

Vue CLI 3 Quick Start Guide

Build and maintain Vue.js applications quickly with the
standard CLI

Ajdin Imsirovic

BIRMINGHAM - MUMBAI

Vue CLI 3 Quick Start Guide
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Siddharth Mandal
Content Development Editor: Roshan Kumar
Technical Editor: Snehal Dalmet
Copy Editor: Safis Editing
Project Coordinator: Namrata Swetta
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Jisha Chirayil
Production Coordinator: Aparna Bhagat

First published: April 2019

Production reference: 1300419

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-034-2

www.packtpub.com

http://www.packtpub.com

Thanks to my family and friends for their support during the writing of this book.

– Ajdin Imsirovic

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Ajdin Imsirovic is a full-stack web developer who has published several courses on the
subject of web design and web development. He has also authored three books, Bootstrap 4
Cookbook, Elm Web Development, and Vue.js Quick Start Guide. In his fourth book, Vue CLI 3
Quick Start Guide, he introduces readers to the rich ecosystem of frontend tooling and best
practices.

About the reviewer
Bogdan-Alin Bâlc is a software architect/tech lead with a passion for UI technologies. He
has worked with JavaScript for the past 13 years, from the emergence of jQuery and Ajax to
state-of-the-art solutions such as React, Angular, Ember.js, and Vue.js. When he is not
fiddling with some new coding challenge, he spends his time with friends and family,
watching sports or movies. Nowadays, he channels most of his efforts into making Vulcan
Digital Reforging, one of the most successful and creative start-ups in Cluj. His passion for
Vue.js pushed him to collaborate on other great books, such as Learning Vue.js, Vue.js 2
Cookbook, and Vue.js by Example.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introducing Vue CLI 3 7
Technical requirements 8
Setting up Vue CLI 3 on our system 8

Is Vue CLI 3 already available? 8
Installing Node.js using Node Version Manager 9

Why install NVM? 9
Installing NVM on Windows 9

Installing Vue CLI 3 10
Installing VS Code 12
Using Vue CLI with no configuration 12
The benefits of using Vue CLI 3 16
Default toolchain, fatigue level zero 16

Vue CLI 3 default app via the command line 16
Vue CLI 3 default app via the UI 18

Summary 23

Chapter 2: Webpack in Vue CLI 3 24
The evolution of the JS language 25

The script tag 25
Immediately Invoked Function Expressions 26
The problem with IIFEs 26
Sharing third-party libraries in a team environment with NPM 27
JavaScript task runners and NPM scripts 30
Modules in JavaScript 32

Working with modules in Node.js 32
Module bundlers, a way to use modules in the browser 34

What is webpack? 35
How webpack works 37

Building a new project and running webpack on it 37
Running webpack on a project 40

Adding a Vue project via NPM and using webpack with it 44
Adding our Vue component as a JavaScript module 45
Compiling JavaScript modules with webpack 46
Adding options with the help of the webpack configuration file 47
Adding an HTML file so that we can render our Vue component 47
Giving webpack the ability to output an HTML file 48
Adding a .vue file as a JavaScript module 49
Adding a webpack loader to work with .vue files 50
Fixing the issue with our index.html file 52

Table of Contents

[ii]

Delivering HTML files via webpack with the help of html-webpack-plugin 53
Understanding Hot Module Replacement in Vue 54

Observing HMR updates 55
Summary 57

Chapter 3: Babel in Vue CLI 3 58
Understanding Babel 58

The building blocks of @vue/cli-plugin-babel 61
Babel 7 in @vue/cli-plugin-babel 61
The role of babel-loader in @vue/cli-plugin-babel 62
The role of @vue/babel-preset-app 62

Other features of @vue/cli-plugin-babel 62
Using Babel and webpack in Vue 2 without Vue CLI 63

Installing the necessary NPM packages 63
Running webpack with ES5 code 66
Adding webpack-dev-server 67
Updating the methods option to ES6 syntax 68
Adding babel-loader to our webpack configuration 68
Updating our webpack configuration to work with babel 70

The problem with the this keyword in arrow functions in Vue 71
Recommended solutions to keyword problems 71

Adding one counter app 71
Summary 74

Chapter 4: Testing in Vue CLI 3 75
Understanding Vue plugins 75
Beginning testing on a brand new Vue app 76

Adding a new project with Vue CLI UI 76
Adding the Jest plugin to our Vue app 79

Examining the updates 83
Adding the code for our Vue application 84
Writing our first unit test inside a Vue app with Jest 86
Running our first unit test inside the Vue CLI UI 87
Importing mount from test-utils and writing another unit test 90

Mounting the component to be tested 91
Writing a failing assertion 92
Writing a passing assertion 93
Triggering a button click in our test 93

Test-driven development in Vue CLI 3 95
Improving our tests in Vue CLI 3 95

Watching our tests in Vue CLI 3 96
Writing end-to-end tests with Cypress 97

Introducing Cypress 97
Adding a Cypress plugin to our project 98

Verifying updates to package.json made by the Cypress plugin installation 98
Updating Cypress tests in our Vue app 100

Table of Contents

[iii]

Summary 102

Chapter 5: Vue CLI 3 and Routing 103
Adding a new Vue project with vue-router and vuex 103

Configuring preset options through VS Code's command line 105
Adding vue-router and vuex 106
Adding ESLint and Prettier 107
Finishing the configuration 107
Installing all the plugins for our new project 108

Serving our project from the Vue CLI UI 108
Running the serve task from the UI 109

Working with routes in vue-router 110
Inspecting the two default routes 110
Inspecting project files 111

The contents of main.js 112
The App.vue file and router-link navigation 112
Rendering a Vue instance and mounting it into #app 113

Running the build task from the UI 114
Serving the app in production mode from the UI 114

Some basics of working with routes 115
The router-view tag needs to be nested 116
Using named routes 116
Navigating to a route by triggering a method of a Vue instance 117
Working with nested routes 119
Lazy- loading routes 122
Working with dynamic routes 122

Summary 123

Chapter 6: Using ESLint and Prettier in Vue CLI 3 124
What ESLint is, and how to configure it on its own 124

Installing npm packages globally versus installing npm packages locally 125
What is Prettier? 126

Running locally-installed npm modules on the command line using npx 126
Installing Prettier globally and running it on index.html 128
Running Prettier with npx 129

Working with ESLint 129
Installing ESLint globally and unsuccessfully running it from the command
line 130

Running eslint --init command 131
Understanding the structure of .eslintrc.js config file 133

Running ESLint on a JavaScript file 134
Updating error level rules in ESLint 135

Configuring ESLint in Vue CLI 3 136
Setting up ESLint configurations in Vue CLI 3 GUI 137

Using ESLint and Prettier together in a Vue CLI 3 UI project 139
Summary 141

Chapter 7: Improving CSS with SCSS 142

Table of Contents

[iv]

Installing Bootstrap + Vue 142
Adding BootstrapVue as a plugin 143

Using the bootstrap-vue plugin to add styles to our project 144
Using SCSS in our project 146

Dealing with errors 146
Writing some SCSS in our project 147
Overriding bootstrap-vue styles 148
Using variables, mixins, and interpolation 149

Using Sassmeister to practice SCSS 149
Using SCSS mixins and interpolation in our Vue project 152

Summary 154

Chapter 8: Deploying Vue CLI 3 Apps on GitHub Pages 155
Installing GitHub Desktop app 156
Understanding how Git works 157

Starting a new Vue app and tracking changes with Git 158
Committing changes to our app 160
The three trees concept 161
Branching in Git 161

Merging branches 162
Registering a new GitHub account 163
Adding origin/master using GitHub Desktop 164

Publishing your local repository 164
Publishing our project on GitHub Pages 167

Getting our project ready to be published 167
Updating the Vue configuration file 171
Saving changes and pushing them to the remote repository with GitHub
Desktop 172
Debugging your GitHub pages deployment 174

Summary 175

Other Books You May Enjoy 176

Index 179

Preface
Vue began as a project of a single person, Evan You. It is amazing that it has gotten to the
point where it is today: a contender for the spot of the favorite frontend framework,
competing with the corporate-backed React and Angular.

Of course, these are not the only frontend frameworks, but the trio of Vue, React, and
Angular seem to be the most popular, with the internet buzzing with comparisons of these
frameworks and experiences with them. It's not uncommon to come across an article that
compares Vue and React, for example, or a blog post on ten ways that Vue is better than
Angular. Regardless of whether these articles are someone's opinion, or clickbait, or
statement of the facts, there must be some truth to these claims.

What was the reason for Vue's success? Dedication, hard work, or luck? Probably a bit of
each. But another key to Vue's success was Evan's obvious priority of making things easy
for the developer. Vue's no longer developed by a single person, but it is still very
approachable. The community has kept the gist of what Vue was all about from the
beginning: an easy-to-use framework that gets out of your way and just lets you code.

Vue CLI is another example of this. Besides a command-line interface that's up to par with
other modern frontend frameworks, Vue CLI 3 sets a new standard in frontend JavaScript
frameworks, and comes with a graphical user interface (GUI). This interface makes it a
breeze to set up, extend, run, and serve a Vue project.

When you pair this addition of a GUI with the successful attempt to ease the pain of
toolchain fatigue by offering a really well thought-out setup process, you get a really
powerful combination, and happy developers as a result.

Who this book is for
This book is for web developers and JavaScript developers who want to learn more about
Vue CLI 3. The readers must have basic knowledge of HTML/CSS and JavaScript.
Essentially, the reader should also be familiar with basic operational system workflow,
such as using a UNIX-like command-line interface, including Git Bash, Windows
PowerShell, or any related command-line tool.

Preface

[2]

This book dives into the technological building blocks of Vue CLI 3. This is not a book
about writing apps in Vue. It is more of a foundational book that will help you understand
how things work inside Vue CLI. If you were never completely sure how NPM works and
how to use it properly, this book will explain that, through the lens of Vue CLI 3. Similarly,
we'll look at webpack, HMR, using single-file .vue components, SCSS, ECMAScript, unit
testing with Jest, and E2E testing with Cypress.

What this book covers
Chapter 1, Introducing Vue CLI 3, explains how to use Vue CLI 3, and why you should use
it. It covers best practices and what you'll get out of using Vue CLI 3. We'll set up Node
version manager and NPM, install Vue CLI 3, and show how to start a new app through the
command line or with the help of the GUI.

Chapter 2, Webpack in Vue CLI 3, takes the reader through an overview of the evolution of
JavaScript over the last several years, which lead to the appearance of webpack. In explains
some background concepts: NPM and NPM scripts, CommonJS, modules in JS and Node.js,
along with module bundlers and how they can be used in the browser. Further on, we
cover webpack, how it works, and how to run it. We close off the chapter with a step-by-
step explanation of how to add a Vue project via NPM and use webpack with it.
Essentially, we're setting up a Vue toolchain by hand, so that we can appreciate what Vue
CLI 3 does for us automatically.

Chapter 3, Babel in Vue CLI 3, examines how to work with Babel and what are the benefits
of using it. We inspect the building blocks of Vue's core Babel plugin, including Babel 7,
babel-loader, and @vue/babel-preset-app. We also look at the differences between
running webpack with ES5 and ES6, and updating our webpack configuration so that it
understands Babel.

Chapter 4, Testing in Vue CLI 3, covers using Vue plugins, with a focus on plugins that are
used for testing. We add the Jest plugin to our Vue app, run unit tests with Jest, and show
some additional techniques and workflows inside Vue CLI 3 GUI, including running tasks
from the Project tasks page and running unit tests inside the GUI. We discuss test-driven
development (TDD) and working with assertions, and close the chapter with an overview
of Cypress.

Chapter 5, Vue CLI 3 and Routing, discusses adding Vue projects with vue-router and vuex,
configuring preset options, and understanding vue-router topics. These include named
routes, dynamic routes, navigating to routes using methods in Vue instances, working with
child routes, and lazy-loading routes.

Preface

[3]

Chapter 6, Using ESlint and Prettier in Vue CLI 3, shows us what ESLint is and why it's
useful. We also look at Prettier, a handy code formatter that formats your code on every
save. We discuss linters in general and what they're useful for.

Chapter 7, Improving CSS with SCSS, describes the basics of SCSS and shows how it's
different from CSS and what additional features are available. We use a simple app we
built in Chapter 5, Vue CLI 3 and Routing, and we see how to improve its styling by adding
the boostrap-vue plugin to the app. Working with SCSS in VDOM libraries can sometimes
get confusing, and in this chapter, we see one possible workflow option in practice.

Chapter 8, Deploying Vue CLI 3 Apps on GitHub Pages, explains what Git is and how to set it
up. We discuss some basics, including tracking changes with Git and committing changes
in our app. We continue by discussing the three trees concept, branching, and merging
branches. We register a GitHub account, add the origin/master using GitHub Desktop, and
look at how to publish a local repository. We finally discuss how to deploy a Vue app on
GitHub pages using the subtree functionality.

To get the most out of this book
To get the most of this book, you should be somewhat familiar with using Windows,
HTML, CSS, the very basics of JavaScript, and using a command-line tool such as Git Bash
for Windows. It would be beneficial to have some familiarity with Node, NPM, and some
basic command line utilities, but this is not compulsory.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[4]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Vue- ​CLI- ​3- ​Quick- ​Start- ​Guide. In case there's an update to the code, it
will be updated on the existing GitHub repository.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ ​/​www. ​packtpub. ​com/​sites/ ​default/ ​files/
downloads/​9781789950342_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

{
 "name": "vue-from-npm",
 "version": "1.0.0",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

let CustomArticle = Vue.component('custom-article', {
 template: `
 <article>
 Our own custom article component!
 </article>`
 })

https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
https://github.com/PacktPublishing/Vue-CLI-3-Quick-Start-Guide
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789950342_ColorImages.pdf

Preface

[5]

Any command-line input or output is written as follows:

mkdir new-project-with-webpack && cd new-project-with-webpack

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

[6]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

1
Introducing Vue CLI 3

This book introduces you to Vue CLI 3 and answers questions such as how to use it, why to
use it, the best practices, and what you'll get out of it.

In this chapter, we'll look at how to set up Vue CLI 3 on our system. We'll begin by
checking to see whether Vue CLI 3 is already available, and we'll see the exact steps to take
if we either need a fresh installation or an update from a previous version.

We'll then look at how to install the Node Version Manager (NVM), and why that is a
better alternative than simply installing Node. We'll see how easy it is to get started with
Vue CLI 3 in VS Code, and how to integrate all these tools by using our command line.

We'll also discuss why Vue CLI 3 is great to use and work with, and we'll see this in
practice, by running a default Vue CLI 3 app, both from the command line and by using the
built-in Vue CLI 3 UI functionality.

The topics we will cover in this chapter include the following:

Setting up Vue CLI 3 on your system
Installing Vue CLI 3
Installing VS Code
Using Vue CLI with no configuration
The benefits of using Vue CLI 3
Avoiding JavaScript fatigue with the default toolchain

We'll begin this chapter by setting up Vue CLI 3.

Introducing Vue CLI 3 Chapter 1

[8]

Technical requirements
There are only a few technical requirements that we need; they are as follows:

A Windows installation (Windows 7 or greater)
An installation of NVM for Windows (the specific steps for the installation are
described in the chapter)
An installation of VS Code (code editor)

Let's begin setting up Vue CLI 3 on our system.

Setting up Vue CLI 3 on our system
A common way to work with Vue CLI 3 is via a command-line app called the Command-
Line Interface (CLI), where we run our Vue CLI 3 commands. Another prerequisite is to
have Node.js installed on our machine.

If you are working on a shared computer, say, within a team of your fellow developers, the
chances are that you already have all the prerequisites. In that case, you could just verify
that you can start using Vue CLI 3 right away by running a couple of checks.

Is Vue CLI 3 already available?
To quickly check whether you can run Vue CLI 3 right now and skip all the installation
steps, run the following command in your command-line app:

node --version

Also, check for Vue CLI 3 with this command:

vue -V

If you get back any version of Node above 8.9 (ideally, above 8.11.0), you're good to go.
Obviously, for Vue CLI, you'd want any version above 3.0.0.

Introducing Vue CLI 3 Chapter 1

[9]

Additionally, if you have a version of Vue CLI lower than V3, or you'd like to update to the
newest Vue CLI, such as 3.3.0, just run this command:

npm install @vue/cli

What if you don't have Node.js or Vue CLI installed?

We'll use nvm or nvm-windows for Node, and after that, we'll install Vue CLI 3.

Installing Node.js using Node Version Manager
What is the recommended version of Node.js we should be using? This information is
available at the following link: https:/ ​/​cli.​vuejs. ​org/​guide/ ​installation. ​html.

Currently, as of early 2019, to get the best results with Vue CLI, the minimum version of
Node required is 8.11.0+, but you can kind of get by with 8.9 if you really have to.

This brings us to another important decision: the installation of NVM.

Why install NVM?
While it is not absolutely necessary to install NVM in order to run Vue CLI 3 on your
system, installing NVM is desirable for a couple of reasons.

First, you never know when Node will get a recommended update with security fixes,
which usually means you'd be better off installing the update on your machine.

Second, if you need to run a different technology, other than Vue, this other technology
might also require a different version of Node. To easily switch between these required
Node installations on your system, you can simply install NVM.

Installing NVM on Windows
You can download the NVM for Windows from this address:

https://github.com/coreybutler/nvm-windows/releases

https://cli.vuejs.org/guide/installation.html
https://cli.vuejs.org/guide/installation.html
https://cli.vuejs.org/guide/installation.html
https://cli.vuejs.org/guide/installation.html
https://cli.vuejs.org/guide/installation.html
https://cli.vuejs.org/guide/installation.html
https://cli.vuejs.org/guide/installation.html
https://cli.vuejs.org/guide/installation.html
https://cli.vuejs.org/guide/installation.html
https://cli.vuejs.org/guide/installation.html
https://cli.vuejs.org/guide/installation.html
https://cli.vuejs.org/guide/installation.html
https://cli.vuejs.org/guide/installation.html
https://cli.vuejs.org/guide/installation.html
https://cli.vuejs.org/guide/installation.html

Introducing Vue CLI 3 Chapter 1

[10]

Locate the nvm-setup.zip file, download and extract nvm-setup.exe from it, and then
install it by following these installation steps:

Open the Run prompt by pressing Windows + R. Type cmd into the prompt.1.
While inside the prompt, press Ctrl + Shift + Enter. This will run Command2.
Prompt with administrator privileges, which is required for the next step.
Visit https:/ ​/ ​nodejs. ​org, and see the current Long-term Support (LTS) version3.
number. For example, currently, on 64-bit Windows, the LTS version is 10.15.1.
To install it, run the following command in Command Prompt with 4.
administrator privileges:

nvm install 10.15.1

Command Prompt will log out the following message:5.

Downloading node.js version 10.15.1 (64-bit) ...

Once the download is finished, we can use the downloaded version of Node. We6.
do it with the following command:

nvm use 10.15.1

Finally, you can verify whether the installation was successful by running the7.
following command:

node --version

If you're curious about the version of npm that came with your Node installation,8.
simply run the following:

npm --version

Next, we'll install Vue CLI 3.

Installing Vue CLI 3
We can install Vue CLI 3 with either npm or yarn. Since npm comes bundled with the
Node.js installation, we'll use npm:

npm install -g @vue/cli --loglevel verbose

https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org

Introducing Vue CLI 3 Chapter 1

[11]

The preceding command installs Vue CLI 3 globally. That's what the -g flag is for. The
@vue/cli syntax is what we use in Vue CLI 3, and --loglevel verbose will log out the
details of our installation, which is very useful, especially on slower connections and slower
machines, where sometimes we could start wondering whether our console froze. With --
loglevel verbose, there's more clarity, which is always good.

Once done, let's double-check the Vue CLI version installed by running this command:

vue --version

Here are a few other useful commands that you should try in your console:

vue -h

Note that vue -h is an alias for vue --help. I'm using the former as it's easier to type.

Also, note that you can run the -h flag on each individual vue command, for example:

vue create -h
vue add -h
vue invoke -h
vue inspect -h
vue serve -h
vue build -h
vue ui -h
vue init -h
vue config -h
vue upgrade -h
vue info -h

Running any of the preceding lines will return the usage instructions for the specific
command, a description of what it does, and the options (the flags) to append to each
individual command. Obviously, the -h flag is a great way to explore the capabilities of
Vue CLI, and to refresh your memory on the fly, if need be.

Next, we'll install our code editor of choice, VS Code.

Introducing Vue CLI 3 Chapter 1

[12]

Installing VS Code
To install VS Code, simply navigate to https:/ ​/ ​code. ​visualstudio. ​com, and then
download the appropriate version for your operating system.

If you're not sure whether you're using a 32-bit or a 64-bit computer, you
can quickly check that on Windows by running the following command in
Command Prompt (with admin rights):

wmic os get osarchitecture

The output will be OSArchitecture, and on the next line, either 32-bit
or 64-bit.

Once VS Code is downloaded, simply install it by running the downloaded installation file
and follow the installation instructions.

After you've installed VS Code, you'll get an additional command available via the
command line, code.

The code command is very useful, as we'll see in the next section.

Using Vue CLI with no configuration
In this section, we'll see the quickest and the easiest way to start using Vue CLI. It includes
no configuration whatsoever! The reason to use Vue CLI without configuration is to run
some quick experiments without having to answer prompts about our project's
configuration that Vue CLI normally asks when we run a project with configuration steps
included (which is the default approach to building apps using Vue CLI).

To begin, hold down the Shift key and right-click on an empty area on your desktop. From
the contextual menu that pops up, click the Open Command window here command.

Once open, type the following command:

mkdir noConfig

https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com

Introducing Vue CLI 3 Chapter 1

[13]

This will make a new directory called noConfig. Next, let's change into that directory with
the cd command:

cd noConfig

Finally, start VS Code from Command Prompt with this command:

code .

The dot in the preceding command means open VS Code in the current folder. Feel free to
close the Welcome tab.

Next, use the Alt + F keyboard shortcut to open the File menu, and press the N key to open
a brand new file.

In the new file, which opens in the tab that reads Untitled-1, type the following code:

<template>
 <h1>What's up, Vue CLI 3?</h1>
 <hr>
</template>

Next, press the Ctrl + S keyboard shortcut, and save the file as App.vue.

VS Code will save the file. It will give a new icon, the Vue logo icon, a visual cue that the
file you just saved is indeed a Vue file.

VS Code might also prompt you to install an extension, Vetur, with the following prompt:

The 'Vetur' extension is recommended for this file type.

Go ahead and install the extension by clicking the Install button at the bottom of the
popup.

Note that installing the Vetur extension has nothing to do with using the
Vue CLI 3 with no configuration, but it has to do with us being more
productive in VS Code when working with Vue.

Now we can serve our Vue app by running vue serve. But, before we actually run the
command, let's use the -h flag to see what we have available:

vue serve -h

Introducing Vue CLI 3 Chapter 1

[14]

This is what we'll get back:

Usage: serve [options] [entry]

serve a .js or .vue file in development mode with zero config

Options:
 -o, --open Open browser
 -c, --copy Copy local url to clipboard
 -h, --help Output usage information

Now that we know what to expect, let's serve our Vue app with the following command:

vue serve -o -c

So, as we can see as mentioned previously, this command will serve our Vue app and open
it in the browser. It will also copy the served URL to the clipboard. This allows us to, for
example, open a different, non-default browser, and easily paste in the URL in the
browser's address bar, so that we can preview our app there as well.

However, we'll come across a minor stumbling block.

Instead of our Vue app being served, we'll get this notification in our command:

Command vue serve requires a global addon to be installed.
Please run npm install -g @vue/cli-service-global and try again.

This is an easy fix. Better yet, we'll extend the preceding command with --loglevel
verbose:

npm install -g @vue/cli-service-global --loglevel verbose

After some time, depending on your download speed, you'll get the npm info ok
message.

This means that you can now run the vue serve command again:

vue serve -o -c

This time it works! Kind of...

Now we get an error that reads Failed to compile with 1 errors. And then, further
down, we see the root cause:

Component template should contain exactly one root element.

Introducing Vue CLI 3 Chapter 1

[15]

There are a few ways to solve this issue, but what it basically says is that we can wrap our
h1 and hr tags inside a div tag, and we'll be good to go. So, let's update the App.vue file in
VS Code to this:

<template>
 <div>
 <h1>What's up, Vue CLI 3?</h1>
 <hr>
 </div>
</template>

Make sure to save your changes, and now, finally, let's serve it again:

vue serve -o -c

You might get a bit of a surprise, because a new tab will open with the app loaded
automatically, in your default browser.

Let's say that your default browser is Chrome. Let's open another browser (for example,
Firefox), click inside the admin bar, and press the Ctrl + V shortcut to paste in the contents
of the clipboard. Of course, it's going to be http://localhost:8080/.

The ease with which we've performed these repetitive tasks of opening our app in the
browser and copying its URL with the help of -o and -c flags is just the tip of the iceberg.
Vue CLI 3 has a lot more in store to help us code our apps faster and easier.

For example, let's get back to our code and erase the line with the hr tag, and then save the
file. Look at your browser tab, the one with our Vue app open. It will auto-refresh,
reflecting the changes in code. That's webpack in action, running under the hood of Vue
CLI 3, watching for changes to our Vue files, and hot-reloading the app in the browser
accordingly.

If you've been coding for more than a couple of years, you'll appreciate the ease of this
workflow. In the past, we either had to set up our tools so that they performed the auto-
refresh of our apps in the browser whenever we save our files, or we had to set up our IDE
or code editor, or both. Even up until recently, we still had to tinker with webpack to
automate this kind of a workflow, and this as with anything coding-related, sometimes did
not go as smoothly as we'd hope.

With Vue CLI 3, this is all automated and made very simple.

Let's see some other ways in which Vue CLI 3 helps us code better and be more productive.

Introducing Vue CLI 3 Chapter 1

[16]

The benefits of using Vue CLI 3
When Vue CLI 3 came out, Evan You, the maker of Vue, listed these objectives for it:

Avoid toolchain fatigue for frontend development by simplifying the setup
Follow best practices in tooling
Make these best practices the default in Vue apps

Besides these great objectives, Vue CLI came with a number of updates, such as the
following:

Preset webpack configuration
ES2017 and Babel 7 support out of the box
Excellent CSS support, including Sassy CSS (SCSS) and PostCSS support
A number of integration options (TypeScript, PWA, web components, end-to-end
testing, Jest, and so on)

That is a lot of functionality. The aim of this book is to go through all of the options and get
you familiar with their inner workings.

Now, to wrap this chapter up, let's see how easy it is to set up a default app using the
default options.

Default toolchain, fatigue level zero
In this section, we'll create a default boilerplate Vue app. Contrary to the previous section,
in this section, we will actually build an entire app, properly. We'll use two approaches:
Vue CLI 3 on the command line, and Vue CLI 3 with a GUI.

You might ask why we ran Vue CLI 3 with no configuration in the first place? The answer
is, it might be useful for quick experiments, and to get started with some basic commands.

Vue CLI 3 default app via the command line
We create Vue CLI 3 apps with the vue create command. Let's see what options we have
available:

vue create -h

Introducing Vue CLI 3 Chapter 1

[17]

This is what will get returned:

Usage: create [options] <app-name>

create a new project powered by vue-cli-service

Options:
-p, --preset <presetName> Skip prompts and use saved or remote preset
-d, --default Skip prompts and use default preset
-i, --inlinePreset <json> Skip prompts and use inline JSON string as preset
-m, --packageManager <command> Use specified npm client when installing
dependencies
-r, --registry <rul> Use specified npm registry when installing
dependencies (only for npm)
-g, --git [message] Force git initialization with initial commit message
-n, --no-git Skip git initialization
-f, --force Overwrite target directory if it exists
-c, --clone Use git clone when fetching remote preset
-x, --proxy Use specified proxy when creating project
-b, --bare Scaffold project without beginner instructions
-h, --help output usage information

Let's begin by skipping all the prompts and using the default option:

vue create -d first-default-app

Your console will display the following output:

Vue CLI v3.3.0
? Creating project in C:\...
? Initializing git repository...
? Installing CLI plugins. This might take a while...

And indeed it does take a while. Luckily, there's a visual cue, a progress bar that lets us
know how far along we are in setting up our project.

Once ready, we'll simply run the following:

cd first-default-app

Once our console is pointing to the correct directory, we can run the app with the
following:

npm run serve

Introducing Vue CLI 3 Chapter 1

[18]

And now we can view the default app in the browser:

As we can see, we have a welcome message, and then the page lists the installed CLI
plugins. Obviously, the babel and eslint plugins come as defaults. Each of these links
points to their respective sections inside the vue-cli repository on GitHub.

Next, we see some essential links and some links to get acquainted with the larger
ecosystem of Vue.js (namely, the links to vue-router, vuex, vue-devtools, vue-
loader, and awesome-vue).

Vue CLI 3 default app via the UI
To get started with the Vue CLI GUI, let's first stop the server that was running in the
previous section, using the Ctrl + C shortcut keys. The console will respond with the
following message:

Terminate batch job (Y/N)?

Introducing Vue CLI 3 Chapter 1

[19]

Type Y (capitalization is irrelevant) and press the Enter key.

This will give us back the control of our current console window and allow us to type new
commands.

Let's first go one level up from the current directory in our console:

cd ..

Next, let's run this command:

vue ui -h

And we'll get the following output:

Usage: ui [options]

start and open the vue-cli ui

Options:
-H, --host <host> Host used for the UI server (default: localhost)
-p, --port <port> Port used for the UI server (by default search for
available port)
-D, --dev Run in dev mode
--quiet Don't output starting messages
--headless Don't open browser on start and output port
-h, --help output usage information

This time, we'll run the command without any flags:

vue ui

We'll be greeted with the following output in the console:

? Starting GUI...
? Ready on http://localhost:8000

Introducing Vue CLI 3 Chapter 1

[20]

This time, we can create a project, visually. Initially, we see that there are no Vue projects in
the current folder:

Let's create one by clicking the Create tab.

A new window will open, with a big button that reads Create a new project here:

Introducing Vue CLI 3 Chapter 1

[21]

As we can see in the preceding screenshot, there are also a number of other buttons and
options that we can use. We will examine these in the chapters that follow; at this point, we
are just getting familiar with the tool we're using:

Introducing Vue CLI 3 Chapter 1

[22]

As we can see from the previous screenshot, the Next button, at the bottom of the page, is
currently disabled. To enable it, simply type the project folder name inside the top-most
input. We'll call our folder second-vue-project. Now click Next.

Inside the next window, you can choose a preset. Let's set it to Default preset:

Choosing a preset will make the Create Project button clickable. You'll see a loader icon in
the center of the screen, with the following message:

Installing Vue CLI plugins. This might take a while...

You'll see a few other messages as the installation progresses. Finally, when done, you'll be
greeted with the following window:

Introducing Vue CLI 3 Chapter 1

[23]

Our project is now ready to be worked on, which we'll do in the next chapter.

Summary
In this chapter, we looked at how to get started with the Vue CLI 3, both by using the
command line and by using the Vue CLI UI.

We've seen how to install all the prerequisites, and we saw the suggested workflow and
some basic pointers to get started easily. As a result of understanding how to use Vue CLI
both on the command line and in the UI, we can now initialize Vue apps without any effort.
We know what options are available to us when starting a new project. However, there are
many more things that we need to understand the inner workings of Vue CLI.

In the next chapter, we'll look at improving our workflow further by focusing on webpack,
the module bundler that sits at the core of Vue CLI 3.

2
Webpack in Vue CLI 3

In the previous chapter, we saw how to start using Vue CLI via both the command line and
the UI. In this chapter, we will cover webpack basics from the viewpoint of Vue CLI 3. We
will begin with an overview of what webpack is. We'll look at concepts behind module
bundling, tree shaking, webpack loaders and output, webpack plugins, Hot Module
Replacement (HMR), code coverage and code splitting, and then we'll look at how these
concepts fit in with Vue CLI 3 as follows:

The evolution of the JavaScript (JS) language from the script tag to module
bundlers
The script tag
Immediately Invoked Function Expressions (IIFEs), what problems they solve,
and what problems they don't
How Node Package Manager (NPM) helps teams share third-party libraries in
their code
The role of JS task runners and NPM scripts
What the CommonJS specification is and how modules work in JavaScript and
Node.js
What module bundlers are and how they bridge the gap between Node.js and
the browser
What webpack, and how it works
How to run webpack on a project
Bundling assets with webpack using production and development modes
Adding a Vue project via NPM and using webpack with it

Webpack in Vue CLI 3 Chapter 2

[25]

Understanding exactly how webpack works is crucial to understanding the magic that Vue
CLI 3 performs. If you are familiar with webpack, you still might find some sections of this
chapter useful. If you feel you are a webpack pro, you can probably just skip this chapter.

Before getting into what is webpack and to properly understand the issues that webpack
solves, we need to look back at a bit of history of changes that happened to the JS language
in the last decade.

The evolution of the JS language
Looking from the vantage point of webpack, here is the chronological list of approaches,
techniques, best practices, and patterns that were added to the JS ecosystem, which led to
the current state of things:

The script tag as the answer to adding interactivity to web pages
Immediately invoked function expressions as the answer to modularizing
libraries and avoiding code collisions
The problem with IIFEs
Sharing third-party libraries in a team environment with NPM
JS task runners and NPM scripts
Modules in JS

Let's look at each one of these solutions in more detail.

The script tag
Initially, adding JS to your web page meant that you would need to add some script tags
directly in your HTML. For quick prototypes, this is still a valid way of doing things even
to this day. Very often, third-party libraries get added via the src attribute inside a script
tag (which usually gets placed right above the closing body tag in our HTML).

Unfortunately, you usually need more than one script tag inside your HTML. And
regardless of whether you add your JS code directly to your page, you add it from another
file in your project, or you add it from a remote location (such as from a content delivery
network (CDN) using the src attribute), ultimately, all these scripts are added to the global
JS scope. This means one thing, collision.

To avoid collisions, a clever approach was taken, the use of IIFEs.

Webpack in Vue CLI 3 Chapter 2

[26]

Immediately Invoked Function Expressions
What are IIFEs all about? IIFEs simply exploit the fact that in JS, parentheses can't contain
statements. This fact alone allowed JS developers to put in anonymous functions that they
could immediately invoke, without getting any errors from the parser, by simply wrapping
them in parentheses.

An IIFE is essentially a quirk of the JS language, but a very useful one; with an IIFE, all the
code is scoped to the function, and thus your code is safe from anything else that is outside
of it. In other words, using IIFEs is a simple way to avoid collisions, that is, the accidental
overwriting of variables or functions. Thus, at one point, many popular libraries started
wrapping their own code into IIFEs. For example, if you open the code for the jQuery
library (https:/​/ ​code. ​jquery. ​com), or for the Chart.js library (https:/ ​/​cdnjs.
cloudflare.​com/​ajax/ ​libs/ ​Chart. ​js/ ​2. ​7.​3/​Chart. ​bundle. ​js), or for many other
popular JS libraries, you'd find that they use the IIFE pattern.

Thus, with IIFEs, we could add different scripts to our pages, without the worry that code
collisions might happen.

The problem with IIFEs
Unfortunately, simply using IIFEs does not fix all our problems. To illustrate the issue at
hand, let's quote Joe Armstrong, creator of Erlang:

"You wanted a banana, but what you got is the gorilla holding the banana, and the entire
jungle."

Bear in mind that in this quote, Mr. Armstrong was discussing a problem with object-
oriented languages, but the underlying issue is applicable in JS code modularization.

Basically, our problem with IIFEs is that we can't cherry-pick specific functionality that
we'd like to use from a JS library. With the IIFE pattern, we must use everything that is
wrapped up in an IIFE, even if we are only using just a small piece of a specific library's
codebase. Of course, to be honest, IIFEs are not the ones to blame for this. JS, the language,
for a long time simply did not have the ability to cherry-pick any kind of code functionality,
because in JS, it was simply impossible to split your code into modules.

Another major pain point of JS was the issue of reusing third-party code across teams.

https://code.jquery.com
https://code.jquery.com
https://code.jquery.com
https://code.jquery.com
https://code.jquery.com
https://code.jquery.com
https://code.jquery.com
https://code.jquery.com
https://code.jquery.com
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js
https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.bundle.js

Webpack in Vue CLI 3 Chapter 2

[27]

Sharing third-party libraries in a team
environment with NPM
IIFEs solved the problem of code collisions, but they didn't solve the problem of code reuse.
What if a developer on my team has a different, updated version of a library, with breaking
changes? What if I decide to update the dependencies on my computer? How will my other
team members deal with that? Besides using source version control, are there any other
options for faster collaboration?

Node Package Manager (NPM) was the answer to these problems. Node is just a Google
V8 JS engine that can run on a server. NPM simply allows a developer to install new
libraries into a project, regardless of whether it is to be used on the frontend or the backend
of an app. So, effectively, NPM is the JS package manager, similar to what we have in Ruby
(gems (https:/​/ ​rubygems. ​org/ ​)), C# (NuGet (https:/ ​/​www. ​nuget. ​org/ ​)), or in Linux
(apt-get, yum).

For example, let's say we wanted to install Vue via NPM. If we have Node installed on our
machine, we'll have NPM too, since NPM comes bundled with a Node installation.

Next, we need to create a new directory. Let's change this directory's name to vue-from-
npm, and point our command-line console to it. We can then follow it up with this
command:

npm init -y

Running the preceding command will create a package.json file. The -y flag accepts all
the default answers that you'd be prompted with in the console.

If we looked at the newly created package.json file inside our project directory, we'd see
the following contents:

{
 "name": "vue-from-npm",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC"
}

https://rubygems.org/
https://rubygems.org/
https://rubygems.org/
https://rubygems.org/
https://rubygems.org/
https://rubygems.org/
https://rubygems.org/
https://rubygems.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/

Webpack in Vue CLI 3 Chapter 2

[28]

Note that the npm init command only adds a package.json file to an empty directory.
That's all that it does!

Adding Vue is then as simple as running this command:

npm install vue --save --verbose

The preceding command will do a few things, namely:

It will add the node_modules directory.
It will put the entire Vue library inside the node_modules directory.
It will create the package-lock.json file in the root of our project.
It will update the package.json file in the root of our project.

The updated package.json file now looks like this:

{
 "name": "vue-from-npm",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "dependencies": {
 "vue": "^2.6.7"
 }
}

If it is not obvious, the file has been updated with a new entry: dependencies. This entry
lists all the dependencies included in the project. Specifically, we have added Vue (version
2.6.7 or above) to our project.

A great thing about NPM is that we can add any other library to our project, just as easily
as we did with Vue. For example, to update our project with accounting.js, we just run this
command:

npm install accounting-js --save --verbose

Webpack in Vue CLI 3 Chapter 2

[29]

Once the installation is complete, let's again inspect the node_modules directory as
follows:

vue-npm/node_modules/
 ├── accounting-js/
 │ ├── dist/
 │ ├── lib/
 │ ├── CHANGELOG.md
 │ ├── package.json
 │ └── README.md
 ├── is-string/
 ├── object-assign/
 └── vue/

Note that for the sake of brevity, we are only showing the second level of folders and files
inside the accounting-js folder. The is-string, object-assign, and vue folders are
shown collapsed.

What this shows us is that sometimes other NPM modules come bundled with the actual
libraries that we installed. In the case of accounting-js, we also got the is-string and
object-assign NPM modules. Let's also inspect the updated package.json file in the
root of our directory as follows:

{
 "name": "vue-from-npm",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "dependencies": {
 "accounting-js": "^1.1.1",
 "vue": "^2.6.7"
 }
}

As we can see, the root package.json file has been updated with the proper version of
accounting-js. Let's locate another package.json file, this time inside the
node_modules/accounting-js folder. If you opened that file, it holds a lot more
information, in just a bit over 100 lines of code. This information is specific to the actual
NPM module, accounting-js.

Webpack in Vue CLI 3 Chapter 2

[30]

OK, so now our project is ready for collaboration. The way to do it? Let's see how a
colleague of ours, let's call him John, would add the project we just created, and all the
project dependencies, on his own computer.

To do this, we'll create a new folder, let's call it johns-computer, and let's just copy the
root level package.json from our vue-from-npm folder into our johns-computer
folder.

Next, let's simply run this command:

npm install --verbose

Running the preceding command will install all the projects and dependencies that we had
in the vue-from-npm folder.

JavaScript task runners and NPM scripts
Around the same time during which NPM was gaining popularity, another frontend
technology was also on the rise: task runners. Task runners are simple tools; they run
repetitive tasks. Sometimes, task runners are referred to as build tools because they act as
intermediaries between updates that a developer makes to a codebase, and what the
production ready code ends up being. This is what's known as a build step, a part of the
software development process in which something happens to your code after you've
written it.

For example, new features that get added to CSS3 usually start off as vendor prefixes (also
known as browser prefixes). In other words, before a new CSS functionality is available in all
browsers, it gets implemented in an experimental stage in individual browsers, using
browser-specific prefixes as follows:

-ms-
-moz-
-o-
-webkit-

In this alphabetically ordered list of browser prefixes, we can see browser prefixes for
Microsoft browsers, Mozilla, old versions of Opera, and finally, all the webkit-based
browsers (Chrome, Safari, newer Opera, and so on).

Webpack in Vue CLI 3 Chapter 2

[31]

Keeping track of updates to browser prefixes is kind of difficult. It is probably not the best
use of a developer's time to monitor for changes to CSS implementations, and then update
their code accordingly. For example, at a certain point in the past, it was necessary to use
the following browser prefixes on the CSS transition property:

-webkit-transition: background-color 1s;
-moz-transition: background-color 1s;
-o-transition: background-color 1s;
-ms-transition: background-color 1s;

Obviously, today we simply use the transition property in our CSS declarations, without
any browser prefixes, because the transition property is widely supported in all modern
browsers.

Having to deal with the constantly shifting landscape of changes to the CSS specification
and its implementations in various browsers led to a solution in the form of a task runner.
Instead of having to manually add vendor prefixes to their CSS code, frontend developers
could now simply add a plugin to their task runner and it would do the dirty work for
them: add vendor prefixes where needed.

Of course, what we saw previously was just one example of what task runners are used for.
Some other examples include: minifying CSS and JS files, transpiling from ES6 to
ES5, compiling CSS from SASS, removing unused CSS, reloading the browser whenever a
file is saved in your project, and so on.

Today, there are a number of different tools that help us to effectively automate some tasks
in our development process. Three tools stand out: Grunt, Gulp, and NPM scripts.

While Grunt and Gulp are standalone task runners that you can install via NPM,
NPM scripts are an interesting alternative for the following few reasons:

You are using NPM anyway, so why not get more familiar with a tool you are
already using?
Using NPM scripts instead of the aforementioned task runners will streamline
your development further.
By using NPM, you avoid the complexity of having to use a task runner plugin
for tasks that can be automated straight in NPM.

Webpack in Vue CLI 3 Chapter 2

[32]

Up until this point, we've looked back at the history and the evolution of the JS
ecosystem. We've seen how IIFEs were used to take care of accidental scope leaks. We've
also seen how NPM takes care of code sharing. We've further looked at how some
repetitive tasks can be automated with the help of task runners, and how NPM can be used
to remove an unnecessary layer of abstraction by keeping our tasks inside NPM scripts.

However, we still haven't looked at ways to solve the problem of code modularization in JS.
So, let's look at that next.

Modules in JavaScript
In any programming language, a module is a self-contained piece of functionality. You can
think of them as different episodes of a TV show. They can be looked at independently.
They can stand on their own, although they are a part of a greater whole.

And just like an episode in a TV show has a season and a number, so that we know where it
fits in the bigger plot, a module also holds the information that tells us what other modules
it relies on (the module dependencies), and what functionality it adds to the entire app; this is
what's known as a module's interface, the API that's exposed to other modules.

We've seen how in the beginning, JS did not have modules at all. This changed with the
introduction of Node.js. Node.js is actually an implementation of CommonJS, a project that
was started in 2009 by Mozilla's Kevin Dangoor.

CommonJS project's purpose was to define a standard library that would provide JS APIs to
be used outside of the browser. This included a module specification, which resulted in
developers being able to use code like this in Node.js:

var bootstrap = require('bootstrap');

Working with modules in Node.js
Let's require and use some modules in Node.js:

To begin, we'll create a new directory. Let's call it module-practice. Let's point1.
our Git Bash to this folder.
Once inside it, let's create two new files. Let's call these files main.js and2.
whatever.js as follows:

touch main.js whatever.js

Webpack in Vue CLI 3 Chapter 2

[33]

Next, let's open this entire folder in VS Code as follows:3.

code .

Now, let's add some code to whatever.js as follows:4.

console.log('whatever');

This is as simple as a piece of code in JS can get.

Let's now see how can we make it available in our main.js file. We'll just need5.
to require whatever.js as follows:

let whatever = require('./whatever');

Now that it is required, we can use it, so let's update main.js to this:6.

let whatever = require('./whatever');

whatever.returnWhatever();

Let's now run this code with the following:7.

node main.js

What will happen now is, we will see the word whatever printed inside Git Bash.

Let's take our experiment a step further. Here's our updated whatever.js:

module.exports = {
 returnWhatever: function() {
 console.log('whatever');
 }
}

Consequently, we need to update main.js too as follows:

whatever.returnWhatever();

As we have already seen, the require keyword imports a module's code and makes it
available in another file; in our example, the main.js file.

Webpack in Vue CLI 3 Chapter 2

[34]

The exports keyword lets us make the code available to other files, with one caveat. It also
allows us to choose what parts of our module we want to make available to other files. As
we see, the module.exports is an object. The contents of this object is what will be
returned when our whatever module is required by main.js. This allows us to expose
only certain sections of our code, and enables the setup of a module's interface. In other
words, module.exports is what enables us to keep parts of our code private. Consider
this update to whatever.js:

module.exports = {
 returnWhatever: function() {
 returnSomething();
 }
}

let returnSomething = () => {
 console.log('whatever');
}

We don't need to make any changes to main.js. If we ran it from Git Bash, we'd still get
the word whatever output to console. But we have made parts of whatever.js not
directly accessible.

As a side note, notice that in the preceding code, the function syntax of ES3 and ES5 are
used alongside one another. The section of code that defines the returnSomething
function is using newer syntax, which lets us write function definitions without having to
use the function keyword.

Module bundlers, a way to use modules in the browser
Unfortunately, you can't just use the require keyword, as we just saw, straight in the
browser. The require keyword is not a part of JS's browser API. It is important to note
here that Node.js has the ability to read from and to the filesystem of your computer. Thus,
if you installed any NPM package in a project, using Node.js, you would be able to require
such a module as explained previously.

However, JS in the browser does not have access to the file system of your OS, and thus this
leaves us with a conundrum: how do we use the JS module syntax inside the browser?

The answer: we have a tool for that, and it's called a module bundler.

Webpack in Vue CLI 3 Chapter 2

[35]

Today, in 2019, there are a number of different module bundlers available, such as webpack
(http:/​/​webpack.​github. ​io/ ​), FuseBox (https:/ ​/​fuse- ​box. ​org/​), Parcel (https:/ ​/
parceljs.​org/​), rollup.js (https:/ ​/ ​rollupjs. ​org/ ​guide/ ​en), or Browserify (http:/ ​/
browserify.​org/​).

What is a module bundler? Here is a quote from the Browserify home page, which puts it
succinctly:

"Browserify lets you require ('modules') in the browser by bundling up all of your
dependencies."

Besides bundling all the dependencies that get required through modules in your project,
module bundlers also solve issues such as cyclical dependencies; that is, they use
algorithms that resolve the order in which all the project's dependencies should be bundled
in your project.

We have almost finished our overview of the JS ecosystem. Next, we'll look at one
particular flavor of a module bundler, and that is webpack.

Once we know just what exactly webpack is and how it works under the hood, we'll be able
to fully comprehend where it fits within Vue CLI.

What is webpack?
Webpack is a module bundler for the web. Some people also refer to it as an asset compiler
for web applications.

According to webpack's GitHub page:

"It packs many modules into a few bundled assets and so on. Modules can be CommonJs,
AMD, ES6 modules, CSS, images, JSON, CoffeeScript, LESS, and so on, and your custom
stuff."

Earlier in this chapter, in the section titled Working with modules in Node.js, we barely
scratched the surface of how modules get exported and required in Node apps. What we
did not mention is that there are all kinds of different module syntaxes that we can use. As
already mentioned, Node.js works with the CommonJS module syntax. Besides CommonJS,
there is also Asynchronous Module Definition (AMD). Alongside AMD, you can use
ESM modules. With ESM modules, the syntax is a bit different from what we saw earlier.

http://webpack.github.io/
http://webpack.github.io/
http://webpack.github.io/
http://webpack.github.io/
http://webpack.github.io/
http://webpack.github.io/
http://webpack.github.io/
http://webpack.github.io/
http://webpack.github.io/
http://webpack.github.io/
https://fuse-box.org/
https://fuse-box.org/
https://fuse-box.org/
https://fuse-box.org/
https://fuse-box.org/
https://fuse-box.org/
https://fuse-box.org/
https://fuse-box.org/
https://fuse-box.org/
https://fuse-box.org/
https://parceljs.org/
https://parceljs.org/
https://parceljs.org/
https://parceljs.org/
https://parceljs.org/
https://parceljs.org/
https://parceljs.org/
https://rollupjs.org/guide/en
https://rollupjs.org/guide/en
https://rollupjs.org/guide/en
https://rollupjs.org/guide/en
https://rollupjs.org/guide/en
https://rollupjs.org/guide/en
https://rollupjs.org/guide/en
https://rollupjs.org/guide/en
https://rollupjs.org/guide/en
https://rollupjs.org/guide/en
https://rollupjs.org/guide/en
http://browserify.org/
http://browserify.org/
http://browserify.org/
http://browserify.org/
http://browserify.org/
http://browserify.org/
http://browserify.org/

Webpack in Vue CLI 3 Chapter 2

[36]

Let's rewrite the whatever module using ESM syntax by taking the following steps, and
use it in main.js:

To keep things easy, let's also create a new folder as follows:1.

mkdir es6-module-practice;

Let's point our Git Bash by using the cd command (the change directory2.
command) as follows:

cd es6-module-practice

Let's add our two files as follows:3.

touch whatever2.mjs main2.mjs

Now, let's open our folder with VS Code as follows:4.

code .

Next, let's add the code for main2.mjs as follows:5.

import returnWhatever from './whatever2';

returnWhatever();

 Finally, let's follow it up with code for whatever2.mjs as follows:6.

let returnWhatever = () => {
 returnSomething();
}

let returnSomething = () => {
 console.log('whatever');
}

export default returnWhatever;

As we can see, we needed to save the files as ESM modules, using the mjs file7.
extension. Node.js supports ESM modules experimentally, so you need to run the
following command in Git Bash:

node --experimental-modules main2.mjs

Webpack in Vue CLI 3 Chapter 2

[37]

Upon running the preceding command, this is the output you'll see in the8.
console:

(node:12528) ExperimentalWarning: The ESM module loader is
experimental.
whatever

As we can see, besides receiving the expected output in the console, we also got the
ExperimentalWarning message. Hopefully, this demonstration of two different kinds of
module syntaxes helps us understand what webpack will do for us. Among other things, it
will level the playing field, so that we can use various standard and non-standard ways to
work with modules in our projects.

Basically, what webpack does is, it takes our modules with dependencies (including our
project's assets such as .png, .jpeg, and .scss files), and it outputs static assets (.js,
.css, and .image files).

How webpack works
We've seen how to use the CommonJS and ESM module syntax. Again, CommonJS is the
syntax used for Node.js modules. This means that all the dependencies in a Node.js module
are described using the require command. Contrary to this, a webpack module's
dependency can be described in a wide variety of syntaxes. For example, if your module's
dependency was an SCSS partial, you'd use an @import statement. If you were importing
an AMD module's dependency, you'd be using it's own require and define syntax.

What this means is, that basically, webpack modules accept all the different syntaxes for
importing various dependencies of a module. Even the src attribute (for the img HTML
element) is considered a webpack module's dependency.

Building a new project and running webpack on it
Let's now build a project and integrate webpack bundling into our workflow by taking the
following steps:

Let's add a new directory. Let's run a command that doesn't exist as follows:1.

new-project-with-webpack

The console will return the following:

bash: new-project-with-webpack: command not found

Webpack in Vue CLI 3 Chapter 2

[38]

Great! Now, let's use the repeat last command shortcut, the double exclamation2.
mark, as follows:

mkdir !! && cd !!

Running the preceding command will create our new-project-with-
webpack folder, and will cd into this new directory. The double ampersand
command (&&) is just a way to run multiple commands one after another, rather
than having to type them out one by one. The double exclamation mark
command (!!) means repeat the previous line, so the preceding command actually
means the following:

mkdir new-project-with-webpack && cd new-project-with-webpack

Next, let's add our package.json, and accept all the defaults (using the -y3.
flag) as follows:

npm init -y

Let's inspect the contents of our folder in VS Code as follows:4.

code .

Once VS Code is running on our screen, we can double-click the package.json5.
file and verify it's contents as follows:

{
 "name": "new-project-with-webpack",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC"
}

Now, let's add webpack to our project as follows:6.

npm install --save-dev webpack webpack-cli --verbose

Webpack in Vue CLI 3 Chapter 2

[39]

Once done, let's go back to VS Code and review our package.json again as7.
follows:

{
 "name": "new-project-with-webpack",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "devDependencies": {
 "webpack": "^4.29.5",
 "webpack-cli": "^3.2.3"
 }
}

As we can see, a new key has been added: devDependencies. Inside it, we have the
webpack and the webpack-cli development dependencies. These devDependencies are
the dependencies that you will be using only while building your project, and webpack is a
perfect example of such a dependency: you will not need webpack in production. That's
why we've used the --save-dev flag when we installed webpack via NPM.

Looking at the file structure of our project, we can now see the following:

node_modules/
package.json
package-lock.json

If you open the node_modules folder, you see over 300 folders inside. This huge list of
dependencies begins with a .bin folder. Contrast this with one of our previous examples,
vue-from-npm, where we had only four subfolders inside the node_modules folder, even
though we installed both the vue and accounting-js NPM packages. Note also that
inside the vue-from-npm folder, there is no .bin folder. This is the case regardless of
whether you install it with the --save or the --save-dev flag when running npm
install. While this might be obvious to more experienced developers, it might be
important for better understanding to those developers who do not have enough
experience with Node.js and NPM ecosystem.

Webpack in Vue CLI 3 Chapter 2

[40]

So, what is this .bin folder? It just stores the compiled native binaries (that is, executable
files) of a Node module that you installed using npm install. Not all NPM modules have
these compiled native binaries and this is why you won't always see the .bin folder inside
the node_modules folder. Inside this .bin folder, there are many different Node modules.
These are all necessary for webpack to work properly.

Back to our project, let's now add two files to it: index.js, and whatever.js as follows:

touch index.js whatever.js

Currently, we won't be adding any code to either of those files. Right now, we'll focus on
running webpack in our project.

Running webpack on a project
Go back to our new-project-with-webpack folder, and examine the contents of
package.json again, with the focus on the scripts key as follows:

"scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
},

 Use the following command in Git Bash to run test script:

npm run test

This will throw an error, with exit code 1.

Let's make some changes to it as follows:

"scripts": {
 "test": "echo \"You haven't specified any tests\""
},

Let's run the test again with npm run test. This time the output in the console will not be
as ghastly, because we removed the exit 1 command, and we altered the wording of what
will be echoed when running the test command.

Let's try something else entirely as follows:

"scripts": {
 "test": "node index.js"
},

Webpack in Vue CLI 3 Chapter 2

[41]

Now, we get no errors, because our index.js is empty. Let's add something to it as
follows:

// add up 2 numbers
console.log(2+2)

Save changes to index.js, run npm run test again, and this time the output in Git Bash
will be number 4 printed to the screen.

What does this tell us? It tells us that we are in complete control of what our scripts are
going to do! So, initially we had a script that was named test. This script would echo out a
message and throw an error with exit code 1.

And just as we can give our scripts any arbitrary key name, such as test, we can also give
them any arbitrary value. Of course, console.log(2+2) is a silly value to give to a script
key. We can give our scripts keys much better values, for example:

 "scripts": {
 "webpack": "webpack"
 },

Now, when we run an NPM script with the value of webpack, this script will then run the
webpack executable. Let's try it out as follows:

npm run webpack

This returns an error, but out of all the information that gets logged out, the following two
lines are the most important:

Insufficient number of arguments or no entry found.
Alternatively, run 'webpack(-cli) --help' for usage info.

The reason we got this error is because webpack looks for an entry point to get started on.
By default, this entry point is set to ./src/index.js. So, let's add this src folder, and
move our index.js into it as follows:

mkdir src && mv index.js $_

Now, let's run webpack from the command line again as follows:

npm run webpack

Webpack in Vue CLI 3 Chapter 2

[42]

This time we'll get a much better output. However, there is no syntax highlighting in Git
Bash by default. This can be fixed really fast. Since we are already using VS Code, simply
type the keyboard shortcut of Ctrl + ~. If you're not familiar with this symbol, it's called
a tilde, and it's located right under the Esc key, and above the Tab key. Pressing this
keyboard shortcut will open up a terminal window inside VS Code, and if you execute the
npm run webpack command again, you'd get nicely formatted and color highlighted
output, like this:

Figure 2.1: Webpack logging out information to console in VS Code

As a side note, your screen's colors might look different, depending on the
color scheme you are using in your VS Code. To access the color themes,
use the following keyboard shortcut: Ctrl + K Ctrl + T.

Looking at the message that was output to the console, we can see that it can be grouped in
two sections: the one with the actual information (hash, version, time, built at, entrypoint,
and so on) and the warning. The warning reads that we haven't set the mode option.

If unset, the mode option defaults to production. However, we can also set it to
development, which is optimized for faster builds. This means that we can add another
script in our scripts section of package.json, and this script can then be used for the
development build of our project. This is the updated scripts section:

"scripts": {
 "webpack": "webpack",
 "dev": "webpack --mode=development"
},

Webpack in Vue CLI 3 Chapter 2

[43]

Now, we can run the development mode in webpack, with the following command:

npm run dev

Here is the complete output in the console:

Hash: 86c0da41f48381d9bd70
Version: webpack 4.29.5
Time: 108ms
Built at: 2019-02-27 12:23:30
 Asset Size Chunks Chunk Names
main.js 3.81 KiB main [emitted] main
Entrypoint main = main.js
[./src/index.js] 38 bytes {main} [built]

As we can see, it took webpack 108ms to bundle my project in the development mode.
When I ran it in production mode (the default npm run webpack command in my setup),
it took 447ms.

What does actually happen when we run this command? What does webpack do in the
background? It builds a dependency graph of all the module dependencies. To go back to
our analogy from earlier in the chapter, it's as if we gave it a bunch of episodes of a TV
show, recorded on a bunch of Blu-ray discs, and it takes all of them and lines them up
properly. Webpack figures out the correct place for each of these modules, and then
bundles them up and serves them to the dist folder. If you look at your project's file
structure again, you'll see that now there's a new addition: the dist folder. If we inspect
the contents of the dist folder, this is what we'll see:

./dist/
 |- main.js

If we inspect the main.js file, we'll see that there is a lot of stuff that webpack adds. Even
on a tiny project like ours, the output gets to be about 100 lines long.

The first few lines of our main.js file look like this:

/******/ (function(modules) { // webpackBootstrap
/******/ // The module cache
/******/ var installedModules = {};
...

Webpack in Vue CLI 3 Chapter 2

[44]

Let's run our npm run webpack command again to see how it will affect the output in
main.js.

If we inspect main.js, we will see that now we have only a single line of code, beginning
with the following:

!function(e){var t={};function n(r){if(t[r])return t[r].exports;var ...

What this means is that webpack uglifies and minifies our code when run in production
mode.

Obviously, this affects the file size too. While the bundled main.js file has the file size of
3.81 KB in development mode, when bundled in production mode, it has just 944 bytes.

Finally, to avoid seeing the warning message, we can update our scripts entry in
package.json to this:

"scripts": {
 "webpack": "webpack --mode=production",
 "dev": "webpack --mode=development"
},

At this point, we can start using webpack with Vue. However, we won't be using the Vue
CLI. Instead, we'll see how to set everything up manually. This is not the best way to do
things, but it will help us better understand why things are done the way they are in the
Vue ecosystem.

Adding a Vue project via NPM and using
webpack with it
In this section, we'll build a new project with NPM, then add webpack to it, and finally add
a Vue single file component to it.

First, let's make a new directory by taking the following steps. We'll call our project npm-
vue-webpack:

Open Git Bash and add a new folder as follows:1.

mkdir npm-vue-webpack && cd $_

Webpack in Vue CLI 3 Chapter 2

[45]

Initialize npm as follows:2.

npm init -y

Next, install Vue and webpack into our new project as follows:3.

npm install vue webpack webpack-cli --save-dev --verbose

Once the NPM installation is complete, we can verify the folders and the contents
of package.json as we did earlier in the chapter.

Next, add the source and output folders our project will use as follows:4.

mkdir dist src

Open our new project in VS Code as follows:5.

code .

Now, we can add two new files right from the VS Code editor. We'll call the first file
source.js, and we'll call the second file output.js. Make sure you have added and
saved these two empty files in your project at this stage: source.js in the src folder, and
output.js in the dist folder.

Adding our Vue component as a JavaScript
module
Now let's add our Vue component:

Next, let's add this code to source.js as follows:1.

import CustomArticle from './CustomArticle.js';

new Vue({
 el: '#app',
 render: h => h(CustomArticle),
})

On the first line, we're importing a file called CustomArticle.js.2.

Webpack in Vue CLI 3 Chapter 2

[46]

Let's make a new file inside the src folder. We'll call this3.
file CustomArticle.js.
And add the following code to it:4.

let CustomArticle = Vue.component('custom-article', {
 template: `
 <article>
 Our own custom article component!
 </article>`
 })

export default CustomArticle;

As we can see, we're using the ESM syntax to export and import a JS module.

Compiling JavaScript modules with webpack
We are almost ready now to compile our source.js to output.js with the help of
webpack. However, before we do it, we still need to update the scripts section of our
package.json as follows:

"scripts": {
 "webpack": "webpack"
},

Now, we can run the following command inside Git Bash:

npm run webpack ./src/source.js ./dist/output.js

As expected, we see the output in the console, together with the warning about setting the
mode option. We now know what this means, so it's not important to deal with it at this
time.

If we inspect the contents of output.js, we'll see that it's empty, and that, by default,
webpack minified and obfuscated our output code to the default main.js file as follows:

!function(e){var t={};function n(r){if(t[r])return t[r].exports;var
o=t[r]={i ...

So, how do we make webpack output to a different file, other than the default main.js?
We use the webpack configuration file!

Webpack in Vue CLI 3 Chapter 2

[47]

Adding options with the help of the webpack
configuration file
Using the webpack configuration file, we can add various options to the way our apps get
bundled with webpack. Here is how:

Add a new file to the root of our project. We'll call this webpack.config.js file.1.
Here is the code:

module.exports = {
 output: {
 filename: 'output.js',
 }
};

Now, run our command again as follows:2.

npm run webpack ./src/source.js ./dist/output.js

This time it outputs to the correct file.

Just as we can specify the output file, we can also specify the input file as follows:3.

module.exports = {
 entry: './src/source.js',
 output: {
 filename: 'output.js',
 }
};

We still need to render our Vue component somewhere on the screen. We need an HTML
file for that.

Adding an HTML file so that we can render our
Vue component
Let's add a new HTML file, we'll call it index.html, to our dist folder as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Compiled HTML file</title>
</head>
<body>

Webpack in Vue CLI 3 Chapter 2

[48]

 <div id="entryPoint"></div>

 <script
src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js"></script
>
 <script src="output.js"></script>
</body>
</html>

Just as we discussed at the very beginning of this chapter, we are adding scripts directly to
our HTML in the old-school way, by just stacking script tags at the bottom of our HTML
file. The first script tag we're using is fetching Vue from a CDN, and the second script
tag fetches our output.js file from the dist folder.

If you're using VS Code, you can now right-click on your new dist/index.html file, and
click the Open in default browser command.

You will see the following sentence on the web page that opens:

Our own custom article component!

Now, we need to give webpack the ability to output an HTML file. For that, we'll need to
use the html-webpack-plugin.

Giving webpack the ability to output an HTML file
In this section, we'll see how to output an HTML file using a webpack plugin by taking the
following steps:

Install html-webpack-plugin via NPM as follows:1.

npm install html-webpack-plugin --save-dev --verbose

Our devDependencies of package.json have updated accordingly as follows:2.

"devDependencies": {
 "html-webpack-plugin": "^3.2.0",
 "vue": "^2.6.7",
 "webpack": "^4.29.5",
 "webpack-cli": "^3.2.3"
}

Webpack in Vue CLI 3 Chapter 2

[49]

Now, update our webpack.config.js, as follows:3.

let HtmlWebpackPlugin = require('html-webpack-plugin');

module.exports = {
 entry: './src/source.js',
 output: {
 filename: 'output.js',
 },
 plugins: [new HtmlWebpackPlugin()]
};

Before we continue, delete the index.html file that we had in our dist folder.4.
Don't worry about deleting it, though, since webpack will soon recreate it.
Next, let's run the webpack script again as follows:5.

npm run webpack

Webpack just created a new index.html file for us! Here's the contents of the file:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Webpack App</title>
 </head>
 <body>
 <script type="text/javascript" src="output.js"></script></body>
</html>

This is all great, but obviously, our file is not the same. We have lost our entry point for the
Vue component we had. Also, we need to update our Vue code so that it works as a single
file component.

Adding a .vue file as a JavaScript module
First, let's update the source.js file, to the following:

import Vue from 'vue';
import CustomArticle from './CustomArticle.vue';

new Vue({
 el: '#entryPoint',
 render: h => h(CustomArticle),
})

Webpack in Vue CLI 3 Chapter 2

[50]

We can now also rename our CustomArticle.js to CustomArticle.vue, and add the
following code to it:

<template>
 <div id="entryPoint">
 <article>
 Our own custom article component!
 </article>
 </div>
</template>

Unfortunately, webpack doesn't work with .vue files out of the box. To fix the issue at
hand, we need to use a webpack loader. A webpack loader helps webpack understand the
files it's working with. There are many loaders out there, but for now, we need to work
with Vue.

Adding a webpack loader to work with .vue files
To work with .vue files, take the following steps:

Install a webpack loader called vue-loader via NPM as follows:1.

npm install vue-loader --save-dev --verbose

Now that we've saved it, we need to use it, and we'll do that by updating the2.
webpack configuration as follows:

let HtmlWebpackPlugin = require('html-webpack-plugin');
let VueLoaderPlugin = require('vue-loader/lib/plugin');

module.exports = {
 entry: './src/source.js',
 output: {
 filename: 'output.js',
 },
 plugins: [
 new HtmlWebpackPlugin(),
 new VueLoaderPlugin(),
]
};

Webpack in Vue CLI 3 Chapter 2

[51]

Try running webpack now as follows. Spoiler alert: it will fail:3.

npm run webpack

The error message we get reads as follows:

Error: [VueLoaderPlugin Error] No matching rule for .vue files
found.

To fix this error, we need to add a rule for our Vue loader, by updating our4.
webpack.config.js file to the following:

let HtmlWebpackPlugin = require('html-webpack-plugin');
let VueLoaderPlugin = require('vue-loader/lib/plugin');

module.exports = {
 entry: './src/source.js',
 output: {
 filename: 'output.js',
 },
 module: {
 rules: [
 { test: /\.vue$/, use: 'vue-loader' }
]
 },
 plugins: [
 new HtmlWebpackPlugin(),
 new VueLoaderPlugin(),
]
};

The test key inside the array in the rules option receives a regex as a value.
This regex is checking for the presence of a file with a vue file extension. If it
matches, that is, if it finds a vue file, it will use the vue-loader module on it.

Let's run our webpack script again as follows:5.

npm run webpack

This will throw another error as follows:

ERROR in ./src/CustomArticle.vue
Module Error (from ./node_modules/vue-loader/lib/index.js):
[vue-loader] vue-template-compiler must be installed as a peer
dependency, or a compatible compiler implementation must be passed
via options

Webpack in Vue CLI 3 Chapter 2

[52]

There are more errors logged out to the console, but this is the one that we need6.
to fix by adding another NPM package, as follows:

npm install vue-template-compiler --save-dev --verbose

The devDependencies entry inside package.json just received another update, as
follows:

 "devDependencies": {
 "html-webpack-plugin": "^3.2.0",
 "vue": "^2.6.7",
 "vue-loader": "^15.6.4",
 "vue-template-compiler": "^2.6.7",
 "webpack": "^4.29.5",
 "webpack-cli": "^3.2.3"
 }

So, now we can run webpack again as follows:

npm run webpack

After webpack ran, if you opened output.js at this time, you'll see that it has the full Vue
library inside of it, along with our CustomArticle at the very end. This all compiled
without any errors.

Fixing the issue with our index.html file
We still have the issue of the index.html file in the dist folder. It's an easy fix! We'll just
add our own index.html file to the src folder, with the following contents:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Compiled HTML file</title>
</head>
<body>
 <div id="entryPoint"></div>
</body>
</html>

Webpack in Vue CLI 3 Chapter 2

[53]

Note that we have now removed our own script tags, since webpack will be adding them.
Also, make sure to delete the index.html file inside the dist folder. Now, run the npm
run webpack command again, and you'll get this output in dist/index.html as follows:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Webpack App</title>
 </head>
 <body>
 <script type="text/javascript" src="output.js"></script></body>
</html>

Why is this not working?

It is not working because we need to update both the JS files to be output, as well as the
HTML files. Currently, we are only updating the JS files, but we still need to do it for our
index.html file. Luckily, we already have html-webpack-plugin to help out.

Delivering HTML files via webpack with the help of
html-webpack-plugin
We'll begin by updating the html-webpack-plugin in the webpack.config.js file as
follows:

plugins: [
 new HtmlWebpackPlugin({
 template: './src/index.html',
 }),
 new VueLoaderPlugin(),
]

What we did in the plugins section was, we passed an options object to our
HtmlWebpackPlugin() call. Inside this options object, we specified our template:
./src/index.html.

Before we run the webpack script again, we need to make sure to add the meta tag with
charset set to utf-8. Otherwise, we'll get an error in our console when we open
dist/index.html in the browser.

Webpack in Vue CLI 3 Chapter 2

[54]

Let's now run npm run webpack again. This time, everything works! We get our humble
looking sentence on the screen:

Our own custom article component!

Congratulations! Although it is humble looking, you have successfully added a Vue app to
an NPM-powered project, running on webpack.

Next, we'll learn about HMR, and how it helps us in our Vue development.

Understanding Hot Module Replacement in
Vue
HMR has become a sort of a buzzword in the past couple of years. What's the big deal? In
this section, we'll discuss how HMR works.

To do that, we'll build another default simple app, just like we did in Chapter 1, Introducing
Vue CLI 3, as follows:

vue create -d second-default-app

After a while, once it's done, we'll go into our app's directory as follows:

cd second-default-app

Let's open the project's folder in VS Code as follows:

code .

Now, we can see the entire contents of our second-default-project.

Now, we can serve the app as follows:

npm run serve

Of course, our app is now serving in our browser.

To view your app, visit localhost:8080 in your browser.

Let's look at HMR updates happening in real time.

Webpack in Vue CLI 3 Chapter 2

[55]

Observing HMR updates
While the browser window is active, let's press the F12 key to turn on the developer tools.
Let's also make sure that our the Elements panel is the active tab inside the dev tools, so
that we can see the Document Object Model (DOM) structure, like in the following
zoomed-in screenshot from the browser:

Figure 2.2: The welcome screen of second-default-app with the Elements panel open in dev tools

Now, let's see HMR in action. Ideally, to see this in action, you'd need to use two monitors.
Thus, you could, for example, move your VS Code window to the left monitor, and your
browser with the app served to the right monitor. Alternatively, you can use a single
monitor and view both apps side by side (with each one taking up half the screen width).
The point of this exercise is to be able to see at the same time your VS Code window, your
Vue app browser window, and your Elements panel inside your browser's dev tools.

Next, inside VS Code, open the App.vue file (inside the src folder of your project). Look at
line 4, which currently reads as follows:

<HelloWorld msg="Welcome to Your Vue.js App"/>

Webpack in Vue CLI 3 Chapter 2

[56]

We'll soon change that line to something else. Before you change the line, pay attention to
how these changes reflect in the browser serving your app. Will the browser refresh?

Now that you're focused on tracking changes in browser, let's update line 4 in App.vue as
follows:

<HelloWorld msg="HMR is cool"/>

Pay attention to the browser while you're saving changes to App.vue in VS Code. The best
way to do this is to have VS Code in focus, but watch the browser window, specifically the
Elements panel. With VS Code in focus, you can save changes with the shortcut key Ctrl +
S.

If you pay close attention, and if you're using Chrome, you'll notice a flash of purple color
inside the Elements panel. That's the Chrome browser notifying us of the changes that
happened to the DOM of our Vue app. If you pay close attention, you'll notice that there is
a flash on the head element, as well as the h1 element and it's child text node, HMR is
cool.

Also, you might notice that there was no refresh on the browser. Neither webpack, our
app's code, or we ourselves forced the browser to refresh. What's the conclusion here?
Webpack is actually not forcing a page refresh with HMR! Instead, it just injects an HMR.

While the change on the h1 element is obvious (as it is the immediately visible consequence
of us changing the text inside the App.vue file), the update that happens in the head
element is both more obscure and more helpful. To see what is happening, let's twirl open
the head tag by clicking on the little black triangle to the left of the head tag inside the
Elements panel, as shown in the following screenshot:

Figure 2.3: Twirl-open the head tag inside Elements panel in dev tools

Webpack in Vue CLI 3 Chapter 2

[57]

Next, we'll need to scroll all the way down to the closing </head> tag. Right above it, there
will be a script tag that reads something similar to this:

<script charset="utf-8" src="/app.c7e7b2f6599f49948328.hot-
update.js"></script>

Let's keep close attention on this section of the DOM tree in the Elements panel, while we
make another change to App.vue. Let's update our msg attribute on line 4 to this:

<HelloWorld msg="HMR is cool indeed"/>

If you observed the script tag, you'll notice it change as follows:

<script charset="utf-8" src="/app.417e697f270d544a21b3.hot-
update.js"></script>

Did you notice that Vue injected another script above the closing </head> tag? That
injected script is HMR in action, right there.

Let's inspect the very first line of the appended script file as follows:

webpackHotUpdate("app",{

How does this whole process work? Webpack simply runs our changes, bundles an update
to our app, and, since it is already running, injects the new code using Vue loader.

So, as we've just seen, HMR is just a feature of webpack that helps us do things more
smoothly, without the need to worry about refreshing our apps.

Summary
In this chapter we discussed the evolution of the JS language and its ecosystem, and how
this evolution lead to the appearance of module bundlers. We also looked at webpack, the
module bundler of choice of Vue CLI 3.

We looked at how to plug in a very basic Vue-powered app, running on single file Vue
templates. Alongside this mini-project, we also looked at a number of important webpack
concepts. We finished the chapter by observing HMR on a Vue project.

Now that we know the very basics of how webpack works, in the chapters that follow, we'll
discuss some other related technologies and we'll build on our knowledge of webpack and
Vue CLI 3. The next topic we'll be closely examining is Babel.

3
Babel in Vue CLI 3

In this chapter, we will work with Babel to bring the new features of JavaScript (JS) to
browsers before they can understand them by transpiling it to older versions of JS. We'll
discuss the following:

Understanding Babel
Running webpack with ES5 and ES6
Updating our webpack configuration to work with Babel
Vue, Babel, and JSX
Adding Babel plugins manually

Let's begin by looking at what problems Babel solves.

Understanding Babel
As we've seen already in the previous chapters, once you build a default Vue application
using the Vue CLI, you can then serve it with npm run serve.

Your app will usually be served at localhost:8080. Looking at the served page with its
default contents, you'll notice that there are two plugins listed under the Installed CLI
Plugins heading: babel and eslint.

Babel in Vue CLI 3 Chapter 3

[59]

Why would these two plugins come pre-installed with the default application? Obviously,
the Vue framework's team is trying hard to follow best practices and be up-to-date with the
modern approach to building web applications. Using Babel is one of these best practices.

If you visit the Babel website, you'll see the following definition of what it is:

"Babel is a toolchain that is mainly used to convert ECMAScript 2015+ code into a
backwards compatible version of JS in current and older browsers or environments."

So, how can we use the Vue CLI Babel plugin? And what would be the easiest way to get
more information about it?

Since we have already used Vue CLI to create default Vue apps, and since we have also
learned about Vue CLI's UI, we can reach the official documentation easily, by just opening
our Git Bash and starting the Vue CLI UI:

vue ui

As we've seen in Chapter 1, Introducing Vue CLI 3, this command will have webpack serve
our most recent project's dashboard in the browser. There, we can click the Plugins icon, as
can be seen in the following screenshot:

Babel in Vue CLI 3 Chapter 3

[60]

Once you've clicked on the Installed plugins link, you'll see the following screen:

This app lists three default plugins installed: @vue/cli-service, @vue/cli-plugin-babel, and
@vue/cli-plugin-eslint. To make things easier to understand, the other plugins have been
grayed out, and numbered boxes have been added to the screenshot:

More info links to the GitHub repository of cli-plugin-babel1.
Update @vue/cli-plugin-babel2.
The button with the home icon is the link to Vue UI's project manager that lists3.
all the available projects
This section of the UI shows the location of the current Vue project in your OS4.
Clicking here lets you toggle Vue UI's logs on and off5.
As we've seen earlier, this allows you to switch between the two color variations6.
of the Vue UI
The report bug icon takes you to the Vue-CLI bug-reporting web page7.
If you're interested in translating the UI, this button links to the page for UI8.
localization
This icon simply refreshes the plugin's API9.

Babel in Vue CLI 3 Chapter 3

[61]

If you need to use the popular vuex or vue-router plugins, you can simply click on the
appropriate buttons at the very top of the plugins page to install them.

The search input to the right of the Add vuex and Add vue-router buttons
lets you filter the installed plugins, and the Add plugin button takes you
to the localhost:8000/plugins/add screen, where you can choose
from a number of plugins, such as @vue/cli-plugin-unit-jest,
@vue/cli-plugin-typescript, @vue/cli-plugin-pwa, and so on.
There is a huge selection of plugins here, and we'll look into it in more
detail in later chapters.

In the next section, we'll discuss all the features of cli-plugin-babel.

The building blocks of @vue/cli-plugin-babel
There are several parts that @vue/cli-plugin-babel comes with out-of-the-box. These
are Babel 7, babel-loader, and @vue/cli-plugin-babel.

Babel 7 in @vue/cli-plugin-babel
Here is the problem that Babel solves.

Let's say that you are developing your web app's frontend, and you are using the more
modern, ES6+ syntax of the JS language. Once your app is complete, and released into the
wild, some of your users run your web app on, say, Internet Explorer. Contrary to other
users of your web app who get a smooth experience running your app, the Internet
Explorer users would get a syntax error instead.

Babel was the answer to problems such as this. It leveled the playing field: it allowed
developers to outsource their JS browser compatibility problems to Babel. Instead of having
to worry about, and cater to older browsers, they could simply write their JS code using the
newest features of the language, even before they were fully available in any browser.
Babel was then responsible for converting this code to the older JS dialect, the one that
older browsers could speak.

The @vue/cli-plugin-babel runs on Babel 7, which was released on August 27, 2018.
There is a three-year difference between Babel 6 and Babel 7, and this iteration came with a
slew of improvements. Vue CLI supporting such a recent update is another testament to its
team being dedicated to keeping up with the times as much as possible.

Babel in Vue CLI 3 Chapter 3

[62]

The role of babel-loader in @vue/cli-plugin-babel
As we've seen in the previous chapter, Vue CLI runs on webpack 4.

To be able to use Babel 7, @vue/cli-plugin-babel employs babel-loader, available
here: https:/​/​github. ​com/ ​babel/ ​babel- ​loader.

As mentioned in the previous chapter, with webpack loaders, we can preprocess and
bundle a bunch of different resources, not just regular JS, but virtually any other static
resource.

Specifically, babel-loader takes ES6+ JS, and converts it to ES5 JS. This process is commonly
referred to as transpiling. Thus, the role of babel-loader in @vue/cli-plugin-babel is to
transpile our ES6+ code to ES5.

The role of @vue/babel-preset-app
There is more to @vue/cli-plugin-babel. It includes the @vue/babel-preset-app,
whose sole purpose is to be used in projects generated via Vue CLI. Without going into too
many details on how @vue/babel-preset-app works, we can list its main features:

It looks at your browser targets using browserslist
It automatically applies transforms and polyfills needed (achieved with the help
of @babel/preset-env)
It adds support for Vue JSX
It prevents inlining helpers in all the files during builds

Other than the previously listed features, there are also other things that @vue/cli-
plugin-babel is capable of, and we'll discuss them in the next section.

Other features of @vue/cli-plugin-babel
Besides the default settings listed in the previous section, @vue/cli-plugin-babel is also
extendable. We can add other Babel presets and plugins using babel.config.js.

It uses a couple of webpack loaders to perform two other major tasks: caching (with the
help of cache-loader), and utilizing multi-core processors (with the help of thread-loader).
This is referred to as parallelization.

https://github.com/babel/babel-loader
https://github.com/babel/babel-loader
https://github.com/babel/babel-loader
https://github.com/babel/babel-loader
https://github.com/babel/babel-loader
https://github.com/babel/babel-loader
https://github.com/babel/babel-loader
https://github.com/babel/babel-loader
https://github.com/babel/babel-loader
https://github.com/babel/babel-loader
https://github.com/babel/babel-loader
https://github.com/babel/babel-loader
https://github.com/babel/babel-loader

Babel in Vue CLI 3 Chapter 3

[63]

In the next section, similar to what we did in Chapter 2, Webpack in Vue CLI 3, we will go
through setting up Babel in Vue without CLI. After that, we will look at how CLI makes
things a lot easier and how it can further be extended.

Using Babel and webpack in Vue 2 without
Vue CLI
Let's call our new project npm-vue-babel-webpack. We'll open Git Bash, add the folder
for this project, and cd into it:

mkdir npm-vue-babel-webpack && cd $_

We'll initialize NPM and accept all the defaults:

npm init -y

In Chapter 2, Webpack in Vue CLI 3, we installed NPM packages one by one, explained what
each one does, and fixed any errors along the way. That gave us a thorough understanding
of the building blocks of webpack and of how Vue and webpack fit together. To avoid
unnecessary repetition, this time we'll just install everything at once.

Installing the necessary NPM packages
Install the necessary NPM packages:

npm install vue webpack webpack-cli html-webpack-plugin vue-loader vue-
template-compiler --save-dev --verbose

Now add the src and dist folders to our project, and open our project in VS Code:

mkdir dist src && code .

Feel free to inspect the contents of package.json in VS Code, to confirm all the NPM
packages were indeed installed.

Let's create three new files inside the src folder, specifically main.js, App.vue, and
index.html, almost the same as we did in Chapter 2, Webpack in Vue CLI 3.

Babel in Vue CLI 3 Chapter 3

[64]

Here's the code to be added to index.html:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Compiled HTML file</title>
</head>
<body>
 <div id="entryPoint"></div>
</body>
</html>

Here is the contents of main.js:

import Vue from 'vue';
import App from './App.vue';

new Vue({
 el: '#entryPoint',
 render: h => h(App),
})

Finally, here is the contents of App.vue:

<template>
 <div id="entryPoint">
 <article>
 Our own custom article component!
 </article>
 <AnotherComponent />
 </div>
</template>

<script>
import AnotherComponent from './components/AnotherComponent.vue';

export default {
 name: 'entryPoint',
 components: {
 AnotherComponent
 }
}
</script>

Notice that inside the preceding script tag, we are importing AnotherComponent from a
components folder.

Babel in Vue CLI 3 Chapter 3

[65]

So, let's add a components folder inside our project's src folder. Inside the components
folder, we'll add a new file and call it AnotherComponent.vue.

Next, add this code to AnotherComponent.vue:

<template>
 <p>
 This is another component.
 <button v-on:click="alertTime">What's the time?</button>
 </p>
</template>

<script>
export default {
 name: "AnotherComponent",
 data() {
 return {
 }
 },
 methods: {
 alertTime: function() {
 alert(new Date());
 }
 }
};
</script>

<!-- Add "scoped" attribute to limit CSS to this component only -->
<style scoped>
</style>

In the preceding code, we are finally seeing an example in which our component has some
basic JS-powered Vue functionality. We are using Vue's built-in data and methods
options. Inside the methods option, we define the alertTime function, which, whenever it
gets called, shows the current time in an alert box.

Discussing the details of how all these moving parts work is outside of the
scope of this book. The focus of this chapter is understanding Babel. If you
need more information on the basic concepts of Vue such as the ones
mentioned in the previous paragraphs, refer to one of many useful
resources in the Packt library. A great companion to this book would be a
quick introduction to the Vue 2 framework: Vue.js Quick Start Guide by
Ajdin Imsirovic (https:/ ​/ ​prod.​packtpub. ​com/ ​in/​application-
development/ ​vuejs- ​quick- ​start- ​guide).

https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide
https://prod.packtpub.com/in/application-development/vuejs-quick-start-guide

Babel in Vue CLI 3 Chapter 3

[66]

The thing that we need to focus on at this point is working with ES6+ features in our
methods option. Currently, the methods option's code is written in ES5 JS, and, thus, it will
be easy to run webpack on this code, as we'll soon see.

Running webpack with ES5 code
To run webpack, do the following:

Add another file to the root of our project, webpack.config.js, so that we can1.
set up our webpack configuration as follows:

let HtmlWebpackPlugin = require('html-webpack-plugin');
let VueLoaderPlugin = require('vue-loader/lib/plugin');

module.exports = {
 entry: './src/main.js',
 output: {
 filename: 'main.js',
 },
 module: {
 rules: [
 { test: /\.vue$/, use: 'vue-loader' }
]
 },
 plugins: [
 new HtmlWebpackPlugin({
 template: './src/index.html',
 }),
 new VueLoaderPlugin(),
]
};

Note that the entry and output files are both main.js, so we don't have to specify
them, but we're doing this anyway in the preceding code, to make things more
obvious.

Next, in package.json, update the scripts key:2.

"scripts": {
 "webpack": "webpack"
 },

Now run our project from Git Bash, with the following command:3.

npm run webpack

Babel in Vue CLI 3 Chapter 3

[67]

Now, in VS Code, navigate to the dist folder in our project.4.
Right-click on index.html, and click on the Open in Default Browser5.
command.

Our browser will now show the following output (zoomed-in for easier viewing):

If a user clicks on the What's the time? button, an alert box will appear on the web page,
showing the current time. Now let's update our methods option to ES6 syntax, and see
what happens.

Adding webpack-dev-server
Before we begin updating our code to ES6 syntax, there is one more thing that we can do to
make things quicker and more convenient:

Add the webpack-dev-server. With the help of this NPM package, our code1.
will be continually served and watched for changes. Let's install it with the
following:

npm install webpack-dev-server --save-dev --verbose

To get the webpack dev server running and serving our code, we also need to2.
update scripts of package.json entry to this:

"scripts": {
 "webpack": "webpack",
 "webpack-dev": "webpack-dev-server --mode development"
},

Now we can play around with adding various features to our components and
watch them being hot reloaded in the browser whenever we save our code in VS
Code.

Let's test it out right now by running the following command:3.

npm run webpack-dev

Babel in Vue CLI 3 Chapter 3

[68]

You can test out the web page served at http://localhost:8080/, and you'll notice that
it still works, just as before.

Next, we'll add some ES6 syntax to our methods option.

Updating the methods option to ES6 syntax
Let's update the methods option in AnotherComponent.vue file. Here is the updated
code:

methods: {
 alertTime: () => {
 alert(new Date());
 alert('something else');
 }
}

Once you save changes you made in VS Code, you can click the What's the time? button,
and the expected alert will appear, followed by another alert that reads something else.
This way, we can be sure that we're looking at the updated app.

Now let's find our ES6 code in the compiled main.js file inside the dist folder.

If we inspect the /dist/index.html file inside the dev tools, we can see a reference to
main.js, the webpack-compiled JS code. If you right-click main.js and click the Open in
new tab command on the contextual right-click menu, you'll get the full code showing in a
new tab. To find our ES6 code, let's press the Ctrl + F shortcut key so that we can enter our
search term: alertTime.

Toward the very bottom of the file, we see our ES6 arrow function:

alertTime: () => {\r\n alert('something else');

In the next section, we'll update our webpack configuration with babel-loader, and see how
webpack will transpile the preceding code to ES5.

Adding babel-loader to our webpack
configuration
Before we begin, we'll need to stop our webpack-dev-server, by using the Ctrl + C keyboard
combination inside Git Bash.

Babel in Vue CLI 3 Chapter 3

[69]

Next, to be able to transpile ES6+ syntax in our project, we need to update our webpack
configuration with Babel. Let's first install the babel-loader package with NPM:

npm install babel-loader --save-dev --verbose

Next, let's run webpack on our project again:

npm run webpack

Unfortunately, this still doesn't work. If we inspected our transpiled main.js, we'd still see
alertTime key, and it's accompanying ES6 anonymous function. This means we still need
another package: babel core.

npm install @babel/core --save-dev --verbose

If we ran webpack at this point, we'd see that our issue was still not fixed.

This means that we still need to add babel-preset-env:

npm install @babel/preset-env --save-dev --verbose

At this point, it doesn't hurt to verify that our package.json has all the expected updates
in the devDependencies:

"devDependencies": {
 "@babel/core": "^7.3.4",
 "@babel/preset-env": "^7.3.4",
 "babel-loader": "^8.0.5",
 "html-webpack-plugin": "^3.2.0",
 "vue": "^2.6.9",
 "vue-loader": "^15.7.0",
 "vue-template-compiler": "^2.6.9",
 "webpack": "^4.29.6",
 "webpack-cli": "^3.2.3",
 "webpack-dev-server": "^3.2.1"
}

Finally, before we can re-run webpack, we need to set up a babel.config.js file, Babel's
own configuration file (similar to webpack's webpack.config.js).

Let's create a new file, babel.config.js, in the root of our project, and let's add it the
following code:

module.exports = {
 presets: ['@babel/preset-env']
}

Babel in Vue CLI 3 Chapter 3

[70]

All that we need to do now is update our webpack configuration so that it can work with
Babel.

Updating our webpack configuration to work with
babel
To make our webpack work with babel, we need to explain to it when to use babel-loader.
We do that by adding a rule to test for, inside the module option of webpack.config.js,
as follows:

module: {
 rules: [
 { test: /\.js$/, use: 'babel-loader' },
 { test: /\.vue$/, use: 'vue-loader' }
]
},

Now that we've set everything up, we can run our npm run webpack-dev command in
Git Bash again.

Here's a quick way to see whether webpack bundled our JS file differently than before: just
look at the webpack logging information inside Git Bash. During our previous attempts at
hooking up Babel to work with webpack, the bundle size was exactly 70.2 KB. However,
after this last run of the webpack NPM script, the bundle size for main.js is 70.6 KB. We
can inspect the ./dist/main.js file in our dev tools again. Alternatively, you can search
for an alertTime string inside ./dist/main.js right inside your VS Code.

Regardless of how we locate it, our bundled main.js file's methods entry looks like this:

methods:{alertTime:function(){alert(new Date),alert("something else")}}}...

Just glancing at the preceding code and seeing the function keyword, it should be
obvious that this code is ES5, which means Babel was successfully run by webpack, and our
ES6 alertTime Vue method in our input file inside the src folder was successfully
transpiled to the output file inside the dist folder.

To verify that our setup works, we can run our webpack-dev-server again, and while it's
running, make another minor change to our methods option inside
AnotherComponent.vue:

methods: {
 alertTime: () => {
 alert(new Date());

Babel in Vue CLI 3 Chapter 3

[71]

 alert('whatever');
 }
}

If you take a look at the project served at localhost:8080, you'll see it works as expected,
and if you open main.js from the dev tools, you'll see the transpiled syntax as well.

In the next section, we'll briefly mention a common source of confusion and how it is dealt
with in Vue. It has to do with the arrow function syntax, and the this keyword.

The problem with the this keyword in arrow
functions in Vue
Unfortunately, when Babel transpiles the this keyword inside an arrow function, it
transpiles it to _this. That means that any of our methods will be broken and our apps
won't work. The underlying cause for this is due to the fact that arrow functions are scoped
differently than ES5 functions.

In the next section, we'll look at the recommended approach in defining functions inside
the methods option of a Vue instance.

Recommended solutions to keyword problems
The recommended solution to the this keyword inside Vue components is to not use the
arrow function syntax since it doesn't produce the expected results due to scoping issues.
Specifically, arrow functions are scoped to the parent context.

Let's see a simple app as an example of the problem.

Adding one counter app
Before we begin, make sure you're back inside the VUE-CLI-3-QSG/Chapter03 folder, the
root folder for all our projects in this chapter.

Before we even begin building our app, we'll need to remind ourselves of some options we
have when using vue create, so let's run this:

vue create --help

Babel in Vue CLI 3 Chapter 3

[72]

Inside the list of options, we can see that -d is for the --default flag, which skips prompts
and uses default presets, and that the -b option is shorthand for --bare flag, which
scaffolds our project without beginner instructions.

Interestingly, we can combine these individual flags, which we'll do right now. Let's begin
our app by running the following command:

vue create add-one-counter -db

As we can see, we can chain the letter aliases for flags appended to the vue create
command, which is a nice little productivity boost.

In the app that gets built, we'll alter the contents of main.js inside the src folder. This file
will be exactly the same as it was in the previous example app (the npm-vue-b-w-es6-
syntax app from the previous section), so you can just copy and paste this file from that
previous Vue app into our new example, the add-one-counter app.

If you open our new add-one-counter app inside VS Code, you'll also notice another
folder: the public folder, with index.html inside it. We will leave this file as it is.

Back inside the src folder, we need to change the contents of App.vue, to this:

<template>
 <div id="app">
 <article>
 Our own custom article component!
 </article>
 <AnotherComponent />
 </div>
</template>

<script>
import AnotherComponent from './components/AnotherComponent.vue';

export default {
 name: 'app',
 components: {
 AnotherComponent
 }
}
</script>

Babel in Vue CLI 3 Chapter 3

[73]

Finally, we'll need to add a components folder to the root of our project, and inside it, the
AnotherComponent.vue file. Here is the contents of AnotherComponent.vue:

<template>
 <p>
 This is another component.
 <button v-on:click="incrementUp">Add One</button>

 Current value of the counter: {{ counter }}
 </p>
</template>

<script>
export default {
 name: "AnotherComponent",
 data() {
 return {
 counter: 0
 }
 },
 methods: {
 incrementUp: function() {
 this.counter++;
 }
 }
};
</script>

<!-- Add "scoped" attribute to limit CSS to this component only -->
<style scoped>
</style>

In the methods option, we can see the incrementUp function defined using the ES6 syntax.

If you tried running this app, it would not work. This is the case, because the arrow
function's scoping and the Babel setup make it difficult to properly set up Vue apps with
methods in the arrow functions.

The only improvement, and the usual way to write functions inside the method options, is
to avoid both the arrow function syntax, and the use of the function keyword altogether,
as follows:

methods: {
 incrementUp() {
 this.counter++;
 }
}

Babel in Vue CLI 3 Chapter 3

[74]

The incrementUp function is called a shorthand function. You can read more about it at
following URL: https:/ ​/ ​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/
Reference/​Operators/ ​Object_ ​initializer#Method_ ​definitions.

Let's test-drive the app by serving it from the UI:

vue ui

Once the Vue UI is serving in the browser, let's point our browser's address bar
to http://localhost:8000/project/select. Next, click on the add-one-counter
folder, and click the Import this folder button.

Next, click on the Tasks button on the main menu. Finally, click the Serve icon. Click the
Output button to see the app building and serving.

Finally, open the website at http://localhost:8080/. You'll see a working app being
served:

The previous example showed us the best practice of how to name and organize methods
inside our Vue instances. Also, we saw how to use Vue UI to automate webpack building
and serving our apps in a few clicks—much better than what we were doing for most of
this chapter! This leads us to a conclusion: a lot of the piping and functionality is abstracted
away and hence, this made a lot easier for using and accessing with the help of Vue UI,
including Babel settings.

Summary
In this chapter, we had a brief overview of what Babel is, what it does, and what is needed
to make it work with Vue. All of this is abstracted away with the help of vue-cli-
service, which is powered by webpack under the hood. Now that we have an
understanding of how all these different parts work together, we will start using only the
Vue CLI and its UI, and learn how to work with it better in the following chapters.

We'll begin by understanding testing in Vue CLI with the help of Jest. We'll also learn about
Test-Driven Development (TDD) and running tests with the help of Vue CLI UI.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Method_definitions

4
Testing in Vue CLI 3

In the previous chapter, we examined the role of Babel in modern JavaScript development.
We've also seen some practical examples of using it in Vue. In this chapter, we will
introduce testing in JS. We will get acquainted with testing in general and see it in practice
using Jest and Cypress. We'll discuss assertions and test-driven development (TDD). We'll
then move on to understanding how Jest and Cypress work with Vue CLI 3. We'll discuss
test utils and test cases. Specifically, we'll look at the following:

Understanding Vue plugins
Adding the Jest plugin to our Vue app
Writing unit tests inside a Vue app with Jest
Running tasks from the project tasks page
Running unit tests inside the Vue CLI UI
Working with assertions
Implementing TDD
Working with Cypress

We'll begin this chapter with a brief overview of Vue plugins.

Understanding Vue plugins
When making a new Vue app with the help of the Vue CLI from the command line, we use
the vue create command. We are then taken through a number of steps and prompts that
we need to choose, so that our app is properly configured. What we are actually doing,
among other things, is choosing which Vue plugins will end up being used in our app.

Testing in Vue CLI 3 Chapter 4

[76]

Plugins are a way to add functionality to our Vue projects. Some plugins are more complex
than others; they sometimes have their own prompts that appear during installation. Our
Vue app's configurations, that is, the underlying code, will reflect our choices. The way our
app is set up will be based on the answers we provide to these installation prompts.

All the official npm packages of a project are scoped with the @ symbol, followed by the
project name. Thus, official Vue plugins, built by the Vue maintainers, begin with @vue.

To find out more about scoped npm packages, visit: https:/ ​/​docs. ​npmjs.
com/​about- ​scopes. ​

To add a plugin from the command line, we use the vue add command, but we can use the
Vue UI as well, as we'll see in this chapter. The Vue UI is also a great way to search for Vue
plugins, which we'll also examine in this chapter.

Beginning testing on a brand new Vue app
We've seen many different options available in the Vue CLI and UI in previous chapters.
We'll begin this chapter by utilizing the best approach to start a new app, the Vue CLI UI.
This will help us learn about some other features of the UI. Along the way, we'll also slowly
introduce testing to our project.

Adding a new project with Vue CLI UI
Let us now add a new project with Vue CLI UI:

To begin, let's open Git Bash and navigate to the root folder for all of our1.
projects, vue-cli-3-qsg.
Now we'll run the Vue CLI UI command as follows:2.

vue ui

This will result in a new page being served in the browser. The default address
is http://localhost:8000/dashboard.

https://docs.npmjs.com/about-scopes
https://docs.npmjs.com/about-scopes
https://docs.npmjs.com/about-scopes
https://docs.npmjs.com/about-scopes
https://docs.npmjs.com/about-scopes
https://docs.npmjs.com/about-scopes
https://docs.npmjs.com/about-scopes
https://docs.npmjs.com/about-scopes
https://docs.npmjs.com/about-scopes
https://docs.npmjs.com/about-scopes
https://docs.npmjs.com/about-scopes
https://docs.npmjs.com/about-scopes
https://docs.npmjs.com/about-scopes

Testing in Vue CLI 3 Chapter 4

[77]

Next, click on the home icon (or simply type out this URL in the address3.
bar: http://localhost:8000/project/select), which will take you to the
Vue Project Manager screen.

Note from the following that the home icon is the leftmost icon in the footer of the
Vue CLI UI:

Figure 4.1: The home icon in the Vue CLI UI

Regardless of how you access the Vue Project Manager screen, it will show a list4.
of available apps, together with three tabs at the top: Projects, Create, and
Import. Click on the Create tab to create a new project.
Once you've clicked on the Create tab, you need to get back to the root of your5.
project, and then click on the Create a new project here button as follows:

Figure 4.2: Create, get to root of all projects, Create a new project here button

Testing in Vue CLI 3 Chapter 4

[78]

Once you click the Create a new project here button, you'll see the Create a new
project screen. We will only type our new app's folder name. We'll call
it testing-debugging-vuecli3. We will not change anything else: we'll accept
the default package manager and other default options as follows:

Figure 4.3: Adding the name for the folder that will hold our new app

We've completed all the necessary changes in the Details tab.

Testing in Vue CLI 3 Chapter 4

[79]

By clicking the Next button, we'll be taken to the Presets screen. There, we can6.
just accept the Default preset (babel, eslint) as follows:

Figure 4.4: Accepting the default presets

Next, we'll click Create Project to scaffold our project. It will take some time for7.
the Vue CLI UI to complete the project scaffolding. Once done, we'll be greeted
with the Welcome to your new project! screen.

Adding the Jest plugin to our Vue app
Now let us add our Jest plugin:

Click on the Plugins icon (marked with number 1 in the following screenshot).1.

Testing in Vue CLI 3 Chapter 4

[80]

Once the Project plugins screen appears, click on the Add Plugin button (2 in the2.
following screenshot):

Figure 4.5: Adding a new plugin to our installation

Doing this will take us to the Add a plugin screen, where we have an input field3.
to search for plugins. We need to locate a unit testing plugin, so we can just type
out cli-plugin-unit as follows:

Figure 4.6: Finding unit testing plugins for Vue

Testing in Vue CLI 3 Chapter 4

[81]

Typing out this search term will show all the available unit testing plugins. Jest4.
should be right there on top. You can see it in the previous screenshot, flagged
as 2. In the description under the plugin name, you can see that it's an Official
plugin. Similar to what we've already seen with the @vue/cli-plugin-babel,
you can click the More info link to see the corresponding GitHub repository for
the plugin in question (flagged as 3 in the preceding screenshot). Doing this will
take you to the vue-cli GitHub page.

You can find out more about @vue/cli-plugin-unit-jest at the npm
package page, at the following URL: https:/ ​/​www. ​npmjs. ​com/ ​package/
@vue/ ​cli- ​plugin- ​unit- ​jest. ​

To install the Jest plugin, simply click on it in the plugins list. Doing this will add5.
a checkbox in a green circle next to the Jest plugin (flagged as 1 in the following
screenshot). A new install button will also appear (box number 2 in the following
screenshot):

Figure 4.7: Adding the Jest plugin

https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest
https://www.npmjs.com/package/@vue/cli-plugin-unit-jest

Testing in Vue CLI 3 Chapter 4

[82]

Clicking the Install @vue/cli-plugin-unit-jest button will result in a loader6.
appearing on the page, with the following message being shown: Installing
@vue/cli-plugin-unit-jest....

Once done, just click the Finish installation button as follows:7.

Figure 4.8: Finishing the installation of the Jest plugin

Clicking the Finish installation button will show the following message on the8.
screen: Invoking @vue/cli-plugin-unit-jest....
Once this update is finished, we'll be greeted with another screen as follows,9.
showing the changes to files, and asking us to commit the updates made:

Testing in Vue CLI 3 Chapter 4

[83]

Figure 4.9: Vue CLI UI showing changes after the installation of the Jest plugin

Examining the updates
In the preceding screenshot, we can see that the Files changed tab is active. Inside the Files
changed tab, we can see the number of files changed (box 1).

When we were building our project with the Vue CLI UI, we were offered the default
option to track changes to our project with Git, and we accepted this default setting; that's
why we now see the Commit changes button (flagged as 2 in the preceding screenshot).

We can also see all the changes and updates made to the two existing files: package-
lock.json and package.json, as well as the contents of the three new files added when
we installed the plugin: jest.config.js, tests/unit/.eslintrc.js,
and tests/unit/example.spec.js.

It would be beneficial to inspect the contents of each of these files to get more familiar with
how they are set up and what changes have been made to them. One of the most important
changes that we need to be aware of is in the package.json file, inside the scripts key,
as follows:

"test:unit": "vue-cli-service test:unit"

Testing in Vue CLI 3 Chapter 4

[84]

The previous line shows that our vue-cli-service just got a new command, test:unit,
specifically set up for unit testing with Jest.

Once we click the Commit changes button, we'll see a dialog that invites us to Enter a
commit message. We can type a simple message, such as Add Jest plugin.

After we've added the commit, we'll be taken back to the Installed plugins screen. Now we
can see that @vue/cli-plugin-unit-jest is also added:

Figure 4.10: Vue CLI UI showing changes after the installation of the Jest plugin

In the next section, we'll be adding our app so that we can begin testing it with Jest.

Adding the code for our Vue application
To add our app, we need to do the following:

Navigate in Windows Explorer to the testing-debugging-vuecli3 folder.1.
Next, right-click on an empty space inside the folder, and click the Git Bash here2.
command.
Once Git Bash is open, type code . and press the Enter key. This will open our3.
testing-debugging-vuecli3 project in VS Code.

Testing in Vue CLI 3 Chapter 4

[85]

Our focus at this point is on Jest. To avoid unnecessary complications, we'll simply copy
and paste the entire add-one-counter app from the previous chapter. The easiest way to
do that is to point Windows Explorer to the add-one-counter app and start another
instance of Git Bash with a right-click inside the folder, as already explained. We'll again
type out the code . command inside Git Bash, and another instance of VS Code will open,
this time showing the files inside the add-one-counter app. Now it's just a matter of
copying and pasting all the files and folders from add-one-counter to testing-
debugging-vuecli3.

Alternatively, you could use Linux commands inside Git Bash to copy the relevant files.

Regardless of how you do it, the updated project structure will now look as follows:

Figure 4.11: The updated project structure of testing-debugging-vuecli3

Now, we are ready to start our first unit test with Jest.

Testing in Vue CLI 3 Chapter 4

[86]

Writing our first unit test inside a Vue app with
Jest
Inside the tests folder, there is another folder called unit. Let's add a new file to the unit
folder. We'll call this new file AnotherComponent.spec.js.

Any file that has a spec.js extension will be recognized by Jest.

To describe a test, we use the describe function, so let's add it to
AnotherComponent.spec.js as follows:

describe()

The describe function takes two arguments. The first argument is the name of the Vue
component we are testing, and the second argument is an anonymous function as follows:

describe('AnotherComponent.vue', function() {})

We can rewrite the preceding code using an arrow function as our second argument as
follows:

describe('AnotherComponent.vue', () => {})

In the body of the anonymous function, we call another function, the test function as
follows:

describe('AnotherComponent.vue', () => {
 test()
})

The test function accepts two arguments: the first argument is the name of our test, and
the second argument is another anonymous arrow function as follows:

describe('AnotherComponent.vue', () => {
 test('Jest is setup correctly and working', () => {})
})

We are specifying a test we've called setup working , and we need to give it an assertion
inside the second argument, that is, inside the body of the anonymous function, as follows:

describe('AnotherComponent.vue', () => {
 test('Jest is setup correctly and working', () => {

Testing in Vue CLI 3 Chapter 4

[87]

 expect(true).toBeTrue();
 })
})

This assertion will always be true, and so we give it the following code:
expect(true).toBeTrue().

We have just seen an example of a Jest matcher in action. A matcher is a
way to test values in Jest. One way to check if something is true is to use
the toBeTrue matcher. There are many other Jest matchers. For more
information, check out the official Jest documentation at the following
URL: https:/ ​/ ​jestjs. ​io/ ​docs/​en/ ​using- ​matchers. ​

Now, let's go to the Vue CLI UI, and run our unit test.

Running our first unit test inside the Vue CLI UI
To run our unit test inside the Vue CLI UI, we need to navigate to the
localhost:8080/tests page, either by visiting the URL right from the address bar, or by
clicking the lowest icon on the main navigation (the Tests icon in the leftmost column in the
Vue CLI UI dashboard). Once we do, we'll see the following list of tests:

Figure 4.12: Viewing the available tasks inside Vue CLI UI

https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/using-matchers

Testing in Vue CLI 3 Chapter 4

[88]

Next, let's get ready to run the test:unit task by clicking on it. Doing so will result in a
panel appearing on the right-hand side of the Project tasks page as follows:

Figure 4.13: The run tasks panel for running the test:unit command

This Run task panel gives us a nice overview of everything that is happening. Let's now
run our test by clicking the Run task button.

The following information will be shown in the Output section:

...

...
PASS tests/unit/AnotherComponent.spec.js

Test Suites: 1 failed, 1 passed, 2 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 2.702s
Ran all test suites.

Total task duration: 3.93s

As we can see, our AnotherComponent.spec.js test passed successfully. The test that
failed and whose output is logged before the AnotherComponent.spec.js test, is the test
for the HelloWorld.vue component. We have removed this HelloWorld.vue file from
our default app after the app was built by Vue UI.

However, the example.spec.js file inside the ./tests/unit folder is the test file that
calls the non-existing HelloWorld.vue file. Looking at example.spec.js, we can see that
it imports the HelloWorld.vue component, on line number 2 as follows:

import HelloWorld from '@/components/HelloWorld.vue'

Why is this the case? Haven't we already specified AnotherComponent.vue inside the
describe function?

Testing in Vue CLI 3 Chapter 4

[89]

As it turns out, we could have specified any name as the first argument of the describe
function inside our unit test. For example, we could update our
AnotherComponent.spec.js file to this code:

describe('whatever', () => {
 test('Jest is setup correctly and working', () => {
 expect(true).toBeTrue();
 })
})

If we ran our test again, it would still run.

What this means is that the string AnotherComponent.vue is what we developers pass in
as the first argument to our describe function so that it is easier for us to work in our
project. Jest doesn't care what name it has.

What it does care about, however, is importing the file to be tested. As we saw in the
HelloWorld.vue import, we need to add a similar import to our
AnotherComponent.spec.js file, so that now it looks as follows:

import AnotherComponent from '@/components/AnotherComponent.vue';

describe('AnotherComponent.vue', () => {
 test('Jest is setup correctly and working', () => {
 expect(true).toBeTrue();
 })
})

Interestingly, we are importing a Vue file, but our tests are still passing, even though
the .vue extension is not JS. How is this achieved?

We can easily see what is going on if we open the jest.config.js file, located at the root
of our project. Looking at the first 12 lines of this file, we see the following code:

module.exports = {
 moduleFileExtensions: [
 'js',
 'jsx',
 'json',
 'vue'
],
 transform: {
 '^.+\\.vue$': 'vue-jest',
 '.+\\.(css|styl|less|sass|scss|svg|png|jpg|ttf|woff|woff2)$': 'jest-
transform-stub',
 '^.+\\.jsx?$': 'babel-jest'
 },

Testing in Vue CLI 3 Chapter 4

[90]

As we can see, the vue extension is listed on line 6, and the .vue file extension will be
transformed using the vue-jest plugin, as specified on line 9.

Before we continue, let's rename our example.spec.js file to example.js, so that Jest
doesn't catch it. We still need the contents of the file, so let's not delete it, but rather just
rename it.

Importing mount from test-utils and writing
another unit test
We'll begin by adding a mount import from @vue/test-utils in the very first line our
AnotherComponent.spec.js file as follows:

import { mount } from '@vue/test-utils';

Before we continue, we need to look at what this syntax does. Why the curly brackets
around mount?

To answer this question, it's good to know that this is accepted JS syntax. To explain what is
happening, we need to begin with the package.json file.

This file was created by our Vue CLI, when we built our project. If we look at the contents
of the package.json file, we'll see @vue/test-utils listed as one of our project's
devDependencies.

In the preceding code, we are importing a single function, mount, from this @vue/test-
utils JS module. By doing this, we are inserting the mount function into our
AnotherComponent.spec.js file's scope.

In simpler terms, we are importing the mount functionality from @vue/test-utils, so
that we can use it in the AnotherComponent.spec.js file, and only test this component
alone.

With the Vue CLI UI running in our browser, let's look at a list of our project's
dependencies by visiting the following URL: http://localhost:8000/dependencies.

Testing in Vue CLI 3 Chapter 4

[91]

You should see a screen similar to the following screenshot:

Figure 4.14: Our project's devDependencies listed in the Vue CLI UI dashboard

As usual, clicking the More info link for our @vue/test-utils project dependency will
take us to the corresponding GitHub repository for the project: https:/ ​/​github. ​com/
vuejs/​vue-​test-​utils#readme. ​

Mounting the component to be tested
We begin by importing the mount method and the component to be tested as follows:

import { mount } from '@vue/test-utils';
import AnotherComponent from '@/components/AnotherComponent.vue';

The mount function receives a component as its argument. The result of the call to the
mount function is a wrapper with an instance of the component we gave it. This wrapper
also comes with additional functions that help our testing process. Let's first assign the
returned value of the call to mount(AnotherComponent) to a variable as follows:

import { mount } from '@vue/test-utils';
import AnotherComponent from '@/components/AnotherComponent.vue';

https://github.com/vuejs/vue-test-utils#readme
https://github.com/vuejs/vue-test-utils#readme
https://github.com/vuejs/vue-test-utils#readme
https://github.com/vuejs/vue-test-utils#readme
https://github.com/vuejs/vue-test-utils#readme
https://github.com/vuejs/vue-test-utils#readme
https://github.com/vuejs/vue-test-utils#readme
https://github.com/vuejs/vue-test-utils#readme
https://github.com/vuejs/vue-test-utils#readme
https://github.com/vuejs/vue-test-utils#readme
https://github.com/vuejs/vue-test-utils#readme
https://github.com/vuejs/vue-test-utils#readme
https://github.com/vuejs/vue-test-utils#readme
https://github.com/vuejs/vue-test-utils#readme
https://github.com/vuejs/vue-test-utils#readme

Testing in Vue CLI 3 Chapter 4

[92]

describe('AnotherComponent.vue'), () => {
 test('Adds one when a user clicks the button', () => {
 const wrapped = mount(AnotherComponent);
}

Writing a failing assertion
When our app is initially loaded into a browser, we are expecting the current value of the
counter to be 0. However, since we want our assertion to initially fail, let's assert that the
value of the counter is going to be 1 instead of 0 as follows:

import { mount } from '@vue/test-utils';
import AnotherComponent from '@/components/AnotherComponent.vue';

describe('AnotherComponent.vue'), () => {
 test('Adds one when a user clicks the button', () => {
 const wrapped = mount(AnotherComponent);
 expect(wrapped.text()).toContain('Current value of the counter: 1');
}

We have written a failing assertion in the preceding code. We claim that we are expecting
that our wrapped component will contain the following text:

Current value of the counter: 1

The initial value of our counter is not going to be 1; it will actually be 0, thus the preceding
assertion should fail.

So, let's save and run our unit test by going to the Project tasks screen and running the test
as described earlier in the chapter.

The output will be shown in the Output panel of Run task inside Project tasks as follows:

Test Suites: 1 failed, 1 total
Tests: 0 total
Snapshots: 0 total
Time: 1.947s
Ran all test suites.

Total task duration: 3.14s

Next, we'll fix the preceding test by writing a passing assertion.

Testing in Vue CLI 3 Chapter 4

[93]

Writing a passing assertion
To write a passing assertion, all we need to do is revert our 1 to a 0, as follows:

expect(wrapped.text()).toContain('Current value of the counter: 0');

Next, let's run our task again inside the Vue UI, and we'll get back the following output:

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 2.418s
Ran all test suites.

Total task duration: 3.55s

Next, we'll trigger a button click in our test.

Triggering a button click in our test
How can we test for a button click in our unit test? Perform the following steps:

We need to find the button to be clicked. This is easy, since there is only one1.
button in our app. We will use the find method to do that.
We are going to trigger a click on a button, using the trigger method.2.
We need to check for the value of the counter to change from 0 to 1. However,3.
since we first need to write a failing test, we'll write out the following code:

import { mount } from '@vue/test-utils';
import AnotherComponent from '@/components/AnotherComponent.vue';

describe('AnotherComponent.vue', () => {
 test('Adds one when a user clicks the button', () => {
 const wrapped = mount(AnotherComponent);
 expect(wrapped.text()).toContain('Current value of the counter:
0');
 const button = wrapped.find('button');
 button.trigger('click');
 expect(wrapped.text()).toContain('Current value of the counter:
0');
 })
})

Testing in Vue CLI 3 Chapter 4

[94]

As expected, the output of running our test in the Vue CLI UI is the following:

Test Suites: 1 failed, 1 total
Tests: 1 failed, 1 total
Snapshots: 0 total
Time: 2.383s
Ran all test suites.

Total task duration: 3.55s

Let's make things a bit more interesting by writing two tests, and asserting them in such a
way that they both pass as follows:

import { mount } from '@vue/test-utils';
import AnotherComponent from '@/components/AnotherComponent.vue';

describe('AnotherComponent.vue', () => {
 const wrapped = mount(AnotherComponent);
 const button = wrapped.find('button');
 test('Checks that the initial counter value is 0', () => {
 expect(wrapped.text()).toContain('Current value of the counter:
0');
 });
 test('Adds one when a user clicks the button', () => {
 button.trigger('click');
 expect(wrapped.text()).toContain('Current value of the counter:
1');
 })
})

Let's save our test again and run it as a task inside the Vue CLI UI one more time.

The following is the output:

AnotherComponent.vue
 √ Checks that the initial counter value is 0 (3ms)
 √ Adds one when a user clicks the button (4ms)

Test Suites: 1 passed, 1 total
Tests: 2 passed, 2 total
Snapshots: 0 total
Time: 2.307s
Ran all test suites.

Total task duration: 3.64s

Testing in Vue CLI 3 Chapter 4

[95]

We have successfully written two separate unit tests in one test suite for a Vue component,
and both our tests have passed.

Test-driven development in Vue CLI 3
TDD is development based on the idea of the red-green-refactor cycle. Similar to what
we've seen in the preceding code, we first write our code so that our test fails. Next, we
write our code so that our test passes, and finally we refactor our code.

For each new feature in our apps, we repeat the same process. This is essentially what TDD
is.

TDD is just a streamlined way of writing any application in any language or framework. It
streamlines our work by allowing us to split our entire project into testable, clearly
separated chunks of functionality.

The red-green-refactor approach is clearly visible in our output on the Project tasks page
too. If we write a failing test, we'll see a red background on the word fail. It we write a
passing test, we'll see a green background on the work pass.

Through the rest of this chapter, we'll look at some other concepts related to testing with
the help of Vue CLI 3.

Improving our tests in Vue CLI 3
There are several ways in which we can utilize Jest and other testing platforms in Vue CLI 3
for a better testing experience. In the next sections, we'll look at the following:

Watching our unit tests in Vue CLI 3
Setting parameters for our tasks
Writing end-to-end tests with Cypress

Let's begin by working with the --watch flag.

Testing in Vue CLI 3 Chapter 4

[96]

Watching our tests in Vue CLI 3
The test:unit command comes with a --watch flag. To see it in action, all we need to do
is go back to the Project tasks page in Vue UI and, with the test:unit task selected, click
on the Parameters button as follows:

Figure 4.15: The Parameters button inside the test:unit task

Clicking the Parameters button will trigger a dialog with the following two options:

Watch files for changes and re-run tests related to changed files
Re-record every snapshot that fails during this test run

Click on the first option to turn on watch mode. The following option will appear right
under it:

Display a notification after each run

This option is available only when watch mode is enabled. Let's enable the Display a
notification after each run option too, and click Save.

You can set these options inside scripts in package.json. The first option is --watch, and
the display a notification option is the --notify flag.

To do this, simply update the scripts key inside your project's package.json to following
code:

"scripts": {
 "serve": "vue-cli-service serve",
 "build": "vue-cli-service build",
 "lint": "vue-cli-service lint",
 "test:unit": "vue-cli-service test:unit",
 "test:unit-watch": "vue-cli-service test:unit --watch --notify"
},

Testing in Vue CLI 3 Chapter 4

[97]

You'll see that your task list has now expanded to include another testing task:
test:unit-watch.

However, even though you can, it's better not to do it like this. It's not a best practice and it
kind of defeats the purpose of using Vue UI in the first place. Still, understanding that this
is how it can be done gives us a better understanding of what is happening under the hood
of the Vue CLI UI.

Now, let's see if watch mode is working properly by adding a change to
the AnotherComponent.spec.js file. It's enough to just add a space somewhere and save
the updates.

Writing end-to-end tests with Cypress
End-to-end testing is a testing practice in which we test the application flow from
beginning to end. With end-to-end testing, we simulate a scenario in which a user flows
through our application from some kind of an entry point to a certain outcome.

For example, an end-to-end test of a web app could include the following flow:

User opening the URL of the web app in their browser
User clicking the login link and logging in
User checking notifications in the web app
User logging out

Introducing Cypress
In this section, we'll be using Cypress for our end-to-end tests. Cypress works great with
the Chrome browser. Alternatively, if you'd like to work with a Selenium-based tool, you
could look at Nightwatch.js at this website: http:/ ​/​nightwatchjs. ​org/ ​.​

To find out more about Cypress, visit the official web site at the following URL: https:/ ​/
www.​cypress.​io/​.

If you visit the Cypress website, you'll see it described as:

Fast, easy, and reliable testing for anything that runs in a browser.

Let's dive right in.

http://nightwatchjs.org/
http://nightwatchjs.org/
http://nightwatchjs.org/
http://nightwatchjs.org/
http://nightwatchjs.org/
http://nightwatchjs.org/
http://nightwatchjs.org/
http://nightwatchjs.org/
http://nightwatchjs.org/
http://nightwatchjs.org/
https://www.cypress.io/
https://www.cypress.io/
https://www.cypress.io/
https://www.cypress.io/
https://www.cypress.io/
https://www.cypress.io/
https://www.cypress.io/
https://www.cypress.io/
https://www.cypress.io/

Testing in Vue CLI 3 Chapter 4

[98]

Adding a Cypress plugin to our project
Now let's add a Cypress plugin to our project with your Vue CLI UI running:

Open the following address in the browser:1.
 http://localhost:8000/plugins/add
Next, type cypress into the search field, and locate the @vue/cli-plugin-2.
e2e-cypress plugin.
Go through the plugin installation steps just like we did before with the Jest3.
plugin.
Once our Cypress plugin is added, we need to commit the changes. Similar to4.
how we did it with Jest, we can just commit with a simple message such as Add
Cypress plugin.

Notice that installing Cypress added a new folder called e2e to our tests folder. Inside
the e2e folder, we can find the following subfolders: plugins, specs, and support.

Let's inspect the contents of the package.json file next.

Verifying updates to package.json made by the Cypress
plugin installation
Let's inspect our project's package.json inside VS Code. We'll notice a new entry inside
the scripts option as follows:

"test:e2e": "vue-cli-service test:e2e",

Also, our devDependencies have been updated with the Cypress plugin, which we can
also see by visiting our Vue UI dashboard and inspecting the installed plugins.

Finally, if we click on the Tasks icon, we'll see that the test:e2e task has been added to the
bottom of the tasks list for our project, exactly the same as what we saw inside
the package.json file.

Testing in Vue CLI 3 Chapter 4

[99]

If we clicked on the test:e2e task, the right-hand pane will be updated accordingly, with
the Run task button ready to be clicked. Clicking the Run task button would produce the
following output:

$ vue-cli-service test:e2e --mode development
 INFO Starting e2e tests...
 INFO Starting development server...

 DONE Compiled successfully in 1691ms18:06:27

 App running at:
 - Local: http://localhost:8082/
 - Network: http://192.168.1.70:8082/

 Note that the development build is not optimized.
 To create a production build, run npm run build.

It looks like this is your first time using Cypress: 3.2.0

[18:06:28] Verifying Cypress can run
C:\Users\W\AppData\Local\Cypress\Cache\3.2.0\Cypress [started]

[18:06:30] Verified Cypress!
C:\Users\W\AppData\Local\Cypress\Cache\3.2.0\Cypress [title changed]

[18:06:30] Verified Cypress!
C:\Users\WAppData\Local\Cypress\Cache\3.2.0\Cypress [completed]

Opening Cypress...

A new Electron-powered window will open on our computer. Working with Cypress is
easy. As the To help you get started... window tells us, you can run tests in the examples
folder or add your own test files to cypress/integration.

If you look at the top-right of the Cypress window, you'll see the Run all specs button. By
default it will run in Chrome (with the version number specified). If you click on the
dropdown that has Chrome selected, you can switch to Electron. Regardless of what option
you choose, your tests will be run in a new window, either a new Chrome window or a
new Electron window.

Testing in Vue CLI 3 Chapter 4

[100]

At this point, our end-to-end Cypress tests will fail, because Cypress is trying to run tests
on a default Vue scaffold project, as follows:

Figure 4.16: A failing test in Cypress

If you wanted to see these test pass from the get go, you'd need to create a brand-new
project and set up Cypress e2e testing in the configuration. We'll look at these different
options later in the book. For now, let's update our tests so that they pass.

Updating Cypress tests in our Vue app
Back in VS Code, open the test.js file inside the ./tests/e2e/specs/ folder. You'll see
a describe function with two arguments.

To understand Cypress terminology better, refer to the following URLs:
https:/ ​/​docs. ​cypress. ​io/ ​guides/ ​core- ​concepts/ ​writing- ​and-
organizing- ​tests. ​html#Support- ​file, and
https:/ ​/​docs. ​cypress. ​io/ ​guides/ ​references/ ​bundled- ​tools.
html#Mocha. ​

https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests.html#Support-file
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha
https://docs.cypress.io/guides/references/bundled-tools.html#Mocha

Testing in Vue CLI 3 Chapter 4

[101]

While in Jest, we saw the word test as the name of a single unit test's function, whereas in
Cypress, we see the word it being used. The cy object is the actual Cypress test runner.
Let's look at the following updated code for the test.js file, and explain how and why it
works:

describe('My First Test', () => {
 it('Visits the app root url', () => {
 cy.visit('/')
 cy.contains('article', 'Our own custom article component!')
 })
})

This time our tests are pass. Notice that we only had to save the updated test file in VS
Code for the tests to be run automatically. You can navigate
to http://localhost:8000/tasks/ and click the test:e2e task for more information
on the running task as follows:

Figure 4.17: A screenshot of a passing Cypress test for our Vue app's homepage

Also notice that, if you hover over the CONTAINS section in your test results, the
appropriate part of the served Vue app will be highlighted, a wonderful visual cue as to the
exact section of our Vue app that is being tested.

Testing in Vue CLI 3 Chapter 4

[102]

Summary
In this chapter, we discussed many testing-related topics through the lens of the Vue CLI 3.
TDD is a great technique that should be utilized by teams and individuals alike, and Vue
CLI 3, its UI, and Jest make a wonderful match for streamlining this process. Like any other
aspect of development with Vue CLI 3, a lot of the piping is hidden away from us, which
makes for a great coding experience.

In the next chapter, we will look at routing in Vue CLI 3.

5
Vue CLI 3 and Routing

In the previous chapter, we saw how to work with some testing suites such as Jest and
Cypress in Vue. In this chapter, we'll look at working with vue-router and use it with Vue
CLI 3. We'll look at some practical tasks such as lazy-loading components. We'll look at
using the Vue add command to add vue-router and why that's not the best strategy, and
steps to take to mitigate it. Understanding routing in Vue is beneficial if you want to build
larger and more complex apps. The following a list of subjects covered in this chapter:

Adding a new Vue project with vue-router and vuex
Configuring preset options through VS Code's command line
Understanding vue-router routes
Using named routes
Adding a dynamic route
Navigating to a route from the methods option in a Vue instance
Working with nested (child) routes
Lazy-loading routes

We'll begin by adding a new project.

Adding a new Vue project with vue-router
and vuex
Let's begin by creating a new folder in our file system. Let's call this folder
vueclichapter5.

Open the vueclichapter5 folder from Windows Explorer, right-click anywhere1.
on the whitespace inside the vueclichapter5 folder, and click on the Git Bash
here command.

Vue CLI 3 and Routing Chapter 5

[104]

Once Git Bash opens, type code . and press the Enter key. This will open a2.
brand-new instance of VS Code, with no files or tabs inside other than the
welcome tab.
Next, we'll be adding a new Vue project right from VS Code's integrated3.
Terminal. To access this Terminal, click on the VS Code window (to get it in
focus), and press the following shortcut key: Ctrl + `.

We've already mentioned the Ctrl backtick shortcut earlier in the book.
As a reminder, the ` character can be found when you press the key above
the Tab key on your keyboard.

Using the Ctrl + ` keyboard shortcut will open the Terminal inside VS Code.

Next, we'll run the vue create command with a dot, as follows:4.

vue create .

Doing so will generate a Vue project in the existing folder, that is, it will not make
a subfolder for our new Vue project, as follows:

Figure 5.1: Generating a project in the current directory from VS Code's Terminal

 Press the Y key to confirm that we'll be generating our project in the current5.
directory.

Vue CLI 3 and Routing Chapter 5

[105]

Configuring preset options through VS Code's
command line
Next, we'll pick the Manually select features option by pressing the down arrow key once,
followed by the Enter key, as shown in the following screenshot:

Figure 5.2: Generating a project in the current directory from VS Code's Terminal

Vue CLI 3 and Routing Chapter 5

[106]

Adding vue-router and vuex
Next, we'll use the down arrow key and the spacebar key to select Router and Vuex as
additional features for use in our project, as shown in the following screenshot:

Figure 5.3: Adding the vue-router and vuex plugins to our project

A prompt will ask us if we want to use the History mode for the router.

We don't want to use it now, so we'll just type n and press Enter.

Later on in this chapter, we'll discuss what the History mode does and how it works.

Vue CLI 3 and Routing Chapter 5

[107]

Adding ESLint and Prettier
Another prompt asks us about our linter or formatter preferences. We'll be using ESLint
and Prettier as follows:

Figure 5.4: Choosing ESLint and Prettier as or linter / formatter configuration

Finishing the configuration
Finally, we'll accept the default Lint on save feature, and opt to place the config for Babel,
PostCSS, ESLint, and so on in dedicated config files as follows:

Figure 5.5: Choosing to save configs in dedicated config files

Finally the Vue CLI will ask us if we'd like to save this as a preset for future projects. We'll
say no to this for the time being.

Vue CLI 3 and Routing Chapter 5

[108]

Installing all the plugins for our new project
Finally, the Vue CLI installs all the plugins as follows:

Figure 5.6: Vue CLI installing our project's plugins

Once this installation is complete, we'll have a working Vue project installed with vue-
router and vuex, ESLint, and Prettier set up and ready to use.

Serving our project from the Vue CLI UI
Once our project is installed, we could use the npm run serve command to run it.
However, we'll use the Vue CLI UI for this, so let's run it with vue ui as follows:

Figure 5.7: Serving our project via vue UI command from VS Code command line

Vue CLI 3 and Routing Chapter 5

[109]

As expected, our Vue CLI UI will automatically open in a browser window at
http://localhost:8000/dashboard. At this point, the old project might be loaded in
the dashboard, so we need to click on the Home icon and import our new
vueclichapter5 project.

Note that we could have installed a new app using the Vue CLI UI from
the very beginning, but it is interesting to know that you can switch
between the command line and the UI without issues.

Once the project is loaded, we can click on the Plugins link to see the installed plugins.
Notice the absence of the Add vue-router and Add vuex buttons. They are not present since
we've already installed them.

Running the serve task from the UI
Finally, we'll click on the Tasks icon to open a list of available tasks, then click the serve
task to compile and serve our project. Just like before, a Run task panel will appear on the
right-hand side of the dashboard as follows:

Figure 5.8: Run task for the npm run serve script

Vue CLI 3 and Routing Chapter 5

[110]

On the preceding screenshot, we can see a zoomed-in portion of the serve task screen.
Clicking the Run task button will start building the app, and we'll get notified on the
Windows Start bar that our app was successfully built. Looking at the available tabs, we
can see that the current view shows our serve task's dashboard. Clicking on the Output
button to the left of the currently active serve task's dashboard button will show us logging
information, as follows:

 App running at:
 - Local: http://localhost:8082/
 - Network: http://192.168.1.70:8082/

 Note that the development build is not optimized.
 To create a production build, run npm run build.

Of course, the specific port that the vue-cli-service will be serving our Vue app from
will depend on what other ports are already in use. To open our running Vue app in the
browser, all that is needed now is to click on either the Local or the Network URLs listed
in the output log.

Working with routes in vue-router
In the section that follows, we'll be looking into how routes in vue-router work and how to
add pages and routes using them. We'll begin by inspecting existing routes, and after that
we'll be adding additional routes and their corresponding components.

Inspecting the two default routes
This will open a familiar starting project with the Vue logo, with a slight addition: a link on
top to the About page as shown in the following screenshot:

Figure 5.9: Default navigation of the project with vue-router installed

Vue CLI 3 and Routing Chapter 5

[111]

If you click on the About link, you'll be greeted with another page that has an h1 tag and
inside it, the following text:

This is an about page

Notice that the route to the About page has a pound sign in front of the
page name. In our example app, it looks like
this: http://localhost:8082/#/about. How do we get rid of the
pound sign? In other words, how to we set the address
to http://localhost:8082/about?

The answer is simple, we just need to set up our server to always return
the index.html page, and then we're going to add another setting, the
mode setting, for the vue-router, such as the following: mode: 'history'

You need to add the preceding code right under the export default
new Router({ line in router.js. Doing this will get rid of the pound
symbol.

Next, we'll inspect the contents of the project that comes preinstalled with vue-router and
vuex.

Inspecting project files
Go back to VS Code and look at the project structure. You'll see some differences from what
we had before. The following is the contents of our src folder:

Figure 5.10: The contents of the src folder with vue-router and vuex pre-installed

Vue CLI 3 and Routing Chapter 5

[112]

Inside the src folder, we can see a folder that we haven't seen before: the views folder,
which holds two view files: Home.vue, and About.vue. In the root of our project, we can
see some additional files as well: router.js, store.js,
.browserslistrc, eslintrc.js, postcss.config.js, and README.md.

The router.js file is what vue-router uses to set up the paths in our app. The routes
array is an array of objects: one object for a single route. Since we have two routes in the
default installation, we have two objects inside the routes array. The store.js file is
what vuex uses to keep track of our app's state, mutations, and actions; these are all
referred to as the vuex store. The README.md file lists common npm commands for use
with our app, and the other files at the root of our project are configuration files; this
convention, at this point in our journey through Vue CLI 3, should be expected.

The contents of main.js
Just like we've seen before, the main.js file inside our src folder imports all the following
dependencies:

The Vue library from node_modules
The root component, App.vue
The router file to set up vue-router routes
The store file to set up the vuex store

The App.vue file and router-link navigation
By inspecting the contents of the root component, App.vue, we can see that the file looks
different from before: there is no script section!

Also, the template tag inside App.vue holds the so-called navigation components. Each
navigation item is enclosed inside the router-link tag.

Why not use just an anchor tag instead of the router-link tag? Because an anchor tag
would go on and send a server request. With the router-link tag, this behavior is
avoided.

If we inspect the compiled HTML code in the dist folder, we'll see that the bundled HTML
indeed ends up being an anchor tag, as can be seen in the following compiled production
code:

<div id="nav">
 Home |

Vue CLI 3 and Routing Chapter 5

[113]

 <a href="#/about" class="router-link-exact-active router-link-
active">About
</div>

Going back to the Home.vue and About.vue files inside the view folder, we can also see
the router-view tag (below the div with the id of nav). This is what actually renders
either the Home view or the About view. The component that will be rendered will be
determined by whatever is mapped with the to prop.

Rendering a Vue instance and mounting it into #app
Finally, a new instance of Vue is called and passed an argument in the form of an options
object. The object receives the following key-value pairs: router: router, store:
store, and render: h => h(App).

Written in ES5 code, that code would look like the following:

new Vue({
 router: router,
 store: store,
 render: function render(h) {
 return h(App);
 }
}).$mount("#app");

Our main.js file, is luckily, written in a more modern syntax, so when all these things are
put together, it looks as follows:

import Vue from "vue";
import App from "./App.vue";
import router from "./router";
import store from "./store";

Vue.config.productionTip = false;

new Vue({
 router,
 store,
 render: h => h(App)
}).$mount("#app");

The render method will take all the different parts of our app, combine them, and get them
ready to be mounted. Finally, our Vue app will be mounted into the div with the id of the
app inside our ./public/index.html.

Vue CLI 3 and Routing Chapter 5

[114]

You might notice that our current app's directory doesn't contain a dist folder. As we've
learned in Chapter 2, Webpack in Vue CLI 3, the dist folder is the product of webpack
building our site. So let's run the build task in our Vue CLI 3 UI next, to see the dist folder
being created and served.

Running the build task from the UI
To run the build task from the Vue CLI 3 UI, all we need to do is go to
http://localhost:8000/tasks/, and from there click on Build task, and then click the
Run task button.

The output tab of the build task we ran will log out the following information:

 File Size Gzipped

 dist\js\chunk-vendors.1030118d.js 116.48 KiB 40.51 KiB
 dist\js\app.51b1d496.js 5.97 KiB 2.23 KiB
 dist\js\about.d288b4f1.js 0.44 KiB 0.31 KiB
 dist\css\app.08e7a232.css 0.42 KiB 0.26 KiB

 Images and other types of assets omitted.

 DONE Build complete. The dist directory is ready to be deployed.
 INFO Check out deployment instructions at
https://cli.vuejs.org/guide/deployment.html

What are these different JavaScript files inside the ./dist/js/ folder? They are the result
of webpack bundling our assets from our Vue app's single-file components, the router, and
the store, into deployment-ready bundles. These bundles are now added to the compiled
and minified index.html page inside our dist folder, so this is how they end up on our
production-ready web page.

Finally, let's see our updated app. For that, we'll click on the serve task, and stop the task by
clicking the Stop task button.

Serving the app in production mode from the UI
To serve the app in production mode, we need to click on the Parameters button inside the
Run task panel with the serve task selected.

Vue CLI 3 and Routing Chapter 5

[115]

Once we click the Parameters button, we'll see the following dialog:

Figure 5.11: Specifying the env mode in serve task's parameters dialog inside the Vue CLI 3 UI

In the Specify env mode setting, click on the drop-down and select production. Save the
changes, and you'll see the serve task dashboard again. Now, click on the Run task button.
Finally, to make sure everything still works, point your browser to whatever port your Vue
app is being served on. In this example, the proper address is http://localhost:8082/.
Next, click on the About link.

Back in VS Code, change the About.vue page's h1 tag to the following:

<h1>This is an about page. HMR rocks!</h1>

Save the file and see your About page get an HMR update.

Some basics of working with routes
Although this book is about Vue CLI 3, we will take this opportunity to quickly list some
features of vue-router. This is by no means an extensive list: it is just a quick overview of
certain features you need to be aware:

Using named routes
Adding a dynamic route

Vue CLI 3 and Routing Chapter 5

[116]

Navigating to a route from the methods option in a Vue instance
Working with nested (child) routes
Lazy-loading routes

We'll begin by understanding that the router-view tag needs to be nested.

The router-view tag needs to be nested
Before we begin, let's look at the App.vue template tag as follows:

<template>
 <div id="app">
 <div id="nav">
 <router-link to="/">Home</router-link> |
 <router-link :to="{ name: 'about' }">About</router-link> |
 <router-link :to="{ name: 'cars' }">Cars</router-link>
 </div>
 <router-view />
 </div>
</template>

Notice that the router-view element (the third line from the bottom), is wrapped inside a
parent div tag, which is then wrapped inside a template tag. This is important, because
you can't have the router-view tag as the direct child of the template tag. In other
words, the following is not possible:

<template>
 <router-view />
</template>

Now that we know that this approach will not work, we can go on discussing named
routes.

Using named routes
To use a named route, you just pass an object to the to prop inside the router-link tag,
as follows:

<router-link :to="{ name: 'about' }">About</router-link>

Vue CLI 3 and Routing Chapter 5

[117]

Notice the : before the to prop. This : is added whenever we want to add a named route.

With the name key inside the object we passed in to the to prop, vue-router will check the
routes array inside router.js. It will look for an object that has a name key with the
value specified, and if it finds it, it will re-route it to the specific view component.

Navigating to a route by triggering a method of a Vue
instance
Every component in Vue is a stand-alone Vue instance. We'll be working in the
HelloWorld.vue component. To navigate to a route from the methods option of
HelloWorld.vue, you can use the following code inside the scripts section of the
component:

methods: {
 goToAboutPage(){
 this.$router.push({path: '/About'})
 },
}

To make this work, we need to add a v-* directive to determine when a method that has
the preceding code will be triggered. Thus, still inside HelloWorld.vue, update the
template tag to the following:

<template>
 <!-- code skipped for brevity -->
 <p v-on:mouseover="goToAboutPage"
 style="color: red; font-size: 50px; background: gray; max-width: 500px;
margin: 0 auto">
 Hover to see the About Page
 </p>
 <!-- code skipped for brevity -->
</template>

Obviously, the preceding template tag is incomplete. We're focusing on the important
part: the p tag with the text colored red and the font size of 50 pixels. You can't miss it on
the screen! You can find this line of code inside vuecli3chapter5/HelloWorld.vue,
starting on line 4.

Vue CLI 3 and Routing Chapter 5

[118]

When you hover over the preceding paragraph, Vue will immediately take you to the
About page.

Let's now add the same functionality we have on the home page to the about page. Thus,
once you are on the about page, you can hover over the prominent Hover to see the Home
Page link, which will take you back to the home page.

To make things less jumpy, we can also use the good-old plain, browser facade
function: setTimeout. Here's the updated code for the About.vue file:

<template>
 <div class="about">
 <h1>This is an about page. HMR rocks!</h1>
 <p v-on:mouseover="goToHomePageSlowly" class="go">Hover to see the Home
Page</p>
 </div>
</template>
<script>
export default {
 name: "About",
 props: {
 msg: String
 },
 methods: {
 goToHomePage(){
 this.$router.push({path: '/'})
 },
 goToHomePageSlowly(){
 setTimeout(() => this.goToHomePage(), 1000);
 }
 }
};
</script>
<style>
.go {
 color: purple;
 font-size: 50px;
 cursor: pointer;
 max-width: 500px;
 margin: 0 auto;
 background: #fabdab;
}
</style>

Vue CLI 3 and Routing Chapter 5

[119]

What are we doing in the preceding code? We're simply adding another method to
our methods option. We're naming this new method: goToHomePageSlowly. Then, we're
calling this method inside our about component's template tag.

The goToHomePagesSlowly uses the setTimeout facade function for the browser's
setTimeout functionality. The setTimeout function calls our goToHomePage function
with a delay of 1000 milliseconds, and once it's run, it will use the $router to go back to
the home page.

Next, we'll discuss nested routes.

Working with nested routes
Before we start working with nested routes, we will add the Cars component, inside
the src/views folder as follows:

<template>
 <div class="home">
 <HelloCars msg="Welcome to Your Cars" />
 <router-view></router-view>
 </div>
</template>

<script>
// @ is an alias to /src
import HelloCars from "@/components/HelloCars.vue";

export default {
 name: "cars",
 components: {
 HelloCars
 }
};
</script>

To work with nested routes, you need to add a children array to the path object inside
router.js, as in the following example:

routes: [
 {...},
 {...},
 {
 path: "/cars",
 name: "cars",
 component: Cars,

Vue CLI 3 and Routing Chapter 5

[120]

 children: [
 { path: '/cars', component: CarsHome },
 { path: '/cars/cars-new', component: CarsNew },
 { path: '/cars/cars-used', component: CarsOld }
]
 }
]

Each of these child components also needs routing. Since they are nested routes, they need
to be called from their respective parent component. In our case, this is the HelloCars
component. We will add the HelloCars.vue component inside the components folder,
using the following code:

<template>
 <div class="hello">
 <h1>{{ msg }}</h1>
 </div>
</template>

<script>
export default {
 name: "HelloCars",
 props: {
 msg: String
 }
};
</script>

<!-- Add "scoped" attribute to limit CSS to this component only -->
<style scoped>
* {
 margin: 0 auto;
}
</style>

Now all we have to do is add additional child components that our parent HelloCars.vue
component will call.

The default child component, available from the /cars route, is the CarsHome.vue
component as follows:

<template>
 <div class="home">
 <div>
 This is Cars home

 <router-link to="/cars/cars-new">See new cars</router-

Vue CLI 3 and Routing Chapter 5

[121]

link>
 <router-link to="/cars/cars-used">See old cars</router-
link>

 </div>
 </div>
</template>

<style>
ul li { list-style-type: none }
</style>

As mentioned earlier, one of the HelloCars.vue component's children is the
CarsNew.vue component as follows:

<template>
 <div>
 <div>
 This is Cars New

 <router-link to="/cars">Back to cars home</router-
link>

 </div>
 </div>
</template>

Another child of the HelloCars.vue component is CarsOld.vue as follows:

<template>
 <div>
 <div>
 This is Cars Old

 <router-link to="/cars">Back to cars home</router-
link>

 </div>
 </div>
</template>

Now that we understand how nested routing works, we'll shift our focus and briefly
discuss lazy-loading routes.

Vue CLI 3 and Routing Chapter 5

[122]

Lazy- loading routes
Sometimes, webpack produces JavaScript bundles that are too large. This will slow down
the time it takes to load our web apps, which is, of course, undesirable.

To avoid this scenario, we can think back to how vue-router works: each route is a separate
Vue component.

We've already seen earlier that webpack produces chunks when bundling our Vue apps.
This behavior can be used to our advantage, so that each component gets bundled into a
separate chunk. This is achieved with Vue's async components and code-splitting in
webpack.

Working with dynamic routes
What is a dynamic route? Let's imagine a shopping platform, in which the URL structure of
any item for sale is listed in a link that looks like this:

https://example.com/items/:id

The :id section is what's called a dynamic segment. To work with dynamic segments, you
first need to list them, just like any other route, inside router.js in the route's array of
objects as follows:

routes: [
 {...},
 {...},
 {
 path: "/item/:id",
 name: "item",
 component: Item
 }
]

Obviously, in the preceding code, we're using the three dots to save space.

Back inside the Item.vue view component's template tag, we'll need to add the following
syntax:

<template>
 <article>
 <h1>Shopping item: {{ $route.params.id }}</h1>
 </article>
</template>

Vue CLI 3 and Routing Chapter 5

[123]

The state of our active route is stored inside $route.

At least an entire chapter could be written about dynamic routes alone, so at this time, we'll
need to continue our discussion by looking at triggering routes from the methods option in
Vue instances.

With this, we conclude this chapter.

Summary
In this chapter, we looked at how to add a new Vue project with vue-router and vuex. We
also configured preset options through VS Code's command line. We discussed vue-router
routes, and we saw how to use named routes, add a dynamic route, navigate to a route
from the methods option in a Vue instance, and work with nested (child) routes.

In the next chapter, we'll see how to work with ESLint and Prettier in Vue CLI 3.

6
Using ESLint and Prettier in

Vue CLI 3
In this chapter, we'll learn why ESLint is useful and we'll see how to lint our code with it.
We'll also discuss different style guides: standard, Airbnb, and Google. Specifically, we'll
look at the following subjects:

What ESLint is, and how to configure it on its own
The difference between installing npm packages locally and globally
Installing ESLint locally and running it with npx
Using ESLint in Vue CLI 3
Configuring ESLint using Vue CLI 3 UI

We'll start by looking at what ESLint is and how to configure it as a standalone
npm package.

What ESLint is, and how to configure it on
its own
In this chapter, we will discuss the role of ESLint. ESLint has to do with code quality. When
you work on a team, every team member will bring their own little quirks and ideas on the
best way to write JavaScript. Even if your team has some clear-cut rules on specific coding
styles and how to write your code, how do you guarantee that each team member will
follow the rules? How do you make sure that they deliver consistent code quality? We are
human after all, which means that we all have those days when we do our best, but simply
forget about one little thing that we had to pay attention to.

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[125]

Given a long enough period of time, our team will begin producing stylistically inconsistent
code. The next thing that happens is, everyone in the team starts perceiving the JavaScript
style guide as a suggestion, not something that you should really adhere to.

Luckily, there are tools that allow us to automatically improve the look of our code and to
format it when it doesn't follow the prescribed way of doing things. ESLint is an example of
such a tool.

Basically, ESLint is a way for you to outsource the tabs versus spaces and other similar
debates to a piece of software that will take care of these issues in a streamlined, consistent
manner.

In this chapter, we'll also briefly mention the difference between global and local node
modules, that is, the difference between installing npm packages globally and locally.

Installing npm packages globally versus
installing npm packages locally
Here's an example of a global installation:

npm install eslint -g --verbose

Here's an example of a local installation:

npm install eslint --save-dev --verbose

So, what's the difference?

Global packages are installed in one specific place on your computer. It does not matter
what folder you were in when you installed them; they are not saved inside that folder, and
they are made available globally in your command line. Thus, if we want to run a package
from the command line, global installation is one way to do it.

You run the npm install command from a command-line program. A command-line
program will always run from inside a directory. Using commands such as cd .. to go up
a directory in you OS file system, or cd <directory-name> to drill down into a directory,
you can choose what folder you want your command-line program to be in, when
installing an npm package.

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[126]

To install an npm package locally, means that the package is saved inside the
current directory your command-line program points to. When the npm install
command is run, the new package you're installing will be saved inside the node_modules
directory of the current directory you're in. If the node_modules directory doesn't exist, it
will be added when the npm install command is run, inside the current directory.

The downside of using global modules is the versioning problem. With local modules, each
different directory and each different application on your machine has its own version of a
module. However, if you have a global package and you decide to update it, the updated
version of your globally installed module might break your application because of
compatibility issues between that new version and the rest of the code in your specific app
in a specific directory.

As a rule of thumb, the npm packages should be installed locally, since you avoid the
versioning problem.

To learn more about installing npm packages locally, visit this web page:
https:/ ​/​docs. ​npmjs. ​com/ ​downloading- ​and- ​installing- ​packages-
locally. ​

One downside of using locally installed packages is that the specific command, such
as prettier, webpack, or eslint, doesn't become available on the command line. Instead,
you need to run a locally-installed node module as an npm script.

Alternatively, this locally-installed module can actually be run on the command line
directly, using the npx command, which we'll discuss in the next section.

What is Prettier?
Prettier is a code formatter. It formats your code whenever you save a file. The project
website can be found at https:/ ​/ ​prettier. ​io/​. In the example that follows, we'll be
running a locally-installed Prettier npm module.

Running locally-installed npm modules on the
command line using npx
To begin working with Prettier, we'll start a new project as follows:

mkdir Chapter6 && cd $_

https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[127]

Next, inside the new Chapter6 folder, we'll add another folder, prettier-practice, as
follows:

mkdir prettier-practice && cd $_

Next, we'll initialize npm with defaults as follows:

npm init -y

Next, let's add one single file, index.html, as follows:

touch index.html && code .

The preceding command created and opened a new index.html file inside VS Code.

We'll be adding a small Vue app without any build process. Let's add the following code to
our index.html file:

<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="UTF-8">
 <title>101 - using watchers in Vue</title>
 <style>
 body,
 input {
 font-family: Arial, sans-serif;
 font-size: 20px;
 }
 </style>
</head>

<body>
 <div id="example">
 <p>Enter owner name and the thing that is owned:
 <input v-model="ownerName" placeholder="enter owner">
 <input v-model="thing" placeholder="enter thing">
 </p>
 {{ ownerName }}
 has a
 {{ thing }}
 </div>
 <script
src='https://cdnjs.cloudflare.com/ajax/libs/vue/2.6.10/vue.min.js'></script
>
 <script>
 var example = new Vue({

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[128]

 el: '#example',
 data: {
 ownerName: 'e.g Old McDonald',
 thing: 'e.g cow'
 },
 watch: {
 ownerName(currentValue, previousValue) {
console.log(`The value in the first input has changed from:
${previousValue} to: ${currentValue}`);
 }
 },
 computed: {
 // a computed getter
 ownerHasThing: function () {
 // `this` points to the Vue instance's data option
 return this.ownerName + " " + this.thing
 }
 }
 })
 </script>
</body>

</html>

You can see this simple Vue app running on CodePen, at this URL: https:/ ​/​codepen. ​io/
AjdinImsirovic/​pen/ ​jprwKe. ​

Next, let's add Prettier to see how it will format our code.

Installing Prettier globally and running it on index.html
To install Prettier globally, we can use the following command:

npm install prettier -g --loglevel verbose

Then, to start using it, you can just run the --help flag to see all the options that are
available, such as the following:

prettier --help

Now, you can run the prettier index.html command to see the formatted code right in
your console. Alternatively, you can run the command prettier index.html --write,
so that the formatted output actually gets saved in the file you specified.

Next, we'll see how to install Prettier locally and run it with npx.

https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[129]

Running Prettier with npx
The npx utility is an NPM package runner. It was added to NPM in version 5.2.0 (in the
first half of 2017). It makes it easier to run packages from the node_modules directory,
since we don't have to rely on npm run <someScriptName> as we did in package.json
before.

In this example, we'll see how to install Prettier as a development dependency, and how to
run it with npx. First, we need to install it with the --save-dev flag inside our prettier-
practice folder as follows:

npm install prettier --save-dev --verbose

Once it's completed, our package.json will be updated, and we can start using Prettier.

The easiest way to do so, is to simply run just the Prettier command inside VS Code's
Terminal.

To see the available options, we can run the following command:

npx prettier

To actually run a command with some options passed, we can run this code:

npx prettier --single-quote --trailing-coma es5 --write "index.html" --
verbose

There are many other ways in which npx can be used, and it's a great tool to familiarize
yourself with.

Another interesting exercise to try is to compare Prettier's formatting with the readily
available VS Code's formatter. The VS Code's formatter is triggered using the Shift + Alt + F
keyboard combination. We can quickly re-run the npx prettier command we just ran, by
pressing the up arrow while inside VS Code's console.

Next, we'll make another little project to demonstrate working with ESLint.

Working with ESLint
ESLint is a JavaScript linter. You can find it at https:/ ​/​eslint. ​org/​. A linter performs
code analysis. It compares your code against a certain standard. You could say it's a tool to
check code quality. Linters are great for team environments, because they make our code
base follow a certain code style, and because they ensure that, there's one less thing to talk
about during code reviews.

https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[130]

An example of a code style can be found here: https:/ ​/​github. ​com/ ​airbnb/ ​javascript.
This is Airbnb's JavaScript style guide. If you scroll down the page, you'll see that there is a
lot of information to read through: how to access primitive types, how to reassign
references, how to group shorthand properties in object declarations, and so on.

It' s important to understand that ESLint only analyzes your code; it doesn't run it.
However, it does locate errors, and can also fix them. Effectively, it can change your code if
you set it up to do so.

There are other JavaScript linting tools out there, such as JSLint, or JSHint. ESLint is touted
as more customizable.

Installing ESLint globally and unsuccessfully
running it from the command line
To install ESLint node module globally, run the following command:

npm install eslint -g --loglevel verbose

Now, our eslint command is globally available.

Now, we'll create a new folder, eslint-practice. Inside of it, we'll make a new file,
eslint-test.js.

Open the file in VS Code and add this code to it:

function (a)
{
console.log(a, b);

}

Save the file.

Next, open the command line inside VS Code with Ctrl + `, and run the following
command:

eslint eslint-test.js

https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[131]

The output you'll receive is this:

Oops! Something went wrong! :(

ESLint: 5.15.3.
ESLint couldn't find a configuration file. To set up a configuration file
for this project, please run:

 eslint --init

ESLint looked for configuration files in C:\Users\Warrior
Gaming\Desktop\Chapter6 and its ancestors. If it found none, it then looked
in your home directory.

Why did this happen? There is no ESLint config file, but why does ESLint need a config file
to run?

This is because the rules that ESLint will use to check our code are specified in the config
file. If there's no config file, ESLint doesn't know which rules to apply when linting our
code.

The solution for this problem is interesting. Without a package.json, we cannot initialize
ESLint. Since we have to install a new NPM project, we might as well just install the ESLint
node module locally. It's not a must, but it's a preferred option for a streamlined workflow.

Running eslint --init command
Obviously, we can't run the eslint command without an ESLint config file. However, we
can't initialize an ESLint config file without a package.json file. This means we first need
to run npm init, so let's do that now as follows:

npm init -y

Now, we can initialize eslint. When we run the eslint --init command, we'll be
asked several questions in command-line prompts. Our ESLint configuration will depend
on the answers we select. Here are the selections we need to pick for this example:

Pick To check syntax, find problems, and enforce code style
Pick None of these
Pick None of these (for this simple demonstration we won't use Vue.js
because that would require installing additional dependencies, and at this point
we are only test-driving ESLint)

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[132]

Pick Browser
Pick Answer questions about your style
Pick JSON
Pick Spaces
Pick Single
Pick Windows
Type Y (yes, we do require semicolons)
Pick ''JavaScript'' (as the answer to the What format do you want your config
file to be in?)

Once you've answered all the questions, you'll be greeted with the following output:

Local ESLint installation not found.
The config that you've selected requires the following dependencies:
eslint@latest
Successfully created .eslintrc.js file in
C:\Users\W\Desktop\Chapter6\eslint-practice
ESLint was installed locally. We recommend using this local copy instead of
your globally-installed copy.

Reading this message, we can now appreciate that the maintainers of ESLint are nudging us
toward the best practice of limiting the number of globally installed npm packages on our
computers, and, instead choosing to install our node modules locally in our projects. The
preceding message also reads that we need the eslint@latest dependency to be able to
run our ESLint configuration, so let's add it right now, as follows:

npm install eslint@latest --save-dev --verbose

It has been mentioned earlier in the book, but this is a great time for a
refresher: the --save-dev flag means that the package we are installing is
only to be used in development, not in production. The --save-dev
option does not set the local module. You can install ESLint locally by
simply running: npm install estlint@latest. However, both the --
save-dev and --verbose flags have their place, but it needs to be clear
that they don't have anything to do with locally installing an npm package.

Now, we are ready to run ESLint on our project's JavaScript file. Before we do, let's inspect
the contents of the .eslintrc.js.

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[133]

Understanding the structure of .eslintrc.js config file
Based on the rules we picked, our generated .eslintrc.js file looks like this:

module.exports = {
 'env': {
 'browser': true,
 'es6': true
 },
 'extends': 'eslint:recommended',
 'globals': {
 'Atomics': 'readonly',
 'SharedArrayBuffer': 'readonly'
 },
 'parserOptions': {
 'ecmaVersion': 2018
 },
 'rules': {
 'indent': [
 'error',
 4
],
 'linebreak-style': [
 'error',
 'windows'
],
 'quotes': [
 'error',
 'single'
],
 'semi': [
 'error',
 'always'
]
 }
};

Inside the exported object in the config file, we can see that the environment is set to
browser, and that the es6 property is set to true, which means the ES6 syntax is enabled
automatically.

With 'extends': 'eslint:recommended', we turn on the recommended core rules that
report common problems. These rules are listed on the following page: https:/ ​/​eslint.
org/​docs/​rules/​.

The 'globals' entry lists additional global variables that will be accessed when ESLint is
run using the specified configuration.

https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[134]

With the parserOptions property, we set the ECMA Script version to use as 2018, which
is, of course, ECMA Script 9. Finally, the 'rules' property specifies the rule to be applied,
and at what error level.

Running ESLint on a JavaScript file
Now, we can run the eslint command on our eslint-test.js file. Since it is installed
globally, we could simply run eslint eslint-test.js.

However, since this is discouraged by the very maintainers of the module, let's instead run
it locally, with the following command:

npx eslint eslint-test.js

Running the preceding command will produce the following output:

 1:10 error Parsing error: Unexpected token (

✖ 1 problem (1 error, 0 warnings)

We can also see the error right inside VS Code, as a single character, the (character,
underlined with a wavy red color on line one of our eslint-test.js file. Of course, this
error means that we are missing our function's name. So let's update the code to this:

function aFunction(a)
{
console.log(a, b)
}

Notice that we've also removed the semi-colon after the call to console.log method. Let's
run eslint again.

This time we get five new errors showing as follows:

 1:10 error 'aFunction' is defined but never used no-unused-vars
 3:1 error Expected indentation of 4 spaces but found 0 indent
 3:1 error Unexpected console statement no-console
 3:16 error 'b' is not defined no-undef
 3:18 error Missing semicolon semi

✖ 5 problems (5 errors, 0 warnings)
 2 errors and 0 warnings potentially fixable with the `--fix` option.

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[135]

Looking at the end of each line in the preceding output, we can see the specific ESLint rules
that our code violates. At the beginning of each line, we can see the line number, followed
by a colon, followed by the exact place of the first character that breaks an ESLint rule.
Thus, 1:10 can be read as line 1, character in the 10th position.

Let's run eslint again, with the suggested --fix flag as follows:

npx eslint eslint-test.js --fix

Now our code gets formatted, as follows:

function aFunction(a)
{
 console.log(a, b);

}

However, we still get some errors, as follows:

 1:10 error 'aFunction' is defined but never used no-unused-vars
 3:5 error Unexpected console statement no-console
 3:20 error 'b' is not defined no-undef

✖ 3 problems (3 errors, 0 warnings)

What we can conclude from this little exercise, is that ESLint will do the following:

Point out rule violations in our code.
Allow us to pass the --fix flag to remedy those errors that are fixable by the tool
itself.

Next, we'll update the error level rules.

Updating error level rules in ESLint
By default, all rules have their error levels set to 'error'. To manually set a different error
level, such as 'warn', we might add an errorLevel constant and update our rules to this
code:

const errorLevel1 = 'warn';
const errorLevel2 = 'error';
module.exports = {
 // ...
 // omitted this section to save space
 // ...

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[136]

 'rules': {
 'indent': [
 'error',
 4
],
 'linebreak-style': [
 'error',
 'windows'
],
 'quotes': [
 'warn',
 'single'
],
 'semi': [
 'warn',
 'always'
]
 }
};

Now, with this update, our error level for the linebreak-style and indent rules will
be error, and the error level for the quotes and semi rules will be warn.

Next, we'll work with ESLint in Vue CLI 3.

Configuring ESLint in Vue CLI 3
Now that we're familiar with Prettier and ESLint, we'll install them into a new project using
the Vue CLI 3. Let's point our Git Bash to the root of Chapter6 folder and run this
command:

code .

Once VS Code is open, we'll toggle on the command line, and run the following command:

vue create vc3-prettier-eslint

Then, we'll just accept the default installation with Babel and ESLint, and wait for the app
to install.

Next, similar to what we did before, we will run vue ui and then import the vc3-eslint
app to our Vue CLI 3 GUI Dashboard.

As we can see, ESLint comes as a default installation in our Vue CLI 3 apps. But how do we
configure ESLint, as we did in the previous section of this chapter?

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[137]

Setting up ESLint configurations in Vue CLI 3 GUI
With our vc3-eslint app loaded inside the Vue CLI 3 UI, let's click the configuration icon.

We'll click the ESLint configuration, which will update the right-hand pane in the Project
configuration window as follows:

Figure 6.1: Clicking the configuration icon shows possible configurations for your app

There we can see two main entries in this view: Lint on save, and Select config.

The Lint on save option is currently toggled on, but we can toggle it off by clicking on the
green switch on the right-hand side of the Lint on save option.

We can also choose a different configuration in the Select config entry. The default setting
can be changed to either the Strongly recommended or to the Recommended setting. We
saw earlier in this chapter how this setting can be configured inside eslintrc.js file.

You also have the option to click on the Open eslintrc button in the top-right corner of the
page to open our project's ESLint configuration file, so that you can edit it directly.

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[138]

Finally, we can see a list of all the ESLint rules in our project by clicking the Rules tab at the
top of the configuration panel as follows:

Figure 6.2: Selecting individual rules in the ESLint configuration screen in Vue CLI 3 UI

The screen will show the Essential rules that are applied by default in our ESLint
configuration, whereas, on the General tab we can change the entire ruleset by clicking the
drop down in the Select config entry; inside the rules tab, we can mix and match
individual rules, and then save our updates. This makes it possible to update the rules and
make custom changes any way we like.

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[139]

Using ESLint and Prettier together in a Vue
CLI 3 UI project
If you are starting a project from scratch in Vue CLI 3 UI, you can also make ESLint and
Prettier work together. Here's how:

We begin by pointing our Vue UI to a root folder as follows. It's important to1.
verify you are not inside an existing Vue app:

Figure 6.3: Creating a new project in Vue CLI 3 UI

Next, we'll click the Select this folder button to proceed, and then choose our2.
project's name as follows:

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[140]

Figure 6.4: Adding project name

Next, we'll click the Select this folder button to proceed, and then choose our3.
project's name. Click Next to proceed and you'll be taken to the Presets tab.
Once you're on the Presets tab, select the Manual preset to manually select4.
features, then click Next again. On the Features tab, the Babel and linter /
formatter features should already be preselected, so just click Next again to go to
the Configuration screen, as follows:

Figure 6.5: Choosing ESLint + Prettier from the Configuration screen

Using ESLint and Prettier in Vue CLI 3 Chapter 6

[141]

The Pick a linter / formatter config gives us several options. Choose the ESLint +5.
Prettier at the bottom. Once we click it, we'll be greeted with an option to save
the preset, so let's save it as in the following image:

Figure 6.6: Saving a new preset in Vue CLI 3 UI

Once we click the Create a new preset button, we've finished customizing our6.
project, and we can wait for all the dependencies to be installed.
Once it's done, you'll see the Welcome to your new project message. Now, you7.
can click on the Project dependencies link on the left-hand menu. Besides the
expected dependencies (babel-eslint, eslint, eslint-plugin-vue, and
vue-template-compiler), you'll also see the @vue/eslint-config-
prettier dev dependency. As we can see, this is an official vue npm module, as
it has the @vue namespace.

Summary
In this chapter, we've looked at differences between npm and npx, and global and local
installations of node modules. We've further discussed ESLint and Prettier. We've seen how
to install each of them on a stand-alone project, and we've seen how to configure ESLint in
a default Vue app using the Vue CLI 3 GUI. We've also seen how to set up ESLint with
Prettier, inside Vue CLI 3.

In the next chapter, we will explore using CSS, SCSS, and PostCSS in Vue CLI 3.

7
Improving CSS with SCSS

In this chapter, we'll discuss the basics of SCSS and what problems it solves. We'll also
discuss the improvements that are introduced to CSS that bring it closer to SCSS.

We will also work with the app we have made in Chapter 5, Vue CLI 3 and Routing. The
goal of this chapter is to work with CSS, SCSS, and we'll do that by using the Bootstrap +
Vue plugin.

The following topics will be covered in the chapter:

Installing Bootstrap + Vue
Using the bootstrap-vue plugin to add styles to our project
Using SCSS in our project

Installing Bootstrap + Vue
Why not use Bootstrap from the official website, when working with Vue? Well, we
definitely could do that, but Bootstrap relies on jQuery, and since we want to keep
everything JavaScript-related running through Vue, we'll have to use a project that's built
for this purpose exactly: BootstrapVue.

Let's begin by visiting the project website at https:/ ​/​bootstrap- ​vue. ​js. ​org/​. Here, we
can get acquainted with the project in general. Specifically, it would be useful to read the
documentation at https:/ ​/ ​bootstrap- ​vue.​js. ​org/ ​docs#vue- ​cli- ​3 , which discusses the
use of BootstrapVue inside a Vue CLI 3 project.

https://bootstrap-vue.js.org/
https://bootstrap-vue.js.org/
https://bootstrap-vue.js.org/
https://bootstrap-vue.js.org/
https://bootstrap-vue.js.org/
https://bootstrap-vue.js.org/
https://bootstrap-vue.js.org/
https://bootstrap-vue.js.org/
https://bootstrap-vue.js.org/
https://bootstrap-vue.js.org/
https://bootstrap-vue.js.org/
https://bootstrap-vue.js.org/
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3
https://bootstrap-vue.js.org/docs#vue-cli-3

Improving CSS with SCSS Chapter 7

[143]

Adding BootstrapVue as a plugin
You can create a new Vue project easily with the help of Vue CLI 3 UI. This has been
covered a few times in this book, and you should be able to do this on your own.

Name your new project Chapter7, and run it through the exact same installation steps as
in Chapter 5, Vue CLI 3 and Routing.

In your console, go to the root of your project and run the following command:

vue add bootstrap-vue

You will see the following prompt inside your console:

Successfully installed plugin: vue-cli-plugin-bootstrap-vue

This will be followed up with the following question:

? Use babel/polyfill? (Y/n)

Just press the Enter key to accept the default answer (yes).

Regardless of how you've installed the plugin, your plugins list should now look like this:

Now that we've installed it, we can start using it.

Improving CSS with SCSS Chapter 7

[144]

Using the bootstrap-vue plugin to add styles
to our project
Once the bootstrap-vue plugin is installed, let's use it in our project! We'll begin by
adding a navbar from the official documentation, which is available at https:/ ​/
bootstrap-​vue.​js. ​org/ ​docs/ ​components/ ​navbar#b- ​nav- ​item- ​dropdown, as follows:

 <b-navbar type="dark" variant="dark">
 <b-navbar-nav>
 <b-nav-item href="#">Home</b-nav-item>

 <!-- Navbar dropdowns -->
 <b-nav-item-dropdown text="Lang" right>
 <b-dropdown-item href="#">EN</b-dropdown-item>
 <b-dropdown-item href="#">ES</b-dropdown-item>
 <b-dropdown-item href="#">RU</b-dropdown-item>
 <b-dropdown-item href="#">FA</b-dropdown-item>
 </b-nav-item-dropdown>

 <b-nav-item-dropdown text="User" right>
 <b-dropdown-item href="#">Account</b-dropdown-item>
 <b-dropdown-item href="#">Settings</b-dropdown-item>
 </b-nav-item-dropdown>
 </b-navbar-nav>
 </b-navbar>

We'll add this navbar to our App.vue, in the template section. The updated template
element will now look like this:

<template>
 <div id="app">
 <div id="nav">

 <b-navbar type="dark" variant="secondary">
 <b-navbar-nav>
 <b-nav-item href="#">Home</b-nav-item>
 <!-- Navbar dropdowns -->
 <b-nav-item-dropdown text="Lang" right>
 <b-dropdown-item href="#">EN</b-dropdown-item>
 <b-dropdown-item href="#">ES</b-dropdown-item>
 <b-dropdown-item href="#">RU</b-dropdown-item>
 <b-dropdown-item href="#">FA</b-dropdown-item>
 </b-nav-item-dropdown>

 <b-nav-item-dropdown text="User" right>
 <b-dropdown-item href="#">Account</b-dropdown-item>

https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown
https://bootstrap-vue.js.org/docs/components/navbar#b-nav-item-dropdown

Improving CSS with SCSS Chapter 7

[145]

 <b-dropdown-item href="#">Settings</b-dropdown-item>
 </b-nav-item-dropdown>
 </b-navbar-nav>
 </b-navbar>
 <!--
 <router-link to="/">Home</router-link> |
 <router-link to="/about">About</router-link>
 -->
 </div>
 <router-view />
 </div>
</template>

We also need to update the styles so they look like this:

<style>
#app {
 text-align: center;
 color: #2c3e50;
}

#nav a {
 font-weight: bold;
 color: #2c3e50;
}

#nav a.router-link-exact-active {
 color: #42b983;
}
</style>

After saving the changes, our home page will update to the following screenshot:

Improving CSS with SCSS Chapter 7

[146]

To quickly change the color of the background on the bootstrap-vue navbar, simply
add a contextual Bootstrap color to the variant custom HTML attribute. The accepted
values are primary, secondary, success, danger, info, warning, light, and dark.

In the preceding example, we're using variant with the value of secondary, which gives
us a grayish background with white nav items on hover.

Using SCSS in our project
Similar to how TypeScript is referred to as a superset of JavaScript, SCSS is often referred to
as a superset of CSS. But what exactly is this superset?

A superset of a language is simply a layer around it, with additional functionality that
doesn't exist in the regular implementation. There could also be additional best practices,
methods, and so on.

At the very core, it is possible for SCSS files to contain only plain old CSS syntax. That's
because all SCSS ultimately compiles to CSS, and, as such, it is served to our browsers. This
makes it very approachable. It is reassuring for an SCSS newbie to know that they can keep
on writing CSS and it will just work in their SCSS!

Let's make this our starting point too. First off, let's update our bootstrap-vue plugin
settings, so that we use SCSS rather than CSS.

Navigate to our app's folder structure and locate the following file:
src/plugins/bootstrap-vue.js. Next, update the code so that it looks like the
following:

import Vue from 'vue'

import BootstrapVue from 'bootstrap-vue'
import 'bootstrap/scss/bootstrap.scss'
import 'bootstrap-vue/dist/bootstrap-vue.css'

Vue.use(BootstrapVue)

Dealing with errors
It is possible that you might be greeted with the cannot find sass-loader error. You
can resolve it by running the following command:

npm install -D sass-loader sass

Improving CSS with SCSS Chapter 7

[147]

At this point, if you're unsure about what a loader is, it might be worthwhile revisiting
Chapter 2, Webpack in Vue CLI 3, to get a refresher on webpack loaders.

Another error that is likely to come up is this one:

Module build failed (from ./node_modules/sass-loader/lib/loader.js): Error:
Cannot find module 'node-sass'

You can resolve this error by running the following command:

npm install node-sass

Finally, after the installation of a new package, you'll see a message that reads found 1
high severity vulnerability (or something similar to this). You can, and should, fix
such a vulnerability, following the cue from the console, and running npm audit fix.

Writing some SCSS in our project
Now that we have imported bootstrap.scss, we can start using it.

Let's open App.vue, and update the style tag to the following:

<style lang="scss">
#app {
 text-align: center;
 color: #2c3e50;
}

#nav {
 a {
 font-weight: bold;
 }
 a.router-link-exact-active {
 color: #42b983;
 }
}
</style>

What we're seeing in the preceding code is an example of nesting, a feature of SCSS that
allows us to mimic the HTML structure of our apps inside our SCSS rules.

Improving CSS with SCSS Chapter 7

[148]

If you looked at your project being served in the web browser at this stage, you'd notice
that it's still running, and that it is unchanged. That is good! It means everything is working
and that everything is getting served just as it should.

Let's now add some variables, mixins, and interpolation to our SCSS.

Overriding bootstrap-vue styles
We'll begin by adding a custom SCSS file. We'll call it custom.scss, and we'll place it
inside the assets folder of our project.

Now let's add this code to custom.scss:

$secondary: tomato;

We've just overridden the Bootstrap variable. Now let's use it inside our App.vue file, by
importing the custom.scss file. We'll also override the .bg-secondary class inside our
#nav element. The updated script tag will look like this:

<style lang="scss">
@import './assets/custom.scss';
#app {
 text-align: center;
 color: #2c3e50;
}

#nav {
 a {
 font-weight: bold;
 }
 a.router-link-exact-active {
 color: #42b983;
 }
 .bg-secondary {
 background-color: $secondary;
 }
}
</style>

Improving CSS with SCSS Chapter 7

[149]

After we've saved all the changes, our project will be updated to this:

Next, we'll use some of the more advanced SCSS features in our App.vue file.

Using variables, mixins, and interpolation
In this section, we'll use some more variables, mixins, and interpolation syntax in SCSS.
Before we even begin this chapter, it is beneficial to mention a website where you can
practice writing SCSS, and see the CSS output it will produce. The website is called
Sassmeister, and it's available at: https:/ ​/​www.​sassmeister. ​com/ ​.

Using Sassmeister to practice SCSS
Once you visit the website, you can pick a flavor of Sass or SCSS that you'd like to use, by
hovering over the Options item as follows:

https://www.sassmeister.com/
https://www.sassmeister.com/
https://www.sassmeister.com/
https://www.sassmeister.com/
https://www.sassmeister.com/
https://www.sassmeister.com/
https://www.sassmeister.com/
https://www.sassmeister.com/
https://www.sassmeister.com/
https://www.sassmeister.com/

Improving CSS with SCSS Chapter 7

[150]

The Sassmeister website is a great place to practice working with various features of the
language. For example, we can navigate to our project's node_modules folder, and locate
the bootstrap folder.

If you can't find the bootstrap folder inside node_modules, you can
install it with npm i bootstrap.

Next, open the scss/mixins folder, and locate _alert.scss, with the following syntax:

@mixin alert-variant($background, $border, $color) {
 color: $color;
 @include gradient-bg($background);
 border-color: $border;

 hr {
 border-top-color: darken($border, 5%);
 }

 .alert-link {
 color: darken($color, 10%);
 }
}

As we can see, this is a mixin. Let's copy and paste it into Sassmeister and see what output
we get.

Actually, we won't get any output. Why?

Improving CSS with SCSS Chapter 7

[151]

The reason is simple: a mixin in Sass or SCSS, is actually just like a function in a different
language, for example, JavaScript. So, to use a mixin in SCSS, we need to call it, and pass it
a few parameters. Here is an example:

@include alert-variant(tomato, purple, white);

Note that the @include syntax is necessary to run a mixin.

The preceding code is supposed to work, but inside our mixin definition, we're calling
another mixin as follows:

@include gradient-bg($background);

This means that in order for our code to compile in Sassmeister, we need to replace the
preceding line with something else, for example, with the following:

background: $background;

Finally, our @include for alert-custom, needs to be applied on a CSS rule. This means
that we need to wrap our call to alert-custom with a CSS declaration, as in the following
example:

.alert-custom {
 @include alert-variant(tomato, purple, white);
}

Putting all of this together, this is our SCSS code:

@mixin alert-variant($background, $border, $color) {
 color: $color;
 background: $background;
 border-color: $border;

 hr {
 border-top-color: darken($border, 5%);
 }

 .alert-link {
 color: darken($color, 10%);
 }
}
.alert-custom {
 @include alert-variant(tomato, purple, white);
}

Improving CSS with SCSS Chapter 7

[152]

Sassmeister will compile the preceding code to the following:

.alert-custom {
 color: white;
 background: tomato;
 border-color: purple;
}

.alert-custom hr {
 border-top-color: #670067;
}

.alert-custom .alert-link {
 color: #e6e6e6;
}

Now that we know how to work with SCSS mixins, we can use them in our project.

Using SCSS mixins and interpolation in our Vue project
We'll begin with adding an alert to our App.vue as follows:

<b-alert show>Default Alert</b-alert>

This simple addition will update our app look to this:

Now we'll add some mixins to update the styling.

Improving CSS with SCSS Chapter 7

[153]

We'll begin with adding our custom mixin to color the alert we've added. Here's the code
for custom.scss:

$secondary: tomato!important;
$border: darken(#ff0000, 10%);

@mixin alert-variant($background, $border, $color) {
 color: $color;
 background: $background;
 border-color: $border;
 border-radius: 0;
 border-width: 5px;
 .alert-link {
 color: darken($color, 10%);
 }
 }
 .alert-info {
 @include alert-variant(rgb(255, 192, 181), #ff0000, white);
 }

After we save the preceding file, our alert will look like this:

With this, we conclude the chapter.

Improving CSS with SCSS Chapter 7

[154]

Summary
SCSS is a large topic. Working with SCSS in VDOM frameworks such as Vue can get
complex, due to the number of different concepts that are involved. This chapter gave you a
sneak peek of what is available and how to get started.

In this chapter, we've touched on using SCSS in our project. We've learned about how to
work with CSS and SCSS in our Vue apps. We've also learned about some of the main
features of SCSS, such as variables, mixins, and interpolation, and we've also learned how
to implement Bootstrap 4 in our Vue apps. Next, we've learned how to edit the built-in
components of our bootstrap-vue plugin in Vue, and how to update them with custom
SCSS code.

In the next chapter, we'll build a simple project, using everything we've learned so far, and
we'll publish it on GitHub Pages.

8
Deploying Vue CLI 3 Apps on

GitHub Pages
In this chapter, we will set up a new repository on a new GitHub account, and quickly
prototype a Vue-powered project. Then, we'll deploy it using GitHub Pages. In this chapter,
we'll get acquainted with the following:

GitHub Desktop app
Basics of Git (what it is and how it works)
Some basic Git commands
Understanding branching in Git
How to properly set up a Vue app to work with GitHub Pages

By the end of this chapter, you'll have a fully working Vue app being served on GitHub
Pages. Let's begin by understanding how to work with the GitHub Desktop app.

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[156]

Installing GitHub Desktop app
To begin, navigate to the following URL: https://desktop.github.com. Next, simply
download the app with the prominent download button in the center of the screen as
shown in the following screenshot:

Once you have downloaded the GitHub Desktop app installation file
(GithubDesktopSetup.exe), you need to run the installation.

Once installed, you'll be greeted with a minimal interface. If you're dealing with Git and
GitHub for the first time, this minimal interface might seem like it's almost too minimal.
What's going on in this app?

In order to understand how this app works, you need to know some very basic concepts of
Git in general.

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[157]

Understanding how Git works
When you work on a project, if you are not using source version control such as Git, you
might think that there is only one folder for your project. For example, any Vue app that
you've installed using Vue CLI 3 will end up as one separate folder with a number of
subfolders inside of it.

We can simplify the tree structure of such a Vue app, and describe it like this:

aVueApp
 |- aSubfolder
 |- anotherSubfolder
 |- yetAnotherSubfolder

Note that our imaginary Vue app has one root folder called aVueApp. Inside of this root
folder are three subfolders that contain the complete functionality of our Vue app.

As long as we're dealing with only a few files and folders, that is, as long as our Vue app is
very small, we don't have to worry about versioning our files and folders, since there's
almost nothing to be versioned. If we make an error in a file or a folder, we simply undo the
changes and we get back to an earlier version of our file. This is a reasonable approach.

However, what would happen if our project grew to, say, 30 files spread across seven
folders? Let's also imagine updating only a couple of lines of code in each of these 30 files,
during the development of our Vue project. Let's further imagine that we make so many
changes to these files and that we make a few major mistakes during development that we
simply cannot continue working on our project. Normally, on a smaller project, we could
simply undo the changes we made to a few files to get back to the last working version of our
app.

However, with many changes spread across many different files, not only is it unlikely that
we'd be able to remember to undo every single change back to the last working version of
our app, undoing all these changes would also be time-consuming and, thus, ultimately
impractical.

What is a developer to do?

Luckily, we have version control. Git is what's known as a DVCS: a distributed version
control system. Without getting too technical, you can think of Git as a big undo/redo
button, with a slight caveat. Instead of undoing changes on a single file, Git tracks versions
of a developer's app through time, sort of like taking a snapshot of the entire app at a
certain point in time.

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[158]

A developer is responsible for deciding just when this should take place. For example,
when you've written a new feature in your app, and you are ready to save your app in its
present state so you can get back to it, you simply save it by committing changes.

Rather than describing this in theory, let's start a new Vue app and start tracking changes
made to it with the help of Git.

Starting a new Vue app and tracking changes
with Git
Let's open Git Bash and create a new Vue project in a folder of our choice as follows:

vue create chapter8

Let's keep things simple and press the Enter key whenever Vue CLI 3 prompts us for an
answer. As we've already learned, this is a quick and easy way to accept default settings
when installing a new Vue app with Vue CLI 3.

To start tracking a project with Git, we run the following command:

git init

This command initializes a new local Git repository. We're using the word local here
because, currently, this repository is local to our computer only. If we wiped our
computer's disk tomorrow, the local Git repository that we just made would be lost as well.

However, there are cases when a Git repository has already been initialized. The following
is a simple command we can run to see whether there is a Git repository in our project or
not:

git status

The preceding command gives us information about the current state of our repository. If
the folder we've run this command in is not empty, it will report that the current folder is
not a Git repository.

Let's run the git status command now in the root of the chapter8 folder. This is what
we get back:

On branch master
nothing to commit, working tree clean

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[159]

This information tells us that we are currently on the master branch of our project, and that
there is nothing to commit. The working tree is clean. What is this working tree?

The working tree represents all the files and folders that have been saved and whose
changes have been committed in our project.

To inspect the history of changes made to our project's files, we can run this command:

git log

This command will list all the commits that we've added to the project so far. Here's the
output of the preceding command:

commit ee07b4828fb217902f2f7c1047f00f936c3a461f (HEAD -> master)
Author: UserWithEmail <user@email.com>
Date: Mon Apr 22 22:18:48 2019 +0200

 init

Here, we can see several pieces of information:

Commit with a 40-character SHA unique identifier
Commit author (including author's username and email address)
The date and time when the commit was made

Let's now make a minor change to our App.vue file. We'll update the msg attribute from
Welcome to Your Vue.js App to just Welcome. Once we've saved the changes, we can run
the git status command again. This is what we will get back inside the console:

On branch master
Changes not staged for commit:
 (use ''git add <file>...'' to update what will be committed)
 (use ''git checkout -- <file>...'' to discard changes in working
directory)

 modified: src/App.vue
no changes added to commit (use ''git add'' and/or ''git commit -a'')

Now, we can create another snapshot of the condition our app was in at this point in time.
To do that, we need to do the following two things:

First, we need to add all our changes to the staging area (this is the second Git
tree).
Second, we need to commit those changes, so that they get their own commit
SHA (unique identifier consisting of a string of 40 pseudo-random characters).

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[160]

Committing changes to our app
Let's add all the changes with this command:

git add --all

Next, we'll commit the changes by giving a commit message as follows:

git commit -m "Update App.vue's template"

Now, let's run the git log command again to see the output. This time, we'll also pass it a
flag, --oneline, as follows:

git log --oneline

This is the result that we get back inside the console:

e469374 (HEAD -> master) Update App.vue's template
ee07b48 init

Note that, this time, the information we get back is a lot more succinct. The 40-character
SHA string is now abbreviated to the first eight letters and numbers, and the author details
are skipped. The --oneline flag is very useful when we have many commits to look into.
You can even narrow down the number of results by passing another flag, starting with the
minus character, and then the number of commits you want to see. Whichever number you
specify, you'll get back that many of the most recent commits.

For example, we currently have two commits, so we could run this command to see the last
two commits:

git log --oneline -2

We could also run this command to see only the last commit:

git log --oneline -1

Next, we'll look at the three trees concept.

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[161]

The three trees concept
There is a concept of three trees in Git. It is important to note that this concept doesn't have
anything to do with the tree data structure. Here, the tree is just a metaphor we use to refer
to a certain status of our files. The three trees include the following:

Working directory
Staging area (also known as staging index)
The repository

The concept of three trees might sound confusing at first, but it's actually very simple. Here
is a basic Git workflow:

We install an app using vue create <appname>. 1.
As part of the installation, our app is initialized as a Git repository.2.
Once the installation is complete, we have all our files (working directory) and a3.
single commit (with the message that reads ''init'', meaning a repository has been
initialized).
We then make some changes to our working directory.4.
Before committing these changes, we need to add them to our staging index. The5.
staging index is just a tree of updated files that we are preparing for a commit. If
we haven't added any files with the git add <filename> command, our
staging index is empty.
Once you've staged all the files into the staging area, you then commit them6.
(using the git commit -m syntax, followed with the specific commit message
inside quotes).
When you've committed your changes, you simply repeat the process.7.

Besides the working directory and the staging area, the third tree is simply the repository.
You can use the checkout command to get to load whatever part of the repository you
want into your working directory. Then you can simply repeat the process if you like.

Branching in Git
Another important concept in Git is branching. For science fiction fans, branching could be
described as sort of a multiverse: a bunch of alternative realities in which your project can,
for example, have a navbar in the footer, or no navbar at all.

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[162]

When we want to add a new feature to our project, we use branching. That way, each
branch represents a separate feature of our project.

Every Git project starts off with a single branch: master.

Once we decide we need another branch for a special feature we need to work on, we
simply run this command:

git checkout -b "branch name here"

The preceding command means the following: create a new branch, call it branch name
here, and switch to this newly added branch.

To view a listing of all the branches in our project, we simply run this command:

git branch

This command will print out all the branches we have in our project, as well as putting an
asterisk in front of the current branch. Here's an example output:

branch one
branch two
* master

The preceding output would mean that we have a total of three branches in our project, and
that we're currently on the master branch.

Merging branches
One more thing to mention before we set up our project in GitHub is the concept of
merging branches.

The workflow goes like this: we check out a new branch using a sensible name (for
example, add-navbar). Next, we add all the features that we want to this branch, and
commit our changes. Once we're done, we switch back to another branch, for example,
master. Then we simply run the following command:

git merge add-navbar

Doing this will result in all the code from the add-navbar branch getting pulled into the
master branch. Our master branch and our add-navbar branch now share the same code.

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[163]

Note that you cannot switch branches if you have changes in your
working directory that haven't been committed! If you don't want to
commit your changes, but still need to switch to a different branch, a
workaround is to use the git stash command.

This concludes our quick introduction to some basic concepts of Git. However, this is
nowhere near a complete introduction. We have only mentioned some basic features that
we will be using in our project. There are still many more things to learn.

Registering a new GitHub account
We have installed GitHub Desktop. We also know enough about Git to be able to
understand the rest of this chapter. Now we'll register for a GitHub account.

Navigate to https:/ ​/​github. ​com and sign up for a new account. Make sure to check your
email and confirm the registration.

Once you've signed up and logged in, you'll see an interface like this:

https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[164]

This is the place where our remote GitHub repository will live. To add to our remote
repository, we need to push our changes there. The remote repository is referred to as
origin/master.

Luckily, we have GitHub Desktop installed, and using it is the simplest way possible to
interact with GitHub. You can easily create new repositories, update existing ones, add
branches, and push to the remote, all from GitHub Desktop.

We already have the chapter8 Vue project, with one commit added to it. Let's now use
GitHub Desktop to add it to remote.

Adding origin/master using GitHub Desktop
Let's open the GitHub Desktop app. We'll start using it by adding our chapter8 project. To
do that, click on the File dropdown in the main application menu at the very top. Next,
click on the Add local repository command.

A popup will appear. This popup's title is Add local repository. In the body of the popup,
we can see a single input field with a placeholder that reads repository path. Next to it is
the button to choose a local repository. Let's click the Choose... button.

Clicking the Choose... button will open Windows Explorer, where we can navigate to the
location of our chapter8 folder. Once you've selected the chapter8 folder, simply click
the Select Folder button at the very bottom of the Windows Explorer window.

Next, simply click the Add repository button in the popup as follows:

That's it! You've just added your local repository. Now, you're ready to publish it.

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[165]

Publishing your local repository
To publish our local repository, we need to simply click the Publish repository button as
follows:

Once we click the Publish repository button, a new popup will appear. There are only the
following default settings already added to the Publish repository popup window:

Repository name (as it will appear in GitHub)
Description (blank by default)
Keep this code private checkbox (checked)

Let's accept the defaults and click the Publish repository button. We will now have a new
private repository in our GitHub account.

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[166]

Back in GitHub, here's our remote repository:

If we click on the link to chapter8 in the left-hand sidebar, we'll be taken to our
repository as follows:

Here, we can see our entire project.

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[167]

We can also see that there are currently 2 commits in our repository. Clicking on the 2
commits link will take us to a sort of visual Git log of commits, where you can also click on
each individual commit to inspect the changes made at that specific time in our project's
history.

Next, we'll publish our project so that it can be seen on GitHub Pages.

Publishing our project on GitHub Pages
GitHub Pages is a hosting service. You can host static files there. This means that you can't
host a database with a backend, so projects written in backend technologies, such as PHP,
Node, .NET, and so on, can't be added.

Still, it's interesting how far you can take a simple project consisting of static files. You can
even host a blog using Jekyll, GitHub's serverless blogging platform.

However, the focus of this section is publishing our simple Vue app, so let's get ready to do
that.

Getting our project ready to be published
We'll begin in our repository dashboard on GitHub. Let' navigate to the Settings tab as
follows:

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[168]

Next, we need to scroll down to the GitHub Pages section as follows:

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[169]

Looking at the preceding screenshot, we can see that we need to make our repository public
before we can publish it on GitHub Pages. To do that, we simply need to click the Make
public button (the first button under the Danger Zone title) as follows:

In the popup that appears, we'll type the name of our repository to confirm our choice, then
click the I understand, make this repository public button. It is possible that GitHub will
require you to retype your password at this stage.

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[170]

Now, you need to scroll down to the GitHub Pages section again, and click the drop-down
button. Choose master branch in the drop-down list as follows:

Once you've chosen the master branch, an alert will appear under the main menu, and it
will read "GitHub Pages source saved", as follows:

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[171]

Finally, scroll down to the GitHub Pages section again, and you'll see this message:

Everything is now ready for publishing on GitHub Pages, but we still need to configure our
Vue app.

Updating the Vue configuration file
With all the config files we've seen in this book, it should come as no surprise that Vue itself
has one! The name of this file is vue.config.js and it lives in the root of our project. This
file is optional, so vue.config.js doesn't come with our project preinstalled. Let's add it
to the root of our project, and add the following code to it:

// vue.config.js
module.exports = {
 // options...
}

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[172]

The first option we'll give our Vue config file is publicPath, as follows:

module.exports = {
 publicPath: process.env.NODE_ENV === 'production'
 ? '/chapter8/'
 : '/'
}

You can read more about this setup at the following URL: https:/ ​/​cli. ​vuejs. ​org/ ​guide/
deployment.​html#github- ​pages.

Let's save our changes and use GitHub Desktop to commit them and push them to the
remote repository.

Saving changes and pushing them to the remote
repository with GitHub Desktop
Open GitHub Desktop and you'll see your changes listed. Simply type your commit
message in the lower-left corner of the app, and then click the Commit to master button
(the blue button in the very lower-left corner of the GitHub Desktop app, as shown in the
following screenshot):

https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages
https://cli.vuejs.org/guide/deployment.html#github-pages

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[173]

Once you click the Commit to master button, you need to push your changes to origin
(another name for the remote repository) as follows:

Unfortunately, our repository will still not be published. To publish it, we need to open the
.gitignore file in our root, and comment out the /dist folder so that it's no longer
ignored, as follows:

.DS_Store
node_modules
#/dist

Next, we'll build our project with this command:

npm run build

We'll see the following message:

Build deployed. The dist directory is ready to be deployed.

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[174]

Commit changes in GitHub Desktop with a message, for example: Prepare dist
directory. After that, like before, click the Push origin button.

Debugging your GitHub pages deployment
Sometimes, things just don't work like they're supposed to. In that case, you can simply
locate the hidden .git folder inside your project, and just delete it. This will remove the
local repository. Next, update the vue.config.js file, like this:

module.exports = {
 publicPath: process.env.NODE_ENV === 'production'
 ? '/chp8/'
 : '/'
 }

Back in GitHub Desktop, the app will notice your changes and offer you to publish the
repository. The offered repository name is chapter8, but you need to rename it to chp8.
Back in GitHub, locate your new chp8 repository, and set it to public. Note that you could
have done that from the pop-up window in GitHub Desktop. Regardless of how you did it,
it's important to make the repository public. Next, scroll down to the GitHub Pages section
in the Settings tab of your GitHub repository's dashboard, and publish a new GitHub
Pages project on the master branch, just like we did before.

At this point, it is not perfectly clear in Vue documentation how to easily deploy a website
on GitHub Pages. What currently works is publishing your dist folder as a subtree
repository. Here are the commands used to achieve this:

git init # with /dist un-ignored in .gitignore
npm run build
git add dist
git commit -m "Init dist"
git status
git subtree push --prefix dist origin master
git add --all
git commit -m "Publish all"
 create mode 100644 README.md
 create mode 100644 babel.config.js
 create mode 100644 package-lock.json
 create mode 100644 package.json
 create mode 100644 public/favicon.ico
 create mode 100644 public/index.html
 create mode 100644 src/App.vue
 create mode 100644 src/assets/logo.png
 create mode 100644 src/components/HelloWorld.vue

Deploying Vue CLI 3 Apps on GitHub Pages Chapter 8

[175]

 create mode 100644 src/main.js
make some additional changes, follow it up with ''npm run build''
git add dist
git commit -m "Publish chp8 title"
git subtree push --prefex origin master

The repository for this chapter can be found
at https://github.com/ImsirovicAjdin/chp8. If you look at the file structure, you'll
notice that your repository looks like this:

css/
 └── app.11c93175.css
img/
 └── logo.82b9c7a5.png
js/
 ├── app.8c7f6fb3.js
 ├── app.8c7f6fb3.map
 ├── chunk-vendors.ecd76ec1.js
 └── chunk-vendors.ecd76ec1.js.map
favicon.ico
index.html

Obviously, the git subtree push --prefix dist origin master command pushed
only the contents of the dist directory to GitHub. To better understand how the repository
for this chapter works, refer to the chapter8 folder in this book's code, and once you open
it, run the git log command on it inside a command-line program.

Summary
In this chapter, we've learned about the very basics of Git and GitHub. We've seen how to
set up and use GitHub Desktop, and how to use it to quickly and easily push a local
repository to a remote on GitHub.

Further, we've looked at how to add branches to our app and how to pull in these branches
to merge them with the master branch. Finally, we've discussed the tweaks we need to
make to our project in order to publish it on GitHub Pages.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Vue.js 2 Design Patterns and Best Practices
Paul Halliday

ISBN: 978-1-78883-979-2

Understand the theory and patterns of Vue.js
Build scalable and modular Vue.js applications
Take advantage of Vuex for reactive state management
Create single page applications with vue-router
Use Nuxt for FAST server-side rendered Vue applications

https://prod.packtpub.com/in//web-development/vuejs-design-patterns-and-best-practices

Other Books You May Enjoy

[177]

ASP.NET Core 2 and Vue.js
Stuart Ratcliffe

ISBN: 978-1-78883-946-4

Setup a modern development environment for building both client-side and
server-side code
Use Vue CLI to scaffold front-end applications
Build and compose a set of Vue.js components
Setup and configure client-side routing to introduce multiple pages into a SPA
Integrate popular CSS frameworks with Vue.js to build a product catalogue

https://prod.packtpub.com/in/application-development/hands-aspnet-core-2-and-vuejs

Other Books You May Enjoy

[178]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

@
@vue/cli-plugin-babel
 Babel 7 61
 features 62
 fundamentals 61
 role of @vue/babel-preset-app 62
 role of babel-loader 62

A
Asynchronous Module Definition (AMD) 35

B
Babel
 about 58, 59, 60
 babel-loader, adding to webpack configuration

68, 69
 methods option, updating to ES6 syntax 68
 NPM packages, installing 63, 64, 65
 webpack configuration, updating 70
 webpack, running with ES5 code 66, 67
 webpack-dev-server, adding 67
bootstrap-vue plugin
 using, to add styles to project 144, 146
BootstrapVue
 adding, as plugin 143
 installing 142
branching 161
Browserify
 URL 35

C
Chart.js library
 URL 26
cli-plugin-babel
 features 61
Command-Line Interface (CLI) 8

content delivery network (CDN) 25
Cypress 97
Cypress plugin
 adding, to project 98
 package.json updates, verifying 98, 99, 100
Cypress tests
 updating, in Vue app 100, 101

D
Document Object Model (DOM) structure 55
DVCS (distributed version control system) 157
dynamic segment 122

E
end-to-end tests
 writing, with Cypress 97
ESLint configuration
 setting up, in Vue CLI 3 GUI 137, 138
ESLint
 .eslintrc.js config file structure 133
 about 124
 configuring 125, 126
 configuring, in Vue CLI 3 136
 error level rules, updating 135
 init command 131, 132
 installing globally 130, 131
 running 131
 running, on JavaScript file 134, 135
 using, with Prettier, in Vue CLI 3 UI project 139,

140, 141
 working with 129, 130

F
fatigue level zero 16

[180]

G
Git
 branches, merging 162
 branching 161
 changes, committing to app 160
 project, tracking with 158
 three trees concept 161
 working 157
GitHub account
 registering 163, 164
GitHub Desktop app
 installing 156
GitHub Desktop
 installing 156
 local repository, publishing 165, 166, 167
 used, for adding origin/master 164
 using 164
GitHub Pages
 about 167
 project, publishing on 167
global packages 125

H
Hot Module Replacement (HMR)
 about 24, 54
 updates, observing 55, 56, 57

I
IIFEs
 about 26
 issues 26

J
jQuery library
 URL 26
JS language
 evolution 25
 IIFEs 26
 JavaScript task runners 30, 31
 modules 32
 NPM scripts 30, 31
 script tag 25
 third-party libraries, sharing in team environment

with NPM 27, 28, 29, 30

L
Linux
 URL 27
Long-term Support (LTS) 10

M
main.js file
 app, serving in production mode 114, 115
 App.vue file 112
 build task, running from UI 114
 contents 112
 router-link navigation 112
 Vue instance, rendering 113
module bundler 34, 35
modules, JavaScript
 about 32
 module bundlers 34
modules
 working with, in Node.js 32, 33, 34

N
Node Package Manager (NPM) 27
Node Version Manager (NVM)
 installing, on Windows 9, 10
 need for installation 9
 used, for installing Node.js 9
Node.js
 installing, with NVM 9
NPM package runner 129
npm packages
 global installation, versus local installation 125
NuGet
 URL 27

P
parallelization 62
Parcel
 URL 35
preset options
 configuring, through VS Code's command line

105

Prettier
 about 126
 index.html, running 128

[181]

 installed npm modules, running locally on
command line 126, 127

 installing globally 128
 running, with npx 129
 URL 126

R
red-green-refactor cycle 95
rollup.js
 URL 35
router-view tag
 about 116
 dynamic routes, working with 122
 lazy loading routes 122
 named routes, using 116
 nested routes, working with 119, 120
 route, navigating by triggering method 117, 118,

119

 testing 116
routes, in vue-router
 default routes, inspecting 110, 111
 project files, inspecting 111, 112
 working with 110
routes
 basic of working 115
Ruby
 URL 27

S
Sassmeister
 URL 149
SCSS
 bootstrap-vue styles, overriding 148
 errors, dealing with 146
 interpolation, using 149, 153
 mixins, using 149, 152
 practicing, Sassmeister used 149, 151
 using, in project 146
 variables, using 149
 writing, in project 147
shorthand function 74

T
test-driven development (TDD) 75
test-driven development, Vue CLI 3 95

tests, Vue CLI 3
 improving 95
 watching 96, 97
this keyword
 issues 71
 one counter app, adding 71, 72, 73, 74
 recommended solutions 71
three trees concept 161
toolchain 16

V
VS Code
 installing 12
Vue app testing
 button click, triggering 93, 94
 code, adding 84, 85
 component, mounting 91
 failing assertion, writing 92
 Jest plugin, adding 79, 80, 81, 82
 mount, importing from test-utils 90
 passing assertion, writing 93
 performing 76
 project, adding with Vue CLI UI 76, 77, 78, 79
 unit test, running inside Vue CLI UI 87, 88, 89,

90

 unit test, writing 91
 unit test, writing with Jest 86
 updates, examining 83, 84
Vue app, publishing on GitHub Pages
 about 167
 changes, pushing to remote repository 173
 changes, saving 172
 GitHub pages deployment, debugging 174
 preparing 167, 168, 169, 170, 171
 Vue configuration file, updating 171
Vue CLI 3 app
 creating, via command line 16, 17, 18
 creating, via UI 18, 20, 23
Vue CLI 3
 benefits 16
 installing 10, 11
 setting up 8, 9
 test-driven development 95
 webpack 24
Vue CLI

 using, with no configuration 12, 13, 15
Vue plugins 75, 76
Vue project
 .vue file, adding as JavaScript module 49, 50
 adding, via NPM 44
 adding, with with vue-router and vuex 103, 104
 changes, tracking with Git 158
 configuration 107
 ESLint and Prettier, adding 107
 HTML file, adding 47
 HTML file, outputting 48, 49
 HTML files, delivering via webpack 53, 54
 index.html file issue, fixing 52, 53
 JavaScript modules, compiling with webpack 46
 options, adding with webpack configuration file

47

 plugins, installing 108
 serve task, running from UI 109, 110
 serving, from Vue CLI UI 108, 109
 Vue component, adding as JavaScript module

45, 46

 vue-router and vuex, adding 106
 webpack loader, adding with .vue files 50, 51,

52

 webpack, using on it 45
vue-router plugins 61
Vue
 Hot Module Replacement 54
vuex 61

W
webpack loader 50
webpack
 about 35, 36, 37
 and Babel, using in Vue 2 without Vue CLI 63
 project, building 37
 running, on project 38, 39, 40, 41, 42, 43, 44
 URL 35
 working 37
Windows
 NVM, installing 9, 10

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introducing Vue CLI 3
	Technical requirements
	Setting up Vue CLI 3 on our system
	Is Vue CLI 3 already available?
	Installing Node.js using Node Version Manager
	Why install NVM?
	Installing NVM on Windows

	Installing Vue CLI 3
	Installing VS Code
	Using Vue CLI with no configuration
	The benefits of using Vue CLI 3
	Default toolchain, fatigue level zero
	Vue CLI 3 default app via the command line
	Vue CLI 3 default app via the UI

	Summary

	Chapter 2: Webpack in Vue CLI 3
	The evolution of the JS language
	The script tag
	Immediately Invoked Function Expressions
	The problem with IIFEs
	Sharing third-party libraries in a team environment with NPM
	JavaScript task runners and NPM scripts
	Modules in JavaScript
	Working with modules in Node.js
	Module bundlers, a way to use modules in the browser

	What is webpack?
	How webpack works
	Building a new project and running webpack on it
	Running webpack on a project

	Adding a Vue project via NPM and using webpack with it
	Adding our Vue component as a JavaScript module
	Compiling JavaScript modules with webpack
	Adding options with the help of the webpack configuration file
	Adding an HTML file so that we can render our Vue component
	Giving webpack the ability to output an HTML file
	Adding a .vue file as a JavaScript module
	Adding a webpack loader to work with .vue files
	Fixing the issue with our index.html file
	Delivering HTML files via webpack with the help of html-webpack-plugin

	Understanding Hot Module Replacement in Vue
	Observing HMR updates

	Summary

	Chapter 3: Babel in Vue CLI 3
	Understanding Babel
	The building blocks of @vue/cli-plugin-babel
	Babel 7 in @vue/cli-plugin-babel
	The role of babel-loader in @vue/cli-plugin-babel
	The role of @vue/babel-preset-app

	Other features of @vue/cli-plugin-babel

	Using Babel and webpack in Vue 2 without Vue CLI
	Installing the necessary NPM packages
	Running webpack with ES5 code
	Adding webpack-dev-server
	Updating the methods option to ES6 syntax
	Adding babel-loader to our webpack configuration
	Updating our webpack configuration to work with babel

	The problem with the this keyword in arrow functions in Vue
	Recommended solutions to keyword problems
	Adding one counter app

	Summary

	Chapter 4: Testing in Vue CLI 3
	Understanding Vue plugins
	Beginning testing on a brand new Vue app
	Adding a new project with Vue CLI UI
	Adding the Jest plugin to our Vue app
	Examining the updates

	Adding the code for our Vue application
	Writing our first unit test inside a Vue app with Jest
	Running our first unit test inside the Vue CLI UI
	Importing mount from test-utils and writing another unit test
	Mounting the component to be tested
	Writing a failing assertion
	Writing a passing assertion
	Triggering a button click in our test

	Test-driven development in Vue CLI 3
	Improving our tests in Vue CLI 3
	Watching our tests in Vue CLI 3

	Writing end-to-end tests with Cypress
	Introducing Cypress
	Adding a Cypress plugin to our project
	Verifying updates to package.json made by the Cypress plugin installation

	Updating Cypress tests in our Vue app

	Summary

	Chapter 5: Vue CLI 3 and Routing
	Adding a new Vue project with vue-router and vuex
	Configuring preset options through VS Code's command line
	Adding vue-router and vuex
	Adding ESLint and Prettier
	Finishing the configuration
	Installing all the plugins for our new project

	Serving our project from the Vue CLI UI
	Running the serve task from the UI

	Working with routes in vue-router
	Inspecting the two default routes
	Inspecting project files
	The contents of main.js
	The App.vue file and router-link navigation
	Rendering a Vue instance and mounting it into #app

	Running the build task from the UI
	Serving the app in production mode from the UI

	Some basics of working with routes
	The router-view tag needs to be nested
	Using named routes
	Navigating to a route by triggering a method of a Vue instance
	Working with nested routes
	Lazy- loading routes
	Working with dynamic routes

	Summary

	Chapter 6: Using ESLint and Prettier in Vue CLI 3
	What ESLint is, and how to configure it on its own
	Installing npm packages globally versus installing npm packages locally
	What is Prettier?
	Running locally-installed npm modules on the command line using npx
	Installing Prettier globally and running it on index.html
	Running Prettier with npx

	Working with ESLint
	Installing ESLint globally and unsuccessfully running it from the command line
	Running eslint --init command
	Understanding the structure of .eslintrc.js config file

	Running ESLint on a JavaScript file
	Updating error level rules in ESLint

	Configuring ESLint in Vue CLI 3
	Setting up ESLint configurations in Vue CLI 3 GUI

	Using ESLint and Prettier together in a Vue CLI 3 UI project
	Summary

	Chapter 7: Improving CSS with SCSS
	Installing Bootstrap + Vue
	Adding BootstrapVue as a plugin

	Using the bootstrap-vue plugin to add styles to our project
	Using SCSS in our project
	Dealing with errors
	Writing some SCSS in our project
	Overriding bootstrap-vue styles
	Using variables, mixins, and interpolation
	Using Sassmeister to practice SCSS
	Using SCSS mixins and interpolation in our Vue project

	Summary

	Chapter 8: Deploying Vue CLI 3 Apps on GitHub Pages
	Installing GitHub Desktop app
	Understanding how Git works
	Starting a new Vue app and tracking changes with Git
	Committing changes to our app
	The three trees concept
	Branching in Git
	Merging branches

	Registering a new GitHub account
	Adding origin/master using GitHub Desktop
	Publishing your local repository

	Publishing our project on GitHub Pages
	Getting our project ready to be published
	Updating the Vue configuration file
	Saving changes and pushing them to the remote repository with GitHub Desktop
	Debugging your GitHub pages deployment

	Summary

	Other Books You May Enjoy
	Index

