must download the images from the GitHub repository
and place them in the static_assets directory so that they can be used from within your
application. Now, make the following changes to change the scenery:

Create a new component called Navigation in the Components directory and1.
place the following code block inside it. This will return a component with basic
styling for the surface, which is where the buttons will be placed later on:

import React from 'react';
import { StyleSheet, View } from 'react-360';

export default class Navigation extends React.Component {
 render() {
 return <View style={styles.navigation} />;
 }
}

const styles = StyleSheet.create({
 navigation: {
 width: 800,
 height: 100,
 backgroundColor: 'blue',
 justifyContent: 'space-between',
 alignItems: 'center',
 flexDirection: 'row',
 }
});

In the index.js file, you must import the Navigation component and register2.
it with the AppRegistry method. This will ensure that the component can be
rendered to a surface:

import { AppRegistry } from 'react-360';
import Panel from './Components/Panel';
+ import Navigation from './Components/Navigation';

AppRegistry.registerComponent('Panel', () => Panel);
+ AppRegistry.registerComponent('Navigation', () => Navigation);

Creating a Virtual Reality Application with React 360 Chapter 12

[428]

In the client.js file, this Navigation component must be added to a surface;3.
in this case, this is a flat surface. A new surface can be created using the Surface
method from react-360 and you must specify the shape and the size of the
component. You can also set an angle to position the component:

function init(bundle, parent, options = {}) {
 const r360 = new ReactInstance(bundle, parent, {
 // Add custom options here
 fullScreen: true,
 ...options
 });

+ const navigationPanel = new Surface(1000, 100,
Surface.SurfaceShape.Flat);
+ navigationPanel.setAngle(0, -0.3);

+ r360.renderToSurface(r360.createRoot('Navigation'),
navigationPanel);

 // Render your app content to the default cylinder surface
 r360.renderToSurface(
 r360.createRoot('virtual_reality', { /* initial props */ }),
 r360.getDefaultSurface(),
);
 ...

}

window.React360 = {init};

By refreshing the project in your browser, you will see a blue block being rendered at the
bottom of the screen. To add buttons to this block, you can use the VrButton component
and place the currently selected background in the local state. Let's do this now:

In the Components/Navigation.js file, you can add the necessary buttons to1.
the Navigation component. To do this, you need to import the VrButton and
Text components from react-360 and place them in the View component that's
being rendered. They'll get styling props since you want the buttons to have a
margin on either the left- or right-hand side:

import React from 'react';
- import { StyleSheet, View } from 'react-360';
+ import {
+ StyleSheet,
+ Text,
+ View,

Creating a Virtual Reality Application with React 360 Chapter 12

[429]

+ VrButton,
+ } from 'react-360';

export default class Navigation extends React.Component {
 render() {
- return <View style={styles.navigation} />;
+ return (
+ <View style={styles.navigation}>
+ <VrButton style={[styles.button, styles.buttonLeft]}>
+ <Text style={styles.buttonText}>{'< Prev'}</Text>
+ </VrButton>
+ <VrButton style={[styles.button, styles.buttonRight]}>
+ <Text style={styles.buttonText}>{'Next >'}</Text>
+ </VrButton>
+);
 }
}

...

These styling objects can be added to the StyleSheet method at the bottom of2.
this file, right below the styling for navigation:

...

const styles = StyleSheet.create({
 navigation: {
 width: 800,
 height: 100,
 backgroundColor: 'blue',
 justifyContent: 'space-between',
 alignItems: 'center',
 flexDirection: 'row',
 },
+ button: {
+ padding: 20,
+ backgroundColor: 'white',
+ borderColor: 'black',
+ borderWidth: 2,
+ alignItems: 'center',
+ width: 200,
+ },
+ buttonLeft: {
+ marginLeft: 10,
+ },
+ buttonRight: {
+ marginRight: 10,
+ },

Creating a Virtual Reality Application with React 360 Chapter 12

[430]

+ buttonText: {
+ fontSize: 40,
+ fontWeight: 'bold',
+ color: 'blue',
+ },
});

The different 360 degree panorama background images that you've downloaded3.
from the GitHub repository and placed in static_assets can be imported into
this file later on using the assets method from react-360. To do this, you need
to create a constant that's an array of all the filenames of these images, including
the initial image that was added by react-360-cli. Also, the assets and
Environment methods must be imported here as you'll need these to change the
background image:

import React from 'react';
import {
+ assets,
+ Environment,
 StyleSheet,
 Text,
 View,
 VrButton,
} from 'react-360';

+ const backgrounds = [
+ '360_world.jpg',
+ 'beach.jpg',
+ 'landscape.jpg',
+ 'mountain.jpg',
+ 'winter.jpg',
+];

export default class Navigation extends React.Component {

 ...

Creating a Virtual Reality Application with React 360 Chapter 12

[431]

Just like we did for the Panel component, we need to create an initial state that4.
defines which background is being displayed. This will be the first background
of the backgrounds array, meaning 0. Also, a function must be created that can
change currentBackground using the setState method. When the state for
currentBackground has been changed, the background image will be updated
using the Environment method, which selects one of the backgrounds from the
static_assets directory using the assets method:

...

export default class Navigation extends React.Component {
+ constructor() {
+ super();
+ this.state = {
+ currentBackground: 0
+ };
+ }

+ changeBackground(change) {
+ const { currentBackground } = this.state;

+ this.setState(
+ {
+ currentBackground: currentBackground + change
+ },
+ () => {
+ Environment.setBackgroundImage(
+ asset(backgrounds[this.state.currentBackground], { format:
'2D' })
+);
+ }
+);
+ }

 ...

The newly created changeBackground function can be called when the5.
Navigation component mounts and uses the first background image, but when
the user clicks the button, the changeBackground function must be called as
well. This can be done by adding a componentDidMount life cycle and calling
the function with the onClick event on the buttons:

...

export default class Navigation extends React.Component {

Creating a Virtual Reality Application with React 360 Chapter 12

[432]

 ...

+ componentDidMount() {
+ this.changeBackground(0);
+ }

 render() {
 return (
 <View style={styles.navigation}>
+ <VrButton style={[styles.button, styles.buttonLeft]}>
+ <VrButton
+ onClick={() => this.changeBackground(-1)}
+ style={[styles.button, styles.buttonLeft]}
+ >
 <Text style={styles.buttonText}>{`< Prev`}</Text>
 </VrButton>
+ <VrButton style={[styles.button, styles.buttonRight]}>
+ <VrButton
+ onClick={() => this.changeBackground(1)}
+ style={[styles.button, styles.buttonRight]}
+ >
 <Text style={styles.buttonText}>{`Next >`}</Text>
 </VrButton>
 </View>
);
 }
}

...

When you refresh the project in your browser, you may notice that you get an6.
error when you press the left button once or the right button multiple times. To
prevent this error from happening, you need to scope the maximum and
minimum values of the currentBackground state. The value can't go below
zero or above the length of the backgrounds array. You can do this by making
the following change to the changeBackground function:

...

export default class Navigation extends React.Component {

 ...

 changeBackground(change) {
 const { currentBackground } = this.state;

 this.setState(

Creating a Virtual Reality Application with React 360 Chapter 12

[433]

 {
- currentBackground: currentBackground + change
+ currentBackground:
+ currentBackground + change > backgrounds.length - 1
+ ? 0
+ : currentBackground + change < 0
+ ? backgrounds.length - 1
+ : currentBackground + change
 },
 () => {
 Environment.setBackgroundImage(
 asset(backgrounds[this.state.currentBackground], { format:
'2D' })
);
 }
);
 }

 ...

The value of the currentBackground state will always be a value that can be found within
the length of the backgrounds array, which makes it possible for you to navigate back and
forth between the different background images. After clicking on the Prev or Next button a
couple of times, your application will look as follows:

Creating a Virtual Reality Application with React 360 Chapter 12

[434]

Another thing you can do with React 360 is add animated components, just like we did
when we looked at React Native. You will learn how to add these animations in the next
section.

Animations and 3D
So far, all the components you've added in this chapter were 2D and didn't have
animations; however, you can also animate components with React 360 and even add 3D
objects. These 3D objects must be pre-built in special 3D modeling software or downloaded
from the internet and can be added to a surface in your application. For animations, the
Animated API must be imported, which is similar to the Animated API we used for React
Native.

Animations
Before getting into using 3D objects in React 360, let's learn how to use the Animated API
from React 360 to create animations. The Animated API uses the Animated API from React
Native and can be used to create both simple and advanced animations for UI components.
With the Animated API, you can easily create animations that fade in and out or rotate, just
by using values that are affected by the local state.

One of the components that can be animated is the Panel component, which displays a
welcome message, since this component has an element that the user can click on to close
the surface. When the user clicks the Close X button, the display styling rule of the
component will be set to none, making the component disappear suddenly. Instead of this,
you can change this into a smooth animation by doing the following:

The panel component is created in the Components/Panel.js file and is where1.
the Animated API must be imported, which you can do from react-360:

import React from 'react';
- import { StyleSheet, Text, View, VrButton } from 'react-360';
+ import {
+ Animated,
+ StyleSheet,
+ Text,
+ View,
+ VrButton,
+ } from 'react-360';

export default class Panel extends React.Component {

Creating a Virtual Reality Application with React 360 Chapter 12

[435]

In constructor(), an initial value for the Animated value should be set. Call it2.
opacity in this case since you want the opacity of the Panel component to
change to zero to make it disappear. Initially, the opacity should be 1 since the
welcome message must be displayed when the user opens the application:

...

export default class Panel extends React.Component {
 constructor() {
 super();
 this.state = {
 open: true,
+ opacity: new Animated.Value(1),
 };
 }

 render() {
 ...

When the user clicks VrButton in the Panel component, the state for open will3.
be changed, after which the animation should start. Therefore,
a componentDidUpdate() life cycle method must be created, where you can
check for changes in the state for open and start the animation afterward.
When the value for open changes from true to false, the animation should
start to change the value for opacity from 1 to 0, which makes it disappear:

export default class Panel extends React.Component {
 constructor() {
 super();
 this.state = {
 open: true,
 opacity: new Animated.Value(1),
 };
 }

+ componentDidUpdate() {
+ const { open, opacity } = this.state;
+ Animated.timing(opacity, {
+ toValue: open ? 1 : 0,
+ duration: 800,
+ }).start();
+ }

 render() {

 ...

Creating a Virtual Reality Application with React 360 Chapter 12

[436]

Finally, this value should be passed to the style prop of an Animated4.
component, meaning you need to change the View component into
an Animated.View component that can handle the animation. The display
styling rule can be deleted from the style props and replaced
with opacity since this controls whether the component is visible to the user or
not:

render() {
- const { open, opacity } = this.state;
+ const { opacity } this.state;
 return (
- <View style={[styles.panel, ...(!open ? [{ display: 'none' }] :
[])]}>
+ <Animated.View style={[styles.panel, { opacity }]}>
 <View style={styles.welcomeBox}>
 <Text style={styles.welcome}>Welcome to this world!</Text>
 </View>
 <VrButton
 onClick={() => this.setState({ open: false })}
 style={styles.closeButton}
 >
 <Text style={styles.close}>Close X</Text>
 </VrButton>
- </View>
+ </Animated.View>
);
}

Now, when you click on the VrButton that closes the Panel component with the welcome
message, the component will slowly dissolve into the background and disappear. The same
sort of animation can be added to the Navigation component since you want to ensure
that our users know that they can navigate through the different backgrounds. You can
highlight the option to click on, for example, the Next button by having it repeatedly fade
in and out. A lot of the logic for this is the same as it is for the Panel component:

The Animated API should be imported at the top of1.
the Components/Navigation.js file and an initial value for the opacity state
must be created:

import React from 'react';
import {
+ Animated,
 asset,
 Environment,
 StyleSheet,
 Text,

Creating a Virtual Reality Application with React 360 Chapter 12

[437]

 View,
 VrButton,
} from 'react-360';

...

export default class Navigation extends React.Component {
 constructor() {
 super();
 this.state = {
 currentBackground: 0,
+ opacity: new Animated.Value(0),
 };
 }
 changeBackground(change) {
 ...

The animation should start as soon as the component mounts, so the2.
Animated.timing method, which is used to change the value of opacity, must
be placed in a componentDidMount() life cycle method. This will start the
animation of opacity from 0 to 1, making the text inside the button blink:

...

componentDidMount() {
+ const { opacity } = this.state;
 this.changeBackground(0);

+ Animated.timing(opacity, {
+ toValue: 1,
+ duration: 800
+ }).start()
}

render() {

 ...

Creating a Virtual Reality Application with React 360 Chapter 12

[438]

The Text component inside VrButton for the button so that the user can3.
navigate to the next background image can now be changed into
an Animated.Text component and the opacity styling rule must be added to
the style prop. This will add the animation to this component, making the text
blink once when the application is mounted:

render() {
+ const { opacity } = this.state;
 return (
 <View style={styles.navigation}>
 <VrButton
 onClick={() => this.changeBackground(-1)}
 style={[styles.button, styles.buttonLeft]}
 >
 <Text style={styles.buttonText}>{`< Prev`}</Text>
 </VrButton>
 <VrButton
 onClick={() => this.changeBackground(1)}
 style={[styles.button, styles.buttonRight]}
 >
- <Text style={styles.buttonText}>{`Next >`}</Text>
+ <Animated.Text style={[styles.buttonText, { opacity
}]}>{`Next >`}</Animated.Text>
 </VrButton>
 </View>
);
}

...

You don't want the button text to blink just once. To make it blink repeatedly,4.
you can use the loop and sequence methods from Animated to get multiple
iterations of this animation. To make it smoother, we can add a small delay to the
animation. This will iterate 10 times, after which the button will stop blinking:

...

componentDidMount() {
 const { opacity } = this.state;
 this.changeBackground(0);

+ Animated.loop(
+ Animated.sequence([
+ Animated.delay(400),
 Animated.timing(opacity, {
 toValue: 1,
 duration: 800

Creating a Virtual Reality Application with React 360 Chapter 12

[439]

- }).start()
+ })
+]),
+ {
+ iterations: 10
+ }
+).start();
}

render() {

 ...

Now, the Next button will blink 10 times when the application mounts, thereby
emphasizing to the user that it's possible to navigate between background scenes.
However, these animations aren't the only animated features you can add. In the next
section, you'll learn how to add animated 3D objects.

Rendering 3D objects
To use 3D objects in React 360, you need you to have prebuilt 3D objects, which you can
create with special 3D modeling software or download from the internet. In this section,
we'll use a 3D object from the GitHub repository for this chapter, where you can find
a .obj file that's supported by React 360. Apart from OBJ, GLTF models are also supported
as 3D objects by React 360.

OBJ files is a standard format for 3D model files that can be exported and
imported by numerous 3D tools. Please keep in mind that React 360
doesn't support lighting and that you will need to include more advanced
packages to render complex textures in a 3D model. Due to this, the 3D
model that will be used in this example is just in one color, which is
white.

Creating a Virtual Reality Application with React 360 Chapter 12

[440]

Adding 3D objects to React 360 can be easily done with the Entity object while using a 3D
model that is stored in the static_assets directory. By using Entity, the 3D model can
be transformed into a component that you need to register in index.js, so that it can be
used in client.js and added to the application.

To add 3D objects, make the following changes:

First, make sure you've copied the helicopter.obj file from this chapter's1.
GitHub repository into the static_assets directory and create a new file called
Helicoper.js in the Components directory. In this file, the 3D model can be
imported using the asset method and added as the source for an Entity object.
To do this, use the following code:

import React from 'react';
import { asset } from 'react-360';
import Entity from 'Entity';

export default class Helicopter extends React.Component {
 render() {
 return (
 <Entity
 source={{
 obj: asset('helicopter.obj'),
 }}
 style={{
 transform: [
 { rotate: 90 },
 { scaleX: 0.02 },
 { scaleY: 0.02 },
 { scaleZ: 0.02 },
]
 }}
 />
);
 }
}

The scaling for the Entity object in the style prop will decrease the size of the
3D model; otherwise, it would be way too big to display properly. Also, the value
for rotateY will rotate the helicopter 90 degrees on the y axis.

Creating a Virtual Reality Application with React 360 Chapter 12

[441]

This Helicopter component should be displayed in your application, but this2.
can only be done if you register it to AppRegistry in the index.js file:

import { AppRegistry } from 'react-360';
import Panel from './Components/Panel';
import Navigation from './Components/Navigation';
+ import Helicopter from './Components/Helicopter';

AppRegistry.registerComponent('Panel', () => Panel);
AppRegistry.registerComponent('Navigation', () => Navigation);
+ AppRegistry.registerComponent('Helicopter', () =>
Helicopter);

This component can be mounted to the application in the client.js file using3.
the renderToLocation method. Previously, you used the renderToSurface
method to mount the Panel and Navigation components, but, for 3D objects,
this won't work. Apart to the component itself, the renderToLocation method
also takes the location of where the object will be placed:

- import { ReactInstance, Surface } from 'react-360-web';
+ import { ReactInstance, Surface, Location } from 'react-360-web';

function init(bundle, parent, options = {}) {

 ...

+ const location = new Location([-100, 10, -2]);
+ r360.renderToLocation(r360.createRoot('Helicopter'), location);

 // Render your app content to the default cylinder surface
 r360.renderToSurface(

 ...

Creating a Virtual Reality Application with React 360 Chapter 12

[442]

Now, when you open the application, a white helicopter will be visible when you turn 90
degrees to the left. In the preceding code, Location is used to create a location in the
application where the 3D model is mounted. This is done with new Location([-100,
10, -2]). This will place the object 100 meters to the left, 10 meters up, and 2 meters in
front of the initial location of the user when the application is started. This can be seen in
the following screenshot, which was taken in one of the different scenes for this application:

However, React 360 doesn't stop at importing and rendering 3D objects: you can also
animate them, just like any other component. For this, the Animated API can be used again.
You can use this with the local state to add any animation to the 3D helicopter. The style
prop for Entity already has some styling that determines the scale, which is something
you can make dynamically by using an Animated value. By decreasing the scale of the
helicopter a bit more, it will look as if it's flying and will disappear into the distance. More
effects can be added by changing the rotateY value to make it look like the helicopter is
turning.

Creating a Virtual Reality Application with React 360 Chapter 12

[443]

To create an animated 3D object, make the following changes to
Components/Helicopter.js:

Import Animated from react-360 and create an Animated version of Entity.1.
Since this isn't a predefined Animated component, we can't do this by typing
Animated.Entity. Instead, we need to create a customer Animated component
using the createAnimatedComponent method:

import React from 'react';
- import { asset } from 'react-360';
+ import { Animated, asset } from 'react-360';
import Entity from 'Entity';

+ const AnimatedEntity = Animated.createAnimatedComponent(Entity);

export default class Helicopter extends React.Component {
 ...

A constructor must be added to the Helicopter component, where the initial2.
Animated values for both the scale and rotateY are set as local state values.
The initial value for scale is 0.02, which is the same as the current scale of the
helicopter, while rotateY will get the same value that it currently has:

...

export default class Helicopter extends React.Component {
+ constructor() {
+ super();
+ this.state = {
+ scale: new Animated.Value(0.02),
+ rotateY: new Animated.Value(90)
+ };
+ }

 render() {
 ...

Creating a Virtual Reality Application with React 360 Chapter 12

[444]

We can create the animation in the componentDidMount() life cycle method as3.
a sequence since we want the helicopter to turn and fly away. The first part of the
animation is a small delay, so the animation won't start as soon as the application
mounts. After 1 second (1,000 ms), the helicopter will start turning for about 8
seconds and fly away after another small delay:

...

+ componentDidMount() {
+ const { scale, rotateY } = this.state;
+
+ Animated.sequence([
+ Animated.delay(1000),
+ Animated.timing(rotateY, {
+ toValue: 0,
+ duration: 8000
+ }),
+ Animated.delay(800),
+ Animated.timing(scale, {
+ toValue: 0,
+ duration: 8000
+ })
+]).start();
+ }

render() {

 ...

The Entity component must be replaced with the AnimatedEntity4.
component, which handles values from the Animated API. These values can be
taken from the local state so that they can be added to the style prop of the
AnimatedEntity component:

 render() {
+ const { scale, rotateY } = this.state;

 return (
- <Entity
+ <AnimatedEntity
 source={{
 obj: asset('helicopter.obj')
 }}
 style={{
 transform: [
- { rotateY: 90 },

Creating a Virtual Reality Application with React 360 Chapter 12

[445]

- { scaleX: 0.02 },
- { scaleY: 0.02 },
- { scaleZ: 0.02 },
+ { rotateY },
+ { scaleX: scale },
+ { scaleY: scale },
+ { scaleZ: scale },
]
 }}
 />
);
 }
}

Now, the helicopter will start turning from 90 to 0 degrees and, over a period of time, it
will fly away into the distance and disappear.

Summary
In this final chapter, you've combined all of the knowledge you have gathered from this
book to get started with React 360. Although React 360 uses practices from both React and
React Native, it serves a different and more niche use case than the other React
technologies. At the time of writing, well-known principles such as lifecycle methods for
the local state and the Animated API have been used to create a VR application that allows
users to explore 2D panorama images. It has basic animations, as well as a 3D helicopter
object that flies away into the distance.

With this final chapter, you've completed all 12 chapters of this book and have created 12
projects with React, React Native, and React 360. Now, you have a solid understanding of
everything that you can do with React and how to use it across different platforms. While
React and React Native are already mature libraries, new features are added continuously.
Even as you finish reading this book, there will probably be new features you can check
out, starting with Concurrent Mode. My only advice would be to never stop learning and
keep a close view on the documentation whenever a new feature is announced.

Creating a Virtual Reality Application with React 360 Chapter 12

[446]

Further reading
React 360 Native Modules
examples: https://facebook.github.io/react-360/docs/example-native-mod
ules.html

NASA 3D images: https://mars.nasa.gov/3d/images

https://facebook.github.io/react-360/docs/example-native-modules.html
https://facebook.github.io/react-360/docs/example-native-modules.html
https://mars.nasa.gov/3d/images

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learn React Hooks
Daniel Bugl

ISBN: 978-1-83864-144-3

Understand the fundamentals of React Hooks and how they modernize state
management in React apps
Build your own custom Hooks and learn how to test them
Use community Hooks for implementing responsive design and more
Learn the limitations of Hooks and what you should and shouldn’t use them for
Get to grips with implementing React context using Hooks
Refactor your React-based web application, replacing existing React class
components with Hooks
Use state management solutions such as Redux and MobX with React Hooks

https://www.packtpub.com/web-development/learn-react-hooks

Other Books You May Enjoy

[448]

React Design Patterns and Best Practices - Second Edition
Carlos Santana Roldán

ISBN: 978-1-78953-017-9

Get familiar with the new React features, like context API and React Hooks
Learn the techniques of styling and optimizing React components
Make components communicate with each other by applying consolidate
patterns
Use server-side rendering to make applications load faster
Write a comprehensive set of tests to create robust and maintainable code
Build high-performing applications by optimizing components

https://www.packtpub.com/web-development/react-design-patterns-and-best-practices-second-edition

Other Books You May Enjoy

[449]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

3
3D objects
 about 434
 rendering 439, 440, 441, 442, 443, 444

A
Android
 styling rules 285, 290
animated Tic-Tac-Toe game application, creating
 advanced animations, creating with Lottie 311,

312, 313, 314
 Expo, used for handling gestures 316
 React Native Animated API, using 300
animated Tic-Tac-Toe game application
 about 296
 checking out 297, 298, 299
 creating, with Expo 300
 creating, with React Native 300
 overview 295
animations
 creating 434, 435, 436, 438
Apollo Client
 mutations, handling 228, 229, 231, 232
 setting up, for GraphQL subscriptions 358, 359,

360

Apollo
 setting up, in React Native 336, 337, 338
 used, for building full stack e-commerce

application 218
 used, for building full stack social media

application 378
 using, in React Native 342, 344
authentication
 using, with React and GraphQL 240

B
Bootstrap 25

C
camera
 using, with Expo 378, 379, 381, 382, 383, 385,

386, 387, 388, 389, 390, 392, 393
 using, with React Native 378, 379, 381, 382,

383, 385, 386, 387, 388, 389, 390, 392, 393
Chrome Web Store
 URL 8
community feed application, declarative routing
 query strings, handling 116, 117, 118, 119,

120, 122, 123, 124, 125
 routes, with parameters 110, 111, 113, 115
community feed application, SSR enabling
 express server, creating with react-router 125,

126, 127, 129
 head tags, adding React Helmet used 130, 131,

133, 134
community feed application
 about 107
 building, with declarative routing 107, 109
 enable SSR 125
 overview 104
 working with 105, 106
components
 testing, with assertions 190, 191, 193
Consumer 141
context API
 used, for state management 141
Context, with Hooks
 combining 150
 data, combining in Provider 166, 171, 173
 Flux pattern, used for updating Provider 153,

154, 155, 156, 158, 166

[451]

 life cycles, using in functional components 150,
151, 152, 153

Context
 about 141
 creating 141, 143, 145
 nesting 147
Create React App
 installing 36, 37, 38
 used, for creating PWA 35, 36
cross-handler interactions 323
CSS inside JavaScript (CSS-in-JS) 60

D
devDependencies 10
dist directory 16

E
Enzyme
 shallow rendering 194, 195, 197
 used, for integration testing hotel review

application 179, 203, 205, 206, 208
 used, for testing React 193
 used, for unit testing hotel review application 179
ESLint
 adding 30, 31, 32
Expo SDK version 33.0.0 260
Expo
 camera, using with 378, 379, 381, 382, 383,

385, 386, 387, 388, 389, 390, 392, 393
 foreground notifications, handling with 403, 406,

407, 409, 410, 412
 notifications, sending with 400, 402
 real-time messaging application, creating with

336

 used, for creating animated Tic-Tac-Toe game
application 300

 used, for handling gestures 316

F
Firefox Addons
 URL 8
Flux pattern
 used, for updating Provider 153, 154, 155, 156,

158, 166
full stack e-commerce application

 about 212
 authentication, with React and GraphQL 240
 building, with Apollo 218
 building, with GraphQL server 218
 building, with React 218
 local state, managing 233, 235, 237, 239, 240
 project overview 212
 with GraphQL server 214, 215, 216, 217
 with React application 212, 214
full stack social media application
 about 372
 building, with Apollo 378
 building, with GraphQL server 378
 building, with React Native 378
 project overview 372

G
gestures
 handling, with Expo 316
 tap gestures, customizing 320, 322, 325, 326,

327

 tap gestures, handling 317, 319
GitHub logo pack
 download link 35
GitHub portfolio application
 about 35
 Progressive Web App (PWA), creating with

Create React App 35, 36
 React, styling with styled-components 60, 64,

65, 69, 70, 71
 reusable React components, building 43
 structuring 44, 46, 48, 50
global Context
 creating 174, 175, 176, 178
GraphQL queries
 sending, with React 220, 222, 223, 224
GraphQL server
 about 373, 376, 377
 adding, to React application 218, 219, 220
 authentication details, sending to 356
 authentication, using with 240
 JWT, passing to 248, 250, 251
 JWT, receiving from 243, 245
 used, for building full stack e-commerce

application 218

[452]

 used, for building full stack social media
application 378

 used, for full stack e-commerce application 214,
215, 216, 217

 used, for retrieving real-time data 394, 395, 397,
398, 399

 using, in React Native with Apollo 336
GraphQL subscriptions
 Apollo Client, setting up for 358, 359, 360

H
Higher-Order Component (HOC)
 about 74, 83, 112, 136
 creating 83, 84, 86
 using 89, 90
hotel review application
 about 180, 181, 182
 Enzyme, used for testing React 193
 integration testing, adding 182
 integration testing, with Enzyme 179, 203, 205,

206, 208
 unit testing, adding 182
 unit testing, with Jest 179, 182, 183
house listing application
 about 255
 building, with React Native and Expo 256
 project overview 255
 React Native project, creating 256, 257, 258,

259, 260
 React Native, routing setting up 260

I
integration testing
 with Enzyme 203, 205, 206, 208
iOS
 styling rules 285, 290
IPv4 Address 337

J
Jest
 used, for integration testing hotel review

application 179
 used, for unit testing hotel review application

179, 182, 183
JSON Web Token (JWT)

 about 240, 356
 passing, to GraphQL server 248, 250, 251
 receiving, from GraphQL server 243, 245

L
Lottie
 used, for creating advanced animations 311,

312, 313, 314

M
Metro 416
Metro bundler 413
movie list application
 about 8
 creating 9
 creating, in React 8
 React project, setting up 9
 React project, structuring 16, 17
multiple navigators
 using 268, 269, 270, 271
mutations
 handling, with Apollo Client 228, 229, 231, 232
 using, with subscriptions 366

P
personal shopping list application
 about 140
 context API, used for state management 141
 Context, combining with Hooks 150
 global Context, creating 174, 175, 176, 178
 overview 137
 working with 138, 139, 140
Progressive Web Application (PWA)
 about 75, 137, 256
 creating 38, 40
 creating, with Create React App 35, 36
 overview 35
 public API, using from GitHub 35
 serving 40, 41, 43
Project Management Board 76
project management board application
 about 75, 76, 105, 137, 331
 creating 77
 data flow, handling 77
 data, displaying 78, 79, 80, 81, 82, 83

[453]

 data, loading 78, 79, 80, 81, 82, 83
 dynamic functionalities, adding 94, 95, 96, 98,

99, 101, 102
 HOC, initiating 83
 project overview 75
Provider
 about 141
 data, combining 166, 171, 173
 updating, with Flux pattern 153, 154, 155, 156,

158, 166

Q
query strings
 handling 116, 117, 118, 119, 120, 122, 123,

124, 125

R
React 360
 3D objects 434
 animations 434
 interactions 422
 local state, using 423, 424
 scenes, changing dynamically 426, 427, 428,

431, 434
 setting up 415, 416, 418
 UI components 418, 419, 420, 421, 422
 used, for creating VR application 414
 VrButton, using 423, 424
 working with 414
React application
 GraphQL server, adding to 218, 219, 220
 structure 213
 used, for full stack e-commerce application 212,

214

React component
 rendering, for unit testing 184, 185, 186, 188,

189

React Developer Tools plugin
 about 8
 installation link 8
React Fragments 65
React Helmet
 used, for adding head tags 130, 131, 133, 134
React Native Animated API
 used, for combining animations 306, 309

 used, for creating animation 300, 301, 303
 using 300
React Native application
 about 373, 374, 375, 376, 377
 styling 279, 282, 284, 285
React Native project
 creating 256, 257, 258, 259, 260
React Native, with Apollo
 GraphQL, using in 336
 subscriptions, handling 358
React Native
 Apollo, setting up 336, 337, 338
 Apollo, using in 339, 342, 344
 authentication 345
 authentication with 345, 347, 352, 356
 camera, using with 378, 379, 381, 382, 383,

385, 386, 387, 388, 389, 390, 392, 393
 life cycles, using 273, 277, 278
 real-time messaging application, creating with

336

 routing, setting up 260
 subscriptions, adding 361, 365
 transitioning between screens 264, 265, 266
 used, for building full stack social media

application 378
 used, for creating animated Tic-Tac-Toe game

application 300
React Navigation
 about 255
 routes, creating with 261, 263
React project
 data, retrieving 20, 22, 23, 24, 25
 development server, creating 15
 ESLint, adding 30, 31, 32
 new components, creating 17, 19, 20
 rendering 13, 15
 setting up 9
 structuring 16, 17
 style, adding 25, 28
 used, for configuring Webpack 11, 12, 13
 Webpack, setting up 10, 11
React router
 authentication 242
react-native-gesture-handler package 316
react-router

 authentication 240
 used, for creating express server 125, 126, 127,

129

React
 authentication, using with 240
 GraphQL queries, sending with 220, 222, 223,

224

 styling, with styled-components 60, 64, 65, 69,
70, 71

 testing, with Enzyme 193
 used, for building full stack e-commerce

application 218
real-time data
 retrieving, with GraphQL server 394, 395, 397,

398, 399
real-time messaging application
 creating, with Expo 336
 creating, with React Native 336
 initial project, checking out 332, 334, 335
 overview 331
REST API v3
 reference link 35
reusable React components
 building 43
 reusing, in React 51, 52, 57, 59, 60
routes
 creating, with React Navigation 261, 263

S
session storage 246
shallow rendering
 assertions, testing 198, 202, 203
 with Enzyme 194, 195, 197

styled-components
 used, in React 60, 64, 65, 69, 70, 71
styling rules
 in Android 285, 290
 in iOS 285, 290
subscriptions
 adding, to React Native 361, 365
 handling, in React Native with Apollo 358
 mutations, using with 366

T
tap gestures
 customizing 320, 322, 325, 326, 327
 handling 317, 319

U
unit testing
 creating 183
 React component, rendering 184, 185, 186,

188, 189
 with Jest 182, 183

V
VR application
 about 414
 project overview 413
 with React 360 414

W
Webpack
 configuring, with React project 11, 12, 13
 setting up 10, 11

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Creating a Movie List Application in React
	Project overview
	Getting started
	Creating a movie list application
	Setting up a project
	Setting up webpack
	Configuring webpack to work with React
	Rendering a React project
	Creating a development server

	Structuring a project
	Creating new components
	Retrieving data
	Adding styling
	Adding ESLint

	Summary
	Further reading

	Chapter 2: Creating a Progressive Web Application with Reusable React Components
	Project overview
	Getting started
	GitHub portfolio application
	Creating a PWA with Create React App
	Installing Create React App
	Creating a PWA
	Serving the PWA

	Building reusable React components
	Structuring our application
	Reusing components in React

	Styling in React with styled-components

	Summary
	Further reading

	Chapter 3: Build a Dynamic Project Management Board with React and Suspense
	Project overview
	Getting started
	Creating a project management board application
	Handling the data flow
	Loading and displaying the data

	Getting started with HOC
	Creating HOC
	Using the HOC

	Making the board dynamic

	Summary
	Further reading

	Chapter 4: Build a SSR-Based Community Feed Using React Router
	Project overview
	Getting started
	Community feed application
	Declarative routing
	Routes with parameters
	Handling query strings

	Enable SSR
	Creating an express server with react-router
	Adding head tags using React Helmet

	Summary
	Further reading

	Chapter 5: Build a Personal Shopping List Application Using Context API and Hooks
	Project overview
	Getting started
	Personal shopping list
	Using the context API for state management
	Creating Context
	Nesting Context

	Mutating context with Hooks
	Using life cycles in functional components
	Updating the Provider with a Flux pattern
	Mutating data in the Provider

	Creating a global Context

	Summary
	Further reading

	Chapter 6: Build an Application Exploring TDD Using Jest and Enzyme
	Project overview
	Getting started
	Hotel review application
	Unit testing with Jest
	Creating a unit test
	Rendering a React component for testing
	Testing components with assertions

	Using Enzyme for testing React
	Shallow rendering with Enzyme
	Testing assertions with shallow rendering

	Integration testing with Enzyme

	Summary
	Further reading

	Chapter 7: Build a Full Stack E-Commerce Application with React Native and GraphQL
	Project overview
	Getting started
	Getting started with the initial React application
	Getting started with the GraphQL server

	Building a full stack e-commerce application with React, Apollo, and GraphQL
	Adding GraphQL to a React application
	Sending GraphQL queries with React
	Handling mutations with Apollo Client

	Managing local state
	Using authentication with React and GraphQL
	React Router and authentication
	Receiving JWT from the GraphQL server
	Passing JWT to the GraphQL server

	Summary
	Further reading

	Chapter 8: Build a House Listing Application with React Native and Expo
	Project overview
	Getting started
	Building a house listing application with React Native and Expo
	Create a React Native project
	Setting up routing in React Native
	Creating routes with React Navigation
	Transitioning between screens
	Using multiple navigators together

	Using life cycles in React Native
	Styling React Native applications
	Differences in styling for iOS and Android

	Summary
	Further reading

	Chapter 9: Build an Animated Game Using React Native and Expo
	Project overview
	Getting started
	Checking out the initial project

	Creating an animated Tic-Tac-Toe game application with React Native and Expo
	Using the React Native Animated API
	Creating a basic animation
	Combining animations with the Animated API

	Advanced animations with Lottie
	Handling gestures with Expo
	Handling tap gestures
	Customizing tap gestures

	Summary
	Further reading

	Chapter 10: Creating a Real-Time Messaging Application with React Native and Expo
	Project overview
	Getting started
	Checking out the initial project

	Creating a real-time messaging application with React Native and Expo
	Using GraphQL in React Native with Apollo
	Setting up Apollo in React Native
	Using Apollo in React Native

	Authentication in React Native
	Authentication with React Navigation
	Sending authentication details to the GraphQL server

	Handling subscriptions in React Native with Apollo
	Setting up Apollo Client for GraphQL subscriptions
	Adding subscriptions to React Native
	Using mutations with subscriptions

	Summary
	Further reading

	Chapter 11: Build a Full Stack Social Media Application with React Native and GraphQL
	Project overview
	Getting started
	Checking out the initial project

	Building a full stack social media application with React Native, Apollo, and GraphQL
	Using the camera with React Native and Expo
	Retrieving near real-time data using GraphQL
	Sending notifications with Expo
	Handling foreground notifications

	Summary
	Further reading

	Chapter 12: Creating a Virtual Reality Application with React 360
	Project overview
	Getting started
	Creating a VR application with React 360
	Getting started with React 360
	Setting up React 360
	React 360 UI components

	Interactions in React 360
	Using local state and VrButton
	Dynamically changing scenes

	Animations and 3D
	Animations
	Rendering 3D objects

	Summary
	Further reading

	Other Books You May Enjoy
	Index

