

Vue.js 3 Cookbook

Discover actionable solutions for building modern web apps
with the latest Vue features and TypeScript

Heitor Ramon Ribeiro

BIRMINGHAM - MUMBAI

Vue.js 3 Cookbook
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Ashitosh Gupta
Content Development Editor: Akhil Nair
Senior Editor: Hayden Edwards
Technical Editor: Deepesh Patel
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Nilesh Mohite

First published: September 2020

Production reference: 1180920

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83882-622-2

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Heitor Ramon Ribeiro has been developing web applications for over 15 years, constantly
navigating between frontend and backend development. By following his passion for
UX/UI and programming, he chose to stay in frontend development.

Heitor has built enterprise applications for businesses using Vue.js and the principles of
clean architecture, shifting his course from legacy applications to the new world of single-
page applications (SPAs) and progressive web applications (PWAs). He thinks that
almost anything is possible today with a browser, and that JavaScript is the future of
programming.

When he's not programming or leading a frontend team, he's with his family having fun,
streaming their gaming sessions, or playing some first-person shooter games.

I would like to thanks my lovely wife, Raquel, for being with me every day helping and
supporting me throughout this process of publishing my first book. To my son, Marco,

your father loves you so much and does everything for you. To my family and friends who
helped me during the development of this book, especially Patrick Monteiro, who helped me

a lot.

To all the coworkers and companies that I've worked with over the last few years, who
helped me and understood the importance of this project for me.

About the reviewers
Swanand Kadam is the creator of the first-ever online programming language in Hindi,
built to improve coding literacy in rural India. He is an experienced web application and
PWA architect who has designed and developed e-commerce, employee management, and
custom software solutions to a range of businesses. Swanand is a consistent user of
technologies including Vue.js, Firebase, Node.js, Google Cloud, and NoSQL databases.
Swanand’s articles have been published in top tech publications including Better
Programming and Hackernoon. He is also an editor for InfoQ, where he talks about the
latest trends in the world of software development.

Tyler VanBlargan is a frontend developer, primarily working with Vue.js and helping
others learn about web development. When not working on new applications, Tyler can be
found photographing his pets and playing board games.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Understanding Vue 3 and Creating Components 8
What is new in Vue 3 8

Improvements to the framework 9
Under the hood 9
Render engine 9
Exposed APIs 10

New custom components 10
Fragments 10
Teleport 11
Suspense 12

API changes 12
Some minor break changes 13

Goodbye filters, hello filters! The Vue filters API 13
The bus just left the station! The event bus API 13
No more global Vue – the mounting API 14
v-model, v-model, v-model – multiple v-model 14

Composition API 16
Technical requirements 17

Creating the base file 18
Upgrading your Vue 2 application to Vue 3 18

Getting ready 19
How to do it... 19

Using Vue-CLI to upgrade the project 19
Upgrading the project manually 20

Changing the starting files 21
How it works... 23

Creating components with multiple root elements 23
How to do it... 24

Creating the component with the <template> structure 24
Creating the component with the render function 25

How it works... 27
Creating components with attribute inheritance 28

How to do it... 28
How it works... 30

Using the reactivity and observable API outside the scope of Vue 31
How to do it... 31
How it works... 33

Creating a component using the composition API 34
How to do it... 35
How it works... 39

Table of Contents

[ii]

See also 39

Chapter 2: Introducing TypeScript and the Vue Ecosystem 40
Technical requirements 41
Creating a TypeScript project 41

Getting ready 42
How to do it... 42
How it works... 43
See also 44

Understanding TypeScript 44
Getting ready 44
Types 45

String 45
Number 46
Boolean 46
Arrays 46
Tuple 47
Enum 47
Any 48
Void 48
Objects 48
Functions 49

Interfaces 50
Decorators 51
In conclusion 52
See also 53

Creating your first TypeScript class 53
Getting ready 53
How to do it... 54
How it works... 56
There's more... 56
See also 56

Creating your first project with Vue CLI 57
Getting ready 57
How to do it... 58
There's more... 60
See also 60

Adding plugins to a Vue CLI project with Vue UI 61
Getting ready 61
How to do it... 61
How it works... 65

Adding TypeScript to a Vue CLI project 65
Getting ready 65
How to do it... 65
How it works... 67
See also 68

Table of Contents

[iii]

Creating your first TypeScript Vue component with vue-class-
component 68

Getting ready 68
How to do it... 69
How it works... 71
See also 71

Creating a custom mixin with vue-class-component 71
Getting ready 71
How to do it... 72

Creating the Counter component 72
Extracting similar code for the mixin 74

How it works... 75
See also 76

Creating a custom function decorator with vue-class-component 76
Getting ready 76
How to do it... 76
How it works... 79
There's more... 79
See also 79

Adding custom hooks to vue-class-component 79
Getting ready 80
How to do it... 80
How it works... 83
See also 84

Adding vue-property-decorator to vue-class-component 84
Getting ready 84
How to do it... 85
How it works... 89
There's more... 89
See also 89

Chapter 3: Data Binding, Form Validations, Events, and Computed
Properties 90

Technical requirements 91
Creating the "hello world" component 91

Getting ready 91
How to do it... 92
How it works... 96
See also 96

Creating an input form with two-way data binding 97
Getting ready 97
How to do it... 97
How it works... 99
See also 100

Adding an event listener to an element 100

Table of Contents

[iv]

Getting ready 100
How to do it... 100
How it works... 103
See also 103

Removing the v-model from the input 103
Getting ready 104
How to do it... 104
How it works... 105
See also 105

Creating a dynamic to-do list 105
Getting ready 106
How to do it... 106
How it works... 109
See also 109

Creating computed properties and understanding how they work 110
Getting ready 110
How to do it... 110
How it works... 112
See also 112

Displaying cleaner data and text with custom filters 113
Getting ready 113
How to do it... 113
How it works... 116
See also 117

Adding form validation with Vuelidate 117
Getting ready 117
How to do it... 117
How it works... 121
See also 122

Creating filters and sorters for a list 122
Getting ready 122
How to do it... 122
How it works... 126
See also 126

Creating conditional filters to sort list data 127
Getting ready 127
How to do it... 127
How it works... 132
See also 132

Adding custom styles and transitions 132
Getting ready 133
How to do it... 133
How it works... 136
See also 137

Using vue-devtools to debug your application 137

Table of Contents

[v]

Getting ready 137
How to do it... 138
See also 143

Chapter 4: Components, Mixins, and Functional Components 144
Technical requirements 145
Creating a visual template component 145

Getting ready 145
How to do it... 146
How it works... 151
See also 151

Using slots and named slots to place data inside your components 151
Getting ready 152
How to do it... 152
How it works... 157
See also 157

Passing data to your component and validating the data 157
Getting ready 158
How to do it... 158
How it works... 162
See also 163

Creating functional components 163
Getting ready 164
How to do it... 164
How it works... 169
See also 170

Accessing your children components data 170
Getting ready 170
How to do it... 171

Creating the star rating input 171
Creating the StarRatingDisplay component 176
Creating the StarRating component 179
Data manipulation on child components 180

How it works... 182
There's more... 183
See also 183

Creating a dynamic injected component 183
Getting ready 183
How to do it... 184
How it works... 185
See also 186

Creating a dependency injection component 186
Getting ready 186
How to do it... 186
How it works... 190
See also 190

Table of Contents

[vi]

Creating a component mixin 191
Getting ready 191
How to do it... 191
How it works... 195
See also 195

Lazy loading your components 196
Getting ready 196
How to do it... 196
How it works... 197
See also 197

Chapter 5: Fetching Data from the Web via HTTP Requests 198
Technical requirements 199
Creating a wrapper for the Fetch API as an HTTP client 199

Getting ready 199
How to do it... 200

Creating the wrapper 200
Creating the API methods 201

GET method function 201
POST method function 202
PUT method function 203
PATCH method function 203
UPDATE method function 204
DELETE method function 205

How it works... 205
See also 206

Creating a random cat image or GIF component 207
Getting ready 207
How to do it... 207

Creating the component 208
Single file component <script> section 208
Single file component <template> section 209
Single file component <style> section 211

Getting up and running with your new component 211
How it works... 212
See also 212

Creating your fake JSON API server with MirageJS 213
Getting ready 213
How to do it... 213

Creating the mock server 214
Creating the mock database 214
Creating the GET route function 215
Creating the POST route function 215
Creating the PATCH route function 216
Creating the DELETE route function 217
Creating the server 217
Adding to the application 219

Creating the component 219
Single file component <script> section 219

Table of Contents

[vii]

Single file component <template> section 221
How it works... 224
See also 224

Using axios as the new HTTP client 224
Getting ready 225
How to do it... 225

Changing from the Fetch API to Axios 225
Changing the GET method function 226
Changing the POST method function 227
Changing the PUT method function 227
Changing the PATCH method function 228
Changing the UPDATE method function 228
Changing the DELETE method function 229

Changing the component 229
How it works... 230
See also 230

Creating different axios instances 230
Getting ready 231
How to do it... 231

Changing the HTTP function 231
Changing the HTTP Fetch wrapper 232
Changing the HTTP methods function 233
Changing the MirageJS server 233

Changing the component 234
Single file component <script> section 234
Single file component <template> section 235

How it works... 237
See also 237

Creating a request and response interceptor for axios 237
Getting ready 238
How to do it... 238

Creating the interceptor 238
Adding the interceptors to the HTTP methods functions 240

How it works... 240
See also 241

Creating a CRUD interface with Axios and Vuesax 241
Getting ready 241
How to do it... 242

Adding Vuesax to the application 242
Creating the component routing 243

Single file component <script> section 243
Single file component <template> section 245
Creating the route mixin 246

Creating the list component 246
Single file component <script> section 246
Single file component <template> section 248
Single file component <style> section 252

Creating a generic user form component 252
Single file component <script> section 253
Single file component <template> section 254

Table of Contents

[viii]

Single file component <style> section 257
Creating the create user component 257

Single file component <script> section 257
Single file component <template> section 258

View component 261
Single file component <script> section 261
Single file component <template> section 262

Updating the user component 265
Single file component <script> section 265
Single file component <template> section 267

How it works... 269
See also 270

Chapter 6: Managing Routes with vue-router 271
Technical requirements 272
Creating a simple route 272

Getting ready 272
How to do it... 273

Creating the NavigationBar component 275
Single file component <script> section 275
Single file component <template> section 275

Creating the contact page 275
Single file component <script> section 276
Single file component <template> section 276

Creating the about page 276
Single file component <script> section 277
Single file component <template> section 277

Changing the application's main component 277
Single file component <script> section 277
Single file component <template> section 278

Creating the routes 278
How it works... 279
See also 279

Creating a programmatic navigation 280
Getting ready 280
How to do it... 280

Changing the application's main component 281
Single file component <script> section 281

Changing the contact view 281
Single file component <script> section 282

How it works... 283
There's more... 283
See also 283

Creating a dynamic router path 283
Getting ready 284
How to do it... 284

Changing the application's main component 285
Single file component <template> section 285

Changing the route mixin 285
Axios instance configuration 286

Table of Contents

[ix]

User list view 286
Single file component <script> section 287
Single file component <template> section 287

User create view 289
Single file component <script> section 289
Single file component <template> section 290

User information view 290
Single file component <script> section 291
Single file component <template> section 292

User update view 292
Single file component <script> section 293
Single file component <template> section 294

Creating dynamic routes 295
How it works... 299
See also 299

Creating a route alias 300
Getting ready 300
How to do it... 300
How it works... 302
See also 302

Creating route redirects 302
Getting ready 302
How to do it... 303
How it works... 304
See also 305

Creating a nested router view 305
Getting ready 305
How to do it... 305

Creating the router-view on the layout 306
Changing the router files 306

User routes 307
Router manager 308

How it works... 309
See also 309

Creating a 404 error page 309
Getting ready 309
How to do it... 310

Creating the NotFound view 310
Single file component <template> section 310
Single file component <style> section 312

Changing the router files 312
How it works... 313
See also 314

Creating and applying authentication middleware 314
Getting ready 314
How to do it... 314

Creating the login view 315
Single file component <script> section 315

Table of Contents

[x]

Single file component <template> section 316
Single file component <style> section 318

Creating the middleware 319
Adding the metadata and the middleware to the router 320

How it works... 323
See also 323

Lazy loading your pages asynchronously 323
Getting ready 323
How to do it... 324

Updating the router manager 324
Updating the user routes 325

How it works... 325
See also 326

Chapter 7: Managing the Application State with Vuex 327
Technical requirements 328
Creating a simple Vuex store 328

Getting ready 328
How to do it... 329

Creating the store 330
Creating the reactive component with Vuex 331

Single file component <script> section 332
Single file component <template> section 332

How it works... 333
See also 334

Creating and understanding the Vuex state 334
Getting ready 335
How to do it... 335

Adding Vuex via the vue ui 335
Creating the Vuex state 338

How it works... 339
There's more... 340
See also 340

Creating and understanding the Vuex mutations 340
Getting ready 340
How to do it... 341
How it works... 344
See also 344

Creating and understanding the Vuex getters 344
Getting ready 345
How to do it... 345
How it works... 347
There's more... 347
See also 347

Creating and understanding the Vuex actions 348
Getting ready 348
How to do it... 348

Table of Contents

[xi]

How it works... 352
See also 352

Creating a dynamic component with Vuex 353
Getting ready 353
How to do it... 353

Creating the user list component 354
Single file component <script> section 354
Single file component <template> section 355

Editing the user list page 357
Single file component <script> section 357
Single file component <template> section 358

Editing the user view page 358
Single file component <script> section 358
Single file component <template> section 359

Editing the user edit page 359
Single file component <script> section 359
Single file component <template> section 361

Editing the user create page 361
Single file component <script> section 361

How it works... 361
See also 362

Adding hot-module-reload for development 362
Getting ready 362
How to do it... 363
How it works... 364
See also 364

Creating a Vuex module 365
Getting ready 365
How to do it... 365

Creating the new authentication module 366
Adding the modules to Vuex 367

How it works... 368
See also 368

Chapter 8: Animating Your Application with Transitions and CSS 369
Technical requirements 370

Creating the base project 370
Creating your first CSS animation 372

Getting ready 372
How to do it... 373
How it works... 374
See also 375

Creating a custom transition class with Animate.css 375
Getting ready 375
How to do it... 376
How it works... 377
There's more... 377
See also 378

Table of Contents

[xii]

Creating transactions with custom hooks 378
Getting ready 378
How to do it... 379
How it works... 381
See also 381

Creating animations on page render 382
Getting ready 382
How to do it... 382
How it works... 384
See also 384

Creating animations for lists and groups 384
Getting ready 384
How to do it... 385
How it works... 387
See also 387

Creating a custom transition component 387
Getting ready 388
How to do it... 388
How it works... 390
See also 390

Creating a seamless transition between elements 391
Getting ready 391
How to do it... 391
How it works... 393
See also 393

Chapter 9: Creating Beautiful Applications Using UI Frameworks 394
Technical requirements 395
Creating a page, a layout, and a user form with Buefy 395

Getting ready 395
How to do it... 396

Creating the Vue-CLI project 396
Adding Buefy to the Vue-CLI project 398
Creating the layout and a page with Buefy 398

Creating the header menu component 398
Creating the hero section component 400
Creating the footer component 401
Creating the layout component 402

Creating the user registration form with Buefy 403
How it works... 408
See also 409

Creating a page, a layout, and a user form with Vuetify 409
Getting ready 409
How to do it... 409

Creating the Vue-CLI project 410
Adding Vuetify to the Vue-CLI project 411
Creating the layout with Vuetify 412

Table of Contents

[xiii]

Creating the top bar component 412
Creating the drawer menu component 413
Creating the layout component 416

Creating the user registration form with Vuetify 417
Single file component <script> section 417
Single file component <template> section 419

How it works... 426
See also 428

Creating a page, a layout, and a user form with Ant-Design 428
Getting ready 428
How to do it... 428

Creating the Vue-CLI project 429
Adding Ant-Design to the Vue-CLI project 430
Creating the layout with Ant-Design 431

Creating the top-bar component 431
Creating the drawer menu 432
Creating the layout component 434

Creating the user registration form with Ant-Design 436
Single file component <script> section 436
Single file component <template> section 437

How it works... 441
See also 442

Chapter 10: Deploying an Application to Cloud Platforms 443
Technical requirements 444

Creating a Vue project 444
Creating a Netlify account 445

Getting ready 446
How to do it... 446
How it works... 447
See also 447

Preparing your application for deployment in Netlify 447
Getting ready 447
How to do it... 448
How it works... 448
See also 449

Preparing for automatic deployment on Netlify with GitHub 449
Getting ready 449
How to do it... 449
How it works... 450
See also 450

Creating a Vercel account 450
Getting ready 451
How to do it... 451
How it works... 451
See also 451

Configuring the Vercel-CLI and deploying your project 452
Getting ready 452

Table of Contents

[xiv]

How to do it... 452
How it works... 454
See also 454

Preparing for automatic deployment on Vercel with GitHub 455
Getting ready 455
How to do it... 455
How it works... 456
See also 456

Creating a Firebase project 456
Getting ready 457
How to do it... 457
How it works... 457
See also 457

Configuring the Firebase-CLI and deploying your project 458
Getting ready 458
How to do it... 459
How it works... 461
See also 461

Chapter 11: Directives, Plugins, SSR, and More 462
Technical requirements 462
Automatically loading Vue routes 463

Getting ready 464
How to do it... 466
How it works... 467
There's more... 468
See also 468

Automatically loading Vuex modules 468
Getting ready 469
How to do it... 471
How it works... 473
See also 473

Creating a custom directive 473
Getting ready 474
How to do it... 476
How it works... 481

Creating a Vue plugin 481
Getting ready 481
How to do it... 484
How it works... 486
See also 486

Creating an SSR, SPA, PWA, Cordova, and Electron application in
Vue with Quasar 486

Getting ready 487
How to do it... 489

Table of Contents

[xv]

Developing an SPA (Single-Page Application) 489
Commands 491

Developing a PWA (Progressive Web Application) 492
Configuring quasar.conf on a PWA 492
Commands 493

Developing SSR (Server-Side Rendering) 493
Configuring quasar.conf on SSR 493
Commands 494

Developing a mobile application (Cordova) 494
Configuring quasar.conf on Cordova 495
Commands 495

Developing a desktop application (Electron) 495
Configuring quasar.conf on Electron 496
Commands 497

How it works... 497
See also 497

Creating smarter Vue watchers and computed properties 498
How to do it... 498

Watchers 498
Using method names 499
Immediate calls and deep listening 499
Multiple handlers 500

Computed 500
No cached value 500
Getter and setter 501

See also 501
Creating a Nuxt.js SSR with Python Flask as the API 502

Getting ready 502
How to do it... 503

Creating your Flask API 503
Initializing the application 503
Starting the server 506

Creating your Nuxt.js server 506
Adding Bulma to the global CSS 507
Configuring the axios plugin 508

Running the Nuxt.js server 508
Creating the TodoList component 509

Single file component <script> section 509
Single file component <template> section 511

Creating the Todo form component 511
Single file component <script> section 512
Single file component <template> section 512

Creating the layout 514
Creating the page 514

Single file component <script> section 514
Single file component <template> section 515

How it works... 516
See also 516

The dos and don'ts of Vue applications 517
Linters 517
JavaScript 518

Table of Contents

[xvi]

Vue 518
See also 519

Other Books You May Enjoy 520

Index 523

Preface
Vue is a minimal frontend framework that empowers developers to create web
applications, prototypes, big enterprise applications, desktop applications, and mobile
applications.

Vue 3 is a complete rewrite of Vue and brings changes to all the core APIs of the
frameworks. This rewrite changes code that was written to flow in TypeScript. In Vue 3 we
have all of the core APIs exposed, giving the possibility of using Vue to everyone.

The book starts with recipes for implementing Vue 3's new features in your web
development projects and migrating your existing Vue apps to the latest version. You will
get up and running with TypeScript with Vue, and find succinct solutions to common
challenges and pitfalls faced in implementing components, derivatives, and animation,
through to building plugins, adding state management, routing, and developing complete
single-page applications (SPAs).

Some of the libraries, plugins, and frameworks used in this book might receive updates
between the writing of this book and the time that you're reading it. So, please pay
attention to any API changes or version changes that may have any breaking changes.

Who this book is for
This book is for web developers who wants to learn more about Vue and wants to improve
their Vue skills. We'll start by presenting the Vue 3 and TypeScript technologies. In the
subsequent chapters, the reader will be presented with the new concepts in Vue and their
ecosystem plugins, UI frameworks, and advanced recipes.

By following the book from cover to cover, you will be able to create a Vue application, use
all the essential Vue plugins, and employ the top Vue UI frameworks. If you are already
familiar with Vue, you will discover relevant new patterns.

Preface

[2]

What this book covers
Chapter 1, Understanding Vue 3 and Creating Components, provides the reader with recipes
on how to use the new Vue 3 APIs to create custom Vue components using Vue's exposed
core API and the Composition API. This chapter also helps the reader along an initial
upgrade path of a Vue 2 application to Vue 3.

Chapter 2, Introducing TypeScript and the Vue Ecosystem introduces the reader to the
TypeScript superset and how to use it, starting with basic types, interfaces, and type
annotations. The reader will become ready for the development of a Vue application with
Vue CLI, TypeScript, and vue-class-component.

Chapter 3, Data Binding, Form Validations, Events, and Computed Properties, discusses the
basic Vue developments and component concepts, including v-model, event listeners,
computed properties, and for loops. The reader will be introduced to the Vuelidate plugin
for form validation and how to use it on a Vue component, along with how to debug a Vue
component with vue-devtools.

Chapter 4, Components, Mixins, and Functional Components, walks the reader through
building components with different approaches, including custom slots for contents,
validated props, functional components, and creating mixins for code reusability. It then
introduces the reader to a set of different approaches for accessing child components' data,
creating a dependency injection component and dynamic injected component, and how to
lazy load a component.

Chapter 5, Fetching Data from the Web via HTTP Requests, shows the reader how to create a
custom wrapper around the Fetch API for HTTP calls on JavaScript, how to use the
wrapper in Vue, and how to implement custom asynchronous functions on Vue. The reader
will also learn how to replace the Fetch API in the wrapper for axios, and how custom
handlers can be implemented on axios.

Chapter 6, Managing Routes with vue-router, takes a look at Vue's routing plugin and how to
use it on Vue to create routes for the pages of a Vue application. It introduces the process of
managing router paths, dynamic paths with parameters on the router path, lazy loading the
page component, creating middleware for authentication on the router, and using an alias
and redirect.

Preface

[3]

Chapter 7, Managing the Application State with Vuex, explores the Vue state management
plugin to help the reader understand how Vuex works and how it can be applied to their
application. This chapter also provides the reader with recipes for creating Vuex modules,
actions, mutations, and getters, and explores how to define the base state for the store.

Chapter 8, Animating Your Application with Transitions and CSS, explores the fundamentals
of CSS animation and transitions by providing recipes for custom animations based only on
CSS. These will be used with a Vue custom component to achieve a nice looking application
and provide the best experience for the application's users.

Chapter 9, Creating Beautiful Applications Using UI Frameworks, take a look at popular UI
frameworks. The reader will build a user registration form with Buefy, Vuetify, and Ant-
Design with their design concept. The aim of the recipes in this chapter is to teach the
reader how to create a good-looking application with a UI framework.

Chapter 10, Deploying an Application to Cloud Platforms, shows how to deploy a Vue
application on custom third-party hosters such as Vercel, Netlify, and Google Firebase.
Using the recipes in this chapter, the reader will learn how to automatically deploy their
application with integrated repository hooks and auto-deploy functions.

Chapter 11, Pro League – Directives, Plugins, SSR, and More, explores advanced topics on
Vue, including patterns, best practices, how to create plugins and directives, and how to
use high-level frameworks such as Quasar and Nuxt.js to create applications.

To get the most out of this book
Vue 3 beta was the version available at the time of writing this book. All the code will be
updated with the final release on the GitHub repository here: https:/ /github. com/
PacktPublishing/Vue. js- 3.0- Cookbook

You will need Node.js 12+ installed, Vue CLI updated to the latest version, and a good code
editor of some sort. Other requirements will be introduced in each recipe. All the software
requirements are available for Windows, macOS, and Linux.

To develop mobile applications for iOS, you need a macOS machine to get access to Xcode
and the iOS simulator. Here's a table summarizing all the requirements:

Software/hardware covered in the book OS requirements
Vue CLI 4.X Windows / Linux / macOS
TypeScript 3.9.X Windows / Linux / macOS
Quasar-CLI 1.X Windows / Linux / macOS
Nuxt-CLI 3.X.X Windows / Linux / macOS

https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook

Preface

[4]

Visual Studio Code 1.4.X and IntelliJ WebStorm 2020.2 Windows / Linux / macOS

Netlify-CLI Windows / Linux / macOS

Vercel-CLI Windows / Linux / macOS

Firebase-CLI Windows / Linux / macOS

Node.js 12+- Windows / Linux / macOS

Python 3 Windows / Linux / macOS

Xcode 11.4 and iOS Simulator macOS

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Vue. js- 3.0- Cookbook. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/Vue.js-3.0-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

<template>
 <header>
 <div id="blue-portal" />
 </header>
</header>

Any command-line input or output is written as follows:

$ npm run serve

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click on the Email button to be redirected to the Email Sign up form"

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Preface

[6]

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

https://www.packtpub.com/support/errata

Preface

[7]

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
Understanding Vue 3 and

Creating Components
Vue 3 brings a lot of new features and changes for developers, all of them designed to aid
development and improve the framework's overall stability, speed, and maintainability.
Using other frameworks and libraries as inspiration, the Vue core team managed to achieve
a great level of abstraction on the API where anyone can use Vue now, irrespective of
whether they're a frontend developer or a backend developer.

In this chapter, we will learn how to upgrade our Vue project to the new version, and more
about some of the new Vue features, such as the multiple root elements, the new attribute
inheritance engine, how we can use the exposed reactivity API outside of Vue in another
application, and how to create a component using the new composition API.

In this chapter, you will learn the following:

What is new in Vue 3
Upgrading your Vue 2 application to Vue 3
Creating components with multiple root elements
Creating components with attribute inheritance
Using the reactivity and observable API outside the scope of Vue
Creating a component using the composition API

What is new in Vue 3
You may be wondering how a new version of a framework could result in such hype on the
internet? Imagine taking a car on the highway, doing a complete 360 roll, and then
continuing to go full speed ahead in the same direction. This would cause a theatrical scene,
and it's the perfect way to describe how Vue will go from version 2 to 3.

Understanding Vue 3 and Creating Components Chapter 1

[9]

In this first part of the chapter, I will introduce you to the improvements on Vue, what was
added to the framework, what has changed, and how it will impact the way you code a
Vue application.

Improvements to the framework
There are numerous improvements to the Vue framework in this new release; all of them
focused on making the framework better in every way possible. Here are some of the
improvements that can impact the everyday development and usage of the framework by
users and developers.

Under the hood
The outer shell looks the same as the old one, but the engine is a piece of art. In the new
version, there is no leftover code from Vue 2. The core team built the framework from the
ground up using TypeScript and rewrote everything geared to the maximum performance
of the framework.

TypeScript was chosen to create a more maintainable code base for the Vue core team and
the open-source community, and to improve the autocomplete features, such as
IntelliSense or typeahead that the IDEs and code editors provide, without the need for
special plugins and extensions.

Render engine
For Vue 3, a new render engine was developed using a new algorithm for the shadow
DOM. This new render is totally exposed by the core of the framework by default, without
the need to be executed by the framework. This makes it possible for new implementations
of a completely new render function that can be injected into the framework and replace the
original render engine.

In this new version of Vue, a new template compiler was written from scratch. This new
compiler uses a new technique for cache manipulation and to manage the rendered
elements, and a new hoisted method is applied to the creation of VNodes.

For cache manipulation, a new method is applied to control the position of the element,
where the element can be a dynamic element with computed data or a response to a
function that can be mutated.

Understanding Vue 3 and Creating Components Chapter 1

[10]

The Vue core team has made an explorer where it's possible to see how the new template
compiler renders the final render function. This can be viewed at https:/ / vue-next-
template-explorer. netlify. app/ .

Exposed APIs
With all these modifications, it was possible to render all the Vue APIs exposed to usage
within files outside the scope of application of Vue. It's possible to use the Vue reactivity or
the shadow DOM in a React application, without the need to render a Vue application
inside the React application. This explosibility is a way of transforming Vue into a more
versatile framework, where it can be used anywhere, not just in frontend development.

New custom components
Vue 3 introduces three new custom components that can be used by the developer to
resolve old problems. These components were present on Vue 2 but as third-party plugins
and extensions. Now they are made by the Vue core team and added to the Vue core
framework.

Fragments
In Vue 2, we always needed to have a parent node wrapping the components inside the
single-file components. This was caused by the way in which the render engine of Vue 2
was constructed, requiring a root element on each node.

In Vue 2, we needed to have a wrapper element, encapsulating the elements that will be
rendered. In the example, we have a div HTML element, wrapping two p HTML child
elements, so we can achieve multiple elements on the page:

<template>
 <div>
 <p>This is two</p>
 <p>children elements</p>
 </div>
</template>

https://vue-next-template-explorer.netlify.app/
https://vue-next-template-explorer.netlify.app/
https://vue-next-template-explorer.netlify.app/
https://vue-next-template-explorer.netlify.app/
https://vue-next-template-explorer.netlify.app/
https://vue-next-template-explorer.netlify.app/
https://vue-next-template-explorer.netlify.app/
https://vue-next-template-explorer.netlify.app/
https://vue-next-template-explorer.netlify.app/
https://vue-next-template-explorer.netlify.app/
https://vue-next-template-explorer.netlify.app/
https://vue-next-template-explorer.netlify.app/
https://vue-next-template-explorer.netlify.app/
https://vue-next-template-explorer.netlify.app/
https://vue-next-template-explorer.netlify.app/

Understanding Vue 3 and Creating Components Chapter 1

[11]

Now, in Vue 3, it's possible to declare any number of root elements on the single-file
components without the need for special plugins using the new Fragments API, which will
handle the multiple root elements. This helps to maintain a cleaner final code for the user,
without the need for empty shells just for wrapping elements:

<template>
 <p>This is two</p>
 <p>root elements</p>
</template>

As we saw in the Vue 3 code, we were able to have two root p HTML elements, without the
need for a wrapper element.

Teleport
A Teleport component, also known as a Portal component, as the name implies, is a
component that can make an element go from one component to another. This may seem
strange in the first instance, but it has a lot of applications, including dialogs, custom
menus, alerts, badges, and many other customs UIs that need to appear in special places.

Imagine a header component, where you want a custom slot on the component so you can
place components:

<template>
 <header>
 <div id="blue-portal" />
 </header>
</header>

Then, you want to display a custom button on this header, but you want to call this button
from a page. You just need to execute the following code:

<template>
 <page>
 <Teleport to="blue-portal">
 <button class="orange-portal">Cake</button>
 </Teleport>
 </page>
</template>

Now, your button will be displayed on the header, but the code will be executed on the
page, giving access to the page scope.

Understanding Vue 3 and Creating Components Chapter 1

[12]

Suspense
When the wait for the data is taking longer than you would like, how about showing a
custom loader for the user? This is now possible without the need for custom code; Vue
will handle this for you. The Suspense component will manage this process, with a default
view once the data is loaded, and a fallback view when the data is being loaded.

You can write a special wrapper like this:

<template>
 <Suspense>
 <template #default>
 <data-table />
 </template>
 <template #fallback>
 <loading-gears />
 </template>
 </Suspense>
</template>

The new Vue composition API will understand the current state of your component, so it
will be able to differentiate if the component is loading or if it's ready to be displayed.

API changes
Some API changes were made in Vue 3 that were necessary in order to clean the Vue API
and simplify development. Some of them are break changes, and others are additions. But
don't worry; the Vue 2 object development was not removed, it's still there, and will
continue to be used. This declaration method was one of the reasons why many developers
choose Vue over other frameworks.

There are some break changes that will happen in Vue 3 that are important to learn more
about. We will discuss the most important break changes that will be introduced in Vue 3,
and how to deal with then.

In Vue 3, a new way of creating the components is being introduced – the composition API.
This method will make the maintainability of your code better, and give you a more reliable
code, where you will have the full power of TypeScript available.

Understanding Vue 3 and Creating Components Chapter 1

[13]

Some minor break changes
There are some minor break changes that are present in Vue 3 that need to be mentioned.
These changes relate to one method we used previously to write code, and that has now
been replaced when using Vue 3. It's not a Herculean job, but you need to know about
them.

Goodbye filters, hello filters! The Vue filters API
The way we used filters on Vue 2 is no longer available. The Vue filter has been
removed from the API. This change was made to simplify the render process and make it
faster. All filters, in the end, are functions that receive a string and return a string.

In Vue 2, we used to use filters like this:

{{ textString | filter }}

Now, in Vue 3, we just need to pass a function to manipulate the string:

{{ filter(textString) }}

The bus just left the station! The event bus API
In Vue 2, we were able to use the power of the global Vue object to create a new Vue
instance, and use this instance as an event bus that could transport messages between
components and functions without any hassle. We just needed to publish and subscribe to
the event bus, and everything was perfect.

This was a good way to transfer data between components, but was an anti-pattern
approach for the Vue framework and components. The correct way to transfer data
between components in Vue is via a parent-child communication, or state management,
also known as state-driven architecture.

In Vue 3, the $on, $off, and $once instance methods were removed. To use an event bus
strategy now, it is recommended to use a third-party plugin or framework such as mitt
(https://github.com/ developit/ mitt).

https://github.com/developit/mitt
https://github.com/developit/mitt
https://github.com/developit/mitt
https://github.com/developit/mitt
https://github.com/developit/mitt
https://github.com/developit/mitt
https://github.com/developit/mitt
https://github.com/developit/mitt
https://github.com/developit/mitt
https://github.com/developit/mitt
https://github.com/developit/mitt

Understanding Vue 3 and Creating Components Chapter 1

[14]

No more global Vue – the mounting API
In Vue 2, we were accustomed to importing Vue, and prior to mounting the application,
use the global Vue instance to add the plugins, filters, components, router, and
store. This was a good technique where we could add anything to the Vue instance
without needing to attach anything to the mounted application directly. It worked like this:

import Vue from 'vue';
import Vuex from 'vuex';
import App from './App.vue';

Vue.use(Vuex);
const store = new Vuex.store({});

new Vue({
 store,
 render: (h) => h(App),
}).$mount('#app');

Now, in Vue 3, this is no longer possible. We need to attach every component, plugin,
store, and router to the mounted instance directly:

import { createApp } from 'vue';
import { createStore } from 'vuex';
import App from './App.vue';

const store = createStore({});

createApp(App)
 .use(store)
 .mount('#app');

Using this method, we can create different Vue applications in the same global application,
without the plugins, store, or router of the applications messing with one another.

v-model, v-model, v-model – multiple v-model
When developing a single-file component, we were stuck with a single v-model directive
and a .sync option for a second update change. This meant us using a lot of custom event
emitters and huge object payloads to handle data inside the component.

In this breaking change, a collateral break change was introduced that
resulted in the model property (https:/ /vuejs. org/v2/ api/ #model)
being removed from the Vue API. This property is used in custom
components that used to do the same thing that the new v-model directive
now does.

https://vuejs.org/v2/api/#model
https://vuejs.org/v2/api/#model
https://vuejs.org/v2/api/#model
https://vuejs.org/v2/api/#model
https://vuejs.org/v2/api/#model
https://vuejs.org/v2/api/#model
https://vuejs.org/v2/api/#model
https://vuejs.org/v2/api/#model
https://vuejs.org/v2/api/#model
https://vuejs.org/v2/api/#model
https://vuejs.org/v2/api/#model
https://vuejs.org/v2/api/#model
https://vuejs.org/v2/api/#model

Understanding Vue 3 and Creating Components Chapter 1

[15]

The new way to use the v-model directive will change how the sugar syntax works. In Vue
2, to use a v-model directive, we had to create a component expecting to receive the
props as "value", and when there was a change, we needed to emit an 'input' event,
like the following code:

<template>
 <input
 :value="value"
 @input="$emit('input', $event)"
 />
</template>
<script>
export default {
 props: {
 value: String,
 },
}
</script>

In Vue 3, to make the syntactic sugar work, the props property that the component will
receive and the event emitter will change. Now, the component expects a props named
modelValue and it emits an event, 'update:modelValue', like the following code:

<template>
 <input
 :modelValue="modelValue"
 v-on:['update:modelValue']="$emit('update:modelValue', $event)"
 />
</template>
<script>
export default {
 props: {
 modelValue: String,
 },
}
</script>

But how about the multiple v-model directives? Understanding the v-model break change
is the first step in getting to know how the new method of multiple v-model will work.

Understanding Vue 3 and Creating Components Chapter 1

[16]

To create multiple v-model components, we need to create various props with the name of
the model directive we want and emit 'update:value' events where the value is the
name of the model directive:

<script>
export default {
 props: {
 name: String,
 email: String,
 },
 methods: {
 updateUser(name, email) {
 this.$emit('update:name', name);
 this.$emit('update:email', email);
 }
 }
}
</script>

In the component where we want to use the multiple v-model directives, use the following
code:

<template>
 <custom-component
 v-model:name="name"
 v-model:email="email"
 />
</template>

The component will have each v-model directive, bounded to the event the child is
emitting. In this case, the child component emits 'update:email' (the parent component)
in order to be able to use the v-model directive with the email modifier. For example, you
can use v-model:email to create the two-way data binding, between the component and
the data.

Composition API
This is one of the most anticipated features of Vue 3. The composition API is a new way of
creating Vue components, with an optimized way of writing code, and providing full
TypeScript type checking support in your component. This method organizes the code in a
simpler and more efficient way.

Understanding Vue 3 and Creating Components Chapter 1

[17]

In this new way of declaring a Vue component, you just have a setup property that will be
executed and will return everything your component needs in order to be executed, like
this example:

<template>
 <p @click="increaseCounter">{{ state.count }}</p>
</template>
<script>
import { reactive, ref } from 'vue';

export default {
 setup(){
 const state = reactive({
 count: ref(0)
 });

 const increaseCounter = () => {
 state.count += 1;
 }

 return { state, increaseCounter }
 }
}
</script>

You will import the reactivity API from the Vue core to enable it in the object type data
property, in this case, state. The ref API enables reactivity in the basic type value, like
count, which is a number.

Finally, the functions can be declared inside the setup functions and passed down on the
returned object. Then, everything is accessible in the <template> section.

Now, let's move on to some recipes.

Technical requirements
In this chapter, we will be using Node.js and Vue-CLI.

Attention Windows users! You need to install an NPM package called
windows-build-tools to be able to install the following requisite
packages. To do this, open Power Shell as an administrator and execute
the following command:
> npm install -g windows-build-tools

Understanding Vue 3 and Creating Components Chapter 1

[18]

To install Vue-CLI, you need to open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> npm install -g @vue/cli @vue/cli-service-global

Creating the base file
In all recipes in this chapter, we will use this base template which we will create now. Make
sure you follow these steps to create the file before starting the example in the recipe:

Create a new .html file in any folder and open it.1.
Create an html tag and add a head HTML element as a child. Inside2.
the head HTML element, add a script HTML element with the src attribute
defined as http://unpkg.com/vue@next:

<html>
 <head>
 <script src="https://unpkg.com/vue@next"></script>
 </head>
</html>

As a sibling of the head HTML element, create a body HTML element. Inside3.
the body HTML element, add a div HTML element with the attribute id defined
as "app":

<body>
 <div id="app">
 </div>
</body>

Finally, as a sibling of the div HTML element, create a script HTML element,4.
with empty content. This will be where we will place the code for the recipes:

<script></script>

Upgrading your Vue 2 application to Vue 3
Upgrading your project from Vue 2 to Vue 3 can sometimes be done automatically, but in
other cases, this needs to be done manually. This depends on how deep into the use of the
Vue API you go with your application.

Understanding Vue 3 and Creating Components Chapter 1

[19]

With projects made and managed by Vue-CLI, this process will be made seamlessly and
will have a more straightforward approach compared to projects using a custom
framework wrapper CLI.

In this recipe, you will learn how to upgrade your application using Vue-CLI and how to
upgrade the project and the dependencies manually.

Getting ready
The prerequisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
In order to upgrade your Vue 2 project to Vue 3, you will have to split the upgrade into
different parts. We have the upgrade of the framework itself, and then we have the
ecosystem components, such as vue-router and vuex, and finally, the bundler that joins
everything in the end.

The framework upgrade comes with break changes. There are some break
changes that are presented in this book in the What is new in Vue 3 section
of this chapter, and others that may occur in a more advanced API
schema. You have to manually update and check whether your
components are valid for the upgrade on the framework.

Using Vue-CLI to upgrade the project
Using the latest version of Vue-CLI, you will be able to use Vue 3 in your project, out of the
box, and you will be able to update your current project to Vue 3.

Understanding Vue 3 and Creating Components Chapter 1

[20]

To update Vue-CLI to the latest version, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm install @vue/cli-service@latest

Upgrading the project manually
To upgrade the project manually, you will have to first upgrade the project dependencies to
their latest versions. You cannot use an old version of a Vue ecosystem plugin with Vue 3.
To do this, perform the following steps:

We need to upgrade the Vue framework, the ESLint plugin (which Vue depends1.
on), and the vue-loader for the bundler. To upgrade it, you need to open
Terminal (macOS or Linux) or Command Prompt/PowerShell (Windows) and
execute the following command:

> npm install vue@next eslint-plugin-vue@next vue-loader@next

We need to add the new Vue single-file component compiler as a dependency to2.
the project. To install it, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm install @vue/compiler-sfc@latest

If you are using unit tests and the @vue/test-utils package on your project,3.
you will also need to upgrade this dependency. To upgrade it, you need to open
Terminal (macOS or Linux) or Command Prompt/PowerShell (Windows) and
execute the following command:

> npm install @vue/test-utils@next @vue/server-test-utils@latest

For the Vue ecosystem plugins, if you are using vue-router, you will need to4.
upgrade this too. To upgrade it, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm install vue-router@next

If your application is using vuex as the default state management, you will need5.
to upgrade this too. To upgrade it, you need to open Terminal (macOS or Linux)
or Command Prompt/PowerShell (Windows) and execute the following
command:

> npm install vuex@next

Understanding Vue 3 and Creating Components Chapter 1

[21]

Changing the starting files
With the new version of the packages, we will need to change our starting files. In a Vue
project that was created with the Vue-CLI starter kit, you will find a file named main.js or
main.ts. If you are using TypeScript, this file is located in the src folder. Now follow
these instructions:

Open the main.js file in the src folder of your project. At the top of the file,1.
where the packages are imported, you will see the following code:

import Vue from 'vue';

We need to change this to the new Vue exposed API method. To do this, we need
to import createApp from the Vue package as follows:

import { createApp } from 'vue';

Remove the global Vue static attribute definition of2.
Vue.config.productionTip from your code.
The mounting function of your application needs to be changed. The old API will3.
look like this:

new Vue({
 router,
 store,
 render: (h) => h(App),
}).$mount('#app');

The old API should be changed to the new createApp API, as follows:

createApp(App)
 .use(router)
 .use(store)
 .mount('#app')

Open your vuex store instantiation file (normally, this file is located4.
in src/store and is named store.js or index.js).
Change the creation of the store from the instantiation of a new vuex class to the5.
new createStore API. The vuex v3 class instantiation may look like this:

import Vue from 'vue';
import Vuex from 'vuex';

Vue.use(Vuex);

export default new Vuex.Store({

Understanding Vue 3 and Creating Components Chapter 1

[22]

 state: { /* ... */ },
 mutations: { /* ... */ },
 actions: { /* ... */ },
 getters: { /* ... */ },
 modules: { /* ... */ },
});

You need to replace its content with the createStore API, which could look like
this, for example:

import { createStore } from 'vuex';

export default createStore({
 state: { /* ... */ },
 mutations: { /* ... */ },
 actions: { /* ... */ },
 getters: { /* ... */ },
 modules: { /* ... */ },
});

In the vue-router ecosystem, we will need to replace the old API from the6.
router creation with the new one. To do this, open the router creation file (in the
src/router folder, normally named router.js or index.js).
Finally, in the creation file, replace the old vue-router class instantiation with7.
the new createRouter API. The vue-router v3 class instantiation may look
like this:

import Vue from 'vue';
import VueRouter from 'vue-router';

Vue.use(VueRouter);

export default new VueRouter({
 routes: [{
 path: '/',
 name: 'HomePage',
 component: () => import('pages/home'),
 }]
});

You will also need to replace the new VueRouter instantiation with the new
createRouter and createWebHistory API, as in this example:

import {
 createRouter,
 createWebHistory,
} from 'vue-router';

Understanding Vue 3 and Creating Components Chapter 1

[23]

Vue.use(VueRouter);

export default createRouter({
 history: createWebHistory(),
 routes: [{
 path: '/',
 name: 'HomePage',
 component: () => import('pages/home'),
 }]
});

How it works...
In the upgrading process, Vue has provided us with two ways to update our project. The
first way is to use the Vue-CLI plugin, which tries to automate almost all the processes and
changes needed for the upgrade.

The second way is to upgrade the project manually. This method requires the developer to
upgrade all the dependencies to the latest version, install the new single-file component
compiler, @vue/compiler-sfc, and change the entry files for the Vue application, router,
and store to the new API.

Following the changes to the starter structure of the project, the developer needs to check
the components to see whether there are any Vue 3 breaking changes present, refactor the
component to the new Vue 3 APIs, and remove the deprecated APIs from Vue 2.

Creating components with multiple root
elements
In Vue 3, it is possible to create components with multiple root elements, without the need
for a wrapping element. This option is also known as a fragment.

In React, this has been possible for a long time, but in Vue, you need to use custom third-
party plugins such as vue-fragment (https:/ /github. com/Thunberg087/ vue- fragment)
to use this feature.

In this recipe, you will learn how to create a component with multiple root elements, and
how it could be used with a <template> section and a render function.

https://github.com/Thunberg087/vue-fragment
https://github.com/Thunberg087/vue-fragment
https://github.com/Thunberg087/vue-fragment
https://github.com/Thunberg087/vue-fragment
https://github.com/Thunberg087/vue-fragment
https://github.com/Thunberg087/vue-fragment
https://github.com/Thunberg087/vue-fragment
https://github.com/Thunberg087/vue-fragment
https://github.com/Thunberg087/vue-fragment
https://github.com/Thunberg087/vue-fragment
https://github.com/Thunberg087/vue-fragment
https://github.com/Thunberg087/vue-fragment
https://github.com/Thunberg087/vue-fragment

Understanding Vue 3 and Creating Components Chapter 1

[24]

How to do it...
In this recipe, we will create two examples of a multiple root element component, one with
a <template> structure, and another with a render function. To do this, this recipe will be
divided into two parts.

Creating the component with the <template> structure
In order to use the <template> structure in our example, we will be using the template
property of the Vue object where we can pass a string or a template string as the value,
which will be interpolated by the Vue script and rendered on the screen:

Using the base example from the 'Creating the base file' section, create a new file1.
named template.html and open it.
In the empty <script> HTML element, create the2.
constants defineComponent and createApp by object-destructuring the Vue
global constant:

const {
 defineComponent,
 createApp,
} = Vue;

Create a constant named component, defined as the defineComponent method,3.
passing a JavaScript object as an argument with three properties: data, methods,
and template:

const component = defineComponent({
 data: () => ({}),
 methods: {},
 template: ``
});

In the data property, define it as a singleton function, returning a JavaScript4.
object, with a property named count and with the default value as 0:

data: () => ({
 count: 0
}),

Understanding Vue 3 and Creating Components Chapter 1

[25]

In the methods property, create a property called addOne, which is a function5.
that will increase the value of count by 1:

methods: {
 addOne() {
 this.count += 1;
 },
},

In the template property, in the template string, create an h1 HTML element6.
with a title. Then, as a sibling, create a button HTML element with an event
listener bound to the click event, triggering the addOne function when
executed:

template: `
 <h1>
 This is a Vue 3 Root Element!
 </h1>
 <button @click="addOne">
 Pressed {{ count }} times.
 </button>
`

Finally, call the createApp function, passing the component constant as an7.
argument. Then, prototype chain the mount function and, as an argument of the
function, pass the div HTML element id attribute, ("#app"):

createApp(component)
 .mount('#app');

Creating the component with the render function
In order to use the <template> structure in our example, we will be using
the template property of the Vue object, where we can pass a string or a template string as
the value, which will be interpolated by the Vue script and rendered on the screen:

Using the base example from the 'Creating the base file' section, create a new file1.
named render.html and open it.

Understanding Vue 3 and Creating Components Chapter 1

[26]

In the empty <script> HTML element, create the constants of the functions that2.
will be used using the object destructuring method, calling
the defineComponent, h, and createApp methods from the Vue global
constant:

const {
 defineComponent,
 h,
 createApp,
} = Vue;

Create a constant named component, defined as the defineComponent method,3.
passing a JavaScript object as an argument with three properties: data, methods,
and render:

const component = defineComponent({
 data: () => ({}),
 methods: {},
 render() {},
});

In the data property, define it as a singleton function, returning a JavaScript4.
object with a property named count and with the default value as 0:

data: () => ({
 count: 0
}),

In the methods property, create a property called addOne, which is a function5.
that will increase the value of count by 1:

methods: {
 addOne() {
 this.count += 1;
 },
},

In the render property, perform the following steps:6.
Create a constant named h1 and define it as the h function, passing
'h1' as the first argument, and the title that will be used as the second
argument.
Create a constant named button, which will be the h function, passing
"button" as the first argument, a JavaScript object with the property
onClick with a value of this.addOne as the second argument, and
the content of button as the third argument.

Understanding Vue 3 and Creating Components Chapter 1

[27]

Return an array, with the first value as the h1 constant, and the second
value as the button constant:

render() {
 const h1 = h('h1', 'This is a Vue 3 Root Element!');
 const button = h('button', {
 onClick: this.addOne,
 }, `Pressed ${this.count} times.`);

 return [
 h1,
 button,
];
},

Finally, call the createApp function, passing the component constant as an7.
argument, prototype chaining the mount function, and passing the div HTML
element id attribute, ("#app"), as an argument of the function:

createApp(component)
 .mount('#app');

How it works...
The new Vue component creation API needs to be executed by a
function, defineComponent, and the JavaScript object that is passed as an argument
maintains almost the same structure as the old structure in Vue 2. In the examples, we used
the same properties, data, render, methods, and template, all present in Vue 2.

In the example with the <template> structure, we didn't have to create a wrapper element
to encapsulate the content of our application component and were able to have two root
elements on the component directly.

In the render function example, the same behavior occurs, but the final example used the
new exposed h API, where it is no longer a parameter of the render function. A breaking
change was present in the example; in the button creation, we had to use the onClick
property inside the data JavaScript object, not the on property, with the click method.
This happens because of the new data structure of the VNode of Vue 3.

Understanding Vue 3 and Creating Components Chapter 1

[28]

Creating components with attribute
inheritance
Since Vue 2, it has been possible to use attribute inheritance on components, but in Vue 3,
attribute inheritance was made better and with a more reliable API to use in the
components.

Attribute inheritance in components is a pattern that provides faster development of
custom components based on HTML elements (such as custom inputs, buttons, text
wrappers, or links).

In this recipe, we will create a custom input component with attribute inheritance applied
directly to the input HTML element.

How to do it...
Here, we will create a component that will have a full attribute inheritance on a selected
element on the DOM tree:

Using the base example from the Creating the base file section, create a new file1.
named component.html and open it.
In the empty <script> HTML element, create the constants of the functions that2.
will be used using the object destructuring method, calling
the defineComponent and createApp methods from the Vue global constant:

const {
 defineComponent,
 createApp,
} = Vue;

Create a constant named nameInput, defined as the defineComponent method,3.
passing a JavaScript object as an argument with four
properties: name, props, template, and inheritAttrs. Then, we define the
value of inheritAttrs as false:

const nameInput = defineComponent({
 name: 'NameInput',
 props: {},
 inheritAttrs: false,
 template: ``
});

Understanding Vue 3 and Creating Components Chapter 1

[29]

In the props property, add a property called modelValue and define it as4.
String:

props: {
 modelValue: String,
},

In the template property, within the template string, we need to do the following:5.
Create a label HTML element and add an input HTML element as a
child.
In the input HTML element, define the v-bind directive as a
JavaScript object with the destructed value of this.$attrs.
Define the variable attribute value as the received prop's
modelValue.
Set the input attribute type as "text".
To the change event listener, add an anonymous function, which
receives an event as the argument, and then emit an event called
"update:modeValue" with the payload event.target.value:

template: `
<label>
 <input
 v-bind="{
 ...$attrs,
 }"
 :value="modelValue"
 type="text"
 @change="(event) => $emit('update:modelValue',
 event.target.value)"
 />
</label>`

Create a constant named appComponent, defined as6.
the defineComponent method, passing a JavaScript object as an argument with
two properties, data and template:

const component = defineComponent({
 data: () => ({}),
 template: ``,
});

Understanding Vue 3 and Creating Components Chapter 1

[30]

In the data property, define it as a singleton function, returning a JavaScript7.
object with a property named name, with the default value as '':

data: () => ({
 name: ''
}),

In the template property, within the template string, we need to do the following:8.
Create a NameInput component with a v-model directive bounded to
the name data property.
Create a style attribute with the value "border:0; border-
bottom: 2px solid red;".
Create a data-test attribute with the value "name-input":

template: `
<name-input
 v-model="name"
 style="border:0; border-bottom: 2px solid red;"
 data-test="name-input"
/>`

Create a constant named app, and define it as the createApp function, passing9.
the component constant as the argument. Then, call the app.component
function, passing as the first argument the name of the component you want to
register, and as the second argument the component. Finally, call the app.mount
function, passing "#app" as the argument:

const app = createApp(component);
app.component('NameInput', nameInput);
app.mount('#app');

How it works...
In Vue 3, in order to create a component, we need to execute
the defineComponent function, passing a JavaScript object as an argument. This object
maintains almost the same component declaration structure as Vue 2. In the examples, we
used the same properties, data, methods, props, and template, all present in the V2.

We used the inheritAttrs property to block the auto application of the attributes to all
elements on the components, applying them just to the element with the v-bind directive
and with the this.$attrs object deconstructed.

Understanding Vue 3 and Creating Components Chapter 1

[31]

To register the component in the Vue application, we first created the application with the
createApp API and then executed the app.component function to register the component
globally on the application, prior to rendering our application.

Using the reactivity and observable API
outside the scope of Vue
In Vue 3, with the exposed APIs, we can use the Vue reactivity and reactive variables
without the need to create a Vue application. This enables backend and frontend
developers to take full advantage of the Vue reactivity API within their application.

In this recipe, we will create a simple JavaScript animation using the reactivity and
watch APIs.

How to do it...
Here, we will create an application using the Vue exposed reactivity API to render an
animation on the screen:

Using the base example from the 'Creating the base file' section, create a new file1.
named reactivity.html and open it.
In the <head> tag, add a new <meta> tag with the attribute chartset defined as2.
"utf-8":

<meta charset="utf-8"/>

In the <body> tag, remove the div#app HTML element, and create a div HTML3.
element with the id defined as marathon and the style attribute defined as
"font-size: 50px;":

<div
 id="marathon"
 style="font-size: 50px;"
>
</div>

Understanding Vue 3 and Creating Components Chapter 1

[32]

In the empty <script> HTML element, create the constants of the functions that4.
will be used using the object destructuring method, calling
the reactivity and watch methods from the Vue global constant:

const {
 reactive,
 watch,
} = Vue;

Create a constant named mod, defined as a function, which receives two5.
arguments, a and b. This then returns an arithmetic operation, a modulus b:

const mod = (a, b) => (a % b);

Create a constant named maxRoadLength with the value 50. Then, create a6.
constant named competitor with the value as the reactivity function,
passing a JavaScript object as the argument, with the position property defined
as 0 and speed defined as 1:

const maxRoadLength = 50;
const competitor = reactive({
 position: 0,
 speed: 1,
});

Create a watch function, passing an anonymous function as the argument. Inside7.
the function, do the following:

Create a constant named street, and define it as an Array with a size
of maxRoadLength, and fill it with '_'.
Create a constant named marathonEl, and define it as the HTML
DOM node, #marathon.
Select the element on the street in the array index

of competitor.position and define it as " " if

the competitor.position number is even, or " " if the number is
odd.
Define
marathonEl.innertHTML as "" and street.reverse().join(''):

Understanding Vue 3 and Creating Components Chapter 1

[33]

The emojis used in this recipe are Person Running and Person Walking.
The emoji image may vary depending on your OS. The images presented
in this recipe are the emojis for the Apple OS.

watch(() => {
 const street = Array(maxRoadLength).fill('_');
 const marathonEl = document.getElementById('marathon');
 street[competitor.position] = (competitor.position % 2 === 1)

 ? ' '

 : ' ';

 marathonEl.innerHTML = '';
 marathonEl.innerHTML = street.reverse().join('');
});

Create a setInterval function, passing an anonymous function as the8.
argument. Inside the function, define competitor.position as the
mod function, passing competitor.position plus competitor.speed as the
first argument, and maxRoadLength as the second argument:

setInterval(() => {
 competitor.position = mod(competitor.position +competitor.speed,
 maxRoadLength)
}, 100);

How it works...
Using the exposed reactive and watch APIs from Vue, we were able to create an
application with the reactivity present in the Vue framework, but without the use of a Vue
application.

First, we created a reactive object, competitor, that works in the same way as the Vue
data property. Then, we created a watch function, which works in the same way as the
watch property, but is used as an anonymous function. In the watch function, we made the
road for the competitor to run on, and created a simple animation, using two different
emojis, changing it based on the position on the road, so that it mimics an animation on the
screen.

Understanding Vue 3 and Creating Components Chapter 1

[34]

Finally, we printed the current runner on the screen and created a setInterval function
of every 100ms to change the position of the competitor on the road:

Creating a component using the
composition API
The composition API is a new way to write Vue components, based on the use of functions
to compose the component, and it makes the organization and reusability of the code
better.

This method is inspired by React Hooks and introduces the technique of creating a special
function to compose the applications that can be shared without the need to be inside the
Vue application because of the use of the exposed Vue APIs.

In this recipe, we will learn how to create an external function that fetches the user's
geolocation and displays that data on the screen using the composition API.

Understanding Vue 3 and Creating Components Chapter 1

[35]

How to do it...
Here, we will create a component using the composition API, which will fetch the user GPS
position and show that information on the screen:

Using the base example from the 'Creating the base file' section, create a new file1.
named component.html and open it.
In the empty <script> HTML element, create the constants of the functions that2.
will be used using the object destructuring method, calling the createApp,
defineComponent, setup, ref, onMounted, and onUnmounted methods from
the Vue global constant:

const {
 createApp,
 defineComponent,
 setup,
 ref,
 onMounted,
 onUnmounted,
} = Vue;

Create a fetchLocation function and, inside this, create a let variable named3.
watcher. Then, create a constant named geoLocation and define it
as navigator.geolocation. Next, create a constant named gpsTime and
define it as the ref function, passing the Date.now() function as the argument.
Finally, create a constant named coordinates and define it as the ref function,
passing a JavaScript object as the argument, with the properties accuracy,
latitude, longitude, altitude, altitudeAccuracy, heading, and speed
defined as 0:

function fetchLocation() {
 let watcher;
 const geoLocation = navigator.geolocation;
 const gpsTime = ref(Date.now());
 const coordinates = ref({
 accuracy: 0,
 latitude: 0,
 longitude: 0,
 altitude: 0,
 altitudeAccuracy: 0,
 heading: 0,
 speed: 0,
 });
}

Understanding Vue 3 and Creating Components Chapter 1

[36]

Then, inside the fetchLocation function, following the creation of the4.
constants, create a function named setPosition with a parameter named
payload. Inside the function, define gpsTime.value as the
payload.timestamp argument and coordinates.value as the
payload.coords argument:

function setPosition(payload) {
 gpsTime.value = payload.timestamp
 coordinates.value = payload.coords
}

Following creation of the setPosition function, call the onMounted function,5.
passing an anonymous function as the argument. Inside the function, check
whether the browser has the geoLocation API available, and define watcher as
the geoLocation.watchPostion function, passing the setPosition function
as the argument:

onMounted(() => {
 if (geoLocation) watcher =
geoLocation.watchPosition(setPosition);
});

After calling the onMounted function, create an onUnmounted function6.
passing an anonymous function as the argument. Inside the function, check
whether watcher is defined and then execute the geoLocation.clearWatch
function, passing watcher as the argument:

onUnmounted(() => {
 if (watcher) geoLocation.clearWatch(watcher);
});

Finally, in the fetchLocation function, return a JavaScript object, and as the7.
properties/values define, pass the coordinates and gpsTime constants:

return {
 coordinates,
 gpsTime,
};

Understanding Vue 3 and Creating Components Chapter 1

[37]

Create a constant named appComponent and define it as the8.
defineComponent function, passing a JavaScript object with the
properties setup and template as the argument:

const appComponent = defineComponent({
 setup() {},
 template: ``
});

In the setup function, create a constant, which is an object destructuring with the9.
properties coordinates and gpsTime of the fetchLocation function:

setup() {
 const {
 coordinates,
 gpsTime,
 } = fetchLocation();
}

Inside the setup function, create another constant named formatOptions, and10.
define it as a JavaScript object with the properties year, month, day, hour,
and minute as 'numeric'. Then, define the property hour12 as true:

const formatOptions = {
 year: 'numeric',
 month: 'numeric',
 day: 'numeric',
 hour: 'numeric',
 minute: 'numeric',
 hour12: true,
 };

Following the creation of the formatOptions constant, create a constant named11.
formatDate and define it as a function, which receives a parameter named
date. Then, return a new Intl.DateTimeFormat function,
passing navigator.language as the first argument, and the formatOption
constant as the second argument. Then, prototype chain the format function,
passing the date parameter:

const formatDate = (date) => (new
 Intl.DateTimeFormat(navigator.language,
 formatOptions).format(date));

Understanding Vue 3 and Creating Components Chapter 1

[38]

Finally, at the end of the setup function, return a JavaScript object with the12.
properties defined as coordinates, gpsTime, and formatDate constants:

return {
 coordinates,
 gpsTime,
 formatDate
};

In the template property, do the following:13.
Create an h1 HTML element with the text "My Geo Position at {{
formatDate(new Date(gpsTime) }}".
Create a ul HTML element and add three li HTML elements as
children.
In the first child element, add the text "Latitude: {{
coordinates.latitude }}".
In the second child element, add the text "Longitude: {{
coordinates.longitude }}".
In the third child element, add the text "Altitude: {{
coordinates.altitude }}":

template: `
 <h1>My Geo Position at {{formatDate(new
 Date(gpsTime))}}</h1>

 Latitude: {{ coordinates.latitude }}
 Longitude: {{ coordinates.longitude }}
 Altitude: {{ coordinates.altitude }}

`

Finally, call the createApp function, passing the appComponent constant as an14.
argument. Then, prototype chain the mount function, and, as an argument of the
function, pass the div HTML element id attribute, ("#app"):

createApp(appComponent)
 .mount('#app');

Understanding Vue 3 and Creating Components Chapter 1

[39]

How it works...
In this recipe, first, we imported the exposed APIs -
 createApp, defineComponent, setup, ref, onMounted, and onUnmounted, – as
constants, which we will use to create the component. Then, we created the
fetchLocation function, which has the responsibility of getting the user's geolocation
data and returning it as reactive data that can be automatically updated when the user
changes their location.

The ability to fetch the user GPS positions was possible because of
the navigator.geolocation API present on modern browsers, which are able to fetch
the user's current GPS position. Using this data provided by the browser, we were able to
use it to define the variables created with the Vue ref APIs.

We created the component using the setup function of the Vue object declaration, so the
rendering knows that we are using the new composition API as the component creation
method. Inside the setup function, we imported the dynamic variables of the
fetchLocation function and created a method that formats the date to use as a filter on
the template.

Then we returned the imported variables and the filter, so they can be used on the template
section. In the template section, we created a title adding the time of the last GPS position,
used the filter to format it, and created a list of the user's latitude, longitude, and altitude.

Finally, we created the application using the createApp exposed API and mounted the
Vue application.

See also
You can find more information about Navigator.geolocation at https:/ /developer.
mozilla.org/en-US/ docs/ Web/ API/ Navigator/ geolocation.

You can find more information about Intl.DateTimeFormat at https:/ /developer.
mozilla.org/en-US/ docs/ Web/ JavaScript/ Reference/ Global_ Objects/ Intl/
DateTimeFormat.

https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/geolocation
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat

2
Introducing TypeScript and the

Vue Ecosystem
TypeScript is a new Vue-based language, fully supported on Vue 3. It is now possible to
use typed JSX (also know as TSX), type annotation, static verification of the code, and much
more.

The Vue ecosystem is getting bigger each day, so to help us, the Vue team has developed
some tools to improve project handling and management. Those tools are Vue CLI and Vue
UI, which today are the main tools for local Vue development.

The Vue CLI tool is the beginning of every project; with it, you will be able to select the
basic features or just a preset you had made, to create a new Vue project. After a project is
created, you can use Vue UI to manage the project, add new features, check the status of the
project, and do almost everything you previously needed to do in the command-line
interface (CLI), with the addition of more features.

In these chapters, you learn more about TypeScript as a superset on JavaScript and how to
use the power of the Vue CLI tool and Vue UI together to get a whole application up and
running.

In this chapter, we'll cover the following recipes:

Creating a TypeScript project
Understanding TypeScript
Creating your first TypeScript class
Creating your first project with Vue CLI
Adding plugins to a Vue CLI project with Vue UI
Adding TypeScript to a Vue CLI project

Introducing TypeScript and the Vue Ecosystem Chapter 2

[41]

Creating your first TypeScript Vue component with vue-class-component
Creating a custom mixin with vue-class-component
Creating a custom function decorator with vue-class-component
Adding custom hooks to vue-class-component
Adding vue-property-decorator to vue-class-component

Technical requirements
In this chapter, we will be using Node.js, Vue CLI, and TypeScript.

Attention, Windows users—you need to install an npm package called
windows-build-tools to be able to install the following required
packages. To do it, open PowerShell as administrator and execute the
following command:
> npm install -g windows-build-tools.

To install the Vue CLI tool, open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> npm install -g @vue/cli @vue/cli-service-global

To install TypeScript, open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> npm install -g typescript

Creating a TypeScript project
TypeScript is a typed superset of JavaScript that, when compiled, gives us plain JavaScript
code. It seems like a new language, but in the end, it's still JavaScript.

What is the advantage of using TypeScript? The main advantage is the typed syntax, which
helps with static checking and code refactoring. You can still use all the JavaScript libraries
and program with the latest ECMAScript features out of the box.

When compiled, TypeScript will deliver a pure JavaScript file that can run on any browser,
Node.js, or any JavaScript engine that is capable of executing ECMAScript 3 or newer
versions.

Introducing TypeScript and the Vue Ecosystem Chapter 2

[42]

Getting ready
To start our project, we will need to create an npm project. Open Terminal (macOS or Linux)
or Command Prompt/PowerShell (Windows) and execute the following command:

> npm init -y

You also need to install TypeScript, so open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> npm install typescript --only=dev

How to do it...
With our environment ready, we will need to start our TypeScript project. Let's create a .ts
file and compile it:

To start our TypeScript project, open Terminal (macOS or Linux) or Command1.
Prompt/PowerShell (Windows) and execute the following command:

> tsc --init

This will create a tsconfig.json file inside our folder. This is a compiler
settings file. Here, you can define the target, which JavaScript libraries will be
available on the development, the target ECMAScript version, the module
generation, and much more.

When developing for the web, don't forget to add the Document Object
Model (DOM) to the libraries on the compilerOption property inside
the tsconfig.json file so that you can have access to the window and
document object when developing.

Now, we need to create our index.ts file. Let's create some simple code inside2.
the index.ts file that will log a math calculation in your terminal:

function sum(a: number, b: number): number {
 return a + b;
}

const firstNumber: number = 10;

const secondNumber: number = 20;

console.log(sum(firstNumber, secondNumber));

Introducing TypeScript and the Vue Ecosystem Chapter 2

[43]

This function receives two parameters, a and b, which both have their type set to
number, and the function is expected to return a number. We made two variables,
firstNumber and secondNumber, which in this case are both set to a
number type—10 and 20 respectively—so, it's valid to pass to the function. If we
had set it to any other type such as a string, Boolean, float, or an array, the
compiler would have thrown an error about the static type checking on the
variable and the function execution.

Now, we need to compile this code to a JavaScript file. Open Terminal (macOS or3.
Linux) or Command Prompt/PowerShell (Windows) and execute the following
command:

> tsc ./index.ts

After the compilation, we can see the final file in index.js. If we look inside the file, the
final code will be similar to this:

function sum(a, b) {
 return a + b;
}
var firstNumber = 10;
var secondNumber = 20;
console.log(sum(firstNumber, secondNumber));

You may be wondering: where are my types? As ECMAScript is a dynamic language, the
types of TypeScript exist only at the superset level, and won't be passed down to the
JavaScript file.

Your final JavaScript will be in the form of a transpiled file, with the configurations defined
in the tsconfig.json file.

How it works...
When we create our TypeScript project, a file named tsconfig.json is created inside our
folder. This file coordinates all the rules on the compiler and the static type checking during
the development process. All developments are based on the rules defined in this file. Each
environment depends on specific rules and libraries that need to be imported.

When developing, we can assign types directly to constants, variables, function parameters,
returns, and much more. These types of definitions can prevent basic type errors and code
refactoring.

Introducing TypeScript and the Vue Ecosystem Chapter 2

[44]

After the development is done and we compile the project, the final product will be a pure
JavaScript file. This file won't have any type of checking, due to the dynamic type of
JavaScript.

This JavaScript file gets transpiled to the target model and defined on the configuration file,
so we can execute it without any problems.

See also
You can find more information about TypeScript at https:/ /www. typescriptlang. org/
docs/home.html.

There is a guide to migrating from JavaScript at https:/ /www. typescriptlang. org/ docs/
handbook/migrating- from- javascript. html.

A 5-minute lesson for TypeScript can be found at https:/ /www. typescriptlang. org/ docs/
handbook/typescript- in- 5-minutes. html.

Understanding TypeScript
TypeScript is a type-based language. Much of its power comes with the ability to use static
code analysis with JavaScript. This is possible thanks to the tools that exist inside the
TypeScript environment.

These tools include the compiler, which can provide static analysis during development
and after compilation, and the ECMAScript transpiler, which can make your code available
to run on almost any JavaScript engine.

Let's get to know more about the language, and how it works.

Getting ready
To start, we will need to create an npm project. Open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm init -y

https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html

Introducing TypeScript and the Vue Ecosystem Chapter 2

[45]

You also need to install TypeScript, so open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> npm install typescript --only=dev

Types
The main feature we get from using TypeScript is the types. In this section, we will
learn about types, how to declare them, and how to use them.

These are some of the basic types in a statically typed language:

String
Number
Boolean
Arrays
Tuple
Enum
Any
Void
Objects

Let's talk about some of these types and show how they can be used in TypeScript.

String
All the textual data on JavaScript will be treated as a string. To declare a string, we always
need to surround it with double (") or single (') quotes, or the (`) grave accent,
commonly known as a template string.

Declaring template strings inside text is not a problem with TypeScript. Template strings
are a feature in ECMAScript that made it possible to add a variable inside a string without
the need for concatenation:

const myText: string = 'My Simple Text';
const myTextAgain: string = "My Simple Text";
const greeting: string = `Welcome back ${myName}!`;

Introducing TypeScript and the Vue Ecosystem Chapter 2

[46]

Number
In JavaScript, all numbers are floating-point values. In TypeScript, it's the same. Those
numbers get a number type. In addition to the hexadecimal and decimal numbers, the
binary and octal literals that were introduced in ECMAScript 2015 are treated like numbers
too:

const myAge: number = 31;
const hexNumber: number = 0xf010d;
const binaryNumber: number = 0b1011;
const octalNumber: number = 0o744;

Boolean
The most basic type in the programming languages is the boolean values—a simple 1 or 0,
and true or false. This is called a boolean:

const isTaskDone: boolean = false;
const isGreaterThen: boolean = 10 > 5;

Arrays
A group of elements in most of the languages is commonly called an array. In TypeScript,
we can declare it in two different ways.

The most simple way is just to declare the type of the element followed by [] (square
brackets) to denote that it is an array of the declared type:

const primeNumbers: number[] = [1, 3, 5, 7, 11];

Or, you can declare generically, using the Array<type> declaration. This is not the most
common way used, but, depending on the code you are developing, you may need to use it:

const switchInstructions: Array<boolean> = [true, false, false, true];

Introducing TypeScript and the Vue Ecosystem Chapter 2

[47]

Tuple
Tuples are a type of variable that has a specific structure. Structurally, a tuple is an array of
two elements; both are a known type by the compiler and the user, but those elements don't
need to have the same type:

let person: [string, number];
person = ['Heitor', 31];

console.log(`My name is ${person[0]} and I am ${person[1]} years old`);

If you try to access an element outside of the known indices, you will get an error.

Enum
Enums are similar to JavaScript objects, but they have some special attributes that help in
the development of your application. You can have a friendly name for numeric values or a
more controlled environment for the constants on the variables a function can accept.

A numeric enum can be created without any declaration. By doing this, it will start with the
initial values of 0 and finish with the value of the final index number; or, you can get the
name of the enum, passing the index of the enum value:

enum ErrorLevel {
 Info,
 Debug,
 Warning,
 Error,
 Critical,
}

console.log(ErrorLevel.Error); // 3
console.log(ErrorLevel[3]); // Error

Or, an enum can be declared with values. It can be an initial declaration that the TypeScript
compiler will interpret the rest of the elements as an increment of the first one, or an
individual declaration:

enum Color {
 Red = '#FF0000',
 Blue = '#0000FF',
 Green = '#00FF00',
}

enum Languages {
 JavaScript = 1,

Introducing TypeScript and the Vue Ecosystem Chapter 2

[48]

 PHP,
 Python,
 Java = 10,
 Ruby,
 Rust,
 TypeScript,
}

console.log(Color.Red) // '#FF0000'
console.log(Languages.TypeScript) // 13

Any
As JavaScript is a dynamic language, TypeScript needed to implement a type that has no
defined value, so it implemented the any type. The most used case for the any type any is
when using values that came from a third-party library. In that case, we know that we are
dropping the type checking:

let maybeIs: any = 4;
maybeIs = 'a string?';
maybeIs = true;

The main use of the any type is when you are upgrading a legacy JavaScript project to
TypeScript, and you can gradually add the types and validations to the variables and
functions.

Void
As the opposite of any, void is the absence of the type at all. The most used case is with
functions that won't return any values:

function logThis(str: string): void{
 console.log(str);
}

Using void to type a variable is useless because it only can be assigned to undefined and
null.

Objects
An object in TypeScripts has a special form of declaring because it can be declared as an
interface, as a direct object, or as a type of its own.

Introducing TypeScript and the Vue Ecosystem Chapter 2

[49]

Declaring an object as an interface, you have to declare the interface before using it, all the
attributes must be passed, and the types need to be set:

interface IPerson {
 name: string;
 age: number;
}

const person: IPerson = {
 name: 'Heitor',
 age: 31,
};

Using objects as direct inputs is sometimes common when passing to a function:

function greetingUser(user: {name: string, lastName: string}) {
 console.log(`Hello, ${user.name} ${user.lastName}`);
}

And finally, they are used for declaring a type of object and reusing it:

type Person = {
 name: string,
 age: number,
};

const person: Person = {
 name: 'Heitor',
 age: 31,
};

console.log(`My name is ${person.name}, I am ${person.age} years old`);

Functions
In TypeScript, one of the most difficult types to declare is a function. It can get very
complex in a just simple concatenation of the functional chain.

Declaring a function in TypeScript is a composition of the parameters that the function will
receive and the final type that the function will return.

You can declare a simple function inside a constant, like this:

const sumOfValues: (a:number, b:number): number = (a: number, b: number):
number => a + b;

Introducing TypeScript and the Vue Ecosystem Chapter 2

[50]

A more complex function declared inside a constant can be declared like this:

const complexFunction: (a: number) => (b:number) => number = (a: number):
(b: number) => number => (b: number): number => a + b;

When declaring a function as a normal function, the way to type it is almost the same as in
a constant way, but you don't need to declare that the functions are a function. Here is an
example:

function foo(a: number, b:number): number{
 return a + b;
}

Interfaces
TypeScript checks that the values of variables are the correct type and the same principle is
applied to classes, objects, or contracts between your code. This is commonly known as
"duck typing" or "structural sub-typing". Interfaces exist to fill this space and define these
contracts or types.

Let's try to understand an interface with this example:

function greetingStudent(student: {name: string}){
 console.log(`Hello ${student.name}`);
}

const newStudent = {name: 'Heitor'};

greetingStudent(newStudent);

The function will know that the object has the property name on it and that it's valid to call
it.

We can rewrite it with the interface type for better code management:

interface IStudent {
 name: string;
 course?: string;
 readonly university: string;
}

function greetingStudent(student: IStudent){
 console.log(`Hello ${student.name}`);
 if(student.course){
 console.log(`Welcome to the ${student.course}` semester`);
 }

Introducing TypeScript and the Vue Ecosystem Chapter 2

[51]

}

const newStudent: IStudent = { name: 'Heitor', university: 'UDF' };

greetingStudent(newStudent);

As you can see, we have a new property called course that has a ? declared on it. This
symbolizes that this property can be nulled or undefined. It's called an optional property.

There is a property with a read-only attribute declared. If we try to change after it's
declared on the variable creation, we will receive a compile error because it makes the
property read-only.

Decorators
A new feature was introduced in ECMAScript 6—classes. With the introduction of these,
the usage of decorators was made possible on the JavaScript engine.

Decorators provide a way to add both annotations and meta-programming syntax to class
declarations and its members. As it's in a final state of approval on the TC-39 committee
(where TC stands for Technical Committee), the TypeScript compiler already has this
available to be used.

To enable it, you can set the flags on the tsconfig.json file:

{
 "compilerOptions": {
 "target": "ES5",
 "experimentalDecorators": true
 }
}

Decorators are a special kind of declaration that can be attached to a class, method, accessor
property, or parameter. They are used in the form of @expression, where the expression is
a function that will be called at runtime.

An example of a decorator that can be applied to a class can be seen in the following code
snippet:

function classSeal(constructor: Function) {
 Object.seal(constructor);
 Object.seal(constructor.prototype);
}

Introducing TypeScript and the Vue Ecosystem Chapter 2

[52]

When you create this function, you are saying that the object of the constructor and the
prototype of it will be sealed.

To use it inside a class is very simple:

@classSeal
class Animal {
 sound: string;
 constructor(sound: string) {
 this.sound = sound;
 }
 emitSound() {
 return "The animal says, " + this.sound;
 }
}

These are just some examples of decorators and their powers to help you with the
development of object-oriented programming (OOP) with TypeScript.

In conclusion
In summary, types are just a way to make our life easier in the process of development with
TypeScript and JavaScript.

Because JavaScript is a dynamic language and doesn't have a static type, all the types and
interfaces declared in TypeScript are strictly used just by TypeScript. This helps the
compiler catch errors, warnings, and the language server to help the integrated
development environment (IDE) on the development process to analyze your code as it is
being written.

This is a basic introduction to TypeScript, covering the basics of the typed language, and
how to understand and use it. There is much more to learn about its use, such as generics,
modules, namespaces, and so on.

With this introduction, you can understand how the new Vue 3 core works and how to use
the basics of TypeScript in your project, and take advantage of the typed language on your
project.

There is always more knowledge to find on TypeScript, as it is a growing "language" on top
of JavaScript and has a growing community.

Don't forget to look at the TypeScript documentation to find out more about it and how it
can improve your code from now on.

Introducing TypeScript and the Vue Ecosystem Chapter 2

[53]

See also
You can find more information about TypeScript basic types at https:/ /www.
typescriptlang.org/ docs/ handbook/ basic- types. html.

You can find more information about TypeScript functions at https:/ /www.
typescriptlang.org/ docs/ handbook/ functions. html.

You can find more information about TypeScript enums at https:/ / www.typescriptlang.
org/docs/handbook/ enums. html.

You can find more information about TypeScript advanced types at https:/ /www.
typescriptlang.org/ docs/ handbook/ advanced- types. html.

You can find more information about TypeScript decorators at https:/ /www.
typescriptlang.org/ docs/ handbook/ decorators. html.

View a cheatsheet on TypeScript types at https:/ /rmolinamir. github. io/ typescript-
cheatsheet/#types.

Creating your first TypeScript class
In TypeScript, there is no main paradigm in which you write your program. You can
choose between object-oriented, structural, or event functional.

In most cases, you will see an OOP paradigm being used. In this recipe, we will learn about
creating a class inside TypeScript, its inheritance, the interface, and other properties that
can be used inside the code.

Getting ready
To start our project, we will need to create an npm project. To do this,
open Terminal (macOS or Linux) or Command Prompt/PowerShell (Windows) and
execute the following command:

> npm init -y

You also need to install TypeScript. To do this, open Terminal (macOS or Linux)
or Command Prompt/PowerShell (Windows) and execute the following command:

> npm install typescript --only=dev

https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://rmolinamir.github.io/typescript-cheatsheet/#types
https://rmolinamir.github.io/typescript-cheatsheet/#types
https://rmolinamir.github.io/typescript-cheatsheet/#types
https://rmolinamir.github.io/typescript-cheatsheet/#types
https://rmolinamir.github.io/typescript-cheatsheet/#types
https://rmolinamir.github.io/typescript-cheatsheet/#types
https://rmolinamir.github.io/typescript-cheatsheet/#types
https://rmolinamir.github.io/typescript-cheatsheet/#types
https://rmolinamir.github.io/typescript-cheatsheet/#types
https://rmolinamir.github.io/typescript-cheatsheet/#types
https://rmolinamir.github.io/typescript-cheatsheet/#types
https://rmolinamir.github.io/typescript-cheatsheet/#types
https://rmolinamir.github.io/typescript-cheatsheet/#types
https://rmolinamir.github.io/typescript-cheatsheet/#types

Introducing TypeScript and the Vue Ecosystem Chapter 2

[54]

How to do it...
When writing a class inside a TypeScript file, we first need to have in mind what this class
will do, what this class can be for, how it can be extended by another class
through inheritance, and how it can be affected in the process.

Imagine that we have a basic Animal class. This class can have some basic properties such
as its name, whether it produces a sound, its family, and the basic food chain this
animal eats.

Let's start with the basics of the process, the food chain. We need to make sure1.
that it's an innumerable list, and that each file that is using it will have the same
value at the end. We just need to call a constant variable:

export enum FoodChainType {
 Carnivorous = 'carnivorous',
 Herbivorous = 'herbivorous',
 Omnivorous = 'omnivorous',
}

Now, we want to make the basic interface for our animal. We know that our2.
animal has a name, can produce a sound, can be part of a family, and be in a
food chain category. Using an interface in a class, we make a contract between
the class and what will be exposed, helping in the development process:

interface IAnimal {
 name: string;
 sound?: string;
 family: string;
 foodChainType: FoodChainType;
}

With all that settled, we can make our Animal class. Each class can have its3.
constructor. The class constructor can be simple, containing just some variables
as arguments, or can be more complex and have an object as an argument. If
your constructor will have any parameters, an interface or declaring the type of
each parameter is needed. In this case, our constructor will be an object and will
have only one parameter that is the same as the Animal, so it will extend the
IAnimal interface:

interface IAnimalConstructor extends IAnimal {
}

Introducing TypeScript and the Vue Ecosystem Chapter 2

[55]

Now, to make our class, we have declared the interfaces and enums that will be4.
used. We will start by declaring that the class will implement
the IBasicAnimal interface. To do this, we need to add some public elements
that our class will have and declare those too. We will need to implement the
functions to show what animal it is and what sound it makes. Now, we have a
basic class that includes all the attributes for our animal. It has separate interfaces
for the class and the constructors. The enum for the food chain is declared in a
human-readable way, so the JavaScript imports of this library can execute
without any problems:

interface IBasicAnimal extends IAnimal {
 whoAmI: () => void;
 makeSound: () => void;
}

export class Animal implements IBasicAnimal {
 public name: string;
 public sound: string;
 public family: string;
 public foodChainType: FoodChainType;

 constructor(params: IAnimalConstructor) {
 this.name = params.name;
 this.sound = params.sound || '';
 this.family = params.family;
 this.foodChainType = params.foodChainType;
 }

 public whoAmI(): void {
 console.log(`I am a ${this.name}, my family is ${this.family}.
 My diet is ${this.foodChainType}.`);
 if (this.sound) {
 console.log([...Array(2).fill(this.sound)].join(', '));
 }
 }

 public makeSound(): void {
 console.log(this.sound);
 }
}

Introducing TypeScript and the Vue Ecosystem Chapter 2

[56]

Let's extend this class with a few lines of code and transform this Animal into a5.
Dog:

import {Animal, FoodChainType} from './Animal';

class Dog extends Animal {
 constructor() {
 super({
 name: 'Dog',
 sound: 'Wof!',
 family: 'Canidae',
 foodChainType: FoodChainType.Carnivorous,
 });
 }n
}

This is a simple way of extending a parent class and using the parent's definition of the
child to compose a new class with almost the same interface as the parent.

How it works...
Classes in TypeScript work the same as other classes in languages such as Java or C#. The
compiler evaluates these common principles during development and compilation.

In this case, we made a simple class that had some public properties that were inherent by
the children's classes. These variables were all readable and can be mutated.

There's more...
In TypeScript, we have a wide range of possible uses for classes, such as abstract classes,
special modifiers, and using classes as interfaces. We've just covered the basics of the
classes here to give us a good starting knowledge base. If you want to go deeper, the
TypeScript documentation is very helpful and has a lot of examples that can help in the
process of learning.

See also
You can find more information about TypeScript classes at https:/ /www. typescriptlang.
org/docs/handbook/ classes. html.

https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html

Introducing TypeScript and the Vue Ecosystem Chapter 2

[57]

View a cheatsheet on TypeScript classes at https:/ /rmolinamir. github. io/ typescript-
cheatsheet/#classes.

Creating your first project with Vue CLI
When the Vue team realized that developers were having problems creating and managing
their applications, they saw an opportunity to create a tool that could help developers
around the world. The Vue CLI project was born.

The Vue CLI tool is a CLI tool that is used in terminal commands, such as Windows
PowerShell, Linux Bash, or macOS Terminal. It was created as a starting point for the
development of Vue, where developers can start a project and manage and build it
smoothly. The focus of the Vue CLI team when developing was to give developers the
opportunity to have more time to think about the code and spend less time on the tooling
needed to put their code into production, adding new plugins or a simple hot-module-
reload.

The Vue CLI tool is tweaked in such a way that there is no need to eject your tooling code
outside the CLI before putting it into production.

When version 3 was released, the Vue UI project was added to the CLI as the main
function, transforming the CLI commands into a more complete visual solution with lots of
new additions and improvements.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

https://rmolinamir.github.io/typescript-cheatsheet/#classes
https://rmolinamir.github.io/typescript-cheatsheet/#classes
https://rmolinamir.github.io/typescript-cheatsheet/#classes
https://rmolinamir.github.io/typescript-cheatsheet/#classes
https://rmolinamir.github.io/typescript-cheatsheet/#classes
https://rmolinamir.github.io/typescript-cheatsheet/#classes
https://rmolinamir.github.io/typescript-cheatsheet/#classes
https://rmolinamir.github.io/typescript-cheatsheet/#classes
https://rmolinamir.github.io/typescript-cheatsheet/#classes
https://rmolinamir.github.io/typescript-cheatsheet/#classes
https://rmolinamir.github.io/typescript-cheatsheet/#classes
https://rmolinamir.github.io/typescript-cheatsheet/#classes
https://rmolinamir.github.io/typescript-cheatsheet/#classes
https://rmolinamir.github.io/typescript-cheatsheet/#classes

Introducing TypeScript and the Vue Ecosystem Chapter 2

[58]

How to do it...
To create a Vue CLI project, follow these steps:

We need to open Terminal (macOS or Linux) or Command1.
Prompt/PowerShell (Windows) and execute the following command:

> vue create my-first-project

The CLI will ask some questions that will help with the creation of the project.2.
You can use the arrow keys to navigate, the Enter key to continue, and the
Spacebar to select an option:

? Please pick a preset: (Use arrow keys)
 default (babel, eslint)
❯ Manually select features

There are two methods for starting a new project. The default method is a basic3.
babel and eslint project without any plugin or configuration, and the
Manually mode, where you can select more modes, plugins, linters, and options.
We will go for Manually.
Now, we are asked about the features that we will want on the project. Those4.
features are some Vue plugins such as Vuex or Router (Vue-Router), testers,
linters, and more:

? Check the features needed for your project: (Use arrow keys)
 ❯ Babel
 TypeScript
 Progressive Web App (PWA) Support
 Router
 Vuex
 CSS Pre-processors
 ❯ Linter / Formatter
 Unit Testing
 ❯ E2E Testing

For this project, we will choose CSS Pre-processors and press Enter to5.
continue:

? Check the features needed for your project: (Use arrow keys)
❯ Babel
 TypeScript
 Progressive Web App (PWA) Support
 Router
 Vuex
❯ CSS Pre-processors

Introducing TypeScript and the Vue Ecosystem Chapter 2

[59]

❯ Linter / Formatter
 Unit Testing
 E2E Testing

It's possible to choose the main Cascading Style Sheets (CSS) preprocessors to6.
be used with Vue—Sass, Less, and Stylus. It's up to you to choose which fits
the most and is best for you:

? Pick a CSS pre-processor (PostCSS, Autoprefixer and CSS Modules
 are supported by default): (Use arrow keys)
 Sass/SCSS (with dart-sass)
 Sass/SCSS (with node-sass)
 Less
❯ Stylus

It's time to format your code. You can choose between AirBnB, Standard, and7.
Prettier with a basic config. Those rules that are imported inside the ESLint
can be always customized without any problem and there is a perfect one for
your needs. You know what is best for you:

? Pick a linter / formatter config: (Use arrow keys)
 ESLint with error prevention only
❯ ESLint + Airbnb config
 ESLint + Standard config
 ESLint + Prettier

After the linting rules are set, we need to define when they are applied to your8.
code. They can be either applied on save or fixed on commit:

? Pick additional lint features: (Use arrow keys)
 Lint on save
❯ Lint and fix on commit

After all those plugins, linters, and processors are defined, we need to choose9.
where the settings and configs are stored. The best place to store them is on a
dedicated file, but it is also possible to store then on the package.json file:

? Where do you prefer placing config for Babel, ESLint, etc.? (Use
arrow keys)
❯ In dedicated config files
 In package.json

Introducing TypeScript and the Vue Ecosystem Chapter 2

[60]

Now, you can choose if you want to make this selection a preset for future10.
projects so that you don't need to reselect everything again:

? Save this as a preset for future projects? (y/N) n

The CLI will automatically create the folder with the name you set in the first11.
step, install everything, and configure the project.

You are now able to navigate and run the project. The basic commands on Vue CLI projects
are as follows:

npm run serve—For running a development server locally
npm run build—For building and minifying the application for deployment
npm run lint—To execute the lint on the code

You can execute those commands via the Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows).

There's more...
The CLI has a tool inside it called Vue UI that helps in the process of managing your Vue
projects. This tool will take care of the project dependencies, plugins, and configurations.

Each npm script in the Vue UI tool is named as Tasks, and on those tasks, you can get real-
time statistics such as—for example—the size of the assets, modules, and dependencies;
numbers of errors or warnings; and more deep networking data for fine-tuning your
application.

To enter the Vue UI interface, you need to open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> vue ui

See also
Find more information about the Vue CLI project at https:/ / cli.vuejs. org/guide/ .

Find more information about the development of Vue CLI plugins at https:/ /cli. vuejs.
org/dev-guide/plugin- dev. html.

https://cli.vuejs.org/guide/
https://cli.vuejs.org/guide/
https://cli.vuejs.org/guide/
https://cli.vuejs.org/guide/
https://cli.vuejs.org/guide/
https://cli.vuejs.org/guide/
https://cli.vuejs.org/guide/
https://cli.vuejs.org/guide/
https://cli.vuejs.org/guide/
https://cli.vuejs.org/guide/
https://cli.vuejs.org/guide/
https://cli.vuejs.org/guide/
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html
https://cli.vuejs.org/dev-guide/plugin-dev.html

Introducing TypeScript and the Vue Ecosystem Chapter 2

[61]

Adding plugins to a Vue CLI project with
Vue UI
The Vue UI tool is one of the most powerful additional tools for Vue development. It makes
a developer's life easier, and at the same time can help manage the Vue projects.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
First, we need to create our Vue CLI project. To find how to create a Vue CLI project, please
check the 'Creating your first project with Vue CLI' recipe. We can use the one we created
in the last recipe or start a new one. Now, follow the instructions to add a plugin:

Open the Vue UI interface. Open Terminal (macOS or Linux) or Command1.
Prompt/PowerShell (Windows) and execute the following command:

> vue ui

A new browser window will appear, with the Vue UI interface:2.

Introducing TypeScript and the Vue Ecosystem Chapter 2

[62]

Here, you can list your projects, create a new project, or import an existing one.

Now, we will import the one we created:3.

You need to find the folder that you created and click on Import this folder.

After the folder is imported, the default Dashboard of the project will appear:4.

Introducing TypeScript and the Vue Ecosystem Chapter 2

[63]

Here, it's possible to customize your Dashboard, adding new widgets, by clicking
on the Customize button on the top:

To add a new plugin, you must click on the Plugins menu in the left-hand5.
sidebar:

The base plugins that you added on the Vue CLI tool will be already listed here.

Introducing TypeScript and the Vue Ecosystem Chapter 2

[64]

Now, we will add the base Vue ecosystem plugins—vuex and vue-router:6.

If you check your code, you will see that the main.js file was changed, and the7.
vuex (store) and vue-router (router) plugins are now imported and
injected to the Vue instance:

Introducing TypeScript and the Vue Ecosystem Chapter 2

[65]

How it works...
The Vue UI plugins work in conjunction with npm or yarn to automatically install the
packages on your project, and then inject—when possible—the necessary conditions on the
Vue instance.

If a plugin is a visual, directive, or a non-direct instantiated plugin, the Vue UI will install it
and manage it, but you need to import it for use on your application.

Adding TypeScript to a Vue CLI project
Using TypeScript in a JavaScript project, even for static type checking, is good practice. It
helps minimize the chance of errors and Object problems inside your project.

Adding TypeScript to a Vue project with the help of the Vue UI is very simple, and you will
be able to use JavaScript code with TypeScript.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows

@vue/cli

@vue/cli-service-global

How to do it...
First, we need to create our Vue CLI project. To find how to create a Vue CLI project, please
check the 'Creating your first project with Vue CLI' recipe. We can use the one we created
in the last recipe or start a new one.

Introducing TypeScript and the Vue Ecosystem Chapter 2

[66]

To add TypeScript to a Vue CLI project, follow these steps:

Open the Vue UI interface. Open the Terminal (macOS or Linux) or Command1.
Prompt/PowerShell (Windows) and execute the following command:

> vue ui

On your project, go to the Plugins manager, click on + Add plugin, and search2.
for @vue/cli-plugin-typescript:

Now, click on the Install @vue/cli-plugin-typescript button at the bottom of the3.
page:

You will be asked for some configuration settings after the plugin is downloaded,4.
before the final installation:

Use class-style component syntax? Use the vue-class-component
plugin with TypeScript.

Introducing TypeScript and the Vue Ecosystem Chapter 2

[67]

Use Babel alongside TypeScript (required for modern mode, auto-
detected polyfills, transpiling JSX)? Activate Babel to transpile
TypeScript in addition to the TypeScript compiler.
Use ESLint? Use ESLint as a linter for the .ts and .tsx files.
Convert all .js files to .ts? Automatically convert all your .js files to
.ts files in the installation process.
Allow .js files to be compiled? Activate the tsconfig.json flag to
accept .js files in the compiler.

After choosing your options, click on Finish the installation.5.
Now, your project is a TypeScript Vue project, with all the files configured and6.
ready to be coded:

How it works...
The Vue UI as a plugin manager will download the TypeScript package made for Vue, and
install and configure it for you with the settings you choose.

Introducing TypeScript and the Vue Ecosystem Chapter 2

[68]

Your project will be changed and modified according to your specifications, and will then
be ready for development.

See also
Find more information about TypeScript ESLint at https:/ /github. com/ typescript-
eslint/typescript- eslint

Find more information about vue-class-component at https:/ /github. com/ vuejs/ vue-
class-component.

Creating your first TypeScript Vue
component with vue-class-component
As Vue components are object-based and have a strong relationship with the this
keyword of the JavaScript object, it gets a little bit confusing to develop a TypeScript
component.

The vue-class-component plugin uses the ECMAScript decorators proposal to pass the
statically typed values directly to the Vue component and makes the process of the
compiler understand what is happening more easily.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

https://github.com/typescript-eslint/typescript-eslint
https://github.com/typescript-eslint/typescript-eslint
https://github.com/typescript-eslint/typescript-eslint
https://github.com/typescript-eslint/typescript-eslint
https://github.com/typescript-eslint/typescript-eslint
https://github.com/typescript-eslint/typescript-eslint
https://github.com/typescript-eslint/typescript-eslint
https://github.com/typescript-eslint/typescript-eslint
https://github.com/typescript-eslint/typescript-eslint
https://github.com/typescript-eslint/typescript-eslint
https://github.com/typescript-eslint/typescript-eslint
https://github.com/typescript-eslint/typescript-eslint
https://github.com/typescript-eslint/typescript-eslint
https://github.com/typescript-eslint/typescript-eslint
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component

Introducing TypeScript and the Vue Ecosystem Chapter 2

[69]

How to do it...
First, we need to create our Vue CLI project. We can use the one we created in the last
recipe or start a new one. To find how to create a Vue CLI project with TypeScript, please
check the 'Adding TypeScript to a Vue CLI project' recipe.

Follow the instructions to create your first Vue component with Typescript and vue-
class-component:

Create a new file inside the src/components folder, called Counter.vue.1.
Now, let's start making the script part of the Vue component. We will make a2.
class that will have data with a number, two methods—one for increasing and
another for decreasing—and, finally, a computed property to format the final
data:

<script lang="ts">
import Vue from 'vue';
import Component from 'vue-class-component';

@Component
export default class Counter extends Vue {
 valueNumber: number = 0;

 get formattedNumber() {
 return `Your total number is: ${this.valueNumber}`;
 }

 increase() {
 this.valueNumber += 1;
 }

 decrease() {
 this.valueNumber -= 1;
 }
}
</script>

It's time to create the template and rendering for this component. The process is3.
the same as a JavaScript Vue file. We will add the buttons for increasing and
decreasing the value and showing the formatted text:

<template>
 <div>
 <fieldset>
 <legend>{{ formattedNumber }}</legend>
 <button @click="increase">Increase</button>

Introducing TypeScript and the Vue Ecosystem Chapter 2

[70]

 <button @click="decrease">Decrease</button>
 </fieldset>
 </div>
</template>

In the App.vue file, we need to import the component we just created:4.

<template>
 <div id="app">
 <Counter />
 </div>
</template>

<script lang="ts">
import { Component, Vue } from 'vue-property-decorator';
import Counter from './components/Counter.vue';

@Component({
 components: {
 Counter,
 },
})
export default class App extends Vue {

}
</script>
<style lang="stylus">
 #app
 font-family 'Avenir', Helvetica, Arial, sans-serif
 -webkit-font-smoothing antialiased
 -moz-osx-font-smoothing grayscale
 text-align center
 color #2c3e50
 margin-top 60px
</style>

Now, when you run the npm run serve command on Terminal (macOS or5.
Linux) or Command Prompt/PowerShell (Windows), you will see your
component running and executing on screen:

Introducing TypeScript and the Vue Ecosystem Chapter 2

[71]

How it works...
The vue-class-component plugin makes use of the new proposal of decorators to inject
and pass some attributes to the classes on TypeScript.

This injection helps in the process of simplifying the development of a component with a
syntax more aligned with TypeScript than with the Vue common object.

See also
Find more information about vue-class-component at https:/ /github. com/ vuejs/ vue-
class-component.

Creating a custom mixin with vue-class-
component
In Vue, a mixin is a way to reuse the same code in other Vue objects, like mixing all the
property of the mixin inside the component.

When using a mixin, Vue first declares the mixin property and then the component values,
so the components will be always the last and valid values. This merge occurs in a deep
mode and has a specific way already declared inside the framework, but it can be changed
by a special config.

With the use of mixins, developers can write tiny pieces of code and reuse them in lots of
components.

This approach simplifies your work and allows you to complete tasks quicker.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component
https://github.com/vuejs/vue-class-component

Introducing TypeScript and the Vue Ecosystem Chapter 2

[72]

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
First, we need to create our Vue CLI project. We can use the one we created in the last
recipe or start a new one. To find how to create a Vue CLI project with TypeScript, please
check the 'Creating your first TypeScript Vue component with vue-class-component' recipe.

In this recipe, we will split it into two separate parts. First, we will create the counter
component, and then we will use the code that is shared to create the mixin.

Creating the Counter component
Now, follow the instructions to create a custom mixin with vue-class-component:

We need to make a new component called CounterByTen.vue in the1.
src/components folder.
Now, let's start making the script part of the Vue component. We will make a2.
class that will have a variable with the type of a number and a default value of 0;
two methods, one for increasing by 10 and another for decreasing by 10; and,
finally, a computed property to format the final data:

<script lang="ts">
import Vue from 'vue';
import Component from 'vue-class-component';

@Component
export default class CounterByTen extends Vue {
 valueNumber: number = 0;

 get formattedNumber() {
 return `Your total number is: ${this.valueNumber}`;
 }

 increase() {
 this.valueNumber += 10;
 }

 decrease() {

Introducing TypeScript and the Vue Ecosystem Chapter 2

[73]

 this.valueNumber -= 10;
 }
}
</script>

It's time to create the template and rendering for this component. The process is3.
the same as for a JavaScript Vue file. We will add the buttons for increasing and
decreasing the value and for showing the formatted text:

<template>
 <div>
 <fieldset>
 <legend>{{ this.formattedNumber }}</legend>
 <button @click="increase">Increase By Ten</button>
 <button @click="decrease">Decrease By Ten</button>
 </fieldset>
 </div>
</template>

In the App.vue file, we need to import the component we just created:4.

<template>
 <div id="app">
 <Counter />
 <hr />
 <CounterByTen />
 </div>
</template>

<script lang="ts">
import { Component, Vue } from 'vue-property-decorator';
import Counter from './components/Counter.vue';
import CounterByTen from './components/CounterByTen.vue';

@Component({
 components: {
 Counter,
 CounterByTen,
 },
})
export default class App extends Vue {

}
</script>
<style lang="stylus">
 #app
 font-family 'Avenir', Helvetica, Arial, sans-serif
 -webkit-font-smoothing antialiased

Introducing TypeScript and the Vue Ecosystem Chapter 2

[74]

 -moz-osx-font-smoothing grayscale
 text-align center
 color #2c3e50
 margin-top 60px
</style>

Extracting similar code for the mixin
With both of the components having similar code, we can extract this similar code and
create a mixin. This mixin can be imported in both of the components and their behavior
will be the same:

Create a file called defaultNumber.ts in the src/mixins folder.1.
To code our mixin, we will import the Component and Vue decorators from the2.
vue-class-component plugin, to be the base of the mixin. We will need to take
a similar code and place it inside the mixin:

import Vue from 'vue';
import Component from 'vue-class-component';

@Component
export default class DefaultNumber extends Vue {
 valueNumber: number = 0;

 get formattedNumber() {
 return `Your total number is: ${this.valueNumber}`;
 }
}

With the mixin ready, open the Counter.vue component on the3.
src/components folder and import it. To do this, we need to import a special
export from the vue-class-component called mixins and extend it with the
mixin we want to extend. This will remove the Vue and Component decorators
because they are already declared on the mixin:

<template>
 <div>
 <fieldset>
 <legend>{{ this.formattedNumber }}</legend>
 <button @click="increase">Increase By Ten</button>
 <button @click="decrease">Decrease By Ten</button>
 </fieldset>
 </div>
</template>

Introducing TypeScript and the Vue Ecosystem Chapter 2

[75]

<script lang="ts">
import Vue from 'vue';
import Component, { mixins } from 'vue-class-component';
import DefaultNumber from '../mixins/defaultNumber';

@Component
export default class CounterByTen extends mixins(DefaultNumber) {
 increase() {
 this.valueNumber += 10;
 }

 decrease() {
 this.valueNumber -= 10;
 }
}
</script>

Now, when you run the npm run serve command on Terminal (macOS or4.
Linux) or Command Prompt/PowerShell (Windows), you will see your
component running and executing on screen:

How it works...
The process of using mixins with TypeScript is the same as with the Vue objects. The code
that is shared can be split into smaller files and called in the components for easier coding.

When using TypeScript and vue-class-component, the Vue and Component decorators
need to be declared on the mixins because the class that will be using the mixin will already
have this extension, as it extends this mixin.

We took the same piece of code that works the same on both the components and placed it
in a new file that is then called in both of the components.

Introducing TypeScript and the Vue Ecosystem Chapter 2

[76]

See also
Find more about vue-class-component mixins at https:/ / github. com/ vuejs/ vue-
class-component#using- mixins.

Find more about Vue mixins at https:/ /v3. vuejs. org/ guide/ mixins. html

Creating a custom function decorator with
vue-class-component
Decorators were introduced in ECMAScript 2015. A decorator is a kind of high-order
function that wraps a function with another function.

This brings a lot of new improvements to the code—along with greater
productivity—because it takes the principle of functional programming and simplifies it.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
First, we need to create our Vue CLI project. To find how to create a Vue CLI project, please
check the 'Creating your first project with Vue CLI' recipe. We can use the one we created in
the last recipe or start a new one.

https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://github.com/vuejs/vue-class-component#using-mixins
https://v3.vuejs.org/guide/mixins.html
https://v3.vuejs.org/guide/mixins.html
https://v3.vuejs.org/guide/mixins.html
https://v3.vuejs.org/guide/mixins.html
https://v3.vuejs.org/guide/mixins.html
https://v3.vuejs.org/guide/mixins.html
https://v3.vuejs.org/guide/mixins.html
https://v3.vuejs.org/guide/mixins.html
https://v3.vuejs.org/guide/mixins.html
https://v3.vuejs.org/guide/mixins.html
https://v3.vuejs.org/guide/mixins.html
https://v3.vuejs.org/guide/mixins.html
https://v3.vuejs.org/guide/mixins.html
https://v3.vuejs.org/guide/mixins.html
https://v3.vuejs.org/guide/mixins.html

Introducing TypeScript and the Vue Ecosystem Chapter 2

[77]

Follow these steps to create your custom function decorator with vue-class-component:

Create a file called componentMount.js inside the src/decorators folder.1.
We need to import the createDecorator function from the vue-class-2.
component to be able to use it on a vue-class-component based component,
and to start coding our decorator:

import { createDecorator } from 'vue-class-component';
import componentMountLogger from './componentLogger';

export default createDecorator((options) => {
 options.mixins = [...options.mixins, componentMountLogger];
});

A createDecorator function is like an extension of the Vue vm (View-
Model), so it won't have the property of an ECMAScript decorator but will
function as a Vue decorator.

We need to use the componentLogger.js file in our decorator. This function3.
will take all the data values that are set in the "decorated" component and
add a watcher to it. This watcher will log the new and old values whenever it
changes. This function will only be executed with a debug data set to true:

export default {
 mounted() {
 if (this.debug) {
 const componentName = this.name || '';
 console.log(`The ${componentName} was mounted
 successfully.`);

 const dataKeys = Object.keys(this.$data);

 if (dataKeys.length) {
 console.log('The base data are:');
 console.table(dataKeys);

 dataKeys.forEach((key) => {
 this.$watch(key, (newValue, oldValue) => {
 console.log(`The new value for ${key} is:
 ${newValue}`);
 console.log(`The old value for ${key} is:
 ${oldValue}`);
 }, {
 deep: true,
 });

Introducing TypeScript and the Vue Ecosystem Chapter 2

[78]

 });
 }
 }
 },
};

Now, we need to import the decorator to our Counter.vue component file4.
located in the src/components folder and add the debugger data to it:

<template>
 <div>
 <fieldset>
 <legend>{{ this.formattedNumber }}</legend>
 <button @click="increase">Increase</button>
 <button@click="decrease">Decrease</button>
 </fieldset>
 </div>
</template>

<script lang="ts">
import Vue from 'vue';
import Component from 'vue-class-component';
import componentMount from '../decorators/componentMount';

@Component
@componentMount
export default class Counter extends Vue {
 valueNumber: number = 0;

 debug: boolean = true;

 get formattedNumber() {
 return `Your total number is: ${this.valueNumber}`;
 }

 increase() {
 this.valueNumber += 1;
 }

 decrease() {
 this.valueNumber -= 1;
 }
}
</script>

Introducing TypeScript and the Vue Ecosystem Chapter 2

[79]

How it works...
The createDecorator function is a factory function that extends the Vue vm (View
Model), which produces an extension of the Vue component, such as a Vue mixin. A Vue
mixin is a property of the Vue component that can be used to share and reuse code between
components.

When we call the mixin, it takes the current component as an option of the first argument
(the key if it was attached to a property), and the index of it.

We added a dynamic debugger that is only attached when debug data exists and is set to
true. This debugger will log the current data and set watchers for the changes in the data,
showing the logs on the console each time the data is changed.

There's more...
When using linters, some rules can be a problem with decorators. So, it's wise to disable
them only on the files that are having problems with the rules that are required for the code
to work.

In an AirBnB style, for example, the no-param-reassign rule is required because the
decorator uses the option as a reference to pass the value.

See also
Find more information about creating custom decorators with vue-class-component
at https://github. com/ vuejs/ vue- class- component#create- custom- decorators.

Find more information about decorators on ECMAScript at https:/ /www. typescriptlang.
org/docs/handbook/ decorators. html.

Adding custom hooks to vue-class-
component
On Vue, it's possible to add hooks to its life cycle through the Plugins application
programming interface (API). The most basic example is the vue-router with the
navigation guards, such as the beforeRouterEnter and beforeRouterLeave functions
hooks.

https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://github.com/vuejs/vue-class-component#create-custom-decorators
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html

Introducing TypeScript and the Vue Ecosystem Chapter 2

[80]

The hooks, as the name implies, are little functions that are called each time something will
happen.

You can take advantage of the hooks and make them more powerful, adding new
functionalities to your components, such as checking for special security access, adding
meta search engine optimization (SEO), or even pre-fetching data.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
First, we need to create our Vue CLI project. We can use the one we created in the last
recipe or start a new one. To find how to create a Vue CLI project with TypeScript, please
check the 'Adding TypeScript to a Vue CLI project' recipe.

Now, follow these steps to add custom hooks to your Vue project using TypeScript and
vue-class-component:

We need to add vue-router to the project. This can be done with the Vue CLI1.
project creation or in the Vue UI interface after the project has been created.

If prompted about the mode, the vue-router should run. Take note that
selecting the History option will require special server configuration
when it's time to deploy.

Open Terminal (macOS or Linux) or Command Prompt/PowerShell (Windows)2.
and execute the npm run serve command, and you will see that the vue-
router is working and that there are two working routers: home and about.

Introducing TypeScript and the Vue Ecosystem Chapter 2

[81]

Let's start creating and naming our hooks to register on the main application. To3.
do this, we need to create a vue-router.js file inside the
src/classComponentsHooks folder:

import Component from 'vue-class-component';

Component.registerHooks([
 'beforeRouteEnter',
 'beforeRouteLeave',
]);

We need to import this file to the main.ts file as it needs to be called before the4.
application final build:

import './classComponentsHooks/vue-router';

import Vue from 'vue';
import App from './App.vue';
import router from './router';

Vue.config.productionTip = false;

new Vue({
 router,
 render: h => h(App),
}).$mount('#app');

We now have the hooks registered on the vue-class-component and they can5.
be used inside the TypeScript components.

We need to create a new router location called Secure.vue in the src/views6.
folder. The secure page will have a password to enter, vuejs. When the user
enters this password, the router guard will grant permission, and the user can
see the page. If the password is wrong, the user will be taken back to the home
page. When they leave the page, an alert will show a message to the user:

<template>
 <div class="secure">
 <h1>This is an secure page</h1>
 </div>
</template>

<script lang="ts">
import { Component, Vue } from 'vue-property-decorator';
import { Route, RawLocation } from 'vue-router';

Introducing TypeScript and the Vue Ecosystem Chapter 2

[82]

type RouteNext = (to?: RawLocation | false | ((vm: Vue) => any) |
 void) => void;

@Component
export default class Home extends Vue {
 beforeRouteEnter(to: Route, from: Route, next: RouteNext) {
 const securePassword = 'vuejs';

 const userPassword = prompt('What is the password?');

 if (userPassword === securePassword) {
 next();
 } else if (!userPassword) {
 next('/');
 }
 }

 beforeRouteLeave(to: Route, from: Route, next: RouteNext) {
 alert('Bye!');
 next();
 }
}
</script>

Now with our page done, we need to add it to the router.ts file to be able to7.
call it in the Vue application:

import Vue from 'vue';
import Router from 'vue-router';
import Home from './views/Home.vue';

Vue.use(Router);

export default new Router({
 routes: [
 {
 path: '/',
 name: 'home',
 component: Home,
 },
 {
 path: '/about',
 name: 'about',
 component: () => import('./views/About.vue'),
 },
 {
 path: '/secure',
 name: 'secure',

Introducing TypeScript and the Vue Ecosystem Chapter 2

[83]

 component: () => import('./views/Secure.vue'),
 },
],
});

With the route added and the view created, the final step is to add the link to the8.
main App.vue file, and we will have a component with an integrated hook on it:

<template>
 <div id="app">
 <div id="nav">
 <router-link to="/">Home</router-link> |
 <router-link to="/about">About</router-link> |
 <router-link to="/secure">Secure</router-link>
 </div>
 <router-view/>
 </div>
</template>
<style lang="stylus">
#app
 font-family 'Avenir', Helvetica, Arial, sans-serif
 -webkit-font-smoothing antialiased
 -moz-osx-font-smoothing grayscale
 text-align center
 color #2c3e50

#nav
 padding 30px
 a
 font-weight bold
 color #2c3e50
 &.router-link-exact-active
 color #42b983
</style>

How it works...
The class component needs to understand what are the navigation guards that are being
added to the Vue prototype before executing the Vue application. Because of this, we
needed to import the custom hooks on the first line of the main.ts file.

In the component, with the hooks registered, it's possible to add them as methods because
the vue-class-component has made all those custom imports into base methods for the
component decorator.

Introducing TypeScript and the Vue Ecosystem Chapter 2

[84]

We used two of the vue-router navigation guards' hooks. Those hooks are called each
time a route will enter or leave. The first two parameters we didn't use, the to and
from parameters, are the ones that carry information about the future route and the past
route.

The next function is always required because it executes a route change. If no argument is
passed in the function, the route will continue with the one that was called, but if you want
to change the route on the fly, it is possible to pass an argument to change where the user
will go.

See also
Find more about vue-router navigation guards at https:/ /router. vuejs. org/ guide/
advanced/navigation- guards. html.

Find more about the vue-class-component hooks at https:/ /github. com/ vuejs/ vue-
class-component#adding- custom- hooks.

Adding vue-property-decorator to vue-class-
component
Some of the most important parts of Vue are missing in the vue-class-component in the
form of TypeScript decorators. So, the community made a library called vue-property-
decorator that is fully endorsed by the Vue core team.

This library brings some of the missing parts as ECMAScript proposal decorators, such as
props, watch, model, inject, and so on.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks
https://github.com/vuejs/vue-class-component#adding-custom-hooks

Introducing TypeScript and the Vue Ecosystem Chapter 2

[85]

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
First, we need to create our Vue CLI project. We can use the one we created in the last
recipe or start a new one. To find how to create a Vue CLI project with TypeScript, please
check the 'Creating a custom mixin with vue-class-component' recipe.

Follow these steps to add vue-property-decorator to a Vue class-based component:

We need to add the vue-property-decorator to our project.1.
Open Terminal (macOS or Linux) or Command Prompt/PowerShell (Windows)
and execute the following command:

> npm install -S vue-property-decorator

In the components mixin, we will add a decorator for receiving a prop, which2.
will be a value for our number that is calculated:

import {
 Vue,
 Component,
 Prop,
} from 'vue-property-decorator';

@Component
export default class DefaultNumber extends Vue {
 valueNumber: number = 0;

 @Prop(Number) readonly value: number | undefined;

 get formattedNumber() {
 return `Your total number is: ${this.valueNumber}`;
 }
}

Introducing TypeScript and the Vue Ecosystem Chapter 2

[86]

With that number, we need to make the watchers emit the event to the parent3.
component when the value changes, and update the value inside when the value
is changed within the parent component. To do this, we need to create a new file
called numberWatcher.ts inside the src/mixins folder:

import {
 Watch,
 Mixins,
} from 'vue-property-decorator';
import DefaultNumber from './defaultNumber';

export default class NumberWatchers extends Mixins(DefaultNumber) {
 @Watch('valueNumber')
 onValueNumberChanged(val: number) {
 this.$emit('input', val);
 }

 @Watch('value', { immediate: true })
 onValueChanged(val: number) {
 this.valueNumber = val;
 }
}

In Vue, the v-model directive works like a sugar syntax, as a combination
of the Vue $emit function and the Vue props function. When the value is
changed, the component needs to $emit with the 'input' name, and the
component needs to have in the props function a value key, which will
be the value that will be passed down from the parent component to the
child component.

With our mixin updated, our components need to be updated too. First, we will4.
update the Counter.vue component, changing the imported mixin from the
defaultNumber.ts file to numberWatcher.ts:

<template>
 <div>
 <fieldset>
 <legend>{{ this.formattedNumber }}</legend>
 <button @click="increase">Increase</button>
 <button @click="decrease">Decrease</button>
 </fieldset>
 </div>
</template>

Introducing TypeScript and the Vue Ecosystem Chapter 2

[87]

<script lang="ts">
import Vue from 'vue';
import Component, { mixins } from 'vue-class-component';
import NumberWatcher from '../mixins/numberWatcher';

@Component
export default class Counter extends mixins(NumberWatcher) {
 increase() {
 this.valueNumber += 1;
 }

 decrease() {
 this.valueNumber -= 1;
 }
}
</script>

Now, we will update the CounterByTen.vue component, and add the newly5.
created mixin:

<template>
 <div>
 <fieldset>
 <legend>{{ this.formattedNumber }}</legend>
 <button @click="increase">Increase By Ten</button>
 <button @click="decrease">Decrease By Ten</button>
 </fieldset>
 </div>
</template>

<script lang="ts">
import Vue from 'vue';
import Component, { mixins } from 'vue-class-component';
import NumberWatcher from '../mixins/numberWatcher';

@Component
export default class CounterByTen extends mixins(NumberWatcher) {
 increase() {
 this.valueNumber += 10;
 }

 decrease() {
 this.valueNumber -= 10;
 }
}
</script>

Introducing TypeScript and the Vue Ecosystem Chapter 2

[88]

With everything settled, we just need to update the App.vue component. This6.
time, we will store a variable in the component that will be passed down to both
of the child components, and when the components emit the update events, this
variable will change automatically, updating the other components too:

<template>
 <div id="app">
 <Counter
 v-model="amount"
 />
 <hr />
 <CounterByTen
 v-model="amount"
 />
 </div>
</template>

<script lang="ts">
import { Component, Vue } from 'vue-property-decorator';
import Counter from './components/Counter.vue';
import CounterByTen from './components/CounterByTen.vue';

@Component({
 components: {
 Counter,
 CounterByTen,
 },
})
export default class App extends Vue {
 amount: number = 0;
}
</script>
<style lang="stylus">
 #app
 font-family 'Avenir', Helvetica, Arial, sans-serif
 -webkit-font-smoothing antialiased
 -moz-osx-font-smoothing grayscale
 text-align center
 color #2c3e50
 margin-top 60px
</style>

Introducing TypeScript and the Vue Ecosystem Chapter 2

[89]

How it works...
By injecting the decorators at the vue-class-components, the vue-property-
decorator helps the TypeScript compiler check for the types and static analysis of your
Vue code.

We used two of the decorators available, the @Watch and @Prop decorators.

As we took apart the common parts of our code in the form of mixins, the process
implementation became easier.

The parent component passed down a property to the child component, passing the initial
value and the subsequently updated value.

This value is checked and updated inside the child component, which is used to update a
local variable used by the calculation functions. When the calculation is done and the value
is changed, the watcher emits an event that is passed to the parent component, which
updates the main variable, and the loop goes on.

There's more...
There is another library that works the same as the vue-property-decorator, but for the
vuex plugin, called vuex-class.

This library uses the same process as vue-property-decorator. It creates an inject
decorator in the component. Those decorators help the TypeScript compiler to check for
types in the development process.

You can find more information about this library at https:/ /github. com/ ktsn/ vuex-
class/

See also
You can find more information about the vue-property-decorator at https:/ /github.
com/kaorun343/vue- property- decorator

https://github.com/ktsn/vuex-class/
https://github.com/ktsn/vuex-class/
https://github.com/ktsn/vuex-class/
https://github.com/ktsn/vuex-class/
https://github.com/ktsn/vuex-class/
https://github.com/ktsn/vuex-class/
https://github.com/ktsn/vuex-class/
https://github.com/ktsn/vuex-class/
https://github.com/ktsn/vuex-class/
https://github.com/ktsn/vuex-class/
https://github.com/ktsn/vuex-class/
https://github.com/ktsn/vuex-class/
https://github.com/ktsn/vuex-class/
https://github.com/kaorun343/vue-property-decorator
https://github.com/kaorun343/vue-property-decorator
https://github.com/kaorun343/vue-property-decorator
https://github.com/kaorun343/vue-property-decorator
https://github.com/kaorun343/vue-property-decorator
https://github.com/kaorun343/vue-property-decorator
https://github.com/kaorun343/vue-property-decorator
https://github.com/kaorun343/vue-property-decorator
https://github.com/kaorun343/vue-property-decorator
https://github.com/kaorun343/vue-property-decorator
https://github.com/kaorun343/vue-property-decorator
https://github.com/kaorun343/vue-property-decorator
https://github.com/kaorun343/vue-property-decorator
https://github.com/kaorun343/vue-property-decorator

3
Data Binding, Form Validations,

Events, and Computed
Properties

Data is the most valuable asset in the world right now, and knowing how to manage it is a
must. In Vue, we have the power to choose how we can gather this data, manipulate it as
we want, and deliver it to the server.

In this chapter, we will learn more about the process of data manipulation and data
handling, form validations, data filtering, how to display this data to the user, and how to
present it in a way that is different from what we then have inside our application.

We will learn how to use the vue-devtools to go deep inside the Vue components and see
what is happening to our data and application.

In this chapter, we'll cover the following recipes:

Creating the "hello world" component
Creating an input form with two-way data binding
Adding an event listener to an element
Removing the v-model from the input
Creating a dynamic to-do list
Creating computed properties and exploring how they work
Displaying cleaner data and text with custom filters
Adding form validation with Vuelidate
Creating filters and sorters for a list
Creating conditional filtering to sort list data
Adding custom styles and transitions
Using vue-devtools to debug your application

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[91]

Technical requirements
In this chapter, we will be using Node.js and Vue CLI.

Attention, Windows users—you need to install an npm package called
windows-build-tools to be able to install the following required
packages. To do this, open PowerShell as administrator and execute the
following command:
> npm install -g windows-build-tools.

To install Vue CLI, you need to open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> npm install -g @vue/cli @vue/cli-service-global

Creating the "hello world" component
A Vue application is a combination of various components, bound together and
orchestrated by the Vue framework. Knowing how to make your component is
important. Each component is like a brick in the wall and needs to be made in a way that,
when placed, doesn't end up needing other bricks to be reshaped in different ways around
it. We are going to learn how to make a base component, with some important principles
that focus on organization and clean code.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[92]

How to do it...
To start our component, we can create our Vue project with Vue CLI as learned in the
'Creating your first project with Vue CLI' recipe in Chapter 2, Introducing TypeScript and the
Vue Ecosystem, or start a new one.

To start a new one, open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> vue create my-component

The command-line interface (CLI) will ask some questions that will help with the creation
of the project. You can use the arrow keys to navigate, the Enter key to continue, and the
spacebar to select an option. Choose the default option:

? Please pick a preset: (Use arrow keys)
❯ default (babel, eslint)
 Manually select features

Let's create our first "hello world" component, following these steps:

Let's create a new file called CurrentTime.vue file in the src/components1.
folder.
On this file, we will start with the <template> part of our component. It will be2.
a shadowed-box card that will display the current date formatted:

<template>
 <div class='cardBox'>
 <div class='container'>
 <h2>Today is:</h2>
 <h3>{{ getCurrentDate }}</h3>
 </div>
 </div>
</template>

Now, we need to create the <script> part. We will start with the name property.3.
This will be used when debugging our application with vue-devtools to
identify our component and helps the integrated development environment
(IDE) too. For the getCurrentDate computed property, we will create a
computed property that will return the current date, formatted by the Intl
browser function:

<script>
export default {
 name: 'CurrentTime',

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[93]

 computed: {
 getCurrentDate() {
 const browserLocale =
 navigator.languages && navigator.languages.length
 ? navigator.languages[0]
 : navigator.language;
 const intlDateTime = new Intl.DateTimeFormat(
 browserLocale,
 {
 year: 'numeric',
 month: 'numeric',
 day: 'numeric',
 hour: 'numeric',
 minute: 'numeric'
 });

 return intlDateTime.format(new Date());
 }
 }
};
</script>

For styling our box, we need to create a style.css file in the src folder, then4.
add the cardBox style to it:

.cardBox {
 box-shadow: 0 5px 10px 0 rgba(0, 0, 0, 0.2);
 transition: 0.3s linear;
 max-width: 33%;
 border-radius: 3px;
 margin: 20px;
}

.cardBox:hover {
 box-shadow: 0 10px 20px 0 rgba(0, 0, 0, 0.2);
}

.cardBox>.container {
 padding: 4px 18px;
}

[class*='col-'] {
 display: inline-block;
}

@media only screen and (max-width: 600px) {
 [class*='col-'] {
 width: 100%;

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[94]

 }

 .cardBox {
 margin: 20px 0;
 }
}

@media only screen and (min-width: 600px) {
 .col-1 {width: 8.33%;}
 .col-2 {width: 16.66%;}
 .col-3 {width: 25%;}
 .col-4 {width: 33.33%;}
 .col-5 {width: 41.66%;}
 .col-6 {width: 50%;}
 .col-7 {width: 58.33%;}
 .col-8 {width: 66.66%;}
 .col-9 {width: 75%;}
 .col-10 {width: 83.33%;}
 .col-11 {width: 91.66%;}
 .col-12 {width: 100%;}
}

@media only screen and (min-width: 768px) {
 .col-1 {width: 8.33%;}
 .col-2 {width: 16.66%;}
 .col-3 {width: 25%;}
 .col-4 {width: 33.33%;}
 .col-5 {width: 41.66%;}
 .col-6 {width: 50%;}
 .col-7 {width: 58.33%;}
 .col-8 {width: 66.66%;}
 .col-9 {width: 75%;}
 .col-10 {width: 83.33%;}
 .col-11 {width: 91.66%;}
 .col-12 {width: 100%;}
}

@media only screen and (min-width: 992px) {
 .col-1 {width: 8.33%;}
 .col-2 {width: 16.66%;}
 .col-3 {width: 25%;}
 .col-4 {width: 33.33%;}
 .col-5 {width: 41.66%;}
 .col-6 {width: 50%;}
 .col-7 {width: 58.33%;}
 .col-8 {width: 66.66%;}
 .col-9 {width: 75%;}
 .col-10 {width: 83.33%;}

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[95]

 .col-11 {width: 91.66%;}
 .col-12 {width: 100%;}
}

@media only screen and (min-width: 1200px) {
 .col-1 {width: 8.33%;}
 .col-2 {width: 16.66%;}
 .col-3 {width: 25%;}
 .col-4 {width: 33.33%;}
 .col-5 {width: 41.66%;}
 .col-6 {width: 50%;}
 .col-7 {width: 58.33%;}
 .col-8 {width: 66.66%;}
 .col-9 {width: 75%;}
 .col-10 {width: 83.33%;}
 .col-11 {width: 91.66%;}
 .col-12 {width: 100%;}
}

In the App.vue file, we need to import our component to be able to see it:5.

<template>
 <div id='app'>
 <current-time />
 </div>
</template>

<script>
import CurrentTime from './components/CurrentTime.vue';

export default {
 name: 'app',
 components: {
 CurrentTime
 }
}
</script>

In the main.js file, we need to import the style.css file to be included in the6.
Vue application:

import Vue from 'vue';
import App from './App.vue';
import './style.css';

Vue.config.productionTip = false

new Vue({

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[96]

 render: h => h(App),
}).$mount('#app')

To run the server and see your component, you need to open Terminal (macOS7.
or Linux) or Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Here is your component rendered and running:

How it works...
The Vue component works almost like the Node.js packages. To use it in your code, you
need to import the component and then declare it inside the components property on the
component you want to use.

Like a wall of bricks, a Vue application is made of components that call and use other
components.

For our component, we used the Intl.DateTimeFormat function, a native function, which
can be used to format and parse dates to declared locations. To get the local format, we
used the navigator global variable.

See also
You can find more information about Intl.DateTimeFormat at https:/ /developer.
mozilla.org/en-US/ docs/ Web/ JavaScript/ Reference/ Global_ Objects/ DateTimeFormat.

You can find more information about Vue components at https:/ / v3.vuejs. org/ guide/
single-file-component. html

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[97]

Creating an input form with two-way data
binding
To gather data on the web, we use HTML form inputs. In Vue, it's possible to use a two-
way data binding method, where the value of the input on the Document Object Model
(DOM) is passed to the JavaScript—or vice versa.

This makes the web form more dynamic, giving you the possibility to manage, format, and
validate the data before saving or sending the data back to the server.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can create our Vue project with Vue CLI, as learned in the
'Creating your first project with Vue CLI' recipe in Chapter 2, Introducing TypeScript and the
Vue Ecosystem, or use the project from the 'Creating the "hello world" component' recipe.

Now, let's follow these steps to create an input form with a two-way data binding:

Let's create a new file called TaskInput.vue in the src/components folder.1.
In this file, we're going to create a component that will have a text input and a2.
display text. This text will be based on what is typed on the text input. At the
<template> part of the component, we need to create an HTML input and a
mustache variable that will receive and render the data:

<template>
 <div class='cardBox'>
 <div class='container tasker'>
 My task is: {{ task }}

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[98]

 <input
 type='text'
 v-model='task'
 class='taskInput' />
 </div>
 </div>
</template>

Now, on the <script> part of the component, we will name it and add the task3.
to the data property. As the data always needs to be a returned Object, we will
use an arrow function to return an Object directly:

<script>
export default {
 name: 'TaskInput',
 data: () => ({
 task: '',
 }),
};
</script>

We need to add some style to this component. In the <style> part of the4.
component, we need to add the scoped attribute so that the style remains only
bound to the component and won't mix with other Cascading Style Sheets (CSS)
rules:

<style scoped>
 .tasker{
 margin: 20px;
 }
 .tasker .taskInput {
 font-size: 14px;
 margin: 0 10px;
 border: 0;
 border-bottom: 1px solid rgba(0, 0, 0, 0.75);
 }
 .tasker button {
 border: 1px solid rgba(0, 0, 0, 0.75);
 border-radius: 3px;
 box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.2);
 }
</style>

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[99]

Now, we need to import this component into our App.vue file:5.

<template>
 <div id='app'>
 <current-time class='col-4' />
 <task-input class='col-6' />
 </div>
</template>

<script>
import CurrentTime from './components/CurrentTime.vue';
import TaskInput from './components/TaskInput';

export default {
 name: 'app',
 components: {
 CurrentTime,
 TaskInput,
 }
}
</script>

To run the server and see your component, you need to open Terminal (macOS6.
or Linux) or Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Here is your component rendered and running:

How it works...
When you create an HTML input element and add a v-model to it, you are passing a
directive, built into Vue, that checks the input type and gives us sugar syntax for the input.
This handles the update of the value of the variable and the DOM.

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[100]

This model is what is called two-way data binding. If the variable is changed by the code,
the DOM will re-render, and if it's changed by the DOM via user input, such as the input-
form, the JavaScript code can then execute a function.

See also
Find more information about the form input bindings at https:/ /v3. vuejs. org/ guide/
forms.html

Adding an event listener to an element
The most common method of parent-child communication in Vue is through props and
events. In JavaScript, it's common to add event listeners to elements of the DOM tree to
execute functions on specific events. In Vue, it's possible to add listeners and name them as
you wish, rather than sticking to the names that exist on the JavaScript engine.

In this recipe, we are going to learn how to create custom events and how to emit then.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can create our Vue project with Vue CLI, as learned in the
'Creating your first project with Vue CLI' recipe in Chapter 2, Introducing TypeScript and the
Vue Ecosystem, or use the project from the 'Creating an input form with two-way data
binding' recipe.

https://v3.vuejs.org/guide/forms.html
https://v3.vuejs.org/guide/forms.html
https://v3.vuejs.org/guide/forms.html
https://v3.vuejs.org/guide/forms.html
https://v3.vuejs.org/guide/forms.html
https://v3.vuejs.org/guide/forms.html
https://v3.vuejs.org/guide/forms.html
https://v3.vuejs.org/guide/forms.html
https://v3.vuejs.org/guide/forms.html
https://v3.vuejs.org/guide/forms.html
https://v3.vuejs.org/guide/forms.html
https://v3.vuejs.org/guide/forms.html
https://v3.vuejs.org/guide/forms.html
https://v3.vuejs.org/guide/forms.html

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[101]

Follow these steps to add an event listener in an element on Vue:

Create a new component or open the TaskInput.vue file.1.
At the <template> part, we are going to add a button element and add an event2.
listener to the button click event with the v-on directive. We will remove the {{
task }} variable from the component, as from now on it will be emitted and
won't be displayed on the component anymore:

<template>
 <div class='cardBox'>
 <div class='container tasker'>
 My task is:
 <input
 type='text'
 v-model='task'
 class='taskInput' />
 <button
 v-on:click='addTask'>
 Add Task
 </button>
 </div>
 </div>
</template>

On the <script> part of the component, we need to add a method to handle the3.
click event. This method will be named addTask. The method will emit an event
called add-task and send the task on the data. After that, the task on the
component will be reset:

<script>
export default {
 name: 'TaskInput',
 data: () => ({
 task: '',
 }),
 methods: {
 addTask(){
 this.$emit('add-task', this.task);
 this.task = '';
 },
 }
};
</script>

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[102]

On the App.vue file, we need to add an event listener bind on the component.4.
This listener will be attached to the add-task event. We will use the shortened
version of the v-on directive, @. When it's fired, the event will call the method,
addNewTask, which will send an alert that a new task was added:

<template>
 <div id='app'>
 <current-time class='col-4' />
 <task-input
 class='col-6'
 @add-task='addNewTask'
 />
 </div>
</template>

Now, let's create the addNewTask method. This will receive the task as a5.
parameter and will show an alert to the user, displaying that the task was added:

<script>
import CurrentTime from './components/CurrentTime.vue';
import TaskInput from './components/TaskInput';

export default {
 name: 'app',
 components: {
 CurrentTime,
 TaskInput,
 },
 methods:{
 addNewTask(task){
 alert(`New task added: ${task}`);
 },
 },
}
</script>

To run the server and see your component, you need to open Terminal (macOS6.
or Linux) or Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[103]

Here is your component rendered and running:

How it works...
The HTML events are read by Vue with the v-on event handling directive. When we
attached the v-on:click directive to the button, we added a listener to the button so that a
function will be executed when the user clicks on it.

The function is declared on the component methods. That function, when called, will emit
an event, denoting that any component using this component as a child can listen to it with
the v-on directive.

See also
You can find more information about event handling at https:/ / v3.vuejs. org/ guide/
events.html

Removing the v-model from the input
What if I told you that behind the magic of the v-model there is a lot of code that makes
our magic sugar syntax happen? What if I told you that the rabbit hole can go deep enough
that you can control everything that can happen with the events and values of the inputs?

We will learn how to extract the sugar syntax of the v-model directive and transform it into
the base syntax behind it.

https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[104]

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can create our Vue project with Vue CLI, as learned in the
'Creating your first project with Vue CLI' recipe in Chapter 2, Introducing TypeScript and the
Vue Ecosystem, or use the project from the 'Adding an event listener to an element' recipe.

In the following steps, we will remove the v-model directive sugar syntax from the input:

Open the TaskInput.vue file.1.
At the <template> block of the component, find the v-model directive. We'll2.
remove the v-model directive. Then, we need to add a new bind to the input
called v-bind:value or the shortened version, :value, and an event listener to
the HTML input element. We need to add an event listener to the input event
with the v-on:input directive or the shortened version, @input. The input bind
will receive the task value as a parameter and the event listener will receive a
value attribution, where it will make the task variable equal the value of the
event value:

<template>
 <div class='cardBox'>
 <div class='container tasker'>
 My task is:
 <input
 type='text'
 :value='task'
 @input='task = $event.target.value'
 class='taskInput'
 />
 <button v-on:click='addTask'>
 Add Task
 </button>

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[105]

 </div>
 </div>
</template>

To run the server and see your component, you need to open Terminal (macOS3.
or Linux) or Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

How it works...
As a sugar syntax, the v-model directive does the magic of automatically declaring the
bind and the event listener to the element for you, but the side effect is that you don't have
full control over what can be achieved.

As we've seen, the bound value can be a variable, a method, a computed property, or a
Vuex getter, for example. And for the event listener, it can be a function or a direct
declaration of a variable assignment. When an event is emitted and passed to Vue, the
$event variable is used to pass the event. In this case, as in normal JavaScript, to catch the
value of an input, we need to use the event.target.value value.

See also
You can find more information about event handling at https:/ / v3.vuejs. org/ guide/
events.html

Creating a dynamic to-do list
One of the first projects every programmer creates when learning a new language is a to-do
list. Doing this allows us to learn more about the language process around the
manipulation of states and data.

https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html
https://v3.vuejs.org/guide/events.html

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[106]

We are going to make our to-do list using Vue. We'll use what we have learned and created
in the previous recipes.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
There are some basic principles involved in making a to-do application—it must have a list
of tasks; those tasks can be marked as done and undone, and the list can be filtered and
sorted. Now, we are going to learn how to take the tasks and add them to the task list.

To start our component, we can create our Vue project with Vue CLI, as learned in the
'Creating your first project with Vue CLI' recipe in Chapter 2, Introducing TypeScript and the
Vue Ecosystem, or use the project from the 'Removing the v-model from the input' recipe.

Now, follow these steps to create a dynamic to-do list with Vue and the previous recipes:

In the App.vue file, we will create our array of tasks. This task will be filled1.
every time the TaskInput.vue component emits a message. We will add an
object to this array with the task, and the current date when the task was created.
The date when the task was finished will be undefined for now. To do this, in the
<script> part of the component, we need to create a method that receives a task
and add this task with the current date to the taskList array:

<script>
import CurrentTime from './components/CurrentTime.vue';
import TaskInput from './components/TaskInput';

export default {
 name: 'TodoApp',
 components: {

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[107]

 CurrentTime,
 TaskInput,
 },
 data: () => ({
 taskList: [],
 }),
 methods:{
 addNewTask(task){
 this.taskList.push({
 task,
 createdAt: Date.now(),
 finishedAt: undefined,
 })
 },
 },
}
</script>

Now, we need to render this list on the <template> part. We will iterate the list2.
of tasks using the v-for directive of Vue. This directive, when we use it with an
array, gives us access to two properties—the item itself and the index of the item.
We will use the item to render it and the index to make the key of the element for
the rendering. We need to add a checkbox that, when marked, calls a function
that changes the status of the task and the display when the task was done:

<template>
 <div id='app'>
 <current-time class='col-4' />
 <task-input class='col-6' @add-task='addNewTask' />
 <div class='col-12'>
 <div class='cardBox'>
 <div class='container'>
 <h2>My Tasks</h2>
 <ul class='taskList'>
 <li
 v-for='(taskItem, index) in taskList'
 :key='`${index}_${Math.random()}`'
 >
 <input type='checkbox'
 :checked='!!taskItem.finishedAt'
 @input='changeStatus(index)'
 />
 {{ taskItem.task }}

 {{ taskItem.finishedAt }}

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[108]

 </div>
 </div>
 </div>
 </div>
</template>

It's always important to remember that the key in the iterator needs to be
unique. This is needed because the render function needs to knows which
elements were changed. In the example, we added the
Math.random() function to the index to generate a unique key, because
the index of the first elements of the array is always the same number
when the number of elements is reduced.

We need to create the changeStatus function on the methods property of the3.
App.vue. This function will receive the index of the task as a parameter, then go
to the array of tasks and change the finishedAt property, which is our marker
for when a task is done:

changeStatus(taskIndex){
 const task = this.taskList[taskIndex];
 if(task.finishedAt){
 task.finishedAt = undefined;
 } else {
 task.finishedAt = Date.now();
 }
}

Now, we need to add the task text to the left-hand side of the screen. On the4.
<style> part of the component, we will make it scoped and add the custom
class:

<style scoped>
 .taskList li{
 text-align: left;
 }
</style>

To run the server and see your component, you need to open Terminal (macOS5.
or Linux) or Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[109]

Here is your component rendered and running:

How it works...
As we received the emitted message from the component, we hydrated the message with
more data and pushed it to a local array variable.

In the template we iterate this array, making it a list of tasks. This displays the tasks we
need to do, the checkbox to mark when the task is done, and the time that a task was done.

When the user clicks on the checkbox, it executes a function, which marks the current task
as done. If the task is already done, the function will set the finishedAt property as
undefined.

See also
You can find more information about list rendering at https:/ /v3. vuejs. org/ guide/ list.
html#mapping-an- array- to- elements- with- v-for

You can find more information about conditional rendering at https:/ / v3.vuejs. org/
guide/conditional. html#v- if

You can find more information about Math.random at https:/ /developer. mozilla. org/
en-US/docs/Web/JavaScript/ Reference/ Global_ Objects/ Math/ random.

https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#v-if
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[110]

Creating computed properties and
understanding how they work
Imagine that every time you have to fetch manipulated data, you need to execute a
function. Imagine you need to get specific data that needs to go through some process and
you need to execute it through a function every time. This type of work would not be easy
to maintain. Computed properties exist to solve these problems. Using computed
properties makes it easier to obtain data that needs preprocessing or even caching without
executing any other external memorizing function.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
We will continue our to-do list project or you can create a new Vue project with Vue CLI, as
learned in the 'Creating your first project with Vue CLI' recipe in Chapter 2, Introducing
TypeScript and the Vue Ecosystem.

Now, follow these steps to create a computed property and understand how it works:

On the App.vue file, at the <script> part, we will add a new property between1.
data and method, called computed. This is where the computed properties will
be placed. We will create a new computed property called displayList, which
will be the one that will be used to render the final list on the template:

<script>
import CurrentTime from './components/CurrentTime.vue';
import TaskInput from './components/TaskInput';

export default {

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[111]

 name: 'TodoApp',
 components: {
 CurrentTime,
 TaskInput
 },
 data: () => ({
 taskList: []
 }),
 computed: {
 displayList(){
 return this.taskList;
 },
 },
 methods: {
 addNewTask(task) {
 this.taskList.push({
 task,
 createdAt: Date.now(),
 finishedAt: undefined
 });
 },
 changeStatus(taskIndex){
 const task = this.taskList[taskIndex];
 if(task.finishedAt){
 task.finishedAt = undefined;
 } else {
 task.finishedAt = Date.now();
 }
 }
 }
};
</script>

The displayList property, for now, is just returning a cached value of the
variable, and not the direct variable as itself.

Now, on the <template> part, we need to change where the list is being fetched:2.

<template>
 <div id='app'>
 <current-time class='col-4' />
 <task-input class='col-6' @add-task='addNewTask' />
 <div class='col-12'>
 <div class='cardBox'>
 <div class='container'>
 <h2>My Tasks</h2>
 <ul class='taskList'>
 <li

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[112]

 v-for='(taskItem, index) in displayList'
 :key='`${index}_${Math.random()}`'
 >
 <input type='checkbox'
 :checked='!!taskItem.finishedAt'
 @input='changeStatus(index)'
 />
 {{ taskItem.task }}

 {{ taskItem.finishedAt }}

 </div>
 </div>
 </div>
 </div>
</template>

To run the server and see your component, you need to open Terminal (macOS3.
or Linux) or Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

How it works...
When using the computed property to pass a value to the template, this value is now
cached. This means we will only trigger the rendering process when the value is updated.
At the same time, we made sure that the template doesn't use the variable for rendering so
that it can't be changed on the template, as it is a cached copy of the variable.

Using this process, we get the best performance because we won't waste processing time re-
rendering the DOM tree for changes that have no effect on the data being displayed. This is
because if something changes and the result is the same, the computed property caches the
result and won't update the final result.

See also
You can find more information about computed properties at https:/ /v3. vuejs. org/
guide/computed.html.

https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/computed.html

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[113]

Displaying cleaner data and text with
custom filters
Sometimes you may find that the user, or even you, cannot read the Unix timestamp or
other DateTime formats. How can we solve this problem? When rendering the data in Vue,
it's possible to use what we call filters.

Imagine a series of pipes through which data flows. Data enters each pipe in one shape and
exits in another. This is what filters in Vue look like. You can place a series of filters on the
same variable, so it gets formatted, reshaped, and ultimately displayed with different data
while the code remains the same. The code of the initial variable is immutable in those
pipes.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
We will continue our to-do list project or you can create a new Vue project with Vue CLI, as
learned in the 'Creating your first project with Vue CLI' recipe in Chapter 2, Introducing
TypeScript and the Vue Ecosystem.

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[114]

Follow these steps to create your first custom Vue filter:

In the App.vue file, at the <script> part, in the methods, create a formatDate1.
function inside this property. This function will receive value as a parameter
and enters the filter pipe. We can check if the value is a number because we
know that our time is based on the Unix timestamp format. If it's a number, we
will format based on the current browser location and return that formatted
value. If the passed value is not a number, we just return the passed value:

<script>
 import CurrentTime from './components/CurrentTime.vue';
 import TaskInput from './components/TaskInput';

 export default {
 name: 'TodoApp',
 components: {
 CurrentTime,
 TaskInput
 },
 data: () => ({
 taskList: []
 }),
 computed: {
 displayList() {
 return this.taskList;
 }
 },
 methods: {
 formatDate(value) {
 if (!value) return '';
 if (typeof value !== 'number') return value;

 const browserLocale =
 navigator.languages && navigator.languages.length
 ? navigator.languages[0]
 : navigator.language;
 const intlDateTime = new Intl.DateTimeFormat(
 browserLocale,
 {
 year: 'numeric',
 month: 'numeric',
 day: 'numeric',
 hour: 'numeric',
 minute: 'numeric'
 });

 return intlDateTime.format(new Date(value));

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[115]

 },
 addNewTask(task) {
 this.taskList.push({
 task,
 createdAt: Date.now(),
 finishedAt: undefined
 });
 },
 changeStatus(taskIndex) {
 const task = this.taskList[taskIndex];
 if (task.finishedAt) {
 task.finishedAt = undefined;
 } else {
 task.finishedAt = Date.now();
 }
 }
 }
 };
</script>

On the <template> part of the component, we need to pass the variable to the2.
filter method. To do that, we need to find the taskItem.finishedAt property
and make it the parameter of the formatDate method. We will add some text to
denote that the task was Done at: at the beginning of the date:

<template>
 <div id='app'>
 <current-time class='col-4' />
 <task-input class='col-6' @add-task='addNewTask' />
 <div class='col-12'>
 <div class='cardBox'>
 <div class='container'>
 <h2>My Tasks</h2>
 <ul class='taskList'>
 <li
 v-for='(taskItem, index) in displayList'
 :key='`${index}_${Math.random()}`'
 >
 <input type='checkbox'
 :checked='!!taskItem.finishedAt'
 @input='changeStatus(index)'
 />
 {{ taskItem.task }}
 |
 Done at:
 {{ formatDate(taskItem.finishedAt) }}

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[116]

 </div>
 </div>
 </div>
 </div>
</template>

To run the server and see your component, open Terminal (macOS or Linux)3.
or Command Prompt/PowerShell (Windows) and execute the following
command:

> npm run serve

Here is your component rendered and running:

How it works...
Filters are methods that receive a value and must return a value to be displayed on the
<template> section of the file, or used in a Vue property.

When we pass the value to the formatDate method, we know that it's a valid Unix
timestamp, so it was possible to invoke to a new Date class constructor, passing the value
as a parameter because the Unix timestamp is a valid date constructor.

The code behind our filter is the Intl.DateTimeFormat function, a native function that
can be used to format and parse dates to declared locations. To get the local format, we use
the navigator global variable.

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[117]

See also
You can find more information about Intl.DateTimeFormat at https:/ /developer.
mozilla.org/en-US/ docs/ Web/ JavaScript/ Reference/ Global_ Objects/ DateTimeFormat.

Adding form validation with Vuelidate
Originally, JavaScript was used just for validating HTML forms before sending these to
servers; we didn't have any JavaScript frameworks or the JavaScript ecosystem that we
have today. However, one thing remains the same: form validation is to be done first by the
JavaScript engine before sending the forms to the server.

We will learn how to use one of the most popular libraries on the Vue ecosystem to validate
our input form before sending it.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
We will continue our to-do list project or you can create a new Vue project with Vue CLI, as
learned in the 'Creating your first project with Vue CLI' recipe in Chapter 2, Introducing
TypeScript and the Vue Ecosystem.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[118]

Now, follow these steps to add a form validation into your Vue project, and your form
component:

To install Vuelidate, you need to open Terminal (macOS or Linux) or Command1.
Prompt/PowerShell (Windows) and execute the following command:

> npm install vuelidate --save

To add the Vuelidate plugin to the Vue application, we need to import and add it2.
to Vue in the main.js file in the src folder:

import Vue from 'vue';
import App from './App.vue';
import Vuelidate from 'vuelidate';
import './style.css';

Vue.config.productionTip = false
Vue.use(Vuelidate);

new Vue({
 render: h => h(App),
}).$mount('#app')

In the TaskInput.vue file, we will add a new property to the Vue object. This3.
property is interpreted by the new plugin that was installed. At the end of the
object, we will add the validations property, and inside that property, we will
add the name of the model. The model is a direct name of the data or computed
property that the plugin will check for validation:

<script>
export default {
 name: 'TaskInput',
 data: () => ({
 task: ''
 }),
 methods: {
 addTask() {
 this.$emit('add-task', this.task);
 this.task = '';
 }
 },
 validations: {
 task: {}
 }
};
</script>

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[119]

Now, we need to import the rules that already exist on the plugins that we want4.
to use—those will be required and minLength. After the import, we will add
those rules to the model:

<script>
import { required, minLength } from 'vuelidate/lib/validators';

export default {
 name: 'TaskInput',
 data: () => ({
 task: ''
 }),
 methods: {
 addTask() {
 this.$emit('add-task', this.task);
 this.task = '';
 }
 },
 validations: {
 task: {
 required,
 minLength: minLength(5),
 }
 }
};
</script>

Now, we need to add the validation before emitting the event. We will use5.
the $touch built-in function to tell the plugin that the field was touched by the
user and check for validation. If there are any fields that had any interaction with
the user, the plugin will set the flags accordingly. If there are no errors, we will
emit the event and we will reset the validation with the $reset function. To do
this, we will change the addTask method:

addTask() {
 this.$v.task.$touch();
 if (this.$v.task.$error) return false;

 this.$emit('add-task', this.task);
 this.task = '';
 this.$v.task.$reset();
 return true;
}

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[120]

To alert the user that there are some errors on the field, we will make the input6.
change the style to a complete red border and have a red text. To do this, we will
need to make a conditional class on the input field. This will be attached directly
to the model's $error property:

<template>
 <div class='cardBox'>
 <div class='container tasker'>
 My task is:
 <input
 type='text'
 :value='task'
 @input='task = $event.target.value'
 class='taskInput'
 :class="$v.task.$error ? 'fieldError' : ''"
 />
 <button v-on:click='addTask'>Add Task</button>
 </div>
 </div>
</template>

For the class, we can create a fieldError class in the style.css file in the src7.
folder:

.fieldError {
 border: 2px solid red !important;
 color: red;
 border-radius: 3px;
}

To run the server and see your component, you need to open Terminal (macOS8.
or Linux) or Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[121]

Here is your component rendered and running:

How it works...
Once installed, the Vuelidate plugin adds a new $v property to the Vue prototype and
checks for a new object property in the Vue object, called validations. When this
property is defined and has some rules, the plugins check for the model's rules on each
update.

Using this new Vue prototype, we can check inside our code for the errors inside the rules
we defined, and execute functions to tell the plugin that the field was touched by the user
to flag as a dirty field or reset it. Using those features, we're able to add a new conditional
class based on the rules that we defined on the task model.

The task model is required and has a minimum of five characters. If those rules are not met,
the plugin will mark the model with an error. We take this error and use it to show the user
that the task field has an active error. When the user fulfills the requirements, the display of
the error disappears and the event can be emitted.

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[122]

See also
You can find more information about Vuelidate at https:/ / vuelidate. netlify. com/ .

You can find more information about class and style bindings at https:/ /v3.vuejs. org/
guide/class-and- style. html

Creating filters and sorters for a list
When working with lists, it's common to find yourself with raw data. Sometimes, you need
to get this data filtered so that it's readable for the user. To do this, we need a combination
of the computed properties to form a final set of filters and sorters.

In this recipe, we will learn how to create a simple filter and sorter that will control our
initial to-do task list.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
We will continue our to-do list project or you can create a new Vue project with Vue CLI, as
learned in the 'Creating your first project with Vue CLI' recipe in Chapter 2, Introducing
TypeScript and the Vue Ecosystem.

https://vuelidate.netlify.com/
https://vuelidate.netlify.com/
https://vuelidate.netlify.com/
https://vuelidate.netlify.com/
https://vuelidate.netlify.com/
https://vuelidate.netlify.com/
https://vuelidate.netlify.com/
https://vuelidate.netlify.com/
https://vuelidate.netlify.com/
https://vuelidate.netlify.com/
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[123]

Follow these steps to add a set of filters and sorts into your list:

In the App.vue file, at the <script> part, we will add new computed properties;1.
those will be for sorting and filtering. We will add three new computed
properties, baseList, filteredList, and sortedList. The
baseList property will be our first manipulation. We will add an id property to
the task list via Array.map. As JavaScript arrays start at zero, we will add 1 to
the index of the array. The filteredList property will filter the
baseList property and return just the unfinished tasks, and the
sortedList property will sort the filteredList property so that the last
added id property will be the first displayed to the user:

<script>
import CurrentTime from "./components/CurrentTime.vue";
import TaskInput from "./components/TaskInput";

export default {
 name: "TodoApp",
 components: {
 CurrentTime,
 TaskInput
 },
 data: () => ({
 taskList: [],
 }),
 computed: {
 baseList() {
 return [...this.taskList]
 .map((t, index) => ({
 ...t,
 id: index + 1
 }));
 },
 filteredList() {
 return [...this.baseList]
 .filter(t => !t.finishedAt);
 },
 sortedList() {
 return [...this.filteredList]
 .sort((a, b) => b.id - a.id);
 },
 displayList() {
 return this.sortedList;
 }
 },
 methods: {

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[124]

 formatDate(value) {
 if (!value) return "";
 if (typeof value !== "number") return value;

 const browserLocale =
 navigator.languages && navigator.languages.length
 ? navigator.languages[0]
 : navigator.language;
 const intlDateTime = new Intl.DateTimeFormat(browserLocale, {
 year: "numeric",
 month: "numeric",
 day: "numeric",
 hour: "numeric",
 minute: "numeric"
 });

 return intlDateTime.format(new Date(value));
 },
 addNewTask(task) {
 this.taskList.push({
 task,
 createdAt: Date.now(),
 finishedAt: undefined
 });
 },
 changeStatus(taskIndex) {
 const task = this.taskList[taskIndex];

 if (task.finishedAt) {
 task.finishedAt = undefined;
 } else {
 task.finishedAt = Date.now();
 }
 }
 }
};
</script>

On the <template> part, we will add the Task ID as an indicator and change2.
how the changeStatus method sends the argument. Because now the index is
mutable, we can't use it as a variable; it's just a temporary index on the array. We
need to use the task id:

<template>
 <div id="app">
 <current-time class="col-4" />
 <task-input class="col-6" @add-task="addNewTask" />

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[125]

 <div class="col-12">
 <div class="cardBox">
 <div class="container">
 <h2>My Tasks</h2>
 <ul class="taskList">
 <li
 v-for="(taskItem, index) in displayList"
 :key="`${index}_${Math.random()}`"
 >
 <input type="checkbox"
 :checked="!!taskItem.finishedAt"
 @input="changeStatus(taskItem.id)"
 />
 #{{ taskItem.id }} - {{ taskItem.task }}
 |
 Done at:
 {{ formatDate(taskItem.finishedAt) }}

 </div>
 </div>
 </div>
 </div>
</template>

On the changeStatus method, we need to update our function too. As the index3.
now starts at 1, we need to decrease the index of the array by one to get the real
index of the element before updating it:

changeStatus(taskId) {
 const task = this.taskList[taskId - 1];

 if (task.finishedAt) {
 task.finishedAt = undefined;
 } else {
 task.finishedAt = Date.now();
 }
}

To run the server and see your component, you need to open Terminal (macOS4.
or Linux) or Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Here is your component rendered and running:

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[126]

How it works...
The computed properties worked together as a cache for the list and made sure there were
no side effects on the manipulation of the elements:

At the baseList property, we created a new array with the same tasks but1.
added a new id property to the task.
At the filteredList property, we took the baseList property and only2.
returned the tasks that weren't finished.
At the sortedList property, we sorted the tasks on3.
the filteredList property by their ID, in descending order.

When all the manipulation was done, the displayList property returned the result of the
data that was manipulated.

See also
You can find more information about Array.prototype.map at https:/ /developer.
mozilla.org/en-US/ docs/ Web/ JavaScript/ Reference/ Global_ Objects/ Array/ map.

You can find more information about Array.prototype.filter at https:/ /developer.
mozilla.org/en-US/ docs/ Web/ JavaScript/ Reference/ Global_ Objects/ Array/ filter.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[127]

You can find more information about Array.prototype.sort at https:/ /developer.
mozilla.org/en-US/ docs/ Web/ JavaScript/ Reference/ Global_ Objects/ Array/ sort.

Creating conditional filters to sort list data
After completing the previous recipe, your data should be filtered and sorted, but you
might need to check the filtered data or need to change how it was sorted. In this recipe, we
will learn how to create conditional filters and sort the data on a list.

Using some basic principles, it's possible to gather information and display it in many
different ways.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
We will continue our to-do list project or you can create a new Vue project with Vue CLI, as
learned in the 'Creating your first project with Vue CLI' recipe in Chapter 2, Introducing
TypeScript and the Vue Ecosystem.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[128]

Now, follow these steps to add a conditional filter to sort your list data:

In the App.vue file, at the <script> part, we will update the computed1.
properties, filteredList, sortedList, and displayList. We need to add
three new variables to our project, hideDone, reverse, and sortById. All three
are going to be Boolean variables and will start with a default value of false.
The filteredList property will check if the hideDone variable is true. If it is,
it will have the same behavior, but if not, it will show the whole list with no filter.
The sortedList property will check if the sortById variable is true. If it is, it
will have the same behavior, but if not, it will sort the list by the finished date of
the task. The displayList property will check if the reverse variable is true.
If it is, it will reverse the displayed list, but if not, it will have the same behavior:

<script>
import CurrentTime from "./components/CurrentTime.vue";
import TaskInput from "./components/TaskInput";

export default {
 name: "TodoApp",
 components: {
 CurrentTime,
 TaskInput
 },
 data: () => ({
 taskList: [],
 hideDone: false,
 reverse: false,
 sortById: false,
 }),
 computed: {
 baseList() {
 return [...this.taskList]
 .map((t, index) => ({
 ...t,
 id: index + 1
 }));
 },
 filteredList() {
 return this.hideDone
 ? [...this.baseList]
 .filter(t => !t.finishedAt)
 : [...this.baseList];
 },
 sortedList() {
 return [...this.filteredList]
 .sort((a, b) => (

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[129]

 this.sortById
 ? b.id - a.id
 : (a.finishedAt || 0) - (b.finishedAt || 0)
));
 },
 displayList() {
 const taskList = [...this.sortedList];

 return this.reverse
 ? taskList.reverse()
 : taskList;
 }
 },
 methods: {
 formatDate(value) {
 if (!value) return "";
 if (typeof value !== "number") return value;

 const browserLocale =
 navigator.languages && navigator.languages.length
 ? navigator.languages[0]
 : navigator.language;

 const intlDateTime = new Intl.DateTimeFormat(browserLocale, {
 year: "numeric",
 month: "numeric",
 day: "numeric",
 hour: "numeric",
 minute: "numeric"
 });

 return intlDateTime.format(new Date(value));
 },
 addNewTask(task) {
 this.taskList.push({
 task,
 createdAt: Date.now(),
 finishedAt: undefined
 });
 },
 changeStatus(taskId) {
 const task = this.taskList[taskId - 1];

 if (task.finishedAt) {
 task.finishedAt = undefined;
 } else {
 task.finishedAt = Date.now();
 }

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[130]

 }
 }
};
</script>

On the <template> part, we need to add the controllers for those variables. We2.
will create three checkboxes, linked directly to the variables via the v-model
directive:

<template>
 <div id="app">
 <current-time class="col-4" />
 <task-input class="col-6" @add-task="addNewTask" />
 <div class="col-12">
 <div class="cardBox">
 <div class="container">
 <h2>My Tasks</h2>
 <hr />
 <div class="col-4">
 <input
 v-model="hideDone"
 type="checkbox"
 id="hideDone"
 name="hideDone"
 />
 <label for="hideDone">
 Hide Done Tasks
 </label>
 </div>
 <div class="col-4">
 <input
 v-model="reverse"
 type="checkbox"
 id="reverse"
 name="reverse"
 />
 <label for="reverse">
 Reverse Order
 </label>
 </div>
 <div class="col-4">
 <input
 v-model="sortById"
 type="checkbox"
 id="sortById"
 name="sortById"
 />
 <label for="sortById">

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[131]

 Sort By Id
 </label>
 </div>
 <ul class="taskList">
 <li
 v-for="(taskItem, index) in displayList"
 :key="`${index}_${Math.random()}`"
 >
 <input type="checkbox"
 :checked="!!taskItem.finishedAt"
 @input="changeStatus(taskItem.id)"
 />
 #{{ taskItem.id }} - {{ taskItem.task }}
 |
 Done at:
 {{ formatDate(taskItem.finishedAt) }}

 </div>
 </div>
 </div>
 </div>
</template>

To run the server and see your component, you need to open Terminal (macOS3.
or Linux) or Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Here is your component rendered and running:

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[132]

How it works...
The computed properties worked together as a cache for the list and made sure there
weren't any side effects on the manipulation of the elements. With the conditional process,
it was possible to change the rules of the filtering and sorting through a variable, and the
display was updated in real-time:

At the filteredList property, we took the baseList property and returned1.
just the tasks that weren't finished. When the hideDone variable was false, we
returned the whole list without any filter.
At the sortedList property, we sorted the tasks on2.
the filteredList property. When the sortById variable was true, the list
was sorted by ID in descending order; when it was false, the sorting was done
by the task finish time in ascending order.
At the displayList property, when the reverse variable was true, the final3.
list was reversed.

When all the manipulation was done, the displayList property returned the result of the
data that was manipulated.

Those computed properties were controlled by the checkboxes on the user screen, so the
user had total control of what they could see and how they could see it.

See also
You can find more information about Array.prototype.map at https:/ /developer.
mozilla.org/en-US/ docs/ Web/ JavaScript/ Reference/ Global_ Objects/ Array/ map.

You can find more information about Array.prototype.filter at https:/ /developer.
mozilla.org/en-US/ docs/ Web/ JavaScript/ Reference/ Global_ Objects/ Array/ filter.

You can find more information about Array.prototype.sort at https:/ /developer.
mozilla.org/en-US/ docs/ Web/ JavaScript/ Reference/ Global_ Objects/ Array/ sort.

Adding custom styles and transitions
Adding styles in your components is a good practice, as it allows you to show your user
what is happening more clearly. By doing this, you are able to show a visual response to
the user and also give a better experience on your application.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[133]

In this recipe, we will learn how to add a new kind of conditional class binding. We will use
CSS effects mixed with the re-rendering that comes with each new Vue update.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
We will continue our to-do list project or you can create a new Vue project with Vue CLI, as
learned in the 'Creating your first project with Vue CLI' recipe in Chapter 2, Introducing
TypeScript and the Vue Ecosystem.

Follow these steps to add custom styles and transitions to your component:

In the App.vue file, we will add a conditional class to the list items for the tasks1.
that are done:

<template>
 <div id="app">
 <current-time class="col-4" />
 <task-input class="col-6" @add-task="addNewTask" />
 <div class="col-12">
 <div class="cardBox">
 <div class="container">
 <h2>My Tasks</h2>
 <hr />
 <div class="col-4">
 <input
 v-model="hideDone"
 type="checkbox"
 id="hideDone"
 name="hideDone"
 />
 <label for="hideDone">

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[134]

 Hide Done Tasks
 </label>
 </div>
 <div class="col-4">
 <input
 v-model="reverse"
 type="checkbox"
 id="reverse"
 name="reverse"
 />
 <label for="reverse">
 Reverse Order
 </label>
 </div>
 <div class="col-4">
 <input
 v-model="sortById"
 type="checkbox"
 id="sortById"
 name="sortById"
 />
 <label for="sortById">
 Sort By Id
 </label>
 </div>
 <ul class="taskList">
 <li
 v-for="(taskItem, index) in displayList"
 :key="`${index}_${Math.random()}`"
 :class="!!taskItem.finishedAt ? 'taskDone' : ''"
 >
 <input type="checkbox"
 :checked="!!taskItem.finishedAt"
 @input="changeStatus(taskItem.id)"
 />
 #{{ taskItem.id }} - {{ taskItem.task }}
 |
 Done at:
 {{ formatDate(taskItem.finishedAt) }}

 </div>
 </div>
 </div>
 </div>
</template>

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[135]

At the <style> part of the component, we will create the CSS style sheet classes2.
for the taskDone CSS class. We need to make the list have a separator between
the items; then, we will make the list have a striped style; and when they get
marked as done, the background will change with an effect. To add the separator
between the lines and the striped list or zebra style, we need to add a CSS style
sheet rule that applies for each even nth-child of our list:

<style scoped>
 .taskList li {
 list-style: none;
 text-align: left;
 padding: 5px 10px;
 border-bottom: 1px solid rgba(0,0,0,0.15);
 }

 .taskList li:last-child {
 border-bottom: 0px;
 }

 .taskList li:nth-child(even){
 background-color: rgba(0,0,0,0.05);
 }
</style>

To add the effect on the background, when the task is done, at the end of the3.
<style> part, we will add a CSS animation keyframe that indicates the
background color change and apply this animation to the .taskDone CSS class:

<style scoped>
 .taskList li {
 list-style: none;
 text-align: left;
 padding: 5px 10px;
 border-bottom: 1px solid rgba(0,0,0,0.15);
 }

 .taskList li:last-child {
 border-bottom: 0px;
 }

 .taskList li:nth-child(even){
 background-color: rgba(0,0,0,0.05);
 }

 @keyframes colorChange {
 from{
 background-color: inherit;

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[136]

 }
 to{
 background-color: rgba(0, 160, 24, 0.577);
 }
 }

 .taskList li.taskDone{
 animation: colorChange 1s ease;
 background-color: rgba(0, 160, 24, 0.577);
 }
</style>

To run the server and see your component, you need to open Terminal (macOS4.
or Linux) or Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Here is your component rendered and running:

How it works...
Each time a new item in our application is marked as done, the displayList property gets
updated and triggers the re-rendering of the component.

Because of this, our taskDone CSS class has an animation attached to it that is executed on
rendering, showing a green background.

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[137]

See also
You can find more information about CSS animations at https:/ /developer. mozilla. org/
en-US/docs/Web/CSS/ CSS_ Animations/ Using_ CSS_ animations.

You can find more information about class and style bindings at https:/ /v3.vuejs. org/
guide/class-and- style. html

Using vue-devtools to debug your
application
vue-devtools is a must for every Vue developer. This tool shows us the depths of the Vue
components, routes, events, and vuex.

With the help of the vue-devtools extension, it's possible to debug our application, try
new data before changing our code, execute functions without needing to call them in our
code directly, and so much more.

In this recipe, we will learn more about how we can use the devtools to find more
information on your application and how it can be used to help your debug process.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

You will need to install the vue-devtools extension in your browser:

Chrome extension—http:/ /bit.ly/ chrome- vue- devtools

Firefox extension—http:/ /bit. ly/firefox- vue- devtools

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
https://v3.vuejs.org/guide/class-and-style.html
http://bit.ly/chrome-vue-devtools
http://bit.ly/chrome-vue-devtools
http://bit.ly/chrome-vue-devtools
http://bit.ly/chrome-vue-devtools
http://bit.ly/chrome-vue-devtools
http://bit.ly/chrome-vue-devtools
http://bit.ly/chrome-vue-devtools
http://bit.ly/chrome-vue-devtools
http://bit.ly/chrome-vue-devtools
http://bit.ly/chrome-vue-devtools
http://bit.ly/chrome-vue-devtools
http://bit.ly/chrome-vue-devtools
http://bit.ly/chrome-vue-devtools
http://bit.ly/firefox-vue-devtools
http://bit.ly/firefox-vue-devtools
http://bit.ly/firefox-vue-devtools
http://bit.ly/firefox-vue-devtools
http://bit.ly/firefox-vue-devtools
http://bit.ly/firefox-vue-devtools
http://bit.ly/firefox-vue-devtools
http://bit.ly/firefox-vue-devtools
http://bit.ly/firefox-vue-devtools
http://bit.ly/firefox-vue-devtools
http://bit.ly/firefox-vue-devtools
http://bit.ly/firefox-vue-devtools
http://bit.ly/firefox-vue-devtools

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[138]

How to do it...
We will continue our to-do list project or you can create a new Vue project with Vue CLI, as
learned in the 'Creating your first project with Vue CLI' recipe in Chapter 2, Introducing
TypeScript and the Vue Ecosystem.

When developing any Vue application, it's always a good practice to develop with vue-
devtools to hand.

Follow these steps to understand how to use vue-devtools and how to properly debug a
Vue application:

To enter vue-devtools, you need to have it installed in your browser first, so1.
check the 'Getting ready' section of this recipe for the links to the extension for
Chrome or Firefox. In your Vue development application, enter browser
developer inspector mode. A new tab with the name Vue must appear:

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[139]

The first tab that you are presented with is the Components tab. This tab shows2.
your application component tree. If you click on a component, you will be able to
see all the available data, the computed property, extra data injected by plugins
such as vuelidate, vue-router, or vuex. You can edit the data to see the
changes in the application in real time:

The second tab is for vuex development. This tab will show the history of the3.
mutations, the current state, and the getters. It's possible to check on each
mutation the passed payload and do time-travel mutations, to "go back in time"
in the vuex changes in the states:

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[140]

The third tab is dedicated to event emitters in the application. All events that are4.
emitted in the application will be shown here. You can check the event that was
emitted by clicking on it. You can see the name of the event, the type, who was
the source of the event (in this case, it was a component), and the payload:

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[141]

The fourth tab is dedicated to the vue-router plugin. There, you can see the5.
navigation history, with all the metadata passed to the new route. You can check
all the available routes in your application:

 The fifth tab is a Performance tab. Here, you can check your component loading6.
time, the frames per second that your application is running by the events that
are happening in real time. This first screenshot shows the current frames per
second of the current application, and for the selected component:

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[142]

This second screenshot shows the components lifecycle hooks performance and
the time it took to execute each hook:

The sixth tab is your Settings tab; here, you can manage the extension, change7.
how it looks, how it behaves internally, and how it will behave within the Vue
plugins:

Data Binding, Form Validations, Events, and Computed Properties Chapter 3

[143]

The last tab is a refresh button for the vue-devtools. Sometimes, when the8.
hot-module-reload occurs or when some complex events happen in your
application component tree, the extension can lose track of what is happening.
This button forces the extension to reload and read the Vue application state
again.

See also
You can find more information about vue-devtools at https:/ /github. com/vuejs/ vue-
devtools.

https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools

4
Components, Mixins, and

Functional Components
Building a Vue application is like putting a puzzle together. Each piece of the puzzle is a
component, and each piece has a slot to fill.

Components play a big part in Vue development. In Vue, each part of your code will be a
component—it could be a layout, page, container, or button, but ultimately, it's a
component. Learning how to interact with them and reuse them is the key to cleaning up
code and performance in your Vue application. Components are the code that will, in the
end, render something on the screen, whatever the size might be.

In this chapter, we will learn about how we can make a visual component that can be
reused in many places. We'll use slots to place data inside our components, create
functional components for seriously fast rendering, implement direct communication
between parent and child components, and finally, look at loading your components
asynchronously.

Let's put these all those pieces together and create the beautiful puzzle that is a Vue
application.

In this chapter, we'll cover the following recipes:

Creating a visual template component
Using slots and named slots to place data inside your components
Passing data to your component and validating the data
Creating functional components
Accessing your children components data
Creating a dynamic injected component
Creating a dependency injection component

Components, Mixins, and Functional Components Chapter 4

[145]

Creating a component mixin
Lazy loading your components

Technical requirements
In this chapter, we will be using Node.js and Vue-CLI.

Attention Windows users: you need to install an NPM package called
windows-build-tools to be able to install the following required
packages. To do so, open PowerShell as an administrator and execute the
following command:

> npm install -g windows-build-tools

To install Vue-CLI, you need to open Terminal (macOS or Linux) or the Command
Prompt/PowerShell (Windows) and execute the following command:

> npm install -g @vue/cli @vue/cli-service-global

Creating a visual template component
Components can be data-driven, stateless, stateful, or a simple visual component. But what
is a visual component? A visual component is a component that has only one purpose:
visual manipulation.

A visual component could have a simple Scoped CSS with some div HTML elements, or it
could be a more complex component that can calculate the position of the element on the
screen in real-time.

We will create a card wrapper component that follows the Material Design guide.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

Components, Mixins, and Functional Components Chapter 4

[146]

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can use the Vue project with Vue-CLI, as we did in the
'Creating Your first project with Vue CLI' recipe in Chapter 2, Introducing TypeScript and the
Vue Ecosystem, or we can start a new one.

To start a new project, open Terminal (macOS or Linux) or the Command
Prompt/PowerShell (Windows) and execute the following command:

> vue create visual-component

The CLI will ask some questions that will help with the creation of the project. You can use
the arrow keys to navigate, the Enter key to continue, and the spacebar to select an option.
Choose the default option:

? Please pick a preset: (Use arrow keys)
❯ default (babel, eslint)
 Manually select features

Now, let's follow these steps and create a visual template component:

Let's create a new file called MaterialCardBox.vue in the src/components1.
folder.
In this file, we will start with the template of our component. We need to create2.
the box for the card. By using the Material Design guide, this box will have a
shadow and rounded corners:

<template>
 <div class="cardBox elevation_2">
 <div class="section">
 This is a Material Card Box
 </div>
 </div>
</template>

Components, Mixins, and Functional Components Chapter 4

[147]

In the <script> part of our component, we will add just our basic name:3.

<script>
 export default {
 name: 'MaterialCardBox',
 };
</script>

We need to create our elevation CSS stylesheet rules. To do this, create a file4.
named elevation.css in the style folder. There, we will create the elevations
from 0 to 24, to follow all the elevations on the Material Design guide:

.elevation_0 {
 border: 1px solid rgba(0, 0, 0, 0.12);
}

.elevation_1 {
 box-shadow: 0 1px 3px rgba(0, 0, 0, 0.2),
 0 1px 1px rgba(0, 0, 0, 0.14),
 0 2px 1px -1px rgba(0, 0, 0, 0.12);
}

.elevation_2 {
 box-shadow: 0 1px 5px rgba(0, 0, 0, 0.2),
 0 2px 2px rgba(0, 0, 0, 0.14),
 0 3px 1px -2px rgba(0, 0, 0, 0.12);
}

.elevation_3 {
 box-shadow: 0 1px 8px rgba(0, 0, 0, 0.2),
 0 3px 4px rgba(0, 0, 0, 0.14),
 0 3px 3px -2px rgba(0, 0, 0, 0.12);
}

.elevation_4 {
 box-shadow: 0 2px 4px -1px rgba(0, 0, 0, 0.2),
 0 4px 5px rgba(0, 0, 0, 0.14),
 0 1px 10px rgba(0, 0, 0, 0.12);
}

.elevation_5 {
 box-shadow: 0 3px 5px -1px rgba(0, 0, 0, 0.2),
 0 5px 8px rgba(0, 0, 0, 0.14),
 0 1px 14px rgba(0, 0, 0, 0.12);
}

.elevation_6 {
 box-shadow: 0 3px 5px -1px rgba(0, 0, 0, 0.2),

Components, Mixins, and Functional Components Chapter 4

[148]

 0 6px 10px rgba(0, 0, 0, 0.14),
 0 1px 18px rgba(0, 0, 0, 0.12);
}

.elevation_7 {
 box-shadow: 0 4px 5px -2px rgba(0, 0, 0, 0.2),
 0 7px 10px 1px rgba(0, 0, 0, 0.14),
 0 2px 16px 1px rgba(0, 0, 0, 0.12);
}

.elevation_8 {
 box-shadow: 0 5px 5px -3px rgba(0, 0, 0, 0.2),
 0 8px 10px 1px rgba(0, 0, 0, 0.14),
 0 3px 14px 2px rgba(0, 0, 0, 0.12);
}

.elevation_9 {
 box-shadow: 0 5px 6px -3px rgba(0, 0, 0, 0.2),
 0 9px 12px 1px rgba(0, 0, 0, 0.14),
 0 3px 16px 2px rgba(0, 0, 0, 0.12);
}

.elevation_10 {
 box-shadow: 0 6px 6px -3px rgba(0, 0, 0, 0.2),
 0 10px 14px 1px rgba(0, 0, 0, 0.14),
 0 4px 18px 3px rgba(0, 0, 0, 0.12);
}

.elevation_11 {
 box-shadow: 0 6px 7px -4px rgba(0, 0, 0, 0.2),
 0 11px 15px 1px rgba(0, 0, 0, 0.14),
 0 4px 20px 3px rgba(0, 0, 0, 0.12);
}

.elevation_12 {
 box-shadow: 0 7px 8px -4px rgba(0, 0, 0, 0.2),
 0 12px 17px 2px rgba(0, 0, 0, 0.14),
 0 5px 22px 4px rgba(0, 0, 0, 0.12);
}

.elevation_13 {
 box-shadow: 0 7px 8px -4px rgba(0, 0, 0, 0.2),
 0 13px 19px 2px rgba(0, 0, 0, 0.14),
 0 5px 24px 4px rgba(0, 0, 0, 0.12);
}

.elevation_14 {
 box-shadow: 0 7px 9px -4px rgba(0, 0, 0, 0.2),

Components, Mixins, and Functional Components Chapter 4

[149]

 0 14px 21px 2px rgba(0, 0, 0, 0.14),
 0 5px 26px 4px rgba(0, 0, 0, 0.12);
}

.elevation_15 {
 box-shadow: 0 8px 9px -5px rgba(0, 0, 0, 0.2),
 0 15px 22px 2px rgba(0, 0, 0, 0.14),
 0 6px 28px 5px rgba(0, 0, 0, 0.12);
}

.elevation_16 {
 box-shadow: 0 8px 10px -5px rgba(0, 0, 0, 0.2),
 0 16px 24px 2px rgba(0, 0, 0, 0.14),
 0 6px 30px 5px rgba(0, 0, 0, 0.12);
}

.elevation_17 {
 box-shadow: 0 8px 11px -5px rgba(0, 0, 0, 0.2),
 0 17px 26px 2px rgba(0, 0, 0, 0.14),
 0 6px 32px 5px rgba(0, 0, 0, 0.12);
}

.elevation_18 {
 box-shadow: 0 9px 11px -5px rgba(0, 0, 0, 0.2),
 0 18px 28px 2px rgba(0, 0, 0, 0.14),
 0 7px 34px 6px rgba(0, 0, 0, 0.12);
}

.elevation_19 {
 box-shadow: 0 9px 12px -6px rgba(0, 0, 0, 0.2),
 0 19px 29px 2px rgba(0, 0, 0, 0.14),
 0 7px 36px 6px rgba(0, 0, 0, 0.12);
}

.elevation_20 {
 box-shadow: 0 10px 13px -6px rgba(0, 0, 0, 0.2),
 0 20px 31px 3px rgba(0, 0, 0, 0.14),
 0 8px 38px 7px rgba(0, 0, 0, 0.12);
}

.elevation_21 {
 box-shadow: 0 10px 13px -6px rgba(0, 0, 0, 0.2),
 0 21px 33px 3px rgba(0, 0, 0, 0.14),
 0 8px 40px 7px rgba(0, 0, 0, 0.12);
}

.elevation_22 {
 box-shadow: 0 10px 14px -6px rgba(0, 0, 0, 0.2),

Components, Mixins, and Functional Components Chapter 4

[150]

 0 22px 35px 3px rgba(0, 0, 0, 0.14),
 0 8px 42px 7px rgba(0, 0, 0, 0.12);
}

.elevation_23 {
 box-shadow: 0 11px 14px -7px rgba(0, 0, 0, 0.2),
 0 23px 36px 3px rgba(0, 0, 0, 0.14),
 0 9px 44px 8px rgba(0, 0, 0, 0.12);
}

.elevation_24 {
 box-shadow: 0 11px 15px -7px rgba(0, 0, 0, 0.2),
 0 24px 38px 3px rgba(0, 0, 0, 0.14),
 0 9px 46px 8px rgba(0, 0, 0, 0.12);
}

For styling our card in the <style> part of the component, we need to set5.
the scoped attribute inside the <style> tag to make sure that the visual style
won't interfere with any other components within our application. We will make
this card follow the Material Design guide. We need to import the Roboto font
family and apply it to all elements that will be wrapped inside this component:

<style scoped>
 @import
url('https://fonts.googleapis.com/css?family=Roboto:400,500,700&dis
play=swap');
 @import '../style/elevation.css';

 *{
 font-family: 'Roboto', sans-serif;
 }
 .cardBox{
 width: 100%;
 max-width: 300px;
 background-color: #fff;
 position: relative;
 display: inline-block;
 border-radius: 0.25rem;
 }
 .cardBox > .section {
 padding: 1rem;
 position: relative;
 }
</style>

Components, Mixins, and Functional Components Chapter 4

[151]

To run the server and see your component, you need to open Terminal (macOS6.
or Linux) or the Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Here is your component rendered and running:

How it works...
A visual component is a component that will wrap any component and place the wrapped
data with custom styles. As this component mixes with others, it can form a new
component without the need to reapply or rewrite any style in your code.

See also
You can find more information about Scoped CSS at https:/ /vue- loader. vuejs. org/
guide/scoped-css. html#child- component- root- elements.

You can find more information about Material Design cards at https:/ / material. io/
components/cards/ .

Check out the Roboto font family at https:/ /fonts. google. com/specimen/ Roboto.

Using slots and named slots to place data
inside your components
Sometimes the pieces of the puzzle go missing, and you find yourself with a blank spot.
Imagine that you could fill that empty spot with a piece that you crafted yourself, not the
original one that came with the puzzle box. That's a rough analogy for what a Vue slot is.

https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://vue-loader.vuejs.org/guide/scoped-css.html#child-component-root-elements
https://material.io/components/cards/
https://material.io/components/cards/
https://material.io/components/cards/
https://material.io/components/cards/
https://material.io/components/cards/
https://material.io/components/cards/
https://material.io/components/cards/
https://material.io/components/cards/
https://material.io/components/cards/
https://material.io/components/cards/
https://material.io/components/cards/
https://fonts.google.com/specimen/Roboto
https://fonts.google.com/specimen/Roboto
https://fonts.google.com/specimen/Roboto
https://fonts.google.com/specimen/Roboto
https://fonts.google.com/specimen/Roboto
https://fonts.google.com/specimen/Roboto
https://fonts.google.com/specimen/Roboto
https://fonts.google.com/specimen/Roboto
https://fonts.google.com/specimen/Roboto
https://fonts.google.com/specimen/Roboto
https://fonts.google.com/specimen/Roboto
https://fonts.google.com/specimen/Roboto
https://fonts.google.com/specimen/Roboto

Components, Mixins, and Functional Components Chapter 4

[152]

Vue slots are like open spaces in your component that other components can fill with text,
HTML elements, or other Vue components. You can declare where the slot will be and how
it will behave in your component.

With this technique, you can create a component and, when needed, customize it without
any effort at all.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can create our Vue project with Vue-CLI, as we did in the
Creating Your first project with Vue CLI recipe in Chapter 2, Introducing TypeScript and the Vue
Ecosystem, or use the project from the Creating a visual template component recipe.

Follow these instructions to create slots and named slots in components:

Let's open the file called MaterialCardBox.vue in the components folder.1.
In the <template> part of the component, we will need to add four main2.
sections on the card. Those sections are based on the Material Design card
anatomy and are the header, media, main section, and action areas. We will
use the default slot for the main section, and the rest will all be named scopes.
For some named slots, we will add a fallback configuration that will be displayed
if the user doesn't choose any setting on the slot:

<template>
 <div class="cardBox elevation_2">
 <div class="header">
 <slot
 v-if="$slots.header"
 name="header"

Components, Mixins, and Functional Components Chapter 4

[153]

 />
 <div v-else>
 <h1 class="cardHeader cardText">
 Card Header
 </h1>
 <h2 class="cardSubHeader cardText">
 Card Sub Header
 </h2>
 </div>
 </div>
 <div class="media">
 <slot
 v-if="$slots.media"
 name="media"
 />
 <img
 v-else
 src="https://via.placeholder.com/350x250"
 >
 </div>
 <div
 v-if="$slots.default"
 class="section cardText"
 :class="{
 noBottomPadding: $slots.action,
 halfPaddingTop: $slots.media,
 }"
 >
 <slot />
 </div>
 <div
 v-if="$slots.action"
 class="action"
 >
 <slot name="action" />
 </div>
 </div>
</template>

Now, we need to create our text CSS stylesheet rules for the component. In the3.
style folder, create a new file called cardStyles.css, and there we will add
the rules for the card text and headers:

h1, h2, h3, h4, h5, h6{
 margin: 0;
}
.cardText{
 -moz-osx-font-smoothing: grayscale;

Components, Mixins, and Functional Components Chapter 4

[154]

 -webkit-font-smoothing: antialiased;
 text-decoration: inherit;
 text-transform: inherit;
 font-size: 0.875rem;
 line-height: 1.375rem;
 letter-spacing: 0.0071428571em;
}
h1.cardHeader{
 font-size: 1.25rem;
 line-height: 2rem;
 font-weight: 500;
 letter-spacing: .0125em;
}
h2.cardSubHeader{
 font-size: .875rem;
 line-height: 1.25rem;
 font-weight: 400;
 letter-spacing: .0178571429em;
 opacity: .6;
}

In the <style> part of the component, we need to create some CSS stylesheets to4.
follow the rules of our design guide:

<style scoped>
@import
url("https://fonts.googleapis.com/css?family=Roboto:400,500,700&dis
play=swap");
@import "../style/elevation.css";
@import "../style/cardStyles.css";

* {
 font-family: "Roboto", sans-serif;
}

.cardBox {
 width: 100%;
 max-width: 300px;
 border-radius: 0.25rem;
 background-color: #fff;
 position: relative;
 display: inline-block;
 box-shadow: 0 1px 5px rgba(0, 0, 0, 0.2), 0 2px 2px rgba(0, 0, 0,
0.14),
 0 3px 1px -2px rgba(0, 0, 0, 0.12);
}
.cardBox > .header {
 padding: 1rem;

Components, Mixins, and Functional Components Chapter 4

[155]

 position: relative;
 display: block;
}
.cardBox > .media {
 overflow: hidden;
 position: relative;
 display: block;
 max-width: 100%;
}
.cardBox > .section {
 padding: 1rem;
 position: relative;
 margin-bottom: 1.5rem;
 display: block;
}
.cardBox > .action {
 padding: 0.5rem;
 position: relative;
 display: block;
}
.cardBox > .action > *:not(:first-child) {
 margin-left: 0.4rem;
}
.noBottomPadding {
 padding-bottom: 0 !important;
}
.halfPaddingTop {
 padding-top: 0.5rem !important;
}
</style>

In the App.vue file, in the src folder, we need to add elements to those slots.5.
Those elements will be added to each one of the named slots, and for the default
slot. We will change the component in the <template> part of the file. To add a
named slot, we need to use a directive called v-slot: and then the name of the
slot we want to use:

<template>
 <div id="app">
 <MaterialCardBox>
 <template v-slot:header>
 Card Title

 Card Sub-Title
 </template>
 <template v-slot:media>

 </template>

Components, Mixins, and Functional Components Chapter 4

[156]

 <p>Main Section</p>
 <template v-slot:action>
 <button>Action Button</button>
 <button>Action Button</button>
 </template>
 </MaterialCardBox>
 </div>
</template>

For the default slot, we don't need to use a directive; it just needs to be
wrapped in the component to be placed in the <slot /> part of the
component.

To run the server and see your component, you need to open Terminal (macOS6.
or Linux) or the Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Here is your component rendered and running:

Components, Mixins, and Functional Components Chapter 4

[157]

How it works...
Slots are places where you can put anything that can be rendered into the DOM. We choose
the position of our slot and tell the component where to render when it receives any
information.

In this recipe, we used named slots, which are designed to work with a component that
requires more than one slot. To place any information in that component within the Vue
single file (.vue) <template> part, you need to add the v-slot: directive so that Vue is
able to know where to place the information that was passed down.

See also
You can find more information about Vue slots at https:/ /vuejs. org/ v2/guide/
components-slots. html.

You can find more information about the Material Design card anatomy at https:/ /
material.io/components/ cards/ #anatomy.

Passing data to your component and
validating the data
You now know how to place data inside your component through slots, but those slots
were made for HTML DOM elements or Vue components. Sometimes, you need to pass
data such as strings, arrays, Booleans, or even objects.

The whole application is like a puzzle, where each piece is a component. Communication
between components is an important part of it. The possibility to pass data to a component
is the first step to connect the puzzle, and then validating the data is the final step to
connect the pieces.

In this recipe, we will learn how to pass data to a component and validate the data that was
passed to the component.

https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html
https://material.io/components/cards/#anatomy
https://material.io/components/cards/#anatomy
https://material.io/components/cards/#anatomy
https://material.io/components/cards/#anatomy
https://material.io/components/cards/#anatomy
https://material.io/components/cards/#anatomy
https://material.io/components/cards/#anatomy
https://material.io/components/cards/#anatomy
https://material.io/components/cards/#anatomy
https://material.io/components/cards/#anatomy
https://material.io/components/cards/#anatomy
https://material.io/components/cards/#anatomy

Components, Mixins, and Functional Components Chapter 4

[158]

Getting ready
The pre-requisite is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can create our Vue project with Vue-CLI, as we did in the
recipe Creating Your first project with Vue CLI in Chapter 2, Introducing TypeScript and the Vue
Ecosystem, or use the project from the Using slots and name slots to place data inside your
components recipe.

Follow these instructions to pass data to the component and validate it:

Let's open the file called MaterialCardBox.vue in the src/components folder.1.
In the <script> part of the component, we create a new property, called props.2.
This property receives the component data, and that data can be used for visual
manipulation, variables inside your code, or a function that needs to be executed.
In this property, we need to declare the name of the attribute, the type, if it's
required, and the validation function. This function will be executed at runtime
to validate whether the passed attribute is a valid one:

<script>
export default {
 name: 'MaterialCardBox',
 inheritAttrs: false,
 props: {
 header: {
 type: String,
 required: false,
 default: '',
 validator: v => typeof v === 'string',
 },
 subHeader: {
 type: String,
 required: false,
 default: '',
 validator: v => typeof v === 'string',

Components, Mixins, and Functional Components Chapter 4

[159]

 },
 mainText: {
 type: String,
 required: false,
 default: '',
 validator: v => typeof v === 'string',
 },
 showMedia: {
 type: Boolean,
 required: false,
 default: false,
 validator: v => typeof v === 'boolean',
 },
 imgSrc: {
 type: String,
 required: false,
 default: '',
 validator: v => typeof v === 'string',
 },
 showActions: {
 type: Boolean,
 required: false,
 default: false,
 validator: v => typeof v === 'boolean',
 },
 elevation: {
 type: Number,
 required: false,
 default: 2,
 validator: v => typeof v === 'number',
 },
 },
 computed: {},
};
</script>

In the computed property, in the <script> part of the component, we need to3.
create a set of visual manipulation rules that will be used for rendering the card.
Those rules will be showMediaContent, showActionsButtons, showHeader,
and cardElevation. Each rule will check the received props and the
$slots objects to see whether the relevant card part needs to be rendered:

 computed: {
 showMediaContent() {
 return (this.$slots.media || this.imgSrc) && this.showMedia;
 },
 showActionsButtons() {

Components, Mixins, and Functional Components Chapter 4

[160]

 return this.showActions && this.$slots.action;
 },
 showHeader() {
 return this.$slots.header || (this.header || this.subHeader);
 },
 showMainContent() {
 return this.$slots.default || this.mainText;
 },
 cardElevation() {
 return `elevation_${parseInt(this.elevation, 10)}`;
 },
 },

After adding the visual manipulation rules, we need to add the created rules4.
to the <template> part of our component. They will affect the appearance and
behavior of our card. For example, if there is no header slot defined, and there is
a header property defined, we show the fallback header. That header is the data
that was passed down via props:

<template>
 <div
 class="cardBox"
 :class="cardElevation"
 >
 <div
 v-if="showHeader"
 class="header"
 >
 <slot
 v-if="$slots.header"
 name="header"
 />
 <div v-else>
 <h1 class="cardHeader cardText">
 {{ header }}
 </h1>
 <h2 class="cardSubHeader cardText">
 {{ subHeader }}
 </h2>
 </div>
 </div>
 <div
 v-if="showMediaContent"
 class="media"
 >
 <slot
 v-if="$slots.media"

Components, Mixins, and Functional Components Chapter 4

[161]

 name="media"
 />
 <img
 v-else
 :src="imgSrc"
 >
 </div>
 <div
 v-if="showMainContent"
 class="section cardText"
 :class="{
 noBottomPadding: $slots.action,
 halfPaddingTop: $slots.media,
 }"
 >
 <slot v-if="$slots.default" />
 <p
 v-else
 class="cardText"
 >
 {{ mainText }}
 </p>
 </div>
 <div
 v-if="showActionsButtons"
 class="action"
 >
 <slot
 v-if="$slots.action"
 name="action"
 />
 </div>
 </div>
</template>

To run the server and see your component, you need to open Terminal (macOS5.
or Linux) or the Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Components, Mixins, and Functional Components Chapter 4

[162]

Here is your component rendered and running:

How it works...
Each Vue component is a JavaScript object that has a render function. This render function
is called when it is time to render it in the HTML DOM. A single file component is an
abstraction of this object.

When we are declaring that our component has unique props that can be passed, it opens a
tiny door for other components or JavaScript to place information inside our component.
We are then able to use those values inside our component to render data, do some
calculations, or make visual rules.

Components, Mixins, and Functional Components Chapter 4

[163]

In our case, using the single file component, we are passing those rules as HTML attributes
because vue-template-compiler will take those attributes and transform them into
JavaScript objects.

When those values are passed to our component, Vue first checks whether the passed
attribute matches the correct type, and then we execute our validation function on top of
each value to see whether it matches what we'd expect.

After all of this is done, the component life cycle continues, and we can render our
component.

See also
You can find more information about props at https:/ /vuejs. org/ v2/ guide/ components-
props.html.

You can find more information about vue-template-compiler at https:/ /vue- loader.
vuejs.org/guide/ .

Creating functional components
The beauty of functional components is their simplicity. They're a stateless component,
without any data, computed property, or even a life cycle. They're just a render function
that is called when the data that is passed changed.

You may be wondering how this can be useful. Well, a functional component is a perfect
companion for UI components that don't need to keep any data inside them, or visual
components that are just rendered components that don't require any data manipulation.

As the name implies, they are simple function components, and they have nothing more
than the render function. They are a stripped-down version of a component used
exclusively for performance rendering and visual elements.

https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-props.html
https://vue-loader.vuejs.org/guide/
https://vue-loader.vuejs.org/guide/
https://vue-loader.vuejs.org/guide/
https://vue-loader.vuejs.org/guide/
https://vue-loader.vuejs.org/guide/
https://vue-loader.vuejs.org/guide/
https://vue-loader.vuejs.org/guide/
https://vue-loader.vuejs.org/guide/
https://vue-loader.vuejs.org/guide/
https://vue-loader.vuejs.org/guide/
https://vue-loader.vuejs.org/guide/
https://vue-loader.vuejs.org/guide/
https://vue-loader.vuejs.org/guide/

Components, Mixins, and Functional Components Chapter 4

[164]

Getting ready
The pre-requisite is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, create your Vue project with Vue-CLI, as we did in the recipe
'Creating Your first project with Vue CLI' in Chapter 2, Introducing TypeScript and the Vue
Ecosystem, or use the project from the 'Passing data to your component and validating the
data' recipe.

Now, follow these instructions to create a Vue functional component:

Create a new file called MaterialButton.vue in the src/components folder.1.
In this component, we need to validate whether the prop we'll receive is a valid2.
color. To do this, install in the project the is-color module. You'll need to
open Terminal (macOS or Linux) or the Command
Prompt/PowerShell (Windows) and execute the following command:

> npm install --save is-color

In the <script> part of our component, we need to create the props object that3.
the functional component will receive. As a functional component is just a render
function with no state – it's stateless – the <script> part of the component is
trimmed down to props, injections, and slots. There will be four
props objects: backgroundColor, textColor, isRound, and isFlat. These
won't be required when installing the component, as we will have a default value
defined in props:

<script>
 import isColor from 'is-color';

 export default {
 name: 'MaterialButton',
 props: {

Components, Mixins, and Functional Components Chapter 4

[165]

 backgroundColor: {
 type: String,
 required: false,
 default: '#fff',
 validator: v => typeof v === 'string' && isColor(v),
 },
 textColor: {
 type: String,
 required: false,
 default: '#000',
 validator: v => typeof v === 'string' && isColor(v),
 },
 isRound: {
 type: Boolean,
 required: false,
 default: false,
 },
 isFlat: {
 type: Boolean,
 required: false,
 default: false,
 },
 },
 };
</script>

In the <template> part of our component, we first need to add the4.
functional attribute to the <template> tag to indicate to the vue-template-
compiler that this component is a functional component. We need to create a
button HTML element, with a basic class attribute button and a dynamic
class attribute based on the props object received. Different from the normal
component, we need to specify the props property in order to use the functional
component. For the style of the button, we need to create a dynamic style
attribute, also based on props. To emit all the event listeners directly to the
parent, we can call the v-on directive and pass the listeners property. This
will bind all the event listeners without needing to declare each one. Inside the
button, we will add a div HTML element for visual enhancement, and
add <slot> where the text will be placed:

<template functional>
 <button
 tabindex="0"
 class="button"
 :class="{
 round: props.isRound,
 isFlat: props.isFlat,

Components, Mixins, and Functional Components Chapter 4

[166]

 }"
 :style="{
 background: props.backgroundColor,
 color: props.textColor
 }"
 v-on="listeners"
 >
 <div
 tabindex="-1"
 class="button_focus_helper"
 />
 <slot/>
 </button>
</template>

Now, let's make it pretty. In the <style> part of the component, we need to5.
create all the CSS stylesheet rules for this button. We need to add the scoped
attribute to <style> so that all the CSS stylesheet rules won't affect any other
elements in our application:

<style scoped>
 .button {
 user-select: none;
 position: relative;
 outline: 0;
 border: 0;
 border-radius: 0.25rem;
 vertical-align: middle;
 cursor: pointer;
 padding: 4px 16px;
 font-size: 14px;
 line-height: 1.718em;
 text-decoration: none;
 color: inherit;
 background: transparent;
 transition: 0.3s cubic-bezier(0.25, 0.8, 0.5, 1);
 min-height: 2.572em;
 font-weight: 500;
 text-transform: uppercase;
 }
 .button:not(.isFlat){
 box-shadow: 0 1px 5px rgba(0, 0, 0, 0.2),
 0 2px 2px rgba(0, 0, 0, 0.14),
 0 3px 1px -2px rgba(0, 0, 0, 0.12);
 }

 .button:not(.isFlat):focus:before,

Components, Mixins, and Functional Components Chapter 4

[167]

 .button:not(.isFlat):active:before,
 .button:not(.isFlat):hover:before {
 content: '';
 position: absolute;
 top: 0;
 right: 0;
 bottom: 0;
 left: 0;
 border-radius: inherit;
 transition: 0.3s cubic-bezier(0.25, 0.8, 0.5, 1);
 }

 .button:not(.isFlat):focus:before,
 .button:not(.isFlat):active:before,
 .button:not(.isFlat):hover:before {
 box-shadow: 0 3px 5px -1px rgba(0, 0, 0, 0.2),
 0 5px 8px rgba(0, 0, 0, 0.14),
 0 1px 14px rgba(0, 0, 0, 0.12);
 }

 .button_focus_helper {
 position: absolute;
 top: 0;
 left: 0;
 width: 100%;
 height: 100%;
 pointer-events: none;
 border-radius: inherit;
 outline: 0;
 opacity: 0;
 transition: background-color 0.3s cubic-bezier(0.25, 0.8, 0.5,
1),
 opacity 0.4s cubic-bezier(0.25, 0.8, 0.5, 1);
 }

 .button_focus_helper:after, .button_focus_helper:before {
 content: '';
 position: absolute;
 top: 0;
 left: 0;
 width: 100%;
 height: 100%;
 opacity: 0;
 border-radius: inherit;
 transition: background-color 0.3s cubic-bezier(0.25, 0.8, 0.5,
1),
 opacity 0.6s cubic-bezier(0.25, 0.8, 0.5, 1);
 }

Components, Mixins, and Functional Components Chapter 4

[168]

 .button_focus_helper:before {
 background: #000;
 }

 .button_focus_helper:after {
 background: #fff;
 }

 .button:focus .button_focus_helper:before,
 .button:hover .button_focus_helper:before {
 opacity: .1;
 }

 .button:focus .button_focus_helper:after,
 .button:hover .button_focus_helper:after {
 opacity: .6;
 }

 .button:focus .button_focus_helper,
 .button:hover .button_focus_helper {
 opacity: 0.2;
 }

 .round {
 border-radius: 50%;
 }
</style>

To run the server and see your component, you need to open Terminal (macOS6.
or Linux) or the Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Components, Mixins, and Functional Components Chapter 4

[169]

Here is your component rendered and running:

How it works...
Functional components are as simple as a render function. They don't have any sort of data,
function, or access to the outside world.

They were first introduced in Vue as a JavaScript object render() function only; later, they
were added to vue-template-compiler for the Vue single file application.

A functional component works by receiving two arguments: createElement and
context. As we saw in the single file, we only had access to the elements as they weren't in
the this property of the JavaScript object. This occurs because as the context is passed to
the render function, there is no this property.

Components, Mixins, and Functional Components Chapter 4

[170]

A functional component provides the fastest rendering possible on Vue, as it doesn't
depend on the life cycle of a component to check for the rendering; it just renders each time
data is changed.

See also
You can find more information about functional components at https:/ /vuejs. org/ v2/
guide/render-function. html#Functional- Components.

You can find more information about the is-color module at https:/ /www. npmjs. com/
package/is-color.

Accessing your children components data
Normally, parent-child communications are done via events or props. But sometimes, you
need to access data, functions, or computed properties that exist in the child or the parent
function.

Vue provides a way to interact in both ways, opening doors to communications and events,
such as props and event listeners.

There is another way to access the data between the components: by using direct access.
This can be done with the help of a special attribute in the template when using the single
file component or a direct call of the object inside the JavaScript. This method is seen by
some as a little lazy, but there are times when there really is no other way to do it than this.

Getting ready
The pre-requisite is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://www.npmjs.com/package/is-color
https://www.npmjs.com/package/is-color
https://www.npmjs.com/package/is-color
https://www.npmjs.com/package/is-color
https://www.npmjs.com/package/is-color
https://www.npmjs.com/package/is-color
https://www.npmjs.com/package/is-color
https://www.npmjs.com/package/is-color
https://www.npmjs.com/package/is-color
https://www.npmjs.com/package/is-color
https://www.npmjs.com/package/is-color
https://www.npmjs.com/package/is-color
https://www.npmjs.com/package/is-color
https://www.npmjs.com/package/is-color

Components, Mixins, and Functional Components Chapter 4

[171]

How to do it...
To start your component, create your Vue project with Vue-CLI, as we did in the 'Creating
Your first project with Vue CLI' recipe in Chapter 2, Introducing TypeScript and the Vue
Ecosystem, or use the project from the 'Creating functional components' recipe.

We're going to separate the recipe into four parts. The first three parts will cover the
creation of new components – StarRatingInput, StarRatingDisplay, and
StarRating – and the last part will cover the parent-child direct manipulation of the data
and function access.

Creating the star rating input
We are going to create a star rating input, based on a five-star ranking system.

Follow these steps to create a custom star rating input:

Create a new file called StarRatingInput.vue in the src/components folder.1.
In the <script> part of the component, create a maxRating property in the2.
props property that is a number, non-required, and has a default value of 5. In
the data property, we need to create our rating property, with the default
value of 0. In the methods property, we need to create three
methods: updateRating, emitFinalVoting, and getStarName. The
updateRating method will save the rating to the data, emitFinalVoting will
call updateRating and emit the rating to the parent component through a
final-vote event, and getStarName will receive a value and return the icon
name of the star:

<script>
export default {
 name: 'StarRatingInput',
 props: {
 maxRating: {
 type: Number,
 required: false,
 default: 5,
 },
 },
 data: () => ({
 rating: 0,
 }),
 methods: {
 updateRating(value) {

Components, Mixins, and Functional Components Chapter 4

[172]

 this.rating = value;
 },
 emitFinalVote(value) {
 this.updateRating(value);
 this.$emit('final-vote', this.rating);
 },
 getStarName(rate) {
 if (rate <= this.rating) {
 return 'star';
 }
 if (Math.fround((rate - this.rating)) < 1) {
 return 'star_half';
 }
 return 'star_border';
 },
 },
};
</script>

In the <template> part of the component, we need to create a3.
<slot> component to place the text before the star rating. We'll create a dynamic
list of stars based on the maxRating value that we received via the props
property. Each star that is created will have a listener attached to it in the
mouseenter, focus, and click events. mouseenter and focus, when fired,
will call the updateRating method, and click will call emitFinalVote:

<template>
 <div class="starRating">

 <slot />

 <li
 v-for="rate in maxRating"
 :key="rate"
 @mouseenter="updateRating(rate)"
 @click="emitFinalVote(rate)"
 @focus="updateRating(rate)"
 >
 <i class="material-icons">
 {{ getStarName(rate) }}
 </i>

 </div>
</template>

Components, Mixins, and Functional Components Chapter 4

[173]

We need to import the Material Design icons into our application. Create a new4.
styling file in the styles folder called materialIcons.css, and add the CSS
stylesheet rules for font-family:

@font-face {
 font-family: 'Material Icons';
 font-style: normal;
 font-weight: 400;
 src:
url(https://fonts.gstatic.com/s/materialicons/v48/flUhRq6tzZclQEJ-
 Vdg-IuiaDsNcIhQ8tQ.woff2) format('woff2');
}

.material-icons {
 font-family: 'Material Icons' !important;
 font-weight: normal;
 font-style: normal;
 font-size: 24px;
 line-height: 1;
 letter-spacing: normal;
 text-transform: none;
 display: inline-block;
 white-space: nowrap;
 word-wrap: normal;
 direction: ltr;
 -webkit-font-feature-settings: 'liga';
 -webkit-font-smoothing: antialiased;
}

Open the main.js file and import the created stylesheet into it. The css-5.
loader webpack will handle the processing of imported .css files in JavaScript
files. This will help development because you don't need to re-import the file
elsewhere:

import Vue from 'vue';
import App from './App.vue';
import './style/materialIcons.css';

Vue.config.productionTip = false;

new Vue({
 render: h => h(App),
}).$mount('#app');

Components, Mixins, and Functional Components Chapter 4

[174]

To style our component, we will create a common styling file in the6.
src/style folder called starRating.css. There we will add the common
styles that will be shared between the StarRatingDisplay and
StarRatingInput components:

.starRating {
 user-select: none;
 display: flex;
 flex-direction: row;
}
.starRating * {
 line-height: 0.9rem;
}
.starRating .material-icons {
 font-size: .9rem !important;
 color: orange;
}

ul {
 display: inline-block;
 padding: 0;
 margin: 0;
}

ul > li {
 list-style: none;
 float: left;
}

In the <style> part of the component, we need to create all the CSS stylesheet7.
rules. Then, on the StarRatingInput.vue component file located in the
src/components folder we need to add the scoped attribute to <style> so that
all the CSS stylesheet rules won't affect any other elements in our application.
Here, we will import the common styles that we created and add new ones for
the input:

<style scoped>
 @import '../style/starRating.css';

 .starRating {
 justify-content: space-between;
 }

 .starRating * {
 line-height: 1.7rem;
 }

Components, Mixins, and Functional Components Chapter 4

[175]

 .starRating .material-icons {
 font-size: 1.6rem !important;
 }

 .rateThis {
 display: inline-block;
 color: rgba(0, 0, 0, .65);
 font-size: 1rem;
 }
</style>

To run the server and see your component, you need to open Terminal (macOS8.
or Linux) or the Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Here is your component rendered and running:

Components, Mixins, and Functional Components Chapter 4

[176]

Creating the StarRatingDisplay component
Now that we have our input, we need a way to display the selected choice to the user.
Follow these steps to create a StarRatingDisplay component:

Create a new component called StarRatingDisplay.vue in the1.
src/components folder.
In the <script> part of the component, in the props property, we need to create2.
three new properties: maxRating, rating, and votes. All three of them will be
numbers and non-required and have a default value. In the methods property,
we need to create a new method called getStarName, which will receive a value
and return the icon name of the star:

<script>
export default {
 name: 'StarRatingDisplay',
 props: {
 maxRating: {
 type: Number,
 required: false,
 default: 5,
 },
 rating: {
 type: Number,
 required: false,
 default: 0,
 },
 votes: {
 type: Number,
 required: false,
 default: 0,
 },
 },
 methods: {
 getStarName(rate) {
 if (rate <= this.rating) {
 return 'star';
 }
 if (Math.fround((rate - this.rating)) < 1) {
 return 'star_half';
 }
 return 'star_border';
 },
 },
};
</script>

Components, Mixins, and Functional Components Chapter 4

[177]

In <template>, we need to create a dynamic list of stars based on3.
the maxRating value that we received via the props property. After the list, we
need to display that we received votes, and if we receive any votes, we will
display them too:

<template>
 <div class="starRating">

 <li
 v-for="rate in maxRating"
 :key="rate"
 >
 <i class="material-icons">
 {{ getStarName(rate) }}
 </i>

 {{ rating }}

 <span
 v-if="votes"
 class="votes"
 >
 ({{ votes }})

 </div>
</template>

In the <style> part of the component, we need to create all the CSS stylesheet4.
rules. We need to add the scoped attribute to <style> so that all the CSS
stylesheet rules won't affect any other elements in our application. Here, we will
import the common styles that we created and add new ones for the display:

<style scoped>
 @import '../style/starRating.css';

 .rating, .votes {
 display: inline-block;
 color: rgba(0,0,0, .65);
 font-size: .75rem;
 margin-left: .4rem;
 }
</style>

Components, Mixins, and Functional Components Chapter 4

[178]

To run the server and see your component, you need to open Terminal (macOS5.
or Linux) or the Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Here is your component rendered and running:

Components, Mixins, and Functional Components Chapter 4

[179]

Creating the StarRating component
After creating the input and the display, we need to join both together in a single
component. This component will be the final component that we'll use in the application.

Follow these steps to create the final StarRating component:

Create a new file called StarRating.vue in the src/components folder.1.
In the <script> part of the component, we need to import the2.
StarRatingDisplay and StarRatingInput components. In
the props property, we need to create three new
properties: maxRating, rating, and votes. All three of them will be numbers
and non-required, with a default value. In the data property, we need to create
our rating property, with a default value of 0, and a property called voted,
with a default value of false. In the methods property, we need to add a new
method called vote, which will receive rank as an argument. It will
define rating as the received value and define the inside variable of the
voted component as true:

<script>
import StarRatingInput from './StarRatingInput.vue';
import StarRatingDisplay from './StarRatingDisplay.vue';

export default {
 name: 'StarRating',
 components: { StarRatingDisplay, StarRatingInput },
 props: {
 maxRating: {
 type: Number,
 required: false,
 default: 5,
 },
 rating: {
 type: Number,
 required: false,
 default: 0,
 },
 votes: {
 type: Number,
 required: false,
 default: 0,
 },
 },
 data: () => ({
 rank: 0,

Components, Mixins, and Functional Components Chapter 4

[180]

 voted: false,
 }),
 methods: {
 vote(rank) {
 this.rank = rank;
 this.voted = true;
 },
 },
};
</script>

In the <template> part, we will place both the components, displaying the input3.
of the rating:

<template>
 <div>
 <StarRatingInput
 v-if="!voted"
 :max-rating="maxRating"
 @final-vote="vote"
 >
 Rate this Place
 </StarRatingInput>
 <StarRatingDisplay
 v-else
 :max-rating="maxRating"
 :rating="rating || rank"
 :votes="votes"
 />
 </div>
</template>

Data manipulation on child components
Now that all of our components are ready, we need to add them to our application. The
base application will access the child component, and it will set the rating to 5 stars.

Now, follow these steps to understand and manipulate the data in the child components:

In the App.vue file, in the <template> part of the component, remove the1.
main-text attribute of the MaterialCardBox component and place it as the
default slot of the component.

Components, Mixins, and Functional Components Chapter 4

[181]

Before the placed text, we will add the StarRating component. We will add a2.
ref attribute to it. This attribute will indicate to Vue to link this component
directly to a special property in the this object of the component. In the action
buttons, we will add the listeners for the click event—one for resetVote and
another for forceVote:

<template>
 <div id="app">
 <MaterialCardBox
 header="Material Card Header"
 sub-header="Card Sub Header"
 show-media
 show-actions
 img-src="https://picsum.photos/300/200"
 >
 <p>
 <StarRating
 ref="starRating"
 />
 </p>
 <p>
 The path of the righteous man is beset on all sides by the
 iniquities of the selfish and the tyranny of evil men.
 </p>
 <template v-slot:action>
 <MaterialButton
 background-color="#027be3"
 text-color="#fff"
 @click="resetVote"
 >
 Reset
 </MaterialButton>
 <MaterialButton
 background-color="#26a69a"
 text-color="#fff"
 is-flat
 @click="forceVote"
 >
 Rate 5 Stars
 </MaterialButton>
 </template>
 </MaterialCardBox>
 </div>
</template>

Components, Mixins, and Functional Components Chapter 4

[182]

In the <script> part of the component, we will create a methods property, and3.
add two new methods: resetVote and forceVote. Those methods will access
the StarRating component and reset the data or set the data to a 5-star vote,
respectively:

<script>
import MaterialCardBox from './components/MaterialCardBox.vue';
import MaterialButton from './components/MaterialButton.vue';
import StarRating from './components/StarRating.vue';

export default {
 name: 'App',
 components: {
 StarRating,
 MaterialButton,
 MaterialCardBox,
 },
 methods: {
 resetVote() {
 this.$refs.starRating.rank = 0;
 this.$refs.starRating.voted = false;
 },
 forceVote() {
 this.$refs.starRating.rank = 5;
 this.$refs.starRating.voted = true;
 },
 },
};
</script>

How it works...
When the ref property is added to the component, Vue adds a link to the referenced
element to the $refs property inside the this property object of JavaScript. From there,
you have full access to the component.

This method is commonly used to manipulate HTML DOM elements without the need to
call for document query selector functions.

However, the main function of this property is to give access to the Vue component
directly, enabling you the ability to execute functions and see the computed properties,
variables, and changed variables of the component—like full access to the component from
the outside.

Components, Mixins, and Functional Components Chapter 4

[183]

There's more...
In the same way that a parent can access a child component, a child can access a parent
component by calling $parent on the this object. An event can access the root element of
the Vue application by calling the $root property.

See also
You can find more information about parent-child communication at https:/ /vuejs. org/
v2/guide/components- edge- cases. html#Accessing- the- Parent- Component- Instance.

Creating a dynamic injected component
There are some cases where your component can be defined by the kind of variable you are
receiving or the type of data that you have; then, you need to change the component on the
fly, without the need to set a lot of Vue v-if, v-else-if, and v-else directives.

In those cases, the best thing to do is to use dynamic components, when a computed
property or a function can define the component that will be used to be rendered, and the
decision is taken in real time.

These decisions sometimes can be simple if there are two responses, but they can be more
complex with a long switch case, where you may have a long list of possible components to
be used.

Getting ready
The pre-requisite is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance
https://vuejs.org/v2/guide/components-edge-cases.html#Accessing-the-Parent-Component-Instance

Components, Mixins, and Functional Components Chapter 4

[184]

How to do it...
To start our component, we can create our Vue project with Vue-CLI, as we did in the
'Creating Your first project with Vue CLI' recipe in Chapter 2, Introducing TypeScript and the
Vue Ecosystem, or use the project from the 'Accessing your children components data' recipe.

Follow these steps to create a dynamic injected component:

Open the StarRating.vue component.1.
In the <script> part of the component, we need to create a computed property2.
with a new computed value called starComponent. This value will check
whether the user has voted. If they haven't, it will return the StarRatingInput
component; otherwise, it will return the StarRatingDisplay component:

<script>
import StarRatingInput from './StarRatingInput.vue';
import StarRatingDisplay from './StarRatingDisplay.vue';

export default {
 name: 'StarRating',
 components: { StarRatingDisplay, StarRatingInput },
 props: {
 maxRating: {
 type: Number,
 required: false,
 default: 5,
 },
 rating: {
 type: Number,
 required: false,
 default: 0,
 },
 votes: {
 type: Number,
 required: false,
 default: 0,
 },
 },
 data: () => ({
 rank: 0,
 voted: false,
 }),
 computed: {
 starComponent() {
 if (!this.voted) return StarRatingInput;
 return StarRatingDisplay;

Components, Mixins, and Functional Components Chapter 4

[185]

 },
 },
 methods: {
 vote(rank) {
 this.rank = rank;
 this.voted = true;
 },
 },
};
</script>

In the <template> part of the component, we will remove both of the existing3.
components and replace them with a special component called <component>.
This special component has a named attribute that you can point to anywhere
that returns a valid Vue component. In our case, we will point to the
computed starComponent property. We will take all the bind props that were
defined from both of the other components and put them inside this new
component, including the text that is placed in <slot>:

<template>
 <component
 :is="starComponent"
 :max-rating="maxRating"
 :rating="rating || rank"
 :votes="votes"
 @final-vote="vote"
 >
 Rate this Place
 </component>
</template>

How it works...
Using the Vue special <component> component, we declared what the component should
render according to the rules set on the computed property.

Being a generic component, you always need to guarantee that everything will be there for
each of the components that can be rendered. The best way to do this is by using the v-
bind directive with the props and rules that need to be defined, but it's possible to define it
directly on the component also, as it will be passed down as a prop.

Components, Mixins, and Functional Components Chapter 4

[186]

See also
You can find more information about dynamic components at https:/ /vuejs. org/ v2/
guide/components.html#Dynamic- Components.

Creating a dependency injection component
Accessing data directly from a child or a parent component without knowing whether they
exist can be very dangerous.

In Vue, it's possible to make your component behavior like an interface and have a common
and abstract function that won't change in the development process. The process of
dependency injection is a common paradigm in the developing world and has been
implemented in Vue also.

There are some pros and cons to using the internal Vue dependency injection, but it is
always a good way to make sure that your children's components know what to expect
from the parent component when developing it.

Getting ready
The pre-requisite is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can create our Vue project with Vue-CLI, as we did in the
'Creating Your first project with Vue CLI' recipe in Chapter 2, Introducing TypeScript and the
Vue Ecosystem, or use the project from the 'Creating a dynamic injected component' recipe.

https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components
https://vuejs.org/v2/guide/components.html#Dynamic-Components

Components, Mixins, and Functional Components Chapter 4

[187]

Now, follow these steps to create a dependency injection component:

Open the StarRating.vue component.1.
In the <script> part of the component, add a new property called provide. In2.
our case, we will just be adding a key-value to check whether the component is a
child of the specific component. Create an object in the property with the
starRating key and the true value:

<script>
import StarRatingInput from './StarRatingInput.vue';
import StarRatingDisplay from './StarRatingDisplay.vue';

export default {
 name: 'StarRating',
 components: { StarRatingDisplay, StarRatingInput },
 provide: {
 starRating: true,
 },
 props: {
 maxRating: {
 type: Number,
 required: false,
 default: 5,
 },
 rating: {
 type: Number,
 required: false,
 default: 0,
 },
 votes: {
 type: Number,
 required: false,
 default: 0,
 },
 },
 data: () => ({
 rank: 0,
 voted: false,
 }),
 computed: {
 starComponent() {
 if (!this.voted) return StarRatingInput;
 return StarRatingDisplay;
 },
 },
 methods: {
 vote(rank) {

Components, Mixins, and Functional Components Chapter 4

[188]

 this.rank = rank;
 this.voted = true;
 },
 },
};
</script>

Open the StarRatingDisplay.vue file.3.
In the <script> part of the component, we will add a new property4.
called inject. This property will receive an object with a key named
starRating, and the value will be an object that will have
a default() function. This function will log an error if this component is not a
child of the StarRating component:

<script>
export default {
 name: 'StarRatingDisplay',
 props: {
 maxRating: {
 type: Number,
 required: false,
 default: 5,
 },
 rating: {
 type: Number,
 required: false,
 default: 0,
 },
 votes: {
 type: Number,
 required: false,
 default: 0,
 },
 },
 inject: {
 starRating: {
 default() {
 console.error('StarRatingDisplay need to be a child of
 StarRating');
 },
 },
 },
 methods: {
 getStarName(rate) {
 if (rate <= this.rating) {
 return 'star';
 }

Components, Mixins, and Functional Components Chapter 4

[189]

 if (Math.fround((rate - this.rating)) < 1) {
 return 'star_half';
 }
 return 'star_border';
 },
 },
};
</script>

Open the StarRatingInput.vue file.5.
In the <script> part of the component, we will add a new property6.
called inject. This property will receive an object with a key
named starRating, and the value will be an object that will have
a default() function. This function will log an error if this component is not a
child of the StarRating component:

<script>
export default {
 name: 'StarRatingInput',
 props: {
 maxRating: {
 type: Number,
 required: false,
 default: 5,
 },
 },
 inject: {
 starRating: {
 default() {
 console.error('StarRatingInput need to be a child of
 StarRating');
 },
 },
 },
 data: () => ({
 rating: 0,
 }),
 methods: {
 updateRating(value) {
 this.rating = value;
 },
 emitFinalVote(value) {
 this.updateRating(value);
 this.$emit('final-vote', this.rating);
 },
 getStarName(rate) {
 if (rate <= this.rating) {

Components, Mixins, and Functional Components Chapter 4

[190]

 return 'star';
 }
 if (Math.fround((rate - this.rating)) < 1) {
 return 'star_half';
 }
 return 'star_border';
 },
 },
};
</script>

How it works...
At runtime, Vue will check for the injected property of starRating in the
StarRatingDisplay and StarRatingInput components, and if the parent component
does not provide this value, it will log an error on the console.

Using component injection is commonly used to maintain a way of a common interface
between bounded components, such as a menu and an item. An item may need some
function or data that is stored in the menu, or we may need to check whether it's a child of
the menu.

The main downside of dependency injection is that there is no more reactivity on the
shared element. Because of that, it's mostly used to share functions or check component
links.

See also
You can find more information about component dependency injection at https:/ /vuejs.
org/v2/guide/components- edge- cases. html#Dependency- Injection.

https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection
https://vuejs.org/v2/guide/components-edge-cases.html#Dependency-Injection

Components, Mixins, and Functional Components Chapter 4

[191]

Creating a component mixin
There are times where you find yourself rewriting the same code over and over. However,
there is a way to prevent this and make yourself far more productive.

You can use what is called a mixin, a special code import in Vue that joins code parts from
outside your component to your current component.

Getting ready
The pre-requisite is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can create our Vue project with Vue-CLI, as we did in the
recipe 'Creating Your First Project with Vue CLI' in Chapter 2, Introducing TypeScript and the
Vue Ecosystem, or use the project from the 'Creating a dependency injection component' recipe.

Let's follow these steps to create a component mixin:

Open the StarRating.vue component.1.
In the <script> part, we need to extract the props property into a new file2.
called starRatingDisplay.js that we need to create in the mixins folder. This
new file will be our first mixin, and will look like this:

export default {
 props: {
 maxRating: {
 type: Number,
 required: false,
 default: 5,
 },
 rating: {
 type: Number,

Components, Mixins, and Functional Components Chapter 4

[192]

 required: false,
 default: 0,
 },
 votes: {
 type: Number,
 required: false,
 default: 0,
 },
 },
};

Back in the StarRating.vue component, we need to import this newly created3.
file and add it to a new property called mixin:

<script>
import StarRatingInput from './StarRatingInput.vue';
import StarRatingDisplay from './StarRatingDisplay.vue';
import StarRatingDisplayMixin from '../mixins/starRatingDisplay';

export default {
 name: 'StarRating',
 components: { StarRatingDisplay, StarRatingInput },
 mixins: [StarRatingDisplayMixin],
 provide: {
 starRating: true,
 },
 data: () => ({
 rank: 0,
 voted: false,
 }),
 computed: {
 starComponent() {
 if (!this.voted) return StarRatingInput;
 return StarRatingDisplay;
 },
 },
 methods: {
 vote(rank) {
 this.rank = rank;
 this.voted = true;
 },
 },
};
</script>

Now, we will open the StarRatingDisplay.vue file.4.

Components, Mixins, and Functional Components Chapter 4

[193]

In the <script> part, we will extract the inject property into a new file called5.
starRatingChild.js, which will be created in the mixins folder. This will be
our mixin for the inject property:

export default {
 inject: {
 starRating: {
 default() {
 console.error('StarRatingDisplay need to be a child of
 StarRating');
 },
 },
 },
};

Back in the StarRatingDisplay.vue file, in the <script> part, we will extract6.
the methods property into a new file called starRatingName.js, which will be
created in the mixins folder. This will be our mixin for
the getStarName method:

export default {
 methods: {
 getStarName(rate) {
 if (rate <= this.rating) {
 return 'star';
 }
 if (Math.fround((rate - this.rating)) < 1) {
 return 'star_half';
 }
 return 'star_border';
 },
 },
};

Back in the StarRatingDisplay.vue file, we need to import those newly7.
created files and add them to a new property called mixin:

<script>
import StarRatingDisplayMixin from '../mixins/starRatingDisplay';
import StarRatingNameMixin from '../mixins/starRatingName';
import StarRatingChildMixin from '../mixins/starRatingChild';

export default {
 name: 'StarRatingDisplay',
 mixins: [
 StarRatingDisplayMixin,
 StarRatingNameMixin,

Components, Mixins, and Functional Components Chapter 4

[194]

 StarRatingChildMixin,
],
};
</script>

Open the StarRatingInput.vue file.8.
In the <script> part, we remove the inject properties and extract9.
the props property into a new file called starRatingBase.js, which will be
created in the mixins folder. This will be our mixin for the props property:

export default {
 props: {
 maxRating: {
 type: Number,
 required: false,
 default: 5,
 },
 rating: {
 type: Number,
 required: false,
 default: 0,
 },
 },
};

Back in the StarRatingInput.vue file, we need to rename10.
the rating data property to rank, and in the getStarName method, we need to
add a new constant that will receive either the rating props or the rank data.
Finally, we need to import the starRatingChild mixin and the
starRatingBase mixin:

<script>
import StarRatingBaseMixin from '../mixins/starRatingBase';
import StarRatingChildMixin from '../mixins/starRatingChild';

export default {
 name: 'StarRatingInput',
 mixins: [
 StarRatingBaseMixin,
 StarRatingChildMixin,
],
 data: () => ({
 rank: 0,
 }),
 methods: {
 updateRating(value) {

Components, Mixins, and Functional Components Chapter 4

[195]

 this.rank = value;
 },
 emitFinalVote(value) {
 this.updateRating(value);
 this.$emit('final-vote', this.rank);
 },
 getStarName(rate) {
 const rating = (this.rating || this.rank);
 if (rate <= rating) {
 return 'star';
 }
 if (Math.fround((rate - rating)) < 1) {
 return 'star_half';
 }
 return 'star_border';
 },
 },
};
</script>

How it works...
Mixins work as an object merge, but do make sure you don't replace an already-existing
property in your component with an imported one.

The order of the mixins properties is important as well, as they will be checked and
imported as a for loop, so the last mixin won't change any properties from any of their
ancestors.

Here, we took a lot of repeated parts of our code and split them into four different small
JavaScript files that are easier to maintain and improve productivity without needing to
rewrite code.

See also
You can find more information about mixins at https:/ /vuejs. org/ v2/guide/ mixins.
html.

https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html

Components, Mixins, and Functional Components Chapter 4

[196]

Lazy loading your components
webpack and Vue were born to be together. When using webpack as the bundler for your
Vue project, it's possible to make your components load when they are needed or
asynchronously. This is commonly known as lazy loading.

Getting ready
The pre-requisite is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can create our Vue project with Vue-CLI, as we did in the
'Creating Your first project with Vue CLI' recipe in Chapter 2, Introducing TypeScript and the
Vue Ecosystem, or use the project from the 'Creating a component mixin' recipe.

Now, follow these steps to import your component with a lazy loading technique:

Open the App.vue file.1.
In the <script> part of the component, we will take the imports at the top of the2.
script and transform them into lazy load functions for each component:

<script>
export default {
 name: 'App',
 components: {
 StarRating: () => import('./components/StarRating.vue'),
 MaterialButton: () =>
import('./components/MaterialButton.vue'),
 MaterialCardBox: () =>
 import('./components/MaterialCardBox.vue'),
 },
 methods: {
 resetVote() {

Components, Mixins, and Functional Components Chapter 4

[197]

 this.$refs.starRating.rank = 0;
 this.$refs.starRating.voted = false;
 },
 forceVote() {
 this.$refs.starRating.rank = 5;
 this.$refs.starRating.voted = true;
 },
 },
};
</script>

How it works...
When we declare a function that returns an import() function for each component,
webpack knows that this import function will be code-splitting, and it will make the
component a new file on the bundle.

The import() function was introduced as a proposal by the TC39 for module loading
syntax. The base functionality of this function is to load any module that is
declared asynchronously, avoiding the need to place all the files on the first load.

See also
You can find more information about async components at https:/ /vuejs. org/v2/ guide/
components-dynamic- async. html#Async- Components.

You can find more information about the TC39 dynamic import at https:/ /github. com/
tc39/proposal-dynamic- import.

https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import

5
Fetching Data from the Web via

HTTP Requests
Data is a part of everyday life nowadays. If it weren't for data, you wouldn't be reading this
book or trying to learn more about Vue.

Knowing how to fetch and send your data inside an application is a requirement for a
developer, not just an extra skill that's nice to have. The best way to learn it is by practicing
it and finding out how it is done behind the scenes.

In this chapter, we will learn how to build our own API data manipulation with the Fetch
API and the most popular API library in the web right now, axios.

In this chapter, we'll cover the following recipes:

Creating a wrapper for the Fetch API as an HTTP client
Creating a random cat image or GIF component
Creating your local fake JSON API server with MirageJS
Using axios as the new HTTP client
Creating different axios instances
Creating a request and response interceptor for axios
Creating a CRUD interface with axios and Vuesax

Fetching Data from the Web via HTTP Requests Chapter 5

[199]

Technical requirements
In this chapter, we will be using Node.js and Vue CLI.

Attention, Windows users! You need to install an NPM package called
windows-build-tools to be able to install the following required
packages. To do this, open PowerShell as administrator and execute the
following command:
> npm install -g windows-build-tools

To install Vue CLI, open Terminal (macOS or Linux) or Command Prompt/PowerShell
(Windows) and execute the following command:

> npm install -g @vue/cli @vue/cli-service-global

Creating a wrapper for the Fetch API as an
HTTP client
The Fetch API is the child of the old XMLHttpRequest. It has an improved API and a new
and powerful set of features completely based on Promises.

The Fetch API is both simple and based on a generic definition of two objects, Request,
and Response, which allow it to be used everywhere in the browser. The browser Fetch
API can be executed inside the window or the service worker as well. There is no
limitation on the usage of this API.

In this recipe, we will learn how to create a wrapper around the Fetch API to make the API
calls more simple.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

Fetching Data from the Web via HTTP Requests Chapter 5

[200]

How to do it...
To start our component, we can use the Vue project with Vue CLI we created in the
'Creating Your first project with Vue CLI' recipe in Chapter 2, Introducing TypeScript and the
Vue Ecosystem, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or Command Prompt/PowerShell
(Windows) and execute the following command:

> vue create http-project

The CLI will ask some questions that will help with the creation of the project. You can use
the arrow keys to navigate, the Enter key to continue, and the Spacebar to select an option.
Choose the default option:

? Please pick a preset: (Use arrow keys)
❯ default (babel, eslint)
 Manually select features

Creating the wrapper
First, we need to create a new API wrapper to be used in this recipe. This will be the main
file we will use on all the HTTP methods.

Let's create the base wrapper by following these steps:

Create a new file called baseFetch.js in the src/http folder.1.
We will create an asynchronous function that will receive as an argument the2.
three variables of url, method, and options. This will be a currying function,
which the second function will receive as an argument, type:

export default async (url, method, options = {}) => {
 let httpRequest;
 if (method.toUpperCase() === 'GET') {
 httpRequest = await fetch(url, {
 cache: 'reload',
 ...options,
 });
 } else {
 httpRequest = fetch(url, {
 method: method.toUpperCase(),
 cache: 'reload',
 ...options,
 });
 }

Fetching Data from the Web via HTTP Requests Chapter 5

[201]

 return (type) => {
 switch (type.toLocaleLowerCase()) {
 case 'json':
 return httpRequest.json();
 case 'blob':
 return httpRequest.blob();
 case 'text':
 return httpRequest.text();
 case 'formdata':
 return httpRequest.formData();
 default:
 return httpRequest.arrayBuffer();
 }
 };
};

Creating the API methods
Now we need to make our HTTP method function. These functions will use the wrapper to
execute the browser Fetch API and return the response.

Follow these steps to create each one of the API method calls:

Let's create a new file called fetchApi.js in the src/http folder.1.
We need to import the baseHttp from the file we created in the first step:2.

import baseHttp from './baseFetch';

Now in the following parts, we will create each one of the HTTP methods that will be
available in our wrapper.

GET method function
In these steps, we are going to create the HTTP GET method. Follow each of the following
instructions to create the getHttp function:

Create a constant called getHttp.1.
Define that constant as an asynchronous function that receives three arguments,2.
url, type, and options. The type argument will have the default value of
'json'.

Fetching Data from the Web via HTTP Requests Chapter 5

[202]

In this function return, we will execute the baseHttp function, passing the url3.
that we received, 'get' as the second argument, the options as the third
argument, and immediately execute the function with the type argument we
received:

export const getHttp = async (url, type = 'json', options) =>
(await
 baseHttp(url, 'get', options))(type);

POST method function
In this part, we are creating the HTTP POST method. Follow these steps to create the
postHttp function:

Create a constant called postHttp.1.
Assign to that constant an asynchronous function that receives four arguments,2.
url, body, type, and options. The type argument will have the default value
of 'json'.
In this function return, we will execute the baseHttp function, passing the url3.
argument that we received, and 'post' as the second argument. In the third
argument, we will pass an object with the body variable, and the deconstructed
options argument that we received. Because of the currying property of
baseHttp, we will execute the returned function with the type argument we
received. The body is usually a JSON or a JavaScript object. If this request is
going to be a file upload, body needs to be a FormData object:

export const postHttp = async (
 url,
 body,
 type = 'json',
 options,
) => (await baseHttp(url,
 'post',
 {
 body,
 ...options,
 }))(type);

Fetching Data from the Web via HTTP Requests Chapter 5

[203]

PUT method function
Now we are creating an HTTP PUT method. Use the following steps to create the putHttp
function:

Create a constant called putHttp.1.
Assign to that constant an asynchronous function that receives four arguments,2.
url, body, type, and options. The type argument will have the default value
of 'json'.
In this function return, we will execute the baseHttp function, passing the url3.
that we received, and 'put' as the second argument. In the third argument, we
will pass an object with the body variable, and the deconstructed options
argument that we received. Because of the currying property of baseHttp, we
will execute the returned function with the type argument we received. body is
usually a JSON or a JavaScript object, but if this request is going to be a file
upload, body needs to be a FormData object:

export const putHttp = async (
 url,
 body,
 type = 'json',
 options,
) => (await baseHttp(url,
 'put',
 {
 body,
 ...options,
 }))(type);

PATCH method function
It's time to create an HTTP PATCH method. Follow these steps to create the patchHttp
function:

Create a constant called patchHttp.1.
Assign to that constant an asynchronous function that receives four arguments,2.
url, body, type, and options. The type argument will have the default value
of 'json'.

Fetching Data from the Web via HTTP Requests Chapter 5

[204]

In this function return, we will execute the baseHttp function, passing the url3.
that we received, and 'patch' as the second argument. In the third argument,
we will pass an object with the body variable, and the deconstructed options
argument that we received. Because of the currying property of baseHttp, we
will execute the returned function with the type we received. body is usually a
JSON or a JavaScript object, but if this request is going to be a file upload, body
needs to be a FormData object:

export const patchHttp = async (
 url,
 body,
 type = 'json',
 options,
) => (await baseHttp(url,
 'patch',
 {
 body,
 ...options,
 }))(type);

UPDATE method function
In this section, we are creating an HTTP UPDATE method. Follow these steps to create the
updateHttp function:

Create a constant called updateHttp.1.
Assign to that constant an asynchronous function that receives four arguments,2.
url, body, type, and options. The type argument will have the default value
of 'json'.
In this function return, we will execute the baseHttp function, passing the url3.
that we received, and 'update' as the second argument. In the third argument,
we will pass an object with the body variable, and the deconstructed options
argument that we received. Because of the currying property of baseHttp, we
will execute the returned function with the type we received. body is usually a
JSON or a JavaScript object, but if this request is going to be a file upload, body
needs to be a FormData object:

export const updateHttp = async (
 url,
 body,
 type = 'json',
 options,
) => (await baseHttp(url,

Fetching Data from the Web via HTTP Requests Chapter 5

[205]

 'update',
 {
 body,
 ...options,
 }))(type);

DELETE method function
In this final step, we will create a DELETE HTTP method. Follow these steps to create the
deleteHttp function:

Create a constant called deleteHttp.1.
Assign to that constant an asynchronous function that receives four arguments,2.
url, body, type, and options. The type argument will have the default value of
'json'.
In this function return, we will execute the baseHttp function, passing the url3.
that we received, and 'delete' as the second argument. In the third argument,
we will pass an object with the body variable, and the deconstructed options
argument that we received. Because of the currying property of baseHttp, we
will execute the returned function with the type we received. body is usually a
JSON or a JavaScript object, but if this request is going to be a file upload, body
needs to be a FormData object:

export const deleteHttp = async (
 url,
 body,
 type = 'json',
 options,
) => (await baseHttp(url,
 'delete',
 {
 body,
 ...options,
 }))(type);

How it works...
In this recipe, we created a wrapper for the Fetch API that is presented on the window
element. This wrapper consists of a currying and closure function, where the first function
receives the URL data, method, and options for the Fetch API, and the resulting function is
the Fetch API response translator.

Fetching Data from the Web via HTTP Requests Chapter 5

[206]

In the wrapper, the first part of the function will create our fetch request. There, we need
to check whether it's a GET method, so we just need to execute it with the url parameter
and omit the others. The second part of the function is responsible for the conversion of the
fetch response. It will switch between the type parameter and execute the retrieving
function according to the correct one.

To receive the final data for your request, you always need to call the response translator
after the request, as in the following example:

getHttp('https://jsonplaceholder.typicode.com/todos/1',
 'json').then((response) => { console.log(response)); }

This will get the data from the URL and transform the response into a JSON/JavaScript
object.

The second part we made was the methods translator. We made functions for each one of
the REST verbs to be used more easily. The GET verb doesn't have the ability to pass any
body but all the others are capable of passing a body in the request.

See also
You can find more information about the Fetch API at https:/ /developer. mozilla. org/
en-US/docs/Web/API/ Fetch_ API.

You can find more information about FormData at https:/ /developer. mozilla. org/en-
US/docs/Web/API/ FormData/ FormData.

You can find more information about the Fetch response body at https:/ /developer.
mozilla.org/en-US/ docs/ Web/ API/ Body/ body.

You can find more information about headers at https:/ /developer. mozilla. org/ en-US/
docs/Web/API/Headers.

You can find more information about requests at https:/ /developer. mozilla. org/ en-
US/docs/Web/API/Request.

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Body/body
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Headers
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request

Fetching Data from the Web via HTTP Requests Chapter 5

[207]

Creating a random cat image or GIF
component
It's common knowledge that the internet is made of many GIFs and videos of cats. I'm sure
that if we took down all cat-related content, we would have a web blackout.

The best way to understand more about the Fetch API and how it can be used inside a
component is to make a random cat image or GIF component.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can use the Vue project with Vue CLI that we used in the
'Creating a wrapper for the Fetch API as an HTTP client' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or Command Prompt/PowerShell
(Windows) and execute the following command:

> vue create http-project

The CLI will ask some questions that will help with the creation of the project. You can use
the arrow keys to navigate, the Enter key to continue, and the Spacebar to select an option.
Choose the default option:

? Please pick a preset: (Use arrow keys)
❯ default (babel, eslint)
 Manually select features

Fetching Data from the Web via HTTP Requests Chapter 5

[208]

Creating the component
In this recipe, we will be using the components created in Chapter 4, Components, Mixins,
and Functional Components, for visual elements. You can achieve the same results with
simple HTML elements.

We will divide the creation of this component in three steps: <script>, <template>, and
<style>.

Single file component <script> section
Follow these steps to create the <script> section of the single file component:

Create a new file called RandomCat.vue in the src/components folder and1.
open it.
Import the getHttp function from the fetchApi wrapper we made in2.
the 'Creating a wrapper for the Fetch API as an HTTP client' recipe:

import { getHttp } from '../http/fetchApi';

Asynchronously import the MaterialButton and MaterialCardBox3.
components in the component property:

components: {
 MaterialButton: () => import('./MaterialButton.vue'),
 MaterialCardBox: () => import('./MaterialCardBox.vue'),
},

In the data property, we need to create a new data value named kittyImage,4.
which will be by default an empty string:

data: () => ({
 kittyImage: '',
}),

In the methods property, we need to create the getImage method, which will5.
fetch the image as a Blob and return it as a URL.createObjectURL. We also
need to create the newCatImage method that will fetch a new still image of a cat
and the newCatGif method that will fetch a new cat GIF:

methods: {
 async getImage(url) {
 return URL.createObjectURL(await getHttp(url, 'blob'));
 },
 async newCatImage() {

Fetching Data from the Web via HTTP Requests Chapter 5

[209]

 this.kittyImage = await
 this.getImage('https://cataas.com/cat');
 },
 async newCatGif() {
 this.kittyImage = await
 this.getImage('https://cataas.com/cat/gif');
 },
 },

In the beforeMount life cycle hook, we need to make it asynchronous and6.
execute the newCatImage method:

async beforeMount() {
 await this.newCatImage();
 },

Single file component <template> section
Follow these steps to create the <template> section of the single file component:

First, we need to add the MaterialCardBox component with a header and sub-1.
header, activate the media and action sections, and create the <template>
named slots for media and action:

<MaterialCardBox
 header="Cat as a Service"
 sub-header="Random Cat Image"
 show-media
 show-actions
>
 <template
 v-slot:media>
 </template>
 <template v-slot:action>
 </template>
</MaterialCardBox>

Fetching Data from the Web via HTTP Requests Chapter 5

[210]

In the <template> named slot for media, we need to add an element that2.
will receive a URI Blob, which will be displayed when there is any data in the
kittyImage variable, or it will display a loading icon:

<img
 v-if="kittyImage"
 alt="Meow!"
 :src="kittyImage"
 style="width: 300px;"
>
 <p v-else style="text-align: center">
 <i class="material-icons">
 cached
 </i>
 </p>

At the <template> named slot for action, we will create two buttons, one for3.
fetching cat images and another for fetching cat GIFs, and both will have an
event listener on the @click directive that calls a function that fetches the
corresponding image:

<MaterialButton
 background-color="#4ba3c7"
 text-color="#fff"
 @click="newCatImage"
>
 <i class="material-icons">
 pets
 </i> Cat Image
</MaterialButton>
<MaterialButton
 background-color="#005b9f"
 text-color="#fff"
 @click="newCatGif"
>
 <i class="material-icons">
 pets
 </i> Cat GIF
</MaterialButton>

Fetching Data from the Web via HTTP Requests Chapter 5

[211]

Single file component <style> section
In the <style> part of the component, we need to set the body font-size for the CSS
style calculation based on rem and em:

<style>
 body {
 font-size: 14px;
 }
</style>

Getting up and running with your new component
Follow these steps to add your component to your Vue application:

Open the App.vue file in the src folder.1.
In the components property, asynchronously import the RandomCat.vue2.
component:

<script>
export default {
 name: 'App',
 components: {
 RandomCat: () => import('./components/RandomCat'),
 },
};
</script>

In the <template> section of the file, declare the imported component:3.

<template>
 <div id="app">
 <random-cat />
 </div>
</template>

To run the server and see your component, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm run serve

Here is your component rendered and running:

Fetching Data from the Web via HTTP Requests Chapter 5

[212]

How it works...
Using the getHttp wrapper, the component was able to get the URL and retrieve it as a
Blob type. With this response, we can use the URL.createObjectUrl navigator method
and pass the Blob as an argument to get a valid image URL that can be used as the src
attribute.

See also
You can find more information about URL.createObjectUrl at https:/ /developer.
mozilla.org/en-US/ docs/ Web/ API/ URL/ createObjectURL.

You can find more information about the Blob response type at https:/ / developer.
mozilla.org/en-US/ docs/ Web/ API/ Body/ blob.

https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob
https://developer.mozilla.org/en-US/docs/Web/API/Body/blob

Fetching Data from the Web via HTTP Requests Chapter 5

[213]

Creating your fake JSON API server with
MirageJS
Faking data for testing, developing, or designing is always a problem. You need to have a
big JSON or make a custom server to handle any data changes when presenting the
application at the development stage.

There is now a way to help developers and UI designers achieve this without needing to
code an external server – a new tool called MirageJS, a server emulator that runs on the
browser.

In this recipe, we will learn how to use the MirageJS as a mock server and execute HTTP
requests on it.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can use the Vue project with Vue CLI that we did in
the 'Creating a wrapper for the Fetch API as an HTTP client' recipe, or we can start a new one.

Fetching Data from the Web via HTTP Requests Chapter 5

[214]

To start a new one, open Terminal (macOS or Linux) or Command Prompt/PowerShell
(Windows) and execute the following command:

> vue create visual-component

The CLI will ask some questions that will help with the creation of the project. You can use
the arrow keys to navigate, the Enter key to continue, and the Spacebar to select an option.
Choose the default option:

? Please pick a preset: (Use arrow keys)
❯ default (babel, eslint)
 Manually select features

Creating the mock server
In this recipe, we will be using the getHttp function from the fetchApi wrapper we made
in the 'Creating a wrapper for the Fetch API as an HTTP client' recipe.

Work through the next steps and sections to create your MirageJS mock server:

Install the MirageJS server to your packages. You need to open Terminal (macOS or
Linux) or Command Prompt/PowerShell (Windows) and execute the following command:

> npm install --save miragejs

The version used in this recipe was 0.1.32. Watch for any changes to
MirageJS, as there are no current LTS versions of the library yet.

Now in the following sections, we will create each one of the HTTP methods that will be
mocked by the MirageJS server.

Creating the mock database
In this section, we will create a MirageJS database that will be used to store the temporary
data. Follow these steps to create it:

Create a new file called db.js file in the src/server folder for the initial loaded1.
data.

Fetching Data from the Web via HTTP Requests Chapter 5

[215]

We need to make a JavaScript object the default export for this file, containing the2.
initial data that we want the server to have:

export default {
 users: [
 {
 name: 'Heitor Ramon Ribeiro',
 email: 'heitor@example.com',
 age: 31,
 country: 'Brazil',
 active: true,
 },
],
};

Creating the GET route function
In this section, we are going to create the HTTP GET method that will be mocked by the
MirageJS server. Follow these steps to create it:

For the GET methods, we need to create a new file called get.js in the1.
src/server folder.
For this recipe, we will make a generic getFrom function that receives a key as2.
an argument and returns a function. This returned function returns a direct point
to the local database with the indicated key:

export const getFrom = key => ({ db }) => db[key];

export default {
 getFrom,
};

Creating the POST route function
In this section, we are going to create the HTTP POST method, that will be mocked by the
MirageJS server. Follow these steps to create it:

For the POST methods, we need to create a new file called post.js in the1.
src/server folder.

Fetching Data from the Web via HTTP Requests Chapter 5

[216]

For this recipe, we will make a generic postFrom function that receives a key as2.
an argument and returns a function. This returned function will parse the data
property of the HTTP request body and returns an internal function of the server
schema that inserts the data inside the database. Using the key argument, the
schema knows which table we are handling:

export const postFrom = key => (schema, request) => {
 const { data } = typeof request.requestBody === 'string'
 ? JSON.parse(request.requestBody)
 : request.requestBody;

 return schema.db[key].insert(data);
};

export default {
 postFrom,
};

Creating the PATCH route function
In this section, we are going to create the HTTP PATCH method that will be mocked by the
MirageJS server. Follow these steps to create it:

For the PATCH methods, we need to create a new file called patch.js in the1.
src/server folder.
For this recipe, we will make a generic patchFrom function that receives a key as2.
an argument and returns a function. This returned function will parse the data
property of the HTTP request body and returns an internal function of the server
schema that updates a specific object with the id property that was passed along
with the data. Using the key argument, the schema knows which table we are
handling:

export const patchFrom = key => (schema, request) => {
 const { data } = typeof request.requestBody === 'string'
 ? JSON.parse(request.requestBody)
 : request.requestBody;

 return schema.db[key].update(data.id, data);
};

export default {
 patchFrom,
};

Fetching Data from the Web via HTTP Requests Chapter 5

[217]

Creating the DELETE route function
In this section, we are going to create the HTTP DELETE method that will be mocked by the
MirageJS server. Follow these steps to create it:

For the DELETE methods, we need to create a new file called delete.js in the1.
src/server folder.
For this recipe, we will make a generic patchFrom function that receives a key as2.
an argument and returns a function. This returned function will parse the data
property of the HTTP request body and return an internal function of the server
schema that deletes a specific object with the id property, which was passed to
the server via the route REST parameter. Using the key argument, the schema
knows which table we are handling:

export const deleteFrom = key => (schema, request) =>
 schema.db[key].remove(request.params.id);

export default {
 deleteFrom,
};

Creating the server
In this section, we are going to create the MirageJS server and the routes that will be
available. Follow these steps to create the server:

Create a new file called server.js inside the src/server folder.1.
Next, we need to import the Server class, the baseData, and the router2.
methods:

import { Server } from 'miragejs';
import baseData from './db';
import { getFrom } from './get';
import { postFrom } from './post';
import { patchFrom } from './patch';
import { deleteFrom } from './delete';

Fetching Data from the Web via HTTP Requests Chapter 5

[218]

Create a global variable to the window scope, called server, and set this variable3.
as a new execution of the Server class:

window.server = new Server({});

In the Server class construction options, add a new property called seeds. This4.
property is a function that receives the server (srv) as an argument and executes
the srv.db.loadData function passing the baseDate as a parameter:

seeds(srv) {
 srv.db.loadData({ ...baseData });
},

Now we need to add in the same construction options to a new property called5.
routes, which will create the mock server routes. This property is a function and
on the function body, we will need to set the namespace of the mock server and
the delay in milliseconds within which the server will respond. There will be four
routes. For the Create route, we will make a new route called /users that listen
to the POST method. For the Read route, we will make a new route called
/users that listen to the GET method. For the Update route, we will make a new
route called /users/:id that listens to the PATCH method, and finally, for the
Delete route, we will make a new route called /users that listen to the DELETE
method:

routes() {
 this.namespace = 'api';

 this.timing = 750;

 this.get('/users', getFrom('users'));

 this.post('/users', postFrom('users'));

 this.patch('/users/:id', patchFrom('users'));

 this.delete('/users/:id', deleteFrom('users'));
 },

Fetching Data from the Web via HTTP Requests Chapter 5

[219]

Adding to the application
In this section, we will add the MirageJS server to the Vue application. Follow these steps
to make the server available to your Vue application:

Open the main.js file in the src folder.1.
We need to declare the server as the first imported declaration, so it's available2.
on the initial loading of the application:

import './server/server';
import Vue from 'vue';
import App from './App.vue';

Vue.config.productionTip = false;

new Vue({
 render: h => h(App),
}).$mount('#app');

Creating the component
Now that we have our server, we need to test it. To do so, we will create a simple
application that will run each of the HTTP methods and show the results of each call.

In the following parts, we will create a simple Vue application.

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
steps to create it:

Open the App.vue file in the src folder.1.
Import the getHttp, postHttp, patchHttp, and deleteHTTP methods from the2.
fetchHttp wrapper that we made in the 'Creating a wrapper for the Fetch API
as an HTTP client' recipe:

import {
 getHttp,
 postHttp,
 patchHttp,
 deleteHttp,
} from './http/fetchApi';

Fetching Data from the Web via HTTP Requests Chapter 5

[220]

In the data property, we need to create three new properties to be used,3.
response, userData, and userId:

data: () => ({
 response: undefined,
 userData: '',
 userId: undefined,
 }),

In the methods property, we need to create four new methods, getAllUsers,4.
createUser, updateUser, and deleteUser:

methods: {
 async getAllUsers() {
 },
 async createUser() {
 },
 async updateUser() {
 },
 async deleteUser() {
 },
},

In the getAllUsers method, we will set the response data property as the result5.
of the getHttp function of the api/users route:

async getAllUsers() {
 this.response = await
getHttp(`${window.location.href}api/users`);
},

In the createUser method, we will receive a data argument, which will be an6.
object that we will pass to the postHttp on the api/users route, and after that,
we will execute the getAllUsers method:

async createUser(data) {
 await postHttp(`${window.location.href}api/users`, { data });
 await this.getAllUsers();
},

Fetching Data from the Web via HTTP Requests Chapter 5

[221]

For the updateUser method, we will receive a data argument, which will be an7.
object that we will pass to the patchHttp on the api/users/:id route, using
the id property on the object as the :id on the route. After that, we will execute
the getAllUsers method:

async updateUser(data) {
 await patchHttp(`${window.location.href}api/users/${data.id}`,
 { data });
 await this.getAllUsers();
},

Finally, on the deleteUser method, we receive the user id as the argument,8.
which is a number, then we pass it to the deleteHttp on the api/users/:id
route, using the ID as :id. After that, we execute the getAllUsers method:

async deleteUser(id) {
 await deleteHttp(`${window.location.href}api/users/${id}`, {},
 'text');
 await this.getAllUsers();
},

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these steps to create it:

At the top of the template, we need to add the response property, wrapped in1.
an <pre> HTML element:

<h3>Response</h3>
<pre>{{ response }}</pre>

Fetching Data from the Web via HTTP Requests Chapter 5

[222]

For the creation and updating of a user, we need to create a textarea HTML2.
input with a v-model directive bound to the userData property:

<hr/>
<h1> Create / Update User </h1>
<label for="userData">
 User JSON:
 <textarea
 id="userData"
 v-model="userData"
 rows="10"
 cols="40"
 style="display: block;"
 ></textarea>
</label>

To send this data, we need to create two buttons, both having an event listener3.
bound on the click event with the @click directive targeting the createUser
and updateUser respectively, and passing the userData in the execution:

<button
 style="margin: 20px;"
 @click="createUser(JSON.parse(userData))"
>
 Create User
</button>
<button
 style="margin: 20px;"
 @click="updateUser(JSON.parse(userData))"
>
 Update User
</button>

To execute the DELETE method, we need to create an input HTML element of4.
type number with a v-model directive bound to the userId property:

<h1> Delete User </h1>
<label for="userData">
 User Id:
<input type="number" step="1" v-model="userId">
</label>

Fetching Data from the Web via HTTP Requests Chapter 5

[223]

Finally, to execute this action we need to create a button that will have an event5.
listener bound on the click event with the @click directive, targeting the
deleteUser method and passing the userId property on the execution:

<button
 style="margin: 20px;"
 @click="deleteUser(userId)"
>
 Delete User
</button>

To run the server and see your component, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm run serve

Here is your component rendered and running:

Fetching Data from the Web via HTTP Requests Chapter 5

[224]

How it works...
MirageJS works like an interceptor of every HTTP request that happens on the
application. The server intercepts all XHR (XMLHttpRequest) executions on the browsers
and checks for the route to see whether it matches any one of the routes created on server
creation. If it matches, the server will execute the function accordingly on the respective
route.

Working as a simple REST server with basic CRUD functions, the server has a schema-like
database structure that helps in the process of making a virtual database for storing the
data.

See also
You can find more information about MirageJS at https:/ /github. com/miragejs/
miragejs.

Using axios as the new HTTP client
When you need a library for HTTP requests, there is no doubt that axios is the one you
should go to. Used by more than 1.5 million open-source projects and countless closed
ones, this library is the king of HTTP libraries.

It's built to work with most browsers and provides one of the most complete sets of options
out there – you can customize everything in your request.

In this recipe, we will learn how to change our Fetch API wrapper to axios and start
working around it.

https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs

Fetching Data from the Web via HTTP Requests Chapter 5

[225]

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can use the Vue project with Vue CLI that we made in the
'Creating your fake JSON API Server with MirageJS' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or Command Prompt/PowerShell
(Windows) and execute the following command:

> vue create http-project

The CLI will ask some questions that will help with the creation of the project. You can use
the arrow keys to navigate, the Enter key to continue, and the Spacebar to select an option.
Choose the default option:

? Please pick a preset: (Use arrow keys)
❯ default (babel, eslint)
 Manually select features

Changing from the Fetch API to Axios
In the next steps, we will change the Fetch API used in the HTTP wrapper for the axios
library. Follow these steps to change it correctly:

Install axios in your packages. You need to open Terminal (macOS or Linux) or1.
Command Prompt/PowerShell (Windows) and execute the following command:

> npm install --save axios

Fetching Data from the Web via HTTP Requests Chapter 5

[226]

The version used in this recipe was 0.19.0. Watch for changes to axios, as
there is no LTS version of the library yet.

Open the baseFetch.js file inside the src/http folder.2.
Simplify the method so that it will receive three arguments, url, method, and3.
options, and return an axios method, calling the HTTP request with the
methods passed as the constructor of the instance:

import axios from 'axios';

export default async (url, method, options = {}) => axios({
 method: method.toUpperCase(),
 url,
 ...options,
});

Changing the GET method function
In this part, we are changing the HTTP GET method. Follow these instructions to change
the getHttp function:

Open the fetchApi.js file inside the src/http folder.1.
In the getHttp function, we will add a new argument param, and remove the2.
currying functions:

export const getHttp = async (
 url,
 params,
 options,
) => baseHttp(url,
 'get',
 {
 ...options,
 params,
 });

Fetching Data from the Web via HTTP Requests Chapter 5

[227]

Changing the POST method function
In this part, we are changing the HTTP POST method. Follow these instructions to change
the postHttp function:

Open the fetchApi.js file inside the http folder.1.
In the postHttp function, we will change the body argument to data, and2.
remove the currying functions:

export const postHttp = async (
 url,
 data,
 options,
) => baseHttp(url,
 'post',
 {
 data,
 ...options,
 });

Changing the PUT method function
In this part, we are changing the HTTP PUT method. Follow these instructions to change
the putHttp function:

Open the fetchApi.js file inside the http folder.1.
In the putHttp function, we will change the body argument to data, and2.
remove the currying functions:

export const putHttp = async (
 url,
 data,
 options,
) => baseHttp(url,
 'put',
 {
 data,
 ...options,
 });

Fetching Data from the Web via HTTP Requests Chapter 5

[228]

Changing the PATCH method function
In this part, we are changing the HTTP PATCH method. Follow these instructions to change
the patchHttp function:

Open the fetchApi.js file inside the http folder.1.
In the patchHttp function, we will change the body argument to data, and2.
remove the currying functions:

export const patchHttp = async (
 url,
 data,
 options,
) => baseHttp(url,
 'patch',
 {
 data,
 ...options,
 });

Changing the UPDATE method function
In this part, we are changing the HTTP UPDATE method. Follow these instructions to
change the updateHttp function:

Open the fetchApi.js file inside the http folder.1.
In the updateHttp function, we will add a new argument param, and remove2.
the currying functions:

export const updateHttp = async (
 url,
 data,
 options,
) => baseHttp(url,
 'update',
 {
 data,
 ...options,
 });

Fetching Data from the Web via HTTP Requests Chapter 5

[229]

Changing the DELETE method function
In this part, we are changing the HTTP DELETE method. Follow these instructions to
change the deleteHttp function:

Open the fetchApi.js file inside the http folder.1.
On the deleteHttp function, we will change the body argument to data, and2.
remove the currying functions:

export const deleteHttp = async (
 url,
 data,
 options,
) => baseHttp(url,
 'delete',
 {
 data,
 ...options,
 });

Changing the component
In this part, we will change how the component works with the new functions. Follow
these instructions to change it correctly:

Open the App.vue file inside the src folder.1.
In the getAllUsers method, we will need to change the way the response is2.
defined because axios gives us a completely different response object than the
Fetch API:

async getAllUsers() {
 const { data } = await
getHttp(`${window.location.href}api/users`);
 this.response = data;
 },

In the deleteUser method, we can just pass the URL as the parameter:3.

async deleteUser(id) {
 await deleteHttp(`${window.location.href}api/users/${id}`);
 await this.getAllUsers();
 },

Fetching Data from the Web via HTTP Requests Chapter 5

[230]

To run the server and see your component, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm run serve

How it works...
When we made the wrapper for the Fetch API, we used a technique of abstracting the API
into another interface, which made it possible to change from the Fetch API to the axios
library. By doing this we were able to improve the methods and simplify how the functions
are called and handled. For example, the GET method can now receive a new argument
called params, which are objects of URL query parameters that will be automatically
injected into the URL.

We also had to change the way that the responses were interpreted because axios have a
more robust and complete response object than the Fetch API, which returns just the
fetched response itself.

See also
You can find more information about axios at https:/ /github. com/axios/ axios.

Creating different axios instances
When using axios, you can have multiple instances of it running with none of them
interfering with each other. For example, you have an instance pointing to a user API that is
on version 1 and another pointing to the payment API that is on version 2, both sharing the
same namespace.

Here, we are going to learn how to create various axios instances, so you are able to work
with as many API namespaces as you want without problems or interference.

https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios

Fetching Data from the Web via HTTP Requests Chapter 5

[231]

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can use the Vue project with Vue CLI that we did in the 'Using
axios as the new HTTP client' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or Command Prompt/PowerShell
(Windows) and execute the following command:

> vue create http-project

The CLI will ask some questions that will help with the creation of the project. You can use
the arrow keys to navigate, the Enter key to continue, and the Spacebar to select an option.
Choose the default option:

? Please pick a preset: (Use arrow keys)
❯ default (babel, eslint)
 Manually select features

Changing the HTTP function
When creating multiple axios instances, the process of calling the axios library changes.
Because of that, we need to change how our HTTP wrapper instantiates the axios library.

In the following parts, we will change how the HTTP wrapper works with the creation of a
new axios instance, and make it available to the application.

Fetching Data from the Web via HTTP Requests Chapter 5

[232]

Changing the HTTP Fetch wrapper
In the following steps, we will create a new custom axios instance that will be used in the
HTTP wrapper. Follow these instructions to add the new instance to the application:

Open the baseFetch.js file in the src/http folder.1.
We need to create a new factory function called createAxios to generate a new2.
axios instance each time it's executed:

export function createAxios(options = {}) {
 return axios.create({
 ...options,
 });
}

Now we need to create the localApi constant, the value of which will be the3.
result of the execution of the createAxios factory:

const localApi = createAxios();

For the JSONPlaceHolder we will create a constant that will be exported,4.
named jsonPlaceholderApi, the value of which will be the execution of the
createAxios factory. We will also pass an object as an argument with the
baseURL property defined:

export const jsonPlaceholderApi = createAxios({
 baseURL: 'https://jsonplaceholder.typicode.com/',
});

In the export default function, we need to change from axios to localApi:5.

export default async (url, method, options = {}) => localApi({
 method: method.toUpperCase(),
 url,
 ...options,
});

Fetching Data from the Web via HTTP Requests Chapter 5

[233]

Changing the HTTP methods function
In this part, we will change how the HTTP methods will work with the new axios
instances. Follow the instructions to do it correctly:

Open the fetchApi.js file in the src/http folder.1.
We will import the jsonPlaceholderApi function from baseFetch as an extra2.
imported value:

import baseHttp, { jsonPlaceholderApi } from './baseFetch';

We need to create a new constant called getTodos that will be exported. This3.
constant will be a function that will receive a userId as a parameter and return
the GET function from axios, with the userId parameter we just received,
inside a configuration object in a property called params:

export const getTodos = async userId =>
jsonPlaceholderApi.get('todos',
 {
 params: {
 userId,
 },
 });

Changing the MirageJS server
In this part, we will change how the MirageJS server works with the new axios instance
that was created. Follow the instructions to do it correctly:

Open the server.js file in the src/server folder.1.
On the routes property in the constructor object, we need to add a2.
passthrough declaration, which will indicate to the MirageJS that all the calls to
that URL won't be intercepted:

import { Server } from 'miragejs';
import baseData from './db';
import { getFrom } from './get';
import { postFrom } from './post';
import { patchFrom } from './patch';
import { deleteFrom } from './delete';

window.server = new Server({
 seeds(srv) {
 srv.db.loadData({ ...baseData });
 },

Fetching Data from the Web via HTTP Requests Chapter 5

[234]

 routes() {
 this.passthrough();
 this.passthrough('https://jsonplaceholder.typicode.com/**');

 this.namespace = 'api';

 this.timing = 750;

 this.get('/users', getFrom('users'));

 this.post('/users', postFrom('users'));

 this.patch('/users/:id', patchFrom('users'));

 this.delete('/users/:id', deleteFrom('users'));
 },
});

Changing the component
After the changes in the wrapper functions, the MirageJS server methods, and the HTTP
methods, we need to change the component to the new library that was implemented.

In the following parts, we will change the component to match the new library that was
implemented.

Single file component <script> section
In this part, we will change the <script> section of the single file component. Follow these
steps to do it:

Open the App.vue file in the src folder.1.
We need to import the new getTodos function as follows:2.

import {
 getHttp,
 postHttp,
 patchHttp,
 deleteHttp,
 getTodos,
} from './http/fetchApi';

Fetching Data from the Web via HTTP Requests Chapter 5

[235]

In the data property of the Vue object, we need to create a new property called3.
userTodo, with the default value of an empty array:

data: () => ({
 response: undefined,
 userData: '',
 userId: undefined,
 userTodo: [],
}),

In the methods property, we need to create a new method called getUserTodo4.
that receives the userId argument. This method will fetch the list of to-do items
of the user and will attribute the response to the userTodo property:

async getUserTodo(userId) {
 this.userTodo = await getTodos(userId);
},

Single file component <template> section
In this part, we will change the <template> section of the single file component. Follow
these steps to do it:

Open the App.vue file in the src folder.1.
At the bottom of the template, we need to create a new input HTML element,2.
with the v-model directive bound to the userId property:

<h1> Get User ToDos </h1>
<label for="userData">
 User Id:
 <input type="number" step="1" v-model="userId">
</label>

To fetch the list of items, we need to create a button with an event listener bound3.
on the click event with the @click directive, targeting the getUserTodo, and
passing the userId in the execution:

<button
 style="margin: 20px;"
 @click="getUserTodo(userId)"
>
 Fetch Data
</button>

Fetching Data from the Web via HTTP Requests Chapter 5

[236]

To run the server and see your component, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm run serve

Here is your component rendered and running:

Fetching Data from the Web via HTTP Requests Chapter 5

[237]

How it works...
When we create a new instance of axios, a new object is created, and new configurations,
headers, interceptors, and manipulators are defined. This happens because axios declares
the create functions as the same as new Class. It's the same interface but different
objects.

Using this possibility, we were able to create two connection drivers, one for the local API
and another for the JSONPlaceHolder API, which has a different baseURL.

Because of MirageJS server integration, all the HTTP requests are intercepted by MirageJS,
so we needed to add a directive in the router constructor that indicates the routes that
MirageJS won't intercept.

See also
You can find more information about the JSONPlaceHolder API at https:/ /
jsonplaceholder.typicode. com/ .

You can find more information about axios instances at https:/ / github. com/ axios/
axios#creating-an- instance.

You can find more information about MirageJS at https:/ /github. com/miragejs/
miragejs.

Creating a request and response interceptor
for axios
Using axios as the main HTTP manipulator in our application allows us to use request and
response interceptors. Those are used to manipulate the data before sending it to the server
or when receiving the data, manipulating it before sending it back to the JavaScript code.

The most common way an interceptor is used is in JWT token validation and refreshing the
requests that receive a specific error or API error manipulation.

In this recipe, we will learn how to create a request interceptor to check the POST, PATCH,
and DELETE methods and a response error manipulator.

https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/
https://github.com/axios/axios#creating-an-instance
https://github.com/axios/axios#creating-an-instance
https://github.com/axios/axios#creating-an-instance
https://github.com/axios/axios#creating-an-instance
https://github.com/axios/axios#creating-an-instance
https://github.com/axios/axios#creating-an-instance
https://github.com/axios/axios#creating-an-instance
https://github.com/axios/axios#creating-an-instance
https://github.com/axios/axios#creating-an-instance
https://github.com/axios/axios#creating-an-instance
https://github.com/axios/axios#creating-an-instance
https://github.com/axios/axios#creating-an-instance
https://github.com/axios/axios#creating-an-instance
https://github.com/axios/axios#creating-an-instance
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs
https://github.com/miragejs/miragejs

Fetching Data from the Web via HTTP Requests Chapter 5

[238]

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can use the Vue project with Vue CLI that we made in
the 'Creating different axios instances' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or Command Prompt/PowerShell
(Windows) and execute the following command:

> vue create http-project

The CLI will ask some questions that will help with the creation of the project. You can use
the arrow keys to navigate, the Enter key to continue, and the Spacebar to select an option.
Choose the default option:

? Please pick a preset: (Use arrow keys)
❯ default (babel, eslint)
 Manually select features

Creating the interceptor
In the following steps, we will create an axios interceptor that will work as a middleware.
Follow the instructions do it correctly:

Install the Sweet Alert package. To do this you need to open Terminal (macOS1.
or Linux) or Command Prompt/PowerShell (Windows) and execute the
following command:

> npm install --save sweetalert2

Create a new file called interceptors.js in the src/http folder and open it.2.

Fetching Data from the Web via HTTP Requests Chapter 5

[239]

Then, we import the Sweet Alert package:3.

import Swal from 'sweetalert2';

We need to create a constant with an array of the POST methods that will be4.
intercepted:

const postMethods = ['post', 'patch'];

We need to create a function named requestInterceptor and export it. This5.
function will receive one argument, config, which is an axios configuration
object. We need to check whether the request method is included in the array we
created earlier and whether the data property of the data body has an id
property. If any of the checks didn't pass, we will throw an Error, otherwise, we
will return config:

export function requestInterceptor(config) {
 if (
 postMethods.includes(config.method.toLocaleLowerCase()) &&
 Object.prototype.hasOwnProperty.call('id', config.data.data) &&
 !config.data.data.id)
 {
 throw new Error('You need to pass an ID for this request');
 }

 return config;
}

For the response interceptor, we need to create a new function called6.
responseInterceptor that returns the response, as we won't change anything
in this interceptor:

export function responseInterceptor(response) {
 return response;
}

For catching the error, we need to create an errorInterceptor function, which7.
will be exported. This function receives an error as an argument and will
display a sweetalert2 alert error message and return a Promise.reject with
the error:

export function errorInterceptor(error) {
 Swal.fire({
 type: 'error',
 title: 'Error!',
 text: error.message,

Fetching Data from the Web via HTTP Requests Chapter 5

[240]

 });

 return Promise.reject(error);
}

Adding the interceptors to the HTTP methods functions
In the following steps, we will add the axios interceptor to the HTTP method functions.
Follow these steps to do it correctly:

Open the baseFetch.js file in the src/http folder.1.
We need to import the three interceptors we just created:2.

import {
 errorInterceptor,
 requestInterceptor,
 responseInterceptor,
} from './interceptors';

After the creation of the localApi instance, we declare the use of the request3.
and response interceptor:

localApi.interceptors
 .request.use(requestInterceptor, errorInterceptor);

localApi.interceptors
 .response.use(responseInterceptor, errorInterceptor);

After the creation of the jsonPlaceholderApi instance, we declare the use of4.
the request and response interceptor:

jsonPlaceholderApi.interceptors
 .request.use(requestInterceptor, errorInterceptor);

jsonPlaceholderApi.interceptors
 .response.use(responseInterceptor, errorInterceptor);

How it works...
Each request that axios do passes through each of any one of the interceptors in the set.
The same thing happens for the response. If any error is thrown on the interceptor, it will
automatically be passed to the error manipulator, so the request won't be executed at all, or
the response will be sent to the JavaScript code as an error.

Fetching Data from the Web via HTTP Requests Chapter 5

[241]

We checked each request that was done for the POST, PATCH, and DELETE method to see
if there was an id property in the body data. If there wasn't, we threw an error to the user,
saying that they need to pass an ID for the request.

See also
You can find more information about Sweet Alert 2 at https:/ / sweetalert2. github. io.

You can find more information about the axios request interceptor at https:/ /github.
com/axios/axios#interceptors.

Creating a CRUD interface with Axios and
Vuesax
When dealing with data, there is something that we will always need to do: a CRUD
process. Regardless of what kind of application you are developing, a CRUD interface is
needed in order to input and manipulate any data on the server, the administrator panel,
the backend of your application, or even the client side.

Here, we will learn how to create a simple CRUD interface using the Vuesax framework for
the UI and axios for the HTTP request.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

https://sweetalert2.github.io
https://sweetalert2.github.io
https://sweetalert2.github.io
https://sweetalert2.github.io
https://sweetalert2.github.io
https://sweetalert2.github.io
https://sweetalert2.github.io
https://sweetalert2.github.io
https://sweetalert2.github.io
https://github.com/axios/axios#interceptors
https://github.com/axios/axios#interceptors
https://github.com/axios/axios#interceptors
https://github.com/axios/axios#interceptors
https://github.com/axios/axios#interceptors
https://github.com/axios/axios#interceptors
https://github.com/axios/axios#interceptors
https://github.com/axios/axios#interceptors
https://github.com/axios/axios#interceptors
https://github.com/axios/axios#interceptors

Fetching Data from the Web via HTTP Requests Chapter 5

[242]

How to do it...
To start our component, use the Vue project with Vue CLI that we used in the 'Creating a
request and response interceptor for axios' recipe, or start a new one.

To start a new one, open Terminal (macOS or Linux) or Command Prompt/PowerShell
(Windows) and execute the following command:

> vue create http-project

The CLI will ask some questions that will help with the creation of the project. You can use
the arrow keys to navigate, the Enter key to continue, and the Spacebar to select an option.
Choose the default option:

? Please pick a preset: (Use arrow keys)
❯ default (babel, eslint)
 Manually select features

Adding Vuesax to the application
In the following steps, we will cover how to add the Vuesax UI library to your Vue
application. Follow these instructions to do it correctly:

Open Terminal (macOS or Linux) or Command Prompt/PowerShell (Windows)1.
and execute the following command:

> npm install --save vuesax material-icons

Create a file called style.css in the src folder and open it.2.
Import the vuesax, material-icon, and Open Sans font stylesheets:3.

@import
url('https://fonts.googleapis.com/css?family=Open+Sans:300,300i,400
,400i,600,600i,700,700i,800,
 800i&display=swap');
@import url('~vuesax/dist/vuesax.css');
@import url('~material-icons/iconfont/material-icons.css');

* {
 font-family: 'Open Sans', sans-serif;
}

Fetching Data from the Web via HTTP Requests Chapter 5

[243]

Open the main.js file in the src folder.4.
Import the style.css file and Vuesax. After that, you need to inform Vue to5.
use Vuesax:

import './server/server';
import Vue from 'vue';
import App from './App.vue';
import Vuesax from 'vuesax';
import './style.css';

Vue.use(Vuesax);

Vue.config.productionTip = false;

new Vue({
 render: h => h(App),
}).$mount('#app');

Creating the component routing
We will continue the recipe in five parts: List, Create, Read, Update, and Delete. Our
application will be a dynamic component application, so we will create five components,
one for each part. Those components will be like our pages.

First, we need to change App.vue to be our main route manager and create a mixin for
changing the component.

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

Open App.vue in the src folder.1.
Import each one of the components that will be created here:2.

import List from './components/list';
import Create from './components/create';
import View from './components/view';
import Update from './components/update';

Fetching Data from the Web via HTTP Requests Chapter 5

[244]

In the data property, create two new values: componentIs with a default value3.
of 'list', and userId with a default value of 0:

data: () => ({
 componentIs: 'list',
 userId: 0,
}),

We need to add a new property to the Vue object, called provide. This property4.
will be a function, so the provided values to the components can be reactive:

provide () {
 const base = {};

 Object.defineProperty(base, 'userId', {
 enumerable: true,
 get: () => Number(this.userId),
 });

 return base;
},

In the computed properties, we need to create a new property called component.5.
This will be a switch case that will return our component, based on the
componentIs property:

computed: {
 component() {
 switch (this.componentIs) {
 case 'list':
 return List;
 case 'create':
 return Create;
 case 'view':
 return View;
 case 'edit':
 return Update;
 default:
 return undefined;
 }
 }
},

Fetching Data from the Web via HTTP Requests Chapter 5

[245]

Finally, in the methods, we need to create a changeComponent method that will6.
update the current component to a new one:

methods: {
 changeComponent(payload) {
 this.componentIs = payload.component;
 this.userId = Number(payload.userId);
 },
},

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

In the div#app HTML element, we need to add a vs-row component:1.

<div id="app">
 <vs-row></vs-row>
</div>

In the vs-row component, we need to add a vs-col component with the2.
following attributes: vs-type defined as flex, vs-justify defined as left,
vs-align defined as left, and vs-w defined as 12:

<vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="12">
</vs-col>

Finally, inside the vs-col component, we will add a dynamic component that3.
has an is attribute to the computed property component and point the event
listener at the "change-component" event that will execute the
changeComponent method:

<component
 :is="component"
 @change-component="changeComponent"
/>

Fetching Data from the Web via HTTP Requests Chapter 5

[246]

Creating the route mixin
In this part, we will create the component mixin to be re-used in other components. Follow
these instructions to create the component correctly:

Create a new file called changeComponent.js in the src/mixin folder and1.
open it.
This mixin will have a method called changeComponent, which will emit2.
a 'change-component' event with the name of the new component that needs
to be rendered, and the userId:

export default {
 methods: {
 changeComponent(component, userId = 0) {
 this.$emit('change-component', { component, userId });
 },
 }
}

Creating the list component
The list component will be the index component. It will list the users in the application and
have all the links for the other CRUD actions.

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

Create a new file called list.vue in the src/components folder and open it.1.
Import the getHttp and deleteHttp from fetchApi and the2.
changeComponent mixin:

import {
 getHttp,
 deleteHttp,
 } from '../http/fetchApi';
 import changeComponent from '../mixin/changeComponent';

Fetching Data from the Web via HTTP Requests Chapter 5

[247]

In the component mixins property, we need to add the imported3.
changeComponent mixin:

mixins: [changeComponent],

In the data property of the component, we add a new property named4.
userList, with a default empty array:

data: () => ({
 userList: [],
}),

For the methods, we create getAllUsers and deleteUsers methods. In the5.
getAllUsers method, we fetch the user lists and set the userList value as the
response from the getHttp function execution. The deleteUser method will
execute the deleteHttp function, and then execute the getAllUsers method:

methods: {
 async getAllUsers() {
 const { data } = await
getHttp(`${window.location.href}api/users`);
 this.userList = data;
 },
 async deleteUser(id) {
 await deleteHttp(`${window.location.href}api/users/${id}`);
 await this.getAllUsers();
 },
}

Lastly, we make the beforeMount life cycle hook asynchronous, calling the6.
getAllUsers method:

async beforeMount() {
 await this.getAllUsers();
},

Fetching Data from the Web via HTTP Requests Chapter 5

[248]

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

Create a vs-card component with the style attribute defined as margin:1.
20px:

<vs-card
 style="margin: 20px;"
 >
</vs-card>

Inside the vs-card component, create a dynamic <template> named slot for2.
header, with an <h3> tag and your title:

<template slot="header">
 <h3>
 Users
 </h3>
</template>

After that, create a vs-row component with a vs-col component inside of it,3.
with the following attributes: vs-type defined as flex, vs-justify defined as
left, vs-align defined as left, and vs-w defined as 12:

<vs-row>
 <vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="12">
 </vs-col>
</vs-row>

Fetching Data from the Web via HTTP Requests Chapter 5

[249]

Inside the vs-col component, we need to create a vs-table component. This4.
component will have the data attribute pointed to the userList variable, and
will have the search, stripe, and pagination attributes defined as true. The
max-items attribute will be defined as 10 and the style attribute will have the
value of width: 100%; padding: 20px;:

<vs-table
 :data="userList"
 search
 stripe
 pagination
 max-items="10"
 style="width: 100%; padding: 20px;"
></vs-table>

For the table header, we need to create a dynamic <template> named slot5.
thead, and create for each column a vs-th component with the sort-key
attribute defined as the respective object key property and the display as the
name you want:

<template slot="thead">
 <vs-th sort-key="id">
 #
 </vs-th>
 <vs-th sort-key="name">
 Name
 </vs-th>
 <vs-th sort-key="email">
 Email
 </vs-th>
 <vs-th sort-key="country">
 Country
 </vs-th>
 <vs-th sort-key="phone">
 Phone
 </vs-th>
 <vs-th sort-key="Birthday">
 Birthday
 </vs-th>
 <vs-th>
 Actions
 </vs-th>
</template>

Fetching Data from the Web via HTTP Requests Chapter 5

[250]

For the table body, we need to create a dynamic <template> with a slot-6.
scope attribute defined as the data property. Inside this <template> we need
to create a vs-tr component that will iterate the data property and have a vs-td
component for each column that you set on the head of the table. Each vs-td
component has a data property set to the respective column data object property,
and the content will be the same data rendered. The final column that is the
actions column will have three buttons, one for Read, another for Update, and
the last for Delete. The Read button will have an event listener on the "click"
event pointing to the changeComponent, and the same goes for the Update
button. The Delete button "click" event listener will be pointing to the
deleteUser method:

<template slot-scope="{data}">
 <vs-tr :key="index" v-for="(tr, index) in data">
 <vs-td :data="data[index].id">
 {{data[index].id}}
 </vs-td>
 <vs-td :data="data[index].name">
 {{data[index].name}}
 </vs-td>
 <vs-td :data="data[index].email">
 <a :href="`mailto:${data[index].email}`">
 {{data[index].email}}

 </vs-td>
 <vs-td :data="data[index].country">
 {{data[index].country}}
 </vs-td>
 <vs-td :data="data[index].phone">
 {{data[index].phone}}
 </vs-td>
 <vs-td :data="data[index].birthday">
 {{data[index].birthday}}
 </vs-td>
 <vs-td :data="data[index].id">
 <vs-button
 color="primary"
 type="filled"
 icon="remove_red_eye"
 size="small"
 @click="changeComponent('view', data[index].id)"
 />
 <vs-button
 color="success"
 type="filled"
 icon="edit"

Fetching Data from the Web via HTTP Requests Chapter 5

[251]

 size="small"
 @click="changeComponent('edit', data[index].id)"
 />
 <vs-button
 color="danger"
 type="filled"
 icon="delete"
 size="small"
 @click="deleteUser(data[index].id)"
 />
 </vs-td>
 </vs-tr>
</template>

Finally, in the card footer, we need to create a dynamic <template> named slot7.
for footer. Inside this <template> we will add a vs-row component with the
vs-justify attribute defined as flex-start and insert a vs-button with the
color attribute defined as primary, type defined as filled, icon defined as
fiber_new, and size defined as small. The @click event listener will target
the changeComponent method with the parameters 'create' and 0:

<template slot="footer">
 <vs-row vs-justify="flex-start">
 <vs-button
 color="primary"
 type="filled"
 icon="fiber_new"
 size="small"
 @click="changeComponent('create', 0)"
 >
 Create User
 </vs-button>
 </vs-row>
</template>

Fetching Data from the Web via HTTP Requests Chapter 5

[252]

Single file component <style> section
In this part, we will create the <style> section of the single file component. Follow these
instructions to create the component correctly:

Create a declaration of margin to the vs-button component class:1.

<style scoped>
 .vs-button {
 margin-left: 5px;
 }
</style>

To run the server and see your component, you need to open Terminal (macOS2.
or Linux) or Command Prompt/PowerShell (Windows) and execute the
following command:

> npm run serve

Here is your component rendered and running:

Creating a generic user form component
In the following parts, we will create a generic user form component that will be used by
other components. This component is considered generic because it is a component that can
be used by anyone.

Fetching Data from the Web via HTTP Requests Chapter 5

[253]

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

Create a new file called userForm.vue in the src/components folder and open1.
it.
In the props Vue property, create two new properties called value and2.
disabled, both being objects and having the three properties of type,
required, and default. For the value property, the type will be Object,
required will be false, and default will be a factory returning an object. For
the disabled property, the type will be Boolean, required will be false, and
the default will also be false:

props: {
 value: {
 type: Object,
 required: false,
 default: () => {
 },
 },
 disabled: {
 type: Boolean,
 required: false,
 default: false,
 }
},

In the data property, we need to add a new value of tmpForm, with the default3.
value of an empty object:

data: () => ({
 tmpForm: {},
}),

In the Vue watch property, we need to create the handler for the tmpForm and4.
the value. For the tmpForm watcher, we will add a handler function that will
emit an 'input' event on each change with the new value, and add the deep
property to true. Finally, on the value watcher, we will add a handler function
that will set the value of the tmpForm as the new value. We also need to define
the deep and immediate properties as true:

watch: {
 tmpForm: {
 handler(value) {

Fetching Data from the Web via HTTP Requests Chapter 5

[254]

 this.$emit('input', value);
 },
 deep: true,
 },
 value: {
 handler(value) {
 this.tmpForm = value;
 },
 deep: true,
 immediate: true,
 }
},

When using watchers, declaring the deep property makes the watcher
checks for deep changes on arrays or objects, and the immediate property
executes the watcher as soon as the component is created.

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

For the inputs wrapper, we need to create a vs-row component. Inside the vs-1.
row component, we will create each input for our user form:

<vs-row></vs-row>

For the name input, we need to create a vs-col component, with the attributes2.
of vs-type defined as 'flex', vs-justify defined as 'left', vs-align
defined as 'left', and vs-w defined as '6'. Inside of the vs-col component,
we need to create a vs-input component, with the v-model directive bound to
tmpForm.name, the attributes of disabled bound to the disabled props,
label defined as 'Name', placeholder defined as 'User Name', and class
defined as 'inputMargin full-width':

<vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="6">
 <vs-input
 v-model="tmpForm.name"
 :disabled="disabled"
 label="Name"

Fetching Data from the Web via HTTP Requests Chapter 5

[255]

 placeholder="User Name"
 class="inputMargin full-width"
 />
</vs-col>

For the email input, we need to create a vs-col component, with the attributes3.
of vs-type defined as 'flex', vs-justify defined as 'left', vs-align
defined as 'left', and vs-w defined as '6'. Inside of the vs-col component,
we need to create a vs-input component, with the v-model directive bound to
tmpForm.email, the disabled attributes bound to the disabled props, label
defined as 'Email', placeholder defined as 'User Email', and class
defined as 'inputMargin full-width':

<vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="6">
 <vs-input
 v-model="tmpForm.email"
 :disabled="disabled"
 label="Email"
 placeholder="User Email"
 class="inputMargin full-width"
 />
</vs-col>

For the country input, we need to create a vs-col component, with the attributes4.
of vs-type defined as 'flex', vs-justify defined as 'left', vs-align
defined as 'left', and vs-w defined as '6'. Inside of the vs-col component,
we need to create a vs-input component, with the v-model directive bound to
tmpForm.country, the disabled attributes bound to the disabled props,
label defined as 'Country', placeholder defined as 'User Country', and
class defined as 'inputMargin full-width':

<vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="6">
 <vs-input
 v-model="tmpForm.country"
 :disabled="disabled"
 label="Country"
 placeholder="User Country"

Fetching Data from the Web via HTTP Requests Chapter 5

[256]

 class="inputMargin full-width"
 />
</vs-col>

For the phone input, we need to create a vs-col component, with the attributes5.
of vs-type defined as 'flex', vs-justify defined as 'left', vs-align
defined as 'left', and vs-w defined as '6'. Inside of the vs-col component,
we need to create a vs-input component, with the v-model directive bound to
tmpForm.phone, the disabled attributes bound to the disabled props, label
defined as 'Phone', placeholder defined as 'User Phone', and class
defined as 'inputMargin full-width':

<vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="6">
 <vs-input
 v-model="tmpForm.phone"
 :disabled="disabled"
 label="Phone"
 placeholder="User Phone"
 class="inputMargin full-width"
 />
</vs-col>

For the birthday input, we need to create a vs-col component, with the6.
attributes of vs-type defined as 'flex', vs-justify defined as 'left', vs-
align defined as 'left', and vs-w defined as '6'. Inside of the vs-col
component, we need to create a vs-input component, with the v-model
directive bound to tmpForm.birthday, the disabled attributes bound to the
disabled props, label defined as 'Birthday', placeholder defined as
'User Birthday', and class defined as 'inputMargin full-width':

<vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="6">
 <vs-input
 v-model="tmpForm.birthday"
 :disabled="disabled"
 label="Birthday"
 placeholder="User Birthday"
 class="inputMargin full-width"

Fetching Data from the Web via HTTP Requests Chapter 5

[257]

 />
</vs-col>

Single file component <style> section
In this part, we will create the <style> section of the single file component. Follow these
instructions to create the component correctly:

Create a new scoped class called inputMargin with the margin property defined as 15px:

<style>
 .inputMargin {
 margin: 15px;
 }
</style>

Creating the create user component
To start our process with user manipulation, we need to create an initial base user form to
be shared between the View, Create, and Update components.

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

Create a new file called create.vue in the src/components folder and open it.1.
Import the UserForm component, the changeComponent mixin, and postHttp2.
from fetchApi:

import UserForm from './userForm';
import changeComponent from '../mixin/changeComponent';
import { postHttp } from '../http/fetchApi';

It the data property, we will add a userData object with the name, email,3.
birthday, country, and phone properties all defined as empty strings:

data: () => ({
 userData: {
 name: '',
 email: '',
 birthday: '',
 country: '',
 phone: '',

Fetching Data from the Web via HTTP Requests Chapter 5

[258]

 },
}),

In the Vue mixins property, we need to add the changeComponent:4.

mixins: [changeComponent],

In the Vue components property, add the UserForm component:5.

components: {
 UserForm,
},

In the methods property, we need to create the createUser method that will6.
use the data on the userData property and will create a new user on the server
and then redirect the user to the users lists:

methods: {
 async createUser() {
 await postHttp(`${window.location.href}api/users`, {
 data: {
 ...this.userData,
 }
 });
 this.changeComponent('list', 0);
 },
},

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

Create a vs-card component with the style attribute defined as margin:1.
20px:

<vs-card
 style="margin: 20px;"
 >
</vs-card>

Inside the vs-card component, create a dynamic <template> named slot for2.
header, with an <h3> tag and your title:

<template slot="header">
 <h3>
 Create User

Fetching Data from the Web via HTTP Requests Chapter 5

[259]

 </h3>
</template>

After that, create a vs-row component with a vs-col component inside of it,3.
with the attributes of vs-type defined as flex, vs-justify defined as left,
vs-align defined as left, and vs-w defined as 12:

<vs-row>
 <vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="12">
 </vs-col>
</vs-row>

Inside the vs-col component, we will add the user-form component with the4.
v-model directive bound to userData:

<user-form
 v-model="userData"

/>

Finally, in the card footer, we need to create a dynamic <template> named slot5.
for footer. Inside this <template> we will add a vs-row component with the
vs-justify attribute defined as flex-start and insert two vs-button
components. The first will be for creating the user and will have the attributes of
color defined as success, type defined as filled, icon defined as save, and
size defined as small. The @click event listener will target the createUser
method and the second vs-button component will be for canceling this action
and returning to the users lists. It will have the attributes of color defined as
danger, type defined as filled, icon defined as cancel, size defined as
small, style defined as margin-left: 5px, and the @click event listener
target to the changeComponent method with the 'list' and 0 parameters:

<template slot="footer">
 <vs-row vs-justify="flex-start">
 <vs-button
 color="success"
 type="filled"
 icon="save"
 size="small"
 @click="createUser"
 >

Fetching Data from the Web via HTTP Requests Chapter 5

[260]

 Create User
 </vs-button>
 <vs-button
 color="danger"
 type="filled"
 icon="cancel"
 size="small"
 style="margin-left: 5px"
 @click="changeComponent('list', 0)"
 >
 Cancel
 </vs-button>
 </vs-row>
</template>

To run the server and see your component, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm run serve

Here is your component rendered and running:

Fetching Data from the Web via HTTP Requests Chapter 5

[261]

View component
In the following parts, we will create the visualization component. This component will be
used for viewing the information of the user only.

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

Create a file named view.vue in the src/components folder and open it.1.
Import the UserForm component, the changeComponent mixin, and the2.
getHttp from fetchApi:

import {
 getHttp,
} from '../http/fetchApi';
import UserForm from './userForm';
import changeComponent from '../mixin/changeComponent';

In the data property, we will add a userData object with the name, email,3.
birthday, country, and phone properties all defined as empty strings:

data: () => ({
 userData: {
 name: '',
 email: '',
 birthday: '',
 country: '',
 phone: '',
 },
}),

In the Vue mixins property, we need to add the changeComponent mixin:4.

mixins: [changeComponent],

In the Vue inject property, we need to declare the 'userId' property:5.

inject: ['userId'],

In the Vue components property, add the UserForm component:6.

components: {
 UserForm,
},

Fetching Data from the Web via HTTP Requests Chapter 5

[262]

For the methods, we will create the getUserById method. This method will7.
fetch the user data by the current ID and set the userData value as the response
from the getHttp function execution:

methods: {
 async getUserById() {
 const { data } = await
getHttp(`${window.location.href}api/users/${this.userId}`);
 this.userData = data;
 },
}

In the beforeMount life cycle hook, we will make it asynchronous, calling the8.
getUserById method:

async beforeMount() {
 await this.getUserById();
},

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

Create a vs-card component with the style attribute defined as margin:1.
20px:

<vs-card
 style="margin: 20px;"
 >
</vs-card>

Inside the vs-card component, create a dynamic <template> named slot for2.
header, with an <h3> tag and your title:

<template slot="header">
 <h3>
 View User
 </h3>
</template>

Fetching Data from the Web via HTTP Requests Chapter 5

[263]

After that, create a vs-row component with a vs-col component inside of it,3.
with the attributes of vs-type defined as flex, vs-justify defined as left,
vs-align defined as left, and vs-w defined as 12:

<vs-row>
 <vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="12">
 </vs-col>
</vs-row>

Inside the vs-col component, we will add the UserForm component with the v-4.
model directive bound to userData and the disabled attribute set to true:

<user-form
 v-model="userData"
 disabled
/>

Finally, in the card footer, we need to create a dynamic <template> named slot5.
for footer. Inside this <template> we will add a vs-row component with the
vs-justify attribute defined as flex-start and insert two vs-button
components. The first will be for canceling this action and returning to the users
lists. It will have the attributes of color defined as danger, type defined as
filled, icon defined as cancel, size defined as small, and the@click event
listener target to the changeComponent method with the 'list' and 0
parameters. The second vs-button component will be for the editing the user
and will have the attributes of color defined as success, type defined as
filled, icon defined as save, size defined as small style defined as
margin-left: 5px, and the @click event listener target to the
changeComponent method with the 'list' parameter and the injected userId:

<template slot="footer">
 <vs-row vs-justify="flex-start">
 <vs-button
 color="primary"
 type="filled"
 icon="arrow_back"
 size="small"
 style="margin-left: 5px"
 @click="changeComponent('list', 0)"
 >
 Back

Fetching Data from the Web via HTTP Requests Chapter 5

[264]

 </vs-button>
 <vs-button
 color="success"
 type="filled"
 icon="edit"
 size="small"
 style="margin-left: 5px"
 @click="changeComponent('edit', userId)"
 >
 Edit User
 </vs-button>
 </vs-row>
</template>

To run the server and see your component, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm run serve

Here is your component rendered and running:

Fetching Data from the Web via HTTP Requests Chapter 5

[265]

Updating the user component
We just viewed the user data, and now we want to update it. We need to make a new
component that is almost the same as the view component but has the method of updating
the user and has the form enabled.

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

Create a file named update.vue in the src/components folder and open it.1.
Import the UserForm component, the changeComponent mixin, and the2.
getHttp and patchHttp functions from fetchApi:

import UserForm from './userForm';
import changeComponent from '../mixin/changeComponent';
import {
 getHttp,
 patchHttp,
} from '../http/fetchApi';

In the data property, we will add a userData object, with the name, email,3.
birthday, country, and phone properties, all defined as empty strings:

data: () => ({
 userData: {
 name: '',
 email: '',
 birthday: '',
 country: '',
 phone: '',
 },
}),

In the Vue mixins property, we need to add the changeComponent mixin:4.

mixins: [changeComponent],

In the Vue inject property, we need to declare the 'userId' property:5.

inject: ['userId'],

Fetching Data from the Web via HTTP Requests Chapter 5

[266]

In the Vue components property, add the UserForm component:6.

components: {
 UserForm,
},

For the methods, we will create two: getUserById and updateUser. The7.
getUserById method will fetch the user data by the current ID and set the
userData value as the response from the getHttp function execution, and the
updateUser will send the current userDate to the server via the patchHttp
function and redirect back to the users list:

methods: {
 async getUserById() {
 const { data } = await
 getHttp(`${window.location.href}api/users/${this.userId}`);
 this.userData = data;
 },
 async updateUser() {
 await patchHttp
 (`${window.location.href}api/users/${this.userData.id}`, {
 data: {
 ...this.userData,
 }
 });
 this.changeComponent('list', 0);
 },
},

On the beforeMount life cycle hook, we will make it asynchronous, calling the8.
getUserById method:

async beforeMount() {
 await this.getUserById();
},

Fetching Data from the Web via HTTP Requests Chapter 5

[267]

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

Create a vs-card component with the style attribute defined as margin:1.
20px:

<vs-card
 style="margin: 20px;"
 >
</vs-card>

Inside the vs-card component, create a dynamic <template> named slot for2.
header, with an <h3> tag and your title:

<template slot="header">
 <h3>
 Update User
 </h3>
</template>

After that, create a vs-row component with a vs-col component inside of it,3.
with the attributes of vs-type defined as flex, vs-justify defined as left,
vs-align defined as left, and vs-w defined as 12:

<vs-row>
 <vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="12">
 </vs-col>
</vs-row>

Inside the vs-col component, we will add the UserForm component with the v-4.
model directive bound to userData and the disabled attribute set to true:

<user-form
 v-model="userData"
 disabled
/>

Fetching Data from the Web via HTTP Requests Chapter 5

[268]

Finally, in the card footer, we need to create a dynamic <template> named slot5.
for footer. Inside <template>, we will add a vs-row component with the vs-
justify attribute defined as flex-start and insert two vs-button
components. The first will be for creating the user and will have the attributes of
color defined as success, type defined as filled, icon defined as save,
size defined as small, and the @click event listener target to the updateUser
method. The second vs-button component will be for canceling this action and
returning to the users lists. It will have the attributes of color defined as
danger, type defined as filled, icon defined as cancel, size defined as
small, style defined as margin-left: 5px, and the @click event listener
target to the changeComponent method with the 'list' and 0 parameters:

<template slot="footer">
 <vs-row vs-justify="flex-start">
 <vs-button
 color="success"
 type="filled"
 icon="save"
 size="small"
 @click="updateUser"
 >
 Update User
 </vs-button>
 <vs-button
 color="danger"
 type="filled"
 icon="cancel"
 size="small"
 style="margin-left: 5px"
 @click="changeComponent('list', 0)"
 >
 Cancel
 </vs-button>
 </vs-row>
</template>

Fetching Data from the Web via HTTP Requests Chapter 5

[269]

To run the server and see your component, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm run serve

Here is your component rendered and running:

How it works...
The CRUD interface that we created works like a router application, with three routes, the
index or list, the view, and the edit route. Each route has its own screen and components,
with separated logic functions.

We created an abstract UserForm component that was used on the View and Update
components. This abstract component can be used in many other components, as it does
not require any base logic to work; it's like an input but made of several inputs.

Fetching Data from the Web via HTTP Requests Chapter 5

[270]

Using the provide/inject API of Vue, we were able to pass the userId to each of the
components in an observable way, which means that when the variable is updated, the
component receives the updated variable. This is not achievable using the normal Vue API,
so we had to use the Object.defineProperty and use the provide property as a factory
function to return the final object.

See also
You can find more information about Vuesax at https:/ /lusaxweb. github. io/ vuesax/ .

You can find more information about Object.defineProperty at https:/ /developer.
mozilla.org/en-US/ docs/ Web/ JavaScript/ Reference/ Global_ Objects/ Object/
defineProperty.

You can find more information about the Vue provide/inject API at https:/ /vuejs. org/
v2/guide/components- edge- cases. html.

https://lusaxweb.github.io/vuesax/
https://lusaxweb.github.io/vuesax/
https://lusaxweb.github.io/vuesax/
https://lusaxweb.github.io/vuesax/
https://lusaxweb.github.io/vuesax/
https://lusaxweb.github.io/vuesax/
https://lusaxweb.github.io/vuesax/
https://lusaxweb.github.io/vuesax/
https://lusaxweb.github.io/vuesax/
https://lusaxweb.github.io/vuesax/
https://lusaxweb.github.io/vuesax/
https://lusaxweb.github.io/vuesax/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html
https://vuejs.org/v2/guide/components-edge-cases.html

6
Managing Routes with vue-

router
One of the main parts of your application is router management. Here, it is possible to
bring together infinite component combinations in a single place.

A router is capable of coordinating component rendering and dictating where the
application should be, depending on the URL. There are many ways to increase the
customization of vue-router. You can add route guards to check whether specific routes
are navigatable by access level or fetch data before entering the route to manage errors on
your application.

In this chapter, you will learn how to create application routes, dynamic routes, alias and
credited routes, and nested router views. We'll also look at how to manage errors, create
router guards, and lazy load your pages.

In this chapter, we'll cover the following recipes:

Creating a simple route
Creating a programmatic navigation
Creating a dynamic router path
Creating a route alias
Creating a route redirect
Creating a nested router view
Creating a 404 error page
Creating an authentication middleware
Lazy loading your pages asynchronously

Managing Routes with vue-router Chapter 6

[272]

Technical requirements
In this chapter, we will be using Node.js and Vue-CLI.

Attention Windows users: you need to install an npm package called
windows-build-tools to be able to install the following required
packages. To do so, open the PowerShell as an administrator and execute
the following command:
> npm install -g windows-build-tools

To install Vue-CLI, you need to open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> npm install -g @vue/cli @vue/cli-service-global

Creating a simple route
In your application, you can create an infinite combination of routes that can lead to any
number of pages and components.

vue-router is the maintainer of this combination. We need to use this to set instructions
on how to create paths and lay down routes for our visitors.

In this recipe, we will learn how to create an initial route that will lead to a different
component.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

Managing Routes with vue-router Chapter 6

[273]

How to do it...
To create a Vue-CLI project, follow these steps:

We need to open Terminal (macOS or Linux) or Command1.
Prompt/PowerShell (Windows) and execute the following command:

> vue create initial-routes

The CLI will ask some questions that will help with the creation of the project.2.
You can use the arrow keys to navigate, the Enter key to continue, and the
Spacebar to select an option.

There are two methods for starting a new project. The default method is a basic3.
Babel and ESLint project without any plugins or configuration, and the
Manually mode, where you can select more modes, plugins, linters, and options.
We will go for Manually:

? Please pick a preset: (Use arrow keys)
 default (babel, eslint)
❯ Manually select features

Now we are asked about the features that we will want on the project. Those4.
features are some Vue plugins such as Vuex or Vue Router (Vue-Router), testers,
linters, and more. Select Babel, Router, and Linter / Formatter:

? Check the features needed for your project: (Use arrow keys)
❯ Babel
 TypeScript
 Progressive Web App (PWA) Support
❯ Router
 Vuex
 CSS Pre-processors
❯ Linter / Formatter
 Unit Testing
 E2E Testing

Now Vue-CLI will ask if you want to use the history mode on the route5.
management. We will choose Y (yes):

? Use history mode for router? (Requires proper server setup for
 index fallback in production) (Y/n) y

Managing Routes with vue-router Chapter 6

[274]

Continue this process by selecting a linter and formatted. In our case, we will6.
select ESLint + Airbnb config:

? Pick a linter / formatter config: (Use arrow keys)
 ESLint with error prevention only
❯ ESLint + Airbnb config
 ESLint + Standard config
 ESLint + Prettier

After the linting rules are set, we need to define when they are applied to your7.
code. They can be either applied on save or fixed on commit:

? Pick additional lint features: (Use arrow keys)
 Lint on save
❯ Lint and fix on commit

After all those plugins, linters, and processors are defined, we need to choose8.
where the settings and configs are stored. The best place to store them is in a
dedicated file, but it is also possible to store them in the package.json:

? Where do you prefer placing config for Babel, ESLint, etc.? (Use
arrow keys)
❯ In dedicated config files
 In package.json

Now you can choose whether you want to make this selection a preset for future9.
projects, so you don't need to reselect everything again:

? Save this as a preset for future projects? (y/N) n

Our recipe will be divided into five parts:

Creating the NavigationBar component
Creating the contact page
Creating the about page
Changing the application's main component
Creating the routes

Let's get started.

Managing Routes with vue-router Chapter 6

[275]

Creating the NavigationBar component
Now we are going to create the NavigationBar component that will be used in our
application.

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

Create a navigationBar.vue file in the src/components folder and open it.1.
Create a default export object of the component, with the Vue property name:2.

<script>
export default {
 name: 'NavigationBar',
};
</script>

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

Create a div HTML element with the id attribute defined as "nav", and inside1.
of it, create three RouterLink components. Those components will point to
the Home, About, and Contact routes. In the RouterLink component, we will
add a to attribute that will be defined as the route for each component,
respectively, and define the text content as the name of the menu:

<div id="nav">
 <router-link to="/">
 Home
 </router-link> |
 <router-link to="/about">
 About
 </router-link> |
 <router-link to="/contact">
 Contact
 </router-link>
</div>

Managing Routes with vue-router Chapter 6

[276]

Creating the contact page
We need to make sure the contact page gets rendered when the user enters the /contact
URL. To do so, we need to create a single file component to be used as the contact page.

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

In the src/views folder, create a new file called contact.vue and open it.1.
Create a default export object of the component, with the Vue property name:2.

<script>
export default {
 name: 'ContactPage',
};
</script>

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

Create a div HTML element, with the class attribute defined as "contact".1.
Inside of the <h1> HTML element, add a text context displaying the current2.
page:

<template>
 <div class="contact">
 <h1>This is a contact page</h1>
 </div>
</template>

Creating the about page
We need to make the contact page be rendered when the user enters the /about URL. In
the following subsections, we will create the Single File component for the about page.

Managing Routes with vue-router Chapter 6

[277]

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

In the src/views folder, create a new file called About.vue and open it.1.
Create a default export object of the component, with the Vue property name:2.

<script>
export default {
 name: 'AboutPage',
};
</script>

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

Create a div HTML element with the class attribute defined as "about" .1.
Inside of it, place an <h1> element with a text context displaying the current2.
page:

<template>
 <div class="about">
 <h1>This is an about page</h1>
 </div>
</template>

Changing the application's main component
After creating the pages and the navigation bar, we need to change the application's main
component to be able to render the routes and have the navigation bar at the top.

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

Open App.vue in the src folder.1.
Import the NavigationBar component:2.

import NavigationBar from './components/navigationBar.vue';

Managing Routes with vue-router Chapter 6

[278]

In the Vue components property, declare the imported NavigationBar:3.

export default {
 components: { NavigationBar },
};

Single file component <template> section
In this part, we will create the <template> section of the single file component. Inside the
div HTML element, add the NavigationBar component and the RouterView component:

<template>
 <div id="app">
 <navigation-bar />
 <router-view/>
 </div>
</template>

Creating the routes
Now we need to make the routes available in the application. To do so, first, we need to
declare the routes and the components that the routes will render. Follow these steps to
create your Vue application router correctly:

In the src/router folder, open the index.js file.1.
Import the Contact component page:2.

import Vue from 'vue';
import VueRouter from 'vue-router';
import Home from '../views/Home.vue';
import Contact from '../views/contact.vue';

In the routes array, we need to create a new route object. This object will have3.
the path property defined as '/contact', name defined as 'contact',
and component pointing to the imported Contact component:

{
 path: '/contact',
 name: 'contact',
 component: Contact,
},

Managing Routes with vue-router Chapter 6

[279]

To run the server and see your component, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm run serve

Here is your component rendered and running:

How it works...
When vue-router is added to Vue as a plugin, it starts to watch for changes on
window.location.pathname, and other URL properties, to check the weight of the
current URL on the browser against the list of URLs on your router configurations.

In this particular case, we are using a direct URL and a non-dynamic URL. Because of that,
the vue-router plugin only needs to check direct matches of the URL paths and doesn't
need to weigh the possible matches against a regex validator.

After a URL is matched, the router-view component acts as a dynamic component and
renders the component we defined on the vue-router configuration.

See also
You can find more information about vue-router at https:/ /router. vuejs. org/ .

You can find more information about Vue CLI at https:/ /cli. vuejs. org/ .

https://router.vuejs.org/
https://router.vuejs.org/
https://router.vuejs.org/
https://router.vuejs.org/
https://router.vuejs.org/
https://router.vuejs.org/
https://router.vuejs.org/
https://router.vuejs.org/
https://router.vuejs.org/
https://router.vuejs.org/
https://router.vuejs.org/
https://router.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/

Managing Routes with vue-router Chapter 6

[280]

Creating a programmatic navigation
When using vue-router, it is also possible to change the current route of the application
through function execution, without the need for special vue-router components for
creating links.

Using programmatic navigation, you can make sure all the route redirections can be
executed anywhere in your code. Using this method enables the usage of special route
directions, such as passing parameters and navigation with the route name.

In this recipe, we will learn how to execute a programmatic navigation function, using the
extra possibilities it provides.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we can use the Vue project with Vue-CLI that we created in
the 'Creating a simple route' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> vue create route-project

Choose the manual features and add the Router as a needed feature, as indicated in
the 'How to do it...' section in the 'Creating a simple route' recipe.

Managing Routes with vue-router Chapter 6

[281]

Our recipe will be divided into two parts:

Changing the application's main component
Changing the contact view

Let's get started.

Changing the application's main component
We will start with the App.vue file. We will add a programmatic navigation function to be
executed after a timeout, which will be added to the component life cycle hook.

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

Open App.vue in the src folder.1.
Add a mounted property:2.

mounted() {}

In the mounted property, we need to add a setTimeout function, which will3.
execute the $router.push function. When executed, this function receives a
JavaScript object as an argument, with two properties, name, and params:

mounted() {
 setTimeout(() => {
 this.$router.push({
 name: 'contact',
 params: {
 name: 'Heitor Ribeiro',
 age: 31,
 },
 });
 }, 5000);
},

Changing the contact view
On the contact view, we need to add an event listener, which will grab the route change
and execute an action.

Managing Routes with vue-router Chapter 6

[282]

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

Open contact.vue in the src/views folder.1.
Add a new mounted property:2.

mounted() {}

In this property, we will add a verification that will check whether there are any3.
parameters on the $route.params object and display an alert with that
$route.params:

mounted() {
 if (Object.keys(this.$route.params).length) {
 alert(`Hey! I've got some parameter!
 ${JSON.stringify(this.$route.params)}`);
 }
},

To run the server and see your component, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm run serve

Here is your component rendered and running:

Managing Routes with vue-router Chapter 6

[283]

How it works...
The $router.push function, when executed, tells vue-router to change where the
application is, and in this process, you are passing down some parameters to the new
router that will replace the current route. In those parameters, there's a property called
params, which sends a group of parameters to the new router.

When entering this new router, all the parameters that we will have called from within the
router will be available in the $route.params object; there, we can use it in our view or
component.

There's more...
In the programmatic navigation, it's possible to navigate through the routers, adding them
to the browser history with the $router.push function, but there are other functions that
can be used too.

The $router.replace function will replace the user navigation history for a new one,
making it unable to go back to the last page.

$router.go is used to move the user navigation history in steps. To go forward, you need
to pass positive numbers and to go backward, you will need to pass negative numbers.

See also
You can find more information about vue-router programmatic navigation at https:/ /
router.vuejs.org/ guide/ essentials/ navigation. html.

Creating a dynamic router path
Adding a route to your application is a must, but sometimes you need more than just
simple routes. In this recipe, we'll take a look at how dynamic routes come into play. With
dynamic routes, you can define custom variables that can be set via the URL, and your
application can start with those variables already defined.

In this recipe, we will learn how to use a dynamic router path on a CRUD list.

https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html
https://router.vuejs.org/guide/essentials/navigation.html

Managing Routes with vue-router Chapter 6

[284]

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we will use the Vue project with Vue-CLI that we completed in the
'Creating a CRUD interface with axios and Vuesax' recipe in Chapter 5, Fetching Data from the
Web via HTTP Requests. In the following steps, we will add vue-router to the project
through the Vue UI dashboard:

First, you will need to open vue ui. To do this, open Terminal (macOS or Linux)1.
or Command Prompt/PowerShell (Windows) and execute the following
command:

> vue ui

There, you will need to import the project by locating the project folder.2.
After importing vue ui, you will be redirected to the dashboard.
Add vue-router to the plugins by going to the plugins management page and3.
clicking on the Add vue-router button. Then, click on the Continue button.
The Vue-CLI will automatically install and configure vue-router on the project4.
for us. We now need to create each view for the List, View, and Edit pages.

To start view development, we will go first by the user list route. In each route, we will
deconstruct the old component that we had made, and recreate it as a view.

Our recipe will be divided into eight parts:

Changing the application's main component
Changing the route mixin
Axios instance configuration
User list view

Managing Routes with vue-router Chapter 6

[285]

User create view
User information view
User update view
Creating dynamic routes

Let's get started.

Changing the application's main component
After adding the vue-router plugin, App.vue will change. We need to revert the changes
made by the installation of the vue-router. This is needed because when vue-ui adds the
vue-router plugin, it will change App.vue, adding an example code that we don't need.

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

Open App.vue in the src folder.1.
Remove everything, leaving just the div#app HTML element and the router-2.
view component:

<template>
 <div id="app">
 <router-view/>
 </div>
</template>

Changing the route mixin
In the previous recipe, we used a changeComponent mixin. Now that we are going to work
with routes, we need to change this mixin to a changeRoute mixin and alter its behavior.
In the following steps, we will change how the mixin works, to be able to change the route
instead of the component:

In the src/mixin folder, rename changeComponent.js to changeRoute.js1.
and open it.

Managing Routes with vue-router Chapter 6

[286]

We will remove the changeComponent method and create a new one called2.
changeRoute. This new method will receive two arguments, name and id. The
name argument is the route name, as set in the vue-router configuration and
the id will be the user id that we will pass a parameter in the route change. This
method will execute $router.push, passing those arguments as the parameters:

export default {
 methods: {
 async changeRoute(name, id = 0) {
 await this.$router.push({
 name,
 params: {
 id,
 },
 });
 },
 }
}

Axios instance configuration
To fetch the data in the MirageJS server, we will need to define some options in our axios
instance. Now, in the following steps, we will configure the axios instance to work with the
new routering system:

In the src/http folder, open the baseFetch.js file.1.
At the creator of the localApi instance of axios, we will need to add an2.
options object, passing the baseURL property. This baseURL will be the current
browser navigation URL:

const localApi = createAxios({
 baseURL:
`${document.location.protocol}//${document.location.host}`,
});

User list view
To create our view, we will extract the code from the list.vue component and reshape it
as a page view.

Managing Routes with vue-router Chapter 6

[287]

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

Move the list.vue file from components to the views folder, and rename1.
it List.vue.
Remove the old changeComponent mixin import and import the new2.
changeRoute mixin:

import changeRouteMixin from '@/mixin/changeRoute';

At the Vue mixins property, we need to replace changeComponent3.
with changeRoute:

mixins: [changeRouteMixin],

In the getAllUsers and deleteUser methods, we need to4.
remove ${window.location.href} from
the getHttp and deleteHttp function parameters:

methods: {
 async getAllUsers() {
 const { data } = await getHttp(`api/users`);
 this.userList = data;
 },
 async deleteUser(id) {
 await deleteHttp(`api/users/${id}`);
 await this.getAllUsers();
 },
}

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

We need to wrap the VsCard component and its child contents with a VsRow and1.
VsCol component. The VsCol component will have the vs-type
attribute defined as 'flex', vs-justify defined as 'left', vs-align defined
as 'left', and vs-w defined as 12:

<template>
 <vs-row>
 <vs-col

Managing Routes with vue-router Chapter 6

[288]

 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="12">
 <vs-card... />
 </vs-col>
 </vs-row>
</template>

On the actions buttons, we will change the changeComponent functions2.
to changeRoute:

<vs-td :data="data[index].id">
 <vs-button
 color="primary"
 type="filled"
 icon="remove_red_eye"
 size="small"
 @click="changeRoute('view', data[index].id)"
 />
 <vs-button
 color="success"
 type="filled"
 icon="edit"
 size="small"
 @click="changeRoute('edit', data[index].id)"
 />
 <vs-button
 color="danger"
 type="filled"
 icon="delete"
 size="small"
 @click="deleteUser(data[index].id)"
 />
</vs-td>

At the VsCard footer, we need to change the actions3.
buttons, changeComponent method to the changeRoute method:

<template slot="footer">
 <vs-row vs-justify="flex-start">
 <vs-button
 color="primary"
 type="filled"
 icon="fiber_new"
 size="small"
 @click="changeRoute('create')"
 >

Managing Routes with vue-router Chapter 6

[289]

 Create User
 </vs-button>
 </vs-row>
</template>

User create view
To create our view, we will extract the code from the create.vue component and reshape
it as a page view.

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

Move the create.vue file from components to the views folder, and rename1.
it Create.vue.
Remove the old changeComponent mixin import and import the2.
new changeRoute mixin:

import changeRouteMixin from '@/mixin/changeRoute';

At the Vue mixins property, we need to3.
replace changeComponent with changeRoute:

mixins: [changeRouteMixin],

On the getUserById method, we need to4.
remove ${window.location.href} from the postHttp function URL and
change the changeComponent functions to changeRoute:

async createUser() {
 await postHttp(`/api/users`, {
 data: {
 ...this.userData,
 }
 });
 this.changeRoute('list');
},

Managing Routes with vue-router Chapter 6

[290]

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

We need to wrap the VsCard component and its child contents with1.
a VsRow and VsCol component. The VsCol component will have the vs-
type attribute defined as 'flex', vs-justify defined as 'left', vs-
align defined as 'left', and vs-w defined as 12:

<template>
 <vs-row>
 <vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="12">
 <vs-card... />
 </vs-col>
 </vs-row>
</template>

On the VsCard footer, we need to change the Cancel2.
button's changeComponent functions to changeRoute:

<vs-button
 color="danger"
 type="filled"
 icon="cancel"
 size="small"
 style="margin-left: 5px"
 @click="changeRoute('list')"
>
 Cancel
</vs-button>

User information view
To create our view, we will extract the code from the view.vue component and reshape it
as a page view.

Managing Routes with vue-router Chapter 6

[291]

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

Move the view.vue file from src/components to the src/views folder and1.
rename it as View.vue.
Remove the old changeComponent mixin import and import the2.
new changeRoute mixin:

import changeRouteMixin from '@/mixin/changeRoute';

At the Vue mixins property, we need to3.
replace changeComponent with changeRoute:

mixins: [changeRouteMixin],

Create a new computed property in the component object, with the4.
property userId, which will return $route.params.id:

computed: {
 userId() {
 return this.$route.params.id;
 },
},

On the getUserById method, we need to5.
remove ${window.location.href} from the getHttp function URL:

methods: {
 async getUserById() {
 const { data } = await getHttp(`api/users/${this.userId}`);
 this.userData = data;
 },
}

Managing Routes with vue-router Chapter 6

[292]

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

We need to wrap the VsCard component and its child contents with1.
a VsRow and VsCol component. The VsCol component will have the vs-
type attribute defined as 'flex', vs-justify defined as 'left', vs-
align defined as 'left', and vs-w defined as 12:

<template>
 <vs-row>
 <vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="12">
 <vs-card... />
 </vs-col>
 </vs-row>
</template>

On the VsCard footer, we need to change the back2.
button changeComponent functions to changeRoute:

<vs-button
 color="primary"
 type="filled"
 icon="arrow_back"
 size="small"
 style="margin-left: 5px"
 @click="changeRoute('list')"
>
 Back
</vs-button>

User update view
To create our view, we will extract the code from the update.vue component and reshape
it as a page view.

Managing Routes with vue-router Chapter 6

[293]

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

Move the update.vue file from src/components to the src/views folder and1.
rename it Edit.vue.
Remove the old changeComponent mixin import and import the2.
new changeRoute mixin:

import changeRouteMixin from '@/mixin/changeRoute';

At the Vue mixins property, we need to3.
replace changeComponent with changeRoute:

mixins: [changeRouteMixin],

Create a new computed property in the component object, with the4.
userId property , which will return $route.params.id:

computed: {
 userId() {
 return this.$route.params.id;
 },
},

On the getUserById and updateUser methods, we need to remove 5.
${window.location.href} from the getHttp and patchHttp function URLs
and change the changeComponent functions to changeRoute:

methods: {
 async getUserById() {
 const { data } = await getHttp(`api/users/${this.userId}`);
 this.userData = data;
 },
 async updateUser() {
 await patchHttp(`api/users/${this.userData.id}`, {
 data: {
 ...this.userData,
 }
 });
 this.changeRoute('list');
 },
},

Managing Routes with vue-router Chapter 6

[294]

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

We need to wrap the VsCard component and its child contents with1.
a VsRow and VsCol component. The VsCol component will have the vs-
type attribute defined as 'flex', vs-justify defined as 'left', vs-
align defined as 'left', and vs-w defined as 12:

<template>
 <vs-row>
 <vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="12">
 <vs-card... />
 </vs-col>
 </vs-row>
</template>

On the VsCard footer, we need to change the Cancel button's change2.
Component functions to changeRoute:

<vs-button
 color="danger"
 type="filled"
 icon="cancel"
 size="small"
 style="margin-left: 5px"
 @click="changeRoute('list')"
>
 Cancel
</vs-button>

Managing Routes with vue-router Chapter 6

[295]

Creating dynamic routes
Now, with our page views created, we need to create our routes and make them accept
parameters, transforming them into dynamic routes. In the following steps, we will create
the dynamic routes of the application:

Open index.js in the src/router folder.1.
First, we need to import the four new pages – List, View, Edit, Create, and2.
Update:

import List from '@/views/List.vue';
import View from '@/views/View.vue';
import Edit from '@/views/Edit.vue';
import Create from '@/views/Create.vue';

On the routes array, we will add a new route object for each one of the pages3.
that were imported. In this object, there will be three properties: name, path, and
component.
For the list route, we will define name as 'list', path as '/',4.
and component as the imported List component:

{
 path: '/',
 name: 'list',
 component: List,
},

On the view route, we will5.
define name as 'view', path as '/view/:id', and component as the
imported View component:

{
 path: '/view/:id',
 name: 'view',
 component: View,
},

In the edit route, we will define name as 'edit', path as '/edit/:id',6.
and component as the imported Edit component:

{
 path: '/edit/:id',
 name: 'edit',
 component: Edit,
},

Managing Routes with vue-router Chapter 6

[296]

Finally, at the create route, we will7.
define name as 'create', path as '/create', and component as the
imported Create component:

{
 path: '/create',
 name: 'create',
 component: Create,
},

When the VueRouter is created, we will add the mode options property and set it8.
as 'history':

const router = new VueRouter({
 mode: 'history',
 base: process.env.BASE_URL,
 routes
});

To run the server and see your component, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm run serve

Here is your component rendered and running:

List View Route - / will be your user list page, containing a list of all the users in
your application and buttons to view, edit, and delete it, as well as a button to
create a new user:

Managing Routes with vue-router Chapter 6

[297]

User View Route - /view/:id will be your user view page, where it's possible to
view your user information, such as the user's name, email, country, birthday,
and phone number:

Managing Routes with vue-router Chapter 6

[298]

User Edit Route - /update/:id will be your user edit page, where it's possible
to edit your user's information, changing the user's name, email, country,
birthday, and phone number:

Create User Route - /update/:id will be your user creation page, where it's
possible to create a new user on the system:

Managing Routes with vue-router Chapter 6

[299]

How it works...
When vue-router is created, and the route is passed for matching, the router analysis
check for the best match for the route based on a RegEx for defining a weight on each route.

When a route is defined and has a variable in its path, you need to add a : before the
variable parameter. This parameter is passed down to the component in the
$route.params property.

See also
You can find more information about the dynamic router matching at https:/ / router.
vuejs.org/guide/ essentials/ dynamic- matching. html.

https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html
https://router.vuejs.org/guide/essentials/dynamic-matching.html

Managing Routes with vue-router Chapter 6

[300]

Creating a route alias
Every application is a living organism – it evolves, mutates, and changes day by day.
Sometimes these evolutions can come through the form of a router change, for better
naming or for a deprecated service. In vue-router, it's possible to make all those changes
invisible to the user, so when they use old links, they still can access the application.

In this recipe, we will learn how to create a route alias for our application and use it.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we will use the Vue project with Vue-CLI that we completed in
the 'Creating a dynamic router path' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> vue create http-project

Choose the manual features and add router as a required feature, as indicated in the 'How
to do it...' section of the 'Creating a simple route' recipe.

Managing Routes with vue-router Chapter 6

[301]

Now, in the following steps, we will create the router alias:

Open index.js in the src/router folder.1.
At the list object, we will change the path property from '/' to '/user' and2.
for the alias property, we will set '/':

{
 path: '/user',
 name: 'list',
 alias: '/',
 component: List,
},

In the view object, we will change the path property3.
from '/view/:id' to '/user/:id' and we will set the alias property
to '/view/:id':

{
 path: '/user/:id',
 name: 'view',
 alias: '/view/:id',
 component: View,
},

In the edit object, we will change the path property4.
from '/edit/:id' to '/user/edit/:id' and set the alias property
to '/edit/:id':

{
 path: '/user/edit/:id',
 name: 'edit',
 alias: '/edit/:id',
 component: Edit,
},

Finally, in the create object, we will change the path property5.
from '/create' to '/user/create' and set the alias property to '/create':

{
 path: '/user/create',
 name: 'create',
 alias: '/create',
 component: Create,
},

Managing Routes with vue-router Chapter 6

[302]

How it works...
When the user enters your application, vue-router will try to match paths to the one that
the user is trying to access. If there is a property called alias in the route object, this
property will be used by the vue-router to maintain the old route under the hood and use
the alias route instead. If an alias is found, the component of that alias is rendered, and the
router remains as the alias, not showing the user the change, making it transparent.

In our scenario, we made a transformation for our application to now handle all the users
called on the /user namespace, but still maintaining the old URL structure so that if an old
visitor tries to access the website, they will be able to use the application normally.

See also
You can find more information about the vue-router alias at https:/ /router. vuejs. org/
guide/essentials/redirect- and- alias. html#alias.

Creating route redirects
Router redirect works almost the same as the router alias, but the main difference is that the
user is truly redirected to the new URL. Using this process, you are able to manage how the
new route can be loaded.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#alias

Managing Routes with vue-router Chapter 6

[303]

How to do it...
To start our component, we will use the Vue project with Vue-CLI that we completed in the
'Creating a route alias' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> vue create http-project

Choose the manual features and add Router as a required feature, as indicated in the 'How
to do it...' steps in the 'Creating a simple route' recipe.

Now, in these steps, we will create the router redirect rules:

Open index.js in the src/router folder.1.
Insert a new route object at the end of the routes array. This object will have2.
two properties, path and redirect. In the path property, we need to define the
path that the user will enter, '/create-new-user', and in redirect, the path
that the user will be redirected to, in this case, '/user/create':

{
 path: '/create-new-user',
 redirect: '/user/create',
},

Create a new object, and this object will have two3.
properties, path and redirect. In the path property, we need to define the
path that the user will enter, '/users', and in the redirect, we will create an
object with a property called name and will put the value as 'list':

{
 path: '/users',
 redirect: {
 name: 'list',
 },
},

Managing Routes with vue-router Chapter 6

[304]

Create a new object. This object will have two properties, path and redirect. In4.
the path property, we need to define the path that the user will enter, '/my-
user/:id?', and in the redirect, we will create a function, which will receive
an argument, to, which is an object of the current route. We need to check
whether the user ID is present in the route, to redirect the user to the edit page.
Otherwise, we will redirect them to the user list:

{
 path: '/my-user/:id?',
 redirect(to) {
 if (to.params.id) {
 return '/user/:id';
 }
 return '/user';
 },
},

Finally, in the end, we will create a route object with two5.
properties, path and redirect. In the path property, we need to define the
path that the user will enter, '/*', and in the redirect, we need to define the
redirect property as '/':

{
 path: '*',
 redirect: '/',
},

Remember that the last route with the '*' will always be the route that
will be rendered when there is no match in the URL that your user is
trying to enter.

How it works...
As we define redirect as a new route, it works similar to the alias, but the redirect
property can receive three types of arguments: a string when redirecting for the route itself,
objects when redirecting with other parameters such as the name of the route, and last but
not least, the function type, which redirect can handle and return one of the first two
objects so the user can be redirected.

Managing Routes with vue-router Chapter 6

[305]

See also
You can find more information about the vue-router redirect at https:/ /router. vuejs.
org/guide/essentials/ redirect- and- alias. html#redirect.

Creating a nested router view
In vue-router, nested routes are like a namespace for your routes, where you can have
multiple levels of routes inside the same route, use a base view as the main view, and have
the nested routes rendered inside.

In a multi-module application, this is used to handle routes like CRUD, where you will
have a base route, and the children will be the CRUD views.

In this recipe, you will learn how to create a nested route.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we will use the Vue project with Vue-CLI that we used in the
'Creating a dynamic router path' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> vue create http-project

https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect
https://router.vuejs.org/guide/essentials/redirect-and-alias.html#redirect

Managing Routes with vue-router Chapter 6

[306]

Choose the manual features and add Router as a required feature, as indicated in the 'How
to do it...' section in the 'Creating a simple route' recipe.

Our recipe will be divided into two parts:

Creating the router-view on the layout
Changing the router files

Let's get started.

Creating the router-view on the layout
When using vue-router with children's routes, we need to create the main view, which
will have a special component called RouterView. This component will render the current
router inside the layout or page you are rendering.

Now, in the following steps, we will create the layout for the pages:

In the src/views folder, we need to create a new folder called user and move1.
the Create, Edit, List, and View pages to this new folder.
Create a new file called Index.vue in the user folder and open it.2.
In the single file component <template> section, add a router-3.
view component:

<template>
 <router-view/>
</template>
<script>
 export default {
 name: 'User',
 }
</script>

Changing the router files
We will create a new file that will manage the user's specific routes, which will help us to
maintain the code and make it cleaner.

Managing Routes with vue-router Chapter 6

[307]

User routes
In the following steps, we will create routes for the user:

Create a new file called user.js in the src/router folder.1.
Import the Index, List, View, Edit, and Create views:2.

import Index from '@/views/user/Index.vue';
import List from '@/views/user/List.vue';
import View from '@/views/user/View.vue';
import Edit from '@/views/user/Edit.vue';
import Create from '@/views/user/Create.vue';

Create an array and make it the default export of the file. In this array, add a3.
route object, with four properties – path, name, component, and children. Set
the path property as '/user', define the name property as 'user',
define component as the imported Index component, and finally, define the
children property as an empty array:

export default [
 {
 path: '/user',
 name: 'user',
 component: Index,
 children: [],
 },
]

In the children property, add a new route object with three properties – path,4.
name, and component. Define path as '', name as 'list', and finally, define
the component property as the imported List component:

{
 path: '',
 name: 'list',
 component: List,
},

Managing Routes with vue-router Chapter 6

[308]

Create a route object for the view route and use the same structure as the last5.
route object. Define the path property as ':id', define name as 'view', and
define component as the imported View component:

{
 path: ':id',
 name: 'view',
 component: View,
},

Create a route object for the edit route and use the same structure as the last6.
route object. Define the path property as 'edit/:id', define name as 'edit',
and define component as the imported Edit component:

{
 path: 'edit/:id',
 name: 'edit',
 component: Edit,
},

Create a route object for the create route, using the same structure as the last7.
route object. Define the path property as 'create',
define name as 'create' , and define component as the
imported Create component:

{
 path: 'create',
 name: 'create',
 component: Create,
},

Router manager
In the following steps, we will create the router manager that will control all the routes on
the application:

Open the index.js in the src/router folder.1.
Import the newly created user.js file in the src/router folder:2.

import Vue from 'vue';
import VueRouter from 'vue-router';
import UserRoutes from './user';

Managing Routes with vue-router Chapter 6

[309]

In the routes array, add the imported UserRoutes as a destructed array:3.

const routes = [
 ...UserRoutes,
 {
 path: '*',
 redirect: '/user',
 },
];

How it works...
vue-router provides the ability to use child routes as internal components of a current
view or layout. This gives the possibility to create an initial route with a special layout file,
and render the child component inside this layout through the RouterView component.

This technique is commonly used for defining a layout in an application and setting a
namespace for the modules where the parent route can have a set of specific orders that
will be available for every one of its children.

See also
You can find more information about nested routes at https:/ /router. vuejs. org/ guide/
essentials/nested- routes. html#nested- routes.

Creating a 404 error page
There will be some occasions when your user may try to enter an old link or enter a typo
and won't get to the correct route, and this should lead them directly to a not found error.

In this recipe, you will learn how to handle a 404 error in vue-router.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes
https://router.vuejs.org/guide/essentials/nested-routes.html#nested-routes

Managing Routes with vue-router Chapter 6

[310]

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we will use the Vue project with Vue-CLI that we used in the
'Creating a nested router view' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> vue create http-project

Choose the manual features and add Router as a required feature, as indicated in the 'How
to do it...' section in the 'Creating a simple route' recipe.

Our recipe will be divided into two parts:

Creating the NotFound view
Changing the router files

Let's get started.

Creating the NotFound view
We need to create a new view to be displayed for the user when there is no matching route
on the application. This page will be a simple, generic page.

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

In the src/views folder, create a new file called NotFound.vue and open it.1.

Managing Routes with vue-router Chapter 6

[311]

Create a VsRow component and inside of it create four VsCol components. All of2.
those components will have the attribute vs-w defined
as 12 and class as text-center:

<vs-row>
 <vs-col vs-w="12" class="text-center">
 <!-- Icon -->
 </vs-col>
 <vs-col vs-w="12" class="text-center">
 <!-- Title -->
 </vs-col>
 <vs-col vs-w="12" class="text-center">
 <!-- Text -->
 </vs-col>
 <vs-col vs-w="12" class="text-center">
 <!-- Button -->
 </vs-col>
</vs-row>

On the first VsCol component, we will add a VsIcon component, and set the3.
attribute icon as sentiment_dissatisfied and define the size as large:

<vs-icon
 icon="sentiment_dissatisfied"
 size="large"
/>

In the second VsCol component, we will add a title for the page:4.

<h1>Oops!</h1>

In the third VsCol component, we need to create the text that will be placed on5.
the page:

<h3>The page you are looking for are not here anymore...</h3>

Finally, on the fourth VsCol component, we will add the VsButton component.6.
This button will have the attribute type defined as relief and to defined
as '/':

<vs-button
 type="relief"
 to="/"
>
 Back to Home...
</vs-button>

Managing Routes with vue-router Chapter 6

[312]

Single file component <style> section
In this part, we will create the <style> section of the single file component. Follow these
instructions to create the component correctly:

Add the scoped tag to the <style> tag:1.

<style scoped>
</style>

Create a new rule named .text-center, with the text-align property2.
defined as center and margin-bottom defined as 20px;:

.text-center {
 text-align: center;
 margin-bottom: 20px;
}

Changing the router files
After we have created the view, we need to add it to the router and make it available to the
user. To do it, we will need to add the view route into the router manager.

In these steps, we will change the router manager, to add the new error page:

Open index.js in the src/router folder.1.
Import the NotFound component:2.

import Vue from 'vue';
import VueRouter from 'vue-router';
import UserRoutes from './user';
import NotFound from '@/views/NotFound';

In the routes array, after UserRoutes, add a new route object with two3.
properties, path and redirect. Define the path property as '/' and the
redirect property as '/user':

{
 path: '/',
 redirect: '/user'
},

Managing Routes with vue-router Chapter 6

[313]

For the not found page, we need to create a new route object that needs to be4.
placed in the last position in the routes array. This route object will have two
properties, path, and component. The path property will be defined as '*'
and component as the imported NotFound view:

{
 path: '*',
 component: NotFound,
},

To run the server and see your component, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm run serve

Here is your component rendered and running:

How it works...
vue-router tries to find the best match for the URL that the user wants to access; if there
isn't a match, vue-router will use the '*' path as the default value for these scenarios,
where the * represents any value that the user has entered that is not in the router lists.

Because the process of matching in vue-router is determined by the weight of the route,
we need to place the error page at the very bottom, so vue-router needs to pass in every
possible route before actually calling the NotFound route.

Managing Routes with vue-router Chapter 6

[314]

See also
You can find more information about handling 404 errors in the vue-router history mode
at https://router. vuejs. org/ guide/ essentials/ history- mode. html#caveat.

Creating and applying authentication
middleware
In vue-router, it's possible to create router guards – functions that run each time a router
is changed. Those guards are used as middleware in the router management process. It's
common to use them as an authentication middleware or session validators.

In this recipe, we will learn how to create authentication middleware, add metadata to our
routes to make them restricted, and create a login page.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we will use the Vue project with Vue-CLI that we used in the
'Creating a 404 error page' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> vue create http-project

Choose the manual features and add Router as a required feature, as indicated in the 'How
to do it...' section in the 'Creating a simple route' recipe.

https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat
https://router.vuejs.org/guide/essentials/history-mode.html#caveat

Managing Routes with vue-router Chapter 6

[315]

Our recipe will be divided into three parts:

Creating the authentication middleware
Adding the metadata and the middleware to the router
Attaching the middleware to vue-router and creating the login page

Let's get started.

Creating the login view
The login view will be the page that the user will see if they are not authenticated. We will
construct a simple page with two inputs inside – a card and a button.

Single file component <script> section
In this part, we will create the <script> section of the single file component. Follow these
instructions to create the component correctly:

In the src/views folder, create a new file called Login.vue and open it.1.
Create a data property, containing username, password, and error:2.

data: () => ({
 username: '',
 password: '',
 error: false,
}),

Then create the methods property with a method called userSignIn. This3.
method will validate if the username and password data are complete. If it is, it
will create a new key called 'auth' in sessionStorage, with encrypted
stringified JSON of the username data. Then, set error to false and
execute $router.replace to redirect the user to the user list '/user'. If any of
the fields do not pass in any of the validations, the method will define the error
as true and return false:

methods: {
 userSignIn() {
 if (this.username && this.password) {
 window.sessionStorage.setItem('auth',
 window.btoa(JSON.stringify({
 username: this.username
 })
)

Managing Routes with vue-router Chapter 6

[316]

);
 this.error = false;
 this.$router.replace('/user');
 }
 this.error = true;
 return false;
 },
}

Single file component <template> section
In this part, we will create the <template> section of the single file component. Follow
these instructions to create the component correctly:

Create a div.container HTML element with a VsRow component inside. The1.
VsRow component will have the attribute vs-align defined as "center" and
vs-justify defined as "center":

<div class="container">
 <vs-row
 vs-align="center"
 vs-justify="center"
 >
 </vs-row>
</div>

Inside the VsRow component, add a VsCol component with the attribute vs-lg2.
defined as 4, vs-sm defined as 6, and vs-xs defined as 10. Then, inside the
VsCol component, we will create a VsCard component with the style attribute
defined as margin: 20px;:

<vs-col
 vs-lg="4"
 vs-sm="6"
 vs-xs="10"
>
 <vs-card
 style="margin: 20px;"
 >
 </vs-card>
</vs-col>

Managing Routes with vue-router Chapter 6

[317]

Inside the VsCard component, create a dynamic <template> with the slot3.
named header, an h3 HTML element, and your title:

<template slot="header">
 <h3>
 User Login
 </h3>
</template>

After that, create a VsRow component with the attribute vs-align defined4.
as "center", vs-justify defined as "center", and two VsCol components
inside of it, with the attribute vs-w defined as 12:

<vs-row
 vs-align="center"
 vs-justify="center"
>
 <vs-col vs-w="12">
 </vs-col>
 <vs-col vs-w="12">
 </vs-col>
</vs-row>

On the first VsCol component, we will add a VsInput component, with the5.
attribute danger defined as the data error value, danger-text defined as the
text that will display on error, label defined as "Username",
placeholder defined as "Username or e-mail", and the v-model directive
bound to username:

<vs-input
 :danger="error"
 danger-text="Check your username or email"
 label="Username"
 placeholder="Username or e-mail"
 v-model="username"
/>

In the second VsCol component, we will add a VsInput component, with the6.
attribute danger defined as the data error value, danger-text defined as the
text that will display on error, label defined as "Password", type defined as
password, placeholder defined as "Your password", and the v-
model directive bound to password:

<vs-input
 :danger="error"
 label="Password"

Managing Routes with vue-router Chapter 6

[318]

 type="password"
 danger-text="Check your password"
 placeholder="Your password"
 v-model="password"
/>

Finally, in the card footer, we need to create a dynamic <template> with the slot7.
named footer. Inside this <template>, we will add a VsRow component with
the vs-justify attribute defined as flex-start and insert a VsButton with
the attribute color defined as success, type defined as filled, icon defined
as account_circle, size defined as small and the @click event listener
targeted to the userSignIn method:

<template slot="footer">
 <vs-row vs-justify="flex-start">
 <vs-button
 color="success"
 type="filled"
 icon="account_circle"
 size="small"
 @click="userSignIn"
 >
 Sign-in
 </vs-button>
 </vs-row>
</template>

Single file component <style> section
In this part, we will create the <style> section of the single file component. Follow these
instructions to create the component correctly:

First, we need to make this section scoped, so the CSS rules won't affect any other1.
component of the application:

<style scoped></style>

Then, we need to add the rules for the container class and2.
the VsInput component:

<style scoped>
 .container {
 height: 100vh;
 display: flex;
 flex-wrap: wrap;
 justify-content: center;

Managing Routes with vue-router Chapter 6

[319]

 align-content: center;
 }

 .vs-input {
 margin: 5px;
 }
</style>

To run the server and see your component, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm run serve

Here is your component rendered and running:

Creating the middleware
All vue-router middleware can also be referred to as navigation guards, and they can be
attached to the application route changes. Those changes have some hooks that you can
apply to your middleware. The authentication middleware takes place before the router
changes, so we can handle everything and send the user to the correct route.

In the src/router folder, create a new folder called middleware, then create1.
and open a new file called authentication.js.

Managing Routes with vue-router Chapter 6

[320]

In this file, we will create a default export function that will have three function2.
parameters – to, from, and next. The to and from parameters are objects, and
the next parameter is a callback function:

export default (to, from, next) => {
};

We need to check whether the route that we are being redirected to has an3.
authenticated meta property set to true and whether we have a
sessionStorage item with the 'auth' key. If we pass those validations, we can
execute the next callback:

if (to.meta.authenticated && sessionStorage.getItem('auth')) {
 return next();
}

Then, if the first validation didn't pass, we need to check whether the router that4.
we are redirecting the user to has the authenticated meta property and check
whether it's a false value. If the validation did pass, we will execute the next
callback:

if (!to.meta.authenticated) {
 return next();
}

Finally, if none of our validations pass, execute the next callback, passing5.
'/login' as an argument:

next('/login');

Adding the metadata and the middleware to the router
After creating our middleware, we need to define which routes will be authenticated and
which routes won't. Then we have to import the middleware to the router and define it
when it is executed:

Open user.js in the src/router folder.1.
In each route object, add a new property called meta. This property will be an2.
object with an authenticated key and a value defined as true. We need to do
this to every route – even the children's routes:

import Index from '@/views/user/Index.vue';
import List from '@/views/user/List.vue';
import View from '@/views/user/View.vue';

Managing Routes with vue-router Chapter 6

[321]

import Edit from '@/views/user/Edit.vue';
import Create from '@/views/user/Create.vue';

export default [
 {
 path: '/user',
 name: 'user',
 component: Index,
 meta: {
 authenticated: true,
 },
 children: [
 {
 path: '',
 name: 'list',
 component: List,
 meta: {
 authenticated: true,
 },
 },
 {
 path: ':id',
 name: 'view',
 component: View,
 meta: {
 authenticated: true,
 },
 },
 {
 path: 'edit/:id',
 name: 'edit',
 component: Edit,
 meta: {
 authenticated: true,
 },
 },
 {
 path: 'create',
 name: 'create',
 component: Create,
 meta: {
 authenticated: true,
 },
 },
],
 },
]

Managing Routes with vue-router Chapter 6

[322]

Open index.js in the src/router folder.3.
Import the newly created middleware and the Login view component: 4.

import Vue from 'vue';
import VueRouter from 'vue-router';
import UserRoutes from './user';
import NotFound from '@/views/NotFound';
import Login from '@/views/Login';
import AuthenticationMiddleware from './middleware/authentication';

Create a new route object for the login page view. This route object will5.
have path set to '/login', name defined as 'login', component defined as
Login, and the meta property will have the authenticated key with the value
set to false:

{
 path: '/login',
 name: 'login',
 component: Login,
 meta: {
 authenticated: false,
 },
},

On the error handling route, we'll define the meta property authenticated as6.
false because the login view is a public route:

{
 path: '*',
 component: NotFound,
 meta: {
 authenticated: false,
 },
},

Finally, after the creation of the router constructor, we need to inject the7.
middleware in the beforeEach execution:

router.beforeEach(AuthenticationMiddleware);

Managing Routes with vue-router Chapter 6

[323]

How it works...
Router guards work as middleware; they have a hook that is executed in each life cycle of
the vue-router process. For the purposes of this recipe, we chose the beforeEach hook to
add our middleware.

In this hook, we checked whether the user was authenticated and whether the user needed
authentication to navigate the route or not. After checking these variables, we continued the
process by sending the user to the route they needed.

See also
You can find more information about vue-router router guards at https:/ /router. vuejs.
org/guide/advanced/ navigation- guards. html#global- before- guards.

Lazy loading your pages asynchronously
Components can be loaded when needed, and so can routes. Using lazy loading techniques
with vue-router allows more code-splitting and smaller final bundles in your application.

In this recipe, we will learn how to transform routes in order to load them asynchronously.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-before-guards

Managing Routes with vue-router Chapter 6

[324]

How to do it...
To start our component, we will use the Vue project with Vue-CLI that we used in the
'Creating an authentication middleware' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> vue create http-project

Choose the manual features and add Router as a required feature, as indicated in the 'How
to do it...' section in the 'Creating a simple route' recipe.

Our recipe will be divided into two parts:

Updating the router manager
Updating the user routes

Let's get started.

Updating the router manager
To update the router manager, follow these instructions:

Open the index.js file in the src/router folder.1.
In each route that has a component property, we will transform the direct2.
attribution of the component to a new function. This will be an arrow function
returning the import() method of webpack:

{
 path: '/login',
 name: 'login',
 component: () => import('@/views/Login'),
 meta: {
 authenticated: false,
 },
},

Repeat the process on each one of the route objects that has a component3.
property.

Managing Routes with vue-router Chapter 6

[325]

Updating the user routes
To update the user routes, follow these instructions:

Open the user.js file in the src/router folder.1.
In each route that has a component property, we will transform the direct2.
attribution of the component to a new function. This will be an arrow function
returning the import() method of webpack:

{
 path: '/user',
 name: 'user',
 component: () => import('@/views/user/Index.vue'),
 meta: {
 authenticated: true,
 },
 children: [],
},

Repeat the process on each one of the route objects that has3.
a component property.

How it works...
In ECMAScript, export and import are objects with predefined values when we use the
export default method. This means that when we import a new component, this
component is already being pointed to the default export of that file.

To carry out the lazy loading process, we need to pass a function that will be executed at
runtime, and the return of that function will be the part of the code that webpack divides in
the bundling process.

When we call this function in vue-router, instead of the direct component import, vue-
router does a validation check that the present component import is a function and needs
to be executed. After the execution of the function, the response is used as the component
that will be displayed on the user's screen.

Because the webpack import() method is asynchronous, this process can happen
alongside other code execution, without tempering or blocking the main thread of the
JavaScript VM.

Managing Routes with vue-router Chapter 6

[326]

See also
You can find more information about vue-router lazy loading at https:/ / router. vuejs.
org/guide/advanced/ lazy- loading. html.

You can find more information about webpack code-splitting at https:/ /webpack. js.org/
guides/code-splitting/ .

You can find more information about the ECMAScript dynamic import proposal at https:/
/github.com/tc39/ proposal- dynamic- import.

https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://router.vuejs.org/guide/advanced/lazy-loading.html
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import

7
Managing the Application State

with Vuex
Transferring data between sibling components can be very easy, but imagine making a tree
of components react to any data change. You will need to trigger an event in an event bus
or send the event through all the parent components until it reaches over the top of the
event chain and then gets sent all the way down to the desired component; this process can
be very tedious and painful. If you are developing a large-scale application, this process is
not sustainable.

Flux libraries were developed to help with this process, with the idea of bringing the
reactivity outside of the component bounds, as Vuex is capable of maintaining one single
source of truth of your data and, at the same time, is the place for you to have your business
rules.

In this chapter, we will learn how to use Vuex, develop our store, apply it to our
components, and namespace it so we can have different modules of Vuex inside the same
store.

In this chapter, we'll cover the following recipes:

Creating a simple Vuex store
Creating and understanding the Vuex state
Creating and understanding the Vuex mutations
Creating and understanding the Vuex actions
Creating and understanding the Vuex getters
Creating a dynamic component with Vuex
Adding hot module reload for development
Creating a Vuex module

Managing the Application State with Vuex Chapter 7

[328]

Technical requirements
In this chapter, we will be using Node.js and Vue-CLI.

Attention, Windows users, you need to install an NPM package called
windows-build-tools, to be able to install the following required
packages. To do it, open PowerShell as administrator and execute the
following command:
> npm install -g windows-build-tools

To install Vue-CLI, you need to open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> npm install -g @vue/cli @vue/cli-service-global

Creating a simple Vuex store
Creating a single source of truth in your application gives you the power to simplify the
flow of your data, enabling the reactivity of the data to flow into another perspective,
where you are not tied to a parent-child relationship anymore. The data can now be stored
in a single place and everyone can fetch or request data.

In this recipe, we will learn how to install the Vuex library and create our first single store,
and how we can manipulate it with reactive actions and data getters.

Getting ready
The prerequisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

Managing the Application State with Vuex Chapter 7

[329]

How to do it...
To create a Vue-CLI project, follow these steps:

We need to open Terminal (macOS or Linux) or the Command1.
Prompt/PowerShell (Windows) and execute the following command:

> vue create initial-vuex

The CLI will ask some questions that will help with the creation of the project.2.
You can use the arrow keys to navigate, the Enter key to continue, and the
Spacebar to select an option.

There are two methods for starting a new project. The default method is a basic3.
babel and eslint project without any plugin or configuration, and the
Manually mode, where you can select more modes, plugins, linters, and options.
We will go for Manually:

? Please pick a preset: (Use arrow keys)
 default (babel, eslint)
❯ Manually select features

Now we are asked about the features that we will want in the project. Those4.
features are some Vue plugins such as Vuex or Router (Vue-Router), testers,
linters, and more. Select Babel, Router, Vuex, and Linter / Formatter:

? Check the features needed for your project: (Use arrow keys)
❯ Babel
 TypeScript
 Progressive Web App (PWA) Support
❯ Router
❯ Vuex
 CSS Pre-processors
❯ Linter / Formatter
 Unit Testing
 E2E Testing

Continue this process by selecting a linter and formatter. In our case, we will5.
select the ESLint + Airbnb config:

? Pick a linter / formatter config: (Use arrow keys)
 ESLint with error prevention only
❯ ESLint + Airbnb config
 ESLint + Standard config
 ESLint + Prettier

Managing the Application State with Vuex Chapter 7

[330]

After the linting rules are set, we need to define when they are applied to your6.
code. They can be either applied on save or fixed on commit:

? Pick additional lint features: (Use arrow keys)
 Lint on save
❯ Lint and fix on commit

After all those plugins, linters, and processors are defined, we need to choose7.
where the settings and configs are stored. The best place to store them is on a
dedicated file, but it is also possible to store them in the package.json file:

? Where do you prefer placing config for Babel, ESLint, etc.? (Use
 arrow keys)
❯ In dedicated config files
 In package.json

Now you can choose if you want to make this selection a preset for future8.
projects, so you don't need to reselect everything again:

? Save this as a preset for future projects? (y/N) n

Our recipe will be divided into two parts:

Creating the store
Creating the reactive component with Vuex

Let's get started.

Creating the store
Now you have the project with the Vuex library, and we need to create our first store. In the
following steps, we will create the Vuex store:

Open the index.js from the src/store folder.1.
In the state property, add a new key called counter and set the value to 0:2.

state: {
 counter: 0,
},

Managing the Application State with Vuex Chapter 7

[331]

In the mutations property, add two new functions, increment and decrement.3.
Both of the functions will have a state argument, which is the current Vuex
state object. The increment function will increment the counter by 1 and the
decrement function will decrement the counter by 1:

mutations: {
 increment: (state) => {
 state.counter += 1;
 },
 decrement: (state) => {
 state.counter -= 1;
 },
},

Finally, in the actions property, add two new4.
functions, increment and decrement. Both of the functions will have a
deconstructed argument, commit, which is a function to call the Vuex mutation.
In each function, we will execute the commit function, passing as a parameter the
name of the current function as a string:

actions: {
 increment({ commit }) {
 commit('increment');
 },
 decrement({ commit }) {
 commit('decrement');
 },
},

Creating the reactive component with Vuex
Now that you have your Vuex store defined, you need to interact with it. We will create a
reactive component that will display the current state counter on the screen, and show
two buttons, one for incrementing the counter, and another for decrementing the
counter.

Managing the Application State with Vuex Chapter 7

[332]

Single file component <script> section
Here we are going to write the <script> section of the single file component:

Open the App.vue file from the src folder.1.
Create the <script> section in the file, with an export default object:2.

<script>
 export default {};
</script>

In the newly created object, add the Vue computed property with a property3.
called counter. In this property we need to return the current
$store.state.counter:

computed: {
 counter() {
 return this.$store.state.counter;
 },
},

Finally, create a Vue methods property with two functions, increment and4.
decrement. Both of the functions will execute a $store.dispatch with a
parameter being the function name as a string:

methods: {
 increment() {
 this.$store.dispatch('increment');
 },
 decrement() {
 this.$store.dispatch('decrement');
 },
},

Single file component <template> section
Let's code the <template> section of the single file component:

Open the App.vue file in the src folder.1.
In the <template> section, remove everything inside the div#app.2.
Create an h1 HTML element with the counter variable inside of it.3.
Create a button with an event listener on the @click directive that calls the4.
increment function, and have + as a label:

<button @click="increment">+</button>

Managing the Application State with Vuex Chapter 7

[333]

Create a button with an event listener on the @click directive that calls5.
the decrement function, and - as a label:

<button @click="decrement">-</button>

To run the server and see your component, you need to open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> npm run serve

Here is your component rendered and running:

How it works...
When you declare your Vuex store, you need to create three main properties, state,
mutations, and actions. Those properties act as a single structure, bounded to the Vue
application through the $store injected prototype or the exported store variable.

A state is a centralized object that holds your information and makes it available to be
used by the mutation, actions, or the components. Changing the state always requires
a synchronous function executed through a mutation.

A mutation is a synchronous function that can change the state and is traceable, so when
developing, you can time travel through all the executed mutations in the Vuex store.

An action is an asynchronous function, which can be used to hold business logic, API
calls, dispatch other actions, and execute mutations. Those functions are the common
entrance point of any change in a Vuex store.

Managing the Application State with Vuex Chapter 7

[334]

A simple representation of a Vuex store can be seen in this chart:

See also
You can find more information about Vuex at https:/ /vuex. vuejs. org/ .

Creating and understanding the Vuex state
The Vuex state can seem straightforward to understand. However, as the data gets more in-
depth and nested, its complexity and maintainability can get more complicated.

In this recipe, we will learn how to create a Vuex state that can be used in the scenarios of
both a Progressive Web Application (PWA)/ Single Page Application (SPA) and a Server
Side Rendering (SSR), without any problems.

https://vuex.vuejs.org/
https://vuex.vuejs.org/
https://vuex.vuejs.org/
https://vuex.vuejs.org/
https://vuex.vuejs.org/
https://vuex.vuejs.org/
https://vuex.vuejs.org/
https://vuex.vuejs.org/
https://vuex.vuejs.org/
https://vuex.vuejs.org/

Managing the Application State with Vuex Chapter 7

[335]

Getting ready
The prerequisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we will use the Vue project with Vue-CLI that we used in the 'Lazy
Loading your pages asynchronously' recipe in Chapter 6, Managing Routes with vue-router, or
we can start a new one.

To start a new one, open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> vue create vuex-store

Choose the manual features, add Router and Vuex as required features, as indicated in
the 'How to do it...' section of the 'Creating a simple Vuex store' recipe.

Our recipe will be divided into two parts:

Adding Vuex via the vue ui
Creating the Vuex state

Let's get started.

Adding Vuex via the vue ui
When importing an old project that was created via the Vue-CLI, it is possible to
automatically add Vuex through the vue ui interface without any effort at all. We will
learn how to add the Vuex library to the old project, so we can continue developing the
recipe.

Managing the Application State with Vuex Chapter 7

[336]

In the following steps, we will add the Vuex with the vue ui interface:

In the project folder, open the vue ui by executing the following command on1.
Terminal (macOS or Linux) or Command Prompt/PowerShell (Windows):

> vue ui

Select the correct project that you are working on. In the right sidebar, click on2.
the Plugins menu icon:

On the plugins page, on the top bar, click on the Add vuex button. This will3.
trigger a pop-up modal, then click on the Continue button to finish the
installation of Vuex on the application:

Managing the Application State with Vuex Chapter 7

[337]

Adding the Vuex to our application will change the structure of the application.4.
First, we will notice that there is a new folder called store in the src folder, and
in the main.js file, it was added to the imports and the injection of the store in
the Vue application:

import './server/server';
import Vue from 'vue';
import App from './App.vue';
import Vuesax from 'vuesax';
import './style.css';
import router from './router'
import store from './store'

Vue.use(Vuesax);

Vue.config.productionTip = false;

new Vue({
 router,
 store,
 render: h => h(App)
}).$mount('#app');

Managing the Application State with Vuex Chapter 7

[338]

Creating the Vuex state
In order to save the data inside of Vuex, you need to have an initial state that is loaded with
the application and defined as the default one when the user enters your application. Here,
we are going to learn how to create the Vuex state and use it as a singleton, so that Vuex
can be used in an SPA and an SSR page:

Now we will create a Vuex store that can be used in an SSR and an SPA:

In the src/store folder, create a new folder called user, and inside this folder1.
create a new file named state.js.
Create a new generateState function. This function will return a JavaScript2.
object, with three main properties, data, loading, and error. The data
property will be a JavaScript object, with a property called usersList defined as
an empty array as default, and a property called userData with the default
object of a user. The loading property will be a boolean, set to false by default,
and error will have a default value initializing to null:

const generateState = () => ({
 data: {
 usersList: [],
 userData: {
 name: '',
 email: '',
 birthday: '',
 country: '',
 phone: '',
 },
 },
 loading: false,
 error: null,
});

After creating the function, we will create an export default object at the end3.
of the file, which will be a JavaScript object, and we will destruct the return of the
generateState function:

export default { ...generateState() };

Create a new file named index.js in the user folder and open it.4.
Import the newly created state:5.

import state from './state';

Managing the Application State with Vuex Chapter 7

[339]

At the end of the file, create an export default file as a JavaScript object. In6.
this object, we will add the imported state:

export default {
 state,
};

Open the index.js file from the src/store folder.7.
Import the index.js file from the user folder:8.

import Vue from 'vue';
import Vuex from 'vuex';
import UserStore from './user';

In the export default function, which creates a new Vuex store, we will9.
remove all the properties inside of it, and put the imported
UserStore deconstructed object inside the Vuex.Store parameter:

export default new Vuex.Store({
 ...UserStore,
})

How it works...
When using the vue ui to add Vuex as a plugin, the vue ui will automatically add the
required files, and import everything that is needed. This is the initial phase of the creation
of a Vuex store.

First is the creation of an exclusive file for managing the state that we can use to separate,
from the store, the process of how the state begins and how it can be initialized.

In this case of this state, we used a function to generate a completely new state every
time it's called. This is a good practice, because in an SSR environment, the state of the
server will always be the same, and we need to create a new state for each new
connection.

After the creation of the state, we needed to create the default file for exporting the Vuex
files that will be created in the user folder. This file is a simple import of all the files that
will be created in the folder, state, actions, mutation, and getters. After the import,
we export an object with the name of the required Vuex properties, state, actions,
mutations, and getters.

Managing the Application State with Vuex Chapter 7

[340]

Finally, in the Vuex store, we import the file that aggregates everything and deconstructs
it into our store to initialize it.

There's more...
The Vuex state is a single source of truth in your application, it works like a global data
manager, and it should not be changed directly. This is because we need to prevent the
mutation of data with a concurrent mutation of the same data. To avoid that, we always
need to change our state through the mutations, because the functions are synchronous and
controlled by Vuex.

See also
Find more information about the Vuex state at https:/ /vuex. vuejs. org/ guide/ state.
html.

Creating and understanding the Vuex
mutations
When there is a change in Vuex, we need a way to execute this change in asynchronous
form and keep track of it so it won't execute over another change before the first change
finishes.

For this case, we need the mutations, which are functions that are only responsible for
changing the state of your application.

In this recipe, we will learn how to create Vuex mutations and the best practices by which
to do it.

Getting ready
The prerequisite for this recipe is as follows:

Node.js 12+

https://vuex.vuejs.org/guide/state.html
https://vuex.vuejs.org/guide/state.html
https://vuex.vuejs.org/guide/state.html
https://vuex.vuejs.org/guide/state.html
https://vuex.vuejs.org/guide/state.html
https://vuex.vuejs.org/guide/state.html
https://vuex.vuejs.org/guide/state.html
https://vuex.vuejs.org/guide/state.html
https://vuex.vuejs.org/guide/state.html
https://vuex.vuejs.org/guide/state.html
https://vuex.vuejs.org/guide/state.html
https://vuex.vuejs.org/guide/state.html
https://vuex.vuejs.org/guide/state.html
https://vuex.vuejs.org/guide/state.html

Managing the Application State with Vuex Chapter 7

[341]

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we will use the Vue project with Vue-CLI that we used in the
'Creating and understanding the Vuex state' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> vue create vuex-store

Choose the manual features, add Router and Vuex as required features, as indicated in the
'How to do it...' section of the 'Creating a simple Vuex store' recipe.

Now we create a Vuex mutation and base type for the mutations:

Create a new file called types.js in the user folder inside the src/store1.
folder, and open it.
In this file, we will create an export default JavaScript object, with a group of2.
keys that will be the names of our mutations. Those keys will be LOADING,
ERROR, SET_USER_LIST, SET_USER_DATA, UPDATE_USER, and REMOVE_USER:

export default {
 LOADING: 'LOADING',
 ERROR: 'ERROR',
 SET_USER_LIST: 'SET_USER_LIST',
 SET_USER_DATA: 'SET_USER_DATA',
 UPDATE_USER: 'UPDATE_USER',
 REMOVE_USER: 'REMOVE_USER',
}

Create a new file called mutations.js in the user folder, and open it.3.
Import the newly created types.js file:4.

import MT from './types';

Managing the Application State with Vuex Chapter 7

[342]

Create a new function called setLoading, which will receive the Vuex state as5.
an argument and will define the loading property of the state to true when
executed:

const setLoading = state => {
 state.loading = true;
};

Create a new function called setError, which will receive the Vuex state as an6.
argument and payload. This function will set the loading property of the
state to false, and the error property to the received payload argument:

const setError = (state, payload) => {
 state.loading = false;
 state.error = payload;
};

Create a new function called setUserList, which will receive the7.
Vuex state and payload as an argument. This function will define
the usersList property of the state.data to the received payload argument,
set the loading property of the state to false, and the error property to
null:

const setUserList = (state, payload) => {
 state.data.usersList = payload;
 state.loading = false;
 state.error = null;
};

Create a new function called setUserData, which will receive the8.
Vuex state and payload as arguments. This function will define
the userData property of the state.data to the received payload argument,
set the loading property of the state to false, and
the error property to null:

const setUserData = (state, payload) => {
 state.data.userData = payload;
 state.loading = false;
 state.error = null;
};

Managing the Application State with Vuex Chapter 7

[343]

Create a new function called updateUser, which will receive the9.
Vuex state and payload as an argument. This function will update the user
data in the usersList property of the state.data, define
the loading property of the state to false, and the error property to null:

const updateUser = (state, payload) => {
 const userIndex = state.data.usersList.findIndex(u => u.id ===
 payload.id);
 if (userIndex > -1) {
 state.data.usersList[userIndex] = payload;
 }
 state.loading = false;
 state.error = null;
};

Create a new function called removeUser, which will receive the10.
Vuex state and payload as an argument. This function will remove the user
data from the usersList property of the state.data, define
the loading property of the state to false, and the error property to null:

const removeUser = (state, payload) => {
 const userIndex = state.data.usersList.findIndex(u => u.id ===
 payload);
 if (userIndex > -1) {
 state.data.usersList.splice(userIndex, 1);
 }
 state.loading = false;
 state.error = null;
};

Finally, create an export default object, with the keys being the types we11.
created in the types.js file, and define each of the keys to the functions we
created:

export default {
 [MT.LOADING]: setLoading,
 [MT.ERROR]: setError,
 [MT.SET_USER_LIST]: setUserList,
 [MT.SET_USER_DATA]: setUserData,
 [MT.UPDATE_USER]: updateUser,
 [MT.REMOVE_USER]: removeUser,
}

Managing the Application State with Vuex Chapter 7

[344]

Open the index.js file in the user folder.12.
Import the newly created mutations.js file, and add it to the export default13.
JavaScript object:

import state from './state';
import mutations from './mutations';

export default {
 state,
 mutations,
};

How it works...
Each mutation is a function that will be called as a commit, and will have an identifier in
the Vuex store. This identifier is the mutation key in the exported JavaScript object. In this
recipe, we created a file that holds all the identifiers as an object value so that it can be used
as a constant inside our code.

This pattern helps us in the development of Vuex actions, which need to know each
mutation name.

When exporting the mutation JavaScript object, we use the constant as the key and the
corresponding function as its value, so the Vuex store can execute the correct function when
called.

See also
Find more information about Vuex mutations at https:/ /vuex. vuejs. org/ guide/
mutations.html.

Creating and understanding the Vuex
getters
Accessing data from Vuex can be done through the state itself, which can be very
dangerous, or via the getters. The getters are like data that can be preprocessed and
delivered without touching or messing with the Vuex store state.

https://vuex.vuejs.org/guide/mutations.html
https://vuex.vuejs.org/guide/mutations.html
https://vuex.vuejs.org/guide/mutations.html
https://vuex.vuejs.org/guide/mutations.html
https://vuex.vuejs.org/guide/mutations.html
https://vuex.vuejs.org/guide/mutations.html
https://vuex.vuejs.org/guide/mutations.html
https://vuex.vuejs.org/guide/mutations.html
https://vuex.vuejs.org/guide/mutations.html
https://vuex.vuejs.org/guide/mutations.html
https://vuex.vuejs.org/guide/mutations.html
https://vuex.vuejs.org/guide/mutations.html
https://vuex.vuejs.org/guide/mutations.html
https://vuex.vuejs.org/guide/mutations.html

Managing the Application State with Vuex Chapter 7

[345]

The whole idea behind getters is the possibility to write custom functions that can extract
data from your state in a single place when you need it, so that you get just the data you
need.

In this recipe, we will learn how to create a Vuex getter and a dynamic getter that can be
used as a high-order function.

Getting ready
The prerequisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we will use the Vue project with Vue-CLI that we used in the
'Creating and understanding the Vuex mutations' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> vue create vuex-store

Choose the manual features, and add Router and Vuex as needed features, as indicated in
the 'How to do it...' section of the 'Creating a simple Vuex store' recipe.

In the following steps, we will create the Vuex getters:

Create a new file called getters.js in the src/store/user folder.1.
Create a new function called getUsersList, and return the2.
state.data.usersList property:

function getUsersList(state) {
 return state.data.usersList;
}

Managing the Application State with Vuex Chapter 7

[346]

In a getter function, the first argument that the function will receive will
be always the current state of the Vuex store.

Create a new function called getUserData, and return3.
the state.data.userData property:

function getUserData(state) {
 return state.data.userData;
}

Create a new function called getUserById, and return another function that4.
receives userId as an argument. This returning function will return the result of
a search of state.data.usersList that matches the same id as the userId
received:

function getUserById(state) {
 return (userId) => {
 return state.data.usersList.find(u => u.id === userId);
 }
}

Create a new function called isLoading, and return5.
the state.loading property:

function isLoading(state) {
 return state.loading;
}

Create a new function called hasError, and return the state.error property:6.

function hasError(state) {
 return state.error;
}

Finally, create an export default JavaScript object, with all the created 7.
functions as properties:

export default {
 getUsersList,
 getUserData,
 getUserById,
 isLoading,
 hasError,
};

Managing the Application State with Vuex Chapter 7

[347]

Open the index.js file in the src/store/user folder.8.
Import the newly created getters.js file, and add it to the export default9.
JavaScript object:

import state from './state';
import mutations from './mutations';
import getters from './getters';

export default {
 state,
 mutations,
 getters,
};

How it works...
Getters are like a GET function from an object and are static cached functions – they only
change the returned value when the state has changed. But if you add the return as a
high-order function, you can give it more power to use a more sophisticated algorithm and
provide specific data.

In this recipe, we created two types of getters: the most basic, with simple data return, and
the high-order function, which needs to be called as a function to retrieve the value you
want.

There's more...
Using getters with business logic is a good way to gather more data on the state. This is a
good pattern because, on larger projects, it helps other developers to understand more what
is going on in each of the GET functions and how it works behind the curtain.

You always need to remember that getters are synchronous functions and reactive to the
state change, so the data on the getters is memoized and cached until the single source of
truth receives a commit and changes it.

See also
You can find more information about Vuex getters at https:/ /vuex. vuejs. org/ guide/
getters.html.

https://vuex.vuejs.org/guide/getters.html
https://vuex.vuejs.org/guide/getters.html
https://vuex.vuejs.org/guide/getters.html
https://vuex.vuejs.org/guide/getters.html
https://vuex.vuejs.org/guide/getters.html
https://vuex.vuejs.org/guide/getters.html
https://vuex.vuejs.org/guide/getters.html
https://vuex.vuejs.org/guide/getters.html
https://vuex.vuejs.org/guide/getters.html
https://vuex.vuejs.org/guide/getters.html
https://vuex.vuejs.org/guide/getters.html
https://vuex.vuejs.org/guide/getters.html
https://vuex.vuejs.org/guide/getters.html
https://vuex.vuejs.org/guide/getters.html

Managing the Application State with Vuex Chapter 7

[348]

Creating and understanding the Vuex
actions
You have all your state ready, your dataset, and now you need to fetch new data from an
outside source or change this data inside your application. Here comes the part where
actions do their job.

Actions are responsible for orchestrating the process in this communication between the
application and the outside world. Controlling when the data need to be mutated on the
state and returned to the caller of the action.

Usually, the action is a dispatch through a component or a view, but there are some
occasions where actions can dispatch another action to create a chain of actions in your
application.

In this recipe, we will learn how to create the actions needed in our application to define a
user's list, update a user, and remove a user.

Getting ready
The prerequisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we will use the Vue project with Vue-CLI that we used in the
'Creating and understanding the Vuex getters' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> vue create vuex-store

Managing the Application State with Vuex Chapter 7

[349]

Choose the manual features, and add Router and Vuex as required features, as indicated in
the 'How to do it... section of the 'Creating a simple Vuex store' recipe.

Now follow these steps to create the Vuex actions:

Create a new file called actions.js in the src/store/user folder.1.
Import the mutation types files (types.js), and the getHttp, patchHttp,2.
postHttp, and deleteHttp functions from the fetchApi wrapper:

import {
 getHttp,
 patchHttp,
 deleteHttp,
 postHttp,
} from '@/http/fetchApi';
import MT from './types';

Create a new asynchronous function called createUser, which receives as the3.
first argument a deconstructed JavaScript object, with the commit property, and
userData as the second argument, which will be used to create the user. Add
a try/catch statement, in the try context. First, we
execute commit(MT.LOADING), then we fetch the users lists from the API, and
finally, commit(MT.SET_USER_DATA, data), passing the users lists to be
mutated. If we receive an exception and get into the Catch statement, we will
execute commit(MT.ERROR, error), passing the error that we receive to
the state:

async function createUser({ commit }, userData) {
 try {
 commit(MT.LOADING);
 await postHttp(`/api/users`, {
 data: {
 ...userData,
 }
 });
 commit(MT.SET_USER_DATA, userData);
 } catch (error) {
 commit(MT.ERROR, error);
 }
}

Managing the Application State with Vuex Chapter 7

[350]

Create a new asynchronous function called fetchUsersList, which receives4.
as the first argument a deconstructed JavaScript object, with the
commit property. Add a try/catch statement in the try context. We
execute commit(MT.LOADING), then we fetch the users lists from the API, and
finally, commit(MT.SET_USER_LIST, data), passing the users lists to be
mutated. If we receive an exception and get into the catch statement, we will
execute a mutation of commit(MT.ERROR, error), passing the error that we
receive to the state:

async function fetchUsersList({ commit }) {
 try {
 commit(MT.LOADING);
 const { data } = await getHttp(`api/users`);
 commit(MT.SET_USER_LIST, data);
 } catch (error) {
 commit(MT.ERROR, error);
 }
}

Create a new asynchronous function called fetchUsersData, which receives5.
as the first argument a deconstructed JavaScript object, with the
commit property, and the second argument the userId that will be fetched. Add
a try/catch statement, in the try context. We execute commit(MT.LOADING),
then we fetch the users lists from the API, and
finally, commit(MT.SET_USER_DATA, data), passing the users lists to be
mutated. If we receive an exception and get into the catch statement, we will
execute a mutation of commit(MT.ERROR, error), passing the error that we
receive to the state:

async function fetchUserData({ commit }, userId) {
 try {
 commit(MT.LOADING);
 const { data } = await getHttp(`api/users/${userId}`);
 commit(MT.SET_USER_DATA, data);
 } catch (error) {
 commit(MT.ERROR, error);
 }
}

Managing the Application State with Vuex Chapter 7

[351]

Create a new asynchronous function called updateUser, which receives as the6.
first argument a deconstructed JavaScript object, with the
commit property, and payload as the second argument. Add
a try/catch statement, in the try context. We execute commit(MT.LOADING),
then we patch the user data to the API and finally commit(MT.UPDATE_USER,
payload), passing the user new data to be mutated. If we receive an exception
and get into the catch statement, we will execute a
mutation of commit(MT.ERROR, error), passing the error that we received to
the state:

async function updateUser({ commit }, payload) {
 try {
 commit(MT.LOADING);
 await patchHttp(`api/users/${payload.id}`, {
 data: {
 ...payload,
 }
 });
 commit(MT.UPDATE_USER, payload);
 } catch (error) {
 commit(MT.ERROR, error);
 }
}

Create a new asynchronous function called removeUser, which receives as the7.
first argument a deconstructed JavaScript object, with the commit property, and
userId as the second argument. Add a try/catch statement, in
the try context. We execute commit(MT.LOADING), then we delete the user data
from the API and finally, commit(MT.REMOVE_USER, userId), passing the
userId to be used in the mutation. If we receive an exception and get into
the Catch statement, we will execute a mutation of commit(MT.ERROR,
error), passing the error that we receive to the state:

async function removeUser({ commit }, userId) {
 try {
 commit(MT.LOADING);
 await deleteHttp(`api/users/${userId}`);
 commit(MT.REMOVE_USER, userId);
 } catch (error) {
 commit(MT.ERROR, error);
 }
}

Managing the Application State with Vuex Chapter 7

[352]

Finally, we will create an export default JavaScript object, with all the created8.
functions as properties:

export default {
 createUser,
 fetchUsersList,
 fetchUserData,
 updateUser,
 removeUser,
}

Import the newly created actions.js file in the index.js in the9.
src/store/user folder, and add it to the export default JavaScript object:

import state from './state';
import mutations from './mutations';
import getters from './getters';
import actions from './actions';

export default {
 state,
 mutations,
 getters,
 actions,
};

How it works...
Actions are the initializers of all the Vuex life cycle changes. When dispatched, the action
can execute a mutation commit, or another action dispatch, or even an API call to the
server.

In our case, we took our API calls and put it inside the actions, so when the asynchronous
function returns, we can execute the commit and set the state to the result of the function.

See also
Find more information about Vuex actions at https:/ /vuex. vuejs. org/guide/ actions.
html.

https://vuex.vuejs.org/guide/actions.html
https://vuex.vuejs.org/guide/actions.html
https://vuex.vuejs.org/guide/actions.html
https://vuex.vuejs.org/guide/actions.html
https://vuex.vuejs.org/guide/actions.html
https://vuex.vuejs.org/guide/actions.html
https://vuex.vuejs.org/guide/actions.html
https://vuex.vuejs.org/guide/actions.html
https://vuex.vuejs.org/guide/actions.html
https://vuex.vuejs.org/guide/actions.html
https://vuex.vuejs.org/guide/actions.html
https://vuex.vuejs.org/guide/actions.html
https://vuex.vuejs.org/guide/actions.html
https://vuex.vuejs.org/guide/actions.html

Managing the Application State with Vuex Chapter 7

[353]

Creating a dynamic component with Vuex
Combining Vuex with Vue components, it's possible to employ the reactivity between
multiple components without the need for direct parent-child communication, and split the
responsibilities of the components.

Using this method allows the developer to enhance the scale of the application, where there
is no need to store the state of the data inside the components itself, but using a single
source of truth as a store for the whole application.

In this recipe, we will use the last recipes to improve an application, where it was using
parent-child communication and making it as a single source of truth available in the whole
application.

Getting ready
The prerequisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To create our dynamic component, we will transform the components from stateful to
stateless, and will extract some parts that can be made into new components as well.

We will use the Vue project with Vue-CLI that we used in the 'Creating and understanding the
Vuex actions' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> vue create vuex-store

Choose the manual features, and add Router and Vuex as required features, as indicated in
the 'How to do it...' section of the 'Creating a simple Vuex store' recipe.

Managing the Application State with Vuex Chapter 7

[354]

Our recipe will be divided into five parts:

Creating the user list component
Editing the user list page
Editing the user view page
Editing the user view page
Editing the user create page

Let's get started.

Creating the user list component
Because Vuex gives us the ability to have a single source of truth on our application, we can
create a new component for our application that will handle the user listing and triggers the
Vuex action that fetches the users list from the server. This component can be stateless and
execute the Vuex actions by itself.

Single file component <script> section
Let's code the <script> section of the single file component:

Create a new file called userList.vue in the src/components folder.1.
Import the changeRouterMixin from the src/mixin folder:2.

import changeRouteMixin from '@/mixin/changeRoute';

Create an export default JavaScript object, and add a new Vue property3.
called mixin, with a default value of an array. To this array, add the
imported changeRouteMixin:

mixins: [changeRouteMixin],

Create a new Vue property called computed. In this property, create a new value4.
called userList. This property will be a function returning the Vuex store getter
getUsersList:

computed: {
 userList() {
 return this.$store.getters.getUsersList;
 },
},

Managing the Application State with Vuex Chapter 7

[355]

Single file component <template> section
Here, we are going to code the <template> section of the single file component:

Open the List.vue file from the users folder inside the views folder and copy1.
the content and component from the VsTable component.
Open the userList.vue file from the src/components folder.2.
Paste the content you'd copied from the List.vue file inside the <template>3.
section:

<template>
 <vs-table
 :data="userList"
 search
 stripe
 pagination
 max-items="10"
 style="width: 100%; padding: 20px;"
 >
 <template slot="thead">
 <vs-th sort-key="name">
 #
 </vs-th>
 <vs-th sort-key="name">
 Name
 </vs-th>
 <vs-th sort-key="email">
 Email
 </vs-th>
 <vs-th sort-key="country">
 Country
 </vs-th>
 <vs-th sort-key="phone">
 Phone
 </vs-th>
 <vs-th sort-key="Birthday">
 Birthday
 </vs-th>
 <vs-th>
 Actions
 </vs-th>
 </template>
 <template slot-scope="{data}">
 <vs-tr :key="index" v-for="(tr, index) in data">
 <vs-td :data="data[index].id">
 {{data[index].id}}
 </vs-td>

Managing the Application State with Vuex Chapter 7

[356]

 <vs-td :data="data[index].name">
 {{data[index].name}}
 </vs-td>
 <vs-td :data="data[index].email">
 <a :href="`mailto:${data[index].email}`">
 {{data[index].email}}

 </vs-td>
 <vs-td :data="data[index].country">
 {{data[index].country}}
 </vs-td>
 <vs-td :data="data[index].phone">
 {{data[index].phone}}
 </vs-td>
 <vs-td :data="data[index].birthday">
 {{data[index].birthday}}
 </vs-td>
 <vs-td :data="data[index].id">
 <vs-button
 color="primary"
 type="filled"
 icon="remove_red_eye"
 size="small"
 @click="changeRoute('view', data[index].id)"
 />
 <vs-button
 color="success"
 type="filled"
 icon="edit"
 size="small"
 @click="changeRoute('edit', data[index].id)"
 />
 <vs-button
 color="danger"
 type="filled"
 icon="delete"
 size="small"
 @click="deleteUser(data[index].id)"
 />
 </vs-td>
 </vs-tr>
 </template>
 </vs-table>
</template>

Managing the Application State with Vuex Chapter 7

[357]

Editing the user list page
Now that we have extracted the user list into a new component, we need to import this
component and remove the old VsTable that was cluttering our view.

Single file component <script> section
In this step, we are going to write the <script> section of the single file component:

Open the List.vue file in the users folder inside the views folder.1.
Import the newly created Users List component, from the components folder:2.

import changeRouteMixin from '@/mixin/changeRoute';
import UserTableList from '@/components/userList';

In the export default JavaScript object, add a new property called3.
components. Declare the property as a JavaScript object, and add the imported
UserTableList component to the object:

components: { UserTableList },

In the methods property, at the getAllUsers function, we need to change the4.
content to execute a Vuex dispatch when called. This method will perform the
fetchUsersList Vuex action:

async getAllUsers() {
 this.$store.dispatch('fetchUsersList');
},

Finally, in the deleteUser function, we need to change the content to execute a5.
Vuex dispatch when called. This method will perform the removeUser Vuex
action, passing the userId as the argument:

async deleteUser(id) {
 this.$store.dispatch('removeUser', id);
 await this.getAllUsers();
},

Managing the Application State with Vuex Chapter 7

[358]

Single file component <template> section
Let's code the <template> section of the single file component:

Open the List.vue file in the users folder inside the view folder.1.
Replace the VsTable component and its contents with the newly imported2.
UserTableList:

<vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="12">
 <user-table-list />
</vs-col>

Editing the user view page
Now we can add the Vuex to the user view page. We will add the Vuex actions and getters
to manipulate the data, and extract from the page the responsibility of managing it.

Single file component <script> section
Now you are going to create the <script> section of the single file component:

Open the View.vue file from the users folder inside the view folder.1.
Remove the Vue data property.2.
Inside the Vue computed property, add the userData, returning a Vuex3.
getter, getUserData:

userData() {
 return this.$store.getters.getUserData;
},

Finally, in the getUserById method, change the content to dispatch a Vuex4.
action, fetchUserData, passing the computed userId property as a parameter:

async getUserById() {
 await this.$store.dispatch('fetchUserData', this.userId);
},

Managing the Application State with Vuex Chapter 7

[359]

Single file component <template> section
It's time to write the <template> section of the single file component:

Open the View.vue file in the users folder inside the view folder.1.
In the UserForm component, change the v-model directive to a :value2.
directive:

<user-form
 :value="userData"
 disabled
/>

When using a read-only value, or you need to remove the syntactic sugar
of the v-model directive, you can declare the input value as a :value
directive and the value change event to an @input event listener.

Editing the user edit page
We need to edit our user. In the last recipe, we used a stateful page and executed
everything within the page. We will transform the state into a temporary state, and execute
the API calls on the Vuex actions.

Single file component <script> section
Here, we are going to create the <script> section of the single file component:

Open the Edit.vue file in the users folder inside the view folder.1.
In the Vue data property, change the name of the data from userData to2.
tmpUserData:

data: () => ({
 tmpUserData: {
 name: '',
 email: '',
 birthday: '',
 country: '',
 phone: '',
 },
}),

Managing the Application State with Vuex Chapter 7

[360]

In the Vue computed property, add a new property called userData, which will3.
return the Vuex getter getUserData:

userData() {
 return this.$store.getters.getUserData;
}

Add a new Vue property named watch, and add a new property, userData,4.
which will be a JavaScript object. In this object, add three properties, handler,
immediate, and deep. The handler property will be a function that receives an
argument called newData, which will set tmpUserData to this argument. The
immediate and deep properties are both boolean properties set to true:

watch: {
 userData: {
 handler(newData) {
 this.tmpUserData = newData;
 },
 immediate: true,
 deep: true,
 }
},

In the Vue methods property, we need to change the contents of5.
getUserById to dispatch a Vuex action named fetchUserData, passing the
computed property userId as a parameter:

async getUserById() {
 await this.$store.dispatch('fetchUserData', this.userId);
},

In the updateUser method, change the content to dispatch a Vuex action6.
named updateUser, passing tmpUserData as a parameter:

async updateUser() {
 await this.$store.dispatch('updateUser', this.tmpUserData);
 this.changeRoute('list');
},

Managing the Application State with Vuex Chapter 7

[361]

Single file component <template> section
In this part, we are going to write the <template> section of the single file component:

Open the Edit.vue in the users folder inside the view folder.1.
Change the target of the v-model directive of the UserForm component to2.
tmpUserData:

<vs-col
 vs-type="flex"
 vs-justify="left"
 vs-align="left"
 vs-w="12"
 style="margin: 20px"
>
 <user-form
 v-model="tmpUserData"
 />
</vs-col>

Editing the user create page
For the user create page, the changes will be minimal, as it only executes an API call. We
need to add the Vuex action dispatch.

Single file component <script> section
Here, we are going to create the <script> section of the single file component:

Open the Create.vue file in the users folder inside the view folder.1.
Change the content of the createUser method to dispatch a Vuex action named2.
createUser, passing userData as the parameter:

async createUser() {
 await this.$store.dispatch('createUser', this.userData);
 this.changeRoute('list');
},

How it works...
In all four pages, we made changes that removed the business logic or API calls from the
page to the Vuex store and tried making it less responsible for maintaining the data.

Managing the Application State with Vuex Chapter 7

[362]

Because of that, we could place a piece of code into a new component that can be placed
anywhere in our application, and will show the current users lists without any limitations
from the container that is instantiating it.

This pattern helps us in the development of more prominent applications, where there is a
need for components that are less business-oriented and more focused on their tasks.

See also
You can find more information about Vuex application structures at https:/ /vuex. vuejs.
org/guide/structure. html.

Adding hot-module-reload for development
The hot-module-reload (HMR) is a technique used for the faster development of the
application, where you don't need to refresh the whole page to get the new code you have
just changed on the editor. The HMR will change and refresh only the part that were
updated by you on the editor.

In all the Vue-CLI projects or Vue-based frameworks, such as Quasar Framework, the HMR
is present in the presentation of the application. So each time you change any file that is a
Vue component and it's rendered, the application will replace the old code for the new one
on the fly.

In this recipe, we will learn how to add HMR to a Vuex store and be able to change the
Vuex store without the need to refresh our entire application.

Getting ready
The prerequisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

https://vuex.vuejs.org/guide/structure.html
https://vuex.vuejs.org/guide/structure.html
https://vuex.vuejs.org/guide/structure.html
https://vuex.vuejs.org/guide/structure.html
https://vuex.vuejs.org/guide/structure.html
https://vuex.vuejs.org/guide/structure.html
https://vuex.vuejs.org/guide/structure.html
https://vuex.vuejs.org/guide/structure.html
https://vuex.vuejs.org/guide/structure.html
https://vuex.vuejs.org/guide/structure.html
https://vuex.vuejs.org/guide/structure.html
https://vuex.vuejs.org/guide/structure.html
https://vuex.vuejs.org/guide/structure.html
https://vuex.vuejs.org/guide/structure.html

Managing the Application State with Vuex Chapter 7

[363]

How to do it...
To start our component, we will use the Vue project with Vue-CLI that we used in the
'Creating a dynamic component with Vuex' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> vue create vuex-store

Choose the manual features, add Router and Vuex as required features, as indicated in the
'How to do it...' section of the 'Creating a simple Vuex store' recipe.

In the following steps, we will add HMR to Vuex:

Open the index.js file in the src/store folder.1.
Transform the export default into a constant called store, and make it2.
exportable:

export const store = new Vuex.Store({
 ...UserStore,
});

Check if the webpack hot-module-reload plugin is active:3.

if (module.hot) {}

Create a new constant called hmr, which is an array containing the direction to4.
the index.js, getters.js, actions.js, and mutations.js files of the
user folder:

const hmr = [
 './user',
 './user/getters',
 './user/actions',
 './user/mutations',
];

Create a new function called reloadCallback. In this function, create three5.
constants, getters, actions, and mutations. Each constant will point to the
equivalent file inside the user folder, and call the store.hotUpdate function,
passing an object as an argument with the values for the constants you created:

const reloadCallback = () => {
 const getters = require('./user/getters').default;
 const actions = require('./user/actions').default;

Managing the Application State with Vuex Chapter 7

[364]

 const mutations = require('./user/mutations').default;

 store.hotUpdate({
 getters,
 actions,
 mutations,
 })
};

Because of the Babel output of the files, you need to add the .default in
the end of the files that you are dynamically importing with the webpack
require function.

Execute the webpack HMR accept function, passing as the first argument the6.
hmr constant and reloadCallback as the second argument:

module.hot.accept(hmr, reloadCallback);

Finally, default export the created store:7.

export default store;

How it works...
The Vuex store supports HMR with the API of the webpack HMR plugin.

When it's available, we create a list of possible files that can be updated, so that webpack
can be aware of any updates to those files. When any of those files are updated, a special
callback that you created is executed. This callback is the one that enables Vuex to update
or change the behavior of the updated file entirely.

See also
You can find more information about Vuex hot reloading at https:/ /vuex. vuejs. org/
guide/hot-reload. html.

You can find more information about webpack HMR at https:/ /webpack. js.org/ guides/
hot-module-replacement/ .

https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://vuex.vuejs.org/guide/hot-reload.html
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/

Managing the Application State with Vuex Chapter 7

[365]

Creating a Vuex module
As our application grows, working in a single object can be very risky. The maintainability
of the project and the risks that it can generate on every change get worse each time.

Vuex has an approach called modules that helps us to separate our store into different
branches of stores. These branches, or modules, have on each one of them a different set of
state, mutation, getter, and action. This pattern helps with development and cuts the risk of
adding new features to the application.

In this recipe, we will learn how to create a module and how to work with it, separating it
into dedicated branches.

Getting ready
The prerequisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To start our component, we will use the Vue project with Vue-CLI that we used in the
'Creating a dynamic component with Vuex' recipe, or we can start a new one.

To start a new one, open Terminal (macOS or Linux) or
Command Prompt/PowerShell (Windows) and execute the following command:

> vue create vuex-store

Choose the manual features and add Router and Vuex as required features, as indicated in
the 'How to do it...' section of the 'Creating a simple Vuex store' recipe.

Managing the Application State with Vuex Chapter 7

[366]

Our recipe will be divided into two parts:

Creating the new authentication module
Adding modules to Vuex

Let's get started.

Creating the new authentication module
To start, we need to create a new Vuex module. This example module will be called
authentication, and will store the credentials data for the user.

In these steps, we will create the authentication module for Vuex:

Create a new folder called authentication in the src/store folder.1.
In this newly created folder, create a new file called state.js, and open it.2.
Create a function called generateState that will return a JavaScript object with3.
the properties of data.username, data.token, data.expiresAt, loading,
and error:

const generateState = () => ({
 data: {
 username: '',
 token: '',
 expiresAt: null,
 },
 loading: false,
 error: null,
});

Create an export default object at the end of the file. This object will be a4.
JavaScript object. We will destruct the return of the generateState function:

export default { ...generateState() };

Create a new file called index.js in the authentication folder inside the5.
src/store folder, and open it.

Managing the Application State with Vuex Chapter 7

[367]

Import the newly created state.js file:6.

import state from './state';

Create an export default object at the end of the file. This object will be a7.
JavaScript object. Add a new property called namespaced with the value set to
true, and add the imported state:

export default {
 namespaced: true,
 state,
};

Adding the modules to Vuex
Now that we've created our modules, we will add them to the Vuex store. We can integrate
the new modules with our old code. This is not a problem because Vuex will handle the
new module as a namespaced object, with a completely separate Vuex store.

Now in these steps, we will add the created modules to the Vuex:

Open the index.js file in the src/store folder.1.
Import the index.js file from the authentication folder:2.

import Vue from 'vue';
import Vuex from 'vuex';
import UserStore from './user';
import Authentication from './authentication';

In the Vuex.Store function, add a new property called modules, which is a3.
JavaScript object. Then add the imported User and Authentication modules:

export default new Vuex.Store({
 ...UserStore,
 modules: {
 Authentication,
 }
})

Managing the Application State with Vuex Chapter 7

[368]

How it works...
Modules work like separate Vuex stores but in the same Vuex single source of truth. This
helps in the development of larger-scale applications because you can maintain and work
with a more complex structure without the need to check for problems in the same file.

In the meantime, it's possible to work with modules and the plain Vuex store, migrating
from legacy applications so you don't have to re-write everything from the ground up to be
able to use the module structure.

In our case, we added a new module named authentication with just a state present in
the store, and continued with the old user Vuex store, so that in the future we can refactor
the user store into a new module and separate it off into a more specific, domain-driven
architecture.

See also
You can find more information about Vuex modules at https:/ / vuex. vuejs. org/ guide/
modules.html.

https://vuex.vuejs.org/guide/modules.html
https://vuex.vuejs.org/guide/modules.html
https://vuex.vuejs.org/guide/modules.html
https://vuex.vuejs.org/guide/modules.html
https://vuex.vuejs.org/guide/modules.html
https://vuex.vuejs.org/guide/modules.html
https://vuex.vuejs.org/guide/modules.html
https://vuex.vuejs.org/guide/modules.html
https://vuex.vuejs.org/guide/modules.html
https://vuex.vuejs.org/guide/modules.html
https://vuex.vuejs.org/guide/modules.html
https://vuex.vuejs.org/guide/modules.html
https://vuex.vuejs.org/guide/modules.html
https://vuex.vuejs.org/guide/modules.html

8
Animating Your Application with

Transitions and CSS
To have a more dynamic application and have the full attention of the user, using
animation is crucial. Today, CSS animations are present in toasts, banners, notifications,
and even input fields.

There are some cases where you need to create special animations, known as transitions,
and have full control of what is happening on your page. To do this, you must use custom
components and have the framework to help you with rendering your application.

With Vue, we can use two custom components that can help us create animations and
transitions in our application with the help of CSS classes. Those components are
Transition and TransitionGroup.

In this chapter, we will learn how to create a CSS animation, use the Animate.css
framework to create a custom transition, use the Transition component hook to execute
custom functions, create animations that execute on the render of the component, create
animations and transitions for groups and lists, create reusable custom transition
components, and create seamless transitions between components.

In this chapter, we'll cover the following recipes:

Creating your first CSS animation
Creating a custom transition class with Animate.css
Creating transactions with custom hooks
Creating animations on page render
Creating animations for lists and groups
Creating a custom transition component
Creating a seamless transition between elements

Animating Your Application with Transitions and CSS Chapter 8

[370]

Technical requirements
In this chapter, we will be using Node.js and Vue-CLI.

Attention Windows users! You need to install an NPM package called
windows-build-tools to be able to install the following required
packages. To do so, open PowerShell as an Administrator and execute the
> npm install -g windows-build-tools command.

To install Vue-CLI, you need to open Terminal (macOS or Linux) or a Command
Prompt/PowerShell (Windows) and execute the following command:

> npm install -g @vue/cli @vue/cli-service-global

Creating the base project
In this chapter, we will use this project as the base for each recipe. Here, I will guide you
through how to create the base project:

Open Terminal (macOS or Linux) or a Command Prompt/PowerShell (Windows)1.
and execute the following command:

> vue create {replace-with-recipe-name}

Vue-CLI will ask for you to choose a preset; select Manually select2.
features using the spacebar:

? Please pick a preset: (Use arrow keys)
 default (babel, eslint)
❯ Manually select features

Now, Vue-CLI will ask for what features you wish to install. You will need to3.
select CSS Pre-processors as an additional feature on top of the default ones:

? Check the features needed for your project: (Use arrow keys)
❯ Babel
 TypeScript
 Progressive Web App (PWA) Support
 Router
 Vuex
❯ CSS Pre-processors
❯ Linter / Formatter
 Unit Testing
 E2E Testing

Animating Your Application with Transitions and CSS Chapter 8

[371]

Continue this process by selecting a linter and formatter. In our case, we will4.
select ESLint + Airbnb config:

? Pick a linter / formatter config: (Use arrow keys)
 ESLint with error prevention only
❯ ESLint + Airbnb config
 ESLint + Standard config
 ESLint + Prettier

Choose the additional features of the linter. In our case, select the Lint on save5.
and Lint and fix on commit:

? Pick additional lint features: (Use arrow keys)
 Lint on save
❯ Lint and fix on commit

Select where you want to place the linter and formatter configuration files. In our6.
case, we will select In dedicated config files:

? Where do you prefer placing config for Babel, ESLint, etc.? (Use
arrow keys)
❯ In dedicated config files
 In package.json

Finally, the CLI will ask you whether you want to save the settings for future7.
projects; select N. After that, Vue-CLI will create the folder and install the
dependencies for you:

? Save this as a preset for future projects? (y/N) n

From the created project, open the App.vue file, which is located in the src8.
folder. In the <script> section of the single file component, remove the
HelloWorld component. Add a data property and define it as a singleton
function that's returning a JavaScript object with a property named display, and
with a default value of true:

<script>
export default {
 name: 'App',
 data: () => ({
 display: true,
 }),
};
</script>

Animating Your Application with Transitions and CSS Chapter 8

[372]

In the <template> section of the single file component, remove the HelloWorld9.
component and add a button HTML element with the text Toggle. In the img
HTML element, add a v-if directive bounded to the display variable. Finally,
in the button HTML element, add a click event. In the event listener, define
the value as an anonymous function that sets the display variable as the
negation of the display variable:

<template>
 <div id="app">
 <button @click="display = !display">
 Toggle
 </button>
 <img
 v-if="display"
 alt="Vue logo" src="./assets/logo.png">
 </div>
</template>

With these instructions, we can create a base project for each recipe in this chapter.

Creating your first CSS animation
With the help of CSS, we can animate our application without the need to manually
program the changes of DOM elements through JavaScript. Using special CSS properties
dedicated exclusively to controlling animations, we can achieve beautiful animations and
transitions.

To use the animations that are available in Vue, we need to use a component called
Transition when an animation is being applied to a single element or a component
called TransitionGroup when dealing with a list of components.

In this recipe, we will learn how to create a CSS animation and apply this animation to a
single element on the Vue application.

Getting ready
The following are the prerequisites for this recipe:

Node.js 12+
A Vue-CLI base project called cssanimation

Animating Your Application with Transitions and CSS Chapter 8

[373]

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
Using the base project, create a new project for this recipe called cssanimation and open
the project folder. Now, follow these steps:

Open the App.vue file. In the <template> section of the single file component,1.
wrap the img HTML element with a Transaction component. In the
Transaction component, add a name attribute with a value of "image":

<transition name="image">
 <img
 v-if="display"
 alt="Vue logo" src="./assets/logo.png">
</transition>

In the <style> section of the single file component, create an .image-enter-2.
active class with an animation property that has a value of bounce-in .5s.
Then, create an .image-leave-active class with an animation property that
has a value of bounce-in .5s reverse:

.image-enter-active {
 animation: bounce-in .5s;
}
.image-leave-active {
 animation: bounce-in .5s reverse;
}

Finally, create a @keyframes bounce-in CSS rule. Inside it, do the following:3.
Create a 0% rule with a property transform and a value of scale(0).
Create a 50% rule with a property transform and a value
of scale(1.5).
Create a 100% rule with a property transform and a value
of scale(1):

@keyframes bounce-in {
 0% {
 transform: scale(0);
 }

Animating Your Application with Transitions and CSS Chapter 8

[374]

 50% {
 transform: scale(1.5);
 }
 100% {
 transform: scale(1);
 }
}

After doing this, your image will scale up and disappear when the toggle button is pressed
for the first time. When pressed again, it will scale up and stay in the correct scale after the
animation has finished:

How it works...
First, we added the Vue animation wrapper to the element we wanted to add the transition
to, and then added the name of the CSS class that will be used on the transition.

The Transition component uses pre-made namespaces for the CSS class
that are required to be present. These are -enter-active, for when the
component enters the screen, and -leave-active, for when the
component leaves the screen.

Animating Your Application with Transitions and CSS Chapter 8

[375]

Then, we create the CSS classes in <style> for the transition of the element to leave and
enter the screen, and the keyframe ruleset for the bounce-in animation in order to define
how it will behave.

See also
You can find more information about class-based animation and transitions with Vue
classes at https:// v3. vuejs. org/ guide/ transitions- overview. html#class- based-
animations-transitions.

You can find more information about CSS keyframes at https:/ / developer. mozilla. org/
en-US/docs/Web/CSS/ @keyframes.

Creating a custom transition class with
Animate.css
In the Transition component, it is possible to define the CSS classes that will be used in
each transition step. By using this property, we can make the Transition component use
Animate.css in the transition animations.

In this recipe, we will learn how to use the Animate.css classes with the Transition
component in order to create custom transitions in our components.

Getting ready
The following are the prerequisites for this recipe:

Node.js 12+
A Vue-CLI base project called animatecss

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes

Animating Your Application with Transitions and CSS Chapter 8

[376]

How to do it...
Using the base project, create a new project for this recipe called animatecss and open the
project folder. Now, follow these steps:

Inside the project folder, open Terminal (macOS or Linux) or a Command1.
Prompt/PowerShell (Windows) and execute the following command to install the
Animate.css framework:

> npm install animate.css@3.7.2

Open the main.js file in the src folder and import the Animate.css framework:2.

import Vue from 'vue';
import App from './App.vue';
import 'animate.css';

Open the App.vue file in the src folder and add a Transition component as a3.
wrapper for the img HTML element. In the Transition component, add an
attribute called enter-active-class and define it as "animated
bounceInLeft". Then, add another attribute called leave-active-class and
define it as "animated bounceOutLeft":

<transition
 enter-active-class="animated bounceInLeft"
 leave-active-class="animated bounceOutLeft"
>
 <img
 v-if="display"
 alt="Vue logo" src="./assets/logo.png">
</transition>

After doing this, your image will slide out to the left and disappear when the toggle button
is pressed for the first time. When pressed again, it will slide in from the left:

Animating Your Application with Transitions and CSS Chapter 8

[377]

How it works...
The Transition component can receive up to six props that can set up custom classes for
each step of the transaction. Those props are enter-class, enter-active-class,
enter-to-class, leave-class, leave-active-class, and leave-to-class. In this
recipe, we used enter-active-class and leave-active-class; these props defined
the custom classes for when the element is visible on the screen or leaves the screen.

To use custom animations, we used the Animate.css framework, which provides custom
CSS animations that have been pre-made and ready for use. We used bounceInLeft and
bounceOutLeft in order to make the element slide in and out from the screen.

There's more...
You can try to change the classes of the enter-active-class and leave-active-class
props for any of the props available on Animate.css and see how the CSS animation
behaves on the browser.

You can find the full list of available classes in the Animate.css documentation at https:/ /
animate.style/.

https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/

Animating Your Application with Transitions and CSS Chapter 8

[378]

See also
You can find more information about class-based animation and transitions with Vue
classes at https:// v3. vuejs. org/ guide/ transitions- overview. html#class- based-
animations-transitions.

You can find more information about Animate.css at https:/ /animate. style/ .

Creating transactions with custom hooks
The Transaction component has custom event emitters for each animation life cycle.
These can be used to attach custom functions and methods to be executed when the
animations cycle is completed.

We can use these methods to execute data fetches after the page transaction completes or a
button animation ends, thus chaining animations in a specific order that need to be
executed one after another based on dynamic data.

In this recipe, we will learn how to use the custom event emitters of the Transaction
component to execute custom methods.

Getting ready
The following are the prerequisites for this recipe:

Node.js 12+
A Vue-CLI base project called transactionhooks

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://v3.vuejs.org/guide/transitions-overview.html#class-based-animations-transitions
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/

Animating Your Application with Transitions and CSS Chapter 8

[379]

How to do it...
Using the base project, create a new project for this recipe called transactionhooks and
open the project folder. Now, follow these steps:

Inside the project folder, open Terminal (macOS or Linux) or a Command1.
Prompt/PowerShell (Windows) and execute the following command to install
the Animate.css framework:

> npm install animate.css@3.7.2

Open the main.js file in the src folder and import the Animate.css framework:2.

import Vue from 'vue';
import App from './App.vue';
import 'animate.css';

Open the App.vue file in the src folder. In the <script> section of the single3.
file component, in the data property, in the singleton function, add a new
property called status with the value defined as "appeared":

data: () => ({
 display: true,
 status: 'appeared',
}),

Create a methods property and define it as a JavaScript object. Inside the object,4.
add two properties called onEnter and onLeave. In the onEnter property,
define it as a function, and inside of it, set the data status variable
to"appeared". In the onLeave property, define it as a function, and inside of it
set the data status variable to "disappeared":

methods: {
 onEnter() {
 this.status = 'appeared';
 },
 onLeave() {
 this.status = 'disappeared';
 },
},

Animating Your Application with Transitions and CSS Chapter 8

[380]

In the <template> section of the single file component, add5.
a Transition component as a wrapper for the img HTML element. In
the Transition component, do the following:

Add an attribute called enter-active-class and define it
as "animated rotateIn".
Add another attribute called leave-active-class and define it
as "animated rotateOut".
Add an event listener after-enter bind and attach it to the onEnter
method.
Add an event listener after-leave bind and attach it to the onLeave
method:

<transition
 enter-active-class="animated rotateIn"
 leave-active-class="animated rotateOut"
 @after-enter="onEnter"
 @after-leave="onLeave"
>
 <img
 v-if="display"
 alt="Vue logo" src="./assets/logo.png">
</transition>

Create an h1 HTML element as a sibling of the Transition component and add6.
the text The image {{ status }}:

<h1>The image {{ status }}</h1>

Now, when the button is clicked, the text will change when the animation finishes. It will
show The image appeared when the animation finishes entering and The image
disappeared when the animation has finished leaving:

Animating Your Application with Transitions and CSS Chapter 8

[381]

How it works...
The Transition component has eight custom hooks. These hooks are triggered by the CSS
animations and when they are triggered, they emit custom events, which can be used by
the parent component. These custom events are before-enter, enter, after-enter,
enter-cancelled, before-leave, leave, after-leave, and leave-cancelled.

When using the after-enter and after-leave hooks, when the CSS animations have
finished, the text on the screen changes accordingly to the functions that have been defined
on the event listeners for each hook.

See also
You can find more information about transition hooks at https:/ /v3. vuejs. org/ guide/
transitions-enterleave. html#javascript- hooks.

You can find more information about Animate.css at https:/ /animate. style/ .

https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://v3.vuejs.org/guide/transitions-enterleave.html#javascript-hooks
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/

Animating Your Application with Transitions and CSS Chapter 8

[382]

Creating animations on page render
Using page transition animations or custom animations that are displayed on the render of
a page is common and sometimes needed to catch the attention of the user of an
application.

It's possible to create this effect in a Vue application without the need to refresh the page or
re-render all the elements on the screen. You can do this using the Transition component
or the TransitionGroup component.

In this recipe, we will learn how to use the Transition component so that the animation is
triggered when the page is being rendered.

Getting ready
The following are the prerequisites for this recipe:

Node.js 12+
A Vue-CLI base project called transactionappear

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
Using the base project, create a new project for this recipe called transactionappear and
open the project folder. Now, follow these steps:

Inside the project folder, open Terminal (macOS or Linux) or a Command1.
Prompt/PowerShell (Windows) and execute the following command to install
the Animate.css framework:

> npm install animate.css@3.7.2

Open the main.js file in the src folder and import the Animate.css framework:2.

import Vue from 'vue';
import App from './App.vue';
import 'animate.css';

Animating Your Application with Transitions and CSS Chapter 8

[383]

Open the App.vue file in the src folder and add a Transition component as a3.
wrapper for the img HTML element. In the Transition component, do the
following:

Add an attribute called appear-active-class and define it
as "animated jackInTheBox".
Add an attribute called enter-active-class and define it
as "animated jackInTheBox".
Add another attribute called leave-active-class and define it
as "animated rollOut".
Add the appear attribute and define it as true:

<transition
 appear
 appear-active-class="animated jackInTheBox"
 enter-active-class="animated jackInTheBox"
 leave-active-class="animated rollOut"
>
 <img
 v-if="display"
 alt="Vue logo" src="./assets/logo.png">
</transition>

When the page opens, the Vue logo will shake like a jack-in-the-box and will be static after
the animation has finished running:

Animating Your Application with Transitions and CSS Chapter 8

[384]

How it works...
The Transition component has a special property called appear that, when enabled,
makes the element trigger an animation when it is rendered on the screen. This property
comes with three properties for controlling the animation CSS classes, which are
called appear-class, appear-to-class, and appear-active-class.

There are four custom hooks that are executed with this property as well, which are
called before-appear, appear, after-appear, and appear-cancelled.

In our case, we made the component execute the jackInTheBox animation from the
Animate.css framework when the component gets rendered on-screen.

See also
You can find more information about transitions on initial render at https:/ /v3. vuejs.
org/guide/transitions- enterleave. html#transitions- on- initial- render.

You can find more information about Animate.css at https:/ /animate. style/ .

Creating animations for lists and groups
There are some animations that need to be executed within a group of elements or a list.
These animations need to be wrapped in a TransitionGroup element in order to work.

This component has some properties that are the same as the ones in the Transition
component, but to get it working, you have to define a set of special instructions for the
child elements and the components that are specific to this component.

In this recipe, we will create a dynamic list of images that will be added when the user
clicks on the respective button. This will execute the animation when the image appears on
the screen.

Getting ready
The following are the prerequisites for this recipe:

Node.js 12+
A Vue-CLI base project called transactiongroup

https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://v3.vuejs.org/guide/transitions-enterleave.html#transitions-on-initial-render
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/

Animating Your Application with Transitions and CSS Chapter 8

[385]

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
Using the base project, create a new project for this recipe called transactiongroup and
open the project folder. Now, follow these steps:

Inside the project folder, open Terminal (macOS or Linux) or a Command1.
Prompt/PowerShell (Windows) and execute the following command to install
the Animate.css framework:

> npm install animate.css@3.7.2

Open the main.js file in the src folder and import the Animate.css framework:2.

import Vue from 'vue';
import App from './App.vue';
import 'animate.css';

Open the App.vue file in the src folder. In the <script> section of the single3.
file component, on the data singleton, return a property called count with a
value of 0:

data: () => ({
 count: 0,
}),

In the <template> section of the single file component, remove everything4.
inside the div#app HTML element. Then, as a child of the div#app HTML
element, create a TransitionGroup component with an attribute called tag
defined as "ul" and an attribute called enter-active-class defined as
"animated zoomIn":

<div id="app">
 <transition-group
 tag="ul"
 enter-active-class="animated zoomIn"
 ></transition-group>
</div>

Animating Your Application with Transitions and CSS Chapter 8

[386]

As a child of the TransitionGroup component, create a li HTML element with5.
the v-for directive, iterating over the count variable as i in count. Add a
variable attribute called key defined as i and a style attribute defined as
"float: left". As a child of the li HTML component, create an img HTML
component with the src attribute defined as "https://picsum.photos/100":

<li
 v-for="i in count"
 :key="i"
 style="float: left"
>

Then, as a sibling element of the TransitionGroup component, create a hr6.
HTML element with the style attribute defined as "clear: both":

<hr style="clear: both"/>

Finally, as a sibling of the hr HTML element, create a button HTML element7.
with the click event, adding 1 to the current count variable and setting the text
to Increase:

<button
 @click="count = count + 1"
>
 Increase
</button>

Now, when the user clicks the respective button to increase the list, it will add a new item
to the list and the zooming in animation will trigger:

Animating Your Application with Transitions and CSS Chapter 8

[387]

How it works...
The TransitionGroup element creates a wrapper element with the tag you declared in the
tag property. This will manage the custom elements that will trigger the animation by
checking the unique identity of the child elements by their unique keys. Because of this, all
the child elements inside the TransitionGroup component need to have a key declared
and have to be unique.

In our case, we created an HTML list using a combination of ul and li HTML elements,
where TransitionGroup was defined with the ul tag and the child elements were defined
with the li HTML elements. Then, we created a virtual iteration over a number. This
means there will be a list of items and display images on-screen according to the number of
items on that list.

To increase our list, we created a button HTML element that increased the count of the
count variable by one each time it was pressed.

See also
You can find more information about transition groups at https:/ /v3. vuejs. org/ guide/
transitions-list. html#reusable- transitions.

You can find more information about Animate.css at https:/ /animate. style/ .

Creating a custom transition component
Using a framework to create an application is good because you can make reusable
components and shareable code. Using this pattern is great for simplifying the
development of the application.

Creating a reusable transition component is the same as creating a reusable component and
can have a simpler approach as it can be used with functional rendering instead of the
normal rendering method.

In this recipe, we will learn how to create a reusable functional component that can be used
in our application.

https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/

Animating Your Application with Transitions and CSS Chapter 8

[388]

Getting ready
The following are the prerequisites for this chapter:

Node.js 12+
A Vue-CLI base project called customtransition

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
Using the base project, create a new project for this recipe called customtransition and
open the project folder. Now, follow these steps:

Inside the project folder, open Terminal (macOS or Linux) or a Command1.
Prompt/PowerShell (Windows) and execute the following command to install
the Animate.css framework:

> npm install animate.css@3.7.2

Open the main.js file in the src folder and import the Animate.css framework:2.

import Vue from 'vue';
import App from './App.vue';
import 'animate.css';

Create a new file named CustomTransition.vue in the src/components3.
folder and open it. In the <template> section of the single file component, add
the functional attribute to enable the functional rendering of the component.
Then, create a Transition component, with the appear variable attribute
defined as props.appear. Define the enter-active-class attribute
as "animated slideInLeft" and the leave-active-class attribute
as "animated slideOutRight". Finally, inside the Transition component,
add a <slot> placeholder:

<template functional>
 <transition
 :appear="props.appear"
 enter-active-class="animated slideInLeft"
 leave-active-class="animated slideOutRight"

Animating Your Application with Transitions and CSS Chapter 8

[389]

 >
 <slot />
 </transition>
</template>

Open the App.vue file in the src folder. In the <script> section of the single4.
file component, import the newly created CustomTransition component. On
the Vue object, add a new property called components, define it as a JavaScript
object, and add the imported CustomTransition component:

<script>
import CustomTransition from './components/CustomTransition.vue';

export default {
 name: 'App',
 components: {
 CustomTransition,
 },
 data: () => ({
 display: true,
 }),
};
</script>

Finally, in the <template> section of the single file component, wrap the img5.
HTML element with the CustomTransition component:

<custom-transition>
 <img
 v-if="display"
 alt="Vue logo" src="./assets/logo.png">
</custom-transition>

Animating Your Application with Transitions and CSS Chapter 8

[390]

With this custom component, it's possible to reuse the transition without the need to
redeclare the Transition component and the transition CSS classes on the component:

How it works...
First, we created a custom component using the functional component method, where there
is no need to declare the <script> section of the single file component.

In this custom component, we used the Transaction component as the base component.
Then, we defined the appear attribute with the injected functional context, prop.appear,
and added the animations classes for the transition to slide in from the left when the
component is rendered and slide out from the right when it's destroyed.

Then, in the main application, we used this custom component to wrap the img HTML
element and make it work as the Transition component.

See also
You can find more information about reusable transition components at https:/ /v3.
vuejs.org/guide/ transitions- list. html#reusable- transitions.

You can find more information about Animate.css at https:/ /animate. style/ .

https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://v3.vuejs.org/guide/transitions-list.html#reusable-transitions
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/
https://animate.style/

Animating Your Application with Transitions and CSS Chapter 8

[391]

Creating a seamless transition between
elements
When there are animations and transitions between two components, they need to be
seamless so that the user won't see the DOM shaking and redrawing itself when the
components are being placed on the screen. To achieve this, we can use the Transition
component and the transition mode property to define how the transition will occur.

In this recipe, we will create a transition between images using the Transition component
and the transition mode attribute to create a seamless animation.

Getting ready
The following are the prerequisites for this chapter:

Node.js 12+
A Vue-CLI base project called seamlesstransition

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
Using the base project, create a new project for this recipe called
seamlesstransition and open the project folder. Now, follow these steps:

Open the App.vue file in the src folder. In the <style> section of the single file1.
component, create a property called .rotate-enter-active,.rotate-
leave-active and define the transition CSS style property as transform
.8s ease-in-out;. Then, create a property called .rotate-enter,.rotate-
leave-active and define the transform CSS style property as rotate(
-180deg); and transition as .8s ease-in-out;:

.rotate-enter-active,

.rotate-leave-active {
 transition: transform .8s ease-in-out;
}

Animating Your Application with Transitions and CSS Chapter 8

[392]

.rotate-enter,

.rotate-leave-active {
 transform: rotate(-180deg);
 transition: transform .8s ease-in-out;
}

In the <template> section of the single file component, wrap the img HTML2.
element with a Transition component. Then, define the name attribute as
rotate and the mode attribute as out-in:

<transition
 name="rotate"
 mode="out-in"
></transition>

Inside the Transition component, in the img HTML element, add a key3.
attribute and define it as up. Then, add another img HTML element and add a v-
else directive. Add a key attribute and define it as down, add an src attribute
and define it as "./assets/logo.png", and finally add a style attribute and
define it as "transform: rotate(180deg)":

<img
 v-if="display"
 key="up"
 src="./assets/logo.png">
<img
 v-else
 key="down"
 src="./assets/logo.png"
 style="transform: rotate(180deg)"
>

When the user toggles the element, the leaving animation will be executed, and then after it
has finished, the entering animation will start with no delay. This makes for a seamless
transition between the old element and the new one:

Animating Your Application with Transitions and CSS Chapter 8

[393]

How it works...
The Transition component has a special attribute called mode, where it is possible to
define the behavior of the element's transition animation. This behavior will create a set of
rules that controls how the animation steps will occur inside the Transition component.
It's possible to use "in-out" or "out-in" mode in the component:

In the "in-out" behavior, the new element transition will occur first, and when
it's finished, the old element transition will start.
In the "out-in" behavior, the old element transition will occur first, and then
the new element transition will start.

In our case, we created an animation that rotates the Vue logo upside down. Then, to
handle this seamless change, we used "out-in" mode so that the new element will only
show up after the old one has finished the transition.

See also
You can find more information about transition modes at https:/ /v3. vuejs. org/ guide/
transitions-enterleave. html.

https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html
https://v3.vuejs.org/guide/transitions-enterleave.html

9
Creating Beautiful Applications

Using UI Frameworks
Using UI frameworks and libraries is a good way to increase productivity and help the
development of your application. You can focus more on the code and less on the design.

Learning how to use such frameworks means that you know how these frameworks behave
and work. This will help you in the process of developing an application or a framework in
the future.

Here, you will learn more about the usage of frameworks when creating user registration
forms and all the components that are needed for a page. In this chapter, we will learn how
to create a layout, a page, and a form using Buefy, Vuetify, and Ant-Design.

In this chapter, we'll cover the following recipes:

Creating a page, a layout, and a user form with Buefy
Creating a page, a layout, and a user form with Vuetify
Creating a page, a layout, and a user form with Ant-Design

Creating Beautiful Applications Using UI Frameworks Chapter 9

[395]

Technical requirements
In this chapter, we will be using Node.js and Vue-CLI.

Attention Windows users: you need to install an npm package called
windows-build-tools. To do so, open PowerShell as administrator and
execute the following command:
> npm install -g windows-build-tools

To install Vue-CLI, you need to open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> npm install -g @vue/cli @vue/cli-service-global

Creating a page, a layout, and a user form
with Buefy
Bulma was one of the first frameworks to be used for rapid prototyping and web
development that didn't require a JavaScript library attached to it. All the special
components that needed to be coded were the responsibility of the developer using the
framework.

With the advent of JavaScript frameworks and the community that was created around the
Bulma framework, a wrapper for Vue was created. This wrapper takes all the responsibility
of JavaScript component development and delivers a complete solution for developers to
use the Bulma framework within their applications, without the need to re-invent the
wheel.

In this recipe, we will learn how to use the Buefy framework with Vue and how to create a
layout, a page, and a user registration form.

Getting ready
The pre-requisites for this recipe are as follows:

Node.js 12+
A Vue-CLI project

Creating Beautiful Applications Using UI Frameworks Chapter 9

[396]

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
To create a Vue-CLI project with the Buefy framework, we need to create a Vue-CLI project
first and then add the Buefy framework to the project. We will divide this recipe into four
parts: creating the Vue-CLI project, adding the Buefy framework to the project, creating the
layout and the page, and finally creating the user registration form.

Creating the Vue-CLI project
Here we will create the Vue-CLI project to be used in this recipe. This project will have
custom settings to be able to work with the Buefy framework:

We need to open Terminal (macOS or Linux) or Command Prompt/PowerShell1.
(Windows) and execute the following command:

> vue create bulma-vue

Vue-CLI will ask for you to choose a preset – select Manually select2.
features:

? Please pick a preset: (Use arrow keys)
 default (babel, eslint)
❯ Manually select features

Now the Vue-CLI will ask for the features, and you will need to select CSS Pre-3.
processors as an additional feature on top of the default ones:

? Check the features needed for your project: (Use arrow keys)
❯ Babel
 TypeScript
 Progressive Web App (PWA) Support
 Router
 Vuex
❯ CSS Pre-processors
❯ Linter / Formatter
 Unit Testing
 E2E Testing

Creating Beautiful Applications Using UI Frameworks Chapter 9

[397]

Here the Vue-CLI will ask which CSS pre-processor you want to use;4.
select Sass/SCSS (with node-sass):

? Pick a CSS pre-processor (PostCSS, Autoprefixer and CSS Modules
are supported by default): (Use arrow keys)
 Sass/SCSS (with dart-sass)
❯ Sass/SCSS (with node-sass)
 Less
 Stylus

Continue this process by selecting a linter and formatted. In our case, we will5.
select the ESLint + Airbnb config:

? Pick a linter / formatter config: (Use arrow keys)
 ESLint with error prevention only
❯ ESLint + Airbnb config
 ESLint + Standard config
 ESLint + Prettier

Choose the additional features of the linter (here, Lint and fix on commit):6.

? Pick additional lint features: (Use arrow keys)
 Lint on save
❯ Lint and fix on commit

Select where you want to place the linter and formatter configuration files (here,7.
In dedicated config files):

? Where do you prefer placing config for Babel, ESLint, etc.? (Use
arrow keys)
❯ In dedicated config files
 In package.json

Finally, the Vue-CLI will ask you whether you want to save the settings for8.
future projects; you should select N. After that, Vue-CLI will create the folder and
install the dependencies for you:

? Save this as a preset for future projects? (y/N) n

Creating Beautiful Applications Using UI Frameworks Chapter 9

[398]

Adding Buefy to the Vue-CLI project
To use Bulma in a Vue project, we are going to use the Buefy UI library. This library is a
wrapper around the Bulma framework and provides all the components that are available
with the original framework and some additional components to use:

In the folder that you created for your Vue-CLI project, open Terminal (macOS or1.
Linux) or Command Prompt/PowerShell (Windows) and execute the following
command:

> vue add buefy

Vue-CLI will ask whether you want to choose a style to work with Buefy; we will2.
go with scss:

? Add Buefy style? (Use arrow keys)
 none
 css
❯ scss

Then, Vue-CLI will ask whether you want to include the Material Design3.
icons; for this project, we won't use them:

? Include Material Design Icons? (y/N) n

Now Vue-CLI will ask whether you want to include Font Awesome icons; we4.
will add them to the project:

? Include Font Awesome Icons? (y/N) y

Creating the layout and a page with Buefy
To create a page, we need to create a layout structure and the base components for the
page, such as a header menu, a footer, and the hero section of the page.

Creating the header menu component
In our design, we will have a header menu, with a basic combination of links and call-to-
action buttons:

Create a new file named top-menu.vue in the src/components folder and1.
open it.

Creating Beautiful Applications Using UI Frameworks Chapter 9

[399]

In the <script> section of the single file component, we will export a default2.
JavaScript object, with the name property defined as TopMenu:

<script>
export default {
 name: 'TopMenu',
};
</script>

In the <template> section of the single file component, create a section HTML3.
element with the section class, and add a child div HTML element with the
container class:

<section class="section">
 <div class="container">
 </div>
</section>

Now create a b-navbar component as a child of the div.container HTML4.
element, and add as a child a template placeholder component, with the named
slot as brand. Inside that, add a b-navbar-item component with the href
attribute defined as # and add an img HTML element as a child:

<b-navbar>
 <template slot="brand">
 <b-navbar-item href="#">
 <img src="https://raw.githubusercontent.com/buefy/buefy/dev
 /static/img/buefy-logo.png"
 alt="Lightweight UI components for Vue.js based on Bulma"
 >
 </b-navbar-item>
 </template>
</b-navbar>

After this template placeholder, create another template placeholder with the5.
named slot as start. Inside it, create two b-navbar-item components with the
href attribute defined as #. Create, as a sibling component, a b-navbar-
dropdown component with the label attribute defined as Info. In this
component, add two b-navbar-item components as children with the href
attribute defined as #:

<template slot="start">
 <b-navbar-item href="#">
 Home
 </b-navbar-item>
 <b-navbar-item href="#">

Creating Beautiful Applications Using UI Frameworks Chapter 9

[400]

 Documentation
 </b-navbar-item>
 <b-navbar-dropdown label="Info">
 <b-navbar-item href="#">
 About
 </b-navbar-item>
 <b-navbar-item href="#">
 Contact
 </b-navbar-item>
 </b-navbar-dropdown>
</template>

Finally, create another template placeholder with the named slot as end. Create6.
a b-navbar-item component as a child component with the tag attribute
defined as div, and add a div HTML element as a child of this component with
the buttons class. In the div HTML element, create an a HTML element with
the button is-primary class, and another a HTML element with the button
is-light class:

<template slot="end">
 <b-navbar-item tag="div">
 <div class="buttons">

 Sign up

 Log in

 </div>
 </b-navbar-item>
</template>

Creating the hero section component
We will create a hero section component. A hero component is a full-width banner that
provides visual information on the page to the user:

Create a new file named hero-section.vue in the src/components folder and1.
open it.
In the <script> section of the single file component, we will export2.
a default JavaScript object, with the name property defined as HeroSection:

<script>
export default {
 name: 'HeroSection',

Creating Beautiful Applications Using UI Frameworks Chapter 9

[401]

};
</script>

In the <template> section of the single file component, create a section HTML3.
element with the hero is-primary class, then add a div HTML element as a
child, with the hero-body class:

<section class="hero is-primary">
 <div class="hero-body">
 </div>
</section>

Inside the div.hero-body HTML element, create a child div HTML element4.
with the container class. Then, add an h1 HTML element as a child with the
title class and an h2 HTML element with the subtitle class:

<div class="container">
 <h1 class="title">
 user Registration
 </h1>
 <h2 class="subtitle">
 Main user registration form
 </h2>
</div>

Creating the footer component
The final component that we are going to use in our layout is the footer component. This
will be displayed as the footer of our page:

Create a new file named Footer.vue in the src/components folder and open1.
it.
In the <script> section of the single file component, we will export2.
a default JavaScript object, with the name property defined as FooterSection:

<script>
export default {
 name: 'FooterSection',
};
</script>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[402]

In the <template> section of the single file component, create a footer HTML3.
element with the footer class, and then add a div HTML element with the
content has-text-centered class:

<footer class="footer">
 <div class="content has-text-centered">
 </div>
</footer>

Inside the div.content HTML element, create a p HTML element for the initial4.
footer line, and create a second p HTML element for the second line:

<p>
 Bulma by Jeremy
 Thomas
 | Buefy by
 Walter
 Tommasi
</p>
<p>
 The source code is licensed
 <a href="http://opensource.org/licenses/mit-
license.php">MIT.
 The website content is licensed
 CC
 BY NC SA 4.0.
</p>

Creating the layout component
To create the layout component, we are going to use all the created components, and add a
slot that will hold the page content:

Create a new folder called layouts in the src folder, and create a new file1.
named Main.vue and open it.
In the <script> section of the single file component, import the footer-2.
section component and the top-menu component:

import FooterSection from '../components/Footer.vue';
import TopMenu from '../components/top-menu.vue';

Creating Beautiful Applications Using UI Frameworks Chapter 9

[403]

Then, we will export a default JavaScript object, with3.
the name property defined as Mainlayout, and define the components property
with the imported components:

export default {
 name: 'Mainlayout',
 components: {
 TopMenu,
 FooterSection,
 },
};

Finally, in the <template> section of the single file component, create a div4.
HTML element with the child top-menu component, a slot placeholder, and the
footer-section component:

<template>
 <div>
 <top-menu />
 <slot/>
 <footer-section />
 </div>
</template>

Creating the user registration form with Buefy
Now we are going to create the user registration form and make the final page. In this step,
we will join the outputs of all the other steps into a single page:

Open the App.vue file in the src folder. In the <script> section of the single1.
file component, import the main-layout component and the hero-
section component:

import Mainlayout from './layouts/main.vue';
import HeroSection from './components/heroSection.vue';

Then, we will export a default JavaScript object with the name property defined2.
as App, then define the components property with the imported components.
Add the data property to the JavaScript object, with the name, username,
password, email, phone, cellphone, address, zipcode, and country
properties:

export default {
 name: 'App',

Creating Beautiful Applications Using UI Frameworks Chapter 9

[404]

 components: {
 HeroSection,
 Mainlayout,
 },
 data: () => ({
 name: '',
 username: '',
 password: '',
 email: '',
 phone: '',
 cellphone: '',
 address: '',
 zipcode: '',
 country: '',
 }),
};

In the <template> section of the single file, add the imported main-layout3.
component and add hero-section as a child component:

<template>
 <main-layout>
 <hero-section/>
 </main-layout>
</template>

After the hero-section component, create a sibling section HTML element,4.
with the section class, and add a child div HTML element with the
container class. In this div HTML element, create a h1 HTML element with the
title is-3 class and a sibling hr HTML element:

<section class="section">
 <div class="container">
 <h1 class="title is-3">Personal Information</h1>
 <hr/>
 </div>
</section>

Then, create a b-field component as a sibling of the hr HTML element, with5.
Name for label, and add a child b-input with the v-model directive bound to
name. Do the same for the email field, changing label to Email, and the v-
model directive bound to email. In the email b-input, add a type attribute
defined as email:

<b-field label="Name">
 <b-input

Creating Beautiful Applications Using UI Frameworks Chapter 9

[405]

 v-model="name"
 />
</b-field>
<b-field
 label="Email"
>
 <b-input
 v-model="email"
 type="email"
 />
</b-field>

Create a b-field component as a sibling of the b-field component, with the6.
grouped attribute. Then, as child components, create the following:

A b-field component with the expanded attribute and label
defined as Phone. Add a child b-input component with the v-model
directive bound to phone and type as tel.
A b-field component with the expanded attribute
and label defined as Cellphone. Add a child b-input component
with the v-model directive bound to cellphone and type as tel:

<b-field grouped>
 <b-field
 expanded
 label="Phone"
 >
 <b-input
 v-model="phone"
 type="tel"
 />
 </b-field>
 <b-field
 expanded
 label="Cellphone"
 >
 <b-input
 v-model="cellphone"
 type="tel"
 />
 </b-field>
</b-field>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[406]

Then, create an h1 HTML element as a sibling of the b-field component with7.
the title is-3 class, and add an hr HTML element as a sibling. Create a b-
field component with label defined as Address, and add a b-input
component with the v-model directive bound to address:

<h1 class="title is-3">Address</h1>
<hr/>
<b-field
 label="Address"
>
 <b-input
 v-model="address"
 />
</b-field>

Create a b-field component as a sibling of the b-field component, with the8.
grouped attribute. Then, as child components, create the following:

A child b-field component with the expanded attribute and label
defined as Zipcode. Add a b-input component with the v-model
directive bound to zipcode and the type attribute defined as tel.
A child b-field component with the expanded attribute
and label defined as Country. Add a b-input component with
the v-model directive bound to country and the type attribute
defined as tel:

<b-field grouped>
 <b-field
 expanded
 label="Zipcode"
 >
 <b-input
 v-model="zipcode"
 type="tel"
 />
 </b-field>
 <b-field
 expanded
 label="Country"
 >
 <b-input
 v-model="country"
 />
 </b-field>
</b-field>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[407]

Then, create an h1 HTML element as a sibling of the b-field component, with9.
the title is-3 class, and add an hr HTML element as a sibling. Create a b-
field component with the grouped attribute. Create a child b-
field component with the expanded attribute and label defined as username,
and add a b-input component with the v-model directive bound to username.
Do the same for the Password input, changing label to Password, in the b-
input component defining the v-model directive as bound to password, and
adding the type attribute as password:

<h1 class="title is-3">user Information</h1>
<hr/>
<b-field grouped>
 <b-field
 expanded
 label="username"
 >
 <b-input
 v-model="username"
 />
 </b-field>
 <b-field
 expanded
 label="Password"
 >
 <b-input
 v-model="password"
 type="password"
 />
 </b-field>
</b-field>

Finally, create a b-field component as a sibling of the b-field component,10.
with the position attribute defined as is-right and the grouped attribute.
Then, create two div HTML element with the control class. In the first div
HTML element, add a button HTML element as a child with the button is
danger is-light class, and in the second div HTML element, create a child
button HTML element with the button is-success class:

<b-field
 position="is-right"
 grouped
>
 <div class="control">
 <button class="button is-danger is-light">Cancel</button>
 </div>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[408]

 <div class="control">
 <button class="button is-success">Submit</button>
 </div>
</b-field>

How it works...
First, we create a Vue-CLI project, with the basic configurations, and the additional CSS
pre-processor node-sass. Then, we were able to add the Buefy framework to our project,
using Vue-CLI and the Buefy plugin. Using the Buefy framework, we created a layout page
component, with a header menu component and a footer component.

For the page, we used the Bulma CSS container structure to define our page, and place our
user registration form on a default grid size. Then, we added the hero section component,
for the page identification, and finally, we created the user registration form and inputs.

Here is a screenshot of the final project up and running:

Creating Beautiful Applications Using UI Frameworks Chapter 9

[409]

See also
Find more information about Bulma at http:// bulma. io/.

Find more information about Buefy at https:/ /buefy. org/ .

Creating a page, a layout, and a user form
with Vuetify
Vuetify is on the top three list of the most well-known UI frameworks for Vue. Based on
Material Design by Google, this framework was initially designed by John Leider and is
now gathering ground in the Vue ecosystem as the go-to UI framework for the initial
development of an application.

In this recipe, we will learn how to use Vuetify to create a layout component wrapper, a
page, and a user registration form.

Getting ready
The pre-requisites for this recipe are as follows:

Node.js 12+
A Vue-CLI project

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
We will divide this recipe into four main sections. The first and second sections are
dedicated to the creation of the project and the installation of the framework and the last
two sections are dedicated to the creation of the user registration page and the components
needed to create it.

http://bulma.io/
http://bulma.io/
http://bulma.io/
http://bulma.io/
http://bulma.io/
http://bulma.io/
http://bulma.io/
http://bulma.io/
https://buefy.org/
https://buefy.org/
https://buefy.org/
https://buefy.org/
https://buefy.org/
https://buefy.org/
https://buefy.org/
https://buefy.org/

Creating Beautiful Applications Using UI Frameworks Chapter 9

[410]

Creating the Vue-CLI project
To use Vuetify with a Vue-CLI project, we need to create a custom Vue-CLI project with
pre-defined configurations, so that we are able to take full advantage of the framework and
the styling options it provides:

We need to open Terminal (macOS or Linux) or Command Prompt/PowerShell1.
(Windows) and execute the following command:

> vue create vue-vuetify

First, Vue-CLI will ask for you to choose a preset; select Manually select2.
features using the space bar:

? Please pick a preset: (Use arrow keys)
 default (babel, eslint)
❯ Manually select features

Now Vue-CLI will ask for the features, and you will need to select CSS Pre-3.
processors as an additional feature on top of the default ones:

? Check the features needed for your project: (Use arrow keys)
❯ Babel
 TypeScript
 Progressive Web App (PWA) Support
 Router
 Vuex
❯ CSS Pre-processors
❯ Linter / Formatter
 Unit Testing
 E2E Testing

Here, Vue-CLI will ask which CSS pre-processor you want to use;4.
select Sass/SCSS (with node-sass):

? Pick a CSS pre-processor (PostCSS, Autoprefixer and CSS Modules
 are supported by default): (Use arrow keys)
 Sass/SCSS (with dart-sass)
❯ Sass/SCSS (with node-sass)
 Less
 Stylus

Creating Beautiful Applications Using UI Frameworks Chapter 9

[411]

Continue this process by selecting a linter and formatted. In our case, we will5.
select the ESLint + Airbnb config:

? Pick a linter / formatter config: (Use arrow keys)
 ESLint with error prevention only
❯ ESLint + Airbnb config
 ESLint + Standard config
 ESLint + Prettier

Choose the additional features of the linter (here, Lint and fix on commit):6.

? Pick additional lint features: (Use arrow keys)
 Lint on save
❯ Lint and fix on commit

Select where you want to place the linter and formatter configuration files (here,7.
In dedicated config files):

? Where do you prefer placing config for Babel, ESLint, etc.? (Use
arrow keys)
❯ In dedicated config files
 In package.json

Finally, Vue-CLI will ask you whether you want to save the settings for future8.
projects; you will select N. After that, Vue-CLI will create a folder and install the
dependencies for you:

? Save this as a preset for future projects? (y/N) n

Adding Vuetify to the Vue-CLI project
To use Vuetify in a Vue project, we will use the Vue-CLI plugin installation of the
framework:

In the folder that you created your Vue-CLI project in, open Terminal (macOS or1.
Linux) or Command Prompt/PowerShell (Windows) and execute the following
command:

> vue add vuetify

Creating Beautiful Applications Using UI Frameworks Chapter 9

[412]

Vue-CLI will ask whether you want to choose an installation preset. Choose the2.
default preset. Then, Vue-CLI will finish the installation of the framework on the
project:

? Choose a preset: (Use arrow keys)
❯ Default (recommended)
 Prototype (rapid development)
 Configure (advanced)

After the installation is finished, Vuetify will have configured the files inside3.
your project to load the framework. Now you are ready to use it.

Creating the layout with Vuetify
Using Vuetify as the UI framework, we are using the Material Design guide as a base,
because by using Material Design, we can follow a design guideline to create our design
structure, which will mean a more appealing structure. You can find the Material Design
guidelines at https:/ /material. io/ design/ introduction#goals.

Creating the top bar component
In this part, we will create the top-bar component that will be used in the layout of our
page:

In the src/components folder, create a file named TopBar.vue and open it.1.
In the <script> section of the single file component, we will export2.
a default JavaScript object, with the name property defined as TopBar:

<script>
export default {
 name: 'TopBar',
};
</script>

https://material.io/design/introduction#goals
https://material.io/design/introduction#goals
https://material.io/design/introduction#goals
https://material.io/design/introduction#goals
https://material.io/design/introduction#goals
https://material.io/design/introduction#goals
https://material.io/design/introduction#goals
https://material.io/design/introduction#goals
https://material.io/design/introduction#goals
https://material.io/design/introduction#goals
https://material.io/design/introduction#goals

Creating Beautiful Applications Using UI Frameworks Chapter 9

[413]

Inside the <template> section, create a v-app-bar component with the3.
app, dark, and dense attributes defined as true, and the color
attribute defined as primary:

<v-app-bar
 color="primary"
 app
 dark
 dense
></v-app-bar>

Inside the component, create a v-app-bar-nav-icon component with an event4.
listener on the click event, sending an event 'open-drawer' when the button
is clicked:

<v-app-bar-nav-icon
 @click="$emit('open-drawer')"
/>

Finally, as a sibling of the v-app-bar-nav-icon component, add a v-toolbar-5.
title component with the title of the page or application:

<v-toolbar-title>Vue.JS 3 Cookbook - Packt</v-toolbar-title>

Creating the drawer menu component
Inside a Material Design application, we have a drawer menu that pops up over the page.
This menu will be opened when the user clicks on the button we have just created in the
TopBar component:

In the src/components folder, create a file named DrawerMenu.vue and open1.
it.
In the <script> section of the single file component, we will export2.
a default JavaScript object with three properties:

The name property, defined as DrawerMenu.
The props property, defined as a JavaScript object, with a property
called value. This property will be another JavaScript object, with the
type, required, and default properties. The type property is
defined as Boolean, the required property as true, and the default
property as false.

Creating Beautiful Applications Using UI Frameworks Chapter 9

[414]

The data property, as a singleton function returning a JavaScript
object. This object will have a menu property, which we will define as
an array of the menu items that will be used. The array will contain
Javascript objects with the name, then link, and icon properties. The
first menu item will have name defined as Home, then link defined as
#, and icon defined as mdi-home. The second menu item will
have name defined as Contact, then link defined as #, and icon
defined as mdi-email. Finally, the third menu item will have name
defined as Vuetify, then link defined as #, and icon defined as
mdi-vuetify:

<script>
export default {
 name: 'DrawerMenu',
 props: {
 value: {
 type: Boolean,
 required: true,
 default: false,
 },
 },
 data: () => ({
 menu: [
 {
 name: 'Home',
 link: '#',
 icon: 'mdi-home',
 },
 {
 name: 'Contact',
 link: '#',
 icon: 'mdi-email',
 },
 {
 name: 'Vuetify',
 link: '#',
 icon: 'mdi-vuetify',
 },
],
 }),
};
</script>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[415]

In the <template> section, create a v-navigation-drawer component with the3.
value attribute as a variable attribute bound to the value props, the app
attribute defined as true, and the event listener on the click event, sending an
'input' event:

<v-navigation-drawer
 :value="value"
 app
 @input="$emit('input', $event)"
></v-navigation-drawer>

Create a v-list component with the dense attribute defined as true. As a child4.
element, create a v-list-item component and define the following:

The v-for directive iterating over the menu items.
The key attribute with index of the item menu.
The link attribute defined as true.
Inside v-list-item, create v-list-item-action with a VIcon
child, with the inner text as item.icon.
Create, as a sibling of v-list-item-action, a v-list-item-
content component with v-list-item-title as a child element,
with item.name as the inner text:

<v-list dense>
 <v-list-item
 v-for="(item, index) in menu"
 :key="index"
 link>
 <v-list-item-action>
 <v-icon>{{ item.icon }}</v-icon>
 </v-list-item-action>
 <v-list-item-content>
 <v-list-item-title>{{ item.name }}</v-list-item-
 title>
 </v-list-item-content>
 </v-list-item>
</v-list>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[416]

Creating the layout component
To create the layout component, we are going to use all the created components and add a
slot that will hold the page content:

In the src/components folder, create a new file named Layout.vue and open1.
it.
In the <script> section of the single file component, import the top-2.
bar component and the drawer-menu component:

import TopBar from './TopBar.vue';
import DrawerMenu from './DrawerMenu.vue';

Then, we will export a default JavaScript object, with3.
the name property defined as Layout, then create the components property with
the imported components. Finally, add the data property as a singleton function
returning a JavaScript object, with the drawer property with the value defined as
false:

export default {
 name: 'Layout',
 components: {
 DrawerMenu,
 TopBar,
 },
 data: () => ({
 drawer: false,
 }),
};

Inside the <template> section, create a v-app component. As the first child, add4.
the top-bar component, with the event listener on the open-drawer event
listener, changing the drawer data property as the negation of
the drawer property. Then, as a sibling of top-bar, create a drawer-menu
component with the v-model directive bound to drawer. Finally, create a v-
content component with a child <slot> element:

<template>
 <v-app>
 <top-bar
 @open-drawer="drawer = !drawer"
 />
 <drawer-menu
 v-model="drawer"
 />

Creating Beautiful Applications Using UI Frameworks Chapter 9

[417]

 <v-content>
 <slot/>
 </v-content>
 </v-app>
</template>

Creating the user registration form with Vuetify
Now, with the layout component ready, we will create the user registration form. Because
Vuetify has built-in validation in forms, we will be using that to validate some fields in our
form.

Single file component <script> section
Here, we will create the <script> section of the single file component:

In the src folder, open the App.vue file and clear its contents.1.
Import the layout component:2.

import Layout from './components/Layout.vue';

Then, we will export a default JavaScript object, with a name property defined3.
as App, then define the components property with the imported component.
Define the computed and methods properties as an empty JavaScript object.
Then create a data property defined as a singleton function returning a
JavaScript object. In the data property, create the following:

A valid property with the value defined as false;
A name, username, password, email, phone, cellphone, address,
zipcode, and country properties defined as empty strings:

export default {
 name: 'App',

 components: {
 Layout,
 },

 data: () => ({
 valid: true,
 name: '',
 username: '',
 password: '',
 email: '',

Creating Beautiful Applications Using UI Frameworks Chapter 9

[418]

 phone: '',
 cellphone: '',
 address: '',
 zipcode: '',
 country: '',
 }),
 computed: {},
 methods: {},
};

In the computed property, create a property called nameRules; this property is a4.
function that returns an array, with an anonymous function that receives a value
and returns the verification of the value or the error text. Do the same for the
passwordRules and emailRules properties. In the emailRules property, add
another anonymous function to the returned array that checks whether the value
is a valid email through a regular expression, and if the value is not a valid email
it returns the error message:

computed: {
 nameRules() {
 return [
 (v) => !!v || 'Name is required',
];
 },
 passwordRules() {
 return [
 (v) => !!v || 'Password is required',
];
 },
 emailRules() {
 return [
 (v) => !!v || 'E-mail is required',
 (v) => /.+@.+\..+/.test(v) || 'E-mail must be valid',
];
 },
},

Finally, inside the methods property, create a new property named5.
register that is a function that calls the $refs.form.validate function. Also,
create another property named cancel that is another function that calls the
$refs.form.reset function:

methods: {
 register() {
 this.$refs.form.validate();
 },

Creating Beautiful Applications Using UI Frameworks Chapter 9

[419]

 cancel() {
 this.$refs.form.reset();
 },
},

Single file component <template> section
It's time to create the <template> section of the single file component:

In the src folder, open the App.vue file.1.
In the <template> section, create a layout component element, and add a v-2.
container component as a child with the fluid attribute defined as true:

<layout>
 <v-container
 fluid
 >
 </v-container>
</layout>

Inside the v-container component, create a child HTML h1 element with the3.
page title and a sibling v-subheader component with the page description:

<h1>user Registration</h1>
<v-subheader>Main user registration form</v-subheader>

After that, create a v-form component with the ref attribute defined as4.
form and the lazy-validation attribute as true. Then, the v-model directive
of the component gets bound to the valid variable. Create a child v-container
component with the fluid attribute defined as true:

<v-form
 ref="form"
 v-model="valid"
 lazy-validation
>
 <v-container
 fluid
 >
 </v-container>
</v-form>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[420]

Inside the v-container component, create a v-row component, and then add a5.
v-col component as a child with the cols attribute defined as 12. Inside the v-
col component, create a v-card component with the outlined attribute and
flat defined as true, and class defined as mx-auto:

<v-row>
 <v-col
 cols="12"
 >
 <v-card
 outlined
 flat
 class="mx-auto"
 >
 </v-card>
 </v-col>
</v-row>

As a child element of the v-card component, create a v-card-title6.
component with the card title, then as a sibling element create a v-divider
component. After that, create a v-container element with the fluid attribute
defined as true. Inside the v-container element, create a child v-row
component:

<v-card-title>
 Personal Information
</v-card-title>
<v-divider/>
<v-container
 fluid
>
 <v-row>
 </v-row>
</v-container>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[421]

Inside the v-row component, create a child v-col element with7.
the cols attribute defined as 12. Then inside the v-col component, create v-
text-field with the v-model directive bound to the name variable, the
rules variable attribute defined as the nameRules computed property, the
label attribute defined as Name, and finally, the required attribute defined as
true:

<v-col
 cols="12"
>
 <v-text-field
 v-model="name"
 :rules="nameRules"
 label="Name"
 required
 />
</v-col>

As a sibling of the v-col component, create another v-col component with the8.
cols attribute defined as 12. Then, add the v-text-field component as a
child, with the v-model directive bound to the email variable, the rules
variable attribute defined as the emailRules computed property, the type
attribute as email, the label attribute as E-mail, and finally, the required
attribute defined as true:

<v-col
 cols="12"
>
 <v-text-field
 v-model="email"
 :rules="emailRules"
 type="email"
 label="E-mail"
 required
 />
</v-col>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[422]

Create a v-col component as a sibling of the v-col component, and define the9.
cols attribute as 6. Then, add as a child component the v-text-field
component, with the v-model directive bound to the phone variable and the
label attribute defined as Phone. Do the same for the Cellphone input; you
must change the v-model directive bound to the cellphone variable and the
label to Cellphone:

<v-col
 cols="6"
>
 <v-text-field
 v-model="phone"
 label="Phone"
 />
</v-col>
<v-col
 cols="6"
>
 <v-text-field
 v-model="cellphone"
 label="Cellphone"
 />
</v-col>

Now we will create the Address card, as a sibling of v-col in the v-row10.
component. Create a v-col component with the cols attribute defined as 12.
Inside the v-col component, create a v-card component with the
outlined attribute and flat defined as true, and class defined as mx-auto.
As a child element of the v-card component, create a v-card-
title component with the card title; then, as a sibling element, create a v-
divider component. After that, create a v-container element with
the fluid attribute defined as true. Inside the v-container element, create a
child v-row component:

<v-col
 cols="12"
>
 <v-card
 outlined
 flat
 class="mx-auto"
 >
 <v-card-title>
 Address
 </v-card-title>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[423]

 <v-divider/>
 <v-container
 fluid
 >
 <v-row>
 </v-row>
 </v-container>
 </v-card>
</v-col>

Inside the v-row component in the v-container component, create a v-col11.
component with the cols attribute defined as 12. Then, add v-text-field as a
child component with the v-model directive bound to the address variable and
the label attribute defined as Address:

<v-col
 cols="12"
>
 <v-text-field
 v-model="address"
 label="Address"
 />
</v-col>

As a sibling element, create a v-col component with the cols attribute defined12.
as 6. Add a v-text-field component as a child. Define the v-model directive
of the v-text-field component bound to the zipcode variable and the label
attribute defined as Zipcode:

<v-col
 cols="6"
>
 <v-text-field
 v-model="zipcode"
 label="Zipcode"
 />
</v-col>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[424]

Then, create a v-col component with the cols attribute defined as 6. Add a v-13.
text-field component as a child with the v-model directive bound to
the country variable and the label attribute defined as Country:

<v-col
 cols="6"
>
 <v-text-field
 v-model="country"
 label="Country"
 />
</v-col>

Now we will create the user Information card as a sibling of v-col in the v-14.
row component. Create a v-col component with the cols attribute defined as
12. Inside the v-col component, create a v-card component with the
outlined attribute and flat defined as true, and class defined as mx-auto.
As a child element of the v-card component, create a v-card-
title component with the card title; then, as a sibling element, create a v-
divider component. After that, create a v-container element with
the fluid attribute defined as true. Inside the v-container element, create a
child v-row component:

<v-col
 cols="12"
>
 <v-card
 outlined
 flat
 class="mx-auto"
 >
 <v-card-title>
 user Information
 </v-card-title>
 <v-divider/>
 <v-container
 fluid
 >
 <v-row>
 </v-row>
 </v-container>
 </v-card>
</v-col>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[425]

Inside the v-row component in the v-container component, create a v-15.
col component with the cols attribute defined as 6. Then, add v-text-
field as a child component with the v-model directive bound to
the username variable and the label attribute defined as username:

<v-col
 cols="6"
>
 <v-text-field
 v-model="username"
 label="username"
 />
</v-col>

As a sibling create a v-col component with the cols attribute defined as 6, and16.
add a v-text-field component as a child with the v-model directive bound to
the password variable, the rules variable attribute defined as the
passwordRules computed property, and the label attribute defined
as Password:

<v-col
 cols="6"
>
 <v-text-field
 v-model="password"
 :rules="passwordRules"
 label="Password"
 type="password"
 required
 />
</v-col>

Now we will create the action buttons. As a sibling of the v-col on the top v-17.
row component, create a v-col component with the cols attribute defined as
12 and the class attribute defined as text-right. Inside the v-col
component, create a v-btn component with the color attribute defined as
error, the class attribute as mr-4, and the click event listener attached to the
cancel method. Finally, create a v-btn component as a sibling, with
the disabled variable attribute as the negation of the valid variable, the color
attribute as success, the class attribute as mr-4, and the click event listener
attached to the register method:

<v-col
 cols="12"
 class="text-right"

Creating Beautiful Applications Using UI Frameworks Chapter 9

[426]

>
 <v-btn
 color="error"
 class="mr-4"
 @click="cancel"
 >
 Cancel
 </v-btn>
 <v-btn
 :disabled="!valid"
 color="success"
 class="mr-4"
 @click="register"
 >
 Register
 </v-btn>
</v-col>

How it works...
In this recipe, we learned how to create a user registration page with Vuetify and Vue-CLI.
To create this page, we first needed to create the project using the Vue-CLI tool and then
add the Vuetify plugin to it, so that the framework was available to be used.

Then, we created the top-bar component, which holds the application title and the menu
button toggle. To use the menu, we created the drawer-menu component to hold the
navigation items. Finally, we created the layout component to hold together the top-bar
and drawer-menu components and added a <slot> component to place the page content.

For the user registration form page, we created three cards that hold the input forms, which
were bound to the variables on the component. Some of the inputs on the form are attached
to a set of validation rules that checks for required fields and email validation.

Finally, the user registration form is checked to see whether it's valid before sending the
data to the server.

Creating Beautiful Applications Using UI Frameworks Chapter 9

[427]

Here is a screenshot of the final project up and running:

Creating Beautiful Applications Using UI Frameworks Chapter 9

[428]

See also
You can find more information about Vuetify at https:/ /vuetifyjs. com/ en/ .

You can find more information about Material Design at https:/ / material. io/ .

Creating a page, a layout, and a user form
with Ant-Design
The Ant-Design framework was created by the AliBaba group, specifically by the tech team
behind AliPay and Ant Financial. It's an ecosystem design that is being mainly used by
Asian tech giants and it has a large presence in the React and Vue communities. Focused on
the back office UI, the main core of the framework is its solutions for custom data inputs
and data tables.

Here, we will learn how to create a user registration form using the Ant-Design and Vue,
by creating a top bar component, a drawer menu, a layout wrapper, and a user registration
page with a form.

Getting ready
The pre-requisites for this recipe are as follows:

Node.js 12+
A Vue-CLI project

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

How to do it...
In this recipe, we will create a user registration form using the Ant-Design framework. To
do so, we will create a layout wrapper and the components needed for the wrapper, and
finally, we will create the page that will hold the user registration form.

https://vuetifyjs.com/en/
https://vuetifyjs.com/en/
https://vuetifyjs.com/en/
https://vuetifyjs.com/en/
https://vuetifyjs.com/en/
https://vuetifyjs.com/en/
https://vuetifyjs.com/en/
https://vuetifyjs.com/en/
https://vuetifyjs.com/en/
https://vuetifyjs.com/en/
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/

Creating Beautiful Applications Using UI Frameworks Chapter 9

[429]

Creating the Vue-CLI project
We need to create a Vue-CLI project to be able to install the Ant-Design plugin and start
developing the user registration form:

We need to open Terminal (macOS or Linux) or Command Prompt/PowerShell1.
(Windows) and execute the following command:

> vue create antd-vue

First, Vue-CLI will ask for you to choose a preset; select Manually select2.
features using the space bar:

? Please pick a preset: (Use arrow keys)
 default (babel, eslint)
❯ Manually select features

Now Vue-CLI will ask for the features, and you will need to select CSS Pre-3.
processors as an additional feature on top of the default ones:

? Check the features needed for your project: (Use arrow keys)
❯ Babel
 TypeScript
 Progressive Web App (PWA) Support
 Router
 Vuex
❯ CSS Pre-processors
❯ Linter / Formatter
 Unit Testing
 E2E Testing

Here, Vue-CLI will ask which CSS pre-processor you want to use;4.
select Less:

? Pick a CSS pre-processor (PostCSS, Autoprefixer and CSS Modules
 are supported by default): (Use arrow keys)
 Sass/SCSS (with dart-sass)
 Sass/SCSS (with node-sass)
❯ Less
 Stylus

Continue this process by selecting a linter and formatted. In our case, we will5.
select ESLint + Airbnb config:

? Pick a linter / formatter config: (Use arrow keys)
 ESLint with error prevention only
❯ ESLint + Airbnb config

Creating Beautiful Applications Using UI Frameworks Chapter 9

[430]

 ESLint + Standard config
 ESLint + Prettier

Choose the additional features of the linter (here, Lint on save):6.

? Pick additional lint features: (Use arrow keys)
 Lint on save
❯ Lint and fix on commit

Select where you want to place the linter and formatter configuration files (here,7.
In dedicated config files):

? Where do you prefer placing config for Babel, ESLint, etc.? (Use
 arrow keys)
❯ In dedicated config files
 In package.json

Finally, the CLI will ask you whether you want to save the settings for future8.
projects; you should select N. After that, Vue-CLI will create a folder and install
the dependencies for you:

? Save this as a preset for future projects? (y/N) n

Adding Ant-Design to the Vue-CLI project
To add the Ant-Design framework to a Vue-CLI project, we need to use the Vue-CLI plugin
to install the framework as a project dependency and have it available in the global scope of
the application:

In the folder that you created your Vue-CLI project in, open Terminal (macOS or1.
Linux) or Command Prompt/PowerShell (Windows) and execute the following
command:

> vue add ant-design

Vue-CLI will ask you how the import of the Ant-Design component should2.
occur; we will select the Fully import option:

? How do you want to import Ant-Design-Vue?
❯ Fully import
 Import on demand

Creating Beautiful Applications Using UI Frameworks Chapter 9

[431]

Vue-CLI will ask you whether you want to overwrite the Ant-Design LESS3.
variables; we will choose N:

? Do you wish to overwrite Ant-Design-Vue's LESS variables? (y/N)

Finally, Vue-CLI will ask about the main language Ant-Design will use in the4.
project; we will select en_US:

? Choose the locale you want to load
❯ en_US
 zh_CN
 zh_TW
 en_GB
 es_ES
 ar_EG
 bg_BG
(Move up and down to reveal more choices)

Creating the layout with Ant-Design
To be able to create a user registration form, we will create a base layout that will wrap the
page content and the form. Here, we will create the top-bar component, the drawer-
menu component, and the layout wrapper.

Creating the top-bar component
In the layout wrapper, we will have a top-bar component that will hold the breadcrumbs
for where the user currently is. Now we will create the top-bar component and make it
available for the layout:

In the src/components folder, create a new file called TopBar.vue and open it.1.
In the <script> section of the single file component, we will export2.
a default JavaScript object, with a name property defined as TopBar:

<script>
export default {
 name: 'TopBar',
};
</script>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[432]

In the <style> section of the single file component, we will make the <style>3.
section scoped and create a class named header-bread. Now, background-
color will be defined as #f0f2f5 with a class named bread-menu with the
margin defined as 16px 0:

<style scoped>
 .header-bread {
 background-color: #f0f2f5;
 }

 .bread-menu {
 margin: 16px 0;
 }
</style>

In the <template> section of the single file component, we will create an a-4.
layout-component component with the class attribute defined as header-
bread. Also, add an a-breadcrumb component as a child element with the
class attribute as bread-menu:

<template>
 <a-layout-header class="header-bread">
 <a-breadcrumb class="bread-menu">
 </a-breadcrumb>
 </a-layout-header>
</template>

As a child of the a-breadcrumb component, create two a-breadcrumb-item5.
components and add to each the directions for the user's location. In our case, the
first one will be user and the second Registration Form:

<a-breadcrumb-item>user</a-breadcrumb-item>
<a-breadcrumb-item>Registration Form</a-breadcrumb-item>

Creating the drawer menu
In the layout design, we will have a drawer menu component as a navigation menu for the
user. Here we will create the Drawer component:

In the src/components folder, create a file named Drawer.vue and open it.1.

Creating Beautiful Applications Using UI Frameworks Chapter 9

[433]

In the <script> section of the single file component, we will export2.
a default JavaScript object with two properties. The name property, defined as
Drawer, and the data property, as a singleton function returning a JavaScript
object. In the data property, create the following:

A drawer property defined as false.
A menu property, which we will define as an array of the menu items
that will be used. The menu array will have three JavaScript objects
with the name and icon properties. This array will have:

A JavaScript object with the properties name defined as
Home and icon defined as home
A JavaScript object with the properties name defined as
Ant Design Vue and icon defined as ant-design
A JavaScript object with the properties name defined as
Contact and icon defined as mail:

<script>
export default {
 name: 'Drawer',
 data: () => ({
 drawer: false,
 menu: [
 {
 name: 'Home',
 icon: 'home',
 },
 {
 name: 'Ant Design Vue',
 icon: 'ant-design',
 },
 {
 name: 'Contact',
 icon: 'mail',
 },
],
 }),
};
</script>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[434]

In the <template> section of the single file component, create an a-layout-3.
sider component, with the v-model directive bound to the drawer variable and
the collapsible attribute defined as true. As a child, create a a-menu
component with the default-selected-keys variable attribute defined as
['1'], the theme attribute defined as dark, and the mode attribute as inline:

<template>
 <a-layout-sider
 v-model="drawer"
 collapsible
 >
 <a-menu
 :default-selected-keys="['1']"
 theme="dark"
 mode="inline"
 >
 </a-menu>
 </a-layout-sider>
</template>

Finally, inside the a-menu component, create an a-menu-item component, with4.
the v-for directive iterating over the menu variable, and create the item and
index temporary variables. Then, define the key variable attribute as index.
Create a child AIcon component with the type variable attribute as item.icon
with a sibling span HTML element and the content as item.name:

<a-menu-item
 v-for="(item,index) in menu"
 :key="index"
>
 <a-icon
 :type="item.icon"
 />
 {{ item.name }}
</a-menu-item>

Creating the layout component
Here, we will create the layout component. This component will join together the top-
bar component and the Drawer menu component to make a wrapper for the user
registration page:

In the src/components folder, create a new file named Layout.vue and open1.
it.

Creating Beautiful Applications Using UI Frameworks Chapter 9

[435]

In the <script> section of the single file component, import the top-2.
bar component and the drawer-menu component:

import TopBar from './TopBar.vue';
import Drawer from './Drawer.vue';

Then, we will export a default JavaScript object, with a name property, defined3.
as layout. Then define the components property with the imported
components.

export default {
 name: 'layout',
 components: {
 Drawer,
 TopBar,
 },
};

In the <template> section of the single file component, create an a-layout4.
component with the style attribute defined as min-height: 100vh. Then, add
the Drawer component as a child. As a sibling of the drawer component, create
an a-layout component:

<template>
 <a-layout
 style="min-height: 100vh"
 >
 <drawer />
 <a-layout>
 <top-bar />
 <a-layout-content style="margin: 0 16px">
 <div style="padding: 24px; background: #fff;
 min-height: auto;">
 <slot />
 </div>
 </a-layout-content>
 <a-layout-footer style="text-align: center">
 Vue.js 3 Cookbook | Ant Design ©2020 Created by Ant UED
 </a-layout-footer>
 </a-layout>
 </a-layout>
</template>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[436]

To the a-layout component, add the top-bar component and a sibling a-5.
layout-content component with the style attribute defined as margin: 0
16px. As a child of that component, create a div HTML element with the style
attribute defined as padding: 24px; background: #fff; min-height:
auto;, and add a slot placeholder. Finally, create an a-layout-footer
component with the style attribute defined as text-align:center; with the
footer text of the page:

<top-bar />
<a-layout-content style="margin: 0 16px">
 <div style="padding: 24px; background: #fff; min-height: auto;">
 <slot />
 </div>
</a-layout-content>
<a-layout-footer style="text-align: center">
 Vue.js 3 Cookbook | Ant Design ©2020 Created by Ant UED
</a-layout-footer>

Creating the user registration form with Ant-Design
Now we will create the user registration page and form that will be placed inside the layout
that was created in the preceding steps.

Single file component <script> section
Here we will create the <script> section of the single file component:

In the src folder, open the App.vue file and clear its contents.1.
Import the layout component:2.

import Layout from './components/Layout.vue';

Then, we will export a default JavaScript object, with3.
the name property defined as App, define the components property with the
imported component, and finally define the data property as a singleton
function returning a JavaScript object. In the data property, create the following:

A labelCol property defined as a JavaScript object, with the span
property and the value 4.

Creating Beautiful Applications Using UI Frameworks Chapter 9

[437]

A wrapperCol property defined as a JavaScript object, with the span
property and the value 14.
A form property defined as a JavaScript object, with the name,
username, password, email, phone, cellphone, address, zipcode,
and country properties all defined as empty strings:

export default {
 name: 'App',
 components: {
 Layout,
 },
 data() {
 return {
 labelCol: { span: 4 },
 wrapperCol: { span: 14 },
 form: {
 name: '',
 username: '',
 password: '',
 email: '',
 phone: '',
 cellphone: '',
 address: '',
 zipcode: '',
 country: '',
 },
 };
 },
};

Single file component <template> section
It's time to create the <template> section of the single file component:

In the src folder, open the App.vue file.1.
In the <template> section, create a layout component element and add an a-2.
form-model component as a child with the model variable attribute bound to
form, the label-col variable attribute bound to labelCol, and the wrapper-
col variable attribute bound to wrapperCol:

<layout>
 <a-form-model
 :model="form"
 :label-col="labelCol"
 :wrapper-col="wrapperCol"

Creating Beautiful Applications Using UI Frameworks Chapter 9

[438]

 >
 </a-form-model>
</layout>

Then, as a sibling of the layout component, create an h1 HTML element with3.
the page title User Registration, and a p HTML element with the Main user
registration form page subtitle. Then, create an a-card element with the
title attribute defined as Personal Information:

<h1>
 User Registration
</h1>
<p>Main user registration form</p>
<a-card title="Personal Information"></a-card>

In the a-card component, create an a-form-model-item component as a child4.
element with the label attribute defined as Name, and add a child a-input
component with the v-model directive bound to the form.name variable:

<a-form-model-item label="Name">
 <a-input v-model="form.name" />
</a-form-model-item>

Next, as a sibling, create an a-form-model-item component with the5.
label attribute defined as Email and add a child a-input component with
the v-model directive bound to the form.email variable and the type attribute
defined as email:

<a-form-model-item label="Email">
 <a-input
 v-model="form.email"
 type="email"
 />
</a-form-model-item>

Create an element an a-form-model-item component with the6.
label attribute defined as Phone, and add a child a-input component with
the v-model directive bound to the form.phone variable:

<a-form-model-item label="Phone">
 <a-input v-model="form.phone" />
</a-form-model-item>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[439]

Create an a-form-model-item component with the label attribute defined7.
as Cellphone, and add a child a-input component with the v-model directive
bound to the form.cellphone variable:

<a-form-model-item label="Cellphone">
 <a-input v-model="form.cellphone" />
</a-form-model-item>

As a sibling of the a-card component, create an a-card component with the8.
title attribute defined as Address and the style attribute as margin-top:
16px;. Then, add a child a-form-model-item component with the
label attribute defined as Address, and add a child a-input component with
the v-model directive bound to the form.address variable:

<a-card title="Address" style="margin-top: 16px">
 <a-form-model-item label="Address">
 <a-input v-model="form.address" />
 </a-form-model-item>
</a-card>

Next, as a sibling of the a-card component, create an a-form-model-9.
item component with the label attribute defined as Zipcode, and add a
child a-input component with the v-model directive bound to
the form.zipcode variable:

<a-form-model-item label="Zipcode">
 <a-input v-model="form.zipcode" />
</a-form-model-item>

Create an a-form-model-item component with the label attribute defined as10.
Country, and add a child a-input component with the v-model directive
bound to the form.country variable:

<a-form-model-item label="Country">
 <a-input v-model="form.country" />
</a-form-model-item>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[440]

As a sibling of the a-card component, create an a-card component with11.
the title attribute defined as User Information and the style attribute
as margin-top: 16px;. Then, add a child a-form-model-item component
with the label attribute defined as username, and add a child a-
input component with the v-model directive bound to
the form.username variable:

<a-card title="user Information" style="margin-top: 16px">
 <a-form-model-item label="username">
 <a-input v-model="form.username" />
 </a-form-model-item>
</a-card>

Create an a-form-model-item component with the label attribute defined12.
as Password, and add a child a-input-password component with the v-
model directive bound to the form.password variable, the visibility-
toggle attribute defined as true, and the type attribute defined as password:

<a-form-model-item label="Password">
 <a-input-password
 v-model="form.password"
 visibility-toggle
 type="password"
 />
</a-form-model-item>

Finally, as a sibling of the a-card component, create a-form-model-item with13.
the wrapper-col variable attribute defined as a JavaScript object, {span: 14,
offset: 4}. Then, add a child a-button with type defined as primary with
the text Create and another a-button with the style attribute defined as
margin-left: 10px; and the text Cancel:

<a-form-model-item :wrapper-col="{ span: 14, offset: 4 }">
 <a-button type="primary">
 Create
 </a-button>
 <a-button style="margin-left: 10px;">
 Cancel
 </a-button>
</a-form-model-item>

Creating Beautiful Applications Using UI Frameworks Chapter 9

[441]

How it works...
In this recipe, we learned how to create a user registration page with Ant-Design and Vue-
CLI. To create this page, we first needed to create a project using Vue-CLI and add the Ant-
Design of Vue plugin to it, so that the framework was available to be used.

Then, we created the top-bar component, which holds the navigation breadcrumbs. For
user navigation, we created a custom Drawer component that has an inline toggle button at
the bottom. Finally, we created the layout component to hold together both the
components and we added a <slot> component to place the page content.

Finally, we created the user registration form page, with three cards that hold the input
forms that are bound to the variables on the component.

Here is a screenshot of the final project up and running:

Creating Beautiful Applications Using UI Frameworks Chapter 9

[442]

See also
You can find more information about Ant-Design and Vue at https:/ /vue. ant. design/ .

https://vue.ant.design/
https://vue.ant.design/
https://vue.ant.design/
https://vue.ant.design/
https://vue.ant.design/
https://vue.ant.design/
https://vue.ant.design/
https://vue.ant.design/
https://vue.ant.design/
https://vue.ant.design/

10
Deploying an Application to

Cloud Platforms
Now it's time to deploy your application to the World Wide Web and make it available to
everyone across the globe.

In this chapter, we will learn how to do it with three different hosting platforms – Netlify,
Now, and Firebase. Here, we will learn the process of creating the account on each
platform, setting up the environment, configuring the application for deployment, and
finally deploying it to the web.

In this chapter, we'll cover the following recipes:

Creating a Netlify account
Preparing your application for deployment in Netlify
Preparing for automatic deployment on Netlify with GitHub
Creating a Vercel account
Configuring the Vercel-CLI and deploying your project
Preparing for automatic deployment on Vercel with GitHub
Creating a Firebase project
Configuring the Firebase-CLI and deploying your project

Deploying an Application to Cloud Platforms Chapter 10

[444]

Technical requirements
In this chapter, we will be using Node.js and Vue-CLI.

Attention Windows Users! You need to install an NPM package called
windows-build-tools in order to be able to install the following requisite
packages. To do this, open PowerShell as the administrator and execute
the following command: > npm install -g windows-build-tools

To install Vue-CLI, you need to open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> npm install -g @vue/cli @vue/cli-service-global

Creating a Vue project
To create a Vue-CLI project, follow these steps:

Open Terminal (macOS or Linux) or Command Prompt/PowerShell (Windows)1.
and execute the following command:

> vue create vue-project

Vue-CLI will ask for you to choose a preset; select Manually select2.
features using the spacebar:

? Please pick a preset: (Use arrow keys)
 default (babel, eslint)
❯ Manually select features

Now, Vue-CLI will ask for the features, and you will need to select Router,3.
Vuex, and Linter / Formatter as an additional feature on top of the default
ones:

? Check the features needed for your project: (Use arrow keys)
❯ Babel
 TypeScript
 Progressive Web App (PWA) Support
❯ Router
❯ Vuex
 CSS Pre-processors
❯ Linter / Formatter
 Unit Testing
 E2E Testing

Deploying an Application to Cloud Platforms Chapter 10

[445]

Now, Vue-CLI will ask whether you want to use history mode for route4.
management. We will choose y (yes):

? Use history mode for router? (Requires proper server setup for
 index fallback in production) (Y/n) y

Continue the process by selecting the linter and formatter. We will select ESLint5.
+ Airbnb config:

? Pick a linter / formatter config: (Use arrow keys)
 ESLint with error prevention only
❯ ESLint + Airbnb config
 ESLint + Standard config
 ESLint + Prettier

Choose the additional features of the linter (here, Lint and fix on commit):6.

? Pick additional lint features: (Use arrow keys)
 Lint on save
❯ Lint and fix on commit

Select where you want to place the linter and formatter configuration files (here,7.
In dedicated config files):

? Where do you prefer placing config for Babel, ESLint, etc.? (Use
arrow keys)
❯ In dedicated config files
 In package.json

Finally, the CLI will ask you whether you want to save the settings for future8.
projects; you will select N. After that, Vue-CLI will create the folder and install
the dependencies for you:

? Save this as a preset for future projects? (y/N) n

Creating a Netlify account
It's time to start the deployment process to the Netlify platform. In this recipe, we will learn
how to create our Netlify account so that we can deploy our application to the web.

Deploying an Application to Cloud Platforms Chapter 10

[446]

Getting ready
The prerequisites for this recipe are as follows:

An email address
A GitHub account
A GitLab account
A BitBucket account

In the process of creating an account on Netlify, you can do this with an email address, a
GitHub account, a GitLab account, or a BitBucket account.

How to do it...
Here, we will learn how to create a Netlify account with an email address:

Go to the Netlify website at https:/ /www. netlify. com/ and click on Sign up →1.
in the header menu. You will be redirected to the initial Sign up page.
On this page, you can select the method that you want to use to sign up to2.
Netlify. In this process, we will continue with the email address. Click on the
Email button to be redirected to the Email Sign up form.
Fill in the form with your email address and a password of your choosing. There3.
is a password rule of 8 characters minimum. After completing the form, click on
the Sign up button. From there, you will be redirected to the Success page.
Now, you will receive a verification email in your inbox that you need in order to4.
continue using the Netlify platform. To continue, open your email inbox and
check the Netlify email.
In your email inbox, open the Netlify email and then click on the Verify email5.
button. At this point, a new window will open, and you will be able to log in
with the recently registered email and password.
Here, you can complete the login form with your email address and the6.
password you chose at step 3. After that, click on the Log in button to be
redirected to the main window of the Netlify platform.
Finally, you will find yourself at the main screen of the Netlify platform, with a7.
blank page to begin deployment on the platform.

https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/

Deploying an Application to Cloud Platforms Chapter 10

[447]

How it works...
In this recipe, we learned how to create our account on Netlify. We saw that it is possible to
do this with various OAuth methods and the basic email that we used in the recipe.

The email address creation process involves defining the email address that will be used
and a password for the account, verifying the account email. Then, you can log in to the
platform.

See also
Find out more information about Netlify at https:/ /docs. netlify. com/ .

Preparing your application for deployment
in Netlify
To start the deployment process, we need to configure our project to have a valid Netlify
deployment schema. In this recipe, you will learn how to set up the Netlify deployment
schema on any Vue-based application.

Getting ready
The prerequisites for this recipe are as follows:

Node.js 12+
A Vue project

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

https://docs.netlify.com/
https://docs.netlify.com/
https://docs.netlify.com/
https://docs.netlify.com/
https://docs.netlify.com/
https://docs.netlify.com/
https://docs.netlify.com/
https://docs.netlify.com/
https://docs.netlify.com/
https://docs.netlify.com/

Deploying an Application to Cloud Platforms Chapter 10

[448]

How to do it...
In this recipe, we will learn how to prepare our application to be deployed to Netlify:

Open your Vue project and open the package.json file. Check whether you1.
have the build script defined, as in the following example:

"scripts": {
 "serve": "Vue-CLI-service serve",
 "build": "Vue-CLI-service build",
 "lint": "Vue-CLI-service lint"
},

Open Terminal (macOS or Linux) or Command Prompt/PowerShell (Windows)2.
and execute the following command:

> npm run build

Make sure your application build script creates a dist folder in the main folder.3.
If your vue-router is defined to work with history mode, you have to create a4.
_redirects file in the public folder. In this file, you need to add the instruction
to the Netlify router:

Netlify settings for single-page application
/* /index.html 200

Publish your application to a GitHub repository. Don't worry about the build5.
folder, because it's already declared on the .gitignore file and it won't be sent
to your repository.

How it works...
In this recipe, we learned how to check and prepare our application for the Netlify
deployment.

To make the deployment work, we needed to make sure that we have the build command
in the script section at package.json, and verify that the build destination is the dist
folder.

Finally, we created a _redirects file in the public folder to instruct the Netlify router to
understand the vue-router history mode.

Deploying an Application to Cloud Platforms Chapter 10

[449]

See also
Find out more information about the official Vue-CLI documentation on Netlify
deployment at https:/ / cli. vuejs. org/ guide/ deployment. html#netlify.

Find out more information about Netlify router rewrites at https:/ /docs. netlify. com/
routing/redirects/ rewrites- proxies/ #history- pushstate- and- single- page- apps.

Preparing for automatic deployment on
Netlify with GitHub
It's time to prepare the ground for deployment. In this recipe, you will learn how to set up
the Netlify deployment process to fetch your application automatically on GitHub and
deploy it.

Getting ready
The prerequisites for this recipe are as follows:

A Netlify account
A Vue project
A GitHub account

How to do it...
Finally, following the creation of your Netlify account, having published your project on a
GitHub repository, and having configured everything, it's time to prepare the Netlify
platform to perform automatic deployment on each GitHub push:

Go to Netlify (https:/ /www. netlify. com/), sign in, and open your initial1.
dashboard. There, you will find a New site from Git button. You will be
redirected to the Create new site page.
Now you may click on the GitHub button to open a new window for the Netlify2.
authorization on GitHub and continue the process there.
Sign in with your GitHub account and then you will be redirected to the3.
Application install page.

https://cli.vuejs.org/guide/deployment.html#netlify
https://cli.vuejs.org/guide/deployment.html#netlify
https://cli.vuejs.org/guide/deployment.html#netlify
https://cli.vuejs.org/guide/deployment.html#netlify
https://cli.vuejs.org/guide/deployment.html#netlify
https://cli.vuejs.org/guide/deployment.html#netlify
https://cli.vuejs.org/guide/deployment.html#netlify
https://cli.vuejs.org/guide/deployment.html#netlify
https://cli.vuejs.org/guide/deployment.html#netlify
https://cli.vuejs.org/guide/deployment.html#netlify
https://cli.vuejs.org/guide/deployment.html#netlify
https://cli.vuejs.org/guide/deployment.html#netlify
https://cli.vuejs.org/guide/deployment.html#netlify
https://cli.vuejs.org/guide/deployment.html#netlify
https://cli.vuejs.org/guide/deployment.html#netlify
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://docs.netlify.com/routing/redirects/rewrites-proxies/#history-pushstate-and-single-page-apps
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/
https://www.netlify.com/

Deploying an Application to Cloud Platforms Chapter 10

[450]

On this page, you can choose to give access to Netlify to all of your repositories4.
or just the selected one, but make sure you make available the repository of your
application.
When you finish the installation of Netlify on GitHub, the repository that you5.
gave access to in the previous step will be available to be selected on the Netlify
platform. Choose the one that contains your application.
To finish the creation process, you need to select the branch that will be used for6.
auto-deployment. Then, you need to fill up the build command used on the
application, in our case, npm run build. Open the folder that will contain the
built files, in our case, this is the dist folder, and click on the Deploy site button.
Finally, the Netlify-CLI will start the building process and publish your7.
application when the build is finished without any errors.

How it works...
The Netlify platform connects to your GitHub account and installs as an application, giving
access to selected repositories. Then, on the platform, you can select the repository that you
want to use to deploy. With the repository selected, we needed to configure the Netlify-CLI
with the build instructions and the built destination folder. Finally, the CLI runs, and we
have our application up and running on the web.

See also
Find out more information about advanced Netlify deployments at https:/ /docs.
netlify.com/configure- builds/ file- based- configuration/ .

Creating a Vercel account
Vercel is a famous platform for deploying your application on the web. With Vercel, you
can automate the deployment process with GitHub, GitLab, and BitBucket. In this recipe,
we will learn how to create our account on the Vercel platform.

https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/

Deploying an Application to Cloud Platforms Chapter 10

[451]

Getting ready
The prerequisite for this recipe is just one of the following options:

A GitHub account
A GitLab account
A BitBucket account

How to do it...
Let's start our journey on the Vercel platform. Here, we will learn how to create our account
on the platform to start our project deployment:

Open the Vercel website (https:/ /vercel. com/) and click on the Sign Up button1.
on the top bar. You will be redirected to the Sign Up page.
Here, you have the option to select one of these repository managers – GitHub,2.
GitLab, or BitBucket. We will continue by clicking on the GitHub button. After
choosing the sign-up method, you will be redirected to the authorization page.
On this page, you are giving access to the Vercel platform to access the3.
information on your account. By clicking on the Authorize button, you will be
redirected back to the Vercel dashboard.
Finally, you have your Vercel account created and ready to be used.4.

How it works...
In this recipe, we entered the Vercel platform, and signed up to it using a repository
manager. We were able to create our account, and can now start the deployment process on
the platform through repository integration or the CLI tool.

See also
You can find out more information about Vercel at https:/ /vercel. com/ .

https://vercel.com/
https://vercel.com/
https://vercel.com/
https://vercel.com/
https://vercel.com/
https://vercel.com/
https://vercel.com/
https://vercel.com/
https://vercel.com/
https://vercel.com/
https://vercel.com/
https://vercel.com/
https://vercel.com/
https://vercel.com/
https://vercel.com/
https://vercel.com/

Deploying an Application to Cloud Platforms Chapter 10

[452]

Configuring the Vercel-CLI and deploying
your project
You have created a Vercel account. Now it's time to configure the Vercel-CLI on your
project, so it's available on the Vercel platform and on the web.

Getting ready
The prerequisites for this recipe are as follows:

A Vercel account
A Vue project
Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

vercel

To install vercel, you need to open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> npm i -g vercel

How to do it...
In this recipe, we will learn how to link our project to the Vercel platform through the
Vercel-CLI and then deploy the platform with it:

Open your Vue project and then open the package.json file. Check whether1.
you have the build script defined, as in the following example:

"scripts": {
 "serve": "Vue-CLI-service serve",
 "build": "Vue-CLI-service build",
 "lint": "Vue-CLI-service lint"
},

Make sure your application build script creates a dist folder in the main folder.2.

Deploying an Application to Cloud Platforms Chapter 10

[453]

In your project folder, open Terminal (macOS or Linux) or Command3.
Prompt/PowerShell (Windows) and execute the following command:

> vercel

This will prompt you for a login to the Vercel platform:

> No existing credentials found. Please log in:
 Enter your email:

Enter the email address that is linked to the repository manager that you have4.
used to sign in to Vercel. You will receive an email with a Verify button; click on
it to verify your email address:
Once your email is verified, you are able to deploy applications in your Terminal5.
with the > vercel command.
To deploy your application to the web, we need to execute the > vercel6.
command in the project folder, and it will ask some questions about the project
settings prior to deployment. The first question will relate to the project path:

? Set up and deploy "~/Versionamento/Vue.js-3.0-Cookbook/chapter-
 14/14.5"? [Y/n] y

Now it will ask for the scope that will deploy the project. This is used when you7.
have multiple account access options defined under the same username. In most
of the scenarios, it will only have one, and you can press Enter:

? Set up and deploy "~/Versionamento/Vue.js-3.0-Cookbook/chapter-
 14/14.5"? y
? Which scope do you want to deploy to?
❯ Heitor Ramon Ribeiro

Then, it will ask to link to an existing project on Vercel. In our case, this is a8.
brand new project, so we will choose n:

? Link to existing project? [Y/n] n

You will be asked to define the project's name (only lowercase alphanumeric9.
characters and hyphens are allowed):

? What's your project's name? vuejscookbook-12-5

You now need to define the location of the source code of the project. This10.
location is where the package.json file is located; in our case, this will be the ./
folder, or the main project folder:

? In which directory is your code located? ./

Deploying an Application to Cloud Platforms Chapter 10

[454]

Vercel-CLI will detect that the project is a Vue-CLI project, and will11.
automatically define all the commands and directory settings for the deployment
of the application. We will choose n in our case:

Auto-detected Project Settings (Vue.js):
- Build Command: `npm run build` or `Vue-CLI-service build`
- Output Directory: dist
- Development Command: Vue-CLI-service serve --port $PORT
? Want to override the settings? [y/N] n

Once everything is set up, the CLI will deploy the first preview of your12.
application, and you will receive a link to access the preview of your application.
To deploy your application as production-ready, you need
to open Terminal (macOS or Linux) or Command Prompt/PowerShell (Windows)
and execute the following command:

> vercel --prod

How it works...
In this recipe, we learned how to connect the Vercel-CLI to the online platform with the
email address that is linked to the repository manager, and set up project deployment.

In this process, we learned how to configure the advanced options of the CLI by defining
the project settings for the build commands, distribution folder, and development
command.

Finally, we were able to get the preview URL of our project before deploying it to
production.

See also
You can find out more information about the Vercel-CLI at https:/ / vercel. com/ docs/
cli?query=CLI#getting- started.

You can find out more information about Vercel advanced configurations at https:/ /
vercel.com/docs/ configuration? query= now.json#introduction/ configuration-
reference.

https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/cli?query=CLI#getting-started
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference
https://vercel.com/docs/configuration?query=now.json#introduction/configuration-reference

Deploying an Application to Cloud Platforms Chapter 10

[455]

Preparing for automatic deployment on
Vercel with GitHub
We learned in the previous recipe how to use the Vercel-CLI to deploy our application to
the web using your local terminal, but it is possible to integrate the repository manager
with the Vercel platform and deploy automatically through any push or open pull requests.
That's what we will do in this recipe.

Getting ready
The prerequisites for this recipe are as follows:

A Vercel account
A Vue project on a repository manager

How to do it...
In this recipe, we will learn how to integrate the Vercel platform with the repository
manager and make an automatic deployment:

Open your Vercel dashboard (https:/ /vercel. com/ dashboard) and click on the1.
Import Project button.
On the Import Project page, click on the Continue button inside the From Git2.
Repository card.
Now, the Vercel website will ask whether the user who holds the repository of3.
the project you are importing is your personal account. Click Yes if it is. If it isn't,
Vercel will fork the project into your personal account before starting the process.
Then, Vercel will ask which account you want to bind the project to. In our case,4.
this will be our personal account. Select it, and click on the Continue button.
You will be redirected to the GitHub web page, to give Vercel access to your5.
repositories. You can give access to all your repositories, or just the ones you
want to deploy. In our case, we will give access to all the repositories on our
account.

https://vercel.com/dashboard
https://vercel.com/dashboard
https://vercel.com/dashboard
https://vercel.com/dashboard
https://vercel.com/dashboard
https://vercel.com/dashboard
https://vercel.com/dashboard
https://vercel.com/dashboard
https://vercel.com/dashboard

Deploying an Application to Cloud Platforms Chapter 10

[456]

After installing the Vercel application on your GitHub account, you will be sent6.
back to the Vercel web page. Here, you can define the settings for the project you
are creating, including the project name, the preset you are using, build
instructions, and environment variables. Vercel will automatically detect that our
project is a Vue-CLI project and will configure the build and deployment settings
for us. Then, click on the Deploy button to continue.
Vercel will start the first deployment process. When it's finished, Vercel will give7.
you the link for the application, along with a link for you to open the dashboard.

How it works...
The Vercel platform connects to your GitHub account and installs as an application, giving
access to selected repositories. Then, on the platform, you can select the repository that you
want to use to deploy.

With the repository selected, you need to configure the Vercel-CLI with the build
instructions and the built destination folder.

Finally, the CLI runs, and we have our application up and running on the web.

See also
Find out more information about Vercel integrations with Git repositories at https:/ /zeit.
co/docs/v2/git-integrations.

Creating a Firebase project
Firebase is an all-in-one solution created by Google to help developers with dedicated tools
for analytics, notifications, machine learning, and cloud solutions. One of the cloud
solutions they provide is the hosting platform.

With the hosting platform, we are able to host our single-page applications in the Google
cloud servers and have them available to everyone, through a global content delivery
network.

https://zeit.co/docs/v2/git-integrations
https://zeit.co/docs/v2/git-integrations
https://zeit.co/docs/v2/git-integrations
https://zeit.co/docs/v2/git-integrations
https://zeit.co/docs/v2/git-integrations
https://zeit.co/docs/v2/git-integrations
https://zeit.co/docs/v2/git-integrations
https://zeit.co/docs/v2/git-integrations
https://zeit.co/docs/v2/git-integrations
https://zeit.co/docs/v2/git-integrations
https://zeit.co/docs/v2/git-integrations
https://zeit.co/docs/v2/git-integrations
https://zeit.co/docs/v2/git-integrations
https://zeit.co/docs/v2/git-integrations

Deploying an Application to Cloud Platforms Chapter 10

[457]

Getting ready
The prerequisites for this recipe are as follows:

A Google account
A Vue project

How to do it...
In this recipe, we will learn how to create our Firebase project so that we can deploy our
application to the Firebase hosting:

Open the Firebase home page (https:/ / firebase. google. com/) and click on the1.
Sign In link in the header menu. If you are already logged in to your Google
account, click on the Go to console link.
On the Console page, click on the Create a project button to create a new2.
Firebase project.
Firebase will ask for the project name (you can only use alphanumeric characters3.
and spaces).
Then, Firebase will ask whether you want to enable Google Analytics in this4.
project. In our case, we will disable this option.
Finally, you will be redirected to the project overview dashboard.5.

How it works...
In this recipe, we created our first Firebase project. To do it, we started by signing in to our
Google account and going to the Firebase console. On the Firebase console, we created a
new project, and in the setup wizard steps, we disabled the Google Analytics options
because we won't be using attached analytics in this recipe. Finally, when we finished the
setup wizard, our project was ready.

See also
Find out more information about Google Firebase at https:/ /firebase. google. com.

https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com

Deploying an Application to Cloud Platforms Chapter 10

[458]

Configuring the Firebase-CLI and deploying
your project
To deploy our application to Firebase Hosting, we need to use the Firebase-CLI. The CLI
will help with the process of packing the files and sending them to the Google Cloud
server.

In this recipe, we will learn how to configure the Firebase-CLI to deploy your application to
the web using your local terminal.

Getting ready
The prerequisites for this recipe are as follows:

A Google account
A Vue project
A Firebase project
Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

firebase-tools

To install firebase-tools, you need to open Terminal (macOS or Linux) or Command
Prompt/PowerShell (Windows) and execute the following command:

> npm install -g firebase-tools

Deploying an Application to Cloud Platforms Chapter 10

[459]

How to do it...
In this recipe, we will learn how to set up the Firebase-CLI on our project, and how to
initialize it with our project created during the previous recipe:

Open Terminal (macOS or Linux) or Command Prompt/PowerShell (Windows)1.
and execute the following command on the root folder of your project:

> firebase login

The Firebase-CLI will open a browser window so you can log in to your Google2.
account, and give access on the part of the Firebase-CLI to your Google
Account. (If the browser doesn't open automatically, a link will appear on the
Firebase-CLI, copy the link, and then paste it into your browser to continue.)
Open Terminal (macOS or Linux) or Command Prompt/PowerShell (Windows)3.
and execute the following command on the root folder of your project:

> firebase init

Now we are initializing the configuration process of the CLI with our project. For4.
the first question of the CLI, we are going to use just the Hosting feature, so we
need to select just Hosting:

? Which Firebase CLI features do you want to set up
 for this folder?
 Press space to select feature, then Enter to confirm
 your choices.
 Database: Deploy Firebase Realtime Database Rules
 Firestore: Deploy rules and create indexes for Firestore
 Functions: Configure and deploy Cloud Functions
❯ Hosting: Configure and deploy Firebase Hosting sites
 Storage: Deploy Cloud Storage security rules
 Emulators: Set up local emulators for Firebase features

Then, the CLI will ask which Firebase project we want to use. In our case, we5.
created the project earlier in the previous recipe, so we will select Use an
existing project:

? Use an existing project
❯ Use an existing project
 Create a new project
 Add Firebase to an existing Google Cloud Platform project
 Don't set up a default project

Deploying an Application to Cloud Platforms Chapter 10

[460]

Now a list of available projects on your account will appear. Select the one you6.
want to use to deploy with this application:

? Select a default Firebase project for this directory: (Use arrow
 keys)
❯ vue-3-cookbook-firebase-18921 (Vue 3 Cookbook Firebase)

The CLI will ask about the public directory of the application, or in our case,7.
because it's a single-page application, we need to use the build destination folder.
Type the name of the destination folder, in our case it's dist:

? What do you want to use as your project public directory? dist

Finally, the last step in the process is to select whether we want to use the8.
configuration as a single-page application. Type y to enable rewrites of all the
URLs to index.html so we can use the history mode of vue-router:

? Configure as a single-page app (rewrite all urls to /index.html)?
 (y/N) y

Open the package.json file on the root directory of your project, and add a new9.
script to automate the build and deployment process:

"scripts": {
 "serve": "Vue-CLI-service serve",
 "build": "Vue-CLI-service build",
 "deploy": "npm run build && firebase deploy",
 "lint": "Vue-CLI-service lint"
},

Open Terminal (macOS or Linux) or Command Prompt/PowerShell (Windows)10.
and execute the following command on the root folder of your project:

> npm run deploy

Now your project is deployed and available on the web, and the CLI will give you the links
to access it:

Deploying an Application to Cloud Platforms Chapter 10

[461]

How it works...
In this recipe, we learned how to configure the Firebase CLI and to deploy our application.

First, we installed the Firebase-CLI and signed in to the Google authentication platform.
Then, we were able to initialize the CLI in our project folder.

In the process, we selected the project we created in the previous recipe and pointed the
building folder to the corrected one on a Vue-CLI project.

Then, we configured that we want to use a single-page application router structure, and
added a deployment script to package.json. Finally, we were able to deploy our
application and make it available to everyone.

See also
Find out more information about Firebase Hosting at https:/ /firebase. google. com/
docs/hosting.

https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting

11
Directives, Plugins, SSR, and

More
Now you are in the Pro League! You are an advanced Vue developer. Let's have some fun
and check out some great recipes that are custom made for you! Here are some hand-
picked optimization solutions that can improve the quality of your Vue application and
make your life easier.

In this chapter, we'll cover the following recipes:

Automatically loading vue-router routes
Automatically loading vuex modules
Creating a custom directive
Creating a Vue plugin
Creating an SSR, SPA, PWA, Cordova, and Electron application in Vue with
Quasar
Creating smarter Vue watchers and computed properties
Creating a Nuxt.js SSR with Python Flask as the API
The dos and don'ts of Vue applications

Technical requirements
In this chapter, we will be using Node.js, Vue-CLI, Cordova, Electron, Quasar, Nuxt.js,
and Python.

Directives, Plugins, SSR, and More Chapter 11

[463]

Attention Windows users: you are required to install an npm package
called windows-build-tools to be able to install the following required
packages. To do so, open PowerShell as an Administrator and execute the
following command:
> npm install -g windows-build-tools

To install Vue-CLI, you need to execute the following command in Terminal (macOS or
Linux) or the Command Prompt/PowerShell (Windows):

> npm install -g @vue/cli @vue/cli-service-global

To install Cordova, you need to execute the following command in Terminal (macOS or
Linux) or the Command Prompt/PowerShell (Windows):

> npm install -g cordova

If you are running on a macOS and you want to run an iOS simulator, you need to
execute the following command in Terminal (macOS):

> npm install -g ios-sim ios-deploy

To install Electron, you need to execute the following command in Terminal (macOS or
Linux) or the Command Prompt/PowerShell (Windows):

> npm install -g electron

To install Quasar, you need to execute the following command in Terminal (macOS or
Linux) or the Command Prompt/PowerShell (Windows):

> npm install -g @quasar/cli

To install Nuxt.js, you need to execute the following command in Terminal (macOS or
Linux) or the Command Prompt/PowerShell (Windows):

> npm install -g create-nuxt-app

Automatically loading Vue routes
In order to create maintainable code, we can use the strategy of auto-importing files that
have the same structure in our project. Like the routes in vue-router, when the
application gets larger, we find a huge amount of files being imported and handled
manually. In this recipe, we will learn a trick to use the webpack require.context
function to automatically inject files for us.

Directives, Plugins, SSR, and More Chapter 11

[464]

This function will read the file content and add the routes to an array that will be exported
into our file by default. You can improve this recipe by adding a more controlled route
import or even environment-based route rules.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

We will need to create a new Vue project with Vue-CLI, or use the project created in
previous recipes:

We need to open Terminal (macOS or Linux) or the Command1.
Prompt/PowerShell (Windows) and execute the following command:

> vue create router-import

The CLI will ask some questions that will help with the creation of the project.2.
You can use the arrow keys to navigate, the Enter key to continue, and
the spacebar to select an option.

There are two methods for starting a new project. The default method is a basic3.
babel and eslint project without any plugins or configuration, and
the Manually mode, where you can select more modes, plugins, linters, and
options. We will go for Manually:

? Please pick a preset: (Use arrow keys)
 default (babel, eslint)
❯ Manually select features

Directives, Plugins, SSR, and More Chapter 11

[465]

Now we are asked about the features that we want on the project. Those features4.
are some Vue plugins such as Vuex or Router (vue-router), testers, linters, and
more. Select Babel, Router, and Linter / Formatter:

? Check the features needed for your project: (Use arrow keys)
❯ Babel
 TypeScript
 Progressive Web App (PWA) Support
❯ Router
 Vuex
 CSS Pre-processors
❯ Linter / Formatter
 Unit Testing
 E2E Testing

Continue this process by selecting a linter and formatter. In our case, we will5.
select the ESLint + Airbnb config:

? Pick a linter / formatter config: (Use arrow keys)
 ESLint with error prevention only
❯ ESLint + Airbnb config
 ESLint + Standard config
 ESLint + Prettier

After the linting rules are set, we need to define when they are applied to your6.
code. They can be either applied on save or fixed on commit:

? Pick additional lint features: (Use arrow keys)
 Lint on save
❯ Lint and fix on commit

After all those plugins, linters, and processors are defined, we need to choose7.
where the settings and configs are stored. The best place to store them is in a
dedicated file, but it is also possible to store them in package.json:

? Where do you prefer placing config for Babel, ESLint, etc.? (Use
 arrow keys)
❯ In dedicated config files
 In package.json

Now you can choose whether you want to make this selection a preset for future8.
projects so that you don't need to reselect everything:

? Save this as a preset for future projects? (y/N) n

Vue-CLI will create the project, and automatically install the packages for us.

Directives, Plugins, SSR, and More Chapter 11

[466]

If you want to check the project on vue-ui when the installation has finished, open
Terminal (macOS or Linux) or the Command Prompt/PowerShell (Windows) and
execute the following command:

> vue ui

Or you can run the built-in npm commands by opening Terminal (macOS or Linux) or
the Command Prompt/PowerShell (Windows) and execute one of the following commands:

npm run serve – To run a development server locally
npm run build – To build and minify the application for deployment
npm run lint – To execute the lint on the code

How to do it...
Follow these instructions to create an auto-import of the router files in your project that will
handle the router files inside a specific folder:

With our route files created and placed inside the routes folder, we need to1.
make sure that every route file has a default export object in it. In the index.js
file, inside the src/router folder, remove the default array of routes that is
present in the file:

import Vue from 'vue';
import VueRouter from 'vue-router';

Vue.use(VueRouter);

export default new VueRouter({});

Now create an empty array of routes that will be populated by the imported2.
ones from the folder, and start the import. With that, requireRoutes will be an
object with the keys being the filename and the values being the ID of the file:

import Vue from 'vue';
import VueRouter from 'vue-router';

Vue.use(VueRouter);

const routes = [];
const requireRoutes = require.context(
 './routes',
 true,

Directives, Plugins, SSR, and More Chapter 11

[467]

 /^(?!.*test).*\.js$/is,
);

const router = new VueRouter({
 routes,
});

export default router;

To push those files inside the routes array, we need to add the following code3.
and create a folder named routes inside the router folder:

import Vue from 'vue';
import VueRouter from 'vue-router';

Vue.use(VueRouter);

const routes = [];
const requireRoutes = require.context(
 './routes',
 true,
 /^(?!.*test).*\.js$/is,
);

requireRoutes.keys().forEach((fileName) => {
 routes.push({
 ...requireRoutes(fileName).default,
 });
});

const router = new VueRouter({
 routes,
});

export default router;

Now you have your routes loaded on your application automatically as you create a new
.js file inside the routes folder.

How it works...
require.context is a webpack built-in function that allows you to pass in a directory to
search, a flag indicating whether subdirectories should be examined too, and a regular
expression to match files.

Directives, Plugins, SSR, and More Chapter 11

[468]

When the building process starts, webpack will search for all the require.context
functions and will pre-execute them, so the files needed on the import will be there for the
final build.

We pass three arguments to the function: the first is the folder where it will start the search,
the second asks whether the search will go to descending folders, and finally, the third is a
regular expression for filename matching.

In this recipe, to automatically load the routes as the first argument of the function, we
define ./routes for the folder. As the second argument of the function, we define false
to not search in subdirectories. Finally, as the third argument, we
define /^(?!.*test).*\.js$/is as the Regex to search for .js files and ignore the files
that have .test in their names.

There's more...
With this recipe, it's possible to take your application to the next level by using the
subdirectories for router modules and environments for router control.

With those increments, the function may be extracted to another file, but in router.js, it
still needs to be imported into the main.js file. Or, you can obtain the import function,
and pass the array of routes to router.js.

See also
Read more about webpack dependency management and require.context in the
webpack documentation at https:/ /webpack. js. org/ guides/ dependency- management/ .

Automatically loading Vuex modules
Sometimes, when we are working on a big project, we need to manage a lot of imported
Vuex modules and stores. To handle those modules, we always need to import them by
creating a file that will have all the files imported and then export those to the Vuex store
creation.

https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/

Directives, Plugins, SSR, and More Chapter 11

[469]

In this recipe, we will learn about a function that uses the
webpack require.context function to automatically load and inject those files into the
Vuex store creation.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

We will need to create a new Vue project with Vue-CLI, or use the project created in
previous recipes:

We need to open Terminal (macOS or Linux) or the Command1.
Prompt/PowerShell (Windows) and execute the following command:

> vue create vuex-import

The CLI will ask some questions that will help with the creation of the project.2.
You can use the arrow keys to navigate, the Enter key to continue, and
the spacebar to select an option.

There are two methods for starting a new project. The default method is3.
a basic babel and eslint project without any plugins or configuration, and
the Manually mode, where you can select more modes, plugins, linters, and
options. We will go for Manually:

? Please pick a preset: (Use arrow keys)
 default (babel, eslint)
❯ Manually select features

Now we are asked about the features that we will want on the project. Those4.
features are some Vue plugins such as Vuex or Router (vue-router), testers,
linters, and more. Select Babel, Vuex, and Linter / Formatter:

? Check the features needed for your project: (Use arrow keys)
❯ Babel
 TypeScript
 Progressive Web App (PWA) Support

Directives, Plugins, SSR, and More Chapter 11

[470]

 Router
❯ Vuex
 CSS Pre-processors
❯ Linter / Formatter
 Unit Testing
 E2E Testing

Continue this process by selecting a linter and formatter. In our case, we will5.
select the ESLint + Airbnb config:

? Pick a linter / formatter config: (Use arrow keys)
 ESLint with error prevention only
❯ ESLint + Airbnb config
 ESLint + Standard config
 ESLint + Prettier

After the linting rules are set, we need to define when they are applied to your6.
code. They can be either applied on save or fixed on commit:

? Pick additional lint features: (Use arrow keys)
 Lint on save
❯ Lint and fix on commit

After all those plugins, linters, and processors are defined, we need to choose7.
where the settings and configs are stored. The best place to store them is in a
dedicated file, but it is also possible to store them in package.json:

? Where do you prefer placing config for Babel, ESLint, etc.? (Use
 arrow keys)
❯ In dedicated config files
 In package.json

Now you can choose whether you want to make this selection a preset for future8.
projects, so you don't need to reselect everything:

? Save this as a preset for future projects? (y/N) n

Vue-CLI will create the project, and automatically install the packages for us.

If you want to check the project on vue-ui when the installation has finished, open
Terminal (macOS or Linux) or the Command Prompt/PowerShell (Windows) and
execute the following command:

> vue ui

Directives, Plugins, SSR, and More Chapter 11

[471]

Or you can run the built-in npm commands by opening Terminal (macOS or Linux) or
the Command Prompt/PowerShell (Windows) and executing one of the following
commands:

npm run serve – To run a development server locally
npm run build – To build and minify the application for deployment
npm run lint – To execute the lint on the code

How to do it...
Follow these instructions to create an auto-import of the vuex modules in your project that
will handle the router files inside a specific folder:

With our route files created and placed inside the store folder, we need to make1.
sure that every store file has a default export object in it. In the index.js file,
inside the src/store folder, we will need to extract the array of stores
or modules:

import Vue from 'vue';
import Vuex from 'vuex';

Vue.use(Vuex);

export default new Vuex.Store({});

Create another file named loader.js in the src/store folder (which will be2.
our module loader). It's important to remember that when using this recipe, you
will use vuex namespaced because all the stores need to be used as a module
and need to be exported in a single JavaScript object. Each filename will be used
as a reference to a namespace, and it will be parsed to a camelCase text style:

const toCamel = (s) => s.replace(/([-_][a-z])/ig, (c) =>
 c.toUpperCase()
 .replace(/[-_]/g, ''));
const requireModule = require.context('./modules/', false,
 /^(?!.*test).*\.js$/is);
const modules = {};

requireModule.keys().forEach((fileName) => {
 const moduleName = toCamel(fileName.replace(/(\.\/|\.js)/g, ''));

 modules[moduleName] = {
 namespaced: true,

Directives, Plugins, SSR, and More Chapter 11

[472]

 ...requireModule(fileName).default,
 };
});

export default modules;

As we will be importing by default each file inside the modules folder, a good3.
practice is to create a file for each module. For example, as you will be creating a
module named user, you need to create a file named user.js that imports all
the stores actions, mutations, getters, and state. Those can be placed inside a
folder that has the same name as the module. The modules folder will have a
structure similar to this:

modules
├── user.js
├── user
│ └── types.js
│ └── state.js
│ └── actions.js
│ └── mutations.js
│ └── getters.js
└───────

The user.js file inside the src/store/modules folder will look like this:

import state from './user/state';
import actions from './user/actions';
import mutations from './user/mutations';
import getters from './user/getters';

export default {
 state,
 actions,
 mutations,
 getters,
};

In the index.js file in the src/store folder, we need to add the imported4.
modules that were automatically loaded:

import Vue from 'vue';
import Vuex from 'vuex';
import modules from './loader';

Vue.use(Vuex);

export default new Vuex.Store({

Directives, Plugins, SSR, and More Chapter 11

[473]

 modules,
});

Now you have your vuex modules loaded on your application automatically as you create
a new .js file inside the src/store/modules folder.

How it works...
require.context is a webpack built-in function that receives a directory to execute a
search, a Boolean flag indicating whether subdirectories are included in this search, and a
regular expression for the pattern matching for the filename (all as arguments).

When the building process starts, webpack will search for all
the require.context functions, and will pre-execute them, so the files needed on the
import will be there for the final build.

In our case, we passed ./modules for the folder, false to not search in subdirectories,
and /^(?!.*test).*\.js$/is as the Regex to search for .js files and ignore the files
that have .test in their names.

Then, the function will search for the files and will pass the result through a for loop to
add the content of the files in the array of vuex modules.

See also
Read more about webpack dependency management and require.context in the
webpack documentation at https:/ /webpack. js. org/ guides/ dependency- management/ .

Creating a custom directive
Talking about visual frameworks such as Vue, we always think about components,
rendering, and visual elements, and we forget that there are a lot of things besides the
components themselves.

https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/
https://webpack.js.org/guides/dependency-management/

Directives, Plugins, SSR, and More Chapter 11

[474]

There are the directives that make the components work with the template engine, which
are the binding agents between the data and the visual result. And there are built-in
directives in the core of Vue, such as v-if, v-else, and v-for.

In this recipe, we will learn how to make our directive.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

We will need to create a new Vue project with Vue-CLI, or use the project created in
previous recipes:

We need to open Terminal (macOS or Linux) or the Command1.
Prompt/PowerShell (Windows) and execute the following command:

> vue create vue-directive

The CLI will ask some questions that will help with the creation of the project.2.
You can use the arrow keys to navigate, the Enter key to continue, and
the spacebar to select an option.

There are two methods for starting a new project. The default method is3.
a basic babel and eslint project without any plugins or configuration, and
the Manually mode, where you can select more modes, plugins, linters, and
options. We will go for Manually:

? Please pick a preset: (Use arrow keys)
 default (babel, eslint)
❯ Manually select features

Now we are asked about the features that we want on the project. Those features4.
are some Vue plugins such as Vuex or Router (vue-router), testers, linters, and
more. Select Babel and Linter / Formatter:

? Check the features needed for your project: (Use arrow keys)
❯ Babel

Directives, Plugins, SSR, and More Chapter 11

[475]

 TypeScript
 Progressive Web App (PWA) Support
 Router
 Vuex
 CSS Pre-processors
❯ Linter / Formatter
 Unit Testing
 E2E Testing

Continue this process by selecting a linter and formatter. In our case, we will5.
select the ESLint + Airbnb config:

? Pick a linter / formatter config: (Use arrow keys)
 ESLint with error prevention only
❯ ESLint + Airbnb config
 ESLint + Standard config
 ESLint + Prettier

After the linting rules are set, we need to define when they are applied to your6.
code. They can be either applied on save or fixed on commit:

? Pick additional lint features: (Use arrow keys)
 Lint on save
❯ Lint and fix on commit

After all those plugins, linters, and processors are defined, we need to choose7.
where the settings and configs are stored. The best place to store them is in a
dedicated file, but it is also possible to store them in package.json:

? Where do you prefer placing config for Babel, ESLint, etc.? (Use
arrow keys)
❯ In dedicated config files
 In package.json

Now you can choose whether you want to make this selection a preset for future8.
projects so you don't need to reselect everything:

? Save this as a preset for future projects? (y/N) n

Vue-CLI will create the project, and automatically install the packages for us.

If you want to check the project on vue-ui when the installation has finished, open
Terminal (macOS or Linux) or the Command Prompt/PowerShell (Windows) and
execute the following command:

> vue ui

Directives, Plugins, SSR, and More Chapter 11

[476]

Or, you can run the built-in npm commands by opening Terminal (macOS or Linux) or
the Command Prompt/PowerShell (Windows) and executing one of the following
commands:

npm run serve – To run a development server locally
npm run build – To build and minify the application for deployment
npm run lint – To execute the lint on the code

How to do it...
Follow these instructions to create a directive for a masked input field:

Create a file named formMaskInputDirective.js in1.
the src/directives folder, and a file named tokens.js in the same folder.

In the tokens.js file, we will add our mask base tokens. Those tokens will be2.
used to identify the kind of value our input will accept:

export default {
 "#": { pattern: /[\x2A\d]/ },
 0: { pattern: /\d/ },
 9: { pattern: /\d/ },
 X: { pattern: /[0-9a-zA-Z]/ },
 S: { pattern: /[a-zA-Z]/ },
 A: { pattern: /[a-zA-Z]/, transform: v => v.toLocaleUpperCase()
},
 a: { pattern: /[a-zA-Z]/, transform: v => v.toLocaleLowerCase()
},
 "!": { escape: true }
};

We import the token from token.js and create our functions:3.

import tokens from './tokens';

function maskerValue() {
 // Code will be developed in this recipe
}

function eventDispatcher() {
 // Code will be developed in this recipe
}

function maskDirective() {

Directives, Plugins, SSR, and More Chapter 11

[477]

 // Code will be developed in this recipe
}

export default maskDirective;

In the maskDirective function, we will need to check for the binding value on4.
the directive that is passed by the callee of the directive and check whether it's a
valid binding. To do so, we will first check whether the value property is
present on the binding argument, and then add it to the config variable with
the tokens that were imported:

function maskDirective(el, binding) {
 let config;

 if (!binding.value) return false;

 if (typeof config === 'string') {
 config = {
 mask: binding.value,
 tokens,
 };
 } else {
 throw new Error('Invalid input entered');
 }

Now we need to check for the element and validate whether it's an input HTML5.
element. To do so, we will check whether the element that was passed down by
the directive has a tagName of input, and if it doesn't, we will try to find an
input HTML element in the element that was passed down:

let element = el;

 if (element.tagName.toLocaleUpperCase() !== 'INPUT') {
 const els = element.getElementsByTagName('input');

 if (els.length !== 1) {
 throw new Error(`v-input-mask directive requires 1 input,
 found ${els.length}`);
 } else {
 [element] = els;
 }
 }

Directives, Plugins, SSR, and More Chapter 11

[478]

Now we need to add an event listener to the input on the element. The listener6.
will call two external functions, one for dispatching the events and another to
return the masked value to the input:

element.oninput = (evt) => {
 if (!evt.isTrusted) return;
 let position = element.selectionEnd;

 const digit = element.value[position - 1];
 element.value = maskerValue(element.value, config.mask,
 config.tokens);
 while (
 position < element.value.length
 && element.value.charAt(position - 1) !== digit
) {
 position += 1;
 }
 if (element === document.activeElement) {
 element.setSelectionRange(position, position);
 setTimeout(() => {
 element.setSelectionRange(position, position);
 }, 0);
 }
 element.dispatchEvent(eventDispatcher('input'));
 };

 const newDisplay = maskerValue(element.value, config.mask,
 config.tokens);
 if (newDisplay !== element.value) {
 element.value = newDisplay;
 element.dispatchEvent(eventDispatcher('input'));
 }

 return true;
}
// end of maskDirective function

Let's create the eventDispatcher function; this function will emit the events7.
that will be listened to by the v-on directive:

function eventDispatcher(name) {
 const evt = document.createEvent('Event');

 evt.initEvent(name, true, true);

 return evt;
}

Directives, Plugins, SSR, and More Chapter 11

[479]

And now the complicated part: returning the masked input value to the input. To8.
do so, we will need to create the maskerValue function. This function receives
the value, mask, and token as parameters. The function checks for the current
value against the mask, to see whether the mask is complete or the value is of a
valid token. If everything's okay, it will pass the value to the input:

function maskerValue(v, m, tkn) {
 const value = v || '';

 const mask = m || '';

 let maskIndex = 0;

 let valueIndex = 0;

 let output = '';

 while (maskIndex < mask.length && valueIndex < value.length) {
 let maskCharacter = mask[maskIndex];
 const masker = tkn[maskCharacter];
 const valueCharacter = value[valueIndex];

 if (masker && !masker.escape) {
 if (masker.pattern.test(valueCharacter)) {
 output += masker.transform ?
 masker.transform(valueCharacter) : valueCharacter;
 maskIndex += 1;
 }

 valueIndex += 1;
 } else {
 if (masker && masker.escape) {
 maskIndex += 1;
 maskCharacter = mask[maskIndex];
 }

 output += maskCharacter;

 if (valueCharacter === maskCharacter) valueIndex += 1;

 maskIndex += 1;
 }
 }

 let outputRest = '';
 while (maskIndex < mask.length) {
 const maskCharacter = mask[maskIndex];

Directives, Plugins, SSR, and More Chapter 11

[480]

 if (tkn[maskCharacter]) {
 outputRest = '';
 break;
 }

 outputRest += maskCharacter;

 maskIndex += 1;
 }

 return output + outputRest;
}
//end of maskerValue function

With our file ready, we need to import the mask directive in the main.js file and9.
add the directive to Vue, giving the directive the name 'input-mask':

import Vue from 'vue';
import App from './App.vue';
import InputMaskDirective from
'./directives/formMaskInputDirective';

Vue.config.productionTip = false;

Vue.directive('input-mask', InputMaskDirective);

new Vue({
 render: (h) => h(App),
}).$mount('#app');

To use the directive on our application, we need to call the directive on an input10.
HTML element inside a single file component <template> section, passing the
token template '###-###-###' in the v-input-mask directive like this:

<template>
 <div id="app">
 <input
 type="text"
 v-input-mask="'###-###-###'"
 v-model="inputMask"
 />
 </div>
</template>

<script>
export default {
 name: 'app',

Directives, Plugins, SSR, and More Chapter 11

[481]

 data: () => ({
 inputMask: '',
 }),
};
</script>

How it works...
A Vue directive has five possible hooks. We used just one, bind. It's bound directly to the
element and component. It gets three arguments: element, binding, and vnode.

When we add the directive in the main.js file to Vue, we make it available everywhere in
our application, so the directive is already at App.vue to be used by the input.

At the same time we call v-input-mask on the input element, we pass the first
argument, element, to the directive, and the second argument, binding, is the value of the
attribute.

Our directive works by checking each new character value on the input. A Regex test is
executed and validates the character to see whether it is a valid character on the token list
that was given on the directive instantiation. Then, it returns the character if it passes the
test, or returns nothing if it's an invalid character.

Creating a Vue plugin
Sometimes a new addition to your application is needed, and this addition needs to be
shared. The best way to share it is by using a plugin. In Vue, a plugin is an addition to the
Vue global prototype by extending the initialized application with new features such as
directives, mixings, filters, prototype injection, or totally new functions.

Now we will learn how to make our plugin, and how we can use it to interact with Vue as a
whole (without messing with the prototype and breaking it).

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

Directives, Plugins, SSR, and More Chapter 11

[482]

The Node.js global objects that are required are as follows:

@vue/cli

@vue/cli-service-global

We will need to create a new Vue project with the Vue-CLI, or use the project created in
previous recipes:

We need to open Terminal (macOS or Linux) or the Command1.
Prompt/PowerShell (Windows) and execute the following command:

> vue create vue-plugin

The CLI will ask some questions that will help with the creation of the project.2.
You can use the arrow keys to navigate, the Enter key to continue, and the
spacebar to select an option.

There are two methods for starting a new project. The default method is3.
a basic babel and eslint project without any plugins or configuration, and
the Manually mode, where you can select more modes, plugins, linters, and
options. We will go for Manually:

? Please pick a preset: (Use arrow keys)
 default (babel, eslint)
❯ Manually select features

Now we are asked about the features that we want on the project. Those features4.
are some Vue plugins such as Vuex or Router (vue-router), testers, linters, and
more. Select Babel, and Linter / Formatter:

? Check the features needed for your project: (Use arrow keys)
❯ Babel
 TypeScript
 Progressive Web App (PWA) Support
 Router
 Vuex
 CSS Pre-processors
❯ Linter / Formatter
 Unit Testing
 E2E Testing

Continue this process by selecting a linter and formatter. In our case, we will5.
select the ESLint + Airbnb config:

? Pick a linter / formatter config: (Use arrow keys)
 ESLint with error prevention only

Directives, Plugins, SSR, and More Chapter 11

[483]

❯ ESLint + Airbnb config
 ESLint + Standard config
 ESLint + Prettier

After the linting rules are set, we need to define when they are applied to your6.
code. They can be either applied on save or fixed on commit:

? Pick additional lint features: (Use arrow keys)
 Lint on save
❯ Lint and fix on commit

After all those plugins, linters, and processors are defined, we need to choose7.
where the settings and configs are stored. The best place to store them is in a
dedicated file, but it is also possible to store them in package.json:

? Where do you prefer placing config for Babel, ESLint, etc.? (Use
 arrow keys)
❯ In dedicated config files
 In package.json

Now you can choose whether you want to make this selection a preset for future8.
projects, so you don't need to reselect everything:

? Save this as a preset for future projects? (y/N) n

Vue-CLI will create the project, and automatically install the packages for us.

If you want to check the project on vue-ui when the installation has finished, open
Terminal (macOS or Linux) or the Command Prompt/PowerShell (Windows) and
execute the following command:

> vue ui

Or, you can run the built-in npm commands by opening Terminal (macOS or Linux) or
the Command Prompt/PowerShell (Windows) and executing one of the following
commands:

npm run serve – To run a development server locally
npm run build – To build and minify the application for deployment
npm run lint – To execute the lint on the code

Directives, Plugins, SSR, and More Chapter 11

[484]

How to do it...
Writing a Vue plugin is simple, and there is no need to learn more about Vue itself. The
basic concept of a plugin is an object that needs to have an install function, which will be
executed when called by the Vue.use() method. The install function will receive two
arguments: Vue, and the options that will be used to instantiate the plugin.

Follow these instructions to write a plugin that adds two new functions to the Vue global
prototype, $localStorage and $sessionStorage:

In our project, we need to create a file inside the src/plugin folder named1.
storageManipulator.js.
In this file, we will create the plugin installation object – we'll add the default2.
plugin options and the base prototype for the functions:

/* eslint no-param-reassign: 0 */

const defaultOption = {
 useSaveFunction: true,
 useRetrieveFunction: true,
 onSave: value => JSON.stringify(value),
 onRetrieve: value => JSON.parse(value),
};

export default {
 install(Vue, option) {
 const baseOptions = {
 ...defaultOption,
 ...option,
 };

 Vue.prototype.$localStorage = generateStorageObject(
 window.localStorage,
 baseOptions,
); // We will add later this code

 Vue.prototype.$sessionStorage = generateStorageObject(
 window.localStorage,
 baseOptions,
); // We will add later this code
 },
};

Directives, Plugins, SSR, and More Chapter 11

[485]

Now we need to create the generateStorageObject function. This function3.
will receive two arguments: the first will be the window storage object, and the
second will be the plugin options. With this, it will be possible to generate the
object that will be used on the prototype that will be injected into Vue:

const generateStorageObject = (windowStorage, options) => ({
 set(key, value) {
 windowStorage.setItem(
 key,
 options.useSaveFunction
 ? options.onSave(value)
 : value,
);
 },

 get(key) {
 const item = windowStorage.getItem(key);
 return options.useRetrieveFunction ? options.onRetrieve(item) :
 item;
 },

 remove(key) {
 windowStorage.removeItem(key);
 },

 clear() {
 windowStorage.clear();
 },
});

We need to import the plugin into the main.js, and then with the Vue.use4.
function, install the plugin in our Vue application:

import Vue from 'vue';
import App from './App.vue';
import StorageManipulatorPlugin from './plugin/storageManipulator';

Vue.config.productionTip = false;

Vue.use(StorageManipulatorPlugin);

new Vue({
 render: h => h(App),
}).$mount('#app');

Now you can use the plugin anywhere in your Vue application, calling the
this.$localStorage method or this.$sessionStorage.

Directives, Plugins, SSR, and More Chapter 11

[486]

How it works...
The Vue plugin works by adding all the code that was instructed to be used to the Vue
application layer (like a mixin).

When we used Vue.use() to import our plugin, we told Vue to call the install()
function on the object of the imported file and executed it. Vue will automatically pass the
current Vue as the first argument, and the options (if you declare them) as the second
argument.

In our plugin, when the install() function is called, we first create baseOptions,
merging the default options with the passed parameter, then we inject two new properties
into the Vue prototype. Those properties are now available everywhere because the Vue
parameter that was passed is the Vue global being used in the application.

Our generateStorageObject is a pure abstraction of the Storage API of the browser. We
use it as a generator for our prototypes inside the plugin.

See also
You can find more information about Vue plugins at https:/ /vuejs. org/ v2/ guide/
plugins.html.

You can find a curated list of awesome Vue plugins at https:/ /github. com/ vuejs/
awesome-vue.

Creating an SSR, SPA, PWA, Cordova, and
Electron application in Vue with Quasar
Quasar is a framework based on Vue and Material Design that takes advantage of "write
once, use everywhere."

The CLI can deploy the same code base to different flavors, such as Single-Page
Application (SPA), Server-Side Rendering (SSR), Progressive Web Application (PWA),
Mobile Application (Cordova), and Desktop Application (Electron).

This takes some of the problems away from the developer, such as configuring webpack,
Cordova, and Electron with HMR (Hot Module Reload) for development, or adding
an SSR configuration in the SPA project. The framework helps the developer start
production as soon as possible.

https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue

Directives, Plugins, SSR, and More Chapter 11

[487]

In this recipe, we will learn how to use Quasar and the CLI to create a basic project, and
how to use the CLI to add the development targets for SPA, PWA, SSR, Mobile Application,
and Desktop Application.

Getting ready
The pre-requisite for this recipe is as follows:

Node.js 12+

The Node.js global object that is required is as follows:

@quasar/cli

We will need to create a new Quasar project with the Quasar CLI, or use the project created
in previous recipes.

To do it, open Terminal (macOS or Linux) or the Command Prompt/PowerShell (Windows)
and execute the following command:

> quasar create quasar-project

Now, when asked, we need to choose to manually select features:

Quasar-CLI will ask you for a project name. Define your project name. In our1.
case, we choose quasar_project:

> Project name: quasar_project

Then Quasar-CLI will ask for a project product name. This will be used2.
by mobile apps to defined their title name. In our case, we stayed with the
default name provided:

> Project product name (must start with letter if building mobile
 apps) (Quasar App)

Now Quasar-CLI will ask for a project description. This is used for a meta tag in3.
search engines when the page is shared. In our case, we used the default
description provided:

> Project description: (A Quasar Framework app)

Directives, Plugins, SSR, and More Chapter 11

[488]

Then Quasar-CLI will ask for the project author. Fill this with a package.json4.
valid name (for example, Heitor Ribeiro<heitor@example.com>):

> Author: <You>

Now it's time to choose the CSS preprocessor. In our case, we will go with Sass5.
with indented syntax:

Pick your favorite CSS preprocessor: (can be changed later) (Use
arrow keys)
❯ Sass with indented syntax (recommended)
 Sass with SCSS syntax (recommended)
 Stylus
 None (the others will still be available)

Then Quasar-CLI will ask about the import strategy for the components and6.
directives. We will use the default auto-import strategy:

Pick a Quasar components & directives import strategy: (can be
 changed later) (Use arrow keys)
❯ * Auto-import in-use Quasar components & directives - also
 treeshakes Quasar; minimum bundle size
 * Import everything from Quasar - not treeshaking Quasar;
 biggest bundle size

Now we need to choose the extra features for the project. We will select EsLint:7.

Check the features needed for your project: EsLint

After that, Quasar-CLI will ask for a preset for ESLint. Choose the Airbnb8.
preset:

Pick an ESLint preset: Airbnb

Finally, Quasar-CLI will ask for the application you want to use to install the 9.
dependencies of the project. In our case, we used yarn because we have installed
it already (but you can choose the one you prefer):

Continue to install project dependencies after the project has been
 created? (recommended) (Use arrow keys)
❯ Yes, use Yarn (recommended)
 Yes, use npm
 No, I will handle that myself

Now open the created folder in your IDE or code editor.

Directives, Plugins, SSR, and More Chapter 11

[489]

How to do it...
When using Quasar to create an application, you always need to choose a flavor to start,
but the main code will be an SPA. Therefore, the other flavors will have their special treats
and delicacies based on their needs, but you can personalize and make your build execute
some code based on the build environment.

Developing an SPA (Single-Page Application)
Starting the development of an SPA is an out-of-the-box solution; there is no need to add
any new configuration.

So let's start adding a new page to our application. Open Terminal (macOS or Linux) or
the Command Prompt/PowerShell (Windows) and execute the following command:

> quasar new page About

Quasar-CLI will automatically create the Vue page for us. We need to add the reference to
the page in the router file, and the page will be available on the application:

To do it, we need to open the routes.js file in the src/router folder, and add1.
the About page:

const routes = [
 {
 path: '/',
 component: () => import('layouts/MainLayout.vue'),
 children: [
 { path: '', name: 'home', component: () =>
 import('pages/Index.vue') },
 { path: 'about', name: 'about', component: () =>
 import('pages/About.vue') },
],
 },
 {
 path: '*',
 component: () => import('pages/Error404.vue'),
 }
];

export default routes;

Directives, Plugins, SSR, and More Chapter 11

[490]

Then open the About.vue file in the src/pages folder. You will find that the file2.
is a single file component that has an empty QPage component in it, so we need
to add a basic title and page indication in the <template> section:

<template>
<q-page
 padding
 class="flex flex-start"
 >
 <h1 class="full-width">About</h1>
 <h2>This is an About Us Page</h2>
 </q-page>
</template>

<script>
export default {
 name: 'PageAbout',
};
</script>

Now, in the MainLayout.vue file, in the src/layouts folder, to the q-drawer3.
component, we need to add the links to the Home and About page:

<template>
 <q-layout view="lHh Lpr lFf">
 <q-header elevated>
 <q-toolbar>
 <q-btn flat dense round
 @click="leftDrawerOpen = !leftDrawerOpen"
 aria-label="Menu">
 <q-icon name="menu" />
 </q-btn>

 <q-toolbar-title>
 Quasar App
 </q-toolbar-title>

 <div>Quasar v{{ $q.version }}</div>
 </q-toolbar>
 </q-header>

 <q-drawer v-model="leftDrawerOpen"
 bordered content-class="bg-grey-2">
 <q-list>
 <q-item-label header>Menu</q-item-label>
 <q-item clickable tag="a" :to="{name: 'home'}">
 <q-item-section avatar>

Directives, Plugins, SSR, and More Chapter 11

[491]

 <q-icon name="home" />
 </q-item-section>
 <q-item-section>
 <q-item-label>Home</q-item-label>
 </q-item-section>
 </q-item>
 <q-item clickable tag="a" :to="{name: 'about'}">
 <q-item-section avatar>
 <q-icon name="school" />
 </q-item-section>
 <q-item-section>
 <q-item-label>About</q-item-label>
 </q-item-section>
 </q-item>
 </q-list>
 </q-drawer>

 <q-page-container>
 <router-view />
 </q-page-container>
 </q-layout>
</template>

<script>
export default {
 name: "MyLayout",
 data() {
 return {
 leftDrawerOpen: this.$q.platform.is.desktop
 };
 }
};
</script>

And we are finished with a simple example of an SPA running inside a Quasar framework.

Commands
You can run the Quasar-CLI commands by opening Terminal (macOS or Linux) or
the Command Prompt/PowerShell (Windows) and executing one of the following:

quasar dev – To start development mode
quasar build – To build the SPA

Directives, Plugins, SSR, and More Chapter 11

[492]

Developing a PWA (Progressive Web Application)
To develop a PWA, we first need to inform Quasar that we want to add a new mode of
development. Open Terminal (macOS or Linux) or the Command
Prompt/PowerShell (Windows) and execute the following command:

> quasar mode add pwa

Quasar-CLI will create a folder called src-pwa that will have our service-workers files,
separated from our main code.

To clean the newly added files, and to lint it into the Airbnb format, we need to open
Terminal (macOS or Linux) or the Command Prompt/PowerShell (Windows) and
execute the following command:

> eslint --fix --ext .js ./src-pwa

The code that we added to the SPA will still be used as our base so that we can add new
pages, components, and other functions to it as well, which will be used on the PWA.

So, are you wondering why service-worker is not in the
main src folder? This is because those files are exclusively for PWAs, and
are not needed in any other case than this one. The same will happen in
different build types, such as Electron, Cordova, and SSR.

Configuring quasar.conf on a PWA
For PWA development, you can set some special flags on the quasar.conf.js file in the
root folder:

pwa: {
 // workboxPluginMode: 'InjectManifest',
 // workboxOptions: {},
 manifest: {
 // ...
 },

 // variables used to inject specific PWA
 // meta tags (below are default values)
 metaVariables: {
 appleMobileWebAppCapable: 'yes',
 appleMobileWebAppStatusBarStyle: 'default',
 appleTouchIcon120: 'statics/icons/apple-icon-120x120.png',
 appleTouchIcon180: 'statics/icons/apple-icon-180x180.png',
 appleTouchIcon152: 'statics/icons/apple-icon-152x152.png',
 appleTouchIcon167: 'statics/icons/apple-icon-167x167.png',

Directives, Plugins, SSR, and More Chapter 11

[493]

 appleSafariPinnedTab: 'statics/icons/safari-pinned-tab.svg',
 msapplicationTileImage: 'statics/icons/ms-icon-144x144.png',
 msapplicationTileColor: '#000000'
 }
}

Commands
You can run the Quasar-CLI commands by opening Terminal (macOS or Linux) or
the Command Prompt/PowerShell (Windows) and executing one of the following:

quasar dev -m pwa – To start development mode as a PWA
quasar build -m pwa – To build the code as a PWA

Developing SSR (Server-Side Rendering)
To develop SSR, we first need to inform Quasar that we want to add a new mode of
development. Open Terminal (macOS or Linux) or the Command
Prompt/PowerShell (Windows) and execute the following command:

> quasar mode add ssr

Quasar-CLI will create a folder called src-ssr that will have
our extension and server starter files, separated from our main code.

The extension file is not transpiled by babel and runs on the Node.js context, so it is the
same environment as an Express or Nuxt.js application. You can use server plugins, such
as database, fileread, and filewrites.

The server starter files will be our index.js file in the src-ssr folder. As the extension,
it is not transpiled by babel and runs on the Node.js context. For the HTTP server, it
uses Express, and if you configure quasar.conf.js to pass the client a PWA, you can
have an SSR with PWA at the same time.

Configuring quasar.conf on SSR
For SSR development, you can configure some special flags on the quasar.conf.js file in
the root folder:

ssr: {
 pwa: true/false, // should a PWA take over (default: false), or just
 // a SPA?
},

Directives, Plugins, SSR, and More Chapter 11

[494]

Commands
You can run the Quasar-CLI commands by opening Terminal (macOS or Linux) or
the Command Prompt/PowerShell (Windows) and executing one of the following:

quasar dev -m ssr – To start development mode as SSR
quasar build -m ssr – To build the code as SSR
quasar serve – To run an HTTP server (can be used in production)

Developing a mobile application (Cordova)
To develop SSR, we first need to inform Quasar that we want to add a new mode of
development. Open Terminal (macOS or Linux) or the Command
Prompt/PowerShell (Windows) and execute the following command:

> quasar mode add cordova

Now the Quasar-CLI will ask you some configuration questions:

What is the Cordova app ID? (org.cordova.quasar.app)1.

May Cordova anonymously report usage statistics to improve the tool over2.
time? (Y/N) N

Quasar-CLI will create a folder called src-cordova, which will have a Cordova project
inside.

The folder structure of a Cordova project looks like this:

src-cordova/
├── config.xml
├── packages.json
├── cordova-flag.d.ts
├── hooks/
├── www/
├── platforms/
├── plugins/

As a separate project inside Quasar, to add Cordova plugins, you need to
call plugman or cordova plugin add command inside the src-
cordova folder.

Directives, Plugins, SSR, and More Chapter 11

[495]

Configuring quasar.conf on Cordova
For Cordova development, you can set some special flags on the quasar.conf.js file in
the root folder:

cordova: {
 iosStatusBarPadding: true/false, // add the dynamic top padding on
 // iOS mobile devices
 backButtonExit: true/false // Quasar handles app exit on mobile phone
 // back button
},

Commands
You can run the Quasar-CLI commands by opening Terminal (macOS or Linux) or
the Command Prompt/PowerShell (Windows) and executing one of the following:

If you don't have a Cordova environment already configured on your
desktop, you can find more information on how to set it up here: https:/
/quasar. dev/ quasar- cli/ developing- cordova- apps/
preparation#Android- setup.

quasar dev -m cordova -T android – To start development mode as an
Android Device Emulator
quasar build -m cordova -T android – To build the code as Android
quasar dev -m cordova -T ios – To start development mode as an iOS
device emulator (macOS only)
quasar build -m cordova -T ios – To start build mode as an iOS device
emulator (macOS only)

Developing a desktop application (Electron)
To develop an SSR, we first need to inform Quasar that we want to add a new mode of
development. Open Terminal (macOS or Linux) or the Command
Prompt/PowerShell (Windows) and execute the following command:

> quasar mode add electron

Quasar-CLI will create a folder called src-electron, which will have an Electron project
inside.

https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup
https://quasar.dev/quasar-cli/developing-cordova-apps/preparation#Android-setup

Directives, Plugins, SSR, and More Chapter 11

[496]

The folder structure for Electron projects looks like this:

src-electron/
├── icons/
├── main-process/
├── electron-flag.d.ts

Inside the icons folder, you will find the icons that electron-packager will use when
building your project. In the main-process folder will be your main Electron files, spliced
into two files: one that will only be called on development and another that will be called
on development and production.

Configuring quasar.conf on Electron
For Electron development, you can set some special flags on the quasar.conf.js file in
the root folder:

electron: {
 // optional; webpack config Object for
 // the Main Process ONLY (/src-electron/main-process/)
 extendWebpack (cfg) {
 // directly change props of cfg;
 // no need to return anything
 },

 // optional; EQUIVALENT to extendWebpack() but uses webpack-chain;
 // for the Main Process ONLY (/src-electron/main-process/)
 chainWebpack (chain) {
 // chain is a webpack-chain instance
 // of the Webpack configuration
 },

 bundler: 'packager', // or 'builder'

 // electron-packager options
 packager: {
 //...
 },

 // electron-builder options
 builder: {
 //...
 }
},

Directives, Plugins, SSR, and More Chapter 11

[497]

The packager key uses the API options for the electron-packager
module, and the builder key uses the API options for the electron-
builder module.

Commands
You can run the Quasar-CLI commands by opening Terminal (macOS or Linux) or
the Command Prompt/PowerShell (Windows) and executing one of the following:

quasar dev -m electron – To start development mode as Electron
quasar build -m electron – To build the code as Electron

How it works...
This is all possible because Quasar framework encapsulates the building, parsing, and
bundling for you on the CLI. You don't need to worry about webpack and configurations
with Electron, Cordova, or even Babel.

A simple CLI command can generate an entirely new page, layout, component, store, route,
or even a new build for you. As the CLI is just a wrapper around Vue, webpack, Babel, and
other tools, you are not tied to using only Quasar visual components. If you don't want to
use them, it's possible to not import them and use the power of the CLI for building your
application.

See also
You can check out more about Quasar framework in the documentation at https:/ /
quasar.dev/introduction- to- quasar.

Read more about SPA development with Quasar at https:/ /quasar. dev/ quasar- cli/
developing-spa/introduction.

Read more about PWA development with Quasar at https:/ /quasar. dev/quasar- cli/
developing-pwa/introduction.

Read more about SSR development with Quasar at https:/ / quasar. dev/ quasar- cli/
developing-ssr/introduction.

Read more about mobile application development with Quasar at https:/ /quasar. dev/
quasar-cli/developing- cordova- apps/ introduction.

https://quasar.dev/introduction-to-quasar
https://quasar.dev/introduction-to-quasar
https://quasar.dev/introduction-to-quasar
https://quasar.dev/introduction-to-quasar
https://quasar.dev/introduction-to-quasar
https://quasar.dev/introduction-to-quasar
https://quasar.dev/introduction-to-quasar
https://quasar.dev/introduction-to-quasar
https://quasar.dev/introduction-to-quasar
https://quasar.dev/introduction-to-quasar
https://quasar.dev/introduction-to-quasar
https://quasar.dev/introduction-to-quasar
https://quasar.dev/introduction-to-quasar
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-spa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-pwa/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-ssr/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction
https://quasar.dev/quasar-cli/developing-cordova-apps/introduction

Directives, Plugins, SSR, and More Chapter 11

[498]

Read more about the Cordova project at https:/ /cordova. apache. org.

Read more about desktop application development with Quasar at https:/ /quasar. dev/
quasar-cli/developing- electron- apps/ introduction.

Read more about the Electron project at https:/ / electronjs. org/ .

Read more about electron-packager at https:/ /github. com/ electron/ electron-
packager.

Find the electron-packager options API at https:/ /electron. github. io/ electron-
packager/master/ interfaces/ electronpackager. options. html.

Read more about electron-build at https:/ /www. electron. build/ .

Find the electron-build options API at https:/ / www.electron. build/ configuration/
configuration.

Creating smarter Vue watchers and
computed properties
In Vue, using watchers and computed properties is always an excellent solution to check
and cache your data, but sometimes that data needs some special treatment or needs to be
manipulated differently than expected. There are some ways to give these Vue APIs a new
life, helping your development and productivity.

How to do it...
We will divide this recipe into two categories: one for the watchers and another for the
computed properties. Some methods are commonly used together, such as the non-cached
computed and deep-watched values.

Watchers
These three watcher recipes were selected to improve productivity and the final code
quality. The usage of these methods can reduce code duplication and improve code reuse.

https://cordova.apache.org
https://cordova.apache.org
https://cordova.apache.org
https://cordova.apache.org
https://cordova.apache.org
https://cordova.apache.org
https://cordova.apache.org
https://cordova.apache.org
https://cordova.apache.org
https://cordova.apache.org
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://quasar.dev/quasar-cli/developing-electron-apps/introduction
https://electronjs.org/
https://electronjs.org/
https://electronjs.org/
https://electronjs.org/
https://electronjs.org/
https://electronjs.org/
https://electronjs.org/
https://electronjs.org/
https://electronjs.org/
https://electronjs.org/
https://github.com/electron/electron-packager
https://github.com/electron/electron-packager
https://github.com/electron/electron-packager
https://github.com/electron/electron-packager
https://github.com/electron/electron-packager
https://github.com/electron/electron-packager
https://github.com/electron/electron-packager
https://github.com/electron/electron-packager
https://github.com/electron/electron-packager
https://github.com/electron/electron-packager
https://github.com/electron/electron-packager
https://github.com/electron/electron-packager
https://github.com/electron/electron-packager
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://electron.github.io/electron-packager/master/interfaces/electronpackager.options.html
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/configuration/configuration
https://www.electron.build/configuration/configuration
https://www.electron.build/configuration/configuration
https://www.electron.build/configuration/configuration
https://www.electron.build/configuration/configuration
https://www.electron.build/configuration/configuration
https://www.electron.build/configuration/configuration
https://www.electron.build/configuration/configuration
https://www.electron.build/configuration/configuration
https://www.electron.build/configuration/configuration
https://www.electron.build/configuration/configuration
https://www.electron.build/configuration/configuration
https://www.electron.build/configuration/configuration

Directives, Plugins, SSR, and More Chapter 11

[499]

Using method names
All watchers can receive a method name instead of functions, preventing you from writing
duplicated code. This will help you avoid re-writing the same code, or checking for values
and passing them to the functions:

<script>
export default {
 watch: {
 myField: 'myFunction',
 },
 data: () => ({
 myField: '',
 }),
 methods: {
 myFunction() {
 console.log('Watcher using method name.');
 },
 },
};
</script>

Immediate calls and deep listening
You can set your watcher to execute as soon as it is created by passing a property
immediately and make it execute no matter the value's depth of mutation by calling the
deep property:

<script>
export default {
 watch: {
 myDeepField: {
 handler(newVal, oldVal) {
 console.log('Using Immediate Call, and Deep Watch');
 console.log('New Value', newVal);
 console.log('Old Value', oldVal);
 },
 deep: true,
 immediate: true,
 },
 },
 data: () => ({
 myDeepField: '',
 }),
};
</script>

Directives, Plugins, SSR, and More Chapter 11

[500]

Multiple handlers
You can make your watcher execute various handlers at the same time, without needing to
set the watch handler to bind to a unique function:

<script>
export default {
 watch: {
 myMultiField: [
 'myFunction',
 {
 handler(newVal, oldVal) {
 console.log('Using Immediate Call, and Deep Watch');
 console.log('New Value', newVal);
 console.log('Old Value', oldVal);
 },
 immediate: true,
 },
],
 },
 data: () => ({
 myMultiField: '',
 }),
 methods: {
 myFunction() {
 console.log('Watcher Using Method Name');
 },
 },
};
</script>

Computed
Sometimes computed properties are just used as simple cache-based values, but there is
more power to them. Here are two methods that show how to extract this power.

No cached value
You can make your computed property an always updated value, rather than a cached
value, by setting the cache property to false:

<script>
export default {
 computed: {
 field: {
 get() {

Directives, Plugins, SSR, and More Chapter 11

[501]

 return Date.now();
 },
 cache: false,
 },
 },
};
</script>

Getter and setter
You can add a setter function to your computed property and make it a fully complete data
attribute, but not bound to the data.

It's not recommended to do this, but it's possible, and in some cases, you may need to do it.
An example is when you have to save a date in milliseconds, but you need to display it in
an ISO format. Using this method, you can have the dateIso property get and set the
value:

<script>
export default {
 data: () => ({
 dateMs: '',
 }),
 computed: {
 dateIso: {
 get() {
 return new Date(this.dateMs).toISOString();
 },
 set(v) {
 this.dateMs = new Date(v).getTime();
 },
 },
 },
};
</script>

See also
You can find more information about the Vue watch API at https:/ / vuejs. org/ v2/api/
#watch.

You can find more information about the Vue computed API at https:/ / vuejs. org/ v2/
api/#computed.

https://vuejs.org/v2/api/#watch
https://vuejs.org/v2/api/#watch
https://vuejs.org/v2/api/#watch
https://vuejs.org/v2/api/#watch
https://vuejs.org/v2/api/#watch
https://vuejs.org/v2/api/#watch
https://vuejs.org/v2/api/#watch
https://vuejs.org/v2/api/#watch
https://vuejs.org/v2/api/#watch
https://vuejs.org/v2/api/#watch
https://vuejs.org/v2/api/#watch
https://vuejs.org/v2/api/#watch
https://vuejs.org/v2/api/#watch
https://vuejs.org/v2/api/#computed
https://vuejs.org/v2/api/#computed
https://vuejs.org/v2/api/#computed
https://vuejs.org/v2/api/#computed
https://vuejs.org/v2/api/#computed
https://vuejs.org/v2/api/#computed
https://vuejs.org/v2/api/#computed
https://vuejs.org/v2/api/#computed
https://vuejs.org/v2/api/#computed
https://vuejs.org/v2/api/#computed
https://vuejs.org/v2/api/#computed
https://vuejs.org/v2/api/#computed
https://vuejs.org/v2/api/#computed

Directives, Plugins, SSR, and More Chapter 11

[502]

Creating a Nuxt.js SSR with Python Flask as
the API
Nuxt.js is a server-side rendering framework that renders everything at the server and
delivers it loaded. With this process, the page gets the power of SEO and fast API fetching
before rendering.

Using it correctly, you can achieve a powerful SPA or PWA with other functions that
weren't possible before.

In the backend, Python is an interpreted dynamic language that is fast and stable. With an
active user base and quick learning curve, this is perfect for server APIs.

Joining both together, it is possible to get a powerful application deployed as fast as
possible.

Getting ready
The pre-requisites for this recipe are as follows:

Node.js 12+
Python

The Node.js global object that is required is as follows:

create-nuxt-app

To install create-nuxt-app, you need to execute the following command in
Terminal (macOS or Linux) or the Command Prompt/PowerShell (Windows):

> npm install -g create-nuxt-app

For the backend of this recipe, we will use Python. The Python global objects required for
this recipe are as follows:

flask

flask-restful

flask-cors

Directives, Plugins, SSR, and More Chapter 11

[503]

To install flask, flask-restful, and flask-cors, you need to execute the following
command in Terminal (macOS or Linux) or the Command Prompt/PowerShell (Windows):

> pip install flask
> pip install flask-restful
> pip install flask-cors

How to do it...
We will need to split our recipe into two parts. The first part is the backend part (or API if
you prefer), which will be done with Python and Flask. The second part will be the
frontend part, and it will run on Nuxt.js in SSR mode.

Creating your Flask API
Our API server will be based on the Python Flask framework. We will need to create a
server folder to store our server files and start the development of the server.

You will need to install the following Python packages. To do so, open Terminal (macOS or
Linux) or the Command Prompt/PowerShell (Windows) and execute the following
commands:

To install the Flask framework, use the following command:

> pip install flask

To install the Flask RESTful extension, use the following command:

> pip install flask-restful

To install the Flask CORS extension, use the following command:

> pip install flask-cors

Initializing the application
To create our simple RESTful API, we will create a single file and use SQLite3 as a database:

Create a folder named server and create a file named app.py in it:1.

import sqlite3 as sql
from flask import Flask
from flask_restful import Resource, Api, reqparse
from flask_cors import CORS

Directives, Plugins, SSR, and More Chapter 11

[504]

app = Flask(__name__)
api = Api(app)
CORS(app)

parser = reqparse.RequestParser()

conn = sql.connect('tasks.db')
conn.execute('CREATE TABLE IF NOT EXISTS tasks (id INTEGER PRIMARY
 KEY AUTOINCREMENT, task TEXT)')
conn.close()

Then, we will create our ToDo class, and on the constructor of the class, we will2.
connect to the database and select all tasks:

class ToDo(Resource):
 def get(self):
 con = sql.connect('tasks.db')
 cur = con.cursor()
 cur.execute('SELECT * from tasks')
 tasks = cur.fetchall()
 con.close()

 return {
 'tasks': tasks
 }

To implement the RESTful POST method, create a function that receives task as3.
an argument, and will add an object with the task that was added, the status
of the addition to the tasks list, and then return the list to the user:

 def post(self):
 parser.add_argument('task', type=str)
 args = parser.parse_args()
 con = sql.connect('tasks.db')
 cur = con.cursor()
 cur.execute('INSERT INTO tasks(task) values ("
 {}")'.format(args['task']))
 con.commit()
 con.close()

 return {
 'status': True,
 'task': '{} added.'.format(args['task'])
 }

Directives, Plugins, SSR, and More Chapter 11

[505]

Next, we will create the RESTful PUT method by creating a function that will4.
receive the task and id as arguments of the function. Then, this function will
update task with the current id, and return to the user the updated task and
the status of the update:

def put(self, id):
 parser.add_argument('task', type=str)
 args = parser.parse_args()

 con = sql.connect('tasks.db')
 cur = con.cursor()
 cur.execute('UPDATE tasks set task = "{}" WHERE id =
 {}'.format(args['task'], id))
 con.commit()
 con.close()

 return {
 'id': id,
 'status': True,
 'task': 'The task {} was updated.'.format(id)
 }

Then, create a RESTful DELETE method by creating a function that will receive5.
the ID of the task, which will be removed, and then will return to the user the
ID, status, and the task that was removed:

 def delete(self, id):
 con = sql.connect('tasks.db')
 cur = con.cursor()
 cur.execute('DELETE FROM tasks WHERE id = {}'.format(id))
 con.commit()
 con.close()

 return {
 'id': id,
 'status': True,
 'task': 'The task {} was deleted.'.format(id)
 }

Finally, we will add the ToDo class as a resource to the API on the '/' route, and6.
initialize the application:

api.add_resource(ToDo, '/', '/<int:id>')

if __name__ == '__main__':
 app.run(debug=True)

Directives, Plugins, SSR, and More Chapter 11

[506]

Starting the server
To start your server, you need to open Terminal (macOS or Linux) or the Command
Prompt/PowerShell (Windows) and execute the following command:

> python server/app.py

Your server will be running and listening on http://localhost:5000.

Creating your Nuxt.js server
To render your application, you will need to create your Nuxt.js application. Using the
Nuxt.js create-nuxt-app CLI, we will create it and choose some options for it. Open
Terminal (macOS or Linux) or the Command Prompt/PowerShell (Windows) and
execute the following command:

> create-nuxt-app client

Then, you will be asked some questions about the installation process. We will use the
following:

When you start creating your project with Nuxt-CLI, it will first ask for the1.
project name. In our case, we will choose client as the name:

Project Name: client

Then you need to choose the programming language that will be used in the2.
project. We will select JavaScript:

> Programming language: (Use arrow keys)
 ❯ JavaScript
 TypeScript

Next, Nuxt-CLI will ask for the package manager that will be used to install the3.
dependencies. In our case, we choose Yarn, but you can choose the one you
prefer:

> Package manager: (Use arrow keys)
 ❯ Yarn
 npm

Now, Nuxt-CLI will ask for a UI framework to be used in the project. From the4.
available list, choose Bulma:

> UI Framework: Bulma

Directives, Plugins, SSR, and More Chapter 11

[507]

Then, Nuxt-CLI will ask whether you want to select extra modules for the5.
project. We will select Axios from the current list of modules:

> Nuxt.JS modules: Axios

Nuxt-CLI will ask for the linting tools we want to use on our project; we will6.
choose None:

> Choose Linting tools: None

Then, Nuxt-CLI will ask for the test framework we want to implement on our7.
project; we will choose None:

> Choose Test Framework: None

Next, Nuxt-CLI will ask for the rendering mode that will be used by the project;8.
we will select Universal (SSR):

> Choose Rendering Mode: Universal (SSR)

Nuxt-CLI will ask for the deployment target that will be used on the building9.
structure; we will choose Server (Node.js hosting):

> Deployment target: Server (Node.js hosting)

Finally, Nuxt-CLI will ask for the development tool configuration that we want10.
to use; we will select jsconfig.json:

> Development tools: jsconfig.json

After the CLI finishes the installation process, we can open the client folder on our editor
or IDE.

Adding Bulma to the global CSS
To add Bulma to the application, we need to declare it in the nuxt configuration file by
doing the following:

Open nuxt.config.js, in the client folder.1.
Then, update the CSS property and add the Bulma import, to make it available in2.
the global scope of the application:

export default {
 /* We need to change only the css property for now, */
 /* the rest we will maitain the same */

Directives, Plugins, SSR, and More Chapter 11

[508]

 /*
 ** Global CSS
 */
 css: ['bulma/css/bulma.css'],
}

Configuring the axios plugin
To start creating our API calls, we need to add the axios plugin in our application:

To do so, we will need to open the nuxt.config.js, file in the root folder, and1.
add the axios property:

export default {
 /* We need to change only the axios property for now, */
 /* the rest we will maitain the same */
 axios: {},
}

On the axios property, add the following configuration properties:2.
HOST and define it as '127.0.0.1'
PORT and define it as '5000'
https and define it as false
 debug and define it as true:

axios: {
 HOST: '127.0.0.1',
 PORT: '5000',
 https: false,
 debug: true, // Only on development
},

Running the Nuxt.js server
Now that you have everything set, you want to run the server and start to see what is going
on. Nuxt.js comes with some pre-programmed npm scripts out of the box. You can run
one of the following commands by opening Terminal (macOS or Linux) or the Command
Prompt/PowerShell (Windows) and executing the following:

npm run dev – To run the server in development mode
npm run build – To build the files with webpack and minify the CSS and JS for
production

Directives, Plugins, SSR, and More Chapter 11

[509]

npm run generate – To generate static HTML pages for each route
npm start – To start the server in production, after running the build command

Creating the TodoList component
For the TodoList app, we will need a component that will fetch the tasks and delete the
tasks.

Single file component <script> section
Here, we will create the <script> section of the single file component:

In the client/components folder, create a file named TodoList.vue and open1.
it.
Then, we will export a default JavaScript object, with a name property defined2.
as TodoList, then define the beforeMount life cycle hook as an asynchronous
function. Define the computed and methods properties as an empty JavaScript
object. Then, create a data property defined as a singleton function returning a
JavaScript object. In the data property, create a taskList property as an empty
array:

export default {
 name: 'TodoList',
 data: () => ({
 taskList: [],
 }),
 computed: {},
 async beforeMount() {},
 methods: {},
};

In the computed property, create a new property called taskObject. This3.
computed property will return the result of Object.fromEntries(new
Map(this.taskList)):

taskObject() {
 return Object.fromEntries(new Map(this.taskList));
 },

Directives, Plugins, SSR, and More Chapter 11

[510]

In the methods property, create a new method called getTask – it will be an4.
asynchronous function. This method will fetch the tasks from the server, then
will use the response to define the taskList property:

async getTasks() {
 try {
 const { tasks } = await
 this.$axios.$get('http://localhost:5000');
 this.taskList = tasks;
 } catch (err) {
 console.error(err);
 }
 },

Then, create a deleteTask method. This method will be an asynchronous5.
function and will receive an id as a parameter. Using this parameter, it will
execute an API execution to delete the task and then execute the getTask
method:

async deleteTask(i) {
 try {
 const { status } = await
 this.$axios.$delete(`http://localhost:5000/${i}`);
 if (status) {
 await this.getTasks();
 }
 } catch (err) {
 console.error(err);
 }
 },

Finally, in the beforeMount life cycle hook, we will execute the getTask6.
method:

async beforeMount() {
 await this.getTasks();
 },

Directives, Plugins, SSR, and More Chapter 11

[511]

Single file component <template> section
It's time to create the <template> section of the single file component:

In the client/components folder, open the TodoList.vue file.1.
In the <template> section, create a div HTML element, and add the class2.
attribute with the value box:

<div class="box"></div>

As a child of the div.box HTML element, create a div HTML element, with the3.
class attribute defined as content, with a child element defined as an ol
HTML element and the attribute type defined as 1:

<div class="content">
 <ol type="1">
</div>

As a child of the ol HTML element, create a li HTML element, with the v-for4.
directive defined as (task, i) in taskObject, and the key attribute defined
as a variable, i:

<li
 v-for="(task, i) in taskObject"
 :key="i">

Finally, as a child of the ol HTML element, add {{ task }} as the inner text,5.
and as a sibling of the text, create a button HTML element, the class attribute
defined as delete is-small, and the @click event listener defined as the
deleteTask method, passing the i variable as an argument:

{{ task }}
<button
 class="delete is-small"
 @click="deleteTask(i)"
/>

Creating the Todo form component
To send the task to the server, we will need a form. That means we need to make a form
component that will handle this for us.

Directives, Plugins, SSR, and More Chapter 11

[512]

Single file component <script> section
Here, we will create the <script> section of the single file component:

In the client/components folder, create a file named TodoForm.vue and open1.
it.
Then, we will export a default JavaScript object, with a name property defined2.
as TodoForm, then define the methods property as an empty JavaScript object.
Then, create a data property defined as a singleton function returning a
JavaScript object. In the data property, create a task property as an empty array:

export default {
 name: 'TodoForm',
 data: () => ({
 task: '',
 }),
 methods: {},
};

In the methods property, create a method named save, which will be an3.
asynchronous function. This method will send the task to the API, and if the
API receives Ok Status, it will emit a 'new-task' event with the task and
clean task property:

async save() {
 try {
 const { status } = await
 this.$axios.$post('http://localhost:5000/', {
 task: this.task,
 });
 if (status) {
 this.$emit('new-task', this.task);
 this.task = '';
 }
 } catch (err) {
 console.error(err);
 }
 },

Single file component <template> section
It's time to create the <template> section of the single file component:

In the client/components folder, open the TodoForm.vue file.1.

Directives, Plugins, SSR, and More Chapter 11

[513]

In the <template> section, create a div HTML element, and add2.
the class attribute with the value box:

<div class="box"></div>

Inside the div.box HTML element, create a div HTML element with the class3.
attribute defined as field has-addons:

<div class="field has-addons"></div>

Then, inside the div.field.has-addons HTML element, create a child div4.
HTML element, with the class attribute defined as control is-expanded,
and add a child input HTML element with the v-model directive defined as the
task property. Then, define the class attribute as input, the type attribute as
text, and placeholder as ToDo Task. Finally, in the @keypress.enter event
listener, define the save method:

<div class="control is-expanded">
 <input
 v-model="task"
 class="input"
 type="text"
 placeholder="ToDo Task"
 @keypress.enter="save"
 >
</div>

Finally, as a sibling of the div.control.is-expanded HTML element, create a5.
div HTML element, with the class attribute defined as control, and add a
child a HTML element, with the class attribute defined as button is-info,
and on the @click event listener, define it as the save method. As inner text of
the a HTML element, add the Save Task text:

<div class="control">
 <a
 class="button is-info"
 @click="save"
 >
 Save Task

</div>

Directives, Plugins, SSR, and More Chapter 11

[514]

Creating the layout
Now we need to create a new layout to wrap the application as a simple high-order
component. In the client/layouts folder, open the file named default.vue, remove the
<style> section of the file, and change the <template> section to the following:

<template>
 <nuxt />
</template>

Creating the page
Now we will create the main page of our application, where the user will be able to view
their TodoList and add a new TodoItem.

Single file component <script> section
Here, we will create the <script> section of the single file component:

Open the index.vue file in the client/pages folder.1.
Import the todo-form and the todo-list component that we created, then we2.
will export a default JavaScript object, with a components property with the
imported components:

<script>
import TodoForm from '../components/TodoForm.vue';
import TodoList from '../components/TodoList.vue';

export default {
 components: { TodoForm, TodoList },
};
</script>

Directives, Plugins, SSR, and More Chapter 11

[515]

Single file component <template> section
It's time to create the <template> section of the single file component:

In the client/pages folder, open the index.vue file.1.
In the <template> section, create a div HTML element, add as a child a2.
section HTML element, with the class property defined as hero is-
primary. Then, as a child of the section HTML element, create a div HTML
element, with the class attribute defined as hero-body. As a child of the
div.hero-body HTML element, create a div HTML element with the class
attribute defined as container and add as a child an h1 HTML element with
class defined as title, with the inner text as Todo App:

<section class="hero is-primary">
 <div class="hero-body">
 <div class="container">
 <h1 class="title">
 Todo App
 </h1>
 </div>
 </div>
</section>

As a sibling of the section.hero.is-primary HTML element, create a3.
section HTML element, with the class attribute defined as section and the
style attribute defined as padding: 1rem. Add as a child a div HTML element
with the class attribute defined as container with a child todo-list
component with the ref attribute defined as list:

<section
 class="section"
 style="padding: 1rem"
>
 <div class="container">
 <todo-list
 ref="list"
 />
 </div>
</section>

Directives, Plugins, SSR, and More Chapter 11

[516]

Finally, as a sibling of the section.section HTML element, create4.
a section HTML element, with the class attribute defined as section and
the style attribute defined as padding: 1rem. Add as a child a div HTML
element with the class attribute defined as container with a child todo-
form component, with the @new-task event listener defined
as $refs.list.getTasks():

<section
 class="section"
 style="padding: 1rem"
>
 <div class="container">
 <todo-form
 @new-task="$refs.list.getTasks()"
 />
 </div>
</section>

How it works...
This recipe shows the integration between a local API server via Python and an SSR
platform served via Nuxt.js.

When you start the Python server first, you are opening the ports to receive data from
clients as a passive client, just waiting for something to happen to start your code. With the
same process, the Nuxt.js SSR can do a lot of stuff behind the scenes, but when it finishes,
it goes idle, waiting for user action.

When the user interacts with the frontend, the application can send some requests to the
server that will be handed back to the user with data, to be shown on the screen.

See also
You can learn more about Flask and the HTTP project inside Python at https:/ /
palletsprojects.com/ p/ flask/ .

If you want to learn more about Nuxt.js, you can read the documentation
at https://nuxtjs.org/guide/.

If you want to learn more about the Nuxt.js implementation of Axios and how to
configure it and use the plugin, you can read the documentation
at https://axios.nuxtjs.org/options.

https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://nuxtjs.org/guide/
https://nuxtjs.org/guide/
https://axios.nuxtjs.org/options
https://axios.nuxtjs.org/options

Directives, Plugins, SSR, and More Chapter 11

[517]

If you want to learn more about Bulma, the CSS framework used in this recipe, you can find
more information at https:/ /bulma. io.

The dos and don'ts of Vue applications
Security is always something everyone is worried about, and this is no different for
technology. You need to be aware and alert all the time. In this section, we'll look at how
you can prevent attacks with some techniques and simple solutions.

Linters
When using ESLint, make sure you have enabled the Vue plugin, and you are following the
strongly recommended rules. Those rules will help you with the development, checking for
some common mistakes that can open doors to attacks such as the v-html directive.

In a Vue-CLI project, with the options for linters selected, a file named .eslintrc.js will
be created along with the project files. In this file, a set of basic rules will be pre-
determined. The following is an example of a set of good practice rules for an ESLint +
AirBnb project:

module.exports = {
 root: true,
 env: {
 node: true,
 },
 extends: [
 'plugin:vue/essential',
 'plugin:vue/recommended',
 'plugin:vue/strongly-recommended',
 '@vue/airbnb',
],
parserOptions: {
 parser: 'babel-eslint',
 },
rules: {
 'no-console': process.env.NODE_ENV === 'production' ? 'error' : 'off',
 'no-debugger': process.env.NODE_ENV === 'production' ? 'error' : 'off',
 },
};

https://bulma.io
https://bulma.io
https://bulma.io
https://bulma.io
https://bulma.io
https://bulma.io
https://bulma.io
https://bulma.io

Directives, Plugins, SSR, and More Chapter 11

[518]

Now, if you have any code that breaks the lint rules, it won't be parsed on development or
build.

JavaScript
JavaScript has some vulnerabilities that can be prevented by following some simple
checklists and simple implementations. Those implementations can be in client-server
communications or DOM manipulation, but you always need to be careful not to forget
them.

Here are some tips for using JavaScript:

Always use an authenticated and encrypted API when possible. Remember that
JWT isn't encrypted by itself; you need to add the layer of encryption (JWE) to
have the whole JSON.
Always use SessionStorage if you want to store an API token.
Always sanitize the HTML input from the user before sending it to the server.
Always sanitize the HTML before rendering it to the DOM.
Always escape any RegeExp from the user; it will be executed, to prevent any
CPU thread attack.
Always catch errors and don't show any stack trace to the user, to prevent any
code manipulation.

Here are some tips on what not to do when using JavaScript:

Never use eval(); it makes your code run slowly and opens a door for
malicious code to execute inside your code.
Never render any input from the user without any sanitization or escaping the
data.
Never render any HTML on the DOM without any sanitization.
Never store an API token on LocalStorage.
Never store sensitive data in the JWT object.

Vue
When developing a Vue application, you need to check for some basic rules that can help
the development and won't open any doors for the external manipulation of your
application.

Directives, Plugins, SSR, and More Chapter 11

[519]

Here are some tips for using Vue:

Always add type validation to your props, and if possible, a validator check.
Avoid the global registration of components; use local components.
Always use lazy-loaded components, when possible.
Use $refs instead of direct DOM manipulation.

Here are some tips on what not to do when using Vue:

Never store Vue, $vm, $store, or any application variable on the window or any
global scope.
Never modify the Vue prototype; if you need to add a new variable to the
prototype, make a new Vue plugin.
It's not recommended to use a direct connection between components, as it will
make the component bound to the parent or child.

See also
You can find more information about XSS (cross-site scripting) on OWASP CheatCheat
at https://github. com/ OWASP/ CheatSheetSeries/ blob/ master/ cheatsheets/ DOM_ based_
XSS_Prevention_Cheat_ Sheet. md and about HTML XSS at https:/ / html5sec. org/ .

Find more information about eslint-vue-plugin at https:/ /eslint. vuejs. org/.

You can read more about Node.js security best practices at https:/ /github. com/ i0natan/
nodebestpractices#6- security- best- practices.

Find more information about the dos and don'ts of a Vue application at https:/ /quasar.
dev/security/dos- and- donts.

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://html5sec.org/
https://html5sec.org/
https://html5sec.org/
https://html5sec.org/
https://html5sec.org/
https://html5sec.org/
https://html5sec.org/
https://html5sec.org/
https://html5sec.org/
https://html5sec.org/
https://eslint.vuejs.org/
https://eslint.vuejs.org/
https://eslint.vuejs.org/
https://eslint.vuejs.org/
https://eslint.vuejs.org/
https://eslint.vuejs.org/
https://eslint.vuejs.org/
https://eslint.vuejs.org/
https://eslint.vuejs.org/
https://eslint.vuejs.org/
https://eslint.vuejs.org/
https://eslint.vuejs.org/
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://github.com/i0natan/nodebestpractices#6-security-best-practices
https://quasar.dev/security/dos-and-donts
https://quasar.dev/security/dos-and-donts
https://quasar.dev/security/dos-and-donts
https://quasar.dev/security/dos-and-donts
https://quasar.dev/security/dos-and-donts
https://quasar.dev/security/dos-and-donts
https://quasar.dev/security/dos-and-donts
https://quasar.dev/security/dos-and-donts
https://quasar.dev/security/dos-and-donts
https://quasar.dev/security/dos-and-donts
https://quasar.dev/security/dos-and-donts
https://quasar.dev/security/dos-and-donts
https://quasar.dev/security/dos-and-donts
https://quasar.dev/security/dos-and-donts
https://quasar.dev/security/dos-and-donts

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-on Nuxt.js Web Development
Lau Tiam Kok

ISBN: 978-1-78995-269-8

Integrate Nuxt.js with the latest version of Vue.js
Extend your Vue.js applications using Nuxt.js pages, components, routing,
middleware, plugins, and modules
Create a basic real-time web application using Nuxt.js, Node.js, Koa.js and
RethinkDB
Develop universal and static-generated web applications with Nuxt.js, headless
CMS and GraphQL
Build Node.js and PHP APIs from scratch with Koa.js, PSRs, GraphQL,
MongoDB and MySQL
Secure your Nuxt.js applications with the JWT authentication
Discover best practices for testing and deploying your Nuxt.js applications

https://www.packtpub.com/product/hands-on-nuxt-js-web-development/9781789952698

Other Books You May Enjoy

[521]

Svelte 3 Up and Running
Alessandro Segala

ISBN: 978-1-83921-362-5

Understand why Svelte 3 is the go-to framework for building static web apps
that offer great UX
Explore the tool setup that makes it easier to build and debug Svelte apps
Scaffold your web project and build apps using the Svelte framework
Create Svelte components using the Svelte template syntax and its APIs
Combine Svelte components to build apps that solve complex real-world
problems
Use Svelte’s built-in animations and transitions for creating components
Implement routing for client-side single-page applications (SPAs)
Perform automated testing and deploy your Svelte apps, using CI/CD when
applicable

https://www.packtpub.com/product/svelte-3-up-and-running/9781839213625

Other Books You May Enjoy

[522]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

4
404 error page
 creating 309, 310
404 errors, vue-router history mode
 reference link 314

A
about page, routes
 creating 276
 single file component script section 277
Animate.css
 custom transition class, creating with 375, 376,

377

 URL 377
animations
 creating, for lists and groups 384, 385, 386, 387
 creating, on page render 382, 383, 384
Ant-Design
 adding, to Vue-CLI project 430, 431
 drawer menu, creating with 432, 434
 layout component, creating with 434, 436
 layout, creating with 428, 431, 441
 page, creating with 428, 441
 top-bar component, creating with 431, 432
 user form, creating with 428, 441
 Vue-CLI project, creating with 429, 430
any type 48
API methods
 creating 201
 DELETE method function 205
 GET method function 201
 PATCH method function 203
 POST method function 202
 PUT method function 203
 UPDATE method function 204
application programming interface (API) 80

application's main component, dynamic router path
 modifying 285
 single file component template section 285
application's main component, programmatic

navigation
 modifying 281
 single file component script section 281
application's main component, routes
 modifying 277
 single file component script section 277
 single file component template section 278
application, page
 creating 514
 single file component script section 514
 single file component template section 515, 516
application
 preparing, for deployment in Netlify 447, 448
array 46
async components
 reference link 197
attribute inheritance
 used, for creating components 28, 30
authentication middleware
 adding, to router 320, 322
 applying 314, 315
 creating 314, 315, 319
authentication module
 creating 366, 367
Axios instance configuration 286
axios instances
 component, modifying 234
 creating 230, 231
 HTTP function, modifying 231
 reference link 237
axios interceptor
 adding, to HTTP methods functions 240
 creating 238, 239

[524]

axios request interceptor
 reference link 241
axios
 reference link 230
 using, as HTTP client 224, 225

B
Blob response type
 reference link 212
boolean 46
Buefy
 adding, to Vue-CLI project 398
 footer component, creating with 401
 header menu component, creating with 398,

399, 400
 hero section component, creating with 400
 layout component, creating with 402, 403
 layout, creating with 395, 398
 page, creating with 395
 pages, creating with 398
 URL 409
 user form, creating with 395
 user registration form, creating with 403, 404,

406, 407
 Vue-CLI project, creating with 396
Bulma
 adding, to global CSS 507
 URL 409

C
Cascading Style Sheets (CSS) 59, 98
children components data
 accessing 170, 171, 182
 manipulating 180, 181, 182
 star rating input, creating 171, 172, 173, 174,

175

 StarRating component, creating 179
 StarRatingDisplay component, creating 176,

177, 178
class and style bindings
 reference link 122
class-based animation, and transitions with Vue

classes
 reference link 375
code

 extracting, for mixin 74, 75
command-line interface (CLI) 92
complex function 50
component mixin
 creating 191, 193, 194
 working 195
component routing
 creating 243
 route mixin, creating 246
 single file component script section 243, 244
 single file component template section 245
component, axios instances
 single file component script section 234, 235
 single file component template section 235, 236
component, MirageJs mock server
 creating 219
 single file component script section 219, 220,

221

 single file component template section 222, 223
component, random cat image
 adding, to Vue application 211
 creating 208
 running 211
 single file component script section 208, 209
 single file component style section 211
 single file component template section 209, 210
components
 creating, with attribute inheritance 28, 30
 creating, with composition API 34, 35, 36, 37,

38, 39
 creating, with multiple root elements 23, 27
 creating, with render function 25, 26, 27
 creating, with template structure 24, 25
 lazy loading technique 196, 197
 modifying 229
 named slots, using to place data 152, 155, 157
 slots, using to place data 151, 152, 155, 157
composition API
 used, for creating components 34, 35, 36, 37,

38, 39
computed properties
 about 500
 creating 110, 111, 112, 498
 getter 501
 no cached value 500

[525]

 reference link 112
 setter 501
 using 110, 111, 112
conditional filters
 creating, to sort list data 127, 130, 131, 132
conditional rendering
 reference link 109
contact page, routes
 creating 276
 single file component script section 276
 single file component template section 276
contact view, programmatic navigation
 modifying 281
 single file component script section 282
Cordova
 creating, in Vue with Quasar 486, 488
 URL 498
counter component
 creating 72, 73
create user component
 creating 257
 single file component script section 257
 single file component template section 258
CRUD interface
 creating, with Axios 241, 242
CSS animation
 creating 372, 373, 374, 375
 reference link 137
custom decorators, creating
 reference link 79
custom directive
 creating 473, 474, 475, 476, 477, 478, 479,

480, 481
custom hooks
 transactions, creating with 378, 379, 380, 381
custom styles
 adding 132, 133, 135, 136
custom transition class
 creating, with Animate.css 375, 376, 377
custom transition component
 creating 387, 388, 389, 390
custom Vue filter
 data and text, displaying with 113, 115, 116

D
data and text
 displaying, with custom filters 113, 115, 116
data
 passing, to component 157, 158, 159, 161, 162
 placing, in components with named slots 151,

152, 155, 157
 placing, in components with slots 152, 155, 157
 validating 157, 158, 159, 161, 163
decorators 51, 52
decorators, on ECMAScript
 reference link 79
DELETE method function 205
dependency injection component
 creating 186, 188, 189
 reference link 190
 working 190
desktop application (Electron)
 commands 497
 developing 495
 quasar.conf, configuring on 496
Document Object Model (DOM) 42, 97
drawer menu component
 creating, with Vuetify 413, 414, 415
drawer menu
 creating, with Ant-Design 432, 434
duck typing 50
dynamic component
 creating, with Vuex 353, 354, 361
 reference link 186
dynamic injected component
 creating 183, 184, 185
 working 185
dynamic router matching
 reference link 299
dynamic router path
 creating 283, 284
dynamic routes
 creating 295, 296, 298, 299
dynamic to-do list
 creating 105, 106, 107, 108, 109

[526]

E
ECMAScript dynamic import proposal
 reference link 326
Electron application
 creating, in Vue with Quasar 486, 488
electron-packager
 reference link 498
Electron
 URL 498
elements
 seamless transition, creating between 391, 392,

393

enum 47
event listener
 adding, to element 100, 101, 102, 103

F
fake JSON API server
 creating, with MirageJS 213, 214
Fetch API, to Axios
 about 225
 DELETE method function, modifying 229
 GET method function, modifying 226
 PATCH method function, modifying 228
 POST method function, modifying 227
 PUT method function, modifying 227
 UPDATE method function, modifying 228
Fetch API
 reference link 206
 wrapper, creating as HTTP client 199, 200
Fetch response body
 reference link 206
Firebase CLI
 configuring, to deploy on project 458, 459, 460,

461

Firebase Hosting
 reference link 461
Firebase project
 creating 456, 457
 reference link 457
Flask API
 application, initializing 503, 505
 creating 503
 server, starting 506

footer component
 creating, with Buefy 401
form validation
 adding, with Vuelidate 117, 119, 120, 121
FormData
 reference link 206
fragment
 about 23
 reference link 23
function 49
function decorator
 creating, with vue-class-component 76, 77, 78,

79

functional components
 creating 163, 164, 165, 168, 169
 reference link 170

G
generic user form component
 creating 252
 single file component script section 253
 single file component style section 257
 single file component template section 254
GET method function 201
GIF component
 creating 207
GitHub
 used, for preparing automatic deployment on

Netlify 449, 450
 used, for preparing automatic deployment on

Vercel 455, 456
global CSS
 Bulma, adding to 507
Google Firebase
 URL 457

H
header menu component
 creating, with Buefy 398, 399, 400
headers
 reference link 206
hello world
 component, creating 91, 92, 93, 95, 96
hero section component
 creating, with Buefy 400

[527]

hooks
 adding, to vue-class-component 79, 81, 82, 83
hot-module-reload (HMR)
 adding, for development 362, 363, 364
HTTP client
 axios, using as 224, 225
HTTP function, axios instances
 HTTP Fetch wrapper, modifying 232
 HTTP methods function, modifying 233
 MirageJS Server, modifying 233

I
input bindings
 reference link 100
input form
 creating, with two-way data binding 97, 98, 99,

100

integrated development environment (IDE) 52, 92
interfaces 50
is-color module
 reference link 170

J
JavaScript 518
JSONPlaceHolder API
 reference link 237

L
layout component
 creating, with Ant-Design 434, 436
 creating, with Buefy 402, 403
 creating, with Vuetify 416
layout
 creating 514
 creating, with Ant-Design 428, 431, 441
 creating, with Buefy 395, 398, 408
 creating, with Vuetify 409, 412, 426
lazy loading 196
lazy loading, adding to routes
 router manager, updating 324
 user routes, updating 325
Linters 517
list component
 creating 246
 single file component script section 246, 247

 single file component style section 252
 single file component template section 248, 249,

250

list rendering
 reference link 109
login view, authentication middleware
 creating 315
 single file component script section 315
 single file component style section 318
 single file component template section 316, 317

M
Material Design card anatomy
 reference link 157
Material Design cards
 reference link 151
Material Design
 URL 428
Math.random
 reference link 109
MirageJs mock server
 adding, to application 219
 creating 214, 217, 218
 DELETE route function, creating 217
 GET route function, creating 215
 mock database, creating 215
 PATCH route function, creating 216
 POST route function, creating 215, 216
MirageJS
 fake JSON API server, creating 213, 214
 reference link 224, 237
mixin
 creating, with vue-class-component 71, 72
 reference link 195
 used, for extracting code 74, 75
 working 75
mobile application (Cordova)
 commands 495
 developing 494
 quasar.conf, configuring on 495
mobile application development, with Quasar
 reference link 497
multiple root elements
 used, for creating components 23, 27

[528]

N
named slots
 using, to place data in components 152, 155,

157

NavigationBar component, routes
 creating 275
 single file component script section 275
 single file component template section 275
nested router view
 creating 305, 306
nested routes
 reference link 309
Netlify account
 creating 445, 446, 447
 URL 446, 447
Netlify deployments
 reference link 450
Netlify router rewrites
 reference link 449
Netlify
 application, preparing for deployment in 447,

448

 automatic deployment, preparing with GitHub on
449, 450

Node.js 41
NotFound view, 404 error page
 creating 310
 single file component style section 312
 single file component template section 310
number type 46
numeric enum 47
Nuxt.js server
 axios plugin, configuring 508
 Bulma, adding to global CSS 507
 creating 506, 507
 running 508
Nuxt.js SSR
 creating, with Python Flask as API 502, 503

O
object 48, 49
object-oriented programming (OOP) 52
Object.defineProperty
 reference link 270

observable API
 using, outside scope of Vue 31, 32, 33, 34

P
page
 creating, with Ant-Design 428, 441
 creating, with Buefy 395, 398, 408
 creating, with Vuetify 409, 426
 lazy loading, asynchronously 323, 324
parent-child communication
 reference link 183
PATCH method function 203
POST method function 202
programmatic navigation
 creating 280, 283
Progressive Web Application (PWA)
 about 334
 commands 493
 creating, in Vue with Quasar 486, 488
 developing 492
 quasar.conf, configuring on 492
props
 reference link 163
PUT method function 203
PWA development, with Quasar
 reference link 497
Python Flask
 used, for creating Nuxt.js SSR as API 502, 503

Q
Quasar framework
 reference link 497
quasar.conf
 configuring, on desktop application (Electron)

496

 configuring, on mobile application (Cordova) 495
 configuring, on Progressive Web Application

(PWA) 492
 configuring, on Server-Side Rendering (SSR)

493

Quasar
 used, for creating Cordova in Vue 486, 488
 used, for creating Electron application in Vue

486, 488
 used, for creating PWA in Vue 486, 488

[529]

 used, for creating SPA in Vue 486, 488
 used, for creating SSR in Vue 486, 488

R
random cat image
 creating 207
reactive component, creating with Vuex store
 about 331
 single file component script section 332
 single file component template section 332, 333
reactivity API
 using, outside scope of Vue 31, 32, 33, 34
render function
 used, for creating component 25, 26, 27
request interceptor
 creating, for axios 237, 238
requests
 reference link 206
response interceptor
 creating, for axios 237
reusable transition components
 reference link 390
Roboto font family
 reference link 151
route alias
 creating 300, 302
route mixin, dynamic router path
 modifying 285
route redirects
 creating 302, 303, 304
router files, 404 error page
 modifying 312
 router manager 312
router files
 modifying 306
 user routes 307, 308
router manager 308
router-view
 creating, on layout 306
routes
 creating 272, 278, 279

S
Scoped CSS
 reference link 151

seamless transition
 creating, between elements 391, 392, 393
search engine optimization (SEO) 80
Server-Side Rendering (SSR)
 about 334
 commands 494
 creating, in Vue with Quasar 486, 488
 developing 493
 quasar.conf, configuring on 493
Single-Page Application (SPA)
 about 334
 creating, in Vue with Quasar 486, 488
Single-Page Automation (SPA)
 commands 491
 developing 489, 490, 491
slots
 using, to place data in components 151, 152,

155, 157
smarter Vue watchers
 creating 498
SPA development, with Quasar
 reference link 497
SSR development, with Quasar
 reference link 497
string 45
structural sub-typing 50
Sweet Alert 2
 reference link 241

T
TC39 dynamic import
 reference link 197
Technical Committee (TC) 51
template structure
 used, for creating components 24, 25
to-do task list
 filters and sorters, creating 122, 123, 124, 125,

126

Todo form component
 creating 511
 single file component script section 512
 single file component template section 512, 513
TodoList component
 creating 509
 single file component script section 509, 510

[530]

 single file component template section 511
top bar component
 creating, with Ant-Design 431, 432
 creating, with Vuetify 412
transactions
 creating, with custom hooks 378, 379, 380, 381
transition groups
 reference link 387
transition hooks
 reference link 381
transition modes
 reference link 393
transitions
 adding 132, 133, 135, 136
tuple 47
two-way data binding
 input form, creating with 97, 98, 99, 100
TypeScript class
 creating 53, 54, 55, 56
 reference link 56
 working 56
TypeScript documentation
 reference link 53
TypeScript ESLint
 reference link 68
TypeScript Vue component
 creating, with vue-class-component 68, 69, 70
TypeScript, migrating from JavaScript
 reference link 44
TypeScript, types
 about 45
 any type 48
 array 46
 boolean 46
 enum 47
 function 49
 number type 46
 object 48, 49
 string 45
 tuple 47
 void 48
TypeScript
 about 44
 adding, to Vue CLI project 65, 66, 67
 conclusion 52

 decorators 51, 52
 interfaces 50, 51
 project, creating 41, 42, 43
 reference link 44
 working 43

U
UPDATE method function 204
URL.createObjectUrl
 reference link 212
user component
 single file component script section 265, 266
 single file component template section 267, 268,

269

 updating 265
user create page
 editing 361
 single-file component script section 361
user create view, dynamic router path
 creating 289
 single file component script section 289
 single file component template section 290
user edit page
 editing 359
 single-file component script section 359, 360
 single-file component template section 361
user form
 creating, with Ant-Design 428, 441
 creating, with Buefy 395, 408
 creating, with Vuetify 409, 426
user information view, dynamic router path
 creating 290
 single file component script section 291
 single file component template section 292
user list component
 creating 354
 single file component script section 354
 single file component template section 355
user list page
 editing 357
 single file component script section 357
 single file component template section 358
user list view, dynamic router path
 creating 286
 single file component script section 287

[531]

 single file component template section 287, 288
user registration form, creating with Ant-Design
 about 436
 single file component script section, creating 436
 single file component template section, creating

437, 438, 440
user registration form, creating with Vuetify
 about 417
 single file component script section, creating

417, 418
 single file component template section, creating

419, 420, 422, 423, 425
user registration form
 creating, with Buefy 403, 404, 406, 407
user update view, dynamic router path
 creating 292
 single file component script section 293
 single file component template section 294
user view page
 editing 358
 single file component script section 358
 single file component template section 359

V
v-model
 removing, from input 103, 104, 105
v-slot directive 155
Vercel account
 creating 450, 451
 URL 451
Vercel integrations, with Git repositories
 reference link 456
Vercel website
 URL 451
Vercel-CLI
 configuring, and deploying on project 452, 453,

454

 reference link 454
Vercel
 automatic deployment, preparing with GitHub

with 455, 456
view component
 about 261
 single file component script section 261, 262
 single file component template section 262, 263

visual template component
 creating 145, 146, 147, 150, 151
 working 151
void 48
Vue 2 application
 upgrading, to Vue 3 18, 19, 23
Vue 3 core
 working 52
Vue 3, custom components
 fragments 10, 11
 suspense 12
 Teleport component 11
Vue 3, framework
 exposed APIs 10
 render engine 9
 under the hood 9
Vue 3
 API changes 12, 13, 14, 15, 16
 composition API 16, 17
 custom components 10
 framework, improvement 9
 updating 8
 Vue 2 application, upgrading to 18, 19, 23
Vue applications
 about 518, 519
 dos and don'ts 517
Vue CLI project
 about 57
 commands 60
 creating 57, 58, 60
 plugins, adding with Vue UI tool 61, 62, 63, 64
 reference link 60
 TypeScript, adding to 65, 66, 67
Vue CLI tool 57
Vue components
 about 68, 79
 reference link 96
Vue computed API
 reference link 501
Vue decorator 77
Vue development 61
Vue mixins
 about 79
 reference link 76
Vue plugin

[532]

 creating 481, 482, 483, 485, 486
Vue project
 starting files, modifying 21, 22
 upgrading, manually 20
 upgrading, with Vue-CLI 19
Vue provide/inject API
 reference link 270
Vue routes
 loading, automatically 463, 464, 465, 466, 467,

468

Vue slots
 reference link 157
Vue UI interface 60
Vue UI plugins
 working 65
Vue UI project 57
Vue UI tool 60
 used, for adding plugins to Vue CLI project 61,

62, 63, 64
vue ui
 Vuex state, adding via 335, 336, 337
Vue vm 77, 79
Vue watch API
 URL 501
vue-class-component hooks
 reference link 84
vue-class-component mixins
 reference link 76
vue-class-component
 hooks, adding to 80, 82, 83
 reference link 68, 71
 used, for creating function decorator 76, 77, 78,

79

 used, for creating mixin 71, 72
 used, for creating TypeScript Vue component

68, 69, 70
 vue-property-decorator, adding to 84, 85, 86,

88, 89
 working 71
Vue-CLI documentation, on Netlify deployment
 reference link 449
Vue-CLI project
 Ant-Design, adding 430, 431
 Buefy, adding 398
 creating 273, 274, 396, 397

 creating, with Ant-Design 429, 430
 creating, with Buefy 396
 creating, with Vuetify 410, 411
Vue-CLI
 reference link 279
 used, for upgrading project 19
vue-devtools
 reference link 143
 used, for debugging application 137, 138, 139,

140, 141, 142, 143
vue-property-decorator
 adding, to vue-class-component 84, 85, 86, 88,

89

 reference link 89
vue-router alias
 reference link 302
vue-router lazy loading
 reference link 326
vue-router navigation
 reference link 84
vue-router programmatic navigation
 reference link 283
vue-router redirect
 reference link 305
vue-router router guards
 reference link 323
vue-router
 about 80, 313
 reference link 279
vue-template-compiler
 reference link 163
Vue
 Cordova, creating with Quasar 486, 488
 Electron application, creating with Quasar 486,

488

 PWA, creating with Quasar 486, 488
 SPA, creating with Quasar 486, 488
 SSR, creating with Quasar 486, 488
Vuelidate
 form validation, adding with 117, 119, 120, 121
 URL 122
Vuesax
 adding, to application 242, 243
 reference link 270
Vuetify

 adding, to Vue-CLI project 411
 drawer menu component, creating with 413,

414, 415
 layout component, creating with 416
 layout, creating with 409, 412, 426
 page, creating with 409, 426
 top bar component, creating with 412
 URL 428
 user form, creating with 409, 426
 user registration form, creating with 417
 Vue-CLI project, creating with 410, 411
Vuex actions
 about 348, 349, 350, 351, 352
 creating 348, 349, 350, 351, 352
 reference link 352
Vuex application
 reference link 362
Vuex getters
 about 344, 345, 346, 347
 creating 344, 345, 346, 347
 reference link 347
Vuex hot reloading
 reference link 364
Vuex modules
 creating 365, 366
 loading, automatically 468, 469, 470, 471, 472,

473

 reference link 368
Vuex mutations

 about 340, 341, 342, 343, 344
 creating 340, 341, 342, 343, 344
 reference link 344
Vuex state
 about 334, 335
 adding, via vue ui 335, 336, 337
 creating 334, 335, 338, 339, 340
 reference link 340
Vuex store
 creating 328, 329, 330, 333, 334
 modules, adding 367, 368
 reference link 334
Vuex
 dynamic component, creating with 353, 354,

361

W
watchers
 about 498
 deep listening 499
 immediate calls 499
 method names, using 499
 multiple handlers 500
webpack code-splitting
 reference link 326
webpack HMR
 reference link 364
wrapper
 creating 200, 205, 206
 creating, for Fetch API 199, 200

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Understanding Vue 3 and Creating Components
	What is new in Vue 3
	Improvements to the framework
	Under the hood
	Render engine
	Exposed APIs

	New custom components
	Fragments
	Teleport
	Suspense

	API changes
	Some minor break changes
	Goodbye filters, hello filters! The Vue filters API
	The bus just left the station! The event bus API
	No more global Vue – the mounting API
	v-model, v-model, v-model – multiple v-model

	Composition API

	Technical requirements
	Creating the base file

	Upgrading your Vue 2 application to Vue 3
	Getting ready
	How to do it...
	Using Vue-CLI to upgrade the project
	Upgrading the project manually
	Changing the starting files

	How it works...

	Creating components with multiple root elements
	How to do it...
	Creating the component with the <template> structure
	Creating the component with the render function

	How it works...

	Creating components with attribute inheritance
	How to do it...
	How it works...

	Using the reactivity and observable API outside the scope of Vue
	How to do it...
	How it works...

	Creating a component using the composition API
	How to do it...
	How it works...
	See also

	Chapter 2: Introducing TypeScript and the Vue Ecosystem
	Technical requirements
	Creating a TypeScript project
	Getting ready
	How to do it...
	How it works...
	See also

	Understanding TypeScript
	Getting ready
	Types
	String
	Number
	Boolean
	Arrays
	Tuple
	Enum
	Any
	Void
	Objects
	Functions

	Interfaces
	Decorators
	In conclusion
	See also

	Creating your first TypeScript class
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating your first project with Vue CLI
	Getting ready
	How to do it...
	There's more...
	See also

	Adding plugins to a Vue CLI project with Vue UI
	Getting ready
	How to do it...
	How it works...

	Adding TypeScript to a Vue CLI project
	Getting ready
	How to do it...
	How it works...
	See also

	Creating your first TypeScript Vue component with vue-class-component
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a custom mixin with vue-class-component
	Getting ready
	How to do it...
	Creating the Counter component
	Extracting similar code for the mixin

	How it works...
	See also

	Creating a custom function decorator with vue-class-component
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adding custom hooks to vue-class-component
	Getting ready
	How to do it...
	How it works...
	See also

	Adding vue-property-decorator to vue-class-component
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 3: Data Binding, Form Validations, Events, and Computed Properties
	Technical requirements
	Creating the "hello world" component
	Getting ready
	How to do it...
	How it works...
	See also

	Creating an input form with two-way data binding
	Getting ready
	How to do it...
	How it works...
	See also

	Adding an event listener to an element
	Getting ready
	How to do it...
	How it works...
	See also

	Removing the v-model from the input
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a dynamic to-do list
	Getting ready
	How to do it...
	How it works...
	See also

	Creating computed properties and understanding how they work
	Getting ready
	How to do it...
	How it works...
	See also

	Displaying cleaner data and text with custom filters
	Getting ready
	How to do it...
	How it works...
	See also

	Adding form validation with Vuelidate
	Getting ready
	How to do it...
	How it works...
	See also

	Creating filters and sorters for a list
	Getting ready
	How to do it...
	How it works...
	See also

	Creating conditional filters to sort list data
	Getting ready
	How to do it...
	How it works...
	See also

	Adding custom styles and transitions
	Getting ready
	How to do it...
	How it works...
	See also

	Using vue-devtools to debug your application
	Getting ready
	How to do it...
	See also

	Chapter 4: Components, Mixins, and Functional Components
	Technical requirements
	Creating a visual template component
	Getting ready
	How to do it...
	How it works...
	See also

	Using slots and named slots to place data inside your components
	Getting ready
	How to do it...
	How it works...
	See also

	Passing data to your component and validating the data
	Getting ready
	How to do it...
	How it works...
	See also

	Creating functional components
	Getting ready
	How to do it...
	How it works...
	See also

	Accessing your children components data
	Getting ready
	How to do it...
	Creating the star rating input
	Creating the StarRatingDisplay component
	Creating the StarRating component
	Data manipulation on child components

	How it works...
	There's more...
	See also

	Creating a dynamic injected component
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a dependency injection component
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a component mixin
	Getting ready
	How to do it...
	How it works...
	See also

	Lazy loading your components
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 5: Fetching Data from the Web via HTTP Requests
	Technical requirements
	Creating a wrapper for the Fetch API as an HTTP client
	Getting ready
	How to do it...
	Creating the wrapper
	Creating the API methods
	GET method function
	POST method function
	PUT method function
	PATCH method function
	UPDATE method function
	DELETE method function

	How it works...
	See also

	Creating a random cat image or GIF component
	Getting ready
	How to do it...
	Creating the component
	Single file component <script> section
	Single file component <template> section
	Single file component <style> section

	Getting up and running with your new component

	How it works...
	See also

	Creating your fake JSON API server with MirageJS
	Getting ready
	How to do it...
	Creating the mock server
	Creating the mock database
	Creating the GET route function
	Creating the POST route function
	Creating the PATCH route function
	Creating the DELETE route function
	Creating the server
	Adding to the application

	Creating the component
	Single file component <script> section
	Single file component <template> section

	How it works...
	See also

	Using axios as the new HTTP client
	Getting ready
	How to do it...
	Changing from the Fetch API to Axios
	Changing the GET method function
	Changing the POST method function
	Changing the PUT method function
	Changing the PATCH method function
	Changing the UPDATE method function
	Changing the DELETE method function

	Changing the component

	How it works...
	See also

	Creating different axios instances
	Getting ready
	How to do it...
	Changing the HTTP function
	Changing the HTTP Fetch wrapper
	Changing the HTTP methods function
	Changing the MirageJS server

	Changing the component
	Single file component <script> section
	Single file component <template> section

	How it works...
	See also

	Creating a request and response interceptor for axios
	Getting ready
	How to do it...
	Creating the interceptor
	Adding the interceptors to the HTTP methods functions

	How it works...
	See also

	Creating a CRUD interface with Axios and Vuesax
	Getting ready
	How to do it...
	Adding Vuesax to the application
	Creating the component routing
	Single file component <script> section
	Single file component <template> section
	Creating the route mixin

	Creating the list component
	Single file component <script> section
	Single file component <template> section
	Single file component <style> section

	Creating a generic user form component
	Single file component <script> section
	Single file component <template> section
	Single file component <style> section

	Creating the create user component
	Single file component <script> section
	Single file component <template> section

	View component
	Single file component <script> section
	Single file component <template> section

	Updating the user component
	Single file component <script> section
	Single file component <template> section

	How it works...
	See also

	Chapter 6: Managing Routes with vue-router
	Technical requirements
	Creating a simple route
	Getting ready
	How to do it...
	Creating the NavigationBar component
	Single file component <script> section
	Single file component <template> section

	Creating the contact page
	Single file component <script> section
	Single file component <template> section

	Creating the about page
	Single file component <script> section
	Single file component <template> section

	Changing the application's main component
	Single file component <script> section
	Single file component <template> section

	Creating the routes

	How it works...
	See also

	Creating a programmatic navigation
	Getting ready
	How to do it...
	Changing the application's main component
	Single file component <script> section

	Changing the contact view
	Single file component <script> section

	How it works...
	There's more...
	See also

	Creating a dynamic router path
	Getting ready
	How to do it...
	Changing the application's main component
	Single file component <template> section

	Changing the route mixin
	Axios instance configuration
	User list view
	Single file component <script> section
	Single file component <template> section

	User create view
	Single file component <script> section
	Single file component <template> section

	User information view
	Single file component <script> section
	Single file component <template> section

	User update view
	Single file component <script> section
	Single file component <template> section

	Creating dynamic routes

	How it works...
	See also

	Creating a route alias
	Getting ready
	How to do it...
	How it works...
	See also

	Creating route redirects
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a nested router view
	Getting ready
	How to do it...
	Creating the router-view on the layout
	Changing the router files
	User routes
	Router manager

	How it works...
	See also

	Creating a 404 error page
	Getting ready
	How to do it...
	Creating the NotFound view
	Single file component <template> section
	Single file component <style> section

	Changing the router files

	How it works...
	See also

	Creating and applying authentication middleware
	Getting ready
	How to do it...
	Creating the login view
	Single file component <script> section
	Single file component <template> section
	Single file component <style> section

	Creating the middleware
	Adding the metadata and the middleware to the router

	How it works...
	See also

	Lazy loading your pages asynchronously
	Getting ready
	How to do it...
	Updating the router manager
	Updating the user routes

	How it works...
	See also

	Chapter 7: Managing the Application State with Vuex
	Technical requirements
	Creating a simple Vuex store
	Getting ready
	How to do it...
	Creating the store
	Creating the reactive component with Vuex
	Single file component <script> section
	Single file component <template> section

	How it works...
	See also

	Creating and understanding the Vuex state
	Getting ready
	How to do it...
	Adding Vuex via the vue ui
	Creating the Vuex state

	How it works...
	There's more...
	See also

	Creating and understanding the Vuex mutations
	Getting ready
	How to do it...
	How it works...
	See also

	Creating and understanding the Vuex getters
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating and understanding the Vuex actions
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a dynamic component with Vuex
	Getting ready
	How to do it...
	Creating the user list component
	Single file component <script> section
	Single file component <template> section

	Editing the user list page
	Single file component <script> section
	Single file component <template> section

	Editing the user view page
	Single file component <script> section
	Single file component <template> section

	Editing the user edit page
	Single file component <script> section
	Single file component <template> section

	Editing the user create page
	Single file component <script> section

	How it works...
	See also

	Adding hot-module-reload for development
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a Vuex module
	Getting ready
	How to do it...
	Creating the new authentication module
	Adding the modules to Vuex

	How it works...
	See also

	Chapter 8: Animating Your Application with Transitions and CSS
	Technical requirements
	Creating the base project

	Creating your first CSS animation
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a custom transition class with Animate.css
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating transactions with custom hooks
	Getting ready
	How to do it...
	How it works...
	See also

	Creating animations on page render
	Getting ready
	How to do it...
	How it works...
	See also

	Creating animations for lists and groups
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a custom transition component
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a seamless transition between elements
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 9: Creating Beautiful Applications Using UI Frameworks
	Technical requirements
	Creating a page, a layout, and a user form with Buefy
	Getting ready
	How to do it...
	Creating the Vue-CLI project
	Adding Buefy to the Vue-CLI project
	Creating the layout and a page with Buefy
	Creating the header menu component
	Creating the hero section component
	Creating the footer component
	Creating the layout component

	Creating the user registration form with Buefy

	How it works...
	See also

	Creating a page, a layout, and a user form with Vuetify
	Getting ready
	How to do it...
	Creating the Vue-CLI project
	Adding Vuetify to the Vue-CLI project
	Creating the layout with Vuetify
	Creating the top bar component
	Creating the drawer menu component
	Creating the layout component

	Creating the user registration form with Vuetify
	Single file component <script> section
	Single file component <template> section

	How it works...
	See also

	Creating a page, a layout, and a user form with Ant-Design
	Getting ready
	How to do it...
	Creating the Vue-CLI project
	Adding Ant-Design to the Vue-CLI project
	Creating the layout with Ant-Design
	Creating the top-bar component
	Creating the drawer menu
	Creating the layout component

	Creating the user registration form with Ant-Design
	Single file component <script> section
	Single file component <template> section

	How it works...
	See also

	Chapter 10: Deploying an Application to Cloud Platforms
	Technical requirements
	Creating a Vue project

	Creating a Netlify account
	Getting ready
	How to do it...
	How it works...
	See also

	Preparing your application for deployment in Netlify
	Getting ready
	How to do it...
	How it works...
	See also

	Preparing for automatic deployment on Netlify with GitHub
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a Vercel account
	Getting ready
	How to do it...
	How it works...
	See also

	Configuring the Vercel-CLI and deploying your project
	Getting ready
	How to do it...
	How it works...
	See also

	Preparing for automatic deployment on Vercel with GitHub
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a Firebase project
	Getting ready
	How to do it...
	How it works...
	See also

	Configuring the Firebase-CLI and deploying your project
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 11: Directives, Plugins, SSR, and More
	Technical requirements
	Automatically loading Vue routes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Automatically loading Vuex modules
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a custom directive
	Getting ready
	How to do it...
	How it works...

	Creating a Vue plugin
	Getting ready
	How to do it...
	How it works...
	See also

	Creating an SSR, SPA, PWA, Cordova, and Electron application in Vue with Quasar
	Getting ready
	How to do it...
	Developing an SPA (Single-Page Application)
	Commands

	Developing a PWA (Progressive Web Application)
	Configuring quasar.conf on a PWA
	Commands

	Developing SSR (Server-Side Rendering)
	Configuring quasar.conf on SSR
	Commands

	Developing a mobile application (Cordova)
	Configuring quasar.conf on Cordova
	Commands

	Developing a desktop application (Electron)
	Configuring quasar.conf on Electron
	Commands

	How it works...
	See also

	Creating smarter Vue watchers and computed properties
	How to do it...
	Watchers
	Using method names
	Immediate calls and deep listening
	Multiple handlers

	Computed
	No cached value
	Getter and setter

	See also

	Creating a Nuxt.js SSR with Python Flask as the API
	Getting ready
	How to do it...
	Creating your Flask API
	Initializing the application
	Starting the server

	Creating your Nuxt.js server
	Adding Bulma to the global CSS
	Configuring the axios plugin

	Running the Nuxt.js server
	Creating the TodoList component
	Single file component <script> section
	Single file component <template> section

	Creating the Todo form component
	Single file component <script> section
	Single file component <template> section

	Creating the layout
	Creating the page
	Single file component <script> section
	Single file component <template> section

	How it works...
	See also

	The dos and don'ts of Vue applications
	Linters
	JavaScript
	Vue
	See also

	Other Books You May Enjoy
	Index

